text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Visualization of the Error rate with different window lengths and a sine with wave number 5 (128 samples) Step2: As you can see, the error is higher when the window is bigger. Step3: Visualization of the Error rate with different wave numbers and different window lengths Step4: At the beginning you can see the error rises with a higher wave number. But at the end there are some unlikely curves. This is because of the low samples(128).
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import sys # Add a new path with needed .py files. sys.path.insert(0, 'C:\Users\Dominik\Documents\GitRep\kt-2015-DSPHandsOn\MedianFilter\Python') import functions import gitInformation %matplotlib inline gitInformation.printInformation() fig = plt.figure() for y in range (0, 40): if y % 2 == 1: functions.ErrorPlotWindow(5, y) plt.savefig('WLError.png') plt.figure(figsize=(30,20)) for x in range(1, 5): for y in range(1, 6): # Creates different subplots in one figure, with x and y. # the window length is calculate. plt.subplot(5, 5, x + (y-1)*4) windowLength = ((x-1)*2 + (y-1)*8)*8 +1 functions.medianSinPlot(16, windowLength, 16*128,128*5+1,-128*5-1) plt.suptitle('Median filtered sine waves', fontsize = 48) plt.xlabel(("Window length (/2 pi) = " + str(windowLength/128.)), fontsize=18) fig = plt.figure(figsize=(30,20)) for x in range(1, 5): for y in range(1, 6): for z in range(0,40): if z%2 ==1: plt.subplot(5, 5, x + (y-1)*4) wavenum = (x-1) + (y-1)*4 functions.ErrorPlotWindow(wavenum, z) plt.suptitle(' Error of the Median filter with different wave numbers and window lengths', fontsize = 40) plt.xlabel(("Wave number = " + str((x-1) + (y-1)*4)), fontsize = 18) fig = plt.figure(figsize=(30,20)) for x in range(1, 5): for y in range(1, 6): for z in range(0,160,3): if z%2 ==1: plt.subplot(5, 5, x + (y-1)*4) wavenum = (x-1) + (y-1)*4 functions.ErrorPlotWindow( wavenum, z, 1024 ) plt.suptitle(' Error of the Median filter with different wave numbers and window lengths ', fontsize = 40) plt.xlabel(("Wave number = " + str((x-1) + (y-1)*4)), fontsize = 18) plt.savefig('SumErrorWL') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Seaborn settings Step2: Function to read tsv of clusters and fix cluster size column Step3: Function to plot histograms of cluster size Step4: Function to merge cluster counts Step5: Function to make two-column dataframe of cluster_size and tara_count Step6: Function to make groupby_size_count frame Step7: Function to plot heatmap Step8: PROCHLOROCOCCUS Step9: Histograms of Prochlorococcus gene cluster size among clusters MISSING in all Tara samples Step10: Density heatmap of Prochlorococcus gene clusters by cluster size (numer of genomes) and presence/absence in 139 Tara prokaryote metagenomes Step11: PELAGIBACTER Step12: Histograms of Pelagibacter gene cluster size among clusters MISSING in all Tara samples Step13: Density heatmap of Pelagibacter gene clusters by cluster size (numer of genomes) and presence/absence in 139 Tara prokaryote metagenomes
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import re import math from sys import argv sns.set_style("whitegrid") sns.set_style("ticks") sns.set_context("poster") def read_clusters_tsv(path): df = pd.read_csv(path, sep='\t', header=0, index_col=0) df = df.rename(columns={'Unnamed: 1': 'cluster_size'}) col = [int(re.sub(r'SIZE:([0-9]*)', r'\1', i)) for i in df['cluster_size']] df['cluster_size'] = col return df def plot_hist_tara(df_all_clusters, df_missing_clusters, bin_max, bin_size, max_frac, num_genomes, ymax, fig_path): fig, ax = plt.subplots() sns.distplot(df_all_clusters.cluster_size, kde=False, color='b', bins=np.arange(0,bin_max+bin_size,bin_size), label='All gene clusters') sns.distplot(df_missing_clusters.cluster_size, kde=False, color='r', bins=np.arange(0,bin_max+bin_size,bin_size), label='Missing from Tara metagenomes') sns.despine(offset=10) xticks = np.array(np.arange(0, max_frac, 0.2) * num_genomes) xticklabels = xticks / num_genomes plt.xticks(xticks, xticklabels) plt.xlim(0, max_frac*num_genomes) plt.xlabel('Cluster copy number (per genome)') plt.yscale('log') plt.ylim(0.5, 1e4) yticks = np.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]) yticklabels = ['1', '2', '5', '10', '20', '50', '100', '200', '500', '1000', '2000', '5000', '10000'] plt.yticks(yticks, yticklabels) plt.ylabel('Number of clusters') plt.legend() fig.set_size_inches(12, 8) plt.savefig(fig_path) def merge_cluster_counts(path): # Paths of input files, containing cluster counts paths = pd.Series.from_csv(path, header=-1, sep='\t', index_col=None) # Data frame containing all samples cluster counts (NaN if missing) pieces = [] for path in paths: fullpath = "/Users/luke/singlecell/tara/PROK-139/%s" % path counts = pd.DataFrame.from_csv(fullpath, header=-1, sep='\t', index_col=0) pieces.append(counts) frame = pd.concat(pieces, axis=1) headings = paths.tolist() frame.columns = headings return frame def make_df_size_count(df_all, df_counts): df_size_count = pd.DataFrame() df_size_count['cluster_size'] = df_all.cluster_size df_size_count['tara_count'] = df_counts.count(axis=1) df_size_count.fillna(0, inplace=True) df_size_count.tara_count = df_size_count.tara_count.astype(int) return(df_size_count) def make_groupby_size_count(df_size_count): # matrix style of cluster_size and tara_count groupby_size_count = df_size_count.groupby(['cluster_size', 'tara_count']).size().unstack().transpose() max_size = df_size_count.cluster_size.max() max_count = int(df_size_count.tara_count.max()) # add empty columns for i in range(1, max_size+1): if not i in groupby_size_count: groupby_size_count[i] = np.nan # add empty rows (might not be any) for i in range(1, max_count+1): if not i in groupby_size_count.index: groupby_size_count.loc[i] = np.nan groupby_size_count.sort_index(axis=1, inplace=True) #groupby_size_count.fillna(0, inplace=True) return(groupby_size_count, max_size, max_count) def plot_heatmap_tara(df, num_genomes, max_size, max_count, max_frac, xinches, yinches, species, fig_path): fig, ax = plt.subplots() myfig = sns.heatmap(np.log(df.iloc[::-1]), square=False, robust=True, cmap='inferno') xticks = np.array(np.arange(0, 5, 0.2) * num_genomes) xticklabels = xticks / num_genomes ax.set_xticks(xticks) ax.set_xticklabels(xticklabels) ax.set_xlabel('Cluster copy number (per genome)') ylabels = np.array(df.index[0::20].tolist() + [max_count]) ax.set_yticks(ylabels+0.5) ax.set_yticklabels(ylabels) ax.set_ylabel('Tara metagenomes cluster found in') ax.set_title('Density heatmap of %s gene clusters' % species) ax.axis([0, max_frac*num_genomes, 0, max_count+2]) fig.set_size_inches(xinches, yinches) fig.savefig(fig_path) # missing clusters path = '/Users/luke/singlecell/tara/table_missing_proch_all_1e-5.tsv' num_genomes = 145 fig_full = '/Users/luke/singlecell/tara/hist_missing_proch_all_1e-5_full.pdf' fig_zoom = '/Users/luke/singlecell/tara/hist_missing_proch_all_1e-5_zoom.pdf' df_missing_clusters = read_clusters_tsv(path) # all clusters path = '/Users/luke/singlecell/tara/table_all_proch.tsv' df_all_clusters = read_clusters_tsv(path) # tara counts by cluster species = 'proch' evalue = '1e-5' path = '/Users/luke/singlecell/tara/paths_%s_%s.list' % (species, evalue) df_counts = merge_cluster_counts(path) # col_SRF = [col for col in list(df_counts.columns) if 'SRF' in col] # df_counts = df_counts[col_SRF] # full hist plot_hist_tara(df_all_clusters, df_missing_clusters, 240, 5.8, 1.6001, num_genomes, 10000, fig_full) # zoom hist # plot_hist_tara(df_all_clusters, df_missing_clusters, 1.6201, num_genomes, 30, fig_zoom) df_size_count = make_df_size_count(df_all_clusters, df_counts) groupby_size_count, max_size, max_count = make_groupby_size_count(df_size_count) print groupby_size_count.max().max() # def fourth_root(num): # return num**0.25 # def square_root(num): # return num**0.5 # groupby_size_count_fourth_root = groupby_size_count_nonan.apply(fourth_root) # groupby_size_count_square_root = groupby_size_count_nonan.apply(square_root) fig_path = '/Users/luke/singlecell/tara/heatmap_tara_proch.pdf' plot_heatmap_tara(groupby_size_count, num_genomes, max_size, max_count, 1.1, 12, 8, 'Prochlorococcus', fig_path) # 1.1 was 1.62 # jointplot of cluster_size and tara_count fig = sns.jointplot(x='cluster_size', y='tara_count', data=df_size_count) # missing clusters path = '/Users/luke/singlecell/tara/table_missing_pelag_all_1e-5.tsv' num_genomes = 47 fig_full = '/Users/luke/singlecell/tara/hist_missing_pelag_all_1e-5_full.pdf' fig_zoom = '/Users/luke/singlecell/tara/hist_missing_pelag_all_1e-5_zoom.pdf' df_missing_clusters = read_clusters_tsv(path) # all clusters path = '/Users/luke/singlecell/tara/table_all_pelag.tsv' df_all_clusters = read_clusters_tsv(path) # tara counts by cluster species = 'pelag' evalue = '1e-5' path = '/Users/luke/singlecell/tara/paths_%s_%s.list' % (species, evalue) df_counts = merge_cluster_counts(path) # col_SRF = [col for col in list(df_counts.columns) if 'SRF' in col] # df_counts = df_counts[col_SRF] df_counts.shape # full hist plot_hist_tara(df_all_clusters, df_missing_clusters, 100, 1.88, 1.6001, num_genomes, 5000, fig_full) # zoom hist #plot_hist_tara(df_all_clusters, df_missing_clusters, 1.6201, num_genomes, 30, fig_zoom) df_size_count = make_df_size_count(df_all_clusters, df_counts) groupby_size_count, max_size, max_count = make_groupby_size_count(df_size_count) print groupby_size_count.max().max() groupby_size_count.max().max() fig_path = '/Users/luke/singlecell/tara/heatmap_tara_pelag.pdf' plot_heatmap_tara(groupby_size_count, num_genomes, max_size, max_count, 1.1, 12, 8, 'Pelagibacter', fig_path) # 1.1 was 1.62 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setting steps for our pipelines and parameters for grid search Step2: Setting a cross-validation for grid searching of hyperparameters and for evaluation of models with obtained hyperparameters. Step3: Creating a plan of our research Step4: To tune parameters of models and evaluate this models, run
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import make_classification X, y = make_classification() from reskit.core import Pipeliner from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC classifiers = [('LR', LogisticRegression()), ('SVC', SVC())] scalers = [('standard', StandardScaler()), ('minmax', MinMaxScaler())] steps = [('scaler', scalers), ('classifier', classifiers)] param_grid = {'LR': {'penalty': ['l1', 'l2']}, 'SVC': {'kernel': ['linear', 'poly', 'rbf', 'sigmoid']}} from sklearn.model_selection import StratifiedKFold grid_cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0) eval_cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) pipe = Pipeliner(steps=steps, grid_cv=grid_cv, eval_cv=eval_cv, param_grid=param_grid) pipe.plan_table pipe.get_results(X, y, scoring=['roc_auc']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In this tutorial, we'll show a very simple example of implementing "Bayesian optimization" using george. Step2: Now, for the "Bayesian" optimization, the basic procedure that we'll follow is
<ASSISTANT_TASK:> Python Code: import george george.__version__ import numpy as np import matplotlib.pyplot as plt def objective(theta): return -0.5 * np.exp(-0.5*(theta - 2)**2) - 0.5 * np.exp(-0.5 * (theta + 2.1)**2 / 5) + 0.3 t = np.linspace(-5, 5, 5000) plt.figure(figsize=(8, 5)) plt.plot(t, objective(t)) plt.ylim(-0.37, 0.37) plt.xlim(-5, 5) plt.xlabel("$\\theta$") plt.ylabel("objective"); from george import kernels from scipy.special import erf from scipy.optimize import minimize N_init = 4 train_theta = np.linspace(-5, 5, N_init + 1)[1:] train_theta -= 0.5 * (train_theta[1] - train_theta[0]) train_f = objective(train_theta) gp = george.GP(np.var(train_f) * kernels.Matern52Kernel(3.0), fit_mean=True) gp.compute(train_theta) def nll(params): gp.set_parameter_vector(params) g = gp.grad_log_likelihood(train_f, quiet=True) return -gp.log_likelihood(train_f, quiet=True), -g fig, axes = plt.subplots(2, 2, figsize=(8, 6)) j = 0 old_min = None converged = False for i in range(1000): # Update the GP parameters soln = minimize(nll, gp.get_parameter_vector(), jac=True) # Compute the acquisition function mu, var = gp.predict(train_f, t, return_var=True) std = np.sqrt(var) f_min = np.min(train_f) chi = (f_min - mu) / std Phi = 0.5 * (1.0 + erf(chi / np.sqrt(2))) phi = np.exp(-0.5 * chi**2) / np.sqrt(2*np.pi*var) A_ei = (f_min - mu) * Phi + var * phi A_max = t[np.argmax(A_ei)] # Add a new point train_theta = np.append(train_theta, A_max) train_f = np.append(train_f, objective(train_theta[-1])) gp.compute(train_theta) # Estimate the minimum - I'm sure that there's a better way! i_min = np.argmin(mu) sl = slice(max(0, i_min - 1), min(len(t), i_min + 2)) ts = t[sl] D = np.vander(np.arange(len(ts)).astype(float)) w = np.linalg.solve(D, mu[sl]) minimum = ts[0] + (ts[1] - ts[0]) * np.roots(np.polyder(w[::-1])) # Check convergence if i > 0 and np.abs((old_min - minimum) / minimum) < 1e-5: converged = True old_min = float(minimum[0]) # Make the plots if converged or i in [0, 1, 2]: ax = axes.flat[j] j += 1 ax.plot(t, objective(t)) ax.plot(t, mu, "k") ax.plot(train_theta[:-1], train_f[:-1], "or") ax.plot(train_theta[-1], train_f[-1], "og") ax.fill_between(t, mu+std, mu-std, color="k", alpha=0.1) if i <= 3: ax2 = ax.twinx() ax2.plot(t, A_ei, "g", lw=0.75) ax2.set_yticks([]) ax.axvline(old_min, color="k", lw=0.75) ax.set_ylim(-0.37, 0.37) ax.set_xlim(-5, 5) ax.set_yticklabels([]) ax.annotate("step {0}; {1:.3f}".format(i+1, old_min), xy=(0, 1), xycoords="axes fraction", ha="left", va="top", xytext=(5, -5), textcoords="offset points", fontsize=14) if converged: break plt.tight_layout() print("{0} model evaluations".format(len(train_f))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: You might see a warning saying that caffe2 does not have GPU support. That means you are running a CPU-only build. Don't be alarmed - anything CPU is still runnable without a problem. Step2: We can feed blobs into the workspace using FeedBlob(). Step3: Now, let's take a look at what blobs are in the workspace. Step4: Let's verify that the arrays are equal. Step5: Note that if you try to access a blob that does not exist, an error will be thrown Step6: One thing that you might not use immediately Step7: Let's switch back to the default workspace. Step8: Finally, ResetWorkspace() clears anything that is in the current workspace. Step9: Operators Step10: As we mentioned, the created op is actually a protobuf object. Let's show the content. Step11: Ok, let's run the operator. We first feed the input X to the workspace. Step12: After execution, let's see if the operator is doing the right thing. Step13: This is working if your Expected output matches your Y output in this example. Step14: Let's run it and see if things are as intended. Step15: If you see a bell shaped curve then it worked! Step16: Let's create a blob called X, and use GaussianFill to fill it with some random data. Step17: You might have observed a few differences from the earlier core.CreateOperator call. Basically, when using a net, you can directly create an operator and add it to the net at the same time by calling net.SomeOp where SomeOp is a registered type string of an operator. This gets translated to Step18: Let's continue to create W and b. Step19: Now, one simple code sugar Step20: Under the hood, X.FC(...) simply delegates to net.FC by inserting X as the first input of the corresponding operator, so what we did above is equivalent to Step21: Too verbose huh? Let's try to visualize it as a graph. Caffe2 ships with a very minimal graph visualization tool for this purpose. Step22: So we have defined a Net, but nothing has been executed yet. Remember that the net above is essentially a protobuf that holds the definition of the network. When we actually run the network, what happens under the hood is Step23: Now let's try the second way to create the net, and run it. First, clear the variables with ResetWorkspace(). Then create the net with the workspace's net object that we created earlier using CreateNet(net_object). Finally, run the net with RunNet(net_name). Step24: There are a few differences between RunNetOnce and RunNet, but the main difference is the computational overhead. Since RunNetOnce involves serializing the protobuf to pass between Python and C and instantiating the network, it may take longer to run. Let's run a test and see what the time overhead is.
<ASSISTANT_TASK:> Python Code: from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # We'll also import a few standard python libraries from matplotlib import pyplot import numpy as np import time # These are the droids you are looking for. from caffe2.python import core, workspace from caffe2.proto import caffe2_pb2 # Let's show all plots inline. %matplotlib inline print("Current blobs in the workspace: {}".format(workspace.Blobs())) print("Workspace has blob 'X'? {}".format(workspace.HasBlob("X"))) X = np.random.randn(2, 3).astype(np.float32) print("Generated X from numpy:\n{}".format(X)) workspace.FeedBlob("X", X) print("Current blobs in the workspace: {}".format(workspace.Blobs())) print("Workspace has blob 'X'? {}".format(workspace.HasBlob("X"))) print("Fetched X:\n{}".format(workspace.FetchBlob("X"))) np.testing.assert_array_equal(X, workspace.FetchBlob("X")) try: workspace.FetchBlob("invincible_pink_unicorn") except RuntimeError as err: print(err) print("Current workspace: {}".format(workspace.CurrentWorkspace())) print("Current blobs in the workspace: {}".format(workspace.Blobs())) # Switch the workspace. The second argument "True" means creating # the workspace if it is missing. workspace.SwitchWorkspace("gutentag", True) # Let's print the current workspace. Note that there is nothing in the # workspace yet. print("Current workspace: {}".format(workspace.CurrentWorkspace())) print("Current blobs in the workspace: {}".format(workspace.Blobs())) workspace.SwitchWorkspace("default") print("Current workspace: {}".format(workspace.CurrentWorkspace())) print("Current blobs in the workspace: {}".format(workspace.Blobs())) workspace.ResetWorkspace() print("Current blobs in the workspace after reset: {}".format(workspace.Blobs())) # Create an operator. op = core.CreateOperator( "Relu", # The type of operator that we want to run ["X"], # A list of input blobs by their names ["Y"], # A list of output blobs by their names ) # and we are done! print("Type of the created op is: {}".format(type(op))) print("Content:\n") print(str(op)) workspace.FeedBlob("X", np.random.randn(2, 3).astype(np.float32)) workspace.RunOperatorOnce(op) print("Current blobs in the workspace: {}\n".format(workspace.Blobs())) print("X:\n{}\n".format(workspace.FetchBlob("X"))) print("Y:\n{}\n".format(workspace.FetchBlob("Y"))) print("Expected:\n{}\n".format(np.maximum(workspace.FetchBlob("X"), 0))) op = core.CreateOperator( "GaussianFill", [], # GaussianFill does not need any parameters. ["Z"], shape=[100, 100], # shape argument as a list of ints. mean=1.0, # mean as a single float std=1.0, # std as a single float ) print("Content of op:\n") print(str(op)) workspace.RunOperatorOnce(op) temp = workspace.FetchBlob("Z") pyplot.hist(temp.flatten(), bins=50) pyplot.title("Distribution of Z") net = core.Net("my_first_net") print("Current network proto:\n\n{}".format(net.Proto())) X = net.GaussianFill([], ["X"], mean=0.0, std=1.0, shape=[2, 3], run_once=0) print("New network proto:\n\n{}".format(net.Proto())) print("Type of X is: {}".format(type(X))) print("The blob name is: {}".format(str(X))) W = net.GaussianFill([], ["W"], mean=0.0, std=1.0, shape=[5, 3], run_once=0) b = net.ConstantFill([], ["b"], shape=[5,], value=1.0, run_once=0) Y = X.FC([W, b], ["Y"]) print("Current network proto:\n\n{}".format(net.Proto())) from caffe2.python import net_drawer from IPython import display graph = net_drawer.GetPydotGraph(net, rankdir="LR") display.Image(graph.create_png(), width=800) workspace.ResetWorkspace() print("Current blobs in the workspace: {}".format(workspace.Blobs())) workspace.RunNetOnce(net) print("Blobs in the workspace after execution: {}".format(workspace.Blobs())) # Let's dump the contents of the blobs for name in workspace.Blobs(): print("{}:\n{}".format(name, workspace.FetchBlob(name))) workspace.ResetWorkspace() print("Current blobs in the workspace: {}".format(workspace.Blobs())) workspace.CreateNet(net) workspace.RunNet(net.Proto().name) print("Blobs in the workspace after execution: {}".format(workspace.Blobs())) for name in workspace.Blobs(): print("{}:\n{}".format(name, workspace.FetchBlob(name))) # It seems that %timeit magic does not work well with # C++ extensions so we'll basically do for loops start = time.time() for i in range(1000): workspace.RunNetOnce(net) end = time.time() print('Run time per RunNetOnce: {}'.format((end - start) / 1000)) start = time.time() for i in range(1000): workspace.RunNet(net.Proto().name) end = time.time() print('Run time per RunNet: {}'.format((end - start) / 1000)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Instantiate individual analog controller Step2: 2. Read voltage value out Step3: 3. Read raw value out Step4: 4. Logging multiple sample values Step 1 Step5: Step 2 Step6: Step 3. Plot values over time Step7: 5. Logging multiple devices Step8: Step 2 Step9: Step 3. Plot values over time
<ASSISTANT_TASK:> Python Code: # Make sure the base overlay is loaded from pynq import Overlay Overlay("base.bit").download() from pynq.iop import Arduino_Analog from pynq.iop import ARDUINO from pynq.iop import ARDUINO_GROVE_A1 from pynq.iop import ARDUINO_GROVE_A4 analog1 = Arduino_Analog(ARDUINO,ARDUINO_GROVE_A1) analog1.read() analog1.read_raw()[0] from time import sleep analog1.set_log_interval_ms(100) analog1.start_log() log1 = analog1.get_log() %matplotlib inline import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot(range(len(log1[0])), log1[0], 'ro', label="X-axis of joystick") line2, = plt.plot(range(len(log1[1])), log1[1], 'bs', label="Y-axis of joystick") plt.title('Arduino Analog Voltage Log') plt.axis([0, len(log1[0]), 0.0, 3.3]) plt.legend(loc=4,bbox_to_anchor=(1, -0.3), ncol=2, borderaxespad=0., handler_map={line1: HandlerLine2D(numpoints=1), line2: HandlerLine2D(numpoints=1)}) plt.show() analog2 = Arduino_Analog(ARDUINO,[0,1,4]) analog2.set_log_interval_ms(100) analog2.start_log() log2 = analog2.get_log() %matplotlib inline import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot(range(len(log2[0])), log2[0], 'ro', label="X-axis of joystick") line2, = plt.plot(range(len(log2[1])), log2[1], 'bs', label="Y-axis of joystick") line3, = plt.plot(range(len(log2[2])), log2[2], 'g^', label="potentiometer") plt.title('Arduino Analog Voltage Log') plt.axis([0, len(log2[0]), 0.0, 3.3]) plt.legend(loc=4,bbox_to_anchor=(1, -0.3), ncol=2, borderaxespad=0., handler_map={line1: HandlerLine2D(numpoints=1), line2: HandlerLine2D(numpoints=1), line3: HandlerLine2D(numpoints=1)}) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2) Leggere il file GTF Step2: NB Step3: 4) Eliminare le colonne source e score e sostituire l'identificatore ENm006 con l'identificatore ENCODE_REGION in tutti i campi della colonna reference Step4: Tre alternative per sostituire ENm006 con ENCODE_REGION Step5: 5) Sostituire la colonna degli attributi con le due colonne transcript e gene Step6: 6) Aggiungere la colonna length contenente la lunghezza della feature Step7: Reindicizzazione delle colonne Step8: 7) Rimuovere tutte le features di lunghezza minore o uguale a 6 basi Step9: Alternativa con il metodo drop() Step10: 8) Ottenere un data frame ordinato per coordinate crescenti delle features Step11: 9) Ottenere un data frame ordinato per lunghezza crescente delle features Step12: 10) Determinare la lista dei geni annotati Step13: In alternativa si può anche determinare il set Step14: 11) Determinare la lista degli identificatori dei trascritti annotati Step15: 12) Calcolare la lunghezza media delle features Step16: 13) Determinare la lunghezza minima degli esoni e i trascritti che contengono un esone di lunghezza minima Step17: In alternativa si può usare la notazione con il punto Step18: b) Estrarre la lista dei trascritti che contengono un esone di lunghezza minima Step19: 14) Contare quanti trascritti sono annotati per il gene ARHGAP4 Step20: 15) Estrarre la lista dei geni con strand + Step21: 16) Estrarre il set degli esoni (distinti) del gene ATP6AP1 Step22: 17) Contare il numero di trascritti del gene ARHGAP4 che hanno una CDS annotata Step23: 18) Estrarre lo strand del gene ATP6AP1 Step24: 19) Estrarre per ogni trascritto del gene ATP6AP1 la lista delle tuple (start, end) dei suoi esoni Step25: b) Estrarre la lista dei trascritti Step26: c) Estrarre per ogni trascritto la lista delle sue features (start, end) Step27: d) Produrre in output per ogni trascritto la lista delle sue features (start, end) Step28: 20) Contare per ogni gene quante sono le features annotate per ognuno dei tipi presenti nel GTF
<ASSISTANT_TASK:> Python Code: import pandas as pd df = pd.read_csv('./input.gtf', sep='\t', header = None) df replace_dict = {0 : 'reference', 1 : 'source', 2 : 'feature', 3 : 'start', 4 : 'end', 5 : 'score', 6 : 'strand', 7 : 'frame', 8 : 'attributes'} df.rename(columns = replace_dict, inplace = True) df df.drop(['source', 'score'], axis=1, inplace = True) df['reference'].replace('ENm006', 'ENCODE_REGION', inplace = True) df['reference'] = df['reference'].apply(lambda x: 'ENCODE_REGION') df['reference'] = 'ENCODE_REGION' df import re df['gene'] = '' df['transcript'] = '' for (index, record) in df.iterrows(): transcript_id = re.search('transcript_id\s+(.+?);', record['attributes']).group(1).replace('"', '') gene_id = re.search('gene_id\s+(.+?);', record['attributes']).group(1).replace('"', '') df.loc[index, 'transcript'] = transcript_id df.loc[index, 'gene'] = gene_id df.drop('attributes', axis=1, inplace=True) df df['length'] = df['end'] - df['start'] + 1 df = df.reindex(columns = ['reference', 'feature', 'start', 'end', 'length', 'strand', 'frame', 'gene', 'transcript']) df df = df[df['length'] > 6] df.drop(df[df.length <= 6].index, axis=0, inplace = True) df df.sort_values('start', ascending = True) df.sort_values('length', ascending = True) list(df['gene'].unique()) set(df['gene']) list(df['transcript'].unique()) df['length'].mean() min_length = df[df.feature == 'exon'].length.min() min_length = df[df['feature'] == 'exon']['length'].min() mask = (df.feature == 'exon') & (df.length == min_length) list(df[mask]['transcript'].unique()) len(df[df['gene'] == 'ARHGAP4']['transcript'].unique()) list(df[df['strand'] == '+']['gene'].unique()) df_temp = df[(df['gene'] == 'ATP6AP1') & (df['feature'] == 'exon')] set(zip(df_temp['start'], df_temp['end'])) len(df[(df.gene == 'ARHGAP4') & (df.feature == 'CDS')]['transcript'].unique()) df[df['gene'] == 'ATP6AP1']['strand'].unique()[0] df_temp = df[(df.gene == 'ATP6AP1') & (df.feature == 'exon')][['start', 'end', 'transcript']] transcript_list = list(df_temp['transcript'].unique()) feature_list_for_transcript = [] for transcript in transcript_list: start_transcript = df_temp[df_temp['transcript'] == transcript]['start'] end_transcript = df_temp[df_temp['transcript'] == transcript]['end'] feature_list = list(zip(start_transcript, end_transcript)) feature_list_for_transcript.append(feature_list) for transcript in transcript_list: print(transcript) print(feature_list_for_transcript.pop(0)) df.groupby(['gene', 'feature'])['transcript'].count() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Iris mit Neuronalen Netzwerken Step2: Wir probieren unser Modell mit dem Iris Dataset Step3: Wie sollen wir das interpretieren? Damit können wir nicht viel anfangen Step4: Sigmoid Step5: Relu Step6: Das komplette Neuron Step7: Unser erste Neuronales Netz mit Keras Step8: Step9: Training Step10: Bewertung Step11: Hands-On Step12: Export as raw tf model Step13: Dieses Tensorflow Modell kann man bei Google Cloud ML hochladen und für Berechnungen nutzen
<ASSISTANT_TASK:> Python Code: import warnings warnings.filterwarnings('ignore') %matplotlib inline %pylab inline import matplotlib.pylab as plt import numpy as np from distutils.version import StrictVersion import sklearn print(sklearn.__version__) assert StrictVersion(sklearn.__version__ ) >= StrictVersion('0.18.1') import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) print(tf.__version__) assert StrictVersion(tf.__version__) >= StrictVersion('1.1.0') import keras print(keras.__version__) assert StrictVersion(keras.__version__) >= StrictVersion('2.0.0') %load https://djcordhose.github.io/ai/fragments/neuron.py from sklearn.datasets import load_iris iris = load_iris() iris.data[0] neuron_no_activation(5.1, 3.5) def centerAxis(uses_negative=False): # http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot ax = plt.gca() ax.spines['left'].set_position('center') if uses_negative: ax.spines['bottom'].set_position('center') ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') def np_sigmoid(X): return 1 / (1 + np.exp(X * -1)) x = np.arange(-10,10,0.01) y = np_sigmoid(x) centerAxis() plt.plot(x,y,lw=3) def np_relu(x): return np.maximum(0, x) x = np.arange(-10, 10, 0.01) y = np_relu(x) centerAxis() plt.plot(x,y,lw=3) w0 = 3 w1 = -4 w2 = 2 import math as math def sigmoid(x): return 1 / (1 + math.exp(x * -1)) def neuron(x1, x2): sum = w0 + x1 * w1 + x2 * w2 return sigmoid(sum) neuron(5.1, 3.5) from keras.layers import Input inputs = Input(shape=(4, )) from keras.layers import Dense fc = Dense(3)(inputs) from keras.models import Model model = Model(input=inputs, output=fc) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.predict(np.array([[ 5.1, 3.5, 1.4, 0.2]])) inputs = Input(shape=(4, )) fc = Dense(3)(inputs) predictions = Dense(3, activation='softmax')(fc) model = Model(input=inputs, output=predictions) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.predict(np.array([[ 5.1, 3.5, 1.4, 0.2]])) X = np.array(iris.data) y = np.array(iris.target) X.shape, y.shape y[100] # tiny little pieces of feature engeneering from keras.utils.np_utils import to_categorical num_categories = 3 y = to_categorical(y, num_categories) y[100] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42, stratify=y) X_train.shape, X_test.shape, y_train.shape, y_test.shape # !rm -r tf_log # tb_callback = keras.callbacks.TensorBoard(log_dir='./tf_log') # https://keras.io/callbacks/#tensorboard # To start tensorboard # tensorboard --logdir=/mnt/c/Users/olive/Development/ml/tf_log # open http://localhost:6006 # %time model.fit(X_train, y_train, epochs=500, validation_split=0.3, callbacks=[tb_callback]) %time model.fit(X_train, y_train, epochs=500, validation_split=0.3) model.predict(np.array([[ 5.1, 3.5, 1.4, 0.2]])) X[0], y[0] train_loss, train_accuracy = model.evaluate(X_train, y_train) train_loss, train_accuracy test_loss, test_accuracy = model.evaluate(X_test, y_test) test_loss, test_accuracy model.save('nn-iris.hdf5') import os from keras import backend as K K.set_learning_phase(0) sess = K.get_session() !rm -r tf tf.app.flags.DEFINE_integer('model_version', 1, 'version number of the model.') tf.app.flags.DEFINE_string('work_dir', '/tmp', 'Working directory.') FLAGS = tf.app.flags.FLAGS export_path_base = 'tf' export_path = os.path.join( tf.compat.as_bytes(export_path_base), tf.compat.as_bytes(str(FLAGS.model_version))) classification_inputs = tf.saved_model.utils.build_tensor_info(model.input) classification_outputs_scores = tf.saved_model.utils.build_tensor_info(model.output) from tensorflow.python.saved_model.signature_def_utils_impl import build_signature_def, predict_signature_def signature = predict_signature_def(inputs={'inputs': model.input}, outputs={'scores': model.output}) builder = tf.saved_model.builder.SavedModelBuilder(export_path) builder.add_meta_graph_and_variables( sess, tags=[tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }) builder.save() !ls -lhR tf # cd tf # gsutil cp -R 1 gs://irisnn # create model and version at https://console.cloud.google.com/mlengine # gcloud ml-engine predict --model=irisnn --json-instances=./sample_iris.json # SCORES # [0.9954029321670532, 0.004596732556819916, 3.3544753819114703e-07] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Ansambli (glasovanje) Step2: (b) Step3: Q Step4: Razred koji implementira stablo odluke jest tree.DecisionTreeClassifier. Prvo naučite stablo odluke (engl. decision tree) na skupu za učenje, ali tako da je taj model presložen. To možete postići tako da povećate najveću moguću dubinu stabla (parametar max_depth). Ispišite pogrešku na skupu za ispitivanje (pogrešku 0-1; pogledajte paket metrics). Step5: Sada isprobajte algoritam slučajnih šuma (dostupan u razredu ensemble.RandomForestClassifier) za različit broj stabala $L \in [1, 30]$. Iscrtajte pogrešku na skupu za učenje i na skupu za ispitivanje u ovisnosti o tom hiperparametru. Ispišite najmanju pogrešku na skupu za ispitivanje. Step6: Q Step7: (a) Step8: Q Step9: Iscrtajte krivulje pogrešaka na skupu za učenje i ispitivanje u ovisnosti o hiperparametru $L \in [1,80]$. Koristite pogrešku 0-1 iz paketa metrics. Ispišite najmanju ostvarenu pogrešku na skupu za ispitivanje, te pripadajuću vrijednost hiperparametra $L$. Step10: Q Step11: Q Step12: (b) Step13: Q Step14: Q Step15: Q Step16: Q Step17: (g) Step18: (h) Step19: (i) Step20: Q Step21: (k)
<ASSISTANT_TASK:> Python Code: # Učitaj osnovne biblioteke... import sklearn import mlutils import numpy as np import scipy as sp import matplotlib.pyplot as plt %pylab inline from collections import Counter class VotingClassifierDIY(object): SCHEME_COUNTING = "counting" SCHEME_AVERAGING = "averaging" def __init__(self, clfs, voting_scheme=SCHEME_COUNTING): self.clfs = clfs self.voting_scheme = voting_scheme def fit(self, X, y): [ clf.fit(X,y) for clf in self.clfs ] def predict_proba(self, X): if self.voting_scheme == self.SCHEME_AVERAGING: pred_avg = []; pred = []; prob = []; for i in range(0, len(self.clfs)): pred.append(self.clfs[i].predict_proba(X)) for i in range(0, shape(pred)[1]): prob = [] for j in range(0, len(pred)): prob.append(pred[j][i]) pred_avg.append(mean(prob, axis = 0)) return pred_avg else: raise Exception("Nemoze") def predict(self, X): if self.voting_scheme == self.SCHEME_AVERAGING: avg = self.predict_proba(X) return [ argmax(a) for a in avg ] elif self.voting_scheme == self.SCHEME_COUNTING: pred_cnt = []; pred = []; predd = []; predd = [ clf.predict(X) for clf in self.clfs ] for i in range(0, shape(predd)[1]): # 0 - 1000 for j in range(0, len(predd)): # 0 - 3 pred.append(predd[j][i]) for i in range(0, len(pred), 3): pred_cnt.append((Counter(pred[i:i+3]).most_common()[0])[0]) return pred_cnt else: raise Exception("Nemoze") from sklearn.datasets import make_classification from sklearn.ensemble import VotingClassifier from sklearn.linear_model import LogisticRegression X_voting, y_voting = make_classification(n_samples=1000, n_features=4, n_redundant=0, n_informative=3, n_classes=3, n_clusters_per_class=2) Logisticka1 = LogisticRegression(multi_class = 'auto', solver = 'lbfgs', C = 1, max_iter = 1000).fit(X_voting, y_voting) Logisticka2 = LogisticRegression(multi_class = 'auto', solver = 'lbfgs', C = 100, max_iter = 1000).fit(X_voting, y_voting) Logisticka3 = LogisticRegression(multi_class = 'auto', solver = 'lbfgs', C = 1000, max_iter = 1000).fit(X_voting, y_voting) clfs = [Logisticka1, Logisticka2, Logisticka3] moj = VotingClassifierDIY(clfs = clfs) njihov = VotingClassifier(estimators= [('lr1', Logisticka1), ('lr2', Logisticka2), ('lr3', Logisticka3)]) a = moj.fit(X_voting, y_voting) a = njihov.fit(X_voting, y_voting) moj.voting_scheme = moj.SCHEME_COUNTING njihov.voting = 'hard' print(all(moj.predict(X_voting) == njihov.predict(X_voting))) moj.voting_scheme = moj.SCHEME_AVERAGING njihov.voting = 'soft' print(all(moj.predict_proba(X_voting) == njihov.predict_proba(X_voting))) from sklearn.model_selection import train_test_split X_bag, y_bag = make_classification(n_samples=1000, n_features=20, n_redundant=1, n_informative=17, n_classes=3, n_clusters_per_class=2) X_bag_train, X_bag_test, y_bag_train, y_bag_test = train_test_split(X_bag, y_bag, train_size=0.7, test_size = 0.3, random_state=69) from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss tree1 = DecisionTreeClassifier(max_depth = None).fit(X_bag_train, y_bag_train) h1 = tree1.predict(X_bag_test) print(zero_one_loss(y_bag_test, h1)) tree2 = DecisionTreeClassifier(max_depth= 10000000000).fit(X_bag_train, y_bag_train) h2 = tree2.predict(X_bag_test) print(zero_one_loss(y_bag_test, h2)) from sklearn.ensemble import RandomForestClassifier L = list(range(0, 31)) error_train = [] error_test = [] for l in L: rfc = RandomForestClassifier(n_estimators=l+1).fit(X_bag_train, y_bag_train) h_train = rfc.predict(X_bag_train) h_test = rfc.predict(X_bag_test) error_train.append(zero_one_loss(y_bag_train, h_train)) error_test.append(zero_one_loss(y_bag_test, h_test)) minimal_error = min(error_test) index_of_min = error_test.index(minimal_error) print(minimal_error) print(index_of_min) figure(figsize(10, 5)) plot(L, error_train) plot(L, error_test) scatter(L[index_of_min], minimal_error) grid() from sklearn.datasets import make_circles circ_X, circ_y = make_circles(n_samples=400, noise=0.1, factor=0.4) mlutils.plot_2d_clf_problem(circ_X, circ_y) from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier L = [1, 2, 3, 50] figure(figsize(12, 8)) for i, l in enumerate(L): ada = AdaBoostClassifier(base_estimator = DecisionTreeClassifier(max_depth = 1), n_estimators = l).fit(circ_X, circ_y) subplot(3,3, i +1) mlutils.plot_2d_clf_problem(circ_X, circ_y, ada.predict) X_boost, y_boost = make_classification(n_samples=1000, n_features=20, n_redundant=0, n_informative=18, n_classes=3, n_clusters_per_class=1) X_boost_train, X_boost_test, y_boost_train, y_boost_test = train_test_split(X_boost, y_boost, train_size=0.7, random_state=69) L = list(range(0, 81)) error_train = [] error_test = [] for l in L: rfc = AdaBoostClassifier(base_estimator = DecisionTreeClassifier(max_depth = 1), n_estimators=l+1).fit(X_bag_train, y_bag_train) h_train = rfc.predict(X_bag_train) h_test = rfc.predict(X_bag_test) error_train.append(zero_one_loss(y_bag_train, h_train)) error_test.append(zero_one_loss(y_bag_test, h_test)) minimal_error = min(error_test) index_of_min = error_test.index(minimal_error) print(minimal_error) print(index_of_min) figure(figsize(10, 5)) plot(L, error_train) plot(L, error_test) scatter(L[index_of_min], minimal_error) grid() D = list(range(1, 21)) error_train = [] error_test = [] for d in D: rfc = DecisionTreeClassifier(max_depth = d).fit(X_bag_train, y_bag_train) h_train = rfc.predict(X_bag_train) h_test = rfc.predict(X_bag_test) error_train.append(zero_one_loss(y_bag_train, h_train)) error_test.append(zero_one_loss(y_bag_test, h_test)) minimal_error = min(error_test) index_of_min = error_test.index(minimal_error) print(minimal_error) print(index_of_min) figure(figsize(10, 5)) plot(D, error_train) plot(D, error_test) scatter(D[index_of_min], minimal_error) grid() def L(u, N, m): return (u**m) * (1-u)**(N-m) m1 = [1,2,5,9] N1 = 10 m2 = [1, 10, 50, 90] N2 = 100 u = linspace(0, 1, 300) figure(figsize(10,8)) subplot(2,1,1) grid() for m in m1: plot(u, L(u, N1, m)) subplot(2,1,2) grid() for m in m2: plot(u, L(u, N2, m)) N = 10 figure(figsize(10, 8)) plot(u, L(u, N, 0)) plot(u, L(u, N, 9)) grid() from scipy.stats import beta alphas = [ 1, 2, 3, 0.5, 1, 2, 3, 0.5 ] betas = [ 1, 2, 3, 0.5, 0.5, 3, 2, 1 ] for a, b in zip(alphas, betas): plot(u, beta.pdf(u, a, b)) grid() axis([0, 1, 0, 3]) def P(u, N, m, a, b): return L(u, N, m) * beta.pdf(u, a, b) N = 10 m = 9 for a, b in zip(alphas, betas): plot(u, P(u, N, m, a, b)) grid() N = 10 m = 1 a = 4 b = 2 plot(u, beta.pdf(u, a, b)) plot(u, L(u, N, m)) plot(u, P(u, N, m, a, b)) grid() from sklearn.datasets import load_iris import itertools as it iris = load_iris() y = iris.target == 1 X = iris.data[y] x = it.combinations(range(1, 5), 2) figure(figsize(12, 28)) for i, (a, b) in enumerate(x): subplot(6, 1, i+1) grid() scatter(X[:, a-1], X[:, b-1]) from scipy.stats import norm def log_izglednost(D, mi_ML, sigm2_ML): N = len(D) return -1*((N/2)*log(2*pi) + N*log(sqrt(sigm2_ML)) + (1/(2*sigm2_ML))*sum((D - mi_ML)**2)) def mi_ML(D): return sum(D)/len(D) def sigm2_ML(D): return sum((D - mi_ML(D))**2)/len(D) for i in range(4): D = X[:,i] print('n=', i+1, ', mi_ML = ', str(mi_ML(D))[:4], ', sigm2_ML = ', str(sigm2_ML(D))[:7], ', izglednost = ', str(log_izglednost(D, mi_ML(D), sigm2_ML(D)))[:7] ) from scipy.stats import pearsonr x = it.combinations(range(0,4), 2) for i,j in x: pear = pearsonr(X[:,i], X[:,j])[0] print('from ', i, ' ', j, ' pear: ', pear) N = [int(len(X)/4), int(len(X)/2), len(X)] for br in N: nepristran = cov(X[0:br,], rowvar = False, bias= False) pristran = cov(X[0:br,], rowvar = False, bias = True) diff_abs = mean(abs(nepristran - pristran)) diff_sqr = mean(pow((nepristran - pristran),2)) print('abs diff ', str(diff_abs)[:9], ' square diff ', diff_sqr, ' N ', br) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <div id='intro' /> Step2: Using a Jacobi/Gauss-Seidel iterative solver Step3: Using GMRes of SciPy Step4: Computing the relative residues Step5: To Do 2
<ASSISTANT_TASK:> Python Code: import numpy as np import scipy as sp from scipy import linalg as la import scipy.sparse.linalg as spla import matplotlib.pyplot as plt %matplotlib inline import matplotlib as mpl mpl.rcParams['font.size'] = 14 mpl.rcParams['axes.labelsize'] = 20 mpl.rcParams['xtick.labelsize'] = 14 mpl.rcParams['ytick.labelsize'] = 14 n = 10 np.random.seed(0) A = np.random.rand(n,n)+2*np.eye(n) #print(np.linalg.eigvals(A)) B = np.random.rand(n,n) #print(np.linalg.eigvals(B)) C = np.random.rand(n,n) def solve_JGS_iterative_Sylvester(A,B,C,m,alg=1): if alg==1: # Algorithm 1 # AX+XB=C # X=A^{-1}(C-XB) # X^{(i+1)}=A^{-1}(C-X^{(i)} B) X0 = np.zeros_like(A) X1 = np.zeros_like(A) for i in range(m): X1=np.linalg.solve(A,C-np.dot(X0,B)) X0=X1 print(np.linalg.norm(np.dot(A,X1)+np.dot(X1,B)-C)) return X1 # elif algo==2: # TO DO 1!!!!!!!!!!!!! # Algorithm 2 # AX+XB=C # X = (C-AX)B^{-1} # X^{(i+1)}=(C-A X^{(i)})B^{-1} # How do we implement this? Hint: You only need to use np.linalg.solve in a convenient way. X_JGS=solve_JGS_iterative_Sylvester(A,B,C,10) print(X_JGS) def compute_matrix_vector_product(x,A,B,n): X = np.reshape(x,(n,n)) out = np.dot(A,X)+np.dot(X,B) return out.flatten() Ax = lambda x: compute_matrix_vector_product(x,A,B,n) afun = spla.LinearOperator((n**2, n**2), matvec=Ax) x, exitCode = spla.gmres(afun, C.flatten(), tol=1e-10) X_GMRes = np.reshape(x,(n,n)) print(X_GMRes) print(np.linalg.norm(X_JGS-X_GMRes)) Ax_JGS = Ax(X_JGS.flatten()) Ax_GMRes = Ax(X_GMRes.flatten()) c = C.flatten() print(np.linalg.norm(Ax_JGS-c)/np.linalg.norm(c)) print(np.linalg.norm(Ax_GMRes-c)/np.linalg.norm(c)) # This is a very instructive implementation of GMRes. def GMRes_Ax(A, b, x0=np.array([0.0]), m=10, flag_display=True, threshold=1e-12): n = len(b) if len(x0)==1: x0=np.zeros(n) r0 = b - np.dot(A, x0) nr0=np.linalg.norm(r0) out_res=np.array(nr0) Q = np.zeros((n,n)) H = np.zeros((n,n)) Q[:,0] = r0 / nr0 flag_break=False for k in np.arange(np.min((m,n))): y = np.dot(A, Q[:,k]) if flag_display: print('||y||=',np.linalg.norm(y)) for j in np.arange(k+1): H[j][k] = np.dot(Q[:,j], y) if flag_display: print('H[',j,'][',k,']=',H[j][k]) y = y - np.dot(H[j][k],Q[:,j]) if flag_display: print('||y||=',np.linalg.norm(y)) # All but the last equation are treated equally. Why? if k+1<n: H[k+1][k] = np.linalg.norm(y) if flag_display: print('H[',k+1,'][',k,']=',H[k+1][k]) if (np.abs(H[k+1][k]) > 1e-16): Q[:,k+1] = y/H[k+1][k] else: print('flag_break has been activated') flag_break=True # Do you remember e_1? The canonical vector. e1 = np.zeros((k+1)+1) e1[0]=1 H_tilde=H[0:(k+1)+1,0:k+1] else: H_tilde=H[0:k+1,0:k+1] # Solving the 'SMALL' least square problem. # This could be improved with Givens rotations! ck = np.linalg.lstsq(H_tilde, nr0*e1)[0] if k+1<n: x = x0 + np.dot(Q[:,0:(k+1)], ck) else: x = x0 + np.dot(Q, ck) # Why is 'norm_small' equal to 'norm_full'? norm_small=np.linalg.norm(np.dot(H_tilde,ck)-nr0*e1) out_res = np.append(out_res,norm_small) if flag_display: norm_full=np.linalg.norm(b-np.dot(A,x)) print('..........||b-A\,x_k||=',norm_full) print('..........||H_k\,c_k-nr0*e1||',norm_small); if flag_break: if flag_display: print('EXIT: flag_break=True') break if norm_small<threshold: if flag_display: print('EXIT: norm_small<threshold') break return x,out_res <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Parameter uncertainty Step4: Generate 1,000 simulated data sets where each experimental point is drawn from a normal distribution with a mean of d.obs and a standard deviation of 0.05. Step5: Generate a histogram of possible values of $A$ and $k$ from these simulations. (Hint Step6: What are the 95% confidence intervals on your estimate of $k$? The lower bound is the value of $k$ for which 2.5% of the histogram counts are below the value. The upper bound is the value of $k$ for which 2.5% of the histogram counts are above the value. Step7: You measure the same process under slightly different conditions. These data are stored in data/time_course_1.csv. Is there a statistically significant difference between $k$ from dataset 1 vs. 0? Step8: Bonus Step9: Model selection Step11: Real example Step12: Fit both models to the data in data/sed_eq.csv. What are your estimates of $c_{0}$, $M$, and $\theta$? Are they the same between the two fits? Step13: Use your calc_aic function on these fits. Which model is supported? Can you conclude there is dimer present? Step14: Gaussian Step19: You find code to analyze this kind of data on the internet. Using the functions below, determine
<ASSISTANT_TASK:> Python Code: def first_order(t,A,k): First-order kinetics model. return A*(1 - np.exp(-k*t)) def first_order_r(param,t,obs): Residuals function for first-order model. return first_order(t,param[0],param[1]) - obs def fit_model(t,obs,param_guesses=(1,1)): Fit the first-order model. fit = scipy.optimize.least_squares(first_order_r, param_guesses, args=(t,obs)) fit_A = fit.x[0] fit_k = fit.x[1] return fit_A, fit_k d = pd.read_csv("data/time_course_0.csv") A, k = fit_model(d.t,d.obs) plt.plot(d.t,d.obs,'o') plt.plot(d.t,first_order(d.t,A,k)) d = pd.read_csv("data/time_course_0.csv") datasets = [] for i in range(1000): datasets.append(d.obs + np.random.normal(0,0.05,len(d.t))) A_list = [] k_list = [] for dataset in datasets: A, k = fit_model(d.t,dataset) A_list.append(A) k_list.append(k) plt.hist(A_list) plt.show() plt.hist(k_list) plt.show() k_list.sort() # Sort from low to high lower = k_list[25] # Lower 25 upper = k_list[1000-25] # Upper 25 plt.hist(k_list,bins=np.arange(0.15,0.35,0.005)) plt.show() print(lower,np.mean(k_list),upper) d = pd.read_csv("data/time_course_1.csv") A1_list = [] k1_list = [] for i in range(1000): A, k = fit_model(d.t,d.obs + np.random.normal(0,0.05,len(d.t))) A1_list.append(A) k1_list.append(k) plt.hist(k_list,bins=np.arange(0.15,0.35,0.005)) plt.hist(k1_list,bins=np.arange(0.25,0.45,0.005)) plt.show() k1_list.sort() lower1 = k1_list[25] upper1 = k1_list[1000-250] print(lower,np.mean(k_list),upper) print(lower1,np.mean(k1_list),upper1) # 95% confidence intervals do not overlap. Can be distinguished. ### CELL FOR CREATING DATA def create_data(t,k,A,out_file="junk.csv",noise=None): write_noise = False if noise == None: noise = 0 elif type(noise) == float: noise = np.random.normal(0,noise,len(t)) else: write_noise = True nosie = noise obs = first_order(t,A,k) + noise plt.plot(t,obs,"o") if not write_noise: d = pd.DataFrame({"t":t,"obs":obs}) else: d = pd.DataFrame({"t":t,"obs":obs,"obs_err":np.abs(noise)}) d.to_csv(out_file) #t = np.arange(0,10,0.25) #create_data(t,0.25,1.0,"data/time_course_0.csv",0.05) #create_data(t,0.35,1.0,"data/time_course_1.csv",0.05) #create_data(t,0.25,1.0,"data/time_course_2.csv",np.random.normal(0,0.05,len(t))) #create_data(t,0.25,1.0,"data/time_course_3.csv",np.random.normal(0,0.05,len(t))) #create_data(t,0.25,1.0,"data/time_course_4.csv",np.random.normal(0,0.05,len(t))) # these values ssr_list = [0.05,0.001,0.00095] num_parameters = [2,3,10] num_obs = 10 # should give these weights weights = [8.69e-9,0.9988,1.18e-3] def calc_aic(ssr_list,k_list,num_obs): aic_list = [] for i in range(len(ssr_list)): aic_list.append(num_obs*np.log(ssr_list[i]) + 2*(k_list[i] + 1)) aic_list = np.array(aic_list) delta_list = aic_list - np.min(aic_list) Q = np.exp(-delta_list/2) return Q/np.sum(Q) weights = calc_aic(ssr_list,num_parameters,num_obs) print(weights) def residuals(params,r,c,f): General residuals function. return f(r,*params) - c def sed_eq_m(r,c0,M): return c0*np.exp(M*(r**2)/2) def sed_eq_md(r,c0,M,theta): return c0*((theta)*np.exp(M*(r**2)/2) + (1 - theta)*np.exp(2*M*(r**2)/2)) ## CREATE DATA CELL #r = np.linspace(0,1,100) #c0 = 1.0 #M = 2 #theta = 0.95 #md = pd.DataFrame({"r":r,"c":sed_eq_md(r,c0,M,theta)+ np.random.normal(0,0.025,len(r))}) #md.to_csv("dev/md.csv") d = pd.read_csv("data/sed_eq.csv") plt.plot(d.r, d.c,"o") fit_m = scipy.optimize.least_squares(residuals, (1,2), kwargs={"r":d.r, "c":d.c, "f":sed_eq_m}) print("monomer:",fit_m.cost,fit_m.x,len(fit_m.fun)) plt.plot(d.r,sed_eq_m(d.r,fit_m.x[0],fit_m.x[1]),color="red") fit_md = scipy.optimize.least_squares(residuals, (1,2.0,0.95), kwargs={"r":d.r, "c":d.c, "f":sed_eq_md}) print("monomer/dimer",fit_md.cost,fit_md.x,len(fit_md.fun)) plt.plot(d.r,sed_eq_md(d.r,fit_md.x[0],fit_md.x[1],fit_md.x[2]),color="blue") calc_aic([0.0211731680092,0.0205784296649],[2,3],100) d = pd.read_csv("data/gaussian.csv") plt.plot(d.x,d.y) def multi_gaussian(x,means,stds,areas): Function calculating multiple gaussians (built from values in means, stds, areas). The number of gaussians is determined by the length of means, stds, and areas. The gaussian functions are calculated at values in array x. if len(means) != len(stds) or len(means) != len(areas): err = "means, standard deviations and areas should have the same length!\n" raise ValueError(err) out = np.zeros(len(x),dtype=float) for i in range(len(means)): out += areas[i]*scipy.stats.norm(means[i],stds[i]).pdf(x) return out def multi_gaussian_r(params,x,y): Residuals function for multi_guassian. params = np.array(params) if params.shape[0] % 3 != 0: err = "num parameters must be divisible by 3\n" raise ValueError(err) means = params[np.arange(0,len(params),3)] stds = params[np.arange(1,len(params),3)] areas = params[np.arange(2,len(params),3)] return multi_gaussian(x,means,stds,areas) - y def fitter(x,y,means_guess,stds_guess,areas_guess): Fit an arbitrary number of gaussian functions to x/y data. The number of gaussians that will be fit is determined by the length of means_guess. x: measurement x-values (array) y: measurement y-values (array) means_guess: array of guesses for means for gaussians. length determines number of gaussians stds_guess: array of guesses of standard deviations for gaussians. length must match means_guess areas_guess: array of area guesses for gaussians. length must match means guess. returns: means, stds, areas and fit sum-of-squared-residuals # Sanity check if len(means_guess) != len(stds_guess) or len(means_guess) != len(areas_guess): err = "means, standard deviations and areas should have the same length!\n" raise ValueError(err) # Construct an array of parameter guesses by assembling # means, stds, and areas param_guesses = [] for i in range(len(means_guess)): param_guesses.append(means_guess[i]) param_guesses.append(stds_guess[i]) param_guesses.append(areas_guess[i]) param_guesses = np.array(param_guesses) # Fit the multigaussian function fit = scipy.optimize.least_squares(multi_gaussian_r,param_guesses, args=(x,y)) # Disassemble into means, stds, areas means = fit.x[np.arange(0,len(fit.x),3)] stds = fit.x[np.arange(1,len(fit.x),3)] areas = fit.x[np.arange(2,len(fit.x),3)] return means, stds, areas, fit.cost def plot_gaussians(means,stds,areas): Plot a collection of gaussians. means: array of means for gaussians. length determines number of gaussians stds: array of standard deviations for gaussians. length must match means_guess areas: array of areas for gaussians. length must match means guess. plt.plot(d.x,multi_gaussian(d.x,means,stds,areas)) for i in range(len(means)): plt.plot(d.x,multi_gaussian(d.x, [means[i]], [stds[i]], [areas[i]])) ## CREATE DATA #x = np.arange(-10,10,0.1) #means = np.array((-2,0,1.5)) #stds = np.array((0.6,.6,1.5)) #areas = np.array((1,1,1)) #d = pd.DataFrame({"x":np.arange(-10,10,0.1), # "y":multi_gaussian(x,means,stds,areas)+np.random.normal(0,0.01,len(x))}) #d.to_csv("dev/gaussian.csv") d = pd.read_csv("data/gaussian.csv") ssr_list = [] num_params = [] for i in range(1,6): means_guess = np.random.normal(0.1,1,i) #np.ones(i,dtype=float) stds_guess = np.ones(i,dtype=float) areas_guess = np.ones(i,dtype=float) fit_means, fit_stds, fit_areas, ssr = fitter(d.x,d.y,means_guess,stds_guess,areas_guess) plt.plot(d.x,d.y,"o") plot_gaussians(fit_means,fit_stds,fit_areas) plt.show() ssr_list.append(ssr) num_params.append((i+1)*3) len(d.x) print(calc_aic(ssr_list,num_params,len(d.x))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question 1 Step2: Question 2
<ASSISTANT_TASK:> Python Code: from IPython.display import YouTubeVideo # WATCH THE VIDEO IN FULL-SCREEN MODE YouTubeVideo("JXJQYpgFAyc",width=640,height=360) # Numerical integration # Put your code here import math Nstep = 10 begin = 0.0 end = 3.1415926 dx = (end-begin)/Nstep sum = 0.0 xpos = 0.0 for i in range(Nstep): thisval = math.sin(xpos)*dx sum += thisval xpos += dx error = abs(sum-2.0)/2.0 print("for dx = {0:3f} we get an answer of {1:3f} and a fractional error of {2:4e}".format(dx,sum,error)) # WATCH THE VIDEO IN FULL-SCREEN MODE YouTubeVideo("b0K8LiHyrBg",width=640,height=360) # Numerical differentiation # Put your code here import numpy as np %matplotlib inline import matplotlib.pyplot as plt def f(x): return np.exp(-2.0*x) def dfdx(x): return -2.0*np.exp(-2.0*x) x = np.linspace(-3.0,3.0, 100) dx = 1.0e-2 deriv = (f(x+dx)-f(x-dx))/(2.0*dx) error = np.abs((deriv-dfdx(x))/dfdx(x)) plt.plot(x,error) print("the average fractional error is:", error.mean()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This lesson will control all the keyboard controlling functions in the module. Step2: Again, to simulate more human interaction, we can an interval parameter like duration before. Step3: For more complex characters, we can pass a list of complex characters, like the arrow keys, shift, etc. Step4: A list of keys are available in the KEYBOARD_KEYS Step5: These are case-sensitive, but often map to the same function anyway. Step6: We can also pass variables in hotkey mode, i.e. pressed together.
<ASSISTANT_TASK:> Python Code: import pyautogui # Writes to the cell right below (70 pixels down) pyautogui.moveRel(0,70) pyautogui.click() pyautogui.typewrite('Hello world!') # Writes to the cell right below (70 pixels down) pyautogui.moveRel(0,70) pyautogui.click() pyautogui.typewrite('Hello world!', interval=0.2) # Writes to the cell right below (70 pXixels down) pyautogui.moveRel(0,70) pyautogui.click() pyautogui.typewrite(['a','b','left','left','X','Y'], interval=1) XYab pyautogui.KEYBOARD_KEYS pyautogui.typewrite('F1') pyautogui.typewrite('f1') # Simulates ctrl + alt + delete pyautogui.hotkey('ctrl','alt','delete') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: numpy has a handy polyfit function we can use, to let us construct an nth-degree polynomial model of our data that minimizes squared error. Let's try it with a 4th degree polynomial Step2: We'll visualize our original scatter plot, together with a plot of our predicted values using the polynomial for page speed times ranging from 0-7 seconds Step3: Looks pretty good! Let's measure the r-squared error
<ASSISTANT_TASK:> Python Code: %matplotlib inline from pylab import * np.random.seed(2) pageSpeeds = np.random.normal(3.0, 1.0, 1000) purchaseAmount = np.random.normal(50.0, 10.0, 1000) / pageSpeeds scatter(pageSpeeds, purchaseAmount) x = np.array(pageSpeeds) y = np.array(purchaseAmount) p4 = np.poly1d(np.polyfit(x, y, 4)) import matplotlib.pyplot as plt xp = np.linspace(0, 7, 100) plt.scatter(x, y) plt.plot(xp, p4(xp), c='r') plt.show() from sklearn.metrics import r2_score r2 = r2_score(y, p4(x)) print r2 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Event Frequency Data Step2: Flat Event Data Model Step3: Second we transform numpy array to a pyisc data object. The data object consists of the orginial event columns, the source column, period column and a root column containg the sum of all event frequency counts per day. In this case, the source and the class are the same. The source identifies the origin of the data, for instance, the user or machine that generates the data, while the class is the type of source. A reference to the last created data object is also kept in the model. Step4: Thereafter, we create an anomaly detector and fit a onesided poisson distribution for each event column. Step5: Visualization
<ASSISTANT_TASK:> Python Code: import pyisc; import visisc; import numpy as np import datetime from scipy.stats import poisson, norm, multivariate_normal %matplotlib wx from pylab import plot, figure n_sources = 10 n_events = 20 num_of_normal_days = 200 num_of_anomalous_days = 10 data = None days_list = [num_of_normal_days, num_of_anomalous_days] dates = [] for state in [0,1]: # normal, anomalous data num_of_days = days_list[state] for i in range(n_sources): data0 = None for j in range(n_events): if state == 0:# Normal po_dist = poisson(int((10+2*(n_sources-i))*(float(j)/n_events/2+0.75))) # from 0.75 to 1.25 else: # anomalous po_dist = poisson(int((20+2*(n_sources-i))*(float(j)/n_events+0.5))) # from 0.5 to 1.5 tmp = po_dist.rvs(num_of_days) if data0 is None: data0 = tmp else: data0 = np.c_[data0,tmp] tmp = np.c_[ [i] * (num_of_days), # Sources [ # Timestamp datetime.date(2015,02,24) + datetime.timedelta(d) for d in np.array(range(num_of_days)) + (0 if state==0 else num_of_normal_days) ], [1] * (num_of_days), # Measurement period data0, # Event frequency counts ] if data is None: data = tmp else: data = np.r_[ tmp, data ] # Column index into the data source_column = 0 date_column = 1 period_column = 2 first_event_column = 3 last_event_column = first_event_column + n_events model = visisc.EventDataModel.flat_model( event_columns=range(first_event_column,last_event_column) ) data_object = model.data_object( data, source_column = source_column, class_column = source_column, period_column = period_column, date_column = date_column ) anomaly_detector = model.fit_anomaly_detector(data_object, poisson_onesided=True) !ipython --matplotlib=wx --gui=wx -i visISC_simple_frequency_data_example.py <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Python as a calculator Step2: Defining and using variables Step3: Some more mathy operators Step4: Comparisons Step5: Truthiness Step6: 0j == False Step7: More on variables and types Step8: Built-in types in python Step9: Backslashes ( \ ) start special (escape) characters Step10: <img src="https Step11: Strings are immutable (unlike in C), so you cannot change a string in place. Step12: Running a Program from Command Line Step13: With python as in other languages you can separate scripts and programs containing python code that can be used independently or with other python programs. The notebook is excellent for code development and presentations but not the best for production level code. Step14: IPython Notebook automatically converts tabs into spaces, but some programs do not. Be careful not to mix these up! Be consistent in your programming.
<ASSISTANT_TASK:> Python Code: print "Hello World!" print 'Hello World!' # This is a comment. print 'This is not a comment.' 'Something smells funny.' print 2 + 2 # Spaces between characters don't matter print 2+2 2 + 2 print "2 + 2" print 2.1 + 2 # The most precise value is a float. (3.*10. - 26.)/5. (3*10 - 26)/5.0 # Since our most precise value is an int, python spits out the solution as an int (3*10 - 26)/5 # Rounding errors can creep in 2.1 + 2 == 4.0999999999999996 # two 'equals' signs asks whether something is equal complex(1,2) # note that python uses j to denote the imaginary part 1+2j a = 1+2j print a.real, a.imag 1+2j-2j t = 1.0 # declare a variable t (time) accel = 9.8 # acceleration in units of m/s^2 dist = 0.5*accel*t*t # distance traveled in time t seconds is 1/2*a*t^2 print dist # this is the distance in meters dist1 = accel*(t**2)/2 # note: t^2 means something very different! print dist1 dist2 = 0.5*accel*pow(t,2) print dist2 # Integer division prints the floor; i.e., it only takes the integer digits print 6/5 # modulo operator 6 % 5 # bitwise operators: shift left # 1 in binary is '1', shifting left by two bits gives '100' = 4 1 << 2 # bitwise operators: shift right # 5 in binary is '101', shifting right by one bit gives '10' = 2 5 >> 1 x = 2 ; y = 3 # multiple commands on the same line, separated by a semicolon x | y # bitwise OR # x in binary is '10', y in binary is '11', x | y is '11' -> 3 x ^ y # exclusive OR ('10' ^ '11' = '01' = 1) x & y # bitwise AND ('10' & '11' = '10' = 2) x = x ^ y ; print x # x has been reassigned x += 3 ; print x # 'x += 3' is the same as saying 'x = x+3' # the equivalent holds from -, *, / a = 3 ; b = 4 a == b # two '=' signs for comparison, one '=' for assignment a+1 == b a+1.0 == b a < 10 a < 3 a <= 3 a < (10 + 2j) a < -2.0 a != 3.1415 0 == False # False is equivalent to 0, and other things 1 == True # True is equivalent to 1, and other things not False 1 == False not (10.0 - 10.0) x = None # None is neither True nor False print None == False print None == True type(None) print type(1) print type("1") x = 2 ; type(x) type(2) == type(1) type(False) type(type(1)) type(pow) isinstance(1,int) # check if something is a certain type isinstance("spam",str) isinstance(1.212,int) x = "spam" ; print type(x) print "Hello!\nI'm hungry." # '\n' means 'new line' # This doesn't work. print "Hello! I'm hungry." print "Hello! \n I'm hungry." "Wah?!" == "Wah?!" print "'Wah?!' said the student." print ""Wah?!" said the student." print '"Wah?!" said the student.' print "\"Wah?!\" said the student." # Raw strings don't recognize escape characters print r'This is a raw string ... newlines \n are ignored. So are returns \r and tabs \t.' # Triple quotes are useful for multiple line strings y = '''Four score and seven minutes ago, you folks all learned some basic mathy stuff with Python and boy were you blown away!''' print y # Prepending 'u' makes a string "unicode" print u"\N{BLACK HEART SUIT}" # You can concatenate strings with the '+' sign s = "spam" ; e = "eggs" print s + e print s + " and " + e print "green " + e + " and " + s # You can do multiple concatenations with the '*' sign print s*3 + e print "*"*50 # Strings can be compared print "spam" == "good" # s comes before z in the alphabet "spam" < "zoo" # 's' comes before 'spam' in the dictionary "s" < "spam" # 'spaa' comes before 'spam' alphabetically "spaaaaaaaaaaaam" < "spam" print 'I want ' + 3 + ' eggs and no ' + s # We have to cast the 3 (an int) as a string print 'I want ' + str(3) + ' eggs and no ' + s pi = 3.14159 # There are easier ways to call pi, which we'll see later print 'I want ' + str(pi) + ' eggs and no ' + s print str(True) + ':' + ' I want ' + str(pi) + ' eggs and no ' + s print s print len(s) # len() tells you the length of a string (or, more generally, an array) print len("eggs\n") # The newline \n counts as ONE character print len("") # empty string # Strings act like arrays. We'll see more about arrays later. s = "SPAM" print s print s[0] # Python uses zero-based indexing; i.e., it starts counting at zero print s[1] print s[-1] print s[-2] # Take slices of strings print s print s[0:1] print s[1:4] print s[0:100] # Python doesn't warn you. Be careful! # Slice counting backwards print s print s[-3:-1] # You don't have to specify both ends print s print s[:2] print s[2:] # You can slice in different steps print s print s[::2] print s[::-1] mygrade = 'F+' print mygrade mygrade[0] = 'A' mygrade = 'A+' print mygrade # Ask for user input faren = raw_input("Enter the temperature (in Fahrenheit): ") print "Your temperature is " + faren + " degrees." # User input is always saved as a string faren = raw_input("Enter the temperature in Fahrenheit): ") cel = 5./9. * (faren - 32.) print "The temperature in Celcius is " + cel + " degrees." # Don't forget to convert things to the right type faren = raw_input("Enter the temperature in Fahrenheit): ") faren = float(faren) # The calculation on the right gets saved to the variable on the left cel = 5./9. * (faren - 32.) print "The temperature in Celcius is " + str(cel) + " degrees." x = raw_input("Enter x: ") x = float(x) print x execfile("temperature.py") x = 1 print x x = 1 if x > 0: # colons indicate the beginning of a control statement print "yo" else: # unindenting tells Python to move to the next case print "dude" print "ok" # unindenting also tells Python the control statement is done # You can mix indentations between different blocks ... but this is ugly and people will judge you x = 1 if x > 0: print "yo" else: print "dude" print "dude" # You can put everything on one line print "yo" if x > 0 else "dude" # Multiple cases x = -100 if x < -10: print "yo" elif x > 10: # 'elif' is short for 'else if' print "dude" else: print "sup" for x in range(5,50,10): print x**2 for x in ("all","we","wanna","do","is","eat","your","brains"): print x x = 0 while x < 5: print pow(2,x) x += 1 # don't forget to increment x! # Multiple levels for x in range(1,10): if x % 2 == 0: print str(x) + " is even." else: print str(x) + " is odd." # Blocks cannot be empty x = "fried goldfish" if x == "spam for dinner": print "I will destroy the universe" else: # Nothing here. # Use a 'pass' statement, which indicates 'do nothing' x = "fried goldfish" if x == "spam for dinner": print "I will destroy the universe" else: pass # Use a 'break' statement to escape a loop x = 0 while True: print x**2 if x**2 >= 100: break x +=1 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Solver implementation Step2: To represent the density, we use a TimeFunction -- a scalar, discrete function encapsulating space- and time-varying data. We also use a Constant for the diffusion coefficient. Step3: The 2D diffusion equation is expressed as Step4: From this diffusion equation we derive our time-marching method -- at each timestep, we compute u at timestep t+1, which in the Devito language is represented by u.forward. Hence Step5: OK, it's time to let Devito generate code for our solver! Step6: Before executing the Operator we must first specify the initial density profile. Here, we place a "ring" with a constant density value in the center of the domain. Step7: We're now ready to execute the Operator. We run it with a diffusion coefficient of 0.5 and for a carefully chosen dt. Unless specified otherwise, the simulation runs for 199 timesteps as specified in the definition of u (i.e. the function was defined with save=200 the initial data + 199 new timesteps). Step8: Initial conditions and snapshots every 40 timesteps Step9: GPU-parallel solver Step10: That's it! We can now run it exactly as before Step11: We should see a big performance difference between the two runs. We can also inspect op to see what Devito has generated to run on the GPU
<ASSISTANT_TASK:> Python Code: # Some imports we will need below import numpy as np from devito import * import matplotlib.pyplot as plt %matplotlib inline nx, ny = 100, 100 grid = Grid(shape=(nx, ny)) u = TimeFunction(name='u', grid=grid, space_order=2, save=200) c = Constant(name='c') eqn = Eq(u.dt, c * u.laplace) step = Eq(u.forward, solve(eqn, u.forward)) op = Operator([step]) xx, yy = np.meshgrid(np.linspace(0., 1., nx, dtype=np.float32), np.linspace(0., 1., ny, dtype=np.float32)) r = (xx - .5)**2. + (yy - .5)**2. # Inserting the ring u.data[0, np.logical_and(.05 <= r, r <= .1)] = 1. stats = op.apply(dt=5e-05, c=0.5) plt.rcParams['figure.figsize'] = (20, 20) for i in range(1, 6): plt.subplot(1, 6, i) plt.imshow(u.data[(i-1)*40]) plt.show() # Instead of `platform=nvidiaX`, you may run your Python code with # the environment variable `DEVITO_PLATFORM=nvidiaX` # We also need the `gpu-fit` option to tell Devito that `u` will definitely # fit in the GPU memory. This is necessary every time a TimeFunction with # `save != None` is used. Otherwise, Devito could generate code such that # `u` gets streamed between the CPU and the GPU, but for this advanced # feature you will need `devitopro`. op = Operator([step], platform='nvidiaX', opt=('advanced', {'gpu-fit': u})) # Uncomment and run only if Devito was installed with GPU support. # stats = op.apply(dt=5e-05, c=0.5) print(op) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The second part of the challenge Step3: Assignment wrapup
<ASSISTANT_TASK:> Python Code: ''' The code in this cell opens up the file skydiver_time_velocities.csv and extracts two 1D numpy arrays of equal length. One array is of the velocity data taken by the radar gun, and the second is the times that the data is taken. ''' import numpy as np skydiver_time, skydiver_velocity = np.loadtxt("skydiver_time_velocities.csv", delimiter=',',skiprows=1,unpack=True) ''' This is a piece of example code that shows you how to get the velocity at any time you want using the Numpy interp() method. This requires you to pick a time where you want the velocity as an input parameter to the method, as well as the time and velocity arrays that you will interpolate from. ''' time = 7.2 # time in seconds vel = np.interp(time,skydiver_time,skydiver_velocity) print("velocity at time {:.3f} s is {:.3f} m/s".format(time,vel)) # put your code here! # put your code here! from IPython.display import HTML HTML( <iframe src="https://goo.gl/forms/XvxmPrGnDOD3UZcI2?embedded=true" width="80%" height="1200px" frameborder="0" marginheight="0" marginwidth="0"> Loading... </iframe> ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Implementation Step2: Featureset Exploration Step3: For highly-skewed feature distributions such as 'capital-gain' and 'capital-loss', it is common practice to apply a <a href="https Step4: Normalizing Numerical Features Step5: Implementation Step6: Shuffle and Split Data Step7: Evaluating Model Performance Step8: Supervised Learning Models Step9: Implementation Step10: Improving Results Step11: Question 5 - Final Model Evaluation Step12: Question 7 - Extracting Feature Importance
<ASSISTANT_TASK:> Python Code: # Import libraries necessary for this project import numpy as np import pandas as pd from time import time from IPython.display import display # Allows the use of display() for DataFrames # Import supplementary visualization code visuals.py import visuals as vs # Pretty display for notebooks %matplotlib inline # Load the Census dataset data = pd.read_csv("census.csv") # Success - Display the first record display(data.head(n=1)) len(data[data['income']==">50K"]) # TODO: Total number of records n_records = len(data['income'].index) # TODO: Number of records where individual's income is more than $50,000 n_greater_50k = len(data[data['income']==">50K"]) # TODO: Number of records where individual's income is at most $50,000 n_at_most_50k = len(data[data['income']=="<=50K"]) # TODO: Percentage of individuals whose income is more than $50,000 greater_percent = float(n_greater_50k*100.00/n_records) # Print the results print "Total number of records: {}".format(n_records) print "Individuals making more than $50,000: {}".format(n_greater_50k) print "Individuals making at most $50,000: {}".format(n_at_most_50k) print "Percentage of individuals making more than $50,000: {:.2f}%".format(greater_percent) # Split the data into features and target label income_raw = data['income'] features_raw = data.drop('income', axis = 1) # Visualize skewed continuous features of original data vs.distribution(data) # Log-transform the skewed features skewed = ['capital-gain', 'capital-loss'] features_log_transformed = pd.DataFrame(data = features_raw) features_log_transformed[skewed]= features_raw[skewed].apply(lambda x: np.log(x + 1)) # Visualize the new log distributions vs.distribution(features_log_transformed, transformed = True) # Import sklearn.preprocessing.StandardScaler from sklearn.preprocessing import MinMaxScaler # Initialize a scaler, then apply it to the features scaler = MinMaxScaler() # default=(0, 1) numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] features_log_minmax_transform = pd.DataFrame(data = features_log_transformed) features_log_minmax_transform[numerical] = scaler.fit_transform(features_log_transformed[numerical]) # Show an example of a record with scaling applied display(features_log_minmax_transform.head(n = 5)) # TODO: One-hot encode the 'features_log_minmax_transform' data using pandas.get_dummies() features_final = pd.get_dummies(features_log_minmax_transform) # TODO: Encode the 'income_raw' data to numerical values income = income_raw.map({'<=50K':0,'>50K':1}) # Print the number of features after one-hot encoding encoded = list(features_final.columns) print "{} total features after one-hot encoding.".format(len(encoded)) # Uncomment the following line to see the encoded feature names # print encoded # Import train_test_split from sklearn.cross_validation import train_test_split # Split the 'features' and 'income' data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(features_final, income, test_size = 0.2, random_state = 0) # Show the results of the split print "Training set has {} samples.".format(X_train.shape[0]) print "Testing set has {} samples.".format(X_test.shape[0]) ''' TP = np.sum(income) # Counting the ones as this is the naive case. Note that 'income' is the 'income_raw' data encoded to numerical values done in the data preprocessing step. FP = income.count() - TP # Specific to the naive case TN = 0 # No predicted negatives in the naive case FN = 0 # No predicted negatives in the naive case ''' TP = np.sum(income) FP = income.count() - TP TN = 0 FN = 0 # TODO: Calculate accuracy, precision and recall accuracy = float((TP+TN))/len(income) recall = float(TP)/(TP+FN) precision = float(TP)/(TP+FP) # TODO: Calculate F-score using the formula above for beta = 0.5 and correct values for precision and recall. # HINT: The formula above can be written as (1 + beta**2) * (precision * recall) / ((beta**2 * precision) + recall) beta = 0.5 fscore = (1 + beta**2) * (precision * recall) / ((beta**2 * precision) + recall) # Print the results print "Naive Predictor: [Accuracy score: {:.4f}, F-score: {:.4f}]".format(accuracy, fscore) # TODO: Import two metrics from sklearn - fbeta_score and accuracy_score from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score def train_predict(learner, sample_size, X_train, y_train, X_test, y_test): ''' inputs: - learner: the learning algorithm to be trained and predicted on - sample_size: the size of samples (number) to be drawn from training set - X_train: features training set - y_train: income training set - X_test: features testing set - y_test: income testing set ''' results = {} # TODO: Fit the learner to the training data using slicing with 'sample_size' using .fit(training_features[:], training_labels[:]) start = time() # Get start time learner.fit(features_final[:sample_size], income[:sample_size]) end = time() # Get end time # TODO: Calculate the training time results['train_time'] = end - start # TODO: Get the predictions on the test set(X_test), # then get predictions on the first 300 training samples(X_train) using .predict() start = time() # Get start time predictions_test = learner.predict(X_test) predictions_train = learner.predict(X_train[:300]) end = time() # Get end time # TODO: Calculate the total prediction time results['pred_time'] = end - start # TODO: Compute accuracy on the first 300 training samples which is y_train[:300] results['acc_train'] = accuracy_score(y_train[:300],predictions_train) # TODO: Compute accuracy on test set using accuracy_score() results['acc_test'] = accuracy_score(y_test,predictions_test) # TODO: Compute F-score on the the first 300 training samples using fbeta_score() results['f_train'] = fbeta_score(y_train[:300],predictions_train,beta=0.5) # TODO: Compute F-score on the test set which is y_test results['f_test'] = fbeta_score(y_test,predictions_test,beta=0.5) # Success print "{} trained on {} samples.".format(learner.__class__.__name__, sample_size) # Return the results return results # TODO: Import the three supervised learning models from sklearn from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier # TODO: Initialize the three models # n_neighbors=int(math.log(len(X_train),2)) clf_A = KNeighborsClassifier() clf_B = DecisionTreeClassifier(random_state=13) clf_C = GradientBoostingClassifier(random_state=13) # TODO: Calculate the number of samples for 1%, 10%, and 100% of the training data # HINT: samples_100 is the entire training set i.e. len(y_train) # HINT: samples_10 is 10% of samples_100 # HINT: samples_1 is 1% of samples_100 samples_100 = len(X_train) samples_10 = int (len(X_train) * 0.1) samples_1 = int (len(X_train) * 0.01) # Collect results on the learners results = {} for clf in [ clf_A, clf_B,clf_C]: clf_name = clf.__class__.__name__ results[clf_name] = {} for i, samples in enumerate([samples_1, samples_10, samples_100]): results[clf_name][i] = \ train_predict(clf, samples, X_train, y_train, X_test, y_test) # Run metrics visualization for the three supervised learning models chosen vs.evaluate(results, accuracy, fscore) # TODO: Import 'GridSearchCV', 'make_scorer', and any other necessary libraries from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer # TODO: Initialize the classifier clf = DecisionTreeClassifier(random_state=13) # TODO: Create the parameters list you wish to tune, using a dictionary if needed. # HINT: parameters = {'parameter_1': [value1, value2], 'parameter_2': [value1, value2]} parameters = {'max_depth':[3, 4, 5]} # TODO: Make an fbeta_score scoring object using make_scorer() scorer = make_scorer(fbeta_score,beta=0.5) # TODO: Perform grid search on the classifier using 'scorer' as the scoring method using GridSearchCV() grid_obj = GridSearchCV(clf,parameters,scoring=scorer) # TODO: Fit the grid search object to the training data and find the optimal parameters using fit() grid_fit = grid_obj.fit(X_train,y_train) # Get the estimator best_clf = grid_fit.best_estimator_ # Make predictions using the unoptimized and model predictions = (clf.fit(X_train, y_train)).predict(X_test) best_predictions = best_clf.predict(X_test) # Report the before-and-afterscores print "Unoptimized model\n------" print "Accuracy score on testing data: {:.4f}".format(accuracy_score(y_test, predictions)) print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, predictions, beta = 0.5)) print "\nOptimized Model\n------" print "Final accuracy score on the testing data: {:.4f}".format(accuracy_score(y_test, best_predictions)) print "Final F-score on the testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5)) # TODO: Import a supervised learning model that has 'feature_importances_' from sklearn.ensemble import AdaBoostClassifier # TODO: Train the supervised model on the training set using .fit(X_train, y_train) model = AdaBoostClassifier(random_state=13) model.fit(X_train, y_train) # TODO: Extract the feature importances using .feature_importances_ importances = model.feature_importances_ # Plot vs.feature_plot(importances, X_train, y_train) # Import functionality for cloning a model from sklearn.base import clone # Reduce the feature space X_train_reduced = X_train[X_train.columns.values[(np.argsort(importances)[::-1])[:5]]] X_test_reduced = X_test[X_test.columns.values[(np.argsort(importances)[::-1])[:5]]] # Train on the "best" model found from grid search earlier clf = (clone(best_clf)).fit(X_train_reduced, y_train) # Make new predictions reduced_predictions = clf.predict(X_test_reduced) # Report scores from the final model using both versions of data print "Final Model trained on full data\n------" print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, best_predictions)) print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5)) print "\nFinal Model trained on reduced data\n------" print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, reduced_predictions)) print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, reduced_predictions, beta = 0.5)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: print Fonksiyonu, Özel Karakterler ve str Fonksiyonu Step2: Mantıksal İşlemler Step3: Matematiksel İşlemler Step4: Yönü Yok kavramını açacağız. Step5: Bu konuda evde daha fazla pratik yapabilirsiniz. Konuyu geçiyorum. Step6: Listler ve Tuplelar Step7: If - Elif - Else Statementlar Step8: Kullanıcıdan Input Almak - input() Step9: try - except - raise Step10: Pekiştirme yapmak amacıyla şimdi bir program yazalım. Bu program toplam 3 adet not alıyor.
<ASSISTANT_TASK:> Python Code: 2 #Integer yani tam sayı 2.0 #Float yani ondalıklı sayı 1.67 #Yine bir float 4 #Yine bir int(Integer) 'Bu bir string' "Bu da bir string" True #Boolean False #Boolean print('test') print('test2') print("deneme123") print(1) print(2.55) print(1, 2, 'Hello World!') print('\n') print(1, '\n',2, '\nHelloWorld') #\n sonraki satırda bir boşluğa neden olacak. print('\n') print(1, '\n' + str(2)) #str fonksiyonu integeri stringe çevirecek. Toplama işlemi stringleri birleştirmeye de yarıyor. print('\ttest') print('\t test') print('\' <= bu işaretin adı neydi?') True and False True or False 2 or False 0 or False 3 < 4 2.5 or False 3 >= 4 'string' or False 2 == 2 2 == 3 2 != 2 2 != 1034354435345 False or True and False False and False or True 2 <= 4 not True 3 is False 2 + 2 + 4 - 1 2 * 3 / 2 2 ** 4 4 ** (1/2) 5 // 2 5 % 2 2.3 == 23 or 10 0.1 == 1/10 2 is not 3 is 4 #Hem 2 is not 3 hem 3 is 4 doğru olduğunda doğrudur. Arada and var gibi. 2 is not 3 is 3 3 is not 3 is 3 1 == 1 == 2 1 == 2 == 2 2 ** 2 ** 3 #İşlem sağdan sola yapılıyor. 2 * 2 ** 2 ** 3 / 3 #Önceliği yüksek işlemden başlanıyor. 2 ** -3 * 4 2 ** (-3 + 4) a = 4 a = 5 b = 4 c = a != b print(c) variableda boşuk olmaz = 0 alt_cizgi_kullanilir = 5 yadaBuSekildeTanimlanir = 4 print(alt_cizgi_kullanilir, yadaBuSekildeTanimlanir) myList = [] #Bu boş bir liste myTuple = (1,) #Tuple en az bir element içermek zorundadır. Tek element olduğunda virgül eklemek zorundayız. myTuple2 = 1, 2 #Parantez kullanmadan virgül ile de tuple oluşturabiliriz. print(myList, myTuple, myTuple2) print(1 not in (2, 3, 4), 2 in [2, 3]) a = [[1, 3, 4], (2, 3)] #Listler tuple ve list elementleri içerebilir. b = (1, 2, 3, (3, 4), [1, 2]) print(a, b) b[4].append(1) #List ve tuple indexi 0'dan başlar, erişmek için elementin ismi yanına köşeli parentezle indexini yazarız. print(b) #Tuple içine list koymak tupleın immutable yapısını bozar. a = [[1, 3, 4], (2, 3)] a.pop() # pop fonksiyonu listin son elementini verir. a = [[1, 3, 4], (2, 3)] a.pop(0) #Indexi verirsek o elementi çıkarır. Sonra stdouta basar. a = [[1, 3, 4], (2, 3)] a.insert(0, 1) #Insert ile indexi verilen lokasyondaki elementten önce yeni element eklenir. Büyük listelerde verimsizdir. print(a) a = [0, 1, 3, 2, 4, 5, 6, 7, 8, 9] a.index(3) # index fonksiyonu listler ve tuplelar üzerinde çalışır. Verilen elementin indexini stdouta basar. a = (1, 2) a.index(2) a = 1, #Bu da bir tuple, parantez koymak zorunda değiliz. a.append(1) #Hata verecek çünkü tuple immutable a = True if a is True: #İki nokta işaretine dikkat edelim. print("a Doğru") #Statementın içinde boşlukla çalışmamız gerekiyor. else: print("a Yanlış") #Bu kod çalışmayacak. a = [1, 2, 3, 4, 5] if 6 in a: print("6 dahil") elif 2 in a: print('2 dahil') input("Yaşın kaç: ") age = input('Yaşınızı girin: ') if age >= 13: print('Siteye devam edebilirsiniz.') else: print('Siteye giremezsiniz.') age = input('Yaşınızı girin: ') if int(age) >= 13: print('Siteye devam edebilirsiniz.') else: print('Siteye giremezsiniz.') try: a = input('Yaşınızı girin: ') age = int(a) except ValueError: raise SystemExit('Hatalı Giriş') mid1 = input('Midterm 1 Notunuz: ') try: mid1 = int(mid1) except ValueError: raise SystemExit('Hatalı Giriş') mid2 = input('Midterm 2 Notunuz: ') try: mid2 = int(mid2) except ValueError: raise SystemExit('Hatalı Giriş') final = int(input('Final Notunuz: ')) try: final = int(final) except ValueError: raise SystemExit('Hatalı Giriş') average = (mid1 * 30 + mid2 * 30 + final * 40) / 100 if average >= 55: print('Dersten geçtiniz. Tebrikler.') else: print('Dersten kaldınız. Tekrar deneyiniz.') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2次元の array を DataFrame に変換する例です。 Step2: columns オプションで、各列の column 名を指定します。 Step3: Series オブジェクトから DataFrame を作成する例です。 Step4: 各列の column 名と対応する Series オブジェクトのディクショナリを与えて、DataFrame を生成します。 Step5: Series オブジェクトの代わりに、リストから DataFrame を作成する例です。 Step6: 空の DataFrame に行を追加する例です。 Step7: 対応するデータを Series オブジェクトとして用意します。この際、index オプションで column 名に対応する名前を付けておきます。 Step8: 用意した DataFrame の append メソッドで、Series オブジェクトを追加します。 Step9: 2個のサイコロを 1000 回振った結果をシュミレーションする例です。 Step10: DataFrameのdescribeメソッドで、記法的な統計値を確認することができます。 Step11: DataFrame の append メソッドで、2つの DataFrame を結合する例です。 Step12: ignore_index=True を指定すると、index は通し番号になるように再割当てが行われます。 Step13: DataFrame に列を追加する例です。 Step14: pd.concat 関数で複数の Series を列として結合できます。(axis=1 は列方向での結合を意味します。) Step15: pd.concat 関数で既存の DataFrame に Series を追加することもできます。
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import pandas as pd from pandas import Series, DataFrame from numpy.random import randint dices = randint(1,7,(5,2)) dices diceroll = DataFrame(dices, columns=['dice1','dice2']) diceroll city = Series(['Tokyo','Osaka','Nagoya','Okinawa'], name='City') city temp = Series([25.0,28.2,27.3,30.9], name='Temperature') temp humid = Series([44,42,np.nan,62], name='Humidity') humid cities = DataFrame({'City':city, 'Temperature':temp, 'Humidity':humid}) cities data = {'City': ['Tokyo','Osaka','Nagoya','Okinawa'], 'Temperature': [25.0,28.2,27.3,30.9], 'Humidity': [44,42,np.nan,62]} cities = DataFrame(data) cities diceroll = DataFrame(columns=['dice1','dice2']) diceroll oneroll = Series(randint(1,7,2), index=['dice1','dice2']) oneroll diceroll = diceroll.append(oneroll, ignore_index=True) diceroll diceroll = DataFrame(columns=['dice1','dice2']) for i in range(1000): diceroll = diceroll.append( Series(randint(1,7,2), index=['dice1','dice2']), ignore_index = True) diceroll[:5] diceroll.describe() diceroll1 = DataFrame(randint(1,7,(5,2)), columns=['dice1','dice2']) diceroll1 diceroll2 = DataFrame(randint(1,7,(3,2)), columns=['dice1','dice2']) diceroll2 diceroll3 = diceroll1.append(diceroll2) diceroll3 diceroll4 = diceroll1.append(diceroll2, ignore_index=True) diceroll4 diceroll = DataFrame() diceroll['dice1'] = randint(1,7,5) diceroll diceroll['dice2'] = randint(1,7,5) diceroll dice1 = Series(randint(1,7,5),name='dice1') dice2 = Series(randint(1,7,5),name='dice2') diceroll = pd.concat([dice1, dice2], axis=1) diceroll dice3 = Series(randint(1,7,5),name='dice3') diceroll = pd.concat([diceroll, dice3], axis=1) diceroll <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The convenience function DataReader makes it easy to read historical stock price data from Yahoo! Finance (http Step2: pandas strength is the handling of indexed/labeled/structured data, like times series data. Step3: pandas makes it easy to implement vectorized operations, like calculating log-returns over whole time series. Step4: In addition, pandas makes plotting quite simple and compact. Step5: We now want to check how annual volatility changes over time. Step6: Obviously, the annual volatility changes significantly over time. Step7: Exercise Step8: The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (I). Step9: The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (II). Step10: The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (III). Step11: The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (IV). Step12: Now, the data can be safely read into a DataFrame object. Step13: The VSTOXX data can be read without touching the raw data. Step14: We now merge the data for further analysis. Step15: Let's inspect the two time series. Step16: A picture can tell almost the complete story. Step17: We now generate log returns for both time series. Step18: To this new data set, also stored in a DataFrame object, we apply OLS. Step19: Again, we want to see how our results look graphically. Step20: Let us see if we can identify systematics over time. And indeed, during the crisis 2007/2008 (yellow dots) volatility has been more pronounced than more recently (red dots). Step21: Exercise Step22: First, the initial invest. Step23: This can already be considered an static investment strategy. Step24: Second, the dynamic strategy with daily adjustments to keep the value ratio constant. Step25: Third, the total wealth position. Step26: A brief check if the ratios are indeed constant. Step27: Let us inspect the performance of the strategy. Step28: Exercise Step29: The intraday evolution of the Apple stock price. Step30: A resampling of the data is easily accomplished with pandas. Step31: Let's have a graphical look at the new data set. Step32: With pandas you can easily apply custom functions to time series data.
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import pandas.io.data as pdd from urllib import urlretrieve %matplotlib inline try: index = pdd.DataReader('^GDAXI', data_source='yahoo', start='2007/3/30') # e.g. the EURO STOXX 50 ticker symbol -- ^SX5E except: index = pd.read_csv('dax.txt', index_col=0, parse_dates=True) index.info() index.tail() index['Returns'] = np.log(index['Close'] / index['Close'].shift(1)) index[['Close', 'Returns']].plot(subplots=True, style='b', figsize=(8, 5)) index['Mov_Vol'] = pd.rolling_std(index['Returns'], window=252) * np.sqrt(252) index[['Close', 'Returns', 'Mov_Vol']].plot(subplots=True, style='b', figsize=(8, 5)) import pandas as pd import datetime as dt from urllib import urlretrieve try: es_url = 'http://www.stoxx.com/download/historical_values/hbrbcpe.txt' vs_url = 'http://www.stoxx.com/download/historical_values/h_vstoxx.txt' urlretrieve(es_url, 'es.txt') urlretrieve(vs_url, 'vs.txt') except: pass lines = open('es.txt').readlines() # reads the whole file line-by-line lines[:5] # header not well formatted lines[3883:3890] # from 27.12.2001 additional semi-colon lines = open('es.txt').readlines() # reads the whole file line-by-line new_file = open('es50.txt', 'w') # opens a new file new_file.writelines('date' + lines[3][:-1].replace(' ', '') + ';DEL' + lines[3][-1]) # writes the corrected third line (additional column name) # of the orginal file as first line of new file new_file.writelines(lines[4:]) # writes the remaining lines of the orginal file list(open('es50.txt'))[:5] # opens the new file for inspection es = pd.read_csv('es50.txt', index_col=0, parse_dates=True, sep=';', dayfirst=True) del es['DEL'] # delete the helper column es.info() vs = pd.read_csv('vs.txt', index_col=0, header=2, parse_dates=True, sep=',', dayfirst=True) # you can alternatively read from the Web source directly # without saving the csv file to disk: # vs = pd.read_csv(vs_url, index_col=0, header=2, # parse_dates=True, sep=',', dayfirst=True) import datetime as dt data = pd.DataFrame({'EUROSTOXX' : es['SX5E'][es.index > dt.datetime(1999, 12, 31)]}) data = data.join(pd.DataFrame({'VSTOXX' : vs['V2TX'][vs.index > dt.datetime(1999, 12, 31)]})) data.info() data.head() data.plot(subplots=True, grid=True, style='b', figsize=(10, 5)) rets = np.log(data / data.shift(1)) rets.head() xdat = rets['EUROSTOXX'] ydat = rets['VSTOXX'] model = pd.ols(y=ydat, x=xdat) model import matplotlib.pyplot as plt plt.plot(xdat, ydat, 'r.') ax = plt.axis() # grab axis values x = np.linspace(ax[0], ax[1] + 0.01) plt.plot(x, model.beta[1] + model.beta[0] * x, 'b', lw=2) plt.grid(True) plt.axis('tight') import matplotlib as mpl mpl_dates = mpl.dates.date2num(rets.index) plt.figure(figsize=(8, 4)) plt.scatter(rets['EUROSTOXX'], rets['VSTOXX'], c=mpl_dates, marker='o') plt.grid(True) plt.xlabel('EUROSTOXX') plt.ylabel('VSTOXX') plt.colorbar(ticks=mpl.dates.DayLocator(interval=250), format=mpl.dates.DateFormatter('%d %b %y')) data = data.dropna() data = data / data.ix[0] * 100 data.head() invest = 100 cratio = 0.3 data['Equity'] = (1 - cratio) * invest / data['EUROSTOXX'][0] data['Volatility'] = cratio * invest / data['VSTOXX'][0] data['Static'] = (data['Equity'] * data['EUROSTOXX'] + data['Volatility'] * data['VSTOXX']) data[['EUROSTOXX', 'Static']].plot(figsize=(10, 5)) for i in range(1, len(data)): evalue = data['Equity'][i - 1] * data['EUROSTOXX'][i] # value of equity position vvalue = data['Volatility'][i - 1] * data['VSTOXX'][i] # value of volatility position tvalue = evalue + vvalue # total wealth data['Equity'][i] = (1 - cratio) * tvalue / data['EUROSTOXX'][i] # re-allocation of total wealth to equity ... data['Volatility'][i] = cratio * tvalue / data['VSTOXX'][i] # ... and volatility position data['Dynamic'] = (data['Equity'] * data['EUROSTOXX'] + data['Volatility'] * data['VSTOXX']) data.head() (data['Volatility'] * data['VSTOXX'] / data['Dynamic'])[:5] (data['Equity'] * data['EUROSTOXX'] / data['Dynamic'])[:5] data[['EUROSTOXX', 'Dynamic']].plot(figsize=(10, 5)) try: url = 'http://hopey.netfonds.no/posdump.php?' url += 'date=%s%s%s&paper=AAPL.O&csv_format=csv' % ('2014', '03', '12') # you may have to adjust the date since only recent dates are available urlretrieve(url, 'aapl.csv') except: pass AAPL = pd.read_csv('aapl.csv', index_col=0, header=0, parse_dates=True) AAPL.info() AAPL['bid'].plot() AAPL = AAPL[AAPL.index > dt.datetime(2014, 3, 12, 10, 0, 0)] # only data later than 10am at that day # this resamples the record frequency to 5 minutes, using mean as aggregation rule AAPL_5min = AAPL.resample(rule='5min', how='mean').fillna(method='ffill') AAPL_5min.head() AAPL_5min['bid'].plot() AAPL_5min['bid'].apply(lambda x: 2 * 530 - x).plot() # this mirrors the stock price development at <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setting initial variables Step2: User input for Project ID Step4: SQLAlchemy code Step5: Looping through the data of each Location ID Step6: Making a request to Google Maps API Step7: I love enumerate Step8: Creates a Holebase importable csv file
<ASSISTANT_TASK:> Python Code: import csv import re import googlemaps from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker db_password = 'somestring' gapi_key = 'anotherstring' points = [] positions = [] project_no = False while project_no is False: try: string = input("Enter Project Number: ") pattern = re.compile(r"S\d{6}\Z") if pattern.match(string): project_no = string else: raise ValueError('ERROR: Not a correct project number') except ValueError as e: print(e) engine = create_engine('mssql+pyodbc://HolebaseSIUser:{password}@Holebase'.format(password=db_password)) Base = declarative_base() Session = sessionmaker(bind=engine) session = Session() result = session.execute(SELECT COR_LocationDetails.LocationID, COR_LocationDetails.LongLatCentroid.STAsText() FROM COR_Project, COR_LocationDetails WHERE COR_Project.ProjectID = '{project_no}' AND COR_Project.Id = COR_LocationDetails.Project.format(project_no=project_no)) session.close() for i in result: if i[1] != None: match = re.findall(r'\((.*?)\)', i[1]) long, lat = match[0].split(' ') points.append([float(lat), float(long)]) positions.append([i[0]]) else: pass gmaps = googlemaps.Client(key=gapi_key) gmaps_elevation = gmaps.elevation(points) for i, d in enumerate(gmaps_elevation): positions[i].append(round(d['elevation'], 3)) with open('Location Details.csv', 'w', newline='') as f: writer = csv.writer(f, quoting=csv.QUOTE_ALL) writer.writerow(['Location ID', 'Ground Level']) writer.writerows(positions) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Preparing the data Step2: Counting word frequency Step3: Let's keep the first 10000 most frequent words. As Andrew noted, most of the words in the vocabulary are rarely used so they will have little effect on our predictions. Below, we'll sort vocab by the count value and keep the 10000 most frequent words. Step4: What's the last word in our vocabulary? We can use this to judge if 10000 is too few. If the last word is pretty common, we probably need to keep more words. Step5: The last word in our vocabulary shows up in 30 reviews out of 25000. I think it's fair to say this is a tiny proportion of reviews. We are probably fine with this number of words. Step6: Text to vector function Step7: If you do this right, the following code should return Step8: Now, run through our entire review data set and convert each review to a word vector. Step9: Train, Validation, Test sets Step10: Building the network Step11: Intializing the model Step12: Training the network Step13: Testing Step14: Try out your own text!
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import tensorflow as tf import tflearn from tflearn.data_utils import to_categorical reviews = pd.read_csv('reviews.txt', header=None) labels = pd.read_csv('labels.txt', header=None) from collections import Counter total_counts = # bag of words here print("Total words in data set: ", len(total_counts)) vocab = sorted(total_counts, key=total_counts.get, reverse=True)[:10000] print(vocab[:60]) print(vocab[-1], ': ', total_counts[vocab[-1]]) word2idx = ## create the word-to-index dictionary here def text_to_vector(text): pass text_to_vector('The tea is for a party to celebrate ' 'the movie so she has no time for a cake')[:65] word_vectors = np.zeros((len(reviews), len(vocab)), dtype=np.int_) for ii, (_, text) in enumerate(reviews.iterrows()): word_vectors[ii] = text_to_vector(text[0]) # Printing out the first 5 word vectors word_vectors[:5, :23] Y = (labels=='positive').astype(np.int_) records = len(labels) shuffle = np.arange(records) np.random.shuffle(shuffle) test_fraction = 0.9 train_split, test_split = shuffle[:int(records*test_fraction)], shuffle[int(records*test_fraction):] trainX, trainY = word_vectors[train_split,:], to_categorical(Y.values[train_split], 2) testX, testY = word_vectors[test_split,:], to_categorical(Y.values[test_split], 2) trainY # Network building def build_model(): # This resets all parameters and variables, leave this here tf.reset_default_graph() #### Your code #### model = tflearn.DNN(net) return model model = build_model() # Training model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=128, n_epoch=10) predictions = (np.array(model.predict(testX))[:,0] >= 0.5).astype(np.int_) test_accuracy = np.mean(predictions == testY[:,0], axis=0) print("Test accuracy: ", test_accuracy) # Helper function that uses your model to predict sentiment def test_sentence(sentence): positive_prob = model.predict([text_to_vector(sentence.lower())])[0][1] print('Sentence: {}'.format(sentence)) print('P(positive) = {:.3f} :'.format(positive_prob), 'Positive' if positive_prob > 0.5 else 'Negative') sentence = "Moonlight is by far the best movie of 2016." test_sentence(sentence) sentence = "It's amazing anyone could be talented enough to make something this spectacularly awful" test_sentence(sentence) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Here we will examine strain evolution during transpression deformation. Transpression (Sanderson and Marchini, 1984) is considered as a wrench or transcurrent shear accompanied by horizontal shortening across, and vertical lengthening along, the shear plane. Step2: Here we define some constants including bulk strain rate. Step3: We define 2D arrays of angles and times to be examined... Step4: and l;oop over to calculate symmetry and intensity for each combination Step5: Now we can plot results.
<ASSISTANT_TASK:> Python Code: %pylab inline from scipy import linalg as la def KDparams(F): u, s, v = svd(F) Rxy = s[0]/s[1] Ryz = s[1]/s[2] K = (Rxy-1)/(Ryz-1) D = sqrt((Rxy-1)**2 + (Ryz-1)**2) return K, D yearsec = 365.25*24*3600 sr = 3e-15 times = linspace(0.00000001,10,20) alphas = linspace(0,90,20) time, alpha = meshgrid(times, alphas) K = zeros_like(alpha) D = zeros_like(alpha) for (r,c) in np.ndindex(alpha.shape): a = deg2rad(alpha[r,c]) t = time[r,c]*1e6*yearsec edot = sr*sin(a) gdot = sr*cos(a) L = array([[0, gdot, 0], [0, -edot, 0],[0, 0, edot]]) F = la.expm(L*t) K[r,c], D[r,c] = KDparams(F) contourf(time, alpha, K, linspace(0, 1, 11)) colorbar() contourf(time, alpha, D, linspace(0, 2.5, 11)) colorbar() from IPython.core.display import HTML def css_styling(): styles = open("./css/sg2.css", "r").read() return HTML(styles) css_styling() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Silicon Forest Math Series<br/>Oregon Curriculum Network Step2: The above algorithm is known as "trial by division". Step3: How does Euclid's Method work? That's a great question and one your teacher should be able to explain. First see if you might figure it out for yourself... Step5: Suppose we had asked for gcd(18, 81) instead? 18 is the remainder (no 81s go into it) whereas b was 81, so the while loop simply flips the two numbers around to give the example above. Step6: Where to go next is in the direction of Euler's Theorem, a generalization of Fermat's Little Theorem. The built-in pow(m, n, N) function will raise m to the n modulo N in an efficient manner. Step7: Above we see repeating cycles of numbers, with the length of the cycles all dividing 16, the totient of the prime number 17. Step8: In public key cryptography, RSA in particular, a gigantic composite N is formed from two primes p and q. Step9: From this totient, we'll be able to find pairs (e, d) such that (e * d) modulo T(N) == 1.
<ASSISTANT_TASK:> Python Code: import pprint def primes(): generate successive prime numbers (trial by division) candidate = 1 _primes_so_far = [2] # first prime, only even prime yield _primes_so_far[0] # share it! while True: candidate += 2 # check odds only from now on for prev in _primes_so_far: if prev**2 > candidate: yield candidate # new prime! _primes_so_far.append(candidate) break if not divmod(candidate, prev)[1]: # no remainder! break # done looping p = primes() # generator function based iterator pp = pprint.PrettyPrinter(width=40, compact=True) pp.pprint([next(p) for _ in range(30)]) # next 30 primes please! def gcd(a, b): while b: a, b = b, a % b return a print(gcd(81, 18)) print(gcd(12, 44)) print(gcd(117, 17)) # strangers print(81 % 18) # 18 goes into print(18 % 9) # so the new b becomes the answer def totatives(N): # list comprehension! return [x for x in range(1,N) if gcd(x,N)==1] # strangers only def T(N): Returns the number of numbers between (1, N) that have no factors in common with N: called the 'totient of N' (sometimes phi is used in the docs) return len(totatives(N)) # how many strangers did we find? print("Totient of 100:", T(100)) print("Totient of 1000:", T(1000)) def powers(N): totient = T(N) print("Totient of {}:".format(N), totient) for t in totatives(N): values = [pow(t, n, N) for n in range(totient + 1)] cycle = values[:values.index(1, 1)] # first 1 after initial 1 print("{:>2}".format(len(cycle)), cycle) powers(17) from random import randint def check(N): totient = T(N) for t in totatives(N): n = randint(1, 10) print(t, pow(t, (n * totient) + 1, N)) check(17) p = 17 q = 23 T(p*q) == (p-1)*(q-1) p = 37975227936943673922808872755445627854565536638199 q = 40094690950920881030683735292761468389214899724061 RSA_100 = p * q totient = (p - 1) * (q - 1) # https://en.wikibooks.org/wiki/ # Algorithm_Implementation/Mathematics/ # Extended_Euclidean_algorithm def xgcd(b, n): x0, x1, y0, y1 = 1, 0, 0, 1 while n != 0: q, b, n = b // n, n, b % n x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return b, x0, y0 # x = mulinv(b) mod n, (x * b) % n == 1 def mulinv(b, n): g, x, _ = xgcd(b, n) if g == 1: return x % n e = 3 d = mulinv(e, totient) print((e*d) % totient) import binascii m = int(binascii.hexlify(b"I'm a secret"), 16) print(m) # decimal encoding of byte string c = pow(m, e, RSA_100) # raise to eth power print(c) m = pow(c, d, RSA_100) # raise to dth power print(m) binascii.unhexlify(hex(m)[2:]) # m is back where we started. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generative adversarial nets 101 Step2: Discriminator Step5: Training Step6: Auxilary functions Step7: Training Step8: Evaluation
<ASSISTANT_TASK:> Python Code: from torchvision import utils import matplotlib.pyplot as plt %matplotlib inline import numpy as np import torch, torch.nn as nn import torch.nn.functional as F from itertools import count from IPython import display import warnings import time plt.rcParams.update({'axes.titlesize': 'small'}) from sklearn.datasets import load_digits #The following line fetches you two datasets: images, usable for autoencoder training and attributes. #Those attributes will be required for the final part of the assignment (applying smiles), so please keep them in mind from lfw_dataset import fetch_lfw_dataset data,attrs = fetch_lfw_dataset(dimx=36, dimy=36) #preprocess faces data = np.float32(data).transpose([0,3,1,2]) / 255. IMG_SHAPE = data.shape[1:] #print random image plt.imshow(data[np.random.randint(data.shape[0])].transpose([1,2,0]), cmap="gray", interpolation="none") use_cuda = torch.cuda.is_available() print("Torch version:", torch.__version__) if use_cuda: print("Using GPU") else: print("Not using GPU") def sample_noise_batch(batch_size): noise = torch.randn(batch_size, CODE_SIZE) #print(noise.shape) return noise.cuda() if use_cuda else noise.cpu() class Reshape(nn.Module): def __init__(self, shape): nn.Module.__init__(self) self.shape=shape def forward(self,input): return input.view(self.shape) def save_checkpoint(state, filename): torch.save(state, filename) CODE_SIZE = 256 # automatic layer name maker. Don't do this in production :) ix = ('layer_%i'%i for i in count()) generator = nn.Sequential() generator.add_module(next(ix), nn.Linear(CODE_SIZE, 10*8*8)) #output 10*8*8 generator.add_module(next(ix), nn.ELU()) generator.add_module(next(ix), Reshape([-1, 10, 8, 8])) #output 10x8x8 generator.add_module(next(ix), nn.ConvTranspose2d(10, 64, kernel_size=(5,5))) #output 64x12x12 generator.add_module(next(ix), nn.ELU()) generator.add_module(next(ix), nn.ConvTranspose2d(64, 64, kernel_size=(5,5))) #output 64x16x16 generator.add_module(next(ix), nn.ELU()) generator.add_module(next(ix), nn.Upsample(scale_factor=2)) #output 64x32x32 generator.add_module(next(ix), nn.ConvTranspose2d(64, 32, kernel_size=(5,5))) #output 32x36x36 generator.add_module(next(ix), nn.ELU()) generator.add_module(next(ix), nn.ConvTranspose2d(32, 32, kernel_size=(5,5))) #output 32x40x40 generator.add_module(next(ix), nn.ELU()) generator.add_module(next(ix), nn.Conv2d(32, 3, kernel_size=(5,5))) #output 3x36x36 #generator.add_module(next(ix), nn.Sigmoid()) if use_cuda: generator.cuda() generated_data = generator(sample_noise_batch(5)) assert tuple(generated_data.shape)[1:] == IMG_SHAPE, \ "generator must output an image of shape %s, but instead it produces %s"%(IMG_SHAPE,generated_data.shape) plt.figure(figsize=(16,10)) plt.axis('off') plt.imshow(utils.make_grid(generated_data).cpu().detach().numpy().transpose((1,2,0)).clip(0,1)*10) plt.show() def sample_data_batch(batch_size): idxs = np.random.choice(np.arange(data.shape[0]), size=batch_size) batch = torch.tensor(data[idxs], dtype=torch.float32) return batch.cuda() if use_cuda else batch.cpu() # a special module that converts [batch, channel, w, h] to [batch, units] class Flatten(nn.Module): def forward(self, input): return input.view(input.shape[0], -1) discriminator = nn.Sequential() ## Got mediocre result ### YOUR CODE - create convolutional architecture for discriminator ### Note: please start simple. A few convolutions & poolings would do, inception/resnet is an overkill discriminator.add_module("conv1", nn.Conv2d(3, 32, 5)) #output 32x32x32 discriminator.add_module("elu1", nn.ELU()) #discriminator.add_module("pool2d", nn.MaxPool2d(2, stride=2)) #output 32x16x16 discriminator.add_module('avgpool1', nn.AdaptiveAvgPool2d((16,16))) discriminator.add_module("conv2", nn.Conv2d(32, 64, 5)) #output 64x12x12 discriminator.add_module("elu2", nn.ELU()) discriminator.add_module("conv3", nn.Conv2d(64, 10, 5)) #output 10x8x8 discriminator.add_module("elu3", nn.ELU()) discriminator.add_module("reshape", Reshape([-1, 10*8*8])) discriminator.add_module("linear1", nn.Linear(10*8*8, CODE_SIZE)) #output 256 discriminator.add_module("elu4", nn.ELU()) discriminator.add_module("linear1", nn.Linear(CODE_SIZE, 1)) if use_cuda: discriminator.cuda() discriminator = nn.Sequential() # Got bad results ### YOUR CODE - create convolutional architecture for discriminator ### Note: please start simple. A few convolutions & poolings would do, inception/resnet is an overkill discriminator.add_module("conv1", nn.Conv2d(3, 32, 5)) #output 32x32x32 discriminator.add_module("lrelu1", nn.LeakyReLU(0.2)) discriminator.add_module("conv2", nn.Conv2d(32, 64, 3)) #output 64x30x30 discriminator.add_module("bn1", nn.BatchNorm2d(64)) discriminator.add_module("lrelu2", nn.LeakyReLU(0.2)) discriminator.add_module('avgpool1', nn.AdaptiveAvgPool2d((15,15))) discriminator.add_module("conv3", nn.Conv2d(64, 128, 4)) #output 128x12x12 discriminator.add_module("bn2", nn.BatchNorm2d(128)) discriminator.add_module("lrelu3", nn.LeakyReLU(0.2)) discriminator.add_module('avgpool2', nn.AdaptiveAvgPool2d((6,6))) #output 128x6x6 discriminator.add_module("conv4", nn.Conv2d(128, 256, 4)) #output 256x3x3 discriminator.add_module("bn3", nn.BatchNorm2d(256)) discriminator.add_module("lrelu4", nn.LeakyReLU(0.2)) discriminator.add_module("reshape", Reshape([-1, 256*3*3])) discriminator.add_module("linear1", nn.Linear(256*3*3, 1)) #output 256 if use_cuda: discriminator.cuda() discriminator = nn.Sequential() # Moreless fine ### YOUR CODE - create convolutional architecture for discriminator ### Note: please start simple. A few convolutions & poolings would do, inception/resnet is an overkill discriminator.add_module("conv1", nn.Conv2d(3, 32, 5)) #output 32x32x32 discriminator.add_module("lrelu1", nn.LeakyReLU(0.2)) discriminator.add_module('avgpool1', nn.AdaptiveAvgPool2d((16,16))) #output 32x16x16 discriminator.add_module("conv2", nn.Conv2d(32, 64, 5, 1, 2)) #output 64x16x16 discriminator.add_module("bn1", nn.BatchNorm2d(64)) discriminator.add_module("lrelu2", nn.LeakyReLU(0.2)) discriminator.add_module('avgpool2', nn.AdaptiveAvgPool2d((8,8))) #output 64x8x8 discriminator.add_module("conv3", nn.Conv2d(64, 128, 5, 1, 2)) #output 128x8x8 discriminator.add_module("bn2", nn.BatchNorm2d(128)) discriminator.add_module("lrelu3", nn.LeakyReLU(0.2)) discriminator.add_module('avgpool2', nn.AdaptiveAvgPool2d((4,4))) #output 128x4x4 discriminator.add_module("conv4", nn.Dropout(0.5)) discriminator.add_module("reshape", Reshape([-1, 128*4*4])) discriminator.add_module("linear1", nn.Linear(128*4*4, 1)) #output 1 if use_cuda: discriminator.cuda() sample = sample_data_batch(5) plt.figure(figsize=(16,10)) plt.axis('off') plt.imshow(utils.make_grid(sample).cpu().detach().numpy().transpose((1,2,0)).clip(0,1)) plt.show() discriminator(sample).shape def generator_loss(noise): 1. generate data given noise 2. compute log P(real | gen noise) 3. return generator loss (should be scalar) generated_data = generator(noise) disc_on_generated_data = discriminator(generated_data) logp_gen_is_real = F.logsigmoid(disc_on_generated_data) loss = -1 * torch.mean(logp_gen_is_real) return loss loss = generator_loss(sample_noise_batch(32)) print(loss) assert len(loss.shape) == 0, "loss must be scalar" def discriminator_loss(real_data, generated_data): 1. compute discriminator's output on real & generated data 2. compute log-probabilities of real data being real, generated data being fake 3. return discriminator loss (scalar) disc_on_real_data = discriminator(real_data) disc_on_fake_data = discriminator(generated_data) logp_real_is_real = F.logsigmoid(disc_on_real_data) logp_gen_is_fake = F.logsigmoid(1 - disc_on_fake_data) loss = -1 * torch.mean(logp_real_is_real + logp_gen_is_fake) return loss loss = discriminator_loss(sample_data_batch(32), generator(sample_noise_batch(32))) print(loss) assert len(loss.shape) == 0, "loss must be scalar" def sample_images(nrow, ncol, sharp=False): with torch.no_grad(): images = generator(sample_noise_batch(batch_size=nrow*ncol)) images = images.data.cpu().numpy().transpose([0, 2, 3, 1]) if np.var(images)!=0: images = images.clip(np.min(data),np.max(data)) for i in range(nrow*ncol): plt.subplot(nrow,ncol,i+1) plt.axis('off') if sharp: plt.imshow(images[i], cmap="gray", interpolation="none") else: plt.imshow(images[i], cmap="gray") plt.show() def sample_probas(batch_size): plt.title('Generated vs real data') D_real = F.sigmoid(discriminator(sample_data_batch(batch_size))) generated_data_batch = generator(sample_noise_batch(batch_size)) D_fake = F.sigmoid(discriminator(generated_data_batch)) plt.hist(D_real.data.cpu().numpy(), label='D(x)', alpha=0.5, range=[0,1]) plt.hist(D_fake.data.cpu().numpy(), label='D(G(z))', alpha=0.5, range=[0,1]) plt.legend(loc='best') plt.show() #optimizers disc_opt = torch.optim.SGD(discriminator.parameters(), weight_decay=1e-4, lr=5e-3) gen_opt = torch.optim.Adam(generator.parameters(), lr=1e-4) last_epoch = 0 WEIGHTS_PATH = './weights/dcgan.pth.tar' if (torch.cuda.is_available()): checkpoint = torch.load(f=WEIGHTS_PATH) else: net = nn.DataParallel(net) checkpoint = torch.load(map_location='cpu', f=WEIGHTS_PATH) generator.load_state_dict(checkpoint['gen_weights']) discriminator.load_state_dict(checkpoint['disc_weights']) last_epoch = checkpoint['last_epoch'] disc_opt.load_state_dict(checkpoint['disc_optim']) gen_opt.load_state_dict(checkpoint['gen_optim']) def gaussian(ins, mean=0, stddev=0.05): noise = torch.autograd.Variable(ins.data.new(ins.size()).normal_(mean, stddev)) return ins + noise warnings.simplefilter('ignore') batch_size = 100 disc_loss = 0 gen_loss = 0 start = time.time() for epoch in range(last_epoch, 50000): # Train discriminator for i in range(5): real_data = sample_data_batch(batch_size) fake_data = generator(sample_noise_batch(batch_size)) loss = discriminator_loss(gaussian(real_data), gaussian(fake_data)) disc_opt.zero_grad() loss.backward() disc_opt.step() disc_loss = loss.item() # Train generator for j in range(1): noise = sample_noise_batch(batch_size) loss = generator_loss(noise) gen_opt.zero_grad() loss.backward() gen_opt.step() gen_loss = loss.item() if epoch %100==0: end = time.time() display.clear_output(wait=True) print("epoch %d, Generator loss %.7f, discriminator loss %.7f" % (epoch, gen_loss, disc_loss)) print("time taken (100 epochs) %.0f sec" % (end - start)) sample_images(2,3,True) sample_probas(1000) start = time.time() last_epoch = epoch print(epoch) save_checkpoint({ 'gen_weights': generator.state_dict(), 'disc_weights' : discriminator.state_dict(), 'gen_optim' : gen_opt.state_dict(), 'disc_optim' : disc_opt.state_dict(), 'last_epoch' : last_epoch }, "./weights/dcgan.pth.tar") plt.figure(figsize=[16, 24]) sample_images(16, 8) # Note: a no-nonsense neural network should be able to produce reasonably good images after 15k iterations # By "reasonably good" we mean "resembling a car crash victim" or better num_images = len(data) batch_size = 100 all_images = [] for batch_i in range(int((num_images - 1) / batch_size + 1)): with torch.no_grad(): images = generator(sample_noise_batch(batch_size=batch_size)) images = images.data.cpu().numpy().transpose([0, 2, 3, 1]) if np.var(images)!=0: images = images.clip(np.min(data), np.max(data)) all_images.append(images) all_images = np.concatenate(all_images, axis=0)[:num_images] np.savez("./gan.npz", Pictures=all_images) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Star Schema (facts vs. dimensions) Step2: Step3: Pandas Resample String convention Step4: Correlation vs. Regression Step5: R-squared Step6: Making Predictions
<ASSISTANT_TASK:> Python Code: import pandas as pd import matplotlib as plt # draw plots in notebook %matplotlib inline # make plots SVG (higher quality) %config InlineBackend.figure_format = 'svg' # more time/compute intensive to parse dates. but we know we definitely have/need them df = pd.read_csv('data/sf_listings.csv', parse_dates=['last_review'], infer_datetime_format=True) df_reviews = pd.read_csv('data/reviews.csv', parse_dates=['date'], infer_datetime_format=True) df_reviews.date[0] df.head() # display general diagnostic info df.info() df_reviews.head() # index DataFrame on listing_id in order to join datasets reindexed_df = df_reviews.set_index('listing_id') reindexed_df.head() # remember the original id in a column to group on df['listing_id'] = df['id'] df_listing = df.set_index('id') df_listing.head() # join the listing information with the review information review_timeseries = df_listing.join(reindexed_df) print review_timeseries.columns review_timeseries.head() # nothing new/interesting here... review_timeseries.groupby('listing_id').count()['name'].hist(bins=100, figsize=(12,6)); # causes python to crash, lets see if there is a better way # review_timeseries.groupby(['neighbourhood','date']).count() # lets try a pivot table... reviews_over_time = pd.crosstab(review_timeseries.date, review_timeseries.neighbourhood) reviews_over_time.head() # let's look at some particular neighborhoods neighborhoods = df.neighbourhood.unique() print neighborhoods # a little noisy reviews_over_time[['Mission', 'South of Market', 'Noe Valley']].plot(figsize=(12,6)) # smooth by resampling by month reviews_over_time.resample('M').mean()[['Mission', 'South of Market', 'Noe Valley']].plot(figsize=(12,6)) # Exercise 1 Solution from sklearn import linear_model features = df[['host_name', 'neighbourhood', 'room_type', 'minimum_nights','number_of_reviews', \ 'calculated_host_listings_count', 'availability_365']] labels = df['price'] # no price! features.head() # Categorical -> One Hot Encoding # http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-categorical-features dummies = pd.get_dummies(features) # sklearn likes matrices feature_matrix = dummies.as_matrix() labels.as_matrix() feature_matrix # Initialize and Fit sklearn model model = linear_model.LinearRegression() clf = model.fit(feature_matrix, labels.as_matrix()) # How well did we do? clf.score(feature_matrix, labels.as_matrix()) print "There are {0} features...".format(len(clf.coef_)) clf.coef_ # Remove the name column, we are probably overfitting... no_name = features.copy() no_name.pop('host_name') no_names_feature_m = pd.get_dummies(no_name).as_matrix() model = linear_model.LinearRegression(normalize=True) clf = model.fit(no_names_feature_m, labels.as_matrix()) # Turns out the name feature is highly predictive... # but not very useful: https://www.kaggle.com/wiki/Leakage clf.score(no_names_feature_m, labels.as_matrix()) len(clf.coef_) # We need more and better features df2 = pd.read_csv('data/listings_full.csv') df2.columns df2.head() # get a snapshot of some of the columns in the center of the matrix df2.iloc[1:5, 40:60] # optimistically lets just use a few key features to start. Remember Occam's razor.. select_features = df2[['host_has_profile_pic' ,'host_identity_verified', 'host_listings_count','host_response_time', 'host_acceptance_rate', 'host_is_superhost', 'transit', 'neighbourhood_cleansed','is_location_exact', 'property_type', 'room_type', 'accommodates','bathrooms','bedrooms','beds']] select_features.head() # moar feature engineering. fill in missing data since it wil break our model select_features = select_features.fillna({'host_response_time': 'NA', 'host_acceptance_rate': '-1%'}) select_features.info() # convert the percentage as a string into a float select_features.host_acceptance_rate = select_features.host_acceptance_rate.str.strip('%').astype(float) / 100 # Binarize transit column... the listing is either near transit or it isn't select_features.transit = select_features.transit.isnull() select_features.transit # One last fill incase we missed any nulls dummies = pd.get_dummies(select_features).fillna(0) feature_matrix = dummies.as_matrix() # Price as a currency string -> price as a float labels = df2.price.str.strip('$').str.replace(',', '').astype(float) # initialize model again model = linear_model.LinearRegression(normalize=True) clf = model.fit(feature_matrix, labels) # much better! clf.score(feature_matrix, labels) # a sweet spot in between over and under fitting len(clf.coef_) # Predict what we should price listing #1000 at given its features clf.predict(feature_matrix[1100]) # Looks like it is overpriced... df2.iloc[1100].price # And it shows... there are only 2 reviews per month df2.iloc[1100] # Where the top listing have 10+ reviews per month df2.sort_values('reviews_per_month', ascending=False).head() # Zip together our column names with our beta coefficients coefficients = zip(dummies.columns, clf.coef_) # Most significant sorted(coefficients, key=lambda coef: coef[1], reverse=True)[:10] # Least significant sorted(coefficients, key=lambda coef: coef[1])[:10] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 1 Step2: Next we make our layer elevations. We will make 20 layers that are 5 meters thick. Note that here, as with most Landlab components, there are no default units. At the anchor point, half of the layers will be above the ground ('layer_elevations' will have negative values) and half will be below the ground ('layer_elevations' have positive values). Step3: Next we create an array that represents our rock type ID values. We will create alternating layers of four types of rock by making an array with alternating 0s 1s 2s and 3s with the np.tile function. Step4: Our dictionary containing rock property attributes has the following form Step5: 'K_sp' is the property that we want to track through the layered rock, 0, 1, 2, 3 are the rock type IDs, and 0.0003 and 0.0001 are the values for 'K_sp' for the rock types 0 and 1. Step6: Finally we construct our LithoLayers component by passing the correct arguments. Step7: LithoLayers will make sure that the model grid has at-node grid fields with the layer attribute names. In this case, this means that the model grid will now include a grid field called 'K_sp' and a field called 'rock_type__id'. We can plot these with the Landlab imshow function. Step8: As you can see, we have layers that strike East-South-East. Since we can only see the surface expression of the layers, we can't infer the dip direction or magnitude from the plot alone. Step9: We can re-plot the value of 'K_sp'. We will see that the location of the surface expression of the rock layers has changed. As we expect, the location has changed in a way that is consistent with layers dipping to the NNE. Step10: Anytime material is added, LithoLayers or Lithology needs to know the type of rock that has been added. LithoLayers and Lithology do not assume to know the correct rock type ID and thus require that the user specify it with the rock_id keyword argument. In the run_one_step function, both components will check to see if any deposition has occured. If deposition occurs and this argument is not passed, then an error will be raised. Step11: When we plot the value of the rock type ID at the surface, we find that it is now all purple, the color of rock type zero. Step12: The value passed to the rock_id keyword argument can be either a single value (as in the second to last example) or an array of length number-of-nodes. This option permits a user to indicate that more than one type of rock is deposited in a single time step. Step13: As you can see this results in the value of rock type at the surface being about half rock type 1 and about half rock type 2. Next we will create an xarray dataset that has 3D information about our Lithology to help visualize the layers in space. We will use the rock_cube_to_xarray method of the LithoLayers component. Step14: The slider allows us to change the depth below the topographic surface. Step15: Hopefuly this gives you a sense of how LithoLayers works. The next two blocks of code have all the steps we just worked through in one place. Step16: You can also make a cross section of this new LithoLayers component. Step17: Part 2 Step18: Next we set all the parameters for LithoLayers. Here we have two types of rock with different erodabilities. Step19: There are three functional forms that you can choose between. Here we define each of them. Step20: The default option is to make an anticline, but you can comment/uncomment lines to choose a different functional form. Step21: Now that we've created LithoLayers, model grid fields for each of the LithoLayers attributes exist and have been set to the values of the rock exposed at the surface. Step22: As you can see (in the default anticline option) we have concentric elipses of stronger and weaker rock. Step23: Before we run the model we will also instatiate an xarray dataset used to store the output of our model through time for visualization. Step24: We can print the data set to get some basic information about it. Step25: We can also print a single variable to get more detailed information about it. Step26: Next, we run the model. In each time step we first run the FlowAccumulator to direct flow and accumulatate drainage area. Then the FastscapeEroder erodes the topography based on the stream power equation using the erodability value in the field 'K_sp'. We create an uplift field that uplifts only the model grid's core nodes. After uplifting these core nodes, we update LithoLayers. Importantly, we must tell the LithoLayers how it has been advected upward by uplift using the dz_advection keyword argument. Step27: Now that the model has run, lets start by plotting the resulting topography. Step28: The layers of rock clearly influence the form of topography. Step29: Next we specify that we want two images, one showing rock type and one showing topographic elevation. A slider bar shows us model time in millions of years. Step30: We can see the form of the anticline advecting through the topography. Cool! Step31: After the first half of run time, let's look at the topography. Step32: We can see that we have developed ridges and valleys as we'd expect from a model with stream power erosion and linear diffusion. Step33: We should expect that the locations of our valleys and ridges change as the river system encouters the much stronger volcanic rock. Step34: Now that the model has run, let's plot the final elevation Step35: And now a HoloView Plot that lets us explore the time evolution of the topography
<ASSISTANT_TASK:> Python Code: import warnings warnings.filterwarnings("ignore") import os import numpy as np import xarray as xr import dask import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt %matplotlib inline import holoviews as hv hv.notebook_extension("matplotlib") from landlab import RasterModelGrid from landlab.components import ( FlowAccumulator, FastscapeEroder, LinearDiffuser, Lithology, LithoLayers, ) mg = RasterModelGrid((10, 15)) z = mg.add_zeros("topographic__elevation", at="node") layer_elevations = 5.0 * np.arange(-10, 10) # we create a bottom layer that is very thick. layer_elevations[-1] = layer_elevations[-2] + 100 layer_ids = np.tile([0, 1, 2, 3], 5) attrs = {"K_sp": {0: 0.0003, 1: 0.0001, 2: 0.0002, 3: 0.0004}} func = lambda x, y: x + (2.0 * y) lith = LithoLayers(mg, layer_elevations, layer_ids, function=func, attrs=attrs) mg.imshow("rock_type__id", cmap="viridis") z -= 1.0 dz_ad = 0.0 lith.dz_advection = dz_ad lith.run_one_step() mg.imshow("rock_type__id", cmap="viridis") z += 1.0 dz_ad = 0.0 lith.dz_advection = dz_ad lith.rock_id = 0 lith.run_one_step() mg.imshow("rock_type__id", cmap="viridis", vmin=0, vmax=3) z += 2.0 dz_ad = 0.0 spatially_variable_rock_id = mg.ones("node") spatially_variable_rock_id[mg.x_of_node > 6] = 2 lith.dz_advection = dz_ad lith.rock_id = spatially_variable_rock_id lith.run_one_step() mg.imshow("rock_type__id", cmap="viridis", vmin=0, vmax=3) ds = lith.rock_cube_to_xarray(np.arange(30)) hvds_rock = hv.Dataset(ds.rock_type__id) %opts Image style(cmap='viridis') plot[colorbar=True] hvds_rock.to(hv.Image, ["x", "y"]) %opts Image style(cmap='viridis') plot[colorbar=True, invert_yaxis=True] hvds_rock.to(hv.Image, ["x", "z"]) # Parameters that control the size and shape of the model grid number_of_rows = 50 number_of_columns = 50 dx = 1 # Parameters that control the LithoLayers # the layer shape function func = lambda x, y: (0.5 * x) ** 2 + (0.5 * y) ** 2 # the layer thicknesses layer_thickness = 50.0 # the location of the anchor point x0 = 25 y0 = 25 # the resolution at which you sample to create the plan view and cros-section view figures. sample_depths = np.arange(0, 30, 1) # create the model grid mg = RasterModelGrid((number_of_rows, number_of_columns), dx) z = mg.add_zeros("topographic__elevation", at="node") # set up LithoLayers inputs layer_ids = np.tile([0, 1, 2, 3], 5) layer_elevations = layer_thickness * np.arange(-10, 10) layer_elevations[-1] = layer_elevations[-2] + 100 attrs = {"K_sp": {0: 0.0003, 1: 0.0001, 2: 0.0002, 3: 0.0004}} # create LithoLayers lith = LithoLayers( mg, layer_elevations, layer_ids, x0=x0, y0=y0, function=func, attrs=attrs ) # deposity and erode dz_ad = 0.0 z -= 1.0 lith.dz_advection = dz_ad lith.run_one_step() z += 1.0 lith.dz_advection = dz_ad lith.rock_id = 0 lith.run_one_step() z += 2.0 spatially_variable_rock_id = mg.ones("node") spatially_variable_rock_id[mg.x_of_node > 6] = 2 lith.dz_advection = dz_ad lith.rock_id = spatially_variable_rock_id lith.run_one_step() # get the rock-cube data structure and plot ds = lith.rock_cube_to_xarray(sample_depths) hvds_rock = hv.Dataset(ds.rock_type__id) # make a plan view image %opts Image style(cmap='viridis') plot[colorbar=True] hvds_rock.to(hv.Image, ["x", "y"]) %opts Image style(cmap='viridis') plot[colorbar=True, invert_yaxis=True] hvds_rock.to(hv.Image, ["x", "z"]) mg = RasterModelGrid((50, 30), 400) z = mg.add_zeros("topographic__elevation", at="node") random_field = 0.01 * np.random.randn(mg.size("node")) z += random_field - random_field.min() attrs = {"K_sp": {0: 0.0003, 1: 0.0001}} z0s = 50 * np.arange(-20, 20) z0s[-1] = z0s[-2] + 10000 ids = np.tile([0, 1], 20) # Anticline anticline_func = lambda x, y: ((0.002 * x) ** 2 + (0.001 * y) ** 2) # Shallow dips shallow_func = lambda x, y: ((0.001 * x) + (0.003 * y)) # Steeper dips steep_func = lambda x, y: ((0.01 * x) + (0.01 * y)) # Anticline lith = LithoLayers( mg, z0s, ids, x0=6000, y0=10000, function=anticline_func, attrs=attrs ) # Shallow dips # lith = LithoLayers(mg, z0s, ids, function=shallow_func, attrs=attrs) # Steeper dips # lith = LithoLayers(mg, z0s, ids, function=steep_func, attrs=attrs) mg.imshow("K_sp") nts = 300 U = 0.001 dt = 1000 fa = FlowAccumulator(mg) sp = FastscapeEroder(mg, K_sp="K_sp") ds = xr.Dataset( data_vars={ "topographic__elevation": ( ("time", "y", "x"), # tuple of dimensions np.empty((nts, mg.shape[0], mg.shape[1])), # n-d array of data { "units": "meters", # dictionary with data attributes "long_name": "Topographic Elevation", }, ), "rock_type__id": ( ("time", "y", "x"), np.empty((nts, mg.shape[0], mg.shape[1])), {"units": "-", "long_name": "Rock Type ID Code"}, ), }, coords={ "x": ( ("x"), # tuple of dimensions mg.x_of_node.reshape(mg.shape)[0, :], # 1-d array of coordinate data {"units": "meters"}, ), # dictionary with data attributes "y": (("y"), mg.y_of_node.reshape(mg.shape)[:, 1], {"units": "meters"}), "time": ( ("time"), dt * np.arange(nts) / 1e6, {"units": "millions of years since model start", "standard_name": "time"}, ), }, ) print(ds) ds.topographic__elevation out_fields = ["topographic__elevation", "rock_type__id"] for i in range(nts): fa.run_one_step() sp.run_one_step(dt=dt) dz_ad = np.zeros(mg.size("node")) dz_ad[mg.core_nodes] = U * dt z += dz_ad lith.dz_advection = dz_ad lith.run_one_step() for of in out_fields: ds[of][i, :, :] = mg["node"][of].reshape(mg.shape) mg.imshow("topographic__elevation", cmap="viridis") hvds_topo = hv.Dataset(ds.topographic__elevation) hvds_rock = hv.Dataset(ds.rock_type__id) hvds_topo %opts Image style(interpolation='bilinear', cmap='viridis') plot[colorbar=True] topo = hvds_topo.to(hv.Image, ["x", "y"]) rock = hvds_rock.to(hv.Image, ["x", "y"]) topo + rock mg2 = RasterModelGrid((30, 30), 200) mg2.set_closed_boundaries_at_grid_edges(False, True, False, True) z2 = mg2.add_zeros("topographic__elevation", at="node") random_field = 0.01 * np.random.randn(mg2.size("node")) z2 += random_field - random_field.min() thicknesses2 = [10000] ids2 = [0] attrs2 = {"K_sp": {0: 0.0001, 1: 0.00001}, "D": {0: 0.4, 1: 0.001}} lith2 = Lithology(mg2, thicknesses2, ids2, attrs=attrs2) nts = 500 U = 0.005 dt = 1000 fa2 = FlowAccumulator(mg2) sp2 = FastscapeEroder(mg2, K_sp="K_sp") ld2 = LinearDiffuser(mg2, linear_diffusivity="D") out_fields = ["topographic__elevation", "rock_type__id"] out_fields = ["topographic__elevation", "rock_type__id"] nts = 200 U = 0.001 dt = 1000 ds2 = xr.Dataset( data_vars={ "topographic__elevation": ( ("time", "y", "x"), np.empty((nts, mg2.shape[0], mg2.shape[1])), {"units": "meters", "long_name": "Topographic Elevation"}, ), "rock_type__id": ( ("time", "y", "x"), np.empty((nts, mg2.shape[0], mg2.shape[1])), {"units": "-", "long_name": "Rock Type ID Code"}, ), }, coords={ "x": (("x"), mg2.x_of_node.reshape(mg2.shape)[0, :], {"units": "meters"}), "y": (("y"), mg2.y_of_node.reshape(mg2.shape)[:, 1], {"units": "meters"}), "time": ( ("time"), dt * np.arange(nts) / 1e6, {"units": "millions of years since model start", "standard_name": "time"}, ), }, ) half_nts = int(nts / 2) dz_ad2 = np.zeros(mg2.size("node")) dz_ad2[mg2.core_nodes] = U * dt lith2.dz_advection = dz_ad2 lith2.rock_id = 0 for i in range(half_nts): fa2.run_one_step() sp2.run_one_step(dt=dt) ld2.run_one_step(dt=dt) z2 += dz_ad2 lith2.run_one_step() for of in out_fields: ds2[of][i, :, :] = mg2["node"][of].reshape(mg2.shape) mg2.imshow("topographic__elevation", cmap="viridis") volcanic_deposits = np.zeros(mg2.size("node")) da_big_enough = mg2["node"]["drainage_area"] > 5e4 topo_difference_from_top = ( mg2["node"]["topographic__elevation"].max() - mg2["node"]["topographic__elevation"] ) volcanic_deposits[da_big_enough] = 0.25 * topo_difference_from_top[da_big_enough] volcanic_deposits[mg2.boundary_nodes] = 0.0 z2 += volcanic_deposits lith2.rock_id = 1 lith2.run_one_step() mg2.imshow(volcanic_deposits) for i in range(half_nts, nts): fa2.run_one_step() sp2.run_one_step(dt=dt) ld2.run_one_step(dt=dt) dz_ad2 = np.zeros(mg2.size("node")) dz_ad2[mg2.core_nodes] = U * dt z2 += dz_ad2 lith2.dz_advection = dz_ad2 lith2.rock_id = 0 lith2.run_one_step() for of in out_fields: ds2[of][i, :, :] = mg2["node"][of].reshape(mg2.shape) mg2.imshow("topographic__elevation", cmap="viridis") hvds_topo2 = hv.Dataset(ds2.topographic__elevation) hvds_rock2 = hv.Dataset(ds2.rock_type__id) %opts Image style(interpolation='bilinear', cmap='viridis') plot[colorbar=True] topo2 = hvds_topo2.to(hv.Image, ["x", "y"]) rock2 = hvds_rock2.to(hv.Image, ["x", "y"]) topo2 + rock2 # if you wanted to output to visualize in something like ParaView, the following commands can be used # ds.to_netcdf('anticline.nc') # ds2.to_netcdf('inversion.nc') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tests Step2: getUserSessions tinkering Step3: getTranslatedForm tinkering - from 0.4 GF correct answers Step4: print("part100="+str(part100.head(1))) Step5: print("part100="+str(part100.columns)) Step6: getRandomSessionGUID tinkering Step7: getFirstEventDate tinkering
<ASSISTANT_TASK:> Python Code: %run "../Functions/1. Game sessions.ipynb" import unidecode accented_string = "Enormément" # accented_string is of type 'unicode' unaccented_string = unidecode.unidecode(accented_string) unaccented_string # unaccented_string contains 'Malaga'and is of type 'str' _rmDF = rmdf1522 userId = '8829514a-cb9f-47fb-aaeb-3167776f1062' #userId = getRandomRedMetricsGUID(_rmDF) #def getUserSessions( _rmDF, userId): result = _rmDF.loc[:,['userId','sessionId']][_rmDF['userId']==userId]['sessionId'].drop_duplicates().dropna(how='any') result _sessionIndex = randint(0,len(result)-1) _guid = result.iloc[_sessionIndex] _guid userId from random import randint uniqueUsers = rmdf1522['userId'].dropna().unique() userCount = len(uniqueUsers) testlocalplayerguid = '0' while (not isGUIDFormat(testlocalplayerguid)): userIndex = randint(0,userCount-1) testlocalplayerguid = uniqueUsers[userIndex] testlocalplayerguid sessionscount = rmdf1522["sessionId"].nunique() sessionscount platforms = rmdf1522["customData.platform"].unique() platforms testGUID = '"4dbc2f43-421c-4e23-85d4-f17723ff8c66"' # includewithoutusers=True will count sessions that do not have any userId attached getSessionsCount( rmdf1522, testGUID) sessionsList = getUserSessions(rmdf1522, testGUID) sessionsList sessionsList = rmdf1522[rmdf1522['type']=='start'] sessionsList = sessionsList.drop('type', 1) sessionsList = sessionsList.dropna(how='any') userSessionsList = sessionsList[sessionsList['userId']==testGUID] userSessionsList #print(testGUID) sessionsList = getUserSessions(rmdf1522, testGUID) #sessionsList = getAllSessions(rmdf1522, testGUID.replace('"','')) #print(type(sessionsList)) sessionsList.shape[0] allSessions = rmdf1522.loc[:,['userId', 'sessionId']].drop_duplicates() allSessions.head() allSessions.groupby('userId').size().reset_index(name='counts').sort_values(by='counts', ascending=False).head(10) #getUserSessionsCounts(getNormalizedRedMetricsCSV(part152)).head(10) allSessions.groupby('userId').agg(['count']).head() #.sort_values(by='sessionId', ascending=False).head(10) #df2 = pd.concat([df151, rmdf1522]) #df2.head(2) #print(df2.columns) #df2columns = df2.columns.values #type(df2columns) #df2columns #newColumns = np.concatenate((minimalInitializationColumns, df2columns)) #newColumns #df2 = getNormalizedRedMetricsCSV(df) getRandomSessionGUID() _userId = '"e8fed737-7c65-49c8-bf84-f8ae71c094f8"' type(rmdf1522['userId'].dropna().unique()), type(getUserSessions( rmdf1522, _userId )) _userId = 'e8fed737-7c65-49c8-bf84-f8ae71c094f8' _uniqueSessions = getUserSessions( rmdf1522, _userId ) len(_uniqueSessions) _uniqueSessions #_userId = '' _userId = '"e8fed737-7c65-49c8-bf84-f8ae71c094f8"' #def getRandomSessionGUID( _userId = '' ): rmId = _userId if( not(isGUIDFormat(_userId))): rmId = getRandomRedMetricsGUID() _uniqueSessions = getUserSessions( rmdf1522, rmId ) _sessionsCount = len(_uniqueSessions) _guid = "" _sessionIndex = randint(0,_sessionsCount-1) _guid = _uniqueSessions.iloc[_sessionIndex] _guid rmId _sessionIndex _sessionsCount randint(0,0) _uniqueSessions getRandomSessionGUID() userId = testGUID userId = getRandomRedMetricsGUID() #print('----------------------uid='+str(uid)+'----------------------') sessions = getUserSessions(rmdf1522, userId) firstGameTime = pd.to_datetime('2050-12-31T12:59:59.000Z', utc=True) for session in sessions: #print('-----------------------------------------session='+str(session)) timedEvents = rmdf1522[rmdf1522['sessionId']==session] timedEvents = timedEvents.dropna(subset=['section']) if(len(timedEvents) > 0): timedEvents['userTime'] = timedEvents['userTime'].map(lambda t: pd.to_datetime(t, utc=True)) earliest = timedEvents['userTime'].min() if(earliest < firstGameTime): firstGameTime = earliest #else: #print('no event with section') #print('-----------------------------------------') print("firstGameTime=" + str(firstGameTime)) rmdf1522[rmdf1522['userId']==userId] sessions = getUserSessions(rmdf1522, userId) sessions <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This construct, a with statement, addresses the age-old problem of cleaning up file descriptors. In general, a with context expects the object being used to have some open and close routines that will be called at the entrance and exit of the block, respectively. Note that we don't have scoping here - the snippet variable exists outside the block, making it easy to load data in a short block and handle it later. Step2: While this has kindly been rendered for us as if it were a list of lists, in reality it is something much more useful... Step3: This type is numpy's N-dimensional matrix class. This means we get a wide swathe of attributes and methods applicable to matrices, and a whole load of functions inside numpy and other libraries that will happily take it as an argument. One particularly useful property is shape Step4: This tells us that there are 60 patients (rows), each with 40 days of inflammation measurements (columns). Step5: A lot of the magic methods here, those with double underscores on either side, allow Python to treat this object more like a built-in. For instance, the __neg__ method will get called when we enter -data. If we try data1 &lt; data2, then data1.__lt__ will be called with data2 as an argument, expecting a boolean return. The behaviour when the user writes data.previously_unknown_attr is defined by the __getattr__ method - this need not be an error. In some ways, you can think of this as an expansion of the concept of operator overloading. Step6: This works because numpy has overridden the __mul__ method. Step7: ...or more succinctly... Step8: A few more practical uses of nparray Step9: This could also be written data[3, Step10: Suppose we want the max for every day... Step11: As you can see, the second day does indeed have max of 1.0. Notice that it returns an array (this is a superclass of ndarray), so we can do... Step12: This shouldn't be surprising - we take the average over all patients for each of 40 days, so we end up with a 40 element array. Step13: RIGHT Step14: Now for inline plotting we can use the matplotlib module, the go-to for Python plotting (but not in the Dijkstra sense)... Step15: MMMM. Pretty. Red shows greater inflammation, and what we may have guessed from the bits of CSV we saw, inflammation starts low, grows and reduces. Patients along the side, days along the bottom. Step16: Reproducible Plots Step17: Now if I want to modify some part... I can do so and have the updated plot straight-away Step18: Not particularly more complicated, but more flexible... say we have a series of plots... Step19: Challenge Step20: If this works, you should see an icon like a rainbow-coloured camera shutter. Step21: Notice the syntax is quite similar to matplotlib but a little different, so make sure you don't get them mixed up. For example, plot has become specifically line and we now explicitly provide the days along the bottom. Note that numpy.arange is just like range but it returns a numpy array. Step22: Don't forget to put up your star! Step23: Interactive plots Step24: First off, note that we do not have to tell the function to import the global variable, we can just use it. Now, examine the function - this is callback that we will use to update the plot when we change a drop-down menu choice of function. Step25: Now we need a widget to use this... Step26: This a very basic approach - the widget tool guesses you want a drop-down because you pass a list. Alternatively, you could pass a tuple with two floats as limits and get a slider back. Step27: Don't forget your star!
<ASSISTANT_TASK:> Python Code: with open('data/inflammation-01.csv', 'r') as f: snippet = f.readlines()[:3] print(*snippet) import numpy as np data = np.loadtxt(fname='data/inflammation-01.csv', delimiter=',') # Comma-separated... print(data) type(data) data.shape ", ".join(dir(data)) print(data * 2) data[0:3, 0:3] data[:3,:3] # Use this cell! data.mean(), data.max(), data.min() data[3].max() # Max inflammation for 4th patient data[:,1].max() # Max infl for 2nd day data.max(axis=0) data.max(axis=0).shape # Use this cell! # Switch on the joy % matplotlib inline import matplotlib pretty_pic = matplotlib.pyplot.imshow(data) matplotlib.pyplot.show(pretty_pic) # Use this cell! import numpy as np from matplotlib import pyplot data = np.loadtxt(fname='data/inflammation-01.csv', delimiter=',') pyplot.figure(figsize=(5.0, 3.0)) pyplot.xlabel('Day') pyplot.ylabel('Inflammation') pyplot.plot(data.mean(axis=0), label='Average') pyplot.plot(data.max(axis=0), label='Max') pyplot.plot(data.min(axis=0), label='Min') pyplot.legend() pyplot.show() exec(In[42]) # Cheeky way to reshow output... forget immediately. # This is the whole figure, possibly # with multiple subplots fig = pyplot.figure(figsize=(5.0, 3.0)) # This is a specific set of axes axes = fig.add_subplot(1, 1, 1) axes.set_xlabel('Day') axes.set_ylabel('Inflammation') axes.plot(data.mean(axis=0), label='Average') axes.plot(data.max(axis=0), label='Max') axes.plot(data.min(axis=0), label='Min') axes.legend() pyplot.show() fig = pyplot.figure(figsize=(10.0, 3.0)) axes = [] # Blank list for i in range(1, 4): ax = fig.add_subplot(1, 3, i) ax.set_xlabel('Day') axes.append(ax) axes[0].set_ylabel('Average') axes[1].set_ylabel('Max') axes[2].set_ylabel('Min') axes[0].plot(data.mean(axis=0)) axes[1].plot(data.max(axis=0)) axes[2].plot(data.min(axis=0)) fig.tight_layout() pyplot.show(fig) import bokeh.plotting as bplot from bokeh.io import output_notebook output_notebook() fig = bplot.figure() days = np.arange(data.shape[1]) fig.line(days, data.mean(axis=0)) fig.xaxis.axis_label = "Day" bplot.show(fig) # Here's cell for you... # RMV # This is the whole figure, possibly # with multiple subplots fig = bplot.figure() days = np.arange(data.shape[1]) # This is a specific set of axes fig.xaxis.axis_label = 'Day' fig.yaxis.axis_label = 'Inflammation' fig.line(days, data.mean(axis=0), legend='Average', color='green') fig.line(days, data.max(axis=0), legend='Max', color='blue') fig.line(days, data.min(axis=0), legend='Min', color='red') bplot.show(fig) from bokeh.models import ColumnDataSource from bokeh.io import push_notebook # Start out with days vs average initial_coordinates = {'x': days, 'y': data.mean(axis=0)} source = ColumnDataSource(initial_coordinates) # Define a callback to update the plot when we # pick something else def update_plot_statistic(statistic): if statistic == "Average": source.data['y'] = data.mean(axis=0) elif statistic == "Max": source.data['y'] = data.max(axis=0) elif statistic == "Min": source.data['y'] = data.min(axis=0) push_notebook() fig = bplot.figure() days = np.arange(data.shape[1]) fig.xaxis.axis_label = 'Day' fig.yaxis.axis_label = 'Inflammation' fig.line(initial_coordinates['x'], initial_coordinates['y'], source=source) bplot.show(fig) from ipywidgets import interact interact(update_plot_statistic, statistic=["Average", "Max", "Min"]) # Use this cell for the plot # And this for the one line `interact` call afterwards # RMV # Start out with days vs average initial_coordinates = {'x': days, 'y': data.mean(axis=0)} source = ColumnDataSource(initial_coordinates) # Define a callback to update the plot when we # pick something else def update_plot(N): source.data['x'] = np.arange(N) push_notebook() fig = bplot.figure() days = np.arange(data.shape[1]) fig.xaxis.axis_label = 'Day' fig.yaxis.axis_label = 'Inflammation' fig.line(initial_coordinates['x'], initial_coordinates['y'], source=source) bplot.show(fig) interact(update_plot, N=(1, 60, 1)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We then instatiate a FieldSet with the velocity field data from GlobCurrent dataset. Step2: Next, we instantiate a ParticeSet composed of JITParticles Step3: Given this ParticleSet, we can now explore the different features of the show() method. To start, let's simply call show() with no arguments. Step4: Then, let's advect the particles starting on January 1, 2002 for a week. Step5: If we call show() again, we will see that the particles have been advected Step6: To plot without the continents on the same plot, add land=False. Step7: To set the domain of the plot, we specify the domain argument. The format domain expects a dictionary with entries {'S', 'N', 'E', 'W'} for South, North, East and West extent, respectively. Note that the plotted domain is found by interpolating the user-specified domain onto the velocity grid. For instance, Step8: We can also easily display a scalar contour plot of a single component of the velocity vector field. This is done by setting the field argument equal to the desired scalar velocity field. Step9: To plot the scalar U velocity field at a different date and time, we set the argument show_time equal to a datetime or timedelta object or simply the number of seconds since the time origin. For instance, let's view the U field on January, 10, 2002 at 2 PM. Step10: Note that the particle locations do not change, but remain at the locations corresponding to the end of the last integration. To remove them from the plot, we set the argument with_particles equal to False. Step11: By setting the field argument equal to vector, we can display the velocity in full vector form. Step12: The normalized vector field is colored by speed. To control the maximum speed value on the colorbar, set the vmax argument equal to the desired value. Step13: We can change the projection of the plot by providing one of the projections from cartopy. For example, to plot on a Robinson projection , we use projection=cartopy.crs.Robinson(). Note that not all projections support gridlines, so these may not be shown. Step14: If we want to save the file rather than show it, we set the argument savefile equal to the 'path/to/save/file'.
<ASSISTANT_TASK:> Python Code: %matplotlib inline from parcels import FieldSet, ParticleSet, JITParticle, AdvectionRK4 from datetime import timedelta, datetime filenames = {'U': "GlobCurrent_example_data/20*.nc", 'V': "GlobCurrent_example_data/20*.nc"} variables = {'U': 'eastward_eulerian_current_velocity', 'V': 'northward_eulerian_current_velocity'} dimensions = {'lat': 'lat', 'lon': 'lon', 'time': 'time'} fieldset = FieldSet.from_netcdf(filenames, variables, dimensions) pset = ParticleSet.from_line(fieldset=fieldset, size=5, pclass=JITParticle, start=(31, -31), finish=(32, -31), time=datetime(2002, 1, 1)) pset.show() pset.execute(AdvectionRK4, runtime=timedelta(days=7), dt=timedelta(minutes=5)) pset.show() pset.show(land=False) pset.show(domain={'N':-31, 'S':-35, 'E':33, 'W':26}) pset.show(field=fieldset.U) pset.show(field=fieldset.U, show_time=datetime(2002, 1, 10, 2)) pset.show(field=fieldset.U, show_time=datetime(2002, 1, 10, 2), with_particles=False) pset.show(field='vector') pset.show(field='vector', vmax=3.0, domain={'N':-31, 'S':-39, 'E':33, 'W':18}) try: # Within a try/pass for unit testing on machines without cartopy installed import cartopy pset.show(field='vector', vmax=3.0, domain={'N':-31, 'S':-39, 'E':33, 'W':18}, projection=cartopy.crs.Robinson()) except: pass pset.show(field='vector', vmax=3.0, domain={'N':-31, 'S':-39, 'E':33, 'W':18}, land=True, savefile='particles') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load a batch of images to play with Step2: Composition of axes Step3: Decomposition of axis Step4: Order of axes matters Step5: Meet einops.reduce Step6: Stack and concatenate Step7: Addition or removal of axes Step8: Repeating elements Step9: Note Step10: Fancy examples in random order
<ASSISTANT_TASK:> Python Code: # Examples are given for numpy. This code also setups ipython/jupyter # so that numpy arrays in the output are displayed as images import numpy from utils import display_np_arrays_as_images display_np_arrays_as_images() ims = numpy.load('./resources/test_images.npy', allow_pickle=False) # There are 6 images of shape 96x96 with 3 color channels packed into tensor print(ims.shape, ims.dtype) # display the first image (whole 4d tensor can't be rendered) ims[0] # second image in a batch ims[1] # we'll use three operations from einops import rearrange, reduce, repeat # rearrange, as its name suggests, rearranges elements # below we swapped height and width. # In other words, transposed first two axes (dimensions) rearrange(ims[0], 'h w c -> w h c') # einops allows seamlessly composing batch and height to a new height dimension # We just rendered all images by collapsing to 3d tensor! rearrange(ims, 'b h w c -> (b h) w c') # or compose a new dimension of batch and width rearrange(ims, 'b h w c -> h (b w) c') # resulting dimensions are computed very simply # length of newly composed axis is a product of components # [6, 96, 96, 3] -> [96, (6 * 96), 3] rearrange(ims, 'b h w c -> h (b w) c').shape # we can compose more than two axes. # let's flatten 4d array into 1d, resulting array has as many elements as the original rearrange(ims, 'b h w c -> (b h w c)').shape # decomposition is the inverse process - represent an axis as a combination of new axes # several decompositions possible, so b1=2 is to decompose 6 to b1=2 and b2=3 rearrange(ims, '(b1 b2) h w c -> b1 b2 h w c ', b1=2).shape # finally, combine composition and decomposition: rearrange(ims, '(b1 b2) h w c -> (b1 h) (b2 w) c ', b1=2) # slightly different composition: b1 is merged with width, b2 with height # ... so letters are ordered by w then by h rearrange(ims, '(b1 b2) h w c -> (b2 h) (b1 w) c ', b1=2) # move part of width dimension to height. # we should call this width-to-height as image width shrunk by 2 and height doubled. # but all pixels are the same! # Can you write reverse operation (height-to-width)? rearrange(ims, 'b h (w w2) c -> (h w2) (b w) c', w2=2) # compare with the next example rearrange(ims, 'b h w c -> h (b w) c') # order of axes in composition is different # rule is just as for digits in the number: leftmost digit is the most significant, # while neighboring numbers differ in the rightmost axis. # you can also think of this as lexicographic sort rearrange(ims, 'b h w c -> h (w b) c') # what if b1 and b2 are reordered before composing to width? rearrange(ims, '(b1 b2) h w c -> h (b1 b2 w) c ', b1=2) # produces 'einops' rearrange(ims, '(b1 b2) h w c -> h (b2 b1 w) c ', b1=2) # produces 'eoipns' # average over batch reduce(ims, 'b h w c -> h w c', 'mean') # the previous is identical to familiar: ims.mean(axis=0) # but is so much more readable # Example of reducing of several axes # besides mean, there are also min, max, sum, prod reduce(ims, 'b h w c -> h w', 'min') # this is mean-pooling with 2x2 kernel # image is split into 2x2 patches, each patch is averaged reduce(ims, 'b (h h2) (w w2) c -> h (b w) c', 'mean', h2=2, w2=2) # max-pooling is similar # result is not as smooth as for mean-pooling reduce(ims, 'b (h h2) (w w2) c -> h (b w) c', 'max', h2=2, w2=2) # yet another example. Can you compute result shape? reduce(ims, '(b1 b2) h w c -> (b2 h) (b1 w)', 'mean', b1=2) # rearrange can also take care of lists of arrays with the same shape x = list(ims) print(type(x), 'with', len(x), 'tensors of shape', x[0].shape) # that's how we can stack inputs # "list axis" becomes first ("b" in this case), and we left it there rearrange(x, 'b h w c -> b h w c').shape # but new axis can appear in the other place: rearrange(x, 'b h w c -> h w c b').shape # that's equivalent to numpy stacking, but written more explicitly numpy.array_equal(rearrange(x, 'b h w c -> h w c b'), numpy.stack(x, axis=3)) # ... or we can concatenate along axes rearrange(x, 'b h w c -> h (b w) c').shape # which is equivalent to concatenation numpy.array_equal(rearrange(x, 'b h w c -> h (b w) c'), numpy.concatenate(x, axis=1)) x = rearrange(ims, 'b h w c -> b 1 h w 1 c') # functionality of numpy.expand_dims print(x.shape) print(rearrange(x, 'b 1 h w 1 c -> b h w c').shape) # functionality of numpy.squeeze # compute max in each image individually, then show a difference x = reduce(ims, 'b h w c -> b () () c', 'max') - ims rearrange(x, 'b h w c -> h (b w) c') # repeat along a new axis. New axis can be placed anywhere repeat(ims[0], 'h w c -> h new_axis w c', new_axis=5).shape # shortcut repeat(ims[0], 'h w c -> h 5 w c').shape # repeat along w (existing axis) repeat(ims[0], 'h w c -> h (repeat w) c', repeat=3) # repeat along two existing axes repeat(ims[0], 'h w c -> (2 h) (2 w) c') # order of axes matters as usual - you can repeat each element (pixel) 3 times # by changing order in parenthesis repeat(ims[0], 'h w c -> h (w repeat) c', repeat=3) repeated = repeat(ims, 'b h w c -> b h new_axis w c', new_axis=2) reduced = reduce(repeated, 'b h new_axis w c -> b h w c', 'min') assert numpy.array_equal(ims, reduced) # interweaving pixels of different pictures # all letters are observable rearrange(ims, '(b1 b2) h w c -> (h b1) (w b2) c ', b1=2) # interweaving along vertical for couples of images rearrange(ims, '(b1 b2) h w c -> (h b1) (b2 w) c', b1=2) # interweaving lines for couples of images # exercise: achieve the same result without einops in your favourite framework reduce(ims, '(b1 b2) h w c -> h (b2 w) c', 'max', b1=2) # color can be also composed into dimension # ... while image is downsampled reduce(ims, 'b (h 2) (w 2) c -> (c h) (b w)', 'mean') # disproportionate resize reduce(ims, 'b (h 4) (w 3) c -> (h) (b w)', 'mean') # spilt each image in two halves, compute mean of the two reduce(ims, 'b (h1 h2) w c -> h2 (b w)', 'mean', h1=2) # split in small patches and transpose each patch rearrange(ims, 'b (h1 h2) (w1 w2) c -> (h1 w2) (b w1 h2) c', h2=8, w2=8) # stop me someone! rearrange(ims, 'b (h1 h2 h3) (w1 w2 w3) c -> (h1 w2 h3) (b w1 h2 w3) c', h2=2, w2=2, w3=2, h3=2) rearrange(ims, '(b1 b2) (h1 h2) (w1 w2) c -> (h1 b1 h2) (w1 b2 w2) c', h1=3, w1=3, b2=3) # patterns can be arbitrarily complicated reduce(ims, '(b1 b2) (h1 h2 h3) (w1 w2 w3) c -> (h1 w1 h3) (b1 w2 h2 w3 b2) c', 'mean', h2=2, w1=2, w3=2, h3=2, b2=2) # subtract background in each image individually and normalize # pay attention to () - this is composition of 0 axis, a dummy axis with 1 element. im2 = reduce(ims, 'b h w c -> b () () c', 'max') - ims im2 /= reduce(im2, 'b h w c -> b () () c', 'max') rearrange(im2, 'b h w c -> h (b w) c') # pixelate: first downscale by averaging, then upscale back using the same pattern averaged = reduce(ims, 'b (h h2) (w w2) c -> b h w c', 'mean', h2=6, w2=8) repeat(averaged, 'b h w c -> (h h2) (b w w2) c', h2=6, w2=8) rearrange(ims, 'b h w c -> w (b h) c') # let's bring color dimension as part of horizontal axis # at the same time horizontal axis is downsampled by 2x reduce(ims, 'b (h h2) (w w2) c -> (h w2) (b w c)', 'mean', h2=3, w2=3) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's look inside the training folder... Step2: ...and at an example review. Step3: Sounds like I'd really enjoy Zombiegeddon... Step4: Before we can analyze text, we must first tokenize it. This refers to the process of splitting a sentence into an array of words (or more generally, into an array of tokens). Step5: We use Pytorch's torchtext library to preprocess our data, telling it to use the wonderful spacy library to handle tokenization. Step6: fastai works closely with torchtext. We create a ModelData object for language modeling by taking advantage of LanguageModelData, passing it our torchtext field object, and the paths to our training, test, and validation sets. In this case, we don't have a separate test set, so we'll just use VAL_PATH for that too. Step7: After building our ModelData object, it automatically fills the TEXT object with a very important attribute Step8: Here are the Step9: This is the start of the mapping from integer IDs to unique tokens. Step10: Note that in a LanguageModelData object there is only one item in each dataset Step11: torchtext will handle turning this words into integer IDs for us automatically. Step12: Our LanguageModelData object will create batches with 64 columns (that's our batch size), and varying sequence lengths of around 80 tokens (that's our bptt parameter - backprop through time). Step13: Train Step14: Researchers have found that large amounts of momentum (which we'll learn about later) don't work well with these kinds of RNN models, so we create a version of the Adam optimizer with less momentum than it's default of 0.9. Step15: fastai uses a variant of the state of the art AWD LSTM Language Model developed by Stephen Merity. A key feature of this model is that it provides excellent regularization through Dropout. There is no simple way known (yet!) to find the best values of the dropout parameters below - you just have to experiment... Step16: As you can see below, I gradually tuned the language model in a few stages. I possibly could have trained it further (it wasn't yet overfitting), but I didn't have time to experiment more. Maybe you can see if you can train it to a better accuracy! (I used lr_find to find a good learning rate, but didn't save the output in this notebook. Feel free to try running it yourself now.) Step17: In the sentiment analysis section, we'll just need half of the language model - the encoder, so we save that part. Step18: Language modeling accuracy is generally measured using the metric perplexity, which is simply exp() of the loss function we used. Step20: Test Step21: We haven't yet added methods to make it easy to test a language model, so we'll need to manually go through the steps. Step22: Let's see what the top 10 predictions were for the next word after our short text Step23: ...and let's see if our model can generate a bit more text all by itself! Step24: Sentiment Step25: sequential=False tells torchtext that a text field should be tokenized (in this case, we just want to store the 'positive' or 'negative' single label). Step26: fastai can create a ModelData object directly from torchtext splits. Step27: Because we're fine-tuning a pretrained model, we'll use differential learning rates, and also increase the max gradient for clipping, to allow the SGDR to work better.
<ASSISTANT_TASK:> Python Code: PATH='data/aclImdb/' TRN_PATH = 'train/all/' VAL_PATH = 'test/all/' TRN = f'{PATH}{TRN_PATH}' VAL = f'{PATH}{VAL_PATH}' %ls {PATH} trn_files = !ls {TRN} trn_files[:10] review = !cat {TRN}{trn_files[6]} review[0] !find {TRN} -name '*.txt' | xargs cat | wc -w !find {VAL} -name '*.txt' | xargs cat | wc -w spacy_tok = spacy.load('en') ' '.join([sent.string.strip() for sent in spacy_tok(review[0])]) TEXT = data.Field(lower=True, tokenize="spacy") bs=64; bptt=70 FILES = dict(train=TRN_PATH, validation=VAL_PATH, test=VAL_PATH) md = LanguageModelData.from_text_files(PATH, TEXT, **FILES, bs=bs, bptt=bptt, min_freq=10) pickle.dump(TEXT, open(f'{PATH}models/TEXT.pkl','wb')) len(md.trn_dl), md.nt, len(md.trn_ds), len(md.trn_ds[0].text) # 'itos': 'int-to-string' TEXT.vocab.itos[:12] # 'stoi': 'string to int' TEXT.vocab.stoi['the'] md.trn_ds[0].text[:12] TEXT.numericalize([md.trn_ds[0].text[:12]]) next(iter(md.trn_dl)) em_sz = 200 # size of each embedding vector nh = 500 # number of hidden activations per layer nl = 3 # number of layers opt_fn = partial(optim.Adam, betas=(0.7, 0.99)) learner = md.get_model(opt_fn, em_sz, nh, nl, dropouti=0.05, dropout=0.05, wdrop=0.1, dropoute=0.02, dropouth=0.05) learner.reg_fn = partial(seq2seq_reg, alpha=2, beta=1) learner.clip=0.3 learner.fit(3e-3, 4, wds=1e-6, cycle_len=1, cycle_mult=2) learner.save_encoder('adam1_enc') learner.load_encoder('adam1_enc') learner.fit(3e-3, 1, wds=1e-6, cycle_len=10) learner.save_encoder('adam3_10_enc') learner.load_encoder('adam3_10_enc') math.exp(4.165) pickle.dump(TEXT, open(f'{PATH}models/TEXT.pkl','wb')) m=learner.model ss=. So, it wasn't quite was I was expecting, but I really liked it anyway! The best s = [TEXT.preprocess(ss)] t=TEXT.numericalize(s) ' '.join(s[0]) # Set batch size to 1 m[0].bs=1 # Turn off dropout m.eval() # Reset hidden state m.reset() # Get predictions from model res,*_ = m(t) # Put the batch size back to what it was m[0].bs=bs nexts = torch.topk(res[-1], 10)[1] [TEXT.vocab.itos[o] for o in to_np(nexts)] print(ss,"\n") for i in range(50): n=res[-1].topk(2)[1] n = n[1] if n.data[0]==0 else n[0] print(TEXT.vocab.itos[n.data[0]], end=' ') res,*_ = m(n[0].unsqueeze(0)) print('...') TEXT = pickle.load(open(f'{PATH}models/TEXT.pkl','rb')) IMDB_LABEL = data.Field(sequential=False) splits = torchtext.datasets.IMDB.splits(TEXT, IMDB_LABEL, 'data/') t = splits[0].examples[0] t.label, ' '.join(t.text[:16]) md2 = TextData.from_splits(PATH, splits, bs) m3 = md2.get_model(opt_fn, 1500, bptt, emb_sz=em_sz, n_hid=nh, n_layers=nl, dropout=0.1, dropouti=0.4, wdrop=0.5, dropoute=0.05, dropouth=0.3) m3.reg_fn = partial(seq2seq_reg, alpha=2, beta=1) m3.load_encoder(f'adam3_10_enc') m3.clip=25. lrs=np.array([1e-4,1e-4,1e-4,1e-3,1e-2]) m3.freeze_to(-1) m3.fit(lrs/2, 1, metrics=[accuracy]) m3.unfreeze() m3.fit(lrs, 1, metrics=[accuracy], cycle_len=1) m3.fit(lrs, 7, metrics=[accuracy], cycle_len=2, cycle_save_name='imdb2') m3.load_cycle('imdb2', 4) accuracy_np(*m3.predict_with_targs()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This will load the data in a bag-of-words representation where rare words (occurring less than 5 times in the training data) are removed. Step2: Observe that words that were not observed at training time cause problems at testtime. Why? To solve this problem, apply a simple add-one smoothing technique Step3: Run the perceptron algorithm on the simple dataset previously generated and report its train and test set accuracy Step4: Change the code to save the intermediate weight vectors, and plot them every five iterations. What do you observe? Step5: Compare the results achieved and separating hyperplanes found. Step6: Exercise 1.4 Step7: Train a maximum entropy model using L-BFGS, on the Amazon dataset (try different values of $\lambda$) and report training and test set accuracy. What do you observe? Step8: Now, fix $\lambda$ = 1.0 and train with SGD (you might try to adjust the initial step). Compare the objective values obtained during training with those obtained with L-BFGS. What do you observe? Step9: Exercise 1.5 Step10: Compare the results achieved and separating hyperplanes found.
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 import lxmls.readers.sentiment_reader as srs scr = srs.SentimentCorpus("books") import lxmls.classifiers.multinomial_naive_bayes as mnbb mnb = mnbb.MultinomialNaiveBayes() params_nb_sc = mnb.train(scr.train_X,scr.train_y) y_pred_train = mnb.test(scr.train_X,params_nb_sc) acc_train = mnb.evaluate(scr.train_y, y_pred_train) y_pred_test = mnb.test(scr.test_X,params_nb_sc) acc_test = mnb.evaluate(scr.test_y, y_pred_test) print("Multinomial Naive Bayes Amazon Sentiment Accuracy train: %f test: %f"%(acc_train,acc_test)) %matplotlib inline import lxmls.readers.simple_data_set as sds sd = sds.SimpleDataSet( nr_examples=100, g1=[[-1,-1],1], g2=[[1,1],1], balance=0.5, split=[0.5,0,0.5] ) import lxmls.classifiers.perceptron as percc perc = percc.Perceptron() params_perc_sd = perc.train(sd.train_X,sd.train_y) y_pred_train = perc.test(sd.train_X,params_perc_sd) acc_train = perc.evaluate(sd.train_y, y_pred_train) y_pred_test = perc.test(sd.test_X,params_perc_sd) acc_test = perc.evaluate(sd.test_y, y_pred_test) print("Perceptron Simple Dataset Accuracy train: %f test: %f"%(acc_train, acc_test)) fig, axis = sd.plot_data("osx") fig, axis = sd.add_line(fig, axis, params_perc_sd, "Perceptron", "blue") import lxmls.classifiers.mira as mirac mira = mirac.Mira() mira.regularizer = 1.0 # This is lambda params_mira_sd = mira.train(sd.train_X,sd.train_y) y_pred_train = mira.test(sd.train_X,params_mira_sd) acc_train = mira.evaluate(sd.train_y, y_pred_train) y_pred_test = mira.test(sd.test_X,params_mira_sd) acc_test = mira.evaluate(sd.test_y, y_pred_test) print("Mira Simple Dataset Accuracy train: %f test: %f"%(acc_train, acc_test)) fig, axis = sd.add_line(fig, axis, params_mira_sd, "Mira","green") fig import lxmls.classifiers.max_ent_batch as mebc me_lbfgs = mebc.MaxEntBatch() me_lbfgs.regularizer = 1.0 params_meb_sd = me_lbfgs.train(sd.train_X,sd.train_y) y_pred_train = me_lbfgs.test(sd.train_X,params_meb_sd) acc_train = me_lbfgs.evaluate(sd.train_y, y_pred_train) y_pred_test = me_lbfgs.test(sd.test_X,params_meb_sd) acc_test = me_lbfgs.evaluate(sd.test_y, y_pred_test) print( "Max-Ent batch Simple Dataset Accuracy train: %f test: %f" % (acc_train,acc_test) ) fig, axis = sd.add_line(fig, axis, params_meb_sd, "Max-Ent-Batch","orange") fig params_meb_sc = me_lbfgs.train(scr.train_X,scr.train_y) y_pred_train = me_lbfgs.test(scr.train_X,params_meb_sc) acc_train = me_lbfgs.evaluate(scr.train_y, y_pred_train) y_pred_test = me_lbfgs.test(scr.test_X,params_meb_sc) acc_test = me_lbfgs.evaluate(scr.test_y, y_pred_test) print( "Max-Ent Batch Amazon Sentiment Accuracy train: %f test: %f" % (acc_train, acc_test) ) import lxmls.classifiers.max_ent_online as meoc me_sgd = meoc.MaxEntOnline() me_sgd.regularizer = 1.0 params_meo_sc = me_sgd.train(scr.train_X,scr.train_y) y_pred_train = me_sgd.test(scr.train_X,params_meo_sc) acc_train = me_sgd.evaluate(scr.train_y, y_pred_train) y_pred_test = me_sgd.test(scr.test_X,params_meo_sc) acc_test = me_sgd.evaluate(scr.test_y, y_pred_test) print( "Max-Ent Online Amazon Sentiment Accuracy train: %f test: %f" % (acc_train, acc_test) ) import lxmls.classifiers.svm as svmc svm = svmc.SVM() svm.regularizer = 1.0 # This is lambda params_svm_sd = svm.train(sd.train_X,sd.train_y) y_pred_train = svm.test(sd.train_X,params_svm_sd) acc_train = svm.evaluate(sd.train_y, y_pred_train) y_pred_test = svm.test(sd.test_X,params_svm_sd) acc_test = svm.evaluate(sd.test_y, y_pred_test) print("SVM Online Simple Dataset Accuracy train: {} test: {}".format(acc_train,acc_test)) fig,axis = sd.add_line(fig,axis,params_svm_sd,"SVM","orange") params_svm_sc = svm.train(scr.train_X,scr.train_y) y_pred_train = svm.test(scr.train_X,params_svm_sc) acc_train = svm.evaluate(scr.train_y, y_pred_train) y_pred_test = svm.test(scr.test_X,params_svm_sc) acc_test = svm.evaluate(scr.test_y, y_pred_test) print("SVM Online Amazon Sentiment Accuracy train: {} test: {}".format(acc_train,acc_test)) fig, axis = sd.add_line(fig, axis, params_svm_sd, "SVM", "yellow") fig <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1 - Problem statement Step2: We have taken care of the preprocessing of the musical data to render it in terms of musical "values." You can informally think of each "value" as a note, which comprises a pitch and a duration. For example, if you press down a specific piano key for 0.5 seconds, then you have just played a note. In music theory, a "value" is actually more complicated than this--specifically, it also captures the information needed to play multiple notes at the same time. For example, when playing a music piece, you might press down two piano keys at the same time (playng multiple notes at the same time generates what's called a "chord"). But we don't need to worry about the details of music theory for this assignment. For the purpose of this assignment, all you need to know is that we will obtain a dataset of values, and will learn an RNN model to generate sequences of values. Step3: You have just loaded the following Step4: Here's how you can create a Keras model with multiple inputs and outputs. If you're building an RNN where even at test time entire input sequence $x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, \ldots, x^{\langle T_x \rangle}$ were given in advance, for example if the inputs were words and the output was a label, then Keras has simple built-in functions to build the model. However, for sequence generation, at test time we don't know all the values of $x^{\langle t\rangle}$ in advance; instead we generate them one at a time using $x^{\langle t\rangle} = y^{\langle t-1 \rangle}$. So the code will be a bit more complicated, and you'll need to implement your own for-loop to iterate over the different time steps. Step6: Each of reshapor, LSTM_cell and densor are now layer objects, and you can use them to implement djmodel(). In order to propagate a Keras tensor object X through one of these layers, use layer_object(X) (or layer_object([X,Y]) if it requires multiple inputs.). For example, reshapor(X) will propagate X through the Reshape((1,78)) layer defined above. Step7: Run the following cell to define your model. We will use Tx=30, n_a=64 (the dimension of the LSTM activations), and n_values=78. This cell may take a few seconds to run. Step8: You now need to compile your model to be trained. We will Adam and a categorical cross-entropy loss. Step9: Finally, lets initialize a0 and c0 for the LSTM's initial state to be zero. Step10: Lets now fit the model! We will turn Y to a list before doing so, since the cost function expects Y to be provided in this format (one list item per time-step). So list(Y) is a list with 30 items, where each of the list items is of shape (60,78). Lets train for 100 epochs. This will take a few minutes. Step12: You should see the model loss going down. Now that you have trained a model, lets go on the the final section to implement an inference algorithm, and generate some music! Step13: Run the cell below to define your inference model. This model is hard coded to generate 50 values. Step14: Finally, this creates the zero-valued vectors you will use to initialize x and the LSTM state variables a and c. Step16: Exercise Step17: Expected Output Step18: To listen to your music, click File->Open... Then go to "output/" and download "my_music.midi". Either play it on your computer with an application that can read midi files if you have one, or use one of the free online "MIDI to mp3" conversion tools to convert this to mp3.
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import IPython import sys from music21 import * import numpy as np from grammar import * from qa import * from preprocess import * from music_utils import * from data_utils import * from keras.models import load_model, Model from keras.layers import Dense, Activation, Dropout, Input, LSTM, Reshape, Lambda, RepeatVector from keras.initializers import glorot_uniform from keras.utils import to_categorical from keras.optimizers import Adam from keras import backend as K IPython.display.Audio('./data/30s_seq.mp3') X, Y, n_values, indices_values = load_music_utils() print('shape of X:', X.shape) print('number of training examples:', X.shape[0]) print('Tx (length of sequence):', X.shape[1]) print('total # of unique values:', n_values) print('Shape of Y:', Y.shape) n_a = 64 reshapor = Reshape((1, 78)) # Used in Step 2.B of djmodel(), below LSTM_cell = LSTM(n_a, return_state = True) # Used in Step 2.C densor = Dense(n_values, activation='softmax') # Used in Step 2.D # GRADED FUNCTION: djmodel def djmodel(Tx, n_a, n_values): Implement the model Arguments: Tx -- length of the sequence in a corpus n_a -- the number of activations used in our model n_values -- number of unique values in the music data Returns: model -- a keras model with the # Define the input of your model with a shape X = Input(shape=(Tx, n_values)) # Define s0, initial hidden state for the decoder LSTM a0 = Input(shape=(n_a,), name='a0') c0 = Input(shape=(n_a,), name='c0') a = a0 c = c0 ### START CODE HERE ### # Step 1: Create empty list to append the outputs while you iterate (≈1 line) outputs = None # Step 2: Loop for t in range(Tx): # Step 2.A: select the "t"th time step vector from X. x = None # Step 2.B: Use reshapor to reshape x to be (1, n_values) (≈1 line) x = None # Step 2.C: Perform one step of the LSTM_cell a, _, c = None # Step 2.D: Apply densor to the hidden state output of LSTM_Cell out = None # Step 2.E: add the output to "outputs" None # Step 3: Create model instance model = None ### END CODE HERE ### return model model = djmodel(Tx = 30 , n_a = 64, n_values = 78) opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) m = 60 a0 = np.zeros((m, n_a)) c0 = np.zeros((m, n_a)) model.fit([X, a0, c0], list(Y), epochs=100) # GRADED FUNCTION: music_inference_model def music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 100): Uses the trained "LSTM_cell" and "densor" from model() to generate a sequence of values. Arguments: LSTM_cell -- the trained "LSTM_cell" from model(), Keras layer object densor -- the trained "densor" from model(), Keras layer object n_values -- integer, umber of unique values n_a -- number of units in the LSTM_cell Ty -- integer, number of time steps to generate Returns: inference_model -- Keras model instance # Define the input of your model with a shape x0 = Input(shape=(1, n_values)) # Define s0, initial hidden state for the decoder LSTM a0 = Input(shape=(n_a,), name='a0') c0 = Input(shape=(n_a,), name='c0') a = a0 c = c0 x = x0 ### START CODE HERE ### # Step 1: Create an empty list of "outputs" to later store your predicted values (≈1 line) outputs = None # Step 2: Loop over Ty and generate a value at every time step for t in range(None): # Step 2.A: Perform one step of LSTM_cell (≈1 line) a, _, c = None # Step 2.B: Apply Dense layer to the hidden state output of the LSTM_cell (≈1 line) out = None # Step 2.C: Append the prediction "out" to "outputs". out.shape = (None, 78) (≈1 line) None # Step 2.D: Select the next value according to "out", and set "x" to be the one-hot representation of the # selected value, which will be passed as the input to LSTM_cell on the next step. We have provided # the line of code you need to do this. x = None # Step 3: Create model instance with the correct "inputs" and "outputs" (≈1 line) inference_model = None ### END CODE HERE ### return inference_model inference_model = music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 50) x_initializer = np.zeros((1, 1, 78)) a_initializer = np.zeros((1, n_a)) c_initializer = np.zeros((1, n_a)) # GRADED FUNCTION: predict_and_sample def predict_and_sample(inference_model, x_initializer = x_initializer, a_initializer = a_initializer, c_initializer = c_initializer): Predicts the next value of values using the inference model. Arguments: inference_model -- Keras model instance for inference time x_initializer -- numpy array of shape (1, 1, 78), one-hot vector initializing the values generation a_initializer -- numpy array of shape (1, n_a), initializing the hidden state of the LSTM_cell c_initializer -- numpy array of shape (1, n_a), initializing the cell state of the LSTM_cel Returns: results -- numpy-array of shape (Ty, 78), matrix of one-hot vectors representing the values generated indices -- numpy-array of shape (Ty, 1), matrix of indices representing the values generated ### START CODE HERE ### # Step 1: Use your inference model to predict an output sequence given x_initializer, a_initializer and c_initializer. pred = None # Step 2: Convert "pred" into an np.array() of indices with the maximum probabilities indices = None # Step 3: Convert indices to one-hot vectors, the shape of the results should be (1, ) results = None ### END CODE HERE ### return results, indices results, indices = predict_and_sample(inference_model, x_initializer, a_initializer, c_initializer) print("np.argmax(results[12]) =", np.argmax(results[12])) print("np.argmax(results[17]) =", np.argmax(results[17])) print("list(indices[12:18]) =", list(indices[12:18])) out_stream = generate_music(inference_model) IPython.display.Audio('./data/30s_trained_model.mp3') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In this specific example, particles will be advected by surface ocean velocities stored in netCDF files in the folder GlobCurrent_example_data. We will store these in a FieldSet object, and then add a Field to it to represent the tracer field. This latter field will be initialized with zeroes, as we assume that this tracer is absent on the ocean surface and released by particles only. Note that, in order to conserve mass, it is important to set interp_method='nearest' for the tracer Field. Step2: Some global parameters have to be defined, such as $a$ and $b$ of Eq.1, and a weight that works as a conversion factor from $\Delta c_{particle}$ to $C_{field}$. Step3: We will now define a new particle class. A VectorParticle is a ScipyParticle having a Variable to store the current tracer concentration c associated with it. As in this case we want our particles to release a tracer into a clean field, we will initialize c with an arbitrary value of 100. Step4: Three things are worth noticing in the code above Step5: Now we are going to execute the advection of the particle and the simultaneous release of the tracer it carries. We will thus add the interactionKernel defined above to the built-in Kernel AdvectionRK4. Step6: We can see that $c_{particle}$ has been saved along with particle trajectory, as expected. Step7: But what about fieldset.C? We can see that it has been accordingly modified during particle motion. Using fieldset.C we can access the field as resulting at the end of the run, with no information about the previous time steps. Step8: When looking at tracer concentrations, we see that $c_{particle}$ decreases along its trajectory (right to left), as it is releasing the tracer it carries. Accordingly, values of $C_{field}$ provided by particle interaction progressively reduce along the particle's route. Step9: Finally, to see the C field in time we have to load the .nc files produced during the run. In the following plots, particle location and field values are shown at each time step.
<ASSISTANT_TASK:> Python Code: %matplotlib inline from parcels import Variable, Field, FieldSet, ParticleSet, ScipyParticle, AdvectionRK4, plotTrajectoriesFile import numpy as np from datetime import timedelta as delta import netCDF4 import matplotlib.pyplot as plt # Velocity fields fname = r'GlobCurrent_example_data/*.nc' filenames = {'U': fname, 'V': fname} variables = {'U': 'eastward_eulerian_current_velocity', 'V': 'northward_eulerian_current_velocity'} dimensions = {'U': {'lat': 'lat', 'lon': 'lon', 'time': 'time'}, 'V': {'lat': 'lat', 'lon': 'lon', 'time': 'time'}, } fieldset = FieldSet.from_netcdf(filenames, variables, dimensions) # In order to assign the same grid to the tracer field, it is convenient to load a single velocity file fname1 = r'GlobCurrent_example_data/20030101000000-GLOBCURRENT-L4-CUReul_hs-ALT_SUM-v02.0-fv01.0.nc' filenames1 = {'U': fname1, 'V': fname1} field_for_size = FieldSet.from_netcdf(filenames1, variables, dimensions) # this field has the same variables and dimensions as the other velocity fields # Adding the tracer field to the FieldSet dimsC = [len(field_for_size.U.lat),len(field_for_size.U.lon)] # it has to have the same dimentions as the velocity fields dataC = np.zeros([dimsC[0],dimsC[1]]) fieldC = Field('C', dataC, grid=field_for_size.U.grid, interp_method='nearest') # the new Field will be called C, for tracer Concentration. For mass conservation, interp_method='nearest' fieldset.add_field(fieldC) # C field added to the velocity FieldSet fieldset.C.to_write = True # enabling the writing of Field C during execution fieldset.C.show() # our new C field has been added to the FieldSet fieldset.add_constant('a', 10) fieldset.add_constant('b', .2) fieldset.add_constant('weight', .01) class VectorParticle(ScipyParticle): c = Variable('c', dtype=np.float32, initial=100.) # particle concentration c is initialized with a non-zero value def Interaction(particle, fieldset, time): deltaC = (fieldset.a*fieldset.C[particle]-fieldset.b*particle.c) # the exchange is obtained as a discretized mass transfer equation xi, yi = particle.xi[fieldset.C.igrid], particle.yi[fieldset.C.igrid], if abs(particle.lon - fieldset.C.grid.lon[xi+1]) < abs(particle.lon - fieldset.C.grid.lon[xi]): xi += 1 if abs(particle.lat - fieldset.C.grid.lat[yi+1]) < abs(particle.lat - fieldset.C.grid.lat[yi]): yi += 1 particle.c += deltaC fieldset.C.data[0, yi, xi] += -deltaC*fieldset.weight # weight, defined as a constant for the FieldSet, acts here as a conversion factor between c_particle and C_field fieldset.C.grid.time[0] = time # updating Field C time def WriteInitial(particle, fieldset, time): # will be used to store the initial conditions of fieldset.C fieldset.C.grid.time[0] = time pset = ParticleSet(fieldset=fieldset, pclass=VectorParticle, lon=[24.5], lat=[-34.8]) # for simplicity, we'll track a single particle here pset.show(field=fieldset.C) # Initial particle location and the tracer field C output_file = pset.ParticleFile(name=r'interaction.nc', outputdt=delta(days=1)) pset.execute(WriteInitial, dt=0., output_file=output_file) pset.execute(AdvectionRK4 + pset.Kernel(Interaction), # the particle will FIRST be transported by currents and THEN interact with the field dt=delta(days=1), runtime=delta(days=24), # we are going to track the particle and save its trajectory and tracer concentration for 24 days output_file=output_file) output_file.close() pset_traj = netCDF4.Dataset(r'interaction.nc') print(pset_traj['c'][:]) plotTrajectoriesFile('interaction.nc'); c_results = fieldset.C.data[0,:,:].copy() # Copying the final field data in a new array c_results[[field_for_size.U.data==0][0][0]]= np.nan # using a mask for fieldset.C.data on land c_results[c_results==0] = np.nan # masking the field where its value is zero -- areas that have not been modified by the particle, for clearer plotting try: # Works if Cartopy is installed import cartopy import cartopy.crs as ccrs extent = [10, 33, -37, -29] X = fieldset.U.lon Y = fieldset.U.lat plt.figure(figsize=(12, 6)) ax = plt.axes(projection=ccrs.Mercator()) ax.set_extent(extent) ax.add_feature(cartopy.feature.OCEAN, facecolor='lightgrey') ax.add_feature(cartopy.feature.LAND, edgecolor='black', facecolor='floralwhite') gl=ax.gridlines(xlocs = np.linspace(10,34,13) , ylocs=np.linspace(-29,-37,9),draw_labels=True) gl.right_labels = False gl.bottom_labels = False xx, yy = np.meshgrid(X,Y) results = ax.pcolormesh(xx,yy,(c_results),transform=ccrs.PlateCarree(),vmin=0,) cbar=plt.colorbar(mappable = results, ax=ax) cbar.ax.text(.8,.070,'$C_{field}$ concentration', rotation=270, fontsize=12) except: print('Please install the Cartopy package.') x_centers, y_centers = np.meshgrid(fieldset.U.lon-np.diff(fieldset.U.lon[:2])/2, fieldset.U.lat-np.diff(fieldset.U.lat[:2])/2) fig,ax = plt.subplots(1,1,figsize=(10,7),constrained_layout=True) ax.set_facecolor('lightgrey') # For visual coherence with the plot above fieldplot=ax.pcolormesh(x_centers[-28:-17,22:41],y_centers[-28:-17,22:41],c_results[-28:-18,22:40], vmin=0, vmax=0.2,cmap='viridis') # Zoom on the area of interest field_cbar = plt.colorbar(fieldplot,ax=ax) field_cbar.ax.text(.6,.070,'$C_{field}$ concentration', rotation=270, fontsize=12) particle = plt.scatter(pset_traj['lon'][:].data[0,:],pset_traj['lat'][:].data[0,:], c=pset_traj['c'][:].data[0,:],vmin=0, s=100, edgecolor='white') particle_cbar = plt.colorbar(particle,ax=ax, location = 'top') particle_cbar.ax.text(40,300,'$c_{particle}$ concentration', fontsize=12); fig, ax = plt.subplots(5,5, figsize=(30,20)) daycounter = 1 for i in range(len(ax)): for j in range(len(ax)): data = netCDF4.Dataset(r'interaction_00'+ '%02d' % daycounter+'C.nc') c_results = data['C'][0,0,:,:].data.copy() # copying the final field data in a new array c_results[[field_for_size.U.data==0][0][0]]= np.nan # using a mask for fieldset.C.data on land c_results[c_results==0] = np.nan # masking the field where its value is zero -- areas that have not been modified by the particle, for clearer plotting ax[i,j].set_facecolor('lightgrey') # For visual coherence with the plots above fieldplot=ax[i,j].pcolormesh(x_centers[-28:-17,22:41],y_centers[-28:-17,22:41],c_results[-28:-18,22:40], vmin=0, vmax=0.2,cmap='viridis') particle = ax[i,j].scatter(pset_traj['lon'][:].data[0,daycounter-1],pset_traj['lat'][:].data[0,daycounter-1], c=pset_traj['c'][:].data[0,daycounter-1],vmin=0, vmax=100, s=100, edgecolor='white') # plotting particle location at current time step -- daycounter-1 due to different indexing ax[i,j].set_title('Day '+ str(daycounter-1)) daycounter +=1 # next day fig.subplots_adjust(right=0.8) fig.subplots_adjust(top=0.8) cbar_ax = fig.add_axes([0.82, 0.12, 0.03, 0.7]) fig.colorbar(fieldplot, cax=cbar_ax) cbar_ax.tick_params(labelsize=18) cbar_ax.text(.4,.08,'$C_{field}$ concentration', fontsize=25, rotation=270) cbar_ax1 = fig.add_axes([0.1, .85, .7, 0.04]) fig.colorbar(particle, cax=cbar_ax1, orientation = 'horizontal') cbar_ax1.tick_params(labelsize=18) cbar_ax1.text(42,170,'$c_{particle}$ concentration', fontsize=25); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Train Model Step2: Note that for your own datasets you can use our utility function gen_category_map to create the category map Step3: Define shuffled training and test set Step4: Create feature transformation pipeline Step5: Categorical features Step6: Combine and fit Step7: Train Random Forest model Step8: Define predict function Step9: Train Explainer Step10: Discretize the ordinal features into quartiles Step11: Get Explanation Step12: We set the precision threshold to 0.95. This means that predictions on observations where the anchor holds will be the same as the prediction on the explained instance at least 95% of the time. Step13: Train Outlier Detector Step17: Deploy Seldon Core Model Step19: Make a prediction request Step21: Make an explanation request Step24: Deploy Outier Detector Step26: Deploy KNative Eventing Event Display Step28: Test Outlier Detection Step29: Clean Up Resources
<ASSISTANT_TASK:> Python Code: import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler, OneHotEncoder from alibi.explainers import AnchorTabular from alibi.datasets import fetch_adult from minio import Minio from minio.error import ResponseError from joblib import dump, load import dill import time import json from subprocess import run, Popen, PIPE from alibi_detect.utils.data import create_outlier_batch MINIO_HOST="minio-service.kubeflow:9000" MINIO_ACCESS_KEY="minio" MINIO_SECRET_KEY="minio123" MINIO_MODEL_BUCKET="seldon" INCOME_MODEL_PATH="sklearn/income/model" EXPLAINER_MODEL_PATH="sklearn/income/explainer" OUTLIER_MODEL_PATH="sklearn/income/outlier" DEPLOY_NAMESPACE="admin" def get_minio(): return Minio(MINIO_HOST, access_key=MINIO_ACCESS_KEY, secret_key=MINIO_SECRET_KEY, secure=False) minioClient = get_minio() buckets = minioClient.list_buckets() for bucket in buckets: print(bucket.name, bucket.creation_date) if not minioClient.bucket_exists(MINIO_MODEL_BUCKET): minioClient.make_bucket(MINIO_MODEL_BUCKET) adult = fetch_adult() adult.keys() data = adult.data target = adult.target feature_names = adult.feature_names category_map = adult.category_map from alibi.utils.data import gen_category_map np.random.seed(0) data_perm = np.random.permutation(np.c_[data, target]) data = data_perm[:,:-1] target = data_perm[:,-1] idx = 30000 X_train,Y_train = data[:idx,:], target[:idx] X_test, Y_test = data[idx+1:,:], target[idx+1:] ordinal_features = [x for x in range(len(feature_names)) if x not in list(category_map.keys())] ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_features = list(category_map.keys()) categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer(transformers=[('num', ordinal_transformer, ordinal_features), ('cat', categorical_transformer, categorical_features)]) np.random.seed(0) clf = RandomForestClassifier(n_estimators=50) model=Pipeline(steps=[("preprocess",preprocessor),("model",clf)]) model.fit(X_train,Y_train) def predict_fn(x): return model.predict(x) #predict_fn = lambda x: clf.predict(preprocessor.transform(x)) print('Train accuracy: ', accuracy_score(Y_train, predict_fn(X_train))) print('Test accuracy: ', accuracy_score(Y_test, predict_fn(X_test))) dump(model, 'model.joblib') print(get_minio().fput_object(MINIO_MODEL_BUCKET, f"{INCOME_MODEL_PATH}/model.joblib", 'model.joblib')) model.predict(X_train) explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map) explainer.fit(X_train, disc_perc=[25, 50, 75]) with open("explainer.dill", "wb") as dill_file: dill.dump(explainer, dill_file) dill_file.close() print(get_minio().fput_object(MINIO_MODEL_BUCKET, f"{EXPLAINER_MODEL_PATH}/explainer.dill", 'explainer.dill')) model.predict(X_train) idx = 0 class_names = adult.target_names print('Prediction: ', class_names[explainer.predict_fn(X_test[idx].reshape(1, -1))[0]]) explanation = explainer.explain(X_test[idx], threshold=0.95) print('Anchor: %s' % (' AND '.join(explanation['names']))) print('Precision: %.2f' % explanation['precision']) print('Coverage: %.2f' % explanation['coverage']) from alibi_detect.od import IForest od = IForest( threshold=0., n_estimators=200, ) od.fit(X_train) np.random.seed(0) perc_outlier = 5 threshold_batch = create_outlier_batch(X_train, Y_train, n_samples=1000, perc_outlier=perc_outlier) X_threshold, y_threshold = threshold_batch.data.astype('float'), threshold_batch.target #X_threshold = (X_threshold - mean) / stdev print('{}% outliers'.format(100 * y_threshold.mean())) od.infer_threshold(X_threshold, threshold_perc=100-perc_outlier) print('New threshold: {}'.format(od.threshold)) threshold = od.threshold X_outlier = [[300, 4, 4, 2, 1, 4, 4, 0, 0, 0, 600, 9]] od.predict( X_outlier ) from alibi_detect.utils.saving import save_detector, load_detector from os import listdir from os.path import isfile, join filepath="ifoutlier" save_detector(od, filepath) onlyfiles = [f for f in listdir(filepath) if isfile(join(filepath, f))] for filename in onlyfiles: print(filename) print(get_minio().fput_object(MINIO_MODEL_BUCKET, f"{OUTLIER_MODEL_PATH}/{filename}", join(filepath, filename))) secret = fapiVersion: v1 kind: Secret metadata: name: seldon-init-container-secret namespace: {DEPLOY_NAMESPACE} type: Opaque stringData: AWS_ACCESS_KEY_ID: {MINIO_ACCESS_KEY} AWS_SECRET_ACCESS_KEY: {MINIO_SECRET_KEY} AWS_ENDPOINT_URL: http://{MINIO_HOST} USE_SSL: "false" with open("secret.yaml","w") as f: f.write(secret) run("cat secret.yaml | kubectl apply -f -", shell=True) sa = fapiVersion: v1 kind: ServiceAccount metadata: name: minio-sa namespace: {DEPLOY_NAMESPACE} secrets: - name: seldon-init-container-secret with open("sa.yaml","w") as f: f.write(sa) run("kubectl apply -f sa.yaml", shell=True) model_yaml=fapiVersion: machinelearning.seldon.io/v1 kind: SeldonDeployment metadata: name: income-classifier namespace: {DEPLOY_NAMESPACE} spec: predictors: - componentSpecs: graph: implementation: SKLEARN_SERVER modelUri: s3://{MINIO_MODEL_BUCKET}/{INCOME_MODEL_PATH} envSecretRefName: seldon-init-container-secret name: classifier logger: mode: all explainer: type: AnchorTabular modelUri: s3://{MINIO_MODEL_BUCKET}/{EXPLAINER_MODEL_PATH} envSecretRefName: seldon-init-container-secret name: default replicas: 1 with open("model.yaml","w") as f: f.write(model_yaml) run("kubectl apply -f model.yaml", shell=True) run(f"kubectl rollout status -n {DEPLOY_NAMESPACE} deploy/$(kubectl get deploy -l seldon-deployment-id=income-classifier -o jsonpath='{{.items[0].metadata.name}}' -n {DEPLOY_NAMESPACE})", shell=True) run(f"kubectl rollout status -n {DEPLOY_NAMESPACE} deploy/$(kubectl get deploy -l seldon-deployment-id=income-classifier -o jsonpath='{{.items[1].metadata.name}}' -n {DEPLOY_NAMESPACE})", shell=True) payload='{"data": {"ndarray": [[53,4,0,2,8,4,4,0,0,0,60,9]]}}' cmd=fcurl -d '{payload}' \ http://income-classifier-default.{DEPLOY_NAMESPACE}:8000/api/v1.0/predictions \ -H "Content-Type: application/json" ret = Popen(cmd, shell=True,stdout=PIPE) raw = ret.stdout.read().decode("utf-8") print(raw) payload='{"data": {"ndarray": [[53,4,0,2,8,4,4,0,0,0,60,9]]}}' cmd=fcurl -d '{payload}' \ http://income-classifier-default-explainer.{DEPLOY_NAMESPACE}:9000/api/v1.0/explain \ -H "Content-Type: application/json" ret = Popen(cmd, shell=True,stdout=PIPE) raw = ret.stdout.read().decode("utf-8") print(raw) outlier_yaml=fapiVersion: serving.knative.dev/v1 kind: Service metadata: name: income-outlier namespace: {DEPLOY_NAMESPACE} spec: template: metadata: annotations: autoscaling.knative.dev/minScale: "1" spec: containers: - image: seldonio/alibi-detect-server:1.2.2-dev_alibidetect imagePullPolicy: IfNotPresent args: - --model_name - adultod - --http_port - '8080' - --protocol - seldon.http - --storage_uri - s3://{MINIO_MODEL_BUCKET}/{OUTLIER_MODEL_PATH} - --reply_url - http://default-broker - --event_type - io.seldon.serving.inference.outlier - --event_source - io.seldon.serving.incomeod - OutlierDetector envFrom: - secretRef: name: seldon-init-container-secret with open("outlier.yaml","w") as f: f.write(outlier_yaml) run("kubectl apply -f outlier.yaml", shell=True) trigger_outlier_yaml=fapiVersion: eventing.knative.dev/v1alpha1 kind: Trigger metadata: name: income-outlier-trigger namespace: {DEPLOY_NAMESPACE} spec: filter: sourceAndType: type: io.seldon.serving.inference.request subscriber: ref: apiVersion: serving.knative.dev/v1alpha1 kind: Service name: income-outlier with open("outlier_trigger.yaml","w") as f: f.write(trigger_outlier_yaml) run("kubectl apply -f outlier_trigger.yaml", shell=True) run(f"kubectl rollout status -n {DEPLOY_NAMESPACE} deploy/$(kubectl get deploy -l serving.knative.dev/service=income-outlier -o jsonpath='{{.items[0].metadata.name}}' -n {DEPLOY_NAMESPACE})", shell=True) event_display=fapiVersion: apps/v1 kind: Deployment metadata: name: event-display namespace: {DEPLOY_NAMESPACE} spec: replicas: 1 selector: matchLabels: &labels app: event-display template: metadata: labels: *labels spec: containers: - name: helloworld-go # Source code: https://github.com/knative/eventing-contrib/tree/master/cmd/event_display image: gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event_display@sha256:f4628e97a836c77ed38bd3b6fd3d0b06de4d5e7db6704772fe674d48b20bd477 --- kind: Service apiVersion: v1 metadata: name: event-display namespace: {DEPLOY_NAMESPACE} spec: selector: app: event-display ports: - protocol: TCP port: 80 targetPort: 8080 --- apiVersion: eventing.knative.dev/v1alpha1 kind: Trigger metadata: name: income-outlier-display namespace: {DEPLOY_NAMESPACE} spec: broker: default filter: attributes: type: io.seldon.serving.inference.outlier subscriber: ref: apiVersion: v1 kind: Service name: event-display with open("event_display.yaml","w") as f: f.write(event_display) run("kubectl apply -f event_display.yaml", shell=True) run(f"kubectl rollout status -n {DEPLOY_NAMESPACE} deploy/event-display -n {DEPLOY_NAMESPACE}", shell=True) def predict(): payload='{"data": {"ndarray": [[300, 4, 4, 2, 1, 4, 4, 0, 0, 0, 600, 9]]}}' cmd=fcurl -d '{payload}' \ http://income-classifier-default.{DEPLOY_NAMESPACE}:8000/api/v1.0/predictions \ -H "Content-Type: application/json" ret = Popen(cmd, shell=True,stdout=PIPE) raw = ret.stdout.read().decode("utf-8") print(raw) def get_outlier_event_display_logs(): cmd=f"kubectl logs $(kubectl get pod -l app=event-display -o jsonpath='{{.items[0].metadata.name}}' -n {DEPLOY_NAMESPACE}) -n {DEPLOY_NAMESPACE}" ret = Popen(cmd, shell=True,stdout=PIPE) res = ret.stdout.read().decode("utf-8").split("\n") data= [] for i in range(0,len(res)): if res[i] == 'Data,': j = json.loads(json.loads(res[i+1])) if "is_outlier"in j["data"].keys(): data.append(j) if len(data) > 0: return data[-1] else: return None j = None while j is None: predict() print("Waiting for outlier logs, sleeping") time.sleep(2) j = get_outlier_event_display_logs() print(j) print("Outlier",j["data"]["is_outlier"]==[1]) run(f"kubectl delete sdep income-classifier -n {DEPLOY_NAMESPACE}", shell=True) run(f"kubectl delete ksvc income-outlier -n {DEPLOY_NAMESPACE}", shell=True) run(f"kubectl delete sa minio-sa -n {DEPLOY_NAMESPACE}", shell=True) run(f"kubectl delete secret seldon-init-container-secret -n {DEPLOY_NAMESPACE}", shell=True) run(f"kubectl delete deployment event-display -n {DEPLOY_NAMESPACE}", shell=True) run(f"kubectl delete svc event-display -n {DEPLOY_NAMESPACE}", shell=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Using DTensors with Keras Step2: Next, import tensorflow and tensorflow.experimental.dtensor, and configure TensorFlow to use 8 virtual CPUs. Step3: Deterministic pseudo-random number generators Step4: Creating a Data Parallel Mesh Step5: As each device runs a full replica of the model, the model variables shall be fully replicated across the mesh (unsharded). As an example, a fully replicated Layout for a rank-2 weight on this Mesh would be as follows Step6: A layout for a rank-2 data tensor on this Mesh would be sharded along the first dimension (sometimes known as batch_sharded), Step7: Create Keras layers with layout Step8: You can check the layout information by examining the layout property on the weights. Step10: Load a dataset and build input pipeline Step11: Define the training logic for the model Step12: Metrics and Optimizers Step13: Train the model Step14: Specify Layout for existing model code Step15: There are 4 weights in this model, which are kernel and bias for two Dense layers. Each of them are mapped based on the object path Step16: The model weights are created on the first call, so call the model with a DTensor input and confirm the weights have the expected layouts. Step17: With this, you can quickly map the Layout to your models without updating any of your existing code.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install --quiet --upgrade --pre tensorflow tensorflow-datasets import tensorflow as tf import tensorflow_datasets as tfds from tensorflow.experimental import dtensor def configure_virtual_cpus(ncpu): phy_devices = tf.config.list_physical_devices('CPU') tf.config.set_logical_device_configuration( phy_devices[0], [tf.config.LogicalDeviceConfiguration()] * ncpu) configure_virtual_cpus(8) tf.config.list_logical_devices('CPU') devices = [f'CPU:{i}' for i in range(8)] tf.keras.backend.experimental.enable_tf_random_generator() tf.keras.utils.set_random_seed(1337) mesh = dtensor.create_mesh([("batch", 8)], devices=devices) example_weight_layout = dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh) # or example_weight_layout = dtensor.Layout.replicated(mesh, rank=2) example_data_layout = dtensor.Layout(['batch', dtensor.UNSHARDED], mesh) # or example_data_layout = dtensor.Layout.batch_sharded(mesh, 'batch', rank=2) unsharded_layout_2d = dtensor.Layout.replicated(mesh, 2) unsharded_layout_1d = dtensor.Layout.replicated(mesh, 1) model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu', name='d1', kernel_layout=unsharded_layout_2d, bias_layout=unsharded_layout_1d), tf.keras.layers.Dense(10, name='d2', kernel_layout=unsharded_layout_2d, bias_layout=unsharded_layout_1d) ]) for weight in model.weights: print(f'Weight name: {weight.name} with layout: {weight.layout}') break (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, ) def normalize_img(image, label): Normalizes images: `uint8` -> `float32`. return tf.cast(image, tf.float32) / 255., label batch_size = 128 ds_train = ds_train.map( normalize_img, num_parallel_calls=tf.data.AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) ds_train = ds_train.batch(batch_size) ds_train = ds_train.prefetch(tf.data.AUTOTUNE) ds_test = ds_test.map( normalize_img, num_parallel_calls=tf.data.AUTOTUNE) ds_test = ds_test.batch(batch_size) ds_test = ds_test.cache() ds_test = ds_test.prefetch(tf.data.AUTOTUNE) @tf.function def train_step(model, x, y, optimizer, metrics): with tf.GradientTape() as tape: logits = model(x, training=True) # tf.reduce_sum sums the batch sharded per-example loss to a replicated # global loss (scalar). loss = tf.reduce_sum(tf.keras.losses.sparse_categorical_crossentropy( y, logits, from_logits=True)) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) for metric in metrics.values(): metric.update_state(y_true=y, y_pred=logits) loss_per_sample = loss / len(x) results = {'loss': loss_per_sample} return results @tf.function def eval_step(model, x, y, metrics): logits = model(x, training=False) loss = tf.reduce_sum(tf.keras.losses.sparse_categorical_crossentropy( y, logits, from_logits=True)) for metric in metrics.values(): metric.update_state(y_true=y, y_pred=logits) loss_per_sample = loss / len(x) results = {'eval_loss': loss_per_sample} return results def pack_dtensor_inputs(images, labels, image_layout, label_layout): num_local_devices = image_layout.mesh.num_local_devices() images = tf.split(images, num_local_devices) labels = tf.split(labels, num_local_devices) images = dtensor.pack(images, image_layout) labels = dtensor.pack(labels, label_layout) return images, labels optimizer = tf.keras.dtensor.experimental.optimizers.Adam(0.01, mesh=mesh) metrics = {'accuracy': tf.keras.metrics.SparseCategoricalAccuracy(mesh=mesh)} eval_metrics = {'eval_accuracy': tf.keras.metrics.SparseCategoricalAccuracy(mesh=mesh)} num_epochs = 3 image_layout = dtensor.Layout.batch_sharded(mesh, 'batch', rank=4) label_layout = dtensor.Layout.batch_sharded(mesh, 'batch', rank=1) for epoch in range(num_epochs): print("============================") print("Epoch: ", epoch) for metric in metrics.values(): metric.reset_state() step = 0 results = {} pbar = tf.keras.utils.Progbar(target=None, stateful_metrics=[]) for input in ds_train: images, labels = input[0], input[1] images, labels = pack_dtensor_inputs( images, labels, image_layout, label_layout) results.update(train_step(model, images, labels, optimizer, metrics)) for metric_name, metric in metrics.items(): results[metric_name] = metric.result() pbar.update(step, values=results.items(), finalize=False) step += 1 pbar.update(step, values=results.items(), finalize=True) for metric in eval_metrics.values(): metric.reset_state() for input in ds_test: images, labels = input[0], input[1] images, labels = pack_dtensor_inputs( images, labels, image_layout, label_layout) results.update(eval_step(model, images, labels, eval_metrics)) for metric_name, metric in eval_metrics.items(): results[metric_name] = metric.result() for metric_name, metric in results.items(): print(f"{metric_name}: {metric.numpy()}") class SubclassedModel(tf.keras.Model): def __init__(self, name=None): super().__init__(name=name) self.feature = tf.keras.layers.Dense(16) self.feature_2 = tf.keras.layers.Dense(24) self.dropout = tf.keras.layers.Dropout(0.1) def call(self, inputs, training=None): x = self.feature(inputs) x = self.dropout(x, training=training) return self.feature_2(x) layout_map = tf.keras.dtensor.experimental.LayoutMap(mesh=mesh) layout_map['feature.*kernel'] = dtensor.Layout.batch_sharded(mesh, 'batch', rank=2) layout_map['feature.*bias'] = dtensor.Layout.batch_sharded(mesh, 'batch', rank=1) with tf.keras.dtensor.experimental.layout_map_scope(layout_map): subclassed_model = SubclassedModel() dtensor_input = dtensor.copy_to_mesh(tf.zeros((16, 16)), layout=unsharded_layout_2d) # Trigger the weights creation for subclass model subclassed_model(dtensor_input) print(subclassed_model.feature.kernel.layout) layout_map = tf.keras.dtensor.experimental.LayoutMap(mesh=mesh) layout_map['feature.*kernel'] = dtensor.Layout.batch_sharded(mesh, 'batch', rank=2) layout_map['feature.*bias'] = dtensor.Layout.batch_sharded(mesh, 'batch', rank=1) with tf.keras.dtensor.experimental.layout_map_scope(layout_map): inputs = tf.keras.Input((16,), batch_size=16) x = tf.keras.layers.Dense(16, name='feature')(inputs) x = tf.keras.layers.Dropout(0.1)(x) output = tf.keras.layers.Dense(32, name='feature_2')(x) model = tf.keras.Model(inputs, output) print(model.layers[1].kernel.layout) with tf.keras.dtensor.experimental.layout_map_scope(layout_map): model = tf.keras.Sequential([ tf.keras.layers.Dense(16, name='feature', input_shape=(16,)), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(32, name='feature_2') ]) print(model.layers[2].kernel.layout) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: any missing data in the set? Step2: total points different by more than .5
<ASSISTANT_TASK:> Python Code: import rockbag as rb import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline mpl.rcParams["figure.facecolor"] = "white" mpl.rcParams["axes.facecolor"] = "white" mpl.rcParams["savefig.facecolor"] = "white" import numpy as np # stub list of files for 2012 09 def get_files(): files = ["/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120901_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120902_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120903_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120904_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120905_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120906_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120907_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120908_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120909_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120910_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120911_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120912_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120913_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120914_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120915_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120916_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120917_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120918_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120919_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120920_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120921_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120922_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120923_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120924_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120925_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120926_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120927_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120928_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120929_f17_v01_n.bin", "/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily/2012/nt_20120930_f17_v01_n.bin"] return files files = get_files() def load_month(files): cube = np.dstack(tuple([file_data(f) for f in files])) return cube def file_data(file): a = rb.suckgrid(file, gpd='N3B', header=300) return a z = load_month(get_files()) average = z.mean(axis=2) stddev = z.std(axis=2) np.any(z == 255) np.any((average > 100) & (average < 250)) with mpl.rc_context(rc={'figure.figsize': (10,9), 'axes.grid':False}, ): plt.imshow(stddev) with mpl.rc_context(rc={'figure.figsize': (10,9), 'axes.grid':False}, ): plt.imshow(average) month_file = '/projects/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/monthly/nt_201209_f17_v01_n.bin' gsfc_month_data = rb.suckgrid(month_file, gpd='N3B', header=300) with mpl.rc_context(rc={'figure.figsize': (10,9), 'axes.grid':False}, ): plt.imshow(gsfc_month_data) np.min(gsfc_month_data[gsfc_month_data > 0]) np.min(average[average > 0]) gsfc_month_data diff = average - gsfc_month_data with mpl.rc_context(rc={'figure.figsize': (10,9), 'axes.grid':False}, ): plt.imshow(np.abs(diff) > .6, cmap="Blues") (np.abs(diff) > .6).sum() with mpl.rc_context(rc={'figure.figsize': (10,9), 'axes.grid':False}, ): plt.imshow(np.abs(diff) > .5, cmap="Blues") (np.abs(diff) > .5).sum() with mpl.rc_context(rc={'figure.figsize': (10,9), 'axes.grid':False}, ): plt.imshow(np.abs(diff) > .2, cmap="Blues") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Our key parameters here are the penalty term, and the best k features from the univariate analysis Step2: 22 Step3: Prep the Kaggle test data, as well as the ensembling test data
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd titanic=pd.read_csv('./titanic_clean_data.csv') cols_to_norm=['Age','Fare'] col_norms=['Age_z','Fare_z'] titanic[col_norms]=titanic[cols_to_norm].apply(lambda x: (x-x.mean())/x.std()) #titanic['cabin_clean']=(pd.notnull(titanic.Cabin)) from sklearn.cross_validation import train_test_split, KFold, cross_val_score, StratifiedKFold from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline from sklearn.feature_selection import SelectKBest, f_classif titanic['Gender']=titanic['Sex'].replace(to_replace=[True,False],value=['M','F']) titanic['Parch_ind']=titanic.Parch>=1 titanic=pd.merge(titanic, pd.get_dummies(titanic['Gender'].str.cat(titanic['Pclass'].astype(str),sep='_')),\ on=titanic['PassengerId']) titanic=pd.merge(titanic, pd.get_dummies(titanic['Gender'].str.cat(titanic['Parch_ind'].astype(str),sep='_')),\ on=titanic['PassengerId']) titanic=pd.merge(titanic, pd.get_dummies(titanic['Gender'].str.cat(titanic['Age_cut'].astype(str),sep='_')),\ on=titanic['PassengerId']) titanic_target=titanic.Survived.values features=['Sex','SibSp','Parch','Pclass_1','Pclass_2','Pclass_3','Emb_C','Emb_Q','Emb_S',\ 'Emb_nan','Age_ct_C','Age_ct_A','Age_ct_S', 'Sp_ct','Age_z','Fare_z',\ 'Ti_Dr', 'Ti_Master', 'Ti_Mil', 'Ti_Miss', 'Ti_Mr', 'Ti_Mrs', 'Ti_Other', 'Ti_Rev',\ 'Fl_AB', 'Fl_CD', 'Fl_EFG', 'Fl_nan',\ 'F_1', 'F_2', 'F_3', 'M_1', 'M_2', 'M_3', 'F_False', 'F_True', 'M_False', 'M_True',\ 'F_A', 'F_C', 'M_A', 'M_C', 'M_S'] titanic_features=titanic[features].values titanic_features, ensemble_features, titanic_target, ensemble_target= \ train_test_split(titanic_features, titanic_target, test_size=.1, random_state=7132016) score=0 for x in range(10,43): for y in np.linspace(.1,.5,5): var_filter=SelectKBest(f_classif) clf=svm.SVC(kernel='rbf') pipe_svm = Pipeline([('anova', var_filter), ('svc', clf)]) pipe_svm.set_params(anova__k=x, svc__C=y) score_test = cross_validation.cross_val_score(pipe_svm, titanic_features, titanic_target, n_jobs=1, \ cv=StratifiedKFold(titanic_target, n_folds=10, shuffle=True, random_state=7132016)) if score_test.mean()>score: score=score_test.mean() k_out=x C_out=y print k_out print C_out print score model=pipe_svm.set_params(anova__k=k_out, svc__C=C_out).fit(titanic_features, titanic_target) test_data=pd.read_csv('./test.csv') test_data.Sex.replace(['male','female'],[True,False], inplace=True) test_data.Age= test_data.groupby(['Sex','Pclass'])[['Age']].transform(lambda x: x.fillna(x.mean())) test_data.Fare= titanic.groupby(['Pclass'])[['Fare']].transform(lambda x: x.fillna(x.mean())) titanic_class=pd.get_dummies(test_data.Pclass,prefix='Pclass',dummy_na=False) test_data=pd.merge(test_data,titanic_class,on=test_data['PassengerId']) test_data=pd.merge(test_data,pd.get_dummies(test_data.Embarked, prefix='Emb', dummy_na=True), on=test_data['PassengerId']) titanic['Floor']=titanic['Cabin'].str.extract('^([A-Z])', expand=False) titanic['Floor'].replace(to_replace='T',value=np.NaN ,inplace=True) titanic=pd.merge(titanic,pd.get_dummies(titanic.Floor, prefix="Fl", dummy_na=True),on=titanic['PassengerId']) test_data['Age_cut']=pd.cut(test_data['Age'],[0,17.9,64.9,99], labels=['C','A','S']) test_data=pd.merge(test_data,pd.get_dummies(test_data.Age_cut, prefix="Age_ct", dummy_na=False),on=test_data['PassengerId']) test_data['Title']=test_data['Name'].str.extract(', (.*)\.', expand=False) test_data['Title'].replace(to_replace='Mrs\. .*',value='Mrs', inplace=True, regex=True) test_data.loc[test_data.Title.isin(['Col','Major','Capt']),['Title']]='Mil' test_data.loc[test_data.Title=='Mlle',['Title']]='Miss' test_data.loc[test_data.Title=='Mme',['Title']]='Mrs' test_data['Title_ct']=test_data.groupby(['Title'])['Title'].transform('count') test_data.loc[test_data.Title_ct<5,['Title']]='Other' test_data=pd.merge(test_data,pd.get_dummies(test_data.Title, prefix='Ti',dummy_na=False), on=test_data['PassengerId']) test_data['NameTest']=test_data.Name test_data['NameTest'].replace(to_replace=" \(.*\)",value="",inplace=True, regex=True) test_data['NameTest'].replace(to_replace=", M.*\.",value=", ",inplace=True, regex=True) cols_to_norm=['Age','Fare'] col_norms=['Age_z','Fare_z'] test_data['Age_z']=(test_data.Age-titanic.Age.mean())/titanic.Age.std() test_data['Fare_z']=(test_data.Fare-titanic.Fare.mean())/titanic.Fare.std() #test_data[col_norms]=test_data[cols_to_norm].apply(lambda x: (x-titanic.x.mean())/titanic.x.std()) test_data['cabin_clean']=(pd.notnull(test_data.Cabin)) test_data['Gender']=test_data['Sex'].replace(to_replace=[True,False],value=['M','F']) test_data['Parch_ind']=test_data.Parch>=1 #pd.get_dummies(str.cat(titanic[['Gender','Pclass']], sep='_')) test_data=pd.merge(test_data, pd.get_dummies(test_data['Gender'].str.cat(test_data['Pclass'].astype(str),sep='_')), on=test_data['PassengerId']) test_data=pd.merge(test_data, pd.get_dummies(test_data['Gender'].str.cat(test_data['Parch_ind'].astype(str),sep='_')), on=test_data['PassengerId']) test_data=pd.merge(test_data, pd.get_dummies(test_data['Gender'].str.cat(test_data['Age_cut'].astype(str),sep='_')), on=test_data['PassengerId']) name_list=pd.concat([titanic[['PassengerId','NameTest']],test_data[['PassengerId','NameTest']]]) name_list['Sp_ct']=name_list.groupby('NameTest')['NameTest'].transform('count')-1 test_data=pd.merge(test_data,name_list[['PassengerId','Sp_ct']],on='PassengerId',how='left') def add_cols(var_check,df): if var_check not in df.columns.values: df[var_check]=0 for x in features: add_cols(x, test_data) features=['Sex','SibSp','Parch','Pclass_1','Pclass_2','Pclass_3','Emb_C','Emb_Q','Emb_S',\ 'Emb_nan','Age_ct_C','Age_ct_A','Age_ct_S', 'Sp_ct','Age_z','Fare_z',\ 'Ti_Dr', 'Ti_Master', 'Ti_Mil', 'Ti_Miss', 'Ti_Mr', 'Ti_Mrs', 'Ti_Other', 'Ti_Rev',\ 'Fl_AB', 'Fl_CD', 'Fl_EFG', 'Fl_nan',\ 'F_1', 'F_2', 'F_3', 'M_1', 'M_2', 'M_3', 'F_False', 'F_True', 'M_False', 'M_True',\ 'F_A', 'F_C', 'M_A', 'M_C', 'M_S'] test_features=test_data[features].values predictions=model.predict(ensemble_features) ensemble_svm=pd.DataFrame({'svm_pred':predictions}) ensemble_svm.to_csv('./ensemble_svm.csv', index=False) predictions=model.predict(test_features) test_data['Survived']=predictions kaggle=test_data[['PassengerId','Survived']] kaggle.to_csv('./kaggle_titanic_submission_svm.csv', index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Moral Step2: Anonymous functions Step3: List comprehensions Step4: Example Step5: Now we form a new list with the sum and the actual tuples linked together in a tuple Step6: Finally, we create a dictionary with the cube as the key and the (a, b) tuple pairs in a list as the values Step7: Functions within functions
<ASSISTANT_TASK:> Python Code: def swap(a, b): a, b = b, a x, y = 1, 2 print("Before swap, x = %d and y = %d." % (x, y)) swap(x, y) print("After swap, x = %d and y = %d." % (x, y)) def add_function_of_integers(func, upto): total = 0 for n in range(upto + 1): total = total + func(n) return total def identity(n): return n N = 10 print("Sum of integers up to %d is %d." % (N, add_function_of_integers(identity, N))) def square(n): return n * n print("Sum of the squares of integers up to %d is %d." % (N, add_function_of_integers(square, N))) N = 3 print("Sum of cubes of integers up to %d is %d." % (N, add_function_of_integers(lambda x : x**3, N))) #def cube(x): # return x**3 cube = lambda x : x**3 cube(10) add_two_numbers = lambda x, y : x + y add_two_numbers(10, 20) # To find the sum 1 + 1 + 1 ... + 1 print("Sum of the %d ones is %d." % (N + 1, add_function_of_integers(lambda x : 1, N))) n_squares = [] for i in range(N + 1): n_squares.append(square(i)) print(n_squares) whole_numbers = range(N + 1) n_cubes = [i * i * i for i in whole_numbers] n_cubes N = 6 # Express dice rolls as (first die face, second die face) cartesian_product = [(a, b) for a in range(1, 7) for b in range(1, 7)] print(cartesian_product) odd_sum_cases = [(a, b) for a in range(1, 7) for b in range(1, 7) if (a + b) % 2 == 1] print(odd_sum_cases) list_of_numbers = range(11) odd_squares = [i * i for i in list_of_numbers if i % 2 == 1] print(odd_squares) # Using map list_of_squares = list(map(lambda x : x * x, list_of_numbers)) print(list_of_squares) # We will use filter on the dice pairs to print # only those that sum to an even number even_sum = filter(lambda x : (x[0] + x[1]) % 2 == 0, cartesian_product) for die_rolls in even_sum: print("%d and %d sum to even!" % (die_rolls[0], die_rolls[1])) print("Let's try printing it again!") for die_rolls in even_sum: print("%d and %d sum to even!" % (die_rolls[0], die_rolls[1])) pairs_of_numbers = [(a, b) for a in range(1, 21) for b in range(1, 21)] pairs_of_numbers = list(filter(lambda x: x[0] <= x[1], pairs_of_numbers)) print(pairs_of_numbers) numbers_with_cube_sums = [(a[0]**3 + a[1]**3,a) for a in pairs_of_numbers] print(numbers_with_cube_sums) #dict_of_cube_sums = {} #for i in numbers_with_cube_sums: # if i[0] in dict_of_cube_sums: # dict_of_cube_sums[i[0]].append(i[1]) # else: # dict_of_cube_sums[i[0]] = [i[1]] dict_of_cube_sums = {} [dict_of_cube_sums.setdefault(i[0], []) for i in numbers_with_cube_sums] [dict_of_cube_sums[i[0]].append(i[1]) for i in numbers_with_cube_sums] print(dict_of_cube_sums) # Find the elements which have more than one element # in their list ramanujan_candidates = list( filter(lambda i : len(i[1]) > 1, dict_of_cube_sums.items())) ramanujan_candidates def add_n(n): def adder(a): return a + n return adder add10 = add_n(10) print(add10(23)) add3 = add_n(3) print(add3(23)) def logger(func): def inner(*args, **kwargs): print("Arguments: %s %s" % (args, kwargs)) return func(*args, **kwargs) return inner def add_two_numbers(x, y): return x + y print("Adding %d and %d gives %d" % (1, 3, add_two_numbers(1, 3))) logged_add_two_numbers = logger(add_two_numbers) mysum = logged_add_two_numbers(1, 3) print(mysum) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problem 1) Density Estimation Step2: Problem 1a Step3: Already with this simple plot we see a problem - the choice of bin centers and number of bins suggest that there is a 0% probability that middle aged men can do 10 chinups. Intuitively this seems incorrect, so lets examine how the histogram changes if we change the number of bins or the bin centers. Step4: These small changes significantly change the output PDF. With fewer bins we get something closer to a continuous distribution, while shifting the bin centers reduces the probability to zero at 9 chinups. Step5: Ending the lie Step6: Of course, even rug plots are not a perfect solution. Many of the chinup measurements are repeated, and those instances cannot be easily isolated above. One (slightly) better solution is to vary the transparency of the rug "whiskers" using alpha = 0.3 in the whiskers plot call. But this too is far from perfect. Step7: Problem 1e Step8: In this representation, each "block" has a height of 0.25. The bandwidth is too narrow to provide any overlap between the blocks. This choice of kernel and bandwidth produces an estimate that is essentially a histogram with a large number of bins. It gives no sense of continuity for the distribution. Now, we examine the difference (relative to histograms) upon changing the the width (i.e. kernel) of the blocks. Step9: It turns out blocks are not an ideal representation for continuous data (see discussion on histograms above). Now we will explore the resulting PDF from other kernels. Step10: So, what is the optimal choice of bandwidth and kernel? Unfortunately, there is no hard and fast rule, as every problem will likely have a different optimization. Typically, the choice of bandwidth is far more important than the choice of kernel. In the case where the PDF is likely to be gaussian (or close to gaussian), then Silverman's rule of thumb can be used Step11: Seaborn Step12: We can see that the plot has significantly changed styles. Step13: The folks behind seaborn have thought a lot about color palettes, which is a good thing. Remember - the choice of color for plots is one of the most essential aspects of visualization. A poor choice of colors can easily mask interesting patterns or suggest structure that is not real. To learn more about what is available, see the seaborn color tutorial. Step14: which we will now change to colorblind, which is clearer to those that are colorblind. Step15: Now that we have covered the basics of seaborn (and the above examples truly only scratch the surface of what is possible), we will explore the power of seaborn for higher dimension data sets. We will load the famous Iris data set, which measures 4 different features of 3 different types of Iris flowers. There are 150 different flowers in the data set. Step16: Now that we have a sense of the data structure, it is useful to examine the distribution of features. Above, we went to great pains to produce histograms, KDEs, and rug plots. seaborn handles all of that effortlessly with the distplot function. Step17: Of course, this data set lives in a 4D space, so plotting more than univariate distributions is important (and as we will see tomorrow this is particularly useful for visualizing classification results). Fortunately, seaborn makes it very easy to produce handy summary plots. Step18: Of course, when there are many many data points, scatter plots become difficult to interpret. As in the example below Step19: Here, we see that there are many points, clustered about the origin, but we have no sense of the underlying density of the distribution. 2D histograms, such as plt.hist2d(), can alleviate this problem. I prefer to use plt.hexbin() which is a little easier on the eyes (though note - these histograms are just as subject to the same issues discussed above). Step20: While the above plot provides a significant improvement over the scatter plot by providing a better sense of the density near the center of the distribution, the binedge effects are clearly present. An even better solution, like before, is a density estimate, which is easily built into seaborn via the kdeplot function. Step21: This plot is much more appealing (and informative) than the previous two. For the first time we can clearly see that the distribution is not actually centered on the origin. Now we will move back to the Iris data set. Step22: But! Histograms and scatter plots can be problematic as we have discussed many times before. Step23: That is much nicer than what was presented above. However - we still have a problem in that our data live in 4D, but we are (mostly) limited to 2D projections of that data. One way around this is via the seaborn version of a pairplot, which plots the distribution of every variable in the data set against each other. (Here is where the integration with pandas DataFrames becomes so powerful.) Step24: For data sets where we have classification labels, we can even color the various points using the hue option, and produce KDEs along the diagonal with diag_type = 'kde'. Step25: Even better - there is an option to create a PairGrid which allows fine tuned control of the data as displayed above, below, and along the diagonal. In this way it becomes possible to avoid having symmetric redundancy, which is not all that informative. In the example below, we will show scatter plots and contour plots simultaneously.
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_linnerud linnerud = load_linnerud() chinups = linnerud.data[:,0] plt.hist(chinups, histtype = "step", lw = 3) plt.hist(chinups, bins = 5, histtype="step", lw = 3) plt.hist(chinups, align = "left", histtype="step", lw = 3) bins = np.append(np.sort(chinups)[::5], np.max(chinups)) plt.hist(chinups, bins = bins, histtype = "step", normed = True, lw = 3) plt.hist(chinups, histtype = 'step') # this is the code for the rug plot plt.plot(chinups, np.zeros_like(chinups), '|', color='k', ms = 25, mew = 4) # execute this cell from sklearn.neighbors import KernelDensity def kde_sklearn(data, grid, bandwidth = 1.0, **kwargs): kde_skl = KernelDensity(bandwidth = bandwidth, **kwargs) kde_skl.fit(data[:, np.newaxis]) log_pdf = kde_skl.score_samples(grid[:, np.newaxis]) # sklearn returns log(density) return np.exp(log_pdf) grid = np.arange(0 + 1e-4,20,0.01) PDFtophat = kde_sklearn(chinups, grid, bandwidth = 0.1, kernel = 'tophat') plt.plot(grid, PDFtophat) PDFtophat1 = kde_sklearn(chinups, grid, bandwidth = 1, kernel = 'tophat') plt.plot(grid, PDFtophat1, 'MediumAquaMarine', lw = 3, label = "bw = 1") PDFtophat5 = kde_sklearn(chinups, grid, bandwidth = 5, kernel = 'tophat') plt.plot(grid, PDFtophat5, 'Tomato', lw = 3, label = "bw = 5") plt.legend() PDFgaussian = kde_sklearn(chinups, grid, bandwidth = 1, kernel = 'gaussian') plt.plot(grid, PDFgaussian, 'DarkOrange', lw = 3, label = "gaussian") PDFepanechnikov = kde_sklearn(chinups, grid, bandwidth = 2, kernel = 'epanechnikov') plt.plot(grid, PDFepanechnikov, 'SlateGrey', lw = 3, label = "epanechnikov") plt.legend(loc = 2) x = np.arange(0, 6*np.pi, 0.1) y = np.cos(x) plt.plot(x,y, lw = 2) plt.xlabel('X') plt.ylabel('Y') plt.xlim(0, 6*np.pi) import seaborn as sns fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y, lw = 2) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_xlim(0, 6*np.pi) sns.set_style("ticks") fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y, lw = 2) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_xlim(0, 6*np.pi) # default color palette current_palette = sns.color_palette() sns.palplot(current_palette) # set palette to colorblind sns.set_palette("colorblind") current_palette = sns.color_palette() sns.palplot(current_palette) iris = sns.load_dataset("iris") iris # note - hist, kde, and rug all set to True, set to False to turn them off with sns.axes_style("dark"): sns.distplot(iris['petal_length'], bins=20, hist=True, kde=True, rug=True) plt.scatter(iris['petal_length'], iris['petal_width']) plt.xlabel("petal length (cm)") plt.ylabel("petal width (cm)") with sns.axes_style("darkgrid"): xexample = np.random.normal(loc = 0.2, scale = 1.1, size = 10000) yexample = np.random.normal(loc = -0.1, scale = 0.9, size = 10000) plt.scatter(xexample, yexample) # hexbin w/ bins = "log" returns the log of counts/bin # mincnt = 1 displays only hexpix with at least 1 source present with sns.axes_style("darkgrid"): plt.hexbin(xexample, yexample, bins = "log", cmap = "viridis", mincnt = 1) plt.colorbar() with sns.axes_style("darkgrid"): sns.kdeplot(xexample, yexample,shade=False) sns.jointplot(x=iris['petal_length'], y=iris['petal_width']) sns.jointplot(x=iris['petal_length'], y=iris['petal_width'], kind = 'kde', shade = 'False') sns.pairplot(iris[["sepal_length", "sepal_width", "petal_length", "petal_width"]]) sns.pairplot(iris, vars = ["sepal_length", "sepal_width", "petal_length", "petal_width"], hue = "species", diag_kind = 'kde') g = sns.PairGrid(iris, vars = ["sepal_length", "sepal_width", "petal_length", "petal_width"], hue = "species", diag_sharey=False) g.map_lower(sns.kdeplot) g.map_upper(plt.scatter, edgecolor='white') g.map_diag(sns.kdeplot, lw=3) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: lets explore Step2: for some reason 2011 was the last year for which there is earning information Step3: the number of schools covered Step4: for each there are lots of columns to read Step5: but there is a dictionary just for exploring what each column is Step6: the columns are grouped Step7: there are many columns in the earning category Step8: and here is the field for male earning 10 years after finishing school. Yes. females are male0 Step9: compute the difference between women and men Step10: results
<ASSISTANT_TASK:> Python Code: %%bash cd ~/Downloads wget https://s3.amazonaws.com/ed-college-choice-public/CollegeScorecard_Raw_Data.zip unzip CollegeScorecard_Raw_Data.zip !ls ~/Downloads/CollegeScorecard_Raw_Data import pandas as pd df = pd.read_csv('~/Downloads/CollegeScorecard_Raw_Data/MERGED2011_PP.csv', na_values=['PrivacySuppressed']) len(df) len(df.columns) ddict = pd.read_csv('~/Downloads/CollegeScorecard_Raw_Data/CollegeScorecardDataDictionary-09-12-2015.csv') ddict['dev-category'].unique() pd.options.display.max_colwidth = 87 ddict[ddict['dev-category'] == 'earnings'].set_index('VARIABLE NAME')['NAME OF DATA ELEMENT'] ddict[ddict['VARIABLE NAME'] == 'mn_earn_wne_male1_p10'].values df['diffp10'] = df.mn_earn_wne_male1_p10 - df.mn_earn_wne_male0_p10 df = df.sort(columns=['diffp10'], ascending=False) for name in ['Massachusetts Institute of Technology', 'Stanford University']: print name, df[df.INSTNM == name].diffp10.values[0] df[['INSTNM','diffp10','mn_earn_wne_male0_p10','mn_earn_wne_male1_p10']].set_index('INSTNM').head(30) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Visualize the data Step2: Well.. Train the model Step3: Show some quantitative results
<ASSISTANT_TASK:> Python Code: # Answer # Answer # Answer # Answer <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Google Colab & Kaggle interagration Step2: Quick start Step 1 Step3: Import Bokeh (do not run if you do not have Bokeh installed) Step4: For Jupyter Notebooks only (do not run if you are not using Bokeh and Jupyter) Step5: Step 2 Step6: Step 3 Step7: If the AMPL installation directory is not in the system search path, you should create the AMPL object as follows instead Step8: Step 5 Step9: Note Step10: Define AMPL sets fom python lists Step11: Define data using an amplpy DataFrame Step12: Define data using a Pandas DataFrame Step13: Define data using a python dictionary Step14: Step 7 Step15: Step 8 Step16: Step 9 Step17: Step 10 Step18: Step 11 Step19: Step 12 Step20: Step 13 Step21: Step 14 Step22: Step 15
<ASSISTANT_TASK:> Python Code: !pip install -q amplpy ampltools pandas bokeh MODULES=['ampl', 'gurobi'] from ampltools import cloud_platform_name, ampl_notebook from amplpy import AMPL, register_magics if cloud_platform_name() is None: ampl = AMPL() # Use local installation of AMPL else: ampl = ampl_notebook(modules=MODULES) # Install AMPL and use it register_magics(ampl_object=ampl) # Evaluate %%ampl_eval cells with ampl.eval() import pandas as pd from bokeh.layouts import row from bokeh.plotting import figure, show from bokeh.io import output_notebook output_notebook() from amplpy import AMPL, Environment, DataFrame ampl = AMPL() ampl.eval('option version;') ampl.setOption('solver', 'gurobi') ampl.eval(''' set NUTR; set FOOD; param cost {FOOD} > 0; param f_min {FOOD} >= 0; param f_max {j in FOOD} >= f_min[j]; param n_min {NUTR} >= 0; param n_max {i in NUTR} >= n_min[i]; param amt {NUTR,FOOD} >= 0; var Buy {j in FOOD} >= f_min[j], <= f_max[j]; minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j]; subject to Diet {i in NUTR}: n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i]; ''') foods = ['BEEF', 'CHK', 'FISH', 'HAM', 'MCH', 'MTL', 'SPG', 'TUR'] nutrients = ['A', 'C', 'B1', 'B2', 'NA', 'CAL'] ampl.getSet('FOOD').setValues(foods) ampl.getSet('NUTR').setValues(nutrients) ampl.setData(DataFrame( index=[('FOOD', foods)], columns=[ ('cost', [3.59, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49]), ('f_min', [2, 2, 2, 2, 2, 2, 2, 2]), ('f_max', [10, 10, 10, 10, 10, 10, 10, 10]) ] )) df = pd.DataFrame({ 'n_min': [700, 700, 700, 700, 0, 16000], 'n_max': [20000, 20000, 20000, 20000, 50000, 24000] }, index=nutrients ) ampl.setData(DataFrame.fromPandas(df)) amounts = [ [ 60, 8, 8, 40, 15, 70, 25, 60], [ 20, 0, 10, 40, 35, 30, 50, 20], [ 10, 20, 15, 35, 15, 15, 25, 15], [ 15, 20, 10, 10, 15, 15, 15, 10], [928, 2180, 945, 278, 1182, 896, 1329, 1397], [295, 770, 440, 430, 315, 400, 379, 450] ] df = DataFrame(('NUTR', 'FOOD'), 'amt') df.setValues({ (nutrient, food): amounts[i][j] for i, nutrient in enumerate(nutrients) for j, food in enumerate(foods) }) ampl.setData(df) ampl.solve() ampl.getVariable('Buy').getValues().toPandas() totalcost = ampl.getObjective('Total_Cost') print("Objective is:", totalcost.value()) cost = ampl.getParameter('cost') cost.setValues({'BEEF': 5.01, 'HAM': 4.55}) print("Increased costs of beef and ham.") ampl.solve() print("New objective value:", totalcost.value()) Buy = ampl.getVariable('Buy') print("Buy['BEEF'].val = {}".format(Buy['BEEF'].value())) diet = ampl.getConstraint('Diet') for nutr in nutrients: print("Diet['{}'].dual = {}".format(nutr, diet[nutr].dual())) rows = [tuple(row) for row in Buy.getValues()] factors = [index for index, value in rows] x = [value for index, value in rows] dot = figure( title="Categorical Dot Plot", tools='', toolbar_location=None, y_range=factors, x_range=[0,12] ) dot.segment(0, factors, x, factors, line_width=2, line_color='green') dot.circle(x, factors, size=15, fill_color='orange', line_color='green', line_width=3) show(dot) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First we'll load the text file and convert it into integers for our network to use. Here I'm creating a couple dictionaries to convert the characters to and from integers. Encoding the characters as integers makes it easier to use as input in the network. Step2: Let's check out the first 100 characters, make sure everything is peachy. According to the American Book Review, this is the 6th best first line of a book ever. Step3: And we can see the characters encoded as integers. Step4: Since the network is working with individual characters, it's similar to a classification problem in which we are trying to predict the next character from the previous text. Here's how many 'classes' our network has to pick from. Step5: Making training mini-batches Step6: Now I'll make my data sets and we can check out what's going on here. Here I'm going to use a batch size of 10 and 50 sequence steps. Step7: If you implemented get_batches correctly, the above output should look something like Step8: LSTM Cell Step9: RNN Output Step10: Training loss Step11: Optimizer Step12: Build the network Step13: Hyperparameters Step14: Time for training Step15: Saved checkpoints Step16: Sampling Step17: Here, pass in the path to a checkpoint and sample from the network.
<ASSISTANT_TASK:> Python Code: import time from collections import namedtuple import numpy as np import tensorflow as tf with open('anna.txt', 'r') as f: text=f.read() vocab = set(text) vocab_to_int = {c: i for i, c in enumerate(vocab)} int_to_vocab = dict(enumerate(vocab)) encoded = np.array([vocab_to_int[c] for c in text], dtype=np.int32) text[:100] encoded[:100] len(vocab) def get_batches(arr, n_seqs, n_steps): '''Create a generator that returns batches of size n_seqs x n_steps from arr. Arguments --------- arr: Array you want to make batches from n_seqs: Batch size, the number of sequences per batch n_steps: Number of sequence steps per batch ''' # Get the number of characters per batch and number of batches we can make characters_per_batch = n_steps * n_seqs n_batches = len(arr) // characters_per_batch # Keep only enough characters to make full batches arr = arr[:n_batches*characters_per_batch] # Reshape into n_seqs rows arr = arr.reshape((n_seqs, -1)) for n in range(0, arr.shape[1], n_steps): # The features x = arr[:, n:n+n_steps] # The targets, shifted by one y = arr[:, n+1:n+1+n_steps] yield x, y batches = get_batches(encoded, 10, 50) x, y = next(batches) print('x\n', x[:10, :10]) print('\ny\n', y[:10, :10]) def build_inputs(batch_size, num_steps): ''' Define placeholders for inputs, targets, and dropout Arguments --------- batch_size: Batch size, number of sequences per batch num_steps: Number of sequence steps in a batch ''' # Declare placeholders we'll feed into the graph inputs = tf.placeholder(tf.int32, [batch_size, num_steps], name='inputs') targets = tf.placeholder(tf.int32, [batch_size, num_steps], name='targets') # Keep probability placeholder for drop out layers keep_prob = tf.placeholder(tf.float32, name='keep_prob') return inputs, targets, keep_prob def build_lstm(lstm_size, num_layers, batch_size, keep_prob): ''' Build LSTM cell. Arguments --------- keep_prob: Scalar tensor (tf.placeholder) for the dropout keep probability lstm_size: Size of the hidden layers in the LSTM cells num_layers: Number of LSTM layers batch_size: Batch size ''' ### Build the LSTM Cell # Use a basic LSTM cell lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) # Add dropout to the cell outputs drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) # Stack up multiple LSTM layers, for deep learning cell = tf.contrib.rnn.MultiRNNCell([drop]*num_layers) initial_state = cell.zero_state(batch_size, tf.float32) return cell, initial_state def build_output(lstm_output, in_size, out_size): ''' Build a softmax layer, return the softmax output and logits. Arguments --------- lstm_output: List of output tensors from the LSTM layer in_size: Size of the input tensor, for example, size of the LSTM cells out_size: Size of this softmax layer ''' # Reshape output so it's a bunch of rows, one row for each step for each sequence. # Concatenate lstm_output over axis 1 (the columns) seq_output = tf.concat(lstm_output, axis=1) # Reshape seq_output to a 2D tensor with lstm_size columns x = tf.reshape(seq_output, [-1, in_size]) # Connect the RNN outputs to a softmax layer with tf.variable_scope('softmax'): # Create the weight and bias variables here softmax_w = tf.Variable(tf.truncated_normal([in_size, out_size], stddev=0.1)) softmax_b = tf.Variable(tf.zeros(out_size)) # Since output is a bunch of rows of RNN cell outputs, logits will be a bunch # of rows of logit outputs, one for each step and sequence logits = tf.matmul(x, siftmax_w) + softmax_b # Use softmax to get the probabilities for predicted characters out = tf.nn.softmax(logits, name='predictions') return out, logits def build_loss(logits, targets, lstm_size, num_classes): ''' Calculate the loss from the logits and the targets. Arguments --------- logits: Logits from final fully connected layer targets: Targets for supervised learning lstm_size: Number of LSTM hidden units num_classes: Number of classes in targets ''' # One-hot encode targets and reshape to match logits, one row per sequence per step y_one_hot = y_reshaped = # Softmax cross entropy loss loss = return loss def build_optimizer(loss, learning_rate, grad_clip): ''' Build optmizer for training, using gradient clipping. Arguments: loss: Network loss learning_rate: Learning rate for optimizer ''' # Optimizer for training, using gradient clipping to control exploding gradients tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), grad_clip) train_op = tf.train.AdamOptimizer(learning_rate) optimizer = train_op.apply_gradients(zip(grads, tvars)) return optimizer class CharRNN: def __init__(self, num_classes, batch_size=64, num_steps=50, lstm_size=128, num_layers=2, learning_rate=0.001, grad_clip=5, sampling=False): # When we're using this network for sampling later, we'll be passing in # one character at a time, so providing an option for that if sampling == True: batch_size, num_steps = 1, 1 else: batch_size, num_steps = batch_size, num_steps tf.reset_default_graph() # Build the input placeholder tensors self.inputs, self.targets, self.keep_prob = build_inputs(batch_size, num_steps) # Build the LSTM cell cell, self.initial_state = build_lstm(lstm_size, num_layers, batch_size, keep_prob) ### Run the data through the RNN layers # First, one-hot encode the input tokens x_one_hot = tf.one_hot(self.inputs, num_classes) # Run each sequence step through the RNN with tf.nn.dynamic_rnn outputs, state = tf.nn.dynamic_rnn(cell, x_one_hot, initial_state=self.initial_state) self.final_state = state # Get softmax predictions and logits self.prediction, self.logits = build_output(outputs, lstm_size, num_classes) # Loss and optimizer (with gradient clipping) #self.loss = #self.optimizer = batch_size = 10 # Sequences per batch num_steps = 50 # Number of sequence steps per batch lstm_size = 128 # Size of hidden layers in LSTMs num_layers = 2 # Number of LSTM layers learning_rate = 0.01 # Learning rate keep_prob = 0.5 # Dropout keep probability epochs = 20 # Save every N iterations save_every_n = 200 model = CharRNN(len(vocab), batch_size=batch_size, num_steps=num_steps, lstm_size=lstm_size, num_layers=num_layers, learning_rate=learning_rate) saver = tf.train.Saver(max_to_keep=100) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Use the line below to load a checkpoint and resume training #saver.restore(sess, 'checkpoints/______.ckpt') counter = 0 for e in range(epochs): # Train network new_state = sess.run(model.initial_state) loss = 0 for x, y in get_batches(encoded, batch_size, num_steps): counter += 1 start = time.time() feed = {model.inputs: x, model.targets: y, model.keep_prob: keep_prob, model.initial_state: new_state} batch_loss, new_state, _ = sess.run([model.loss, model.final_state, model.optimizer], feed_dict=feed) end = time.time() print('Epoch: {}/{}... '.format(e+1, epochs), 'Training Step: {}... '.format(counter), 'Training loss: {:.4f}... '.format(batch_loss), '{:.4f} sec/batch'.format((end-start))) if (counter % save_every_n == 0): saver.save(sess, "checkpoints/i{}_l{}.ckpt".format(counter, lstm_size)) saver.save(sess, "checkpoints/i{}_l{}.ckpt".format(counter, lstm_size)) tf.train.get_checkpoint_state('checkpoints') def pick_top_n(preds, vocab_size, top_n=5): p = np.squeeze(preds) p[np.argsort(p)[:-top_n]] = 0 p = p / np.sum(p) c = np.random.choice(vocab_size, 1, p=p)[0] return c def sample(checkpoint, n_samples, lstm_size, vocab_size, prime="The "): samples = [c for c in prime] model = CharRNN(len(vocab), lstm_size=lstm_size, sampling=True) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, checkpoint) new_state = sess.run(model.initial_state) for c in prime: x = np.zeros((1, 1)) x[0,0] = vocab_to_int[c] feed = {model.inputs: x, model.keep_prob: 1., model.initial_state: new_state} preds, new_state = sess.run([model.prediction, model.final_state], feed_dict=feed) c = pick_top_n(preds, len(vocab)) samples.append(int_to_vocab[c]) for i in range(n_samples): x[0,0] = c feed = {model.inputs: x, model.keep_prob: 1., model.initial_state: new_state} preds, new_state = sess.run([model.prediction, model.final_state], feed_dict=feed) c = pick_top_n(preds, len(vocab)) samples.append(int_to_vocab[c]) return ''.join(samples) tf.train.latest_checkpoint('checkpoints') checkpoint = tf.train.latest_checkpoint('checkpoints') samp = sample(checkpoint, 2000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = 'checkpoints/i200_l512.ckpt' samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = 'checkpoints/i600_l512.ckpt' samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = 'checkpoints/i1200_l512.ckpt' samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Reading events Step2: Events objects are essentially numpy arrays with three columns Step3: Plotting events Step4: Writing events
<ASSISTANT_TASK:> Python Code: # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Chris Holdgraf <choldgraf@berkeley.edu> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' events_1 = mne.read_events(fname, include=1) events_1_2 = mne.read_events(fname, include=[1, 2]) events_not_4_32 = mne.read_events(fname, exclude=[4, 32]) print(events_1[:5], '\n\n---\n\n', events_1_2[:5], '\n\n') for ind, before, after in events_1[:5]: print("At sample %d stim channel went from %d to %d" % (ind, before, after)) fig, axs = plt.subplots(1, 3, figsize=(15, 5)) mne.viz.plot_events(events_1, axes=axs[0], show=False) axs[0].set(title="restricted to event 1") mne.viz.plot_events(events_1_2, axes=axs[1], show=False) axs[1].set(title="restricted to event 1 or 2") mne.viz.plot_events(events_not_4_32, axes=axs[2], show=False) axs[2].set(title="keep all but 4 and 32") plt.setp([ax.get_xticklabels() for ax in axs], rotation=45) plt.tight_layout() plt.show() mne.write_events('example-eve.fif', events_1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. data transformations Step2: 3. Compute word counts (only for important_words) Step3: 4. Show 'perfect' word counts Step4: Train-Validation split Step5: 6. Convert train_data and validation_data into multi-dimensional arrays. Step6: Building on logistic regression with no L2 penalty assignment Step8: Adding L2 penalty Step9: 1. Quiz question Step10: 2. Quiz question Step11: Explore effects of L2 regularization Step12: Compare coefficients Step13: 14. observe the effect of increasing L2 penalty on the 10 words Step15: 3. Quiz Question Step16: 4. Quiz question Step17: 5. Quiz question
<ASSISTANT_TASK:> Python Code: products = pd.read_csv('amazon_baby_subset.csv') products = products.fillna({'review':''}) # fill in N/A's in the review column def remove_punctuation(text): import string return text.translate(None, string.punctuation) products['review_clean'] = products['review'].apply(remove_punctuation) products.head(3) with open('important_words.json') as important_words_file: important_words = json.load(important_words_file) print important_words[:3] for word in important_words: products[word] = products['review_clean'].apply(lambda s : s.split().count(word)) products['perfect'][:3] with open('module-4-assignment-train-idx.json') as train_data_file: train_data_idx = json.load(train_data_file) with open('module-4-assignment-validation-idx.json') as validation_data_file: validation_data_idx = json.load(validation_data_file) print train_data_idx[:3] print validation_data_idx[:3] print len(train_data_idx) print len(validation_data_idx) train_data = products.iloc[train_data_idx] train_data.head(2) validation_data = products.iloc[validation_data_idx] validation_data.head(2) def get_numpy_data(dataframe, features, label): dataframe['constant'] = 1 features = ['constant'] + features features_frame = dataframe[features] feature_matrix = features_frame.as_matrix() label_sarray = dataframe[label] label_array = label_sarray.as_matrix() return(feature_matrix, label_array) feature_matrix_train, sentiment_train = get_numpy_data(train_data, important_words, 'sentiment') feature_matrix_valid, sentiment_valid = get_numpy_data(validation_data, important_words, 'sentiment') print feature_matrix_train.shape print feature_matrix_valid.shape ''' feature_matrix: N * D(intercept term included) coefficients: D * 1 predictions: N * 1 produces probablistic estimate for P(y_i = +1 | x_i, w). estimate ranges between 0 and 1. ''' def predict_probability(feature_matrix, coefficients): # Take dot product of feature_matrix and coefficients # YOUR CODE HERE score = np.dot(feature_matrix, coefficients) # N * 1 # Compute P(y_i = +1 | x_i, w) using the link function # YOUR CODE HERE predictions = 1.0/(1+np.exp(-score)) # return predictions return predictions def feature_derivative_with_L2(errors, feature, coefficient, l2_penalty, feature_is_constant): # Compute the dot product of errors and feature ## YOUR CODE HERE errors: N * 1 feature: N * 1 derivative: 1 coefficient: 1 derivative = np.dot(np.transpose(errors), feature) # add L2 penalty term for any feature that isn't the intercept. if not feature_is_constant: ## YOUR CODE HERE derivative -= 2 * l2_penalty * coefficient return derivative def compute_log_likelihood_with_L2(feature_matrix, sentiment, coefficients, l2_penalty): indicator = (sentiment==+1) scores = np.dot(feature_matrix, coefficients) # scores.shape (53072L, 1L) # indicator.shape (53072L,) # lp = np.sum((indicator-1)*scores - np.log(1. + np.exp(-scores))) - l2_penalty*np.sum(coefficients[1:]**2) lp = np.sum((np.transpose(np.array([indicator]))-1)*scores - np.log(1. + np.exp(-scores))) - l2_penalty*np.sum(coefficients[1:]**2) return lp # coefficients: D * 1 def logistic_regression_with_L2(feature_matrix, sentiment, initial_coefficients, step_size, l2_penalty, max_iter): coefficients = np.array(initial_coefficients) # make sure it's a numpy array for itr in xrange(max_iter): # Predict P(y_i = +1|x_i,w) using your predict_probability() function ## YOUR CODE HERE predictions = predict_probability(feature_matrix, coefficients) # Compute indicator value for (y_i = +1) indicator = (sentiment==+1) # Compute the errors as indicator - predictions errors = np.transpose(np.array([indicator])) - predictions for j in xrange(len(coefficients)): # loop over each coefficient is_intercept = (j == 0) # Recall that feature_matrix[:,j] is the feature column associated with coefficients[j]. # Compute the derivative for coefficients[j]. Save it in a variable called derivative ## YOUR CODE HERE derivative = feature_derivative_with_L2(errors, feature_matrix[:,j], coefficients[j], l2_penalty, is_intercept) # add the step size times the derivative to the current coefficient ## YOUR CODE HERE coefficients[j] += step_size*derivative # Checking whether log likelihood is increasing if itr <= 15 or (itr <= 100 and itr % 10 == 0) or (itr <= 1000 and itr % 100 == 0) \ or (itr <= 10000 and itr % 1000 == 0) or itr % 10000 == 0: lp = compute_log_likelihood_with_L2(feature_matrix, sentiment, coefficients, l2_penalty) print 'iteration %*d: log likelihood of observed labels = %.8f' % \ (int(np.ceil(np.log10(max_iter))), itr, lp) return coefficients initial_coefficients = np.zeros((194,1)) step_size = 5e-6 max_iter = 501 coefficients_0_penalty = logistic_regression_with_L2(feature_matrix_train , sentiment_train , initial_coefficients, step_size, 0, max_iter) coefficients_4_penalty = logistic_regression_with_L2(feature_matrix_train , sentiment_train , initial_coefficients, step_size, 4, max_iter) coefficients_10_penalty = logistic_regression_with_L2(feature_matrix_train , sentiment_train , initial_coefficients, step_size, 10, max_iter) coefficients_1e2_penalty = logistic_regression_with_L2(feature_matrix_train , sentiment_train , initial_coefficients, step_size, 1e2, max_iter) coefficients_1e3_penalty = logistic_regression_with_L2(feature_matrix_train , sentiment_train , initial_coefficients, step_size, 1e3, max_iter) coefficients_1e5_penalty = logistic_regression_with_L2(feature_matrix_train , sentiment_train , initial_coefficients, step_size, 1e5, max_iter) coefficients_0_penalty_without_intercept = list(coefficients_0_penalty[1:]) # exclude intercept word_coefficient_tuples = [(word, coefficient) for word, coefficient in zip(important_words, coefficients_0_penalty_without_intercept)] word_coefficient_tuples = sorted(word_coefficient_tuples, key=lambda x:x[1], reverse=True) positive_words = [] for i in range(5): positive_words.append(word_coefficient_tuples[:5][i][0]) positive_words negative_words = [] for i in range(5): negative_words.append(word_coefficient_tuples[-5:][i][0]) negative_words table = pd.DataFrame(data=[coefficients_0_penalty.flatten(), coefficients_4_penalty.flatten(), coefficients_10_penalty.flatten(), coefficients_1e2_penalty.flatten(), coefficients_1e3_penalty.flatten(), coefficients_1e5_penalty.flatten()], index=[0, 4, 10, 100.0, 1000.0, 100000.0], columns=['(intercept)'] + important_words) table.head(2) import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = 10, 6 def make_coefficient_plot(table, positive_words, negative_words, l2_penalty_list): cmap_positive = plt.get_cmap('Reds') cmap_negative = plt.get_cmap('Blues') xx = l2_penalty_list plt.plot(xx, [0.]*len(xx), '--', lw=1, color='k') table_positive_words = table[positive_words] table_negative_words = table[negative_words] #del table_positive_words['word'] #del table_negative_words['word'] for i, value in enumerate(positive_words): color = cmap_positive(0.8*((i+1)/(len(positive_words)*1.2)+0.15)) plt.plot(xx, table_positive_words[value].as_matrix().flatten(), '-', label=positive_words[i], linewidth=4.0, color=color) for i, value in enumerate(negative_words): color = cmap_negative(0.8*((i+1)/(len(negative_words)*1.2)+0.15)) plt.plot(xx, table_negative_words[value].as_matrix().flatten(), '-', label=negative_words[i], linewidth=4.0, color=color) plt.legend(loc='best', ncol=3, prop={'size':16}, columnspacing=0.5) plt.axis([1, 1e5, -1, 2]) plt.title('Coefficient path') plt.xlabel('L2 penalty ($\lambda$)') plt.ylabel('Coefficient value') plt.xscale('log') plt.rcParams.update({'font.size': 18}) plt.tight_layout() make_coefficient_plot(table, positive_words, negative_words, l2_penalty_list=[0, 4, 10, 1e2, 1e3, 1e5]) feature_matrix: N * D coefficients: D * 1 predictions: N * 1 training_accuracy = [] for coefficient in [coefficients_0_penalty, coefficients_4_penalty, coefficients_10_penalty, coefficients_1e2_penalty, coefficients_1e3_penalty, coefficients_1e5_penalty]: predictions = predict_probability(feature_matrix_train, coefficient) correct_num = np.sum((np.transpose(predictions.flatten())> 0.5) == (np.array(sentiment_train)>0)) total_num = len(sentiment_train) #print "correct_num: {}, total_num: {}".format(correct_num, total_num) training_accuracy.append(correct_num * 1./ total_num) #print accuracy l2_penalty_list=[x for x in range(6)] plt.plot(l2_penalty_list, training_accuracy,'ro') plt.title('training_accuracy') plt.xlabel('L2 penalty ($\lambda$)') plt.ylabel('training_accuracy') plt.show() [0, 4, 10, 1e2, 1e3, 1e5][training_accuracy.index(max(training_accuracy))] training_accuracy[training_accuracy.index(max(training_accuracy))] vali_accuracy = [] for coefficient in [coefficients_0_penalty, coefficients_4_penalty, coefficients_10_penalty, coefficients_1e2_penalty, coefficients_1e3_penalty, coefficients_1e5_penalty]: predictions = predict_probability(feature_matrix_valid, coefficient) correct_num = np.sum((np.transpose(predictions.flatten())> 0.5) == (np.array(sentiment_valid)>0)) total_num = len(sentiment_valid) #print "correct_num: {}, total_num: {}".format(correct_num, total_num) vali_accuracy.append(correct_num * 1./ total_num) #print accuracy l2_penalty_list=[x for x in range(6)] plt.plot(l2_penalty_list, vali_accuracy,'ro') plt.title('vali_accuracy') plt.xlabel('L2 penalty ($\lambda$)') plt.ylabel('vali_accuracy') plt.show() [0, 4, 10, 1e2, 1e3, 1e5][vali_accuracy.index(max(vali_accuracy))] vali_accuracy[vali_accuracy.index(max(vali_accuracy))] plt.plot(l2_penalty_list, training_accuracy,'g') plt.plot(l2_penalty_list, vali_accuracy,'r') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Données
<ASSISTANT_TASK:> Python Code: from jyquickhelper import add_notebook_menu add_notebook_menu() from pyensae.datasource import download_data files = download_data("td2a_eco_exercices_de_manipulation_de_donnees.zip", url="https://github.com/sdpython/ensae_teaching_cs/raw/master/_doc/notebooks/td2a_eco/data/") files <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This code sets up Ipython Notebook environments (lines beginning with %), and loads several libraries and functions. The core scientific stack in python consists of a number of free libraries. The ones I have loaded above include Step2: Vectors and Lists Step3: We could have done this by defining a python list and converting it to an array Step4: Matrix Addition and Subtraction Step5: Adding or subtracting two matrices Step6: Matrix Multiplication Step7: Multiplying two matricies Step8: We will use the numpy dot operator to perform the these multiplications. You can use it two ways to yield the same result Step9: Matrix Division Step10: Check that $C\times C^{-1} = I$ Step11: Transposing a Matrix Step12: One important property of transposing a matrix is the transpose of a product of two matrices. Let matrix A be of dimension $N \times M$ and let B of of dimension $M \times P$. Then Step13: Mechanics Step14: Logic, Comparison Step15: Concatenate, Reshape Step16: Random Numbers Step17: Numpy load, save data files Step18: Similarity Step19: Example Step20: Let's add the bias, i.e. a column of $1$s to the explanatory variables Step21: Closed-form Linear Regression Step22: Multiple Linear Regression Step23: Evaluation Step24: Regularization, Ridge-Regression
<ASSISTANT_TASK:> Python Code: %matplotlib inline import math import numpy as np import matplotlib.pyplot as plt ##import seaborn as sbn ##from scipy import * x = .5 print x x_vector = np.array([1,2,3]) print x_vector print type(x_vector) c_list = [1,2] print "The list:",c_list print "Has length:", len(c_list) c_vector = np.array(c_list) print "The vector:", c_vector print "Has shape:",c_vector.shape z = [5,6] print "This is a list, not an array:",z print type(z) A = np.array([[0, 1, 2], [5, 6, 7]]) print A.shape print type(A) v = np.array([1,2,3,4]) print v.shape print len(v) A result = A + 3 #or result = 3 + A print result B = np.random.randn(2,2) print B A = np.array([[1,0], [0,1]]) A A*B A * 3 # Let's redefine A and C to demonstrate matrix multiplication: A = np.arange(6).reshape((3,2)) C = np.random.randn(2,2) print A.shape print C.shape print A.dot(C) print np.dot(A,C) # What would happen to C.dot(A) # note, we need a square matrix (# rows = # cols), use C: C_inverse = np.linalg.inv(C) print C_inverse print C.dot(C_inverse) print "Is identical to:" print C_inverse.dot(C) A = np.arange(6).reshape((6,1)) B = np.arange(6).reshape((1,6)) A.dot(B) B.dot(A) A = np.arange(6).reshape((3,2)) B = np.arange(8).reshape((2,4)) print "A is" print A print "The Transpose of A is" print A.T print B.T.dot(A.T) print "Is identical to:" print (A.dot(B)).T B.shape B[0, 3] A = np.arange(12).reshape((3,4)) A A[2,:].shape A[:,1].reshape(1,3).shape a = np.arange(10) s = slice(2,7,2) print a[s] a = np.arange(10) b = a[2:7:2] print b a = np.arange(10) b = a[5] print b a = np.arange(10) print a print a[2:5] import numpy as np a = np.arange(10) print a[2:5] a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print a # slice items starting from index print 'Now we will slice the array from the index a[1:]' print a[1:] # array to begin with a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print 'Our array is:' print a print '\n' # this returns array of items in the second column print 'The items in the second column are:' print a[...,1] print '\n' # Now we will slice all items from the second row print 'The items in the second row are:' print a[1,...] print '\n' # Now we will slice all items from column 1 onwards print 'The items column 1 onwards are:' print a[...,1:] A = np.random.rand(5,5)*10 print A print (A < 5) print A[A < 5] A[A<5] = 0 A A[A>=5] = 1 A np.ones((10,5), int) np.zeros((10,5), int) np.eye(5, dtype="int") v1 = np.random.rand(100) v2 = np.random.randn(100) plt.plot(range(v1.shape[0]), v1, '.') plt.plot(range(v2.shape[0]), v2, '.') plt.hist(v1) ; v2 = np.random.randn(10000) plt.hist(v2, bins=100) ; v3 = np.random.beta(3,2, 1000) plt.hist(v3, bins=100) ; ls -l HW03/ %%sh ./HW03/preprocess_data.sh HW03/Camera.csv HW03/Camera_cleaned.csv head HW03/Camera_cleaned.csv DATA = np.genfromtxt('HW03/Camera_cleaned.csv', delimiter=';') DATA. np.max(DATA[1:,2]) np.nanargmin() ### Pure iterative Python ### points = [[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]] qPoint = [4,5,3] minIdx = -1 minDist = -1 for idx, point in enumerate(points): # iterate over all points print "index is %d, point is %s" % (idx, point) dist = sum([(dp-dq)**2 for dp,dq in zip(point,qPoint)])**0.5 # compute the euclidean distance for each point to q if dist < minDist or minDist < 0: # if necessary, update minimum distance and index of the corresponding point minDist = dist minIdx = idx print 'Nearest point to q: ', points[minIdx] zip(point, qPoint) # # # Equivalent NumPy vectorization # # # import numpy as np points = np.array([[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]]) qPoint = np.array([4,5,3]) minIdx = np.argmin(np.linalg.norm(points-qPoint,axis=1)) # compute all euclidean distances at once and return the index of the smallest one print 'Nearest point to q: ', points[minIdx] print points.shape print qPoint.shape print points print qPoint print points-qPoint from numpy.linalg import norm norm(points-qPoint) 1.0-points[0,:].dot(qPoint)/(norm(points[0,:])*norm(qPoint)) n = 100 # numeber of samples Xr = np.random.rand(n)*99.0 y = -7.3 + 2.5*Xr + np.random.randn(n)*27.0 plt.plot(Xr, y, "o", alpha=0.5) X = np.vstack((np.ones(n), Xr)).T print X.shape X[0:10,:] beta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) yhat = X.dot(beta) yhat.shape plt.plot(X[:,1], y, "o", alpha=0.5) plt.plot(X[:,1], yhat, "-", alpha=1, color="red") n = 100 # numeber of samples X1 = np.random.rand(n)*99.0 X2 = np.random.rand(n)*51.0 - 26.8 X3 = np.random.rand(n)*5.0 + 6.1 X4 = np.random.rand(n)*1.0 - 0.5 X5 = np.random.rand(n)*300.0 y_m = -7.3 + 2.5*X1 + -7.9*X2 + 1.5*X3 + 10.0*X4 + 0.13*X5 + np.random.randn(n)*7.0 plt.hist(y_m, bins=20) ; X_m = np.vstack((np.ones(n), X1, X2, X3, X4, X5)).T X_m.shape beta_m = np.linalg.inv(X_m.T.dot(X_m)).dot(X_m.T).dot(y_m) beta_m yhat_m = X.dot(beta_m) yhat_m.shape import math RSMD = math.sqrt(np.square(yhat_m-y_m).sum()/n) print RSMD p = X.shape[1] ## get number of parameters lam = 10.0 p, lam beta2 = np.linalg.inv(X.T.dot(X) + lam*np.eye(p)).dot(X.T).dot(y) yhat2 = X.dot(beta2) RSMD2 = math.sqrt(np.square(yhat2-y).sum()/n) print RSMD2 ##n = float(X.shape[0]) print " RMSE = ", math.sqrt(np.square(yhat-y).sum()/n) print "Ridge RMSE = ", math.sqrt(np.square(yhat2-y).sum()/n) plt.plot(X[:,1], y, "o", alpha=0.5) plt.plot(X[:,1], yhat, "-", alpha=0.7, color="red") plt.plot(X[:,1], yhat2, "-", alpha=0.7, color="green") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load in house sales data Step2: If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the other Week 2 notebook. For this notebook, however, we will work with the existing features. Step3: Now we will write a function that will accept an SFrame, a list of feature names (e.g. ['sqft_living', 'bedrooms']) and an target feature e.g. ('price') and will return two things Step4: For testing let's use the 'sqft_living' feature and a constant as our features and price as our output Step5: Predicting output given regression weights Step6: np.dot() also works when dealing with a matrix and a vector. Recall that the predictions from all the observations is just the RIGHT (as in weights on the right) dot product between the features matrix and the weights vector. With this in mind finish the following predict_output function to compute the predictions for an entire matrix of features given the matrix and the weights Step7: If you want to test your code run the following cell Step8: Computing the Derivative Step9: To test your feature derivartive run the following Step10: Gradient Descent Step11: Discussion Step12: A few things to note before we run the gradient descent. Since the gradient is a sum over all the data points and involves a product of an error and a feature the gradient itself will be very large since the features are large (squarefeet) and the output is large (prices). So while you might expect "tolerance" to be small, small is only relative to the size of the features. Step13: Although the gradient descent is designed for multiple regression since the constant is now a feature we can use the gradient descent function to estimat the parameters in the simple regression on squarefeet. The folowing cell sets up the feature_matrix, output, initial weights and step size for the first model Step14: Next run your gradient descent with the above parameters. Step15: How do your weights compare to those achieved in week 1 (don't expect them to be exactly the same)? Step16: Now compute your predictions using test_simple_feature_matrix and your weights from above. Step17: Quiz Question Step18: Now that you have the predictions on test data, compute the RSS on the test data set. Save this value for comparison later. Recall that RSS is the sum of the squared errors (difference between prediction and output). Step19: Running a multiple regression Step20: Use the above parameters to estimate the model weights. Record these values for your quiz. Step21: Use your newly estimated weights and the predict_output function to compute the predictions on the TEST data. Don't forget to create a numpy array for these features from the test set first! Step22: Quiz Question Step23: What is the actual price for the 1st house in the test data set? Step24: Quiz Question
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('C:\Anaconda2\envs\dato-env\Lib\site-packages') import graphlab sales = graphlab.SFrame('kc_house_data.gl/') import numpy as np # note this allows us to refer to numpy as np instead def get_numpy_data(data_sframe, features, output): data_sframe['constant'] = 1 # this is how you add a constant column to an SFrame # add the column 'constant' to the front of the features list so that we can extract it along with the others: features = ['constant'] + features # this is how you combine two lists # select the columns of data_SFrame given by the features list into the SFrame features_sframe (now including constant): features_sframe = data_sframe[features] # the following line will convert the features_SFrame into a numpy matrix: feature_matrix = features_sframe.to_numpy() # assign the column of data_sframe associated with the output to the SArray output_sarray output_sarray = data_sframe[output] # the following will convert the SArray into a numpy array by first converting it to a list output_array = output_sarray.to_numpy() return(feature_matrix, output_array) (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') # the [] around 'sqft_living' makes it a list print example_features[0,:] # this accesses the first row of the data the ':' indicates 'all columns' print example_output[0] # and the corresponding output my_weights = np.array([1., 1.]) # the example weights my_features = example_features[0,] # we'll use the first data point predicted_value = np.dot(my_features, my_weights) print predicted_value def predict_output(feature_matrix, weights): # assume feature_matrix is a numpy matrix containing the features as columns and weights is a corresponding numpy array # create the predictions vector by using np.dot() predictions = np.dot(feature_matrix, weights) return(predictions) test_predictions = predict_output(example_features, my_weights) print test_predictions[0] # should be 1181.0 print test_predictions[1] # should be 2571.0 def feature_derivative(errors, feature): # Assume that errors and feature are both numpy arrays of the same length (number of data points) # compute twice the dot product of these vectors as 'derivative' and return the value derivative = 2*np.dot(errors, feature) return(derivative) (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') my_weights = np.array([0., 0.]) # this makes all the predictions 0 test_predictions = predict_output(example_features, my_weights) # just like SFrames 2 numpy arrays can be elementwise subtracted with '-': errors = test_predictions - example_output # prediction errors in this case is just the -example_output feature = example_features[:,0] # let's compute the derivative with respect to 'constant', the ":" indicates "all rows" derivative = feature_derivative(errors, feature) print derivative print -np.sum(example_output)*2 # should be the same as derivative print example_output print errors print feature from math import sqrt # recall that the magnitude/length of a vector [g[0], g[1], g[2]] is sqrt(g[0]^2 + g[1]^2 + g[2]^2) def regression_gradient_descent(feature_matrix, output, initial_weights, step_size, tolerance): converged = False weights = np.array(initial_weights) # make sure it's a numpy array while not converged: # compute the predictions based on feature_matrix and weights using your predict_output() function predictions = predict_output(feature_matrix, weights) # compute the errors as predictions - output errors = predictions - output gradient_sum_squares = 0 # initialize the gradient sum of squares # while we haven't reached the tolerance yet, update each feature's weight for i in range(len(weights)): # loop over each weight # Recall that feature_matrix[:, i] is the feature column associated with weights[i] # compute the derivative for weight[i]: derivative = feature_derivative(errors, feature_matrix[:, i]) # add the squared value of the derivative to the gradient magnitude (for assessing convergence) gradient_sum_squares += (derivative**2) # subtract the step size times the derivative from the current weight weights[i] -= (step_size * derivative) # compute the square-root of the gradient sum of squares to get the gradient matnigude: gradient_magnitude = sqrt(gradient_sum_squares) if gradient_magnitude < tolerance: converged = True return(weights) train_data,test_data = sales.random_split(.8,seed=0) # let's test out the gradient descent simple_features = ['sqft_living'] my_output = 'price' (simple_feature_matrix, output) = get_numpy_data(train_data, simple_features, my_output) initial_weights = np.array([-47000., 1.]) step_size = 7e-12 tolerance = 2.5e7 test_weight = regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, tolerance) print test_weight (test_simple_feature_matrix, test_output) = get_numpy_data(test_data, simple_features, my_output) test_predictions = predict_output(test_simple_feature_matrix, test_weight) print test_predictions print test_predictions[0] test_residuals = test_output - test_predictions test_RSS = (test_residuals * test_residuals).sum() print test_RSS model_features = ['sqft_living', 'sqft_living15'] # sqft_living15 is the average squarefeet for the nearest 15 neighbors. my_output = 'price' (feature_matrix, output) = get_numpy_data(train_data, model_features, my_output) initial_weights = np.array([-100000., 1., 1.]) step_size = 4e-12 tolerance = 1e9 weight_2 = regression_gradient_descent(feature_matrix, output, initial_weights, step_size, tolerance) print weight_2 (test_feature_matrix, test_output) = get_numpy_data(test_data, model_features, my_output) test_predictions_2 = predict_output(test_feature_matrix, weight_2) print test_predictions_2 print test_predictions_2[0] print test_data['price'][0] test_residuals_2 = test_output - test_predictions_2 test_RSS_2 = (test_residuals_2**2).sum() print test_RSS_2 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: While the images have been de-trended, they still have the original WCS from the telescope. They aren't aligned. You could use ds9 to check this trivially, but lets do it with astropy instead. Step2: Use the astrometry.net client (solve-field) to determine an accurate WCS solution for this field. Step3: Options you might want to look at Step4: or Step5: Use the above info to solve for the WCS for both images. Step6: The commands I used are in Register_images_solution.txt and the output I generated in the out/ subdirectory.
<ASSISTANT_TASK:> Python Code: !ls *fits import astropy.io.fits as afits from astropy.wcs import WCS from astropy.visualization import ZScaleInterval import matplotlib %matplotlib notebook %pylab f1 = afits.open('wdd7.040920_0452.051_6.fits') f2 = afits.open('wdd7.080104_0214.1025_6.fits') f1wcs = WCS(f1[0].header) f2wcs = WCS(f2[0].header) zscaler = ZScaleInterval(nsamples=1000, contrast=0.25) f1d = zscaler(f1[0].data) f2d = zscaler(f2[0].data) fig = figure(figsize=(10,4)) ax = fig.add_subplot(1,1,1) ax.imshow(f1d.T, cmap='Reds') ax.imshow(f2d.T, cmap='Blues', alpha=0.5) tight_layout() xlabel('x') ylabel('y') savefig('out/original_misalignment.pdf') !solve-field -h print(WCS(f1[0].header)) !imhead wdd7.040920_0452.051_6.fits !wcs-to-tan -h !cat Register_images_solutions_commands.txt <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step4: Common functions Step5: Get charges Step6: Parameterize molecule in GAFF with ANTECHAMBER and ACPYPE Step7: Move molecules Step8: Minimize Step9: Equilibrate Step10: Setup and submit parallel tempering (PT) Step11: The energies from the simulations can be read in as a pandas DataFrame using panedr and then analyzed or plotted to check on equilibration, convergence, etc. Step12: Setup for several systems/molecules at once Step13: Copied over the g16.gesp files and renamed them for each molecule. Step14: Move molecules Step15: Minimize Step16: Made index file (called index-ycp.ndx) with solutes and solvent groups. Step17: !!! Need to check distance on restraint !!! Step18: The volumes seem to look okay.
<ASSISTANT_TASK:> Python Code: import re, os, sys, shutil import shlex, subprocess import glob import pandas as pd import panedr import numpy as np import MDAnalysis as mda import nglview import matplotlib.pyplot as plt import parmed as pmd import py import scipy from scipy import stats from importlib import reload from thtools import cd from paratemp import copy_no_overwrite from paratemp import geometries as gm from paratemp import coordinate_analysis as ca import paratemp.para_temp_setup as pts import paratemp as pt from gautools import submit_gaussian as subg from gautools.tools import use_gen_template as ugt def plot_prop_PT(edict, prop): fig, axes = plt.subplots(4, 4, figsize=(16,16)) for i in range(16): ax = axes.flat[i] edict[i][prop].plot(ax=ax) fig.tight_layout() return fig, axes def plot_e_props(df, labels, nrows=2, ncols=2): fig, axes = plt.subplots(nrows, ncols, sharex=True) for label, ax in zip(labels, axes.flat): df[label].plot(ax=ax) ax.set_title(label) fig.tight_layout() return fig, axes def plot_rd(univ): # rd = reaction distance univ.calculate_distances(rd=(20,39)) fig, axes = plt.subplots(1, 2, figsize=(12, 4)) univ.data.rd.plot(ax=axes[0]) univ.data.rd.hist(ax=axes[1], grid=False) print(f'reaction distance mean: {univ.data.rd.mean():.2f} and sd: {univ.data.rd.std():.2f}') return fig, axes def plot_hist_dist(univ, name, indexes=None): if indexes is not None: kwargs = {name: indexes} univ.calculate_distances(**kwargs) fig, axes = plt.subplots(1, 2, figsize=(12, 4)) univ.data[name].plot(ax=axes[0]) univ.data[name].hist(ax=axes[1], grid=False) print(f'{name} distance mean: {univ.data[name].mean():.2f} and sd: {univ.data[name].std():.2f}') def get_solvent_count_solvate(proc): for line in proc.stdout.split('\n'): m = re.search(r'(?:atoms\):\s+)(\d+)(?:\s+residues)', line) if m: return int(m.group(1)) else: raise ValueError('Solvent count not found.') def set_solv_count(n_gro, s_count, res_name='DCM', prepend='unequal-'): Remove solvent residues from the end of a gro file to match s_count This assumes all non-solvent molecules are listed in the input gro file before the solvent residues. bak_name = os.path.join(os.path.dirname(n_gro), prepend+os.path.basename(n_gro)) copy_no_overwrite(n_gro, bak_name) with open(n_gro, 'r') as in_gro: lines = in_gro.readlines() for line in lines[2:]: if res_name in line: non_s_res_count = resid break else: resid = int(line[:5]) res_count = s_count + non_s_res_count # TODO check reasonability of this number box = lines.pop() while True: line = lines.pop() if int(line[:5]) > res_count: continue elif int(line[:5]) == res_count: atom_count = line[15:20] lines.append(line) break elif int(line[:5]) < res_count: raise ValueError("Desired res " "count is larger than " "line's resid.\n" + "res_count: {}\n".format(res_count) + "line: {}".format(line)) lines[1] = atom_count + '\n' lines.append(box) with open(n_gro, 'w') as out_gro: for line in lines: out_gro.write(line) def get_solv_count_top(n_top, res_name='DCM'): Return residue count of specified residue from n_top with open(n_top, 'r') as in_top: mol_section = False for line in in_top: if line.strip().startswith(';'): pass elif not mol_section: if re.search(r'\[\s*molecules\s*\]', line, flags=re.IGNORECASE): mol_section = True else: if res_name.lower() in line.lower(): return int(line.split()[1]) def set_solv_count_top(n_top, s_count, res_name='DCM', prepend='unequal-'): Set count of res_name residues in n_top This will make a backup copy of the top file with `prepend` prepended to the name of the file. bak_name = os.path.join(os.path.dirname(n_top), prepend+os.path.basename(n_top)) copy_no_overwrite(n_top, bak_name) with open(n_top, 'r') as in_top: lines = in_top.readlines() with open(n_top, 'w') as out_top: mol_section = False for line in lines: if line.strip().startswith(';'): pass elif not mol_section: if re.search(r'\[\s*molecules\s*\]', line, flags=re.IGNORECASE): mol_section = True else: if res_name.lower() in line.lower(): line = re.sub(r'\d+', str(s_count), line) out_top.write(line) d_charge_params = dict(opt='SCF=tight Test Pop=MK iop(6/33=2) iop(6/42=6) iop(6/50=1)', func='HF', basis='6-31G*', footer='\ng16.gesp\n\ng16.gesp\n\n') l_scripts = [] s = subg.write_sub_script('01-charges/TS2.com', executable='g16', make_xyz='../TS2.pdb', make_input=True, ugt_dict={'job_name':'GPX TS2 charges', 'charg_mult':'+1 1', **d_charge_params}) l_scripts.append(s) s = subg.write_sub_script('01-charges/R-NO2-CPA.com', executable='g16', make_xyz='../R-NO2-CPA.pdb', make_input=True, ugt_dict={'job_name':'GPX R-NO2-CPA charges', 'charg_mult':'-1 1', **d_charge_params}) l_scripts.append(s) l_scripts subg.submit_scripts(l_scripts, batch=True, submit=True) gpx = pmd.gromacs.GromacsTopologyFile('01-charges/GPX-ts.acpype/GPX-ts_GMX.top', xyz='01-charges/GPX-ts.acpype/GPX-ts_GMX.gro') cpa = pmd.gromacs.GromacsTopologyFile('01-charges/CPA-gesp.acpype/CPA-gesp_GMX.top', xyz='01-charges/CPA-gesp.acpype/CPA-gesp_GMX.gro') for res in gpx.residues: if res.name == 'MOL': res.name = 'GPX' for res in cpa.residues: if res.name == 'MOL': res.name = 'CPA' struc_comb = gpx + cpa struc_comb struc_comb.write('gpx-cpa-dry.top') struc_comb.save('gpx-cpa-dry.gro') f_dcm = py.path.local('~/GROMACS-basics/DCM-GAFF/') f_solvate = py.path.local('02-solvate/') sep_gro = py.path.local('gpx-cpa-sep.gro') boxed_gro = f_solvate.join('gpx-cpa-boxed.gro') box = '3.5 3.5 3.5' solvent_source = f_dcm.join('dichloromethane-T293.15.gro') solvent_top = f_dcm.join('dichloromethane.top') solv_gro = f_solvate.join('gpx-cpa-dcm.gro') top = py.path.local('../params/gpxTS-cpa-dcm.top') verbose = True solvent_counts, key = dict(), 'GPX' with f_solvate.as_cwd(): ## Make box cl = shlex.split(f'gmx_mpi editconf -f {sep_gro} ' + f'-o {boxed_gro} -box {box}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_editconf'] = proc.stdout proc.check_returncode() ## Solvate cl = shlex.split(f'gmx_mpi solvate -cp {boxed_gro} ' + f'-cs {solvent_source} -o {solv_gro}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_solvate'] = proc.stdout proc.check_returncode() solvent_counts[key] = get_solvent_count_solvate(proc) if verbose: print(f'Solvated system into {solv_gro}') struc_g_c = pmd.load_file('gpx-cpa-dry.top') struc_dcm = pmd.load_file(str(f_dcm.join('dichloromethane.top'))) struc_g_c_d = struc_g_c + solvent_counts['GPX'] * struc_dcm struc_g_c_d.save(str(top)) ppl = py.path.local f_min = ppl('03-minimize/') f_g_basics = py.path.local('~/GROMACS-basics/') mdp_min = f_g_basics.join('minim.mdp') tpr_min = f_min.join('min.tpr') deffnm_min = f_min.join('min-out') gro_min = deffnm_min + '.gro' with f_min.as_cwd(): ## Compile tpr if not tpr_min.exists(): cl = shlex.split(f'gmx_mpi grompp -f {mdp_min} ' f'-c {solv_gro} ' f'-p {top} ' f'-o {tpr_min}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_grompp_em'] = proc.stdout proc.check_returncode() if verbose: print(f'Compiled em tpr to {tpr_min}') elif verbose: print(f'em tpr file already exists ({tpr_min})') ## Run minimization if not gro_min.exists(): cl = shlex.split('gmx_mpi mdrun ' f'-s {tpr_min} ' f'-deffnm {deffnm_min} ') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_mdrun_em'] = proc.stdout # TODO Get the potential energy from this output proc.check_returncode() if verbose: print(f'Ran {key} em to make {gro_min}') elif verbose: print(f'em output gro already exists (gro_min)') f_equil = ppl('04-equilibrate/') plumed = f_equil.join('plumed.dat') mdp_equil = f_g_basics.join('npt-298.mdp') tpr_equil = f_equil.join('equil.tpr') deffnm_equil = f_equil.join('equil-out') gro_equil = deffnm_equil + '.gro' gro_input = gro_min with f_equil.as_cwd(): ## Compile equilibration if not tpr_equil.exists(): cl = shlex.split(f'gmx_mpi grompp -f {mdp_equil} ' f'-c {gro_input} ' f'-p {top} ' f'-o {tpr_equil}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_grompp_equil'] = proc.stdout proc.check_returncode() if verbose: print(f'Compiled equil tpr to {tpr_equil}') elif verbose: print(f'equil tpr file already exists ({tpr_equil})') ## Run equilibration if not gro_equil.exists(): cl = shlex.split('gmx_mpi mdrun ' f'-s {tpr_equil} ' f'-deffnm {deffnm_equil} ' f'-plumed {plumed}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_mdrun_equil'] = proc.stdout proc.check_returncode() if verbose: print(f'Ran {key} equil to make {gro_equil}') elif verbose: print(f'equil output gro already exists (gro_equil)') f_pt = ppl('05-PT/') template = f_pt.join('template-mdp.txt') index = ppl('index.ndx') sub_templ = f_g_basics.join('sub-template-128.sub') d_sub_templ = dict(tpr_base = 'TOPO/npt', deffnm = 'PT-out', name = 'GPX-PT', plumed = plumed, ) scaling_exponent = 0.025 maxwarn = 0 start_temp = 298. verbose = True skip_existing = True jobs = [] failed_procs = [] for key in ['GPX']: kwargs = {'template': str(template), 'topology': str(top), 'structure': str(gro_equil), 'index': str(index), 'scaling_exponent': scaling_exponent, 'start_temp': start_temp, 'maxwarn': maxwarn} with f_pt.as_cwd(): try: os.mkdir('TOPO') except FileExistsError: if skip_existing: print(f'Skipping {key} because it seems to ' 'already be done.\nMoving on...') continue with cd('TOPO'): print(f'Now in {os.getcwd()}\nAttempting to compile TPRs...') pts.compile_tprs(**kwargs) print('Done compiling. Moving on...') print(f'Now in {os.getcwd()}\nWriting submission script...') with sub_templ.open(mode='r') as templ_f, \ open('gromacs-start-job.sub', 'w') as sub_s: [sub_s.write(l.format(**d_sub_templ)) for l in templ_f] print('Done.\nNow submitting job...') cl = ['qsub', 'gromacs-start-job.sub'] proc = subprocess.run(cl, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) if proc.returncode == 0: output = proc.stdout jobs.append(re.search('[0-9].+\)', output).group(0)) print(output, '\nDone.\nMoving to next...') else: print('\n\n'+5*'!!!---'+'\n') print(f'Error with calling qsub on {key}') print('Command line input was', cl) print('Check input and try again manually.' '\nMoving to next anyway...') failed_procs.append(proc) print('-----Done-----\nSummary of jobs submitted:') for job in jobs: print(job) e_05s = dict() for i in range(16): e_05s[i] = panedr.edr_to_df(f'05-PT/PT-out{i}.edr') fig, axes = plot_prop_PT(e_05s, 'Pressure') l_scripts = [] s = subg.write_sub_script('01-charges/TS1.com', executable='g16', make_xyz='../TS1protonated.mol2', make_input=True, ugt_dict={'job_name':'GPX TS1 charges', 'charg_mult':'+1 1', **d_charge_params}) l_scripts.append(s) s = subg.write_sub_script('01-charges/TS3.com', executable='g16', make_xyz='../TS3protonated.mol2', make_input=True, ugt_dict={'job_name':'GPX TS3 charges', 'charg_mult':'+1 1', **d_charge_params}) l_scripts.append(s) s = subg.write_sub_script('01-charges/anti-cat-yamamoto.com', executable='g16', make_xyz='../R-Yamamoto-Cat.pdb', make_input=True, ugt_dict={'job_name': 'yamamoto catalyst charges', 'charg_mult':'-1 1', **d_charge_params}) l_scripts.append(s) l_scripts subg.submit_scripts(l_scripts, batch=True, submit=True) ts1 = pmd.gromacs.GromacsTopologyFile( '01-charges/TS1-gesp.acpype/TS1-gesp_GMX.top', xyz='01-charges/TS1-gesp.acpype/TS1-gesp_GMX.gro') ts3 = pmd.gromacs.GromacsTopologyFile( '01-charges/TS3-gesp.acpype/TS3-gesp_GMX.top', xyz='01-charges/TS3-gesp.acpype/TS3-gesp_GMX.gro') ycp = pmd.gromacs.GromacsTopologyFile( '01-charges/YCP-gesp.acpype/YCP-gesp_GMX.top', xyz='01-charges/YCP-gesp.acpype/YCP-gesp_GMX.gro') for res in ts1.residues: if res.name == 'MOL': res.name = 'TS1' for res in ts3.residues: if res.name == 'MOL': res.name = 'TS3' for res in ycp.residues: if res.name == 'MOL': res.name = 'YCP' ts1_en = ts1.copy(pmd.gromacs.GromacsTopologyFile) ts3_en = ts3.copy(pmd.gromacs.GromacsTopologyFile) ts1_en.coordinates = - ts1.coordinates ts3_en.coordinates = - ts3.coordinates sys_ts1 = ts1 + ycp sys_ts1_en = ts1_en + ycp sys_ts3 = ts3 + ycp sys_ts3_en = ts3_en + ycp sys_ts1.write('ts1-ycp-dry.top') sys_ts3.write('ts3-ycp-dry.top') sys_ts1.save('ts1-ycp-dry.gro') sys_ts1_en.save('ts1_en-ycp-dry.gro') sys_ts3.save('ts3-ycp-dry.gro') sys_ts3_en.save('ts3_en-ycp-dry.gro') f_dcm = py.path.local('~/GROMACS-basics/DCM-GAFF/') f_solvate = py.path.local('37-solvate-anti/') box = '3.7 3.7 3.7' solvent_source = f_dcm.join('dichloromethane-T293.15.gro') solvent_top = f_dcm.join('dichloromethane.top') solv_gro = f_solvate.join('gpx-cpa-dcm.gro') ts1_top = ppl('../params/ts1-ycp-dcm.top') ts3_top = ppl('../params/ts3-ycp-dcm.top') l_syss = ['TS1', 'TS1_en', 'TS3', 'TS3_en'] verbose = True solvent_counts = dict() for key in l_syss: sep_gro = ppl(f'{key.lower()}-ycp-dry.gro') if not sep_gro.exists(): raise FileNotFoundError(f'{sep_gro} does not exist') boxed_gro = f'{key.lower()}-ycp-box.gro' solv_gro = f'{key.lower()}-ycp-dcm.gro' with f_solvate.ensure_dir().as_cwd(): ## Make box cl = shlex.split(f'gmx_mpi editconf -f {sep_gro} ' + f'-o {boxed_gro} -box {box}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_editconf'] = proc.stdout proc.check_returncode() ## Solvate cl = shlex.split(f'gmx_mpi solvate -cp {boxed_gro} ' + f'-cs {solvent_source} -o {solv_gro}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_solvate'] = proc.stdout proc.check_returncode() solvent_counts[key] = get_solvent_count_solvate(proc) if verbose: print(f'Solvated system into {solv_gro}') # min_solv_count = min(solvent_counts.values()) min_solv_count = 328 # want to match with syn calculations if min(solvent_counts.values()) < min_solv_count: raise ValueError('At least one of the structures has <328 DCMs.\n' 'Check and/or make the box larger') for key in l_syss: solv_gro = f'{key.lower()}-ycp-dcm.gro' with f_solvate.as_cwd(): set_solv_count(solv_gro, min_solv_count) struc_ts1 = pmd.load_file('ts1-ycp-dry.top') struc_ts3 = pmd.load_file('ts3-ycp-dry.top') struc_dcm = pmd.load_file(str(f_dcm.join('dichloromethane.top'))) struc_ts1_d = struc_ts1 + min_solv_count * struc_dcm struc_ts1_d.save(str(ts1_top)) struc_ts3_d = struc_ts3 + min_solv_count * struc_dcm struc_ts3_d.save(str(ts3_top)) f_min = ppl('38-relax-anti/') f_min.ensure_dir() f_g_basics = py.path.local('~/GROMACS-basics/') mdp_min = f_g_basics.join('minim.mdp') d_tops = dict(TS1=ts1_top, TS1_en=ts1_top, TS3=ts3_top, TS3_en=ts3_top) for key in l_syss: solv_gro = ppl(f'37-solvate-anti/{key.lower()}-ycp-dcm.gro') tpr_min = f_min.join(f'{key.lower()}-min.tpr') deffnm_min = f_min.join(f'{key.lower()}-min-out') gro_min = deffnm_min + '.gro' top = d_tops[key] with f_min.as_cwd(): ## Compile tpr if not tpr_min.exists(): cl = shlex.split(f'gmx_mpi grompp -f {mdp_min} ' f'-c {solv_gro} ' f'-p {top} ' f'-o {tpr_min}') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_grompp_em'] = proc.stdout proc.check_returncode() if verbose: print(f'Compiled em tpr to {tpr_min}') elif verbose: print(f'em tpr file already exists ({tpr_min})') ## Run minimization if not gro_min.exists(): cl = shlex.split('gmx_mpi mdrun ' f'-s {tpr_min} ' f'-deffnm {deffnm_min} ') proc = subprocess.run(cl, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) outputs[key+'_mdrun_em'] = proc.stdout # TODO Get the potential energy from this output proc.check_returncode() if verbose: print(f'Ran {key} em to make {gro_min}') elif verbose: print(f'em output gro already exists (gro_min)') f_pt = ppl('38-relax-anti/') template = ppl('33-SA-NPT-rest-no-LINCS/template-mdp.txt') index = ppl('../params/index-ycp.ndx') scaling_exponent = 0.025 maxwarn = 0 start_temp = 298. nsims = 16 verbose = True skip_existing = True jobs = [] failed_procs = [] for key in l_syss: d_sub_templ = dict( tpr = f'{key.lower()}-TOPO/npt', deffnm = f'{key.lower()}-SA-out', name = f'{key.lower()}-SA', nsims = nsims, tpn = 16, cores = 128, multi = True, ) gro_equil = f_min.join(f'{key.lower()}-min-out.gro') top = d_tops[key] kwargs = {'template': str(template), 'topology': str(top), 'structure': str(gro_equil), 'index': str(index), 'scaling_exponent': scaling_exponent, 'start_temp': start_temp, 'maxwarn': maxwarn, 'number': nsims, 'grompp_exe': 'gmx_mpi grompp'} with f_pt.as_cwd(): try: os.mkdir(f'{key.lower()}-TOPO/') except FileExistsError: if (os.path.exists(f'{key.lower()}-TOPO/temperatures.dat') and skip_existing): print(f'Skipping {key} because it seems to ' 'already be done.\nMoving on...') continue with cd(f'{key.lower()}-TOPO/'): print(f'Now in {os.getcwd()}\nAttempting to compile TPRs...') pts.compile_tprs(**kwargs) print('Done compiling. Moving on...') print(f'Now in {os.getcwd()}\nWriting submission script...') lp_sub = pt.sim_setup.make_gromacs_sub_script( f'gromacs-start-{key}-job.sub', **d_sub_templ) print('Done.\nNow submitting job...') cl = shlex.split(f'qsub {lp_sub}') proc = subprocess.run(cl, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) if proc.returncode == 0: output = proc.stdout jobs.append(re.search('[0-9].+\)', output).group(0)) print(output, '\nDone.\nMoving to next...') else: print('\n\n'+5*'!!!---'+'\n') print(f'Error with calling qsub on {key}') print('Command line input was', cl) print('Check input and try again manually.' '\nMoving to next anyway...') failed_procs.append(proc) print('-----Done-----\nSummary of jobs submitted:') for job in jobs: print(job) e_38s = dict() for key in l_syss: deffnm = f'{key.lower()}-SA-out' e_38s[key] = dict() d = e_38s[key] for i in range(16): d[i] = panedr.edr_to_df(f'38-relax-anti/{deffnm}{i}.edr') for key in l_syss: d = e_38s[key] fig, axes = plot_prop_PT(d, 'Volume') for key in l_syss: d = e_38s[key] fig, ax = plt.subplots() for key in list(d.keys()): ax.hist(d[key]['Total Energy'], bins=100) del d[key] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 2 - Outline of the Assignment Step4: Expected output Step6: Expected output Step8: Expected output Step10: Expected output Step12: <table style="width Step14: Expected Output Step16: Expected Output Step18: Expected output with sigmoid Step20: Expected Output
<ASSISTANT_TASK:> Python Code: import numpy as np import h5py import matplotlib.pyplot as plt from testCases_v2 import * from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward %matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload %autoreload 2 np.random.seed(1) # GRADED FUNCTION: initialize_parameters def initialize_parameters(n_x, n_h, n_y): Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: parameters -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) np.random.seed(1) ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h, n_x)*0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h)*0.01 b2 = np.zeros((n_y, 1)) ### END CODE HERE ### assert(W1.shape == (n_h, n_x)) assert(b1.shape == (n_h, 1)) assert(W2.shape == (n_y, n_h)) assert(b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters parameters = initialize_parameters(2,2,1) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # GRADED FUNCTION: initialize_parameters_deep def initialize_parameters_deep(layer_dims): Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) ### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters parameters = initialize_parameters_deep([5,4,3]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # GRADED FUNCTION: linear_forward def linear_forward(A, W, b): Implement the linear part of a layer's forward propagation. Arguments: A -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) Returns: Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently ### START CODE HERE ### (≈ 1 line of code) Z = np.dot(W, A) + b ### END CODE HERE ### assert(Z.shape == (W.shape[0], A.shape[1])) cache = (A, W, b) return Z, cache A, W, b = linear_forward_test_case() Z, linear_cache = linear_forward(A, W, b) print("Z = " + str(Z)) # GRADED FUNCTION: linear_activation_forward def linear_activation_forward(A_prev, W, b, activation): Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments: A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = sigmoid(Z) ### END CODE HERE ### elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = relu(Z) ### END CODE HERE ### assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache) return A, cache A_prev, W, b = linear_activation_forward_test_case() A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid") print("With sigmoid: A = " + str(A)) A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu") print("With ReLU: A = " + str(A)) # GRADED FUNCTION: L_model_forward def L_model_forward(X, parameters): Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2) the cache of linear_sigmoid_forward() (there is one, indexed L-1) caches = [] A = X L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A ### START CODE HERE ### (≈ 2 lines of code) A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], activation = "relu") caches.append(cache) ### END CODE HERE ### # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. ### START CODE HERE ### (≈ 2 lines of code) AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], activation = "sigmoid") caches.append(cache) ### END CODE HERE ### assert(AL.shape == (1,X.shape[1])) return AL, caches X, parameters = L_model_forward_test_case() AL, caches = L_model_forward(X, parameters) print("AL = " + str(AL)) print("Length of caches list = " + str(len(caches))) # GRADED FUNCTION: compute_cost def compute_cost(AL, Y): Implement the cost function defined by equation (7). Arguments: AL -- probability vector corresponding to your label predictions, shape (1, number of examples) Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns: cost -- cross-entropy cost m = Y.shape[1] # Compute loss from aL and y. ### START CODE HERE ### (≈ 1 lines of code) cost = -1./m * np.sum(Y*np.log(AL) + (1-Y)*np.log(1-AL)) ### END CODE HERE ### cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17). assert(cost.shape == ()) return cost Y, AL = compute_cost_test_case() print("cost = " + str(compute_cost(AL, Y))) # GRADED FUNCTION: linear_backward def linear_backward(dZ, cache): Implement the linear portion of backward propagation for a single layer (layer l) Arguments: dZ -- Gradient of the cost with respect to the linear output (of current layer l) cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b A_prev, W, b = cache m = A_prev.shape[1] ### START CODE HERE ### (≈ 3 lines of code) dW = 1./m * np.dot(dZ, A_prev.T) db = 1./m * np.sum(dZ, axis=1, keepdims=True) dA_prev = np.dot(W.T, dZ) ### END CODE HERE ### assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db # Set up some test inputs dZ, linear_cache = linear_backward_test_case() dA_prev, dW, db = linear_backward(dZ, linear_cache) print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) # GRADED FUNCTION: linear_activation_backward def linear_activation_backward(dA, cache, activation): Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments: dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b linear_cache, activation_cache = cache if activation == "relu": ### START CODE HERE ### (≈ 2 lines of code) dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) ### END CODE HERE ### elif activation == "sigmoid": ### START CODE HERE ### (≈ 2 lines of code) dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) ### END CODE HERE ### return dA_prev, dW, db AL, linear_activation_cache = linear_activation_backward_test_case() dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid") print ("sigmoid:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db) + "\n") dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu") print ("relu:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) # GRADED FUNCTION: L_model_backward def L_model_backward(AL, Y, caches): Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments: AL -- probability vector, output of the forward propagation (L_model_forward()) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) caches -- list of caches containing: every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2) the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1]) Returns: grads -- A dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... grads = {} L = len(caches) # the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation ### START CODE HERE ### (1 line of code) dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) ### END CODE HERE ### # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"] ### START CODE HERE ### (approx. 2 lines) current_cache = caches[L-1] grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid") ### END CODE HERE ### for l in reversed(range(L-1)): # lth layer: (RELU -> LINEAR) gradients. # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines) current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads['dA' + str(l + 2)], current_cache, activation = "relu") grads["dA" + str(l + 1)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp ### END CODE HERE ### return grads AL, Y_assess, caches = L_model_backward_test_case() grads = L_model_backward(AL, Y_assess, caches) print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dA1 = "+ str(grads["dA1"])) # GRADED FUNCTION: update_parameters def update_parameters(parameters, grads, learning_rate): Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ... L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop. ### START CODE HERE ### (≈ 3 lines of code) for l in range(L): parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*grads["dW" + str(l+1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*grads["db" + str(l+1)] ### END CODE HERE ### return parameters parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads, 0.1) print ("W1 = "+ str(parameters["W1"])) print ("b1 = "+ str(parameters["b1"])) print ("W2 = "+ str(parameters["W2"])) print ("b2 = "+ str(parameters["b2"])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: The notMNIST dataset is too large for many computers to handle. It contains 500,000 images for just training. You'll be using a subset of this data, 15,000 images for each label (A-J). Step5: <img src="image/Mean_Variance_Image.png" style="height Step6: Checkpoint Step7: Problem 2 Step8: <img src="image/Learn_Rate_Tune_Image.png" style="height Step9: Test
<ASSISTANT_TASK:> Python Code: import hashlib import os import pickle from urllib.request import urlretrieve import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.utils import resample from tqdm import tqdm from zipfile import ZipFile print('All modules imported.') def download(url, file): Download file from <url> :param url: URL to file :param file: Local file path if not os.path.isfile(file): print('Downloading ' + file + '...') urlretrieve(url, file) print('Download Finished') # Download the training and test dataset. download('https://s3.amazonaws.com/udacity-sdc/notMNIST_train.zip', 'notMNIST_train.zip') download('https://s3.amazonaws.com/udacity-sdc/notMNIST_test.zip', 'notMNIST_test.zip') # Make sure the files aren't corrupted assert hashlib.md5(open('notMNIST_train.zip', 'rb').read()).hexdigest() == 'c8673b3f28f489e9cdf3a3d74e2ac8fa',\ 'notMNIST_train.zip file is corrupted. Remove the file and try again.' assert hashlib.md5(open('notMNIST_test.zip', 'rb').read()).hexdigest() == '5d3c7e653e63471c88df796156a9dfa9',\ 'notMNIST_test.zip file is corrupted. Remove the file and try again.' # Wait until you see that all files have been downloaded. print('All files downloaded.') def uncompress_features_labels(file): Uncompress features and labels from a zip file :param file: The zip file to extract the data from features = [] labels = [] with ZipFile(file) as zipf: # Progress Bar filenames_pbar = tqdm(zipf.namelist(), unit='files') # Get features and labels from all files for filename in filenames_pbar: # Check if the file is a directory if not filename.endswith('/'): with zipf.open(filename) as image_file: image = Image.open(image_file) image.load() # Load image data as 1 dimensional array # We're using float32 to save on memory space feature = np.array(image, dtype=np.float32).flatten() # Get the the letter from the filename. This is the letter of the image. label = os.path.split(filename)[1][0] features.append(feature) labels.append(label) return np.array(features), np.array(labels) # Get the features and labels from the zip files train_features, train_labels = uncompress_features_labels('notMNIST_train.zip') test_features, test_labels = uncompress_features_labels('notMNIST_test.zip') # Limit the amount of data to work with a docker container docker_size_limit = 150000 train_features, train_labels = resample(train_features, train_labels, n_samples=docker_size_limit) # Set flags for feature engineering. This will prevent you from skipping an important step. is_features_normal = False is_labels_encod = False # Wait until you see that all features and labels have been uncompressed. print('All features and labels uncompressed.') # Problem 1 - Implement Min-Max scaling for grayscale image data def normalize_grayscale(image_data): Normalize the image data with Min-Max scaling to a range of [0.1, 0.9] :param image_data: The image data to be normalized :return: Normalized image data # TODO: Implement Min-Max scaling for grayscale image data out=[] a=0.1 b=0.9 min_v=0 max_v=255 for k in range(image_data.shape[0]): out.append(a+(((image_data[k]-min_v)*(b-a))/max_v-min_v)) return out ### DON'T MODIFY ANYTHING BELOW ### # Test Cases np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 255])), [0.1, 0.103137254902, 0.106274509804, 0.109411764706, 0.112549019608, 0.11568627451, 0.118823529412, 0.121960784314, 0.125098039216, 0.128235294118, 0.13137254902, 0.9], decimal=3) np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 10, 20, 30, 40, 233, 244, 254,255])), [0.1, 0.103137254902, 0.13137254902, 0.162745098039, 0.194117647059, 0.225490196078, 0.830980392157, 0.865490196078, 0.896862745098, 0.9]) if not is_features_normal: train_features = normalize_grayscale(train_features) test_features = normalize_grayscale(test_features) is_features_normal = True print('Tests Passed!') if not is_labels_encod: # Turn labels into numbers and apply One-Hot Encoding encoder = LabelBinarizer() encoder.fit(train_labels) train_labels = encoder.transform(train_labels) test_labels = encoder.transform(test_labels) # Change to float32, so it can be multiplied against the features in TensorFlow, which are float32 train_labels = train_labels.astype(np.float32) test_labels = test_labels.astype(np.float32) is_labels_encod = True print('Labels One-Hot Encoded') assert is_features_normal, 'You skipped the step to normalize the features' assert is_labels_encod, 'You skipped the step to One-Hot Encode the labels' # Get randomized datasets for training and validation train_features, valid_features, train_labels, valid_labels = train_test_split( train_features, train_labels, test_size=0.05, random_state=832289) print('Training features and labels randomized and split.') # Save the data for easy access pickle_file = 'notMNIST.pickle' if not os.path.isfile(pickle_file): print('Saving data to pickle file...') try: with open('notMNIST.pickle', 'wb') as pfile: pickle.dump( { 'train_dataset': train_features, 'train_labels': train_labels, 'valid_dataset': valid_features, 'valid_labels': valid_labels, 'test_dataset': test_features, 'test_labels': test_labels, }, pfile, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise print('Data cached in pickle file.') %matplotlib inline # Load the modules import pickle import math import numpy as np import tensorflow as tf from tqdm import tqdm import matplotlib.pyplot as plt # Reload the data pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) train_features = pickle_data['train_dataset'] train_labels = pickle_data['train_labels'] valid_features = pickle_data['valid_dataset'] valid_labels = pickle_data['valid_labels'] test_features = pickle_data['test_dataset'] test_labels = pickle_data['test_labels'] del pickle_data # Free up memory print('Data and modules loaded.') # All the pixels in the image (28 * 28 = 784) features_count = 784 # All the labels labels_count = 10 # TODO: Set the features and labels tensors features = tf.placeholder(tf.float32) labels = tf.placeholder(tf.float32) # TODO: Set the weights and biases tensors weights = tf.Variable(tf.truncated_normal((features_count,labels_count))) biases = tf.Variable(tf.zeros(labels_count)) ### DON'T MODIFY ANYTHING BELOW ### #Test Cases from tensorflow.python.ops.variables import Variable assert features._op.name.startswith('Placeholder'), 'features must be a placeholder' assert labels._op.name.startswith('Placeholder'), 'labels must be a placeholder' assert isinstance(weights, Variable), 'weights must be a TensorFlow variable' assert isinstance(biases, Variable), 'biases must be a TensorFlow variable' assert features._shape == None or (\ features._shape.dims[0].value is None and\ features._shape.dims[1].value in [None, 784]), 'The shape of features is incorrect' assert labels._shape == None or (\ labels._shape.dims[0].value is None and\ labels._shape.dims[1].value in [None, 10]), 'The shape of labels is incorrect' assert weights._variable._shape == (784, 10), 'The shape of weights is incorrect' assert biases._variable._shape == (10), 'The shape of biases is incorrect' assert features._dtype == tf.float32, 'features must be type float32' assert labels._dtype == tf.float32, 'labels must be type float32' # Feed dicts for training, validation, and test session train_feed_dict = {features: train_features, labels: train_labels} valid_feed_dict = {features: valid_features, labels: valid_labels} test_feed_dict = {features: test_features, labels: test_labels} # Linear Function WX + b logits = tf.matmul(features, weights) + biases prediction = tf.nn.softmax(logits) # Cross entropy cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), reduction_indices=1) # Training loss loss = tf.reduce_mean(cross_entropy) # Create an operation that initializes all variables init = tf.global_variables_initializer() # Test Cases with tf.Session() as session: session.run(init) session.run(loss, feed_dict=train_feed_dict) session.run(loss, feed_dict=valid_feed_dict) session.run(loss, feed_dict=test_feed_dict) biases_data = session.run(biases) assert not np.count_nonzero(biases_data), 'biases must be zeros' print('Tests Passed!') # Determine if the predictions are correct is_correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1)) # Calculate the accuracy of the predictions accuracy = tf.reduce_mean(tf.cast(is_correct_prediction, tf.float32)) print('Accuracy function created.') # Change if you have memory restrictions batch_size = 128 # TODO: Find the best parameters for each configuration epochs = 5 learning_rate = 0.2 ### DON'T MODIFY ANYTHING BELOW ### # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # The accuracy measured against the validation set validation_accuracy = 0.0 # Measurements use for graphing loss and accuracy log_batch_step = 50 batches = [] loss_batch = [] train_acc_batch = [] valid_acc_batch = [] with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer and get loss _, l = session.run( [optimizer, loss], feed_dict={features: batch_features, labels: batch_labels}) # Log every 50 batches if not batch_i % log_batch_step: # Calculate Training and Validation accuracy training_accuracy = session.run(accuracy, feed_dict=train_feed_dict) validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) # Log batches previous_batch = batches[-1] if batches else 0 batches.append(log_batch_step + previous_batch) loss_batch.append(l) train_acc_batch.append(training_accuracy) valid_acc_batch.append(validation_accuracy) # Check accuracy against Validation data validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) loss_plot = plt.subplot(211) loss_plot.set_title('Loss') loss_plot.plot(batches, loss_batch, 'g') loss_plot.set_xlim([batches[0], batches[-1]]) acc_plot = plt.subplot(212) acc_plot.set_title('Accuracy') acc_plot.plot(batches, train_acc_batch, 'r', label='Training Accuracy') acc_plot.plot(batches, valid_acc_batch, 'x', label='Validation Accuracy') acc_plot.set_ylim([0, 1.0]) acc_plot.set_xlim([batches[0], batches[-1]]) acc_plot.legend(loc=4) plt.tight_layout() plt.show() print('Validation accuracy at {}'.format(validation_accuracy)) ### DON'T MODIFY ANYTHING BELOW ### # The accuracy measured against the test set test_accuracy = 0.0 with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer _ = session.run(optimizer, feed_dict={features: batch_features, labels: batch_labels}) # Check accuracy against Test data test_accuracy = session.run(accuracy, feed_dict=test_feed_dict) assert test_accuracy >= 0.80, 'Test accuracy at {}, should be equal to or greater than 0.80'.format(test_accuracy) print('Nice Job! Test Accuracy is {}'.format(test_accuracy)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 分析数据 Step2: 练习 Step3: 问题 1 Step4: 问题 2 Step5: 问题 3 Step6: 观察 Step7: 练习 Step8: 问题 4 Step9: 问题 5 Step10: 练习:降维 Step11: 观察 Step12: 可视化一个双标图(Biplot) Step13: 观察 Step14: 问题 7 Step15: 练习 Step16: 问题 8 Step17: 回答 Step18: 回答:
<ASSISTANT_TASK:> Python Code: # 检查你的Python版本 from sys import version_info if version_info.major != 2 and version_info.minor != 7: raise Exception('请使用Python 2.7来完成此项目') # 引入这个项目需要的库 import numpy as np import pandas as pd import visuals as vs from IPython.display import display # 使得我们可以对DataFrame使用display()函数 # 设置以内联的形式显示matplotlib绘制的图片(在notebook中显示更美观) %matplotlib inline # 载入整个客户数据集 try: data = pd.read_csv("customers.csv") data.drop(['Region', 'Channel'], axis = 1, inplace = True) print "Wholesale customers dataset has {} samples with {} features each.".format(*data.shape) except: print "Dataset could not be loaded. Is the dataset missing?" # 显示数据集的一个描述 display(data.describe()) # TODO:从数据集中选择三个你希望抽样的数据点的索引 indices = [20,60,160] # 为选择的样本建立一个DataFrame samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True) print "Chosen samples of wholesale customers dataset:" display(samples) from sklearn.cross_validation import train_test_split from sklearn import tree from sklearn.metrics import r2_score # TODO:为DataFrame创建一个副本,用'drop'函数丢弃一个特征 detergents_array = data['Detergents_Paper'] new_data = data.drop(['Detergents_Paper'],axis = 1) # TODO:使用给定的特征作为目标,将数据分割成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(new_data, detergents_array, test_size=0.25, random_state=23) # TODO:创建一个DecisionTreeRegressor(决策树回归器)并在训练集上训练它 regressor = tree.DecisionTreeRegressor(random_state=29) regressor.fit(X_train, y_train) # TODO:输出在测试集上的预测得分 score = regressor.score(X_test, y_test) print("Score Is ", score) # 对于数据中的每一对特征构造一个散布矩阵 pd.plotting.scatter_matrix(data, alpha = 0.3, figsize = (14,8), diagonal = 'kde'); # TODO:使用自然对数缩放数据 log_data = np.log(data) # TODO:使用自然对数缩放样本数据 log_samples = np.log(samples) # 为每一对新产生的特征制作一个散射矩阵 pd.plotting.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde'); # 展示经过对数变换后的样本数据 display(log_samples) # 对于每一个特征,找到值异常高或者是异常低的数据点 for feature in log_data.keys(): # TODO:计算给定特征的Q1(数据的25th分位点) Q1 = np.percentile(log_data[feature],25) # TODO:计算给定特征的Q3(数据的75th分位点) Q3 = np.percentile(log_data[feature],75) # TODO:使用四分位范围计算异常阶(1.5倍的四分位距) step = (Q3-Q1)*1.5 # 显示异常点 print "Data points considered outliers for the feature '{}':".format(feature) display(log_data[~((log_data[feature] >= Q1 - step) & (log_data[feature] <= Q3 + step))]) # 可选:选择你希望移除的数据点的索引 outliers = [] # 如果选择了的话,移除异常点 good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True) from sklearn.decomposition import PCA # TODO:通过在good_data上使用PCA,将其转换成和当前特征数一样多的维度 pca = PCA(n_components=len(good_data.columns)).fit(good_data) print log_samples # TODO:使用上面的PCA拟合将变换施加在log_samples上 pca_samples = pca.transform(log_samples) print pca_samples # 生成PCA的结果图 pca_results = vs.pca_results(good_data, pca) # 展示经过PCA转换的sample log-data display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values)) # TODO:通过在good data上进行PCA,将其转换成两个维度 pca = PCA(n_components=2).fit(good_data) # TODO:使用上面训练的PCA将good data进行转换 reduced_data = pca.transform(good_data) # TODO:使用上面训练的PCA将log_samples进行转换 pca_samples = pca.transform(log_samples) # 为降维后的数据创建一个DataFrame reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2']) # 展示经过两个维度的PCA转换之后的样本log-data display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2'])) # Create a biplot vs.biplot(good_data, reduced_data, pca) from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score # TODO:在降维后的数据上使用你选择的聚类算法 clusterer = KMeans(n_clusters=2, random_state=29).fit(reduced_data) # TODO:预测每一个点的簇 preds = clusterer.predict(reduced_data) # TODO:找到聚类中心 centers = clusterer.cluster_centers_ # TODO:预测在每一个转换后的样本点的类 sample_preds = clusterer.predict(pca_samples) # TODO:计算选择的类别的平均轮廓系数(mean silhouette coefficient) score = silhouette_score(reduced_data, clusterer.labels_, metric='euclidean') print score # 2 => 0.419166083203 # 3 => 0.392358689958 # 4 => 0.333872503172 # 5 => 0.333872503172 # 6 => 0.359310196851 # 从已有的实现中展示聚类的结果 vs.cluster_results(reduced_data, preds, centers, pca_samples) # TODO:反向转换中心点 log_centers = pca.inverse_transform(centers) # TODO:对中心点做指数转换 true_centers = np.exp(log_centers) # 显示真实的中心点 segments = ['Segment {}'.format(i) for i in range(0,len(centers))] true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys()) true_centers.index = segments display(true_centers) # 显示预测结果 for i, pred in enumerate(sample_preds): print "Sample point", i, "predicted to be in Cluster", pred from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split # 读取包含聚类结果的数据 cluster_data = pd.read_csv("cluster.csv") y = cluster_data['Region'] X = cluster_data.drop(['Region'], axis = 1) # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=24) clf = RandomForestClassifier(random_state=24) clf.fit(X_train, y_train) print "使用cluster特征的得分", clf.score(X_test, y_test) # 移除cluster特征 X_train = X_train.copy() X_train.drop(['cluster'], axis=1, inplace=True) X_test = X_test.copy() X_test.drop(['cluster'], axis=1, inplace=True) clf.fit(X_train, y_train) print "不使用cluster特征的得分", clf.score(X_test, y_test) # 根据‘Channel‘数据显示聚类的结果 vs.channel_results(reduced_data, outliers, pca_samples) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Batch Normalization using tf.layers.batch_normalization<a id="example_1"></a> Step6: We'll use the following function to create convolutional layers in our network. They are very basic Step8: Run the following cell, along with the earlier cells (to load the dataset and define the necessary functions). Step10: With this many layers, it's going to take a lot of iterations for this network to learn. By the time you're done training these 800 batches, your final test and validation accuracies probably won't be much better than 10%. (It will be different each time, but will most likely be less than 15%.) Step12: TODO Step13: TODO Step15: With batch normalization, you should now get an accuracy over 90%. Notice also the last line of the output Step17: TODO Step18: TODO
<ASSISTANT_TASK:> Python Code: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True, reshape=False) DO NOT MODIFY THIS CELL def fully_connected(prev_layer, num_units): Create a fully connectd layer with the given layer as input and the given number of neurons. :param prev_layer: Tensor The Tensor that acts as input into this layer :param num_units: int The size of the layer. That is, the number of units, nodes, or neurons. :returns Tensor A new fully connected layer layer = tf.layers.dense(prev_layer, num_units, activation=tf.nn.relu) return layer DO NOT MODIFY THIS CELL def conv_layer(prev_layer, layer_depth): Create a convolutional layer with the given layer as input. :param prev_layer: Tensor The Tensor that acts as input into this layer :param layer_depth: int We'll set the strides and number of feature maps based on the layer's depth in the network. This is *not* a good way to make a CNN, but it helps us create this example with very little code. :returns Tensor A new convolutional layer strides = 2 if layer_depth % 3 == 0 else 1 conv_layer = tf.layers.conv2d(prev_layer, layer_depth*4, 3, strides, 'same', activation=tf.nn.relu) return conv_layer DO NOT MODIFY THIS CELL def train(num_batches, batch_size, learning_rate): # Build placeholders for the input samples and labels inputs = tf.placeholder(tf.float32, [None, 28, 28, 1]) labels = tf.placeholder(tf.float32, [None, 10]) # Feed the inputs into a series of 20 convolutional layers layer = inputs for layer_i in range(1, 20): layer = conv_layer(layer, layer_i) # Flatten the output from the convolutional layers orig_shape = layer.get_shape().as_list() layer = tf.reshape(layer, shape=[-1, orig_shape[1] * orig_shape[2] * orig_shape[3]]) # Add one fully connected layer layer = fully_connected(layer, 100) # Create the output layer with 1 node for each logits = tf.layers.dense(layer, 10) # Define loss and training operations model_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels)) train_opt = tf.train.AdamOptimizer(learning_rate).minimize(model_loss) # Create operations to test accuracy correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(labels,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Train and test the network with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for batch_i in range(num_batches): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # train this batch sess.run(train_opt, {inputs: batch_xs, labels: batch_ys}) # Periodically check the validation or training loss and accuracy if batch_i % 100 == 0: loss, acc = sess.run([model_loss, accuracy], {inputs: mnist.validation.images, labels: mnist.validation.labels}) print('Batch: {:>2}: Validation loss: {:>3.5f}, Validation accuracy: {:>3.5f}'.format(batch_i, loss, acc)) elif batch_i % 25 == 0: loss, acc = sess.run([model_loss, accuracy], {inputs: batch_xs, labels: batch_ys}) print('Batch: {:>2}: Training loss: {:>3.5f}, Training accuracy: {:>3.5f}'.format(batch_i, loss, acc)) # At the end, score the final accuracy for both the validation and test sets acc = sess.run(accuracy, {inputs: mnist.validation.images, labels: mnist.validation.labels}) print('Final validation accuracy: {:>3.5f}'.format(acc)) acc = sess.run(accuracy, {inputs: mnist.test.images, labels: mnist.test.labels}) print('Final test accuracy: {:>3.5f}'.format(acc)) # Score the first 100 test images individually. This won't work if batch normalization isn't implemented correctly. correct = 0 for i in range(100): correct += sess.run(accuracy,feed_dict={inputs: [mnist.test.images[i]], labels: [mnist.test.labels[i]]}) print("Accuracy on 100 samples:", correct/100) num_batches = 800 batch_size = 64 learning_rate = 0.002 tf.reset_default_graph() with tf.Graph().as_default(): train(num_batches, batch_size, learning_rate) def fully_connected(prev_layer, num_units, istraining): Create a fully connectd layer with the given layer as input and the given number of neurons. :param prev_layer: Tensor The Tensor that acts as input into this layer :param num_units: int The size of the layer. That is, the number of units, nodes, or neurons. :returns Tensor A new fully connected layer layer = tf.layers.dense(prev_layer, num_units, activation=tf.nn.relu) layer = tf.layers.batch_normalization(inputs=layer, training=istraining) layer = tf.nn.relu(layer) return layer def conv_layer(prev_layer, layer_depth, istraining): Create a convolutional layer with the given layer as input. :param prev_layer: Tensor The Tensor that acts as input into this layer :param layer_depth: int We'll set the strides and number of feature maps based on the layer's depth in the network. This is *not* a good way to make a CNN, but it helps us create this example with very little code. :returns Tensor A new convolutional layer strides = 2 if layer_depth % 3 == 0 else 1 conv_layer = tf.layers.conv2d(prev_layer, layer_depth*4, 3, strides, 'same', activation=None, use_bias=False) conv_layer = tf.layers.batch_normalization(conv_layer, training=istraining) conv_layer = tf.nn.relu(conv_layer) return conv_layer def train(num_batches, batch_size, learning_rate): # Build placeholders for the input samples and labels inputs = tf.placeholder(tf.float32, [None, 28, 28, 1]) labels = tf.placeholder(tf.float32, [None, 10]) istraining = tf.placeholder(tf.bool) # Feed the inputs into a series of 20 convolutional layers layer = inputs for layer_i in range(1, 20): layer = conv_layer(layer, layer_i, istraining) # Flatten the output from the convolutional layers orig_shape = layer.get_shape().as_list() layer = tf.reshape(layer, shape=[-1, orig_shape[1] * orig_shape[2] * orig_shape[3]]) # Add one fully connected layer layer = fully_connected(layer, 100, istraining) # Create the output layer with 1 node for each logits = tf.layers.dense(layer, 10) # Define loss and training operations model_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels)) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): train_opt = tf.train.AdamOptimizer(learning_rate).minimize(model_loss) # Create operations to test accuracy correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(labels,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Train and test the network with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for batch_i in range(num_batches): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # train this batch sess.run(train_opt, {inputs: batch_xs, labels: batch_ys, istraining:True}) # Periodically check the validation or training loss and accuracy if batch_i % 100 == 0: loss, acc = sess.run([model_loss, accuracy], {inputs: mnist.validation.images, labels: mnist.validation.labels, istraining:False}) print('Batch: {:>2}: Validation loss: {:>3.5f}, Validation accuracy: {:>3.5f}'.format(batch_i, loss, acc)) elif batch_i % 25 == 0: loss, acc = sess.run([model_loss, accuracy], {inputs: batch_xs, labels: batch_ys, istraining:False}) print('Batch: {:>2}: Training loss: {:>3.5f}, Training accuracy: {:>3.5f}'.format(batch_i, loss, acc)) # At the end, score the final accuracy for both the validation and test sets acc = sess.run(accuracy, {inputs: mnist.validation.images, labels: mnist.validation.labels, istraining:False}) print('Final validation accuracy: {:>3.5f}'.format(acc)) acc = sess.run(accuracy, {inputs: mnist.test.images, labels: mnist.test.labels, istraining:False}) print('Final test accuracy: {:>3.5f}'.format(acc)) # Score the first 100 test images individually. This won't work if batch normalization isn't implemented correctly. correct = 0 for i in range(100): correct += sess.run(accuracy,feed_dict={inputs: [mnist.test.images[i]], labels: [mnist.test.labels[i]], istraining:False}) print("Accuracy on 100 samples:", correct/100) num_batches = 800 batch_size = 64 learning_rate = 0.002 tf.reset_default_graph() with tf.Graph().as_default(): train(num_batches, batch_size, learning_rate) def fully_connected(prev_layer, num_units, istraining): Create a fully connectd layer with the given layer as input and the given number of neurons. :param prev_layer: Tensor The Tensor that acts as input into this layer :param num_units: int The size of the layer. That is, the number of units, nodes, or neurons. :returns Tensor A new fully connected layer layer = tf.layers.dense(prev_layer, num_units, activation=None, use_bias=False) gamma = tf.Variable(tf.ones([num_units])) beta = tf.Variable(tf.zeros([num_units])) pop_mean = tf.Variable(tf.zeros([num_units]), trainable=False) pop_variance = tf.Variable(tf.ones([num_units]), trainable=False) epsilon = 1e-3 def batch_norm_training(): batch_mean, batch_variance = tf.nn.moments(layer, axes=[0]) decay = 0.99 train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) train_variance = tf.assign(pop_variance, pop_variance * decay + batch_variance * (1 - decay)) with tf.control_dependencies([train_mean, train_variance]): return tf.nn.batch_normalization(layer, batch_mean, batch_variance, beta, gamma, epsilon) def batch_norm_inference(): return tf.nn.batch_normalization(layer, pop_mean, pop_variance, beta, gamma, epsilon) batch_normalization_out = tf.cond(istraining, batch_norm_training, batch_norm_inference) return tf.nn.relu(batch_normalization_out) def conv_layer(prev_layer, layer_depth, istraining): Create a convolutional layer with the given layer as input. :param prev_layer: Tensor The Tensor that acts as input into this layer :param layer_depth: int We'll set the strides and number of feature maps based on the layer's depth in the network. This is *not* a good way to make a CNN, but it helps us create this example with very little code. :returns Tensor A new convolutional layer strides = 2 if layer_depth % 3 == 0 else 1 in_channels = prev_layer.get_shape().as_list()[3] out_channels = layer_depth*4 weights = tf.Variable( tf.truncated_normal([3, 3, in_channels, out_channels], stddev=0.05)) # bias = tf.Variable(tf.zeros(out_channels)) conv_layer = tf.nn.conv2d(prev_layer, weights, strides=[1,strides, strides, 1], padding='SAME') # conv_layer = tf.nn.bias_add(conv_layer, bias) # conv_layer = tf.nn.relu(conv_layer) gamma = tf.Variable(tf.ones([out_channels])) beta = tf.Variable(tf.zeros([out_channels])) pop_mean = tf.Variable(tf.zeros([out_channels]), trainable=False) pop_variance = tf.Variable(tf.ones([out_channels]), trainable=False) epsilon = 1e-3 def batch_norm_training(): batch_mean, batch_variance = tf.nn.moments(conv_layer, [0,1,2], keep_dims=False) decay = 0.99 train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) train_variance = tf.assign(pop_variance, pop_variance * decay + batch_variance * (1 - decay)) with tf.control_dependencies([train_mean, train_variance]): return tf.nn.batch_normalization(conv_layer, batch_mean, batch_variance, beta, gamma, epsilon) def batch_norm_inference(): return tf.nn.batch_normalization(conv_layer, pop_mean, pop_variance, beta, gamma, epsilon) batch_normalization_out = tf.cond(istraining, batch_norm_training, batch_norm_inference) return tf.nn.relu(batch_normalization_out) def train(num_batches, batch_size, learning_rate): # Build placeholders for the input samples and labels inputs = tf.placeholder(tf.float32, [None, 28, 28, 1]) labels = tf.placeholder(tf.float32, [None, 10]) istraining = tf.placeholder(tf.bool) # Feed the inputs into a series of 20 convolutional layers layer = inputs for layer_i in range(1, 20): layer = conv_layer(layer, layer_i, istraining) # Flatten the output from the convolutional layers orig_shape = layer.get_shape().as_list() layer = tf.reshape(layer, shape=[-1, orig_shape[1] * orig_shape[2] * orig_shape[3]]) # Add one fully connected layer layer = fully_connected(layer, 100, istraining) # Create the output layer with 1 node for each logits = tf.layers.dense(layer, 10) # Define loss and training operations model_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels)) train_opt = tf.train.AdamOptimizer(learning_rate).minimize(model_loss) # Create operations to test accuracy correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(labels,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Train and test the network with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for batch_i in range(num_batches): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # train this batch sess.run(train_opt, {inputs: batch_xs, labels: batch_ys, istraining:True}) # Periodically check the validation or training loss and accuracy if batch_i % 100 == 0: loss, acc = sess.run([model_loss, accuracy], {inputs: mnist.validation.images, labels: mnist.validation.labels, istraining:False}) print('Batch: {:>2}: Validation loss: {:>3.5f}, Validation accuracy: {:>3.5f}'.format(batch_i, loss, acc)) elif batch_i % 25 == 0: loss, acc = sess.run([model_loss, accuracy], {inputs: batch_xs, labels: batch_ys, istraining:False}) print('Batch: {:>2}: Training loss: {:>3.5f}, Training accuracy: {:>3.5f}'.format(batch_i, loss, acc)) # At the end, score the final accuracy for both the validation and test sets acc = sess.run(accuracy, {inputs: mnist.validation.images, labels: mnist.validation.labels, istraining:False}) print('Final validation accuracy: {:>3.5f}'.format(acc)) acc = sess.run(accuracy, {inputs: mnist.test.images, labels: mnist.test.labels, istraining:False}) print('Final test accuracy: {:>3.5f}'.format(acc)) # Score the first 100 test images individually. This won't work if batch normalization isn't implemented correctly. correct = 0 for i in range(100): correct += sess.run(accuracy,feed_dict={inputs: [mnist.test.images[i]], labels: [mnist.test.labels[i]], istraining:False}) print("Accuracy on 100 samples:", correct/100) num_batches = 800 batch_size = 64 learning_rate = 0.002 tf.reset_default_graph() with tf.Graph().as_default(): train(num_batches, batch_size, learning_rate) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sentiment analysis Step2: The aclImdb/train/pos and aclImdb/train/neg directories contain many text files, each of which is a single movie review. Let's take a look at one of them. Step3: Load the dataset Step4: Next, you will use the text_dataset_from_directory utility to create a labeled tf.data.Dataset. tf.data is a powerful collection of tools for working with data. Step5: As you can see above, there are 25,000 examples in the training folder, of which you will use 80% (or 20,000) for training. As you will see in a moment, you can train a model by passing a dataset directly to model.fit. If you're new to tf.data, you can also iterate over the dataset and print out a few examples as follows. Step6: Notice the reviews contain raw text (with punctuation and occasional HTML tags like &lt;br/&gt;). You will show how to handle these in the following section. Step7: Next, you will create a validation and test dataset. You will use the remaining 5,000 reviews from the training set for validation. Step8: Prepare the dataset for training Step9: Next, you will create a TextVectorization layer. You will use this layer to standardize, tokenize, and vectorize our data. You set the output_mode to int to create unique integer indices for each token. Step10: Next, you will call adapt to fit the state of the preprocessing layer to the dataset. This will cause the model to build an index of strings to integers. Step11: Let's create a function to see the result of using this layer to preprocess some data. Step12: As you can see above, each token has been replaced by an integer. You can lookup the token (string) that each integer corresponds to by calling .get_vocabulary() on the layer. Step13: You are nearly ready to train your model. As a final preprocessing step, you will apply the TextVectorization layer you created earlier to the train, validation, and test dataset. Step14: Configure the dataset for performance Step15: Create the model Step16: The layers are stacked sequentially to build the classifier Step17: Train the model Step18: Evaluate the model Step19: This fairly naive approach achieves an accuracy of about 86%. Step20: There are four entries Step21: In this plot, the dots represent the training loss and accuracy, and the solid lines are the validation loss and accuracy. Step22: Inference on new data
<ASSISTANT_TASK:> Python Code: # Import necessary libraries import matplotlib.pyplot as plt import os import re import shutil import string import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import losses # Print the TensorFlow version print(tf.__version__) # Download the IMDB dataset url = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" dataset = tf.keras.utils.get_file("aclImdb_v1", url, untar=True, cache_dir='.', cache_subdir='') dataset_dir = os.path.join(os.path.dirname(dataset), 'aclImdb') # Explore the dataset os.listdir(dataset_dir) train_dir = os.path.join(dataset_dir, 'train') os.listdir(train_dir) # Print the file content sample_file = os.path.join(train_dir, 'pos/1181_9.txt') with open(sample_file) as f: print(f.read()) remove_dir = os.path.join(train_dir, 'unsup') shutil.rmtree(remove_dir) # Create the validation set batch_size = 32 seed = 42 raw_train_ds = tf.keras.utils.text_dataset_from_directory( 'aclImdb/train', batch_size=batch_size, validation_split=0.2, subset='training', seed=seed) # Print few examples for text_batch, label_batch in raw_train_ds.take(1): for i in range(3): print("Review", text_batch.numpy()[i]) print("Label", label_batch.numpy()[i]) print("Label 0 corresponds to", raw_train_ds.class_names[0]) print("Label 1 corresponds to", raw_train_ds.class_names[1]) raw_val_ds = tf.keras.utils.text_dataset_from_directory( 'aclImdb/train', batch_size=batch_size, validation_split=0.2, subset='validation', seed=seed) raw_test_ds = tf.keras.utils.text_dataset_from_directory( 'aclImdb/test', batch_size=batch_size) def custom_standardization(input_data): lowercase = tf.strings.lower(input_data) stripped_html = tf.strings.regex_replace(lowercase, '<br />', ' ') return tf.strings.regex_replace(stripped_html, '[%s]' % re.escape(string.punctuation), '') max_features = 10000 sequence_length = 250 # Created the TextVectorization layer vectorize_layer = # TODO 1 -- Your code goes here( standardize=custom_standardization, max_tokens=max_features, output_mode='int', output_sequence_length=sequence_length) # Make a text-only dataset (without labels), then call adapt train_text = raw_train_ds.map(lambda x, y: x) vectorize_layer.adapt(train_text) def vectorize_text(text, label): text = tf.expand_dims(text, -1) return vectorize_layer(text), label # retrieve a batch (of 32 reviews and labels) from the dataset text_batch, label_batch = next(iter(raw_train_ds)) first_review, first_label = text_batch[0], label_batch[0] print("Review", first_review) print("Label", raw_train_ds.class_names[first_label]) print("Vectorized review", vectorize_text(first_review, first_label)) # Print the token (string) that each integer corresponds print("1287 ---> ",vectorize_layer.get_vocabulary()[1287]) print(" 313 ---> ",vectorize_layer.get_vocabulary()[313]) print('Vocabulary size: {}'.format(len(vectorize_layer.get_vocabulary()))) # Apply the TextVectorization layer you created earlier to the train, validation, and test dataset train_ds = raw_train_ds.map(vectorize_text) val_ds = raw_val_ds.map(vectorize_text) test_ds = raw_test_ds.map(vectorize_text) AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE) embedding_dim = 16 # Create your neural network model = tf.keras.Sequential([ layers.Embedding(max_features + 1, embedding_dim), layers.Dropout(0.2), layers.GlobalAveragePooling1D(), layers.Dropout(0.2), layers.Dense(1)]) model.summary() # Configure the model to use an optimizer and a loss function model.compile(loss=# TODO 2 -- Your code goes here(from_logits=True), optimizer='adam', metrics=tf.metrics.BinaryAccuracy(threshold=0.0)) # Train the model epochs = 10 history = # TODO 3 -- Your code goes here( train_ds, validation_data=val_ds, epochs=epochs) # Evaluate the model loss, accuracy = # TODO 4 -- Your code goes here(test_ds) print("Loss: ", loss) print("Accuracy: ", accuracy) history_dict = history.history history_dict.keys() # Plot the loss over time acc = history_dict['binary_accuracy'] val_acc = history_dict['val_binary_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) # "bo" is for "blue dot" plt.plot(epochs, loss, 'bo', label='Training loss') # b is for "solid blue line" plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() # Plot the accuracy over time plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.show() # Export the model export_model = tf.keras.Sequential([ vectorize_layer, model, layers.Activation('sigmoid') ]) # TODO 5 -- Your code goes here( loss=losses.BinaryCrossentropy(from_logits=False), optimizer="adam", metrics=['accuracy'] ) # Test it with `raw_test_ds`, which yields raw strings loss, accuracy = export_model.evaluate(raw_test_ds) print(accuracy) examples = [ "The movie was great!", "The movie was okay.", "The movie was terrible..." ] export_model.predict(examples) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define the image objects. Input arguments Step2: Define the instrument. Input arguments Step3: Define the algorithm being used. Input arguments Step4: Run it Step5: Print the Zernikes Zn (n>=4) Step6: plot the Zernikes Zn (n>=4)
<ASSISTANT_TASK:> Python Code: from lsst.cwfs.instrument import Instrument from lsst.cwfs.algorithm import Algorithm from lsst.cwfs.image import Image, readFile import lsst.cwfs.plots as plots fieldXY = [1.185,1.185] I1 = Image(readFile('../tests/testImages/LSST_NE_SN25/z11_0.25_intra.txt'), fieldXY, Image.INTRA) I2 = Image(readFile('../tests/testImages/LSST_NE_SN25/z11_0.25_extra.txt'), fieldXY, Image.EXTRA) plots.plotImage(I1.image,'intra') plots.plotImage(I2.image,'extra') inst=Instrument('lsst',I1.sizeinPix) algo=Algorithm('exp',inst,0) algo.runIt(inst,I1,I2,'offAxis') print(algo.zer4UpNm) plots.plotZer(algo.zer4UpNm,'nm') plots.plotImage(algo.Wconverge,'Final wavefront') plots.plotImage(algo.Wconverge,'Final wavefront with pupil mask applied', mask=algo.pMask) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load audio data Step2: Create a receptive field Step3: Simulate a neural response Step4: Fit a model to recover this receptive field Step5: Visualize the effects of regularization Step6: Using different regularization types Step7: Compare model performance Step8: Plot the original STRF, and the one that we recovered with modeling.
<ASSISTANT_TASK:> Python Code: # Authors: Chris Holdgraf <choldgraf@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # # License: BSD (3-clause) # sphinx_gallery_thumbnail_number = 7 import numpy as np import matplotlib.pyplot as plt import mne from mne.decoding import ReceptiveField, TimeDelayingRidge from scipy.stats import multivariate_normal from scipy.io import loadmat from sklearn.preprocessing import scale rng = np.random.RandomState(1337) # To make this example reproducible # Read in audio that's been recorded in epochs. path_audio = mne.datasets.mtrf.data_path() data = loadmat(path_audio + '/speech_data.mat') audio = data['spectrogram'].T sfreq = float(data['Fs'][0, 0]) n_decim = 2 audio = mne.filter.resample(audio, down=n_decim, npad='auto') sfreq /= n_decim n_freqs = 20 tmin, tmax = -0.1, 0.4 # To simulate the data we'll create explicit delays here delays_samp = np.arange(np.round(tmin * sfreq), np.round(tmax * sfreq) + 1).astype(int) delays_sec = delays_samp / sfreq freqs = np.linspace(50, 5000, n_freqs) grid = np.array(np.meshgrid(delays_sec, freqs)) # We need data to be shaped as n_epochs, n_features, n_times, so swap axes here grid = grid.swapaxes(0, -1).swapaxes(0, 1) # Simulate a temporal receptive field with a Gabor filter means_high = [.1, 500] means_low = [.2, 2500] cov = [[.001, 0], [0, 500000]] gauss_high = multivariate_normal.pdf(grid, means_high, cov) gauss_low = -1 * multivariate_normal.pdf(grid, means_low, cov) weights = gauss_high + gauss_low # Combine to create the "true" STRF kwargs = dict(vmax=np.abs(weights).max(), vmin=-np.abs(weights).max(), cmap='RdBu_r', shading='gouraud') fig, ax = plt.subplots() ax.pcolormesh(delays_sec, freqs, weights, **kwargs) ax.set(title='Simulated STRF', xlabel='Time Lags (s)', ylabel='Frequency (Hz)') plt.setp(ax.get_xticklabels(), rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() # Reshape audio to split into epochs, then make epochs the first dimension. n_epochs, n_seconds = 16, 5 audio = audio[:, :int(n_seconds * sfreq * n_epochs)] X = audio.reshape([n_freqs, n_epochs, -1]).swapaxes(0, 1) n_times = X.shape[-1] # Delay the spectrogram according to delays so it can be combined w/ the STRF # Lags will now be in axis 1, then we reshape to vectorize delays = np.arange(np.round(tmin * sfreq), np.round(tmax * sfreq) + 1).astype(int) # Iterate through indices and append X_del = np.zeros((len(delays),) + X.shape) for ii, ix_delay in enumerate(delays): # These arrays will take/put particular indices in the data take = [slice(None)] * X.ndim put = [slice(None)] * X.ndim if ix_delay > 0: take[-1] = slice(None, -ix_delay) put[-1] = slice(ix_delay, None) elif ix_delay < 0: take[-1] = slice(-ix_delay, None) put[-1] = slice(None, ix_delay) X_del[ii][put] = X[take] # Now set the delayed axis to the 2nd dimension X_del = np.rollaxis(X_del, 0, 3) X_del = X_del.reshape([n_epochs, -1, n_times]) n_features = X_del.shape[1] weights_sim = weights.ravel() # Simulate a neural response to the sound, given this STRF y = np.zeros((n_epochs, n_times)) for ii, iep in enumerate(X_del): # Simulate this epoch and add random noise noise_amp = .002 y[ii] = np.dot(weights_sim, iep) + noise_amp * rng.randn(n_times) # Plot the first 2 trials of audio and the simulated electrode activity X_plt = scale(np.hstack(X[:2]).T).T y_plt = scale(np.hstack(y[:2])) time = np.arange(X_plt.shape[-1]) / sfreq fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6), sharex=True) ax1.pcolormesh(time, freqs, X_plt, vmin=0, vmax=4, cmap='Reds') ax1.set_title('Input auditory features') ax1.set(ylim=[freqs.min(), freqs.max()], ylabel='Frequency (Hz)') ax2.plot(time, y_plt) ax2.set(xlim=[time.min(), time.max()], title='Simulated response', xlabel='Time (s)', ylabel='Activity (a.u.)') mne.viz.tight_layout() # Create training and testing data train, test = np.arange(n_epochs - 1), n_epochs - 1 X_train, X_test, y_train, y_test = X[train], X[test], y[train], y[test] X_train, X_test, y_train, y_test = [np.rollaxis(ii, -1, 0) for ii in (X_train, X_test, y_train, y_test)] # Model the simulated data as a function of the spectrogram input alphas = np.logspace(-3, 3, 7) scores = np.zeros_like(alphas) models = [] for ii, alpha in enumerate(alphas): rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=alpha) rf.fit(X_train, y_train) # Now make predictions about the model output, given input stimuli. scores[ii] = rf.score(X_test, y_test) models.append(rf) times = rf.delays_ / float(rf.sfreq) # Choose the model that performed best on the held out data ix_best_alpha = np.argmax(scores) best_mod = models[ix_best_alpha] coefs = best_mod.coef_[0] best_pred = best_mod.predict(X_test)[:, 0] # Plot the original STRF, and the one that we recovered with modeling. fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharey=True, sharex=True) ax1.pcolormesh(delays_sec, freqs, weights, **kwargs) ax2.pcolormesh(times, rf.feature_names, coefs, **kwargs) ax1.set_title('Original STRF') ax2.set_title('Best Reconstructed STRF') plt.setp([iax.get_xticklabels() for iax in [ax1, ax2]], rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() # Plot the actual response and the predicted response on a held out stimulus time_pred = np.arange(best_pred.shape[0]) / sfreq fig, ax = plt.subplots() ax.plot(time_pred, y_test, color='k', alpha=.2, lw=4) ax.plot(time_pred, best_pred, color='r', lw=1) ax.set(title='Original and predicted activity', xlabel='Time (s)') ax.legend(['Original', 'Predicted']) plt.autoscale(tight=True) mne.viz.tight_layout() # Plot model score for each ridge parameter fig = plt.figure(figsize=(10, 4)) ax = plt.subplot2grid([2, len(alphas)], [1, 0], 1, len(alphas)) ax.plot(np.arange(len(alphas)), scores, marker='o', color='r') ax.annotate('Best parameter', (ix_best_alpha, scores[ix_best_alpha]), (ix_best_alpha, scores[ix_best_alpha] - .1), arrowprops={'arrowstyle': '->'}) plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas]) ax.set(xlabel="Ridge regularization value", ylabel="Score ($R^2$)", xlim=[-.4, len(alphas) - .6]) mne.viz.tight_layout() # Plot the STRF of each ridge parameter for ii, (rf, i_alpha) in enumerate(zip(models, alphas)): ax = plt.subplot2grid([2, len(alphas)], [0, ii], 1, 1) ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) plt.xticks([], []) plt.yticks([], []) plt.autoscale(tight=True) fig.suptitle('Model coefficients / scores for many ridge parameters', y=1) mne.viz.tight_layout() scores_lap = np.zeros_like(alphas) models_lap = [] for ii, alpha in enumerate(alphas): estimator = TimeDelayingRidge(tmin, tmax, sfreq, reg_type='laplacian', alpha=alpha) rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=estimator) rf.fit(X_train, y_train) # Now make predictions about the model output, given input stimuli. scores_lap[ii] = rf.score(X_test, y_test) models_lap.append(rf) ix_best_alpha_lap = np.argmax(scores_lap) fig = plt.figure(figsize=(10, 6)) ax = plt.subplot2grid([3, len(alphas)], [2, 0], 1, len(alphas)) ax.plot(np.arange(len(alphas)), scores_lap, marker='o', color='r') ax.plot(np.arange(len(alphas)), scores, marker='o', color='0.5', ls=':') ax.annotate('Best Laplacian', (ix_best_alpha_lap, scores_lap[ix_best_alpha_lap]), (ix_best_alpha_lap, scores_lap[ix_best_alpha_lap] - .1), arrowprops={'arrowstyle': '->'}) ax.annotate('Best Ridge', (ix_best_alpha, scores[ix_best_alpha]), (ix_best_alpha, scores[ix_best_alpha] - .1), arrowprops={'arrowstyle': '->'}) plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas]) ax.set(xlabel="Laplacian regularization value", ylabel="Score ($R^2$)", xlim=[-.4, len(alphas) - .6]) mne.viz.tight_layout() # Plot the STRF of each ridge parameter xlim = times[[0, -1]] for ii, (rf_lap, rf, i_alpha) in enumerate(zip(models_lap, models, alphas)): ax = plt.subplot2grid([3, len(alphas)], [0, ii], 1, 1) ax.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs) ax.set(xticks=[], yticks=[], xlim=xlim) if ii == 0: ax.set(ylabel='Laplacian') ax = plt.subplot2grid([3, len(alphas)], [1, ii], 1, 1) ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) ax.set(xticks=[], yticks=[], xlim=xlim) if ii == 0: ax.set(ylabel='Ridge') fig.suptitle('Model coefficients / scores for laplacian regularization', y=1) mne.viz.tight_layout() rf = models[ix_best_alpha] rf_lap = models_lap[ix_best_alpha_lap] fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(9, 3), sharey=True, sharex=True) ax1.pcolormesh(delays_sec, freqs, weights, **kwargs) ax2.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) ax3.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs) ax1.set_title('Original STRF') ax2.set_title('Best Ridge STRF') ax3.set_title('Best Laplacian STRF') plt.setp([iax.get_xticklabels() for iax in [ax1, ax2, ax3]], rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 3. Logistic Regression Application Step2: HW accelerated vs SW-only Step3: Instantiate a Logistic Regression model Step4: Train the LR model Step5: Test the LR model
<ASSISTANT_TASK:> Python Code: import sys, os spark_home = os.environ.get("SPARK_HOME", None) # Add the spark python sub-directory to the path sys.path.insert(0, spark_home + "/python") # Add the py4j to the path. # You may need to change the version number to match your install sys.path.insert(0, os.path.join(spark_home + "/python/lib/py4j-0.10.4-src.zip")) # Initialize PySpark to predefine the SparkContext variable 'sc' filename = spark_home+"/python/pyspark/shell.py" exec(open(filename).read()) chunkSize = 4000 alpha = 0.25 iterations = 5 train_file = "data/MNIST_train.dat" test_file = "data/MNIST_test.dat" sc.appName = "Python Logistic Regression" print("* LogisticRegression Application *") print(" # train file: " + train_file) print(" # test file: " + test_file) accel = int(input("Select mode (0: SW-only, 1: HW accelerated) : ")) from pyspark.mllib_accel.classification import LogisticRegression trainRDD = sc.textFile(train_file).coalesce(1) numClasses = 10 numFeatures = 784 LR = LogisticRegression(numClasses, numFeatures) weights = LR.train(trainRDD, chunkSize, alpha, iterations, accel) with open("data/weights.out", "w") as weights_file: for k in range(0, numClasses): for j in range(0, numFeatures): if j == 0: weights_file.write(str(round(weights[k * numFeatures + j], 5))) else: weights_file.write("," + str(round(weights[k * numFeatures + j], 5))) weights_file.write("\n") weights_file.close() testRDD = sc.textFile(test_file) LR.test(testRDD) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Unit Test
<ASSISTANT_TASK:> Python Code: def reverse_words (S): #TODO: implement me pass from nose.tools import assert_equal class UnitTest (object): def testReverseWords(self): assert_equal(func('the sun is hot'), 'eht nus si toh') assert_equal(func(''), None) assert_equal(func('123 456 789'), '321 654 987') assert_equal(func('magic'), 'cigam') print('Success: reverse_words') def main(): test = UnitTest() test.testReverseWords() if __name__=="__main__": main() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The idea is simple Step2: a simple 3D model Step3: OK, so our toy model works... but how do we actually detect these beacons among the noise of naturally occuring exoplanets we've detected?
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.cm as cm import matplotlib matplotlib.rcParams.update({'font.size':18}) matplotlib.rcParams.update({'font.family':'serif'}) Alpha = 3./2. ab_dist = np.array([2., 3.,3.5, 6., 6.7, 7., 8.2, 14., 18., 20.]) ab_per = ab_dist ** (Alpha) # a figure of the 1-d projection, the key for SETI. plt.figure(figsize=(5,4)) plt.plot(ab_dist, ab_per, 'k') plt.scatter(ab_dist, ab_per,color='k') plt.xlabel('Home $-$ Beacon Separation (pc)') plt.ylabel('P$_{orb}$ of Beacon (days)') plt.ylim(0,100) plt.savefig('dist_per.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) # figure angle on sky to plot # theta = np.random.random(len(ab_dist)) * 2. * np.pi # freeze this random config, i like it theta = np.array([ 4.52448995, 3.46489278, 0.33872438, 1.6891746 , 2.37611205, 2.72516744, 5.41764719, 4.01860732, 1.72938583, 0.60279578]) x = ab_dist * np.cos(theta) y = ab_dist * np.sin(theta) # a figure of the 2-d observed (sky) plane plt.figure(figsize=(6,5)) plt.axes() # the central red cicrle circ = plt.Circle((0,0), radius=1.4, fc='r', zorder=0) plt.gca().add_patch(circ) # make the concentric circles for k in range(5,29,3): circ = plt.Circle((0,0), radius=k, fc='none', alpha=0.35, color='k') plt.gca().add_patch(circ) plt.scatter(x,y, c=ab_per, cmap=cm.viridis_r, s=90, alpha=0.7, edgecolors='k', zorder=2) plt.xlim(-20,20) plt.ylim(-20,20) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') cbar = plt.colorbar() cbar.set_label('P$_{orb}$ of Beacon (days)') plt.savefig('sky_per.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) plt.show() n_b = 1000 # number of beacon systems # n_b = 1e6 i_max = 90. # i_max = 10. # what if we forced beacons to be roughly aligned w/ Galactic plane? d_min = 2 # min distance from ET home world to place beacons (pc) d_max = 50 # max distance from ET home world to place beacons (pc) d_home = 1000 # distance from Earth to ET Home world (in pc) alpha = 3. / 2. # the coefficient to encode the period-distance relationship - in this case Kepler 3rd law R_star = 6.955e10 # cm (R_Sun) R_planet = 7149235 # cm (R_Jupiter) AU = 1.49598e13 # cm (1 AU) #__ the part to repeat __ rad = np.random.random(n_b) * (d_max - d_min) + d_min # dist from ET Home to Beacons (pc) per = rad**Alpha # the period, in days by arbitrary construction a_AU = (per / 365.)**(2./3.) # the orbital semimajor axis (in AU), assuming solar scaling incl = np.random.random(n_b) * i_max # orbit plane inclination (deg) #__ # plt.scatter(a_AU, per, s=90, alpha=0.6) # plt.xlabel('a (AU)') # plt.ylabel('Period (days)') # determine if beacon is "visible", i.e. does it Transit? b = a_AU * AU * np.sin(incl / 180. * np.pi) Transit = b < (R_star + R_planet) no_Transit = b >= (R_star + R_planet) print(sum(Transit), n_b, float(sum(Transit)) / n_b) # plt.scatter(a_AU[no_Transit], per[no_Transit], s=20, alpha=0.6, c='blue', lw=0) # plt.scatter(a_AU[Transit], per[Transit], s=100, alpha=0.6, c='red', lw=0) # plt.xlabel('a (AU)') # plt.ylabel('Period (days)') # plt.xlim(0,2) # make a plot of fraction of systems that transit as a function of orbital semimajor axis (a) yy, aa = np.histogram(a_AU[Transit], bins=25, range=(min(a_AU),1)) nn, aa = np.histogram(a_AU[no_Transit], bins=25, range=(min(a_AU),1)) plt.plot((aa[1:] + aa[0:-1])/2., np.array(yy, dtype='float') / nn) plt.xlabel('a (AU)') plt.ylabel('Fraction that transit') # now put beacons in random places in space to illustrate on the sky theta = np.random.random(n_b) * 2 * np.pi phi = np.random.random(n_b) * np.pi x = rad * np.cos(theta) y = rad * np.sin(theta) plt.figure(figsize=(5,5)) plt.scatter(x[no_Transit], y[no_Transit], s=10, alpha=0.1) plt.scatter(x[Transit], y[Transit], s=100, alpha=0.5, c='red') plt.xlim(-60,60) plt.ylim(-60,60) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.savefig('3d_model.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) ''' # repeat this 3d toy model 1000 times to get smooth recovery fraction hist_smooth = np.zeros_like(yy) num_smooth = np.zeros_like(nn) num_transit = np.zeros(1000) for k in range(1000): rad = np.random.random(n_b) * (d_max - d_min) + d_min # dist from ET Home to Beacons (pc) per = rad**alpha # the period, in days by arbitrary construction a_AU = (per / 365.)**(2./3.) # the orbital semimajor axis (in AU), assuming solar scaling incl = np.random.random(n_b) * i_max # orbit plane inclination (deg) b = a_AU * AU * np.sin(incl / 180. * np.pi) Transit = b < (R_star + R_planet) no_Transit = b >= (R_star + R_planet) yy, aa = np.histogram(a_AU[Transit], bins=25, range=(0,2)) nn, aa = np.histogram(a_AU[no_Transit], bins=25, range=(0,2)) hist_smooth = hist_smooth + np.array(yy, dtype='float') num_smooth = num_smooth + np.array(nn, dtype='float') # plt.plot((aa[1:] + aa[0:-1])/2., np.array(yy, dtype='float') / nn, alpha=0.1, c='k') num_transit[k] = (float(sum(Transit)) / n_b) plt.plot((aa[1:] + aa[0:-1])/2., hist_smooth / num_smooth, lw=2); plt.xlabel('a (AU)'); plt.ylabel('Fraction that transit'); # plt.savefig('recov_fraction.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) print(np.mean(num_transit), np.std(num_transit)) '''; plt.figure(figsize=(5,5)) plt.scatter(x[no_Transit], y[no_Transit], s=10, alpha=0.1) plt.scatter(x[Transit], y[Transit], s=100, alpha=0.5, c=per[Transit], edgecolors='k', cmap=cm.viridis_r) plt.xlim(-60,60) plt.ylim(-60,60) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.savefig('3dcolor.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) Nother = 200 plt.figure(figsize=(5,5)) # plt.scatter(x[no_Transit], y[no_Transit], s=10, alpha=0.1) plt.scatter(x[Transit], y[Transit], alpha=0.5, c=per[Transit], cmap=cm.viridis_r) plt.scatter(np.random.random(Nother)*100-50,np.random.random(Nother)*100-50, c=np.random.random(Nother)*250+5, alpha=.5, s=10) plt.xlim(-60,60) plt.ylim(-60,60) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.savefig('3dcolor_bkgd.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: About the Data Step2: Tidy Dyads and Starting Joins Step3: Remove records that come from players who don't have a skintone rating Step4: Disaggregate
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format='retina' from __future__ import absolute_import, division, print_function import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.pyplot import GridSpec import seaborn as sns import numpy as np import pandas as pd import os, sys from tqdm import tqdm import warnings warnings.filterwarnings('ignore') sns.set_context("poster", font_scale=1.3) import missingno as msno import pandas_profiling from sklearn.datasets import make_blobs import time def save_subgroup(dataframe, g_index, subgroup_name, prefix='raw_'): save_subgroup_filename = "".join([prefix, subgroup_name, ".csv.gz"]) dataframe.to_csv(save_subgroup_filename, compression='gzip', encoding='UTF-8') test_df = pd.read_csv(save_subgroup_filename, compression='gzip', index_col=g_index, encoding='UTF-8') # Test that we recover what we send in if dataframe.equals(test_df): print("Test-passed: we recover the equivalent subgroup dataframe.") else: print("Warning -- equivalence test!!! Double-check.") def load_subgroup(filename, index_col=[0]): return pd.read_csv(filename, compression='gzip', index_col=index_col) clean_players = load_subgroup("cleaned_players.csv.gz") players = load_subgroup("raw_players.csv.gz", ) countries = load_subgroup("raw_countries.csv.gz") referees = load_subgroup("raw_referees.csv.gz") agg_dyads = pd.read_csv("raw_dyads.csv.gz", compression='gzip', index_col=[0, 1]) agg_dyads.head(10) # Test if the number of games is equal to the victories + ties + defeats in the dataset all(agg_dyads['games'] == agg_dyads.victories + agg_dyads.ties + agg_dyads.defeats) # Sanity check passes len(agg_dyads.reset_index().set_index('playerShort')) agg_dyads['totalRedCards'] = agg_dyads['yellowReds'] + agg_dyads['redCards'] agg_dyads.rename(columns={'redCards': 'strictRedCards'}, inplace=True) agg_dyads.head() clean_players.head() agg_dyads.head() agg_dyads.reset_index().head() agg_dyads.reset_index().set_index('playerShort').head() player_dyad = (clean_players.merge(agg_dyads.reset_index().set_index('playerShort'), left_index=True, right_index=True)) player_dyad.head() clean_dyads = (agg_dyads.reset_index()[agg_dyads.reset_index() .playerShort .isin(set(clean_players.index)) ]).set_index(['refNum', 'playerShort']) clean_dyads.head() clean_dyads.shape, agg_dyads.shape, player_dyad.shape # inspired by https://github.com/mathewzilla/redcard/blob/master/Crowdstorming_visualisation.ipynb colnames = ['games', 'totalRedCards'] j = 0 out = [0 for _ in range(sum(clean_dyads['games']))] for index, row in clean_dyads.reset_index().iterrows(): n = row['games'] d = row['totalRedCards'] ref = row['refNum'] player = row['playerShort'] for _ in range(n): row['totalRedCards'] = 1 if (d-_) > 0 else 0 rowlist=list([ref, player, row['totalRedCards']]) out[j] = rowlist j += 1 tidy_dyads = pd.DataFrame(out, columns=['refNum', 'playerShort', 'redcard'],).set_index(['refNum', 'playerShort']) # 3092 tidy_dyads.redcard.sum() # Notice this is longer than before clean_dyads.games.sum() tidy_dyads.shape # Ok, this is a bit crazy... tear it apart and figure out what each piece is doing if it's not clear clean_referees = (referees.reset_index()[referees.reset_index() .refNum.isin(tidy_dyads.reset_index().refNum .unique()) ]).set_index('refNum') clean_referees.shape, referees.shape clean_countries = (countries.reset_index()[countries.reset_index() .refCountry .isin(clean_referees.refCountry .unique()) ].set_index('refCountry')) clean_countries.shape, countries.shape tidy_dyads.head() tidy_dyads.to_csv("cleaned_dyads.csv.gz", compression='gzip') tidy_dyads.shape <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's create a CubicDual and visualize it in Paraview Step2: The resulting network has two sets of pores, labelled as blue and red in the image below. By default, the main cubic lattice is referred to as the 'primary' network which is colored blue, and the interpenetrating dual is referred to as the 'secondary' network shown in red. These names are used to label the pores and throats associated with each network. These names can be changed by sending label_1 and label_2 arguments during initialization. The throats connecting the 'primary' and 'secondary' pores are labelled 'interconnect', and they can be seen as the diagonal connections below. Step3: Inspection of this image shows that the 'primary' pores are located at expected locations for a cubic network including on the faces of the cube, and 'secondary' pores are located at the interstitial locations. There is one important nuance to note Step4: Now that this topology is created, the next step would be to create Geometry objects for each network, and an additional one for the 'interconnect' throats
<ASSISTANT_TASK:> Python Code: import scipy as sp import openpnm as op import matplotlib.pyplot as plt %matplotlib inline wrk = op.Workspace() # Initialize a workspace object wrk.loglevel=50 net = op.network.CubicDual(shape=[6, 6, 6]) from openpnm.topotools import plot_connections, plot_coordinates fig1 = plot_coordinates(network=net, pores=net.pores('primary'), c='b') fig2 = plot_coordinates(network=net, pores=net.pores('primary'), c='b') fig2 = plot_coordinates(network=net, pores=net.pores('secondary'), fig=fig2, c='r') fig3 = plot_coordinates(network=net, pores=net.pores('primary'), c='b') fig3 = plot_coordinates(network=net, pores=net.pores('secondary'), fig=fig3, c='r') fig3 = plot_connections(network=net, throats=net.throats('primary'), fig=fig3, c='b') fig4 = plot_coordinates(network=net, pores=net.pores('primary'), c='b') fig4 = plot_coordinates(network=net, pores=net.pores('secondary'), fig=fig4, c='r') fig4 = plot_connections(network=net, throats=net.throats('primary'), fig=fig4, c='b') fig4 = plot_connections(network=net, throats=net.throats('secondary'), fig=fig4, c='r') fig5 = plot_coordinates(network=net, pores=net.pores('primary'), c='b') fig5 = plot_coordinates(network=net, pores=net.pores('secondary'), fig=fig5, c='r') fig5 = plot_connections(network=net, throats=net.throats('primary'), fig=fig5, c='b') fig5 = plot_connections(network=net, throats=net.throats('secondary'), fig=fig5, c='r') fig5 = plot_connections(network=net, throats=net.throats('interconnect'), fig=fig5, c='g') print(net.num_pores('primary')) print(net.num_pores('secondary')) print(net.num_throats('primary')) print(net.num_throats('secondary')) print(net.num_throats('interconnect')) geo_pri = op.geometry.GenericGeometry(network=net, pores=net.pores('primary'), throats=net.throats('primary')) geo_sec = op.geometry.GenericGeometry(network=net, pores=net.pores('secondary'), throats=net.throats('secondary')) geo_inter = op.geometry.GenericGeometry(network=net, throats=net.throats('interconnect')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A base de seu funcionamento é o np.array, que retorna o objeto array sobre o qual todas as funções estão implementadas Step2: O array traz consigo diversos operadores já implementados Step3: O Numpy traz consigo diversas operações matemáticas implementadas, as quais podem ser aplicadas sobre um valor ou um array de valores. Step4: Uma operação booleana pode ser aplicada sobre todos os elementos de um array, retornando um array de mesmas dimensões com o resultado da operação Step5: Existem também operações utilitárias pré-definidas em um array Step6: Existem também funções para gerar arrays pré-inicializados Step7: Podemos selecionar intervalos do array, permitindo recuperar apenas uma porção dele Step8: O Numpy conta também com funções para salvar/ler arrays de arquivos
<ASSISTANT_TASK:> Python Code: import numpy as np a = np.array([1, 2, 3]) print(repr(a), a.shape, end="\n\n") b = np.array([(1, 2, 3), (4, 5, 6)]) print(repr(b), b.shape) print(b.T, end="\n\n") # transpoe uma matriz print(a + b, end="\n\n") # soma um vetor linha/coluna a todas as linhas/colunas de uma matriz print(b - a, end="\n\n") # subtrai um vetor linha/coluna a todas as linhas/colunas de uma matriz # multiplica os elementos de um vetor linha/coluna # a todos os elementos das linhas/colunas de uma matriz print(a * b, end="\n\n") print(a**2, end="\n\n") # eleva os elementos ao quadrado print(10*np.sin(1)) # seno trigonométrico de 1 print(10*np.sin(a)) # seno trigonométrico de cada elemento de a b<35 print(b,end="\n\n") print('Axis 1: %s' % b[0], end="\n\n") # retorna um vetor print(np.average(b), end="\n\n") # tira a média dos elementos print(np.average(b, axis=1), end="\n\n") # tira a média dos elementos dos vetores no eixo 1 print(b.sum(), end="\n\n") # retorna as somas dos valores print(b.sum(axis=1), end="\n\n") # retorna as somas dos valores no eixo 1 print(b.min(), end="\n\n") # retorna o menor valor print(b.max(), end="\n\n") # retorna o maior valor print(np.zeros((3, 5)), end="\n\n") # array de zeros com dimensões [3,5] print(np.ones((2,3,4)), end="\n\n------------\n\n") # array de uns com dimensões [2,3,4] print(np.full((2, 2), 10), end="\n\n") # array de 10 com dimensões [2,2] print(np.arange(10, 30, 5), end="\n\n") # valores de 10 a 30 com passo 5 print(np.random.rand(2, 3), end="\n\n") # array cde dimensao [2,3] com valores aleatórios d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) d d[:, 0] # todas as linhas (:) da primeira coluna (0) d[:, 1] # todas as linhas (:) da segunda coluna (1) d[:, 0:2] # todas as linhas (:) das colunas de 0 à 2 d[:, 2] # todas as linhas (:) da terceira coluna (2) x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) np.save('/tmp/x.npy', x) del(x) x = np.load('/tmp/x.npy') print(x) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Please ignore the incompatible errors. Step2: Set your PROJECT ID Step3: Import Python libraries, define constants Step4: Import census data into BigQuery Step5: Load Census data in BigQuery. Step6: Confirm that data was imported Step7: Load census data in TensorFlow DataSet using BigQuery reader Step8: Define feature columns Step9: Build and train model Step10: Train model Step11: Evaluate model Step12: Evaluate a couple of random samples
<ASSISTANT_TASK:> Python Code: try: # Use the Colab's preinstalled TensorFlow 2.x %tensorflow_version 2.x except: pass # Install the required packages !pip install fastavro !pip install tensorflow-io==0.9.0 # Install the specified package !pip install google-cloud-bigquery-storage PROJECT_ID = "<YOUR PROJECT>" #@param {type:"string"} ! gcloud config set project $PROJECT_ID %env GCLOUD_PROJECT=$PROJECT_ID # Import necessary libraries from __future__ import absolute_import, division, print_function, unicode_literals import os from six.moves import urllib import tempfile import numpy as np import pandas as pd import tensorflow as tf from google.cloud import bigquery from google.api_core.exceptions import GoogleAPIError LOCATION = 'us' # Storage directory DATA_DIR = os.path.join(tempfile.gettempdir(), 'census_data') # Download options. DATA_URL = 'https://storage.googleapis.com/cloud-samples-data/ml-engine/census/data' TRAINING_FILE = 'adult.data.csv' EVAL_FILE = 'adult.test.csv' TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE) EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE) DATASET_ID = 'census_dataset' TRAINING_TABLE_ID = 'census_training_table' EVAL_TABLE_ID = 'census_eval_table' CSV_SCHEMA = [ bigquery.SchemaField("age", "FLOAT64"), bigquery.SchemaField("workclass", "STRING"), bigquery.SchemaField("fnlwgt", "FLOAT64"), bigquery.SchemaField("education", "STRING"), bigquery.SchemaField("education_num", "FLOAT64"), bigquery.SchemaField("marital_status", "STRING"), bigquery.SchemaField("occupation", "STRING"), bigquery.SchemaField("relationship", "STRING"), bigquery.SchemaField("race", "STRING"), bigquery.SchemaField("gender", "STRING"), bigquery.SchemaField("capital_gain", "FLOAT64"), bigquery.SchemaField("capital_loss", "FLOAT64"), bigquery.SchemaField("hours_per_week", "FLOAT64"), bigquery.SchemaField("native_country", "STRING"), bigquery.SchemaField("income_bracket", "STRING"), ] UNUSED_COLUMNS = ["fnlwgt", "education_num"] def create_bigquery_dataset_if_necessary(dataset_id): # Construct a full Dataset object to send to the API. client = bigquery.Client(project=PROJECT_ID) dataset = bigquery.Dataset(bigquery.dataset.DatasetReference(PROJECT_ID, dataset_id)) dataset.location = LOCATION try: # Constructs the API request dataset = # TODO -- Your code goes here return True except GoogleAPIError as err: if err.code != 409: # http_client.CONFLICT raise return False def load_data_into_bigquery(url, table_id): create_bigquery_dataset_if_necessary(DATASET_ID) client = bigquery.Client(project=PROJECT_ID) dataset_ref = client.dataset(DATASET_ID) table_ref = dataset_ref.table(table_id) job_config = bigquery.LoadJobConfig() job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE job_config.source_format = bigquery.SourceFormat.CSV job_config.schema = CSV_SCHEMA # Constructs the Job to load data into table load_job = # TODO -- Your code goes here( url, table_ref, job_config=job_config ) print("Starting job {}".format(load_job.job_id)) load_job.result() # Waits for table load to complete. print("Job finished.") destination_table = client.get_table(table_ref) print("Loaded {} rows.".format(destination_table.num_rows)) load_data_into_bigquery(TRAINING_URL, TRAINING_TABLE_ID) load_data_into_bigquery(EVAL_URL, EVAL_TABLE_ID) %%bigquery --use_bqstorage_api SELECT * FROM `<YOUR PROJECT>.census_dataset.census_training_table` LIMIT 5 from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes from tensorflow_io.bigquery import BigQueryClient from tensorflow_io.bigquery import BigQueryReadSession def transform_row(row_dict): # Trim all string tensors trimmed_dict = { column: (tf.strings.strip(tensor) if tensor.dtype == 'string' else tensor) for (column,tensor) in row_dict.items() } # Extract feature column income_bracket = trimmed_dict.pop('income_bracket') # Convert feature column to 0.0/1.0 income_bracket_float = tf.cond(tf.equal(tf.strings.strip(income_bracket), '>50K'), lambda: tf.constant(1.0), lambda: tf.constant(0.0)) return (trimmed_dict, income_bracket_float) def read_bigquery(table_name): tensorflow_io_bigquery_client = BigQueryClient() read_session = tensorflow_io_bigquery_client.read_session( "projects/" + PROJECT_ID, PROJECT_ID, table_name, DATASET_ID, list(field.name for field in CSV_SCHEMA if not field.name in UNUSED_COLUMNS), list(dtypes.double if field.field_type == 'FLOAT64' else dtypes.string for field in CSV_SCHEMA if not field.name in UNUSED_COLUMNS), requested_streams=2) # Read the rows in parallel streams dataset = # TODO -- Your code goes here # Apply transformation to the dataset transformed_ds = # TODO -- Your code goes here(transform_row) return transformed_ds BATCH_SIZE = 32 training_ds = read_bigquery(TRAINING_TABLE_ID).shuffle(10000).batch(BATCH_SIZE) eval_ds = read_bigquery(EVAL_TABLE_ID).batch(BATCH_SIZE) def get_categorical_feature_values(column): query = 'SELECT DISTINCT TRIM({}) FROM `{}`.{}.{}'.format(column, PROJECT_ID, DATASET_ID, TRAINING_TABLE_ID) client = bigquery.Client(project=PROJECT_ID) dataset_ref = client.dataset(DATASET_ID) job_config = bigquery.QueryJobConfig() query_job = client.query(query, job_config=job_config) result = query_job.to_dataframe() return result.values[:,0] from tensorflow import feature_column feature_columns = [] # numeric cols for header in ['capital_gain', 'capital_loss', 'hours_per_week']: feature_columns.append(feature_column.numeric_column(header)) # categorical cols for header in ['workclass', 'marital_status', 'occupation', 'relationship', 'race', 'native_country', 'education']: categorical_feature = feature_column.categorical_column_with_vocabulary_list( header, get_categorical_feature_values(header)) categorical_feature_one_hot = feature_column.indicator_column(categorical_feature) feature_columns.append(categorical_feature_one_hot) # bucketized cols age = feature_column.numeric_column('age') age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) feature_columns.append(age_buckets) feature_layer = tf.keras.layers.DenseFeatures(feature_columns) Dense = tf.keras.layers.Dense model = tf.keras.Sequential( [ feature_layer, Dense(100, activation=tf.nn.relu, kernel_initializer='uniform'), Dense(75, activation=tf.nn.relu), Dense(50, activation=tf.nn.relu), Dense(25, activation=tf.nn.relu), Dense(1, activation=tf.nn.sigmoid) ]) # Compile Keras model model.compile( loss='binary_crossentropy', metrics=['accuracy']) # Train the model # TODO -- Your code goes here(training_ds, epochs=5) # Evaluate the model loss, accuracy = # TODO -- Your code goes here(eval_ds) print("Accuracy", accuracy) sample_x = { 'age' : np.array([56, 36]), 'workclass': np.array(['Local-gov', 'Private']), 'education': np.array(['Bachelors', 'Bachelors']), 'marital_status': np.array(['Married-civ-spouse', 'Married-civ-spouse']), 'occupation': np.array(['Tech-support', 'Other-service']), 'relationship': np.array(['Husband', 'Husband']), 'race': np.array(['White', 'Black']), 'gender': np.array(['Male', 'Male']), 'capital_gain': np.array([0, 7298]), 'capital_loss': np.array([0, 0]), 'hours_per_week': np.array([40, 36]), 'native_country': np.array(['United-States', 'United-States']) } model.predict(sample_x) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Arms Step2: Agents Step3: Example agents Step4: Beta-Softmax Step5: Upper Confidence Bound (UCB1) Step6: Metrics Step7: Test Step8: Experimental stuff
<ASSISTANT_TASK:> Python Code: # Importing numpy for math, and matplotlib for plots import matplotlib.pyplot as plt import numpy as np %matplotlib inline class Arm: def __init__(self, mu=None, sigma=None): if mu is None: self.mu = np.absolute(np.random.uniform()) else: self.mu = mu if sigma is None: self.sigma=np.absolute(np.random.uniform()) else: self.sigma = sigma def pull(self): reward = np.random.normal(self.mu, self.sigma, 1) return reward def get_arms(k): # returns a list of arms arms = [] for i in range(k): arms.append(Arm()) return arms class agent: def __init__(self, arms, play_once=1): self.expectations = np.zeros(len(arms)) self.times_played = np.zeros(len(arms)) self.arms = arms self.number_of_arms = len(arms) self.N = 0 self.reward_history = [] self.choice_history = [] if play_once == 1: for i in range(self.number_of_arms): self.expectations[i] = self.play(i) def play(self, index): reward = self.arms[index].pull() self.times_played[index] += 1 self.N += 1 self.choice_history.append(index) self.reward_history.append(reward) return reward def policy(self): pass def update_expectations(self, reward, index): self.expectations[index] += (reward - self.expectations[index])/self.N def select_arm(self): options = range(self.number_of_arms) i = np.random.choice(options, p=self.policy(), replace=False) return i def gamble(self, iterations): for i in range(iterations): index = self.select_arm() reward = self.play(index) self.update_expectations(reward, index) class epsilon_greedy(agent): def __init__(self, arms, play_once=1, epsilon=0.1): super().__init__(arms, play_once) self.epsilon = epsilon def __str__(self): return "Epsilon-Greedy Agent, epsilon= "+str(self.epsilon) def policy(self): temp = np.zeros_like(self.expectations) temp[np.argmax(self.expectations)] = 1-self.epsilon ans = temp + self.epsilon/self.number_of_arms return ans class softmax(agent): def __init__(self, arms, play_once=1, beta=1): super().__init__(arms, play_once) self.beta = beta def __str__(self): return "Softmax agent, beta= "+ str(self.beta) def policy(self): temp = np.exp(self.expectations/self.beta) ans = temp / np.sum(temp, axis=0) return ans class ucb(agent): def __init__(self, arms, play_once=1): super().__init__(arms, play_once) def __str__(self): return "UCB1 agent" def policy(self): temp = self.expectations + np.sqrt(2*np.log(self.N)/self.times_played) ans = np.zeros_like(temp) ans[np.argmax(temp)] = 1 return ans def maxreward(arms): #Max rewards a= [arm.mu for arm in arms] return max(a) def avg_reward(rewards): ans = [] ans.append(rewards[0]) for i in range(1,len(rewards)): ans.append(ans[i-1]+rewards[i]) for i in range(len(ans)): ans[i]/=i+1 return ans def cosine_similarity(a,b): temp = a*b temp/=(euclid_distance(a)* euclid_distance(b)) return np.sum(temp, axis=0) def euclid_distance(a): return np.sqrt(np.sum(a*a, axis=0)) def test(agents, iterations): for agent in agents: agent.gamble(iterations) temp = [ arm.mu for arm in levers] optimal_policy = np.zeros_like(agent.expectations) optimal_policy[temp.index(max(temp))] = 1 avg_rewards_earned = avg_reward(agent.reward_history) print(agent) print("maximum possible reward:", maxreward(levers)) print("average reward:", avg_rewards_earned[-1]) print("cosine similarity" ,cosine_similarity(agent.policy(), optimal_policy)) euclid_norm = euclid_distance(agent.policy()-optimal_policy)/len(optimal_policy) print("euclidian norm ",euclid_norm) plt.plot(avg_rewards_earned) plt.ylabel('Average Reward') plt.xlabel('Iteration') plt.show() print("\n") # print("optimal policy:" , optimal) # print("learnt policy:" ,agent.policy()) # plt.scatter(range(len(agent.choice_history)),y=agent.choice_history) # plt.title("Choices") # plt.xlabel("time") # plt.ylabel("arm") # plt.show() # print("\n") levers = get_arms(10) agents = [ epsilon_greedy(levers, epsilon=1), epsilon_greedy(levers, epsilon=0), softmax(levers, beta=0.1), ucb(levers) ] plt.plot([ arm.mu for arm in levers] ) plt.title("distribution of expected value of arms") test(agents, 5000) class softmax_with_exponentiation(agent): def __init__(self, arms, play_once=1, beta=1, exp=1): super().__init__(arms, play_once) self.beta = beta self.exp = exp def policy(self): temp = np.exp(self.expectations/self.beta) ans = temp / np.sum(temp, axis=0) ans = ans**self.exp ans /= np.sum(ans, axis=0) return ans class softmax_with_reccurence(agent): def __init__(self, arms, play_once=1, beta=1): super().__init__(arms, play_once) self.old_policy = np.ones_like(self.expectations)/self.l self.beta = beta def policy(self): temp = np.exp(self.expectations/self.beta) new_policy = temp / np.sum(temp, axis=0) result = np.multiply(new_policy, self.old_policy) result /= np.sum(result, axis=0) self.old_policy = result return result class greedy_with_reccurence(agent): # alpha = number < 1; will sum over a number of observations and will keep # osiclating. # alpha = N will allow the algo to converge to an arm, greedy doesn't # really need this, kind of always give one answer. def __init__(self, arms, play_once=1, alpha=1): super().__init__(arms, play_once) self.old_policy = np.ones_like(self.expectations) self.alpha = alpha def policy(self): new_policy = np.zeros_like(self.expectations) new_policy[np.argmax(self.expectations)] = 1 new_policy = (1-self.alpha)*new_policy + self.alpha*self.old_policy new_policy /= np.sum(new_policy, axis=0) self.old_policy = new_policy return new_policy # class magic(agent): # def __init__(self, arms, play_once=1, exp=1): # super().__init__(arms, play_once) # self.old_policy = np.ones_like(self.expectations)/self.l # self.exp = exp # # def policy(self): # new_policy = f(old_policy, g(expectations)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We now define the initial conditions and constants of the problem. Step2: As said, let's define a system of ordinary differential equations in its normal form ${\bf f}' = {\bf g}({\bf f}, t)$. (In the code bellow we substitute $g()$ for $gm()$ so that it doesn't clash with the acceleration of gravity constant - $g$). Step3: Let's define the conditions to numerically solve the problem, including a time vector Step4: Now let's solve the equations numericaly and extract the corresponding $y(t)$ and $v(t)$ Step5: Finally, we can plot the solution. Step6: As you can see, the velocity starts at 10 $m/s^2$, with the ball going up. Its velocity starts decreasing, goes to zero at max height, and then becomes negative as the ball starts coming down. After a while it reaches its maximum speed Step7: Now, with our numerical simulation, the terminal velocity is
<ASSISTANT_TASK:> Python Code: %pylab inline from scipy.integrate import odeint from math import sqrt, atan # Constants g = 9.8 # Accelaration of gravity p = 1.2 # Density of air # Caracteristics of the problem m = 0.100 # A 100 g ball r = 0.10 # 10 cm radius Cd = 0.5 # Drag coeficient for a small spherical object y0 = 1000.0 # Initial height of the body (1000 m) v0 = 10.0 # Initial velocity of the body (10 m/s^2, going up) A = math.pi*r**2 # Cross-section area of the body sgn = lambda x: math.copysign(1, x) # Auxiliary function to calculate the sign of a number def gm(f, t): (y, v) = f # Extract y and v (i.e., dy/dt) from the f mapping dy_dt = v # The differential equations dv_dt = -1.0*g - sgn(v)*(1./2.)*(p/m)*Cd*A*v**2 return [dy_dt, dv_dt] # Return the derivatives # Initial conditions (position and velocity) start = [y0, v0] # Time vector (from 0 to 5 secs) tf = 5.0 t = linspace(0, tf, int(tf*100)) f = odeint(gm, start, t) y = f[:, 0] v = f[:, 1] figure(figsize=(14, 6)) subplot(1, 2, 1, title='Velocity over time') xlabel('Time (sec)') ylabel('Velocity (m/sec)') plot(t, v) subplot(1, 2, 2, title='Height over time') xlabel('Time (sec)') ylabel('Height (m)') plot(t, y) vt = sqrt( (2.*m*g) / (p*A*Cd) ) vt # The terminal velocity vt_numeric = abs(min(v)) vt_numeric <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fasta files Step2: Sequences can be written once at a time using the pbxplore.io.write_fasta_entry() function. Step3: By default, the lines in fasta files are wrapped at 60 caracters as defined in pbxplore.io.fasta.FASTA_WIDTH. Both pbxplore.io.write_fasta() and pbxplore.io.write_fasta_entry() have a width optionnal argument that allows to control the wrapping. Step4: Dihedral angles Step5: Note it's better to write the dihedral for each PDB/frame due to the high memory cost to store all of them in a list. Step7: Read fasta files Step8: If the sequences we want to read are spread amongst several fasta files, then we can use the pbxplore.io.read_several_fasta() function that takes a list of fasta file path as argument instead of a single path.
<ASSISTANT_TASK:> Python Code: from pprint import pprint import urllib.request import os # print date & versions import datetime print("Date & time:",datetime.datetime.now()) import sys print("Python version:", sys.version) import pbxplore as pbx print("PBxplore version:", pbx.__version__) names = [] pb_sequences = [] pdb_name, _ = urllib.request.urlretrieve('https://files.rcsb.org/view/2LFU.pdb', '2LFU.pdb') for chain_name, chain in pbx.chains_from_files([pdb_name]): dihedrals = chain.get_phi_psi_angles() pb_seq = pbx.assign(dihedrals) names.append(chain_name) pb_sequences.append(pb_seq) pprint(names) pprint(pb_sequences) with open('output.fasta', 'w') as outfile: pbx.io.write_fasta(outfile, pb_sequences, names) !cat output.fasta !rm output.fasta pdb_name, _ = urllib.request.urlretrieve('https://files.rcsb.org/view/2LFU.pdb', '2LFU.pdb') with open('output.fasta', 'w') as outfile: for chain_name, chain in pbx.chains_from_files([pdb_name]): dihedrals = chain.get_phi_psi_angles() pb_seq = pbx.assign(dihedrals) pbx.io.write_fasta_entry(outfile, pb_seq, chain_name) !cat output.fasta !rm output.fasta print(pb_sequences[0]) with open('output.fasta', 'w') as outfile: for width in (60, 70, 80): pbx.io.write_fasta_entry(outfile, pb_sequences[0], 'width={} blocks'.format(width), width=width) !cat output.fasta !rm output.fasta pdb_name, _ = urllib.request.urlretrieve('https://files.rcsb.org/view/2LFU.pdb', '2LFU.pdb') with open('output.phipsi', 'w') as outfile: for chain_name, chain in pbx.chains_from_files([pdb_name]): dihedral = chain.get_phi_psi_angles() for res in sorted(dihedral): phi = "{:8.2f}".format(dihedral[res]["phi"]) if dihedral[res]["phi"] else " None" psi = "{:8.2f}".format(dihedral[res]["psi"]) if dihedral[res]["psi"] else " None" print("{} {:6d} {} {} ".format(chain_name, res, phi, psi), file=outfile) !head output.phipsi !tail output.phipsi !rm output.phipsi def pdb_to_fasta_pb(pdb_path, fasta_path): Write a fasta file with all the PB sequences from a PDB with open(fasta_path, 'w') as outfile: for chain_name, chain in pbx.chains_from_files([pdb_path]): dihedrals = chain.get_phi_psi_angles() pb_seq = pbx.assign(dihedrals) pbx.io.write_fasta_entry(outfile, pb_seq, chain_name) # Write a fasta file pdb_name, _ = urllib.request.urlretrieve('https://files.rcsb.org/view/2LFU.pdb', '2LFU.pdb') pdb_to_fasta_pb(pdb_name, 'output.fasta') # Read a list of headers and a list of sequences from a fasta file names, sequences = pbx.io.read_fasta('output.fasta') print('names:') pprint(names) print('sequences:') pprint(sequences) !rm output.fasta # Write several fasta files pdbname, _ = urllib.request.urlretrieve('https://files.rcsb.org/view/1BTA.pdb', '1BTA.pdb') pdb_to_fasta_pb(pdbname, '1BTA.fasta') pdbname, _ = urllib.request.urlretrieve('https://files.rcsb.org/view/2LFU.pdb', '2LFU.pdb') pdb_to_fasta_pb(pdb_name, '2FLU.fasta') # Read the fasta files names, sequences = pbx.io.read_several_fasta(['1BTA.fasta', '2FLU.fasta']) # Print the first entries print('names:') pprint(names[:5]) print('sequences:') pprint(sequences[:5]) !rm 1BTA.fasta 2FLU.fasta <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In the previous chapter we developed a quadratic model of world Step2: And here's the code that reads table2, which contains world populations estimates from the U.S. Census and U.N. DESA, among other organizations. Step3: Generating Projections Step4: And here are the results. Step5: According to the model, population growth will slow gradually after 2020, approaching 12.5 billion by 2100. Step6: Some values are NaN, which indicates missing data, because some organizations did not publish projections for some years. Step8: The following function plots projections from the U.N. DESA and U.S. Census. It uses dropna to remove the NaN values from each series before plotting it. Step9: Here are their projections compared to the results of the quadratic model. Step10: The U.N. DESA expects the world population to reach 11 billion around 2100, and then level off. Step11: The first element is NaN because we don't have the data for 1945, so we can't compute the first difference. Step12: The following function computes and plots the growth rates for the census and un estimates Step13: And here's what it looks like. Step14: Other than a bump around 1990, net growth rate has been declining roughly linearly since 1970. Step15: To see what it looks like, I'll create an array of time stamps from 1960 to 2020 and use alpha_func to compute the corresponding growth rates. Step16: Here's what it looks like, compared to the data. Step17: If you don't like the slope and intercept I chose, feel free to adjust them.
<ASSISTANT_TASK:> Python Code: # install Pint if necessary try: import pint except ImportError: !pip install pint # download modsim.py if necessary from os.path import exists filename = 'modsim.py' if not exists(filename): from urllib.request import urlretrieve url = 'https://raw.githubusercontent.com/AllenDowney/ModSim/main/' local, _ = urlretrieve(url+filename, filename) print('Downloaded ' + local) # import functions from modsim from modsim import * import os filename = 'World_population_estimates.html' if not os.path.exists(filename): !wget https://raw.githubusercontent.com/AllenDowney/ModSimPy/master/data/World_population_estimates.html from pandas import read_html tables = read_html(filename, header=0, index_col=0, decimal='M') table2 = tables[2] table2.columns = ['census', 'prb', 'un', 'maddison', 'hyde', 'tanton', 'biraben', 'mj', 'thomlinson', 'durand', 'clark'] from modsim import TimeSeries def run_simulation(system, growth_func): results = TimeSeries() results[system.t_0] = system.p_0 for t in range(system.t_0, system.t_end): growth = growth_func(results[t], t, system) results[t+1] = results[t] + growth return results def growth_func_quad(pop, t, system): return system.alpha * pop + system.beta * pop**2 census = table2.census / 1e9 un = table2.un / 1e9 from modsim import System t_0 = census.index[0] p_0 = census[t_0] system = System(t_0=t_0, p_0=p_0, t_end=2100) system.alpha = 25 / 1000 system.beta = -1.8 / 1000 results = run_simulation(system, growth_func_quad) from modsim import show show(results.tail()) from modsim import decorate results.plot(color='gray', label='model') decorate(xlabel='Year', ylabel='World population (billion)', title='Quadratic Model Projection') table3 = tables[3] table3.head() table3.columns = ['census', 'prb', 'un'] def plot_projections(table): Plot world population projections. table: DataFrame with columns 'un' and 'census' census_proj = table.census.dropna() / 1e9 un_proj = table.un.dropna() / 1e9 census_proj.plot(style=':', label='US Census') un_proj.plot(style='--', label='UN DESA') decorate(xlabel='Year', ylabel='World population (billion)') plot_projections(table3) results.plot(color='gray', label='model') decorate(title='Quadratic Model Projection') diff = census.diff() diff.head() alpha = census.diff() / census alpha.head() def plot_alpha(): alpha_census = census.diff() / census alpha_census.plot(style='.', label='US Census') alpha_un = un.diff() / un alpha_un.plot(style='.', label='UN DESA') decorate(xlabel='Year', label='Net growth rate') plot_alpha() def alpha_func(t): intercept = 0.02 slope = -0.00021 return intercept + slope * (t - 1970) from numpy import linspace t_array = linspace(1960, 2020, 5) alpha_array = alpha_func(t_array) from matplotlib.pyplot import plot plot_alpha() plot(t_array, alpha_array, color='gray') # Solution t_0 = 1960 t_end = 2100 p_0 = census[t_0] # Solution system = System(t_0=t_0, t_end=t_end, p_0=p_0, alpha_func=alpha_func) # Solution def growth_func_alpha(pop, t, system): return system.alpha_func(t) * pop # Solution growth_func_alpha(p_0, t_0, system) # Solution results2 = run_simulation(system, growth_func_alpha); # Solution plot_projections(table3) results2.plot(color='gray', label='model') decorate(title='Proportional model, linearly decreasing rate') # Solution # If the net growth rate continues to decrease linearly, # world population will peak around 2065 at about 9.8 billion, # and then start to decline. # Solution results.idxmax(), results.max() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Manual iteration through test image to generate convolutional test features. Saves each batch to disk insetad of loading in memory. Step2: I think conv_feat below should be conv_test_feat Step3: Question Step4: As expected (& which motivated this) the full set of convolutional test features does not fit at once in memory. Step5: Loading train/valid features; defining & fitting NN model Step6: Made a mistake on the last loop above. The penultimate batch -- the last full 4096-image batch -- was added onto the end of the predictions array twice. The final 2194 image predictions were never run. Step7: Redoing predictions here Step8: Oh I forgot, predictions through a FC NN are fast. CNNs are where it takes a long time.
<ASSISTANT_TASK:> Python Code: import theano import os, sys sys.path.insert(1, os.path.join('utils')) from __future__ import print_function, division path = 'data/statefarm/' import utils; reload(utils) from utils import * batch_size=16 vgg = Vgg16() model = vgg.model last_conv_idx = [i for i, l in enumerate(model.layers) if type(l) is Convolution2D][-1] conv_layers = model.layers[:last_conv_idx + 1] conv_model = Sequential(conv_layers) gen = image.ImageDataGenerator() test_batches = get_batches(path + 'test', batch_size=batch_size, shuffle=False) # conv_test_feat = conv_model.predict_generator(test_batches, test_batches.nb_sample) fname = path + 'results/conv_test_feat.dat' %rm -r $fname for i in xrange(test_batches.n // batch_size + 1): conv_test_feat = conv_model.predict_on_batch(test_batches.next()[0]) if not i: c = bcolz.carray(conv_feat, rootdir= path + '/results/conv_test_feat.dat', mode='a') else: c.append(conv_feat) c.flush() # apparently you can just open a (massive) bcolz carray this way # without crashing memory... okay I'm learning things # carr = bcolz.open(fname) # forgot to add the '+1' so missed the last 14 images. Doing that here: # NOTE: below code only adds on the missed batch # iterate generator until final missed batch, then work: fname = path + 'results/conv_test_feat.dat' test_batches.reset() iters = test_batches.n // batch_size for i in xrange(iters): test_batches.next() conv_test_feat = conv_model.predict_on_batch(test_batches.next()[0]) # c = bcolz.carray(conv_test_feat, rootdir=fname, mode='a') c = bcolz.open(fname) c.append(conv_test_feat) c.flush() fname = path + 'results/conv_test_feat.dat' x = bcolz.open(fname) len(x) # conv_train_feat_batches = get_batches(path + '/results/conv_feat.dat') # conv_valid_feat_batches = get_batches(path + '/results/conv_val_feat.dat') conv_trn_feat = load_array(path + '/results/conv_feat.dat') conv_val_feat = load_array(path + '/results/conv_val_feat.dat') (val_classes, trn_classes, val_labels, trn_labels, val_filenames, filenames, test_filenames) = get_classes(path) p = 0.8 bn_model = Sequential([ MaxPooling2D(input_shape=conv_layers[-1].output_shape[1:]), Flatten(), Dropout(p/2), Dense(128, activation='relu'), BatchNormalization(), Dropout(p/2), Dense(128, activation='relu'), BatchNormalization(), Dropout(p), Dense(10, activation='softmax') ]) bn_model.compile(Adam(lr=1e-3), loss='categorical_crossentropy', metrics=['accuracy']) # Sequential.fit_generator(self, generator, samples_per_epoch, nb_epoch, verbose=1, callbacks=None, validation_data=None, nb_val_samples=None, class_weight=None, max_q_size=10, nb_worker=1, pickle_safe=False, initial_epoch=0, **kwargs) # bn_model.fit_generator((conv_train_feat_batches, trn_labels), conv_train_feat_batches.nb_sample, nb_epoch=1, # validation_data=(conv_valid_feat_batches, val_labels), nb_val_samples=conv_valid_feat_batches.nb_sample) bn_model.fit(conv_trn_feat, trn_labels, batch_size=batch_size, nb_epoch=1, validation_data = (conv_val_feat, val_labels)) bn_model.optimizer.lr=1e-2 bn_model.fit(conv_trn_feat, trn_labels, batch_size=batch_size, nb_epoch=4, validation_data = (conv_val_feat, val_labels)) # bn_model.save_weights(path + 'models/da_conv8.h5') bn_model.load_weights(path + 'models/da_conv8.h5') # conv_test_feat_batches = bcolz.iterblocks(path + fname) fname = path + 'results/conv_test_feat.dat' idx, inc = 0, 4096 preds = [] while idx < test_batches.n - inc: conv_test_feat = bcolz.open(fname)[idx:idx+inc] idx += inc if len(preds): next_preds = bn_model.predict(conv_test_feat, batch_size=batch_size, verbose=0) preds = np.concatenate([preds, next_preds]) else: preds = bn_model.predict(conv_test_feat, batch_size=batch_size, verbose=0) conv_test_feat = bcolz.open(fname)[idx:] next_preds = bn_model.predict(conv_test_feat, batch_size=batch_size, verbose=0) preds = np.concatenate([preds, next_preds]) print(len(preds)) if len(preds) != len(bcolz.open(fname)): print("Ya done fucked up, son.") print(81920 - 79726) print(79726 % 4096) print(81920 % 4096) # <-- that's yeh problem right there, kid x = preds[len(preds) - 4096] print(preds[-1]) print(x) preds[0] # ??image.ImageDataGenerator.flow_from_directory # ??Sequential.predict() fname = path + 'results/conv_test_feat.dat' idx, inc = 4096, 4096 preds = [] conv_test_feat = bcolz.open(fname)[:idx] preds = bn_model.predict(conv_test_feat, batch_size=batch_size, verbose=0) while idx < test_batches.n - inc: conv_test_feat = bcolz.open(fname)[idx:idx+inc] idx += inc next_preds = bn_model.predict(conv_test_feat, batch_size=batch_size, verbose=0) preds = np.concatenate([preds, next_preds]) conv_test_feat = bcolz.open(fname)[idx:] next_preds = bn_model.predict(conv_test_feat, batch_size=batch_size, verbose=0) preds = np.concatenate([preds, next_preds]) print(len(preds)) if len(preds) != len(bcolz.open(fname)): print("Ya done fucked up, son.") def do_clip(arr, mx): return np.clip(arr, (1-mx)/9, mx) subm = do_clip(preds, 0.93) subm_name = path + 'results/subm01.gz' trn_batches = get_batches(path + 'train', batch_size=batch_size, shuffle=False) # make sure training batches defined before this: classes = sorted(trn_batches.class_indices, key=trn_batches.class_indices.get) import pandas as pd submission = pd.DataFrame(subm, columns=classes) submission.insert(0, 'img', [f[8:] for f in test_filenames]) submission.head() submission.to_csv(subm_name, index=False, compression='gzip') from IPython.display import FileLink FileLink(subm_name) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Todas as ocorrências criminais de março Step2: Quantidade de crimes por região Step3: As 5 regiões com mais ocorrências Step4: Acima podemos ver que a região 4 teve o maior número de ocorrências criminais Step5: Uma análise sobre as 5 ocorrências mais comuns Step6: Filtro dos 10 horários com mais ocorrências em março Step7: Filtro dos 5 horários com mais ocorrências na região 4 (região com mais ocorrências em março) Step8: Filtro dos 10 bairros com mais ocorrências em março Step9: O Bairro com o maior número de ocorrências em março foi Jangurussu Step10: Os 5 bairros mais comuns na região 4 Step11: Análise sobre o bairro Bom Jardim
<ASSISTANT_TASK:> Python Code: all_crime_tipos.head(10) all_crime_tipos_top10 = all_crime_tipos.head(10) all_crime_tipos_top10.plot(kind='barh', figsize=(12,6), color='#3f3fff') plt.title('Top 10 crimes por tipo (Mar 2017)') plt.xlabel('Número de crimes') plt.ylabel('Crime') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() all_crime_tipos group_df_marco = df_marco.groupby('CLUSTER') crimes = group_df_marco['NATUREZA DA OCORRÊNCIA'].count() crimes.plot(kind='barh', figsize=(10,7), color='#3f3fff') plt.title('Número de crimes por região (Mar 2017)') plt.xlabel('Número') plt.ylabel('Região') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() regioes = df_marco.groupby('CLUSTER').count() grupo_de_regioes = regioes.sort_values('NATUREZA DA OCORRÊNCIA', ascending=False) grupo_de_regioes['TOTAL'] = grupo_de_regioes.ID top_5_regioes_qtd = grupo_de_regioes.TOTAL.head(6) top_5_regioes_qtd.plot(kind='barh', figsize=(10,4), color='#3f3fff') plt.title('Top 5 regiões com mais crimes') plt.xlabel('Número de crimes') plt.ylabel('Região') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() regiao_4_detalhe = df_marco[df_marco['CLUSTER'] == 4] regiao_4_detalhe crime_types = regiao_4_detalhe[['NATUREZA DA OCORRÊNCIA']] crime_type_total = crime_types.groupby('NATUREZA DA OCORRÊNCIA').size() crime_type_counts = regiao_4_detalhe[['NATUREZA DA OCORRÊNCIA']].groupby('NATUREZA DA OCORRÊNCIA').sum() crime_type_counts['TOTAL'] = crime_type_total all_crime_types = crime_type_counts.sort_values(by='TOTAL', ascending=False) crimes_top_5 = all_crime_types.head(5) crimes_top_5.plot(kind='barh', figsize=(11,3), color='#3f3fff') plt.title('Top 5 crimes na região 4') plt.xlabel('Número de crimes') plt.ylabel('Crime') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() horas_mes = df_marco.HORA.value_counts() horas_mes_top10 = horas_mes.head(10) horas_mes_top10.plot(kind='barh', figsize=(11,4), color='#3f3fff') plt.title('Crimes por hora (Mar 2017)') plt.xlabel('Número de ocorrências') plt.ylabel('Hora do dia') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() crime_hours = regiao_4_detalhe[['HORA']] crime_hours_total = crime_hours.groupby('HORA').size() crime_hours_counts = regiao_4_detalhe[['HORA']].groupby('HORA').sum() crime_hours_counts['TOTAL'] = crime_hours_total all_hours_types = crime_hours_counts.sort_values(by='TOTAL', ascending=False) all_hours_types.head(5) all_hours_types_top5 = all_hours_types.head(5) all_hours_types_top5.plot(kind='barh', figsize=(11,3), color='#3f3fff') plt.title('Top 5 crimes por hora na região 4') plt.xlabel('Número de ocorrências') plt.ylabel('Hora do dia') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() crimes_mes = df_marco.BAIRRO.value_counts() crimes_mes_top10 = crimes_mes.head(10) crimes_mes_top10.plot(kind='barh', figsize=(11,4), color='#3f3fff') plt.title('Top 10 Bairros com mais crimes (Mar 2017)') plt.xlabel('Número de ocorrências') plt.ylabel('Bairro') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() messejana = df_marco[df_marco['BAIRRO'] == 'JANGURUSSU'] crime_types = messejana[['NATUREZA DA OCORRÊNCIA']] crime_type_total = crime_types.groupby('NATUREZA DA OCORRÊNCIA').size() crime_type_counts = messejana[['NATUREZA DA OCORRÊNCIA']].groupby('NATUREZA DA OCORRÊNCIA').sum() crime_type_counts['TOTAL'] = crime_type_total all_crime_types = crime_type_counts.sort_values(by='TOTAL', ascending=False) all_crime_tipos_5 = all_crime_types.head(5) all_crime_tipos_5.plot(kind='barh', figsize=(15,4), color='#3f3fff') plt.title('Top 5 crimes no Jangurussú') plt.xlabel('Número de Crimes') plt.ylabel('Crime') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() crime_types_bairro = regiao_4_detalhe[['BAIRRO']] crime_type_total_bairro = crime_types_bairro.groupby('BAIRRO').size() crime_type_counts_bairro = regiao_4_detalhe[['BAIRRO']].groupby('BAIRRO').sum() crime_type_counts_bairro['TOTAL'] = crime_type_total_bairro all_crime_types_bairro = crime_type_counts_bairro.sort_values(by='TOTAL', ascending=False) crimes_top_5_bairro = all_crime_types_bairro.head(5) crimes_top_5_bairro.plot(kind='barh', figsize=(11,3), color='#3f3fff') plt.title('Top 5 bairros na região 4') plt.xlabel('Quantidade') plt.ylabel('Bairro') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() bom_jardim = df_marco[df_marco['BAIRRO'] == 'BOM JARDIM'] crime_types = bom_jardim[['NATUREZA DA OCORRÊNCIA']] crime_type_total = crime_types.groupby('NATUREZA DA OCORRÊNCIA').size() crime_type_counts = bom_jardim[['NATUREZA DA OCORRÊNCIA']].groupby('NATUREZA DA OCORRÊNCIA').sum() crime_type_counts['TOTAL'] = crime_type_total all_crime_types = crime_type_counts.sort_values(by='TOTAL', ascending=False) all_crime_tipos_5 = all_crime_types.head(5) all_crime_tipos_5.plot(kind='barh', figsize=(15,4), color='#3f3fff') plt.title('Top 5 crimes no Bom Jardim') plt.xlabel('Número de Crimes') plt.ylabel('Crime') plt.tight_layout() ax = plt.gca() ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: To use the Riot api, one more important thing to do is to get your own API key. API key can be obtained from here. Note that normal developr API key has a narrow request limit, whereas production API key for commercial use has a looser requirement of request limit. For now, we are just gonna use the normal API key for demonstration. Step2: <a name="architecture"></a>Project Architecture Step3: get_tier will return a divisioin dictionary, whose keys are the tier name, and values are the summoner id list in each tier. The results are printed in a human-readable format, categorized by tier. Step4: <a name="mfpChampions"></a>2. Fetch most frequently played champions Step5: Then we can move on and fetch the data we need. Riot gives us the API to get all champions that a user had used during the season. And the response will be in JSON format. After parsing the JSON response, what we need to do is to get the most frequently used champions which can represent a player's level. So we sort the champions list by the number of games that the player used this champioin (totalSessionsPlayed) in descending order. Notice that the first element in the list will always be the champion with id 0, which represents the stats data of all champions that the player used in the season. So we need to skip that. Step6: With the above class, now we can start crawling the stats data of all champions saving them to csv files by the following code. Notice that this process is pretty slow since we added the sleep methods in our code. Riot APIs have a limitation on the API calls rate. You cannot send more than 500 requests per 10 minutes. So everytime we send a request here, we sleep for 1 second to prevent error responses.
<ASSISTANT_TASK:> Python Code: import csv import json import os import ujson import urllib2 from riotwatcher import RiotWatcher config = { 'key': 'API_key', } class RiotCrawler: def __init__(self, key): self.key = key self.w = RiotWatcher(key) self.tiers = { 'bronze': [], 'silver': [], 'gold': [], 'platinum': [], 'diamond': [], 'challenger': [], 'master': [], } # def get_player_list(self): # recent_games = self.w.get_recent_games(self.player_id) # player_list = set() # for game in recent_games['games']: # # only pick up ranked games # if 'RANKED' in game['subType']: # fellow_players = game['fellowPlayers'] # for fellow_player in fellow_players: # fellow_player_id = fellow_player['summonerId'] # if fellow_player_id not in player_list: # player_list.add(fellow_player_id) # return list(player_list) def get_player_by_tier(self, summoner_id): request_url = 'https://na.api.pvp.net/api/lol/na/v2.5/league/by-summoner/{}?api_key={}'.format( summoner_id, self.key ) response = urllib2.urlopen(request_url) tier_info = ujson.loads(response.read()) tier = tier_info[str(summoner_id)][0]['tier'].lower() entries = tier_info[str(summoner_id)][0]['entries'] level = self.tiers[tier] for entry in entries: level.append(entry['playerOrTeamId']) # for l in level: # print 'summoner id: {}'.format(str(l)) def get_tier(): # challenger: 77759242 # platinum: 53381 # gold: 70359816 # silver: 65213225 # bronze: 22309680 # master: 22551130 # diamond: 34570626 player_ids = [70359816, 77759242, 53381, 65213225, 22309680, 22551130, 34570626] riot_crawler = RiotCrawler(config['key']) for player_id in player_ids: print 'start crawling id: {}'.format(player_id) riot_crawler.get_player_by_tier(player_id) return riot_crawler.tiers tiers = get_tier() for tier, rank_dict in tiers.iteritems(): print '--- {} ---'.format(tier) for summoner in rank_dict: print 'summoner id: {}'.format(summoner) print '--- end of {} ---'.format(tier) import csv import json import os import urllib2 class TopChampion: FIELD_NAMES = ['totalSessionsPlayed', 'totalSessionsLost', 'totalSessionsWon', 'totalChampionKills', 'totalDamageDealt', 'totalDamageTaken', 'mostChampionKillsPerSession', 'totalMinionKills', 'totalDoubleKills', 'totalTripleKills', 'totalQuadraKills', 'totalPentaKills', 'totalUnrealKills', 'totalDeathsPerSession', 'totalGoldEarned', 'mostSpellsCast', 'totalTurretsKilled', 'totalPhysicalDamageDealt', 'totalMagicDamageDealt', 'totalFirstBlood', 'totalAssists', 'maxChampionsKilled', 'maxNumDeaths', 'label'] def __init__(self, key, player_id, label, n): self.label = label self.player_id = player_id self.key = key self.n = n self.top_champions = [] pass def get_top_champions(self): self.top_champions[:] = [] data = urllib2.urlopen( 'https://na.api.pvp.net/api/lol/na/v1.3/stats/by-summoner/' + self.player_id + '/ranked?season=SEASON2016&api_key=' + self.key ).read() json_data = json.loads(data) champions = json_data['champions'] champion_stats = [] for champion in champions: champion_stat = champion['stats'] champion_stat['id'] = champion['id'] champion_stat['label'] = self.label champion_stats.append(champion_stat) pass self.top_champions = sorted(champion_stats, key=lambda x: x['totalSessionsPlayed'], reverse=True)[1:self.n + 1] return self.top_champions pass def save_top_champions(self): for champion in self.top_champions: file_name = '../data/{}.csv'.format(champion['id']) if os.path.isfile(file_name): with open(file_name, 'a') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=self.FIELD_NAMES) writer.writerow( { 'totalSessionsPlayed': champion['totalSessionsPlayed'], 'totalSessionsLost': champion['totalSessionsLost'], 'totalSessionsWon': champion['totalSessionsWon'], 'totalChampionKills': champion['totalChampionKills'], 'totalDamageDealt': champion['totalDamageDealt'], 'totalDamageTaken': champion['totalDamageTaken'], 'mostChampionKillsPerSession': champion['mostChampionKillsPerSession'], 'totalMinionKills': champion['totalMinionKills'], 'totalDoubleKills': champion['totalDoubleKills'], 'totalTripleKills': champion['totalTripleKills'], 'totalQuadraKills': champion['totalQuadraKills'], 'totalPentaKills': champion['totalPentaKills'], 'totalUnrealKills': champion['totalUnrealKills'], 'totalDeathsPerSession': champion['totalDeathsPerSession'], 'totalGoldEarned': champion['totalGoldEarned'], 'mostSpellsCast': champion['mostSpellsCast'], 'totalTurretsKilled': champion['totalTurretsKilled'], 'totalPhysicalDamageDealt': champion['totalPhysicalDamageDealt'], 'totalMagicDamageDealt': champion['totalMagicDamageDealt'], 'totalFirstBlood': champion['totalFirstBlood'], 'totalAssists': champion['totalAssists'], 'maxChampionsKilled': champion['maxChampionsKilled'], 'maxNumDeaths': champion['maxNumDeaths'], 'label': champion['label'] } ) pass pass else: with open(file_name, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=self.FIELD_NAMES) writer.writeheader() writer.writerow( { 'totalSessionsPlayed': champion['totalSessionsPlayed'], 'totalSessionsLost': champion['totalSessionsLost'], 'totalSessionsWon': champion['totalSessionsWon'], 'totalChampionKills': champion['totalChampionKills'], 'totalDamageDealt': champion['totalDamageDealt'], 'totalDamageTaken': champion['totalDamageTaken'], 'mostChampionKillsPerSession': champion['mostChampionKillsPerSession'], 'totalMinionKills': champion['totalMinionKills'], 'totalDoubleKills': champion['totalDoubleKills'], 'totalTripleKills': champion['totalTripleKills'], 'totalQuadraKills': champion['totalQuadraKills'], 'totalPentaKills': champion['totalPentaKills'], 'totalUnrealKills': champion['totalUnrealKills'], 'totalDeathsPerSession': champion['totalDeathsPerSession'], 'totalGoldEarned': champion['totalGoldEarned'], 'mostSpellsCast': champion['mostSpellsCast'], 'totalTurretsKilled': champion['totalTurretsKilled'], 'totalPhysicalDamageDealt': champion['totalPhysicalDamageDealt'], 'totalMagicDamageDealt': champion['totalMagicDamageDealt'], 'totalFirstBlood': champion['totalFirstBlood'], 'totalAssists': champion['totalAssists'], 'maxChampionsKilled': champion['maxChampionsKilled'], 'maxNumDeaths': champion['maxNumDeaths'], 'label': champion['label'] } ) pass pass pass pass pass def main(): import time tiers = get_tier() for tier, rank_dict in tiers.iteritems(): print 'starting tier: {}'.format(tier) for summoner_id in rank_dict: print 'tier: {}, summoner id: {}'.format(tier, summoner_id) top_champion = TopChampion(config['key'], summoner_id, tier, 3) top_champion.get_top_champions() top_champion.save_top_champions() time.sleep(1) print 'end tier: {}'.format(tier) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create Data Step2: Calculate Spearman's Rank Correlation Step3: Calculate Spearman's Correlation Using SciPy
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import scipy.stats # Create two lists of random values x = [1,2,3,4,5,6,7,8,9] y = [2,1,2,4.5,7,6.5,6,9,9.5] # Create a function that takes in x's and y's def spearmans_rank_correlation(xs, ys): # Calculate the rank of x's xranks = pd.Series(xs).rank() # Caclulate the ranking of the y's yranks = pd.Series(ys).rank() # Calculate Pearson's correlation coefficient on the ranked versions of the data return scipy.stats.pearsonr(xranks, yranks) # Run the function spearmans_rank_correlation(x, y)[0] # Just to check our results, here it Spearman's using Scipy scipy.stats.spearmanr(x, y)[0] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We'll re-use some of our code from before to visualize the data and remind us what Step2: Visualizing the Data Step3: Here we see that the digits do cluster fairly well, so we can expect even Step4: It can be fun to explore the various manifold learning methods available, Step5: Question Step6: Quantitative Measurement of Performance Step7: We see that nearly 1500 of the 1800 predictions match the input. But there are other Step8: Another enlightening metric for this sort of multi-label classification
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import load_digits digits = load_digits() %matplotlib inline import matplotlib.pyplot as plt fig = plt.figure(figsize=(6, 6)) # figure size in inches fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) # plot the digits: each image is 8x8 pixels for i in range(64): ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[]) ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolation='nearest') # label the image with the target value ax.text(0, 7, str(digits.target[i])) from sklearn.decomposition import RandomizedPCA pca = RandomizedPCA(n_components=2) proj = pca.fit_transform(digits.data) plt.scatter(proj[:, 0], proj[:, 1], c=digits.target) plt.colorbar() from sklearn.manifold import Isomap iso = Isomap(n_neighbors=5, n_components=2) proj = iso.fit_transform(digits.data) plt.scatter(proj[:, 0], proj[:, 1], c=digits.target) plt.colorbar() from sklearn.naive_bayes import GaussianNB from sklearn.cross_validation import train_test_split # split the data into training and validation sets X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target) # train the model clf = GaussianNB() clf.fit(X_train, y_train) # use the model to predict the labels of the test data predicted = clf.predict(X_test) expected = y_test fig = plt.figure(figsize=(6, 6)) # figure size in inches fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) # plot the digits: each image is 8x8 pixels for i in range(64): ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[]) ax.imshow(X_test.reshape(-1, 8, 8)[i], cmap=plt.cm.binary, interpolation='nearest') # label the image with the target value if predicted[i] == expected[i]: ax.text(0, 7, str(predicted[i]), color='green') else: ax.text(0, 7, str(predicted[i]), color='red') matches = (predicted == expected) print(matches.sum()) print(len(matches)) matches.sum() / float(len(matches)) from sklearn import metrics print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define the RNN Step2: Check the input and output dimensions Step3: Training the RNN Step4: Loss and Optimization Step5: Defining the training function
<ASSISTANT_TASK:> Python Code: import torch from torch import nn import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.figure(figsize=(8,5)) # how many time steps/data pts are in one batch of data seq_length = 20 # generate evenly spaced data pts time_steps = np.linspace(0, np.pi, seq_length + 1) data = np.sin(time_steps) data.resize((seq_length + 1, 1)) # size becomes (seq_length+1, 1), adds an input_size dimension x = data[:-1] # all but the last piece of data y = data[1:] # all but the first # display the data plt.plot(time_steps[1:], x, 'r.', label='input, x') # x plt.plot(time_steps[1:], y, 'b.', label='target, y') # y plt.legend(loc='best') plt.show() class RNN(nn.Module): def __init__(self, input_size, output_size, hidden_dim, n_layers): super(RNN, self).__init__() self.hidden_dim=hidden_dim # define an RNN with specified parameters # batch_first means that the first dim of the input and output will be the batch_size self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True) # last, fully-connected layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, x, hidden): # x (batch_size, seq_length, input_size) # hidden (n_layers, batch_size, hidden_dim) # r_out (batch_size, time_step, hidden_size) batch_size = x.size(0) # get RNN outputs r_out, hidden = self.rnn(x, hidden) # shape output to be (batch_size*seq_length, hidden_dim) r_out = r_out.view(-1, self.hidden_dim) # get final output output = self.fc(r_out) return output, hidden # test that dimensions are as expected test_rnn = RNN(input_size=1, output_size=1, hidden_dim=10, n_layers=2) # generate evenly spaced, test data pts time_steps = np.linspace(0, np.pi, seq_length) data = np.sin(time_steps) data.resize((seq_length, 1)) test_input = torch.Tensor(data).unsqueeze(0) # give it a batch_size of 1 as first dimension print('Input size: ', test_input.size()) # test out rnn sizes test_out, test_h = test_rnn(test_input, None) print('Output size: ', test_out.size()) print('Hidden state size: ', test_h.size()) # decide on hyperparameters input_size=1 output_size=1 hidden_dim=32 n_layers=1 # instantiate an RNN rnn = RNN(input_size, output_size, hidden_dim, n_layers) print(rnn) # MSE loss and Adam optimizer with a learning rate of 0.01 criterion = nn.MSELoss() optimizer = torch.optim.Adam(rnn.parameters(), lr=0.01) # train the RNN def train(rnn, n_steps, print_every): # initialize the hidden state hidden = None for batch_i, step in enumerate(range(n_steps)): # defining the training data time_steps = np.linspace(step * np.pi, (step+1)*np.pi, seq_length + 1) data = np.sin(time_steps) data.resize((seq_length + 1, 1)) # input_size=1 x = data[:-1] y = data[1:] # convert data into Tensors x_tensor = torch.Tensor(x).unsqueeze(0) # unsqueeze gives a 1, batch_size dimension y_tensor = torch.Tensor(y) # outputs from the rnn prediction, hidden = rnn(x_tensor, hidden) ## Representing Memory ## # make a new variable for hidden and detach the hidden state from its history # this way, we don't backpropagate through the entire history hidden = hidden.data # calculate the loss loss = criterion(prediction, y_tensor) # zero gradients optimizer.zero_grad() # perform backprop and update weights loss.backward() optimizer.step() # display loss and predictions if batch_i%print_every == 0: print('Loss: ', loss.item()) plt.plot(time_steps[1:], x, 'r.') # input plt.plot(time_steps[1:], prediction.data.numpy().flatten(), 'b.') # predictions plt.show() return rnn # train the rnn and monitor results n_steps = 75 print_every = 15 trained_rnn = train(rnn, n_steps, print_every) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: create grid to plot (choose 2D plane for visualisation cutting through charge centers , but calculation is correct for 3D) Step2: calculate the potential of the set of spheres (use a function that we can reuse later) Step3: And now its showtime! Step4: Note how the field emanates from the positive charge sinks into the negative charge Step5: Note the interesting npoles/2 fold symmetry of the field
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt xpoints=512 #nr of grid points in 1 direction xmax=1 #extension of grid [m] pref=9e9 # 1/(4pi eps0) x=np.linspace(-xmax,xmax,xpoints) y=x [x2d,y2d]=np.meshgrid(x,y,indexing='ij') #2D matrices holding x or y coordinate for each point on the grid #define multipole npoles=6 #number of poles, needs to be even fradius=0.5*xmax #field radius sradius=0.1*xmax #radius of spheres making up the multipole vamp=1 #voltage amplitude on multipole (half of the poles have +vamp, other half has -vamp) def multipolepotential(x,y,z,npoles,v,fradius,sradius): #assume a set of n conducting spheres of radius on a circle of radius fradius (field radius) #npoles is number of poles and needs to be even >0 #the spheres are positioned in the xy plane and have a potential of V for the even spheres and -V for the odd spheres out=np.zeros(x.shape) potentialin=np.zeros(x.shape) potential=np.zeros(x.shape) theta=np.linspace(0,2*np.pi,npoles+1) if(npoles % 2) == 0: for nid in range(npoles): #make a superposition of the potential for each of the spheres vin=v*(-1.0)**nid xn=fradius*np.cos(theta[nid]) yn=fradius*np.sin(theta[nid]) r=np.sqrt(np.square(x-xn)+np.square(y-yn)+np.square(z)) #distance to sphere n in1=r<sradius #logical function 1 if inside sphere, 0 if outside out1=r>=sradius #logical function 0 if inside sphere, 1 if outside potential=potential+vin*sradius*np.multiply(np.power(r,-1),out1) out=out+out1 potentialin=potentialin+vin*in1 #do a rescaling to match potential as the superposition changes the actual potential on the spheres slighlty idin=np.where(potentialin) idout=np.where(out) potential[idin]=potentialin[idin] potential[idout]=v*(potential[idout]/np.max(potential[idout])) else: potential=None #undefined return potential v=multipolepotential(x2d,y2d,np.zeros(x2d.shape),npoles,vamp,fradius,sradius) ex,ey=np.gradient(-v,x,y) #strange ordering due to meshgrid e=np.sqrt(ex**2+ey**2) #show vector plot, but limit number of points to keep the number of vector reasonable skippts=20 skip=(slice(None,None,skippts),slice(None,None,skippts)) #dont plot all points in a quiver as this becomes unreadable plt.quiver(x2d[skip],y2d[skip],ex[skip],ey[skip]) plt.title('electric field') plt.xlabel('x') plt.ylabel('y') plt.axis('square') plt.imshow(e,extent=[-xmax, xmax, -xmax, xmax]) plt.title('electric field and fieldlines') plt.xlabel('x'); plt.ylabel('y'); plt.streamplot(x2d,x2d,ey,ex) plt.axis('square') plt.colorbar plt.show() plt.imshow(v,extent=[-xmax, xmax, -xmax, xmax]) plt.title('electrostatic potential V') plt.xlabel('x') plt.ylabel('y') plt.axis('square') plt.colorbar() plt.show() nlines=50; plt.contour(x2d,y2d,v,nlines) plt.title('equipotential surfaces') plt.xlabel('x') plt.ylabel('y') plt.axis('square') plt.colorbar plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Unzip prepared validation and training sets Step2: Step 1 -- load data and visualize Step3: Step 2 data generators Step4: Step 2 -- define the model Step5: I also tried NVIDIA, commaai and VGG-like architecture, as well as several custom ones, but this one, provided by Vivek Yadav is actually the best one for this task. Big thanks! Step6: Step 3 -- train! Step7: Step 4 -- evaluation Step8: Step 5 -- save and use
<ASSISTANT_TASK:> Python Code: !wget https://d17h27t6h515a5.cloudfront.net/topher/2016/December/584f6edd_data/data.zip -O data.zip !unzip -q data.zip !mv data udacity_data !rm -rf __MACOSX/ !unzip -q data_val.zip !unzip -q data_test.zip DATA_TRAIN_FOLDER = 'udacity_data/' DATA_VAL_FOLDER = 'data_val/' DATA_TEST_FOLDER = 'data_test/' import pandas as pd import numpy as np import cv2 import matplotlib.pyplot as plt import seaborn %matplotlib inline train_source = pd.read_csv(DATA_TRAIN_FOLDER + 'driving_log.csv') train_nonzero = train_source[train_source.steering != 0] train_zero = (train_source[train_source.steering == 0]).sample(frac=.1) data_train = pd.concat([train_nonzero, train_zero], ignore_index=True) data_train.steering.hist(bins=100) names = ['center', 'left', 'right', 'steering', 'throttle', 'brake', 'speed'] data_val = pd.read_csv(DATA_VAL_FOLDER + 'driving_log.csv', names=names) data_test = pd.read_csv(DATA_TEST_FOLDER + 'driving_log.csv', names=names) data_val.steering.hist(bins=30) data_test.steering.hist(bins=30) len(data_train), len(data_val), len(data_test) input_shape = (64, 64, 3) def _get_img_and_steering_from_row(row, folder): imgpath = row.center.values[0] imgpath = imgpath[imgpath.find('IMG'):] img = cv2.imread(folder + imgpath) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) steering = row.steering.values[0] return img, steering def _get_img_and_steering_from_iloc_row(row, folder): imgpath = row.center imgpath = imgpath[imgpath.find('IMG'):] img = cv2.imread(folder + imgpath) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) steering = row.steering return img, steering def _get_flipped_image(img, y): img = cv2.flip(img, 1) return img, -y def _get_brightnessed_image(img): img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) random_bright = .25 + np.random.uniform() img[:,:,2] = img[:,:,2] * random_bright img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) return img def _get_translated_image(img, y, trans_range): rows, cols, _ = img.shape tr_x = trans_range * np.random.uniform() - trans_range/2 y = y + tr_x/trans_range * 2 *.4 tr_y = 10 * np.random.uniform() - 10/2 Trans_M = np.float32([[1,0, tr_x], [0,1, tr_y]]) img = cv2.warpAffine(img, Trans_M, (cols, rows)) return img, y def image_augmentation(img, y): if np.random.uniform() < 0.5: img, y = _get_flipped_image(img, y) img = _get_brightnessed_image(img) img, y = _get_translated_image(img, y, 100) return img, y def image_transformation(img): img = img[60:-20,:,:] img = cv2.resize(img, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA) return img row = data_train.sample() img, steering = _get_img_and_steering_from_row(row, DATA_TRAIN_FOLDER) img, steering = image_augmentation(img, steering) img = image_transformation(img) plt.imshow(img) plt.axis('off') def train_data_generator(batch_size): while True: X = np.zeros((batch_size, *input_shape), dtype=np.float32) y = np.zeros((batch_size,), dtype=np.float32) for idx in range(batch_size): row = data_train.sample() img, steering = _get_img_and_steering_from_row(row, DATA_TRAIN_FOLDER) img, steering = image_augmentation(img, steering) img = image_transformation(img) X[idx], y[idx] = img, steering yield X, y def val_data_generator(batch_size): seq_idx = 0 while True: X = np.zeros((batch_size, *input_shape), dtype=np.float32) y = np.zeros((batch_size,), dtype=np.float32) for idx in range(batch_size): row = data_val.iloc[seq_idx] img, steering = _get_img_and_steering_from_iloc_row(row, DATA_VAL_FOLDER) img = image_transformation(img) X[idx], y[idx] = img, steering seq_idx += 1 if seq_idx == len(data_val): seq_idx = 0 yield X, y def test_data_generator(batch_size): seq_idx = 0 while True: X = np.zeros((batch_size, *input_shape), dtype=np.float32) y = np.zeros((batch_size,), dtype=np.float32) for idx in range(batch_size): row = data_test.iloc[seq_idx] img, steering = _get_img_and_steering_from_iloc_row(row, DATA_TEST_FOLDER) img = image_transformation(img) X[idx], y[idx] = img, steering seq_idx += 1 if seq_idx == len(data_test): seq_idx = 0 yield X, y from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, ELU, Lambda from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.callbacks import ModelCheckpoint def get_vivek_model(): model = Sequential() model.add(Lambda(lambda x: x/127.5 - 1., input_shape=input_shape)) model.add(Convolution2D(3,1,1, border_mode='valid', name='conv0', init='he_normal')) model.add(Convolution2D(32,3,3, border_mode='valid', name='conv1', init='he_normal')) model.add(ELU()) model.add(Convolution2D(32,3,3, border_mode='valid', name='conv2', init='he_normal')) model.add(ELU()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.5)) model.add(Convolution2D(64,3,3, border_mode='valid', name='conv3', init='he_normal')) model.add(ELU()) model.add(Convolution2D(64,3,3, border_mode='valid', name='conv4', init='he_normal')) model.add(ELU()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.5)) model.add(Convolution2D(128,3,3, border_mode='valid', name='conv5', init='he_normal')) model.add(ELU()) model.add(Convolution2D(128,3,3, border_mode='valid', name='conv6', init='he_normal')) model.add(ELU()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(512,name='hidden1', init='he_normal')) model.add(ELU()) model.add(Dropout(0.5)) model.add(Dense(64,name='hidden2', init='he_normal')) model.add(ELU()) model.add(Dropout(0.5)) model.add(Dense(16,name='hidden3',init='he_normal')) model.add(ELU()) model.add(Dropout(0.5)) model.add(Dense(1, name='output', init='he_normal')) model.compile(optimizer="adam", loss="mse") return model model = get_vivek_model() model.fit_generator( train_data_generator(50), samples_per_epoch=20000, nb_epoch=10, validation_data=val_data_generator(250), nb_val_samples=750, callbacks=[ModelCheckpoint(filepath="best_validation.h5", verbose=1, save_best_only=True)] ) print('Latest', model.evaluate_generator(val_data_generator(250), 750)) model.load_weights('best_validation.h5') print('Best', model.evaluate_generator(val_data_generator(250), 750)) model.evaluate_generator(test_data_generator(50), 950) def get_samples(log, folder): for _ in range(10): row = log.sample() imgpath = row.center.values[0] imgpath = imgpath[imgpath.find('IMG'):] img = cv2.imread(folder + imgpath) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = image_transformation(img) print(row.steering.values[0], model.predict(np.expand_dims(img, axis=0))[0]) get_samples(data_val, DATA_VAL_FOLDER) get_samples(data_test, DATA_TEST_FOLDER) import json with open('model.json', 'w') as f: f.write(model.to_json()) model.save_weights('model.h5') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 베르누이 분포 나이브 베이즈 모형 Step2: 다항 분포 나이브 베이즈 모형 Step3: 예 1 Step4: 감성 분석 Sentiment Analysis Step5: CountVectorize 사용 Step6: TfidfVectorizer 사용 Step7: 형태소 분석기 사용 Step8: 최적화
<ASSISTANT_TASK:> Python Code: np.random.seed(0) X0 = sp.stats.norm(-2, 1).rvs(40) X1 = sp.stats.norm(+2, 1).rvs(60) X = np.hstack([X0, X1])[:, np.newaxis] y0 = np.zeros(40) y1 = np.ones(60) y = np.hstack([y0, y1]) sns.distplot(X0, rug=True, kde=False, norm_hist=True, label="class 0") sns.distplot(X1, rug=True, kde=False, norm_hist=True, label="class 1") plt.legend() plt.xlim(-6,6) plt.show() from sklearn.naive_bayes import GaussianNB clf_norm = GaussianNB().fit(X, y) clf_norm.classes_ clf_norm.class_count_ clf_norm.class_prior_ clf_norm.theta_, clf_norm.sigma_ xx = np.linspace(-6, 6, 100) p0 = sp.stats.norm(clf_norm.theta_[0], clf_norm.sigma_[0]).pdf(xx) p1 = sp.stats.norm(clf_norm.theta_[1], clf_norm.sigma_[1]).pdf(xx) sns.distplot(X0, rug=True, kde=False, norm_hist=True, color="r", label="class 0 histogram") sns.distplot(X1, rug=True, kde=False, norm_hist=True, color="b", label="class 1 histogram") plt.plot(xx, p0, c="r", label="class 0 est. pdf") plt.plot(xx, p1, c="b", label="class 1 est. pdf") plt.legend() plt.show() x_new = -1 clf_norm.predict_proba([[x_new]]) px = sp.stats.norm(clf_norm.theta_, np.sqrt(clf_norm.sigma_)).pdf(x_new) px p = px.flatten() * clf_norm.class_prior_ p clf_norm.class_prior_ p / p.sum() np.random.seed(0) X = np.random.randint(2, size=(10, 4)) y = np.array([0,0,0,0,1,1,1,1,1,1]) print(X) print(y) from sklearn.naive_bayes import BernoulliNB clf_bern = BernoulliNB().fit(X, y) clf_bern.classes_ clf_bern.class_count_ np.exp(clf_bern.class_log_prior_) fc = clf_bern.feature_count_ fc fc / np.repeat(clf_bern.class_count_[:, np.newaxis], 4, axis=1) theta = np.exp(clf_bern.feature_log_prob_) theta x_new = np.array([1, 1, 0, 0]) clf_bern.predict_proba([x_new]) p = ((theta**x_new)*(1-theta)**(1-x_new)).prod(axis=1)*np.exp(clf_bern.class_log_prior_) p / p.sum() x_new = np.array([0, 0, 1, 1]) clf_bern.predict_proba([x_new]) p = ((theta**x_new)*(1-theta)**(1-x_new)).prod(axis=1)*np.exp(clf_bern.class_log_prior_) p / p.sum() from sklearn.naive_bayes import MultinomialNB clf_mult = MultinomialNB().fit(X, y) clf_mult.classes_ clf_mult.class_count_ fc = clf_mult.feature_count_ fc fc / np.repeat(fc.sum(axis=1)[:, np.newaxis], 4, axis=1) clf_mult.alpha (fc + clf_mult.alpha) / (np.repeat(fc.sum(axis=1)[:, np.newaxis], 4, axis=1) + clf_mult.alpha * X.shape[1]) theta = np.exp(clf_mult.feature_log_prob_) theta x_new = np.array([21, 35, 29, 14]) clf_mult.predict_proba([x_new]) p = (theta**x_new).prod(axis=1)*np.exp(clf_bern.class_log_prior_) p / p.sum() x_new = np.array([18, 24, 35, 24]) clf_mult.predict_proba([x_new]) from sklearn.datasets import fetch_20newsgroups from sklearn.cross_validation import train_test_split news = fetch_20newsgroups(subset="all") X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.1, random_state=1) from sklearn.feature_extraction.text import TfidfVectorizer, HashingVectorizer, CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline clf_1 = Pipeline([ ('vect', CountVectorizer()), ('clf', MultinomialNB()), ]) clf_2 = Pipeline([ ('vect', TfidfVectorizer()), ('clf', MultinomialNB()), ]) clf_3 = Pipeline([ ('vect', TfidfVectorizer(token_pattern=r"\b[a-z0-9_\-\.]+[a-z][a-z0-9_\-\.]+\b")), ('clf', MultinomialNB()), ]) clf_4 = Pipeline([ ('vect', TfidfVectorizer(stop_words="english", token_pattern=r"\b[a-z0-9_\-\.]+[a-z][a-z0-9_\-\.]+\b")), ('clf', MultinomialNB()), ]) clf_5 = Pipeline([ ('vect', TfidfVectorizer(stop_words="english", token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0-9_\-\.]+\b")), ('clf', MultinomialNB(alpha=0.01)), ]) from sklearn.cross_validation import cross_val_score, KFold from scipy.stats import sem for i, clf in enumerate([clf_1, clf_2, clf_3, clf_4, clf_5]): scores = cross_val_score(clf, X_test, y_test, cv=5) print(("Model {0:d}: Mean score: {1:.3f} (+/-{2:.3f})").format(i, np.mean(scores), sem(scores))) import codecs def read_data(filename): with codecs.open(filename, encoding='utf-8', mode='r') as f: data = [line.split('\t') for line in f.read().splitlines()] data = data[1:] # header 제외 return data train_data = read_data('/home/dockeruser/data/nsmc/ratings_train.txt') test_data = read_data('/home/dockeruser/data/nsmc/ratings_test.txt') X = zip(*train_data)[1] y = zip(*train_data)[2] y = np.array(y, dtype=int) from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=10000, test_size=10000) len(X_train), len(X_test) from konlpy.utils import pprint pprint((X[0], y[0])) from konlpy.tag import Twitter pos_tagger = Twitter() %%time def tokenize(doc): return ['/'.join(t) for t in pos_tagger.pos(doc, norm=True, stem=True)] train_docs = [(tokenize(row[1]), row[2]) for row in train_data[:10000]] tokens = [t for d in train_docs for t in d[0]] import nltk text = nltk.Text(tokens, name='NMSC') mpl.rcParams["font.family"] = "NanumGothic" plt.figure(figsize=(12,10)) text.plot(50) plt.show() from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report clf_1 = Pipeline([ ('vect', CountVectorizer()), ('clf', MultinomialNB()), ]) %%time clf_1.fit(X_train, y_train) pprint(list(clf_1.named_steps["vect"].vocabulary_)[:10]) %%time print(classification_report(y_test, clf_1.predict(X_test))) from sklearn.feature_extraction.text import TfidfVectorizer clf_2 = Pipeline([ ('vect', TfidfVectorizer()), ('clf', MultinomialNB()), ]) %%time clf_2.fit(X_train, y_train) %%time print(classification_report(y_test, clf_2.predict(X_test))) from konlpy.tag import Twitter pos_tagger = Twitter() def tokenize_pos(doc): return ['/'.join(t) for t in pos_tagger.pos(doc, norm=True, stem=True)] clf_3 = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize_pos)), ('clf', MultinomialNB()), ]) %%time clf_3.fit(X_train, y_train) pprint(list(clf_3.named_steps["vect"].vocabulary_)[:10]) %%time print(classification_report(y_test, clf_3.predict(X_test), digits=4)) vect3 = clf_3.named_steps["vect"] idx3 = np.array(np.argsort(vect3.transform(X_train).sum(axis=0)))[0] voca3 = np.array(vect3.get_feature_names()).flatten() pprint(voca3[idx3[-20:]].tolist()) clf_4 = Pipeline([ ('vect', TfidfVectorizer(tokenizer=tokenize_pos, ngram_range=(1,2))), ('clf', MultinomialNB()), ]) %%time clf_4.fit(X_train, y_train) %%time print(classification_report(y_test, clf_4.predict(X_test), digits=4)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step12: Module is an abstract class which defines fundamental methods necessary for a training a neural network. You do not need to change anything here, just read the comments. Step19: Sequential container Step21: Layers Step22: This one is probably the hardest but as others only takes 5 lines of code in total. Step23: One of the most significant recent ideas that impacted NNs a lot is Batch normalization. The idea is simple, yet effective Step24: Implement dropout. The idea and implementation is really simple Step25: Activation functions Step26: Implement Leaky Rectified Linear Unit. Expriment with slope. Step27: Implement Exponential Linear Units activations. Step28: Implement SoftPlus activations. Look, how they look a lot like ReLU. Step34: Criterions Step35: The MSECriterion, which is basic L2 norm usually used for regression, is implemented here for you. Step36: You task is to implement the ClassNLLCriterion. It should implement multiclass log loss. Nevertheless there is a sum over y (target) in that formula,
<ASSISTANT_TASK:> Python Code: class Module(object): def __init__ (self): self.output = None self.gradInput = None self.training = True Basically, you can think of a module as of a something (black box) which can process `input` data and produce `ouput` data. This is like applying a function which is called `forward`: output = module.forward(input) The module should be able to perform a backward pass: to differentiate the `forward` function. More, it should be able to differentiate it if is a part of chain (chain rule). The latter implies there is a gradient from previous step of a chain rule. gradInput = module.backward(input, gradOutput) def forward(self, input): Takes an input object, and computes the corresponding output of the module. return self.updateOutput(input) def backward(self,input, gradOutput): Performs a backpropagation step through the module, with respect to the given input. This includes - computing a gradient w.r.t. `input` (is needed for further backprop), - computing a gradient w.r.t. parameters (to update parameters while optimizing). self.updateGradInput(input, gradOutput) self.accGradParameters(input, gradOutput) return self.gradInput def updateOutput(self, input): Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the `output` field. Make sure to both store the data in `output` field and return it. # The easiest case: # self.output = input # return self.output pass def updateGradInput(self, input, gradOutput): Computing the gradient of the module with respect to its own input. This is returned in `gradInput`. Also, the `gradInput` state variable is updated accordingly. The shape of `gradInput` is always the same as the shape of `input`. Make sure to both store the gradients in `gradInput` field and return it. # The easiest case: # self.gradInput = gradOutput # return self.gradInput pass def accGradParameters(self, input, gradOutput): Computing the gradient of the module with respect to its own parameters. No need to override if module has no parameters (e.g. ReLU). pass def zeroGradParameters(self): Zeroes `gradParams` variable if the module has params. pass def getParameters(self): Returns a list with its parameters. If the module does not have parameters return empty list. return [] def getGradParameters(self): Returns a list with gradients with respect to its parameters. If the module does not have parameters return empty list. return [] def training(self): Sets training mode for the module. Training and testing behaviour differs for Dropout, BatchNorm. self.training = True def evaluate(self): Sets evaluation mode for the module. Training and testing behaviour differs for Dropout, BatchNorm. self.training = False def __repr__(self): Pretty printing. Should be overrided in every module if you want to have readable description. return "Module" class Sequential(Module): This class implements a container, which processes `input` data sequentially. `input` is processed by each module (layer) in self.modules consecutively. The resulting array is called `output`. def __init__ (self): super(Sequential, self).__init__() self.modules = [] def add(self, module): Adds a module to the container. self.modules.append(module) def updateOutput(self, input): Basic workflow of FORWARD PASS: y_0 = module[0].forward(input) y_1 = module[1].forward(y_0) ... output = module[n-1].forward(y_{n-2}) Just write a little loop. # Your code goes here. ################################################ return self.output def backward(self, input, gradOutput): Workflow of BACKWARD PASS: g_{n-1} = module[n-1].backward(y_{n-2}, gradOutput) g_{n-2} = module[n-2].backward(y_{n-3}, g_{n-1}) ... g_1 = module[1].backward(y_0, g_2) gradInput = module[0].backward(input, g_1) !!! To ech module you need to provide the input, module saw while forward pass, it is used while computing gradients. Make sure that the input for `i-th` layer the output of `module[i]` (just the same input as in forward pass) and NOT `input` to this Sequential module. !!! # Your code goes here. ################################################ return self.gradInput def zeroGradParameters(self): for module in self.modules: module.zeroGradParameters() def getParameters(self): Should gather all parameters in a list. return [x.getParameters() for x in self.modules] def getGradParameters(self): Should gather all gradients w.r.t parameters in a list. return [x.getGradParameters() for x in self.modules] def __repr__(self): string = "".join([str(x) + '\n' for x in self.modules]) return string def __getitem__(self,x): return self.modules.__getitem__(x) class Linear(Module): A module which applies a linear transformation A common name is fully-connected layer, InnerProductLayer in caffe. The module should work with 2D input of shape (n_samples, n_feature). def __init__(self, n_in, n_out): super(Linear, self).__init__() # This is a nice initialization stdv = 1./np.sqrt(n_in) self.W = np.random.uniform(-stdv, stdv, size = (n_out, n_in)) self.b = np.random.uniform(-stdv, stdv, size = n_out) self.gradW = np.zeros_like(self.W) self.gradb = np.zeros_like(self.b) def updateOutput(self, input): # Your code goes here. ################################################ return self.output def updateGradInput(self, input, gradOutput): # Your code goes here. ################################################ return self.gradInput def accGradParameters(self, input, gradOutput): # Your code goes here. ################################################ pass def zeroGradParameters(self): self.gradW.fill(0) self.gradb.fill(0) def getParameters(self): return [self.W, self.b] def getGradParameters(self): return [self.gradW, self.gradb] def __repr__(self): s = self.W.shape q = 'Linear %d -> %d' %(s[1],s[0]) return q class SoftMax(Module): def __init__(self): super(SoftMax, self).__init__() def updateOutput(self, input): # start with normalization for numerical stability self.output = np.subtract(input, input.max(axis=1, keepdims=True)) # Your code goes here. ################################################ return self.output def updateGradInput(self, input, gradOutput): # Your code goes here. ################################################ return self.gradInput def __repr__(self): return "SoftMax" class BatchMeanSubtraction(Module): def __init__(self, alpha = 0.): super(BatchMeanSubtraction, self).__init__() self.alpha = alpha self.old_mean = None def updateOutput(self, input): # Your code goes here. ################################################ return self.output def updateGradInput(self, input, gradOutput): # Your code goes here. ################################################ return self.gradInput def __repr__(self): return "BatchMeanNormalization" class Dropout(Module): def __init__(self, p=0.5): super(Dropout, self).__init__() self.p = p self.mask = None def updateOutput(self, input): # Your code goes here. ################################################ return self.output def updateGradInput(self, input, gradOutput): # Your code goes here. ################################################ return self.gradInput def __repr__(self): return "Dropout" class ReLU(Module): def __init__(self): super(ReLU, self).__init__() def updateOutput(self, input): self.output = np.maximum(input, 0) return self.output def updateGradInput(self, input, gradOutput): self.gradInput = np.multiply(gradOutput , input > 0) return self.gradInput def __repr__(self): return "ReLU" class LeakyReLU(Module): def __init__(self, slope = 0.03): super(LeakyReLU, self).__init__() self.slope = slope def updateOutput(self, input): # Your code goes here. ################################################ return self.output def updateGradInput(self, input, gradOutput): # Your code goes here. ################################################ return self.gradInput def __repr__(self): return "LeakyReLU" class ELU(Module): def __init__(self, alpha = 1.0): super(ELU, self).__init__() self.alpha = alpha def updateOutput(self, input): # Your code goes here. ################################################ return self.output def updateGradInput(self, input, gradOutput): # Your code goes here. ################################################ return self.gradInput def __repr__(self): return "ELU" class SoftPlus(Module): def __init__(self): super(SoftPlus, self).__init__() def updateOutput(self, input): # Your code goes here. ################################################ return self.output def updateGradInput(self, input, gradOutput): # Your code goes here. ################################################ return self.gradInput def __repr__(self): return "SoftPlus" class Criterion(object): def __init__ (self): self.output = None self.gradInput = None def forward(self, input, target): Given an input and a target, compute the loss function associated to the criterion and return the result. For consistency this function should not be overrided, all the code goes in `updateOutput`. return self.updateOutput(input, target) def backward(self, input, target): Given an input and a target, compute the gradients of the loss function associated to the criterion and return the result. For consistency this function should not be overrided, all the code goes in `updateGradInput`. return self.updateGradInput(input, target) def updateOutput(self, input, target): Function to override. return self.output def updateGradInput(self, input, target): Function to override. return self.gradInput def __repr__(self): Pretty printing. Should be overrided in every module if you want to have readable description. return "Criterion" class MSECriterion(Criterion): def __init__(self): super(MSECriterion, self).__init__() def updateOutput(self, input, target): self.output = np.sum(np.power(input - target,2)) / input.shape[0] return self.output def updateGradInput(self, input, target): self.gradInput = (input - target) * 2 / input.shape[0] return self.gradInput def __repr__(self): return "MSECriterion" class ClassNLLCriterion(Criterion): def __init__(self): a = super(ClassNLLCriterion, self) super(ClassNLLCriterion, self).__init__() def updateOutput(self, input, target): # Use this trick to avoid numerical errors input_clamp = np.maximum(1e-15, np.minimum(input, 1 - 1e-15) ) # Your code goes here. ################################################ return self.output def updateGradInput(self, input, target): # Use this trick to avoid numerical errors input_clamp = np.maximum(1e-15, np.minimum(input, 1 - 1e-15) ) # Your code goes here. ################################################ return self.gradInput def __repr__(self): return "ClassNLLCriterion" <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Next, we call the scan() function. It has many parameters but, because our use case is simple, we only need two of them. We'll introduce other parameters in the next examples. Step2: Calling scan(), we see that it returns two outputs. Step3: If updates is omitted, the state of any shared variables modified by Scan will not be updated properly. Random number sampling, for instance, relies on shared variables. If updates is not provided, the state of the random number generator won't be updated properly and the same numbers might be sampled repeatedly. Always provide updates when compiling your Theano function. Step4: An interesting thing is that we never explicitly told Scan how many iteration it needed to run. It was automatically inferred; when given sequences, Scan will run as many iterations as the length of the shortest sequence Step5: Example 2 Step6: For the sake of variety, in this example we define the computation to be done at every iteration of the loop using a Python function, step(), instead of a lambda expression. Step7: We can now compile our Theano function and see that it gives the expected results. Step8: Example 3 Step9: The trick part is informing Scan that our step function expects as input the output of a previous iteration. To achieve this, we need to use a new parameter of the scan() function Step10: We can now compile and test the Theano function Step11: An important thing to notice here, is that the output computed by the Scan does not include the initial state that we provided. It only outputs the states that it has computed itself. Step12: The next step is defining the value of outputs_info. Step13: Now that we've defined the step function and the properties of our outputs, we can call the scan() function. Because the step() function has multiple outputs, the first output of scan() function will be a list of tensors Step14: Let's compile our Theano function which will take a vector of consecutive values from the Fibonacci sequence and compute the next 10 values Step15: Precisions about the order of the arguments to the step function Step16: Solution Step19: Exercise 2 - Sampling without replacement Step20: Solution
<ASSISTANT_TASK:> Python Code: import theano import theano.tensor as T import numpy as np vector1 = T.vector('vector1') vector2 = T.vector('vector2') output, updates = theano.scan(fn=lambda a, b : a * b, sequences=[vector1, vector2]) f = theano.function(inputs=[vector1, vector2], outputs=output, updates=updates) vector1_value = np.arange(0, 5).astype(theano.config.floatX) # [0,1,2,3,4] vector2_value = np.arange(1, 6).astype(theano.config.floatX) # [1,2,3,4,5] print(f(vector1_value, vector2_value)) print(f(vector1_value, vector2_value[:4])) X = T.matrix('X') # Minibatch of data W = T.matrix('W') # Weights of the layer b = T.vector('b') # Biases of the layer def step(v, W, b): return T.dot(v, W) + b output, updates = theano.scan(fn=step, sequences=[X], non_sequences=[W, b]) f = theano.function(inputs=[X, W, b], outputs=output, updates=updates) X_value = np.arange(-3, 3).reshape(3, 2).astype(theano.config.floatX) W_value = np.eye(2).astype(theano.config.floatX) b_value = np.arange(2).astype(theano.config.floatX) print(f(X_value, W_value, b_value)) def step(m_row, cumulative_sum): return m_row + cumulative_sum M = T.matrix('X') s = T.vector('s') # Initial value for the cumulative sum output, updates = theano.scan(fn=step, sequences=[M], outputs_info=[s]) f = theano.function(inputs=[M, s], outputs=output, updates=updates) M_value = np.arange(9).reshape(3, 3).astype(theano.config.floatX) s_value = np.zeros((3, ), dtype=theano.config.floatX) print(f(M_value, s_value)) def step(f_minus2, f_minus1): new_f = f_minus2 + f_minus1 ratio = new_f / f_minus1 return new_f, ratio f_init = T.fvector() outputs_info = [dict(initial=f_init, taps=[-2, -1]), None] output, updates = theano.scan(fn=step, outputs_info=outputs_info, n_steps=10) next_fibonacci_terms = output[0] ratios_between_terms = output[1] f = theano.function(inputs=[f_init], outputs=[next_fibonacci_terms, ratios_between_terms], updates=updates) out = f([1, 1]) print(out[0]) print(out[1]) coefficients = theano.tensor.vector("coefficients") x = T.scalar("x") max_coefficients_supported = 10000 def step(coeff, power, free_var): return coeff * free_var ** power # Generate the components of the polynomial full_range=theano.tensor.arange(max_coefficients_supported) components, updates = theano.scan(fn=step, outputs_info=None, sequences=[coefficients, full_range], non_sequences=x) polynomial = components.sum() calculate_polynomial = theano.function(inputs=[coefficients, x], outputs=polynomial, updates=updates) test_coeff = np.asarray([1, 0, 2], dtype=theano.config.floatX) print(calculate_polynomial(test_coeff, 3)) # 19.0 %load scan_ex1_solution.py probabilities = T.vector() nb_samples = T.iscalar() rng = T.shared_randomstreams.RandomStreams(1234) def sample_from_pvect(pvect): Provided utility function: given a symbolic vector of probabilities (which MUST sum to 1), sample one element and return its index. onehot_sample = rng.multinomial(n=1, pvals=pvect) sample = onehot_sample.argmax() return sample def set_p_to_zero(pvect, i): Provided utility function: given a symbolic vector of probabilities and an index 'i', set the probability of the i-th element to 0 and renormalize the probabilities so they sum to 1. new_pvect = T.set_subtensor(pvect[i], 0.) new_pvect = new_pvect / new_pvect.sum() return new_pvect # TODO use Scan to sample from the vector of probabilities and # symbolically obtain 'samples' the vector of sampled indices. samples = None # Compiling the function f = theano.function(inputs=[probabilities, nb_samples], outputs=[samples]) # Testing the function test_probs = np.asarray([0.6, 0.3, 0.1], dtype=theano.config.floatX) for i in range(10): print(f(test_probs, 2)) %load scan_ex2_solution.py <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Defining an experiment Step2: For simpler visualisation in this notebook, we will analyse the following steps in a section view of the model. Step3: Before we start to draw random realisations of the model, we should first store the base state of the model for later reference. This is simply possibel with the freeze() method which stores the current state of the model as the "base-state" Step4: We now intialise the random generator. We can directly assign a random seed to simplify reproducibility (note that this is not essential, as it would be for the definition in a script function Step5: The next step is to define probability distributions to the relevant event parameters. Let's first look at the different events Step6: Next, we define the probability distributions for the uncertain input parameters
<ASSISTANT_TASK:> Python Code: from IPython.core.display import HTML css_file = 'pynoddy.css' HTML(open(css_file, "r").read()) %matplotlib inline # here the usual imports. If any of the imports fails, # make sure that pynoddy is installed # properly, ideally with 'python setup.py develop' # or 'python setup.py install' import sys, os import matplotlib.pyplot as plt import numpy as np # adjust some settings for matplotlib from matplotlib import rcParams # print rcParams rcParams['font.size'] = 15 # determine path of repository to set paths corretly below repo_path = os.path.realpath('../..') import pynoddy.history import pynoddy.experiment reload(pynoddy.experiment) rcParams.update({'font.size': 15}) reload(pynoddy.history) reload(pynoddy.experiment) from pynoddy.experiment import monte_carlo model_url = 'http://tectonique.net/asg/ch3/ch3_7/his/typeb.his' ue = pynoddy.experiment.Experiment(url = model_url) ue.write_history("typeb_tmp3.his") ue.write_history("typeb_tmp2.his") ue.change_cube_size(100) ue.plot_section('y') ue.freeze() ue.set_random_seed(12345) ue.info(events_only = True) ev2 = ue.events[2] ev2.properties param_stats = [{'event' : 2, 'parameter': 'Amplitude', 'stdev': 100.0, 'type': 'normal'}, {'event' : 2, 'parameter': 'Wavelength', 'stdev': 500.0, 'type': 'normal'}, {'event' : 2, 'parameter': 'X', 'stdev': 500.0, 'type': 'normal'}] ue.set_parameter_statistics(param_stats) resolution = 100 ue.change_cube_size(resolution) tmp = ue.get_section('y') prob_4 = np.zeros_like(tmp.block[:,:,:]) n_draws = 100 for i in range(n_draws): ue.random_draw() tmp = ue.get_section('y', resolution = resolution) prob_4 += (tmp.block[:,:,:] == 4) # Normalise prob_4 = prob_4 / float(n_draws) fig = plt.figure(figsize = (12,8)) ax = fig.add_subplot(111) ax.imshow(prob_4.transpose()[:,0,:], origin = 'lower left', interpolation = 'none') plt.title("Estimated probability of unit 4") plt.xlabel("x (E-W)") plt.ylabel("z") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's gather the datas from the previous notebook Step2: and pad each vector to a regular size (necessary for the sequence processing) Step3: Or directly get a bigger training and testing set Step4: Our data look like this Step5: Choosing the architecture Step6: Training on a small subset Step7: The weights are saved at each epoch, and you can load 'best' for the epoch with the higher (accuracy * (loss/10)) Step8: Evaluate the network
<ASSISTANT_TASK:> Python Code: %matplotlib inline from __future__ import absolute_import from __future__ import print_function # import local library import tools import nnlstm # import library to build the neural network from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM from keras.optimizers import Adam #%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py %load_ext watermark # for reproducibility %watermark -a 'Paul Willot' -mvp numpy,scipy,keras X_train, y_train, X_test, y_test, feature_names,max_features, classes_names, vectorizer = tools.load_pickle("data/unpadded_4_BacObjMetCon.pickle") X_train, X_test, y_train, y_test = nnlstm.pad_sequence(X_train, X_test, y_train, y_test, maxlen=100) X_train, y_train, X_test, y_test, feature_names, max_features, classes_names, vectorizer = tools.load_pickle("/Users/meat/Documents/NII/data/training_4_BacObjMetCon.pickle") X_train[0][:100] # one-hot vector for the 4 different labels y_train[0] %%time # take approximately 50s to build dim_out = len(classes_names) net = Sequential() net.add(Embedding(max_features, 16)) net.add(LSTM(16, 16)) net.add(Dense(16, dim_out)) net.add(Dropout(0.5)) net.add(Activation('softmax')) net.compile(loss='categorical_crossentropy', optimizer='adam', class_mode="categorical") batch_size = 100 length_train = 15000 # length of the reduced training set (can put to -1 for all) length_test = 5000 # length of the reduced testing set (can put to -1 for all) nb_epoch = 10 patience = 2 # when to apply early stopping, if necessary history = nnlstm.train_network(net, X_train[:length_train], y_train[:length_train], X_test[:length_test], y_test[:length_test], nb_epoch, batch_size=batch_size, path_save="weights", patience=patience) net.load_weights("weights/best.hdf5") nnlstm.show_history(history) nnlstm.evaluate_network(net, X_test[:length_test], y_test[:length_test], classes_names, length=-1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Getting Started with the Apollo Passive Seismic Data Archive Step3: Notice that the raw seismogram is Step5: In the next section, we will make a correction for the timing divergence. Taking the approximate onset time of the event, (1973-03-13T07 Step6: It can be seen from the previous image the extent of the timing divergence. It many situations it may be necessary to do more than just correct the start times, but instead to reinterpolate the data.
<ASSISTANT_TASK:> Python Code: %pylab inline from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import * # NOQA from datetime import timedelta from obspy.core import read from obspy.core.utcdatetime import UTCDateTime from obspy.core.inventory import read_inventory import numpy as np from obspy.clients.fdsn.client import Client import pdart.auth as auth from pdart.util import linear_interpolation, timing_correction from pdart.extra_plots.plot_timing_divergence import plot_timing import matplotlib from matplotlib import pyplot as plt plt.style.use('ggplot') plt.rcParams['figure.figsize'] = 10, 4 plt.rcParams['lines.linewidth'] = 0.5 plt.rcParams['font.size'] = 12 SECONDS_PER_DAY=3600.*24 def raw_seismogram(): View a raw seismogram. user=auth.user auth_password=auth.auth_password if user == '' or auth_password == '': print('Set user and auth_password in auth.py') return starttime= UTCDateTime('1973-03-13T07:30:00.0') endtime = UTCDateTime('1973-03-13T09:30:00.0') network='XA' station='S14' channel='MH1' location='*' client = Client("IRIS",user=user,password=auth_password) print(client) stream = client.get_waveforms(network=network, station=station, channel=channel, location=location, starttime=starttime, endtime=endtime) stream.plot(equal_scale=False,size=(1000,600),method='full') raw_seismogram() # import pandas as pd # series = pd.Series() # print(series) def view_Apollo(stream=None,starttime= UTCDateTime('1973-03-13T07:30:00.0'),endtime = UTCDateTime('1973-03-13T09:30:00.0'), network='XA',station='S14',channel='MH1',location='*',plot_seismogram=True,plot_response=False): Snippet to read in raw seismogram and remove the instrument response for Apollo. user=auth.user auth_password=auth.auth_password if user == '' or auth_password == '': print('Set user and auth_password in auth.py') return client = Client("IRIS",user=user,password=auth_password) # get the response file (wildcards allowed) inv = client.get_stations(starttime=starttime, endtime=endtime, network=network, sta=station, loc=location, channel=channel, level="response") if stream is None: stream = client.get_waveforms(network=network, station=station, channel=channel, location=location, starttime=starttime, endtime=endtime) else: stream.trim(starttime=starttime,endtime=endtime) for tr in stream: # interpolate across the gaps of one sample linear_interpolation(tr,interpolation_limit=1) stream.merge() for tr in stream: # optionally interpolate across any gap # for removing the instrument response from a seimogram, # it is useful to get a mask, then interpolate across the gaps, # then mask the trace again. if tr.stats.channel in ['MH1', 'MH2', 'MHZ']: # add linear interpolation but keep the original mask original_mask = linear_interpolation(tr,interpolation_limit=None) # remove the instrument response pre_filt = [0.1,0.3,0.9,1.1] tr.remove_response(inventory=inv, pre_filt=pre_filt, output="DISP", water_level=None, plot=plot_response) if plot_response: plt.show() # apply the mask back to the trace tr.data = np.ma.masked_array(tr, mask=original_mask) elif tr.stats.channel in ['SHZ']: # add linear interpolation but keep the original mask original_mask = linear_interpolation(tr,interpolation_limit=None) # remove the instrument response pre_filt = [1,2,11,13] tr.remove_response(inventory=inv, pre_filt=pre_filt, output="DISP", water_level=None, plot=plot_response) if plot_response: plt.show() # apply the mask back to the trace tr.data = np.ma.masked_array(tr, mask=original_mask) if plot_seismogram: stream.plot(equal_scale=False,size=(1000,600),method='full') view_Apollo() view_Apollo(plot_seismogram=False,plot_response=True) def view_timing_divergence(starttime= UTCDateTime('1973-06-30T00:00:00.00000Z'), endtime = UTCDateTime('1973-07-01T00:00:00.00000Z'),network='XA', station='*',channel='ATT',location='*'): user=auth.user auth_password=auth.auth_password if user == '' or auth_password == '': print('Set user and auth_password in auth.py') return client = Client("IRIS",user=user,password=auth_password) stream = client.get_waveforms(network=network, station=station, channel=channel, location=location, starttime=starttime, endtime=endtime) plot_timing(stream=stream, start_time=starttime,end_time=endtime,save_fig=False) view_timing_divergence() starttime= UTCDateTime('1973-03-13T07:30:00.0') def get_traces(): Get the traces user=auth.user auth_password=auth.auth_password if user == '' or auth_password == '': print('Set user and auth_password in auth.py') return starttime= UTCDateTime('1973-03-13T00:00:00.0') endtime = UTCDateTime('1973-03-14T00:00:00.0') network='XA' station='*' channel='*' location='*' client = Client("IRIS",user=user,password=auth_password) print(client) stream = client.get_waveforms(network=network, station=station, channel=channel, location=location, starttime=starttime, endtime=endtime) return stream stream_before = get_traces() print(stream_before) # plot the timing divergence before correction plot_timing(stream=stream_before, start_time=UTCDateTime('1973-03-13T00:00:00.0'),end_time=UTCDateTime('1973-03-13T12:00:00.0'),save_fig=False) stream_after = stream_before.copy() correction_time=UTCDateTime('1973-03-13T08:02:00.0') timing_correction(stream_after,correction_time=correction_time) # timing divergence after correction plot_timing(stream=stream_after, start_time=UTCDateTime('1973-03-13T00:00:00.0'),end_time=UTCDateTime('1973-03-13T12:00:00.0'),save_fig=False) print('End of Notebook') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Download the data from the source website if necessary. Step3: Read the data into a string. Step4: Build the dictionary and replace rare words with UNK token. Step5: Function to generate a training batch for the skip-gram model. Step6: Train a skip-gram model.
<ASSISTANT_TASK:> Python Code: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. import collections import math import numpy as np import os import random import tensorflow as tf import urllib import zipfile from matplotlib import pylab from sklearn.manifold import TSNE url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): Download a file if not present, and make sure it's the right size. if not os.path.exists(filename): filename, _ = urllib.urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print 'Found and verified', filename else: print statinfo.st_size raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) def read_data(filename): f = zipfile.ZipFile(filename) for name in f.namelist(): return f.read(name).split() f.close() words = read_data(filename) print 'Data size', len(words) vocabulary_size = 50000 def build_dataset(words): count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count = unk_count + 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words) print 'Most common words (+UNK)', count[:5] print 'Sample data', data[:10] del words # Hint to reduce memory. data_index = 0 def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size / num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [ skip_window ] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels print data[:20] batch, labels = generate_batch(batch_size=16, num_skips=1, skip_window=2) for i in range(16): print batch[i], '->', labels[i, 0] # print reverse_dictionary[batch[i]], '->', reverse_dictionary[labels[i, 0]] batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.array(random.sample(xrange(valid_window), valid_size)) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_dataset = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Variables. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) softmax_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) softmax_biases = tf.Variable(tf.zeros([vocabulary_size])) # Model. # Look up embeddings for inputs. embed = tf.nn.embedding_lookup(embeddings, train_dataset) # Compute the softmax loss, using a sample of the negative labels each time. loss = tf.reduce_mean( tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, embed, train_labels, num_sampled, vocabulary_size)) # Optimizer. optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss) # Compute the similarity between minibatch examples and all embeddings. # We use the cosine distance: norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings)) num_steps = 100001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print "Initialized" average_loss = 0 for step in xrange(num_steps): batch_data, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_dataset : batch_data, train_labels : batch_labels} _, l = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += l if step % 2000 == 0: if step > 0: average_loss = average_loss / 2000 # The average loss is an estimate of the loss over the last 2000 batches. print "Average loss at step", step, ":", average_loss average_loss = 0 # note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k+1] log = "Nearest to %s:" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log = "%s %s," % (log, close_word) print log final_embeddings = normalized_embeddings.eval() num_points = 400 tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points+1, :]) def plot(embeddings, labels): assert embeddings.shape[0] >= len(labels), 'More labels than embeddings' pylab.figure(figsize=(15,15)) # in inches for i, label in enumerate(labels): x, y = embeddings[i,:] pylab.scatter(x, y) pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') pylab.show() words = [reverse_dictionary[i] for i in xrange(1, num_points+1)] plot(two_d_embeddings, words) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import pandas as pd df = pd.DataFrame.from_dict({'id': ['A', 'B', 'A', 'C', 'D', 'B', 'C'], 'val': [1,2,-3,1,5,6,-2], 'stuff':['12','23232','13','1234','3235','3236','732323']}) def g(df): df['cummax'] = df.groupby('id')['val'].transform(pd.Series.cummax) return df df = g(df.copy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: It is often necessary to modify data once you have loaded it into memory. Step2: Signal processing Step3: In addition, there are functions for applying the Hilbert transform, which is Step4: Finally, it is possible to apply arbitrary to your data to do what you want.
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import mne import os.path as op import numpy as np from matplotlib import pyplot as plt # Load an example dataset, the preload flag loads the data into memory now data_path = op.join(mne.datasets.sample.data_path(), 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(data_path, preload=True, verbose=False) raw = raw.crop(0, 2) print(raw) filt_bands = [(1, 3), (3, 10), (10, 20), (20, 60)] f, (ax, ax2) = plt.subplots(2, 1, figsize=(15, 10)) _ = ax.plot(raw._data[0]) for fband in filt_bands: raw_filt = raw.copy() raw_filt.filter(*fband) _ = ax2.plot(raw_filt._data[0]) ax2.legend(filt_bands) ax.set_title('Raw data') ax2.set_title('Band-pass filtered data') # Filter signal, then take hilbert transform raw_band = raw.copy() raw_band.filter(12, 18) raw_hilb = raw_band.copy() hilb_picks = mne.pick_types(raw_band.info, meg=False, eeg=True) raw_hilb.apply_hilbert(hilb_picks) print(raw_hilb._data.dtype) # Take the amplitude and phase raw_amp = raw_hilb.copy() raw_amp.apply_function(np.abs, hilb_picks, float, 1) raw_phase = raw_hilb.copy() raw_phase.apply_function(np.angle, hilb_picks, float, 1) f, (a1, a2) = plt.subplots(2, 1, figsize=(15, 10)) a1.plot(raw_band._data[hilb_picks[0]]) a1.plot(raw_amp._data[hilb_picks[0]]) a2.plot(raw_phase._data[hilb_picks[0]]) a1.set_title('Amplitude of frequency band') a2.set_title('Phase of frequency band') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <script type="text/javascript" src="https Step2: It can be seen from the above figure that as we increase our input the our activation starts to saturate which can inturn kill gradients. This can be mitigated using rectified activation functions. Another problem that we encounter in training deep neural networks during backpropagation is vanishing gradient and gradient explosion. It can be observed from the derivative of our nth activation- $\large\frac{\partial act_n}{\partial pre_act_n}$ , is fairly large near zero. Let's assume that the weigths $< 1$, this will usually satisfy $|w_{i}*tanh'(x)| < 1$. The succesive product of such values in each layer will exponentially decrease the computed product leading to vanishing gradient. This is not a robust explanation of vanishing gradient problem. For more information refer to this article. Step3: Animate Training
<ASSISTANT_TASK:> Python Code: # import feedforward neural net from mlnn import neural_net # Visualize tanh and its derivative x = np.linspace(-np.pi, np.pi, 120) plt.figure(figsize=(8, 3)) plt.subplot(1, 2, 1) plt.plot(x, np.tanh(x)) plt.title("tanh(x)") plt.xlim(-3, 3) plt.subplot(1, 2, 2) plt.plot(x, 1 - np.square(np.tanh(x))) plt.xlim(-3, 3) plt.title("tanh\'(x)") plt.show() # Training the neural network my_nn = neural_net([2, 4, 2]) # [2,4,2] = [input nodes, hidden nodes, output nodes] my_nn.train(X, y, 0.001, 0.0001) # weights regularization lambda= 0.001 , epsilon= 0.0001 ### visualize predictions my_nn.visualize_preds(X ,y) X_, y_ = sklearn.datasets.make_circles(n_samples=400, noise=0.18, factor=0.005, random_state=1) plt.figure(figsize=(7, 5)) plt.scatter(X_[:, 0], X_[:, 1], s=15, c=y_, cmap=plt.cm.Spectral) plt.show() ''' Uncomment the code below to see classification process for above data. To stop training early reduce no. of iterations. ''' #new_nn = neural_net([2, 6, 2]) #new_nn.animate_preds(X_, y_, 0.001, 0.0001) # max iterations = 35000 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Classes - Nothing but instances of types. Class technically is a sugar over the native 'type' Step2: 'type' is an important native structure used for creating classes. Step3: What is type? 'type' defines how a class behaves in Python. Step4: LifeCycle with Metaclasses Step5: Pattern 1 Step6: Pattern 2 Step7: Pattern 3 Step8: Pattern 4 Step9: Pattern 5
<ASSISTANT_TASK:> Python Code: class Test: pass a = Test() a type(a) type(Test) type(type) type? TestWithType = type('TestWithType', (object,), {}) type(TestWithType) ins1 = TestWithType() type(ins1) type('TestWithType', (object,), {})() class TestClass: def __new__(cls, *args, **kwargs): print('new method called') instance = super(TestClass, cls).__new__(cls, *args, **kwargs) return instance def __call__(self, a, b, c): self.call_count += 1 print('call method called') return a * b * c def __init__(self): self.call_count = 0 super(TestClass, self).__init__() print('init method called') def get_call_count(self): return self.call_count a = TestClass() a(1,2,3) a.get_call_count() class MySingletonMeta(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(MySingletonMeta, cls).__call__(*args) return cls._instances[cls] class MySingletonClass(metaclass=MySingletonMeta): def __init__(self): self.i = 1 a = MySingletonClass() b = MySingletonClass() type(a), id(a) , type(b), id(b) class MyMetaClass(type): _test_attribute = 1 def __new__(cls, *args, **kwargs): print("metaclass new method called") return super(MyMetaClass, cls).__new__(cls, *args, **kwargs) def __call__(cls, *args, **kwargs): print("metaclass call method called") return super(MyMetaClass, cls).__call__(*args, **kwargs) def __init__(self, *args, **kwargs): print("metaclass init method called") return super(MyMetaClass, self).__init__(*args, **kwargs) def test_method_1(self): print("MyMetaClass - Test method 1 called") class MyClass(metaclass=MyMetaClass): def __new__(cls, *args, **kwargs): print("instance new method called") return super(MyClass, cls).__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): print("instance init method called") return super(MyClass, self).__init__(*args, **kwargs) ins2 = MyClass() MyClass._test_attribute MyClass.__mro__ MyMetaClass.__mro__ from abc import ABCMeta, ABC, abstractmethod ABCMeta? class MyAbstractClass(metaclass=ABCMeta): def __init__(self): pass @abstractmethod def my_abstract_method(self): pass MyAbstractClass() class MyChildClass(MyAbstractClass): def __init__(self): pass def my_abstract_method(self): pass mcc = MyChildClass() mcc class MySingletonABCMeta(ABCMeta): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(MySingletonABCMeta, cls).__call__(*args) return cls._instances[cls] class MyAbstractSingletonClass(metaclass=MySingletonABCMeta): def __init__(self): pass @abstractmethod def my_abstract_method(self): pass MyAbstractSingletonClass() class MyAbstractSingletonChild(MyAbstractSingletonClass): def __init__(self): pass def my_abstract_method(self): pass a1 = MyAbstractSingletonChild() b1 = MyAbstractSingletonChild() type(a1), id(a1), type(b1), id(b1) class MyBeanMeta(type): _instances = {} def __call__(cls, *args): print(args) key = tuple((cls, args)) if key not in cls._instances: cls._instances[key] = super(MyBeanMeta, cls).__call__(*args) return cls._instances[key] class MyBeanClass(metaclass=MyBeanMeta): def __init__(self, a ): self.a = a bn1 = MyBeanClass(1) bn2 = MyBeanClass(2) bn3 = MyBeanClass(3) bn4 = MyBeanClass(1) id(bn1), id(bn2), id(bn3), id(bn4) import logging logging.basicConfig(filename='example.log', level=logging.INFO) logging.debug('This message should go to the log file') logging.info('So should this') logging.warning('And this, too') class MyLogSingletonMeta(type): logger = logging.getLogger('abc') _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: instance = super(MyLogSingletonMeta, cls).__call__(*args) cls._instances[cls] = instance instance.__dict__['logger'] = logging.getLogger('abc') return cls._instances[cls] class MyLogEnabledClass(metaclass=MyLogSingletonMeta): def test_function(self): self.logger.info('Inside test_function method of Log Enabled class') pass lec_instance1 = MyLogEnabledClass() lec_instance2 = MyLogEnabledClass() lec_instance1.test_function() print(id(lec_instance1), id(lec_instance2)) !cat example.log class MyLogger: def __init__(self, logger=None): self.logger = logger def __call__(self, func): def wrapper(*args, **kwargs): if self.logger is None: print(str(func) + " is called") else: self.logger.info(str(func) + " is called") return func(*args, **kwargs) return wrapper class MyLoggingMeta(type): def __new__(cls, name, bases, attrs): for item, value in attrs.items(): if callable(value): print("Function item :" + str(item), str(value), type(value)) attrs[item] = MyLogger()(value) else: print(str(item), str(value), type(value)) return super(MyLoggingMeta, cls).__new__(cls, name, bases, attrs) class MyClass1(metaclass=MyLoggingMeta): def test_m1(self): pass def test_m2(self): pass a= MyClass1() a.test_m2() a.test_m1() class MySealedMeta(type): def __new__(cls, name, bases, attrs): all_metaclasses = [type(x) for x in bases] if MySealedMeta in all_metaclasses: raise TypeError("Sealed class cannot be sublcassed") return super(MySealedMeta, cls).__new__(cls, name, bases, attrs) class MySealedClass(metaclass=MySealedMeta): pass class MyChildOfSealed(MySealedClass): pass <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Review Step2: Handling arrays Step3: Apply mathematical functions Step4: Conditionals Step5: Manipulating Arrays Step6: We can get the overall size and shape of the array. Step7: You can also transpose array A. Step8: Why are Numpy arrays better than lists Step9: linspace and logspace Step10: Array of 25 elements from $10^{0}$ to $10^{3}$, with base of 10. Step11: Creating an array of 11 elements from $e^{0}$ to $e^{10}$, with the base == numpy.e Step12: Random Data Step13: Arrays of zeros and ones. Step14: You can use these to populate other arrays Step15: Diagonals Step16: Indexing Step17: Selecting the 1st row Step18: The 2nd column Step19: Select a range of columns and rows Step20: You can easily use this to create a mask, for when you are cleaning your data. Step21: Appying the mask from $A \to B$ Step22: Binning you data Step23: Now I want to bin my data and calculate the mean for each bin Step24: Calculating the mean for each of the bins Step29: You can put all of this into a function that estimates errors and more... Step30: Example of using these function Step31: With this function, it is really easy to apply statistics on binned data, as well as to estimate errors on the data. Step32: np.concatenate Step33: Copy and "Deep Copy" Step34: If we make any changes to B, A will also be affected by this change. Step35: To get a completely independent, new object, you would use Step36: The array A was not affected by this changed. This is important when you're constantly re-defining new arrays Step37: Interpolation Step38: KD-Trees Step39: Let's say we want to know how many points are within distances of 30 and 50 from other points. To know this, you construct a KD-Tree Step40: Let's say you want to get the distances to the Nth-nearest neighbor. Step41: You can also get the indices Step42: The first columns corresponds to itself.
<ASSISTANT_TASK:> Python Code: # Loading modules %matplotlib inline import numpy as np import matplotlib.pyplot as plt x = np.array([1,2,3,5,6,7,8,10],dtype=float) x y = np.arange(10) y z = np.linspace(0,100,50) z h = np.random.randn(100) h print('Min X: {0:.3f} \t Max X: {1:.3f}'.format(np.min(x), np.max(x)) ) zz = x**2 + 3*x**3 zz zz_idx = np.where((zz>= 100)&(zz <= 500))[0] print('zz_idx: {0}'.format(zz_idx)) zz[zz_idx] h1 = np.random.randint(10, 50, 50) h1 np.size(h1) h1.shape A = np.array([[1,2,3,4,5], [6,7,8,9,10], [12,13,14,16,17], [13,45,67,89,90] ]) A np.shape(A) A_t = np.transpose(A) A_t np.arange(0,10,1) np.arange(0,20,5) np.arange(-40,21,10) B = np.linspace(0,50) B B = np.linspace(0,100, 20) B B = np.logspace(0,3,25) B B = np.logspace(0,10,11, base=np.e) B from numpy import random # Uniform random numbers in [0,1] random.rand(5,5) # 20 Random integers from 10 to 30 random.randint(10,30,20) np.zeros(20) nelem = 10 C = np.ones(10) C for ii in range(C.size): C[ii] = random.rand() C np.diag(random.randint(10,20,5)) M = random.rand(10,5) M M[1,:] M[:,1] M[1:3, 2:4] A = random.rand(3,3) np.fill_diagonal(A, np.nan) A B = np.arange(0,9).reshape((3,3)) B A_mask = np.isfinite(A) A_mask B[A_mask] # Creating my bin edges bins = np.arange(0,13) bins # Generating Data data = 10*random.rand(100) data # Defining statistical function to use stat_func = np.nanmean # Binning the data data_bins = np.digitize(data, bins) data_bins failval = -10 bins_stat = np.array([stat_func(data[data_bins == ii]) \ if len(data[data_bins == ii]) > 0 \ else failval \ for ii in range(1,len(bins))]) bins_stat = np.asarray(bins_stat) bins_stat import math def myceil(x, base=10): Returns the upper-bound integer of 'x' in base 'base'. Parameters ---------- x: float number to be approximated to closest number to 'base' base: float base used to calculate the closest 'largest' number Returns ------- n_high: float Closest float number to 'x', i.e. upper-bound float. Example ------- >>>> myceil(12,10) 20 >>>> >>>> myceil(12.05, 0.1) 12.10000 n_high = float(base*math.ceil(float(x)/base)) return n_high def myfloor(x, base=10): Returns the lower-bound integer of 'x' in base 'base' Parameters ---------- x: float number to be approximated to closest number of 'base' base: float base used to calculate the closest 'smallest' number Returns ------- n_low: float Closest float number to 'x', i.e. lower-bound float. Example ------- >>>> myfloor(12, 5) >>>> 10 n_low = float(base*math.floor(float(x)/base)) return n_low def Bins_array_create(arr, base=10): Generates array between [arr.min(), arr.max()] in steps of `base`. Parameters ---------- arr: array_like, Shape (N,...), One-dimensional Array of numerical elements base: float, optional (default=10) Interval between bins Returns ------- bins_arr: array_like Array of bin edges for given arr base = float(base) arr = np.array(arr) assert(arr.ndim==1) arr_min = myfloor(arr.min(), base=base) arr_max = myceil( arr.max(), base=base) bins_arr = np.arange(arr_min, arr_max+0.5*base, base) return bins_arr def Mean_std_calc_one_array(x1, y1, arr_len=0, statfunc=np.nanmean, failval=np.nan, error='std', base=10.): Calculates statistics of two arrays, e.g. scatter, error in `statfunc`, etc. Parameters ---------- x1: array-like, shape (N,) array of x-values y1: array-like, shape (N,) array of y-values arr_len: int, optional (default = 0) minimum number of elements in the bin statfunc: numpy function, optional (default = numpy.nanmean) statistical function used to evaluate the bins failval: int or float, optional (default = numpy.nan) Number to use to replace when the number of elements in the bin is smaller than `arr_len` error: string, optional (default = 'std') type of error to evaluate Options: - 'std': Evaluates the standard deviation of the bin - 'stat': Evaluates the error in the mean/median of each bin - 'none': Does not calculate the error in `y1` base: float Value of bin width in units of that of `x1` Returns -------- x1_stat: array-like, shape (N,) `stat_func` of each bin in `base` spacings for x1 y1_stat: array-like, shape (N,) `stat_func` of each bin in `base` spacings for y1 x1 = np.asarray(x1) y1 = np.asarray(y1) assert((x1.ndim==1) & (y1.ndim==1)) assert((x1.size >0) & (y1.size>0)) n_elem = len(x1) ## Computing Bins x1_bins = Bins_array_create(x1, base=base) x1_digit = np.digitize(x1, x1_bins) ## Computing Statistics in bins x1_stat = np.array([statfunc(x1[x1_digit==ii]) if len(x1[x1_digit==ii])>arr_len else failval for ii in range(1,x1_bins.size)]) y1_stat = np.array([statfunc(y1[x1_digit==ii]) if len(y1[x1_digit==ii])>arr_len else failval for ii in range(1,x1_bins.size)]) ## Computing error in the data if error=='std': stat_err = np.nanstd y1_err = np.array([stat_err(y1[x1_digit==ii]) if len(y1[x1_digit==ii])>arr_len else failval for ii in range(1,x1_bins.size)]) if error!='none': y1_err = np.array([stat_err(y1[x1_digit==ii])/np.sqrt(len(y1[x1_digit==ii])) if len(y1[x1_digit==ii])>arr_len else failval for ii in range(1,x1_bins.size)]) if (stat_func==np.median) or (stat_func==np.nanmedian): y1_err *= 1.253 else: y1_err = np.zeros(y1.stat.size) return x1_stat, y1_stat, y1_err import numpy as np # Defining arrays x_arr = np.arange(100) y_arr = 50*np.random.randn(x_arr.size) # Computing mean and error in the mean for `x_arr` and `y_arr` x_stat, y_stat, y_err = Mean_std_calc_one_array(x_arr, y_arr, statfunc=np.nanmean, failval=np.nan, base=10) x_stat2, y_stat2, y_err2 = Mean_std_calc_one_array(x_arr, y_arr, statfunc=np.nanmedian, failval=np.nan, base=10) plt.style.use('seaborn-notebook') plt.clf() plt.close() fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111,facecolor='white') ax.plot(x_arr, y_arr, 'ro', label='Data') ax.errorbar(x_stat, y_stat, yerr=y_err, color='blue', marker='o', linestyle='--',label='Mean') ax.errorbar(x_stat2, y_stat2, yerr=y_err2, color='green', marker='o', linestyle='--',label='Median') ax.set_xlabel('X axis', fontsize=20) ax.set_ylabel('Y axis', fontsize=20) ax.set_title('Data and the Binned Data', fontsize=24) plt.legend(fontsize=20) plt.show() A = np.array([[n+m*10 for n in range(5)] for m in range(5)]) A n, m = A.shape B = A.reshape((1,n*m)) B A_f = A.flatten() A_f C = random.rand(A.size) C C.shape # Stacking the two arrays D = np.column_stack((A_f,C)) D # Selecting from 3rd to 11th row D[2:10] a = np.array([[1, 2], [3, 4]]) b = np.array([[5,6]]) np.concatenate((a,b)) np.concatenate((a,b.T), axis=1) A = np.array([[1, 2], [3, 4]]) A # `B` is now referring to the same array data as `A` B = A B[0,0] = 10 B A B = np.copy(A) # Modifying `B` B[0,0] = -5 B A import scipy as sc from scipy.interpolate import interp1d def f(x): return np.sin(x) n = np.arange(0, 10) x = np.linspace(0, 9, 100) y_meas = f(n) + 0.1 * np.random.randn(len(n)) # simulate measurement with noise y_real = f(x) linear_interpolation = interp1d(n, y_meas) y_interp1 = linear_interpolation(x) cubic_interpolation = interp1d(n, y_meas, kind='cubic') y_interp2 = cubic_interpolation(x) fig, ax = plt.subplots(figsize=(15,6)) ax.set_facecolor('white') ax.plot(n, y_meas, 'bs', label='noisy data') ax.plot(x, y_real, 'k', lw=2, label='true function') ax.plot(x, y_interp1, 'r', label='linear interp') ax.plot(x, y_interp2, 'g', label='cubic interp') ax.legend(loc=3, prop={'size':20}); ax.tick_params(axis='both', which='major', labelsize=20) ax.tick_params(axis='both', which='minor', labelsize=15) Lbox = 250. Npts = 1000 # Creating cartesian coordinates x = np.random.uniform(0, Lbox, Npts) y = np.random.uniform(0, Lbox, Npts) z = np.random.uniform(0, Lbox, Npts) sample1 = np.vstack([x, y, z]).T sample1 sample1.shape from scipy.spatial import cKDTree # Initializing KDTree KD_obj = cKDTree(sample1) N_neighbours = cKDTree.count_neighbors(KD_obj, KD_obj, 50) - \ cKDTree.count_neighbors(KD_obj, KD_obj, 30) print("Number of Neighbours: {0}".format(N_neighbours)) k_nearest = 4 dist_k, dist_k_idx = cKDTree.query(KD_obj, sample1, k_nearest) dist_k dist_k_idx pairs = KD_obj.query_ball_tree(KD_obj, 30) pairs[0:10] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: The notMNIST data is a large dataset to handle for most computers. It contains 500 thousands images for just training. You'll be using a subset of this data, 15,000 images for each label (A-J). Step5: <img src="image/mean_variance.png" style="height Step6: Checkpoint Step7: <img src="image/weight_biases.png" style="height Step8: <img src="image/learn_rate_tune.png" style="height Step9: Test
<ASSISTANT_TASK:> Python Code: import hashlib import os import pickle from urllib.request import urlretrieve import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.utils import resample from tqdm import tqdm from zipfile import ZipFile print('All modules imported.') def download(url, file): Download file from <url> :param url: URL to file :param file: Local file path if not os.path.isfile(file): print('Downloading ' + file + '...') urlretrieve(url, file) print('Download Finished') # Download the training and test dataset. download('https://s3.amazonaws.com/udacity-sdc/notMNIST_train.zip', 'notMNIST_train.zip') download('https://s3.amazonaws.com/udacity-sdc/notMNIST_test.zip', 'notMNIST_test.zip') # Make sure the files aren't corrupted assert hashlib.md5(open('notMNIST_train.zip', 'rb').read()).hexdigest() == 'c8673b3f28f489e9cdf3a3d74e2ac8fa',\ 'notMNIST_train.zip file is corrupted. Remove the file and try again.' assert hashlib.md5(open('notMNIST_test.zip', 'rb').read()).hexdigest() == '5d3c7e653e63471c88df796156a9dfa9',\ 'notMNIST_test.zip file is corrupted. Remove the file and try again.' # Wait until you see that all files have been downloaded. print('All files downloaded.') def uncompress_features_labels(file): Uncompress features and labels from a zip file :param file: The zip file to extract the data from features = [] labels = [] with ZipFile(file) as zipf: # Progress Bar filenames_pbar = tqdm(zipf.namelist(), unit='files') # Get features and labels from all files for filename in filenames_pbar: # Check if the file is a directory if not filename.endswith('/'): with zipf.open(filename) as image_file: image = Image.open(image_file) image.load() # Load image data as 1 dimensional array # We're using float32 to save on memory space feature = np.array(image, dtype=np.float32).flatten() # Get the the letter from the filename. This is the letter of the image. label = os.path.split(filename)[1][0] features.append(feature) labels.append(label) return np.array(features), np.array(labels) # Get the features and labels from the zip files train_features, train_labels = uncompress_features_labels('notMNIST_train.zip') test_features, test_labels = uncompress_features_labels('notMNIST_test.zip') # Limit the amount of data to work with a docker container docker_size_limit = 150000 train_features, train_labels = resample(train_features, train_labels, n_samples=docker_size_limit) # Set flags for feature engineering. This will prevent you from skipping an important step. is_features_normal = False is_labels_encod = False # Wait until you see that all features and labels have been uncompressed. print('All features and labels uncompressed.') # Problem 1 - Implement Min-Max scaling for greyscale image data def normalize_greyscale(image_data): Normalize the image data with Min-Max scaling to a range of [0.1, 0.9] :param image_data: The image data to be normalized :return: Normalized image data # ToDo: Implement Min-Max scaling for greyscale image data minV = np.amin(image_data) maxV = np.amax(image_data) return (0.1 + ((image_data - minV)*(0.9 - 0.1))/(maxV - minV)) print(np.shape(train_features)) ### DON'T MODIFY ANYTHING BELOW ### # Test Cases np.testing.assert_array_almost_equal( normalize_greyscale(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 255])), [0.1, 0.103137254902, 0.106274509804, 0.109411764706, 0.112549019608, 0.11568627451, 0.118823529412, 0.121960784314, 0.125098039216, 0.128235294118, 0.13137254902, 0.9], decimal=3) np.testing.assert_array_almost_equal( normalize_greyscale(np.array([0, 1, 10, 20, 30, 40, 233, 244, 254,255])), [0.1, 0.103137254902, 0.13137254902, 0.162745098039, 0.194117647059, 0.225490196078, 0.830980392157, 0.865490196078, 0.896862745098, 0.9]) train_features = normalize_greyscale(train_features) test_features = normalize_greyscale(test_features) is_features_normal = True print('Tests Passed!') # Turn labels into numbers and apply One-Hot Encoding encoder = LabelBinarizer() encoder.fit(train_labels) train_labels = encoder.transform(train_labels) test_labels = encoder.transform(test_labels) # Change to float32, so it can be multiplied against the features in TensorFlow, which are float32 train_labels = train_labels.astype(np.float32) test_labels = test_labels.astype(np.float32) is_labels_encod = True print('Labels One-Hot Encoded') assert is_features_normal, 'You skipped the step to normalize the features' assert is_labels_encod, 'You skipped the step to One-Hot Encode the labels' # Get randomized datasets for training and validation train_features, valid_features, train_labels, valid_labels = train_test_split( train_features, train_labels, test_size=0.05, random_state=832289) print('Training features and labels randomized and split.') # Save the data for easy access pickle_file = 'notMNIST.pickle' if not os.path.isfile(pickle_file): print('Saving data to pickle file...') try: with open('notMNIST.pickle', 'wb') as pfile: pickle.dump( { 'train_dataset': train_features, 'train_labels': train_labels, 'valid_dataset': valid_features, 'valid_labels': valid_labels, 'test_dataset': test_features, 'test_labels': test_labels, }, pfile, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise print('Data cached in pickle file.') %matplotlib inline # Load the modules import pickle import math import numpy as np import tensorflow as tf from tqdm import tqdm import matplotlib.pyplot as plt # Reload the data pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) train_features = pickle_data['train_dataset'] train_labels = pickle_data['train_labels'] valid_features = pickle_data['valid_dataset'] valid_labels = pickle_data['valid_labels'] test_features = pickle_data['test_dataset'] test_labels = pickle_data['test_labels'] del pickle_data # Free up memory print('Data and modules loaded.') features_count = 784 labels_count = 10 # ToDo: Set the features and labels tensors features = tf.placeholder(shape=[None, features_count], dtype=tf.float32) labels = tf.placeholder(shape=[None, labels_count], dtype=tf.float32) #labels = tf.placeholder(shape=[10,1], dtype=tf.float32) # ToDo: Set the weights and biases tensors weights = tf.Variable(tf.truncated_normal([features_count, labels_count])) biases = tf.Variable(tf.zeros(labels_count)) ### DON'T MODIFY ANYTHING BELOW ### #Test Cases from tensorflow.python.ops.variables import Variable assert features._op.name.startswith('Placeholder'), 'features must be a placeholder' assert labels._op.name.startswith('Placeholder'), 'labels must be a placeholder' assert isinstance(weights, Variable), 'weights must be a TensorFlow variable' assert isinstance(biases, Variable), 'biases must be a TensorFlow variable' assert features._shape == None or (\ features._shape.dims[0].value is None and\ features._shape.dims[1].value in [None, 784]), 'The shape of features is incorrect' assert labels._shape == None or (\ labels._shape.dims[0].value is None and\ labels._shape.dims[1].value in [None, 10]), 'The shape of labels is incorrect' assert weights._variable._shape == (784, 10), 'The shape of weights is incorrect' assert biases._variable._shape == (10), 'The shape of biases is incorrect' assert features._dtype == tf.float32, 'features must be type float32' assert labels._dtype == tf.float32, 'labels must be type float32' # Feed dicts for training, validation, and test session train_feed_dict = {features: train_features, labels: train_labels} valid_feed_dict = {features: valid_features, labels: valid_labels} test_feed_dict = {features: test_features, labels: test_labels} # Linear Function WX + b logits = tf.matmul(features, weights) + biases logits = -np.amax(logits) prediction = tf.nn.softmax(logits) # Cross entropy #prediction -= np.max(prediction) cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), reduction_indices=1) # Training loss loss = tf.reduce_mean(cross_entropy) # Create an operation that initializes all variables init = tf.initialize_all_variables() # Test Cases with tf.Session() as session: session.run(init) session.run(loss, feed_dict=train_feed_dict) session.run(loss, feed_dict=valid_feed_dict) session.run(loss, feed_dict=test_feed_dict) biases_data = session.run(biases) assert not np.count_nonzero(biases_data), 'biases must be zeros' print('Tests Passed!') # Determine if the predictions are correct is_correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1)) # Calculate the accuracy of the predictions accuracy = tf.reduce_mean(tf.cast(is_correct_prediction, tf.float32)) print('Accuracy function created.') # ToDo: Find the best parameters for each configuration epochs = 1 batch_size = 100 learning_rate = 0.1 ### DON'T MODIFY ANYTHING BELOW ### # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # The accuracy measured against the validation set validation_accuracy = 0.0 # Measurements use for graphing loss and accuracy log_batch_step = 50 batches = [] loss_batch = [] train_acc_batch = [] valid_acc_batch = [] with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer and get loss _, l = session.run( [optimizer, loss], feed_dict={features: batch_features, labels: batch_labels}) # Log every 50 batches if not batch_i % log_batch_step: # Calculate Training and Validation accuracy training_accuracy = session.run(accuracy, feed_dict=train_feed_dict) validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) # Log batches previous_batch = batches[-1] if batches else 0 batches.append(log_batch_step + previous_batch) loss_batch.append(l) train_acc_batch.append(training_accuracy) valid_acc_batch.append(validation_accuracy) # Check accuracy against Validation data validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) loss_plot = plt.subplot(211) loss_plot.set_title('Loss') loss_plot.plot(batches, loss_batch, 'g') loss_plot.set_xlim([batches[0], batches[-1]]) acc_plot = plt.subplot(212) acc_plot.set_title('Accuracy') acc_plot.plot(batches, train_acc_batch, 'r', label='Training Accuracy') acc_plot.plot(batches, valid_acc_batch, 'b', label='Validation Accuracy') acc_plot.set_ylim([0, 1.0]) acc_plot.set_xlim([batches[0], batches[-1]]) acc_plot.legend(loc=4) plt.tight_layout() plt.show() print('Validation accuracy at {}'.format(validation_accuracy)) # ToDo: Set the epochs, batch_size, and learning_rate with the best parameters from problem 3 epochs = 5 batch_size = 64 learning_rate = 0.1 ### DON'T MODIFY ANYTHING BELOW ### # The accuracy measured against the test set test_accuracy = 0.0 with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer _ = session.run(optimizer, feed_dict={features: batch_features, labels: batch_labels}) # Check accuracy against Test data test_accuracy = session.run(accuracy, feed_dict=test_feed_dict) assert test_accuracy >= 0.80, 'Test accuracy at {}, should be equal to or greater than 0.80'.format(test_accuracy) print('Nice Job! Test Accuracy is {}'.format(test_accuracy)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now, we need to generate our population, this means for each candidate we will generate random DNA Step2: Now, we would like to score our population Step3: If we are lucky, we have found the solution on the first generation. But it is unlikely on more complex problems. Step4: Now that we have our first generation and we know what it looks like, we can proceed to selection. Step5: Combination and mutation, creating the next generation Step6: Now we need to parse a pair of candidates, in order to return a new one. How do we proceed ? Step7: Now that we are able to generate a child from two parents, let's make our couples Step8: And generate our new population Step9: The whole process
<ASSISTANT_TASK:> Python Code: import random elements = list(range(1, 11)) * 2 + [25, 50, 75, 100] game = random.sample(elements, 6) goal = random.randint(100, 999) print goal, ':', game # the DNA is just the calcul in a string def random_dna(game): # we want random links to node, so we need to shuffle the game game_shuffled = list(game) random.shuffle(game_shuffled) # let start with an empty dna dna = '' i = 0 while i < len(game_shuffled): try_dna = dna if i > 0: try_dna += random.choice([' * ', ' / ', ' + ', ' - ']) try_dna += str(float(game_shuffled[i])) # we check that the result is still an int before recording the random gene check_result = eval(try_dna) if check_result == int(check_result): dna = try_dna i += 1 return dna test_dna = random_dna(game) test_res = eval(test_dna) assert test_res == int(test_res) population_size = 1000 def first_generation(population_size=1000): return [random_dna(game) for _ in range(population_size)] population = first_generation(population_size) print 'Test:', test_dna, '=', test_res print 'Population Size:', population_size print 'Population:' for dna in population[:5]: print '->', dna, ' = ', eval(dna) print '-> ...' for dna in population[-5:]: print '->', dna, ' = ', eval(dna) def score(dna): return abs(goal - eval(dna)) scored_population = sorted([(dna, score(dna)) for dna in population], key=lambda item: item[1]) def show_scored_population(scored_population): for dna, score in scored_population[:5]: print '->', dna, ' = ', eval(dna), '\t|', score print '-> ...' for dna, score in scored_population[-5:]: print '->', dna, ' = ', eval(dna), '\t|', score show_scored_population(scored_population) from collections import OrderedDict import math def generation_stats(generation): scores = [c[1] for c in generation] stats = OrderedDict(( ('avg', float(sum(scores)) / len(scores)), ('min', min(scores)), ('max', max(scores)), ('stdev', None), ('q1', None), ('med', None), ('q3', None) )) variance = float(sum([(s - stats['avg'])**2 for s in scores])) / len(scores) stats['stdev'] = math.sqrt(variance) q1idx = len(scores) / 4 stats['q1'] = scores[q1idx] q3idx = 3 * len(scores) / 4 stats['q3'] = scores[q3idx] if len(scores) % 2 == 0: i1idx = len(scores) / 2 i2idx = i1idx + 1 i1, i2 = scores[i1idx], scores[i2idx] stats['med'] = (i1 + i2) / 2 else: medidx = len(scores) / 2 + 1 stats['med'] = scores[medidx] return stats, scores def plot_stats(stats, scores, gen=0): rows = zip(*stats.items()) dim = [0.05, 0.80, 0.9, 0.15] # Figure 1: min avg/q3 max color graph fig1 = plt.figure(figsize=(18, 3)) a1x = fig1.add_axes(dim) cmap1 = matplotlib.colors.ListedColormap(['g', 'b', 'r']) bounds1 = [ stats['min'], min(stats['q3'], stats['avg']), max(stats['q3'], stats['avg']), stats['max'] ] norm1 = matplotlib.colors.BoundaryNorm(bounds1, cmap1.N) cbl1 = matplotlib.colorbar.ColorbarBase( a1x, cmap=cmap1, norm=norm1, spacing='proportional', orientation='horizontal' ) # Figure 2: min q1 med q3 color graph fig2 = plt.figure(figsize=(18, 3)) a2x = fig2.add_axes(dim) cmap2 = matplotlib.colors.ListedColormap(['g', 'b', 'y']) bounds2 = [stats['min'], stats['q1'], stats['med'], stats['q3']] norm2 = matplotlib.colors.BoundaryNorm(bounds2, cmap2.N) cbl2 = matplotlib.colorbar.ColorbarBase( a2x, cmap=cmap2, norm=norm2, spacing='proportional', orientation='horizontal' ) a1x.set_xticklabels([ 'min', 'avg' if stats['avg'] <= stats['q3'] else 'q3', 'avg' if stats['avg'] > stats['q3'] else 'q3', 'max' ]) a2x.set_xticklabels(['min', 'q1', 'med', 'q3', 'max']) # Figure 3: scores line chart fig3, a3x = plt.subplots() a3x.plot(scores) a3x.grid(True) a3x.set_ylabel('Score') a3x.set_xlabel('Candidate') a1x.set_title('Generation: {0}'.format(gen)) plt.show() stats1, scores1 = generation_stats(scored_population) print json.dumps(stats1, indent=2) plot_stats(stats1, scores1) def selection(generation, stats): parents = [] q1 = filter(lambda c: c[1] < stats['q1'], generation) q2 = filter(lambda c: stats['q1'] <= c[1] < stats['med'], generation) q3 = filter(lambda c: stats['med'] <= c[1] < stats['q3'], generation) q4 = filter(lambda c: stats['q3'] <= c[1], generation) for q in [q1, q2, q3, q4]: parents += q[:len(q) / 2] return parents s1 = selection(scored_population, stats1) show_scored_population(s1) stats_s1, scores_s1 = generation_stats(s1) print json.dumps(stats_s1, indent=2) plot_stats(stats_s1, scores_s1) from redbaron import RedBaron, BinaryOperatorNode, FloatNode red = RedBaron(s1[0][0]) print 'Example:', s1[0][0] red.help() def gen_child(parents_dna): # reimport things because it will be used in a IPython parallel engine from redbaron import RedBaron import random tmpred = RedBaron(parents_dna[0]) child = RedBaron(parents_dna[1]) # Choose random operator from parent a operators = tmpred.find_all('binary_operator') op = random.choice(operators[1:]) # we don't want the root operator # Find and remove all leafs from child nbs = [float(nb.value) for nb in op.find_all('float')] # mark the nodes as empty for node in child.find_all('float'): if float(node.value) in nbs: if node.parent.first is node: node.parent.first.replace('None') elif node.parent.second is node: node.parent.second.replace('None') # keep going until nothing is done (which means there is no more empty nodes) reparented = True while reparented: reparented = False for node in child.find_all('binary_operator'): if node.first.value == 'None' and node.second.value == 'None': reparent = 'None' elif node.first.value == 'None': reparent = node.second.dumps() elif node.second.value == 'None': reparent = node.first.dumps() else: continue if node.parent.parent is None: node.replace(reparent) reparented = True elif node.parent.first is node: node.parent.first.replace(reparent) reparented = True elif node.parent.second is node: node.parent.second.replace(reparent) reparented = True # Combine parents DNA with a mutation: a random operator notint = True while notint: combine = '{0} {2} {1}'.format( op.dumps(), child[0].dumps(), random.choice(['+', '-', '*', '/']) ) res = eval(combine) if res == int(res): notint = False child[0].replace(combine) print '.' return child.dumps() child = gen_child((s1[0][0], s1[-1][0])) test_child = eval(child) assert test_child == int(test_child) print child, '=', test_child def make_couples(selected): parents = [] for _ in range(4): _set = list(selected) while len(_set) > 1: i = random.randrange(0, len(_set)) a = _set.pop(i) i = random.randrange(0, len(_set)) b = _set.pop(i) parents.append((a[0], b[0])) return parents def new_population(selected, population_size): population = [] couples = make_couples(selected) while len(population) < population_size: parents = random.choice(couples) population.append(gen_child(parents)) return population def next_generation(population, gen): scored_population = sorted([(dna, score(dna)) for dna in population], key=lambda item: item[1]) show_scored_population(scored_population) for i in range(len(scored_population)): if scored_population[i][1] == 0: print 'WIN:', i, ':', scored_population[i][0] else: break stats, scores = generation_stats(scored_population) print json.dumps(stats, indent=2) plot_stats(stats, scores, gen) selected = selection(scored_population, stats) return new_population(selected, len(population)), gen + 1 def main(popsize=1000, nsteps=100): pop, gen = first_generation(popsize), 0 while nsteps > 0: pop, gen = next_generation(pop, gen) nsteps -= 1 main(popsize=10, nsteps=30) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the TFLite model Step2: Run using TFLite Step3: Run using IREE
<ASSISTANT_TASK:> Python Code: %%capture !python -m pip install iree-compiler iree-runtime iree-tools-tflite -f https://github.com/google/iree/releases/latest !pip3 install --extra-index-url https://google-coral.github.io/py-repo/ tflite_runtime import numpy as np import urllib.request import pathlib import tempfile import re import tflite_runtime.interpreter as tflite from iree import runtime as iree_rt from iree.compiler import compile_str from iree.tools import tflite as iree_tflite ARTIFACTS_DIR = pathlib.Path(tempfile.gettempdir(), "iree", "colab_artifacts") ARTIFACTS_DIR.mkdir(parents=True, exist_ok=True) #@title Download pretrained text classification model MODEL_URL = "https://storage.googleapis.com/download.tensorflow.org/models/tflite/text_classification/text_classification_v2.tflite" urllib.request.urlretrieve(MODEL_URL, ARTIFACTS_DIR.joinpath("text_classification.tflite")) #@title Extract model vocab and label metadata !unzip -o -d {ARTIFACTS_DIR} {ARTIFACTS_DIR}/text_classification.tflite # Load the vocab file into a dictionary. It contains the most common 1,000 # words in the English language, mapped to an integer. vocab = {} with open(ARTIFACTS_DIR.joinpath("vocab.txt")) as vocab_file: for line in vocab_file: (key, val) = line.split() vocab[key] = int(val) # Text will be labeled as either 'Positive' or 'Negative'. with open(ARTIFACTS_DIR.joinpath("labels.txt")) as label_file: labels = label_file.read().splitlines() #@title Input and output processing # Input text will be encoded as an integer array of fixed length 256. The # input sentence will be mapped to integers from the vocab dictionary, and the # empty array spaces are filled with padding. SENTENCE_LEN = 256 START = "<START>" PAD = "<PAD>" UNKNOWN = "<UNKNOWN>" def tokenize_input(text): output = np.empty([1, SENTENCE_LEN], dtype=np.int32) output.fill(vocab[PAD]) # Remove capitalization and punctuation from the input text. text_split = text.split() text_split = [text.lower() for text in text_split] text_split = [re.sub(r"[^\w\s']", '', text) for text in text_split] # Prepend <START>. index = 0 output[0][index] = vocab[START] index += 1 for word in text_split: output[0][index] = vocab[word] if word in vocab else vocab[UNKNOWN] index += 1 return output def interpret_output(output): if output[0] >= output[1]: label = labels[0] confidence = output[0] else: label = labels[1] confidence = output[1] print("Label: " + label + "\nConfidence: " + str(confidence)) #@title Text samples positive_text = "This is the best movie I've seen in recent years. Strongly recommend it!" negative_text = "What a waste of my time." print(positive_text) print(tokenize_input(positive_text)) interpreter = tflite.Interpreter( model_path=str(ARTIFACTS_DIR.joinpath("text_classification.tflite"))) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() def classify_text_tflite(text): interpreter.set_tensor(input_details[0]['index'], tokenize_input(text)) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) interpret_output(output_data[0]) print("Invoking text classification with TFLite\n") positive_text = "This is the best movie I've seen in recent years. Strongly recommend it!" print(positive_text) classify_text_tflite(positive_text) print() negative_text = "What a waste of my time." print(negative_text) classify_text_tflite(negative_text) # Convert TFLite model to TOSA MLIR with IREE's import tool. IREE_TFLITE_TOOL = iree_tflite.get_tool('iree-import-tflite') !{IREE_TFLITE_TOOL} {ARTIFACTS_DIR}/text_classification.tflite --o={ARTIFACTS_DIR}/text_classification.mlir with open(ARTIFACTS_DIR.joinpath("text_classification.mlir")) as mlir_file: tosa_mlir = mlir_file.read() # The generated .mlir file could now be saved and used outside of Python, with # IREE native tools or in apps, etc. # The model contains very large constants, so recompile a truncated version to print. !{IREE_TFLITE_TOOL} {ARTIFACTS_DIR}/text_classification.tflite --o={ARTIFACTS_DIR}/text_classification_truncated.mlir --mlir-elide-elementsattrs-if-larger=50 with open(ARTIFACTS_DIR.joinpath("text_classification_truncated.mlir")) as truncated_mlir_file: truncated_tosa_mlir = truncated_mlir_file.read() print(truncated_tosa_mlir, end='') # Compile the TOSA MLIR into a VM module. compiled_flatbuffer = compile_str(tosa_mlir, input_type="tosa", target_backends=["vmvx"]) vm_module = iree_rt.VmModule.from_flatbuffer(compiled_flatbuffer) # Register the module with a runtime context. config = iree_rt.Config("vmvx") ctx = iree_rt.SystemContext(config=config) ctx.add_vm_module(vm_module) invoke_text_classification = ctx.modules.module["main"] def classify_text_iree(text): result = invoke_text_classification(tokenize_input(text)).to_host()[0] interpret_output(result) print("Invoking text classification with IREE\n") print(positive_text) classify_text_iree(positive_text) print() print(negative_text) classify_text_iree(negative_text) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <hr> Step2: <a id="example_create_blank_textgrids"> Step3: Bravo! You've saved your colleagues the tedium of creating empty textgrids for each wav file from scratch and removed one vector of human error from your workflow. Step4: <hr> Step5: Ok, so with the TextGrid, we got a Tier. What happens next? Most of the time, you'll be accessing the intervals or points stored in the tier. These are stored in the entryList. Step6: I use this idiom--open textgrid, get target tier, and forloop through the entryList--on a regular basis. For clarity, here the whole idiom is presented in a concise example Step7: <hr> Step8: <hr> Step9: The above featured functions are perhaps the most useful functions in praatio. But there are some other functions which I'll mention briefly here. Step10: <hr> Step11: <hr> Step12: <hr> Step13: <hr> Step14: <hr> Step15: That output might be a little hard to visualize. Here is what the output looks like in a textgrid
<ASSISTANT_TASK:> Python Code: !pip install praatio --upgrade from praatio import textgrid # Textgrids take no arguments--it gets all of its necessary attributes from the tiers that it contains. tg = textgrid.Textgrid() # IntervalTiers and PointTiers take four arguments: the tier name, a list of intervals or points, # a starting time, and an ending time. wordTier = textgrid.IntervalTier('words', [], 0, 1.0) maxF0Tier = textgrid.PointTier('maxF0', [], 0, 1.0) tg.addTier(wordTier) tg.addTier(maxF0Tier) tg.save("empty_textgrid.TextGrid", format="short_textgrid", includeBlankSpaces=False) import os from os.path import join from praatio import textgrid from praatio import audio inputPath = join('..', 'examples', 'files') outputPath = join(inputPath, "generated_textgrids") if not os.path.exists(outputPath): os.mkdir(outputPath) for fn in os.listdir(inputPath): name, ext = os.path.splitext(fn) if ext != ".wav": continue duration = audio.getDuration(join(inputPath, fn)) wordTier = textgrid.IntervalTier('words', [], 0, duration) tg = textgrid.Textgrid() tg.addTier(wordTier) tg.save(join(outputPath, name + ".TextGrid"), format="short_textgrid", includeBlankSpaces=False) # Did it work? for fn in os.listdir(outputPath): ext = os.path.splitext(fn)[1] if ext != ".TextGrid": continue print(fn) from os.path import join from praatio import textgrid inputFN = join('..', 'examples', 'files', 'mary.TextGrid') tg = textgrid.openTextgrid(inputFN, includeEmptyIntervals=False) # Give it a file name, get back a Textgrid object # What tiers are stored in this textgrid? print(tg.tierNameList) # It's possible to access the tiers by their position in the TextGrid # (i.e. the order they were added in) firstTier = tg.tierDict[tg.tierNameList[0]] # Or by their names wordTier = tg.tierDict['word'] print(firstTier) # I just want the labels from the entryList labelList = [entry[2] for entry in wordTier.entryList] print(labelList) # Get the duration of each interval # (in this example, an interval is a word, so this outputs word duration) durationList = [] for start, stop, _ in wordTier.entryList: durationList.append(stop - start) print(durationList) # Print out each interval on a separate line from os.path import join from praatio import textgrid inputFN = join('..', 'examples', 'files', 'mary.TextGrid') tg = textgrid.openTextgrid(inputFN, includeEmptyIntervals=False) tier = tg.tierDict['word'] for start, stop, label in tier.entryList: print("From:%f, To:%f, %s" % (start, stop, label)) # Sometimes you just want to have two copies of something newTG = tg.new() newTier = tier.new() # emptiedTier and renamedTier are the same as tier, except for the parameter specified in .new() emptiedTier = tier.new(entryList=[]) # Remove all entries in the entry list renamedTier = tier.new(name="lexical items") # Rename the tier to 'lexical items' # Let's reload everything from os.path import join from praatio import textgrid inputFN = join('..', 'examples', 'files', 'mary.TextGrid') tg = textgrid.openTextgrid(inputFN, includeEmptyIntervals=False) # Ok, what were our tiers? print(tg.tierNameList) # We've already seen how to add a new tier to a TextGrid # Here we add a new tier, 'utterance', which has one entry that spans the length of the textgrid utteranceTier = textgrid.IntervalTier(name='utterance', entryList=[('0', tg.maxTimestamp, 'mary rolled the barrel'), ], minT=0, maxT=tg.maxTimestamp) tg.addTier(utteranceTier) print(tg.tierNameList) # Maybe we decided that we don't need the phone tier. We can remove it using the tier's name. # The remove function returns the removed tier, in case you want to do something with it later. wordTier = tg.removeTier('word') print(tg.tierNameList) print(wordTier) # We can also replace one tier with another like so (preserving the order of the tiers) tg.replaceTier('phone', wordTier) print(tg.tierNameList) # Or rename a tier tg.renameTier('word', 'lexical items') print(tg.tierNameList) # Let's start by observing the pre-cropped entry lists wordTier = tg.tierDict['lexical items'] print(wordTier.entryList) utteranceTier = tg.tierDict['utterance'] print(utteranceTier.entryList) print("Start time: %f" % wordTier.minTimestamp) print("End time: %f" % utteranceTier.maxTimestamp) # Now let's crop and see what changes! # Crop takes four arguments # If mode is 'truncated', all intervals contained within the crop region will appear in the # returned TG--however, intervals that span the crop region will be truncated to fit within # the crop region # If rebaseToZero is True, the times in the textgrid are recalibrated with the start of # the crop region being 0.0s croppedTG = tg.crop(0.5, 1.0, mode='truncated', rebaseToZero=True) wordTier = croppedTG.tierDict['lexical items'] print(wordTier.entryList) utteranceTier = croppedTG.tierDict['utterance'] print(utteranceTier.entryList) print("Start time: %f" % croppedTG.minTimestamp) print("End time: %f" % croppedTG.maxTimestamp) # If rebaseToZero is False, the values in the cropped textgrid will be what they were in the # original textgrid (but without values outside the crop region) # Compare the output here with the output above croppedTG = tg.crop(0.5, 1.0, mode='truncated', rebaseToZero=False) wordTier = croppedTG.tierDict['lexical items'] print(wordTier.entryList) utteranceTier = croppedTG.tierDict['utterance'] print(utteranceTier.entryList) print("Start time: %f" % croppedTG.minTimestamp) print("End time: %f" % croppedTG.maxTimestamp) # If mode is 'strict', only wholly contained intervals will be included in the output. # Compare this with the previous result croppedTG = tg.crop(0.5, 1.0, mode='strict', rebaseToZero=False) # Let's start by observing the pre-cropped entry lists wordTier = croppedTG.tierDict['lexical items'] print(wordTier.entryList) utteranceTier = croppedTG.tierDict['utterance'] print(utteranceTier.entryList) print("Start time: %f" % croppedTG.minTimestamp) print("End time: %f" % croppedTG.maxTimestamp) # If mode is 'lax', partially contained intervals will be wholly contained in the outpu. # Compare this with the previous result croppedTG = tg.crop(0.5, 1.0, mode='lax', rebaseToZero=False) # Let's start by observing the pre-cropped entry lists wordTier = croppedTG.tierDict['lexical items'] print(wordTier.entryList) utteranceTier = croppedTG.tierDict['utterance'] print(utteranceTier.entryList) print("Start time: %f" % croppedTG.minTimestamp) print("End time: %f" % croppedTG.maxTimestamp) # Let's reload everything, just as before from os.path import join from praatio import textgrid inputFN = join('..', 'examples', 'files', 'mary.TextGrid') tg = textgrid.openTextgrid(inputFN, includeEmptyIntervals=False) # Ok, what are our tiers? print(tg.tierNameList) # The entryList, which holds the tier point or interval data, is the heart of the tier. # Recall the 'new()' function, if you want to modify all of the entries in a tier at once wordTier = tg.tierDict['word'] newEntryList = [(start, stop, 'bloop') for start, stop, label in wordTier.entryList] newWordTier = wordTier.new(entryList=newEntryList) print(wordTier.entryList) print(newWordTier.entryList) # If, however, we only want to modify a few entries, there are some functions for doing so # deleteEntry() takes an entry and deletes it maryEntry = wordTier.entryList[0] wordTier.deleteEntry(maryEntry) print(wordTier.entryList) # insertEntry() does the opposite of deleteEntry. wordTier.insertEntry(maryEntry) print(wordTier.entryList) print() # you can also set the collision code to 'merge' or 'replace' to set the behavior in the event an entry already exists # And the collisionReportingMode can be used to have warnings printed out when a collision occurs wordTier.insertEntry((maryEntry[0], maryEntry[1], 'bob'), collisionMode='replace', collisionReportingMode='silence') print(wordTier.entryList) # Let's say we have some time series data # Where the data is organized as [(timeV1, dataV1a, dataV1b, ...), (timeV2, dataV2a, dataV2b, ...), ...] dataValues = [(0.1, 15), (0.2, 98), (0.3, 105), (0.4, 210), (0.5, ), (0.6, 154), (0.7, 181), (0.8, 110), (0.9, 203), (1.0, 240)] # Often times when working with such data, we want to know which data # corresponds to certain speech events # e.g. what was the max pitch during the stressed vowel of a particular word etc... intervalDataList = wordTier.getValuesInIntervals(dataValues) # The returned list is of the form [(interval1, )] for interval, subDataList in intervalDataList: print(interval) print(subDataList) print() bobWordIList = wordTier.find('bob') bobWord = wordTier.entryList[bobWordIList[0]] print(bobWord) import os from os.path import join from praatio import textgrid from praatio import pitch_and_intensity # For pitch extraction, we need the location of praat on your computer #praatEXE = r"C:\Praat.exe" praatEXE = "/Applications/Praat.app/Contents/MacOS/Praat" # The 'os.getcwd()' is kindof a hack. With jypter __file__ is undefined and # os.getcwd() seems to default to the praatio installation files. rootPath = join(os.getcwd(), '..', 'examples', 'files') pitchPath = join(rootPath, "pitch_extraction", "pitch") fnList = [('mary.wav', 'mary.TextGrid'), ('bobby.wav', 'bobby_words.TextGrid')] # The names of interest -- in an example working with more data, this would be more comprehensive nameList = ['mary', 'BOBBY', 'lisa', 'john', 'sarah', 'tim', ] outputList = [] for wavName, tgName in fnList: pitchName = os.path.splitext(wavName)[0] + '.txt' tg = textgrid.openTextgrid(join(rootPath, tgName), includeEmptyIntervals=False) # 1 - get pitch values pitchList = pitch_and_intensity.extractPitch(join(rootPath, wavName), join(pitchPath, pitchName), praatEXE, 50, 350, forceRegenerate=True) # 2 - find the intervals where a name was spoken nameIntervals = [] targetTier = tg.tierDict['word'] for name in nameList: findMatches = targetTier.find(name) for i in findMatches: nameIntervals.append(targetTier.entryList[i]) # 3 - isolate the relevant pitch values matchedIntervals = [] intervalDataList = [] for entry in nameIntervals: start, stop, label = entry croppedTier = targetTier.crop(start, stop, "truncated", False) intervalDataList = croppedTier.getValuesInIntervals(pitchList) matchedIntervals.extend(intervalDataList) # 4 - find the maximum value for interval, subDataList in intervalDataList: pitchValueList = [pitchV for timeV, pitchV in subDataList] maxPitch = max(pitchValueList) outputList.append((wavName, interval, maxPitch)) # Output results for name, interval, value in outputList: print((name, interval, value)) # Let's reload everything from os.path import join from praatio import textgrid # We'll use a special textgrid for this purpose inputFN = join('..', 'examples', 'files', 'damon_set_test.TextGrid') tg = textgrid.openTextgrid(inputFN, includeEmptyIntervals=False) # Ok, what are our tiers? print(tg.tierNameList) # Let's take set operations between these two tiers syllableTier = tg.tierDict['tonicSyllable'] errorTier = tg.tierDict['manually_labeled_pitch_errors'] print(syllableTier.entryList) print(errorTier.entryList) # Set difference -- the entries that are not in errorTier are kept diffTier = syllableTier.difference(errorTier) diffTier = diffTier.new(name="different") print(diffTier.entryList) # Set intersection -- the overlapping regions between the two tiers are kept interTier = syllableTier.intersection(errorTier) interTier = interTier.new(name="intersection") print(interTier.entryList) # Set union -- the two tiers are merged unionTier = syllableTier.union(errorTier) unionTier = unionTier.new(name="union") print(unionTier.entryList) outputFN = join('..', 'examples', 'files', 'damon_set_test_output.TextGrid') setTG = textgrid.Textgrid() for tier in [syllableTier, errorTier, diffTier, interTier, unionTier]: setTG.addTier(tier) setTG.save(outputFN, format="short_textgrid", includeBlankSpaces=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 2. Key Properties --&gt; Software Properties Step12: 2.2. Code Version Step13: 2.3. Code Languages Step14: 3. Key Properties --&gt; Timestep Framework Step15: 3.2. Split Operator Advection Timestep Step16: 3.3. Split Operator Physical Timestep Step17: 3.4. Integrated Timestep Step18: 3.5. Integrated Scheme Type Step19: 4. Key Properties --&gt; Meteorological Forcings Step20: 4.2. Variables 2D Step21: 4.3. Frequency Step22: 5. Key Properties --&gt; Resolution Step23: 5.2. Canonical Horizontal Resolution Step24: 5.3. Number Of Horizontal Gridpoints Step25: 5.4. Number Of Vertical Levels Step26: 5.5. Is Adaptive Grid Step27: 6. Key Properties --&gt; Tuning Applied Step28: 6.2. Global Mean Metrics Used Step29: 6.3. Regional Metrics Used Step30: 6.4. Trend Metrics Used Step31: 7. Transport Step32: 7.2. Scheme Step33: 7.3. Mass Conservation Scheme Step34: 7.4. Convention Step35: 8. Emissions Step36: 8.2. Method Step37: 8.3. Sources Step38: 8.4. Prescribed Climatology Step39: 8.5. Prescribed Climatology Emitted Species Step40: 8.6. Prescribed Spatially Uniform Emitted Species Step41: 8.7. Interactive Emitted Species Step42: 8.8. Other Emitted Species Step43: 8.9. Other Method Characteristics Step44: 9. Concentrations Step45: 9.2. Prescribed Lower Boundary Step46: 9.3. Prescribed Upper Boundary Step47: 9.4. Prescribed Fields Mmr Step48: 9.5. Prescribed Fields Mmr Step49: 10. Optical Radiative Properties Step50: 11. Optical Radiative Properties --&gt; Absorption Step51: 11.2. Dust Step52: 11.3. Organics Step53: 12. Optical Radiative Properties --&gt; Mixtures Step54: 12.2. Internal Step55: 12.3. Mixing Rule Step56: 13. Optical Radiative Properties --&gt; Impact Of H2o Step57: 13.2. Internal Mixture Step58: 14. Optical Radiative Properties --&gt; Radiative Scheme Step59: 14.2. Shortwave Bands Step60: 14.3. Longwave Bands Step61: 15. Optical Radiative Properties --&gt; Cloud Interactions Step62: 15.2. Twomey Step63: 15.3. Twomey Minimum Ccn Step64: 15.4. Drizzle Step65: 15.5. Cloud Lifetime Step66: 15.6. Longwave Bands Step67: 16. Model Step68: 16.2. Processes Step69: 16.3. Coupling Step70: 16.4. Gas Phase Precursors Step71: 16.5. Scheme Type Step72: 16.6. Bulk Scheme Species
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mohc', 'hadgem3-gc31-hh', 'aerosol') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/volume ratio for aerosols" # "3D number concenttration for aerosols" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses atmospheric chemistry time stepping" # "Specific timestepping (operator splitting)" # "Specific timestepping (integrated)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Specific transport scheme (eulerian)" # "Specific transport scheme (semi-lagrangian)" # "Specific transport scheme (eulerian and semi-lagrangian)" # "Specific transport scheme (lagrangian)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Mass adjustment" # "Concentrations positivity" # "Gradients monotonicity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.convention') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Convective fluxes connected to tracers" # "Vertical velocities connected to tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Prescribed (climatology)" # "Prescribed CMIP6" # "Prescribed above surface" # "Interactive" # "Interactive above surface" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Volcanos" # "Bare ground" # "Sea surface" # "Lightning" # "Fires" # "Aircraft" # "Anthropogenic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Interannual" # "Annual" # "Monthly" # "Daily" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dry deposition" # "Sedimentation" # "Wet deposition (impaction scavenging)" # "Wet deposition (nucleation scavenging)" # "Coagulation" # "Oxidation (gas phase)" # "Oxidation (in cloud)" # "Condensation" # "Ageing" # "Advection (horizontal)" # "Advection (vertical)" # "Heterogeneous chemistry" # "Nucleation" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Radiation" # "Land surface" # "Heterogeneous chemistry" # "Clouds" # "Ocean" # "Cryosphere" # "Gas phase chemistry" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "DMS" # "SO2" # "Ammonia" # "Iodine" # "Terpene" # "Isoprene" # "VOC" # "NOx" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Bulk" # "Modal" # "Bin" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon / soot" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule)" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <center> Step2: Es resultiert in Grafik \ref{fig Step3: Vergleich der Messmethoden Step4: Streuung der Mündungsgeschwindigkeit Step5: Vergleich der Messmethoden Step6: Fehlerrechnung Step7: Wie anhand der Fehlerbalken in Grafik \ref{fig Step8: Natürlich kann sofort erkannt werden wie gross der systematische Fehler bei der ballistischen Methode ist. Deswegen wurden so unterschiedliche Ergebnisse für die Projektilgeschwindigkeit erhalten. Die Fehlerbereiche überlappen sich nun und es ist somit okay anzunehmen dass die beiden Rechnungen stimmen wobei die Flugzeitmethode um ein Vielfaches genauer ist. Step9: Wie anhand der Fehlerbalken in Grafik \ref{fig Step10: Auch hier kann erneut erkannt werden wie gross der systematische Fehler bei der Drehstossmethode ist. Deswegen wurden auch hier so unterschiedliche Ergebnisse für die Projektilgeschwindigkeit erhalten. Die Fehlerbereiche überlappen sich nun und es ist somit okay anzunehmen dass die beiden Rechnungen stimmen wobei die Flugzeitmethode auch hier um ein Vielfaches genauer ist. Step12: Ballistische Methode Step13: Die Resultate aus der ballistischen Methode unterscheiden sich kaum von denen der Flugzeitmethode. Um genau {{'{0 Step14: Die Resultate aus der Drehstossmethode unterscheiden sich ebenfalls kaum von denen der Flugzeitmethode. Um {{'{0 Step15: Flugzeitmethode Step16: Drehstossmethode
<ASSISTANT_TASK:> Python Code: # define base values and measurements v1_s = 0.500 v1_sb1 = 1.800 v1_sb2 = 1.640 v1_m = np.mean([0.47, 0.46, 0.46, 0.46, 0.46, 0.47, 0.46, 0.46, 0.46, 0.46, 4.65 / 10]) * 1e-3 v1_T = np.mean([28.68 / 10, 28.91 / 10]) v1_cw = 0.75 v1_cw_u = 0.08 v1_A = 4*1e-6 v1_pl = 1.2041 def air_resistance(s, v): k = v1_cw * v1_A * v1_pl / 2 / v1_m v0 = v / (1 - k * s) return v0 # Evaluate Data # Read Data v1_df = pd.read_csv('data/ballistisch.csv') v1_M = 0.09836 v1_l = 1.973 v1_g = 9.80705 # Plot only one graph of the linear fit df = pd.read_csv('data/ballistsisch_0.csv') slope, intercept, r, p, sem = stats.linregress(df['measurement'] + 0.25, df['x']) n = np.linspace(0, 21, 100) ax = df.plot(kind='scatter', x='measurement', y='x', label='gemessener Ausschlag') plt.plot(n, [i * slope + intercept for i in n], label='linearer Fit', axes=ax) plt.xlabel('Messung') plt.ylabel('x [m]') plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:luftwiderstand_fit', caption='Lineare Regression zur bestimmung des maximalen Ausschlages des Pendels, falls keinerlei Unidealitäten dieses beeinflussen.') figure.show() # Calculate mean velocity in air v1_df['v_flug'] = pd.Series(v1_s / v1_df['t']) # Calculate all x from the measurements v1_x = [] for n in range(10): df = pd.read_csv('data/ballistsisch_{}.csv'.format(n)) slope, intercept, r, p, sem = stats.linregress(df['measurement'] + 0.25, df['x']) v1_x.append(intercept) v1_df['x'] = pd.Series(v1_x) # Calculate all v_B at impact v1_k = v1_g / (2 * math.pi) * (v1_M + v1_m) / v1_m / v1_l * v1_T v1_b = 1 - 3 / 8 * (v1_df['x'] / v1_l)**2 v1_df['v_ballistic'] = pd.Series(v1_k * v1_df['x'] * v1_b) v1_mean = v1_df.mean() # Plot calculated velocities ax = v1_df.plot(kind='scatter', x='measurement', y='v_flug', label='$v_F$: errechnete Geschwindigkeit mit Flugzeitmethode') plt.scatter(v1_df['measurement'], v1_df['v_ballistic'], label='$v_B$: errechnete Geschwindigkeit mit ballistischer Methode', color='red', axes=ax) plt.axhline(y=v1_mean['v_flug'], axes=ax, color='blue', label='Mittelwert von $v_F$') plt.axhline(y=v1_mean['v_ballistic'], axes=ax, color='red', label='Mittelwert von $v_B$') plt.xlabel('Messung') plt.ylabel('$v[\\frac{m}{s}]$') #plt.ylim([150, 160]) plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:v_ballistisch', caption='Aufprallgeschwindigkeiten der Kugel durch Ballistische Methode errechnet, im Vergleich zu den jeweiligen Geschwindigkeiten, welche durch die Flugzeitmethode berechnet wurden.') figure.show() # Luftwiderstandskorrektur single and mean calculation v1_flug_muendung = pd.Series(list(map(partial(air_resistance, v1_s / 2), v1_df['v_flug']))) v1_ballistic_muendung = pd.Series(list(map(partial(air_resistance, v1_sb1), v1_df['v_ballistic']))) v1_a = v1_flug_muendung / v1_ballistic_muendung v1_a_mean = np.mean(v1_a) v1_a_sem = stats.sem(v1_a) v1_df['a'] = v1_a v1_df['v_flug_muendung'] = v1_flug_muendung v1_df['v_ballistic_muendung'] = v1_ballistic_muendung v1_mean = v1_df.mean() ax = v1_df.plot(kind='scatter', x='measurement', y='v_flug_muendung', label='$v_{0,F}$') plt.scatter(v1_df['measurement'], v1_df['v_ballistic_muendung'], label='$v_{0,B}$', color='red', axes=ax) plt.axhline(y=v1_mean['v_flug_muendung'], axes=ax, color='blue', label='Mittelwert von $v_F$') plt.axhline(y=v1_mean['v_ballistic_muendung'], axes=ax, color='red', label='Mittelwert von $v_B$') plt.ylabel('$v_0 [\\frac{m}{s}]$') plt.xlabel('Messung') plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:laufzeiten_luft_v_balllistisch_mean_muendung', caption='Die Geschwindigkeiten errechnet mit der Flugzeit- und der ballistischen Methode an Mündung im Vergleich.') figure.show() # Evaluate Data # Calculate inertia v2_d = np.array([92e-3, 91e-3]) v2_m = np.array([np.mean([15.86, 15.88])*1e-3, np.mean([42.03, 42.13])*1e-3]) # Inertia v2_J = v2_m * v2_d**2 v2_J3 = 7.4e-5 v2_J3_u = 0.1e-5 # Read Data v2_df = pd.read_csv('data/drehstoss.csv') v2_df['omega'] = math.pi / v2_df['T_2'] v2_df['v_drehstoss'] = v2_df['omega'] * ((v2_J[v2_df['m']] * 2 + v2_J3) / (v2_d[v2_df['m']] * v1_m) + v2_d[v2_df['m']]) v2_df['v_flug'] = v1_s / v2_df['t'] v2_mean = v2_df.mean() ax = v2_df.plot(kind='scatter', x='measurement', y='v_drehstoss', label='$v_{D,k}$') plt.scatter(v2_df['measurement'], v2_df['v_flug'], label='$v_{F}$', color='red', axes=ax) plt.axhline(y=v2_mean['v_drehstoss'], axes=ax, color='blue', label='Mittelwert von $v_F$') plt.axhline(y=v2_mean['v_flug'], axes=ax, color='red', label='Mittelwert von $v_D$') plt.ylabel('$v [\\frac{m}{s}]$') plt.xlabel('Messung') plt.ylim([150, 160]) plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:v_luft_v_drehstoss', caption='Die Geschwindigkeiten errechnet mit der Flugzeit- und der Drehstossmethode mit je fünf Messungen beider Gewichten im Vergleich.') figure.show() # Luftwiderstandskorrektur single and mean calculation v2_mean = v2_df.mean() v2_sem = v2_df.sem() v2_df['v_flug_muendung'] = pd.Series(list(map(partial(air_resistance, v1_s / 2), v2_df['v_flug']))) v2_df['v_drehstoss_muendung'] = pd.Series(list(map(partial(air_resistance, v1_sb1), v2_df['v_drehstoss']))) v2_df['a'] = v2_df['v_flug_muendung'] / v2_df['v_drehstoss_muendung'] v2_mean = v2_df.mean() ax = v2_df.plot(kind='scatter', x='measurement', y='v_flug_muendung', label='$v_{0,F}$') plt.scatter(v2_df['measurement'], v2_df['v_drehstoss_muendung'], label='$v_{0,D}$', color='red', axes=ax) plt.axhline(y=v2_mean['v_flug_muendung'], axes=ax, color='blue', label='Mittelwert von $v_F$') plt.axhline(y=v2_mean['v_drehstoss_muendung'], axes=ax, color='red', label='Mittelwert von $v_D$') plt.ylabel('$v_0 [\\frac{m}{s}]$') plt.xlabel('Messung') plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:laufzeiten_luft_v_drehstoss_mean', caption='Die Geschwindigkeiten errechnet mit der Flugzeit- und der Drehstossmethode an Mündung im Vergleich.') figure.show() # Plot different methods with sem v1_mean = v1_df.mean() v1_sem = v1_df.sem() v1_flug_muendung_mean = air_resistance(v1_s / 2, v1_mean['v_flug']) v1_flug_muendung_sem = air_resistance(v1_s / 2, v1_sem['v_flug']) v1_ballistic_muendung_mean = air_resistance(v1_sb1, v1_mean['v_ballistic']) v1_ballistic_muendung_sem = air_resistance(v1_sb1, v1_sem['v_ballistic']) x = [1, 4, 7, 10] y = [ v1_mean['v_flug'], v1_mean['v_ballistic'], v1_flug_muendung_mean, v1_ballistic_muendung_mean ] e = [ v1_sem['v_flug'], v1_sem['v_ballistic'], v1_flug_muendung_sem, v1_ballistic_muendung_sem ] labels = ['$v_F$', '$v_B$', '$v_{0,F}$', '$v_{0,B}$'] fig = plt.figure() plt.errorbar(x, y, yerr=e, fmt='o') plt.xlim([0, 11]) #plt.ylim([150, 160]) plt.xticks(x, labels, rotation='35') plt.ylabel('$v_0 [\\frac{m}{s}]$') plt.text(0.01, 0.7, '''$v_F $: Flugzeitmethode $v_B $: Ballistische Methode $v_{0,F}$: Mündungsgeschwindigkeit Flugzeitmethode $v_{0,B}$: Mündungsgeschwindigkeit ballistische Methode''' , transform = ax.transAxes, backgroundcolor='white', va='bottom') plt.close(fig) figure = PrettyFigure(fig, label='fig:laufzeiten_luft_v_balllistisch', caption='Die mittleren Geschwindigkeiten der ballistischen und Flugzeitmethode im Vergleich mit ihren respektiven mittleren Mündungsgeschwindigkeiten.') figure.show() # Calculate systematic error v1_T_u = 3e-2 v1_x_u = 5e-3 v1_l_u = 5e-3 v1_mean = v1_df.mean() v1_sem = v1_df.sem() v1_k1 = v1_g / (2 * math.pi) * (v1_M + v1_m) / v1_m * v1_mean['x'] / v1_l v1_b1 = 1 - 3 / 8 * (v1_mean['x'] / v1_l)**2 v1_k2 = v1_g / (2 * math.pi) * (v1_M + v1_m) / v1_m * v1_T / v1_l v1_b2 = 1 - 9 / 8 * (v1_mean['x'] / v1_l)**2 v1_k3 = v1_g / (2 * math.pi) * (v1_M + v1_m) / v1_m * v1_T * v1_mean['x'] / v1_l**2 v1_b3 = -1 + 9 / 8 * (v1_mean['x'] / v1_l)**2 v1_systematic_error = math.sqrt((v1_k1 * v1_b1 * v1_T_u)**2 + (v1_k2 * v1_b2 * v1_x_u)**2 + (v1_k3 * v1_b3 * v1_l_u)**2) # Plot different methods with sem x = [1, 4] y = [ v1_mean['v_flug'], v1_mean['v_ballistic'] ] e = [ v1_sem['v_flug'], v1_systematic_error ] labels = ['$v_F$', '$v_B$'] fig = plt.figure() plt.errorbar(x, y, yerr=e, fmt='o') plt.xlim([0, 5]) #plt.ylim([150, 160]) plt.xticks(x, labels, rotation='35') plt.ylabel('$v_0 [\\frac{m}{s}]$') plt.text(-0.026, 0.76, '''$v_F $: Flugzeitmethode $v_B $: Ballistische Methode''' , transform = ax.transAxes, backgroundcolor='white', va='bottom') plt.close(fig) figure = PrettyFigure(fig, label='fig:laufzeiten_luft_v_balllistisch_systematischer_fehler', caption='Die systematischen Fehler der mittleren Geschwindigkeiten der ballistischen und Flugzeitmethode im Vergleich.') figure.show() # Plot different methods with sem v2_mean = v2_df.mean() v2_sem = v2_df.sem() v2_flug_muendung_mean = air_resistance(v1_s / 2, v2_mean['v_flug']) v2_flug_muendung_sem = air_resistance(v1_s / 2, v2_sem['v_flug']) v2_drehstoss_muendung_mean = air_resistance(v1_sb2, v2_mean['v_drehstoss']) v2_drehstoss_muendung_sem = air_resistance(v1_sb2, v2_sem['v_drehstoss']) x = [1, 4, 7, 10] y = [ v2_mean['v_flug'], v2_mean['v_drehstoss'], v2_flug_muendung_mean, v2_drehstoss_muendung_mean ] e = [ v2_sem['v_flug'], v2_sem['v_drehstoss'], v2_flug_muendung_sem, v2_drehstoss_muendung_sem ] labels = ['$v_F$', '$v_D$', '$v_{0,F}$', '$v_{0,D}$'] fig = plt.figure() plt.errorbar(x, y, yerr=e, fmt='o') plt.xlim([0, 11]) plt.ylim([150, 160]) plt.xticks(x, labels, rotation='35') plt.ylabel('$v_0 [\\frac{m}{s}]$') plt.text(-0.026, 0.7, '''$v_F $: Flugzeitmethode $v_D $: Drehstossmethode $v_{0,F}$: Mündungsgeschwindigkeit Flugzeitmethode $v_{0,D}$: Mündungsgeschwindigkeit Drehstossmethode''' , transform = ax.transAxes, backgroundcolor='white', va='bottom') plt.close(fig) figure = PrettyFigure(fig, label='fig:laufzeiten_luft_v_drehstoss', caption='Die mittleren Geschwindigkeiten der Drehstoss- und Flugzeitmethode im Vergleich mit ihren respektiven mittleren Mündungsgeschwindigkeiten.') figure.show() # Calculate systematic error v2_d_u = 0.5e-3 v2_T_u = 5e-3 v2_mean = v2_df.mean() v2_sem = v2_df.sem() v2_k1 = -math.pi / v2_mean['T_2']**2 * ((v2_J[0] * 2 + v2_J3) / v1_m / v2_d[0] + v2_d[0]) v2_k2 = math.pi / v2_mean['T_2'] * (1 - (v2_J[0] * 2 + v2_J3) / v1_m / v2_d[0]**2) v2_systematic_error = math.sqrt((v2_k1 * v2_d_u)**2 + (v2_k1 * v2_T_u)**2) # Plot different methods with sem x = [1, 4] y = [ v2_mean['v_flug'], v2_mean['v_drehstoss'] ] e = [ v2_sem['v_flug'], v2_systematic_error ] labels = ['$v_F$', '$v_D$'] fig = plt.figure() plt.errorbar(x, y, yerr=e, fmt='o') plt.xlim([0, 5]) #plt.ylim([150, 160]) plt.xticks(x, labels, rotation='35') plt.ylabel('$v_0 [\\frac{m}{s}]$') plt.text(0.01, 0.76, '''$v_F $: Flugzeitmethode $v_D $: Drehstossmethode''' , transform = ax.transAxes, backgroundcolor='white', va='bottom') plt.close(fig) figure = PrettyFigure(fig, label='fig:laufzeiten_luft_v_drehstoss_systematischer_fehler', caption='Die systematischen Fehler der mittleren Geschwindigkeiten der Drehstoss- und Flugzeitmethode im Vergleich.') figure.show() # Plot different methods with sem v1_mean = v1_df.mean()['v_flug_muendung'] v1_sem = v1_df.sem()['v_flug_muendung'] v1_std = v1_df.std()['v_flug_muendung'] ax = v1_df.plot(kind='scatter', x='measurement', y='v_flug_muendung', label='errechnete Geschwindigkeit an der Mündung') plt.axhline(y=v1_mean, axes=ax, color='red', label='Mittelwert') plt.axhline(y=v1_mean+v1_sem, axes=ax, color='green', label='Mittelwert ± Fehler') plt.axhline(y=v1_mean-v1_sem, axes=ax, color='green') plt.axhline(y=v1_mean+v1_std, axes=ax, color='purple', label='Mittelwert ± Standardabweichung') plt.axhline(y=v1_mean-v1_std, axes=ax, color='purple') plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.xlabel('Messung') plt.ylabel('$v_{0,F} [\\frac{m}{s}]$') plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:laufzeiten_luft_muendung', caption='Die Mündungsgeschwindigkeiten errechnet mit der Flugzeitmethode. Dazu ihr Mittelwert und der Bereich der Standardabweichung.') figure.show() # Show results import math from IPython.display import ( display, display_html, display_png, display_svg ) class PrettyTable(list): Overridden list class which takes a 2-dimensional list of the form [[1,2,3],[4,5,6]], and renders HTML and LaTeX Table in IPython Notebook. For LaTeX export two styles can be chosen. def __init__(self, initlist=[], label=None, caption='Description missing', extra_header=None, entries_per_column=100, significant_digits=4, print_latex_longtable=True): self.print_latex_longtable = print_latex_longtable self.entries_per_column = entries_per_column self.significant_digits = significant_digits self.caption = caption self.label = label if extra_header is not None: extra_header = [e.replace('%', '\\%') for e in extra_header] if len(initlist[0]) != len(extra_header): raise ValueError("Header list must have same length as data has columns.") initlist = [extra_header]+list(initlist) super(PrettyTable, self).__init__(initlist) def latex_table_tabular(self): latex = ["\\begin{tabular}"] latex.append("{"+"|".join((["l"]*len(self[0])))+"}\n") for row in self: latex.append(" & ".join(map(format, row))) latex.append("\\\\ \n") latex.append("\\end{tabular}") return ''.join(latex) def latex_longtable(self): latex = ["\\begin{longtable}[H]{@{}"] l = len(self) - 1 li = len(self[0]) latex.append("l" * (li * math.ceil(l / self.entries_per_column))) latex.append("@{}}\n") latex.append("\\toprule\\addlinespace\n") line = (" & ".join(map(format, self[0]))) latex.append((line + " & ") * (math.ceil(l / self.entries_per_column) - 1)) latex.append(line) latex.append("\\\\\\addlinespace \n") latex.append("\\midrule\\endhead\n") rows = [] rows_done = 0 for row in self[1:]: if rows_done < self.entries_per_column: if isinstance(row, str): rows.append(" & ".join(row)) elif isinstance(row, float): rows.append(" & ".join(map(('{0:.' + str(self.significant_digits) + 'f}').format, row))) else: rows.append(" & ".join(map(str, row))) rows.append("\\\\\\addlinespace \n") else: rows[(rows_done % self.entries_per_column) * 2] += " & " + " & ".join(map(('{0:.' + str(self.significant_digits) + 'f}').format, row)) rows_done += 1 latex.extend(rows) latex.append('\\\\\\bottomrule\\caption{%s}\\\\\\label{%s}' % (self.caption, self.label)) latex.append("\n \\end{longtable}") return ''.join(latex).replace('%','\\%') def _repr_html_(self): html = ["<table style=\"margin:auto;\">"] for row in self: html.append("<tr>") for col in row: html.append("<td>{0}</td>".format(col)) html.append("</tr>") html.append("</table>") html.append('<p style="text-align:center">{0}</p>'.format(self.caption)) return ''.join(html) def _repr_latex_(self): if self.print_latex_longtable: return self.latex_longtable() else: return self.latex_table_tabular() def show(self): display(self) v1_mean = v1_df.mean() v1_sem = v1_df.sem() v1_std = v1_df.std() values = [ 'mit Flugzeitmethode $v_{F}$', 'an der Mündung mit Flugzeitmethode $v_{0,F}$', 'mit ballistischer Methode $v_{B}$', 'an der Mündung mit ballistischer Methode $v_{0,B}$', ] means = [ '{0:.2f}'.format(v1_mean['v_flug']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v1_mean['v_flug_muendung']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v1_mean['v_ballistic']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v1_mean['v_ballistic_muendung']) + r'$\frac{m}{s}$' ] sem = [ '{0:.2f}'.format(v1_sem['v_flug_muendung']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v1_sem['v_flug']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v1_sem['v_ballistic']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v1_sem['v_ballistic_muendung']) + r'$\frac{m}{s}$' ] syst = [ r'$\footnotetext[1]{Fehler nicht relevanter Grösse und deshalb weggelassen.}$', r'$\footnotemark[1]$', '{0:.2f}'.format(v1_systematic_error) + r'$\frac{m}{s}$', r'$\footnotetext[2]{Fehler wurde der Einfachheit halber auf Absprache mit dem Dozenten weggelassen.}$' ] rel = [ '{0:.2f}'.format(v1_sem['v_flug'] / v1_mean['v_flug'] * 100) + '%', '{0:.2f}'.format(v1_sem['v_flug_muendung'] / v1_mean['v_flug_muendung'] * 100) + '%', '{0:.2f}'.format(v1_systematic_error / v1_mean['v_ballistic'] * 100) + '%', r'$\footnotemark[2]$' ] v1_results_tbl = PrettyTable(list(zip(values, means, sem, syst, rel)), label='tab:resultat_ballistisch', caption='Resultate aus dem Versuch der Ballistischen Methode.', extra_header=[ 'Projektilgeschwindigkeit', 'Wert', 'stat. Fehler', 'syst. Fehler', 'Relativer Fehler' ], entries_per_column=4) v1_results_tbl.show() # Plot of a ax = v1_df.plot(kind='scatter', x='measurement', y='a', label='errechnetes Verhältnis $a_i = V_{F,i}/V_{B,i}$') plt.axhline(y=v1_a_mean, axes=ax, label='Mittelwert des Verhältnisses a', color='green') plt.axhline(y=1, axes=ax, label='Erwarteter Wert 1', color='purple') plt.xlabel('Messung') plt.ylabel('a') plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:laufzeiten_luft_v_balllistisch_mean_ratio', caption='Die mittleren Geschwindigkeiten errechnet mit der Flugzeit- und der ballistischen Methode an Mündung im Verhältnis dargestellt und ihr erwarteter Wert von 1 zum Vergleich.') figure.show() # Show results v2_mean = v2_df.mean() v2_sem = v2_df.sem() v2_std = v2_df.std() values = [ 'mit Flugzeitmethode $v_{F}$', 'an der Mündung mit Flugzeitmethode $v_{0,F}$', 'mit Drehstossmethode $v_{B}$', 'an der Mündung mit Drehstossmethode $v_{0,B}$', ] means = [ '{0:.2f}'.format(v2_mean['v_flug']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v2_mean['v_flug_muendung']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v2_mean['v_drehstoss']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v2_mean['v_drehstoss_muendung']) + r'$\frac{m}{s}$' ] sem = [ '{0:.2f}'.format(v2_sem['v_flug_muendung']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v2_sem['v_flug']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v2_sem['v_drehstoss']) + r'$\frac{m}{s}$', '{0:.2f}'.format(v2_sem['v_drehstoss_muendung']) + r'$\frac{m}{s}$' ] syst = [ r'$\footnotemark[1]$', r'$\footnotemark[1]$', '{0:.2f}'.format(v2_systematic_error) + r'$\frac{m}{s}$', r'$\footnotemark[2]$' ] rel = [ '{0:.2f}'.format(v2_sem['v_flug'] / v2_mean['v_flug'] * 100) + '%', '{0:.2f}'.format(v2_sem['v_flug_muendung'] / v2_mean['v_flug_muendung'] * 100) + '%', '{0:.2f}'.format(v2_systematic_error / v2_mean['v_drehstoss'] * 100) + '%', r'$\footnotemark[2]$' ] v2_results_tbl = PrettyTable(list(zip(values, means, sem, syst, rel)), label='tab:resultat_drehstoss', caption='Resultate aus dem Versuch der Drehstossmethode.', extra_header=[ 'Projektilgeschwindigkeit', 'Wert', 'stat. Fehler', 'syst. Fehler', 'Relativer Fehler' ], entries_per_column=4) v2_results_tbl.show() # Plot ratio a ax = v2_df.plot(kind='scatter', x='measurement', y='a', label='errechnetes Verhältnis $a_i = V_{F,i}/V_{D,i}$') plt.axhline(y=v2_mean['a'], axes=ax, label='Mittelwert des Verhältnisses a', color='green') plt.axhline(y=1, axes=ax, label='Erwarteter Wert 1', color='purple') plt.xlabel('Messung') plt.legend(bbox_to_anchor=(0.02, 0.98), loc=2, borderaxespad=0.2) plt.close(ax.figure) figure = PrettyFigure(ax.figure, label='fig:laufzeiten_luft_v_drehstoss_mean_ratio', caption='Die mittleren Geschwindigkeiten errechnet mit der Flugzeit- und der Drehstossmethode an Mündung im Verhältnis dargestellt und ihr erwarteter Wert von 1 zum Vergleich.') figure.show() for n in range(10): df = pd.read_csv('data/ballistsisch_{}.csv'.format(n)) data = PrettyTable(list(zip(df['measurement'], df['x'])), caption='Schuss {0}'.format(n + 1), entries_per_column=5, extra_header=['Messung [1]', 'Ausschlag [m]']) data.show() data = PrettyTable(list(zip(v1_df['measurement'], v1_df['t'])), caption='Laufzeiten der einzelnen Schüsse.', entries_per_column=10, extra_header=['Messung [1]', 'Laufzeit [s]']) data.show() v2_df['real_m'] = v2_m[v2_df['m']] data = PrettyTable(list(zip(v2_df['measurement'], v2_df['t'], v2_df['T_2'], v2_df['real_m'])), caption='Messwerte der Drehstossmethode.', entries_per_column=10, extra_header=['Messung [1]', 'Laufzeit [s]', 'Halbe Periode [s]', 'Masse eines Hantelstücks [kg]']) data.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Verify CSV files exist Step2: Create Keras model Step5: Lab Task #2 Step7: Lab Task #3 Step9: Lab Task #4 Step11: Lab Task #5 Step13: Lab Task #6 Step15: Lab Task #7 Step16: We can visualize the DNN using the Keras plot_model utility. Step17: Run and evaluate model Step18: Visualize loss curve Step19: Save the model
<ASSISTANT_TASK:> Python Code: import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) %%bash ls *.csv %%bash head -5 *.csv # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = [""] # TODO: Add string name for label column LABEL_COLUMN = "" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [] def features_and_labels(row_data): Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset() # TODO: Map dataset to features and label dataset = dataset.map() # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset def create_input_layers(): Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = {} return inputs def create_feature_columns(): Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. # TODO: Create feature columns for numeric features feature_columns = {} # TODO: Add feature columns for categorical features return feature_columns def get_model_outputs(inputs): Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN # TODO: Create final output layer return output def rmse(y_true, y_pred): Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. # TODO: Calculate RMSE from true and predicted labels pass # Build a simple Keras DNN using its Functional API def build_dnn_model(): Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values() )(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=["mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR" ) TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 5 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 10000 # TODO: Load training dataset trainds = load_dataset() # TODO: Load evaluation dataset evalds = load_dataset().take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1 ) # TODO: Fit model on training dataset and evaluate every so often history = model.fit() # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "rmse"]): ax = fig.add_subplot(nrows, ncols, idx + 1) plt.plot(history.history[key]) plt.plot(history.history[f"val_{key}"]) plt.title(f"model {key}") plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S") ) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH ) # with default serving function print(f"Exported trained model to {EXPORT_PATH}") !ls $EXPORT_PATH <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The CSR representation can be very efficient for computations, but it is not as good for adding elements. Step2: Often, once an LIL matrix is created, it is useful to convert it to a CSR format Step3: There are several other sparse formats that can be useful for various problems Step4: COO - Coordinate Sparse Matrix
<ASSISTANT_TASK:> Python Code: import numpy as np # Create a random array with a lot of zeros X = np.random.random((10, 5)) print(X) X[X < 0.7] = 0 # note: fancy indexing print(X) from scipy import sparse # turn X into a csr (Compressed-Sparse-Row) matrix X_csr = sparse.csr_matrix(X) print(X_csr) # convert the sparse matrix to a dense array print(X_csr.toarray()) # Sparse matrices support linear algebra: y = np.random.random(X_csr.shape[1]) z1 = X_csr.dot(y) z2 = X.dot(y) np.allclose(z1, z2) # Create an empty LIL matrix and add some items X_lil = sparse.lil_matrix((5, 5)) for i, j in np.random.randint(0, 5, (15, 2)): X_lil[i, j] = i + j print(X_lil) print(X_lil.toarray()) X_csr = X_lil.tocsr() print(X_csr) from scipy.sparse import bsr_matrix indptr = np.array([0, 2, 3, 6]) indices = np.array([0, 2, 2, 0, 1, 2]) data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2) bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray() from scipy.sparse import dok_matrix S = dok_matrix((5, 5), dtype=np.float32) for i in range(5): for j in range(i, 5): S[i,j] = i+j S.toarray() <END_TASK>