text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now let's try applying a weighting in the frequency domain that doesn't change the TD variance.
<ASSISTANT_TASK:> Python Code: invasd = sqrt(2./srate)/sqrt(shaped_psd1) invasd[0] = 0. whitener = sig.hann(seglen*srate)*roll(irfft(invasd), seglen*srate/2) wtest = TimeSeries(sig.convolve(shaped_noise2, whitener, mode='same')[8*srate:-8*srate], sample_rate=srate) p1 = wtest.psd(seglen).plot() mean(wtest.psd(seglen)) / (2./srate) mean(wtest**2) filt1 = sig.firwin2(seglen*srate, [0.,0.25,0.5,0.75,1.], [0.,0.5,1.,0.5,0.], window='hann') filt1 /= sqrt(sum(filt1**2)) weight_test1 = TimeSeries(sig.convolve(noise, filt1, mode='same')[8*srate:-8*srate], sample_rate=srate) var(weight_test1) filt2 = gen_filter.copy() filt2 /= sqrt(sum(filt2**2)) weight_test2 = TimeSeries(sig.convolve(noise, filt2, mode='same')[8*srate:-8*srate], sample_rate=srate) var(weight_test2) filt12 = sig.hann(seglen*srate)*roll(irfft(abs(rfft(filt1)*rfft(filt2))), seglen*srate/2) weight_test12 = TimeSeries(sig.convolve(noise, filt12, mode='same')[8*srate:-8*srate], sample_rate=srate) plt.plot(freqs, abs(rfft(filt1)*rfft(filt2))) plt.plot(filt12) sum(filt1**2) sum(abs(rfft(filt1))**2)/(seglen*srate/2.) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Pandas Step2: <hr> Step3: <hr> Step4: Keyboard Shortcuts Step5: В IPython встроенны несколько полезных magic commands, одна из них %time позволяет измерить время выполнения вашего кода. Step6: %timeit (%% - multiline) выдает усредненное значение, выполнив в цикле наш код. Step7: Также Jupyter позволяет запустить команды системного шелла Step8: Выполним созданный файл
<ASSISTANT_TASK:> Python Code: from IPython.display import IFrame IFrame('http://jupyter.org/', width='100%', height=350) from IPython.display import IFrame IFrame('http://i.giphy.com/12Y8uwQsnpizCw.gif', width='100%', height=350) from IPython.display import IFrame IFrame('http://pandas.pydata.org/', width='100%', height=350) from IPython.display import IFrame IFrame('http://scikit-learn.org/', width='100%', height=350) print('hello') list(range(10)) list? %time _ = [i for i in range(1000)] %%timeit _ = list(range(200)) ! echo "print('wasup!')" > my.py ! ls %run my.py <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will start by node label prediction. Download this network. It contains protein communications in Baker’s yeast. Each node (protein) has a special binary attribute ICSC (intracellular signaling cascade). Step2: It might not be clear from the picture above but the level of homogeneity is quite high. For each node we are able to compute the average value of label Step3: Iterative Classification Method Step4: Label Propagation Step5: Link Prediction - Scoring functions Step6: Shortest Path Length Step7: Number of common neighbours Step8: Jaccard Score Step9: Adamic/Adar Score Step10: Preferential Attachment score Step11: Katz Score Step12: Let's compare the scores behavious for pairs of nodes with or without edge in-between
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import scipy as sp import networkx as nx %matplotlib inline g = nx.read_gml('./data/ppi.CC.gml.txt') cc = list(nx.connected_components(g)) g = nx.subgraph(g,cc[0]) g = nx.relabel.convert_node_labels_to_integers(g) labels = np.array(nx.get_node_attributes(g, 'ICSC').values(), dtype=float) nx.draw_spring(g, node_color = labels) nnICSC = np.asarray(map(lambda(v): np.mean(labels[g.neighbors(v)]), g.nodes_iter())) nnICSC plt.figure(figsize=(10,5)) plt.hist(nnICSC[np.where(labels == 1)], bins=6,) lablNN = labels[:] idx = np.random.randint(0,len(lablNN), size=40) lablNN[idx] = np.nan # Your code here ## Get the adjacency matrix A = nx.adjacency_matrix( g ) ## Find the unclassified nodes unlabelled = np.isnan( lablNN ) ## Slice the adjacency matrix # B = A[unlabelled].tocsc()[:,~unlabelled].tocsr() B = A.tocsc()[:,~unlabelled].tocsr() ## Compute the mean label of the labelled neighbours of each unlabelled node. new_labels = B.dot( lablNN[~unlabelled] ) / B.sum( axis = 1 ).getA1( ) ## Update the labels lablNN[unlabelled] = new_labels[unlabelled] # It is better to initialize like that fixedLabels = labels[:]+1 curLabels = labels[:]+1 # And indicate labeled nodes instead of unlabeled idxLabeled = np.zeros((g.number_of_nodes(),), dtype=bool) idxLabeled[np.random.randint(0,len(labels), size=90)] = True curLabels[~idxLabeled] = 0 A = nx.adj_matrix( g ) D = sp.sparse.diags( 1.0 / A.sum( axis = 1 ).getA1( ), offsets = 0 ) P = D.dot( A ) def LabelPropagation(G, idxLabeled, curLabels, fixedLabels, iters = 1000): A = nx.adj_matrix( g ) D = sp.sparse.diags( 1.0 / A.sum( axis = 1 ).getA1( ), offsets = 0 ) P = D.dot( A ) # Your code here return np.round(resultLabels) g = nx.read_gml('./data/fblog.gml.txt') vNum = g.number_of_nodes() def matrixPlot(A): plt.figure(1, figsize=(6, 6)) plt.imshow(A, interpolation="none" ) # Your code here spath = nx.floyd_warshall_numpy( g ) matrixPlot( spath ) # Your code here A = nx.adjacency_matrix( g ) common_neighbour = A.dot( A ).todense() matrixPlot( common_neighbour ) # Your code here jaccard_score = np.asarray( [ ( len( np.intersect1d( g[v].keys(), g[u].keys() ) ) + 0.0 ) / len( np.union1d( g[v].keys(), g[u].keys() ) ) for v in g.nodes_iter( ) for u in g.nodes_iter( ) ], dtype = np.float ).reshape( 2*[g.number_of_nodes()] ) matrixPlot( jaccard_score ) # Your code here adar_score = np.asarray( [ np.sum( [ 1.0 / np.log( len( g[w].keys() ) ) for w in np.intersect1d( g[v].keys(), g[u].keys() ) ] ) for v in g.nodes_iter( ) for u in g.nodes_iter( ) ], dtype = np.float ).reshape( 2*[g.number_of_nodes()] ) matrixPlot( adar_score ) # Your code here pref_score = np.asarray( [ len( g[v].keys() ) * len( g[u].keys() ) for v in g.nodes_iter( ) for u in g.nodes_iter( ) ], dtype = np.float ).reshape( 2*[g.number_of_nodes()] ) matrixPlot( pref_score ) # Your code here A = nx.adjacency_matrix( g ).tocsc() beta = 0.5 I = sp.sparse.eye(*A.shape) katzScore = ( sp.sparse.linalg.inv( I - beta * A ) - I ).todense() matrixPlot( katzScore ) A = np.asarray(nx.adj_matrix(g).todense()) xyTriu = np.vstack(np.triu_indices_from(A, k=1)).T wEdge = [katzScore[xy[0],xy[1]] for xy in xyTriu if A[xy[0],xy[1]]] woEdge = [katzScore[xy[0],xy[1]] for xy in xyTriu if ~A[xy[0],xy[1]]] data = [wEdge, woEdge] fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(10,5)) axes.violinplot(data, showmeans=True) axes.set_xticklabels(['', 'With Edges', '', 'W/o Edges']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: Dataset Parameters Step3: Here we see that there are three wavelengths Parameters, with the wavelengths@primary being filled with the input array (since we didn't override the components or manually pass a dictionary). Because of this, the flux_densities and sigmas are only visible for the binary component as well. (If we were to fill either of the two other arrays, the corresponding Parameters would become visible as well). We can see, however, that there is an entry for flux_densities and sigmas for each of the times we passed. Step4: For information on the passband-dependent parameters, see the section on the lc dataset (these are used only to compute fluxes when rv_method=='flux-weighted') Step5: flux_densities Step6: sigmas Step7: profile_func Step8: profile_rest Step9: profile_sv Step10: Synthetics Step11: The model for a line profile dataset will expose flux-densities at each time and for each component where the corresponding wavelengths Parameter was not empty. Here since we used the default and exposed line-profiles for the entire system, we have a single entry per-time. Step12: Plotting Step13: Mesh Fields
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.1,<2.2" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b.add_dataset('lp', times=[0,1,2], wavelengths=np.linspace(549, 551, 101)) print b.filter(kind='lp') print b.filter(kind='lp_dep') print b.filter('wavelengths') print b.get_parameter('wavelengths', component='binary') print b.filter('flux_densities') print b.get_parameter('flux_densities', time=0) print b.filter('sigmas') print b.get_parameter('sigmas', time=0) print b.get_parameter('profile_func') print b.get_parameter('profile_rest') print b.get_parameter('profile_sv') b.run_compute(irrad_method='none') b['lp@model'].twigs print b.filter('flux_densities', context='model') print b.get_parameter('flux_densities', context='model', time=0) afig, mplfig = b.filter(dataset='lp01', context='model', time=0).plot(show=True) b.add_dataset('mesh', times=[0], dataset='mesh01') print b['columns'].choices <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: PT3S Step2: Install PT3S to site-packages Step3: Logging Step5: about from PT3S ... import ... and pip install -e . Step6: ggf. Tests Step7: Singeltests Step8: reiner MockUp-Lauf Step9: ### Singletest basierend auf diesem reinem MockUp-Lauf Step10: ### weitere Beispiele für Singletests Step11: Beispiel Step12: Beispiel Step13: Modell und Ergebnisse laden und nutzen Step14: Modell Step15: Ergebnisse Step16: Non-Vector Step17: Vector Step18: Vector Step19: Modell und Ergebnis "synchronisieren" Step20: Modellsichten um Ergebnisse "ergänzen" Step21: Vektorergebnisse Step22: Rohrvektorergebnisse Step23: Schnitte Step24: Store in H5 Step25: Rm Plot Beispiele Step26: Bsp1 Step27: Bsp2 Step28: Bsp3 Step29: NetworkX Beispiele Step30: Die Laplace-Matrix ist definiert als L Step31: Clean Up Step32: regelungstechnisches Signalmodell Step33: Dashboard Beispiele Step34: TimeCurve Data Step35: ausgewählter Zeitbereich Step36: Fwes W Step37: Pump Q Step38: Pump Ny Step39: Pump Nw Step40: Pump Nyw-Pairs Step41: Leckagen Step42: DH Step43: für Darstellungen, die mit 1 Zeit bzw. mit Aggregaten 1 Zeitraums arbeiten Step44: Farben für Längsschnitte Step45: Farben für Zeitkurven Step46: Festlegung der Farben Step47: Plot Step48: Abschlussarbeiten Step49: Develop (use local PT3S under Development)
<ASSISTANT_TASK:> Python Code: import doctest >>> from platform import python_version >>> print(python_version()) 3.8.8 doctest.testmod() ### ggf. Rechte erforderlich: ### entweder in PowerShell: Start-Process powershell -Verb runAs ### oder RechteMausTaste WindowsSymbol: Windows PowerShell (Administrator) ### dann (ohne ! in PowerShell auf pip-Verz.): #!pip uninstall --yes PT3S #!pip install PT3S --no-cache-dir import logging import os logger = logging.getLogger('PT3S') logFileName= r"PT3S.log" loglevel = logging.DEBUG logging.basicConfig(filename=logFileName ,filemode='w' ,level=loglevel ,format="%(asctime)s ; %(name)-60s ; %(levelname)-7s ; %(message)s") fileHandler = logging.FileHandler(logFileName) logger.addHandler(fileHandler) consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logging.Formatter("%(levelname)-7s ; %(message)s")) consoleHandler.setLevel(logging.INFO) logger.addHandler(consoleHandler) #%pwd # works only if pip install -e .is NOT active: ###from PT3S import Mx,Xm,Rm # or if subdir is PT3S #%cd -q .. # ... #%cd -q PT3S # if pip install -e .IS active # the local modules can be imported with: #from PT3S import Mx, Xm, Rm # if %pwd is local devdir import doctest >>> import pandas as pd >>> pd.__version__ '1.2.4' doctest.testmod() %run test.py -l -q -m 1 -t both \ -w OneLPipe -w LocalHeatingNetwork -w GPipe -w GPipes -w TinyWDN # mit SIR 3S Daten (Modelle + Ergebnisse) aus Version 11 %run test.py -l -q -m 1 -t both \ -w OneLPipe -w LocalHeatingNetwork -w GPipe -w GPipes -w TinyWDN \ --testDir testdata11 # mit SIR 3S Daten (Modelle + Ergebnisse) aus Version 10 %run test.py -l -q -m 1 -t both \ -w OneLPipe -w LocalHeatingNetwork -w GPipe -w GPipes -w TinyWDN \ --testDir testdata10 # mit SIR 3S Daten (Modelle + Ergebnisse) aus Version 09 %run test.py -l -q -m 1 -t both \ -w OneLPipe -w LocalHeatingNetwork -w GPipe -w GPipes -w TinyWDN \ --testDir testdata09 --dotResolution NONE %run test.py -l -q -m 0 \ -s Xm\. \ -x Xm\.vKNOTexpEBES \ -x Xm\.vROHRexpEBES \ -x Xm\._vRUES -x Xm\._vRSLW -x Xm\._vRSTN -x Xm\._vRXXX -x Xm\._vREdges \ -x Xm\.MxAdd \ -t both -y yes -z no \ -w OneLPipe -w LocalHeatingNetwork -w GPipe -w GPipes -w TinyWDN %run test.py -l -q -m 0 \ -s Mx\. \ -x Mx\.FromH5 \ -x Mx\.ToH5 \ -t both -y yes -z no \ -w OneLPipe -w LocalHeatingNetwork -w GPipe -w GPipes -w TinyWDN # test_reinerMockUpLauf %run test.py -l -v -m 0 -t before \ -u yes \ -y yes -z yes \ -w DHNetwork -w LocalHeatingNetwork -w GPipes %run test.py -l -q -m 0 \ -s Xm\._vRUES -s Xm\._vRSLW -s Xm\._vRSTN -s Xm\._vRXXX -s Xm\._vREdges \ -y no -z no \ -w DHNetwork -w LocalHeatingNetwork -w GPipes %run test.py -l -q -m 0 \ -s Xm\.MxAdd \ -y no -z no \ -w DHNetwork -w LocalHeatingNetwork -w GPipes %run test.py -l -q -m 0 \ -s Xm\.vKNOTexpEBES \ -y no -z no \ -w DHNetwork %run test.py -l -q -m 0 \ -s Xm\.vROHRexpEBES \ -y no -z no \ -w DHNetwork %run Mx.py -l -q -m 0 -s getMicrosecondsFromRefTime %run Xm.py -l -q -m 0 -s Xm\.constructShortestPathFromNodeList -t both -y yes -z no -w GPipes -w LocalHeatingNetwork %run Rm.py -l -q -m 0 \ -s pltMakeCategoricalColors \ -s pltMakeCategoricalCmap \ -s Rm\. \ -y no -z no \ -w DHNetwork import pandas as pd import numpy as np import scipy import networkx as nx path='.' xmlFile=os.path.join(path,'testdata\LocalHeatingNetwork.XML') xm=Xm.Xm(xmlFile=xmlFile) vVBEL=xm.dataFrames['vVBEL'] vVBEL.filter(items=['BESCHREIBUNG','NAME_i','NAME_k','LAYR','L','D']).sort_index(level=1) vVBEL.dtypes [viewOrTable for viewOrTable in sorted(xm.dataFrames.keys())] # Weg A um an Ergebnisse zu kommen: # Modell(-Views) um MX-Ergebnisse ergaenzen; MX-Ergebnissatz des Modells wird implizit gelesen und returned mx=xm.MxSync() # Weg B um an Ergebnisse zu kommen: # einen MX-Ergebnissatz voellig unabhaengig von einem Modell lesen # z.B. den MX-Ergebnissatz des Modells ... (wDir,modelDir,modelName,mx1File)=xm.getWDirModelDirModelName() # ... lesen mx=Mx.Mx(mx1File=mx1File) mx.df.filter(items=['ALLG~~~4639827058859487185~SNAPSHOTTYPE','KNOT~V-L~~5736262931552588702~PH']) mx.df.filter(regex='^KNOT').filter(regex='PH$').plot() timesReq=mx.df.index.tolist() mxVecsFileData=mx.getMxsVecsFileData(timesReq) for vecsFileResult in mxVecsFileData: print(vecsFileResult.index) vecsFileResult.filter(regex='^ROHR').filter(regex='^(?!.*VEC)') vecsFileResult.filter(regex='^KNOT') mx.dfVecAggs xm.MxSync(mx=mx) vROHR=xm.dataFrames['vROHR'] vROHR[['L','mx2NofPts','mx2Idx']] xm.MxAdd(mx=mx) vKNOT=xm.dataFrames['vKNOT'] vKNOT.dtypes vVBEL=xm.dataFrames['vVBEL'] vVBEL.filter(items=['NAME_i','NAME_k','Z_i','KNOT~*~*~*~PH_i','Q']).sort_values(['Q','KNOT~*~*~*~PH_i'], ascending=[1,0]) vVBEL.dtypes vROHR=xm.dataFrames['vROHR'] vROHR.dtypes vFWVB=xm.dataFrames['vFWVB'] vFWVB.dtypes vROHRVecResults=xm.dataFrames['vROHRVecResults'] vROHRVecResults[['pk','mx2Idx','IptIdx','ROHR~*~*~*~SVEC','ROHR~*~*~*~ZVEC','ROHR~*~*~*~MVEC']] vAGSN=xm.dataFrames['vAGSN'] vAGSN.dtypes dfOneVL=vAGSN[(vAGSN['LFDNR']=='1') & (vAGSN['Layer']==1)] dfOneVL[['OBJTYPE','x','P','Q']] dfOneRL=vAGSN[(vAGSN['LFDNR']=='1') & (vAGSN['Layer']==2)] dfOneRL[['OBJTYPE','x','P','Q']] plt.plot(dfOneVL['x'],dfOneVL['Q'] ,dfOneRL['x'],dfOneRL['Q']) plt.plot(dfOneVL['x'],dfOneVL['P'] ,dfOneRL['x'],dfOneRL['P']) plt.ylim((2.5, 5.5)) # SIR 3S MIN-Ergebnis lesen xm.MxAdd(mx=mx,aggReq='TMIN') vAGSN=xm.dataFrames['vAGSN'] dfOneVLTMIN=vAGSN[(vAGSN['LFDNR']=='1') & (vAGSN['Layer']==1)] plt.plot(dfOneVL['x'],dfOneVL['P'] ,dfOneRL['x'],dfOneRL['P'] ,dfOneVL['x'],dfOneVLTMIN['P'] ) plt.ylim((2.5, 5.5)) xm.ToH5() mx.ToH5() # next read will be faster because H5 is read instead of XML / MX if H5 is newer than XML / MX xm=Xm.Xm(xmlFile=xmlFile) mx=Mx.Mx(mx1File=mx1File) #xm? #mx? dir(Rm) import Rm dir(Rm) rm=Rm.Rm(xm=xm,mx=mx) plt.close('all') fig=plt.figure(dpi=2*72,linewidth=1.) # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr pFWVB=rm.pltNetDHUS( pltTitle='pltNetDHUS: Bsp1: Prozentdarstellung - keine Klassen' ,timeDeltaToT= pd.to_timedelta('30 seconds') ,pFIGNrcv=['WBLZ~WärmeblnzGes~\S*~\S+~WES' ,'WBLZ~WärmeblnzGes~\S*~\S+~WVB' ,'KNOT~PKON-Knoten~\S*~\S+~QM' ] ,pFIGNrcvTxt=['Erzeugung' ,'Verbrauch' ,'Kontrolle DH' ] ,pVICsDf=pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']}) ,CBShrink=1. # default: 0.3; ist hier wg. der ausgepraegten Querformat-Modellausdehnung zu klein ,CBLabelPad=-20 # default: -50; dito zu gross ) plt.show() plt.close('all') fig=plt.figure(dpi=2*72,linewidth=1.) # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr pFWVB=rm.pltNetDHUS( pltTitle='pltNetDHUS: Bsp2: Prozentdarstellung - Klassen' ,timeDeltaToT= pd.to_timedelta('30 seconds') ,pFIGNrcv=['WBLZ~WärmeblnzGes~\S*~\S+~WES' ,'WBLZ~WärmeblnzGes~\S*~\S+~WVB' ,'KNOT~PKON-Knoten~\S*~\S+~QM' ] ,pFIGNrcvTxt=['Erzeugung' ,'Verbrauch' ,'Kontrolle DH' ] ,CBShrink=1. # default: 0.3; ist hier wg. der ausgepraegten Querformat-Modellausdehnung zu klein ,CBLabelPad=-20 # default: -50; dito zu gross ,pFWVBMeasure3Classes=True ,pFWVBMeasureCBFixedLimitHigh=0.80 ,pFWVBMeasureCBFixedLimitLow=0.66 ) plt.show() plt.close('all') fig=plt.figure(dpi=2*72,linewidth=1.) # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr pFWVB=rm.pltNetDHUS( pltTitle='pltNetDHUS: Bsp3: keine Prozentdarstellung - Klassen' ,pFIGNrcv=['WBLZ~WärmeblnzGes~\S*~\S+~WES' ,'WBLZ~WärmeblnzGes~\S*~\S+~WVB' ,'KNOT~PKON-Knoten~\S*~\S+~QM' ] ,pFIGNrcvTxt=['Erzeugung' ,'Verbrauch' ,'Kontrolle DH' ] ,CBShrink=1. # default: 0.3; ist hier wg. der ausgepraegten Querformat-Modellausdehnung zu klein ,CBLabelPad=-20 # default: -50; dito zu gross ,pFWVBMeasure3Classes=True ,pFWVBMeasureInRefPerc=False ,pFWVBMeasure='FWVB~*~*~*~W' ,pFWVBMeasureCBFixedLimitHigh=200. ,pFWVBMeasureCBFixedLimitLow=130. ) plt.show() G=nx.from_pandas_edgelist(xm.dataFrames['vVBEL'], source='NAME_i', target='NAME_k', edge_attr=True,create_using=nx.MultiGraph()) for e, datadict in G.edges.items(): print(e) print(datadict) for n, nbrsdict in G.adj.items(): print("!{0:s}".format(n)) for nox, mgdct in nbrsdict.items(): print(" {0:s}".format(nox)) for mg,edct in mgdct.items(): print(" {0:d}: {1:s}".format(mg,str(edct))) print(nx.dijkstra_path(G, 'V-L', 'R-L')) max([d for n,d in nx.degree(G)]) spmtx=nx.adjacency_matrix(G) # Return type: SciPy sparse matrix plt.spy(spmtx) spmtx=nx.laplacian_matrix(G) plt.spy(spmtx) nl=[n for n in G.nodes()] A=nx.to_scipy_sparse_matrix(G) nlo=scipy.sparse.csgraph.reverse_cuthill_mckee(A) optnl=[nl[idx] for idx in nlo] spmtx=nx.laplacian_matrix(G,nodelist=optnl) plt.spy(spmtx) xm.delFiles() mx.delFiles() xmlFile=os.path.join(path,'testdata\DHNetwork.XML') xm=Xm.Xm(xmlFile=xmlFile) mx=xm.MxAdd() vRSTN=xm.dataFrames['vRSTN'] rstnDiePGRPStellen=vRSTN[[ 'CONT' #,'CONT_PARENT' ,'KA' ,'BESCHREIBUNG' ,'ITYP_OBJTYPE' ,'ITYP_OBJATTR' ,'Chk' ,'ik_Chk' # ,'OBJTYPE' ,'NAME_i' ,'NAME_k' ,'CONT_i' # ,'TABL_Chk' # ,'TABL' # ,'KNOT' # ,'RART' # ,'RART_TYP' ,'RARTPG' # ,'RCPL' # ,'RCPL_KNOT1' # ,'RCPL_KNOT2' # ,'NAME_i_PUMP' # ,'NAME_k_PUMP' ]].sort_values(by=['ITYP_OBJTYPE','ITYP_OBJATTR','CONT','KA'])[vRSTN['ITYP_OBJTYPE']=='PGRP'] rstnDiePGRPStellen rstnDiePGRPStellen[rstnDiePGRPStellen['NAME_i']=='R-A-SS'] # Verbindungslinien vREdges=xm.dataFrames['vREdges'] # Signalweg (mit Knotentyp_INFO) G=nx.from_pandas_edgelist(vREdges, source='KnExt_Ki', target='KnExt_Kk', edge_attr=True,create_using=nx.DiGraph()) nx.shortest_path(G,'Leck_1_Ein_RSLW','KA-0008_RSTN') # Signalweg (ohne Knotentyp) G=nx.from_pandas_edgelist(vREdges, source='Kn_Ki', target='Kn_Kk', edge_attr=True,create_using=nx.DiGraph()) nx.shortest_path(G,'Leck_1_Ein','KA-0008') G=nx.from_pandas_edgelist(vREdges, source='Kn_Ki', target='Kn_Kk', edge_attr=True,create_using=nx.Graph()) nl=[n for n in G.nodes()] A=nx.to_scipy_sparse_matrix(G) nlo=scipy.sparse.csgraph.reverse_cuthill_mckee(A) optnl=[nl[idx] for idx in nlo] spmtx=nx.laplacian_matrix(G,nodelist=optnl) plt.spy(spmtx) import pandas as pd import matplotlib import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.dates as mdates from matplotlib import colors from matplotlib.colorbar import make_axes from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy as np import scipy import networkx as nx import re from itertools import chain import math import sys path='.' xmlFile=os.path.join(path,'testdata\DHNetwork.XML') xm=Xm.Xm(xmlFile=xmlFile) mx=xm.MxAdd() xm.ToH5() mx.ToH5() tStartSz=mx.df.index[0] tEndeSz=mx.df.index[-1] tStartSz tEndeSz timeSpanSz=tEndeSz-tStartSz timeSpanSz tStart=tStartSz tEnde=tEndeSz tcData=mx.df.loc[tStart:tEnde,:] tcData.index[0] tcData.index[-1] mx1DfFwesW=tcData.filter(regex='^FWES').filter(regex='W$') mx1DfFwesW=mx1DfFwesW.reindex(sorted(mx1DfFwesW.columns),axis=1) mx1DfFwesW.head() plt.close() size_DINA6quer=(5.8,4.1) plt.rc('figure',figsize=size_DINA6quer) fig=plt.figure() mx1DfFwesW.plot() timeSumMaxMx1DfFwesW=mx1DfFwesW.sum(axis=1).idxmax() timeSumMaxMx1DfFwesW timeSumMinMx1DfFwesW=mx1DfFwesW.sum(axis=1).idxmin() timeSumMinMx1DfFwesW mx1DfPumpQ=tcData.filter(regex='^PUMP').filter(regex='QM$') mx1DfPumpQ=mx1DfPumpQ.reindex(sorted(mx1DfPumpQ.columns),axis=1) mx1DfPumpQ.head() plt.close() size_DINA6quer=(5.8,4.1) plt.rc('figure',figsize=size_DINA6quer) fig=plt.figure() mx1DfPumpQ.plot() mx1DfPumpNy=tcData.filter(regex='^PUMP').filter(regex='N$') mx1DfPumpNy=mx1DfPumpNy.reindex(sorted(mx1DfPumpNy.columns),axis=1) mx1DfPumpNy.head() mx1DfPumpWCols=[col for col in mx.df.columns.tolist() if re.match(Mx.reSir3sIDcompiled,col).group('NAME1') in ['wNA','wNB','wNC'] and re.match(Mx.reSir3sIDcompiled,col).group('ATTRTYPE') in ['XA'] and re.match(Mx.reSir3sIDcompiled,col).group('OBJTYPE') in ['RSLW'] ] mx1DfPumpNw=tcData.filter(items=mx1DfPumpWCols) mx1DfPumpNw=mx1DfPumpNw.reindex(sorted(mx1DfPumpNw.columns),axis=1) mx1DfPumpNw.head() mx1DfPumpNywPairs=pd.concat([mx1DfPumpNy,mx1DfPumpNw],axis=1) mx1DfPumpNywPairs=mx1DfPumpNywPairs.filter(items=list(chain.from_iterable( [x for x in zip(mx1DfPumpNy.columns.tolist(),mx1DfPumpNw.columns.tolist())] ) ) ) mx1DfPumpNywPairs.head() plt.close() size_DINA6quer=(5.8,4.1) plt.rc('figure',figsize=size_DINA6quer) fig=plt.figure() mx1DfPumpNywPairs.plot() mx1DfPipeLIO=tcData.filter(regex='^ROHR').filter(regex='LECKEINAUS$') mx1DfPipeLIO=mx1DfPipeLIO.reindex(sorted(mx1DfPipeLIO.columns),axis=1) mx1DfPipeLIO.head() mx1DfPipeLQ=tcData.filter(regex='^ROHR').filter(regex='LECKMENGE$') mx1DfPipeLQ=mx1DfPipeLQ.reindex(sorted(mx1DfPipeLQ.columns),axis=1) mx1DfPipeLQ.head() mx1DfPipeLPairs=pd.concat([mx1DfPipeLIO,mx1DfPipeLQ],axis=1) mx1DfPipeLPairs=mx1DfPipeLPairs.filter(items=list(chain.from_iterable( [x for x in zip(mx1DfPipeLIO.columns.tolist(),mx1DfPipeLQ.columns.tolist())] ) ) ) mx1DfPipeLPairs.describe() # effektive Leckmengen als ~LEAK = ~LECKEINAUS * ~LECKMENGE colList=mx1DfPipeLPairs.columns.tolist() for idx in range(0,len(colList),2): col=colList[idx] mo=re.match(Mx.reSir3sIDcompiled,col) colNew=mo.group('OBJTYPE') colNew=colNew+Mx.reSir3sIDSep+str(mo.group('NAME1')) colNew=colNew+Mx.reSir3sIDSep+mo.group('NAME2') colNew=colNew+Mx.reSir3sIDSep+mo.group('OBJTYPE_PK') colNew=colNew+Mx.reSir3sIDSep+'LEAK' mx1DfPipeLPairs[colNew]=mx1DfPipeLPairs.apply(lambda row: row[idx] * row[idx+1] , axis=1) mx1DfPipeLeaks=mx1DfPipeLPairs.filter(regex='LEAK$') mx1DfPipeLeaks.describe() s=mx1DfPipeLeaks.max() s=s[s>0] s.index.tolist() mx1DfPipeLeaks=mx1DfPipeLeaks.filter(items=s.index.tolist()) mx1DfPipeLeaks.head() plt.close() size_DINA6quer=(5.8,4.1) plt.rc('figure',figsize=size_DINA6quer) fig=plt.figure() mx1DfPipeLeaks.plot() colDct={} for col in tcData.columns.tolist(): mo=re.match(Mx.reSir3sIDcompiled,col) colNew=mo.group('OBJTYPE') colNew=colNew+Mx.reSir3sIDSep+str(mo.group('NAME1')) colNew=colNew+Mx.reSir3sIDSep+mo.group('NAME2') #colNew=colNew+Mx.reSir3sIDSep+mo.group('OBJTYPE_PK') colNew=colNew+Mx.reSir3sIDSep+mo.group('ATTRTYPE') colDct[col]=colNew df=tcData.rename(columns=colDct) mx1DfDH=pd.concat([df['RSLW~wDH_RD_A~~XA'] ,df['RMES~yDH_pRL_A~~XA'] ,df['RSLW~wDH_MD_A~~XA'] ,df['RADD~yDH_pMD_A~~XA'] ] , axis=1) mx1DfDH.head() plt.close() size_DINA6quer=(5.8,4.1) plt.rc('figure',figsize=size_DINA6quer) fig=plt.figure() mx1DfDH.plot() mx1DfDHQ=pd.concat([df['RMES~QDHGes~~XA'] ,df['ALLG~~~LINEPACKRATE'] ] , axis=1) mx1DfDHQ.head() mx1DfDHV=pd.concat([df['ALLG~~~LINEPACKGEOM'] ] , axis=1) mx1DfDHV=mx1DfDHV-mx1DfDHV['ALLG~~~LINEPACKGEOM'][0] mx1DfDHV.describe() mx1DfDHV.shape def mxAdd(xm,mx,timeReq=None,aggReq=None,timeReq2nd=None): xm.MxAdd(mx=mx,timeReq=timeReq,aggReq=aggReq,timeReq2nd=timeReq2nd) vAGSN=xm.dataFrames['vAGSN'] vKNOT=xm.dataFrames['vKNOT'] vROHR=xm.dataFrames['vROHR'] vFWVB=xm.dataFrames['vFWVB'] vVBEL=xm.dataFrames['vVBEL'] vAGSN=xm.dataFrames['vAGSN'] vAGSN['PH']=vAGSN.apply(lambda row: row.P*math.pow(10.,5.)/(row.RHO*9.81),axis=1) vAGSN['PH']=vAGSN['PH']+vAGSN['Z'].astype('float64') zBzg=30. vAGSN['bBzg']=vAGSN.apply(lambda row: row.RHO*9.81/math.pow(10.,5.),axis=1) vAGSN['zBzg']= (vAGSN['Z'].astype('float64')-zBzg)*vAGSN['bBzg'] vAGSN['zBzg0']= (vAGSN['Z'].astype('float64')-0 )*vAGSN['bBzg'] vAGSN['zBzgMin']= (vAGSN['Z'].astype('float64')-vAGSN['Z'].astype('float64').min())*vAGSN['bBzg'] vAGSN['bBzg']=vAGSN['P']+vAGSN['zBzg'] hpSL=vAGSN[(vAGSN['LFDNR']=='1') & (vAGSN['Layer']==1)] hpRL=vAGSN[(vAGSN['LFDNR']=='1') & (vAGSN['Layer']==2)] vROHR=vROHR[(vROHR.apply(lambda x: True if x.CONT_ID == '1001' else False,axis=1))] return vAGSN,vKNOT,vROHR,vFWVB,vVBEL,hpSL,hpRL vAGSN_TStart,vKNOT_TStart,vROHR_TStart,vFWVB_TStart,vVBEL_TStart,hpSL_Start,hpRL_Start=mxAdd(xm,mx,timeReq=mx.df.index[0]) vAGSN_TEnde,vKNOT_TEnde,vROHR_TEnde,vFWVB_TEnde,vVBEL_TEnde,hpSL_Ende,hpRL_Ende=mxAdd(xm,mx,timeReq=mx.df.index[-1]) vAGSN_SMin,vKNOT_SMin,vROHR_SMin,vFWVB_SMin,vVBEL_SMin,hpSL_SMin,hpRL_SMin=mxAdd(xm,mx,aggReq='TMIN') vAGSN_SMax,vKNOT_SMax,vROHR_SMax,vFWVB_SMax,vVBEL_SMax,hpSL_SMax,hpRL_SMax=mxAdd(xm,mx,aggReq='TMAX') # besserer Weg mehrere Zeiten auf 1x zu erhalten: xm.MxAdd(mx=mx ,aggReq=['TIME','TMIN','TMAX','TIME'] # Start, Min, Max, Ende # z.B. P P_1 P_2 P_3 ,timeReq=3*[mx.df.index[0]]+[mx.df.index[-1]] ,timeReq2nd=4*[mx.df.index[-1]] ,viewList=['vAGSN','vKNOT','vROHR','vFWVB','vVBEL'] ,ForceNoH5Update=True) vAGSN=xm.dataFrames['vAGSN'] vAGSN.filter(items=['P','P_1','P_2','P_3'],axis=1).head() # bar hpCSL='red' hpCRL='blue' # bBzg hpCSL2='lightcoral' hpCRL2='cornflowerblue' hpZ='black' # Q hpCSL3='salmon' hpCRL3='lightsteelblue' # bar Min/Max hpCSLMax='mediumvioletred' hpCSLMin='palevioletred' hpCRLMax='darkcyan' hpCRLMin='aqua' # Linienattribute für Paare von Linien lwThick=mpl.rcParams['lines.linewidth']*2 # zuerst gezeichnete Linie (hell) lsThin='--' # danach gezeichnete Linie (dunkel) # fuer A,B,C: Auswahl aus konstruierten Tönen ntcCat=10 ntcCatSub=3 tcCm=Rm.pltMakeCategoricalCmap(catagoryColors=[idx for idx in range(ntcCat)],nOfSubCatsReq=ntcCatSub) catA=0 # blau catB=1 # orange catC=2 # grün catFromIdx={} catFromIdx[0]=catA catFromIdx[1]=catB catFromIdx[2]=catC # DH: RD,MD,VD: tcC_SL=plt.get_cmap("tab20b").colors[3*4+2] tcC_RL=plt.get_cmap("tab20b").colors[0*4+2] tcC_ML=plt.get_cmap("tab20b").colors[4*4+2] tcC_SLl=plt.get_cmap("tab20b").colors[3*4+3] tcC_RLl=plt.get_cmap("tab20b").colors[0*4+3] tcC_MLl=plt.get_cmap("tab20b").colors[4*4+3] # DH: RD,MD-Paare: Sequenzen tcC_XL=[tcC_RLl,tcC_RL,tcC_MLl,tcC_ML] tcLs_XL=[mpl.rcParams['lines.linestyle'],lsThin,mpl.rcParams['lines.linestyle'],lsThin] tcLw_XL=[lwThick,mpl.rcParams['lines.linewidth'],lwThick,mpl.rcParams['lines.linewidth']] # DH: Q,Linepackrate: tcC_QDH=plt.get_cmap("tab20b").colors[2*4+0] tcC_QLPRate=plt.get_cmap("tab20b").colors[2*4+3] # DH: Q,Linepackrate-Paar: Sequenz tcC_DH=[tcC_QDH,tcC_QLPRate] tcLs_DH=[mpl.rcParams['lines.linestyle'],lsThin] tcLw_DH=[lwThick,mpl.rcParams['lines.linewidth']] # DH: V tcC_VDH=plt.get_cmap("tab20b").colors[1*4+2] # 2 Zeiten auswählen time1=timeSumMaxMx1DfFwesW time2=timeSumMinMx1DfFwesW # Ergebnisse für die 2 Zeiten holen vAGSN_T1,vKNOT_T1,vROHR_T1,vFWVB_T1,vVBEL_T1,hpSL_T1,hpRL_T1=mxAdd(xm,mx,timeReq=time1) vAGSN_T2,vKNOT_T2,vROHR_T2,vFWVB_T2,vVBEL_T2,hpSL_T2,hpRL_T2=mxAdd(xm,mx,timeReq=time2) # Ref/Cmp zuordnen timeRef=time1 timeCmp=time2 hpSLRef=hpSL_T1 hpRLRef=hpRL_T1 hpSLCmp=hpSL_T2 hpRLCmp=hpRL_T2 vROHRRef=vROHR_T1 vROHRCmp=vROHR_T2 vROHR_NFD=pd.merge(vROHRRef ,hpRLRef[hpRLRef.IptIdx=='S'] ,how='left' ,left_on='pk' ,right_on='OBJID' ,suffixes=('','_AGSN')).filter(items=vROHRRef.columns.tolist()+['OBJID']) plt.close() size_DINA3quer=(16.5, 11.7) plt.rc('figure',figsize=size_DINA3quer) plt.rc('figure',dpi=72) plt.rc('savefig',dpi=72*2) fig=plt.figure() # ............................................................. # Paramtrierung # ............................................................. # links: 1 NFD und 1 NDD # ............................................................. # links nimmt die ganz linke Hälfte des Dashboards ein leftTileRight=0.5 # rechts: 3 ZKs # ............................................................. # rechts nimmt die ganz linke Hälfte des Dashboards ein rightTileStart=1-leftTileRight # allerdings wird Platz für die y-Achsen benötigt rightTileYAxisXSpace=0.125 rightTileStart=rightTileStart+rightTileYAxisXSpace rightTileH_pad=0.5 # x-Achse #majLocator=mdates.MinuteLocator(interval=5) majLocator=mdates.MinuteLocator(byminute=[0,5,10,15,20,25,30,35,40,45,50,55]) majFormatter=mdates.DateFormatter('%d.%m.%y: %H:%M') # ............................................................. # links: 1 NFD und 1 NDD # ............................................................. gs1 = gridspec.GridSpec(2, 1) axNfd = fig.add_subplot(gs1[0]) axHp = fig.add_subplot(gs1[1]) gs1.tight_layout(fig, rect=[0, 0, leftTileRight, 1]) #rect : if rect is given, it is interpreted as a rectangle #(left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into # ............................................................. # NFD # ............................................................. Rm.Rm.pltNetPipes(vROHR_NFD ,query="CONT_ID == '1001'" ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ,pAx=axNfd ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ,pAttributeColorMapMin=0. ,pAttributeColorMapMax=1600. ,CBLabel='Q [t/h]' ,sort_values_by=['pAttributeFunc'] ,sort_values_ascending=True ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ,pAttributeColorMap2ndUsageStart=1./4. # nicht zu weiß ,pAttributeColorMap2ndUsageEnd=1./2. # nicht zu schwarz ) # ............................................................. # HP # ............................................................. # (negativer) Abstand der 2. y-Achse von der Zeichenfläche yTwinedAxesPosDeltaHP=-0.100 axHp.set_ylabel('p [bar]') axHp.set_ylim(0,16) axHp.set_yticks(np.arange(0, 16.1, 1)) axHp.plot(hpSLRef['x'],hpSLRef['bBzg'],color=hpCSL2) axHp.plot(hpRLRef['x'],hpRLRef['bBzg'],color=hpCRL2) axHp.plot(hpSLRef['x'],hpSLRef['zBzgMin'],color=hpZ,ls='--') axHp.plot(hpSLRef['x'],hpSLRef['P'],color=hpCSL) axHp.plot(hpRLRef['x'],hpRLRef['P'],color=hpCRL) hpSLRef = hpSLRef.apply(pd.to_numeric, errors='ignore') hpSLCmp = hpSLCmp.apply(pd.to_numeric, errors='ignore') axHp.fill_between(hpSLRef['x'], hpSLRef['P'], hpSLCmp['P'], color='grey', alpha=0.5) hpRLRef = hpRLRef.apply(pd.to_numeric, errors='ignore') hpRLCmp = hpRLCmp.apply(pd.to_numeric, errors='ignore') axHp.fill_between(hpRLRef['x'], hpRLRef['P'], hpRLCmp['P'], color='grey', alpha=0.5) axHp.plot(hpSL_SMax['x'],hpSL_SMax['P'],color=hpCSLMax,ls='--') axHp.plot(hpSL_SMin['x'],hpSL_SMin['P'],color=hpCSLMin,ls='--') axHp.plot(hpRL_SMax['x'],hpRL_SMax['P'],color=hpCRLMax,ls='--') axHp.plot(hpRL_SMin['x'],hpRL_SMin['P'],color=hpCRLMin,ls='--') # x-Achse ax=axHp axHp.set_xlim(0,23000) axHp.set_xticks(np.arange(0, 23000.1, 1000)) plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.grid() # 2. y-Achse axHp_2nd = axHp.twinx() axHp_2nd.spines["left"].set_position(("axes", yTwinedAxesPosDeltaHP)) Rm.pltMakePatchSpinesInvisible(axHp_2nd) axHp_2nd.spines['left'].set_visible(True) axHp_2nd.yaxis.set_label_position('left') axHp_2nd.yaxis.set_ticks_position('left') axHp_2nd.set_ylabel('Q [t/h]') axHp_2nd.set_ylim(-1600,1600) axHp_2nd.set_yticks(np.arange(-1600, 1600.1, 200)) axHp_2nd.plot(hpRLRef['x'],hpRLRef['Q'],color=hpCRL3,ls='-') axHp_2nd.fill_between(hpRLRef['x'], hpRLRef['Q'], hpRLCmp['Q'], color='mediumslateblue', alpha=0.5) # ............................................................. # rechts: 3 ZKs # ............................................................. gs2 = gridspec.GridSpec(3, 1) axTcUp = fig.add_subplot(gs2[0]) axTcMi = fig.add_subplot(gs2[1]) axTcBo = fig.add_subplot(gs2[2]) gs2.tight_layout(fig, rect=[rightTileStart, 0, 1, 1], h_pad=rightTileH_pad) #pad : float #padding between the figure edge and the edges of subplots, as a fraction of the font-size #h_pad, w_pad : float #padding (height/width) between edges of adjacent subplots # (negativer) Abstand der 2. y-Achse von der Zeichenfläche yTwinedAxesPosDelta=-0.175 # ............................................................. # oberste ZK # ............................................................. axTcUp.stackplot(mx1DfFwesW.index.values #x ,np.row_stack([mx1DfFwesW[col].values for col in mx1DfFwesW.columns.tolist()]) #y ,colors=[tcCm.colors[catA*ntcCatSub+0],tcCm.colors[catB*ntcCatSub+0],tcCm.colors[catC*ntcCatSub+0]] ,labels=['A','B','C'] ) axTcUp.set_ylabel('W [MW]') axTcUp.set_ylim(200000,600000) axTcUp.set_yticks(np.arange(200000, 600001, 100000)) axTcUp.set_yticklabels(["{0:2.0f}".format(x) for x in np.arange(20, 60.1,10)]) # x-Achse ax=axTcUp ax.xaxis.set_major_locator(majLocator) ax.xaxis.set_major_formatter(majFormatter) plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.grid() # wg. der x-Achse (nur in der obersten ZK) muss der eigentliche Zeichenbereich verkleinert werden pos1 = ax.get_position() pos2 = [pos1.x0, pos1.y0+0.10, pos1.width, pos1.height * 0.65] ax.set_position(pos2) # ............................................................. # mittlere ZK # ............................................................. # Bsp. Plot mit pltTC yAxes,yLines,vLines,yLinesLegendLabels=Rm.Rm.pltTC(pd.concat([mx1DfPumpNywPairs,mx1DfPumpQ],axis=1) ,tcLines={ 'RSLW~wNA~~XA' :{'label':'RSLW~wNA~~XA' ,'forceYType':'N' ,'color':tcCm.colors[catFromIdx[0]*ntcCatSub+ntcCatSub-1] ,'linestyle':'-' ,'linewidth':lwThick} ,'PUMP~R-A-SS~R-A-DS~N' :{'label':'PUMP~R-A-SS~R-A-DS~N','color':tcCm.colors[catFromIdx[0]*ntcCatSub+0] ,'linestyle':lsThin} ,'RSLW~wNB~~XA' :{'label':'RSLW~wNB~~XA' ,'forceYType':'N' ,'color':tcCm.colors[catFromIdx[1]*ntcCatSub+ntcCatSub-1] ,'linestyle':'-' ,'linewidth':lwThick} ,'PUMP~R-B-SS~R-B-DS~N' :{'label':'PUMP~R-B-SS~R-B-DS~N','color':tcCm.colors[catFromIdx[1]*ntcCatSub+0] ,'linestyle':lsThin} ,'RSLW~wNC~~XA' :{'label':'RSLW~wNC~~XA' ,'forceYType':'N' ,'color':tcCm.colors[catFromIdx[2]*ntcCatSub+ntcCatSub-1] ,'linestyle':'-' ,'linewidth':lwThick} ,'PUMP~R-C-SS~R-C-DS~N' :{'label':'PUMP~R-C-SS~R-C-DS~N','color':tcCm.colors[catFromIdx[2]*ntcCatSub+0] ,'linestyle':lsThin} ,'PUMP~R-A-SS~R-A-DS~QM' :{'label':'PUMP~R-A-SS~R-A-DS~QM','color':tcCm.colors[catFromIdx[0]*ntcCatSub+0] ,'linestyle':lsThin} ,'PUMP~R-B-SS~R-B-DS~QM' :{'label':'PUMP~R-B-SS~R-B-DS~QM','color':tcCm.colors[catFromIdx[1]*ntcCatSub+0] ,'linestyle':lsThin} ,'PUMP~R-C-SS~R-C-DS~QM' :{'label':'PUMP~R-C-SS~R-C-DS~QM','color':tcCm.colors[catFromIdx[2]*ntcCatSub+0] ,'linestyle':lsThin} } ,pAx=axTcMi ,majLocator=majLocator ,majFormatter=majFormatter ,xTicksLabelsOff=True ,yTwinedAxesPosDeltaHPStart=0 ,yTwinedAxesPosDeltaHP=-0.175 ,lOff=True ) yAxes['N'].set_ylabel('N [rpm]') yAxes['N'].set_ylim(1250,1650) yAxes['N'].set_yticks(np.arange(1250, 1651, 50)) yAxes['QM'].set_ylabel('Q [t/h]') yAxes['QM'].set_ylim(0,4000) yAxes['QM'].set_yticks(np.arange(0, 4001, 500)) # ............................................................. # untere ZK # ............................................................. axTcBo.set_ylabel('p [bar]') axTcBo.set_ylim(4,8) axTcBo.set_yticks(np.arange(4, 8.1, .4)) for idx,col in enumerate(mx1DfDH.columns.tolist()): line,=axTcBo.plot(mx1DfDH.index.values,mx1DfDH[col] ,color= tcC_XL[idx] ,ls=tcLs_XL[idx] ,lw=tcLw_XL[idx] ) ax=axTcBo ax.xaxis.set_major_locator(majLocator) ax.xaxis.set_major_formatter(majFormatter) ax.set_xticklabels([]) ax.grid() # x-Achsenbeschriftung ausschalten for tic in ax.xaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False # 2. y-Achse axTcBo_2nd = axTcBo.twinx() axTcBo_2nd.spines["left"].set_position(("axes", yTwinedAxesPosDelta)) Rm.pltMakePatchSpinesInvisible(axTcBo_2nd) axTcBo_2nd.spines['left'].set_visible(True) axTcBo_2nd.yaxis.set_label_position('left') axTcBo_2nd.yaxis.set_ticks_position('left') axTcBo_2nd.set_ylabel('Q [t/h]') axTcBo_2nd.set_ylim(-100,100) axTcBo_2nd.set_yticks(np.arange(-100, 101, 20)) for idx,col in enumerate(mx1DfDHQ.columns.tolist()): line,=axTcBo_2nd.plot(mx1DfDHQ.index.values,mx1DfDHQ[col] ,color= tcC_DH[idx] ,ls=tcLs_DH[idx] ,lw=tcLw_DH[idx] ) # x-Achsenbeschriftung ausschalten ax=axTcBo_2nd ax.xaxis.set_major_locator(majLocator) ax.xaxis.set_major_formatter(majFormatter) plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.set_xticklabels([]) ax.grid() for tic in ax.xaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False # 3. y-Achse axTcBo_3rd = axTcBo.twinx() axTcBo_3rd.spines["left"].set_position(("axes", yTwinedAxesPosDelta*2)) Rm.pltMakePatchSpinesInvisible(axTcBo_3rd) axTcBo_3rd.spines['left'].set_visible(True) axTcBo_3rd.yaxis.set_label_position('left') axTcBo_3rd.yaxis.set_ticks_position('left') axTcBo_3rd.set_ylabel('dV [(N)m3]') axTcBo_3rd.set_ylim(-1,1) axTcBo_3rd.set_yticks(np.arange(-1, 1.1, .2)) line,=axTcBo_3rd.plot(mx1DfDHV.index.values,mx1DfDHV['ALLG~~~LINEPACKGEOM'] ,color= tcC_VDH ,ls='-.' ) # x-Achsenbeschriftung ausschalten ax=axTcBo_3rd ax.xaxis.set_major_locator(majLocator) ax.xaxis.set_major_formatter(majFormatter) plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.set_xticklabels([]) ax.grid() for tic in ax.xaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False # Zeitcursor für 2 Zeiten in allen ZKs darstellen axLst=[axTcUp,axTcMi,axTcBo] for ax in axLst: vLinePlotted=ax.axvline(x=timeRef, ymin=0, ymax=1 ,label='Zeit 1' ,color='dimgrey' # ,linestyle=linestyle # ,linewidth=linewidth ) vLinePlotted=ax.axvline(x=timeCmp, ymin=0, ymax=1 ,label='Zeit 2' ,color='dimgrey' ,linestyle='--' # ,linewidth=linewidth ) plt.savefig('Dashboard.pdf',format='pdf',bbox_inches='tight')#,pad_inches=2) # wieder 1. Zeit mx=xm.MxAdd() vROHR=xm.dataFrames['vROHR'] vROHR.info() vKNOT=xm.dataFrames['vKNOT'] vKNOTexp=xm.vKNOTexpEBES() import re qsCols=[col for col in vKNOTexp.columns.tolist() if re.search('^qs_',col) != None] qsCols qsInfCols=[col for col in vKNOTexp.columns.tolist() if re.search('^qs[a-zA-Z0-9]+',col) != None] qsInfCols vROHRexp=xm.vROHRexpEBES(vKNOTexp) vROHRexp.shape vROHR.shape vROHRexp['QAbs']=vROHRexp.apply(lambda row: math.fabs(row['ROHR~*~*~*~QMAV']),axis=1) vROHRexp=vROHRexp[vROHRexp['KVR']=='1'] grpObj=vROHRexp.groupby(by=['qsigRank'],as_index=False) d={col:'min' for col in ['qsigStr','qs_1_A','qs_2_B','qs_3_C']} d.update({'qsigFWVB~*~*~*~W':'min'}) d.update({'qsigRank_sumL':'min'}) df=grpObj.agg(d).sort_values(by=['qsigRank'],ascending=True) df df[df['qsigStr']=='100']['qsigFWVB~*~*~*~W'].iloc[0] plt.close() size_DINA3quer=(16.5, 11.7) dpiSize=72 fig=plt.figure(figsize=size_DINA3quer,dpi=dpiSize) gs = gridspec.GridSpec(1, 1) # --- # axNfd = fig.add_subplot(gs[0]) Rm.Rm.pltNetPipes(vROHRexp ,query="CONT_ID == '1001'" ,fmask=lambda row: True if row.KVR_i=='1' and row.KVR_k=='1' else False ,pAx=axNfd ,pAttribute='qsA' ,pAttributeColorMapFmask=lambda row: True if row.qsA >0 else False ,pAttributeColorMap2ndFmask=lambda row: True if row.qsA <=0 else False # da A 0 ist wird nur 1 Farbwert verwendet; # ... keine Unterscheidung zwischen von A nicht versorgten und gar nicht versorgten ,pAttrLineSize='QAbs' ,sort_values_by=['QAbs'] ,sort_values_ascending=True ,pAttrLineSizeFactor=3*1./(vROHRexp['QAbs'].std()*2.) ,pAttributeColorMap2ndUsageStart=1./3 ,CBBinTicks=21 ,CBLabel='Versorgung durch A in %' ) txt=axNfd.set_title('EB von EG A (nicht durch EG A oder gar nicht von EGn versorgte: grau)') gs.tight_layout(fig) plt.show() # dasselbe mit einer diskreten CM die eine explizite Aussage trifft was magenta und was cyan sein soll cmap = matplotlib.colors.ListedColormap(np.vstack( ( Rm.pltMakeCategoricalColors(list(matplotlib.colors.to_rgb('cyan')),nOfSubColorsReq=5,reversedOrder=False), Rm.pltMakeCategoricalColors(list(matplotlib.colors.to_rgb('magenta')),nOfSubColorsReq=15,reversedOrder=True) ) )) plt.close() size_DINA3quer=(16.5, 11.7) dpiSize=72 fig=plt.figure(figsize=size_DINA3quer,dpi=dpiSize) gs = gridspec.GridSpec(1, 1) # --- # axNfd = fig.add_subplot(gs[0]) Rm.Rm.pltNetPipes(vROHRexp ,query="CONT_ID == '1001'" ,fmask=lambda row: True if row.KVR_i=='1' and row.KVR_k=='1' else False ,pAx=axNfd ,pAttribute='qsA' ,pAttributeColorMap=cmap ,pAttributeColorMapFmask=lambda row: True if row.qsA >0 else False ,pAttributeColorMap2ndFmask=lambda row: True if row.qsA <=0 else False # da A 0 ist wird nur 1 Farbwert verwendet; # ... keine Unterscheidung zwischen von A nicht versorgten und gar nicht versorgten ,pAttrLineSize='QAbs' ,sort_values_by=['QAbs'] ,sort_values_ascending=True ,pAttrLineSizeFactor=3*1./(vROHRexp['QAbs'].std()*2.) ,pAttributeColorMap2ndUsageStart=1./3 ,CBBinTicks=21 ,CBLabel='Versorgung durch A in %' ) txt=axNfd.set_title('EB von EG A (nicht durch EG A oder gar nicht von EGn versorgte: grau)') gs.tight_layout(fig) plt.show() # diskrete CM für die QSIGs vorbelegen # ------------------------------------ # Anz. EGn anzEG=len(qsCols) anzQSIG_moeglich=int(math.pow(2,anzEG)) # kont. CM ist Ausgangsbasis cMap=plt.cm.get_cmap('jet') # kont.: hasattr(cMap,'from_list') # Farben randOffset=.3 cmQSIG=cMap.from_list('cmQSIG' , cMap(np.linspace(0+randOffset, 1-randOffset, anzQSIG_moeglich)) , anzQSIG_moeglich) plt.close() size_DINA6quer=(5.8,4.1) fig, ax = plt.subplots(figsize=size_DINA6quer) fig.subplots_adjust(bottom=0.5) norm=matplotlib.colors.Normalize(vmin=0, vmax=anzQSIG_moeglich) cb=matplotlib.colorbar.ColorbarBase(ax, cmap=cmQSIG,norm=norm,orientation='horizontal') cb.set_label('so viele Farben wie mögliche QSIGen') plt.show() # einzelne Farben darin ersetzen def f(cMap,idxCol,newCol): colors=cMap(np.arange(cMap.N,dtype=int)) # alle Farben newCol=list(matplotlib.colors.to_rgb(newCol)) newCol.extend([1.]) colors[idxCol]=newCol return matplotlib.colors.ListedColormap(colors) # Farbe der 0-Einspeisergruppe festlegen ZColor='lightgray' cmQSIG=f(cmQSIG,int('000',2),ZColor) # Farbe der 1-Einspeisergruppe festlegen ZColor='darkgray' cmQSIG=f(cmQSIG,int('111',2),ZColor) # Farbe der A-Einspeisergruppe festlegen -1. AColColor='magenta'#'mediumorchid' cmQSIG=f(cmQSIG,int('100',2),AColColor) # 2. NAColor='orange' cmQSIG=f(cmQSIG,int('010',2),NAColor) # 3. cmQSIG=f(cmQSIG,int('001',2),'r') plt.close() size_DINA6quer=(5.8,4.1) fig, ax = plt.subplots(figsize=size_DINA6quer) fig.subplots_adjust(bottom=0.5) norm=matplotlib.colors.Normalize(vmin=0, vmax=anzQSIG_moeglich) cb=matplotlib.colorbar.ColorbarBase(ax, cmap=cmQSIG,norm=norm,orientation='horizontal') cb.set_label('so viele Farben wie mögliche QSIGen') plt.show() vROHRexp['qsigInt']=vROHRexp.apply(lambda row: int(row.qsigStr,2) ,axis=1) vROHRexp['qsigInt'].unique() # der Wertebereich ist weder zwingend lückenlos, #noch hat er zwingend soviele Ausprägungen wie die CM Farben hat import numpy as np plt.close() size_DINA3quer=(16.5, 11.7) dpiSize=72 fig=plt.figure(figsize=size_DINA3quer,dpi=dpiSize) gs = gridspec.GridSpec(1, 1) # --- # axNfd = fig.add_subplot(gs[0]) Rm.Rm.pltNetPipes(vROHRexp ,query="CONT_ID == '1001'" ,fmask=lambda row: True if row.KVR_i=='1' and row.KVR_k=='1' else False ,pAx=axNfd ,pAttributeColorMap=cmQSIG ,pAttribute='qsigInt' ,CBBinBounds=[idx for idx in range(anzQSIG_moeglich+1)] ,pAttrLineSize='QAbs' ,sort_values_by=['QAbs'] ,sort_values_ascending=True ,pAttrLineSizeFactor=3*1./(vROHRexp['QAbs'].std()*2.) # es werden so viele Ticks generiert wie Bounds Einträge hat - 1 mehr als Anzahl Farben # wir wollen weniger Ticks (so viele wie Anzahl Farben) und diese in der Mitte ,CBTicks=[idx+.5 for idx in range(anzQSIG_moeglich)] ,CBTickLabels=["{0:b}".format(idx).zfill(anzEG) for idx in range(anzQSIG_moeglich)] ,CBLabel='QSIG' ) txt=axNfd.set_title('Quellsignatur ABC (alle Signaturen in Farbskala)') gs.tight_layout(fig) plt.show() # nur die Farben holen, welche vorkommen # alle Farben holen, welche die cmap hat ccolors = plt.get_cmap(cmQSIG)(np.arange(plt.get_cmap(cmQSIG).N,dtype=int)) # die gewuenschten Farben extrahieren QSIGBzLst=sorted([int(idx,2) for idx in vROHRexp['qsigStr'].unique()]) ccolors=[ccolors[idx] for idx in QSIGBzLst] cmQSIGBz = matplotlib.colors.ListedColormap(ccolors) QSIGBzLst plt.close() size_DINA6quer=(5.8,4.1) fig, ax = plt.subplots(figsize=size_DINA6quer) fig.subplots_adjust(bottom=0.5) norm=matplotlib.colors.Normalize(vmin=0, vmax=len(QSIGBzLst)) cb=matplotlib.colorbar.ColorbarBase(ax, cmap=cmQSIGBz,norm=norm,orientation='horizontal') cb.set_label('so viele Farben wie vorkommende QSIGen') plt.show() QSIGBzLstIdx=[idx for idx in range(len(QSIGBzLst))] QSIGBzLstIdx vROHRexp['qsigIntBzIdx']=vROHRexp.apply(lambda row: QSIGBzLst.index(row.qsigInt) ,axis=1) vROHRexp['qsigIntBzIdx'].unique() # der Wertebereich ist jetzt lückenlos und hat soviele voneinander verschiedene Ausprägungen wie die CM Farben hat plt.close() size_DINA3quer=(16.5, 11.7) dpiSize=72 fig=plt.figure(figsize=size_DINA3quer,dpi=dpiSize) gs = gridspec.GridSpec(1, 1) ticksLabels=["{0:b}".format(QSIGBzLst[idx]).zfill(anzEG) for idx in range(plt.get_cmap(cmQSIGBz).N)] # --- # axNfd = fig.add_subplot(gs[0]) Rm.Rm.pltNetPipes(vROHRexp ,query="CONT_ID == '1001'" ,fmask=lambda row: True if row.KVR_i=='1' and row.KVR_k=='1' else False ,pAx=axNfd ,pAttributeColorMap=cmQSIGBz ,pAttribute='qsigIntBzIdx' ,CBBinBounds=[idx for idx in range(len(vROHRexp['qsigIntBzIdx'].unique())+1)] ,pAttrLineSize='QAbs' ,sort_values_by=['QAbs'] ,sort_values_ascending=True ,pAttrLineSizeFactor=3*1./(vROHRexp['QAbs'].std()*2.) # es werden so viele Ticks generiert wie Bounds Einträge hat - 1 mehr als Anzahl Farben # wir wollen weniger Ticks (so viele wie Anzahl Farben) und diese in der Mitte ,CBTicks=[idx+.5 for idx in range(len(vROHRexp['qsigIntBzIdx'].unique()))] ,CBTickLabels=["dummy" for idx in range(len(vROHRexp['qsigIntBzIdx'].unique()))] ,CBLabel='QSIG' ) txt=axNfd.set_title('Quellsignatur ABC (nur vorkommende Signaturen in Farbskala)') ax = plt.gca() #print(ax.get_yticks()) #print(ax.get_yticklabels()) newTickLabels=len(vROHRexp['qsigIntBzIdx'].unique())*[""] df=vROHRexp[['qsigIntBzIdx','qsigStr','qsigRank_L','qsigRank_sumL']].drop_duplicates().reset_index() for index, row in df.iterrows(): idx2=row['qsigIntBzIdx'] qsigStr=row['qsigStr'] newTickLabels[idx2]=qsigStr ax.set_yticklabels(newTickLabels,rotation=90,va='center',ha='left') gs.tight_layout(fig) plt.show() !python setup.py clean sdist !twine upload -u PT3S -p PythonTools3S dist/* ### ggf. Rechte erforderlich: ### entweder in PowerShell: Start-Process powershell -Verb runAs ### oder RechteMausTaste WindowsSymbol: Windows PowerShell (Administrator) ### dann (ohne ! in PowerShell auf pip-Verz.): !pip install -e . <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The dataset we just generated looks like this Step2: Next up, let's split the dataset into a training and test set. The training set will be used to develop and tune our models. The test set will be completely left alone until the very end, at which point you'll run your finished models on it. Having a test set will allow you to get a good estimate of how well your models would perform out in the wild on unseen data. Step3: We are going to try to predict the classes with a k Nearest Neighbor (kNN) classifier. Chapter 2 of the Introduction to Statistical Learning book provides a great intro to the theory behind kNN. We are huge fans of the ISLR book, so definitely check it out if you have the time. You could also have a look at this previous post that teaches you how to implement the algorithm from scratch in Python. Step4: Actually, it looks like these models perform approximately as well on the test data. Here are the decision boundaries we learned on the training set, applied to the test set. See if you can figure out where the two models are making their mistakes. Step5: Looking better! Let's check out the decision boundary for the k=50 model. Step6: Most real-life datasets will be full of noise, so overfitting is always a danger. However, what exactly consistutes "overfitting" will differ tremendously between datasets, and you have to decide what course of action is optimal. The best guidance is your model's performance on the test set and on cross-validation. If a model that "should" be overfitting is actually generalizing well, then no need to worry. Step7: We then run the code like this Step8: Overfitting means modelling the noise
<ASSISTANT_TASK:> Python Code: # Creating the dataset # e.g. make_moons generates crescent-shaped data # Check out make_classification, which generates ~linearly-separable data from sklearn.datasets import make_moons X, y = make_moons( n_samples=500, # the number of observations random_state=1, noise=0.3 #0.3 ) # Take a peek print(X[:10,]) print(y[:10]) import matplotlib.pyplot as plt %matplotlib inline # Plot the first feature against the other, color by class plt.scatter(X[y == 1, 0], X[y == 1, 1], color="#EE3D34", marker="x") plt.scatter(X[y == 0, 0], X[y == 0, 1], color="#4458A7", marker="o") from sklearn.cross_validation import train_test_split # Split into training and test sets XTrain, XTest, yTrain, yTest = train_test_split(X, y, random_state=1) from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics knn99 = KNeighborsClassifier(n_neighbors = 99) knn99.fit(XTrain, yTrain) yPredK99 = knn99.predict(XTest) print "Overall Error of k=99 Model:", 1 - round(metrics.accuracy_score(yTest, yPredK99), 2) knn1 = KNeighborsClassifier(n_neighbors = 1) knn1.fit(XTrain, yTrain) yPredK1 = knn1.predict(XTest) print "Overall Error of k=1 Model:", 1 - round(metrics.accuracy_score(yTest, yPredK1), 2) knn50 = KNeighborsClassifier(n_neighbors = 50) knn50.fit(XTrain, yTrain) yPredK50 = knn50.predict(XTest) print "Overall Error of k=50 Model:", 1 - round(metrics.accuracy_score(yTest, yPredK50), 2) # Let's tone down the noise in the dataset X_no_noise, y_no_noise = make_moons( n_samples=500, # the number of observations random_state=1, noise=0.1 ) # Split into training and test sets XTrain_no_noise, XTest_no_noise, yTrain_no_noise, yTest_no_noise = train_test_split(X_no_noise, y_no_noise, random_state=1) model = KNeighborsClassifier() datasets = {"Training Set": [XTrain, yTrain]} explore_fitting_boundaries(model=model, n_neighbors=[1], datasets={"Training Set": [XTrain, yTrain]}, width=5) explore_fitting_boundaries(model=model, n_neighbors=[1], datasets={"Training Set": [XTrain_no_noise, yTrain_no_noise]}, width=5) import numpy as np def detect_plot_dimension(X, h=0.02, b=0.05): ''' Function to detect the plot dimensions (considering Training and Test data) Parameters: X - the dataset h - the granularity of the visual display of the boundary b - the space buffer at the extreme values ''' x_min, x_max = X[:, 0].min() - b, X[:, 0].max() + b y_min, y_max = X[:, 1].min() - b, X[:, 1].max() + b xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) dimension = xx, yy return dimension def detect_decision_boundary(dimension, model): ''' Function to detect the decision boundaries Parameters: dimension - the plot dimension as calculated by detect_plot_dimension() model - the model used for the prediction ''' xx, yy = dimension # unpack the dimensions boundary = model.predict(np.c_[xx.ravel(), yy.ravel()]) boundary = boundary.reshape(xx.shape) # Put the result into a color plot return boundary def plot_decision_boundary(panel, dimension, boundary, colors=['#DADDED', '#FBD8D8']): ''' Function to plot decision boundary Parameters: panel - the plotting element to modify dimension - the plot dimension as calculated by detect_plot_dimension() boundary - boundary tuple as calculated by detect_decision_boundary() colors - the colors to use for the boundary surface ''' xx, yy = dimension # unpack the dimensions panel.contourf(xx, yy, boundary, cmap=ListedColormap(colors), alpha=1) panel.contour(xx, yy, boundary, colors="g", alpha=1, linewidths=0.5) # the decision boundary in green def plot_dataset(panel, X, y, colors=["#EE3D34", "#4458A7"], markers=["x", "o"]): ''' Function to plot the observations of of a dataset with their class assigment Parameters: panel - the plotting element to modify X - the predictor dataset y - the classification colors - the color of the two classes markers - the markers to represent the two classes ''' panel.scatter(X[y == 1, 0], X[y == 1, 1], color=colors[0], marker=markers[0])#, s=6) panel.scatter(X[y == 0, 0], X[y == 0, 1], color=colors[1], marker=markers[1])#, s=6) def calculate_prediction_error(model, X, y): ''' Function to estimate the prediction error Parameters: model - the model used for the prediction X - the predictor dataset y - the classification ''' yPred = model.predict(X) score = 1 - round(metrics.accuracy_score(y, yPred), 2) return score def plot_prediction_error(panel, dimension, score, b=.3): ''' Function to plot the prediction error in the bottom right of the plot Parameters: panel - the plotting element to modify dimension - the plot dimension as calculated by detect_plot_dimension() score - the prediciton error as calculated by calcualte_prediciton_error() b - the offset of the text from the bottom right ''' xx, yy = dimension # unpack the dimensions panel.text(xx.max() - b, yy.min() + b, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') def explore_fitting_boundaries(model, n_neighbors, datasets, width): #direction="vertical"): ''' Function to produce a grid of k number of neighbours (x-axis) against different datasets tested (y-axis) Note: Only supplying one dataset works Parameters: model - the model to be tested (assumes KNeighborsClassifier()) n_neighbors - a list of the the number k to be tested datasets - a dictionary of lists with each a training and a test set figsize - the dimension of the plot # direction - should the comparable plots be arranged verically or horizontally ''' # determine the height of the plot given the aspect ration of each panel should be equal height = float(width)/len(n_neighbors) * len(datasets.keys()) nrows = len(datasets.keys()) ncols = len(n_neighbors) # set up the plot figure, axes = plt.subplots( nrows, ncols, figsize=(width, height), sharex=True, sharey=True ) dimension = detect_plot_dimension(X, h=0.02) # the dimension each subplot based on the data i = 0 for n in n_neighbors: model.n_neighbors = n model.fit(datasets["Training Set"][0], datasets["Training Set"][1]) boundary = detect_decision_boundary(dimension, model) j = 0 for d in datasets.keys(): try: panel = axes[j, i] except (TypeError, IndexError): if (nrows * ncols) == 1: panel = axes elif nrows == 1: # if we only have one dataset panel = axes[i] elif ncols == 1: # if we only try one number of neighbors panel = axes[j] plot_decision_boundary(panel, dimension, boundary) # plot the decision boundary plot_dataset(panel, X=datasets[d][0], y=datasets[d][1]) # plot the observations score = calculate_prediction_error(model, X=datasets[d][0], y=datasets[d][1]) plot_prediction_error(panel, dimension, score, b=0.2) # plot the score # make compacted layout panel.set_frame_on(False) panel.set_xticks([]) panel.set_yticks([]) # format the axis labels if i == 0: panel.set_ylabel(d) if j == 0: panel.set_title('k={}'.format(n)) j += 1 i += 1 plt.subplots_adjust(hspace=0, wspace=0) # make compacted layout from matplotlib.colors import ListedColormap model = KNeighborsClassifier() n_neighbors = [200, 100, 20, 5, 1] datasets = { "Training Set": [XTrain, yTrain], "Test Set": [XTest, yTest] } width = 15 # # explore_fitting_boundaries(model, n_neighbors, datasets, width) explore_fitting_boundaries(model=model, n_neighbors=n_neighbors, datasets=datasets, width=width) from sklearn.cross_validation import train_test_split, cross_val_score knn = KNeighborsClassifier() # the range of number of neighbours we want to test n_neighbors = np.arange(1, 141, 2) # here we store the results of each model train_scores = list() test_scores = list() cv_scores = list() for n in n_neighbors: knn.n_neighbors = n knn.fit(XTrain, yTrain) train_scores.append(1 - metrics.accuracy_score(yTrain, knn.predict(XTrain))) # this will over-estimate the accuracy test_scores.append(1 - metrics.accuracy_score(yTest, knn.predict(XTest))) cv_scores.append(1 - cross_val_score(knn, XTrain, yTrain, cv = 5).mean()) # we take the mean of the CV scores print('The best choice for Train would be {}, or the Test {} and with CV {}'.format( n_neighbors[train_scores == min(train_scores)], n_neighbors[test_scores == min(test_scores)], n_neighbors[cv_scores == min(cv_scores)] ) ) plt.plot(n_neighbors, train_scores, c = "grey", label = "Training Set") plt.plot(n_neighbors, test_scores, c = "orange", label = "Test Set") plt.plot(n_neighbors, cv_scores, c = "green", label = "CV") plt.xlabel('Number of K nearest neighbors') plt.ylabel('Classification Error') plt.gca().invert_xaxis() plt.legend(loc = "lower left") plt.show() [Here](http://scott.fortmann-roe.com/docs/BiasVariance.html) is a nice introductory article on the topic that goes into more depth. It would generalize well to new data. the other hand a too rigid model will not be able to learn particular patterns in the data and will gloss over them. Such a model would be considered to be underfitting. All algorithms can be considered to have a certain degree of flexibility and this is not specific to kNN. Therefore the priciple of finding the sweet spot of flexibility that describes that pattern of the data well but is still generalisatble to new data is applies to all learning algorithms. A lot of work has been done in playing with the flexibility of models, for instance regularisation plays with this consideration. Model complexity and model flexibility are often terms used to describe how ... <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: And some more specialized dependencies Step2: Configuration for this figure. Step3: Open a chest located on a remote globus endpoint and load a remote json configuration file. Step4: We want to plot the spike depth, which is the 'H' field in the chest. Step5: Plot the bubble height, the 'H' keys, vs. time. Step6: What if we want to dig deeper? Step7: Now let's plot it. Step8: That doesn't look great. Let's zoom in. The data is cached, so this is fast! Step9: Now where's that 99% threshold? Step10: Let's re-do the analysis for a 95% threshold to make sure nothing changes. Step11: That didn't change much. What about 90%? Step12: That introduces an offset, but the spike velocity (slope) looks the same for late time.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (10.0, 8.0) import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d, InterpolatedUnivariateSpline from scipy.optimize import bisect import json from functools import partial class Foo: pass from chest import Chest from slict import CachedSlict from glopen import glopen, glopen_many config = Foo() config.name = "HighAspect/HA_conductivity_1.0E-5/HA_conductivity_1.0E-5" #config.arch_end = "maxhutch#alpha-admin/~/pub/" config.arch_end = "alcf#dtn_mira/projects/alpha-nek/experiments" c = Chest(path = "{:s}-results".format(config.name), open = partial(glopen, endpoint=config.arch_end), open_many = partial(glopen_many, endpoint=config.arch_end), available_memory=1e12) sc = CachedSlict(c) with glopen( "{:s}.json".format(config.name), mode='r', endpoint = config.arch_end, ) as f: params = json.load(f) c.prefetch(sc[:,'H'].full_keys()) c.prefetch(sc[:,'h'].full_keys()) c.prefetch(sc[:,'flux_proj_z'].full_keys()) c.prefetch(sc[:,'frame'].full_keys()) c.prefetch(sc[:,'t_yz'].full_keys()) c.prefetch(sc[:,'w_yz'].full_keys()) spl = InterpolatedUnivariateSpline(sc[:,'H'].keys(), sc[:,'h'].values(), k=3) dHdt = spl.derivative() Ts = np.linspace(sc[:,'H'].keys()[0], sc[:,'H'].keys()[-1], 1000) V = -dHdt(Ts) theory0 = np.sqrt(params["atwood"] * params["g"] * 2 * params["extent_mesh"][0] / np.pi) theory1 = np.sqrt( params["atwood"] * params["g"] * params["extent_mesh"][0] / np.pi + (2.*np.pi*params["viscosity"] / params["extent_mesh"][0])**2 ) - (2.*np.pi*params["viscosity"] / params["extent_mesh"][0]) theory2 = params["atwood"] * params["g"] * params["extent_mesh"][0]**2 / ( 113.816*params["viscosity"]) theory3 = 0.008440 * params["atwood"] * params["g"] * params["extent_mesh"][0]**2 / params["viscosity"] flux_midplane = np.array([sc[t,'flux_proj_z'][1892] for t in sc[:,'flux_proj_z'].keys()]) flux_total = np.array([np.sum(sc[t,'flux_proj_z']) for t in sc[:,'flux_proj_z'].keys()]) fig, axs = plt.subplots(2,1, sharex=True) axs[0].plot(Ts, spl(Ts)/128); axs[0].plot(sc[:,'H'].keys(), -np.array(sc[:,'H'].values()), 'yo'); axs[0].set_ylabel('Depth (m)') #axs[1].plot(sc[:,'frame'].values(), -V/128); #axs[1].plot([Ts[0],Ts[-1]], [theory0, theory0], 'k--'); #axs[1].plot([Ts[0],Ts[-1]], [theory1, theory1], 'k-.'); #axs[1].plot([Ts[0],Ts[-1]], [theory2, theory2], 'k--'); #axs[1].plot([Ts[0],Ts[-1]], [theory3, theory3], 'k-.'); #axs[1].plot(sc[:,'frame'].values(), 16.*flux_midplane) axs[1].plot(sc[:,'frame'].values(), sc[:,'Dissipated'].values()) #axs[1].plot(sc[:,'frame'].values(), flux_total) axs[1].set_ylabel('Velocity (m/s)') axs[1].set_xlabel('Time (s)'); #plt.xlim([20,40]) plt.savefig('Figure1.eps') diss = np.array([np.sum(sc[T,'d_yz']) for T in sc[:,'d_yz'].keys()]); plt.plot(diss) flux = [] vflux = [] for T in sc[:,'w_yz'].keys(): tmp = sc[T,'w_yz'] * sc[T,'t_yz'] tmp[sc[T,'t_yz'] < 0] = 0 tmp[tmp < 0] = 0. flux.append(np.sum(tmp) / sc[T,'h']) tmp = sc[T,'w_yz'].copy() tmp[tmp < 0] = 0. vflux.append(np.sum(tmp) / sc[T,'h']) plt.plot(flux) plt.plot(vflux) c.prefetch(sc[:,'t_proj_z'].full_keys()) Ts = sc[:,'t_proj_z'].keys() Zs = np.linspace(params["root_mesh"][2], params["extent_mesh"][2], sc[Ts[0], 't_proj_z'].shape[0]) for t in Ts: plt.plot(Zs,sc[t,'t_proj_z'], 'k-') plt.xlim(xmin=params["root_mesh"][2],xmax=params["extent_mesh"][2]); plt.ylim(ymin=-1.1, ymax=1.1) plt.xlabel("Height (m)"); plt.ylabel(r"$\Delta \rho / \bar{\rho}$"); plt.title("Density profiles"); Ts = sc[:,'t_proj_z'].keys() Zs = np.linspace(params["root_mesh"][2], params["extent_mesh"][2], sc[Ts[0], 't_proj_z'].shape[0]) for t in Ts: plt.plot(Zs,sc[t,'t_proj_z'], 'k-') plt.xlim(xmin=-1.5,xmax=1.5); plt.ylim(ymin=-1.1, ymax=1.1); plt.xlabel("Height (m)"); plt.ylabel(r"$\Delta \rho / \bar{\rho}$"); plt.title("Density profiles"); Ts = sc[:,'t_proj_z'].keys() Zs = np.linspace(params["root_mesh"][2], params["extent_mesh"][2], sc[Ts[0], 't_proj_z'].shape[0]) for t in Ts: plt.plot(Zs,sc[t,'t_proj_z'], 'k-') plt.plot([-1.5, 0.], np.array([.98, .98])); plt.xlim(xmin=-1.5,xmax=0); plt.xlabel("Height (m)"); plt.ylabel(r"$\Delta \rho / \bar{\rho}$"); plt.title("Density profiles"); plt.ylim(ymin=0.9,ymax=1.1); Ts = sc[:,'t_proj_z'].keys() Zs = np.linspace(params["root_mesh"][2], params["extent_mesh"][2], sc[Ts[0], 't_proj_z'].shape[0]) my_H = [] for t in Ts: f = interp1d(Zs, sc[t, 't_proj_z']-(.90)) my_H.append(bisect(f,params["root_mesh"][2], 0)) my_spl = InterpolatedUnivariateSpline(sc[:,'H'].keys(), my_H, k=4) my_dHdt = my_spl.derivative() Ts = np.linspace(sc[:,'H'].keys()[0], sc[:,'H'].keys()[-1], 1000) my_V = -my_dHdt(Ts) theory = np.sqrt( params["atwood"] * params["g"] * params["extent_mesh"][0] / np.pi + (2.*np.pi*params["viscosity"] / params["extent_mesh"][0])**2 ) - (2.*np.pi*params["viscosity"] / params["extent_mesh"][0]) fig, axs = plt.subplots(2,1, sharex=True) axs[0].plot(Ts, -spl(Ts)); axs[0].plot(Ts, -my_spl(Ts), 'k--'); axs[0].plot(sc[:,'H'].keys(), -np.array(my_H), 'yo'); axs[0].set_ylabel('Depth (m)') axs[1].plot(Ts, V); axs[1].plot(Ts, my_V, 'k'); axs[1].plot([Ts[0],Ts[-1]], [theory, theory], 'k--'); axs[1].set_ylabel('Velocity (m/s)') axs[1].set_xlabel('Time (s)'); Ts = sc[:,'t_proj_z'].keys() Zs = np.linspace(params["root_mesh"][2], params["extent_mesh"][2], sc[Ts[0], 't_proj_z'].shape[0]) my_H = [] for t in Ts: f = interp1d(Zs, sc[t, 't_proj_z']-(.80)) my_H.append(bisect(f,params["root_mesh"][2], 0)) my_spl = InterpolatedUnivariateSpline(sc[:,'H'].keys(), my_H, k=4) my_dHdt = my_spl.derivative() Ts = np.linspace(sc[:,'H'].keys()[0], sc[:,'H'].keys()[-1], 1000) my_V = -my_dHdt(Ts) theory = np.sqrt( params["atwood"] * params["g"] * params["extent_mesh"][0] / np.pi + (2.*np.pi*params["viscosity"] / params["extent_mesh"][0])**2 ) - (2.*np.pi*params["viscosity"] / params["extent_mesh"][0]) fig, axs = plt.subplots(2,1, sharex=True) axs[0].plot(Ts, -spl(Ts)); axs[0].plot(Ts, -my_spl(Ts), 'k--'); axs[0].plot(sc[:,'H'].keys(), -np.array(my_H), 'yo'); axs[0].set_ylabel('Depth (m)') axs[1].plot(Ts, V); axs[1].plot(Ts, my_V, 'k'); axs[1].plot([Ts[0],Ts[-1]], [theory, theory], 'k--'); axs[1].set_ylabel('Velocity (m/s)') axs[1].set_xlabel('Time (s)'); %install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py %load_ext version_information %version_information numpy, matplotlib, slict, chest, glopen, globussh <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If you want to use the CoNLL-03 corpus, you need to download it and unpack it in your Flair data and model folder. This folder should be in your home-directory and it is named .flair. Once you have downloaded the corpus, unpack it into a folder .flair/datasets/conll_03. If you do not want to use the CoNLL-03 corpus, but rather the free W-NUT 17 corpus, you can use the Flair command Step2: Declare the tag type to be predicted Step3: Create the tag-dictionary for the tag-type Step4: Load the embeddings Step5: Load and initialize the sequence tagger Step6: Load and initialize the trainer Step7: If you have a GPU (otherwise maybe tweak the batch size, etc.), run the training with 150 epochs Step8: Plot the training curves and results Step9: Use the model via the predict method
<ASSISTANT_TASK:> Python Code: from flair.data import Corpus from flair.datasets import WNUT_17 from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings from typing import List corpus: Corpus = WNUT_17().downsample(0.1) print(corpus) tag_type = 'ner' tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) print(tag_dictionary) embedding_types: List[TokenEmbeddings] = [ WordEmbeddings('glove'), # comment in this line to use character embeddings # CharacterEmbeddings(), # comment in these lines to use flair embeddings # FlairEmbeddings('news-forward'), # FlairEmbeddings('news-backward'), ] embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types) from flair.models import SequenceTagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type, use_crf=True) from flair.trainers import ModelTrainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train('resources/taggers/example-ner', learning_rate=0.1, mini_batch_size=32, max_epochs=150) from flair.visual.training_curves import Plotter plotter = Plotter() plotter.plot_training_curves('resources/taggers/example-ner/loss.tsv') plotter.plot_weights('resources/taggers/example-ner/weights.txt') from flair.data import Sentence model = SequenceTagger.load('resources/taggers/example-ner/final-model.pt') sentence = Sentence('John lives in the Empire State Building .') model.predict(sentence) print(sentence.to_tagged_string()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 5. Check conda installs Step2: 6. Check pip installs Step3: 7. Download data
<ASSISTANT_TASK:> Python Code: !python -V # Should be 3.5 import numpy as np import matplotlib.pyplot as plt from scipy.signal import ricker import pandas as pd import requests import numba import ipyparallel as ipp import obspy import geopandas as gpd # Not a catastrophe if missing. import folium # Not a catastrophe if missing. import lasio import welly import bruges as b import os import requests files = [ '2D_Land_vibro_data_2ms.tgz', '3D_gathers_pstm_nmo_X1001.sgy', 'Penobscot_0-1000ms.sgy.gz', 'Penobscot_NumPy.npy.gz', ] url = "https://s3.amazonaws.com/agilegeo/" localpath = '' # For CWD. for file in files: print(file) r = requests.get(url+file, stream=True) chunk_size = 1024 * 1024 # 1MB with open(os.path.join(localpath, file), 'wb') as fd: for chunk in r.iter_content(chunk_size): if chunk: fd.write(chunk) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import pandas as pd df = pd.DataFrame({'datetime': ['2015-12-01 00:00:00-06:00', '2015-12-02 00:01:00-06:00', '2015-12-03 00:00:00-06:00']}) df['datetime'] = pd.to_datetime(df['datetime']) df['datetime'] = df['datetime'].dt.tz_localize(None) df.sort_values(by='datetime', inplace=True) df['datetime'] = df['datetime'].dt.strftime('%d-%b-%Y %T') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lorenz system Step3: Write a function solve_lorenz that solves the Lorenz system above for a particular initial condition $[x(0),y(0),z(0)]$. Your function should return a tuple of the solution array and time array. Step5: Write a function plot_lorentz that Step6: Use interact to explore your plot_lorenz function with
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from IPython.html.widgets import interact, fixed def lorentz_derivs(yvec, t, sigma, rho, beta): x = yvec[0] y = yvec[1] z = yvec[2] dx = sigma*(y-x) dy = x*(rho-z)-y dz = x*y - beta*z return np.array([dx, dy, dz]) assert np.allclose(lorentz_derivs((1,1,1),0, 1.0, 1.0, 2.0),[0.0,-1.0,-1.0]) def solve_lorentz(ic, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Solve the Lorenz system for a single initial condition. Parameters ---------- ic : array, list, tuple Initial conditions [x,y,z]. max_time: float The max time to use. Integrate with 250 points per time unit. sigma, rho, beta: float Parameters of the differential equation. Returns ------- soln : np.ndarray The array of the solution. Each row will be the solution vector at that time. t : np.ndarray The array of time points used. soln = odeint(lorentz_derivs, ic, t, args=(alpha, beta, delta, gamma), atol=1e-9, rtol=1e-8) return soln, t assert True # leave this to grade solve_lorenz def plot_lorentz() N = 5 colors = plt.cm.hot(np.linspace(0,1,N)) for i in range(N): # To use these colors with plt.plot, pass them as the color argument print(colors[i]) def plot_lorentz(N=10, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Plot [x(t),z(t)] for the Lorenz system. Parameters ---------- N : int Number of initial conditions and trajectories to plot. max_time: float Maximum time to use. sigma, rho, beta: float Parameters of the differential equation. # YOUR CODE HERE raise NotImplementedError() plot_lorentz() assert True # leave this to grade the plot_lorenz function # YOUR CODE HERE raise NotImplementedError() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basic marker Step2: Circle Marker Step3: Icon Marker Step4: RGB(A) to HEX colors
<ASSISTANT_TASK:> Python Code: import folium carte = folium.Map(location=[45.5236, -122.6750], zoom_start=12) marker = folium.Marker([45.5, -122.7], popup='Un marker') marker.add_to(carte) carte carte = folium.Map(location=[45.5236, -122.6750], zoom_start=12) circle = folium.CircleMarker( [45.5, -122.7], radius=1000, popup='Un cercle', color="#e74c3c", # rouge fill_color="#27ae60", # vert fill_opacity=0.9 ) circle.add_to(carte) carte carte = folium.Map(location=[45.5236, -122.6750], zoom_start=12) # add firt marker with bootstrap icon icone1 = folium.Icon(icon="asterisk", icon_color="#9b59b6", color="lightblue") marker1 = folium.Marker([45.5, -122.7], popup='Un icone', icon=icone1) marker1.add_to(carte) # add second marker with font-awesome icon icone1 = folium.Icon(icon="globe", icon_color="#e67e22", color="lightgreen", prefix="fa") marker1 = folium.Marker([45.5, -122.6], popup='Un icone', icon=icone1) marker1.add_to(carte) carte import matplotlib import matplotlib.pyplot as plt color = plt.cm.winter(22) color matplotlib.colors.rgb2hex(color) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Next we choose a model and hyperparameters. Here we'll use a k-neighbors classifier with n_neighbors=1. Step2: Then we train the model, and use it to predict labels for data we already know Step3: Finally, we compute the fraction of correctly labeled points Step4: We see an accuracy score of 1.0, which indicates that 100% of points were correctly labeled by our model! Step5: We see here a more reasonable result Step6: What comes out are two accuracy scores, which we could combine (by, say, taking the mean) to get a better measure of the global model performance. Step7: Repeating the validation across different subsets of the data gives us an even better idea of the performance of the algorithm. Step8: Because we have 150 samples, the leave one out cross-validation yields scores for 150 trials, and the score indicates either successful (1.0) or unsuccessful (0.0) prediction. Step9: Other cross-validation schemes can be used similarly. Step10: Now let's create some data to which we will fit our model Step11: We can now visualize our data, along with polynomial fits of several degrees Step12: The knob controlling model complexity in this case is the degree of the polynomial, which can be any non-negative integer. Step13: This shows precisely the qualitative behavior we expect Step14: Notice that finding this optimal model did not actually require us to compute the training score, but examining the relationship between the training score and validation score can give us useful insight into the performance of the model. Step15: We will duplicate the preceding code to plot the validation curve for this larger dataset; for reference let's over-plot the previous results as well Step16: The solid lines show the new results, while the fainter dashed lines show the results of the previous smaller dataset. Step17: This is a valuable diagnostic, because it gives us a visual depiction of how our model responds to increasing training data. Step18: Notice that like a normal estimator, this has not yet been applied to any data. Step19: Now that this is fit, we can ask for the best parameters as follows Step20: Finally, if we wish, we can use the best model and show the fit to our data using code from before
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=1) model.fit(X, y) y_model = model.predict(X) from sklearn.metrics import accuracy_score accuracy_score(y, y_model) from sklearn.model_selection import train_test_split # split the data with 50% in each set X1, X2, y1, y2 = train_test_split(X, y, random_state=0, train_size=0.5) # fit the model on one set of data model.fit(X1, y1) # evaluate the model on the second set of data y2_model = model.predict(X2) accuracy_score(y2, y2_model) y2_model = model.fit(X1, y1).predict(X2) y1_model = model.fit(X2, y2).predict(X1) accuracy_score(y1, y1_model), accuracy_score(y2, y2_model) from sklearn.model_selection import cross_val_score cross_val_score(model, X, y, cv=5) from sklearn.model_selection import LeaveOneOut scores = cross_val_score(model, X, y, cv=LeaveOneOut()) scores scores.mean() from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.pipeline import make_pipeline def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) import numpy as np def make_data(N, err=1.0, rseed=1): # randomly sample the data rng = np.random.RandomState(rseed) X = rng.rand(N, 1) ** 2 y = 10 - 1. / (X.ravel() + 0.1) if err > 0: y += err * rng.randn(N) return X, y X, y = make_data(40) %matplotlib inline import matplotlib.pyplot as plt import seaborn; seaborn.set() # plot formatting X_test = np.linspace(-0.1, 1.1, 500)[:, None] plt.scatter(X.ravel(), y, color='black') axis = plt.axis() for degree in [1, 3, 5]: y_test = PolynomialRegression(degree).fit(X, y).predict(X_test) plt.plot(X_test.ravel(), y_test, label='degree={0}'.format(degree)) plt.xlim(-0.1, 1.0) plt.ylim(-2, 12) plt.legend(loc='best'); from sklearn.model_selection import validation_curve degree = np.arange(0, 21) train_score, val_score = validation_curve(PolynomialRegression(), X, y, 'polynomialfeatures__degree', degree, cv=7) plt.plot(degree, np.median(train_score, 1), color='blue', label='training score') plt.plot(degree, np.median(val_score, 1), color='red', label='validation score') plt.legend(loc='best') plt.ylim(0, 1) plt.xlabel('degree') plt.ylabel('score'); plt.scatter(X.ravel(), y) lim = plt.axis() y_test = PolynomialRegression(3).fit(X, y).predict(X_test) plt.plot(X_test.ravel(), y_test); plt.axis(lim); X2, y2 = make_data(200) plt.scatter(X2.ravel(), y2); degree = np.arange(21) train_score2, val_score2 = validation_curve(PolynomialRegression(), X2, y2, 'polynomialfeatures__degree', degree, cv=7) plt.plot(degree, np.median(train_score2, 1), color='blue', label='training score') plt.plot(degree, np.median(val_score2, 1), color='red', label='validation score') plt.plot(degree, np.median(train_score, 1), color='blue', alpha=0.3, linestyle='dashed') plt.plot(degree, np.median(val_score, 1), color='red', alpha=0.3, linestyle='dashed') plt.legend(loc='lower center') plt.ylim(0, 1) plt.xlabel('degree') plt.ylabel('score'); from sklearn.model_selection import learning_curve fig, ax = plt.subplots(1, 2, figsize=(16, 6)) fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1) for i, degree in enumerate([2, 9]): N, train_lc, val_lc = learning_curve(PolynomialRegression(degree), X, y, cv=7, train_sizes=np.linspace(0.3, 1, 25)) ax[i].plot(N, np.mean(train_lc, 1), color='blue', label='training score') ax[i].plot(N, np.mean(val_lc, 1), color='red', label='validation score') ax[i].hlines(np.mean([train_lc[-1], val_lc[-1]]), N[0], N[-1], color='gray', linestyle='dashed') ax[i].set_ylim(0, 1) ax[i].set_xlim(N[0], N[-1]) ax[i].set_xlabel('training size') ax[i].set_ylabel('score') ax[i].set_title('degree = {0}'.format(degree), size=14) ax[i].legend(loc='best') from sklearn.model_selection import GridSearchCV param_grid = {'polynomialfeatures__degree': np.arange(21), 'linearregression__fit_intercept': [True, False], 'linearregression__normalize': [True, False]} grid = GridSearchCV(PolynomialRegression(), param_grid, cv=7) grid.fit(X, y); grid.best_params_ model = grid.best_estimator_ plt.scatter(X.ravel(), y) lim = plt.axis() y_test = model.fit(X, y).predict(X_test) plt.plot(X_test.ravel(), y_test); plt.axis(lim); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Contents Step2: 2. Different ways of learning from data Step3: In the plot we can easily see that the blue points are concentrated on the top-left corner, green ones in bottom left and red ones in top right. Step4: So, in this case we got a classification accuracy of 60 %. Step5: Why Probabilistic Graphical Models Step6: In this case the parameters of the network would be $P(L)$, $P(W)$ and $P(T | L, W)$. So, we will need to store 5 values for $L$, 3 values for $W$ and 45 values for $P(T | L, W)$. So, a total of 45 + 5 + 3 = 53 values to completely parameterize the network which is actually more than 45 values which we need for $P (T, L, W)$. But in the cases of bigger networks graphical models help in saving space. We can take the example of the student network shown below
<ASSISTANT_TASK:> Python Code: from IPython.display import Image %run ../scripts/1/discretize.py data %matplotlib inline import matplotlib.pyplot as plt import numpy as np # Adding a little bit of noise so that it's easier to visualize data_with_noise = data.iloc[:, :2] + np.random.normal(loc=0, scale=0.1, size=(150, 2)) plt.scatter(data_with_noise.length, data_with_noise.width, c=[ "bgr"[k] for k in data.iloc[:,2] ], s=200, alpha=0.3) from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(data[['length', 'width']].values, data.type.values, test_size=0.2) classifier = DecisionTreeClassifier(max_depth=4) classifier.fit(X_train, y_train) classifier.predict(X_test) classifier.score(X_test, y_test) X_train, X_test = data[:120], data[120:] X_train # Computing the joint probability distribution over the training data joint_prob = X_train.groupby(['length', 'width', 'type']).size() / 120 joint_prob # Predicting values # Selecting just the feature variables. X_test_features = X_test.iloc[:, :2].values X_test_actual_results = X_test.iloc[:, 2].values predicted_values = [] for i in X_test_features: predicted_values.append(joint_prob[i[0], i[1]].idxmax()) predicted_values = np.array(predicted_values) predicted_values # Comparing results with the actual data. predicted_values == X_test_actual_results score = (predicted_values == X_test_actual_results).sum() / 30 print(score) Image(filename='../images/1/Iris_BN.png') Image(filename='../images/1/student.png') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <center><img src="https Step2: A grouping pattern, avoiding quadratic time Step3: the bad way, quadratic time Step4: there is a better approach avoiding quadratic time, toward defaultdict Step5: However there is an even better solution, as pointed out in the example subsection of the previous link Step6: The Bunch pattern Step7: However, inheriting from dict is discouraged by Alex Step8: It is interesting to observe that this idiom has been merged within the standard library, starting from Python 3.3, as with the name of SimpleNamespace Step9: If you need point to be iterable use the structured object namedtuple instead. Step10: Citing Hetland, pag 11 Step11: Hidden squares Step12: Hetland's words, pag. 35 Step13: Hetland, pag.36 Step14: try to do that with more populated lists... Step15: maybe some optimization is performed because s is a string object. Step16: a better approach using constant append to the top Step17: maybe a little better since it doesn't loop with for explicitly. Step18: The following is a naive implementation, recursive but in $\mathcal{O}(n^{2})$, where $n$ is the permutation length. Step19: Hetland, pag. 78 Step20: So, a, c, and f can take part in the permutation. The others will have to sit in nonfavorite seats. Step21: Counting Sort
<ASSISTANT_TASK:> Python Code: __AUTHORS__ = {'am': ("Andrea Marino", "andrea.marino@unifi.it",), 'mn': ("Massimo Nocentini", "massimo.nocentini@unifi.it", "https://github.com/massimo-nocentini/",)} __KEYWORDS__ = ['Python', 'Jupyter', 'gotchas', 'keynote',] from collections import defaultdict, Counter import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (8, 8) girls = ['alice', 'allie', 'bernice', 'brenda', 'clarice', 'cilly'] boys = ['chris', 'christopher', 'arald', 'arnold', 'bob'] [(b, g) for b in boys for g in girls if b[0] == g[0]] letterGirls = {} for girl in girls: letterGirls.setdefault(girl[0], []).append(girl) [(b, g) for b in boys for g in letterGirls[b[0]]] >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] >>> d = defaultdict(list) >>> for k, v in s: ... d[k].append(v) ... >>> list(d.items()) [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])] class Bunch(dict): def __init__(self, *args, **kwds): super(Bunch, self).__init__(*args, **kwds) self.__dict__ = self >>> T = Bunch >>> t = T(left=T(left="a", right="b"), right=T(left="c")) >>> t.left >>> t.left.right >>> t['left']['right'] >>> "left" in t.right "right" in t.right class Bunch(object): def __init__(self, **kwds): self.__dict__.update(kwds) from types import SimpleNamespace x, y = 32, 64 point = SimpleNamespace(datum=y, squared=y*y, coord=x) point point.datum, point.squared, point.coord [i for i in point] def fast_countdown(count): nums = [] for i in range(count): nums.append(i) nums.reverse() return nums def slow_countdown(count): nums = [] for i in range(count): nums.insert(0, i) return nums def printer(lst, chunk=10): print("{}...{}".format(" ".join(map(str, lst[:chunk])), " ".join(map(str, lst[-chunk:])))) %timeit nums = fast_countdown(10**5) %timeit nums = slow_countdown(10**5) from collections import deque def enhanced_slow_countdown(count): nums = deque() for i in range(count): nums.appendleft(i) return nums %timeit nums = enhanced_slow_countdown(10**5) from random import randrange max_value = 10000 checks = 1000 L = [randrange(max_value) for i in range(checks)] %timeit [randrange(max_value) in L for _ in range(checks)] S = set(L) # convert the list to a set object. %timeit [randrange(max_value) in S for _ in range(checks)] lists = [[1, 2], [3, 4, 5], [6]] sum(lists, []) res = [] for lst in lists: res.extend(lst) res def string_producer(length): return ''.join([chr(randrange(ord('a'), ord('z'))) for _ in range(length)]) %%timeit s = "" for chunk in string_producer(10**5): s += chunk %%timeit chunks = [] for chunk in string_producer(10**5): chunks.append(chunk) s = ''.join(chunks) %timeit s = ''.join(string_producer(10**5)) def perm_isomorphism(M, domain): iso = dict(enumerate(domain)) return [iso[M[i]] for i in range(len(M))] def fix_perm(M, fix): return [M[i] if i in fix else i for i in range(len(M))] def naive_max_perm(M, A=None): ''' Fix a permutation such that it is one-to-one and maximal, recursively. consumes: M - a permutation as a list of integers A - a set of positions allowed to move produces: a set `fix` such that makes M maximal, ensuring to be one-to-one ''' if A is None: A = set(range(len(M))) # init to handle first invocation, all elems can move if len(A) == 1: return A # recursion base, unary perm can move, trivial B = set(M[i] for i in A) # b in B iff b is desired by someone C = A - B # c in C iff c isn't desired, so discard it return naive_max_perm(M, A - C) if C else A # recur with desired position only I = range(8) # the identity permutation letters = "abcdefgh" perm_isomorphism(I, letters) M = [2, 2, 0, 5, 3, 5, 7, 4] perm_isomorphism(M, letters) fix = naive_max_perm(M) max_M = fix_perm(M, fix) perm_isomorphism(max_M, letters) naive_max_perm(M) def max_perm(M): n = len(M) # How many elements? A = set(range(n)) # A = {0, 1, ... , n-1} count = Counter(M) # desired positions by frequencies Q = deque([i for i in A if not count[i]]) # useless elements while Q: # While useless elts. left... i = Q.pop() # get one of them A.remove(i) # remove it from the maximal permutation j = M[i] # get its desired position count[j] -= 1 # and release it for someone else if not count[j]: # if such position isn't desired anymore Q.appendleft(j) # enqueue such position in order to discard it return A fix = max_perm(M) max_M = fix_perm(M, fix) perm_isomorphism(max_M, letters) def counting_sort(A, key=None, sort_boundary=None): ''' Sorts the given collection A in linear time, assuming their elements are hashable. This implementation implements a vanilla counting sort, working in linear time respect iterable length and spacing between objects. It works best if elements are evenly, namely *uniformly* distributed in the domain; on contrast, if they are sparse and concentrated near accumulation points, traversing distances between them is time consuming. If `sort_boundary` is instantiated to a float within [0,1], then the domain is ordered using a classic loglinear algorithm before building the result. ''' if key is None: key = lambda x: x B, C = [], defaultdict(list) for x in A: C[key(x)].append(x) domain = sorted(C) if sort_boundary and len(C) <= len(A)*sort_boundary \ else range(min(C), max(C)+1) for k in domain: B.extend(C[k]) return B A = [randrange(50) for i in range(2*10**3)] assert sorted(A) == counting_sort(A) n, bins, patches = plt.hist(A, 10, facecolor='green', alpha=0.5) plt.xlabel('elements'); plt.ylabel('frequencies'); plt.grid(True) plt.show() %timeit counting_sort(A) %timeit counting_sort(A, sort_boundary=1) B = ([randrange(50) for i in range(10**3)] + [10**4 + randrange(50) for i in range(10**3)]) n, bins, patches = plt.hist(B, 100, facecolor='green', alpha=0.5) plt.xlabel('elements'); plt.ylabel('frequencies'); plt.grid(True) plt.show() assert sorted(B) == counting_sort(B) %timeit counting_sort(B) %timeit counting_sort(B, sort_boundary=1/8) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Register a model
<ASSISTANT_TASK:> Python Code: # restart your notebook if prompted on Colab try: import verta except ImportError: !pip install verta import os # Ensure credentials are set up, if not, use below # os.environ['VERTA_EMAIL'] = # os.environ['VERTA_DEV_KEY'] = # os.environ['VERTA_HOST'] = from verta import Client client = Client(os.environ['VERTA_HOST']) registered_model = client.get_or_create_registered_model( name="census", labels=["research-purpose", "team-a"]) from verta.registry import VertaModelBase class MyModel(VertaModelBase): def __init__(self, artifacts): self.weights = json.load(open(artifacts["weights"])) def predict(self, input): res = [] for row in input: res.append(row[0] * self.weights[0] + row[1] * self.weights[1]) return res from verta.environment import Python model_version = registered_model.create_standard_model( model_cls=MyModel, artifacts = {"weights" : [5, 6]}, environment=Python(requirements=["json"]), name="v0", labels=["prototype"], ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Keras 예제에서 잘라내기 Step2: 잘라내기 없이 MNIST에 대한 모델 훈련하기 Step3: 기준 테스트 정확성을 평가하고 나중에 사용할 수 있도록 모델을 저장합니다. Step4: 잘라내기로 사전 훈련된 모델 미세 조정하기 Step5: 기준선과 비교하여 모델 훈련 및 평가하기 Step6: 이 예제의 경우, 기준선과 비교하여 잘라낸 후 테스트 정확성의 손실이 최소화됩니다. Step7: 로그는 레이어별로 희소성의 진행률을 보여줍니다. Step8: Colab이 아닌 사용자의 경우, TensorBoard.dev에서 이 코드 블록의 이전 실행의 결과를 볼 수 있습니다. Step9: 그런 다음 TFLite용 압축 가능한 모델을 만듭니다. Step10: 실제로 gzip을 통해 모델을 압축하는 도우미 함수를 정의하고 압축된 크기를 측정합니다. Step11: 잘라내기로 3배 더 작아진 모델을 비교하고 확인합니다. Step12: 잘라내기와 양자화를 결합하여 10배 더 작은 모델 생성하기 Step13: TF에서 TFLite까지 정확성의 지속성 확인하기 Step14: 잘라낸 양자화 모델을 평가하고 TensorFlow의 정확성이 TFLite 백엔드까지 유지되는지 확인합니다.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ! pip install -q tensorflow-model-optimization import tempfile import os import tensorflow as tf import numpy as np from tensorflow import keras %load_ext tensorboard # Load MNIST dataset mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # Normalize the input image so that each pixel value is between 0 and 1. train_images = train_images / 255.0 test_images = test_images / 255.0 # Define the model architecture. model = keras.Sequential([ keras.layers.InputLayer(input_shape=(28, 28)), keras.layers.Reshape(target_shape=(28, 28, 1)), keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(10) ]) # Train the digit classification model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit( train_images, train_labels, epochs=4, validation_split=0.1, ) _, baseline_model_accuracy = model.evaluate( test_images, test_labels, verbose=0) print('Baseline test accuracy:', baseline_model_accuracy) _, keras_file = tempfile.mkstemp('.h5') tf.keras.models.save_model(model, keras_file, include_optimizer=False) print('Saved baseline model to:', keras_file) import tensorflow_model_optimization as tfmot prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude # Compute end step to finish pruning after 2 epochs. batch_size = 128 epochs = 2 validation_split = 0.1 # 10% of training set will be used for validation set. num_images = train_images.shape[0] * (1 - validation_split) end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs # Define model for pruning. pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50, final_sparsity=0.80, begin_step=0, end_step=end_step) } model_for_pruning = prune_low_magnitude(model, **pruning_params) # `prune_low_magnitude` requires a recompile. model_for_pruning.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model_for_pruning.summary() logdir = tempfile.mkdtemp() callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), tfmot.sparsity.keras.PruningSummaries(log_dir=logdir), ] model_for_pruning.fit(train_images, train_labels, batch_size=batch_size, epochs=epochs, validation_split=validation_split, callbacks=callbacks) _, model_for_pruning_accuracy = model_for_pruning.evaluate( test_images, test_labels, verbose=0) print('Baseline test accuracy:', baseline_model_accuracy) print('Pruned test accuracy:', model_for_pruning_accuracy) #docs_infra: no_execute %tensorboard --logdir={logdir} model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning) _, pruned_keras_file = tempfile.mkstemp('.h5') tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False) print('Saved pruned Keras model to:', pruned_keras_file) converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export) pruned_tflite_model = converter.convert() _, pruned_tflite_file = tempfile.mkstemp('.tflite') with open(pruned_tflite_file, 'wb') as f: f.write(pruned_tflite_model) print('Saved pruned TFLite model to:', pruned_tflite_file) def get_gzipped_model_size(file): # Returns size of gzipped model, in bytes. import os import zipfile _, zipped_file = tempfile.mkstemp('.zip') with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f: f.write(file) return os.path.getsize(zipped_file) print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file))) print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file))) print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file))) converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export) converter.optimizations = [tf.lite.Optimize.DEFAULT] quantized_and_pruned_tflite_model = converter.convert() _, quantized_and_pruned_tflite_file = tempfile.mkstemp('.tflite') with open(quantized_and_pruned_tflite_file, 'wb') as f: f.write(quantized_and_pruned_tflite_model) print('Saved quantized and pruned TFLite model to:', quantized_and_pruned_tflite_file) print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file))) print("Size of gzipped pruned and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_pruned_tflite_file))) import numpy as np def evaluate_model(interpreter): input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] # Run predictions on ever y image in the "test" dataset. prediction_digits = [] for i, test_image in enumerate(test_images): if i % 1000 == 0: print('Evaluated on {n} results so far.'.format(n=i)) # Pre-processing: add batch dimension and convert to float32 to match with # the model's input data format. test_image = np.expand_dims(test_image, axis=0).astype(np.float32) interpreter.set_tensor(input_index, test_image) # Run inference. interpreter.invoke() # Post-processing: remove batch dimension and find the digit with highest # probability. output = interpreter.tensor(output_index) digit = np.argmax(output()[0]) prediction_digits.append(digit) print('\n') # Compare prediction results with ground truth labels to calculate accuracy. prediction_digits = np.array(prediction_digits) accuracy = (prediction_digits == test_labels).mean() return accuracy interpreter = tf.lite.Interpreter(model_content=quantized_and_pruned_tflite_model) interpreter.allocate_tensors() test_accuracy = evaluate_model(interpreter) print('Pruned and quantized TFLite test_accuracy:', test_accuracy) print('Pruned TF test accuracy:', model_for_pruning_accuracy) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First we need to define materials that will be used in the problem Step2: With our three materials, we can now create a Materials object that can be exported to an actual XML file. Step3: Now let's move on to the geometry. This problem will be a square array of fuel pins and control rod guide tubes for which we can use OpenMC's lattice/universe feature. The basic universe will have three regions for the fuel, the clad, and the surrounding coolant. The first step is to create the bounding surfaces for fuel and clad, as well as the outer bounding surfaces of the problem. Step4: With the surfaces defined, we can now construct a fuel pin cell from cells that are defined by intersections of half-spaces created by the surfaces. Step5: Likewise, we can construct a control rod guide tube with the same surfaces. Step6: Using the pin cell universe, we can construct a 17x17 rectangular lattice with a 1.26 cm pitch. Step7: Next, we create a NumPy array of fuel pin and guide tube universes for the lattice. Step8: OpenMC requires that there is a "root" universe. Let us create a root cell that is filled by the pin cell universe and then assign it to the root universe. Step9: We now must create a geometry that is assigned a root universe and export it to XML. Step10: With the geometry and materials finished, we now just need to define simulation parameters. In this case, we will use 10 inactive batches and 40 active batches each with 2500 particles. Step11: Let us also create a plot to verify that our fuel assembly geometry was created successfully. Step12: As we can see from the plot, we have a nice array of fuel and guide tube pin cells with fuel, cladding, and water! Step13: Next, we will instantiate an openmc.mgxs.Library for the energy and delayed groups with our the fuel assembly geometry. Step14: Now, we can run OpenMC to generate the cross sections. Step15: Tally Data Processing Step16: The statepoint is now ready to be analyzed by the Library. We simply have to load the tallies from the statepoint into the Library and our MGXS objects will compute the cross sections for us under-the-hood. Step17: Using Tally Arithmetic to Compute the Delayed Neutron Precursor Concentrations Step18: Another useful feature of the Python API is the ability to extract the surface currents for the interfaces and surfaces of a mesh. We can inspect the currents for the mesh by getting the pandas dataframe. Step19: Cross Section Visualizations
<ASSISTANT_TASK:> Python Code: %matplotlib inline import math import matplotlib.pyplot as plt import numpy as np import openmc import openmc.mgxs # 1.6 enriched fuel fuel = openmc.Material(name='1.6% Fuel') fuel.set_density('g/cm3', 10.31341) fuel.add_nuclide('U235', 3.7503e-4) fuel.add_nuclide('U238', 2.2625e-2) fuel.add_nuclide('O16', 4.6007e-2) # borated water water = openmc.Material(name='Borated Water') water.set_density('g/cm3', 0.740582) water.add_nuclide('H1', 4.9457e-2) water.add_nuclide('O16', 2.4732e-2) water.add_nuclide('B10', 8.0042e-6) # zircaloy zircaloy = openmc.Material(name='Zircaloy') zircaloy.set_density('g/cm3', 6.55) zircaloy.add_nuclide('Zr90', 7.2758e-3) # Create a materials collection and export to XML materials = openmc.Materials((fuel, water, zircaloy)) materials.export_to_xml() # Create cylinders for the fuel and clad fuel_outer_radius = openmc.ZCylinder(r=0.39218) clad_outer_radius = openmc.ZCylinder(r=0.45720) # Create boundary planes to surround the geometry min_x = openmc.XPlane(x0=-10.71, boundary_type='reflective') max_x = openmc.XPlane(x0=+10.71, boundary_type='reflective') min_y = openmc.YPlane(y0=-10.71, boundary_type='reflective') max_y = openmc.YPlane(y0=+10.71, boundary_type='reflective') min_z = openmc.ZPlane(z0=-10., boundary_type='reflective') max_z = openmc.ZPlane(z0=+10., boundary_type='reflective') # Create a Universe to encapsulate a fuel pin fuel_pin_universe = openmc.Universe(name='1.6% Fuel Pin') # Create fuel Cell fuel_cell = openmc.Cell(name='1.6% Fuel') fuel_cell.fill = fuel fuel_cell.region = -fuel_outer_radius fuel_pin_universe.add_cell(fuel_cell) # Create a clad Cell clad_cell = openmc.Cell(name='1.6% Clad') clad_cell.fill = zircaloy clad_cell.region = +fuel_outer_radius & -clad_outer_radius fuel_pin_universe.add_cell(clad_cell) # Create a moderator Cell moderator_cell = openmc.Cell(name='1.6% Moderator') moderator_cell.fill = water moderator_cell.region = +clad_outer_radius fuel_pin_universe.add_cell(moderator_cell) # Create a Universe to encapsulate a control rod guide tube guide_tube_universe = openmc.Universe(name='Guide Tube') # Create guide tube Cell guide_tube_cell = openmc.Cell(name='Guide Tube Water') guide_tube_cell.fill = water guide_tube_cell.region = -fuel_outer_radius guide_tube_universe.add_cell(guide_tube_cell) # Create a clad Cell clad_cell = openmc.Cell(name='Guide Clad') clad_cell.fill = zircaloy clad_cell.region = +fuel_outer_radius & -clad_outer_radius guide_tube_universe.add_cell(clad_cell) # Create a moderator Cell moderator_cell = openmc.Cell(name='Guide Tube Moderator') moderator_cell.fill = water moderator_cell.region = +clad_outer_radius guide_tube_universe.add_cell(moderator_cell) # Create fuel assembly Lattice assembly = openmc.RectLattice(name='1.6% Fuel Assembly') assembly.pitch = (1.26, 1.26) assembly.lower_left = [-1.26 * 17. / 2.0] * 2 # Create array indices for guide tube locations in lattice template_x = np.array([5, 8, 11, 3, 13, 2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 2, 5, 8, 11, 14, 3, 13, 5, 8, 11]) template_y = np.array([2, 2, 2, 3, 3, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11, 13, 13, 14, 14, 14]) # Create universes array with the fuel pin and guide tube universes universes = np.tile(fuel_pin_universe, (17,17)) universes[template_x, template_y] = guide_tube_universe # Store the array of universes in the lattice assembly.universes = universes # Create root Cell root_cell = openmc.Cell(name='root cell', fill=assembly) # Add boundary planes root_cell.region = +min_x & -max_x & +min_y & -max_y & +min_z & -max_z # Create root Universe root_universe = openmc.Universe(universe_id=0, name='root universe') root_universe.add_cell(root_cell) # Create Geometry and export to XML geometry = openmc.Geometry(root_universe) geometry.export_to_xml() # OpenMC simulation parameters batches = 50 inactive = 10 particles = 2500 # Instantiate a Settings object settings = openmc.Settings() settings.batches = batches settings.inactive = inactive settings.particles = particles settings.output = {'tallies': False} # Create an initial uniform spatial source distribution over fissionable zones bounds = [-10.71, -10.71, -10, 10.71, 10.71, 10.] uniform_dist = openmc.stats.Box(bounds[:3], bounds[3:], only_fissionable=True) settings.source = openmc.Source(space=uniform_dist) # Export to "settings.xml" settings.export_to_xml() # Plot our geometry plot = openmc.Plot.from_geometry(geometry) plot.pixels = (250, 250) plot.color_by = 'material' openmc.plot_inline(plot) # Instantiate a 20-group EnergyGroups object energy_groups = openmc.mgxs.EnergyGroups() energy_groups.group_edges = np.logspace(-3, 7.3, 21) # Instantiate a 1-group EnergyGroups object one_group = openmc.mgxs.EnergyGroups() one_group.group_edges = np.array([energy_groups.group_edges[0], energy_groups.group_edges[-1]]) # Instantiate a tally mesh mesh = openmc.RegularMesh(mesh_id=1) mesh.dimension = [17, 17, 1] mesh.lower_left = [-10.71, -10.71, -10000.] mesh.width = [1.26, 1.26, 20000.] # Initialize an 20-energy-group and 6-delayed-group MGXS Library mgxs_lib = openmc.mgxs.Library(geometry) mgxs_lib.energy_groups = energy_groups mgxs_lib.num_delayed_groups = 6 # Specify multi-group cross section types to compute mgxs_lib.mgxs_types = ['total', 'transport', 'nu-scatter matrix', 'kappa-fission', 'inverse-velocity', 'chi-prompt', 'prompt-nu-fission', 'chi-delayed', 'delayed-nu-fission', 'beta'] # Specify a "mesh" domain type for the cross section tally filters mgxs_lib.domain_type = 'mesh' # Specify the mesh domain over which to compute multi-group cross sections mgxs_lib.domains = [mesh] # Construct all tallies needed for the multi-group cross section library mgxs_lib.build_library() # Create a "tallies.xml" file for the MGXS Library tallies_file = openmc.Tallies() mgxs_lib.add_to_tallies_file(tallies_file, merge=True) # Instantiate a current tally mesh_filter = openmc.MeshSurfaceFilter(mesh) current_tally = openmc.Tally(name='current tally') current_tally.scores = ['current'] current_tally.filters = [mesh_filter] # Add current tally to the tallies file tallies_file.append(current_tally) # Export to "tallies.xml" tallies_file.export_to_xml() # Run OpenMC openmc.run() # Load the last statepoint file sp = openmc.StatePoint('statepoint.50.h5') # Initialize MGXS Library with OpenMC statepoint data mgxs_lib.load_from_statepoint(sp) # Extrack the current tally separately current_tally = sp.get_tally(name='current tally') # Set the time constants for the delayed precursors (in seconds^-1) precursor_halflife = np.array([55.6, 24.5, 16.3, 2.37, 0.424, 0.195]) precursor_lambda = math.log(2.0) / precursor_halflife beta = mgxs_lib.get_mgxs(mesh, 'beta') # Create a tally object with only the delayed group filter for the time constants beta_filters = [f for f in beta.xs_tally.filters if type(f) is not openmc.DelayedGroupFilter] lambda_tally = beta.xs_tally.summation(nuclides=beta.xs_tally.nuclides) for f in beta_filters: lambda_tally = lambda_tally.summation(filter_type=type(f), remove_filter=True) * 0. + 1. # Set the mean of the lambda tally and reshape to account for nuclides and scores lambda_tally._mean = precursor_lambda lambda_tally._mean.shape = lambda_tally.std_dev.shape # Set a total nuclide and lambda score lambda_tally.nuclides = [openmc.Nuclide(name='total')] lambda_tally.scores = ['lambda'] delayed_nu_fission = mgxs_lib.get_mgxs(mesh, 'delayed-nu-fission') # Use tally arithmetic to compute the precursor concentrations precursor_conc = beta.xs_tally.summation(filter_type=openmc.EnergyFilter, remove_filter=True) * \ delayed_nu_fission.xs_tally.summation(filter_type=openmc.EnergyFilter, remove_filter=True) / lambda_tally # The difference is a derived tally which can generate Pandas DataFrames for inspection precursor_conc.get_pandas_dataframe().head(10) current_tally.get_pandas_dataframe().head(10) # Extract the energy-condensed delayed neutron fraction tally beta_by_group = beta.get_condensed_xs(one_group).xs_tally.summation(filter_type='energy', remove_filter=True) beta_by_group.mean.shape = (17, 17, 6) beta_by_group.mean[beta_by_group.mean == 0] = np.nan # Plot the betas plt.figure(figsize=(18,9)) fig = plt.subplot(231) plt.imshow(beta_by_group.mean[:,:,0], interpolation='none', cmap='jet') plt.colorbar() plt.title('Beta - delayed group 1') fig = plt.subplot(232) plt.imshow(beta_by_group.mean[:,:,1], interpolation='none', cmap='jet') plt.colorbar() plt.title('Beta - delayed group 2') fig = plt.subplot(233) plt.imshow(beta_by_group.mean[:,:,2], interpolation='none', cmap='jet') plt.colorbar() plt.title('Beta - delayed group 3') fig = plt.subplot(234) plt.imshow(beta_by_group.mean[:,:,3], interpolation='none', cmap='jet') plt.colorbar() plt.title('Beta - delayed group 4') fig = plt.subplot(235) plt.imshow(beta_by_group.mean[:,:,4], interpolation='none', cmap='jet') plt.colorbar() plt.title('Beta - delayed group 5') fig = plt.subplot(236) plt.imshow(beta_by_group.mean[:,:,5], interpolation='none', cmap='jet') plt.colorbar() plt.title('Beta - delayed group 6') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The following function runs a random model with a random independent variable y and four random covariates, using both the statsmodels and scikit-learn packages. The user can compare output from the two tools. Step2: The two models produce the same results.
<ASSISTANT_TASK:> Python Code: from data_cleaning_utils import import_data dat = import_data('../Data/Test/pool82014-10-02cleaned_Subset.csv') from regression import compare_OLS compare_OLS(dat) %matplotlib inline from regression import user_model user_model(data=dat) %matplotlib inline import pandas as pd from regression import plot_pairs plot_pairs(data=dat[['XCO2Dpp', 'XCH4Dpp', 'TempC', 'ChlAugL', 'TurbFNU', 'fDOMQSU', 'ODOmgL', 'pH', 'CH4uM', 'CO2uM']], minCorr=0.1, maxCorr=0.95) dat.columns dat.shape[1] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Then, read the (sample) input tables for blocking purposes. Step2: Combining Multiple Blockers
<ASSISTANT_TASK:> Python Code: # Import py_entitymatching package import py_entitymatching as em import os import pandas as pd # Get the datasets directory datasets_dir = em.get_install_path() + os.sep + 'datasets' # Get the paths of the input tables path_A = datasets_dir + os.sep + 'person_table_A.csv' path_B = datasets_dir + os.sep + 'person_table_B.csv' # Read the CSV files and set 'ID' as the key attribute A = em.read_csv_metadata(path_A, key='ID') B = em.read_csv_metadata(path_B, key='ID') #Blocking plan : #A, B --overlap blocking--> candset --attr-equiv-block--> candset | # | #A, B ------------rule-based-blocking--------------------> candset |----union--->candset # | #A, B -----------black-box-blocking----------------------> candset | # Overlap blocking over input tables ob = em.OverlapBlocker() # block using name C = ob.block_tables(A, B, 'name', 'name', word_level=True, overlap_size=1, l_output_attrs=['name', 'birth_year'], r_output_attrs=['name', 'birth_year'], show_progress=False) C # Overlap blocking over input tables ob = em.OverlapBlocker() # block using name C = ob.block_tables(A, B, 'name', 'name', word_level=True, overlap_size=1, l_output_attrs=['name', 'birth_year'], r_output_attrs=['name', 'birth_year'], show_progress=False) C # Attribute equivalence blocking: block C using birth_year ab = em.AttrEquivalenceBlocker() D = ab.block_candset(C, 'birth_year', 'birth_year', show_progress=False) D # Rule-based blocking over input tables # first get features that can be used feature_table = em.get_features_for_blocking(A, B, validate_inferred_attr_types=False) # Create rule-based blocker rb = em.RuleBasedBlocker() # Add rule : block tuples if name_name_lev(ltuple, rtuple) < 0.4 rb.add_rule(['name_name_lev_sim(ltuple, rtuple) < 0.4'], feature_table) E = rb.block_tables(A, B, l_output_attrs=['name'], r_output_attrs=['name'], show_progress=False) # Apply black box blocker # Create black box blocker bb = em.BlackBoxBlocker() # define a black box function. # The blocker function should drop tuple pairs whose last name do not match # The function has to do the following steps # 1) Get name attributes from each of the tuples # 2) Split name attribute to get last name # 3) if last names donot match return True def my_function(x, y): # x, y will be of type pandas series # get name attribute x_name = x['name'] y_name = y['name'] # get last names x_name = x_name.split(' ')[1] y_name = y_name.split(' ')[1] # check if last names match if x_name != y_name: return True else: return False bb.set_black_box_function(my_function) F = bb.block_tables(A, B, l_output_attrs=['name'], r_output_attrs=['name'], show_progress=False) F # Combine all the blocker outputs G = em.combine_blocker_outputs_via_union([D, E, F]) G em.show_properties(G) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we set up all necessary simulation parameters Step2: Next we set up the system. As in part I, the orientation of the dipole moments is set directly on the particles, whereas the magnitude of the moments is taken into account when determining the prefactor of the dipolar P3M (for more details see part I). Step3: Now we equilibrate for a while Step4: As we need the magnetization of our system, we use <tt>espressomd.observables.MagneticDipoleMoment</tt> to calculate the total dipole moment of the system which is the magnetization times the volume of the system. Step5: Now we set the desired number of loops for the sampling Step6: and sample the first and second moment of the magnetization or total dipole moment, by averaging over all total dipole moments occurring during the simulation Step7: For the estimator of the initial susceptibility $\chi_\mathrm{init}$ we need the magnitude of one single dipole moment Step8: Now we can calculate $\chi_\mathrm{init}$ from our simulation data Step9: and print the result Step10: Compared with the value $\chi = 0.822 \pm 0.017$ of Ref. <a href='#[1]'>[1]</a> (see table 1) it should be very similar. Step11: and at second with the more advanced one (see Ref. <a href='#[1]'>[1]</a> eq. (6)) which has a cubic accuracy in $\chi_\mathrm{L}$ and reads Step12: Both of them should be smaller than our result, but the second one should be closer to our one. The deviation of the theoretical results to our simulation result can be explained by the fact that in the Langevin model there are no interactions between the particles incorporated at all and the more advanced (mean-field-type) one of Ref. <a href='#[1]'>[1]</a> do not take occurring cluster formations into account but assumes a homogeneous distribution of the particles. For higher values of the volume fraction $\phi$ and the dipolar interaction parameter $\lambda$ the deviations will increase as the cluster formation will become more pronounced. Step13: Now for each value in this list we sample the total dipole moment / magnetization of the system for a while. Keep in mind that we only the current orientation of the dipole moments, i.e. the unit vector of the dipole moments, is saved in the particle list but not their magnitude. Thus we have to use $H\cdot \mu$ as the external magnetic field, where $\mu$ is the magnitude of a single magnetic dipole moment. Step14: Now we define the Langevin function and the modified mean-field-approximation of the Langevin parameter of Ref. <a href='#[2]'>[2]</a> Step15: We also want to plot the linear approximation at $\alpha = 0$ to see for which values of $\alpha$ this approximation holds. We use the initial susceptibility calculated in the first chapter of this part as the gradient. As we want the gradient of $M^*$ with respect to $\alpha$ which fulfills the relation
<ASSISTANT_TASK:> Python Code: import espressomd import espressomd.magnetostatics espressomd.assert_features('DIPOLES', 'LENNARD_JONES') import numpy as np lj_sigma = 1 lj_epsilon = 1 lj_cut = 2**(1. / 6.) * lj_sigma # magnetic field constant mu_0 = 1. # Particles N = 1000 # Volume fraction # phi = rho * 4. / 3. * np.pi * ( lj_sigma / 2 )**3. phi = 0.0262 # Dipolar interaction parameter lambda = mu_0 m^2 /(4 pi sigma^3 kT) dip_lambda = 3. # Temperature kT = 1.0 # Friction coefficient gamma = 1.0 # Time step dt = 0.02 # box size 3d box_size = (N * np.pi * 4. / 3. * (lj_sigma / 2.)**3. / phi)**(1. / 3.) system = espressomd.System(box_l=(box_size, box_size, box_size)) system.time_step = dt # Lennard-Jones interaction system.non_bonded_inter[0, 0].lennard_jones.set_params(epsilon=lj_epsilon, sigma=lj_sigma, cutoff=lj_cut, shift="auto") # Random dipole moments np.random.seed(seed=1) dip_phi = 2 * np.pi * np.random.random((N, 1)) dip_cos_theta = 2 * np.random.random((N, 1)) - 1 dip_sin_theta = np.sin(np.arccos(dip_cos_theta)) dip = np.hstack(( dip_sin_theta * np.sin(dip_phi), dip_sin_theta * np.cos(dip_phi), dip_cos_theta)) # Random positions in system volume pos = box_size * np.random.random((N, 3)) # Add particles particles = system.part.add(pos=pos, rotation=N * [(True, True, True)], dip=dip) # Remove overlap between particles by means of the steepest descent method system.integrator.set_steepest_descent( f_max=0, gamma=0.1, max_displacement=0.05) while system.analysis.energy()["total"] > 5 * kT * N: system.integrator.run(20) # Switch to velocity Verlet integrator system.integrator.set_vv() system.thermostat.set_langevin(kT=kT, gamma=gamma, seed=1) # tune verlet list skin system.cell_system.skin = 0.8 # Setup dipolar P3M accuracy = 5E-4 system.actors.add(espressomd.magnetostatics.DipolarP3M(accuracy=accuracy, prefactor=dip_lambda * lj_sigma**3 * kT)) print("Equilibration...") equil_rounds = 10 equil_steps = 1000 for i in range(equil_rounds): system.integrator.run(equil_steps) print("progress: {:3.0f}%, dipolar energy: {:9.2f}".format( (i + 1) * 100. / equil_rounds, system.analysis.energy()["dipolar"]), end="\r") print("\nEquilibration done") import espressomd.observables dipm_tot_calc = espressomd.observables.MagneticDipoleMoment(ids=particles.id) # Sampling loops = 2000 print('Sampling ...') # initialize array for hold the sampled dipole moments dipms = np.full((loops, 3), np.nan) # sample dipole moment for i in range(loops): system.integrator.run(10) dipms[i, :] = dipm_tot_calc.calculate() # print progress only every 10th cycle if (i + 1) % 10 == 0: print("progress: {:3.0f}%".format((i + 1) * 100. / loops), end="\r") print("\nSampling done") # calculate average first and second moment of total dipole moment dipm_tot = np.mean(dipms, axis=0) dipm_tot_2 = np.mean(dipms**2, axis=0) # dipole moment dipm = np.sqrt(dip_lambda * 4 * np.pi * lj_sigma**3. * kT / mu_0) print("dipm = {}".format(dipm)) # susceptibility in 3d system chi = mu_0 / (system.volume() * 3. * kT) * (np.sum(dipm_tot_2 * dipm**2.) - np.sum(np.square(dipm_tot * dipm))) print('chi = %.4f' % chi) chi_L = 8. * dip_lambda * phi print('chi_L = %.4f' % chi_L) chi_I = chi_L * (1 + chi_L / 3. + chi_L**2. / 144.) print('chi_I = %.4f' % chi_I) alphas = np.array([0, 0.25, 0.5, 1, 2, 3, 4, 8]) # remove all constraints system.constraints.clear() # array for magnetizations in field direction magnetizations = np.full_like(alphas, np.nan) # use result for alpha=0 from previous chapter magnetizations[0] = np.average(dipm_tot) # number of loops for sampling loops_m = 500 for ndx, alpha in enumerate(alphas): if alpha == 0: continue print("Sample for alpha = {}".format(alpha)) H_dipm = (alpha * kT) H_field = [H_dipm, 0, 0] print("Set magnetic field constraint...") H_constraint = espressomd.constraints.HomogeneousMagneticField(H=H_field) system.constraints.add(H_constraint) print("done\n") # Equilibration print("Equilibration...") for i in range(equil_rounds): system.integrator.run(equil_steps) print("progress: {:3.0f}%, dipolar energy: {:9.2f}".format( (i + 1) * 100. / equil_rounds, system.analysis.energy()["dipolar"]), end="\r") print("\nEquilibration done\n") # Sampling print("Sampling...") magn_temp = np.full(loops_m, np.nan) for i in range(loops_m): system.integrator.run(20) magn_temp[i] = dipm_tot_calc.calculate()[0] print("progress: {:3.0f}%".format((i + 1) * 100. / loops_m), end="\r") print("\n") # save average magnetization magnetizations[ndx] = np.mean(magn_temp) print("Sampling for alpha = {} done \n".format(alpha)) print("magnetizations = {}".format(magnetizations)) print("total progress: {:5.1f}%\n".format(ndx * 100. / (len(alphas) - 1))) # remove constraint system.constraints.clear() print("Magnetization curve sampling done") # Langevin function def L(y): return np.cosh(y) / np.sinh(y) - 1 / y # second order mean-field-model from Ref. [2] def alpha_mean_field(alpha, dip_lambda, phi): chi = 8. * dip_lambda * phi return alpha + chi * L(alpha) + chi**2. / 16. * L(alpha) * (1. / alpha**2. - 1. / np.sinh(alpha)**2.) import matplotlib.pyplot as plt y = np.arange(0.01, 10, 0.1) initial_susceptibility = system.volume() * kT * chi / (N * mu_0 * dipm**2) plt.figure(figsize=(10, 10)) plt.ylim(0, 1.) plt.xlabel(r'$\alpha$', fontsize=20) plt.ylabel(r'$M^*$', fontsize=20) plt.plot(y, L(y), label='Langevin function') plt.plot(y, L(alpha_mean_field(y, dip_lambda, phi)), label='modified mean-field-theory') plt.plot(alphas, magnetizations / N, 'o', label='simulation results') plt.plot(y, initial_susceptibility * y, label=r'linear approximation at $\alpha = 0$') plt.legend(fontsize=20) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Split data into training and validation sets Step2: Redefining the problem Step3: Scaling Step4: Parameters Step5: Basic RNN Step6: Execution phase
<ASSISTANT_TASK:> Python Code: # Import libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf # Import data, format dates, sort data ascending by date data = pd.read_csv( 'data/AirPassengers.csv', sep=',', header=0, names=['date','no_passengers'], usecols=['date','no_passengers']) data['date'] = pd.to_datetime(data['date']) data = data.sort_values(by=['date'], ascending=True) # Store date and no_passengers columns in numpy style arrays dates = data['date'].as_matrix() nos_passengers = data['no_passengers'].as_matrix() # Plot monthly airline passengers plt.figure(figsize=(16,8)) plt.plot(dates, nos_passengers) plt.title('Monthly airline passengers', fontsize=18) plt.xlabel('Date', fontsize=18) plt.ylabel('No. of passengers [thousands]', fontsize=18) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.show() # Number of steps (months) into the future to predict n_pred_steps = 12 # Split data into training and validation sets dates_train = dates[0:len(dates)-n_pred_steps] nos_passengers_train = nos_passengers[0:len(nos_passengers)-n_pred_steps] dates_valid = dates[len(dates)-n_pred_steps:len(dates)] nos_passengers_valid = nos_passengers[len(nos_passengers)-n_pred_steps:len(nos_passengers)] # Compute percent change from previous month to current month previous_train = nos_passengers_train[0:len(nos_passengers_train)-1] current_train = nos_passengers_train[1:len(nos_passengers_train)] changes_train = ((current_train - previous_train) / previous_train) * 100 # Assume no percent change from previous month at first month changes_train = np.insert(changes_train, 0, 0) # Plot monthly airline passengers % change plt.figure(figsize=(16,8)) plt.plot(dates_train, changes_train) plt.title('Monthly airline passengers % change', fontsize=18) plt.xlabel('Date', fontsize=18) plt.ylabel('% Change', fontsize=18) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.show() # Normalize percent changes changes_train_min = min(changes_train) changes_train_max = max(changes_train) changes_train_normalized = (changes_train - changes_train_min) / (changes_train_max - changes_train_min) # Plot monthly airline passengers normalized % change plt.figure(figsize=(16,8)) plt.plot(dates_train, changes_train_normalized) plt.title('Monthly airline passengers normalized % change', fontsize=18) plt.xlabel('Date', fontsize=18) plt.ylabel('Normalized % Change', fontsize=18) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.show() # Initialize graph parameters n_inputs = 1 # no. of nodes in input layer n_hidden = 100 # no. of nodes in hidden layer n_outputs = 1 # no. of nodes in output layer # Initialize batch parameters batch_size = 50 # no. of training examples to consider at each training iteration n_steps = 12 # no. of steps in each input sequence # Initialize optimizer parameters n_iterations = 10000 # no. of training iterations to perform learning_rate = 0.001 # learning rate for training # Reset the default graph tf.reset_default_graph() # Define placeholder nodes for batches of training inputs and outputs, respectively, to occupy X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) y = tf.placeholder(tf.float32, [None, n_steps, n_outputs]) # Define RNN cells and a dynamic RNN, which performs fully dynamic unrolling of inputs cell = tf.contrib.rnn.BasicRNNCell(num_units=n_hidden, activation=tf.nn.relu) rnn_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32) # Stack all the outputs by reshaping from [batch_size, n_steps, n_hidden] to [batch_size * n_steps, n_hidden] stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_hidden]) # Project output by applying a single fully connected layer stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs) # Unstack projection by reshaping from [batch_size * n_steps, n_outputs] to [batch_size, n_steps, n_outputs] outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs]) # Define MSE loss function, an Adam optimizer, and the training operation. loss = tf.reduce_mean(tf.square(outputs - y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) training_op = optimizer.minimize(loss) # Create node in graph that will initialize all variables when run init = tf.global_variables_initializer() # Create a Saver node for saving and restoring model. saver = tf.train.Saver() def next_batch(input_sequence, batch_size, n_steps): i_first = 0 i_last = len(input_sequence) i_starts = np.random.randint(i_first, high=i_last-n_steps, size=(batch_size, 1)) i_sequences = i_starts + np.arange(0, n_steps + 1) flat_i_sequences = np.ravel(i_sequences[:,:]) flat_sequences = input_sequence[flat_i_sequences] sequences = flat_sequences.reshape(batch_size,-1) return sequences[:, :-1].reshape(-1, n_steps, 1), sequences[:, 1:].reshape(-1, n_steps, 1) with tf.Session() as sess: init.run() for iteration in range(n_iterations): X_batch, y_batch = next_batch(changes_train_normalized, batch_size, n_steps) sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) if iteration % 1000 == 0: mse = loss.eval(feed_dict={X: X_batch, y: y_batch}) print(iteration, "\tMSE:", mse) saver.save(sess, "./AirPassengersModel") changes_train_normalized_working = changes_train_normalized changes_pred_normalized = np.array([]) with tf.Session() as sess: saver.restore(sess, "./AirPassengersModel") for pred in range(n_pred_steps): flat_X_new = changes_train_normalized_working[len(changes_train_normalized_working)-n_steps:len(changes_train_normalized_working)] X_new = flat_X_new.reshape(1,-1).reshape(-1, n_steps, 1) y_pred = sess.run(outputs, feed_dict={X: X_new}) changes_pred_normalized = np.append(changes_pred_normalized, [y_pred[0, n_steps-1, 0]], axis=0) changes_train_normalized_working = np.append(changes_train_normalized, changes_pred_normalized, axis=0) changes_pred = changes_pred_normalized * (changes_train_max - changes_train_min) + changes_train_min nos_passengers_pred = np.array([nos_passengers_train[len(nos_passengers_train)-1]]) for pred in range(n_pred_steps): nos_passengers_pred = np.append(nos_passengers_pred, [nos_passengers_pred[pred] + nos_passengers_pred[pred] * (changes_pred[pred] / 100)], axis=0) nos_passengers_pred = np.delete(nos_passengers_pred, 0) # Plot monthly airline passengers (validation vs prediction) plt.figure(figsize=(16,8)) plt.plot(dates_valid, nos_passengers_valid, '-', label="actual") plt.plot(dates_valid, nos_passengers_pred, '--', label="predicted") plt.title('Monthly airline passengers (actual vs predicted)', fontsize=18) plt.xlabel('Month', fontsize=18) plt.ylabel('No. of passengers [thousands]', fontsize=18) plt.xticks(dates_valid, ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], rotation='horizontal', fontsize=16) plt.yticks(fontsize=16) plt.legend(loc="upper left", fontsize=16) plt.show() percent_error = np.absolute((nos_passengers_pred - nos_passengers_valid) / nos_passengers_valid) * 100 np.round(100-np.mean(percent_error)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: What versions are we running? Step2: Local Functions Step3: Generate Data Step4: View means of the various combinations (poisson mean values) Step5: Briefly Describe Dataset Step6: Observe Step7: 1. Manual method, create design matrices and manually specify model Step8: Create Model Step9: Sample Model Step10: View Diagnostics Step11: Observe Step12: Observe Step13: Sample Model Step14: View Traces Step15: Transform coeffs Step16: Observe Step17: ... of 9.45 with a range [25%, 75%] of [4.17, 24.18], we see this is pretty close to the overall mean of
<ASSISTANT_TASK:> Python Code: ## Interactive magics %matplotlib inline %qtconsole --colors=linux import sys import warnings warnings.filterwarnings('ignore') import regex as re import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import patsy as pt from scipy import optimize # pymc3 libraries import pymc3 as pm import theano as thno import theano.tensor as T # import pystan # get watermark %install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py sns.set(style="darkgrid", palette="muted") pd.set_option('display.mpl_style', 'default') plt.rcParams['figure.figsize'] = 14, 6 np.random.seed(0) %load_ext watermark %watermark -dmvgp numpy,scipy,pandas,matplotlib,pymc3,theano print('Recursion limit {}'.format(sys.getrecursionlimit())) def strip_derived_rvs(rvs): '''Convenience fn: remove PyMC3-generated RVs from a list''' ret_rvs = [] for rv in rvs: if not (re.search('_log',rv.name) or re.search('_interval',rv.name)): ret_rvs.append(rv) return ret_rvs def plot_traces_pymc(trcs, varnames=None): ''' Convenience fn: plot traces with overlaid means and values ''' nrows = len(trcs.varnames) if varnames is not None: nrows = len(varnames) ax = pm.traceplot(trcs, varnames=varnames, figsize=(12,nrows*1.4), lines={k: v['mean'] for k, v in pm.df_summary(trcs,varnames=varnames).iterrows()}) for i, mn in enumerate(pm.df_summary(trcs, varnames=varnames)['mean']): ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data', xytext=(5,10), textcoords='offset points', rotation=90, va='bottom', fontsize='large', color='#AA0022') # decide poisson theta values theta_noalcohol_meds = 1 # no alcohol, took an antihist theta_alcohol_meds = 3 # alcohol, took an antihist theta_noalcohol_nomeds = 6 # no alcohol, no antihist theta_alcohol_nomeds = 36 # alcohol, no antihist # create samples q = 1000 df = pd.DataFrame({ 'nsneeze': np.concatenate((np.random.poisson(theta_noalcohol_meds, q), np.random.poisson(theta_alcohol_meds, q), np.random.poisson(theta_noalcohol_nomeds, q), np.random.poisson(theta_alcohol_nomeds, q))), 'alcohol': np.concatenate((np.repeat(False, q), np.repeat(True, q), np.repeat(False, q), np.repeat(True, q))), 'nomeds': np.concatenate((np.repeat(False, q), np.repeat(False, q), np.repeat(True, q), np.repeat(True, q)))}) df.tail() df.groupby(['alcohol','nomeds']).mean().unstack() g = sns.factorplot(x='nsneeze', row='nomeds', col='alcohol', data=df, kind='count', size=4, aspect=1.5) fml = 'nsneeze ~ alcohol + antihist + alcohol:antihist' # full patsy formulation fml = 'nsneeze ~ alcohol * nomeds' # lazy, alternative patsy formulation (mx_en, mx_ex) = pt.dmatrices(fml, df, return_type='dataframe', NA_action='raise') pd.concat((mx_ex.head(3),mx_ex.tail(3))) with pm.Model() as mdl_fish: # define priors, weakly informative Normal b0 = pm.Normal('b0_intercept', mu=0, sd=10) b1 = pm.Normal('b1_alcohol[T.True]', mu=0, sd=10) b2 = pm.Normal('b2_nomeds[T.True]', mu=0, sd=10) b3 = pm.Normal('b3_alcohol[T.True]:nomeds[T.True]', mu=0, sd=10) # define linear model and exp link function theta = (b0 + b1 * mx_ex['alcohol[T.True]'] + b2 * mx_ex['nomeds[T.True]'] + b3 * mx_ex['alcohol[T.True]:nomeds[T.True]']) ## Define Poisson likelihood y = pm.Poisson('y', mu=np.exp(theta), observed=mx_en['nsneeze'].values) with mdl_fish: start_MAP = pm.find_MAP(fmin=optimize.fmin_powell) trc_fish = pm.sample(2000, start=start_MAP, njobs=2, step=pm.NUTS()) rvs_fish = [rv.name for rv in strip_derived_rvs(mdl_fish.unobserved_RVs)] plot_traces_pymc(trc_fish[-1000:], varnames=rvs_fish) np.exp(pm.df_summary(trc_fish[-1000:], varnames=rvs_fish)[['mean','hpd_2.5','hpd_97.5']]) with pm.Model() as mdl_fish_alt: pm.glm.glm(fml, df, family=pm.glm.families.Poisson()) with mdl_fish_alt: start_MAP_alt = pm.find_MAP(fmin=optimize.fmin_powell) trc_fish_alt = pm.sample(4000, start=start_MAP_alt, njobs=1, step=pm.NUTS()) rvs_fish_alt = [rv.name for rv in strip_derived_rvs(mdl_fish_alt.unobserved_RVs)] plot_traces_pymc(trc_fish_alt[-1000:], varnames=rvs_fish_alt) np.exp(pm.df_summary(trc_fish_alt[-1000:], varnames=rvs_fish_alt)[['mean','hpd_2.5','hpd_97.5']]) np.percentile(trc_fish_alt[-1000:]['mu'], [25,50,75]) df['nsneeze'].mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Carte en moyenne temporelle sur la totalité de l'expérience Step2: Carte en moyenne temporelle de $\chi$
<ASSISTANT_TASK:> Python Code: filename = 'resultat.nc' import numpy as np import matplotlib.pyplot as plt from pylab import * import cartopy.crs as ccrs from netCDF4 import Dataset from scipy.special import logit, expit %matplotlib inline import warnings warnings.filterwarnings('ignore') data = Dataset(filename) longitude=data.variables['longitude'][:] latitude=data.variables['latitude'][:] altitude=data.variables['altitude'][:] Time = data.variables['Time'][:] Ls = data.variables['Ls'][:] dafirst = Time[0] daint = Time[1] - dafirst dalast = dafirst + (len(Time)-1)*daint year = 0. add = np.linspace(dafirst,dalast,num=len(Time)) ; add[0] = 0. for iii in range(1,len(Ls)): if Ls[iii] - Ls[iii-1] < 0: year = year+1. add[iii] = year*360. Ls_true = add + Ls # Paramètres utilisateurs ----------------------------------------- earthtopo = False # ajouter les traits de côte actuels varname = 'tsurf' vmin = 220 vmax = 350 # Code ------------------------------------------------------------ dataplt = data.variables[varname][:,:,:] fig = plt.figure(figsize=(12,8)) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_global() if (earthtopo): ax.coastlines(resolution="110m",linewidth=1) gl = ax.gridlines(linestyle='--',color='black', draw_labels=True) gl.xlabels_top = False gl.ylabels_right = False clevs = np.linspace(vmin,vmax,29) plt.contourf(longitude, latitude, np.mean(dataplt[:,:,:],axis=0), clevs, transform=ccrs.PlateCarree(),cmap="jet") plt.title(r"Température de surface moyenne", size=14) cb = plt.colorbar(ax=ax, orientation="vertical", pad=0.02, aspect=16, shrink=0.8) cb.set_label(r'K',size=12,rotation=0,labelpad=15) cb.ax.tick_params(labelsize=10) plt.show() def psatw(temp): # METHOD GOFF GRATCH (HygroLP) - OVER WATER # ----------------------------------------- log10ew = -7.90298*(373.16/temp-1) \ + 5.02808 * np.log10(373.16/temp) \ - 1.3816e-7 * (10**(11.344 * (1-temp/373.16))-1) \ + 8.1328e-3 * (10**(-3.49149 *(373.16/temp-1))-1) \ + np.log10(1013.246) return 100 * (10**(log10ew)) def psati(temp): # METHOD GOFF GRATCH (HygroLP) - OVER ICE # --------------------------------------- log10ei = -9.09718*(273.16/temp-1) \ - 3.56654*np.log10(273.16/temp) \ + 0.876793*(1-temp/273.16) \ + np.log10(6.1071) return 100 * (10**(log10ei)) def leafratio(temp,pvap,alti): # all inputs in ISU vpd = (psatw(temp) - pvap)/1e3 # in kPa xhi=(expit(0.0545*(temp-273.15-25.)-0.5*np.log(vpd)-0.0815*alti*1e-3+1.189)) return xhi # Paramètres utilisateurs ----------------------------------------- earthtopo = False # ajouter les traits de côte actuels vmin = 0. vmax = 1. # Code ------------------------------------------------------------ psnc = data.variables['ps'][:,:,:] tempnc = data.variables['temp'][:,:,:,:] qvapnc = data.variables['h2o_vap'][:,:,:,:] phisnc = data.variables['phisinit'][:,:] pvap = qvapnc[:,0,:,:]*psnc[:,:,:]/0.622 # en Pa alti = phisnc/9.81 # en metres mask = alti alti[alti <= 0] = np.nan alti[alti > 0] = 1. dataplt = np.zeros([len(Time),len(longitude),len(latitude)]) for itime in range(len(Time)): for ilon in range(len(longitude)): for ilat in range(len(latitude)): dataplt[itime,ilon,ilat] = leafratio(tempnc[itime,0,ilon,ilat], pvap[itime,ilon,ilat], alti[ilon,ilat]) fig = plt.figure(figsize=(12,8)) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_global() if (earthtopo): ax.coastlines(resolution="110m",linewidth=1) gl = ax.gridlines(linestyle='--',color='black', draw_labels=True) gl.xlabels_top = False gl.ylabels_right = False clevs = np.linspace(vmin,vmax,21) plt.contourf(longitude, latitude, np.mean(dataplt[:,:,:],axis=0)*mask, clevs, transform=ccrs.PlateCarree(),cmap="jet") plt.title(r"Leaf to ambient $CO_2$ partial pressures", size=14) cb = plt.colorbar(ax=ax, orientation="vertical", pad=0.02, aspect=16, shrink=0.8) cb.set_label(r'NU',size=12,rotation=0,labelpad=15) cb.ax.tick_params(labelsize=10) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We first define a function to prepare the datas in the format of keras (theano). The function also reduces the size of the imagesfrom 100X100 to 32X32. Step2: We then load the training set and the test set and prepare them with the function prep_datas. Step3: Image before/after compression Step4: Lenet neural network Step5: We build the neural network and fit it on the training set Step6: We now compare with the real world images (with the deshear method) Step7: with the labels of Peter
<ASSISTANT_TASK:> Python Code: import os import numpy as np import tools as im from matplotlib import pyplot as plt from skimage.transform import resize %matplotlib inline path=os.getcwd()+'/' # finds the path of the folder in which the notebook is path_train=path+'images/train/' path_test=path+'images/test/' path_real=path+'images/real_world/' def prep_datas(xset,xlabels): X=list(xset) for i in range(len(X)): X[i]=resize(X[i],(32,32,1)) #reduce the size of the image from 100X100 to 32X32. Also flattens the color levels X=np.reshape(X,(len(X),1,32,32)) # reshape the liste to have the form required by keras (theano), ie (1,32,32) X=np.array(X) #transforms it into an array Y = np.eye(2, dtype='uint8')[xlabels] # generates vectors, here of two elements as required by keras (number of classes) return X,Y training_set, training_labels = im.load_images(path_train) test_set, test_labels = im.load_images(path_test) X_train,Y_train=prep_datas(training_set,training_labels) X_test,Y_test=prep_datas(test_set,test_labels) i=11 plt.subplot(1,2,1) plt.imshow(training_set[i],cmap='gray') plt.subplot(1,2,2) plt.imshow(X_train[i][0],cmap='gray') # import the necessary packages from keras.models import Sequential from keras.layers.convolutional import Convolution2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation from keras.layers.core import Flatten from keras.layers.core import Dense from keras.optimizers import SGD # this code comes from http://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/ class LeNet: @staticmethod def build(width, height, depth, classes, weightsPath=None): # initialize the model model = Sequential() # first set of CONV => RELU => POOL model.add(Convolution2D(20, 5, 5, border_mode="same",input_shape=(depth, height, width))) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # second set of CONV => RELU => POOL model.add(Convolution2D(50, 5, 5, border_mode="same")) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # set of FC => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation("relu")) # softmax classifier model.add(Dense(classes)) model.add(Activation("softmax")) # return the constructed network architecture return model model = LeNet.build(width=32, height=32, depth=1, classes=2) opt = SGD(lr=0.01)#Sochastic gradient descent with learning rate 0.01 model.compile(loss="categorical_crossentropy", optimizer=opt,metrics=["accuracy"]) model.fit(X_train, Y_train, batch_size=10, nb_epoch=300,verbose=1) y_pred = model.predict_classes(X_test) print(y_pred) print(test_labels) real_world_set=[] for i in np.arange(1,73): filename=path+'images/real_world/'+str(i)+'.png' real_world_set.append(im.deshear(filename)) fake_label=np.ones(len(real_world_set),dtype='int32') X_real,Y_real=prep_datas(real_world_set,fake_label) y_pred = model.predict_classes(X_real) f=open(path+'images/real_world/labels.txt',"r") lines=f.readlines() result=[] for x in lines: result.append((x.split(' ')[1]).replace('\n','')) f.close() result=np.array([int(x) for x in result]) result[result>1]=1 plt.plot(y_pred,'o') plt.plot(2*result,'o') plt.ylim(-0.5,2.5); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: MIDAS ADL Step2: Figure 1 Step3: Mixing Frequencies Step4: The arguments here are as follows Step5: You can also call forecast directly. This will use the optimization results returned from eatimate to produce a forecast for every date in the index of the forecast inputs (here xf and ylf) Step6: Comparison against univariate ARIMA model Step7: The midas_adl function Step8: You can also change the polynomial used to weight the MIDAS coefficients. The default is 'beta', but you can also specify exponential Almom weighting ('expalmon') or beta with non-zero last term ('betann') Step9: Rolling and Recursive Forecasting Step10: The recursive method is similar except that the start date does not change, so the range over which the fitting happens increases for each new forecast. Step11: Nowcasting Step12: Not surprisingly the RMSE drops considerably.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import datetime import numpy as np import pandas as pd from midas.mix import mix_freq from midas.adl import estimate, forecast, midas_adl, rmse gdp = pd.read_csv('../tests/data/gdp.csv', parse_dates=['DATE'], index_col='DATE') pay = pd.read_csv('../tests/data/pay.csv', parse_dates=['DATE'], index_col='DATE') gdp.tail() pay.tail() gdp_yoy = ((1. + (np.log(gdp.GDP) - np.log(gdp.GDP.shift(3)))) ** 4) - 1. emp_yoy = ((1. + (np.log(pay.PAY) - np.log(pay.PAY.shift(1)))) ** 12) - 1. df = pd.concat([gdp_yoy, emp_yoy], axis=1) df.columns = ['gdp_yoy', 'emp_yoy'] df[['gdp_yoy','emp_yoy']].loc['1980-1-1':].plot(figsize=(15,4), style=['o','-']) gdp['gdp_growth'] = (np.log(gdp.GDP) - np.log(gdp.GDP.shift(1))) * 100. pay['emp_growth'] = (np.log(pay.PAY) - np.log(pay.PAY.shift(1))) * 100. y, yl, x, yf, ylf, xf = mix_freq(gdp.gdp_growth, pay.emp_growth, "3m", 1, 3, start_date=datetime.datetime(1985,1,1), end_date=datetime.datetime(2009,1,1)) x.head() res = estimate(y, yl, x, poly='beta') res.x fc = forecast(xf, ylf, res, poly='beta') forecast_df = fc.join(yf) forecast_df['gap'] = forecast_df.yfh - forecast_df.gdp_growth forecast_df gdp.join(fc)[['gdp_growth','yfh']].loc['2005-01-01':].plot(style=['-o','-+'], figsize=(12, 4)) import statsmodels.tsa.api as sm m = sm.AR(gdp['1975-01-01':'2011-01-01'].gdp_growth,) r = m.fit(maxlag=1) r.params fc_ar = r.predict(start='2005-01-01') fc_ar.name = 'xx' df_p = gdp.join(fc)[['gdp_growth','yfh']] df_p.join(fc_ar)[['gdp_growth','yfh','xx']].loc['2005-01-01':].plot(style=['-o','-+'], figsize=(12, 4)) rmse_fc, fc = midas_adl(gdp.gdp_growth, pay.emp_growth, start_date=datetime.datetime(1985,1,1), end_date=datetime.datetime(2009,1,1), xlag="3m", ylag=1, horizon=3) rmse_fc rmse_fc, fc = midas_adl(gdp.gdp_growth, pay.emp_growth, start_date=datetime.datetime(1985,1,1), end_date=datetime.datetime(2009,1,1), xlag="3m", ylag=1, horizon=3, poly='expalmon') rmse_fc results = {h: midas_adl(gdp.gdp_growth, pay.emp_growth, start_date=datetime.datetime(1985,10,1), end_date=datetime.datetime(2009,1,1), xlag="3m", ylag=1, horizon=3, forecast_horizon=h, poly='beta', method='rolling') for h in (1, 2, 5)} results[1][0] results = {h: midas_adl(gdp.gdp_growth, pay.emp_growth, start_date=datetime.datetime(1985,10,1), end_date=datetime.datetime(2009,1,1), xlag="3m", ylag=1, horizon=3, forecast_horizon=h, poly='beta', method='recursive') for h in (1, 2, 5)} results[1][0] rmse_fc, fc = midas_adl(gdp.gdp_growth, pay.emp_growth, start_date=datetime.datetime(1985,1,1), end_date=datetime.datetime(2009,1,1), xlag="3m", ylag=1, horizon=1) rmse_fc cpi = pd.read_csv('CPIAUCSL.csv', parse_dates=['DATE'], index_col='DATE') ffr = pd.read_csv('DFF_2_Vintages_Starting_2009_09_28.txt', sep='\t', parse_dates=['observation_date'], index_col='observation_date') cpi.head() ffr.head(10) cpi_yoy = ((1. + (np.log(cpi.CPIAUCSL) - np.log(cpi.CPIAUCSL.shift(1)))) ** 12) - 1. cpi_yoy.head() df = pd.concat([cpi_yoy, ffr.DFF_20090928 / 100.], axis=1) df.columns = ['cpi_growth', 'dff'] df.loc['1980-1-1':'2010-1-1'].plot(figsize=(15,4), style=['-+','-.']) cpi_growth = (np.log(cpi.CPIAUCSL) - np.log(cpi.CPIAUCSL.shift(1))) * 100. y, yl, x, yf, ylf, xf = mix_freq(cpi_growth, ffr.DFF_20090928, "1m", 1, 1, start_date=datetime.datetime(1975,10,1), end_date=datetime.datetime(1991,1,1)) x.head() res = estimate(y, yl, x) fc = forecast(xf, ylf, res) fc.join(yf).head() pd.concat([cpi_growth, fc],axis=1).loc['2008-01-01':'2010-01-01'].plot(style=['-o','-+'], figsize=(12, 4)) results = {h: midas_adl(cpi_growth, ffr.DFF_20090928, start_date=datetime.datetime(1975,7,1), end_date=datetime.datetime(1990,11,1), xlag="1m", ylag=1, horizon=1, forecast_horizon=h, method='rolling') for h in (1, 2, 5)} (results[1][0], results[2][0], results[5][0]) results[1][1].plot(figsize=(12,4)) results = {h: midas_adl(cpi_growth, ffr.DFF_20090928, start_date=datetime.datetime(1975,10,1), end_date=datetime.datetime(1991,1,1), xlag="1m", ylag=1, horizon=1, forecast_horizon=h, method='recursive') for h in (1, 2, 5)} results[1][0] results[1][1].plot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The modified SVHN dataset can be found at Step2: Below is a skeleton of the SVHN data iterator for you to fill out, with notes to help along the way. The goal is an object that returns, with each call, a tuple of (X, Y) for the input and the target bounding boxes. Step3: Check your implementation! Below we grab an iteration and print out the output of the dataset. Importantly Step4: If all goes well, you are ready to try training on this network! First, let's reset the dataset to zero (since you drew one example from above). We also add a test set for evaluation. Step5: Model architecture Step6: Below we plot the cost data over time to help you visualize the training progress. This is similiar to using the nvis command line tool to generate plots. Step7: To understand how the network performed, we sample images and plot the network's predicted bounding box against the ground truth bounding box. We evaluate this on the test_set, which was not used to train the network. Step8: Our ground truth box T and the model prediction y are both arrays of size (4, batch_size). We can plot an image below. Feel free to modify i to check performance on various test images. Red boxes are the model's guess, and blue boxes are the ground truth boxes.
<ASSISTANT_TASK:> Python Code: from neon.backends import gen_backend be = gen_backend(batch_size=128, backend='gpu') # set the debug level to 10 (the minimum) # to see all the output import logging main_logger = logging.getLogger('neon') main_logger.setLevel(10) import cPickle fileName = 'data/svhn_64.p' print("Loading {}...".format(fileName)) with open(fileName) as f: svhn = cPickle.load(f) # import some useful packages from neon.data import NervanaDataIterator import numpy as np import cPickle import os class SVHN(NervanaDataIterator): def __init__(self, X, Y, lshape): # Load the numpy data into some variables. We divide the image by 255 to normalize the values # between 0 and 1. self.X = X / 255. self.Y = Y self.shape = lshape # shape of the input data (e.g. for images, (C, H, W)) # 1. assign some required and useful attributes self.start = 0 # start at zero self.ndata = ... # number of images in X (hint: use X.shape) self.nfeatures = ... # number of features in X (hint: use X.shape) # number of minibatches per epoch # to calculate this, use the batchsize, which is stored in self.be.bsz self.nbatches = ... # 2. allocate memory on the GPU for a minibatch's worth of data. # (e.g. use `self.be` to access the backend.). See the backend documentation. # to get the minibatch size, use self.be.bsz # hint: X should have shape (# features, mini-batch size) # hint: use some of the attributes previously defined above self.dev_X = ... self.dev_Y = ... def reset(self): self.start = 0 def __iter__(self): # 3. loop through minibatches in the dataset for index in range(self.start, self.ndata, self.be.bsz): # 3a. grab the right slice from the numpy arrays inputs = ... targets = ... # The arrays X and Y data are in shape (batch_size, num_features), # but the iterator needs to return data with shape (num_features, batch_size). # here we transpose the data, and then store it as a contiguous array. # numpy arrays need to be contiguous before being loaded onto the GPU. inputs = np.ascontiguousarray(inputs.T) targets = np.ascontiguousarray(targets.T) # here we test your implementation # your slice has to have the same shape as the GPU tensors you allocated assert inputs.shape == self.dev_X.shape, \ "inputs has shape {}, but dev_X is {}".format(inputs.shape, self.dev_X.shape) assert targets.shape == self.dev_Y.shape, \ "targets has shape {}, but dev_Y is {}".format(targets.shape, self.dev_Y.shape) # 3b. transfer from numpy arrays to device # - use the GPU memory buffers allocated previously, # and call the myTensorBuffer.set() function. self.dev_X ... self.dev_Y ... # 3c. yield a tuple of the device tensors. # the first should of shape (num_features, batch_size) # the second should of shape (4, batch_size) yield (..., ...) # setup datasets train_set = SVHN(X=svhn['X_train'], Y=svhn['y_train'], lshape=(3, 64, 64)) # grab one iteration from the train_set iterator = train_set.__iter__() (X, Y) = iterator.next() print X # this should be shape (12288, 128) print Y # this should be shape (4, 128) assert X.is_contiguous assert Y.is_contiguous train_set.reset() # generate test set test_set = SVHN(X=svhn['X_test'], Y=svhn['y_test'], lshape=(3, 64, 64)) from neon.callbacks.callbacks import Callbacks from neon.initializers import Gaussian from neon.layers import GeneralizedCost, Affine, Conv, Pooling, Linear, Dropout from neon.models import Model from neon.optimizers import GradientDescentMomentum, RMSProp from neon.transforms import Rectlin, Logistic, CrossEntropyMulti, Misclassification, SumSquared # set up weight initializer ... # set up model layers layers = [] layers.append(....) # the last layer should be a linear layer with nout=4, for the 4 coordinates of the bounding box. layers.append(Linear(nout=4, init=Gaussian(loc=0.0, scale=0.01))) # use SumSquared cost cost = GeneralizedCost(costfunc=SumSquared()) # setup optimizer optimizer = RMSProp() # initialize model object mlp = Model(layers=layers) # configure callbacks callbacks = Callbacks(mlp, eval_set=test_set, eval_freq=1) # run fit mlp.fit(train_set, optimizer=optimizer, num_epochs=10, cost=cost, callbacks=callbacks) from neon.visualizations.figure import cost_fig, hist_fig, deconv_summary_page from neon.visualizations.data import h5_cost_data, h5_hist_data, h5_deconv_data from bokeh.plotting import output_notebook, show cost_data = h5_cost_data('data.h5', False) output_notebook() show(cost_fig(cost_data, 300, 600, epoch_axis=False)) %matplotlib inline import matplotlib import matplotlib.pyplot as plt # get a minibatch's worth of # inputs (X) and targets (T) iterator = test_set.__iter__() (X, T) = iterator.next() # fprop the input to get the model output y = mlp.fprop(X) # transfer from device to numpy arrays y = y.get() T = T.get() plt.figure(2) imgs_to_plot = [0, 1, 2, 3] for i in imgs_to_plot: plt.subplot(2, 2, i+1) title = "test {}".format(i) plt.imshow(X.get()[:, i].reshape(3, 64, 64).transpose(1, 2, 0)) ax = plt.gca() ax.add_patch(plt.Rectangle((y[0,i], y[1,i]), y[2,i], y[3,i], fill=False, edgecolor="red")) # model guess ax.add_patch(plt.Rectangle((T[0,i], T[1,i]), T[2,i], T[3,i], fill=False, edgecolor="blue")) # ground truth plt.title(title) plt.axis('off') i=0 print "Target box had coordinates: {}".format(T[:,i]) print "Model prediction has coordinates: {}".format(y[:, i]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problème Step2: Idée de la solution
<ASSISTANT_TASK:> Python Code: %matplotlib inline from jyquickhelper import add_notebook_menu add_notebook_menu() from IPython.display import Image Image("http://www.xavierdupre.fr/app/code_beatrix/helpsphinx/_images/biodiversite_tri2.png") from pyquickhelper.helpgen import NbImage NbImage("data/hexa.png") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: There are a few frequency bands that are already part of the possum class Step2: Polarization Spectra Step3: Faraday Rotation Step4: Generating Parameters for a Large Number of Spectra Step5: and output the parameters by printing the appropriate variables. Note that the complex source parameters are stored as tuples. Step6: Generating a Large Number of Spectra Step7: The real, imaginary, and absolute values of the Faraday spectrum are shown in the plot below Step8: This concludes our discussion of the data generation process. In the next session, we will look at creating a 1D convolutional neural network (CNN) using the inception class, as well as how to utilize some of the analysis and plot functions that come with it. Step9: We can create a simple inception layer using the _inception function, whose call is of the form Step10: For the training dataset, the following variables are created Step11: If we want more layers, we can just call the inception function more times. Note, however, that the function _inception is only a basic block and doesn't implement batch normalization, and consequently is only able to produce workable models that contain up to 2 inception layers. The function _inception2 implements batch normalization along with an activation function, so this function should be used when constructing deeper networks. Step12: We can then add a couple fully connected (Dense) layers using the function _dense, Step13: To complete our model, we can compile it using the function _compile, whose function call is Step14: In the plots module, there is a function Step15: <img src="tmp/i1layer.png" width="500" /> Step16: <img src="tmp/i5layer.png" width="500" /> Step17: In this case the model was subjected to Early Stopping by monitoring the validation loss with a patience of 25 epochs. The lowest validation loss occured for epoch = 51 (index starting at 0), although there is a slight downward trend, suggesting we may be able to get slightly better results by running for a larger number of epochs. However, running more epochs was found to produce only a marginal improvement at best. Step18: To evaluate its performance, we can load in the test set using the _loadTest function and passing in the appropriate directory, which in this case is "data/test" Step19: We can then use our trained model to predict the type of faraday spectrum for each instance using a 50% threshold for being classified as a complex source Step20: and check the confusion matrix, which has already been loaded from sklearn Step21: So most of the sources that were predicted to be complex aren't complex due to the large class imbalance. Another way to evaluate the model performace is to plot an ROC curve, which is conveniently included in the plots module as the function _plotROC. The area under the curve (auc) is computed and stored in the variable self.auc_, so can can check this value as well. Step22: We can separate the complex and simple sources and store their parameters in a dataframe by calling the functions _getComplexParams and _getSimpleParams, which create the pandas dataframes self.dfComplex_ and self.dfSimple_ respectively. These can be created at the same time using the function Step23: We can do some simple comparisons to see how the various parameters (chi, depth, flux, sig) are related to the probability outputs for the complex sources using the _plotParamProb function, whose function call is as follows Step24: The model has a steep drop once the fluxes get below 0.2, but is doing quite well otherwise. Let's check how the model performs on the (absolute) difference in the two Faraday components.
<ASSISTANT_TASK:> Python Code: from possum import * spec = possum() spec._createASKAP12() print('Min Frequency (Hz): {:e}'.format(spec.nu_.min())) print('Max Frequency (Hz): {:e}'.format(spec.nu_.max())) spec = possum() spec._createFrequency(600, 800, 100, store=True) # ========================================================== # Convert frequency to MHz for plotting purposes # ========================================================== nu = spec.nu_ / 1e6 plt.figure(1, figsize=(10,10)) plt.rc('text', usetex=True) plt.rc('font', family='serif', size=18) # ========================================================== # Plot the polarization spectrum of the simple source # ========================================================== flux1 = 1 depth1 = 30 chi1 = 0 sig = 0.1 spec._createNspec(flux1, depth1, chi1, sig) plt.subplot(2,1,1) plt.errorbar(nu, spec.polarization_.real, yerr=sig, label=r'$Q$', color='dodgerblue') plt.errorbar(nu, spec.polarization_.imag, yerr=sig, label=r'$U$', color='darkorange') plt.xlabel(r'$\nu \: \left(\mathrm{MHz}\right)$', fontsize=20) plt.ylabel(r'$P_\mathrm{\nu} \: \left[\rm Jy \, / \, beam\right]$', fontsize=20) plt.title(r'$\rm Simple \, Source$', fontsize=25) plt.tight_layout() plt.legend(loc='best', fontsize=15) # ========================================================== # Plot the polarization spectrum of the complex source # ========================================================== flux2 = [1, 0.5] depth2 = [30, -10] chi2 = [0, 0.5] sig = 0.1 spec._createNspec(flux2, depth2, chi2, sig) plt.subplot(2,1,2) plt.errorbar(nu, spec.polarization_.real, yerr=sig, label=r'$Q$', color='dodgerblue') plt.errorbar(nu, spec.polarization_.imag, yerr=sig, label=r'$U$', color='darkorange') plt.xlabel(r'$\nu \: \left(\mathrm{MHz}\right)$', fontsize=20) plt.ylabel(r'$P_\mathrm{\nu} \: \left[\rm Jy \, / \, beam\right]$', fontsize=20) plt.title(r'$\rm Complex \, Source$', fontsize=25) plt.tight_layout() plt.legend(loc='best', fontsize=15) plt.show() spec._createFaradaySpectrum(-100, 100) plt.figure(1, figsize=(8, 6)) # ================================================== # Plot the real, imag, and abs value # ================================================== plt.plot(spec.phi_, spec.faraday_.real, label=r'$\rm real$', color='dodgerblue') plt.plot(spec.phi_, spec.faraday_.imag, label=r'$\rm imag$', color='darkorange') plt.plot(spec.phi_, np.abs(spec.faraday_), label=r'$\rm abs$', color='black', linestyle='dashed') # ================================================== # Add the two faraday depths to the plot # ================================================== plt.vlines(x=depth2, ymin=-1, ymax=1, linestyle='dashed', color='forestgreen', alpha=0.5) # ================================================== # Add labels and display # ================================================== plt.xlabel(r'$\phi \: \left[\rm rad \, m^{2}\right]$', fontsize=20) plt.ylabel(r'$F\left(\phi\right) \: \left[\mathrm{Jy \, / \, beam}\right]$', fontsize=20) plt.legend(loc='best', fontsize=15) plt.tight_layout() plt.show() spec = possum() spec._generateParams(5, pcomplex=0.5) print('Label: {:}'.format(spec.label_)) print('\nChi:') for chi in spec.chi_: print(chi) print('\nDepth:') for depth in spec.depth_: print(depth) print('\nFlux:') for flux in spec.flux_: print(flux) print('\nSig: {:}'.format(spec.sig_)) spec = possum() spec._simulateNspec(N=6, pcomplex=1.0, width=250) print("Shape of X_: {:}".format(spec.X_.shape)) print("Shape of S_: {:}".format(spec.S_.shape)) plt.figure(figsize=(12,15)) for s, _ in enumerate(spec.label_): plt.subplot(3,2,s+1) plt.plot(spec.phi_, spec.X_[s,:,0], color='dodgerblue', label=r'$\rm real$') plt.plot(spec.phi_, spec.X_[s,:,1], color='darkorange', label=r'$\rm imag$') plt.plot(spec.phi_, np.abs(spec.X_[s,:,0] + 1j*spec.X_[s,:,1]), 'k--', label=r'$\rm abs$') plt.vlines(x=spec.depth_[s], ymin=-1.2, ymax=1.2, linestyle='dashed', color='forestgreen', alpha=0.5) plt.xlim(-100, 100) plt.ylim(-1, 1) plt.xlabel(r'$\phi \: \left[\rm rad \, m^{2}\right]$', fontsize=20) plt.ylabel(r'$F\left(\phi\right) \: \left[\mathrm{Jy \, / \, beam}\right]$', fontsize=20) plt.legend(loc='best', fontsize=14) plt.suptitle(r'$\rm Complex \, Sources$', fontsize=25) plt.tight_layout() plt.subplots_adjust(top=0.93) plt.show() from inception import * cnn = inception() cnn._loadTrain('data/train') cnn._loadValid('data/valid') cnn._inception(convl=[3,5,23]) cnn._flatten() cnn._dense(512, act='elu', drop=0.5, nlayers=2) cnn._compile() cnn._plotCNN('tmp/i1layer.png') from inception import * cnn = inception() cnn._loadTrain('data/train/') cnn._inception2(convl=[3,5,7], pool=[3,7]) cnn._inception2(convl=[3,5,9], pool=[3,7]) cnn._inception2(convl=[3,5,13], pool=[3,7]) cnn._inception2(convl=[3,5,17], pool=[3,7]) cnn._inception2(convl=[3,5,22], pool=[3,7]) cnn._convl() cnn._flatten() cnn._dense(512, act='elu', drop=0.5, nlayers=3) cnn._compile(optimizer='rmsprop') cnn._plotCNN(to_file='tmp/i5layer.png') from inception import * cnn = inception() cnn._loadLog('models/log/i2layer_final.log') cnn._plotAcc() cnn._plotLoss() cnn._loadModel('models/model/i2layer_final.h5') cnn._loadTest('data/test/') cnn._test(prob=0.50) confusion_matrix(cnn.testLabel_, cnn.testPred_) cnn._plotROC() print(cnn.auc_) cnn._getComplexParams() cnn._getSimpleParams() cnn._getParams() print("Complex: \n{:}".format(cnn.dfComplex_.head())) print("\nSimple: \n{:}".format(cnn.dfSimple_.head())) print("\nCombined: \n{:}".format(cnn.dfParams_.head())) cnn._plotParamProb('flux', kind='hex', gridsize=15) cnn._plotParamProb('depth', kind='hex', gridsize=20) plt.figure(1) plt.scatter(cnn.dfSimple_['sig'], cnn.dfSimple_['prob'], color='dodgerblue', alpha=0.05, s=10) plt.scatter(cnn.dfComplex_['sig'], cnn.dfComplex_['prob'], color='orange', alpha=0.05, s=20) plt.xlabel(r'$\sigma$', fontsize=20) plt.ylabel(r'$p_\mathrm{complex}$', fontsize=20) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Computing the trajectories and plotting the result Step3: Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points, called attractors. Step4: Using IPython's interactive function, we can explore how the trajectories behave as we change the various parameters. Step5: The object returned by interactive is a Widget object and it has attributes that contain the current result and arguments Step6: After interacting with the system, we can take the result and perform further computations. In this case, we compute the average positions in \(x\), \(y\) and \(z\). Step7: Creating histograms of the average positions (across different trajectories) show that on average the trajectories swirl about the attractors.
<ASSISTANT_TASK:> Python Code: %matplotlib inline from ipywidgets import interact, interactive from IPython.display import clear_output, display, HTML import numpy as np from scipy import integrate from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import cnames from matplotlib import animation def solve_lorenz(N=10, angle=0.0, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0): fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1], projection='3d') ax.axis('off') # prepare the axes limits ax.set_xlim((-25, 25)) ax.set_ylim((-35, 35)) ax.set_zlim((5, 55)) def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho): Compute the time-derivative of a Lorenz system. x, y, z = x_y_z return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z] # Choose random starting points, uniformly distributed from -15 to 15 np.random.seed(1) x0 = -15 + 30 * np.random.random((N, 3)) # Solve for the trajectories t = np.linspace(0, max_time, int(250*max_time)) x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t) for x0i in x0]) # choose a different color for each trajectory colors = plt.cm.viridis(np.linspace(0, 1, N)) for i in range(N): x, y, z = x_t[i,:,:].T lines = ax.plot(x, y, z, '-', c=colors[i]) plt.setp(lines, linewidth=2) ax.view_init(30, angle) plt.show() return t, x_t t, x_t = solve_lorenz(angle=0, N=10) w = interactive(solve_lorenz, angle=(0.,360.), max_time=(0.1, 4.0), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0)) display(w) t, x_t = w.result w.kwargs xyz_avg = x_t.mean(axis=1) xyz_avg.shape plt.hist(xyz_avg[:,0]) plt.title('Average $x(t)$'); plt.hist(xyz_avg[:,1]) plt.title('Average $y(t)$'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we can plot the results. The Probe records the vector coming out of the answer variable, so in order to interpret that we can do the dot-product of that vector with the BLUE and CIRCLE vectors in the Vocabulary. Step2: It works! When the query changes from CIRCLE to BLUE at t=5, we get the desired change in output. Step3: Timesteps Step4: Of course, even if we do specify that we want a one-time-step delay on each connection, then the compiler would still be free to do this sort of optimization; it would just have to also add in some delays to make sure everything works out how the user expects. Step5: Now that we have one way of controlling the flow of time in our network, we can use this to start implementing algorithms. For example, let's turn our combined variable into a memory. That is, rather than having the variable go back to zero if the input is removed, let's have it remember its value. An easy way to do this is just to connect it back to itself. But, of course, when we do this we need to specify that there should be a one-time-step delay here (i.e. the input should be the output on the previous time-step). (If you try to make a recurrent loop like this all with synapse=None, the compiler will give you an error since that's impossible). Step6: Overall, I find this ability to control the flow of time to be extremely important when building up VSA-style algorithms. However, it is unclear to me what the best syntax for this sort of thing might be. The syntax shown above (i.e. setting the synapse parameter) is rather opaque and confusing to new readers. However, one other option that makes things a bit more clear would be to use a context manager, so you could do something like this Step7: Another possibility that has been talked about, but not implemented yet, is to try something like this Step8: Non-Linear Mapping Between VSAs Step9: More advanced control flow
<ASSISTANT_TASK:> Python Code: import nengo_spa as spa import nengo model = spa.Network() with model: # configure Nengo to just directly conpute things, rather than trying to implement the # network with neurons model.config[nengo.Ensemble].neuron_type = nengo.Direct() model.config[nengo.Connection].synapse = None # This defines the VSA to use, its dimensionality, and maintains the map from symbols to vectors # If `strict` is True, then you have to predefine all symbols; otherwise it'll randomly generate # new ones as you use them. The default VSA to use is HRR. vocab = spa.Vocabulary(64, strict=False) # Define the variables, and indicate they're all using the same VSA and vocabulary color = spa.State(vocab) shape = spa.State(vocab) combined = spa.State(vocab) query = spa.State(vocab) answer = spa.State(vocab) # Connect it up color * shape >> combined combined * ~query >> answer # Define the inputs # Note that it should be possible to infer what the vocabulary should be based on where we're # connecting it to, but Nengo doesn't do that at the moment, so we have to specify that explicitly # Also note that you can specify constants either as strings or via `spa.sym.X` spa.Transcode(spa.sym.BLUE, output_vocab=vocab) >> color spa.Transcode('CIRCLE', output_vocab=vocab) >> shape spa.Transcode(lambda t: spa.sym.CIRCLE if t<=5 else spa.sym.BLUE, output_vocab=vocab) >> query p_answer = nengo.Probe(answer.output) sim = nengo.Simulator(model, dt=1, optimize=False) sim.run(10) %matplotlib inline import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(6,1.5), dpi=200) plt.plot(sim.trange(), np.dot(sim.data[p_answer], vocab.vectors.T)) plt.legend(vocab.keys()) plt.xlabel('time') plt.ylabel('similarity') plt.show() import nengo_gui.ipython nengo_gui.ipython.InlineGUI(model) import nengo_spa as spa import nengo model = spa.Network() with model: model.config[nengo.Ensemble].neuron_type = nengo.Direct() model.config[nengo.Connection].synapse = None vocab = spa.Vocabulary(64, strict=False) color = spa.State(vocab) shape = spa.State(vocab) query = spa.State(vocab) answer = spa.State(vocab) (color*shape)*~query >> answer spa.Transcode(spa.sym.BLUE, output_vocab=vocab) >> color spa.Transcode('CIRCLE', output_vocab=vocab) >> shape spa.Transcode(lambda t: spa.sym.CIRCLE if t<=5 else spa.sym.BLUE, output_vocab=vocab) >> query p_answer = nengo.Probe(answer.output) sim = nengo.Simulator(model, dt=1, optimize=False) sim.run(10) %matplotlib inline import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(6,1.5), dpi=200) plt.plot(sim.trange(), np.dot(sim.data[p_answer], vocab.vectors.T)) plt.legend(vocab.keys()) plt.xlabel('time') plt.ylabel('similarity') plt.show() import nengo_spa as spa import nengo model = spa.Network() with model: model.config[nengo.Ensemble].neuron_type = nengo.Direct() model.config[nengo.Connection].synapse = 0 # this actually means one timestep! vocab = spa.Vocabulary(64, strict=False) color = spa.State(vocab) shape = spa.State(vocab) query = spa.State(vocab) answer = spa.State(vocab) (color*shape)*~query >> answer spa.Transcode(spa.sym.BLUE, output_vocab=vocab) >> color spa.Transcode('CIRCLE', output_vocab=vocab) >> shape spa.Transcode(lambda t: spa.sym.CIRCLE if t<=5 else spa.sym.BLUE, output_vocab=vocab) >> query p_answer = nengo.Probe(answer.output) sim = nengo.Simulator(model, dt=1, optimize=False) sim.run(10) %matplotlib inline import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(6,1.5), dpi=200) plt.plot(sim.trange(), np.dot(sim.data[p_answer], vocab.vectors.T)) plt.legend(vocab.keys()) plt.xlabel('time') plt.ylabel('similarity') plt.show() import nengo_spa as spa import nengo model = spa.Network() with model: model.config[nengo.Ensemble].neuron_type = nengo.Direct() model.config[nengo.Connection].synapse = None vocab = spa.Vocabulary(64, strict=False) color = spa.State(vocab) shape = spa.State(vocab) memory = spa.State(vocab) query = spa.State(vocab) answer = spa.State(vocab) color * shape >> memory memory * ~query >> answer # make sure the connection from memory back to itself has a one-time-step delay model.config[nengo.Connection].synapse = 0 memory >> memory model.config[nengo.Connection].synapse = None # present two different inputs on the first two timesteps spa.Transcode(lambda t: 'BLUE' if t<=1 else ('RED' if t<=2 else '0'), output_vocab=vocab) >> color spa.Transcode(lambda t: 'CIRCLE' if t<=1 else ('SQUARE' if t<=2 else '0'), output_vocab=vocab) >> shape # present 4 queries, starting at t=5 def query_func(t): if 5<t<=6: return 'BLUE' if 6<t<=7: return 'CIRCLE' if 7<t<=8: return 'RED' if 8<t<=9: return 'SQUARE' return '0' spa.Transcode(query_func, output_vocab=vocab) >> query p_answer = nengo.Probe(answer.output) p_query = nengo.Probe(query.output) sim = nengo.Simulator(model, dt=1, optimize=False) sim.run(10) %matplotlib inline import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(6,3), dpi=200) plt.subplot(2, 1, 1) plt.plot(sim.trange(), np.dot(sim.data[p_query], vocab.vectors.T)) plt.legend(vocab.keys(), loc='upper left') plt.ylabel('query') plt.subplot(2, 1, 2) plt.plot(sim.trange(), np.dot(sim.data[p_answer], vocab.vectors.T)) plt.legend(vocab.keys(), loc='upper left') plt.xlabel('time') plt.ylabel('answer') plt.show() import nengo_spa as spa import nengo # define the parameters to use in different contexts no_delay = nengo.Config(nengo.Connection) no_delay[nengo.Connection].synapse = None single_step_delay = nengo.Config(nengo.Connection) single_step_delay[nengo.Connection].synapse = 0 model = spa.Network() with model: model.config[nengo.Ensemble].neuron_type = nengo.Direct() vocab = spa.Vocabulary(64, strict=False) color = spa.State(vocab) shape = spa.State(vocab) memory = spa.State(vocab) query = spa.State(vocab) answer = spa.State(vocab) with no_delay: color * shape >> memory memory * ~query >> answer with single_step_delay: memory >> memory with no_delay: spa.Transcode(lambda t: 'BLUE' if t<=1 else ('RED' if t<=2 else '0'), output_vocab=vocab) >> color spa.Transcode(lambda t: 'CIRCLE' if t<=1 else ('SQUARE' if t<=2 else '0'), output_vocab=vocab) >> shape def query_func(t): if 5<t<=6: return 'BLUE' if 6<t<=7: return 'CIRCLE' if 7<t<=8: return 'RED' if 8<t<=9: return 'SQUARE' return '0' with no_delay: spa.Transcode(query_func, output_vocab=vocab) >> query p_answer = nengo.Probe(answer.output) p_query = nengo.Probe(query.output) sim = nengo.Simulator(model, dt=1, optimize=False) sim.run(10) %matplotlib inline import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(6,3), dpi=200) plt.subplot(2, 1, 1) plt.plot(sim.trange(), np.dot(sim.data[p_query], vocab.vectors.T)) plt.legend(vocab.keys(), loc='upper left') plt.ylabel('query') plt.subplot(2, 1, 2) plt.plot(sim.trange(), np.dot(sim.data[p_answer], vocab.vectors.T)) plt.legend(vocab.keys(), loc='upper left') plt.xlabel('time') plt.ylabel('answer') plt.show() import nengo_spa as spa import nengo model = spa.Network() with model: model.config[nengo.Ensemble].neuron_type = nengo.Direct() model.config[nengo.Connection].synapse = None vocab1 = spa.Vocabulary(64) vocab1.populate('DOG;CAT;HAT;CAR') # pre-populate the vocabulary so that we have generated vectors vocab2 = spa.Vocabulary(512) vocab2.populate('DOG;CAT;MOUSE;ELEPHANT') # pre-populate the vocabulary so that we have generated vectors a = spa.State(vocab1) # use different vocabularies for the two components b = spa.State(vocab2) def input_func(t): if 1<t<=2: return '0.7*DOG' if 2<t<=3: return 'CAT' if 3<t<=4: return 'HAT' if 4<t<=5: return 'CAR' if 5<t<=6: return '0.7*DOG+0.7*CAT' return '0' spa.Transcode(input_func, output_vocab=vocab1) >> a # translate from one to the other a.translate(vocab2) >> b p_in = nengo.Probe(a.output) p_out = nengo.Probe(b.output) sim = nengo.Simulator(model, dt=1, optimize=False) sim.run(10) plt.figure(figsize=(6,3), dpi=200) plt.subplot(2, 1, 1) plt.plot(sim.trange(), np.dot(sim.data[p_in], vocab1.vectors.T)) plt.legend(vocab1.keys(), loc='upper right') plt.ylabel('a') plt.subplot(2, 1, 2) plt.plot(sim.trange(), np.dot(sim.data[p_out], vocab2.vectors.T)) plt.legend(vocab2.keys(), loc='upper right') plt.xlabel('time') plt.ylabel('b') plt.show() import nengo_spa as spa import nengo model = spa.Network() with model: model.config[nengo.Ensemble].neuron_type = nengo.Direct() model.config[nengo.Connection].synapse = None vocab1 = spa.Vocabulary(64) vocab1.populate('DOG;CAT;HAT;CAR') # pre-populate the vocabulary so that we have generated vectors vocab2 = spa.Vocabulary(512) vocab2.populate('DOG;CAT;MOUSE;ELEPHANT') # pre-populate the vocabulary so that we have generated vectors a = spa.State(vocab1) # use different vocabularies for the two components b = spa.State(vocab2) # am = spa.ThresholdingAssocMem(input_vocab=vocab1, output_vocab=vocab2, threshold=0.3, mapping=['DOG','CAT'], function=lambda x: x > 0.3) def input_func(t): if 1<t<=2: return '0.7*DOG' if 2<t<=3: return 'CAT' if 3<t<=4: return 'HAT' if 4<t<=5: return 'CAR' if 5<t<=6: return '0.7*DOG+0.7*CAT' return '0' spa.Transcode(input_func, output_vocab=vocab1) >> a # translate from one to the other a >> am am >> b p_in = nengo.Probe(a.output) p_out = nengo.Probe(b.output) sim = nengo.Simulator(model, dt=1, optimize=False) sim.run(10) plt.figure(figsize=(6,3), dpi=200) plt.subplot(2, 1, 1) plt.plot(sim.trange(), np.dot(sim.data[p_in], vocab1.vectors.T)) plt.legend(vocab1.keys(), loc='upper right') plt.ylabel('a') plt.subplot(2, 1, 2) plt.plot(sim.trange(), np.dot(sim.data[p_out], vocab2.vectors.T)) plt.legend(vocab2.keys(), loc='upper right') plt.xlabel('time') plt.ylabel('b') plt.show() # Switch statements and/or ifmax match state: case 'DOG': 'PET' >> action case 'CAT': 'FEED' >> action <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basics Step2: You can assign several variables at once Step3: There is no "begin-end"! You use indentation to specify blocks. Here is simple IF statement Step4: Types Step5: Loops Step6: while Step7: Enumerate Step8: Python code style Step10: String Quotes Step11: Some tricks Step12: However, there is no built-in function for multiplication Step13: , so we have to write our solution. Let's start with straightforward one Step14: There is another way to implement it. It is to write it in a functional-programming style Step16: Python is really good for fast prototyping Step18: Faster solution for the problem Step19: Even faster solution Step20: Very important references
<ASSISTANT_TASK:> Python Code: # you can mix text and code in one place and # run code from a Web browser a = 10 a a, b = 1, 2 a, b b, a = a, b a, b if a > b: print("A is greater than B") else: print("B is greater than A") # Integer a = 1 print(a) # Float b = 1.0 print(b) # String c = "Hello world" print(c) # Unicode d = u"Привет, мир!" print(d) # List (array) e = [1, 2, 3] print(e[2]) # 3 # Tuple (constant array) f = (1, 2, 3) print(f[0]) # 1 # Set g = {1, 1, 1, 2} print(g) # Dictionary (hash table, hash map) g = {1: 'One', 2: 'Two', 3: 'Three'} print(g[1]) # 'One' for i in range(10): print(i) i = 0 while i < 10: print(i) i += 1 items = ['apple', 'banana', 'stawberry', 'watermelon'] for item in items: print(item) for i, item in enumerate(items): print(i, item) # Variable name my_variable = 1 # Class method and function names def my_function(): pass # Constants MY_CONSTANT = 1 # Class name class MyClass(object): # 'private' variable - use underscore before a name _my_variable = 1 # 'protected' variable - use two underscores before a name __my_variable = 1 # magic methods def __init__(self): self._another_my_variable = 1 'string' "another string" Multiline string ''' Another multiline string ''' sum([1,2,3,4,5]) mult([1,2,3,4,5]) def mult(array): result = 1 for item in array: result *= item return result mult([1,2,3,4,5]) from functools import reduce def mult_functional(array): return reduce(lambda prev_result, current_item: prev_result * current_item, array, 1) mult_functional([1,2,3,4,5]) %timeit mult(range(1, 1000)) %timeit mult_functional(range(1, 1000)) def get_smallest_divisor_in_range(N): Brute force all numbers from 2 to 1*2*3*4*5*6*...*N until we get a number, which divides by all numbers in a range of [1, N]. Example: >>> get_smallest_devisor_in_range(10) 2520 range_multiplied = mult(range(2, N+1)) for x in range(2, range_multiplied, 2): for divisor in range(3, N+1): if x % divisor: break else: break return x %time print(get_smallest_divisor_in_range(10)) %time print(get_smallest_divisor_in_range(20)) def get_smallest_divisor_in_range_fast(N): Optimal solution for the problem is to count LCM (Least common multiple) of all numbers in a range of [1, N]. prime_divisors = {} # Loop from 2 to N. for x in range(2, N+1): # Find and save all prime divisors of `x`. for divisor in range(2, int(x**0.5) + 1): power = 0 # Find the power of the `divisor` in `x`. while x % divisor == 0: x /= divisor power += 1 if power > 0: # Save the `divisor` with the greatest power into our `prime_divisors` dict (hash-map). if divisor in prime_divisors: if prime_divisors[divisor] < power: prime_divisors[divisor] = power else: prime_divisors[divisor] = power # Stop searching more divisors if `x` is already equals to `1` (all divisors are already found). if x == 1: break else: # If `x` is prime, we won't find any divisors and # the above `for` loop will be over without hitting `break`, # thus we just need to save `x` as prime_divisor in power of 1. prime_divisors[x] = 1 # Having all prime divisors in their lowest powers we multiply all of them to get the answer. least_common_multiple = 1 for divisor, power in prime_divisors.items(): least_common_multiple *= divisor ** power return least_common_multiple %time print(get_smallest_divisor_in_range_fast(10)) %time print(get_smallest_divisor_in_range_fast(20)) %time print(get_smallest_divisor_in_range_fast(10000)) try: from math import gcd except ImportError: # Python 2.x has `gcd` in `fractions` module instead of `math` from fractions import gcd def get_smallest_divisor_in_range_fastest(N): least_common_multiple = 1 for x in range(2, N + 1): least_common_multiple = (least_common_multiple * x) // gcd(least_common_multiple, x) return least_common_multiple %time print(get_smallest_divisor_in_range_fastest(10)) %time print(get_smallest_divisor_in_range_fastest(20)) %time print(get_smallest_divisor_in_range_fastest(10000)) import math math? <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercise Step2: Recursively computing values of a polynomial using difference equations Step3: Second order polynomial
<ASSISTANT_TASK:> Python Code: import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt %matplotlib inline # Define the continuous-time linear time invariant system F a = 2 b = 1 num = [1, b] den = [1, a] F = signal.lti(num, den) # Plot a step response (t, y) = signal.step(F) plt.figure(figsize=(14,6)) plt.plot(t, y, linewidth=2) # Solve the difference equation y_k = c y_{k-1} + d_0 u_k + d_1 u_{k-1} h = 0.1 # The sampling time c = 1.0/(1 + a*h) d0 = (1 + b*h) / (1 + a*h) d1 = -c td = np.arange(35)* h #The sampling time instants ud = np.ones(35) # The input signal is a step, limited in time to 3.5 seconds yd = np.zeros(35) # A vector to hold the discrete output signal yd[0] = c*0 + d0*ud[0] - d1*0 # The first sample of the output signal for k in range(1,35): # And then the rest yd[k] = c*yd[k-1] + d0*ud[k] + d1*ud[k-1] plt.plot(td, yd, 'o', markersize=8) plt.xlim([0, 3.5]) plt.ylim([0, 1]) plt.legend(('Continuous-time system', 'Discrete approximation')) ## Your python code goes here def p1(x): return 4*x + 2 # Our first-order polynomial # Compute values for x=[0,0.2, 0.4, ... 2] recursively using the difference equation h = 0.2 x = h*np.arange(11) # Gives the array [0,0.2, 0.4, ... 2] pd = np.zeros(11) d1 = 4*h # Need to compute the first value as the initial value for the difference equation, pd[0] = p1(x[0]) for k in range(1,10): # Solve difference equation pd[k] = pd[k-1] + d1 plt.figure(figsize=(14,6)) plt.plot(x, p1(x), linewidth=2) plt.plot(x, pd, 'ro') a0 = 2 a1 = -3 a2 = 2 def p2(x): return a0*x**2 + a1*x + a2 # Our second-order polynomial # Compute values for x=[0,0.2, 0.4, ... 8] recursively using the difference equation h = 0.2 x = h*np.arange(41) # Gives the array [0,0.2, 0.4, ... 2] d1 = np.zeros(41) # The first differences pd = np.zeros(41) d2 = h**2*2*a0 # The constant, second difference # Need to compute the first two values to get the initial values for the difference equation, pd[0] = p2(x[0]) pd[1] = p2(x[1]) for k in range(2,41): # Solve difference equation pd[k] = 2*pd[k-1] - pd[k-2] + d2 plt.figure(figsize=(14,6)) plt.plot(x, p2(x), linewidth=2) # Evaluating the polynomial plt.plot(x, pd, 'ro') # The solution using the difference equation <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Theory (section 6.3.3 - 6.3.5 of the syllabus) Step2: Convenience function for setting up graphs Step3: Draw the Theis type curve Step4: If you don't specify the names of the parameters of the function, than you must specify the parameters in the order that they are defined in the function and can't leave any out. This is true until one parameter is Step5: Finally, let's use the xlim and ylim. I'll specify the limits of the x-axis to be 1e-1 and 1e2 and of the y-axis to be 0 and 4. And to invert the y-axis I'll specify the limits of the y-axis in reversed order ylim=(4, 0) instead of ylim=(0, 4) Step6: This is already quite a lot about generating a plot. With the simple convenience function newfig(), we can generate may forms of graphics, without much typing. newfig() is, therefore, really convenient. The cluttering that is prevents, also makes the code much easier to read. Step7: Simulate a pumping test (Theis situation) using the double log and the half-log methods discussed in class Step8: Explanation, what did we do? Step9: In the loop we use this line which stores the piezometer information Step10: Show the "measurements" versus time on double log scales Step11: Show the measurements on double log scales versus $t/r^2$ instead of versus $t$ Step12: Clearly, all measurments now fall on the same overall curve. Step13: Result after some trial and error Step14: With the factor V and H now obtained, find $kD$ and $S$ Step15: In conclusion, the results are quite good, even though the interpreted kD (725 m2/d) deviates from the original kD (600 m2/d). It can only mean that the results are not too sensitive to the precise value of kD. Step16: Interpret using the straight line on half-log paper Step17: This looks good. Therefore we have
<ASSISTANT_TASK:> Python Code: from scipy.special import exp1 as W import numpy as np import matplotlib.pyplot as plt from scipy.special import exp1 as W def newfig(title='forgot title?', xlabel='forgot the x-label?', ylabel='forgot the y-label?', xlim=None, ylim=None, xscale='linear', yscale='linear', size_inches=(14, 8)): '''Return an axes set up to your liking, to plot lines on parameters ---------- title: string the title above your figure xlabel: string the title of your horizontal axis ylabel: string the title of your vertical axis xlim: a tuple with two values the desired limits of your horizontal axis ylim: a tuple with two values the desired limits of your vertical axis xscale: string 'log' sets the horizontal scale to logarithmic yscale: string 'log' sets the vertical scale to logarithmic size_inches : tuple (w, h) telling the desired width w and height h of the figure ''' plt.grid() plt.xscale(xscale) plt.yscale(yscale) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.gcf().set_size_inches(size_inches) return plt.gca() # you don't have to use this, but if you one to return something you return the current axis # This line shows what the axis will lokk like when called without any parameters (it will use the defaults) newfig() # try pressing shift-tab when the cursor is within the () # Generate u-values. Logspace is used, because u will span multiple log-cycles. Hence we require here # 51 points between and including the first and the last value, which are 1e-4 (=0.0001) and 1e1 (=10) u = np.logspace(-4, 1, 51) # Gen create the setup for the figure, using the convenience fucntion we created above # Because all parameters of the function have names and default values, we just specify # the parametrs that we need and leave out the ones for which we want to use the default values. newfig(title='Theis type curve', xlabel='1/u', ylabel='W(u)', xscale='log', yscale='log') # Then plot plt.plot(1/u, W(u), label='Theis type curve') plt.legend() u = np.logspace(-4, 1, 51) newfig('Theis type curve', '1/u', 'W(u)', xscale='log') plt.plot(1/u, W(u), label='Theis type curve') plt.legend() u = np.logspace(-4, 1, 51) newfig('Theis type curve', '1/u', 'W(u)', xscale='log', xlim=(1e-1, 1e2), ylim=(4, 0)) plt.plot(1/u, W(u), label='Theis type curve') plt.legend() help(newfig) kD = 600 # m2/d S = 0.001 # storage coefficient Q = 1200 # m3/d, well extraction rate # Piezometer specific data names = ['pz1', 'pz2', 'pz3', 'pz4'] radii = [10, 30, 100, 250] # their distance from the pumping well times = np.logspace(-3, 1, 41) # d, measurement times markers = ['o', 'x', '+', 's'] # markers to use when plotting the measuring points # Put these data into a dictionary, which gives us a handy database. piez = dict() # generate an empty dictionary with the name 'piez' # Fill the dict with data for name, r, m in zip(names, radii, markers): piez[name] = {'m':m, # each piezometer gets its own marker 'r': r, # its own distance to the pumping well 't': times, # its measurement times (may differ for each well) 's': Q/(4 * np.pi * kD) * W(r ** 2 * S / (4 * kD * times)) # and the (generated drawdown) } piez['pz3'] # show all the data pertaining to piezometer with name 'pz3' piez['pz3']['r'] # show the radius of piezometer with name 'pz3' newfig('"Measured" drawdowns', 'time [d]', 's [m]', xscale='log', yscale='log') for name in piez: pz = piez[name] plt.plot(pz['t'], pz['s'], pz['m'], label=name) # '.' plots only the meaurements, not the line that connects them plt.legend() newfig('"Measured" drawdowns versus $t/r^2$', '$t/r^2$ [d/m2]', 's [m]', xscale='log', yscale='log') for name in piez: pz = piez[name] plt.plot(pz['t']/pz['r'] ** 2, pz['s'], pz['m'], label=name) # '.' plots only the meaurements, not the line that connects them plt.legend() V = 100. # vertical factor H = 100. # horizonta factor u = np.logspace(-4, 1, 51) newfig(f'Theis type curve, fitting with data using V={V}, H={H} ', '1/u and H times $t/r^2$', 'W(u) and V times $s$', xscale='log', yscale='log') plt.plot(1/u, W(u), label='Theis type curve') for nm in piez: pz = piez[nm] plt.plot(H * pz['t']/pz['r'] ** 2, V * pz['s'], pz['m'], label=nm) plt.legend() plt.show() V = 0.76e1 # vertical factor H = 2.4e6 # horizonta factor u = np.logspace(-4, 1, 51) newfig(f'Theis type curve, fitting with data using V={V}, H={H} ', '1/u and H times $t/r^2$', 'W(u) and V times $s$', xscale='log', yscale='log') plt.plot(1/u, W(u), label='Theis type curve') for nm in piez: pz = piez[nm] plt.plot(H * pz['t']/pz['r'] ** 2, V * pz['s'], pz['m'], label=nm) plt.legend() plt.show() kD = 725 # m2/d interpreted S = 0.0012 # interpreted newfig(f'Compare "measured" with computed data using kD={kD} m2/d, and S={S} ', 't [d]', 's [m]', xscale='log', yscale='log') for nm in piez: pz = piez[nm] L = plt.plot(pz['t'], pz['s'], pz['m'], label=f'{nm}, "measured"') clr = L[0].get_color() # get the color from the previous line, to use it in the next line plt.plot(pz['t'], Q /(4 * np.pi * kD) * W(pz['r'] ** 2 * S / (4 * kD * pz['t'])), '-', color=clr, label=f'{nm}, computed') plt.legend() plt.show() kD = 725 # m2/d interpreted S = 0.0012 # interpreted newfig(f'Compare "measured" with computed data using kD={kD} m2/d, and S={S} ', 't [d]', 's [m]', xscale='log') for nm in piez: pz = piez[nm] L = plt.plot(pz['t'], pz['s'], pz['m'], label=f'{nm}, "measured"') clr = L[0].get_color() # get the color from the previous line, to use it in the next line plt.plot(pz['t'], Q /(4 * np.pi * kD) * W(pz['r'] ** 2 * S / (4 * kD * pz['t'])), '-', color=clr, label=f'{nm}, computed') plt.legend() plt.show() kD = 725 # m2/d interpreted S = 0.0012 # interpreted newfig(f'"measured" data with fitted straight line using A={A}, and B={B} ', 't [d]', 's [m]', xscale='log') for nm in piez: pz = piez[nm] L = plt.plot(pz['t'], pz['s'], pz['m'], label=f'{nm}, "measured"') # Also by trial and error determine the parameters of the straight line A = 0.1625 B = 1250 # Straight line plt.plot(piez['pz2']['t'], A * np.log(B * piez['pz2']['t'] ), label='straight line') plt.legend() plt.show() kD = 590 # m2/d interpreted S = 0.0012 # interpreted newfig(f'Compare "measured" with computed data using kD={kD} m2/d, and S={S} ', 't [d]', 's [m]', xscale='log') for nm in piez: pz = piez[nm] L = plt.plot(pz['t'], pz['s'], pz['m'], label=f'{nm}, "measured"') clr = L[0].get_color() # get the color from the previous line, to use it in the next line plt.plot(pz['t'], Q /(4 * np.pi * kD) * W(pz['r'] ** 2 * S / (4 * kD * pz['t'])), '-', color=clr, label=f'{nm}, computed') plt.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Install the required libraries Step2: Wait for the message Configure docker credentials before moving on to the next cell. Step3: Configure a Docker registry for Kubeflow Fairing Step4: Use Kubeflow Fairing to build the Docker image Step5: Run the next cell and wait until you see a message like Built image gcr.io/&lt;your-project&gt;/fairing-job/mnist Step6: Create a Cloud Storage bucket Step8: Distributed training Step9: Create the training job Step10: Check the job using kubectl Step12: Get the training logs Step16: Deploy TensorBoard Step17: Set a variable defining your endpoint Step18: Access the TensorBoard UI Step19: Wait for the training job to finish Step23: Serve the model Step27: Deploy the UI for the MNIST web app Step28: Access the MNIST web UI
<ASSISTANT_TASK:> Python Code: import logging import os import uuid from importlib import reload from oauth2client.client import GoogleCredentials credentials = GoogleCredentials.get_application_default() import notebook_setup reload(notebook_setup) notebook_setup.notebook_setup() import k8s_util # Force a reload of Kubeflow. Since Kubeflow is a multi namespace module, # doing the reload in notebook_setup may not be sufficient. import kubeflow reload(kubeflow) from kubernetes import client as k8s_client from kubernetes import config as k8s_config from kubeflow.tfjob.api import tf_job_client as tf_job_client_module from IPython.core.display import display, HTML import yaml from kubernetes import client as k8s_client from kubernetes.client import rest as k8s_rest from kubeflow import fairing from kubeflow.fairing import utils as fairing_utils from kubeflow.fairing.builders import append from kubeflow.fairing.deployers import job from kubeflow.fairing.preprocessors import base as base_preprocessor # Setting up Google Container Registry (GCR) for storing output containers. # You can use any Docker container registry instead of GCR. GCP_PROJECT = fairing.cloud.gcp.guess_project_name() DOCKER_REGISTRY = 'gcr.io/{}/fairing-job'.format(GCP_PROJECT) namespace = fairing_utils.get_current_k8s_namespace() logging.info(f"Running in project {GCP_PROJECT}") logging.info(f"Running in namespace {namespace}") logging.info(f"Using Docker registry {DOCKER_REGISTRY}") # TODO(https://github.com/kubeflow/fairing/issues/426): We should get rid of this once the default # Kaniko image is updated to a newer image than 0.7.0. from kubeflow.fairing import constants constants.constants.KANIKO_IMAGE = "gcr.io/kaniko-project/executor:v0.14.0" from kubeflow.fairing.builders import cluster # output_map is a map of extra files to add to the notebook. # It is a map from source location to the location inside the context. output_map = { "Dockerfile.model": "Dockerfile", "model.py": "model.py" } preprocessor = base_preprocessor.BasePreProcessor( command=["python"], # The base class will set this. input_files=[], path_prefix="/app", # irrelevant since we aren't preprocessing any files output_map=output_map) preprocessor.preprocess() # Use a Tensorflow image as the base image # We use a custom Dockerfile cluster_builder = cluster.cluster.ClusterBuilder(registry=DOCKER_REGISTRY, base_image="", # base_image is set in the Dockerfile preprocessor=preprocessor, image_name="mnist", dockerfile_path="Dockerfile", pod_spec_mutators=[fairing.cloud.gcp.add_gcp_credentials_if_exists], context_source=cluster.gcs_context.GCSContextSource()) cluster_builder.build() logging.info(f"Built image {cluster_builder.image_tag}") from google.cloud import storage bucket = f"{GCP_PROJECT}-mnist" client = storage.Client() b = storage.Bucket(client=client, name=bucket) if not b.exists(): logging.info(f"Creating bucket {bucket}") b.create() else: logging.info(f"Bucket {bucket} already exists") train_name = f"mnist-train-{uuid.uuid4().hex[:4]}" num_ps = 1 num_workers = 2 model_dir = f"gs://{bucket}/mnist" export_path = f"gs://{bucket}/mnist/export" train_steps = 200 batch_size = 100 learning_rate = .01 image = cluster_builder.image_tag train_spec = fapiVersion: kubeflow.org/v1 kind: TFJob metadata: name: {train_name} spec: tfReplicaSpecs: Ps: replicas: {num_ps} template: metadata: annotations: sidecar.istio.io/inject: "false" spec: serviceAccount: default-editor containers: - name: tensorflow command: - python - /opt/model.py - --tf-model-dir={model_dir} - --tf-export-dir={export_path} - --tf-train-steps={train_steps} - --tf-batch-size={batch_size} - --tf-learning-rate={learning_rate} image: {image} workingDir: /opt restartPolicy: OnFailure Chief: replicas: 1 template: metadata: annotations: sidecar.istio.io/inject: "false" spec: serviceAccount: default-editor containers: - name: tensorflow command: - python - /opt/model.py - --tf-model-dir={model_dir} - --tf-export-dir={export_path} - --tf-train-steps={train_steps} - --tf-batch-size={batch_size} - --tf-learning-rate={learning_rate} image: {image} workingDir: /opt restartPolicy: OnFailure Worker: replicas: 1 template: metadata: annotations: sidecar.istio.io/inject: "false" spec: serviceAccount: default-editor containers: - name: tensorflow command: - python - /opt/model.py - --tf-model-dir={model_dir} - --tf-export-dir={export_path} - --tf-train-steps={train_steps} - --tf-batch-size={batch_size} - --tf-learning-rate={learning_rate} image: {image} workingDir: /opt restartPolicy: OnFailure tf_job_client = tf_job_client_module.TFJobClient() tf_job_body = yaml.safe_load(train_spec) tf_job = tf_job_client.create(tf_job_body, namespace=namespace) logging.info(f"Created job {namespace}.{train_name}") !kubectl get tfjobs -o yaml {train_name} from urllib.parse import urlencode for replica in ["chief", "worker", "ps"]: logs_filter = fresource.type="k8s_container" labels."k8s-pod/tf-job-name" = "{train_name}" labels."k8s-pod/tf-replica-type" = "{replica}" resource.labels.container_name="tensorflow" new_params = {'project': GCP_PROJECT, # Logs for last 7 days 'interval': 'P7D', 'advancedFilter': logs_filter} query = urlencode(new_params) url = "https://console.cloud.google.com/logs/viewer?" + query display(HTML(f"Link to: <a href='{url}'>{replica} logs</a>")) tb_name = "mnist-tensorboard" tb_deploy = fapiVersion: apps/v1 kind: Deployment metadata: labels: app: mnist-tensorboard name: {tb_name} namespace: {namespace} spec: selector: matchLabels: app: mnist-tensorboard template: metadata: labels: app: mnist-tensorboard version: v1 spec: serviceAccount: default-editor containers: - command: - /usr/local/bin/tensorboard - --logdir={model_dir} - --port=80 image: tensorflow/tensorflow:1.15.2-py3 name: tensorboard ports: - containerPort: 80 tb_service = fapiVersion: v1 kind: Service metadata: labels: app: mnist-tensorboard name: {tb_name} namespace: {namespace} spec: ports: - name: http-tb port: 80 targetPort: 80 selector: app: mnist-tensorboard type: ClusterIP tb_virtual_service = fapiVersion: networking.istio.io/v1alpha3 kind: VirtualService metadata: name: {tb_name} namespace: {namespace} spec: gateways: - kubeflow/kubeflow-gateway hosts: - '*' http: - match: - uri: prefix: /mnist/{namespace}/tensorboard/ rewrite: uri: / route: - destination: host: {tb_name}.{namespace}.svc.cluster.local port: number: 80 timeout: 300s tb_specs = [tb_deploy, tb_service, tb_virtual_service] k8s_util.apply_k8s_specs(tb_specs, k8s_util.K8S_CREATE_OR_REPLACE) endpoint = None if endpoint: logging.info(f"endpoint set to {endpoint}") else: logging.info("Warning: You must set {endpoint} in order to print out the URLs where you can access your web apps.") if endpoint: vs = yaml.safe_load(tb_virtual_service) path= vs["spec"]["http"][0]["match"][0]["uri"]["prefix"] tb_endpoint = endpoint + path display(HTML(f"TensorBoard UI is at <a href='{tb_endpoint}'>{tb_endpoint}</a>")) tf_job = tf_job_client.wait_for_condition(train_name, expected_condition=["Succeeded", "Failed"], namespace=namespace) if tf_job_client.is_job_succeeded(train_name, namespace): logging.info(f"TFJob {namespace}.{train_name} succeeded") else: raise ValueError(f"TFJob {namespace}.{train_name} failed") deploy_name = "mnist-model" model_base_path = export_path # The web UI defaults to mnist-service so if you change the name, you must # change it in the UI as well. model_service = "mnist-service" deploy_spec = fapiVersion: apps/v1 kind: Deployment metadata: labels: app: mnist name: {deploy_name} namespace: {namespace} spec: selector: matchLabels: app: mnist-model template: metadata: # TODO(jlewi): Right now we disable the istio side car because otherwise ISTIO rbac will prevent the # UI from sending RPCs to the server. We should create an appropriate ISTIO rbac authorization # policy to allow traffic from the UI to the model servier. # https://istio.io/docs/concepts/security/#target-selectors annotations: sidecar.istio.io/inject: "false" labels: app: mnist-model version: v1 spec: serviceAccount: default-editor containers: - args: - --port=9000 - --rest_api_port=8500 - --model_name=mnist - --model_base_path={model_base_path} - --monitoring_config_file=/var/config/monitoring_config.txt command: - /usr/bin/tensorflow_model_server env: - name: modelBasePath value: {model_base_path} image: tensorflow/serving:1.15.0 imagePullPolicy: IfNotPresent livenessProbe: initialDelaySeconds: 30 periodSeconds: 30 tcpSocket: port: 9000 name: mnist ports: - containerPort: 9000 - containerPort: 8500 resources: limits: cpu: "4" memory: 4Gi requests: cpu: "1" memory: 1Gi volumeMounts: - mountPath: /var/config/ name: model-config volumes: - configMap: name: {deploy_name} name: model-config service_spec = fapiVersion: v1 kind: Service metadata: annotations: prometheus.io/path: /monitoring/prometheus/metrics prometheus.io/port: "8500" prometheus.io/scrape: "true" labels: app: mnist-model name: {model_service} namespace: {namespace} spec: ports: - name: grpc-tf-serving port: 9000 targetPort: 9000 - name: http-tf-serving port: 8500 targetPort: 8500 selector: app: mnist-model type: ClusterIP monitoring_config = fkind: ConfigMap apiVersion: v1 metadata: name: {deploy_name} namespace: {namespace} data: monitoring_config.txt: |- prometheus_config: {{ enable: true, path: "/monitoring/prometheus/metrics" }} model_specs = [deploy_spec, service_spec, monitoring_config] k8s_util.apply_k8s_specs(model_specs, k8s_util.K8S_CREATE_OR_REPLACE) ui_name = "mnist-ui" ui_deploy = fapiVersion: apps/v1 kind: Deployment metadata: name: {ui_name} namespace: {namespace} spec: replicas: 1 selector: matchLabels: app: mnist-web-ui template: metadata: labels: app: mnist-web-ui spec: containers: - image: gcr.io/kubeflow-examples/mnist/web-ui:v20190112-v0.2-142-g3b38225 name: web-ui ports: - containerPort: 5000 serviceAccount: default-editor ui_service = fapiVersion: v1 kind: Service metadata: annotations: name: {ui_name} namespace: {namespace} spec: ports: - name: http-mnist-ui port: 80 targetPort: 5000 selector: app: mnist-web-ui type: ClusterIP ui_virtual_service = fapiVersion: networking.istio.io/v1alpha3 kind: VirtualService metadata: name: {ui_name} namespace: {namespace} spec: gateways: - kubeflow/kubeflow-gateway hosts: - '*' http: - match: - uri: prefix: /mnist/{namespace}/ui/ rewrite: uri: / route: - destination: host: {ui_name}.{namespace}.svc.cluster.local port: number: 80 timeout: 300s ui_specs = [ui_deploy, ui_service, ui_virtual_service] k8s_util.apply_k8s_specs(ui_specs, k8s_util.K8S_CREATE_OR_REPLACE) if endpoint: vs = yaml.safe_load(ui_virtual_service) path= vs["spec"]["http"][0]["match"][0]["uri"]["prefix"] ui_endpoint = endpoint + path display(HTML(f"mnist UI is at <a href='{ui_endpoint}'>{ui_endpoint}</a>")) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: When feature_weight = None, the output should match Random Forest. Step2: When feature_weight is uniform, it should give the same feature importance. Step3: When feature_weight is weighted, it should give the roughly same feature ranking.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer import numpy as np from functools import reduce # Import our custom utilities from imp import reload from utils import irf_jupyter_utils from utils import irf_utils reload(irf_jupyter_utils) reload(irf_utils) # Import RF related functions from sklearn.ensemble import RandomForestClassifier feature_weight0 = None X_train, X_test, y_train, y_test, rf = irf_jupyter_utils.generate_rf_example(n_estimators=1000, feature_weight=feature_weight0) all_rf_tree_data = irf_utils.get_rf_tree_data(rf=rf, X_train=X_train, X_test=X_test, y_test=y_test) #all_rf_tree_data # Print the feature importance feature_importances_rank_idx0 = all_rf_tree_data['feature_importances_rank_idx'] feature_importances0 = all_rf_tree_data['feature_importances'] print(feature_importances0) correct_feature_importance =[ 0.04153319, 0.0136872, 0.05287382, 0.05537257, 0.00571718, 0.01101297, 0.04525511, 0.08925701, 0.00407582, 0.00337926, 0.01301454, 0.00396505, 0.01022279, 0.03255195, 0.00498767, 0.00438016, 0.00771317, 0.00459407, 0.0037973, 0.00448982, 0.10938616, 0.01690837, 0.14415417, 0.1204331, 0.01276175, 0.01472586, 0.03019196, 0.12449026, 0.00858072, 0.00648698] feature_weight1 = [1]*30 X_train, X_test, y_train, y_test, rf = irf_jupyter_utils.generate_rf_example(n_estimators=1000, feature_weight=feature_weight1) all_rf_tree_data = irf_utils.get_rf_tree_data(rf=rf, X_train=X_train, X_test=X_test, y_test=y_test) #all_rf_tree_data #feature importance feature_importances_rank_idx1 = all_rf_tree_data['feature_importances_rank_idx'] feature_importances1 = all_rf_tree_data['feature_importances'] print(feature_importances1) feature_weight2 = correct_feature_importance X_train, X_test, y_train, y_test, rf = irf_jupyter_utils.generate_rf_example(n_estimators=1000, feature_weight=feature_weight2) all_rf_tree_data = irf_utils.get_rf_tree_data(rf=rf, X_train=X_train, X_test=X_test, y_test=y_test) #all_rf_tree_data #feature importance feature_importances_rank_idx2 = all_rf_tree_data['feature_importances_rank_idx'] feature_importances2 = all_rf_tree_data['feature_importances'] for f in range(X_train.shape[1]): print("%2d. feature %2d (%10.9f) and feature %2d (%10.9f)" % (f + 1 , feature_importances_rank_idx1[f] , feature_importances1[feature_importances_rank_idx1[f]] , feature_importances_rank_idx2[f] , feature_importances2[feature_importances_rank_idx2[f]])) def test_iRF_weight1(): #Check when label is random, whether the feature importance of every feature is the same. n_samples = 1000 n_features = 10 random_state_classifier = 2018 np.random.seed(random_state_classifier) X_train = np.random.uniform(low=0, high=1, size=(n_samples, n_features)) y_train = np.random.choice([0, 1], size=(n_samples,), p=[.5, .5]) X_test = np.random.uniform(low=0, high=1, size=(n_samples, n_features)) y_test = np.random.choice([0, 1], size=(n_samples,), p=[.5, .5]) all_rf_weights, all_K_iter_rf_data, \ all_rf_bootstrap_output, all_rit_bootstrap_output, \ stability_score = irf_utils.run_iRF(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test, K=5, n_estimators=20, B=30, random_state_classifier=2018, propn_n_samples=.2, bin_class_type=1, M=20, max_depth=5, noisy_split=False, num_splits=2, n_estimators_bootstrap=5) assert np.max(all_rf_weights['rf_weight5'])<.135 test_iRF_weight1() def test_iRF_weight2(): #Check when feature 1 fully predict the label, its importance should be 1. n_samples = 1000 n_features = 10 random_state_classifier = 2018 np.random.seed(random_state_classifier) X_train = np.random.uniform(low=0, high=1, size=(n_samples, n_features)) y_train = np.random.choice([0, 1], size=(n_samples,), p=[.5, .5]) X_test = np.random.uniform(low=0, high=1, size=(n_samples, n_features)) y_test = np.random.choice([0, 1], size=(n_samples,), p=[.5, .5]) # first feature is very important X_train[:,1] = X_train[:,1] + y_train X_test[:,1] = X_test[:,1] + y_test all_rf_weights, all_K_iter_rf_data, \ all_rf_bootstrap_output, all_rit_bootstrap_output, \ stability_score = irf_utils.run_iRF(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test, K=5, n_estimators=20, B=30, random_state_classifier=2018, propn_n_samples=.2, bin_class_type=1, M=20, max_depth=5, noisy_split=False, num_splits=2, n_estimators_bootstrap=5) print(all_rf_weights['rf_weight5']) assert all_rf_weights['rf_weight5'][1] == 1 test_iRF_weight2() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The first two lines deal with the ability to show your graphs (generated via matplotlib) within this notebook, the remaining two lines import matplotlib's sublibrary pyplot as <FONT FACE="courier" style="color Step2: <h3 style="color Step3: A slower but easier to understand version of this function is shown below. The tag slow is explained shortly after. Step4: <h3>Step 3 Step5: The choice for the interpolation is obvious Step6: <h3>Step 4 Step7: Although the plot suggests that the interpolation works, a visual proof can be deceptive. It is best to calculate the error between the exact and interpolated solution. Here we use an $l^2$-norm Step8: For reasons that will become clearer later, we want to consider other interpolation schemes Step9: <h3 style="color Step10: <h3>Step 5 Step11: The discretization of the time derivative is crude. A better discretization is the 2<sup>nd</sup>-order Runge-Kutta
<ASSISTANT_TASK:> Python Code: %matplotlib inline # plots graphs within the notebook %config InlineBackend.figure_format='svg' # not sure what this does, may be default images to svg format import matplotlib.pyplot as plt #calls the plotting library hereafter referred as to plt import numpy as np L = 8*np.pi N = 200 dx = L/N u_0 = 1. phi = np.zeros(N) F = np.zeros(N+1) u = u_0*np.ones(N+1) x_phi = np.linspace(dx/2.,L-dx/2.,N) x_u = np.linspace(0.,L,N+1) def init_simulation(x_phi,N): phi = np.zeros(N) phi = 1.+np.cos(x_phi-L/2.) xmask = np.where(np.abs(x_phi-L/2.) > np.pi) phi[xmask] = 0. return phi phi = init_simulation(x_phi,N) plt.plot(x_phi,phi,lw=2) plt.xlabel('$x$', fontdict = font) plt.ylabel('$\phi$', fontdict = font) plt.xlim(0,L) plt.show() def init_simulation_slow(u,phi,x_phi,N): for i in range(N): if (np.abs(x_phi[i]-L/2.) > np.pi): phi[i] = 0. else: phi[i] = 1.+np.cos(x_phi[i]-L/2.) return phi phi = init_simulation_slow(u,phi,x_phi,N) plt.plot(x_phi,phi,lw=2) plt.xlabel('$x$', fontdict = font) plt.ylabel('$\phi$', fontdict = font) plt.xlim(0,L) plt.show() %%timeit flux0 = np.zeros(N+1) for i in range(1,N): flux0[i] = 0.5*(phi[i-1]+phi[i])*u[i] %%timeit flux1 = np.zeros(N+1) flux1[1:N] = 0.5*(phi[0:N-1]+phi[1:N])*u[1:N] def compute_flux(a,v,N): f=np.zeros(N+1) f[1:N] = 0.5*(a[0:N-1]+a[1:N])*v[1:N] f[0] = f[1] f[N] = f[N-1] return f F_exact = np.zeros(N+1) F_exact = init_simulation(x_u,N+1) F = compute_flux(phi,u,N) plt.plot(x_u,F_exact,lw=2,label="exact") plt.plot(x_u,F,'r--',lw=2,label="interpolated") plt.xlabel('$x$', fontdict = font) plt.ylabel('$\phi$', fontdict = font) plt.xlim(0,L) plt.legend(loc="upper left", bbox_to_anchor=[0, 1], ncol=1, shadow=True, fancybox=True) plt.show() N = 200 phi = np.zeros(N) F_exact = np.zeros(N+1) F = np.zeros(N+1) u = u_0*np.ones(N+1) x_phi = np.linspace(dx/2.,L-dx/2.,N) x_u = np.linspace(0.,L,N+1) phi = init_simulation(x_phi,N) F_exact = init_simulation(x_u,N+1) F = compute_flux(phi,u,N) error = np.sqrt(np.sum(np.power(F-F_exact,2))) errorx = np.power(F-F_exact,2) plt.plot(x_u,errorx) plt.show() print('error norm L 2= %1.4e' %error) Nerror = 3 Narray = np.array([10, 100, 200]) delta = L/Narray error = np.zeros(Nerror) order = np.zeros(Nerror) for ierror in range(Nerror): N = Narray[ierror] phi = np.zeros(N) F_exact = np.zeros(N+1) F = np.zeros(N+1) u = u_0*np.ones(N+1) x_phi = np.linspace(dx/2.,L-dx/2.,N) x_u = np.linspace(0.,L,N+1) phi = init_simulation(x_phi,N) F_exact = init_simulation(x_u,N+1) F = compute_flux(phi,u,N) error[ierror] = np.linalg.norm(F-F_exact) #error[ierror] = np.sqrt(np.sum(np.power(F-F_exact,2))) print('error norm L 2= %1.4e' %error[ierror]) order = 0.1*delta**(2) plt.loglog(delta,error,lw=2,label='interpolate') plt.loglog(delta,order,lw=2,label='$\propto\Delta x^2$') plt.legend(loc="upper left", bbox_to_anchor=[0, 1], ncol=1, shadow=True, fancybox=True) plt.xlabel('$\Delta x$', fontdict = font) plt.ylabel('$\Vert F\Vert_2$', fontdict = font) plt.show Nscheme = 4 Scheme = np.array(['CS','US1','US2','US3']) g_1 = np.array([1./2.,0.,0.,3./8.]) g_2 = np.array([0.,0.,1./2.,1./8.]) def compute_flux_advanced(a,v,N,num_scheme): imask = np.where(Scheme == num_scheme) g1 = g_1[imask] g2 = g_2[imask] f=np.zeros(N+1) f[2:N] = ((1.-g1+g2)*a[1:N-1]+g1*a[2:N]-g2*a[0:N-2])*v[2:N] if (num_scheme == 'US2') or (num_scheme == 'US3'): f[1] = ((1.-g1)*a[0]+g1*a[1])*v[1] f[0] = f[1] f[N] = f[N-1] return f table = ListTable() table.append(['Scheme', '$g_1$', '$g_2$']) for i in range(4): table.append([Scheme[i],g_1[i], g_2[i]]) table Nerror = 3 Narray = np.array([10, 100, 200]) delta = L/Narray error = np.zeros((Nerror,Nscheme)) order = np.zeros((Nerror,Nscheme)) for ischeme in range(Nscheme): num_scheme = Scheme[ischeme] for ierror in range(Nerror): N = Narray[ierror] dx = L/N phi = np.zeros(N) F_exact = np.zeros(N+1) F = np.zeros(N+1) u = u_0*np.ones(N+1) x_phi = np.linspace(dx/2.,L-dx/2.,N) x_u = np.linspace(0.,L,N+1) phi = init_simulation(x_phi,N) F_exact = init_simulation(x_u,N+1) F = compute_flux_advanced(phi,u,N,num_scheme) error[ierror,ischeme] = np.linalg.norm(F-F_exact) #print('error norm L 2= %1.4e' %error[ierror,ischeme]) for ischeme in range(Nscheme): plt.loglog(delta,error[:,ischeme],lw=2,label=Scheme[ischeme]) order = 2.0*(delta/delta[0]) plt.loglog(delta,order,'k:',lw=2,label='$\propto\Delta x$') order = 0.1*(delta/delta[0])**(2) plt.loglog(delta,order,'k-',lw=2,label='$\propto\Delta x^2$') order = 0.1*(delta/delta[0])**(3) plt.loglog(delta,order,'k--',lw=2,label='$\propto\Delta x^3$') plt.legend(loc=2, bbox_to_anchor=[0, 1], ncol=3, shadow=True, fancybox=True) plt.xlabel('$\Delta x$', fontdict = font) plt.ylabel('$\Vert F\Vert_2$', fontdict = font) plt.xlim(L/300,L/9.) plt.ylim(1e-5,1e2) plt.show def flux_divergence(f,N,dx): df = np.zeros(N) df[0:N] = (f[1:N+1]-f[0:N])/dx return df N=200 Simulation_time = 5. dx = L/N x_phi = np.linspace(dx/2.,L-dx/2.,N) x_u = np.linspace(0.,L,N+1) u_0 = 1. num_scheme = 'US2' u = u_0*np.ones(N+1) phi = np.zeros(N) flux = np.zeros(N+1) divflux = np.zeros(N) phi = init_simulation(x_phi,N) phi_init = phi.copy() number_of_iterations = 100 dt = Simulation_time/number_of_iterations t = 0. for it in range (number_of_iterations): flux = compute_flux_advanced(phi,u,N,num_scheme) divflux = flux_divergence(flux,N,dx) phi -= dt*divflux t += dt plt.plot(x_phi,phi,lw=2,label='simulated') plt.plot(x_phi,phi_init,lw=2,label='initial') plt.legend(loc=2, bbox_to_anchor=[0, 1], ncol=2, shadow=True, fancybox=True) plt.xlabel('$x$', fontdict = font) plt.ylabel('$\phi$', fontdict = font) plt.xlim(0,L) plt.show() N=200 Simulation_time = 5. dx = L/N x_phi = np.linspace(dx/2.,L-dx/2.,N) x_u = np.linspace(0.,L,N+1) u_0 = 1. num_scheme = 'CS' u = u_0*np.ones(N+1) phi = np.zeros(N) flux = np.zeros(N+1) divflux = np.zeros(N) phiold = np.zeros(N) phi = init_simulation(x_phi,N) phi_init = phi.copy() rk_coef = np.array([0.5,1.]) number_of_iterations = 100 dt = Simulation_time/number_of_iterations t = 0. for it in range (number_of_iterations): phiold = phi for irk in range(2): flux = compute_flux_advanced(phi,u,N,num_scheme) divflux = flux_divergence(flux,N,dx) phi = phiold-rk_coef[irk]*dt*divflux t += dt plt.plot(x_phi,phi,lw=2,label='simulated') plt.plot(x_phi,phi_init,lw=2,label='initial') plt.legend(loc=2, bbox_to_anchor=[0, 1], ncol=2, shadow=True, fancybox=True) plt.xlabel('$x$', fontdict = font) plt.ylabel('$\phi$', fontdict = font) plt.xlim(0,L) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plots Step2: Looking at Node size conditional probabilities
<ASSISTANT_TASK:> Python Code: # Necessary imports import os import time from nbminer.notebook_miner import NotebookMiner from nbminer.cells.cells import Cell from nbminer.features.ast_features import ASTFeatures from nbminer.stats.summary import Summary from nbminer.stats.multiple_summary import MultipleSummary #Loading in the notebooks people = os.listdir('../testbed/Final') notebooks = [] for person in people: person = os.path.join('../testbed/Final', person) if os.path.isdir(person): direc = os.listdir(person) notebooks.extend([os.path.join(person, filename) for filename in direc if filename.endswith('.ipynb')]) notebook_objs = [NotebookMiner(file) for file in notebooks] a = ASTFeatures(notebook_objs) for i, nb in enumerate(a.nb_features): a.nb_features[i] = nb.get_new_notebook() from helper_classes.cond_computer import CondComputer node_list = [] for i, nb in enumerate(a.nb_features): node_list.append('start') for cell in (nb.get_all_cells()): t = type(cell.get_feature('ast').body[0]) node_list.append(t) node_list.append('end') cc = CondComputer(node_list) arr, arr_names = cc.compute_probabilities(cc.count_totals,.01) %matplotlib inline import matplotlib.pyplot as plt import numpy as np plt.rcParams['figure.figsize'] = (20, 10) cc.plot_bar(arr, arr_names, 'Probability per Node type') cc.plot_conditional_bar(arr, arr_names, 0, 'Probability per Node type') cc.plot_conditional_bar(arr, arr_names, 1, 'Probability per Node type') cc.plot_conditional_bar(arr, arr_names, 2, 'Probability per Node type') cc.plot_conditional_bar(arr, arr_names, 3, 'Probability per Node type') cc.plot_conditional_bar(arr, arr_names, 4, 'Probability per Node type') cc.plot_conditional_bar(arr, arr_names, 5, 'Probability per Node type') ast_sizes = [] for i, nb in enumerate(a.nb_features): nb.set_ast_size() for el in nb.get_all_cells(): ast_sizes.append(el.get_feature('ast_size')) bin_end = [4, 7, 9, 12, 15, 22, 36] bin_count = {} for el in bin_end: bin_count[el] = 0 for num in ast_sizes: for i in range(len(bin_end)): if num < bin_end[i]: bin_count[bin_end[i]] += 1 break names = ['Less than ' + str(bin_end[0])] for i in range(1,len(bin_end)-1): names.append(str(bin_end[i-1]) + ' <= Num Nodes < ' + str(bin_end[i])) names.append('Greater than' + str(bin_end[-1])) for key in bin_count.keys(): print (key, bin_count[key]) size_features = [] for i, nb in enumerate(a.nb_features): nb.set_ast_size() size_features.append('start') for el in nb.get_all_cells(): num = el.get_feature('ast_size') for ind in range(len(bin_end)): if num < bin_end[ind]: size_features.append(ind) break size_features.append('end') cc = CondComputer(size_features) arr, arr_names = cc.compute_probabilities(cc.count_totals,0,np.arange(7)) cc.plot_bar(arr, names, 'Probability per Node size') cc.plot_conditional_bar(arr, arr_names, 0, 'Probability per Node size', x_labels = names) cc.plot_conditional_bar(arr, arr_names, 1, 'Probability per Node size', x_labels = names) cc.plot_conditional_bar(arr, arr_names, 2, 'Probability per Node size', x_labels = names) cc.plot_conditional_bar(arr, arr_names, 3, 'Probability per Node size', x_labels = names) cc.plot_conditional_bar(arr, arr_names, 4, 'Probability per Node size', x_labels = names) cc.plot_conditional_bar(arr, arr_names, 5, 'Probability per Node size', x_labels = names) cc.plot_conditional_bar(arr, arr_names, 6, 'Probability per Node size', x_labels = names) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Najprej sem spletne strani FIS pobrala podatke o smučarjih in njihovih id številkah na spletišču FIS. Id-je sem potrebovala za sestavljanje url naslovov posameznih športnikov. Zbrane podatke sem nato spravila v datoteko smucarji.csv. Step2: Tabela izgleda tako Step3: Nato sem za vsakega od tekmovalcev s strani z njegovimi rezultati (npr. Eva-Maria Brem) pobrala podatke o vsaki tekmi Step4: Tabela za Evo-Mario Brem Step5: Žal si z datumi ne bomo mogli pomagati, saj so na spletni strani z rezultati zapisani v različnih formatih. Kot primer si lahko ogledamo prvo in drugo vrstico zgornje tabele. Iz prve vrstice lahko sklepamo, da je zapis v obliki YYYY-MM-DD, kar pa bi pomenilo, da je bila tekma v drugi vrstici izvedena 3. julija 2016, kar pa iz očitnih razlogov ni res. Tega žal ne morem popraviti. Step6: Tabela izgleda tako Step7: V kasnejši analizi se pojavi težava, da so podatki o uvrstitvi lahko številke ali besedilo (npr. DNQ1, DNF1, DSQ2 in DNS1), ki označuje odstope, diskvalifikacije in podobne anomalije. Step8: Če bomo želeli delati analizo skupnega seštevka, moramo pretvoriti mesto tudi v točke. Definiramo seznam 'tocke', v katerega na i-to mesto (i teče od 0 do 30) zapišemo, koliko točk tekmovalec dobi za osvojeno i-to mesto. Nato napišemo še funkcijo, ki nam pretvori mesto v osvojene točke. Step9: Tabelam zdaj dodamo stolpce Step10: Zgornja tabela prikazuje predelano tabelo za Evo-Mario Brem. Enako smo naredili s tabelo z vsemi podatki Step11: Analiza Step12: Eva-Maria Brem je torej najpogosteje tekmuje v slalomu in veleslalomu. Ponazorimo to še z grafom Step13: Čeprav najpogosteje tekmuje v slalomu in veleslalomu, pa to nista nujno disciplini, v katerih dosega najboljše rezultate. Najprej si poglejmo, kakšni so njeni rezultati v slalomu in nato še veleslalomu Step14: Iz tabel je razvidno, da so njeni razultati v slalomu v vačini na repu trideseterice, med tem ko se v veleslalomu uvršča med 5 najboljših. To se še lepše vidi z grafov Step15: Poglejmo še koliko točk je v povprečju osvojila pri posamezni disciplini, da določimo njeno "paradno disciplino". Step16: Veleslalom je torej precej očitno disciplina, ki ji prinaša največ točk. Step17: Ker si z datumi ne moremo pomagati, glejmo le dosežena mesta Step18: Podoben graf si poglejmo posebej še za veleslalom Step19: Opazimo, da ena uvrstitev odstopa Step20: V Are-ju je osvojila kar 20 % vseh svojih točk. Ali tam dosega tudi najvišja mesta? Step21: Najvišja mesta očitno dosega v Meribelu. Da rezultate še bolje razložimo, poglejmo, koliko tekem se je Eva-Maria Brem udeležila v posameznem kraju. Step22: V Are-ju se E. M. Brem je udeležila daleč največ tekem, zato ni čudno, da je tam osvojila največ točk. Prav tako ne moremo trditi, da je Meribel njeno "najboljše" prizorišče, saj je tam tekmovala na le eni tekmi. Step23: Zanima nas, koliko nastopov so zbrali tekmovalci v letošnji sezoni. Prikazujemo število nastopov za 10 tekmovalcev. Step24: Tekmovalec ali tekmovalka z največ nastopi je nastopila 21-krat. Kdo pa je to? Step25: To sta torej dva tekmovalca in sicer z id številkama 125871 in 127048 - Lara Gut in Alexis Pinturault. Step26: Kdo pa je osvojil največ točk? Poglejmo 10 najboljših Step27: Še njihova imena Step28: Analiza narodnosti Step29: Analiza smuči Step30: Poglejmo, predstavniki katerih držav uporabljajo smuči Head (in koliko jih je) Step31: Podobno si lahko pogledamo, katerim proizvajalcem smuči najbolj zaupajo smučarji iz avstrije Step32: Z analizo enega samega proizvajalca oz. ene same države ne dobimo širše slike, zato si oglejmo graf, ki za vsako državo prikaže, smuči katerega proizvajalca uporabljajo njeni reprezentanti.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pandas as pd import matplotlib.pyplot as plt import numpy as py #import scipy # Make the graphs a bit prettier, and bigger #pd.set_option('display.mpl_style', 'default') #plt.rcParams['figure.figsize'] = (15, 5) # This is necessary to show lots of columns in pandas 0.12. # Not necessary in pandas 0.13. pd.set_option('display.width', 5000) pd.set_option('display.max_columns', 60) pot="csv-datoteke/smucarji.csv" smucarji = pd.read_csv(pot, parse_dates=['rojstvo'], index_col='id') smucarji[:10] pot_brem = "csv-datoteke/BREM Eva-Maria.csv" brem = pd.read_csv(pot_brem, parse_dates=['datum']) brem[:10] pot1 ="csv-datoteke/vse.csv" vse = pd.read_csv(pot1, parse_dates=['datum']) vse[197:203] def pretvori(bes): if bes in ['DNQ1', 'DNF1', 'DSQ2', 'DNS1','DNF2','DSQ1','DNS2','DNQ2','DNF','DNC1','DSQ','DNS']: return 0 else: return int(bes) tocke=[0,100,80,60,50,45,40,36,32,29,26,24,22,20,18,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1] def pretvori_2(bes): if bes in ["DNQ1", "DNF1", "DSQ2", "DNS1", "DNF2"]: return 0 else: if int(bes) > 30: return 0 else: return tocke[int(bes)]; vse['mesto1'] = vse['mesto'].map(pretvori) brem['mesto1'] = brem['mesto'].map(pretvori) vse['tocke'] = vse['mesto1'].map(pretvori_2) brem['tocke'] = brem['mesto1'].map(pretvori_2) brem[:5] vse[2024:2028] brem['disciplina'].value_counts() brem['disciplina'].value_counts().plot(kind='pie', figsize=(6,6)) slalom = brem['disciplina'] == 'Slalom' brem[slalom][:10] veleslalom = brem['disciplina'] == 'Giant Slalom' brem[veleslalom][:10] brem[slalom]['mesto1'].value_counts().plot(kind='bar', title="Rezultati E. M. Brem v slalomu") brem[veleslalom]['mesto1'].value_counts().plot(kind='bar', title='Rezultati E. M. Brem v veleslalomu') brem.groupby(['disciplina'])['tocke'].sum() / brem['tocke'].sum() prvi_del = brem[brem['datum'].dt.year == 2016] drugi_del = brem[(brem['datum'].dt.month > 9) & (brem['datum'].dt.year == 2015)] tabela = prvi_del.append(drugi_del) tabela tabela['mesto1'].value_counts().plot(kind='pie') tabela[tabela['disciplina'] == 'Giant Slalom']['mesto1'].value_counts().plot(kind='pie') po_krajih = brem.groupby(['kraj'])['tocke'].sum() / brem['tocke'].sum() po_krajih.nlargest(7) po_krajih1 = brem.groupby(['kraj'])['tocke'].mean() po_krajih1.nlargest(7) brem.groupby(['kraj']).size().sort_values(ascending = False) sezona = vse[vse['datum'].dt.year == 2016] drugi_del_vse = vse[(vse['datum'].dt.month > 9) & (vse['datum'].dt.year == 2015)] sezona.append(drugi_del)[40:46] sezona.groupby(['id']).size()[:10] sezona.groupby(['id']).size().max() nova = sezona.groupby(['id']).size() nova.nlargest(6) print(smucarji.get_value(index = 125871, col = 'ime'), ", ", smucarji.get_value(index = 127048, col = 'ime')) sezona.groupby(['id']).agg({'tocke':sum}).nlargest(columns = 'tocke', n = 10) naj = [106332,127048,154950,125871,104502,27657,30368,107164,109079,137380] for i in naj: print(i,': ', smucarji.get_value(index = i, col = 'ime')) smucarji['drzava'].value_counts().head(10) smucarji['drzava'].value_counts().plot(kind='bar', figsize = (12,6)) smucarji['smuci'].value_counts() smucarji['smuci'].value_counts().plot(kind='pie', figsize=(6,6)) smucarji[smucarji['smuci'] == "Head"]['drzava'].value_counts().plot(kind='bar') smucarji[smucarji['drzava'] == "AUT"]['smuci'].value_counts().plot(kind='bar') oboje = smucarji.groupby(['smuci','drzava']).size() priprava = oboje.unstack().plot(kind='barh', stacked=True, figsize=(20, 14), fontsize=12) priprava.legend(loc=(0.02,1), ncol=6) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate the data Step2: Calculate the covariance matrix and get the eigen values/vectors Step3: Plot the eigen vectors on the data Step4: Now let's check that the eigen vectors form indeed a base Step6: Projection of the data on the different planes
<ASSISTANT_TASK:> Python Code: # to display interactive plots within the notebook %matplotlib notebook # to define the size of the plotted images from pylab import rcParams rcParams['figure.figsize'] = (10, 8) import matplotlib.pyplot as plt import numpy as np from fct import generate_multivariate, normalize, plot_3d, plot_2d, Arrow3D data = generate_multivariate(size=500, dimension=3) plot_3d(data) # build the covariance matrix from the randomly generated data cov = np.cov(data.T) # get its eigen values and vectors eigenvalues, eigenvectors = np.linalg.eig(cov) # sorting the eigenvalues idx = eigenvalues.argsort()[::-1] eigenvalues = eigenvalues[idx] eigenvectors = eigenvectors[:,idx] fig = plt.figure() # RQ: gca = get current axis ax = fig.gca(projection='3d') data_t = data.T maxi = max([max(abs(el)) for el in data]) ax.set_xlim([-maxi, maxi]) ax.set_ylim([-maxi, maxi]) ax.set_zlim([-maxi, maxi]) ax.scatter(data_t[0], data_t[1], data_t[2], alpha=0.2) plt.title('Data with vectors of the new base.') for vector in eigenvectors: # vectors are made bigger to better visualize them vector_plt = 2 * vector a = Arrow3D([0, vector_plt[0]],[0, vector_plt[1]],[0, vector_plt[2]], mutation_scale=20, lw=1, arrowstyle="-|>", color="r") ax.add_artist(a) # The new vectors might not seem orthogonal because of scaling issues so # here is a proof. # Note that sometimes, as computers tend to have issues with # floating numbers, you might not get 0.0 but a very very # small number (10^-16 for instance). v1, v2, v3 = eigenvectors print(sum(v1 * v2)) print(sum(v1 * v3)) print(sum(v2 * v3)) def projection(data, vectors): Return the dataset projected on the two vectors given. v1, v2 = vectors data_projected = [] for datapoint in data: # we use a scalar product to project on the new base (v1, v2) # RQ: the multiplication datapoint * v is only possible # because datapoint is a ndarray. new_data = [] new_data.append(sum(datapoint * v1)) new_data.append(sum(datapoint * v2)) data_projected.append(np.array(new_data)) return data_projected def plot_projection(data, vectors, title=''): data_projected = projection(data, vectors) fig = plt.figure() maxi = max([max(abs(el)) for el in data]) plot_2d(data_projected, color='b', alpha=1, maxi=maxi, fig=fig, title=title) plot_projection(data, [v1, v2], title='two best vectors') plot_projection(data, [v1, v3], title='best and worst vectors') plot_projection(data, [v2, v3], title='two worst vectors') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This code sets up Ipython Notebook environments (lines beginning with %), and loads several libraries and functions. The core scientific stack in python consists of a number of free libraries. The ones I have loaded above include Step2: Vectors and Lists Step3: We could have done this by defining a python list and converting it to an array Step4: Matrix Addition and Subtraction Step5: Adding or subtracting two matrices Step6: Matrix Multiplication Step7: Multiplying two matricies Step8: We will use the numpy dot operator to perform the these multiplications. You can use it two ways to yield the same result Step9: Matrix Division Step10: Check that $C\times C^{-1} = I$ Step11: Transposing a Matrix Step12: One important property of transposing a matrix is the transpose of a product of two matrices. Let matrix A be of dimension $N \times M$ and let B of of dimension $M \times P$. Then Step13: Mechanics Step14: Logic, Comparison Step15: Concatenate, Reshape Step16: Example Step17: Let's add the bias, i.e. a column of $1$s to the explanatory variables Step18: Closed-form Linear Regression Step19: Multiple Linear Regression Step20: Evaluation Step21: Regularization, Ridge-Regression
<ASSISTANT_TASK:> Python Code: %matplotlib inline import math import numpy as np import matplotlib.pyplot as plt import seaborn as sbn ##from scipy import * x = .5 print x x_vector = np.array([1,2,3]) print x_vector c_list = [1,2] print "The list:",c_list print "Has length:", len(c_list) c_vector = np.array(c_list) print "The vector:", c_vector print "Has shape:",c_vector.shape z = [5,6] print "This is a list, not an array:",z print type(z) result = A + 3 #or result = 3 + A print result B = np.random.randn(2,2) print B A * 3 # Let's redefine A and C to demonstrate matrix multiplication: A = np.arange(6).reshape((3,2)) C = np.random.randn(2,2) print A.shape print C.shape print A.dot(C) print np.dot(A,C) # What would happen to C.dot(A) # note, we need a square matrix (# rows = # cols), use C: C_inverse = np.linalg.inv(C) print C_inverse print C.dot(C_inverse) print "Is identical to:" print C_inverse.dot(C) A = np.arange(6).reshape((3,2)) B = np.arange(8).reshape((2,4)) print "A is" print A print "The Transpose of A is" print A.T print B.T.dot(A.T) print "Is identical to:" print (A.dot(B)).T a = np.arange(10) s = slice(2,7,2) print a[s] a = np.arange(10) b = a[2:7:2] print b a = np.arange(10) b = a[5] print b a = np.arange(10) print a[2:] import numpy as np a = np.arange(10) print a[2:5] a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print a # slice items starting from index print 'Now we will slice the array from the index a[1:]' print a[1:] # array to begin with a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print 'Our array is:' print a print '\n' # this returns array of items in the second column print 'The items in the second column are:' print a[...,1] print '\n' # Now we will slice all items from the second row print 'The items in the second row are:' print a[1,...] print '\n' # Now we will slice all items from column 1 onwards print 'The items column 1 onwards are:' print a[...,1:] A = np.random.rand(5,5)*10 print A[:,1]>4 A[A[:,1]>4] ### Pure iterative Python ### points = [[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]] qPoint = [4,5,3] minIdx = -1 minDist = -1 for idx, point in enumerate(points): # iterate over all points dist = sum([(dp-dq)**2 for dp,dq in zip(point,qPoint)])**0.5 # compute the euclidean distance for each point to q if dist < minDist or minDist < 0: # if necessary, update minimum distance and index of the corresponding point minDist = dist minIdx = idx print 'Nearest point to q: ', points[minIdx] # # # Equivalent NumPy vectorization # # # import numpy as np points = np.array([[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]]) qPoint = np.array([4,5,3]) minIdx = np.argmin(np.linalg.norm(points-qPoint,axis=1)) # compute all euclidean distances at once and return the index of the smallest one print 'Nearest point to q: ', points[minIdx] n = 100 # numeber of samples Xr = np.random.rand(n)*99.0 y = -7.3 + 2.5*Xr + np.random.randn(n)*27.0 plt.plot(Xr, y, "o", alpha=0.5) X = np.vstack((np.ones(n), Xr)).T print X.shape X[0:10,:] beta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) yhat = X.dot(beta) yhat.shape plt.plot(X[:,1], y, "o", alpha=0.5) plt.plot(X[:,1], yhat, "-", alpha=1, color="red") n = 100 # numeber of samples X1 = np.random.rand(n)*99.0 X2 = np.random.rand(n)*51.0 - 26.8 X3 = np.random.rand(n)*5.0 + 6.1 X4 = np.random.rand(n)*1.0 - 0.5 X5 = np.random.rand(n)*300.0 y_m = -7.3 + 2.5*X1 + -7.9*X2 + 1.5*X3 + 10.0*X4 + 0.13*X5 + np.random.randn(n)*7.0 plt.hist(y_m, bins=20) ; X_m = np.vstack((np.ones(n), X1, X2, X3, X4, X5)).T X_m.shape beta_m = np.linalg.inv(X_m.T.dot(X_m)).dot(X_m.T).dot(y_m) beta_m yhat_m = X.dot(beta_m) yhat_m.shape import math RSMD = math.sqrt(np.square(yhat_m-y_m).sum()/n) print RSMD p = X.shape[1] ## get number of parameters lam = 10.0 p, lam beta2 = np.linalg.inv(X.T.dot(X) + lam*np.eye(p)).dot(X.T).dot(y) yhat2 = X.dot(beta2) RSMD2 = math.sqrt(np.square(yhat2-y).sum()/n) print RSMD2 ##n = float(X.shape[0]) print " RMSE = ", math.sqrt(np.square(yhat-y).sum()/n) print "Ridge RMSE = ", math.sqrt(np.square(yhat2-y).sum()/n) plt.plot(X[:,1], y, "o", alpha=0.5) plt.plot(X[:,1], yhat, "-", alpha=0.7, color="red") plt.plot(X[:,1], yhat2, "-", alpha=0.7, color="green") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Calculate the translational partition function of a CO molecule in the bottle at 298 K. What is the unit of the partition function? Step2: 3. Plot the rotational and vibrational partition functions of a CO molecule in the bottle from $T$ = 200 to 2000 K (assume the CO remains a gas over the whole range). Hint Step3: 4. Plot the total translational, rotational, and vibrational energies of CO in the bottle from $T =$ 200 to 2000 K (assume the CO remains a gas over the whole range). Which (if any) of the three types of motions dominate the total energy? Step4: 5. Plot the total translational, rotational, and vibrational constant volume molar heat capacities of CO in the bottle from $T =$ 200 to 2000 K. Which (if any) of the three types of motions dominate the heat capacity? Step5: 6. Plot the total translational, rotational, and vibrational Helmholtz energies of CO in the bottle from $T =$ 200 to 2000 K. Which (if any) of the three types of motions dominate the Helmholtz energy? Step6: 7. Use your formulas to calculate $\Delta P$, $\Delta U$, $\Delta A$, and $\Delta S$ associated with isothermally expanding the gas from 20 dm$^3$ to 40 dm$^3$. Step7: Reactions from scratch Step8: 9. Using the data provided, determine $\Delta A^{\circ}$(298 K) in kJ mol$^{-1}$, assuming ideal behavior and 1 M standard state. Recall that $A^\circ=E^\text{elec} + \text{ZPE}-RT\ln(q^\circ)-RT$ and that $q^\circ =(q^\text{trans}/V)q^\text{rot}q^\text{vib}/c^\circ$ in units corresponding with the standard state. Step9: 10. Determine $\Delta G^\circ$(298 K). Recall that $G = A + PV = A + RT$ for an ideal ga. Step10: 11. Determine $\Delta S^{\circ}$(298 K), in J mol$^{-1}$ K$^{-1}$ , assuming a 1 M standard state. Recall that $S = (U - A)/T$. Step11: 12. Using the data provided, determine $K_c$ (298 K), assuming a 1 M standard state. You may either determine from partition functions of from the relationship between $K_c$ and $\Delta G^\circ$. Step12: 13. 1 mole of CF$_3$OH is generated in a 20 L vessel at 298 K and left long enough to come to equilibrium with respect to its decomposition reaction. What is the composition of the gas (concentrations of all the components) at equilibrium (in mol/L)? Step13: 14. How, directionally, would your answer to Question 13 change if the vessel was at a higher temperature? Use the van'T Hoff relationship to determine the equilibrium constant and equilibrium concentrations at 273 and 323 K. How good was your guess? Step14: Since $\Delta H$ is positive, we expect $K \uparrow$ as $T \uparrow$ Step15: Therefore, the at higher temperatures, the reaction shifts towards the products. Step16: 16. Consult a thermodynamics source (e.g. https
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt hbar = 1.05457e-34 # J*s h = 6.62607e-34 # J*s kB = 1.38065e-23 # J/K m = 28.01*1.6605e-27 # kg/molecule V = 0.02 # m^3 c = 2.99792e10 # cm/s B = 1.931 # cm^-1 v = 2156.6 # cm^-1 T_trans = np.pi**2*hbar**2/2/m/V**(2/3)/kB T_rot = h*c*B/kB T_vib = h*c*v/kB print('Characteristic temperatures of CO:') print('T_trans = {0:.3e} K, T_rot = {1:.3f} K, T_vib = {2:0.2f} K.'.format(T_trans,T_rot,T_vib)) Lamda = h*(1/(kB*298*2*np.pi*m))**0.5 print(Lamda) q_trans = V/Lamda**3 print('The translational partition function of a CO molecule in the bottle at 298 K is {:.4E}.'.format(q_trans)) print('It is dimensionless.') T = np.linspace(200,2000,1000) # r = R/a_0 q_rot = T/T_rot q_vib = 1/(1-np.exp(-T_vib/T)) plt.plot(T,q_rot) plt.xlabel('T (K)') plt.ylabel('$q_{rot}$') plt.title('The rotational partition function of a CO molecule') plt.show() plt.plot(T,q_vib) plt.xlabel('T (K)') plt.ylabel('$q_{vib}$') plt.title('The vibrational partition function of a CO molecule') plt.show() R = 8.31447 # J/(mol*K) U_trans = 1.5*R*T U_rot = R*T U_vib = R*T_vib/(np.exp(T_vib/T)-1) plt.plot(T,U_trans,label='U_trans') plt.plot(T,U_rot,label='U_rot') plt.plot(T,U_vib,label='U_vib') plt.legend() plt.xlabel('T (K)') plt.ylabel('Internal Energy (J/mol)') plt.title('Internal energies of CO in the bottle') plt.show() Cv_trans = np.linspace(1.5*R,1.5*R,1000) Cv_rot = np.linspace(R,R,1000) Cv_vib = R*(T_vib/T*np.exp(T_vib/2./T)/(np.exp(T_vib/T)-1))**2 plt.plot(T,Cv_trans,label='Cv_trans') plt.plot(T,Cv_rot,label='Cv_rot') plt.plot(T,Cv_vib,label='Cv_vib') plt.legend() plt.xlabel('T (K)') plt.ylabel('Heat Capacity (J/mol/K)') plt.title('Constant volume molar heat capacities of CO in the bottle ') plt.show() print('While translational motion contributes the most to the molar heat capacity of CO,') print('it does not dominate over rotational and vibrational motion.') NA = 6.022e23 S_trans = R*np.log(np.exp(2.5)*V/NA/Lamda**3) S_rot = R*(1-np.log(T_rot/T)) S_vib = R*(T_vib/T/(np.exp(T_vib/T)-1)-np.log(1-np.exp(-T_vib/T))) A_trans = U_trans-T*S_trans A_rot = U_rot-T*S_rot A_vib = U_vib-T*S_vib plt.plot(T,A_trans,label='A_trans') plt.plot(T,A_rot,label='A_rot') plt.plot(T,A_vib,label='A_vib') plt.legend() plt.xlabel('T (K)') plt.ylabel('Helmholtz Energy (J/mol)') plt.title('Helmholtz energies of CO in the bottle') plt.show() V2 = 0.04 # m^3 deltaP = R*298*(1/V2-1/V) deltaS = R*np.log(np.exp(2.5)*V2/NA/Lamda**3) - R*np.log(np.exp(2.5)*V/NA/Lamda**3) deltaA = -deltaS*298 print('Delta P = {0:.3f} Pa, Delta U = 0, Delta A = {1:.3f} J/mol, and Delta S = {2:.3f} J/mol/K.'.format(deltaP,deltaA,deltaS)) import numpy as np T = 298 # K k = 1.38065e-23 # J/K R = 8.31447 # J/(mol*K) Na = 6.0221e23 # 1/mol c = 6.0221e26 # 1/m^3, conversion factor of 1mol/L = 6.02e26 particles/m^3 autokJ = 2625.50 Eelec = [-412.90047 ,-312.57028 ,-100.31885 ] # kJ/mol ZPE = [0.02889 ,0.01422 ,0.00925 ] # kJ/mol dE0 = ((Eelec[1] + ZPE[1] + Eelec[2] + ZPE[2]) - (Eelec[0] + ZPE[0]))* autokJ # kJ/mol u_trans = [3.7,3.7,3.7] #kJ/mol u_rot = [3.7,3.7,2.5] #kJ/mol u_vib = [4.3,1.2,0] #kJ/mol dU = dE0 + (u_trans[1]+u_rot[1]+u_vib[1])+(u_trans[2]+u_rot[2]+u_vib[2])-(u_trans[0]+u_rot[0]+u_vib[0])#kJ/mol print("delta_U = %.2f kJ/mol"%dU) q_trans = [7.72e32/c,1.59e32/c,8.65e31/c] # change translational partition functions from 1/m3 to mol/l std state q_rot = [61830,679,9.59] # unitless q_vib = [2.33,1.16,1] # unitless Q = (q_trans[1]*q_rot[1]*q_vib[1])*(q_trans[2]*q_rot[2]*q_vib[2])/(q_trans[0]*q_rot[0]*q_vib[0]) # total partition dA = dE0 + (-R*T*np.log(Q)- R*T)/1000 #kJ/mol print("Q = %.2f"%Q) print("delta_E0 = %.2f"%dE0) print("delta_A = %.2f kJ/mol"%dA) dG = dA + R*T/1000 #kJ/mol print("delta_G = %.2f kJ/mol"%dG) dS = 1000*(dU - dA)/T print("delta_S = %.2f J/mol K"%dS) Kc = Q *np.exp(-dE0*1000/(R*T)) # Kc equation from lecture notes print('Kc = %.3f (unitless). '%(Kc)) Kc = np.exp(-dG*1000/(R*T)) print('Kc = %.3f (unitless). '%(Kc)) from sympy import * x = symbols('x',positive=True) c = solve(x**2-(0.05-x)*Kc,x) print('At equilibrium, CF3OH = %.2E mol/L, COF2 = %.5f mol/L, HF = %.5f mol/L.'%(0.05-c[0],c[0],c[0])) print('At equilibrium, CF3OH = %.2E mol, COF2 = %.5f mol, HF = %.5f mol.'%((0.05-c[0])*20,c[0]*20,c[0]*20)) dn = 2-1 R = 8.314/1000 #kJ/mol K T = 298 #K dH = dU+dn*R*T #kJ/mol print("dH =",round(dH,3),"kJ/mol") K1 = 2.926 T1 = 298 #K T2 = 273 #K K2 = K1*np.exp(-dH/R*(1/T2-1/T1)) print('K=', round(K2,4), 'at 273 K.') x = symbols('x',positive=True) c = solve(x**2-(0.05-x)*K2,x) print('At equilibrium, CF3OH = %.2E mol/L, COF2 = %.5f mol/L, HF = %.5f mol/L.'%(0.05-c[0],c[0],c[0])) K1 = 2.926 T1 = 298 #K T2 = 323 #K K2 = K1*np.exp(-dH/R*(1/T2-1/T1)) print('K=', round(K2,4), 'at 323 K.') x = symbols('x',positive=True) c = solve(x**2-(0.05-x)*K2,x) print('At equilibrium, CF3OH = %.2E mol/L, COF2 = %.5f mol/L, HF = %.5f mol/L.'%(0.05-c[0],c[0],c[0])) T = 298 #K R = 8.314 Kc = np.exp(-dG*1000/(R*T)) print('At 298 K, Kc = %.3f (unitless). '%(Kc)) x = symbols('x',positive=True) c = solve(x**2-(0.2-x)*Kc,x) print('At equilibrium, CF3OH = %.2E mol/L, COF2 = %.5f mol/L, HF = %.5f mol/L.'%(0.2-c[0],c[0],c[0])) print('At equilibrium, CF3OH = %.2E mol, COF2 = %.5f mol, HF = %.5f mol.'%((0.2-c[0])*5,c[0]*5,c[0]*5)) print('At a smaller volume, the concentration of products increases, but the number of moles decreases.') T = 298 #K #All values were taken from NIST #Methanol Hm = -205 #kJ/mol Sm = .2399 #kJ/mol K Gm = Hm - T*Sm #kJ/mol #Hydrogen Hh = 0 Sh = .13068 #J/mol K Gh = Hh - T*Sh #kJ/mol #Formaldehyde Hf = -108.6 #kJ/mol Sf = .21895 #kJ/mol K Gf = Hf - T*Sf #kJ/mol delta_H = Hf+Hh-Hm #kJ/mol delta_S = Sf+Sh-Sm #kJ/mol K delta_G = Gf+Gh-Gm #kJ/mol print('Delta H =',delta_H,'kJ/mol.') print('Delta S =',delta_S,'kJ/mol K.') print('Delta G =',delta_G,'kJ/mol.') print('Therefore, by substituting F with H makes the reaction less favorable.') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Grab the min and max submission dates for filtering main_summary. Step2: Load in main_summary, filtered to the min date of the experiment, and (7 * N_WEEKS) days beyond its compleition (max_date) to allow for the specified n-week Retention Analysis. We then join main_summary with the experiment data. Step3: Assign a branch label to each (client_id, submission_date) tuple Step4: Calculate Retention Data Step5: Write to s3 since this job is quite expensive and should only be run once. Step6: Load processed Retention Data
<ASSISTANT_TASK:> Python Code: S3_PATH = "s3://net-mozaws-prod-us-west-2-pipeline-analysis/taarv2/cleaned_data/" # Select essential columns. clean_data = sqlContext.read.parquet(S3_PATH).select('client_id', 'locale', 'branch', 'submission_date_s3') # Display number of rows per branch. clean_data.groupBy('branch').count().collect() min_date = clean_data.select(F.min('submission_date_s3').alias('min_d')).collect()[0].min_d max_date = clean_data.select(F.max('submission_date_s3').alias('max_d')).collect()[0].max_d print("min date: " + str(min_date)) print("max date: " + str(max_date)) # Get distinct client_ids that were observed in the TAAR experiment. ensemble_ids = clean_data.rdd.filter(lambda p: p['branch'] == 'ensemble-taar').map(lambda x: x['client_id']).distinct() linear_ids = clean_data.rdd.filter(lambda p: p['branch'] == 'linear-taar').map(lambda x: x['client_id']).distinct() control_ids = clean_data.rdd.filter(lambda p: p['branch'] == 'control').map(lambda x: x['client_id']).distinct() # Reduce redundant Rows to a set of client_ids per branch observed in TAAR. local_ensemble_ids = set(ensemble_ids.collect()) local_linear_ids = set(linear_ids.collect()) local_control_ids = set(control_ids.collect()) # Sanity check that there are no elements in the set intersection between branches. print(set.intersection(*[local_ensemble_ids, local_linear_ids, local_control_ids])) # Broadcast the sets of ids for fast filtering on Main Summary. bc_ensemble_ids = sc.broadcast(local_ensemble_ids) bc_linear_ids = sc.broadcast(local_linear_ids) bc_control_ids = sc.broadcast(local_control_ids) # print(len(local_ensemble_ids)) # print(len(local_linear_ids)) # print(len(local_control_ids)) ms = ( sqlContext.read.option("mergeSchema", True) .parquet("s3://telemetry-parquet/main_summary/v4") .filter("submission_date_s3 >= '{}'".format(min_date)) .filter("normalized_channel = 'release'") .filter("app_name = 'Firefox'") .select('client_id', 'active_addons', 'locale', 'subsession_start_date', 'submission_date', 'submission_date_s3') ) # branches_col = ms.rdd.map(lambda p: (p['client_id'], count_addons(p['active_addons']), assign_branch(p['client_id']), p['submission_date_s3'])) branches_col = ms.withColumn("branch", assign_branch("client_id")) branches_col = branches_col.filter(branches_col.branch != "None") branches_col.take(1) # Double group by and count distinct shoudl leave us with a managable Pandas DF containing: # datastring in %Y%m%d format (sortable), branch: {ensemble, linear, control} and distinct_client_count # Everything we need for a day over day retetnion analysis for only clients observed in the TAAR study # spanning from the earliest study date to latest available ping. df_daily_grouped = branches_col.groupby("submission_date_s3", "branch") retention_pd = df_daily_grouped.agg(F.countDistinct('client_id')).toPandas() ret_df = retention_pd.sort('submission_date_s3', ascending=True) ret_df.to_csv("taar_v2_retention-alternate.csv", index=False) %%bash aws s3 cp taar_v2_retention-alternate.csv s3://net-mozaws-prod-us-west-2-pipeline-analysis/taarv2/ %%bash aws s3 cp s3://net-mozaws-prod-us-west-2-pipeline-analysis/taarv2/taar_v2_retention-alternate.csv . ret = pd.read_csv("taar_v2_retention-alternate.csv") plt.rcParams['figure.figsize'] = (12, 6) fig, ax = plt.subplots() for group, data in ret.groupby("branch"): (data.sort_values("submission_date_s3") .plot(x='submission_date_s3', y='count(DISTINCT client_id)', ax=ax, label=group)) plt.ylabel("Retention") plt.xlabel("submission date ") plt.title("Day-over-day Retention by Branch") plt.show() ret <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: obtido no site <a href="http Step2: O módulo ElementTree (ET) Step3: Para vermos o elemento raiz da árvore, usamos Step4: O objeto root, que é um Element, tem as propriedades tag e attrib, que é um dicionário de seus atributos. Step5: Para acessarmos cada um dos nós do elemento raiz, iteramos nestes nós (que são, também, Elements) Step6: Selecionando os dados Step7: Observe que temos mais uma camada de dados Step8: Assim, podemos por exemplo explorar os nós netos da árvore Step9: Vamos transformar agora os dados em um DataFrame. Step10: Como a biblioteca <a href="http Step11: Inicialmente, criamos um DataFrame, ou seja, uma tabela, com os dados que já temos. Step12: Observe que nesta tabela temos dados de 2007 e 2009. Não vamos usar os dados relativos a 2007 por simplicidade. Step13: Obtendo códigos IBGE para os municípios Step14: Podemos olhar o tipo de tabela que temos usando o método head do pandas. Step15: Como não são todos os dados que nos interessam, vamos selecionar apenas as colunas "Nome_UF" (pois pode ser interessante referenciarmos o estado da federação mais tarde), "Cod Municipio Completo" e "Nome_Município". Step16: Em seguida, precisamos selecionar na tabela completa dadosMunicipioIBGE os dados dos municípios presentes na tabelaInicial contendo os valores calculados do IDEB. Para isso, vamos extrair dos dois DataFrames as colunas correspondentes aos codigos de município (lembrando que nos dadosMunicipioIBGE os códigos contém um dígito verificador que não será utilizado) Step17: Observe que usamos acima o método map para transformar os dados numéricos em string, e depois extrair o último dígito. Step18: E agora vamos extrair as linhas correspondentes na tabela dadosMunicipioIBGE. Step19: Por fim, vamos criar uma nova tabela (DataFrame) juntando nome e valor do IDEB calculado na tabelaInicial. Step20: A tabela final é Step21: Para terminar Step22: Em seguida, vamos substituir os índices da tabela dadosFinais pelos nomes dos municípios listados, já que gostaríamos de fazer um gráfico do valor do IDEB por município. Step23: Finalmente, como nos interessa um gráfico do IDEB por município, só vamos utilizar os dados da coluna "Valor" na tabela dadosFinais (observe que o resultado desta operação é uma Series) Step24: Estamos prontos para fazer nosso gráfico. Step25: Comentários sobre a geração dos documentos e do script
<ASSISTANT_TASK:> Python Code: arquivo = "IDEB por Município Rede Federal Séries Finais (5ª a 8ª).xml" import xml.etree.ElementTree as ET tree = ET.parse(arquivo) root = tree.getroot() root.tag root.attrib for child in root: print(child.tag, child.attrib) valoresIDEB = root.find('valores') valoresIDEB valoresIDEB[0] for child in valoresIDEB: for grandchild in child: print(grandchild.tag, grandchild.attrib) data = [] for child in valoresIDEB: data.append([float(child[0].text), child[1].text, child[2].text]) data import pandas as pd tabelaInicial = pd.DataFrame(data, columns = ["Valor", "Municipio", "Ano"]) tabelaInicial tabelaInicial = tabelaInicial.loc[0:19] dadosMunicipioIBGE = pd.read_excel("DTB_2014_Municipio.xls") dadosMunicipioIBGE.head() dadosMunicipioIBGE = dadosMunicipioIBGE[["Nome_UF", "Cod Municipio Completo", "Nome_Município"]] listaMunicipiosInicial = tabelaInicial["Municipio"] listaMunicipios = dadosMunicipioIBGE["Cod Municipio Completo"].map(lambda x: str(x)[0:6]) indicesMunicipios = listaMunicipios[~listaMunicipios.isin(listaMunicipiosInicial)] new = dadosMunicipioIBGE.drop(indicesMunicipios.index).reset_index(drop=True) dadosFinais = pd.concat([new, tabelaInicial], axis=1) dadosFinais import matplotlib.pyplot as plt dadosFinais.set_index(["Nome_Município"], inplace=True) dadosFinais["Valor"] dadosFinais["Valor"].plot(kind='barh') plt.title("IDEB por Município (Dados de 2009)") %matplotlib inline <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: KL and non overlapping distributions Step2: Approximation of the ratio using the f-gan approach Step3: Gradients Step4: Wasserstein distance for the same two distributions Step5: MMD computation
<ASSISTANT_TASK:> Python Code: import jax import random import numpy as np import jax.numpy as jnp import seaborn as sns import matplotlib.pyplot as plt import scipy !pip install -qq dm-haiku !pip install -qq optax try: import haiku as hk except ModuleNotFoundError: %pip install -qq haiku import haiku as hk try: import optax except ModuleNotFoundError: %pip install -qq optax import optax sns.set(rc={"lines.linewidth": 2.8}, font_scale=2) sns.set_style("whitegrid") import scipy.stats from scipy.stats import truncnorm from scipy.stats import beta # We allow a displacement from 0 of the beta distribution. class TranslatedBeta: def __init__(self, a, b, expand_dims=False, displacement=0): self._a = a self._b = b self.expand_dims = expand_dims self.displacement = displacement def rvs(self, size): val = beta.rvs(self._a, self._b, size=size) + self.displacement return np.expand_dims(val, axis=1) if self.expand_dims else val def pdf(self, x): return beta.pdf(x - self.displacement, self._a, self._b) p_param1 = 3 p_param2 = 5 q_param1 = 2 q_param2 = 3 start_p = 0 start_r = 1 start_q = 2 p_dist = TranslatedBeta(p_param1, p_param2, displacement=start_p) q_dist = TranslatedBeta(q_param1, q_param2, displacement=start_q) r_dist = TranslatedBeta(q_param1, q_param2, displacement=start_r) plt.figure(figsize=(14, 10)) p_x_samples = p_dist.rvs(size=15) q_x_samples = q_dist.rvs(size=15) p_linspace_x = np.linspace(start_p, start_p + 1, 100) p_x_pdfs = p_dist.pdf(p_linspace_x) q_linspace_x = np.linspace(start_q, start_q + 1, 100) q_x_pdfs = q_dist.pdf(q_linspace_x) plt.plot(p_linspace_x, p_x_pdfs, "b", label=r"$p_1(x)$") plt.plot(p_x_samples, [0] * len(p_x_samples), "bo", ms=10) plt.plot(q_linspace_x, q_x_pdfs, "r", label=r"$p_2(x)$") plt.plot(q_x_samples, [0] * len(q_x_samples), "rd", ms=10) plt.ylim(-0.5, 2.7) plt.xlim(-0.2, 3.5) plt.axis("off") plt.legend() plt.xticks([]) plt.yticks([]) plt.figure(figsize=(14, 8)) local_start_p = 0 local_start_r = 1.2 local_start_q = 2.4 local_p_dist = TranslatedBeta(p_param1, p_param2, displacement=local_start_p) local_q_dist = TranslatedBeta(q_param1, q_param2, displacement=local_start_q) local_r_dist = TranslatedBeta(q_param1, q_param2, displacement=local_start_r) p_linspace_x = np.linspace(local_start_p, local_start_p + 1, 100) q_linspace_x = np.linspace(local_start_q, local_start_q + 1, 100) r_linspace_x = np.linspace(local_start_r, local_start_r + 1, 100) p_x_pdfs = local_p_dist.pdf(p_linspace_x) q_x_pdfs = local_q_dist.pdf(q_linspace_x) r_x_pdfs = local_r_dist.pdf(r_linspace_x) plt.plot(p_linspace_x, p_x_pdfs, "b") plt.plot(q_linspace_x, q_x_pdfs, "r") plt.plot(r_linspace_x, r_x_pdfs, "g") num_samples = 15 plt.plot(local_p_dist.rvs(size=num_samples), [0] * num_samples, "bo", ms=10, label=r"$p^*$") plt.plot(local_q_dist.rvs(size=num_samples), [0] * num_samples, "rd", ms=10, label=r"$q(\theta_1)$") plt.plot(local_r_dist.rvs(size=num_samples), [0] * num_samples, "gd", ms=10, label=r"$q(\theta_2)$") plt.ylim(-0.5, 2.7) plt.xlim(-0.2, 3.5) plt.axis("off") plt.legend(framealpha=0) plt.xticks([]) plt.yticks([]) model_transform = hk.without_apply_rng( hk.transform( lambda *args, **kwargs: hk.Sequential( [hk.Linear(10), jax.nn.relu, hk.Linear(10), jax.nn.tanh, hk.Linear(40), hk.Linear(1)] )(*args, **kwargs) ) ) BATCH_SIZE = 100 NUM_UPDATES = 1000 dist1 = TranslatedBeta(p_param1, p_param2, expand_dims=True, displacement=start_p) dist2 = TranslatedBeta(q_param1, q_param2, expand_dims=True, displacement=start_q) @jax.jit def estimate_kl(params, dist1_batch, dist2_batch): dist1_logits = model_transform.apply(params, dist1_batch) dist2_logits = model_transform.apply(params, dist2_batch) return jnp.mean(dist1_logits - jnp.exp(dist2_logits - 1)) def update(params, opt_state, dist1_batch, dist2_batch): model_loss = lambda *args: -estimate_kl(*args) loss, grads = jax.value_and_grad(model_loss, has_aux=False)(params, dist1_batch, dist2_batch) params_update, new_opt_state = optim.update(grads, opt_state, params) new_params = optax.apply_updates(params, params_update) return loss, new_params, new_opt_state NUM_UPDATES = 200 rng = jax.random.PRNGKey(1) init_model_params = model_transform.init(rng, dist1.rvs(BATCH_SIZE)) params = init_model_params optim = optax.adam(learning_rate=0.0005, b1=0.9, b2=0.999) opt_state = optim.init(init_model_params) for i in range(NUM_UPDATES): # Get a new batch of data x = dist1.rvs(BATCH_SIZE) y = dist2.rvs(BATCH_SIZE) loss, params, opt_state = update(params, opt_state, x, y) if i % 50 == 0: print("Loss at {}".format(i)) print(loss) plotting_x = np.expand_dims(np.linspace(-1.0, 3.5, 100), axis=1) # TODO: how do you get the ratio values form the estimate - need to check the fgan paper ratio_values = model_transform.apply(params, plotting_x) # ratio_values = 1 + np.log(model_transform.apply(params, plotting_x)) plt.figure(figsize=(14, 8)) p_linspace_x = np.linspace(start_p, start_p + 1, 100) q_linspace_x = np.linspace(start_q, start_q + 1, 100) plt.plot(p_linspace_x, p_x_pdfs, "b", label=r"$p^*$") plt.plot(p_x_samples, [0] * len(p_x_samples), color="b", marker=10, linestyle="None", ms=18) plt.plot(q_linspace_x, q_x_pdfs, "g", label=r"$q(\theta)$") plt.plot(q_x_samples, [0] * len(q_x_samples), color="g", marker=11, linestyle="None", ms=18) x = np.linspace(-1, 3.5, 200) ratio = p_dist.pdf(x) / q_dist.pdf(x) plt.hlines(6.1, -0.6, start_q, linestyles="--", color="r") plt.hlines(6.1, start_q + 1, 3.5, linestyles="--", color="r") plt.text(3.4, 5.6, r"$\infty$") plt.plot(x, ratio, "r", label=r"$\frac{p^*}{q(\theta)}$", linewidth=4) plt.plot( plotting_x, ratio_values[:, 0].T, color="darkgray", label=r"MLP approx to $\frac{p^*}{q(\theta)}$", linewidth=4 ) plt.ylim(-2.5, 8) plt.xlim(-0.2, 3.5) plt.axis("off") plt.legend(loc="upper center", bbox_to_anchor=(0.35, 0.0, 0.25, 1.0), ncol=4, framealpha=0) plt.xticks([]) plt.yticks([]) plt.figure(figsize=(14, 8)) grad_fn = jax.grad(lambda x: model_transform.apply(params, x)[0]) grad_values = jax.vmap(grad_fn)(plotting_x) plt.figure(figsize=(14, 8)) p_linspace_x = np.linspace(start_p, start_p + 1, 100) q_linspace_x = np.linspace(start_q, start_q + 1, 100) plt.plot(p_linspace_x, p_x_pdfs, "b", label=r"$p^*$") plt.plot(p_x_samples, [0] * len(p_x_samples), color="b", marker=10, linestyle="None", ms=18) plt.plot(q_linspace_x, q_x_pdfs, "g", label=r"$q(\theta)$") plt.plot(q_x_samples, [0] * len(q_x_samples), color="g", marker=11, linestyle="None", ms=18) x = np.linspace(-1, 3.5, 200) ratio = p_dist.pdf(x) / q_dist.pdf(x) plt.hlines(5.8, -0.6, start_q, linestyles="--", color="r") plt.hlines(5.8, start_q + 1, 3.5, linestyles="--", color="r") plt.text(3.4, 5.4, r"$\infty$") plt.plot(x, ratio, "r", label=r"$\frac{p^*}{q(\theta)}$", linewidth=4) plt.plot( plotting_x, ratio_values[:, 0].T, color="darkgray", label=r"$f_{\phi}$ approximating $\frac{p^*}{q(\theta)}$", linewidth=4, ) plt.plot(plotting_x, grad_values[:, 0].T, color="orange", label=r"$\nabla_{x} f_{\phi}(x)$", linewidth=4, ls="-.") plt.ylim(-2.5, 8) plt.xlim(-0.2, 3.5) plt.axis("off") plt.legend(loc="upper center", bbox_to_anchor=(0.35, 0.0, 0.25, 1.0), ncol=4, framealpha=0) plt.xticks([]) plt.yticks([]) from scipy.optimize import linprog def get_W_witness_spectrum(p_samples, q_samples): n = len(p_samples) m = len(q_samples) X = np.concatenate([p_samples, q_samples], axis=0) ## AG: repeat [-1/n] n times c = np.array(n * [-1 / n] + m * [1 / m]) A_ub, b_ub = [], [] for i in range(n + m): for j in range(n + m): if i == j: continue z = np.zeros(n + m) z[i] = 1 z[j] = -1 A_ub.append(z) b_ub.append(np.abs(X[i] - X[j])) ## AG: Minimize: c^T * x ## Subject to: A_ub * x <= b_ub res = linprog(c=c, A_ub=A_ub, b_ub=b_ub, method="simplex", options={"tol": 1e-5}) a = res["x"] ## AG: second argument xs to be passed into the internal ## function. def witness_spectrum(x): diff = np.abs(x - X[:, np.newaxis]) one = np.min(a[:, np.newaxis] + diff, axis=0) two = np.max(a[:, np.newaxis] - diff, axis=0) return one, two return witness_spectrum x = np.linspace(-1, 3.5, 100) wass_estimate = get_W_witness_spectrum(p_x_samples + start_p, q_x_samples + start_q)(x) wa, wb = wass_estimate w = (wa + wb) / 2 w -= w.mean() plt.figure(figsize=(14, 6)) display_offset = 0.8 plt.plot(p_linspace_x, display_offset + p_x_pdfs, "b", label=r"$p^*$") plt.plot(p_x_samples, [display_offset] * len(p_x_samples), color="b", marker=10, linestyle="None", ms=18) plt.plot(q_linspace_x, display_offset + q_x_pdfs, "g", label=r"$q(\theta)$") plt.plot(q_x_samples, [display_offset] * len(q_x_samples), color="g", marker=11, linestyle="None", ms=18) x = np.linspace(-1, 3.5, 100) plt.plot(x, w + display_offset, "r", label=r"$f^{\star}$", linewidth=4) plt.ylim(-2.5, 8) plt.xlim(-0.2, 3.5) plt.axis("off") plt.legend(loc="upper center", bbox_to_anchor=(0.35, 0.0, 0.5, 1.34), ncol=3, framealpha=0) plt.xticks([]) plt.yticks([]) def covariance(kernel_fn, X, Y): num_rows = len(X) num_cols = len(Y) K = np.zeros((num_rows, num_cols)) for i in range(num_rows): for j in range(num_cols): K[i, j] = kernel_fn(X[i], Y[j]) return K def gaussian_kernel(x1, x2, gauss_var=0.1, height=2.2): return height * np.exp(-np.linalg.norm(x1 - x2) ** 2 / gauss_var) def evaluate_mmd_critic(p_samples, q_samples): n = p_samples.shape[0] m = q_samples.shape[0] p_cov = covariance(gaussian_kernel, p_samples, p_samples) print("indices") print(np.diag_indices(n)) p_samples_norm = np.sum(p_cov) - np.sum(p_cov[np.diag_indices(n)]) p_samples_norm /= n * (n - 1) q_cov = covariance(gaussian_kernel, q_samples, q_samples) q_samples_norm = np.sum(q_cov) - np.sum(q_cov[np.diag_indices(m)]) q_samples_norm /= m * (m - 1) p_q_cov = covariance(gaussian_kernel, p_samples, q_samples) p_q_norm = np.sum(p_q_cov) p_q_norm /= n * m norm = p_samples_norm + q_samples_norm - 2 * p_q_norm def critic(x): p_val = np.mean([gaussian_kernel(x, y) for y in p_samples]) q_val = np.mean([gaussian_kernel(x, y) for y in q_samples]) return (p_val - q_val) / norm return critic critic_fn = evaluate_mmd_critic(p_x_samples, q_x_samples) plt.figure(figsize=(14, 6)) display_offset = 0 plt.plot(p_linspace_x, display_offset + p_x_pdfs, "b", label=r"$p^*$") plt.plot(p_x_samples, [display_offset] * len(p_x_samples), color="b", marker=10, linestyle="None", ms=18) plt.plot(q_linspace_x, display_offset + q_x_pdfs, "g", label=r"$q(\theta)$") plt.plot(q_x_samples, [display_offset] * len(q_x_samples), color="g", marker=11, linestyle="None", ms=18) x = np.linspace(-1, 3.5, 100) plt.plot( start_p + x, np.array([critic_fn(x_val) for x_val in x]) + display_offset, "r", label=r"$f^{\star}$", linewidth=4 ) plt.ylim(-2.5, 8) plt.xlim(-0.2, 3.5) plt.axis("off") plt.legend(loc="upper center", bbox_to_anchor=(0.35, 0.0, 0.5, 1.34), ncol=3, framealpha=0) plt.xticks([]) plt.yticks([]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import numpy as np a = [np.array([1,2,3]),np.array([1,2,3]),np.array([1,2,3])] def all_equal(iterator): try: iterator = iter(iterator) first = next(iterator) return all(np.array_equal(first, rest) for rest in iterator) except StopIteration: return True result = all_equal(a) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If you already have an H2O cluster running that you'd like to connect to (for example, in a multi-node Hadoop environment), then you can specify the IP and port of that cluster as follows Step2: Download EEG Data Step3: Explore Data Step4: Now let's take a look at the top of the frame Step5: The first 14 columns are numeric values that represent EEG measurements from the headset. The "eyeDetection" column is the response. There is an additional column called "split" that was added (by me) in order to specify partitions of the data (so we can easily benchmark against other tools outside of H2O using the same splits). I randomly divided the dataset into three partitions Step6: To select a subset of the columns to look at, typical Pandas indexing applies Step7: Now let's select a single column, for example -- the response column, and look at the data more closely Step8: It looks like a binary response, but let's validate that assumption Step9: If you don't specify the column types when you import the file, H2O makes a guess at what your column types are. If there are 0's and 1's in a column, H2O will automatically parse that as numeric by default. Step10: Now we can check that there are two levels in our response column Step11: We can query the categorical "levels" as well ('0' and '1' stand for "eye open" and "eye closed") to see what they are Step12: We may want to check if there are any missing values, so let's look for NAs in our dataset. For tree-based methods like GBM and RF, H2O handles missing feature values automatically, so it's not a problem if we are missing certain feature values. However, it is always a good idea to check to make sure that you are not missing any of the training labels. Step13: The isna method doesn't directly answer the question, "Does the response column contain any NAs?", rather it returns a 0 if that cell is not missing (Is NA? FALSE == 0) and a 1 if it is missing (Is NA? TRUE == 1). So if there are no missing values, then summing over the whole column should produce a summand equal to 0.0. Let's take a look Step14: Great, no missing labels. Step15: The sum is still zero, so there are no missing values in any of the cells. Step16: Ok, the data is not exactly evenly distributed between the two classes -- there are more 0's than 1's in the dataset. However, this level of imbalance shouldn't be much of an issue for the machine learning algos. (We will revisit this later in the modeling section below). Step17: Split H2O Frame into a train and test set Step18: Machine Learning in H2O Step19: We first create a model object of class, "H2OGradientBoostingEstimator". This does not actually do any training, it just sets the model up for training by specifying model parameters. Step20: Specify the predictor set and response Step21: Now that we have specified x and y, we can train the model Step22: Inspect Model Step23: Model Performance on a Test Set Step24: Individual model performance metrics can be extracted using methods like auc and mse. In the case of binary classification, we may be most interested in evaluating test set Area Under the ROC Curve (AUC). Step25: Cross-validated Performance Step26: This time around, we will simply pull the training and cross-validation metrics out of the model. To do so, you use the auc method again, and you can specify train or xval as True to get the correct metric. Step27: Grid Search Step28: Define an "H2OGridSearch" object by specifying the algorithm (GBM) and the hyper parameters Step29: An "H2OGridSearch" object also has a train method, which is used to train all the models in the grid. Step30: Compare Models Step31: The "best" model in terms of validation set AUC is listed first in auc_table. Step32: The last thing we may want to do is generate predictions on the test set using the "best" model, and evaluate the test set AUC.
<ASSISTANT_TASK:> Python Code: import h2o # Start an H2O Cluster on your local machine h2o.init() # This will not actually do anything since it's a fake IP address # h2o.init(ip="123.45.67.89", port=54321) #csv_url = "http://www.stat.berkeley.edu/~ledell/data/eeg_eyestate_splits.csv" csv_url = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/eeg/eeg_eyestate_splits.csv" data = h2o.import_file(csv_url) data.shape data.head() data.columns columns = ['AF3', 'eyeDetection', 'split'] data[columns].head() y = 'eyeDetection' data[y] data[y].unique() data[y] = data[y].asfactor() data[y].nlevels() data[y].levels() data.isna() data[y].isna() data[y].isna().sum() data.isna().sum() data[y].table() n = data.shape[0] # Total number of training samples data[y].table()['Count']/n train = data[data['split']=="train"] train.shape valid = data[data['split']=="valid"] valid.shape test = data[data['split']=="test"] test.shape # Import H2O GBM: from h2o.estimators.gbm import H2OGradientBoostingEstimator model = H2OGradientBoostingEstimator(distribution='bernoulli', ntrees=100, max_depth=4, learn_rate=0.1) x = list(train.columns) x del x[14:16] #Remove the 14th and 15th columns, 'eyeDetection' and 'split' x model.train(x=x, y=y, training_frame=train, validation_frame=valid) print(model) perf = model.model_performance(test) print(perf.__class__) perf.auc() perf.mse() cvmodel = H2OGradientBoostingEstimator(distribution='bernoulli', ntrees=100, max_depth=4, learn_rate=0.1, nfolds=5) cvmodel.train(x=x, y=y, training_frame=data) print(cvmodel.auc(train=True)) print(cvmodel.auc(xval=True)) ntrees_opt = [5,50,100] max_depth_opt = [2,3,5] learn_rate_opt = [0.1,0.2] hyper_params = {'ntrees': ntrees_opt, 'max_depth': max_depth_opt, 'learn_rate': learn_rate_opt} from h2o.grid.grid_search import H2OGridSearch gs = H2OGridSearch(H2OGradientBoostingEstimator, hyper_params = hyper_params) gs.train(x=x, y=y, training_frame=train, validation_frame=valid) print(gs) # print out the auc for all of the models auc_table = gs.sort_by('auc(valid=True)',increasing=False) print(auc_table) best_model = h2o.get_model(auc_table['Model Id'][0]) best_model.auc() best_perf = best_model.model_performance(test) best_perf.auc() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Bubble sort Step2: We can see the essential features of Python used Step4: Note Step6: This gets rid of the need for a temporary variable. Step7: Simplex Method Step8: To access an entry we use square brackets as with lists Step9: To access a complete row or column, we use slicing notation Step10: To apply the simplex method, we have to remove the negative entries in row 0. These appear in columns 1 and 2. For column 1 the pivot in row 1 has magnitude $|-1/2| = 1/2$ and the pivot in row 2 has magnitude $|-1/1|=1$. So we choose row 1. Step11: Now we repeat this on column 2, noting that we can only pivot on row 2 Step12: We read off the solution (noting that floating point representations mean we need care interpreting the results) Step14: Let's turn that into a function. Step15: Building the tableau Step16: See how this compares to VBA. Step17: This isn't very informative. However, we can define the string representation of our class using the __repr__ method Step18: We can also define what it means to add two instances of our class Step19: Going back to the simplex method, we want to define a class that contains the objective function and the constraints, a method to solve the problem, and a representation of the problem and solution. Step20: Using libraries - pulp Step21: This gives a "meaningful" title to the problem and says if we're going to maximize or minimize. Step22: Defining the variables again gives them "meaningful" names, and specifies their lower and upper bounds, and whether the variable type is continuous or integer. We could ignore the latter two definitions as they take their default values. Step23: Again we have given a "meaningful" name to the objective function we're maximizing. Step24: If you want to save the problem at this stage, you can use problem.writeLP(&lt;filename&gt;), where the .lp extension is normally used. Step25: The 1 just means it did it Step26: As it's found a solution, we can print the objective function and the variables Step27: Using pulp is far easier and robust than coding our own, and will cover a much wider range of problems. Step28: We will assume that the bus capacity is $85$ people, that $250$ people want to travel, that they are distributed at the $10$ stops following a discrete random distribution, and each wants to travel a number of stops that also follows a discrete random distribution (distributed between $1$ and the maximum number of stops they could travel). Step30: And now that we know how to do it once, we can do it many times Step31: We see that, as expected, it's the stops in the middle that fare worst. We can easily plot this Step32: Exercise Step33: A quick reminder of what the dataset contains Step34: There are different types of iris, classified by the Name. Each individual flower observed has four measurements, given by the data. We want to use some of the data (the Sepal Length and Width, and the Petal Length and Width) to construct a model. The model will take an observation - these four numbers - and predict which flower type we have. We'll use the rest of the data to check how accurate our model is. Step35: So we're trying to choose one of three types. Step36: There's 150 observations, with a reasonable range of values. Step37: We then want to split our data, and associated labels, into a training set (where we tell the classifier what the answer is) and a testing set (to check the accuracy of the model) Step38: Here we have split the data set in two Step39: We now have a model Step40: We see from the first couple of entries that it's done ok, but that there are errors. As estimating the accuracy of a classification by comparing to test data is so standard, there's a function for that Step41: So the result is very accurate on this simple dataset. Step42: The accuracy of this classifier is not great. As the train_test_split function randomly selects its training and test data, the accuracy will change every time you run it, but it tends to be 60-70%. Let's try excluding the pop data.
<ASSISTANT_TASK:> Python Code: def bubblesort(unsorted): Sorts an array using bubble sort algorithm Paramters --------- unsorted : list The unsorted list Returns sorted : list The sorted list (in place) last = len(unsorted) # All Python lists start from 0 for i in range(last): for j in range(i+1, last): if unsorted[i] > unsorted[j]: temp = unsorted[j] unsorted[j] = unsorted[i] unsorted[i] = temp return unsorted unsorted = [2, 4, 6, 0, 1, 3, 5] print(bubblesort(unsorted)) unsorted = [2, 4, 6, 0, 1, 3, 5] print(sorted(unsorted)) def bubblesort(unsorted): Sorts an array using bubble sort algorithm Paramters --------- unsorted : list The unsorted list Returns sorted : list The sorted list (in place) last = len(unsorted) # All Python lists start from 0 for i in range(last): for j in range(i+1, last): if unsorted[i] > unsorted[j]: unsorted[j], unsorted[i] = unsorted[i], unsorted[j] return unsorted unsorted = [2, 4, 6, 0, 1, 3, 5] print(bubblesort(unsorted)) def countingsort(unsorted): Sorts an array using counting sort algorithm Paramters --------- unsorted : list The unsorted list Returns sorted : list The sorted list (in place) # Allocate the counts array min_value = min(unsorted) max_value = max(unsorted) # This creates a list of the right length, but the entries are not zero, so reset counts = list(range(min_value, max_value+1)) for i in range(len(counts)): counts[i] = 0 # Count the values last = len(unsorted) for i in range(last): counts[unsorted[i]] += 1 # Write the items back into the list array next_index = 0 for i in range(min_value, max_value+1): for j in range(counts[i]): unsorted[next_index] = i next_index += 1 return unsorted unsorted = [2, 4, 6, 0, 1, 3, 5] print(countingsort(unsorted)) import numpy tableau = numpy.array([ [1, -1, -1, 0, 0, 0], [0, 2, 1, 1, 0, 4], [0, 1, 2, 0, 1, 3] ], dtype=numpy.float64) print(tableau) print(tableau[0, 0]) print(tableau[1, 2]) row = 2 column = 5 print(tableau[row, column]) print(tableau[row, :]) print(tableau[:, column]) column = 1 pivot_row = 1 # Rescale pivot row tableau[pivot_row, :] /= tableau[pivot_row, column] # Remove all entries in columns except the pivot pivot0 = tableau[0, column] / tableau[pivot_row, column] tableau[0, :] -= pivot0 * tableau[pivot_row, :] pivot2 = tableau[2, column] / tableau[pivot_row, column] tableau[2, :] -= pivot2 * tableau[pivot_row, :] print(tableau) column = 2 pivot_row = 2 # Rescale pivot row tableau[pivot_row, :] /= tableau[pivot_row, column] # Remove all entries in columns except the pivot pivot0 = tableau[0, column] / tableau[pivot_row, column] tableau[0, :] -= pivot0 * tableau[pivot_row, :] pivot1 = tableau[1, column] / tableau[pivot_row, column] tableau[1, :] -= pivot1 * tableau[pivot_row, :] print(tableau) print("z =", tableau[0, -1]) print("x_1 =", tableau[1, -1]) print("x_2 =", tableau[2, -1]) def simplex(tableau): Assuming a standard form tableau, find the solution nvars = tableau.shape[1] - tableau.shape[0] - 1 for column in range(1, nvars+2): if tableau[0, column] < 0: pivot_row = numpy.argmin(numpy.abs(tableau[0, column] / tableau[1:, column])) + 1 # Rescale pivot row tableau[pivot_row, :] /= tableau[pivot_row, column] # Remove all entries in columns except the pivot for row in range(0, pivot_row): pivot = tableau[row, column] / tableau[pivot_row, column] tableau[row, :] -= pivot * tableau[pivot_row, :] for row in range(pivot_row+1, tableau.shape[0]): pivot = tableau[row, column] / tableau[pivot_row, column] tableau[row, :] -= pivot * tableau[pivot_row, :] z = tableau[0, -1] x = tableau[1:nvars+1, -1] return z, x tableau = numpy.array([ [1, -1, -1, 0, 0, 0], [0, 2, 1, 1, 0, 4], [0, 1, 2, 0, 1, 3] ], dtype=numpy.float64) z, x = simplex(tableau) print("z =", z) print("x =", x) class Student(object): def __init__(self, name): self.name = name def print_name(self): print("Hello", self.name) s1 = Student("Christine Carpenter") print(s1.name) s2 = Student("Jörg Fliege") s2.print_name() print(s1) print(s2) class Student(object): def __init__(self, name): self.name = name def __repr__(self): return self.name s1 = Student("Christine Carpenter") s2 = Student("Jörg Fliege") print(s1) print(s2) class Student(object): def __init__(self, name): self.name = name def __repr__(self): return self.name def __add__(self, other): return Student(self.name + " and " + other.name) s1 = Student("Christine Carpenter") s2 = Student("Jörg Fliege") print(s1 + s2) class Constraint(object): def __init__(self, coefficients, value): self.coefficients = numpy.array(coefficients) self.value = value def __repr__(self): string = "" for i in range(len(self.coefficients)-1): string += str(self.coefficients[i]) + " x_{}".format(i+1) + " + " string += str(self.coefficients[-1]) + " x_{}".format(len(self.coefficients)) string += " \le " string += str(self.value) return string c1 = Constraint([2, 1], 4) c2 = Constraint([1, 2], 3) print(c1) print(c2) class Linearprog(object): def __init__(self, objective, constraints): self.objective = numpy.array(objective) self.nvars = len(self.objective) self.constraints = constraints self.nconstraints = len(self.constraints) self.tableau = numpy.zeros((1+self.nconstraints, 2+self.nvars+self.nconstraints)) self.tableau[0, 0] = 1.0 self.tableau[0, 1:1+self.nvars] = -self.objective for nc, c in enumerate(self.constraints): self.tableau[1+nc, 1:1+self.nvars] = c.coefficients self.tableau[1+nc, 1+self.nvars+nc] = 1.0 self.tableau[1+nc, -1] = c.value self.z, self.x = self.simplex() def simplex(self): for column in range(1, self.nvars+2): if self.tableau[0, column] < 0: pivot_row = numpy.argmin(numpy.abs(self.tableau[0, column] / self.tableau[1:, column])) + 1 # Rescale pivot row self.tableau[pivot_row, :] /= self.tableau[pivot_row, column] # Remove all entries in columns except the pivot for row in range(0, pivot_row): pivot = self.tableau[row, column] / self.tableau[pivot_row, column] self.tableau[row, :] -= pivot * self.tableau[pivot_row, :] for row in range(pivot_row+1, self.tableau.shape[0]): pivot = self.tableau[row, column] / self.tableau[pivot_row, column] self.tableau[row, :] -= pivot * self.tableau[pivot_row, :] z = self.tableau[0, -1] x = self.tableau[1:self.nvars+1, -1] return z, x def __repr__(self): string = "max " for i in range(len(self.objective)-1): string += str(self.objective[i]) + " x_{}".format(i+1) + " + " string += str(self.objective[-1]) + " x_{}".format(len(self.objective)) string += "\n\nwith constraints\n" for c in self.constraints: string += "\n" string += c.__repr__() string += "\n\n" string += "Solution has objective function maximum of " + str(self.z) string += "\n\n" string += "at location x = " + str(self.x) return string problem = Linearprog([1, 1], [c1, c2]) print(problem) import pulp problem = pulp.LpProblem("Simple problem", pulp.LpMaximize) x1 = pulp.LpVariable("x_1", lowBound=0, upBound=None, cat='continuous') x2 = pulp.LpVariable("x_2", lowBound=0, upBound=None, cat='continuous') objective = x1 + x2, "Objective function to maximize" problem += objective c1 = 2 * x1 + x2 <= 4, "First constraint" c2 = x1 + 2 * x2 <= 3, "Second constraint" problem += c1 problem += c2 problem.solve() print("Status:", pulp.LpStatus[problem.status]) print("Maximized objective function = ", pulp.value(problem.objective)) for v in problem.variables(): print(v.name, "=", v.varValue) bus_stops = ["Airport Parkway Station", "Wessex Lane", "Highfield Interchange", "Portswood Broadway", "The Avenue Archers Road", "Civic Centre", "Central Station", "West Quay", "Town Quay", "NOCS"] import numpy capacity = 85 n_people = 250 total_stops = len(bus_stops) initial_stops = numpy.random.randint(0, total_stops-1, n_people) n_stops = numpy.zeros_like(initial_stops) n_onboard = numpy.zeros((total_stops,), dtype=numpy.int) n_left_behind = numpy.zeros_like(n_onboard) for i in range(total_stops): if i == total_stops - 1: # Can only take one stop n_stops[initial_stops == i] = 1 else: n_people_at_stop = len(initial_stops[initial_stops == i]) n_stops[initial_stops == i] = numpy.random.randint(1, total_stops-i, n_people_at_stop) for i in range(total_stops): n_people_at_stop = len(initial_stops[initial_stops == i]) n_people_getting_on = max([0, min([n_people_at_stop, capacity - n_onboard[i]])]) n_left_behind[i] = max([n_people_at_stop - n_people_getting_on, 0]) for fill_stops in n_stops[initial_stops == i][:n_people_getting_on]: n_onboard[i:i+fill_stops] += 1 print(n_left_behind) print(n_onboard) def mc_unilink(n_people, n_runs = 10000): Given n_people wanting to ride the U1, use Monte Carlo to see how many are left behind on average at each stop. Parameters ---------- n_people : int Total number of people wanting to use the bus n_runs : int Number of realizations Returns ------- n_left_behind_average : array of float Average number of people left behind at each stop bus_stops = ["Airport Parkway Station", "Wessex Lane", "Highfield Interchange", "Portswood Broadway", "The Avenue Archers Road", "Civic Centre", "Central Station", "West Quay", "Town Quay", "NOCS"] total_stops = len(bus_stops) capacity = 85 n_left_behind = numpy.zeros((total_stops, n_runs), dtype = numpy.int) for run in range(n_runs): initial_stops = numpy.random.randint(0, total_stops-1, n_people) n_stops = numpy.zeros_like(initial_stops) n_onboard = numpy.zeros((total_stops,), dtype=numpy.int) for i in range(total_stops): if i == total_stops - 1: # Can only take one stop n_stops[initial_stops == i] = 1 else: n_people_at_stop = len(initial_stops[initial_stops == i]) n_stops[initial_stops == i] = numpy.random.randint(1, total_stops-i, n_people_at_stop) for i in range(total_stops): n_people_at_stop = len(initial_stops[initial_stops == i]) n_people_getting_on = max([0, min([n_people_at_stop, capacity - n_onboard[i]])]) n_left_behind[i, run] = max([n_people_at_stop - n_people_getting_on, 0]) for fill_stops in n_stops[initial_stops == i][:n_people_getting_on]: n_onboard[i:i+fill_stops] += 1 return numpy.mean(n_left_behind, axis=1) n_left_behind_average = mc_unilink(250, 10000) n_left_behind_average %matplotlib inline from matplotlib import pyplot x = list(range(len(n_left_behind_average))) pyplot.bar(x, n_left_behind_average) pyplot.xticks(x, bus_stops, rotation='vertical') pyplot.ylabel("Average # passengers unable to board") pyplot.show() import numpy import pandas import sklearn iris = pandas.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/data/iris.csv') iris.head() iris['Name'].unique() iris.describe() labels = iris['Name'] data = iris.drop('Name', axis=1) from sklearn.model_selection import train_test_split data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size = 0.5) from sklearn import tree classifier = tree.DecisionTreeClassifier() classifier.fit(data_train, labels_train) print(labels_test) print(classifier.predict(data_test)) from sklearn.metrics import accuracy_score accuracy = accuracy_score(labels_test, classifier.predict(data_test)) print("Decision Tree Accuracy with 50/50: {}".format(accuracy)) from sklearn.model_selection import train_test_split from sklearn import tree from sklearn.metrics import accuracy_score dfs = {'indie': pandas.read_csv('spotify_data/indie.csv'), 'pop': pandas.read_csv('spotify_data/pop.csv'), 'country': pandas.read_csv('spotify_data/country.csv'), 'metal': pandas.read_csv('spotify_data/metal.csv'), 'house': pandas.read_csv('spotify_data/house.csv'), 'rap': pandas.read_csv('spotify_data/rap.csv')} for genre, df in dfs.items(): df['genre'] = genre dat = pandas.concat(dfs.values()) # define a list of the fields we want to use to train our classifier columns = ['duration_ms', 'explicit', 'popularity', 'acousticness', 'danceability', 'energy', 'instrumentalness', 'key', 'liveness', 'loudness', 'mode', 'speechiness', 'tempo', 'time_signature', 'valence', 'genre'] # define data as all columns but the genre column data = dat[columns].drop('genre', axis=1) # define labels as the genre column labels = dat[columns].genre # split the data into a training set and a testing set data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size = 0.3) # create the classifier classifier = tree.DecisionTreeClassifier() # train the classifier using the training data classifier.fit(data_train, labels_train) # calculate the accuracy of the classifier using the testing data accuracy = accuracy_score(labels_test, classifier.predict(data_test)) print("Decision Tree Accuracy with 50/50: {}".format(accuracy)) nopop_dat = dat[dat.genre != 'pop'] # define data as all columns but the genre column data = nopop_dat[columns].drop('genre', axis=1) # define labels as the genre column labels = nopop_dat[columns].genre data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size = 0.1) classifier = tree.DecisionTreeClassifier() classifier.fit(data_train, labels_train) accuracy = accuracy_score(labels_test, classifier.predict(data_test)) print("Decision Tree Accuracy with 50/50: {}".format(accuracy)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Survival analysis Step3: The survival function is just the complementary CDF. Step4: Here's the CDF and SF. Step5: And here's the hazard function. Step6: Age at first marriage Step7: We have to clean up a few variables. Step8: And the extract the age at first marriage for people who are married, and the age at time of interview for people who are not. Step10: The following function uses Kaplan-Meier to estimate the hazard function. Step11: Here is the hazard function and corresponding survival function. Step14: Quantifying uncertainty Step15: The following plot shows the survival function based on the raw data and a 90% CI based on resampling. Step16: The SF based on the raw data falls outside the 90% CI because the CI is based on weighted resampling, and the raw data is not. You can confirm that by replacing ResampleRowsWeighted with ResampleRows in ResampleSurvival. Step20: The following is the code from survival.py that generates SFs broken down by decade of birth. Step21: Here are the results for the combined data. Step23: We can generate predictions by assuming that the hazard function of each generation will be the same as for the previous generation. Step24: And here's what that looks like. Step25: Remaining lifetime Step26: Here's the expected remaining duration of a pregnancy as a function of the number of weeks elapsed. After week 36, the process becomes "memoryless". Step27: And here's the median remaining time until first marriage as a function of age. Step29: Exercises
<ASSISTANT_TASK:> Python Code: from os.path import basename, exists def download(url): filename = basename(url) if not exists(filename): from urllib.request import urlretrieve local, _ = urlretrieve(url, filename) print("Downloaded " + local) download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkstats2.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkplot.py") import thinkstats2 import thinkplot import numpy as np import pandas as pd try: import empiricaldist except ImportError: !pip install empiricaldist download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/nsfg.py") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dct") download( "https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dat.gz" ) import nsfg preg = nsfg.ReadFemPreg() complete = preg.query("outcome in [1, 3, 4]").prglngth cdf = thinkstats2.Cdf(complete, label="cdf") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/survival.py") import survival def MakeSurvivalFromCdf(cdf, label=""): Makes a survival function based on a CDF. cdf: Cdf returns: SurvivalFunction ts = cdf.xs ss = 1 - cdf.ps return survival.SurvivalFunction(ts, ss, label) sf = MakeSurvivalFromCdf(cdf, label="survival") print(cdf[13]) print(sf[13]) thinkplot.Plot(sf) thinkplot.Cdf(cdf, alpha=0.2) thinkplot.Config(loc="center left") hf = sf.MakeHazardFunction(label="hazard") print(hf[39]) thinkplot.Plot(hf) thinkplot.Config(ylim=[0, 0.75], loc="upper left") download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemResp.dct") download( "https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemResp.dat.gz" ) resp6 = nsfg.ReadFemResp() resp6.cmmarrhx.replace([9997, 9998, 9999], np.nan, inplace=True) resp6["agemarry"] = (resp6.cmmarrhx - resp6.cmbirth) / 12.0 resp6["age"] = (resp6.cmintvw - resp6.cmbirth) / 12.0 complete = resp6[resp6.evrmarry == 1].agemarry.dropna() ongoing = resp6[resp6.evrmarry == 0].age from collections import Counter def EstimateHazardFunction(complete, ongoing, label="", verbose=False): Estimates the hazard function by Kaplan-Meier. http://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator complete: list of complete lifetimes ongoing: list of ongoing lifetimes label: string verbose: whether to display intermediate results if np.sum(np.isnan(complete)): raise ValueError("complete contains NaNs") if np.sum(np.isnan(ongoing)): raise ValueError("ongoing contains NaNs") hist_complete = Counter(complete) hist_ongoing = Counter(ongoing) ts = list(hist_complete | hist_ongoing) ts.sort() at_risk = len(complete) + len(ongoing) lams = pd.Series(index=ts, dtype=float) for t in ts: ended = hist_complete[t] censored = hist_ongoing[t] lams[t] = ended / at_risk if verbose: print(t, at_risk, ended, censored, lams[t]) at_risk -= ended + censored return survival.HazardFunction(lams, label=label) hf = EstimateHazardFunction(complete, ongoing) thinkplot.Plot(hf) thinkplot.Config(xlabel="Age (years)", ylabel="Hazard") sf = hf.MakeSurvival() thinkplot.Plot(sf) thinkplot.Config(xlabel="Age (years)", ylabel="Prob unmarried", ylim=[0, 1]) def EstimateMarriageSurvival(resp): Estimates the survival curve. resp: DataFrame of respondents returns: pair of HazardFunction, SurvivalFunction # NOTE: Filling missing values would be better than dropping them. complete = resp[resp.evrmarry == 1].agemarry.dropna() ongoing = resp[resp.evrmarry == 0].age hf = EstimateHazardFunction(complete, ongoing) sf = hf.MakeSurvival() return hf, sf def ResampleSurvival(resp, iters=101): Resamples respondents and estimates the survival function. resp: DataFrame of respondents iters: number of resamples _, sf = EstimateMarriageSurvival(resp) thinkplot.Plot(sf) low, high = resp.agemarry.min(), resp.agemarry.max() ts = np.arange(low, high, 1 / 12.0) ss_seq = [] for _ in range(iters): sample = thinkstats2.ResampleRowsWeighted(resp) _, sf = EstimateMarriageSurvival(sample) ss_seq.append(sf.Probs(ts)) low, high = thinkstats2.PercentileRows(ss_seq, [5, 95]) thinkplot.FillBetween(ts, low, high, color="gray", label="90% CI") ResampleSurvival(resp6) thinkplot.Config( xlabel="Age (years)", ylabel="Prob unmarried", xlim=[12, 46], ylim=[0, 1], loc="upper right", ) download( "https://github.com/AllenDowney/ThinkStats2/raw/master/code/1995FemRespData.dat.gz" ) download( "https://github.com/AllenDowney/ThinkStats2/raw/master/code/2006_2010_FemRespSetup.dct" ) download( "https://github.com/AllenDowney/ThinkStats2/raw/master/code/2006_2010_FemResp.dat.gz" ) resp5 = survival.ReadFemResp1995() resp6 = survival.ReadFemResp2002() resp7 = survival.ReadFemResp2010() resps = [resp5, resp6, resp7] def AddLabelsByDecade(groups, **options): Draws fake points in order to add labels to the legend. groups: GroupBy object thinkplot.PrePlot(len(groups)) for name, _ in groups: label = "%d0s" % name thinkplot.Plot([15], [1], label=label, **options) def EstimateMarriageSurvivalByDecade(groups, **options): Groups respondents by decade and plots survival curves. groups: GroupBy object thinkplot.PrePlot(len(groups)) for _, group in groups: _, sf = EstimateMarriageSurvival(group) thinkplot.Plot(sf, **options) def PlotResampledByDecade(resps, iters=11, predict_flag=False, omit=None): Plots survival curves for resampled data. resps: list of DataFrames iters: number of resamples to plot predict_flag: whether to also plot predictions for i in range(iters): samples = [thinkstats2.ResampleRowsWeighted(resp) for resp in resps] sample = pd.concat(samples, ignore_index=True) groups = sample.groupby("decade") if omit: groups = [(name, group) for name, group in groups if name not in omit] # TODO: refactor this to collect resampled estimates and # plot shaded areas if i == 0: AddLabelsByDecade(groups, alpha=0.7) if predict_flag: PlotPredictionsByDecade(groups, alpha=0.1) EstimateMarriageSurvivalByDecade(groups, alpha=0.1) else: EstimateMarriageSurvivalByDecade(groups, alpha=0.2) PlotResampledByDecade(resps) thinkplot.Config( xlabel="Age (years)", ylabel="Prob unmarried", xlim=[13, 45], ylim=[0, 1] ) def PlotPredictionsByDecade(groups, **options): Groups respondents by decade and plots survival curves. groups: GroupBy object hfs = [] for _, group in groups: hf, sf = EstimateMarriageSurvival(group) hfs.append(hf) thinkplot.PrePlot(len(hfs)) for i, hf in enumerate(hfs): if i > 0: hf.Extend(hfs[i - 1]) sf = hf.MakeSurvival() thinkplot.Plot(sf, **options) PlotResampledByDecade(resps, predict_flag=True) thinkplot.Config( xlabel="Age (years)", ylabel="Prob unmarried", xlim=[13, 45], ylim=[0, 1] ) preg = nsfg.ReadFemPreg() complete = preg.query("outcome in [1, 3, 4]").prglngth print("Number of complete pregnancies", len(complete)) ongoing = preg[preg.outcome == 6].prglngth print("Number of ongoing pregnancies", len(ongoing)) hf = EstimateHazardFunction(complete, ongoing) sf1 = hf.MakeSurvival() rem_life1 = sf1.RemainingLifetime() thinkplot.Plot(rem_life1) thinkplot.Config( title="Remaining pregnancy length", xlabel="Weeks", ylabel="Mean remaining weeks" ) hf, sf2 = EstimateMarriageSurvival(resp6) func = lambda pmf: pmf.Percentile(50) rem_life2 = sf2.RemainingLifetime(filler=np.inf, func=func) thinkplot.Plot(rem_life2) thinkplot.Config( title="Years until first marriage", ylim=[0, 15], xlim=[11, 31], xlabel="Age (years)", ylabel="Median remaining years", ) def CleanData(resp): Cleans respondent data. resp: DataFrame resp.cmdivorcx.replace([9998, 9999], np.nan, inplace=True) resp["notdivorced"] = resp.cmdivorcx.isnull().astype(int) resp["duration"] = (resp.cmdivorcx - resp.cmmarrhx) / 12.0 resp["durationsofar"] = (resp.cmintvw - resp.cmmarrhx) / 12.0 month0 = pd.to_datetime("1899-12-15") dates = [month0 + pd.DateOffset(months=cm) for cm in resp.cmbirth] resp["decade"] = (pd.DatetimeIndex(dates).year - 1900) // 10 CleanData(resp6) married6 = resp6[resp6.evrmarry == 1] CleanData(resp7) married7 = resp7[resp7.evrmarry == 1] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Why NumPy? Step2: Introduction Step3: In the numpy package the terminology used for vectors, matrices and higher-dimensional data sets is array. Step4: The v and M objects are both of the type ndarray that the numpy module provides. Step5: The difference between the v and M arrays is only their shapes. We can get information about the shape of an array by using the ndarray.shape property. Step6: The number of elements in the array is available through the ndarray.size property Step7: Equivalently, we could use the function numpy.shape and numpy.size Step8: So far the numpy.ndarray looks awefully much like a Python list (or nested list). Why not simply use Python lists for computations instead of creating a new array type? Step9: We get an error if we try to assign a value of the wrong type to an element in a numpy array Step10: If we want, we can explicitly define the type of the array data when we create it, using the dtype keyword argument Step11: Common data types that can be used with dtype are Step12: linspace and logspace Step13: mgrid Step14: random data Step15: diag Step16: zeros and ones Step17: File I/O Step18: Using numpy.savetxt we can store a Numpy array to a file in CSV format Step19: Numpy's native file format Step20: More properties of the numpy arrays Step21: Manipulating arrays Step22: If we omit an index of a multidimensional array it returns the whole row (or, in general, a N-1 dimensional array) Step23: The same thing can be achieved with using Step24: We can assign new values to elements in an array using indexing Step25: Index slicing Step26: Array slices are mutable Step27: We can omit any of the three parameters in M[lower Step28: Negative indices counts from the end of the array (positive index from the begining) Step29: Index slicing works exactly the same way for multidimensional arrays Step30: Fancy indexing Step31: We can also use index masks Step32: This feature is very useful to conditionally select elements from an array, using for example comparison operators Step33: Functions for extracting data from arrays and creating arrays Step34: diag Step35: take Step36: But take also works on lists and other objects Step37: choose Step38: Linear algebra Step39: Element-wise array-array operations Step40: If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row Step41: Matrix algebra Step42: Python 3 has a new operator for using infix notation with matrix multiplication. Step43: Alternatively, we can cast the array objects to the type matrix. This changes the behavior of the standard arithmetic operators +, -, * to use matrix algebra. Step44: If we try to add, subtract or multiply objects with incomplatible shapes we get an error Step45: See also the related functions Step46: Hermitian conjugate Step47: We can extract the real and imaginary parts of complex-valued arrays using real and imag Step48: Or the complex argument and absolute value Step49: Matrix computations Step50: Determinant Step51: Data processing Step52: mean Step53: The daily mean temperature in Stockholm over the last 200 years has been about 6.2 C. Step54: min and max Step55: sum, prod, and trace Step56: Computations on subsets of arrays Step57: The dataformat is Step58: With these tools we have very powerful data processing capabilities at our disposal. For example, to extract the average monthly average temperatures for each month of the year only takes a few lines of code Step59: Calculations with higher-dimensional data Step60: Many other functions and methods in the array and matrix classes accept the same (optional) axis keyword argument. Step61: We can also use the function flatten to make a higher-dimensional array into a vector. But this function create a copy of the data. Step62: Adding a new dimension Step63: Stacking and repeating arrays Step64: concatenate Step65: hstack and vstack Step66: Copy and "deep copy" Step67: If we want to avoid this behavior, so that when we get a new completely independent object B copied from A, then we need to do a so-called "deep copy" using the function copy Step68: Iterating over array elements Step69: When we need to iterate over each element of an array and modify its elements, it is convenient to use the enumerate function to obtain both the element and its index in the for loop Step71: Vectorizing functions Step72: OK, that didn't work because we didn't write the Theta function so that it can handle a vector input... Step74: We can also implement the function to accept a vector input from the beginning (requires more effort but might give better performance) Step75: Using arrays in conditions Step76: Type casting Step77: Further reading
<ASSISTANT_TASK:> Python Code: %matplotlib inline import traceback import matplotlib.pyplot as plt import numpy as np %%time total = 0 for i in range(100000): total += i %%time total = np.arange(100000).sum() %%time l = list(range(0, 1000000)) ltimes5 = [x * 5 for x in l] %%time l = np.arange(1000000) ltimes5 = l * 5 import numpy as np # a vector: the argument to the array function is a Python list v = np.array([1,2,3,4]) v # a matrix: the argument to the array function is a nested Python list M = np.array([[1, 2], [3, 4]]) M type(v), type(M) v.shape M.shape M.size np.shape(M) np.size(M) M.dtype try: M[0,0] = "hello" except ValueError as e: print(traceback.format_exc()) M = np.array([[1, 2], [3, 4]], dtype=complex) M # create a range x = np.arange(0, 10, 1) # arguments: start, stop, step x x = np.arange(-1, 1, 0.1) x # using linspace, both end points ARE included np.linspace(0, 10, 25) np.logspace(0, 10, 10, base=np.e) x, y = np.mgrid[0:5, 0:5] # similar to meshgrid in MATLAB x y # uniform random numbers in [0,1] np.random.rand(5,5) # standard normal distributed random numbers np.random.randn(5,5) # a diagonal matrix np.diag([1,2,3]) # diagonal with offset from the main diagonal np.diag([1,2,3], k=1) np.zeros((3,3)) np.ones((3,3)) !head ../data/stockholm_td_adj.dat data = np.genfromtxt('../data/stockholm_td_adj.dat') data.shape fig, ax = plt.subplots(figsize=(14,4)) ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5]) ax.axis('tight') ax.set_title('tempeatures in Stockholm') ax.set_xlabel('year') ax.set_ylabel('temperature (C)'); M = np.random.rand(3,3) M np.savetxt("../data/random-matrix.csv", M) !cat ../data/random-matrix.csv np.savetxt("../data/random-matrix.csv", M, fmt='%.5f') # fmt specifies the format !cat ../data/random-matrix.csv np.save("../data/random-matrix.npy", M) !file ../data/random-matrix.npy np.load("../data/random-matrix.npy") M.itemsize # bytes per element M.nbytes # number of bytes M.ndim # number of dimensions # v is a vector, and has only one dimension, taking one index v[0] # M is a matrix, or a 2 dimensional array, taking two indices M[1,1] M M[1] M[1,:] # row 1 M[:,1] # column 1 M[0,0] = 1 M # also works for rows and columns M[1,:] = 0 M[:,2] = -1 M A = np.array([1,2,3,4,5]) A A[1:3] A[1:3] = [-2,-3] A A[::] # lower, upper, step all take the default values A[::2] # step is 2, lower and upper defaults to the beginning and end of the array A[:3] # first three elements A[3:] # elements from index 3 A = np.array([1,2,3,4,5]) A[-1] # the last element in the array A[-3:] # the last three elements A = np.array([[n+m*10 for n in range(5)] for m in range(5)]) A # a block from the original array A[1:4, 1:4] # strides A[::2, ::2] row_indices = [1, 2, 3] A[row_indices] col_indices = [1, 2, -1] # remember, index -1 means the last element A[row_indices, col_indices] B = np.array([n for n in range(5)]) B row_mask = np.array([True, False, True, False, False]) B[row_mask] # same thing row_mask = np.array([1,0,1,0,0], dtype=bool) B[row_mask] x = np.arange(0, 10, 0.5) x mask = (5 < x) * (x < 7.5) mask x[mask] indices = np.where(mask) indices x[indices] # this indexing is equivalent to the fancy indexing x[mask] np.diag(A) np.diag(A, -1) v2 = np.arange(-3,3) v2 row_indices = [1, 3, 5] v2[row_indices] # fancy indexing v2.take(row_indices) np.take([-3, -2, -1, 0, 1, 2], row_indices) which = [1, 0, 1, 0] choices = [[-2,-2,-2,-2], [5,5,5,5]] np.choose(which, choices) v1 = np.arange(0, 5) v1 * 2 v1 + 2 A * 2, A + 2 A * A # element-wise multiplication v1 * v1 A.shape, v1.shape A * v1 np.dot(A, A) A @ A np.dot(A, v1) np.dot(v1, v1) M = np.matrix(A) v = np.matrix(v1).T # make it a column vector v M * M M * v # inner product v.T * v # with matrix objects, standard matrix algebra applies v + M*v v = np.matrix([1,2,3,4,5,6]).T M.shape, v.shape import traceback try: M * v except ValueError as e: print(traceback.format_exc()) C = np.matrix([[1j, 2j], [3j, 4j]]) C np.conjugate(C) C.H np.real(C) # same as: C.real np.imag(C) # same as: C.imag np.angle(C+1) # heads up MATLAB Users, angle is used instead of arg abs(C) np.linalg.inv(C) # equivalent to C.I C.I * C np.linalg.det(C) np.linalg.det(C.I) # reminder, the tempeature dataset is stored in the data variable: np.shape(data) # the temperature data is in column 3 np.mean(data[:,3]) np.std(data[:,3]), np.var(data[:,3]) # lowest daily average temperature data[:,3].min() # highest daily average temperature data[:,3].max() d = np.arange(0, 10) d # sum up all elements np.sum(d) # product of all elements np.prod(d+1) # cummulative sum np.cumsum(d) # cummulative product np.cumprod(d+1) # same as: diag(A).sum() np.trace(A) !head -n 3 ../data/stockholm_td_adj.dat np.unique(data[:,1]) # the month column takes values from 1 to 12 mask_feb = data[:,1] == 2 # the temperature data is in column 3 np.mean(data[mask_feb,3]) months = np.arange(1,13) monthly_mean = [np.mean(data[data[:,1] == month, 3]) for month in months] fig, ax = plt.subplots() ax.bar(months, monthly_mean) ax.set_xlabel("Month") ax.set_ylabel("Monthly avg. temp."); m = np.random.rand(3,3) m # global max m.max() # max in each column m.max(axis=0) # max in each row m.max(axis=1) A n, m = A.shape B = A.reshape((1,n*m)) B B[0,0:5] = 5 # modify the array B A # and the original variable is also changed. B is only a different view of the same data B = A.flatten() B B[0:5] = 10 B A # now A has not changed, because B's data is a copy of A's, not refering to the same data v = np.array([1,2,3]) v.shape # make a column matrix of the vector v v[:, np.newaxis] # column matrix v[:, np.newaxis].shape # row matrix v[np.newaxis, :].shape a = np.array([[1, 2], [3, 4]]) # repeat each element 3 times np.repeat(a, 3) # tile the matrix 3 times np.tile(a, 3) b = np.array([[5, 6]]) np.concatenate((a, b), axis=0) np.concatenate((a, b.T), axis=1) np.vstack((a,b)) np.hstack((a,b.T)) A = np.array([[1, 2], [3, 4]]) A # now B is referring to the same array data as A B = A # changing B affects A B[0,0] = 10 B A B = np.copy(A) # now, if we modify B, A is not affected B[0,0] = -5 B A v = np.array([1,2,3,4]) for element in v: print(element) M = np.array([[1,2], [3,4]]) for row in M: print("row", row) for element in row: print(element) for row_idx, row in enumerate(M): print("row_idx", row_idx, "row", row) for col_idx, element in enumerate(row): print("col_idx", col_idx, "element", element) # update the matrix M: square each element M[row_idx, col_idx] = element ** 2 # each element in M is now squared M def theta(x): Scalar implemenation of the Heaviside step function. if x >= 0: return 1 else: return 0 try: theta(np.array([-3,-2,-1,0,1,2,3])) except Exception as e: print(traceback.format_exc()) theta_vec = np.vectorize(theta) %%time theta_vec(np.array([-3,-2,-1,0,1,2,3])) def theta(x): Vector-aware implemenation of the Heaviside step function. return 1 * (x >= 0) %%time theta(np.array([-3,-2,-1,0,1,2,3])) # still works for scalars as well theta(-1.2), theta(2.6) M if (M > 5).any(): print("at least one element in M is larger than 5") else: print("no element in M is larger than 5") if (M > 5).all(): print("all elements in M are larger than 5") else: print("all elements in M are not larger than 5") M.dtype M2 = M.astype(float) M2 M2.dtype M3 = M.astype(bool) M3 %reload_ext version_information %version_information numpy <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Low frequency drifts and line noise Step2: we see high amplitude undulations in low frequencies, spanning across tens of Step3: On MEG sensors we see narrow frequency peaks at 60, 120, 180, 240 Hz, Step4: we can see typical time courses and non dipolar topographies
<ASSISTANT_TASK:> Python Code: import numpy as np import mne from mne.datasets import sample from mne.preprocessing import create_ecg_epochs, create_eog_epochs # getting some data ready data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' raw = mne.io.read_raw_fif(raw_fname, preload=True) (raw.copy().pick_types(meg='mag') .del_proj(0) .plot(duration=60, n_channels=100, remove_dc=False)) raw.plot_psd(tmax=np.inf, fmax=250) average_ecg = create_ecg_epochs(raw).average() print('We found %i ECG events' % average_ecg.nave) joint_kwargs = dict(ts_args=dict(time_unit='s'), topomap_args=dict(time_unit='s')) average_ecg.plot_joint(**joint_kwargs) average_eog = create_eog_epochs(raw).average() print('We found %i EOG events' % average_eog.nave) average_eog.plot_joint(**joint_kwargs) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step 1 - Creating a Checkpoint Step1: Pre-Questions Step2: This table shows the top 10 water consuming counties, the population, the amount of the population that is connected to public water (PublicSupply), and the total water used by each county. Step3: Most Water Consuming Counties in Florida Step4: Try to change the histogram so that it displays the County and the Population Total. (Right now it is displaying County and Water Use Total) Step5: Rainfall in February 2005 (Inches) Step6: Try to change the histogram to display the data in decending order. Step7: PART 3 Step8: Water Level in February Step9: Water Level in July
<ASSISTANT_TASK:> Python Code: # Import modules that contain functions we need import pandas as pd import numpy as np %matplotlib inline import matplotlib.pyplot as plt # Our data is a table and is defined as the word 'data'. # 'data' is set equal to the .csv file that is read by the pandas function. # The .csv file must be in the same disrectory as the program. #data = pd.read_csv("Public Water Supply FL 2010.csv") # You can also use external links to .xls, .csv, or .txt files and would import useing the same funtion but replaceing the # file name with the webpage. For example: data = pd.read_csv("https://gist.githubusercontent.com/GoodmanSciences/9d53d0874281a61354cc8a9a962cb926/raw/e379c22e667aa309cc02048bd2b7bb31ce540d60/Public%2520Water%2520Supply%2520FL%25202010.csv") # displays the first few rows of the table data.head(4) # Set variables for scatter plot x = data.Population y = data.WaterUsed fig = plt.figure(figsize=(15, 6)) plt.scatter(x,y) plt.xlim(0,3000000) plt.ylim(0,350) plt.title('The Relationship Between Population and How Much Water a County Consumes Each Year') plt.xlabel('Population (individuals)') plt.ylabel('Water Used (million gallons)') # This actually shows the plot plt.show() # Creates a new dataset for County place = data.groupby("County", as_index = False).sum() # Orginizes by County with the highest water usage in decending order #Only displays the top 10 highestest water consuming counties by putting .head(10) mostwater = place.sort_values(by="WaterUsed", ascending = False).head(10) mostwater # Displays a histogram of the top 10 water consuming counties in ascending order mostwater.sort_values(by="WaterUsed", ascending=True).plot(x="County", y="WaterUsed", kind="barh", title="Top 10 Water Consuming Counties", legend=False); # Imports more csv files locally #feb = pd.read_csv("Feb2005_FL_rainfall.csv") #july = pd.read_csv("July2005_FL_rainfall.csv") # Imports more csv files from the web july = pd.read_csv("https://gist.githubusercontent.com/GoodmanSciences/354fa30fb1e506c055621b893b26ebe8/raw/523e483ae4534c9432f91e5d5b7f9fb0356e95e1/Rainfall%2520FL%2520Jul2005.csv") feb = pd.read_csv("https://gist.githubusercontent.com/GoodmanSciences/7088ff6b7b8e915a87ee987f3b767641/raw/a76a0dd975f95e6c0c5e6ee810e6f6e66faeca9b/Rainfall%2520FL%2520Feb2005.csv") feb.head() # Plots rainfall form ascending order feb.sort_values(by="Monthly Total", ascending=True).plot(x="County", y="Monthly Total", kind="barh", title="Rainfall in February (Inches)", legend=False); july.head() july.sort_values(by="Monthly Total", ascending=True).plot(x="County", y="Monthly Total", kind="barh", title="Rainfall in July (Inches)", legend=False); from IPython.display import Image from IPython.core.display import HTML Image(url= 'https://preview.ibb.co/g7Z6sa/Average_Monthly_Water_Consumption.png') Image(url= 'https://floridamaps.files.wordpress.com/2015/03/florida-counties.jpg') #Double-click to make this image GINORMOUS # Imports another csv file locally #level = pd.read_csv("Lake Apopka Waterlevel 2005.csv") # Imports another csv file from the web level = pd.read_csv("https://gist.githubusercontent.com/GoodmanSciences/e63b6cb68cd6ef5235dc8c113ea9995a/raw/39139535f7ef05057ecce1126ea336ca7bcfb879/Lake%2520Apopka%2520Waterlevel%25202005.csv") # Sets Date as index lev2 = level.set_index("Date") # Displays only Feb 1st through the 28th lev2.loc["2/1/2005":"2/28/2005", :] # Displays only July 1st through the 7th lev2.loc["7/1/2005":"7/7/2005", :] # Plot of all values in level dataset level.plot('Date', 'Water Level') Image(url= 'http://www.floridacountiesmap.com/graphics/orange.gif') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Initialization of setup Step2: 2. Elemental Mass and Stiffness matrices Step3: 3. Flux Matrices Step4: 4. Discontinuous Galerkin Solution
<ASSISTANT_TASK:> Python Code: # Import all necessary libraries, this is a configuration step for the exercise. # Please run it before the simulation code! import numpy as np import matplotlib.pyplot as plt from gll import gll from lagrange1st import lagrange1st from flux_homo import flux # Show the plots in the Notebook. plt.switch_backend("nbagg") # Initialization of setup # -------------------------------------------------------------------------- c = 2500 # acoustic velocity [m/s] tmax = 2.0 # Length of seismogram [s] xmax = 10000 # Length of domain [m] vs = 2500 # Advection velocity rho = 2500 # Density [kg/m^3] mu = rho*vs**2 # shear modulus N = 4 # Order of Lagrange polynomials ne = 200 # Number of elements sig = 200 # Gaussian width x0 = 5000 # x location of Gaussian eps = 0.4 # Courant criterion iplot = 20 # Plotting frequency imethod = 'RK' # 'Euler', 'RK' #-------------------------------------------------------------------- # GLL points and integration weights [xi,w] = gll(N) # xi, N+1 coordinates [-1 1] of GLL points # w Integration weights at GLL locations # Space domain le = xmax/ne # Length of elements ng = ne*N + 1 # Vector with GLL points k=0 xg = np.zeros((N+1)*ne) for i in range(0, ne): for j in range(0, N+1): k += 1 xg[k-1] = i*le + .5*(xi[j]+1)*le x = np.reshape(xg, (N+1, ne), order='F').T # Calculation of time step acoording to Courant criterion dxmin = np.min(np.diff(xg[1:N+1])) dt = eps*dxmin/vs # Global time step nt = int(np.floor(tmax/dt)) # Mapping - Jacobian J = le/2 # Jacobian Ji = 1/J # Inverse Jacobian # 1st derivative of Lagrange polynomials l1d = lagrange1st(N) ################################################################# # IMPLEMENT THE ELEMENTAL MASS MATRIX HERE! ################################################################# ################################################################# # COMPUTE THE INVERSE MASS MATRIX HERE! ################################################################# ################################################################# # IMPLEMENT THE ELEMENTAL STIFFNESS MATRIX HERE! ################################################################# ################################################################# # INITIALIZE ALL MATRICES HERE! ################################################################# # Z = # R = # Rinv = # Lm = # Lp = # Ap = # Am = # A = # DG Solution, Time extrapolation # --------------------------------------------------------------- # Initalize solution vectors Q = np.zeros([ne, N+1, 2]) Qnew = np.zeros([ne, N+1, 2]) k1 = np.zeros([ne, N+1, 2]) k2 = np.zeros([ne, N+1, 2]) Q[:,:,0] = np.exp(-1/sig**2*((x-x0))**2) Qs = np.zeros(xg.size) # for plotting Qv = np.zeros(xg.size) # for plotting Qa = np.zeros((2, xg.size)) # for analytical solution # Initialize animated plot # --------------------------------------------------------------- fig = plt.figure(figsize=(10,6)) ax1 = fig.add_subplot(2,1,1) ax2 = fig.add_subplot(2,1,2) line1 = ax1.plot(xg, Qs, 'k', xg, Qa[0,:], 'r--', lw=1.5) line2 = ax2.plot(xg, Qv, 'k', xg, Qa[1,:], 'r--', lw=1.5) ax1.set_ylabel('Stress') ax2.set_ylabel('Velocity') ax2.set_xlabel(' x ') plt.suptitle('Homogeneous Disc. Galerkin - %s method'%imethod, size=16) plt.ion() # set interective mode plt.show() # --------------------------------------------------------------- # Time extrapolation # --------------------------------------------------------------- for it in range(nt): if imethod == 'Euler': # Euler # Calculate Fluxes Flux = flux(Q, N, ne, Ap, Am) # Extrapolate each element using flux F for i in range(1,ne-1): Qnew[i,:,0] = dt * Minv @ (-mu * K @ Q[i,:,1].T - Flux[i,:,0].T) + Q[i,:,0].T Qnew[i,:,1] = dt * Minv @ (-1/rho * K @ Q[i,:,0].T - Flux[i,:,1].T) + Q[i,:,1].T elif imethod == 'RK': # Calculate Fluxes Flux = flux(Q, N, ne, Ap, Am) # Extrapolate each element using flux F for i in range(1,ne-1): k1[i,:,0] = Minv @ (-mu * K @ Q[i,:,1].T - Flux[i,:,0].T) k1[i,:,1] = Minv @ (-1/rho * K @ Q[i,:,0].T - Flux[i,:,1].T) for i in range(1,ne-1): Qnew[i,:,0] = dt * Minv @ (-mu * K @ Q[i,:,1].T - Flux[i,:,0].T) + Q[i,:,0].T Qnew[i,:,1] = dt * Minv @ (-1/rho * K @ Q[i,:,0].T - Flux[i,:,1].T) + Q[i,:,1].T Flux = flux(Qnew,N,ne,Ap,Am) for i in range(1,ne-1): k2[i,:,0] = Minv @ (-mu * K @ Qnew[i,:,1].T - Flux[i,:,0].T) k2[i,:,1] = Minv @ (-1/rho * K @ Qnew[i,:,0].T - Flux[i,:,1].T) # Extrapolate Qnew = Q + (dt/2) * (k1 + k2) else: raise NotImplementedError Q, Qnew = Qnew, Q # -------------------------------------- # Animation plot. Display solution if not it % iplot: for l in line1: l.remove() del l for l in line2: l.remove() del l # stretch for plotting k = 0 for i in range(ne): for j in range(N+1): Qs[k] = Q[i,j,0] Qv[k] = Q[i,j,1] k = k + 1 ################################################################# # IMPLEMENT THE ANALYTICAL SOLUTION HERE! ################################################################# # -------------------------------------- # Display lines line1 = ax1.plot(xg, Qs, 'k', xg, Qa[0,:], 'r--', lw=1.5) line2 = ax2.plot(xg, Qv, 'k', xg, Qa[1,:], 'r--', lw=1.5) plt.legend(iter(line2), ('D. Galerkin', 'Analytic')) plt.gcf().canvas.draw() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define helper functions Step2: Project specific parameters Step3: Iterate through subjects and runs Step4: Compute 2-way correlations
<ASSISTANT_TASK:> Python Code: import pandas as pd import json from scipy import stats, signal, linalg from sklearn.decomposition import PCA import nibabel as nib import nipype from nipype import Node, SelectFiles, DataSink, IdentityInterface import matplotlib as mpl import matplotlib.pyplot as plt mpl.use("Agg") from nipype.interfaces import fsl from nipy.modalities.fmri.glm import FMRILinearModel from nibabel import Nifti1Image, save import numpy as np import os import os.path as op import shutil import sys import copy import lyman import moss from lyman import tools from lyman import default_experiment_parameters import lyman.workflows as wf from moss import glm import seaborn as sns %matplotlib inline sns.set(context="notebook", style="ticks", font="Arial") pd.set_option('display.precision', 3) def plotSimilarityStruct(run_data, run_evs): from scipy.cluster.hierarchy import linkage, dendrogram from scipy.spatial.distance import pdist, squareform data_dist = pdist(run_data.T, 'correlation') data_link = linkage(data_dist) # Compute and plot first dendrogram. fig = plt.figure(figsize=(8,8)) # x ywidth height ax1 = fig.add_axes([0.05,0.1,0.2,0.6]) Y = linkage(data_dist, method='single') Z1 = dendrogram(Y, orientation='right',labels=run_evs, distance_sort=True) # adding/removing the axes ax1.set_xticks([]) # Compute and plot second dendrogram. ax2 = fig.add_axes([0.3,0.71,0.6,0.2]) Z2 = dendrogram(Y) ax2.set_xticks([]) ax2.set_yticks([]) #Compute and plot the heatmap axmatrix = fig.add_axes([0.37,0.1,0.6,0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = squareform(data_dist) D = D[idx1,:] D = D[:,idx2] im = axmatrix.matshow(D, aspect='auto', origin='lower', cmap=plt.cm.YlGnBu) axmatrix.set_xticks([]) axmatrix.set_yticks([]) # Plot colorbar. axcolor = fig.add_axes([1,0.1,0.02,0.6]) plt.colorbar(im, cax=axcolor) def removeSegment(run_evs, sep, remove_seg): run_evs = ["-".join(x.split('-')[0:remove_seg]) for x in list(run_evs)] return run_evs def transform_fisherZ(r): z = 0.5*np.log((1+r)/(1-r)) return z experiment = 'objfam' altmodel = 'trial-prototype' nruns = 12 subject_list = '/Volumes/group/awagner/sgagnon/ObjFam/data/subids_subset_no23or19.txt' unsmoothed = True condition_labels = True # If condition_file to specify which condition the trials belong to condition_filename = 'trial-prototype-condition.csv' # only necessary if condition_labels = True project = lyman.gather_project_info() exp = lyman.gather_experiment_info(experiment, altmodel) group = np.loadtxt(subject_list, str).tolist() exp_base = experiment exp_name = "-".join([exp_base, altmodel]) data_dir = project["data_dir"] analysis_dir = project["analysis_dir"] smoothing = "unsmoothed" if unsmoothed else "smoothed" data_dir mask_name = 'lateraloccipital' out_val = 't' # t or beta sub_mat = [] group_evs = [] for subid in group: print subid design_file = op.join(data_dir, subid, "design", exp["design_name"] + ".csv") sub_dmat = pd.read_csv(design_file) if condition_labels: condition_file = op.join(data_dir, subid, "design", condition_filename) cond_map = pd.read_csv(condition_file) # get 3D mask as bool # mask_file = op.join(timeseries_dir, "functional_mask_xfm.nii.gz") mask_file = op.join(data_dir, subid, 'masks', mask_name + '.nii.gz') mask = nib.load(mask_file).get_data() == 1 run_mat = [] ev_list = [] for run in range(1, nruns+1): print 'Run: ' + str(run) # Setup run specific directories # preproc timeseries registered to first run timeseries_dir = op.join(analysis_dir, experiment, subid, "reg/epi/unsmoothed/run_" + str(run)) preproc_dir = op.join(analysis_dir, experiment, subid, "preproc/run_" + str(run)) realign_file = op.join(preproc_dir, "realignment_params.csv") artifact_file = op.join(preproc_dir, "artifacts.csv") timeseries_file = op.join(timeseries_dir, "timeseries_xfm.nii.gz") # Build the model design run_dmat = sub_dmat[sub_dmat.run == run] realign = pd.read_csv(realign_file) realign = realign.filter(regex="rot|trans").apply(stats.zscore) artifacts = pd.read_csv(artifact_file).max(axis=1) ntp = len(artifacts) tr = exp["TR"] hrf = getattr(glm, exp["hrf_model"]) hrf = hrf(exp["temporal_deriv"], tr, **exp["hrf_params"]) ev_mat = [] for ev in run_dmat.condition.unique(): ev_list.append(ev) design_LSS = copy.deepcopy(run_dmat) design_LSS.condition[design_LSS.condition != ev] = 'other' design_kwargs = dict(confounds=realign, artifacts=artifacts, tr=tr, condition_names=sorted(design_LSS.condition.unique()), # sort to keep condition of interest first confound_pca=exp["confound_pca"], hpf_cutoff=exp["hpf_cutoff"]) X = glm.DesignMatrix(design_LSS, hrf, ntp, **design_kwargs) # print ev # print X.design_matrix.columns # Fit model fmri_glm = FMRILinearModel(timeseries_file, np.array(X.design_matrix), mask=mask_file) fmri_glm.fit(do_scaling=True, model='ar1') # Get beta beta_hat = fmri_glm.glms[0].get_beta() # Output appropriate statistic if out_val == 'beta': ev_mat.append(beta_hat[0]) elif out_val == 't': # Calc t-statistic num_reg = beta_hat.shape[0] con = [[1] + [0]*(num_reg-1)] t_map, = fmri_glm.contrast(con, con_id=ev, contrast_type='t') t_map = t_map.get_data()[mask].ravel() ev_mat.append(t_map) run_mat.append(ev_mat) sub_mat.append(run_mat) group_evs.append(ev_list) data = np.array(sub_mat) evs = np.array(group_evs) print 'Data shape (subid x run x trial x voxel):' + str(data.shape) print 'EVs shape (subid x trial):' + str(evs.shape) data[5,0] group[5] sub_num = 8 run_data = data[sub_num,0] run_data = np.vstack(run_data).T # voxel x ev run_evs = evs[sub_num].reshape(12,30)[0] sns.corrplot(run_data[np.argsort(run_evs)], names = run_evs[np.argsort(run_evs)], diag_names=False, annot=False, cmap_range=(-1,1)) df = pd.DataFrame(run_data, columns=run_evs) corr_mat = df.corr() sns.clustermap(corr_mat) data.shape[0] sub_data.shape[0] df_corr = pd.DataFrame(columns=['subid', 'run', 'condition', 'corr']) df_condmap = pd.DataFrame() for sub_num in range(data.shape[0]): print group[sub_num] subid = group[sub_num] sub_data = data[sub_num] sub_evs = evs[sub_num].reshape(12,30) condition_file = op.join(data_dir, subid, "design", condition_filename) cond_map = pd.read_csv(condition_file) cond_map['subid'] = subid df_condmap = pd.concat([df_condmap, cond_map]) for run in range(sub_data.shape[0]): run_data = sub_data[run] run_data = np.vstack(run_data).T # voxel x ev run_evs = sub_evs[run] run_conds = removeSegment(run_evs, '-', 2) df = pd.DataFrame(run_data, columns=run_conds) for cond in set(run_conds): corr_value = np.array(df[cond].corr())[0][1] df_corr = df_corr.append([dict(subid=subid, run=run+1, condition=cond, corr=corr_value)], ignore_index=True) df_corr.head() df_corr.subid.unique().shape df_condmap.subid.unique().shape df_corr2 = df_corr.merge(df_condmap, on=['subid', 'run', 'condition']) df_corr2.head() df_corr2.subid.unique().shape sns.distplot(data.ix[1500:3000]['corr']) sns.set(context='poster', style='whitegrid') data_corr = df_corr2.join(pd.DataFrame(df_corr2.morphmem.str.split('_').tolist(), columns=['morph', 'resp'])) sns.factorplot(x='morph', y='corr', hue='resp',dodge=0.1, hue_order=['new', 'old'], ci=68, units='subid', data=data_corr) %load_ext rpy2.ipython %R require(lme4) %R require(lmerTest) %R require(ggplot2) %R -i data_corr %%R print(str(data_corr)) data_corr$morph_q = as.numeric(data_corr$morph) data_corr_noguess = data_corr[data_corr$resp != 'guess',] data_corr_noguess$resp = factor(data_corr_noguess$resp) print(str(data_corr_noguess)) contrasts(data_corr_noguess$resp) = c(-1,1) print(contrasts(data_corr_noguess$resp)) %%R res1 = lmer(corr ~ morph_q * resp + (1|subid), data=data_corr_noguess) print(summary(res1)) data_corr['morph_q'] = data_corr.morph.astype('int') data_group = data.groupby(['subid', 'morph']).mean().reset_index() data_group.head() data_group['z'] = transform_fisherZ(data_group['corr']) data_group.head() sns.violinplot(x='morph', y='z', data=data_group, inner="points") sns.coefplot("z~scale(morph_q)", data=data_group, ci=68) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Interaction Between Neurons - Feature Visualization Step2: Combining Objectives Step3: Random Directions Step4: Aligned Interpolation
<ASSISTANT_TASK:> Python Code: # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Install Lucid !pip install --quiet lucid==0.0.5 #!pip install --quiet --upgrade-strategy=only-if-needed git+https://github.com/tensorflow/lucid.git # Imports import numpy as np import scipy.ndimage as nd import tensorflow as tf import lucid.modelzoo.vision_models as models from lucid.misc.io import show import lucid.optvis.objectives as objectives import lucid.optvis.param as param import lucid.optvis.render as render import lucid.optvis.transform as transform # Let's import a model from the Lucid modelzoo! model = models.InceptionV1() model.load_graphdef() neuron1 = ('mixed4b_pre_relu', 111) # large fluffy # neuron1 = ('mixed3a_pre_relu', 139) # pointilist # neuron1 = ('mixed3b_pre_relu', 81) # brush trokes # neuron1 = ('mixed4a_pre_relu', 97) # wavy # neuron1 = ('mixed4a_pre_relu', 41) # frames # neuron1 = ('mixed4a_pre_relu', 479) # B/W neuron2 = ('mixed4a_pre_relu', 476) # art # neuron2 = ('mixed4b_pre_relu', 360) # lattices # neuron2 = ('mixed4b_pre_relu', 482) # arcs # neuron2 = ('mixed4c_pre_relu', 440) # small fluffy # neuron2 = ('mixed4d_pre_relu', 479) # bird beaks # neuron2 = ('mixed4e_pre_relu', 718) # shoulders C = lambda neuron: objectives.channel(*neuron) _ = render.render_vis(model, C(neuron1)) _ = render.render_vis(model, C(neuron2)) _ = render.render_vis(model, C(neuron1) + C(neuron2)) obj = objectives.direction("mixed4d_pre_relu", np.random.randn(528)) _ = render.render_vis(model, obj) def interpolate_param_f(): unique = param.fft_image((6, 128, 128, 3)) shared = [ param.lowres_tensor((6, 128, 128, 3), (1, 128//2, 128//2, 3)), param.lowres_tensor((6, 128, 128, 3), (1, 128//4, 128//4, 3)), param.lowres_tensor((6, 128, 128, 3), (1, 128//8, 128//8, 3)), param.lowres_tensor((6, 128, 128, 3), (2, 128//8, 128//8, 3)), param.lowres_tensor((6, 128, 128, 3), (1, 128//16, 128//16, 3)), param.lowres_tensor((6, 128, 128, 3), (2, 128//16, 128//16, 3)), ] return param.to_valid_rgb(unique + sum(shared), decorrelate=True) obj = objectives.channel_interpolate("mixed4a_pre_relu", 476, "mixed4a_pre_relu", 460) _ = render.render_vis(model, obj, interpolate_param_f) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Continuous data is stored in objects of type Step2: <div class="alert alert-info"><h4>Note</h4><p>Accessing the `._data` attribute is done here for educational Step3: Selecting subsets of channels and samples Step4: Notice the different scalings of these types Step5: You can restrict the data to a specific time range Step6: And drop channels by name Step7: Concatenating
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import mne import os.path as op from matplotlib import pyplot as plt # Load an example dataset, the preload flag loads the data into memory now data_path = op.join(mne.datasets.sample.data_path(), 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(data_path, preload=True) raw.set_eeg_reference() # set EEG average reference # Give the sample rate print('sample rate:', raw.info['sfreq'], 'Hz') # Give the size of the data matrix print('channels x samples:', raw._data.shape) # Extract data from the first 5 channels, from 1 s to 3 s. sfreq = raw.info['sfreq'] data, times = raw[:5, int(sfreq * 1):int(sfreq * 3)] _ = plt.plot(times, data.T) _ = plt.title('Sample channels') # Pull all MEG gradiometer channels: # Make sure to use .copy() or it will overwrite the data meg_only = raw.copy().pick_types(meg=True) eeg_only = raw.copy().pick_types(meg=False, eeg=True) # The MEG flag in particular lets you specify a string for more specificity grad_only = raw.copy().pick_types(meg='grad') # Or you can use custom channel names pick_chans = ['MEG 0112', 'MEG 0111', 'MEG 0122', 'MEG 0123'] specific_chans = raw.copy().pick_channels(pick_chans) print(meg_only) print(eeg_only) print(grad_only) print(specific_chans) f, (a1, a2) = plt.subplots(2, 1) eeg, times = eeg_only[0, :int(sfreq * 2)] meg, times = meg_only[0, :int(sfreq * 2)] a1.plot(times, meg[0]) a2.plot(times, eeg[0]) del eeg, meg, meg_only, grad_only, eeg_only, data, specific_chans raw = raw.crop(0, 50) # in seconds print('New time range from', raw.times.min(), 's to', raw.times.max(), 's') nchan = raw.info['nchan'] raw = raw.drop_channels(['MEG 0241', 'EEG 001']) print('Number of channels reduced from', nchan, 'to', raw.info['nchan']) # Create multiple :class:`Raw <mne.io.RawFIF>` objects raw1 = raw.copy().crop(0, 10) raw2 = raw.copy().crop(10, 20) raw3 = raw.copy().crop(20, 40) # Concatenate in time (also works without preloading) raw1.append([raw2, raw3]) print('Time extends from', raw1.times.min(), 's to', raw1.times.max(), 's') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Describes the tests needed to validate the PutFile functionality. Step2: Check this by running Step3: The response should be Step4: Verify that it is now present at all pillars, and that it has the same checksum at all pillars Step5: Put a file with a different file-id to all pillars Step6: Verify that it is now present at all pillars, and that it has the same checksum at all pillars Step7: Put a file by using an URL Step8: Verify that it is now present at al pillars, with the requested checksum Step9: Idempotent test Step10: Put with returned checksums Step11: Use the request-checksum-algorithm and request-checksum-salt arguments (-R and -S) Step12: Note, this will return the stored MD5 hashes, if the file is already put'et Step13: Verify that the checksumpillar does not reply with a checksum. Step14: Verify that the checksumpillar and all the other pillars have the file Step15: Put a file including a request for checksum, but using both a salt and a non-salt algorithm. Step16: Verify that all the data pillars return the same checksum, and that it is identical to the previous test (where '-R HMAC_SHA1') Step17: Verify that the data pillars all deliver the same checksum, which must be different from the checksum in the previous two tests. Step18: Attempt to put a file which does not exist Step19: Attempt to put a file to a non-existing collection Step20: Attempt to put a file to a non-existing pillar
<ASSISTANT_TASK:> Python Code: %env CLIENT bitrepository-client-1.9-RC1 !wget -Nq "https://sbforge.org/download/attachments/25395346/${CLIENT}.zip" !unzip -quo ${CLIENT}.zip %alias bitmag ${CLIENT}/bin/bitmag.sh %l #Some imports we will need later import random import string TESTFILE1='README.md' %bitmag get-file-ids -c integrationtest2 -i {TESTFILE1} hash=!cat {TESTFILE1} | md5sum - | cut -d' ' -f1 print("md5: {}".format(hash)) %bitmag delete -c integrationtest2 -i {TESTFILE1} -C {hash.s} -p "sbtape2" %bitmag delete -c integrationtest2 -i {TESTFILE1} -C {hash.s} -p "reference2" %bitmag delete -c integrationtest2 -i {TESTFILE1} -C {hash.s} -p "checksum2" %bitmag delete -c integrationtest2 -i {TESTFILE1} -C {hash.s} -p "sbdisk1" %bitmag delete -c integrationtest2 -i {TESTFILE1} -C {hash.s} -p "kbpillar2" %bitmag put-file -c integrationtest2 -f {TESTFILE1} %bitmag get-file-ids -c integrationtest2 -i {TESTFILE1} %bitmag get-checksums -c integrationtest2 -i {TESTFILE1} TESTFILE2=''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) %bitmag put-file -c integrationtest2 -f {TESTFILE1} -i {TESTFILE2} %bitmag get-file-ids -c integrationtest2 -i {TESTFILE2} %bitmag get-checksums -c integrationtest2 -i {TESTFILE2} TESTFILE3=''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) URL='http://sandkasse-01.kb.dk/dav/test.txt' hash=!curl -s {URL} | md5sum - | cut -d' ' -f1 print("md5: {}".format(hash)) %bitmag put-file -c integrationtest2 -u {URL} -i {TESTFILE3} -C {hash.s} %bitmag get-file-ids -c integrationtest2 -i {TESTFILE3} %bitmag get-checksums -c integrationtest2 -i {TESTFILE3} %bitmag put-file -c integrationtest2 -f {TESTFILE1} import hmac import hashlib import urllib.request def getSaltedChecksum(url,salt,algorithm): saltBytes = bytes.fromhex(salt) digester = hmac.new(saltBytes,None,algorithm) with urllib.request.urlopen(url) as from_fh: while True: chunk = from_fh.read() if not chunk: break digester.update(chunk) return digester.hexdigest().lower() saltedChecksum=getSaltedChecksum(url=URL,salt='abcd',algorithm=hashlib.sha1) print(saltedChecksum) TESTFILE4=''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) hash=!curl -s {URL} | md5sum - | cut -d' ' -f1 print("md5: {}".format(hash)) %bitmag put-file -c integrationtest2 -u {URL} -i {TESTFILE4} -C {hash.s} -S 'abcd' -R HMAC_SHA1 %bitmag get-checksums -c integrationtest2 -i {TESTFILE4} -R HMAC_SHA1 -S 'abcd' %bitmag get-file-ids -c integrationtest2 -i {TESTFILE4} TESTFILE5=''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) hash=!curl -s {URL} | md5sum - | cut -d' ' -f1 print("md5: {}".format(hash)) %bitmag put-file -c integrationtest2 -u {URL} -i {TESTFILE5} -C {hash.s} -R SHA1 -S 'abcd' hash=!curl -s {URL} | md5sum - | cut -d' ' -f1 print("md5: {}".format(hash)) hash=!curl -s {URL} | sha1sum - | cut -d' ' -f1 print("sha1: {}".format(hash)) %bitmag get-checksums -c integrationtest2 -i {TESTFILE5} %bitmag put-file -c integrationtest2 -f .gitignore -i {TESTFILE1} %bitmag put-file -c integrationtest2 -f ThisFileDoesNotExist %bitmag put-file -c integrationtest3 -i {TESTFILE1} %bitmag put-file -c integrationtest1 -i {TESTFILE1} -p non-existing-pillar <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <a id='sec1.3'></a> Step2: Extract POI category and visiting frequency. Step3: <a id='sec1.4'></a> Step5: <a id='sec1.5'></a> Step7: <a id='sec1.6'></a> Step9: Distance based rules Step11: POI Popularity based rules Step14: <a id='sec1.7'></a>
<ASSISTANT_TASK:> Python Code: %matplotlib inline import os import math import random import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime random.seed(123456789) data_dir = 'data/data-ijcai15' #fvisit = os.path.join(data_dir, 'userVisits-Osak.csv') #fcoord = os.path.join(data_dir, 'photoCoords-Osak.csv') #fvisit = os.path.join(data_dir, 'userVisits-Glas.csv') #fcoord = os.path.join(data_dir, 'photoCoords-Glas.csv') #fvisit = os.path.join(data_dir, 'userVisits-Edin.csv') #fcoord = os.path.join(data_dir, 'photoCoords-Edin.csv') fvisit = os.path.join(data_dir, 'userVisits-Toro.csv') fcoord = os.path.join(data_dir, 'photoCoords-Toro.csv') suffix = fvisit.split('-')[-1].split('.')[0] visits = pd.read_csv(fvisit, sep=';') visits.head() coords = pd.read_csv(fcoord, sep=';') coords.head() # merge data frames according to column 'photoID' assert(visits.shape[0] == coords.shape[0]) traj = pd.merge(visits, coords, on='photoID') traj.head() num_photo = traj['photoID'].unique().shape[0] num_user = traj['userID'].unique().shape[0] num_seq = traj['seqID'].unique().shape[0] num_poi = traj['poiID'].unique().shape[0] pd.DataFrame([num_photo, num_user, num_seq, num_poi, num_photo/num_user, num_seq/num_user], \ index = ['#photo', '#user', '#seq', '#poi', '#photo/user', '#seq/user'], columns=[str(suffix)]) poi_coords = traj[['poiID', 'photoLon', 'photoLat']].groupby('poiID').agg(np.mean) poi_coords.reset_index(inplace=True) poi_coords.rename(columns={'photoLon':'poiLon', 'photoLat':'poiLat'}, inplace=True) poi_coords.head() poi_catfreq = traj[['poiID', 'poiTheme', 'poiFreq']].groupby('poiID').first() poi_catfreq.reset_index(inplace=True) poi_catfreq.head() poi_all = pd.merge(poi_catfreq, poi_coords, on='poiID') poi_all.set_index('poiID', inplace=True) poi_all.head() seq_all = traj[['userID', 'seqID', 'poiID', 'dateTaken']].copy()\ .groupby(['userID', 'seqID', 'poiID']).agg([np.min, np.max]) seq_all.columns = seq_all.columns.droplevel() seq_all.reset_index(inplace=True) seq_all.rename(columns={'amin':'arrivalTime', 'amax':'departureTime'}, inplace=True) seq_all['poiDuration(sec)'] = seq_all['departureTime'] - seq_all['arrivalTime'] seq_all.head() seq_start = seq_all[['userID', 'seqID', 'arrivalTime']].copy().groupby(['userID', 'seqID']).agg(np.min) seq_start.rename(columns={'arrivalTime':'startTime'}, inplace=True) seq_start.reset_index(inplace=True) seq_start.head() seq_end = seq_all[['userID', 'seqID', 'departureTime']].copy().groupby(['userID', 'seqID']).agg(np.max) seq_end.rename(columns={'departureTime':'endTime'}, inplace=True) seq_end.reset_index(inplace=True) seq_end.head() assert(seq_start.shape[0] == seq_end.shape[0]) user_seqs = pd.merge(seq_start, seq_end, on=['userID', 'seqID']) user_seqs.head() #user_seqs.loc[0, 'seqID'] #user_seqs['userID'].iloc[-1] def generate_ext_transmat(poi_all, seq_all, user_seqs, timeGap): Calculate the extended transition matrix of POI category for actual trajectories with a special category REST. For a specific user, if the time gap between the earlier sequence and the latter sequence is less than 'timeGap', then add a REST state between the two sequences, otherwise, add a REST to REST transition after the earlier sequence. assert(timeGap > 0) states = poi_all['poiTheme'].unique().tolist() states.sort() states.append('REST') ext_transmat = pd.DataFrame(data=np.zeros((len(states), len(states)), dtype=np.float64), \ index=states, columns=states) for user in user_seqs['userID'].unique(): sequ = user_seqs[user_seqs['userID'] == user].copy() sequ.sort(columns=['startTime'], ascending=True, inplace=True) prev_seqEndTime = None prev_endPOICat = None # sequence with length 1 should be considered for i in range(len(sequ.index)): idx = sequ.index[i] seqid = sequ.loc[idx, 'seqID'] seq = seq_all[seq_all['seqID'] == seqid].copy() seq.sort(columns=['arrivalTime'], ascending=True, inplace=True) for j in range(len(seq.index)-1): poi1 = seq.loc[seq.index[j], 'poiID'] poi2 = seq.loc[seq.index[j+1], 'poiID'] cat1 = poi_all.loc[poi1, 'poiTheme'] cat2 = poi_all.loc[poi2, 'poiTheme'] ext_transmat.loc[cat1, cat2] += 1 # REST state if i > 0: startTime = sequ.loc[idx, 'startTime'] assert(prev_seqEndTime is not None) assert(startTime >= prev_seqEndTime) ext_transmat.loc[prev_endPOICat, 'REST'] += 1 # POI-->REST if startTime - prev_seqEndTime < timeGap: # REST-->POI poi0 = seq.loc[seq.index[0], 'poiID'] startPOICat = poi_all.loc[poi0, 'poiTheme'] ext_transmat.loc['REST', startPOICat] += 1 else: # REST-->REST ext_transmat.loc['REST', 'REST'] += 1 # memorise info of previous sequence prev_seqEndTime = sequ.loc[idx, 'endTime'] poiN = seq.loc[seq.index[-1], 'poiID'] prev_endPOICat = poi_all.loc[poiN, 'poiTheme'] # normalize each row to get the transition probability from cati to catj for r in ext_transmat.index: rowsum = ext_transmat.ix[r].sum() if rowsum == 0: continue # deal with lack of data ext_transmat.loc[r] /= rowsum return ext_transmat timeGap = 24 * 60 * 60 # 24 hours trans_mat = generate_ext_transmat(poi_all, seq_all, user_seqs, timeGap) trans_mat #trans_mat.columns[-1] #trans_mat.loc['Sport'] #np.array(trans_mat.loc['Sport']) #np.array(trans_mat.loc['Sport']).sum() def calc_dist(longitude1, latitude1, longitude2, latitude2): Calculate the distance (unit: km) between two places on earth # convert degrees to radians lon1 = math.radians(longitude1) lat1 = math.radians(latitude1) lon2 = math.radians(longitude2) lat2 = math.radians(latitude2) radius = 6371.009 # mean earth radius is 6371.009km, en.wikipedia.org/wiki/Earth_radius#Mean_radius # The haversine formula, en.wikipedia.org/wiki/Great-circle_distance dlon = math.fabs(lon1 - lon2) dlat = math.fabs(lat1 - lat2) return 2 * radius * math.asin( math.sqrt( \ (math.sin(0.5*dlat))**2 + math.cos(lat1) * math.cos(lat2) * (math.sin(0.5*dlon))**2 )) def rule_NN(current_poi, next_poi_cat, poi_all, randomized): choosing a specific POI within a category. if randomized == True, return a random POI choosing with probability proportional to the reciprocal of its distance to current POI otherwise, return the Nearest Neighbor of the current POI assert(current_poi in poi_all.index) assert(next_poi_cat in poi_all['poiTheme'].unique()) poi_index = None if poi_all.loc[current_poi, 'poiTheme'] == next_poi_cat: poi_index = [x for x in poi_all[poi_all['poiTheme'] == next_poi_cat].index if x != current_poi] else: poi_index = poi_all[poi_all['poiTheme'] == next_poi_cat].index probs = np.zeros(len(poi_index), dtype=np.float64) for i in range(len(poi_index)): dist = calc_dist(poi_all.loc[current_poi, 'poiLon'], poi_all.loc[current_poi, 'poiLat'], \ poi_all.loc[poi_index[i],'poiLon'], poi_all.loc[poi_index[i],'poiLat']) assert(dist > 0.) probs[i] = 1. / dist idx = None if randomized == True: probs /= np.sum(probs) # normalise sample = np.random.multinomial(1, probs) # catgorical/multinoulli distribution, multinomial distribution (n=1) for j in range(len(sample)): if sample[j] == 1: idx = j break else: idx = probs.argmax() assert(idx is not None) return poi_index[idx] def rule_Pop(current_poi, next_poi_cat, poi_all, randomized): choosing a specific POI within a category. if randomized == True, returen a random POI choosing with probability proportional to its popularity otherwise, return the The most Popular POI assert(current_poi in poi_all.index) assert(next_poi_cat in poi_all['poiTheme'].unique()) poi_index = None if poi_all.loc[current_poi, 'poiTheme'] == next_poi_cat: poi_index = [x for x in poi_all[poi_all['poiTheme'] == next_poi_cat].index if x != current_poi] else: poi_index = poi_all[poi_all['poiTheme'] == next_poi_cat].index probs = np.zeros(len(poi_index), dtype=np.float64) for i in range(len(poi_index)): probs[i] = poi_all.loc[poi_index[i],'poiFreq'] idx = None if randomized == True: probs /= np.sum(probs) # normalise sample = np.random.multinomial(1, probs) # catgorical/multinoulli distribution, multinomial distribution (n=1) for j in range(len(sample)): if sample[j] == 1: idx = j break else: idx = probs.argmax() assert(idx is not None) return poi_index[idx] def extract_seq(seqid_set, seq_all): Extract the actual sequences (i.e. a list of POI) from a set of sequence ID seq_dict = dict() for seqid in seqid_set: seqi = seq_all[seq_all['seqID'] == seqid].copy() seqi.sort(columns=['arrivalTime'], ascending=True, inplace=True) seq_dict[seqid] = seqi['poiID'].tolist() return seq_dict all_seqid = seq_all['seqID'].unique() all_seq_dict = extract_seq(all_seqid, seq_all) def choose_start_poi(all_seq_dict, seqLen): choose the first POI in a random actual sequence assert(seqLen > 0) while True: seqid = random.choice(sorted(all_seq_dict.keys())) if len(all_seq_dict[seqid]) > seqLen: return all_seq_dict[seqid][0] obs_mat = trans_mat.copy() * 0 obs_mat prefer_NN_over_Pop = True randomized = True N = 1000 # number of observations prevpoi = choose_start_poi(all_seq_dict, 1) prevcat = poi_all.loc[prevpoi, 'poiTheme'] nextpoi = None nextcat = None print('(%s, POI %d)->' % (prevcat, prevpoi)) n = 0 while n < N: # choose the next POI category # catgorical/multinoulli distribution, special case of multinomial distribution (n=1) sample = np.random.multinomial(1, np.array(trans_mat.loc[prevcat])) nextcat = None for j in range(len(sample)): if sample[j] == 1: nextcat = trans_mat.columns[j] assert(nextcat is not None) obs_mat.loc[prevcat, nextcat] += 1 # choose the next POI if nextcat == 'REST': nextpoi = choose_start_poi(all_seq_dict, 1) # restart print('(REST)->') else: if prefer_NN_over_Pop == True: nextpoi = rule_NN(prevpoi, nextcat, poi_all, randomized) else: nextpoi = rule_Pop(prevpoi, nextcat, poi_all, randomized) print('(%s, POI %d)->' % (nextcat, nextpoi)) prevcat = nextcat prevpoi = nextpoi n += 1 obs_mat # MEL estimation est_mat = obs_mat.copy() for r in est_mat.index: rowsum = est_mat.ix[r].sum() if rowsum == 0: continue # deal with lack of data est_mat.loc[r] /= rowsum est_mat trans_mat <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters Step2: Compute statistic Step3: View time-frequency plots
<ASSISTANT_TASK:> Python Code: # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.time_frequency import tfr_morlet from mne.stats import permutation_cluster_1samp_test from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' tmin, tmax, event_id = -0.3, 0.6, 1 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6)) # Take only one channel ch_name = 'MEG 1332' epochs.pick_channels([ch_name]) evoked = epochs.average() # Factor to down-sample the temporal dimension of the TFR computed by # tfr_morlet. Decimation occurs after frequency decomposition and can # be used to reduce memory usage (and possibly computational time of downstream # operations such as nonparametric statistics) if you don't need high # spectrotemporal resolution. decim = 5 freqs = np.arange(8, 40, 2) # define frequencies of interest sfreq = raw.info['sfreq'] # sampling in Hz tfr_epochs = tfr_morlet(epochs, freqs, n_cycles=4., decim=decim, average=False, return_itc=False, n_jobs=1) # Baseline power tfr_epochs.apply_baseline(mode='logratio', baseline=(-.100, 0)) # Crop in time to keep only what is between 0 and 400 ms evoked.crop(0., 0.4) tfr_epochs.crop(0., 0.4) epochs_power = tfr_epochs.data[:, 0, :, :] # take the 1 channel threshold = 2.5 T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_1samp_test(epochs_power, n_permutations=100, threshold=threshold, tail=0) evoked_data = evoked.data times = 1e3 * evoked.times plt.figure() plt.subplots_adjust(0.12, 0.08, 0.96, 0.94, 0.2, 0.43) # Create new stats image with only significant clusters T_obs_plot = np.nan * np.ones_like(T_obs) for c, p_val in zip(clusters, cluster_p_values): if p_val <= 0.05: T_obs_plot[c] = T_obs[c] vmax = np.max(np.abs(T_obs)) vmin = -vmax plt.subplot(2, 1, 1) plt.imshow(T_obs, cmap=plt.cm.gray, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.imshow(T_obs_plot, cmap=plt.cm.RdBu_r, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.colorbar() plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title('Induced power (%s)' % ch_name) ax2 = plt.subplot(2, 1, 2) evoked.plot(axes=[ax2], time_unit='s') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step4: Objects Step5: The above construct is a class, which is to say a model for creating objects. Step6: Now we have an object called "jyry", which has the value Step7: One can create multiple objects that all have their own identity, even though they share some variables. Step8: Typically object comparison is done using the same syntax as for basic types (which, by the way are objects too in Python). Step9: Python permits the programmer to edit objects without any access control mechanics. See for example. Step10: Figuring out an object Step11: How can we find things out about this object? Below are a few examples Step12: Exceptions Step13: The container-class can exhibit at least two different exceptions. Step14: Who should worry about the various issues is a good philosophical question. We could either make the Container-class secure in that it doesn't raise any errors to whoever calls it or we could let the caller worry about such errors. Step15: A try-except may contain a finallyblock, which is always guaranteed to execute. Step16: There is also syntax for catching multiple error types in the same catch clause.
<ASSISTANT_TASK:> Python Code: class Student(object): The above states that the code-block (indented area) below will define a class Student, that derives from a class called 'object'. Inheriting from 'object' is S def __init__(self, name, birthyear, interest=None): __init__ is special method that is called when instantiating the object. Typically the methods can then be used to self.name = name self.birthyear = birthyear self.interest = interest def say_hi(self): This is a classical example of a function that prints something. The more complex your system, the less likely it is that it is a good idea to print anything other than warnings from whithin your classes. if not self.interest: print("Hi, my name is " + self.name + "!") else: print("Hi, my name is " + self.name + " and I'm interested in " + self.interest + ".") def get_age(self): This is a much more style-pure example of classes. Recording a birthyear instead of age is a good idea because next year we'll all be a year older. However requiring everyone who uses your class is impolite and would lead to duplicate code. Doing it once and asking everyone to use that implementation reduces code complexity and improves maintainability. import datetime return datetime.datetime.now().year-self.birthyear jyry = Student("Jyry", 1984, interest="Python") jyry.say_hi() print(jyry.birthyear) tuomas = Student("Tuomas", 1984, interest="Java") tuomas.say_hi() tuomas == jyry jyry.interest = "teaching" jyry.say_hi() fobj = open("../data/grep.txt") print(fobj) dir(fobj) help(jyry.say_hi) jyry.say_hi.__doc__ class Container(object): def __init__(self): self.bag = {} def put(self, key, item): self.bag[key] = item def get(self, key): return self.bag[key] container = Container() container.put([1, 2, 3], "example") container.get("not_in_it") try: container = Container() container.put([1,2,3], "value") except TypeError as err: print("Stupid programmer caused an error: " + str(err)) try: container = Container() container.put(3, "value") container.get(3) except TypeError as err: print("Stupid programmer caused an error: " + str(err)) except KeyError as err: print("Stupid programmer caused another error: " + str(err)) finally: print("all is well in the end") # go ahead, make changes that cause one of the exceptions to be raised try: container = Container() container.put(3, "value") container.get(5) except (TypeError, KeyError) as err: print("please shoot me") if type(err) == TypeError: raise Exception("That's it I quit!") else: raise <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Once generate data Step2: Step 1 - collect data Step3: Step 2 - Build model Step4: Step 3 training the network Step5: One epoch takes approximately 268 secs
<ASSISTANT_TASK:> Python Code: num_units = 400 #state size input_len = 60 target_len = 30 batch_size = 64 with_EOS = False total_size = 57994 train_size = 46400 test_size = 11584 data_folder = '../../../../Dropbox/data' ph_data_path = '../data/price_history' npz_full = ph_data_path + '/price_history_dp_60to30_57994.npz' npz_train = ph_data_path + '/price_history_dp_60to30_57994_46400_train.npz' npz_test = ph_data_path + '/price_history_dp_60to30_57994_11584_test.npz' # dp = PriceHistorySeq2SeqDataProvider(npz_path=npz_train, batch_size=batch_size, with_EOS=with_EOS) # dp.inputs.shape, dp.targets.shape # aa, bb = dp.next() # aa.shape, bb.shape model = PriceHistorySeq2SeqDynDecIns(rng=random_state, dtype=dtype, config=config, with_EOS=with_EOS) # graph = model.getGraph(batch_size=batch_size, # num_units=num_units, # input_len=input_len, # target_len=target_len) #show_graph(graph) best_params = [500, tf.nn.tanh, 0.0001, 0.62488034788862112, 0.001] num_units, activation, lamda2, keep_prob_input, learning_rate = best_params batch_size def experiment(): return model.run(npz_path=npz_train, npz_test = npz_test, epochs=100, batch_size = batch_size, num_units = num_units, input_len=input_len, target_len=target_len, learning_rate = learning_rate, preds_gather_enabled=True, batch_norm_enabled = True, activation = activation, decoder_first_input = PriceHistorySeq2SeqDynDecIns.DECODER_FIRST_INPUT.ZEROS, keep_prob_input = keep_prob_input, lamda2 = lamda2, ) #%%time dyn_stats, preds_dict, targets = get_or_run_nn(experiment, filename='024_seq2seq_60to30_002', nn_runs_folder= data_folder + '/nn_runs') dyn_stats.plotStats() plt.show() data_len = len(targets) mses = np.empty(data_len) for ii, (pred, target) in enumerate(zip(preds_dict.values(), targets.values())): mses[ii] = mean_squared_error(pred, target) np.mean(mses) huber_losses = np.empty(data_len) for ii, (pred, target) in enumerate(zip(preds_dict.values(), targets.values())): huber_losses[ii] = np.mean(huber_loss(pred, target)) np.mean(huber_losses) targets_arr = np.array(targets.values()) targets_arr.shape preds_arr = np.array(preds_dict.values()) preds_arr.shape np.mean(huber_loss(y_true=targets_arr, y_pred=preds_arr)) r2_scores = [r2_score(y_true=targets[ind], y_pred=preds_dict[ind]) for ind in range(len(targets))] ind = np.argmin(r2_scores) ind reals = targets[ind] preds = preds_dict[ind] r2_score(y_true=reals, y_pred=preds) #sns.tsplot(data=dp.inputs[ind].flatten()) fig = plt.figure(figsize=(15,6)) plt.plot(reals, 'b') plt.plot(preds, 'g') plt.legend(['reals','preds']) plt.show() %%time dtw_scores = [fastdtw(targets[ind], preds_dict[ind])[0] for ind in range(len(targets))] np.mean(dtw_scores) coint(preds, reals) cur_ind = np.random.randint(len(targets)) reals = targets[cur_ind] preds = preds_dict[cur_ind] fig = plt.figure(figsize=(15,6)) plt.plot(reals, 'b') plt.plot(preds, 'g') plt.legend(['reals','preds']) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 在这个例子中,对已排序的 _sorted 元素逐个与 i 进行比较,若 i 比已排序的所有元素都大,则只能排在已排序列表的最后。这时我们就需要一个额外的状态变量 inserted 来标记完成遍历循环还是中途被 break,在这种情况下,我们可以用 else 来取代这一状态变量: Step2: 我认为这是一个非常酷的做法!不过要注意的是,除了 break 可以触发后面的 else 语句,没有循环的时候也会: Step3: 错误捕捉中的 else Step4: 当然,也可以用状态变量的做法来替代 else:
<ASSISTANT_TASK:> Python Code: from random import randrange def insertion_sort(seq): if len(seq) <= 1: return seq _sorted = seq[:1] for i in seq[1:]: inserted = False for j in range(len(_sorted)): if i < _sorted[j]: _sorted = [*_sorted[:j], i, *_sorted[j:]] inserted = True break if not inserted: _sorted.append(i) return _sorted print(insertion_sort([randrange(1, 100) for i in range(10)])) def insertion_sort(seq): if len(seq) <= 1: return seq _sorted = seq[:1] for i in seq[1:]: for j in range(len(_sorted)): if i < _sorted[j]: _sorted = [*_sorted[:j], i, *_sorted[j:]] break else: _sorted.append(i) return _sorted print(insertion_sort([randrange(1, 100) for i in range(10)])) while False: print("Will never print!") else: print("Loop failed!") def divide(x, y): try: result = x / y except ZeroDivisionError: print("division by 0!") else: print("result = {}".format(result)) finally: print("divide finished!") divide(5,2) print("*"*20) divide(5,0) def divide(x, y): result = None try: result = x / y except ZeroDivisionError: print("division by 0!") if result is not None: print("result = {}".format(result)) print("divide finished!") divide(5,2) print("*"*20) divide(5,0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. The data Step2: The resulting DataFrame contains a row for each user and each column represents an artist. The values indicate whether the user listend to a song by that artist (1) or not (0). Note that the number of times a person listened to a specific artist is not listed. Step3: The cosine_similarity function returned a 2-dimensional numpy array. This array contains all the similarity values we need, but it is not labelled. Since the entire array will not fit the screen, we will use slicing to print a subset of the result. Step4: The artist names are both the row and column labels for the similarity_matrix. We can add these labels by creating a new DataFrame based on the numpy array. By using the pandas.DataFrame.iloc integer-location based indexer, we get the same slice as above, but with added labels. Step5: Pandas also provides a label based indexer, pandas.DataFrame.loc, which we can use to get a slice based on label values. Step6: As you can see above, bands are 100% similar to themselves and The White Stripes are nothing like Abba. Step7: To view the first n rows, we can use the pandas.DataFrame.head method, the default value for n is 5. Step8: Note that we created a MultiIndex by specifying two columns in the set_index call. Step9: The use of the MultiIndex enables flexible access to the data. If we index with a single artist name, we get all compared artists. To view the last n rows for this result, we can use the pandas.DataFrame.tail method. Step10: We can index on multiple levels by providing a tuple of indexes Step11: 4. Picking the best matches Step13: We can transform the task of getting the most similar bands for a given band to a function. Step14: Note that we also defined a docstring for this function, which we can view by using help() or shift + tab in a jupyter notebook. Step15: 5. Get the listening history Step16: We now have the complete listening history, but we only need the history for the similar artists. For this we can use the index labels from the DataFrame returned by the most_similar_artists function. Index labels for a DataFrame can be retrieved by using the pandas.DataFrame.index attribute. Step17: We can combine the user id and similar labels in the .loc indexer to get the listening history for the most similar artists. Step19: Let's make a function to get the most similar artists and their listening history for a given artist and user. The function creates two DataFrames with the same index, and then uses pandas.concat to create a single DataFrame from them. Step20: 6. Calculate the recommendation score. Step21: Remember what the DataFrame returned by the most_similar_artists_history function looks like Step22: Pandas provides methods to do column or row aggregation, like e.g. pandas.DataFrame.product. This method will calculate all values in a column or row. The direction can be chosen with the axis parameter. As we need the product of the values in the rows (similarity * history), we will need to specify axis=1. Step23: Then there's pandas.DataFrame.sum which does the same thing for summing the values. As we want the sum for all values in the column we would have to specify axis=0. Since 0 is the default value for the axis parameter we don't have to add it to the method call. Step25: Knowing these methods, it is only a small step to define the scoring function based on the output of most_similar_artists_history. Step27: Determine artists to recommend Step29: The last requirement for our recommender engine is a function that can score all unknown artists for a given user. We will make this function return a list of dictionaries, which can be easily converted to a DataFrame later on. The list will be generated using a list comprehension. Step31: From the scored artists we can easily derive the best recommendations for a given user. Step32: With this final function, it is a small step to get recommendations for multiple users. As our code hasn't been optimized for performance, it is advised to limit the number of users somewhat. Step33: We can now use the concat function again to get a nice overview of the recommended artists.
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import sklearn.metrics.pairwise data = pd.read_csv('data/lastfm-matrix-germany.csv').set_index('user') data.head() data.shape ### BEGIN SOLUTION similarity_matrix = sklearn.metrics.pairwise.cosine_similarity(np.transpose(data)) ### END SOLUTION # similarity_matrix = sklearn.metrics.pairwise.cosine_similarity( ? ) assert similarity_matrix.shape == (285, 285) print(similarity_matrix.ndim) similarity_matrix[:5, :5] ### BEGIN SOLUTION artist_similarities = pd.DataFrame(similarity_matrix, index=data.columns, columns=data.columns) ### END SOLUTION # artist_similarities = pd.DataFrame( ? , index=data.columns, columns= ? ) assert np.array_equal(artist_similarities.columns, data.columns) assert artist_similarities.shape == similarity_matrix.shape artist_similarities.iloc[:5, :5] slice_artists = ['ac/dc', 'madonna', 'metallica', 'rihanna', 'the white stripes'] artist_similarities.loc[slice_artists, slice_artists] similarities = ( # start from untidy DataFrame artist_similarities # add a name to the index .rename_axis(index='artist') # artist needs to be a column for melt .reset_index() # create the tidy dataset .melt(id_vars='artist', var_name='compared_with', value_name='cosine_similarity') # artist compared with itself not needed, keep rows where artist and compared_with are not equal. .query('artist != compared_with') # set identifying observations to index .set_index(['artist', 'compared_with']) # sort the index .sort_index() ) similarities.head() similarities.index similarities.loc['the beatles', :].tail() similarities.loc[('abba', 'madonna'), :] print(slice_artists) similarities.loc[('abba', slice_artists), :] artist = 'a perfect circle' n_artists = 10 ### BEGIN SOLUTION top_n = similarities.loc[artist, :].sort_values('cosine_similarity').tail(n_artists) ### END SOLUTION # top_n = similarities.loc[?, :].sort_values('cosine_similarity') ? print(top_n) assert len(top_n) == 10 assert type(top_n) == pd.DataFrame def most_similar_artists(artist, n_artists=10): Get the most similar artists for a given artist. Parameters ---------- artist: str The artist for which to get similar artists n_artists: int, optional The number of similar artists to return Returns ------- pandas.DataFrame A DataFrame with the similar artists and their cosine_similarity to the given artist ### BEGIN SOLUTION return similarities.loc[artist, :].sort_values('cosine_similarity').tail(n_artists) ### END SOLUTION # return similarities.loc[ ? ].sort_values( ? ) ? print(most_similar_artists('a perfect circle')) assert top_n.equals(most_similar_artists('a perfect circle')) assert most_similar_artists('abba', n_artists=15).shape == (15, 1) help(most_similar_artists) user_id = 42 ### BEGIN SOLUTION user_history = data.loc[user_id, :] ### END SOLUTION # user_history = data.loc[ ? , ?] print(user_history) assert user_history.name == user_id assert len(user_history) == 285 artist = 'the beatles' ### BEGIN SOLUTION similar_labels = most_similar_artists(artist).index ### END SOLUTION # similar_labels = most_similar_artists( ? ). ? print(similar_labels) assert len(similar_labels) == 10 assert type(similar_labels) == pd.Index user_id = 42 ### BEGIN SOLUTION similar_history = data.loc[user_id, similar_labels] ### END SOLUTION # similar_history = data.loc[?, ?] assert similar_history.name == user_id print(similar_history) def most_similar_artists_history(artist, user_id): Get most similar artists and their listening history. Parameters ---------- artist: str The artist for which to get the most similar bands user_id: int The user for which to get the listening history Returns ------- pandas.DataFrame A DataFrame containing the most similar artists for the given artist, with their cosine similarities and their listening history status for the given user. ### BEGIN SOLUTION artists = most_similar_artists(artist) history = data.loc[user_id, artists.index].rename('listening_history') ### END SOLUTION # artists = most_similar_artists( ? ) # history = data.loc[ ? , ? ].rename('listening_history') return pd.concat([artists, history], axis=1) example = most_similar_artists_history('abba', 42) assert example.columns.to_list() == ['cosine_similarity', 'listening_history'] example listening_history = np.array([0, 1, 0]) similarity_scores = np.array([0.3, 0.2, 0.1]) recommendation_score = sum(listening_history * similarity_scores) / sum(similarity_scores) print(f'{recommendation_score:.3f}') user_id = 42 artist = 'abba' most_similar_artists_history(artist, user_id) most_similar_artists_history(artist, user_id).product(axis=1) most_similar_artists_history(artist, user_id).product(axis=1).sum() def recommendation_score(artist, user_id): Calculate recommendation score. Parameters ---------- artist: str The artist for which to calculate the recommendation score. user_id: int The user for which to calculate the recommendation score. Returns: float Recommendation score df = most_similar_artists_history(artist, user_id) ### BEGIN SOLUTION return df.product(axis=1).sum() / df.loc[:, 'cosine_similarity'].sum() ### END SOLUTION # return df.?(axis=1).?() / df.loc[:, ? ].sum() assert np.allclose(recommendation_score('abba', 42), 0.08976655361839528) assert np.allclose(recommendation_score('the white stripes', 1), 0.09492796371597861) recommendation_score('abba', 42) def unknown_artists(user_id): Get artists the user hasn't listened to. Parameters ---------- user_id: int User for which to get unknown artists Returns ------- pandas.Index Collection of artists the user hasn't listened to. ### BEGIN SOLUTION history = data.loc[user_id, :] return history.loc[history == 0].index ### END SOLUTION # history = data.loc[ ? , :] # return history.loc[ ? == 0].index print(unknown_artists(42)) assert len(unknown_artists(42)) == 278 assert type(unknown_artists(42)) == pd.Index def score_unknown_artists(user_id): Score all unknown artists for a given user. Parameters ---------- user_id: int User for which to get unknown artists Returns ------- list of dict A list of dictionaries. ### BEGIN SOLUTION artists = unknown_artists(user_id) return [{'recommendation': artist, 'score': recommendation_score(artist, user_id)} for artist in artists] ### END SOLUTION # artists = unknown_artists( ? ) # return [{'recommendation': artist, 'score': recommendation_score( ? , user_id)} for artist in ?] assert np.allclose(score_unknown_artists(42)[1]['score'], 0.08976655361839528) assert np.allclose(score_unknown_artists(313)[137]['score'], 0.20616395469219984) score_unknown_artists(42)[:5] def user_recommendations(user_id, n_rec=5): Recommend new artists for a user. Parameters ---------- user_id: int User for which to get recommended artists n_rec: int, optional Number of recommendations to make Returns ------- pandas.DataFrame A DataFrame containing artist recommendations for the given user, with their recommendation score. scores = score_unknown_artists(user_id) ### BEGIN SOLUTION return ( pd.DataFrame(scores) .sort_values('score', ascending=False) .head(n_rec) .reset_index(drop=True) ) ### END SOLUTION # return ( # pd.DataFrame( ? ) # .sort_values( ? , ascending=False) # . ? (n_rec) # .reset_index(drop=True) # ) assert user_recommendations(313).loc[4, 'recommendation'] == 'jose gonzalez' assert len(user_recommendations(1, n_rec=10)) == 10 user_recommendations(642) recommendations = [user_recommendations(user).loc[:, 'recommendation'].rename(user) for user in data.index[:10]] np.transpose(pd.concat(recommendations, axis=1)) g_s = most_similar_artists_history('gorillaz', 642).assign(sim2 = lambda x: x.product(axis=1)) r_1 = g_s.sim2.sum() total = g_s.cosine_similarity.sum() print(total) r_1/total g_s <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Comparing distributions Step2: Based on the data, the distribution for Rhode is slightly farther right than the distribution for Wei, but there is a lot of overlap. Step3: To compute the probability that Rhode actually has a higher value of p, there are two options Step4: Beta also provides Sample, which returns a NumPy array, so we an perform the comparisons using array operations Step5: The other option is to make Pmf objects that approximate the Beta distributions, and enumerate pairs of values Step6: Exercise Step7: flip returns True with probability p and False with probability 1-p Step8: Or, realizing that the distribution of k is binomial, we can simplify the code using NumPy Step9: Alternatively, we can make a mixture that represents the distribution of k, taking into account our uncertainty about x Step10: Alternatively, we could use MakeMixture Step11: Here's how we use it. Step12: Exercise Step13: Or we could use Sample and NumPy Step14: Alternatively, we could compute the distribution of the sum by enumeration Step15: Here's how it's used Step16: The Pmf class provides a + operator that does the same thing. Step17: Exercise Step18: Distribution of maximum Step19: And here's a version using NumPy. I'll generate an array with 6 rows and 10 columns Step20: Compute the maximum in each column Step21: And then plot the distribution of maximums Step22: Or we can figure it out analytically. If the maximum is less-than-or-equal-to some value k, all 6 random selections must be less-than-or-equal-to k, so Step23: Exercise
<ASSISTANT_TASK:> Python Code: # Configure Jupyter so figures appear in the notebook %matplotlib inline # Configure Jupyter to display the assigned value after an assignment %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' # import classes from thinkbayes2 from thinkbayes2 import Hist, Pmf, Suite, Beta import thinkplot import numpy as np rhode = Beta(1, 1, label='Rhode') rhode.Update((22, 11)) wei = Beta(1, 1, label='Wei') wei.Update((21, 12)) thinkplot.Pdf(rhode.MakePmf()) thinkplot.Pdf(wei.MakePmf()) thinkplot.Config(xlabel='x', ylabel='Probability') iters = 1000 count = 0 for _ in range(iters): x1 = rhode.Random() x2 = wei.Random() if x1 > x2: count += 1 count / iters rhode_sample = rhode.Sample(iters) wei_sample = wei.Sample(iters) np.mean(rhode_sample > wei_sample) def ProbGreater(pmf1, pmf2): total = 0 for x1, prob1 in pmf1.Items(): for x2, prob2 in pmf2.Items(): if x1 > x2: total += prob1 * prob2 return total pmf1 = rhode.MakePmf(1001) pmf2 = wei.MakePmf(1001) ProbGreater(pmf1, pmf2) pmf1.ProbGreater(pmf2) pmf1.ProbLess(pmf2) import random def flip(p): return random.random() < p iters = 1000 wins = 0 losses = 0 for _ in range(iters): x1 = rhode.Random() x2 = wei.Random() count1 = count2 = 0 for _ in range(25): if flip(x1): count1 += 1 if flip(x2): count2 += 1 if count1 > count2: wins += 1 if count1 < count2: losses += 1 wins/iters, losses/iters rhode_rematch = np.random.binomial(25, rhode_sample) thinkplot.Hist(Pmf(rhode_rematch)) wei_rematch = np.random.binomial(25, wei_sample) np.mean(rhode_rematch > wei_rematch) np.mean(rhode_rematch < wei_rematch) from thinkbayes2 import MakeBinomialPmf def MakeBinomialMix(pmf, label=''): mix = Pmf(label=label) for x, prob in pmf.Items(): binom = MakeBinomialPmf(n=25, p=x) for k, p in binom.Items(): mix[k] += prob * p return mix rhode_rematch = MakeBinomialMix(rhode.MakePmf(), label='Rhode') wei_rematch = MakeBinomialMix(wei.MakePmf(), label='Wei') thinkplot.Pdf(rhode_rematch) thinkplot.Pdf(wei_rematch) thinkplot.Config(xlabel='hits') rhode_rematch.ProbGreater(wei_rematch), rhode_rematch.ProbLess(wei_rematch) from thinkbayes2 import MakeMixture def MakeBinomialMix2(pmf): binomials = Pmf() for x, prob in pmf.Items(): binom = MakeBinomialPmf(n=25, p=x) binomials[binom] = prob return MakeMixture(binomials) rhode_rematch = MakeBinomialMix2(rhode.MakePmf()) wei_rematch = MakeBinomialMix2(wei.MakePmf()) rhode_rematch.ProbGreater(wei_rematch), rhode_rematch.ProbLess(wei_rematch) iters = 1000 pmf = Pmf() for _ in range(iters): k = rhode_rematch.Random() + wei_rematch.Random() pmf[k] += 1 pmf.Normalize() thinkplot.Hist(pmf) ks = rhode_rematch.Sample(iters) + wei_rematch.Sample(iters) pmf = Pmf(ks) thinkplot.Hist(pmf) def AddPmfs(pmf1, pmf2): pmf = Pmf() for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): pmf[v1 + v2] += p1 * p2 return pmf pmf = AddPmfs(rhode_rematch, wei_rematch) thinkplot.Pdf(pmf) pmf = rhode_rematch + wei_rematch thinkplot.Pdf(pmf) # Solution pmf = rhode_rematch - wei_rematch thinkplot.Pdf(pmf) # Solution # On average, we expect Rhode to win by about 1 clay. pmf.Mean(), pmf.Median(), pmf.Mode() # Solution # But there is, according to this model, a 2% chance that she could win by 10. sum([p for (x, p) in pmf.Items() if x >= 10]) iters = 1000 pmf = Pmf() for _ in range(iters): ks = rhode_rematch.Sample(6) pmf[max(ks)] += 1 pmf.Normalize() thinkplot.Hist(pmf) iters = 1000 ks = rhode_rematch.Sample((6, iters)) ks maxes = np.max(ks, axis=0) maxes[:10] pmf = Pmf(maxes) thinkplot.Hist(pmf) pmf = rhode_rematch.Max(6).MakePmf() thinkplot.Hist(pmf) def Min(pmf, k): cdf = pmf.MakeCdf() cdf.ps = 1 - (1-cdf.ps)**k return cdf pmf = Min(rhode_rematch, 6).MakePmf() thinkplot.Hist(pmf) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's show the symbols data, to see how good the recommender has to be. Step2: Let's run the trained agent, with the test set Step3: And now a "realistic" test, in which the learner continues to learn from past samples in the test set (it even makes some random moves, though very few). Step4: What are the metrics for "holding the position"?
<ASSISTANT_TASK:> Python Code: # Basic imports import os import pandas as pd import matplotlib.pyplot as plt import numpy as np import datetime as dt import scipy.optimize as spo import sys from time import time from sklearn.metrics import r2_score, median_absolute_error from multiprocessing import Pool import pickle %matplotlib inline %pylab inline pylab.rcParams['figure.figsize'] = (20.0, 10.0) %load_ext autoreload %autoreload 2 sys.path.append('../../') import recommender.simulator as sim from utils.analysis import value_eval from recommender.agent_predictor import AgentPredictor from functools import partial from sklearn.externals import joblib def show_results(results_list, data_in_df, graph=False): for values in results_list: total_value = values.sum(axis=1) print('Sharpe ratio: {}\nCum. Ret.: {}\nAVG_DRET: {}\nSTD_DRET: {}\nFinal value: {}'.format(*value_eval(pd.DataFrame(total_value)))) print('-'*100) initial_date = total_value.index[0] compare_results = data_in_df.loc[initial_date:, 'Close'].copy() compare_results.name = SYMBOL compare_results_df = pd.DataFrame(compare_results) compare_results_df['portfolio'] = total_value std_comp_df = compare_results_df / compare_results_df.iloc[0] if graph: plt.figure() std_comp_df.plot() NUM_THREADS = 1 LOOKBACK = 252*3 STARTING_DAYS_AHEAD = 252 POSSIBLE_FRACTIONS = [0.0, 1.0] DYNA = 20 BASE_DAYS = 112 # Get the data SYMBOL = 'SPY' total_data_train_df = pd.read_pickle('../../data/data_train_val_df.pkl').stack(level='feature') data_train_df = total_data_train_df[SYMBOL].unstack() total_data_test_df = pd.read_pickle('../../data/data_test_df.pkl').stack(level='feature') data_test_df = total_data_test_df[SYMBOL].unstack() if LOOKBACK == -1: total_data_in_df = total_data_train_df data_in_df = data_train_df else: data_in_df = data_train_df.iloc[-LOOKBACK:] total_data_in_df = total_data_train_df.loc[data_in_df.index[0]:] # Crop the final days of the test set as a workaround to make dyna work # (the env, only has the market calendar up to a certain time) data_test_df = data_test_df.iloc[:-DYNA] total_data_test_df = total_data_test_df.loc[:data_test_df.index[-1]] # Create many agents index = np.arange(NUM_THREADS).tolist() env, num_states, num_actions = sim.initialize_env(total_data_in_df, SYMBOL, starting_days_ahead=STARTING_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS) estimator_close = joblib.load('../../data/best_predictor.pkl') estimator_volume = joblib.load('../../data/best_volume_predictor.pkl') agents = [AgentPredictor(num_states=num_states, num_actions=num_actions, random_actions_rate=0.98, random_actions_decrease=0.999, dyna_iterations=DYNA, name='Agent_{}'.format(i), estimator_close=estimator_close, estimator_volume=estimator_volume, env=env, prediction_window=BASE_DAYS) for i in index] print('Sharpe ratio: {}\nCum. Ret.: {}\nAVG_DRET: {}\nSTD_DRET: {}\nFinal value: {}'.format(*value_eval(pd.DataFrame(data_in_df['Close'].iloc[STARTING_DAYS_AHEAD:])))) # Simulate (with new envs, each time) n_epochs = 4 for i in range(n_epochs): tic = time() env.reset(STARTING_DAYS_AHEAD) results_list = sim.simulate_period(total_data_in_df, SYMBOL, agents[0], starting_days_ahead=STARTING_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, verbose=False, other_env=env) toc = time() print('Epoch: {}'.format(i)) print('Elapsed time: {} seconds.'.format((toc-tic))) print('Random Actions Rate: {}'.format(agents[0].random_actions_rate)) show_results([results_list], data_in_df) env.reset(STARTING_DAYS_AHEAD) results_list = sim.simulate_period(total_data_in_df, SYMBOL, agents[0], learn=False, starting_days_ahead=STARTING_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, other_env=env) show_results([results_list], data_in_df, graph=True) import pickle with open('../../data/dyna_q_with_predictor.pkl', 'wb') as best_agent: pickle.dump(agents[0], best_agent) TEST_DAYS_AHEAD = 112 env.set_test_data(total_data_test_df, TEST_DAYS_AHEAD) tic = time() results_list = sim.simulate_period(total_data_test_df, SYMBOL, agents[0], learn=False, starting_days_ahead=TEST_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, verbose=False, other_env=env) toc = time() print('Epoch: {}'.format(i)) print('Elapsed time: {} seconds.'.format((toc-tic))) print('Random Actions Rate: {}'.format(agents[0].random_actions_rate)) show_results([results_list], data_test_df, graph=True) env.set_test_data(total_data_test_df, TEST_DAYS_AHEAD) agents[0].env = env tic = time() results_list = sim.simulate_period(total_data_test_df, SYMBOL, agents[0], learn=True, starting_days_ahead=TEST_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, verbose=False, other_env=env) toc = time() print('Epoch: {}'.format(i)) print('Elapsed time: {} seconds.'.format((toc-tic))) print('Random Actions Rate: {}'.format(agents[0].random_actions_rate)) show_results([results_list], data_test_df, graph=True) print('Sharpe ratio: {}\nCum. Ret.: {}\nAVG_DRET: {}\nSTD_DRET: {}\nFinal value: {}'.format(*value_eval(pd.DataFrame(data_test_df['Close'].iloc[TEST_DAYS_AHEAD:])))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: What do we mean when we say local scope? Step2: What would change if you added the line global name into the function update_name?
<ASSISTANT_TASK:> Python Code: initial_var = 358645317684531432678 name = "Oi, you there" def update_name(): name = "what?" print(name) update_name() print(name) num_one = None num_two = None def power(one, two): pass from nose.tools import assert_equal, assert_not_equal assert_equal(square(12,2), 144) assert_equal(square(50, 4), 6250000) assert_equal(square(2,2), 4) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Here's the Rosenbrock function in code. Since we're pretending it's the log-posterior, I've introduced a minus sign that doesn't normally appear. Step2: Let's plot "standard delta-log-pdf" contours, just to get a feel for the shape of the function. Step3: That's one ugly banana! It's worth noting that, in less extreme cases, cleverly re-parametrizing your model can be a significant help, for example sampling the logarithm of a parameter with a large dynamic range. As you'll see in the homework, however, it's important to be aware of the effect re-parametrizations have on the prior if not done carefully. As you can see below, considering $\ln(y)$ instead of $y$ makes part of the posterior distribution look easier to deal with... but at the cost of introducing another little problem. Step4: Eggbox function Step5: Yikes! Lot's of well separated peaks in the posterior distribution. To converge properly, chains need to be able to move between them, which is clearly a challenge for the approach we've used so far.
<ASSISTANT_TASK:> Python Code: from IPython.display import Image Image(filename="DifficultDensities_banana_eg.png", width=350) def Rosenbrock_lnP(x, y, a=1.0, b=100.0): return -( (a-x)**2 + b*(y-x**2)**2 ) import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (8.0, 8.0) xs = np.arange(-2.0, 3.0, 0.0025) ys = np.arange(0.0, 5.0, 0.0025) zs = np.array([Rosenbrock_lnP(xs,y) for y in ys]) plt.contour(xs, ys, -2.0*zs, levels=[2.3, 6.18, 11.8]); xs = np.arange(-2.0, 3.0, 0.0025) lnys = np.arange(-3.0, 1.6, 0.0025) zs = np.array([Rosenbrock_lnP(xs,y) for y in np.exp(lnys)]) plt.contour(xs, lnys, -2.0*zs, levels=[2.3, 6.18, 11.8]); def eggbox_lnP(x, y): return (2.0 + np.cos(0.5*x)*np.cos(0.5*y))**3 xs = np.arange(0.0, 30.0, 0.1) ys = np.arange(0.0, 30.0, 0.1) zs = np.array([eggbox_lnP(xs,y) for y in ys]) plt.contour(xs, ys, -2.0*(zs-np.max(zs)), levels=[2.3, 6.18, 11.8]); Image(filename="DifficultDensities_multimodes_eg.png", width=350) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: Dataset Parameters Step3: times Step4: Compute Options Step5: dynamics_method Step6: The 'dynamics_method' parameter controls how stars and components are placed in the coordinate system as a function of time and has several choices Step7: The 'ltte' parameter sets whether light travel time effects (Roemer delay) are included. If set to False, the positions and velocities are returned as they actually are for that given object at that given time. If set to True, they are instead returned as they were or will be when their light reaches the origin of the coordinate system. Step8: Plotting Step9: As always, you have access to any of the arrays for either axes, so if you want to plot 'vxs' vs 'times' Step10: 3d axes are not yet supported for orbits, but hopefully will be soon.
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.0,<2.1" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() ps, constraints = phoebe.dataset.orb() print ps print ps['times'] ps_compute = phoebe.compute.phoebe() print ps_compute print ps_compute['dynamics_method'] print ps_compute['ltte'] b.add_dataset('orb', times=np.linspace(0,3,201)) b.run_compute() b['orb@model'].twigs print b['times@primary@orb01@orb@model'] print b['xs@primary@orb01@orb@model'] print b['vxs@primary@orb01@orb@model'] axs, artists = b['orb@model'].plot() axs, artists = b['orb@model'].plot(x='times', y='vxs') fig = plt.figure() ax = fig.add_subplot(111, projection='3d') axs, artists = b['orb@model'].plot(xlim=(-4,4), ylim=(-4,4), zlim=(-4,4)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: mod = 1000000007 def waysToColor(arr , n , k ) : global mod powOf2 =[0 for i in range(500 ) ] c =[[ 0 for i in range(500 ) ] for j in range(500 ) ] for i in range(n + 1 ) : c[i ][0 ] = 1 ; for j in range(1 , i + 1 ) : c[i ][j ] =(c[i - 1 ][j ] + c[i - 1 ][j - 1 ] ) % mod ;   powOf2[0 ] = 1 powOf2[1 ] = 1 ; for i in range(2 , n + 1 ) : powOf2[i ] =(powOf2[i - 1 ] * 2 ) % mod ;  rem = n - k ; arr[k ] = n + 1 ; k += 1 arr . sort() answer = 1 ; for i in range(k ) : x = 0 if i - 1 >= 0 : x = arr[i ] - arr[i - 1 ] - 1  else : x = arr[i ] - 1  answer = answer *(c[rem ][x ] % mod ) *(( powOf2[x ] if(i != 0 and i != k - 1 ) else 1 ) ) % mod rem -= x ;  return answer ;  if __name__== ' __main __' : N = 6 ; K = 3 ; arr =[1 , 2 , 6 , 0 ] print(waysToColor(arr , N , K ) )  <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basic matrix arithmetics like Step2: In mathematics, the dot product is an algebraic operation that takes two coordinate vectors of equal size and returns a single number. The result is calculated by multiplying corresponding entries and adding up those products. The name "dot product" stems from the fact that the centered dot "·" is often used to designate this operation. Step3: Matrices Step4: If we want to perform matrix multiplication with two numpy arrays (ndarray), we have to use the dot product Step5: Alternatively, we can cast them into matrix objects and use the "*" operator Step6: In the following practical example, we come to talk about the sweet things of life. Step7: This means that Lucas paid 13.98 CAD, Mia 11.97 CAD, Leon 9.90 and Hannah 9.75.
<ASSISTANT_TASK:> Python Code: import numpy as np x = np.array([1,5,2]) y = np.array([7,4,1]) x + y x * y x - y x / y x % y x = np.array([1,2,3]) y = np.array([-7,8,9]) dot = np.dot(x,y) np.dot(x,y) x = np.array( ((2,3), (3, 5)) ) y = np.array( ((1,2), (5, -1)) ) x * y x = np.matrix( ((2,3), (3, 5)) ) y = np.matrix( ((1,2), (5, -1)) ) x * y x = np.array( ((2,3), (3, 5)) ) y = np.array( ((1,2), (5, -1)) ) np.dot(x,y) np.mat(x) * np.mat(y) NumPersons = np.array([[100,175,210],[90,160,150],[200,50,100],[120,0,310]]) Price_per_100_g = np.array([2.98,3.90,1.99]) Price_in_Cent = np.dot(NumPersons,Price_per_100_g) Price_in_CAD = Price_in_Cent / np.array([100,100,100,100]) Price_in_CAD H = np.matrix( ((3,-1,0), (-1,3,0), (0,0,5)) ) eigenvalues, eigenvectors = np.linalg.eig(H) eigenvalues determinant = np.linalg.det(H) determinant <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Setup the axon code Step3: Single example axon, how does a0 (intial volage) drift with the number of nodes? Step4: Now let's run axon for a few n choices over many iterations j, reproducing the major figure in Tee's SFN abstract. Step5: In a biologically constrained parameterization Tee's effect holds up perfectly. Step6: The loss function Step7: FORCE does a pretty nice job learning how to be a sin wave. If you rerun this a few times, you'll see the quality of the fits varies. Such if woring with randomness and chaos. Step8: Binary FORCE Step9: Here's when the binary version looks like. I use random (U) selected thresholds to convert from rates to binary codes. Don't have any idea how this really works, so random seems as good a guess as any. Step10: The binary loss function Step11: Besides some small fluctations, the binary version does nearly as well as the real valued version above!
<ASSISTANT_TASK:> Python Code: import pylab as plt import numpy as np %matplotlib inline from __future__ import division from scipy.integrate import odeint,ode from numpy import zeros,ones,eye,tanh,dot,outer,sqrt,linspace,cos,pi,hstack,zeros_like,abs,repeat from numpy.random import uniform,normal,choice %config InlineBackend.figure_format = 'retina' from numpy.random import normal from numpy import asarray def axon(a0, n, sigma_l, sigma_b, min_v=-0.07, max_v=-0.04): A Tee-type axon. An intial voltage a0 is sequentially corrupted by additive noise even when signal boosting is perfect. Params ------ a0 : scalar The initial voltage n : scalar Number of nodes sigma_l : scalar Std dev of the leak sigma_b : scalar Std dev of the boost (should be very small) min_v : scalar Min voltage (-0.07 mV) max_v : scalar Max volate (-0.04 mV) if a0 > max_v: raise ValueError("a0 must be smaller than {0}".format(max_v)) if a0 < min_v: raise ValueError("a0 must be larger than {0}".format(min_v)) ax = [a0, ] for i in range(1, n+1): ax.append( ax[-1] + normal(loc=0.0, scale=sigma_l, size=1)[0] + normal(loc=0.0, scale=sigma_b, size=1)[0] ) ax = asarray(ax) # Clip ax[ax < min_v] = min_v ax[ax > max_v] = max_v return ax a0 = -0.06 # 60 mV n = 100 # 100 nodes of rav plt.plot(axon(a0, n, 0.001, 0.00001), color='k', label="red = a0") plt.ylabel("Membrane voltage (V)") plt.xlabel("Number of nodes") plt.ylim(-0.07, -0.04) plt.hlines(a0, 0, n, color='r') plt.legend() # Params a0 = -0.06 ns = [2, 10, 100] js = range(500) sigma_l = 0.01 / 10 # small sigma_b = 0.01 / 1000 # tiny (APs are stereotyped!) # Run, saving in res indexed by `n`. res = {} for n in ns: res[n] = [axon(a0, n, sigma_l, sigma_b)[-1] for j in js] # Plot plt.figure(figsize=(4,10)) hieght = 100 plt.subplot(311) plt.hist(res[2], color="k", label="n = 1\nred = a0", bins=100, range=(-0.07, -0.04)) plt.vlines(a0, 0, 30) plt.xlim(-0.07, -0.04) plt.vlines(a0, 0, hieght, color='r') plt.ylim(0, hieght) plt.legend() plt.subplot(312) plt.hist(res[10], color="k", label="n = 10", bins=100, range=(-0.07, -0.04)) plt.vlines(a0, 0, 30) plt.xlim(-0.07, -0.04) plt.vlines(a0, 0, hieght, color='r') plt.ylim(0, hieght) plt.ylabel("Count") plt.legend() plt.subplot(313) plt.hist(res[100], color="k", label="n = 100", bins=100, range=(-0.07, -0.04)) plt.vlines(a0, 0, hieght, color='r') plt.xlim(-0.07, -0.04) plt.ylim(0, hieght) plt.xlabel("Membrane voltage") plt.legend() def f1(x,t0): return -x + g*dot(J,tanh(x)) N = 100 J = normal(0,sqrt(1/N),(N,N)) x0 = uniform(-0.8,0.3,N) t = linspace(0,50,1000) plt.figure(figsize=(10,5)) for s,g in enumerate(linspace(0.5,1.5,3)): plt.subplot(1,3,s+1) x = odeint(f1,x0,t) plt.plot(t,x[:,choice(N,10)]) plt.title('g = '+str(g),fontweight='bold') plt.show() x.shape target = lambda t0: cos(2 * pi * t0 / 50) # target pattern def f3(t0, x): return -x + g * dot(J, tanh_x) + dot(w, tanh_x) * u dt = 1 # time step tmax = 800 # simulation length tstop = 300 N = 300 J = normal(0, sqrt(1 / N), (N, N)) x0 = uniform(-0.5, 0.5, N) t = linspace(0, 50, 500) g = 1.5 u = uniform(-1, 1, N) w = uniform(-1 / sqrt(N), 1 / sqrt(N), N) # initial weights P = eye(N) # Running estimate of the inverse correlation matrix lr = 1.0 # learning rate # simulation data: state, output, time, weight updates x, z, t, wu = [x0], [], [0], [0] # response stats x_stats = [] # Set up ode solver solver = ode(f3) solver.set_initial_value(x0) # Integrate ode, update weights, repeat while t[-1] < tmax: tanh_x = tanh(x[-1]) # cache z.append(dot(w, tanh_x)) error = target(t[-1]) - z[-1] q = dot(P, tanh_x) c = lr / (1 + dot(q, tanh_x)) P = P - c * outer(q, q) w = w + c * error * q # Stop leaning here if t[-1] > tstop: lr = 0 wu.append(np.sum(np.abs(c * error * q))) solver.integrate(solver.t + dt) res = solver.y x.append(res) x_stats.append([np.min(res), np.max(res), np.mean(res), np.var(res)]) t.append(solver.t) # last update for readout neuron z.append(dot(w, tanh_x)) x = np.array(x) t = np.array(t) plt.figure(figsize=(10, 5)) plt.subplot(2, 1, 1) plt.plot(t, target(t), '-r', lw=2) plt.plot(t, z, '-b') plt.legend(('target', 'output')) plt.ylim([-1.1, 3]) plt.xticks([]) plt.subplot(2, 1, 2) plt.plot(t, wu, '-k') plt.yscale('log') plt.ylabel('$|\Delta w|$', fontsize=20) plt.xlabel('time', fontweight='bold', fontsize=16) plt.show() x_stats = np.array(x_stats).T # X(t) Reponse Stats plt.figure(figsize=(16, 4)) plt.subplot(1,4,1) plt.hist(x_stats[0], bins=20, alpha=.5) plt.title(r'$x(t)$ Min') plt.subplot(1,4,2) plt.hist(x_stats[1], bins=20, alpha=.5) plt.title(r'$x(t)$ Max') plt.subplot(1,4,3) plt.hist(x_stats[2], bins=20, alpha=.5) plt.title(r'$x(t)$ Mean'); plt.subplot(1,4,4) plt.hist(x_stats[3], bins=20, alpha=.5) plt.title(r'$x(t)$ Variance'); print ("MEAN of Statistics:") print ("Min [ x(t) ] = %.4f " % np.mean(x_stats[0])) print ("Max [ x(t) ] = %.4f " % np.mean(x_stats[1])) print ("Mean [ x(t) ] = %.4f " % np.mean(x_stats[2])) print ("Var [ x(t) ] = %.4f " % np.mean(x_stats[3])) def decode(x, rho): xd = zeros_like(x) xd[x > rho] = 1 xd[x < -rho] = -1 return xd def f1(x,t0): return -x + g*dot(J,tanh(x)) N = 500 J = normal(0,sqrt(1/N),(N,N)) x0 = uniform(-0.5,0.5,N) t = linspace(0,50,500) rho = uniform(0,0.1,N) # Rand thresholds! plt.figure(figsize=(10,5)) for s,g in enumerate(linspace(0.5,1.5,3)): plt.subplot(1,3,s+1) x = odeint(f1,x0,t) xd = decode(x, rho) plt.plot(t,xd[:,choice(N,10)]) plt.title('g = '+str(g),fontweight='bold') plt.ylim(-2,2) plt.show() target = lambda t0: cos(2 * pi * t0 / 50) # target pattern def f3(t0, x): return -x + g * dot(J, tanh_x) + dot(w, tanh_x) * u dt = 1 # time step tmax = 800 # simulation length tstop = 500 N = 300 J = normal(0, sqrt(1 / N), (N, N)) x0 = uniform(-0.5, 0.5, N) t = linspace(0, 50, 500) rho = 0.1 # Set and rand vec rho = uniform(0, 0.5, N) g = 1.5 u = uniform(-1, 1, N) w = uniform(-1 / sqrt(N), 1 / sqrt(N), N) # initial weights P = eye(N) # Running estimate of the inverse correlation matrix lr = .4 # learning rate rho = repeat(.5, N) # simulation data: state, # output, time, weight updates x, z, t, wu = [x0], [], [0], [0] # Set up ode solver solver = ode(f3) solver.set_initial_value(x0) # Integrate ode, update weights, repeat while t[-1] < tmax: tanh_x = tanh(x[-1]) tanh_xd = decode(tanh_x, rho) # BINARY CODE INTRODUCED HERE! z.append(dot(w, tanh_xd)) error = target(t[-1]) - z[-1] q = dot(P, tanh_xd) c = lr / (1 + dot(q, tanh_xd)) P = P - c * outer(q, q) w = w + c * error * q # Stop training time if t[-1] > tstop: lr = 0 wu.append(np.sum(np.abs(c * error * q))) solver.integrate(solver.t + dt) x.append(solver.y) t.append(solver.t) # last update for readout neuron z.append(dot(w, tanh_x)) # plot x = np.array(x) t = np.array(t) plt.figure(figsize=(10, 5)) plt.subplot(2, 1, 1) plt.plot(t, target(t), '-r', lw=2) plt.plot(t, z, '-b') plt.legend(('target', 'output')) plt.ylim([-1.1, 3]) plt.xticks([]) plt.subplot(2, 1, 2) plt.plot(t, wu, '-k') plt.yscale('log') plt.ylabel('$|\Delta w|$', fontsize=20) plt.xlabel('time', fontweight='bold', fontsize=16) plt.show() repeat? <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Install and import TFX Step2: Please ignore the incompatibility error and warnings. Make sure to re-run the cell. Step3: Import the MLMD library. Step4: Download the dataset Step5: Create an InteractiveContext Step6: Construct the TFX Pipeline Step7: Instantiate and run the StatisticsGen Component Step8: Instantiate and run the SchemaGen Component Step9: Instantiate and run the Trainer Component Step10: Run the Trainer component. Step11: Evaluate and push the model Step12: Running the TFX pipeline populates the MLMD Database. In the next section, you use the MLMD API to query this database for metadata information. Step13: Create some helper functions to view the data from the MD store. Step14: First, query the MD store for a list of all its stored ArtifactTypes. Step15: Next, query all PushedModel artifacts. Step16: Query the MD store for the latest pushed model. This notebook has only one pushed model. Step17: One of the first steps in debugging a pushed model is to look at which trained model is pushed and to see which training data is used to train that model. Step18: Query the parent artifacts for the pushed model. Step19: Query the properties for the model. Step20: Query the upstream artifacts for the model. Step21: Get the training data the model trained with. Step22: Now that you have the training data that the model trained with, query the database again to find the training step (execution). Query the MD store for a list of the registered execution types. Step23: The training step is the ExecutionType named tfx.components.trainer.component.Trainer. Traverse the MD store to get the trainer run that corresponds to the pushed model.
<ASSISTANT_TASK:> Python Code: !pip install --upgrade pip !pip install -q -U tfx import os import tempfile import urllib import pandas as pd import tensorflow_model_analysis as tfma from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext from tfx import v1 as tfx print('TFX version: {}'.format(tfx.__version__)) import ml_metadata as mlmd print('MLMD version: {}'.format(mlmd.__version__)) from ml_metadata.proto import metadata_store_pb2 DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv' _data_root = tempfile.mkdtemp(prefix='tfx-data') # Join various path components _data_filepath = # TODO: Your code goes here urllib.request.urlretrieve(DATA_PATH, _data_filepath) interactive_context = # TODO: Your code goes here example_gen = # TODO: Your code goes here interactive_context.run(example_gen) statistics_gen = # TODO: Your code goes here interactive_context.run(statistics_gen) infer_schema = # TODO: Your code goes here interactive_context.run(infer_schema) # Define the module file for the Trainer component trainer_module_file = 'penguin_trainer.py' %%writefile {trainer_module_file} # Define the training algorithm for the Trainer module file import os from typing import List, Text import tensorflow as tf from tensorflow import keras from tfx import v1 as tfx from tfx_bsl.public import tfxio from tensorflow_metadata.proto.v0 import schema_pb2 # Features used for classification - culmen length and depth, flipper length, # body mass, and species. _LABEL_KEY = 'species' _FEATURE_KEYS = [ 'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g' ] def _input_fn(file_pattern: List[Text], data_accessor: tfx.components.DataAccessor, schema: schema_pb2.Schema, batch_size: int) -> tf.data.Dataset: return data_accessor.tf_dataset_factory( file_pattern, tfxio.TensorFlowDatasetOptions( batch_size=batch_size, label_key=_LABEL_KEY), schema).repeat() def _build_keras_model(): inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS] d = keras.layers.concatenate(inputs) d = keras.layers.Dense(8, activation='relu')(d) d = keras.layers.Dense(8, activation='relu')(d) outputs = keras.layers.Dense(3)(d) model = keras.Model(inputs=inputs, outputs=outputs) model.compile( optimizer=keras.optimizers.Adam(1e-2), loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy()]) return model def run_fn(fn_args: tfx.components.FnArgs): schema = schema_pb2.Schema() tfx.utils.parse_pbtxt_file(fn_args.schema_path, schema) train_dataset = _input_fn( fn_args.train_files, fn_args.data_accessor, schema, batch_size=10) eval_dataset = _input_fn( fn_args.eval_files, fn_args.data_accessor, schema, batch_size=10) model = _build_keras_model() model.fit( train_dataset, epochs=int(fn_args.train_steps / 20), steps_per_epoch=20, validation_data=eval_dataset, validation_steps=fn_args.eval_steps) model.save(fn_args.serving_model_dir, save_format='tf') trainer = tfx.components.Trainer( module_file=os.path.abspath(trainer_module_file), examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], train_args=tfx.proto.TrainArgs(num_steps=100), eval_args=tfx.proto.EvalArgs(num_steps=50)) interactive_context.run(trainer) _serving_model_dir = os.path.join(tempfile.mkdtemp(), 'serving_model/penguins_classification') eval_config = tfma.EvalConfig( model_specs=[ tfma.ModelSpec(label_key='species', signature_name='serving_default') ], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}))) ]) ], slicing_specs=[tfma.SlicingSpec()]) evaluator = tfx.components.Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], schema=infer_schema.outputs['schema'], eval_config=eval_config) interactive_context.run(evaluator) pusher = tfx.components.Pusher( model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=tfx.proto.PushDestination( filesystem=tfx.proto.PushDestination.Filesystem( base_directory=_serving_model_dir))) interactive_context.run(pusher) connection_config = interactive_context.metadata_connection_config store = mlmd.MetadataStore(connection_config) # All TFX artifacts are stored in the base directory base_dir = connection_config.sqlite.filename_uri.split('metadata.sqlite')[0] def display_types(types): # Helper function to render dataframes for the artifact and execution types table = {'id': [], 'name': []} for a_type in types: table['id'].append(a_type.id) table['name'].append(a_type.name) return pd.DataFrame(data=table) def display_artifacts(store, artifacts): # Helper function to render dataframes for the input artifacts table = {'artifact id': [], 'type': [], 'uri': []} for a in artifacts: table['artifact id'].append(a.id) artifact_type = store.get_artifact_types_by_id([a.type_id])[0] table['type'].append(artifact_type.name) table['uri'].append(a.uri.replace(base_dir, './')) return pd.DataFrame(data=table) def display_properties(store, node): # Helper function to render dataframes for artifact and execution properties table = {'property': [], 'value': []} for k, v in node.properties.items(): table['property'].append(k) table['value'].append( v.string_value if v.HasField('string_value') else v.int_value) for k, v in node.custom_properties.items(): table['property'].append(k) table['value'].append( v.string_value if v.HasField('string_value') else v.int_value) return pd.DataFrame(data=table) display_types(store.get_artifact_types()) pushed_models = store.get_artifacts_by_type("PushedModel") display_artifacts(store, pushed_models) pushed_model = pushed_models[-1] display_properties(store, pushed_model) def get_one_hop_parent_artifacts(store, artifacts): # Get a list of artifacts within a 1-hop of the artifacts of interest artifact_ids = [artifact.id for artifact in artifacts] executions_ids = set( event.execution_id for event in store.get_events_by_artifact_ids(artifact_ids) if event.type == mlmd.proto.Event.OUTPUT) artifacts_ids = set( event.artifact_id for event in store.get_events_by_execution_ids(executions_ids) if event.type == mlmd.proto.Event.INPUT) return [artifact for artifact in store.get_artifacts_by_id(artifacts_ids)] # TODO parent_artifacts = get_one_hop_parent_artifacts(store, [pushed_model]) display_artifacts(store, parent_artifacts) exported_model = parent_artifacts[0] display_properties(store, exported_model) model_parents = get_one_hop_parent_artifacts(store, [exported_model]) display_artifacts(store, model_parents) used_data = model_parents[0] display_properties(store, used_data) display_types(store.get_execution_types()) def find_producer_execution(store, artifact): executions_ids = set( event.execution_id for event in store.get_events_by_artifact_ids([artifact.id]) if event.type == mlmd.proto.Event.OUTPUT) return store.get_executions_by_id(executions_ids)[0] trainer = # TODO: Your code goes here display_properties(store, trainer) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Upper air data can be obtained using the siphon package, but for this example we will use Step2: We will pull the data out of the example dataset into individual variables and Step3: Create a new figure. The dimensions here give a good aspect ratio.
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import pandas as pd import metpy.calc as mpcalc from metpy.cbook import get_test_data from metpy.plots import add_metpy_logo, SkewT from metpy.units import units col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False), skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names) # Drop any rows with all NaN values for T, Td, winds df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'), how='all' ).reset_index(drop=True) p = df['pressure'].values * units.hPa T = df['temperature'].values * units.degC Td = df['dewpoint'].values * units.degC wind_speed = df['speed'].values * units.knots wind_dir = df['direction'].values * units.degrees u, v = mpcalc.wind_components(wind_speed, wind_dir) fig = plt.figure(figsize=(9, 9)) add_metpy_logo(fig, 115, 100) skew = SkewT(fig, rotation=45) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot. skew.plot(p, T, 'r') skew.plot(p, Td, 'g') skew.plot_barbs(p, u, v) skew.ax.set_ylim(1000, 100) skew.ax.set_xlim(-40, 60) # Calculate LCL height and plot as black dot. Because `p`'s first value is # ~1000 mb and its last value is ~250 mb, the `0` index is selected for # `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted, # i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index # should be selected. lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0]) skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black') # Calculate full parcel profile and add to plot as black line prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') skew.plot(p, prof, 'k', linewidth=2) # Shade areas of CAPE and CIN skew.shade_cin(p, T, prof, Td) skew.shade_cape(p, T, prof) # An example of a slanted line at constant T -- in this case the 0 # isotherm skew.ax.axvline(0, color='c', linestyle='--', linewidth=2) # Add the relevant special lines skew.plot_dry_adiabats() skew.plot_moist_adiabats() skew.plot_mixing_lines() # Show the plot plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Make performance scorers Step2: Sequential Feature Selection with mlextend Step3: The next cell will take many hours to run, skip it Step4: Restart from here Step5: It looks like the score stabilizes after about 6 features, reaches a max at 16, then begins to taper off after about 70 features. We will save the top 45 and the top 75.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.metrics import f1_score, accuracy_score, make_scorer filename = 'engineered_features.csv' training_data = pd.read_csv(filename) training_data.describe() training_data['Well Name'] = training_data['Well Name'].astype('category') training_data['Formation'] = training_data['Formation'].astype('category') training_data['Well Name'].unique() y = training_data['Facies'].values print y[25:40] print np.shape(y) X = training_data.drop(['Formation', 'Well Name','Facies'], axis=1) print np.shape(X) X.describe(percentiles=[.05, .25, .50, .75, .95]) scaler = preprocessing.StandardScaler().fit(X) X = scaler.transform(X) Fscorer = make_scorer(f1_score, average = 'micro') from sklearn.ensemble import RandomForestClassifier from mlxtend.feature_selection import SequentialFeatureSelector as SFS clf = RandomForestClassifier(random_state=49) sfs = SFS(clf, k_features=100, forward=True, floating=False, scoring=Fscorer, cv = 8, n_jobs = -1) sfs = sfs.fit(X, y) np.save('sfs_RF_metric_dict.npy', sfs.get_metric_dict()) # load previously saved dictionary read_dictionary = np.load('sfs_RF_metric_dict.npy').item() # plot results from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs # run this twice fig = plt.figure() ax = plot_sfs(read_dictionary, kind='std_err') fig_size = plt.rcParams["figure.figsize"] fig_size[0] = 22 fig_size[1] = 18 plt.title('Sequential Forward Selection (w. StdDev)') plt.grid() plt.xticks( rotation='vertical') locs, labels = plt.xticks() plt.xticks( locs, labels) plt.show() # save results to dataframe selected_summary = pd.DataFrame.from_dict(read_dictionary).T selected_summary['index'] = selected_summary.index selected_summary.sort_values(by='avg_score', ascending=0) # save dataframe selected_summary.to_csv('SFS_RF_selected_features_summary.csv', sep=',', header=True, index = False) # re load saved dataframe and sort by score filename = 'SFS_RF_selected_features_summary.csv' selected_summary = pd.read_csv(filename) selected_summary = selected_summary.set_index(['index']) selected_summary.sort_values(by='avg_score', ascending=0).head() # feature selection with highest score selected_summary.iloc[44]['feature_idx'] slct = np.array([257, 3, 4, 6, 7, 8, 10, 12, 16, 273, 146, 19, 26, 27, 284, 285, 30, 34, 163, 1, 42, 179, 155, 181, 184, 58, 315, 190, 320, 193, 194, 203, 290, 80, 210, 35, 84, 90, 97, 18, 241, 372, 119, 120, 126]) slct # isolate and save selected features filename = 'engineered_features_validation_set2.csv' training_data = pd.read_csv(filename) X = training_data.drop(['Formation', 'Well Name'], axis=1) Xs = X.iloc[:, slct] Xs = pd.concat([training_data[['Depth', 'Well Name', 'Formation']], Xs], axis = 1) print np.shape(Xs), list(Xs) Xs.to_csv('SFS_top45_selected_engineered_features_validation_set.csv', sep=',', index=False) # feature selection with highest score selected_summary.iloc[74]['feature_idx'] slct = np.array([257, 3, 4, 5, 6, 7, 8, 265, 10, 12, 13, 16, 273, 18, 19, 26, 27, 284, 285, 30, 34, 35, 1, 42, 304, 309, 313, 58, 315, 319, 320, 75, 80, 338, 84, 341, 89, 90, 92, 97, 101, 102, 110, 372, 119, 120, 122, 124, 126, 127, 138, 139, 146, 155, 163, 165, 167, 171, 177, 179, 180, 181, 184, 190, 193, 194, 198, 203, 290, 210, 211, 225, 241, 249, 253]) slct # isolate and save selected features filename = 'engineered_features_validation_set2.csv' training_data = pd.read_csv(filename) X = training_data.drop(['Formation', 'Well Name'], axis=1) Xs = X.iloc[:, slct] Xs = pd.concat([training_data[['Depth', 'Well Name', 'Formation']], Xs], axis = 1) print np.shape(Xs), list(Xs) Xs.to_csv('SFS_top75_selected_engineered_features_validation_set.csv', sep=',', index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Boston Housing Dataset Step2: Create Decision Tree Step3: Train Model Step4: Create Observation To Predict
<ASSISTANT_TASK:> Python Code: # Load libraries from sklearn.tree import DecisionTreeRegressor from sklearn import datasets # Load data with only two features boston = datasets.load_boston() X = boston.data[:,0:2] y = boston.target # Create decision tree classifer object regr = DecisionTreeRegressor(random_state=0) # Train model model = regr.fit(X, y) # Make new observation observation = [[0.02, 16]] # Predict observation's value model.predict(observation) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Restart the kernel Step2: Before you begin Step3: Region Step4: Timestamp Step5: Authenticate your Google Cloud account Step6: Create a Cloud Storage bucket Step7: Only if your bucket doesn't already exist Step8: Finally, validate access to your Cloud Storage bucket by examining its contents Step9: Set up variables Step10: Initialize Vertex AI SDK for Python Step11: Set hardware accelerators Step12: Set pre-built containers Step13: Set machine type Step14: Get pretrained encoder bedding model from TensorFlow Hub Step15: Download the dataset Step16: Preprocess the dataset Step17: Compile the model Step18: Train the model Step19: Epoch 1/3 Step20: Save the model artifacts Step21: Upload the TensorFlow Hub model to a Vertex AI Model resource with standard TensorFlow container Step22: Upload the TensorFlow Hub model to a Vertex AI Model resource with optimized TensorFlow container Step23: Creating two public Endpoint resource Step24: Deploying the Model resources to a the Endpoint resources. Step25: Prepare test data for prediction Step26: Make the prediction Step27: Compare difference in precision Step28: Cleaning up
<ASSISTANT_TASK:> Python Code: import os # The Vertex AI Workbench Notebook product has specific requirements IS_WORKBENCH_NOTEBOOK = os.getenv("DL_ANACONDA_HOME") IS_USER_MANAGED_WORKBENCH_NOTEBOOK = os.path.exists( "/opt/deeplearning/metadata/env_version" ) # Vertex AI Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_WORKBENCH_NOTEBOOK: USER_FLAG = "--user" ! pip3 install --upgrade google-cloud-aiplatform $USER_FLAG -q ! pip3 install --upgrade google-cloud-pipeline-components $USER_FLAG -q ! pip3 install tensorflow tensorflow-text $USER_FLAG -q ! pip3 install tensorflow-hub $USER_FLAG -q ! pip3 install tf-models-official $USER_FLAG -q # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) PROJECT_ID = "[your-project-id]" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = ! gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID REGION = "[your-region]" # @param {type: "string"} if REGION == "[your-region]": REGION = "us-central1" from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. import os import sys # If on Vertex AI Workbench, then don't execute this code IS_COLAB = False if not os.path.exists("/opt/deeplearning/metadata/env_version") and not os.getenv( "DL_ANACONDA_HOME" ): if "google.colab" in sys.modules: IS_COLAB = True from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' BUCKET_NAME = "[your-bucket-name]" # @param {type:"string"} BUCKET_URI = f"gs://{BUCKET_NAME}" if BUCKET_URI == "" or BUCKET_URI is None or BUCKET_URI == "gs://[your-bucket-name]": BUCKET_URI = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ! gsutil mb -l $REGION $BUCKET_URI ! gsutil ls -al $BUCKET_URI import google.cloud.aiplatform as aip import tensorflow as tf import tensorflow_hub as hub import tensorflow_text from official.nlp import optimization # to create AdamW optimizer aip.init(project=PROJECT_ID, staging_bucket=BUCKET_URI) if os.getenv("IS_TESTING_DEPLOY_GPU"): DEPLOY_GPU, DEPLOY_NGPU = ( aip.gapic.AcceleratorType.NVIDIA_TESLA_K80, int(os.getenv("IS_TESTING_DEPLOY_GPU")), ) else: DEPLOY_GPU, DEPLOY_NGPU = (None, None) if os.getenv("IS_TESTING_TF"): TF = os.getenv("IS_TESTING_TF") else: TF = "2.5".replace(".", "-") if TF[0] == "2": if DEPLOY_GPU: DEPLOY_VERSION = "tf2-gpu.{}".format(TF) else: DEPLOY_VERSION = "tf2-cpu.{}".format(TF) else: if DEPLOY_GPU: DEPLOY_VERSION = "tf-gpu.{}".format(TF) else: DEPLOY_VERSION = "tf-cpu.{}".format(TF) DEPLOY_IMAGE = "{}-docker.pkg.dev/vertex-ai/prediction/{}:latest".format( REGION.split("-")[0], DEPLOY_VERSION ) print("Deployment:", DEPLOY_IMAGE, DEPLOY_GPU, DEPLOY_NGPU) if os.getenv("IS_TESTING_DEPLOY_MACHINE"): MACHINE_TYPE = os.getenv("IS_TESTING_DEPLOY_MACHINE") else: MACHINE_TYPE = "n1-standard" VCPU = "4" DEPLOY_COMPUTE = MACHINE_TYPE + "-" + VCPU print("Train machine type", DEPLOY_COMPUTE) inputs = tf.keras.layers.Input(shape=(), dtype=tf.string) preprocess = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3") encoder = hub.KerasLayer( "https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3", trainable=True ) classifier = tf.keras.layers.Dense( 1, activation="sigmoid", kernel_regularizer=tf.keras.regularizers.l2(0.001) ) x = preprocess(inputs) x = encoder(x) outputs = classifier(x["pooled_output"]) tfhub_model = tf.keras.Model(inputs, outputs) tfhub_model.summary() import shutil url = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" dataset = tf.keras.utils.get_file( "aclImdb_v1.tar.gz", url, untar=True, cache_dir=".", cache_subdir="" ) dataset_dir = os.path.join(os.path.dirname(dataset), "aclImdb") train_dir = os.path.join(dataset_dir, "train") # remove unused folders to make it easier to load the data remove_dir = os.path.join(train_dir, "unsup") shutil.rmtree(remove_dir) AUTOTUNE = tf.data.AUTOTUNE batch_size = 32 seed = 42 raw_train_ds = tf.keras.preprocessing.text_dataset_from_directory( "aclImdb/train", batch_size=batch_size, validation_split=0.2, subset="training", seed=seed, ) class_names = raw_train_ds.class_names train_ds = raw_train_ds.cache().prefetch(buffer_size=AUTOTUNE) val_ds = tf.keras.preprocessing.text_dataset_from_directory( "aclImdb/train", batch_size=batch_size, validation_split=0.2, subset="validation", seed=seed, ) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) test_ds = tf.keras.preprocessing.text_dataset_from_directory( "aclImdb/test", batch_size=batch_size ) test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE) epochs = 3 steps_per_epoch = tf.data.experimental.cardinality(train_ds).numpy() num_train_steps = steps_per_epoch * epochs num_warmup_steps = int(0.1 * num_train_steps) init_lr = 3e-5 optimizer = optimization.create_optimizer( init_lr=init_lr, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, optimizer_type="adamw", ) loss = tf.keras.losses.BinaryCrossentropy() metrics = tf.metrics.BinaryAccuracy() tfhub_model.compile(optimizer=optimizer, loss=loss, metrics=metrics) history = tfhub_model.fit(x=train_ds, validation_data=val_ds, epochs=epochs) loss, accuracy = tfhub_model.evaluate(test_ds) print(f"Loss: {loss}") print(f"Accuracy: {accuracy}") MODEL_DIR = BUCKET_URI + "/model" tfhub_model.save(MODEL_DIR) DEPLOY_IMAGE = "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-7:latest" model_standard = aip.Model.upload( display_name="standard_" + TIMESTAMP, artifact_uri=MODEL_DIR, serving_container_image_uri=DEPLOY_IMAGE, ) print(model_standard) DEPLOY_IMAGE = "us-docker.pkg.dev/vertex-ai-restricted/prediction/tensorflow-enterprise-inference-engine-alpha:latest" model_tfe_opt = aip.Model.upload( display_name="tfe_opt_" + TIMESTAMP, artifact_uri=MODEL_DIR, serving_container_image_uri=DEPLOY_IMAGE, serving_container_args=[ "--allow_precompilation=true", "--allow_precision_affecting_optimizations=true", ], ) print(model_tfe_opt) endpoint_standard = aip.Endpoint.create( display_name="standard_" + TIMESTAMP, project=PROJECT_ID, location=REGION, labels={"your_key": "your_value"}, ) print(endpoint_standard) endpoint_tfe_opt = aip.Endpoint.create( display_name="tfe_opt_" + TIMESTAMP, project=PROJECT_ID, location=REGION, labels={"your_key": "your_value"}, ) print(endpoint_tfe_opt) response = endpoint_standard.deploy( model=model_standard, deployed_model_display_name="standard_" + TIMESTAMP, machine_type=DEPLOY_COMPUTE, ) print(endpoint_standard) response = endpoint_tfe_opt.deploy( model=model_tfe_opt, deployed_model_display_name="tfe_opt_" + TIMESTAMP, machine_type=DEPLOY_COMPUTE, ) print(endpoint_tfe_opt) INSTANCES = ["This was the best movie ever", "Movie was boring"] serving_input = tfhub_model.input.name # The format of each instance should conform to the deployed model's prediction input schema. instances = [{serving_input: INSTANCES[0]}, {serving_input: INSTANCES[1]}] prediction_standard = endpoint_standard.predict(instances=instances) print(prediction_standard) # The format of each instance should conform to the deployed model's prediction input schema. instances = [{serving_input: INSTANCES[0]}, {serving_input: INSTANCES[1]}] prediction_tfe_opt = endpoint_tfe_opt.predict(instances=instances) print(prediction_tfe_opt) import numpy as np abs( np.asarray(prediction_standard.predictions) - np.asarray(prediction_tfe_opt.predictions) ) delete_bucket = False delete_model = True delete_endpoint = True if delete_endpoint: try: endpoint_standard.undeploy_all() endpoint_standard.delete() endpoint_tfe_opt.undeploy_all() endpoint_tfe_opt.delete() except Exception as e: print(e) if delete_model: try: tfhub_model.delete() except Exception as e: print(e) if delete_bucket or os.getenv("IS_TESTING"): ! gsutil rm -rf {BUCKET_URI} <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: IPython Console Step2: IPython Qt Console Step3: IPython.parallel
<ASSISTANT_TASK:> Python Code: from IPython.display import display, Image, HTML from talktools import website, nbviewer Image('images/ipython_console.png') Image('images/ipython_qtconsole.png') Image("images/ParallelKernels.png", width="80%") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 10 Palavras Mais Frequentes Step2: n-Grams Step3: TF-IDF com CountVectorizer
<ASSISTANT_TASK:> Python Code: # Bibliotecas from pyspark.ml import Pipeline from pyspark.ml.feature import Tokenizer, StopWordsRemover, CountVectorizer, NGram livro = sc.textFile("Machado-de-Assis-Memorias-Postumas.txt") text = "" for line in livro.collect(): text += " " + line data = spark.createDataFrame([(0, text)], ["id", "text"]) tokenizer = Tokenizer(inputCol="text", outputCol="words") remover = StopWordsRemover(inputCol="words", outputCol="filtered") count = CountVectorizer(inputCol="filtered", outputCol="features", vocabSize=10) pipeline = Pipeline(stages=[tokenizer, remover, count]) model = pipeline.fit(data).transform(data) model.select("features").show(truncate=False) tokenizer = Tokenizer(inputCol="text", outputCol="words") remover = StopWordsRemover(inputCol="words", outputCol="filtered") ngram = NGram(inputCol="filtered", outputCol="ngrams", n=2) count = CountVectorizer(inputCol="ngrams", outputCol="features", vocabSize=10) pipeline = Pipeline(stages=[tokenizer, remover, ngram, count]) model = pipeline.fit(data).transform(data) model.select("features").show(truncate=False) ngram = NGram(inputCol="filtered", outputCol="ngrams", n=3) pipeline = Pipeline(stages=[tokenizer, remover, ngram, count]) model = pipeline.fit(data).transform(data) model.select("features").show(truncate=False) countVect = CountVectorizer(inputCol="rawFeatures", outputCol="features") countVectModel = countVect.fit(featurizedData) rescaledData = countVectModel.transform(featurizedData) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Run as a Python module Step2: Training should finish in just a few seconds because it ran outside of the Jupyter's runtime, as an independent process of the node's operating system. You can explore the training metrics using TensorBoard. Step3: Next, let's use Cloud ML Engine so we can train on GPU Step4: Monitoring training with TensorBoard Step5: Deploying and predicting with model Step6: The previous step of deploying the model can take a few minutes. If it is successful, you should see an output similar to this one Step7: To predict with the model, save one of the test images as a JavaScript Object Notation (JSON) file. Also, take a look at it as a graphic and notice the expected class value in the title. Step8: Here's how the same image looks when it saved in the test.json file for use with the prediction API. Step9: Send the file to the prediction service and check whether the model you trained returns the correct prediction.
<ASSISTANT_TASK:> Python Code: import os PROJECT = 'my-project-id' # REPLACE WITH YOUR PROJECT ID BUCKET = 'my-bucket-name' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 MODEL_TYPE='dnn' # 'dnn' or 'cnn' # do not change these os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['MODEL_TYPE'] = MODEL_TYPE os.environ['TFVERSION'] = '1.8' # Tensorflow version %bash gcloud config set project $PROJECT gcloud config set compute/region $REGION %bash rm -rf fashionmodel.tar.gz fashion_trained gcloud ml-engine local train \ --module-name=trainer.task \ --package-path=${PWD}/fashionmodel/trainer \ -- \ --output_dir=${PWD}/fashion_trained \ --train_steps=1000 \ --learning_rate=0.01 \ --train_batch_size=512 \ --model=$MODEL_TYPE from google.datalab.ml import TensorBoard TensorBoard().start('fashion_trained'.format(BUCKET, MODEL_TYPE)) for pid in TensorBoard.list()['pid']: TensorBoard().stop(pid) print 'Stopped TensorBoard with pid {}'.format(pid) %bash OUTDIR=gs://${BUCKET}/fashion/trained_${MODEL_TYPE} JOBNAME=fashion_${MODEL_TYPE}_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR gcloud ml-engine jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.task \ --package-path=${PWD}/fashionmodel/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=BASIC_GPU \ --runtime-version=$TFVERSION \ -- \ --output_dir=$OUTDIR \ --train_steps=1000 --learning_rate=0.01 --train_batch_size=512 \ --model=$MODEL_TYPE from google.datalab.ml import TensorBoard TensorBoard().start('gs://{}/fashion/trained_{}'.format(BUCKET, MODEL_TYPE)) for pid in TensorBoard.list()['pid']: TensorBoard().stop(pid) print 'Stopped TensorBoard with pid {}'.format(pid) %bash MODEL_NAME="fashion" MODEL_VERSION=${MODEL_TYPE} MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/fashion/trained_${MODEL_TYPE}/export/exporter | tail -1) echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #gcloud ml-engine versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ml-engine models delete ${MODEL_NAME} gcloud ml-engine models create ${MODEL_NAME} --regions $REGION gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version=$TFVERSION import tensorflow as tf (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.fashion_mnist.load_data() LABELS = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] HEIGHT=28 WIDTH=28 IMGNO=12 #CHANGE THIS to get different images #Convert raw image data to a test.json file and persist it to disk import json, codecs jsondata = {'image': test_images[IMGNO].reshape(HEIGHT, WIDTH).tolist()} json.dump(jsondata, codecs.open('test.json', 'w', encoding='utf-8')) #Take a look at a sample image and the correct label from the test dataset import matplotlib.pyplot as plt plt.imshow(test_images[IMGNO].reshape(HEIGHT, WIDTH)) title = plt.title('{} / Class #{}'.format(LABELS[test_labels[IMGNO]], test_labels[IMGNO])) %bash cat test.json %bash gcloud ml-engine predict \ --model=fashion \ --version=${MODEL_TYPE} \ --json-instances=./test.json <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In SciPy, the definition of the negative binomial distribution differs a little from the one in our introduction. They define $Y$ = Number of failures until k successes and then $y$ starts at 0. In the following plot, we have the probability of observing $y$ failures before we see $k=3$ successes. Step2: For example, when $p=0.5$, the probability of seeing $y=0$ failures before 3 successes (or in other words, the probability of having 3 successes out of 3 trials) is 0.125, and the probability of seeing $y=3$ failures before 3 successes is 0.156. Step3: Finally, if one wants to show this probability mass function as if we are following the first definition of negative binomial distribution we introduced, we just need to shift the whole thing to the right by adding $k$ to the $y$ values. Step4: Negative binomial in GLM Step5: We assign categories to the values 1, 2, and 3 of our "prog" variable. Step6: The Academic program is the most popular program (167/314) and General is the least popular one (40/314) Step7: Let's explore the distributions of math score and days of absence for each of the three programs listed above. The vertical lines indicate the mean values. Step8: The first impression we have is that the distribution of math scores is not equal for any of the programs. It looks right-skewed for students under the Academic program, left-skewed for students under the Vocational program, and roughly uniform for students in the General program (although there's a drop in the highest values). Clearly those in the Vocational program has the highest mean for the math score. Step9: Model 2 Step10: Explore models Step11: The information in the two tables above can be visualized in a more concise manner using a forest plot. ArviZ provides us with plot_forest(). There we simply pass a list containing the InferenceData objects of the models we want to compare. Step12: One of the first things one can note when seeing this plot is the similarity between the marginal posteriors. Maybe one can conclude that the variability of the marginal posterior of scale(math) is slightly lower in the model that considers the interaction, but the difference is not significant. Step13: Plot predicted mean response Step14: As we can see in this plot, the interval for the mean response for the Vocational program does not overlap with the interval for the other two groups, representing the group of students who miss fewer classes. On the right panel we can also see that including interaction terms does not change the slopes significantly because the posterior distributions of these coefficients have a substantial overlap with 0.
<ASSISTANT_TASK:> Python Code: import arviz as az import bambi as bmb import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.stats import nbinom az.style.use("arviz-darkgrid") import warnings warnings.simplefilter(action='ignore', category=FutureWarning) y = np.arange(0, 30) k = 3 p1 = 0.5 p2 = 0.3 fig, ax = plt.subplots(1, 2, figsize=(12, 4), sharey=True) ax[0].bar(y, nbinom.pmf(y, k, p1)) ax[0].set_xticks(np.linspace(0, 30, num=11)) ax[0].set_title(f"k = {k}, p = {p1}") ax[1].bar(y, nbinom.pmf(y, k, p2)) ax[1].set_xticks(np.linspace(0, 30, num=11)) ax[1].set_title(f"k = {k}, p = {p2}") fig.suptitle("Y = Number of failures until k successes", fontsize=16); print(nbinom.pmf(y, k, p1)[0]) print(nbinom.pmf(y, k, p1)[3]) fig, ax = plt.subplots(1, 2, figsize=(12, 4), sharey=True) ax[0].bar(y + k, nbinom.pmf(y, k, p1)) ax[0].set_xticks(np.linspace(3, 30, num=10)) ax[0].set_title(f"k = {k}, p = {p1}") ax[1].bar(y + k, nbinom.pmf(y, k, p2)) ax[1].set_xticks(np.linspace(3, 30, num=10)) ax[1].set_title(f"k = {k}, p = {p2}") fig.suptitle("Y = Number of trials until k successes", fontsize=16); data = pd.read_stata("https://stats.idre.ucla.edu/stat/stata/dae/nb_data.dta") data.head() data["prog"] = data["prog"].map({1: "General", 2: "Academic", 3: "Vocational"}) data.head() data["prog"].value_counts() fig, ax = plt.subplots(3, 2, figsize=(8, 6), sharex="col") programs = list(data["prog"].unique()) programs.sort() for idx, program in enumerate(programs): # Histogram ax[idx, 0].hist(data[data["prog"] == program]["math"], edgecolor='black', alpha=0.9) ax[idx, 0].axvline(data[data["prog"] == program]["math"].mean(), color="C1") # Barplot days = data[data["prog"] == program]["daysabs"] days_mean = days.mean() days_counts = days.value_counts() values = list(days_counts.index) count = days_counts.values ax[idx, 1].bar(values, count, edgecolor='black', alpha=0.9) ax[idx, 1].axvline(days_mean, color="C1") # Titles ax[idx, 0].set_title(program) ax[idx, 1].set_title(program) plt.setp(ax[-1, 0], xlabel="Math score") plt.setp(ax[-1, 1], xlabel="Days of absence"); model_additive = bmb.Model("daysabs ~ 0 + prog + scale(math)", data, family="negativebinomial") idata_additive = model_additive.fit() model_interaction = bmb.Model("daysabs ~ 0 + prog + scale(math) + prog:scale(math)", data, family="negativebinomial") idata_interaction = model_interaction.fit() az.summary(idata_additive) az.summary(idata_interaction) az.plot_forest( [idata_additive, idata_interaction], model_names=["Additive", "Interaction"], var_names=["prog", "scale(math)"], combined=True, figsize=(8, 4) ); az.plot_forest(idata_interaction, var_names=["prog:scale(math)"], combined=True, figsize=(8, 4)) plt.axvline(0); math_score = np.arange(1, 100) # This function takes a model and an InferenceData object. # It returns of length 3 with predictions for each type of program. def predict(model, idata): predictions = [] for program in programs: new_data = pd.DataFrame({"math": math_score, "prog": [program] * len(math_score)}) new_idata = model.predict( idata, data=new_data, inplace=False ) prediction = new_idata.posterior.stack(sample=["chain", "draw"])["daysabs_mean"].values predictions.append(prediction) return predictions prediction_additive = predict(model_additive, idata_additive) prediction_interaction = predict(model_interaction, idata_interaction) mu_additive = [prediction.mean(1) for prediction in prediction_additive] mu_interaction = [prediction.mean(1) for prediction in prediction_interaction] fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize = (10, 4)) for idx, program in enumerate(programs): ax[0].plot(math_score, mu_additive[idx], label=f"{program}", color=f"C{idx}", lw=2) az.plot_hdi(math_score, prediction_additive[idx].T, color=f"C{idx}", ax=ax[0]) ax[1].plot(math_score, mu_interaction[idx], label=f"{program}", color=f"C{idx}", lw=2) az.plot_hdi(math_score, prediction_interaction[idx].T, color=f"C{idx}", ax=ax[1]) ax[0].set_title("Additive"); ax[1].set_title("Interaction"); ax[0].set_xlabel("Math score") ax[1].set_xlabel("Math score") ax[0].set_ylim(0, 25) ax[0].legend(loc="upper right"); %load_ext watermark %watermark -n -u -v -iv -w <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1) Data Source and Data Usage Step2: From this data we calculated two key metrics which will be useful in determining which of these three artist’s markets was most robust in this period. The percent deviation between Price Realized and the cooresponding Low and High estimate is an efficient way to test for market strength. If an artist is consistently performing above the appraiser’s high estimate (i.e. a positive deviation value) that indicates that the artist is outperforming market expectations. On the other hand, a weak artist’s market is consistently underperformaning if it is reamining close to its low estimate value. The real utility of this metric is as a means to measuring 'strength' of market performance. Whichever of these artist have the highest positive deviation values will likely be the one to be most consistently performaning. Whichever artists is determenined to have the highest positive deviation value( if my hypothesis holds true) would be the "market leader" of this group of artists . If we can see any coorelation between upward trending deiviations and upward moving sale prices, we can more confidently believe that indiviudual artists' markets do affect one another. Step3: It is clear from this set of data that Lucian Freud is constistantly outperfomning his market while Frank Auerbach takes a close second while Francis Bacon lags behind. Now we will compare these finding to sale prices to see if there are any connections that can be drawn.
<ASSISTANT_TASK:> Python Code: import sys # system module import pandas as pd # data package import matplotlib as mpl # graphics package import matplotlib.pyplot as plt # pyplot module import datetime as dt # date and time module import numpy as np import pandas as pd import seaborn as sns import sys from scipy.stats import linregress %matplotlib inline #Data for Francis Bacon Art Prices path_fb = '/Users/Sohil/Desktop/Data_Bootcamp_Final/FrancisBacon.csv' fb = pd.read_csv(path_fb, thousands=',') fb = fb.rename(columns={'a' : 'Year', 'b' : 'Low_Estimate', 'c' : 'High_Estimate', 'd' : 'Price'}) #Calculating key metric of Sale Price Deviation % fb['Percent_Deviation_from_Low_Estimate'] = ((fb['Price'] - fb['Low_Estimate']) / (fb['Low_Estimate'])) * 100 fb['Percent_Deviation_from_High_Estimate'] = ((fb['Price'] - fb['High_Estimate']) / (fb['High_Estimate']))* 100 #Data for Frank Auerbach Sale Prices path_fa = '/Users/Sohil/Desktop/Data_Bootcamp_Final/FrankAuerbach.csv' fa = pd.read_csv(path_fa, thousands=',') fa = fa.rename(columns={'a' : 'Year', 'b' : 'Low_Estimate', 'c' : 'High_Estimate', 'd' : 'Price'}) #Calculating key metric of Sale Price Deviation % fa['Percent_Deviation_from_Low_Estimate'] = ((fa['Price'] - fa['Low_Estimate']) / (fa['Low_Estimate'])) * 100 fa['Percent_Deviation_from_High_Estimate'] = ((fa['Price'] - fa['High_Estimate']) / fa['High_Estimate']) * 100 #Data for Lucian Freud Sale Prices path_lf = '/Users/Sohil/Desktop/Data_Bootcamp_Final/LucianFreud.csv' lf = pd.read_csv(path_lf, thousands=',') lf = lf.rename(columns={'a' : 'Year', 'b' : 'Low_Estimate', 'c' : 'High_Estimate', 'd' : 'Price'}) #Calculating key metric of Sale Price Deviation % lf['Percent_Deviation_from_Low_Estimate'] = ((lf['Price'] - lf['Low_Estimate']) / (lf['Low_Estimate'])) * 100 lf['Percent_Deviation_from_High_Estimate'] = ((lf['Price'] - lf['High_Estimate']) / (lf['High_Estimate'])) * 100 #Metric test of market strength of each artist fb_low_dev_mean = fb['Percent_Deviation_from_Low_Estimate'].mean() fb_high_dev_mean = fb['Percent_Deviation_from_High_Estimate'].mean() #Mean of deviation percentage for Francis Bacon fa_low_dev_mean = fa['Percent_Deviation_from_Low_Estimate'].mean() fa_high_dev_mean = fa['Percent_Deviation_from_High_Estimate'].mean() #Mean of deviation percentages for Frank Auerbach lf_low_dev_mean = lf['Percent_Deviation_from_Low_Estimate'].mean() lf_high_dev_mean = lf['Percent_Deviation_from_High_Estimate'].mean() #Mean of deviation percentages for Lucian Freud #Bar graph depiciting mean deviation percentages per artist D = {'Franics Bacon':fb_low_dev_mean, 'Frank Auerbach': fa_low_dev_mean, 'Lucian Freud':lf_low_dev_mean} plt.barh(range(len(D)), D.values(), align='center', color=['#A9D0F5', '#58ACFA', '#045FB4'],) plt.yticks(range(len(D)), D.keys()) plt.axvline(x=0.3, color='#B43104') plt.ylabel('Artists', fontsize=10) plt.xlabel ('Mean Percent Deviation between Low Estimate and Price', fontsize= 10) plt.title("Comparison of Mean % Deviation between Price Realized and Low Estimate", fontsize=13) plt.show() #Bar graph depiciting mean deviation percentages per artist D = {'Franics Bacon':fb_high_dev_mean, 'Frank Auerbach': fa_high_dev_mean, 'Lucian Freud':lf_high_dev_mean} plt.barh(range(len(D)), D.values(), align='center', color=['#A9D0F5', '#58ACFA', '#045FB4'],) plt.axvline(x=0, color='#B43104') plt.yticks(range(len(D)), D.keys()) plt.ylabel('Artists', fontsize=10) plt.xlabel ('Mean Percent Deviation between Price and High Estimate', fontsize= 10) plt.title("Comparison of Mean % Deviation between Price Realized and High Estimate", fontsize=13) x= fb['Year'] y= fb['Price'] slope, intercept, r_value, p_value, slope_std_error = stats.linregress(x, y) # Used a linear regession model to estimate trend of markets. predict_y = intercept + slope * x pred_error = y - predict_y degrees_of_freedom = len(x) - 2 residual_std_error = np.sqrt(np.sum(pred_error**2) / degrees_of_freedom) pylab.plot(x, y, 'o') pylab.plot(x, predict_y, 'k-') pylab.ylim(0,1000000) pylab.xlim(1990,1995) pylab.title('Francis Bacon Sale Price, 1990-95, with Linear Regression', fontsize=13) pylab.ylabel('USD($)', fontsize=10) pylab.xlabel('Years (Scientific Notation)(1990-95)', fontsize=10) pylab.show() x= fa['Year'] y= fa['Price'] slope, intercept, r_value, p_value, slope_std_error = stats.linregress(x, y) # Used a linear regession model to estimate trend of markets. predict_y = intercept + slope * x pred_error = y - predict_y degrees_of_freedom = len(x) - 2 residual_std_error = np.sqrt(np.sum(pred_error**2) / degrees_of_freedom) pylab.plot(x, y, 'o') pylab.plot(x, predict_y, 'k-') pylab.ylim(0,100000) pylab.xlim(1990,1995) pylab.title('Frank Auerbach Sale Price, 1990-95, with Linear Regression', fontsize=13) pylab.ylabel('USD($)', fontsize=10) pylab.xlabel('Years (Scientific Notation)(1990-95)', fontsize=10) pylab.show() x= lf['Year'] y= lf['Price'] slope, intercept, r_value, p_value, slope_std_error = stats.linregress(x, y) # Used a linear regession model to estimate trend of markets. predict_y = intercept + slope * x pred_error = y - predict_y degrees_of_freedom = len(x) - 2 residual_std_error = np.sqrt(np.sum(pred_error**2) / degrees_of_freedom) pylab.plot(x, y, 'o') pylab.plot(x, predict_y, 'k-') pylab.ylim(0,100000) pylab.xlim(1990,1995) pylab.title('Lucian Freud Sale Price, 1990-95, with Linear Regression', fontsize=13) pylab.ylabel('USD($)', fontsize=10) pylab.xlabel('Years (Scientific Notation)(1990-95)', fontsize=10) pylab.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Even before you call your first TensorFlow function, a lot is going on behind the scenes. For example, an empty default graph object is created. (In order to make it easier to hit the ground running with TensorFlow, and to make using the library less verbose, Google has laced the system with global state. In order to fully understand what's happening in your program, you need to know that these state variables, like "current graph" and "current scope" and "current session", exist. As we'll soon see, most of the functions you'll call in TensorFlow operate by quietly accessing this hidden state.) Step2: It is currently empty. We can check this fact by listing the operations (nodes) in the graph Step3: Let's start adding some operations to g. An operation is a node of the computation graph. It contains only some light metadata, like "I am an addition operation, and my inputs come from these two other operations." Although Python Operation objects don't actually do anything, we usually think of an operation in terms of what it will cause the execution engine to do after the graph has been completely built and is handed over to TensorFlow to run. Step4: g now has a Const operation! Note that tf.constant affected the graph g, even though we didn't explicitly say we wanted the constant operation to be added to g. It is possible to add operations to a specific, non-default graph, but most of the time, we add directly to the default graph, using functions like tf.constant. In fact, we generally don't even call get_default_graph to give g a name; we just use it implicitly. Step5: Those inputs and outputs are of type Tensor. Step6: A Tensor is a lightweight Python object that represents a piece of data flowing along the edges of our graph. That data can be a scalar, a vector, a matrix, or a higher-dimensional array. (The dimensionality of a tensor t is accessible as an attribute Step7: Now, there are two operations in the graph. TensorFlow has named them 'Const' and 'Const_1', but you can also give them names yourself by passing a name keyword argument to the tf.constant function. Tensors are named following the formula op_name Step8: It should make sense that add_op has two inputs and one output. Step9: The run method of the Session class is used to send your graph to the computation engine and execute it. As an argument, we pass a tensor we'd like to "fetch" the value of. Based on which tensor we'd like to compute, TensorFlow will calculate a path through the graph, and then execute only the parts of the graph necessary to compute our desired tensor. Step10: Above, we call sess.run three times, which invokes the execution engine three times. There is no memoization; each time you call sess.run, everything is computed anew. Because of this, if you want to fetch more than one tensor, it's more efficient to fetch them all in one go, by passing a list to sess.run. You can also pass a dictionary, a tuple, a named tuple, or nested combinations of these data structures. Step11: In the last example, TensorFlow created a copy of the fetches data structure, but with each tensor replaced by its actual value, computed during execution. Step12: Sessions are more powerful than this, but to understand why, we need to talk about placeholders and variables. Step13: When we call sess.run, we now pass in a second argument, feed_dict. This is a Python dictionary in which the keys are placeholder tensors (i.e., the outputs of placeholder operations) and the values are numbers, numpy arrays, or Python lists. (Numbers, lists, and numpy arrays can all be converted automatically into a data format compatible with TensorFlow's execution engine.) Note that the keys of feed_dict are the actual tensor objects, not strings. Step14: A few things to note Step15: Another trick Step16: The session is closed automatically at the end of the with block. Step17: The operations are all still there! That's because reset_default_graph doesn't delete operations, it just creates a new graph and makes it the default. g still refers to the old graph. We can fix this (and let the old graph be garbage-collected) by reassigning g Step18: Variables Step19: Wow -- four operations were just added to the graph! Let's go through them one by one Step20: In fact, let's start a second session as well. One of the roles sessions play is to keep track of variable values across executions of the graph, and this will help us visualize that. Step21: If we attempt to get the value of the variable, we will get an error Step22: "Attempting to use uninitialized value Variable." In order to initialize the variable, we actually have to run the assign op that was created for us. Recall that this was the third operation in the graph. Step23: But in sess2, $x$ is still not initialized, and running sess2.run(x) still gives an error Step24: Let's fix that. Step25: Notice Step26: Computing gradients Step27: Notice that Tensorflow has added a constant node, mul/x, to represent the constant 2. Other than that, this should look as expected Step28: As you can see, a lot of new nodes were added for gradient calculation. The output of the last op listed above will be our derivative, $\frac{d\text{eqn}}{db}$. tf.gradients returns that tensor, so we don't have to grab it explicitly Step29: We can now execute the graph Step30: As expected, we get 2, the partial derivative of eqn with respect to b at the point (a=5, b=7) (at any point, actually, but TensorFlow is computing it at this specific point). Step31: Let's create a second equation. Step32: Remember that a = 5 and b = 7, which is why we get the values we did above. Although you can think of what Tensorflow does as a kind of symbolic differentiation (it constructs a formula, i.e. computation graph, for computing a derivative), it always calculates gradients at a specific point. Step33: Here, [8, 8] == [7, 6] + [1, 2]. Step34: Optimization Step35: Two start with, we'll calculate our derivative manually, without even using tf.gradients. The derivative of $x^2$ at a point is just $2x$ Step36: We will now create an operation that changes $x$ based on the current derivative of the loss. We can do this using the tf.assign function, which creates an operation that assigns a variable to a new value. (The Assign operation has two inputs, the reference to the variable's mutable storage, and the new value we wish to assign. As mentioned in the Variables section, we can pass a Variable object as the first input and TensorFlow will substitute the correct tensor. The Assign operation has one output, the tensor for which is returned by tf.assign, which is the new value of the variable after assignment.) Step37: Our graph is in place. In order to run our algorithm, we need to Step38: As you can see, the value of loss gets closer and closer to 0 as time goes on. Step39: The algorithm we have used here is vanilla gradient descent. TensorFlow actually comes with a whole family of optimizers that we can just plug into our model. We do not need to call tf.gradients or manually assign a variable at all; TensorFlow can create that whole portion of our computational graph. Step40: minimize_loss now refers to an operation that runs a single step of gradient descent, updating x. (By default optimizer.minimize assumes you want to run gradient descent on every Variable in the computation graph. If you want to change this, you can pass in a var_list argument, specifying exactly which variables should be updated.) Note that before, assign_new_x referred to a tensor; minimize_loss refers to an actual operation, and sess.running it will return None. Still, it is working, and produces the exact same values as our previous two attempts Step41: There are other optimizers that implement clever variations of gradient descent. For example, here's the popular Adam optimizer Step42: Notice that some of the operations Adam has added are Variables! This is because Adam keeps track of certain statistics across iterations, to implement a sort of "momentum." Because of this, before we can run our minimize_loss operation, we need to make sure Adam's variables are initialized. Rather than painstakingly initialize each one, we can use tf.global_variables_initializer() to add an op to the graph that initializes all variables created so far. Step43: As you can see, for our extremely simple problem, Adam hurts more than it helps. Its momentum feature means that the big derivatives from early on in training still have an effect even as we get close to the valley, causing us to overshoot the minimum. Running this for more than 100 iterations would eventually bring us back to 0. (An image that is sometimes used to explain momentum-based optimization approaches vs. typical gradient descent is that if normal gradient descent can be thought of as a man slowly and cautiously walking downhill, momentum-based approaches are better understood as a heavy ball rolling its way downhill. The ball will likely overshoot the bottom then have to roll back down, taking a while to settle. The benefit is that the ball can roll straight past small local minima, and stay immune to certain types of pathological terrains.) Step44: It's common to perform some data cleaning operations on our input data before attempting to use a machine learning algorithm. We'll do that here, subtracting the (empirical) mean and dividing by the standard deviation of the temperature Step45: Now, let's divide the data into training, validation, and test sets. Step46: Finally, we'll create a "batch generator" for the training set. The following function is a Python generator function; instead of returning a value, it continuously yields new batches of data. When we call batch_generator, Python creates a generator iterator, which we here call training_generator, that we can use with Python's next function. Step47: Building the model Step48: We then set up the major quantities in our model as follows Step49: Computing the loss Step50: Creating an optimizer Step51: Initializing variables and training
<ASSISTANT_TASK:> Python Code: import tensorflow as tf g = tf.get_default_graph() g g.get_operations() tf.constant(3.14) g.get_operations() const_operation = g.get_operations()[0] len(const_operation.inputs), len(const_operation.outputs) const_tensor = const_operation.outputs[0] const_tensor another_const_tensor = tf.constant(1.414) another_const_tensor g.get_operations() sum_tensor = tf.add(const_tensor, another_const_tensor) sum_tensor g.get_operations() add_op = g.get_operations()[2] len(add_op.inputs), len(add_op.outputs) # This piece is only necessary so as not to use up an ungodly amount of GPU memory: config = tf.ConfigProto() config.gpu_options.allow_growth = True # This is the actual code creating the session. You can omit the config arg # if you have no configuration to do. sess = tf.Session(config=config) sess.graph == g sess.run(sum_tensor), sess.run(const_tensor), sess.run(another_const_tensor) sess.run([sum_tensor, const_tensor, another_const_tensor]) sess.run({'a': const_tensor, 'b': another_const_tensor, '[a,b,a+b]': [const_tensor, another_const_tensor, sum_tensor]}) sess.close() a = tf.placeholder(tf.float32) a b = tf.placeholder(tf.float32) flexible_sum_tensor = tf.add(a, b) g.get_operations() sess = tf.Session(config=config) sess.run(flexible_sum_tensor, feed_dict={a: 1., b: 2.}) sess.run(flexible_sum_tensor, feed_dict={a: [1.], b: [2.]}) sess.run(flexible_sum_tensor, feed_dict={a: [[1., 2.], [3., 4.]], b: [[5., 6.], [7., 8.]]}) sess.close() distance_from_origin = tf.sqrt((a * a) + (b * b)) g.get_operations() distance_from_origin sess = tf.Session(config=config) sess.run(distance_from_origin, feed_dict={a: 3., b: 4.}) sess.close() with tf.Session(config=config) as sess: print(sess.run(distance_from_origin, feed_dict={a: 9., b: 12.})) tf.reset_default_graph() g.get_operations() g = tf.get_default_graph() g.get_operations() x = tf.Variable(42) # summarize the operations now in the graph: [(op, "{} inputs and {} output".format(len(op.inputs), len(op.outputs))) for op in g.get_operations()] sess = tf.Session(config=config) sess2 = tf.Session(config=config) sess.run(x) sess.run(g.get_operations()[2]) sess.run(x) sess2.run(x) sess2.run(x.initializer), sess2.run(x) sess.close() sess2.close() tf.reset_default_graph() g = tf.get_default_graph() a = tf.constant(5, name='a') b = tf.constant(7, name='b') eqn = a + 2 * b g.get_operations() grad = tf.gradients(eqn, b) g.get_operations() grad sess = tf.Session(config=config) sess.run(grad) gradient_wrt_both = tf.gradients(eqn, [a, b]) sess.run(gradient_wrt_both) eqn2 = a * b + b gradient_of_eqn2 = tf.gradients(eqn2, [a,b]) sess.run(gradient_of_eqn2) gradient_with_two_ys = tf.gradients([eqn, eqn2], [a,b]) sess.run(gradient_with_two_ys) sess.close() tf.reset_default_graph() g = tf.get_default_graph() x = tf.Variable(5.0) loss = x * x g.get_operations() dloss_dx = 2. * x step_size = 0.1 new_x_value = x - dloss_dx * step_size assign_new_x = tf.assign(x, new_x_value) with tf.Session(config=config) as sess: # Initialize x: sess.run(x.initializer) # We will fetch the following tensors each iteration to_fetch = {'x': x, 'loss': loss, 'derivative': assign_new_x} for i in range(100): fetched = sess.run(to_fetch) # every tenth step, print our progress if i % 10 == 0 or i+1==100: print("Iter {}: {}".format(i, fetched)) tf.reset_default_graph() g = tf.get_default_graph() x = tf.Variable(5.0) loss = x * x # tf.gradients is called "gradients" and not "derivative" for a reason: it # returns a _list_ of partial derivatives, even if you only pass in one x. # Pull out first element (in our case, the list only has one element). dloss_dx = tf.gradients(loss, x)[0] new_x_value = x - dloss_dx * step_size assign_new_x = tf.assign(x, new_x_value) with tf.Session(config=config) as sess: # Initialize x: sess.run(x.initializer) # We will fetch the following tensors each iteration to_fetch = {'x': x, 'loss': loss, 'derivative': assign_new_x} for i in range(100): fetched = sess.run(to_fetch) # every tenth step, print our progress if i % 10 == 0 or i+1==100: print("Iter {}: {}".format(i, fetched)) tf.reset_default_graph() g = tf.get_default_graph() x = tf.Variable(5.0) loss = x * x # Create the optimizer optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) # Add optimize nodes to the graph minimize_loss = optimizer.minimize(loss) with tf.Session(config=config) as sess: # Initialize x: sess.run(x.initializer) # We will fetch the following tensors each iteration to_fetch = {'x': x, 'loss': loss, 'train_op': minimize_loss} for i in range(100): fetched = sess.run(to_fetch) # every tenth step, print our progress if i % 10 == 0 or i+1==100: print("Iter {}: {}".format(i, fetched)) adam_optimizer = tf.train.AdamOptimizer(learning_rate=0.1) minimize_loss = adam_optimizer.minimize(loss) g.get_operations() initialize_all = tf.global_variables_initializer() with tf.Session(config=config) as sess: # Initialize ALL variables sess.run(initialize_all) # We will fetch the following tensors each iteration to_fetch = {'x': x, 'loss': loss, 'train_op': minimize_loss} for i in range(100): fetched = sess.run(to_fetch) # every tenth step, print our progress if i % 10 == 0 or i+1==100: print("Iter {}: {}".format(i, fetched)) import numpy as np temps = np.random.normal(55, 20, 1000) random_noise = np.random.normal(0, 100, 1000) hosp_visits = 1000 - 5 * temps + random_noise plt.plot(temps[:200], hosp_visits[:200], "o") normalized_temps = (temps - np.mean(temps)) / np.std(temps) train_X, train_y = normalized_temps[:800], hosp_visits[:800] valid_X, valid_y = normalized_temps[800:900], hosp_visits[800:900] test_X, test_y = normalized_temps[900:], hosp_visits[900:] def batch_generator(X, y, batch_size): total_batches = len(X) // batch_size current_batch = 0 while True: start = batch_size * current_batch end = start + batch_size yield (X[start:end], y[start:end]) current_batch = (current_batch + 1) % total_batches training_generator = batch_generator(train_X, train_y, batch_size=100) # Later, call next(training_generator) to get a new batch of the form (X, y) tf.reset_default_graph() g = tf.get_default_graph() X = tf.placeholder(tf.float32) y = tf.placeholder(tf.float32) m = tf.Variable(0.) b = tf.Variable(0.) predicted_y = X * m + b avg_loss = tf.reduce_mean(tf.squared_difference(predicted_y, y)) train_one_step = tf.train.GradientDescentOptimizer(learning_rate=0.0005).minimize(avg_loss) init_all_vars = tf.global_variables_initializer() with tf.Session(config=config) as sess: sess.run(init_all_vars) for i in range(5000): X_batch, y_batch = next(training_generator) feed_dict = {X: X_batch, y: y_batch} _, loss, m_pred, b_pred = sess.run([train_one_step, avg_loss, m, b], feed_dict=feed_dict) if i % 500 == 0: validation_feed_dict = {X: valid_X, y: valid_y} valid_loss = sess.run(avg_loss, feed_dict=validation_feed_dict) print("Iter {}: training loss = {}, validation loss = {}, m={}, b={}".format(i, loss, valid_loss, m_pred, b_pred)) test_feed_dict = {X: test_X, y: test_y} m_pred, b_pred, loss = sess.run([m, b, avg_loss], test_feed_dict) print("m: {}, b: {}, test loss: {}".format(m_pred, b_pred, loss)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: El bloque anterior se ejecuta en python y mantiene una conexión a una instancia de interprete interactivo de python, de manera que podemos usar celdas de markdown y otras celdas de código, y luego hacer uso de las definiciones de estas celdas. Como a continuación Step2: Magics Step3: Para la ejecución de bash se puede anteceder un signo ! antes del comando a usar (de una sola linea) o usar el magic correspondiente para múltiples lineas. Esto solo es posible en sistemas UNIX. Step4: En caso de usar los comandos bash con ! es posible asociar sus salidas a una variable python, y obtener una integración natural entre python y bash. Step5: Otros magics disponibles son
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division # Compatibilidad entre python 2 y 3 def imprime_division(a, b): print(a/b) imprime_division(4, 5) %%latex $\left(\frac{1}{\Gamma}\right)^{2}$ !ls -al %%bash touch archivoprueba.txt ls *.txt echo "Ya se verifico creación, ahora se eliminará." rm archivoprueba.txt ls archivoprueba.txt listaarchivos = !ls print(listaarchivos) %lsmagic <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If we need only the keys 'a' and 'd', we can do this Step2: We can also specify 'subkeys' by using a dotted-syntax Step3: The dotted-syntax can have any needed level of depth Step4: Specifying invalid keys behavior Step5: By default, invalid keys passed to the extract_subdict function are ignored Step6: However, by passing True to the strict parameter of the function, invalid keys will raise a KeyError exception Step7: Successive extractions Step8: Now, extracting only the 'name' of each album Step9: The result is the following
<ASSISTANT_TASK:> Python Code: d = { 'a': 'A', 'b': 'B', 'c': 'C', 'd': { 'x': 'D_X', 'y': 'D_Y', 'z': { 'I': 'D_Z_I', 'II': { '1': 'D_Z_II_1', '2': 'D_Z_II_2' }, 'III': 'D_Z_III' } } } from subdict import extract_subdict # The main function of the library from pprint import pprint # Just for a nice presentation here pprint( extract_subdict(d, ['a', 'd']) ) pprint( extract_subdict(d, ['a', 'd.x', 'd.z']) ) pprint( extract_subdict(d, ['a', 'd.z.II.1']) ) person = { 'name': 'John Frusciante', 'birth': '1970-03-05', 'city': { 'name': 'New York City', 'state': {'name': 'New York', 'country': 'USA'} }, 'albums': [ { 'year': 2001, 'name': 'To Record Only Water For Ten Days', 'label': { 'name': 'Warner Bros Records', 'link': 'https://en.wikipedia.org/wiki/Warner_Bros._Records' } }, { 'year': 2004, 'name': 'Shadows Collide With People', 'label': { 'name': 'Warner Bros Records', 'link': 'https://en.wikipedia.org/wiki/Warner_Bros._Records' } }, { 'year': 2009, 'name': 'The Empyrean', 'label': { 'name': 'Record Collection', 'link': 'https://en.wikipedia.org/wiki/Record_Collection' } } ] } extract_subdict(person, ['name', 'birth', 'hair_color']) # 'hair_color' is invalid extract_subdict(person, ['name', 'birth', 'hair_color'], strict=True) subdict = extract_subdict(person, ['name', 'albums']) pprint(subdict) for index in range(len(subdict['albums'])): subdict['albums'][index] = extract_subdict(subdict['albums'][index], ['name']) pprint(subdict) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 4 Step2: Step 5 Step3: There should be 9 containers running Step4: Step 7 Step5: There should be an additional 5 containers running Step6: Step 9 Step7: There should be an additional 9 containers running
<ASSISTANT_TASK:> Python Code: cd ~/nexus/esip-workshop/docker/infrastructure docker-compose up -d cassandra1 docker logs -f cassandra1 docker-compose up -d docker ps cd ~/nexus/esip-workshop/docker/analysis docker-compose up -d docker ps cd ~/nexus/esip-workshop/docker/ingest docker-compose up -d docker ps docker exec -it xd-admin /usr/local/nx-deploy-stream.sh --datasetName AVHRR_OI_L4_GHRSST_NCEI --dataDirectory /usr/local/data/nexus/avhrr/2017 --variableName analysed_sst --tilesDesired 1296 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Here we define the parameters that we use to extract all the informations from the vtk file Step2: Now we initialize the file_handler that deals with all the vtk files. Then we need to start it in order to extract the output on the corners of the parametric domain. Step3: Then the algorithm waits for a new sequential vtk output. To emphasise the iterative procedure we explicit the while True cycle. We think is the best way to interact with the package. If the user choose True he has to run a new simulation with the new parameter suggested before ([-0.29334384 -0.2312056]) and then place the new vtk output with the sequential name in the same folder as the others (namefile_prefix). If the user choose False the code writes out the structures needed for the online phase. Here we respond True and then False just as an example.
<ASSISTANT_TASK:> Python Code: import ezyrb as ez output_name = 'Pressure' weights_name = 'Weights' namefile_prefix = '../tests/test_datasets/matlab_0' file_format = '.vtk' file_handler = ez.pod.Pod(output_name, weights_name, namefile_prefix, file_format) file_handler.start() while True: add = input('Add a new snapshot to the database? (True or False) ') if add == True: file_handler.add_snapshot() else: file_handler.write_structures() break <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Notarás por el número a la izquierda (el número 1) que esa celda es diferente. Ese número significa que es el primero output o salida del programa y sirve para diferenciar e identificar las celdas con código entre sí y de las textuales. Step2: Los nombres son bastante obvios, la primera cantidad T_init permite iniciar el timepo inicial mientras que Tmax permite controlar hasta donde llegará el vector de tiempos. Finalmente dt permite ajustar el tamaño del salto entre un número y el siguiente. La declaración del vector se hace con la instrucción np.arange (nota que usamos el alias para decir que esta herramientas pertenece a la caja de numpy). Step3: Para modificar una celda de programación como la anterior simplemente dale click y puedes modificar las cosas directamente con tu teclado. Cuando quieras ejectura (o correr) el contenido presiona shift y enter al mismo tiempo (shift + enter). En caso de que no necesites algo más en el menú de la notebook está un menú de ayuda con todos los comandos. Step4: Notarás que la onda se ve bastante mal deformada, si buscas en google una fotografía del seno deberías encontrar que en realidad se debería de ver algo como así Step5: Basandonos en esta imagen debería ser notorio que el problema principal es que no tenemos suficientes puntos para cubrir la señal de manera adecuada. Este tipo de observaciones dan pie al tipo de invetigaciones de cuantos puntos concretos son necesarios para recuperar la información de una señal (teoría de la información) y más particularmente el fenomeno de aliasing en el procesamiento de señales. Pero esto es para una futura discusión y simplemente un comentario lateral. Step6: Como ejercicio deberías de modificar los valores de dt y los tiempos iniciales y finales para ver como eso afecta la gráfica. Otra cosa que puedes hacer es leer en google sobre los commandos xlim and ylim y agregarlos al pequeño programa de arriba para ver como afectan la visualización. Step7: Notarás que la frecuencia es demasiado alta y que por lo tanto no se puede apreciar correctamente, modifiquemos los tiempos finales para ver esto desde otro angulo
<ASSISTANT_TASK:> Python Code: import numpy as np # Alias es np import matplotlib.pyplot as plt # Alias es plt T_init = 0.0 # Tiempo inicial Tmax = 10.0 # Tiempo Total dt= 2.0 # Salto tiempos = np.arange(T_init, Tmax, dt) print tiempos T_init = 2.0 # Tiempo inicial Tmax = 8.0 # Tiempo Total dt= 1.0 # Salto tiempos = np.arange(T_init, Tmax, dt) print tiempos %matplotlib inline # Esto es para que las gráficas se muestren en patanlla en lugar de una ventana aparte. T_init = 0.0 # Tiempo inicial Tmax = 20.0 # Tiempo Total dt= 1.0 # Salto tiempos = np.arange(T_init, Tmax, dt) # El siguiente comando es equivalente a calcular el seno en TODOS los tiempos de arriba. onda = np.sin(tiempos) # La onda evaluada en todos los tiempos. sin=seno=sinus plt.plot(tiempos, onda) # Muestra en pantalla onda = np.sin(tiempos) # La onda evaluada en todos los tiempos. sin=seno=sinus plt.plot(tiempos, onda, '*-') # El astericos indica que queremos los puntos, el guion que los queremos encadenados T_init = 0.0 # Tiempo inicial Tmax = 20.0 # Tiempo Total dt= 0.1 # Salto ESTOS SON MÁS PEQUEÑOS AHORA tiempos = np.arange(T_init, Tmax, dt) # El siguiente comando es equivalente a calcular el seno en TODOS los tiempos de arriba. onda = np.sin(tiempos) # La onda evaluada en todos los tiempos. sin=seno=sinus plt.plot(tiempos, onda, '*-') # Muestra en pantalla T_init = 0.0 Tmax = 20.0 dt= 0.1 tiempos = np.arange(T_init, Tmax, dt) f = 1.0 # Frequencia unidades = 2 * np.pi # Esta es la longitud del circulo onda = np.sin(f * unidades * tiempos) # La onda evaluada en todos los tiempos. sin=seno=sinus plt.plot(tiempos, onda, '*-') # Muestra en pantalla T_init = 0.0 Tmax = 5.0 dt= 0.1 tiempos = np.arange(T_init, Tmax, dt) f = 1.0 # Frequencia en Hz unidades = 2 * np.pi # Esta es la longitud del circulo onda = np.sin(f * unidades * tiempos) # La onda evaluada en todos los tiempos. sin=seno=sinus plt.plot(tiempos, onda, '*-') # Muestra en pantalla <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 2. Key Properties --&gt; Variables Step7: 3. Key Properties --&gt; Seawater Properties Step8: 3.2. Ocean Freezing Point Value Step9: 4. Key Properties --&gt; Resolution Step10: 4.2. Canonical Horizontal Resolution Step11: 4.3. Number Of Horizontal Gridpoints Step12: 5. Key Properties --&gt; Tuning Applied Step13: 5.2. Target Step14: 5.3. Simulations Step15: 5.4. Metrics Used Step16: 5.5. Variables Step17: 6. Key Properties --&gt; Key Parameter Values Step18: 6.2. Additional Parameters Step19: 7. Key Properties --&gt; Assumptions Step20: 7.2. On Diagnostic Variables Step21: 7.3. Missing Processes Step22: 8. Key Properties --&gt; Conservation Step23: 8.2. Properties Step24: 8.3. Budget Step25: 8.4. Was Flux Correction Used Step26: 8.5. Corrected Conserved Prognostic Variables Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Step28: 9.2. Grid Type Step29: 9.3. Scheme Step30: 9.4. Thermodynamics Time Step Step31: 9.5. Dynamics Time Step Step32: 9.6. Additional Details Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Step34: 10.2. Number Of Layers Step35: 10.3. Additional Details Step36: 11. Grid --&gt; Seaice Categories Step37: 11.2. Number Of Categories Step38: 11.3. Category Limits Step39: 11.4. Ice Thickness Distribution Scheme Step40: 11.5. Other Step41: 12. Grid --&gt; Snow On Seaice Step42: 12.2. Number Of Snow Levels Step43: 12.3. Snow Fraction Step44: 12.4. Additional Details Step45: 13. Dynamics Step46: 13.2. Transport In Thickness Space Step47: 13.3. Ice Strength Formulation Step48: 13.4. Redistribution Step49: 13.5. Rheology Step50: 14. Thermodynamics --&gt; Energy Step51: 14.2. Thermal Conductivity Step52: 14.3. Heat Diffusion Step53: 14.4. Basal Heat Flux Step54: 14.5. Fixed Salinity Value Step55: 14.6. Heat Content Of Precipitation Step56: 14.7. Precipitation Effects On Salinity Step57: 15. Thermodynamics --&gt; Mass Step58: 15.2. Ice Vertical Growth And Melt Step59: 15.3. Ice Lateral Melting Step60: 15.4. Ice Surface Sublimation Step61: 15.5. Frazil Ice Step62: 16. Thermodynamics --&gt; Salt Step63: 16.2. Sea Ice Salinity Thermal Impacts Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Step65: 17.2. Constant Salinity Value Step66: 17.3. Additional Details Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Step68: 18.2. Constant Salinity Value Step69: 18.3. Additional Details Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Step72: 20.2. Additional Details Step73: 21. Thermodynamics --&gt; Melt Ponds Step74: 21.2. Formulation Step75: 21.3. Impacts Step76: 22. Thermodynamics --&gt; Snow Processes Step77: 22.2. Snow Aging Scheme Step78: 22.3. Has Snow Ice Formation Step79: 22.4. Snow Ice Formation Scheme Step80: 22.5. Redistribution Step81: 22.6. Heat Diffusion Step82: 23. Radiative Processes Step83: 23.2. Ice Radiation Transmission
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'uhh', 'sandbox-1', 'seaice') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Remise à zero(angle) Affichage et changement de l'id d'un moteur.
<ASSISTANT_TASK:> Python Code: ports = pypot.dynamixel.get_available_ports() if not ports: raise IOError('no port found!') print "Ports founds %s" % ports for port in ports: print('Connecting on port:', port) dxl_io = pypot.dynamixel.DxlIO(port) motors = dxl_io.scan() print(" %s motors founds : %s\n" % (len(motors),motors)) dxl_io.close() #57142 => 1000000 #return_delay_time => 0 def motor_config(): ports = pypot.dynamixel.get_available_ports() if len(ports) == 1: print("Connection au port %s" % ports[0]) dxl_io = pypot.dynamixel.DxlIO(ports[0]) print('Scan des moteurs (cela peut prendre quelques secondes)') motors = dxl_io.scan() if len(motors) == 1: print("OK, un seul moteur trouvé : %s" % motors[0]) for k,v in dxl_io.__dict__.items(): print(" - %s : %s" % (k,v)) dxl_io.enable_torque(motors) dxl_io.set_moving_speed({motors[0]:200}) print("Positionnement du moteur %s à 90° " % motors[0]) dxl_io.set_goal_position({motors[0]:90}) while dxl_io.is_moving((motors[0],))[0]: time.sleep(0.02) print("Positionnement du moteur %s à -90° " % motors[0]) dxl_io.set_goal_position({motors[0]:-90}) while dxl_io.is_moving((motors[0],))[0]: time.sleep(0.02) print("Positionnement du moteur %s à 0° " % motors[0]) dxl_io.set_goal_position({motors[0]:0}) while dxl_io.is_moving((motors[0],))[0]: time.sleep(0.02) dxl_io.disable_torque(motors) target_id = raw_input("Changer l'id du moteur %s : " % motors[0]) try: target_id = int(target_id) dxl_io.change_id({motors[0]:target_id}) print("ID modifié") except ValueError: print("ID non modifié") dxl_io.close() else: print("Erreur, %s moteurs conncectés : %s" % (len(motors), motors)) else : print("Erreur, %s ports trouvés : %s" % (len(ports),ports)) motor_config() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 1 Step2: To cluster the images, we'll need to convert the images into a format we can pass into our KMeans model, which expects 1D feature vectors. For this assignment, we'll just flatten our image. This is akin to cutting each image up into rows, and concatenating the rows end-to-end to form one long, skinny image. Step3: Now run the code box below using different numbers of clusters, and note how the clustering results change. Step4: 1.1) Effect of number of clusters Step5: 2.1) The Importance of Normalization Step6: 2.2) Interpreting Clusters Step7: Analyzing Centroids Step8: Visualizing Centroids Step9: For Q2-Q4, please answer using k=3. Step10: Now, let's see where these countries would actually have clustered.
<ASSISTANT_TASK:> Python Code: !pip install datacommons --upgrade --quiet !pip install datacommons_pandas --upgrade --quiet import datacommons import datacommons_pandas import numpy as np import pandas as pd # for visualization import matplotlib.pyplot as plt import seaborn as sns # for clustering from sklearn.cluster import KMeans # load dataset from keras.datasets import fashion_mnist (fashion_mnist, labels), _ = fashion_mnist.load_data() # limit to first 2000 images so runtimes are reasonable fashion_mnist = fashion_mnist[:2000, :, :] # Show the first 25 images as a sample print(f"Loaded {fashion_mnist.shape[0]} images. The first 25 are:") sns.set(rc={'figure.figsize':(11,8)}) for i in range(25): # define subplot plt.subplot(5, 5, i+1) # plot raw pixel data plt.imshow(fashion_mnist[i], cmap=plt.get_cmap('gray')) plt.axis("off") plt.show() # squash images into 1D fashion_data = fashion_mnist.reshape((-1, 28*28)) # set number of clusters k = 2 #Change me! # cluster the images kmeans = KMeans(n_clusters=k).fit(fashion_data) # create a dictionary of clusters to images clusters = {n:[] for n in range(k)} for i in range(fashion_data.shape[0]): key = kmeans.labels_[i] value = fashion_data[i,:].reshape(1, 28, 28).squeeze() clusters[key].append(value) # display images from each cluster sns.set(rc={'figure.figsize':(6,4)}) for cluster_num, images in clusters.items(): print(f'Cluster {cluster_num} contains {len(images)} images. The first 25 are:') for i in range(min(25, len(images))): # define subplot plt.subplot(5, 5, i+1) # plot raw pixel data plt.imshow(images[i], cmap=plt.get_cmap('gray')) plt.axis("off") # show the figure plt.show() dcids = [ 'country/AGO', 'country/ALB', 'country/ARG', 'country/ARM', 'country/AUS', 'country/AZE', 'country/BDI', 'country/BGD', 'country/BGR', 'country/BIH', 'country/BLZ', 'country/BOL', 'country/BRA', 'country/BTN', 'country/BWA', 'country/CAN', 'country/CHL', 'country/CHN', 'country/CMR', 'country/COD', 'country/COG', 'country/COL', 'country/CRI', 'country/CZE', 'country/DOM', 'country/DZA', 'country/ECU', 'country/EGY', 'country/ETH', 'country/FJI', 'country/GAB', 'country/GEO', 'country/GHA', 'country/GTM', 'country/GUY', 'country/HND', 'country/IDN', 'country/IND', 'country/IRN', 'country/JAM', 'country/JOR', 'country/JPN', 'country/KAZ', 'country/KEN', 'country/KGZ', 'country/KIR', 'country/KOR', 'country/LAO', 'country/LBN', 'country/LCA', 'country/LSO', 'country/MAR', 'country/MDA', 'country/MDG', 'country/MEX', 'country/MKD', 'country/MLI', 'country/MMR', 'country/MNE', 'country/MNG', 'country/MOZ', 'country/MRT', 'country/MWI', 'country/MYS', 'country/NAM', 'country/NER', 'country/NGA', 'country/NIC', 'country/NPL', 'country/PAK', 'country/PAN', 'country/PER', 'country/PHL', 'country/PNG', 'country/PRY', 'country/ROU', 'country/RWA', 'country/SDN', 'country/SLV', 'country/SRB', 'country/SWZ', 'country/SYR', 'country/THA', 'country/TJK', 'country/TKM', 'country/TLS', 'country/TON', 'country/TTO', 'country/TUN', 'country/TUR', 'country/TZA', 'country/UGA', 'country/UKR', 'country/USA', 'country/UZB', 'country/VNM', 'country/VUT', 'country/WSM', 'country/YEM', 'country/ZAF', 'country/ZMB', 'country/ZWE' ] stat_vars_to_query = [ "Amount_Emissions_CarbonDioxide_PerCapita", "LifeExpectancy_Person", "Count_Person_IsInternetUser_PerCapita", "GrowthRate_Count_Person", "Count_Person_Upto4Years_Overweight_AsFractionOf_Count_Person_Upto4Years", "GiniIndex_EconomicActivity", "Count_Product_MobileCellularSubscription_AsFractionOf_Count_Person", "Amount_EconomicActivity_GrossDomesticProduction_Nominal_PerCapita", "FertilityRate_Person_Female", "Count_Death_AsAFractionOfCount_Person" ] df = datacommons_pandas.build_multivariate_dataframe(dcids,stat_vars_to_query) # swap index for names df.insert(0, 'name', df.index.map(datacommons.get_property_values(df.index, 'name')).str[0]) df.set_index('name', drop=True, inplace=True) display(df) # normalize the values mean_df = df.mean() std_df = df.std() normalized_df = ((df-mean_df)/std_df) display(normalized_df) # Clustering using K-means n_clusters = 3 kmeans_model = KMeans(n_clusters).fit(normalized_df) labels_df = pd.DataFrame(data=np.transpose(kmeans_model.labels_), index=normalized_df.index, columns=['cluster']) # list countries in each cluster: for i in range(n_clusters): print(f'Countries in Cluster {i}:') print(labels_df.index[labels_df['cluster']==i].tolist()) print(len(labels_df.index[labels_df['cluster']==i].tolist())) # Get centroids of each cluster. for i in range(n_clusters): print(f'\nCluster {i}:') # display non-normalized mean values mean_to_display = df[labels_df['cluster']==i].mean() display(mean_to_display) # get normalized values normalized_means = [] for i in range(n_clusters): # calculate normalized values for the next part mean_normalized = normalized_df[labels_df['cluster']==i].mean() normalized_means.append(mean_normalized.to_frame().transpose()) normalized_means_df = pd.concat(normalized_means) # For better visualization, we'll multiply the following features by -1 # so that a higher value is associated with more development. features_to_flip = [ "GiniIndex_EconomicActivity", "GrowthRate_Count_Person", "FertilityRate_Person_Female" ] for column in features_to_flip: normalized_means_df[column] *= -1 # Plot heatmap sns.set(rc={'figure.figsize':(11.7,8.27)}) sns.set(font_scale = 1.5) ax = sns.heatmap(normalized_means_df.to_numpy(), linewidth=0.5, xticklabels=normalized_means_df.columns, center=0) ax.set_ylabel("Cluster") plt.show() dcids_holdout = ['country/HTI','country/DEU', 'country/IRQ'] # get values for each holdout df_holdout = datacommons_pandas.build_multivariate_dataframe(dcids_holdout,stat_vars_to_query) df_holdout = df_holdout.dropna() # swap index for names df_holdout.insert(0, 'name', df_holdout.index.map(datacommons.get_property_values(df_holdout.index, 'name')).str[0]) df_holdout.set_index('name', drop=True, inplace=True) # show values display(df_holdout) # normalized version for clustering later normalized_df_holdout = ((df_holdout-mean_df)/std_df) # find which cluster centroid is closest for country in df_holdout.index: country_data = normalized_df_holdout.loc[country].to_numpy() country_data = country_data[np.newaxis, :] difference = normalized_means_df.to_numpy() - country_data distance = np.linalg.norm(difference,axis=1) cluster_membership = np.argmin(distance, axis=0) print(f"{country} belongs to cluster {cluster_membership}") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The open() function opens a given filename as an object in 'read mode'. Step2: To open a file in write mode, pass the w parameter to the open() function. Step3: Unless otherwise specified, all new files are created in the current working directory. Step4: To append a file instead of overwriting it, use append mode by passing the a parameter to the open() function. Step5: To handle more data types than strings, the shelve module is often used Step6: shelve files work like dictionaries, but are stored in binary files, which cannot be easily understood in text editors
<ASSISTANT_TASK:> Python Code: import os os.listdir(os.path.abspath('files')) dictionaryFile = open(os.path.abspath('files/dictionary.txt')) # Open the file print(dictionaryFile.read()) # Read the file print(dictionaryFile.readline()) # Read a line in the file until newline or EOF content = dictionaryFile.read() # Store the content in a variable helloFile = open(os.path.abspath('files/helloworld.txt'), 'w') # Create the file in writeable mode. helloFile.write('Hello World!') # Writes to file, and returns bytes used exactly as is (no newline) helloFile.close() # Closes/saves files helloFile = open(os.path.abspath('files/helloworld.txt'), 'r') # Open the file in read mode print(helloFile.read()) # Print file contents helloFile = open(os.path.abspath('files/helloworld.txt'), 'w') # Open file for rewriting helloFile.write('Hello Another World!') # Writes to file, and returns bytes used exactly as is (no newline) helloFile.close() # Closes/saves files helloFile = open(os.path.abspath('files/helloworld.txt'), 'r') # Open the file in read mode print(helloFile.read()) # Final file contents os.getcwd() baconFile = open(os.path.abspath('files/bacon.txt'), 'w') # Create file in write mode baconFile.write('Bacon is not a vegetable.') # Write string to file baconFile.close() # Save/close file baconFile = open(os.path.abspath('files/bacon.txt'), 'r') # Reopen file in read mode print(baconFile.read()) # Read the current file baconFile = open(os.path.abspath('files/bacon.txt'), 'a') # Reopen file in append mode baconFile.write('\nBacon is delicious.') # Write string to file baconFile.close() # Save/close file baconFile = open(os.path.abspath('files/bacon.txt'), 'r') # Reopen file in read mode print(baconFile.read()) # Read the appended file # Define base directory defaultpath = os.path.expanduser('~/Dropbox/learn/books/Python/AutomateTheBoringStuffWithPython') #Change directory to files directory if set in default if (os.getcwd() == defaultpath): os.chdir('/files') else: os.chdir(defaultpath + '/files') print(os.getcwd()) import shelve # import the shelve module shelfFile = shelve.open('mycatdata') # Create a shelf file that works like a dictionary shelfFile['cats'] = ['Zophie', 'Pooka', 'Simon', 'Fat-tail', 'Cleo'] shelfFile.close() shelfFile = shelve.open('mycatdata') # Open shelve file list(shelfFile.keys()) list(shelfFile.values()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Introduction Step14: Training Step15: Start training. Training takes about 20 ~ 30 minutes on a n1-standard-1 GCP VM. Step16: In epoch 1, the mode predicted almost everything to be 'n'. It makes sense because vast majority of targets is "no punctuation" for each word so betting on that gives good overal accuracy already, although useless. Step17: Tensorboard is good but the curves are not saved with notebook. We can use Datalab's library to list and plot events. Step20: From the curves above, we got the best validation results around step 4000, and then in some runs a little bit over-fitting after. Step21: View accuracy and confusion matrix. Step22: Confusion matrix after removing "no punctuation". Step27: Many of the "," are mistakenly predicted as "no punctuation", probably because many times either with or without comma is correct in syntax. There are some confusions between "," and ".", meaning that the model "knows" it is a break in sentence, but mistakenly chose comma or period. 65% of question marks are predicted correctly. For that we can give credits to LSTM model because it can "remember" the beginning of a sentence (which, what, where, etc) even if it is long. Step28: Let's play with three paragraphs. First and second are single sentences, the third one contains multiple sentences. Step29: The last prediction is actually somewhat incorrect. It should be Step30: As a convenience, the predictor can pick random sentences from a test files. Step31: Clean up
<ASSISTANT_TASK:> Python Code: # Download and unzip data. !mkdir -p /content/datalab/punctuation/tmp !mkdir -p /content/datalab/punctuation/data !mkdir -p /content/datalab/punctuation/datapreped !wget -q -P /content/datalab/punctuation/tmp/ https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/europarl_raw.zip !wget -q -P /content/datalab/punctuation/tmp/ https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/comtrans.zip !unzip -q -o /content/datalab/punctuation/tmp/europarl_raw.zip -d /content/datalab/punctuation/tmp !unzip -q -o /content/datalab/punctuation/tmp/comtrans.zip -d /content/datalab/punctuation/tmp !cp /content/datalab/punctuation/tmp/europarl_raw/english/* /content/datalab/punctuation/data # We only need English from `comtran` data. Extract English text only. with open('/content/datalab/punctuation/tmp/comtrans/alignment-en-fr.txt', 'r') as f_in, \ open('/content/datalab/punctuation/data/comtrans.txt', 'w') as f_out: num_lines = 0 for l in f_in.readlines(): if num_lines == 0: f_out.write(l) num_lines = (0 if num_lines == 2 else num_lines + 1) Prepare data by cleaning up text. import glob import os from random import randint import re import string def prep_data(corpora_path, out_dir): Clean up raw data and split them into train, validation, and test source. printable = set(string.printable) all_corpora_files = glob.glob(corpora_path) lines = [] for corpora_file in all_corpora_files: with open(corpora_file, 'r') as f: lines += f.readlines() dest_train = os.path.join(out_dir, 'train.txt') dest_valid = os.path.join(out_dir, 'valid.txt') dest_test = os.path.join(out_dir, 'test.txt') valid_lines = 0 test_lines = 0 train_lines = 0 with open(dest_train, 'w') as f_train, open(dest_valid, 'w') as f_valid, open(dest_test, 'w') as f_test: for l in lines: s = l.strip() # Remove "bad" sentences. if s.endswith(')') and s.startswith('('): continue if not s.endswith('.') and not s.endswith('!') and not s.endswith('?'): continue if s.find('...') != -1: continue # Remove quotes, apostrophes, leading dashes. s = re.sub('"', '', s) s = re.sub(' \' s ', 's ', s) s = re.sub('\'', '', s) s = re.sub('^- ', '', s) # Clean double punctuations. s = re.sub('\? \.', '\?', s) s = re.sub('\! \.', '\!', s) # Extract human names to reduce vocab size. There are many names like 'Mrs Plooij-van Gorsel' # 'Mr Cox'. s = re.sub('Mr [\w]+ [A-Z][\w]+ ', '[humanname] ', s) s = re.sub('Mrs [\w]+ [A-Z][\w]+ ', '[humanname] ', s) s = re.sub('Mr [\w]+ ', '[humanname] ', s) s = re.sub('Mrs [\w]+ ', '[humanname] ', s) # Remove brackets and contents inside. s = re.sub('\(.*\) ', '', s) s = re.sub('\(', '', s) s = re.sub('\)', '', s) # Extract numbers to reduce the vocab size. s = re.sub('[0-9\.]+ ', '[number] ', s) # Replace i.e., p.m., a.m. to reduce confusion on period. s = re.sub(' i\.e\.', ' for example', s) s = re.sub(' p\.m\.', ' pm', s) s = re.sub(' a\.m\.', ' am', s) # Remove unprintable characters. s = filter(lambda x: x in printable, s) s = s.lower() # For every 3 sentences we cut a new line to simulate a paragraph. # Produce train/validation/test sets by 20:2:78 r = randint(0,50) if r < 10: valid_lines += 1 sep = '\n' if (valid_lines % 3) == 0 else ' ' f_valid.write(s + sep) elif r == 11: test_lines += 1 sep = '\n' if (test_lines % 3) == 0 else ' ' f_test.write(s + sep) else: train_lines += 1 sep = '\n' if (train_lines % 3) == 0 else ' ' f_train.write(s + sep) prep_data('/content/datalab/punctuation/data/*', '/content/datalab/punctuation/datapreped') # We deal with limited punctuations only because of limited training data. PUNCTUATIONS = (u'.', u',', u'?', u'!', u':') # `n` means no punctuation. TARGETS = list(PUNCTUATIONS) + ['n'] # Set vocab size to remove low frequency words. Roughly with 10000 vocab, words with less than three counts are excluded. VOCAB_SIZE = 10000 Helper functions for reading input data. import collections import os import tensorflow as tf def read_words(filename): Read words from file. Args: filename: path to the file to read words from. Returns: Words split by white space. with tf.gfile.GFile(filename, "r") as f: x = f.read().decode("utf-8").replace("\n", " <eos> ").split() if x[-1] != '<eos>': x.append('<eos>') indices = [i for i, w in enumerate(x) if w in PUNCTUATIONS] # The next word after a punctuation is an important signal. We switch the punctuation # with next word so it can be used as part of the context. for i in indices: x[i], x[i+1] = x[i+1], x[i] return x def build_vocab(filename): Build vocabulary from training data file. Args: filename: path to the file to read words from. Returns: A dict with key being words and value being indices. x = read_words(filename) counter = collections.Counter(x) count_pairs = sorted(counter.items(), key=lambda a: (-a[1], a[0])) count_pairs = count_pairs[:VOCAB_SIZE-1] words, _ = list(zip(*count_pairs)) word_to_id = dict(zip(words, range(len(words)))) word_to_id['<unk>'] = VOCAB_SIZE - 1 return word_to_id def file_to_word_and_punc_ids(filename, word_to_id): Produce indices from words in file. x are indices for words, and y are indices for punctuations. Args: filename: path to the file to read words from. word_to_id: the vocab to indices dict. Returns: A pair. First element is the words indices. Second element is the target punctuation indices. x_words = read_words(filename) x_id = [word_to_id[w] if w in word_to_id else word_to_id['<unk>'] for w in x_words] target_to_id = {p:i for i, p in enumerate(TARGETS)} y_words = x_words[1:] + ['padding'] y_puncts = ['n' if elem not in PUNCTUATIONS else elem for elem in y_words] y_id = [target_to_id[p] for p in y_puncts] return x_id, y_id def content_to_word_ids(content, word_to_id): Produce indices from words from a given string. Args: filename: path to the file to read words from. word_to_id: the vocab to indices dict. Returns: Words indices. x = content.decode("utf-8").replace("\n", " <eos> ").split() indices = [i for i, w in enumerate(x) if w in PUNCTUATIONS] for i in indices: x[i], x[i+1] = x[i+1], x[i] x_id = [word_to_id[w] if w in word_to_id else word_to_id['<unk>'] for w in x] return x_id The training model. import tensorflow as tf import json class TrainingConfig(object): init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 50 hidden_size = 150 max_epoch =20 max_max_epoch = 25 keep_prob = 0.5 lr_decay = 0.7 batch_size = 100 class TrainingInput(object): The input data producer. def _make_input_producer(self, raw_data, batch_size, num_steps, name=None): with tf.name_scope(name, "InputProducer"): raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32) data_len = tf.size(raw_data) batch_len = data_len // batch_size data = tf.reshape(raw_data[0 : batch_size * batch_len], [batch_size, batch_len]) epoch_size = (batch_len - 1) // num_steps epoch_size = tf.identity(epoch_size, name="epoch_size") i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue() x = tf.strided_slice(data, [0, i * num_steps], [batch_size, (i + 1) * num_steps]) x.set_shape([batch_size, num_steps]) return x def __init__(self, config, data_x, data_y, name=None): self.epoch_size = ((len(data_x) // config.batch_size) - 1) // config.num_steps self.input_data = self._make_input_producer(data_x, config.batch_size, config.num_steps, name=name) self.targets = self._make_input_producer(data_y, config.batch_size, config.num_steps, name=name) class PuctuationModel(object): The Punctuation training/evaluation model. def __init__(self, is_training, config, input_): self._input = input_ batch_size = config.batch_size num_steps = config.num_steps size = config.hidden_size def lstm_cell(): return tf.contrib.rnn.BasicLSTMCell(size, forget_bias=0.0, state_is_tuple=True) attn_cell = lstm_cell if is_training and config.keep_prob < 1: def attn_cell(): return tf.contrib.rnn.DropoutWrapper(lstm_cell(), output_keep_prob=config.keep_prob) cell = tf.contrib.rnn.MultiRNNCell([attn_cell() for _ in range(config.num_layers)], state_is_tuple=True) self._initial_state = cell.zero_state(batch_size, tf.float32) embedding = tf.get_variable("embedding", [VOCAB_SIZE, size], dtype=tf.float32) inputs = tf.nn.embedding_lookup(embedding, input_.input_data) if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) inputs = tf.unstack(inputs, num=num_steps, axis=1) outputs, state = tf.contrib.rnn.static_rnn(cell, inputs, initial_state=self._initial_state) output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, size]) softmax_w = tf.get_variable("softmax_w", [size, len(TARGETS)], dtype=tf.float32) softmax_b = tf.get_variable("softmax_b", [len(TARGETS)], dtype=tf.float32) logits = tf.matmul(output, softmax_w) + softmax_b self._predictions = tf.argmax(logits, 1) self._targets = tf.reshape(input_.targets, [-1]) loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [logits], [tf.reshape(input_.targets, [-1])], [tf.ones([batch_size * num_steps], dtype=tf.float32)]) self._cost = cost = tf.reduce_sum(loss) / batch_size self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder(tf.float32, shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) @property def input(self): return self._input @property def initial_state(self): return self._initial_state @property def final_state(self): return self._final_state @property def cost(self): return self._cost @property def predictions(self): return self._predictions @property def targets(self): return self._targets @property def lr(self): return self._lr @property def train_op(self): return self._train_op The trainer. import numpy as np def run_epoch(session, model, num_steps, word_to_id, is_eval=False): Runs the model on the given data for one epoch. costs = 0.0 iters = 0 state = session.run(model.initial_state) fetches = { "cost": model.cost, "final_state": model.final_state, "predictions": model.predictions, "targets": model.targets, } if is_eval is False: fetches["train_op"] = model.train_op confusion_matrix = np.zeros(shape=(len(TARGETS),len(TARGETS)), dtype=np.int64) for step in range(model.input.epoch_size): feed_dict = {} # Set the state back to model after each run. for i, (c, h) in enumerate(model.initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h vals = session.run(fetches, feed_dict) cost = vals["cost"] state = vals["final_state"] targets = vals["targets"] predictions = vals['predictions'] for t, p in zip(targets, predictions): confusion_matrix[t][p] += 1 costs += cost iters += num_steps if is_eval is True: for i, t in enumerate(confusion_matrix): print('%s --- total: %d, correct: %d, accuracy: %.3f, ' % (TARGETS[i], sum(t), t[i], float(t[i]) / sum(t))) # Costs are calculated as cross-entropy loss. # Returns perplexity value (https://en.wikipedia.org/wiki/Perplexity), which is a common measurements on language models. return np.exp(costs / iters), confusion_matrix def train(train_data_path, validation_data_path, save_path): Train the model and save a checkpoint at the end. word_to_id = build_vocab(train_data_path) train_data_x, train_data_y = file_to_word_and_punc_ids(train_data_path, word_to_id) valid_data_x, valid_data_y = file_to_word_and_punc_ids(validation_data_path, word_to_id) config = TrainingConfig() with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = TrainingInput(config=config, data_x=train_data_x, data_y=train_data_y, name="TrainInput") with tf.variable_scope("Model", reuse=None, initializer=initializer): train_model = PuctuationModel(is_training=True, config=config, input_=train_input) tf.summary.scalar("Training_Loss", train_model.cost) tf.summary.scalar("Learning_Rate", train_model.lr) with tf.name_scope("Valid"): valid_input = TrainingInput(config=config, data_x=valid_data_x, data_y=valid_data_y, name="ValidInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): valid_model = PuctuationModel(is_training=False, config=config, input_=valid_input) tf.summary.scalar("Validation_Loss", valid_model.cost) sv = tf.train.Supervisor(logdir=save_path) with sv.managed_session() as session: for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0) train_model.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(train_model.lr))) train_perplexity, _ = run_epoch(session, train_model, config.num_steps, word_to_id) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity, _ = run_epoch(session, valid_model, config.num_steps, word_to_id, is_eval=True) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) model_file_prefix = sv.saver.save(session, save_path, global_step=sv.global_step) word_to_id_file = os.path.join(os.path.dirname(save_path), 'word_to_id.json') with open(word_to_id_file, 'w') as outfile: json.dump(word_to_id, outfile) return model_file_prefix # Delete the model directory if it exists so it always trains from beginning. !rm -r -f /content/datalab/punctuation/model model_dir = '/content/datalab/punctuation/model' saved_model_path = model_dir + '/punctuation' model_file_prefix = train( '/content/datalab/punctuation/datapreped/train.txt', '/content/datalab/punctuation/datapreped/valid.txt', saved_model_path) # Start a tensorboard to see the curves in Datalab. from google.datalab.ml import TensorBoard tb = TensorBoard.start(model_dir) from google.datalab.ml import Summary summary = Summary(model_dir) summary.list_events() summary.plot(event_names=['Train/Training_Loss', 'Valid/Validation_Loss']) Run the model with some test data. import os def run_eval(model_file_prefix, test_data_path): Run evaluation on test data. word_to_id_file = os.path.join(os.path.dirname(model_file_prefix), 'word_to_id.json') with open(word_to_id_file, 'r') as f: word_to_id = json.load(f) test_data_x, test_data_y = file_to_word_and_punc_ids(test_data_path, word_to_id) eval_config = TrainingConfig() eval_config.batch_size = 1 eval_config.num_steps = 1 with tf.Graph().as_default(): with tf.name_scope("Test"): test_input = TrainingInput(config=eval_config, data_x=test_data_x, data_y=test_data_y, name="TestInput") with tf.variable_scope("Model", reuse=None): mtest = PuctuationModel(is_training=False, config=eval_config, input_=test_input) logdir=os.path.join(os.path.dirname(model_file_prefix), 'eval') sv = tf.train.Supervisor(logdir=logdir) with sv.managed_session() as session: sv.saver.restore(session, model_file_prefix) test_perplexity, cm_data = run_epoch(session, mtest, 1, word_to_id, is_eval=True) return cm_data from google.datalab.ml import ConfusionMatrix from pprint import pprint cm_data = run_eval(model_file_prefix, '/content/datalab/punctuation/datapreped/test.txt') pprint(cm_data.tolist()) cm = ConfusionMatrix(cm_data, TARGETS) cm.plot() cm_data_puncuations = cm_data.tolist() for i, r in enumerate(cm_data_puncuations): cm_data_puncuations[i] = r[:-1] cm_data_puncuations = cm_data_puncuations[:-1] ConfusionMatrix(cm_data_puncuations, TARGETS[:-1]).plot() import tensorflow as tf class PredictModel(object): The Prediction model. def __init__(self, config): self._input = tf.placeholder(shape=[1, 1], dtype=tf.int64) size = config.hidden_size def lstm_cell(): return tf.contrib.rnn.BasicLSTMCell(size, forget_bias=0.0, state_is_tuple=True) cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(config.num_layers)], state_is_tuple=True) self._initial_state = cell.zero_state(1, tf.float32) embedding = tf.get_variable("embedding", [VOCAB_SIZE, size], dtype=tf.float32) inputs = tf.nn.embedding_lookup(embedding, self._input) inputs = tf.unstack(inputs, num=1, axis=1) outputs, self._final_state = tf.contrib.rnn.static_rnn(cell, inputs, initial_state=self._initial_state) output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, size]) softmax_w = tf.get_variable("softmax_w", [size, len(TARGETS)], dtype=tf.float32) softmax_b = tf.get_variable("softmax_b", [len(TARGETS)], dtype=tf.float32) logits = tf.matmul(output, softmax_w) + softmax_b self._prediction = tf.argmax(logits, 1) @property def input(self): return self._input @property def initial_state(self): return self._initial_state @property def final_state(self): return self._final_state @property def prediction(self): return self._prediction The Predictor that runs the prediction model. import json import os import random class Predictor(object): def __init__(self, model_file_prefix): word_to_id_file = os.path.join(os.path.dirname(model_file_prefix), 'word_to_id.json') with open(word_to_id_file, 'r') as f: self._word_to_id = json.load(f) config = TrainingConfig() with tf.Graph().as_default(): with tf.variable_scope("Model", reuse=None): self._model = PredictModel(config=config) saver = tf.train.Saver() self._session = tf.Session() saver.restore(self._session, model_file_prefix) def _get_predicted_until_punc(self, min_steps, data_x): state = self._session.run(self._model.initial_state) fetches = { "final_state": self._model.final_state, "prediction": self._model.prediction, } predicted_puncs = [] step = 0 for x in data_x: feed_dict = {} for i, (c, h) in enumerate(self._model.initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h feed_dict[self._model.input] = [[x]] vals = self._session.run(fetches, feed_dict) state = vals["final_state"] prediction = vals["prediction"] predicted = TARGETS[prediction[0]] predicted_puncs.append(predicted) step += 1 if predicted != 'n' and step > min_steps: break return predicted_puncs def _apply_puncts_to_original(self, original, inserted): current_index = 0 punc_positions = {} for w in inserted.split(): if w in PUNCTUATIONS: punc_positions[current_index] = w else: current_index += 1 words = [] for i, w in enumerate(original.split() + ['']): if i in punc_positions: words.append(punc_positions[i]) words.append(w) return ' '.join(words) def predict(self, content): Insert punctuations with given string. content = content.strip().lower() for p in PUNCTUATIONS: content = content.replace(' ' + p, '') prediction_source = content prediction_result = '' content = '<eos> ' + content + ' <eos>' min_step = 0 while True: data_x = content_to_word_ids(content, self._word_to_id) puncts = self._get_predicted_until_punc(min_step, data_x) if len(data_x) == len(puncts): content = content.replace('. <eos> ', '').replace(' <eos>', ' ' + puncts[-1]) + '\n' prediction_result = self._apply_puncts_to_original(prediction_source, content) break else: words1 = [self._word_to_id.keys()[self._word_to_id.values().index(data_x[index])] for index in range(len(puncts) - 1)] indices = [i for i, w in enumerate(words1) if w in PUNCTUATIONS] for i in indices: words1[i], words1[i-1] = words1[i-1], words1[i] words2 = [self._word_to_id.keys()[self._word_to_id.values().index(data_x[index])] for index in range(len(puncts) - 1, len(data_x))] all_words = words1 + [puncts[-1]] + words2 content = ' '.join(all_words) min_step = len(puncts) return prediction_source, prediction_result def predict_from_test_file(self, filename, num_random_lines): given a file from test file, pick some random lines and do prediction. num_lines = sum(1 for line in open(filename)) with open(filename) as f: lines = random.sample(f.readlines(), num_random_lines) for line in lines: line = line.strip().lower() source, predicted = self.predict(line) yield line, source, predicted def close(self): self._session.close() predictor = Predictor(model_file_prefix) sources = [ 'i think it is a report which will for the most part be supported by my group', 'so what is the european union doing about it', 'we must work more rapidly towards achieving the targets stipulated ' + 'in the white paper for renewable energy sources as this would bring ' + 'about a massive reduction in greenhouse gases but in common with others ' + ' we too are having to endure the greenhouse effect furthermore we should ' + 'utilise an extraordinary budget line since this is an extraordinarily catastrophic situation', ] for s in sources: source, predicted = predictor.predict(s) print('\n---SOURCE----\n' + source) print('---PREDICTED----\n' + predicted) predictor.close() predictor = Predictor(model_file_prefix) sources = [ 'how are you', 'where do you see yourself in five years', 'last december the european commission proposed updating the existing customs union with ' + 'turkey and extending bilateral trade relations once negotiations have been completed ' + 'the agreement would still have to be approved by the Parliament before it could enter into force', ] for s in sources: source, predicted = predictor.predict(s) print('\n---SOURCE----\n' + source) print('---PREDICTED----\n' + predicted) predictor.close() predictor = Predictor(model_file_prefix) for t, s, p in predictor.predict_from_test_file('/content/datalab/punctuation/datapreped/test.txt', 3): print('\n---SOURCE----\n' + s) print('---PREDICTED----\n' + p) print('---TRUTH----\n' + t) predictor.close() TensorBoard.stop(tb) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Validate lab package version installation Step2: Note Step3: Note Step4: The config.py module configures the default values for the environment specific settings and the default values for the pipeline runtime parameters. Step5: CUSTOM_SERVICE_ACCOUNT - In the gcp console Click on the Navigation Menu. Navigate to IAM &amp; Admin, then to Service Accounts and use the service account starting with prefix - 'tfx-tuner-caip-service-account'. This enables CloudTuner and the Google Cloud AI Platform extensions Tuner component to work together and allows for distributed and parallel tuning backed by AI Platform Vizier's hyperparameter search algorithm. Please see the lab setup README for setup instructions. Step6: Set the compile time settings to first create a pipeline version without hyperparameter tuning Step7: Compile your pipeline code Step8: Note Step9: Hint Step10: To view the status of existing pipeline runs Step11: To retrieve the status of a given run Step12: Important Step13: Compile your pipeline code Step14: Deploy your pipeline container to AI Platform Pipelines with the TFX CLI
<ASSISTANT_TASK:> Python Code: import yaml # Set `PATH` to include the directory containing TFX CLI and skaffold. PATH=%env PATH %env PATH=/home/jupyter/.local/bin:{PATH} !python -c "import tfx; print('TFX version: {}'.format(tfx.__version__))" !python -c "import kfp; print('KFP version: {}'.format(kfp.__version__))" %pip install --upgrade --user tfx==0.25.0 %pip install --upgrade --user kfp==1.0.4 %cd pipeline !ls -la # Use the following command to identify the GCS bucket for metadata and pipeline storage. !gsutil ls #TODO: Set your environment resource settings here for GCP_REGION, ARTIFACT_STORE_URI, ENDPOINT, and CUSTOM_SERVICE_ACCOUNT. GCP_REGION = '' ARTIFACT_STORE_URI = '' ENDPOINT = '' CUSTOM_SERVICE_ACCOUNT = '' PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0] # Set your resource settings as environment variables. These override the default values in pipeline/config.py. %env GCP_REGION={GCP_REGION} %env ARTIFACT_STORE_URI={ARTIFACT_STORE_URI} %env CUSTOM_SERVICE_ACCOUNT={CUSTOM_SERVICE_ACCOUNT} %env PROJECT_ID={PROJECT_ID} PIPELINE_NAME = 'tfx_covertype_continuous_training' MODEL_NAME = 'tfx_covertype_classifier' DATA_ROOT_URI = 'gs://workshop-datasets/covertype/small' CUSTOM_TFX_IMAGE = 'gcr.io/{}/{}'.format(PROJECT_ID, PIPELINE_NAME) RUNTIME_VERSION = '2.3' PYTHON_VERSION = '3.7' USE_KFP_SA=False ENABLE_TUNING=False %env PIPELINE_NAME={PIPELINE_NAME} %env MODEL_NAME={MODEL_NAME} %env DATA_ROOT_URI={DATA_ROOT_URI} %env KUBEFLOW_TFX_IMAGE={CUSTOM_TFX_IMAGE} %env RUNTIME_VERSION={RUNTIME_VERSION} %env PYTHON_VERIONS={PYTHON_VERSION} %env USE_KFP_SA={USE_KFP_SA} %env ENABLE_TUNING={ENABLE_TUNING} !tfx pipeline compile --engine kubeflow --pipeline_path runner.py # TODO: Your code here to use the TFX CLI to deploy your pipeline image to AI Platform Pipelines. # TODO: your code here to trigger a pipeline run with the TFX CLI !tfx run list --pipeline_name {PIPELINE_NAME} --endpoint {ENDPOINT} RUN_ID='[YOUR RUN ID]' !tfx run status --pipeline_name {PIPELINE_NAME} --run_id {RUN_ID} --endpoint {ENDPOINT} ENABLE_TUNING=True %env ENABLE_TUNING={ENABLE_TUNING} !tfx pipeline compile --engine kubeflow --pipeline_path runner.py #TODO: your code to update your pipeline <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Are there certain populations we're not getting reports from? Step2: From the data, it seems that there's not much underrepresentation by gender. There are only around a thousand less males than females in a dataset of 28,000. Age seems to be a bigger issue. There appears to be a lack of representation of older people using the API. Given that older folks may be less likely to self report, or if they wanted to self report, they may not be tech-savvy enough to use with a web interface. My assumption that people over 70 are probably experience product harm at a higher rate and are not reporting this. Step3: This is actually preplexing, so I decided to investigate further by analyzing the complaints filed for the "Footwear" category. To do this, I created a Word2Vec model that uses a convolution neural network for text analysis. This process maps a word and the linguistic context it is in to be able to calculate similarity between words. The purpose of this is to find words that related to each other. Rather than doing a simple cross tab of product categories, I can ingest the complaints and map out their relationship. For instance, using the complaints that resulted in bodily harm, I found that footwear was associated with pain and walking. It seems that there is injuries related to Sketcher sneakers specifically since it was the only brand that showed up enough to be included in the model's dictionary. In fact, there was a lawsuit regarding Sketchers and their toning shoes Step4: Although, while it is label to have no injury, it does not necessarily mean that we can't take precaution. What I did was take the same approach as the previous model, I subsetted the data to only complaints that had "no injury" and ran a model to examine words used. From the analysis, we see that the word to, was, and it were the top three words. At first glance, it may seem that these words are meaningless, however if we examine words that are similar to it, we can start seeing a connection. Step5: Who are the people who are actually reporting to us? Step6: However after doing this, we still have around 13,000 people with an age of zero, whether it is that they did not fill in the age or that the incident involves infant is still unknown but looking at the distribution betweeen of the product that are affecting people with an age of 0 and the overall dataset, it appears that null values in the age range represents people who did not fill out an age when reporting Step7: Question 2.2 Step8: This shows that incidents where there are actually injuries and medical attention was given was that in footwear, which was weird. To explore this, I created a Word2Vec model that maps out how certain words relate to each other. To train the model, I used the comments that were made from the API. This will train a model and help us identify words that are similar. For instance, if you type in foot, you will get left and right as these words are most closely related to the word foot. However after some digging around, I found out that the word "walking" was associated with "painful". I have some reason to believe that there are orthopedic injuries associated with shoes and people have been experience pain while walking with Sketchers that were supposed to tone up their bodies and having some instability or balance issues. Step9: Question 2.3
<ASSISTANT_TASK:> Python Code: import pickle import operator import numpy as np import pandas as pd import gensim.models data = pickle.load(open('/home/datauser/cpsc/data/processed/cleaned_api_data', 'rb')) data.head() pd.crosstab(data['GenderDescription'], data['age_range']) #removing minor harm incidents no_injuries = ['Incident, No Injury', 'Unspecified', 'Level of care not known', 'No Incident, No Injury', 'No First Aid or Medical Attention Received'] damage = data.ix[~data['SeverityTypePublicName'].isin(no_injuries), :] damage.ProductCategoryPublicName.value_counts()[0:9] data.SeverityTypeDescription.value_counts() model.most_similar('was') data.GenderDescription.value_counts() data['age'] = map(lambda x: x/12, data['VictimAgeInMonths']) labels = ['under 10', '10-20', '20-30', '30-40', '40-50', '50-60', '60-70','70-80', '80-90', '90-100', 'over 100'] data['age_range'] = pd.cut(data['age'], bins=np.arange(0,120,10), labels=labels) data['age_range'][data['age'] > 100] = 'over 100' counts = data['age_range'].value_counts() counts.sort() counts #Top products affect by people with 0 age data.ix[data['age_range'].isnull(), 'ProductCategoryPublicName'].value_counts()[0:9] #top products that affect people overall data.ProductCategoryPublicName.value_counts()[0:9] #overall products listed data.ProductCategoryPublicName.value_counts()[0:9] #removing minor harm incidents no_injuries = ['Incident, No Injury', 'Unspecified', 'Level of care not known', 'No Incident, No Injury', 'No First Aid or Medical Attention Received'] damage = data.ix[~data['SeverityTypePublicName'].isin(no_injuries), :] damage.ProductCategoryPublicName.value_counts()[0:9] model = gensim.models.Word2Vec.load('/home/datauser/cpsc/models/footwear') model.most_similar('walking') model.most_similar('injury') model.most_similar('instability') model = gensim.models.Word2Vec.load('/home/datauser/cpsc/models/severity') items_dict = {} for word, vocab_obj in model.vocab.items(): items_dict[word] = vocab_obj.count sorted_dict = sorted(items_dict.items(), key=operator.itemgetter(1)) sorted_dict.reverse() sorted_dict[0:5] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <center>Find Simulations and Load data Step2: <center>Recompose the Waveforms Step3: <center>Plot the amplitudes to verify correct scaling between GT and SXS waveforms
<ASSISTANT_TASK:> Python Code: # Setup ipython environment %load_ext autoreload %autoreload 2 %matplotlib inline # Setup plotting backend import matplotlib as mpl mpl.rcParams['lines.linewidth'] = 0.8 mpl.rcParams['font.family'] = 'serif' mpl.rcParams['font.size'] = 12 mpl.rcParams['axes.labelsize'] = 20 from matplotlib.pyplot import * # Import useful things from nrutils import scsearch,gwylm from numpy import array # Search for a simulation. Hopefully the results will be from different codes. NOTE that this could be done more manually so that we don't "hope" but know. A = scsearch( q=[1,4], nonspinning=True, verbose=True ) # Select which of the search results we wish to keep U,V = A[77],A[131] # Load the modes u = gwylm(U,lmax=2,verbose=True) v = gwylm(V,lmax=2,verbose=True) # Plot the waveforms u.plot(); v.plot() # theta,phi = 0,0 a,b = u.recompose(theta,phi,kind='strain'),v.recompose(theta,phi,kind='strain') figure( figsize=2*array([5,3]) ) plot( a.t - a.intrp_t_amp_max, a.amp ) plot( b.t - b.intrp_t_amp_max, b.amp ) gca().set_yscale("log", nonposy='clip') ylim([1e-5,1e-1]) xlim([-400,100]) title('the amplitudes should be approx. the same') a.plot();b.plot(); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Translation Step3: Explore the Data Step6: Implement Preprocessing Function Step8: Preprocess all the data and save it Step10: Check Point Step12: Check the Version of TensorFlow and Access to GPU Step15: Build the Neural Network Step18: Process Decoding Input Step21: Encoding Step24: Decoding - Training Step27: Decoding - Inference Step30: Build the Decoding Layer Step33: Build the Neural Network Step34: Neural Network Training Step36: Build the Graph Step39: Train Step41: Save Parameters Step43: Checkpoint Step46: Sentence to Sequence Step48: Translate
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper import problem_unittests as tests source_path = 'data/small_vocab_en' target_path = 'data/small_vocab_fr' source_text = helper.load_data(source_path) target_text = helper.load_data(target_path) view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) sentences = source_text.split('\n') word_counts = [len(sentence.split()) for sentence in sentences] print('Number of sentences: {}'.format(len(sentences))) print('Average number of words in a sentence: {}'.format(np.average(word_counts))) print() print('English sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) print() print('French sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) # TODO: Implement Function source_id_text = [[source_vocab_to_int[word] for word in sentence.split()] for sentence in source_text.split('\n')] target_id_text = [[target_vocab_to_int[word] for word in sentence.split() + ['<EOS>']] for sentence in target_text.split('\n')] return source_id_text, target_id_text DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_text_to_ids(text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL helper.preprocess_and_save_data(source_path, target_path, text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np import helper (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) in [LooseVersion('1.0.0'), LooseVersion('1.0.1')], 'This project requires TensorFlow version 1.0 You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def model_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate, keep probability) # TODO: Implement Function input_ = tf.placeholder (dtype=tf.int32, shape=[None, None], name='input') targets = tf.placeholder (dtype=tf.int32, shape=[None, None], name='targets') lr = tf.placeholder (dtype=tf.float32, name='learning_rate') keep_prob = tf.placeholder (dtype=tf.float32, name='keep_prob') return (input_, targets, lr, keep_prob) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def process_decoding_input(target_data, target_vocab_to_int, batch_size): Preprocess target data for decoding :param target_data: Target Placeholder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data # TODO: Implement Function ending = tf.strided_slice (target_data, [0, 0], [batch_size, -1], [1, 1]) decoding_input = tf.concat ([tf.fill ([batch_size, 1], target_vocab_to_int['<GO>']), ending], 1) return decoding_input DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_process_decoding_input(process_decoding_input) def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob): Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :return: RNN state # TODO: Implement Function cell = tf.contrib.rnn.BasicLSTMCell (rnn_size) cell = tf.contrib.rnn.DropoutWrapper (cell, output_keep_prob = keep_prob) encoding_cell = tf.contrib.rnn.MultiRNNCell ([cell] * num_layers) _, state = tf.nn.dynamic_rnn (encoding_cell, rnn_inputs, dtype=tf.float32) return state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_encoding_layer(encoding_layer) def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob): Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param sequence_length: Sequence Length :param decoding_scope: TenorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Train Logits # TODO: Implement Function decoder_fn_train = tf.contrib.seq2seq.simple_decoder_fn_train (encoder_state) dec_cell = tf.contrib.rnn.DropoutWrapper (dec_cell, keep_prob) prediction, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder (dec_cell, decoder_fn_train, dec_embed_input, sequence_length, scope=decoding_scope) logits = output_fn (prediction) # Alternative implementation: # decoder_fn_train = tf.contrib.seq2seq.simple_decoder_fn_train (encoder_state) # prediction, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder (dec_cell, decoder_fn_train, dec_embed_input, sequence_length, scope=decoding_scope) # logits = output_fn (prediction) # logits = tf.nn.dropout (logits, keep_prob=keep_prob) return logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_train(decoding_layer_train) def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size, decoding_scope, output_fn, keep_prob): Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param maximum_length: The maximum allowed time steps to decode :param vocab_size: Size of vocabulary :param decoding_scope: TensorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Inference Logits # TODO: Implement Function decoder_fn_infer = tf.contrib.seq2seq.simple_decoder_fn_inference (output_fn, encoder_state, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size) inference_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder (dec_cell, decoder_fn_infer, scope=decoding_scope) return inference_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_infer(decoding_layer_infer) def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob): Create decoding layer :param dec_embed_input: Decoder embedded input :param dec_embeddings: Decoder embeddings :param encoder_state: The encoded state :param vocab_size: Size of vocabulary :param sequence_length: Sequence Length :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param keep_prob: Dropout keep probability :return: Tuple of (Training Logits, Inference Logits) # TODO: Implement Function cell = tf.contrib.rnn.BasicLSTMCell (rnn_size) cell = tf.contrib.rnn.DropoutWrapper (cell, output_keep_prob=keep_prob) # no need for dropout here? decoding_cell = tf.contrib.rnn.MultiRNNCell ([cell] * num_layers) with tf.variable_scope ('decoding') as decoding_scope: output_fn = lambda x: tf.contrib.layers.fully_connected (x, vocab_size, scope=decoding_scope) training_logits = decoding_layer_train (encoder_state, decoding_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob) with tf.variable_scope ('decoding', reuse=True) as decoding_scope: inference_logits = decoding_layer_infer (encoder_state, decoding_cell, dec_embeddings, target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'], sequence_length, vocab_size, decoding_scope, output_fn, keep_prob) return (training_logits, inference_logits) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer(decoding_layer) def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param sequence_length: Sequence Length :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training Logits, Inference Logits) # TODO: Implement Function enc_embed_input = tf.contrib.layers.embed_sequence (input_data, embed_dim=enc_embedding_size, vocab_size=source_vocab_size) encoder_state = encoding_layer (enc_embed_input, rnn_size, num_layers, keep_prob) decoding_input = process_decoding_input (target_data, target_vocab_to_int, batch_size) # Decoder Embedding dec_embeddings = tf.Variable (tf.random_uniform ([target_vocab_size, dec_embedding_size])) dec_embed_input = tf.nn.embedding_lookup (dec_embeddings, decoding_input) training_logits, inference_logits = decoding_layer (dec_embed_input, dec_embeddings, encoder_state, target_vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob) return training_logits, inference_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_seq2seq_model(seq2seq_model) # Number of Epochs epochs = 10 # Batch Size batch_size = 256 # RNN Size rnn_size = 300 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 128 decoding_embedding_size = 128 # Learning Rate learning_rate = 0.001 # Dropout Keep Probability keep_probability = 0.6 DON'T MODIFY ANYTHING IN THIS CELL save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_source_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob = model_inputs() sequence_length = tf.placeholder_with_default(max_source_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model( tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) tf.identity(inference_logits, 'logits') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( train_logits, targets, tf.ones([input_shape[0], sequence_length])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL import time def get_accuracy(target, logits): Calculate accuracy max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1]), (0,0)], 'constant') return np.mean(np.equal(target, np.argmax(logits, 2))) train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = helper.pad_sentence_batch(source_int_text[:batch_size]) valid_target = helper.pad_sentence_batch(target_int_text[:batch_size]) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch) in enumerate( helper.batch_data(train_source, train_target, batch_size)): start_time = time.time() _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, sequence_length: target_batch.shape[1], keep_prob: keep_probability}) batch_train_logits = sess.run( inference_logits, {input_data: source_batch, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_source, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(np.array(valid_target), batch_valid_logits) end_time = time.time() print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params(save_path) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() load_path = helper.load_params() def sentence_to_seq(sentence, vocab_to_int): Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids # TODO: Implement Function print ('{}'.format (sentence)) sequence = [vocab_to_int[word] if word in vocab_to_int else vocab_to_int['<UNK>'] for word in sentence.lower().split()] print ('{}'.format (sequence)) return sequence DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_sentence_to_seq(sentence_to_seq) #translate_sentence = 'he saw a old yellow truck .' # il a vu un vieux camion jaune #translate_sentence = 'she likes peaches , limes , and mangoes .' translate_sentence = 'night .' #translate_sentence = 'that cat was my most loved animal .' #translate_sentence = 'he never saw such a wonderful car .' #translate_sentence = 'he never saw that wonderful car .' DON'T MODIFY ANYTHING IN THIS CELL translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('logits:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence], keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in np.argmax(translate_logits, 1)])) print(' French Words: {}'.format([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)])) print (' '.join ([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 3. When to use Python? Step2: 5. Python as a calculator Step3: 6. Variables & Types Step4: 7. Variable Assignment Step5: 8. Calculations with variables Step6: 9. Other variable types Step7: 10. Guess the type Step8: 12. Type conversion
<ASSISTANT_TASK:> Python Code: # Example, do not modify! print(5 / 8) # Put code below here print(7 + 10) # Just testing division print(5 / 8) # Addition works too print(7 + 10) # Addition and subtraction print(5 + 5) print(5 - 5) # Multiplication and division print(3 * 5) print(10 / 2) # Exponentiation print(4 ** 2) # Modulo print(18 % 7) # How much is your $100 worth after 7 years? print(100 * (1.1 ** 7)) height = 1.79 weight = 68.7 height 68.7 / 1.79 ** 2 weight / height ** 2 bmi = weight / height ** 2 bmi height = 1.79 weight = 74.2 bmi = weight / height ** 2 print(bmi) type(bmi) day_of_week = 5 type(day_of_week) x = "body mass index" y = 'this works too' type(x) z = True type(z) 2 + 3 'ab' +'cd' # Create a variable savings savings = 100 # Print out savings print(savings) # Create a variable savings savings = 100 # Create a variable factor factor = 1.10 # Calculate result result = savings * factor ** 7 # Print out result print(result) # Create a variable desc desc = 'compound interest' # Create a variable profitable profitable = True # Several variables to experiment with savings = 100 factor = 1.1 desc = "compound interest" # Assign product of factor and savings to year1 year1 = savings * factor # Print the type of year1 print(type(year1)) # Assign sum of desc and desc to doubledesc doubledesc = desc + desc # Print out doubledesc print(doubledesc) # Definition of savings and result savings = 100 result = 100 * 1.10 ** 7 # Fix the printout print("I started with $" + str(savings) + " and now have $" + str(result) + ". Awesome!") # Definition of pi_string pi_string = "3.1415926" # Convert pi_string into float: pi_float pi_float = float(pi_string) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Numpy has a really handy built-in function for padding images called pad. The required inputs are the array to be padded, the size of the pad region (in each direction), and the nature of the padding (lots of interpolation options are available, but we just need a constant value). The default for a constant value is to propagate the values at the edges outward, but we want in this case to draw a clear distinction between where we have data and where we don't, so we can set the padded region values to some specific constant value. Often astronomers pad arrays with either zeros or NaNs, but NaNs can be problematic when executing the next step (shifting the images) and zero is too close to the actual data values in our sample image below to stand out, so I've chosen an arbitrary value below based solely on its ability to stand out relative to the rest of the colorbar so that I can tell where the padded regions is. Step2: The next thing that we'd want to do with padded images is to shift the image to some common center so that it can be combined with other images. Step3: One last thing we may wish to do before combining is to replace our arbitrarily set constant pad values with NaNs so that when we combine images, these won't be treated as equal to the real values in the other parts of the array. This replacement is pretty easy in python using the following handy syntax. Because the shifting of the array is done via interpolation, the padded region values will no longer all be exactly the same. For that reason, you will often need to tweak the value below which you choose to replace pixels with NaNs to coincide with the padded region. To wrap your brain around this a bit, try changing the value after the <= to 0.001 and/or 0.0005 below. Before doing so, you'll need to reexecute the cell above that contains newarr2 = interp.shift(newarr,(2.5,4.5), cval=-0.001) in order to refresh the array with a clean version. Step4: Exercise 4
<ASSISTANT_TASK:> Python Code: # The standard fare: import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline # Recall our use of this module to work with FITS files in Lab 4: from astropy.io import fits #A dummy image - just a Gaussian PSF with a standard deviation of 5 pixels import astropy.convolution as conv gauss = conv.Gaussian2DKernel(stddev=5) gauss.shape newarr = np.pad(gauss,5,'constant', constant_values=-0.001) newarr.shape plt.imshow(newarr) plt.colorbar() import scipy.ndimage.interpolation as interp newarr2 = interp.shift(newarr,(2.5,4.5), cval=-0.001) plt.imshow(newarr2) plt.colorbar() newarr2[newarr2 <= -0.0001] = np.nan plt.imshow(newarr2) plt.colorbar() #your code goes here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Target distribution Step2: Heat bath Step3: SA algorithm Step4: Run experiments
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib matplotlib.use("nbagg") import matplotlib.pyplot as plt from IPython import display from mpl_toolkits.mplot3d import Axes3D !mkdir figures !mkdir scripts %cd /content/scripts !wget -q https://raw.githubusercontent.com/probml/pyprobml/master/scripts/pyprobml_utils.py import pyprobml_utils as pml # Generate a pdf # the following steps generate a pdf; this is equivalent to the function "peaks(n)" in matlab n = 100 # number of dimension pdf = np.zeros([n, n]) sigma = np.zeros([n, n]) s = np.zeros([n, n]) x = -3.0 for i in range(0, n): y = -3.0 for j in range(0, n): pdf[j, i] = ( 3.0 * (1 - x) ** 2 * np.exp(-(x**2) - (y + 1) ** 2) - 10.0 * (x / 5 - x**3 - y**5) * np.exp(-(x**2) - y**2) - 1.0 / 3 * np.exp(-((x + 1) ** 2) - y**2) ) if pdf[j, i] < 0: pdf[j, i] = pdf[j, i] * ( -1 ) # in contrast to the peaks function: all negative values are multiplied by (-1) y = y + 6.0 / (n - 1) x = x + 6.0 / (n - 1) pdf = pdf / pdf.max() energy = -np.log(pdf) # Plot the 3D plot of pdf # -------------------------- X = np.arange(0, 100 + 100.0 / (n - 1), 100.0 / (n - 1)) Y = np.arange(0, 100 + 100.0 / (n - 1), 100.0 / (n - 1)) fig0 = plt.figure() ax = fig0.gca(projection="3d") X, Y = np.meshgrid(X, Y) surf = ax.plot_surface(Y, X, pdf, rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0.1) # plt.gca().invert_xaxis() plt.tight_layout() pml.savefig("sim_anneal_2d_peaks.pdf") plt.show() # Plot the 3D plot of Energy function # -------------------------- X = np.arange(0, 100 + 100.0 / (n - 1), 100.0 / (n - 1)) Y = np.arange(0, 100 + 100.0 / (n - 1), 100.0 / (n - 1)) fig0 = plt.figure() ax = fig0.gca(projection="3d") X, Y = np.meshgrid(X, Y) surf = ax.plot_surface(Y, X, energy / energy.max(), rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0.1) # plt.gca().invert_xaxis() plt.tight_layout() pml.savefig("sim_anneal_2d_energy.pdf") plt.show() Tplots = 10 # initial temperature for the plots stepT = 4 # how many steps should the Temperature be *0.2 for for i in range(0, stepT): sigma = np.exp(-(energy) / Tplots) sigma = sigma / sigma.max() ttl = "T={:0.2f}".format(Tplots) Tplots = Tplots * 0.2 X = np.arange(0, 100 + 100.0 / (n - 1), 100.0 / (n - 1)) Y = np.arange(0, 100 + 100.0 / (n - 1), 100.0 / (n - 1)) fig = plt.figure() ax = fig.gca(projection="3d") X, Y = np.meshgrid(X, Y) ax.set_title(ttl) ax.plot_surface(Y, X, sigma, rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0, antialiased=False) # plt.gca().invert_xaxis() plt.tight_layout() pml.savefig(f"sim_anneal_2d_cooled{i}.pdf") plt.show() def sim_anneal(proposal="gaussian", sigma=10): np.random.seed(42) xcur = np.array([np.floor(np.random.uniform(0, 100)), np.floor(np.random.uniform(0, 100))]) xcur = xcur.astype(int) ns = 300 # number of samples to keep T = 1 # start temperature alpha = 0.99999 # cooling schedule alpha = 0.99 # cooling schedule # list of visited points, temperatures, probabilities x_hist = xcur # will be (N,2) array prob_hist = [] temp_hist = [] nreject = 0 iis = 0 # number of accepted points npp = 0 # num proposed points while npp < ns: npp = npp + 1 if proposal == "uniform": xnew = np.array([np.floor(np.random.uniform(0, 100)), np.floor(np.random.uniform(0, 100))]) elif proposal == "gaussian": xnew = xcur + np.random.normal(size=2) * sigma xnew = np.maximum(xnew, 0) xnew = np.minimum(xnew, 99) else: raise ValueError("Unknown proposal") xnew = xnew.astype(int) # compare energies Ecur = energy[xcur[0], xcur[1]] Enew = energy[xnew[0], xnew[1]] deltaE = Enew - Ecur # print([npp, xcur, xnew, Ecur, Enew, deltaE]) temp_hist.append(T) T = alpha * T P = np.exp(-1.0 * deltaE / T) P = min(1, P) test = np.random.uniform(0, 1) if test <= P: xcur = xnew iis = iis + 1 else: nreject += 1 x_hist = np.vstack((x_hist, xcur)) prob_hist.append(pdf[xcur[0], xcur[1]]) npp = npp + 1 print(f"nproposed {npp}, naccepted {iis}, nreject {nreject}") return x_hist, prob_hist, temp_hist proposals = {"gaussian", "uniform"} x_hist = {} prob_hist = {} temp_hist = {} for proposal in proposals: print(proposal) x_hist[proposal], prob_hist[proposal], temp_hist[proposal] = sim_anneal(proposal=proposal) for proposal in proposals: plt.figure() plt.plot(temp_hist[proposal]) plt.title("temperature vs time") plt.tight_layout() pml.savefig(f"sim_anneal_2d_temp_vs_time_{proposal}.pdf") plt.show() for proposal in proposals: plt.figure() plt.plot(prob_hist[proposal]) plt.xlabel("iteration") plt.ylabel("probability") plt.tight_layout() pml.savefig(f"sim_anneal_2d_prob_vs_time_{proposal}.pdf") plt.show() # Plot points visited for proposal in proposals: probs = prob_hist[proposal] xa = x_hist[proposal] f1, ax = plt.subplots() ax.imshow(pdf.transpose(), aspect="auto", extent=[0, 100, 100, 0], interpolation="none") # Maximum value achieved ploted with white cirlce # maxi = np.argmax(probs) # index of best model # ax.plot(xa[maxi,0],xa[maxi,1],'wo', markersize=10) # Starting point with white cirlce ax.plot(xa[0, 0], xa[0, 1], "wo", markersize=10) # Global maximm with red cirlce ind = np.unravel_index(np.argmax(pdf, axis=None), pdf.shape) ax.plot(ind[0], ind[1], "ro", markersize=10) ax.plot(xa[:, 0], xa[:, 1], "w+") # Plot the steps with white + ax.set_ylabel("y") ax.set_xlabel("x") plt.tight_layout() pml.savefig(f"sim_anneal_2d_samples_{proposal}.pdf") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import section specific modules Step3: 1.9 A brief introduction to interferometry and its history Step4: This function draws a double-slit setup, with a light source at position $p$ (in fact the function can render multiple sources, but we'll only use it for one source for the moment). The dotted blue line shows the optical axis ($p=0$). The sine wave (schematically) shows the wavelength. (Note that the units here are arbitrary, since it is only geometry relative to wavelength that determines the results). The black lines show the path of the light waves through the slits and onto the screen at the right. The strip on the right schematically renders the resulting interference pattern, and the red curve shows a cross-section through the pattern. Step5: 1.9.4 From the double-slit box to an interferometer Step6: Note that long baselines are very sensitive to change in source position, while short baselines are less sensitive. As we'll learn in Chapter 4, the spatial resolution (i.e. the distance at which we can distinguish sources) of an interfrometer is given by $\lambda/B$ , while the spatial resolution of a conventional telescope is given by $\lambda/D$, where $D$ is the dish (or mirror) aperture. This is a fortunate fact, as in practice it is much cheaper to build long baselines than large apertures! Step7: On the other hand, using a shorter baseline resolves the ambiguity Step8: Modern interferometers exploit this by using an array of elements, which provides a whole range of possible baselines. Step9: So we can already use our double-slit box to infer something about the structure of the light source. Note that with two sources of equal intensity, it is possible to have the interference pattern almost cancel out on any one baseline -- but never on all baselines at once Step10: Now, let us simulate an extended source, by giving the simulator an array of closely spaced point-like sources. Try playing with the extent slider. What's happening here is that the many interference patterns generated by each little part of the extended source tend to "wash out" each other, resulting in a net loss of amplitude in the pattern. Note also how each particular baseline length is sensitive to a particular range of source sizes. Step11: We can therefore measure source size by measuring the reduction in the amplitude of the interference pattern Step12: In fact historically, this was the first application of interferometry in astronomy. In a famous experiment in 1920, a Michelson interferometer installed at Mount Wilson Observatory was used to measure the diameter of the red giant star Betelgeuse. Step13: This simple fact has led to many other applications for interferometers, from geodetic VLBI (where continental drift is measured by measuring extremely accurate antenna positions via radio interferometry of known radio sources), to the recent gravitational wave detection by LIGO (where the light source is a laser, and the interference pattern is used to measure miniscule distortions in space-time -- and thus the geometry of the interferometer -- caused by gravitational waves). Step14: However, as soon as we take a measurement on another baseline, the difference becomes apparent Step16: With a larger number of baselines, we can gather enough information to reconstruct an image of the sky. This is because each baseline essentially measures one Fourier component of the sky brightness distribution (Chapter 4 will explain this in more detail); and once we know the Fourier components, we can compute a Fourier transform in order to recover the sky image. The advent of sufficiently powerful computers in the late 1960s made this technique practical, and turned radio interferometers from exotic contraptions into generic imaging instruments. With a few notable exceptions, modern radio interferometry is aperture synthesis. Step17: We have modified the setup as follows. First, the source is now infinitely distant, so we define the source position in terms of the angle of arrival of the incoming wavefront (with 0 meaning on-axis, i.e. along the vertical axis). We now define the baseline in terms of wavelengths. The phase difference of the wavefront arriving at the two arms of the interferometer is completely defined in terms of the angle of arrival. The two "rays" entering the outer arms of the interferometer indicate the angle of arrival. Step18: And here's the same experiment for two sources Step19: A.1 The Betelgeuse size measurement
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline from IPython.display import HTML HTML('../style/course.css') #apply general CSS from IPython.display import display from ipywidgets import interact HTML('../style/code_toggle.html') def double_slit (p0=[0],a0=[1],baseline=1,d1=5,d2=5,wavelength=.1,maxint=None): Renders a toy dual-slit experiment. 'p0' is a list or array of source positions (drawn along the vertical axis) 'a0' is an array of source intensities 'baseline' is the distance between the slits 'd1' and 'd2' are distances between source and plate and plate and screen 'wavelength' is wavelength 'maxint' is the maximum intensity scale use to render the fringe pattern. If None, the pattern is auto-scaled. Maxint is useful if you want to render fringes from multiple invocations of double_slit() into the same intensity scale, i.e. for comparison. ## setup figure and axes plt.figure(figsize=(20, 5)) plt.axes(frameon=False) plt.xlim(-d1-.1, d2+2) and plt.ylim(-1, 1) plt.xticks([]) and plt.yticks([]) plt.axhline(0, ls=':') baseline /= 2. ## draw representation of slits plt.arrow(0, 1,0, baseline-1, lw=0, width=.1, head_width=.1, length_includes_head=True) plt.arrow(0,-1,0, 1-baseline, lw=0, width=.1, head_width=.1, length_includes_head=True) plt.arrow(0, 0,0, baseline, lw=0, width=.1, head_width=.1, length_includes_head=True) plt.arrow(0, 0,0, -baseline, lw=0, width=.1, head_width=.1, length_includes_head=True) ## draw representation of lightpath from slits to centre of screen plt.arrow(0, baseline,d2,-baseline, length_includes_head=True) plt.arrow(0,-baseline,d2, baseline, length_includes_head=True) ## draw representation of sinewave from the central position xw = np.arange(-d1, -d1+(d1+d2)/4, .01) yw = np.sin(2*np.pi*xw/wavelength)*.1 + (p0[0]+p0[-1])/2 plt.plot(xw,yw,'b') ## 'xs' is a vector of x cordinates on the screen ## and we accumulate the interference pattern for each source into 'pattern' xs = np.arange(-1, 1, .01) pattern = 0 total_intensity = 0 ## compute contribution to pattern from each source position p for p,a in np.broadcast(p0,a0): plt.plot(-d1, p, marker='o', ms=10, mfc='red', mew=0) total_intensity += a if p == p0[0] or p == p0[-1]: plt.arrow(-d1, p, d1, baseline-p, length_includes_head=True) plt.arrow(-d1, p, d1,-baseline-p, length_includes_head=True) # compute the two pathlenghts path1 = np.sqrt(d1**2 + (p-baseline)**2) + np.sqrt(d2**2 + (xs-baseline)**2) path2 = np.sqrt(d1**2 + (p+baseline)**2) + np.sqrt(d2**2 + (xs+baseline)**2) diff = path1 - path2 # caccumulate interference pattern from this source pattern = pattern + a*np.cos(2*np.pi*diff/wavelength) maxint = maxint or total_intensity # add fake axis to interference pattern just to make it a "wide" image pattern_image = pattern[:,np.newaxis] + np.zeros(10)[np.newaxis,:] plt.imshow(pattern_image, extent=(d2,d2+1,-1,1), cmap=plt.gray(), vmin=-maxint, vmax=maxint) # make a plot of the interference pattern plt.plot(d2+1.5+pattern/(maxint*2), xs, 'r') plt.show() # show patern for one source at 0 double_slit(p0=[0]) interact(lambda baseline,wavelength:double_slit(p0=[0],baseline=baseline,wavelength=wavelength), baseline=(0.1,2,.01),wavelength=(.05,.2,.01)) and None interact(lambda position,baseline,wavelength:double_slit(p0=[position],baseline=baseline,wavelength=wavelength), position=(-1,1,.01),baseline=(0.1,2,.01),wavelength=(.05,.2,.01)) and None double_slit([0],baseline=1.5,wavelength=0.1) double_slit([0.69],baseline=1.5,wavelength=0.1) double_slit([0],baseline=0.5,wavelength=0.1) double_slit([0.69],baseline=0.5,wavelength=0.1) interact(lambda position,intensity,baseline,wavelength: double_slit(p0=[0,position],a0=[1,intensity],baseline=baseline,wavelength=wavelength), position=(-1,1,.01),intensity=(.2,1,.01),baseline=(0.1,2,.01),wavelength=(.01,.2,.01)) and None double_slit(p0=[0,0.25],baseline=1,wavelength=0.1) double_slit(p0=[0,0.25],baseline=1.5,wavelength=0.1) interact(lambda extent,baseline,wavelength: double_slit(p0=np.arange(-extent,extent+.01,.01),baseline=baseline,wavelength=wavelength), extent=(0,1,.01),baseline=(0.1,2,.01),wavelength=(.01,.2,.01)) and None double_slit(p0=[0],baseline=1,wavelength=0.1) double_slit(p0=np.arange(-0.2,.21,.01),baseline=1,wavelength=0.1) interact(lambda d1,d2,position,extent: double_slit(p0=np.arange(position-extent,position+extent+.01,.01),d1=d1,d2=d2), d1=(1,5,.1),d2=(1,5,.1), position=(-1,1,.01),extent=(0,1,.01)) and None double_slit(p0=[0], a0=[0.4], maxint=2) double_slit(p0=[0,0.25], a0=[1, 0.6], maxint=2) double_slit(p0=np.arange(-0.2,.21,.01), a0=.05, maxint=2) double_slit(p0=[0], a0=[0.4], baseline=0.5, maxint=2) double_slit(p0=[0,0.25], a0=[1, 0.6], baseline=0.5, maxint=2) double_slit(p0=np.arange(-0.2,.21,.01), a0=.05, baseline=0.5, maxint=2) def michelson (p0=[0],a0=[1],baseline=50,maxbaseline=100,extent=0,d1=9,d2=1,d3=.2,wavelength=.1,fov=5,maxint=None): Renders a toy Michelson interferometer with an infinitely distant (astronomical) source 'p0' is a list or array of source positions (as angles, in degrees). 'a0' is an array of source intensities 'extent' are source extents, in degrees 'baseline' is the baseline, in lambdas 'maxbaseline' is the max baseline to which the plot is scaled 'd1' is the plotted distance between the "sky" and the interferometer arms 'd2' is the plotted distance between arms and screen, in plot units 'd3' is the plotted distance between inner mirrors, in plot units 'fov' is the notionally rendered field of view radius (in degrees) 'wavelength' is wavelength, used for scale 'maxint' is the maximum intensity scale use to render the fringe pattern. If None, the pattern is auto-scaled. Maxint is useful if you want to render fringes from multiple invocations of michelson() into the same intensity scale, i.e. for comparison. ## setup figure and axes plt.figure(figsize=(20, 5)) plt.axes(frameon=False) plt.xlim(-d1-.1, d2+2) and plt.ylim(-1, 1) plt.xticks([]) # label Y axis with degrees yt,ytlab = plt.yticks() plt.yticks(yt,["-%g"%(float(y)*fov) for y in yt]) plt.ylabel("Angle of Arrival (degrees)") plt.axhline(0, ls=':') ## draw representation of arms and light path maxbaseline = max(maxbaseline,baseline) bl2 = baseline/float(maxbaseline) # coordinate of half a baseline, in plot units plt.plot([0,0],[-bl2,bl2], 'o', ms=10) plt.plot([0,d2/2.,d2/2.,d2],[-bl2,-bl2,-d3/2.,0],'-k') plt.plot([0,d2/2.,d2/2.,d2],[ bl2, bl2, d3/2.,0],'-k') plt.text(0,0,'$b=%d\lambda$'%baseline, ha='right', va='bottom', size='xx-large') ## draw representation of sinewave from the central position if isinstance(p0,(int,float)): p0 = [p0] xw = np.arange(-d1, -d1+(d1+d2)/4, .01) yw = np.sin(2*np.pi*xw/wavelength)*.1 + (p0[0]+p0[-1])/(2.*fov) plt.plot(xw,yw,'b') ## 'xs' is a vector of x cordinates on the screen xs = np.arange(-1, 1, .01) ## xsdiff is corresponding pathlength difference xsdiff = (np.sqrt(d2**2 + (xs-d3)**2) - np.sqrt(d2**2 + (xs+d3)**2)) ## and we accumulate the interference pattern for each source into 'pattern' pattern = 0 total_intensity = 0 ## compute contribution to pattern from each source position p for pos,ampl in np.broadcast(p0,a0): total_intensity += ampl pos1 = pos/float(fov) if extent: # simulate extent by plotting 100 sources of 1/100th intensity positions = np.arange(-1,1.01,.01)*extent/fov + pos1 else: positions = [pos1] # draw arrows indicating lightpath plt.arrow(-d1, bl2+pos1, d1, -pos1, head_width=.1, fc='k', length_includes_head=True) plt.arrow(-d1,-bl2+pos1, d1, -pos1, head_width=.1, fc='k', length_includes_head=True) for p in positions: # compute the pathlength difference between slits and position on screen plt.plot(-d1, p, marker='o', ms=10*ampl, mfc='red', mew=0) # add pathlength difference at slits diff = xsdiff + (baseline*wavelength)*np.sin(p*fov*np.pi/180) # accumulate interference pattern from this source pattern = pattern + (float(ampl)/len(positions))*np.cos(2*np.pi*diff/wavelength) maxint = maxint or total_intensity # add fake axis to interference pattern just to make it a "wide" image pattern_image = pattern[:,np.newaxis] + np.zeros(10)[np.newaxis,:] plt.imshow(pattern_image, extent=(d2,d2+1,-1,1), cmap=plt.gray(), vmin=-maxint, vmax=maxint) # make a plot of the interference pattern plt.plot(d2+1.5+pattern/(maxint*2), xs, 'r') plt.show() print "visibility (Imax-Imin)/(Imax+Imin): ",(pattern.max()-pattern.min())/(total_intensity*2) # show patern for one source at 0 michelson(p0=[0]) # single source interact(lambda position, intensity, baseline: michelson(p0=[position], a0=[intensity], baseline=baseline, maxint=2), position=(-5,5,.01),intensity=(.2,1,.01),baseline=(10,100,.01)) and None interact(lambda position1,position2,intensity1,intensity2,baseline: michelson(p0=[position1,position2], a0=[intensity1,intensity2], baseline=baseline, maxint=2), position1=(-5,5,.01), position2=(-5,5,.01), intensity1=(.2,1,.01), intensity2=(.2,1,.01), baseline=(10,100,.01)) and None arcsec = 1/3600. interact(lambda extent_arcsec, baseline: michelson(p0=[0], a0=[1], extent=extent_arcsec*arcsec, maxint=1, baseline=baseline,fov=1*arcsec), extent_arcsec=(0,0.1,0.001), baseline=(1e+4,1e+7,1e+4) ) and None <END_TASK>