code
stringlengths
20
13.2k
label
stringlengths
21
6.26k
1 import sys 2 import ssl 3 import urllib 4 import matplotlib.pyplot as plt 5 6 7 8 def Parse_File(link): 9 context = ssl._create_unverified_context() 10 f = urllib.request.urlopen(link, context=context) 11 data = f.read().decode('utf-8').split('\n') 12 e = [i.split(',') for i in data[2:7]] 13 a = [i.split(',') for i in data[8:11]] 14 w = [i.split(',') for i in data[12:15]] 15 16 E = ['Education level'] 17 A = ['Average monthly income'] 18 W = ['Working environment'] 19 lst = [E, A, W] 20 21 for index, cl in enumerate([e, a, w]): 22 total_pop = 0.0 23 x_tick = [] 24 M = [] 25 F = [] 26 T = [] 27 Non_smoke = [] 28 29 for row in cl: 30 x_tick.append(row[0]) 31 temp = list(map(float, row[1:])) 32 M.append(temp[1]) 33 F.append(temp[3]) 34 T.append(float("{0:.1f}".format((temp[0]*temp[1]+temp[2]*temp[3])/(temp[0]+temp[2])))) 35 Non_smoke.append(temp[0]*(1-temp[1]/100)+temp[2]*(1-temp[3]/100)) 36 total_pop += (temp[0]*(1-temp[1]/100)+temp[2]*(1-temp[3]/100)) 37 Non_smoke = [float("{0:.1f}".format(i/total_pop)) for i in Non_smoke] 38 lst[index].extend([x_tick, M, F, T, Non_smoke]) 39 40 return E, A, W 41 42 43 def Data_Class(s): 44 assert s in ['E', 'A', 'W'], "Cannot find class type {} !".format(s) 45 data = [] 46 47 if s == 'E': 48 data = E 49 elif s == 'A': 50 data = A 51 else: 52 data = W 53 54 return data 55 56 57 def Chart(s, data): 58 assert s in ['l', 'b', 'p'], "Cannot find chart type {} !".format(s) 59 n = len(data[1]) 60 fig, ax = plt.subplots(figsize=(15, 8)) 61 ax.set_xticks(range(n)) 62 ax.set_xticklabels(data[1], ha='center') 63 ax.tick_params(labelsize=9) 64 65 if s == 'l': 66 ax.plot(range(n), data[2], marker='s', label='Male') 67 ax.plot(range(n), data[3], marker='o', label='Female') 68 ax.plot(range(n), data[4], marker='^', label='Total') 69 for pop in data[2:5]: 70 for i, j in zip(range(n), pop): 71 ax.text(i+0.1, j+0.1, str(j), ha='center', va='bottom', fontsize=10) 72 ax.set_title("Smoking Percentage vs {}".format(data[0]), fontsize=11) 73 ax.set_xlabel(data[0], fontsize=9) 74 ax.set_ylabel('Smoking Percentage (%)', fontsize=9) 75 ax.set_xlim([-0.5, n-0.5]) 76 plt.legend(loc='upper right', prop={"size":10}) 77 plt.show() 78 79 elif s == 'b': 80 width=0.15 81 rects1 = ax.bar([i-1.5*width for i in range(n)], data[2], width=width, label='Male', color='b') 82 rects2 = ax.bar([i-0.5*width for i in range(n)], data[3], width=width, label='Female', color='r') 83 rects3 = ax.bar([i+0.5*width for i in range(n)], data[4], width=width, label='Total', color='y') 84 for rects in [rects1, rects2, rects3]: 85 for rect in rects: 86 h = rect.get_height() 87 ax.text(rect.get_x()+rect.get_width()/2., 1.01*h, h, 88 ha='center', va='bottom', fontsize=10) 89 ax.set_title("Smoking Percentage vs {}".format(data[0]), fontsize=11) 90 ax.set_xlabel(data[0], fontsize=9) 91 ax.set_ylabel('Smoking Percentage (%)', fontsize=9) 92 ax.set_xlim([-0.5, n-0.5]) 93 plt.legend(loc='upper right', prop={"size":10}) 94 plt.show() 95 96 else: 97 ax.pie(data[5], labels=data[1], autopct='%1.1f%%',) 98 ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. 99 ax.set_title("Proportion of different {} in non-smoking population".format(data[0]), fontsize=11, y=1.08) 100 plt.show() 101 102 103 104 if __name__ == '__main__': 105 link = "https://ceiba.ntu.edu.tw/course/481ea4/hw1_data.csv" 106 E, A, W = Parse_File(link) 107 108 for arg in sys.argv[1:]: 109 if arg.startswith('-'): 110 arg = arg[1:] 111 cl = Data_Class(arg[0]) 112 Chart(arg[1], cl) 113
86 - warning: bad-indentation 87 - warning: bad-indentation 8 - refactor: too-many-locals 8 - warning: redefined-outer-name 16 - warning: redefined-outer-name 17 - warning: redefined-outer-name 18 - warning: redefined-outer-name 21 - warning: redefined-outer-name 9 - warning: protected-access 10 - refactor: consider-using-with 48 - error: possibly-used-before-assignment 50 - error: possibly-used-before-assignment 52 - error: possibly-used-before-assignment 60 - warning: unused-variable
1 #! /usr/bin/env python3 2 import psycopg2 3 import time 4 def connects(): 5 return psycopg2.connect("dbname=news") 6 7 data1="select title,views from article_view limit 3" 8 data2="select * from author_view" 9 data3="select to_char(date,'Mon DD,YYYY') as date,err_prc from err_perc where err_prc>1.0" 10 11 def popular_article(data1): 12 db=connects() 13 c=db.cursor() 14 c.execute(data1) 15 results=c.fetchall() 16 for result in range(len(results)): 17 title=results[result][0] 18 views=results[result][1] 19 print("%s--%d" % (title,views)) 20 db.close() 21 22 def popular_authors(data2): 23 db=connects() 24 c=db.cursor() 25 c.execute(data2) 26 results=c.fetchall() 27 for result in range(len(results)): 28 name=results[result][0] 29 views=results[result][1] 30 print("%s--%d" % (name,views)) 31 db.close() 32 33 def error_percent(query3): 34 db=connects() 35 c=db.cursor() 36 c.execute(data3) 37 results=c.fetchall() 38 for result in range(len(results)): 39 date=results[result][0] 40 err_prc=results[result][1] 41 print("%s--%.1f %%" %(date,err_prc)) 42 43 if __name__ == "__main__": 44 print("THE LIST OF POPULAR ARTICLES ARE:") 45 popular_article(data1) 46 print("\n") 47 print("THE LIST OF POPULAR AUTHORS ARE:") 48 popular_authors(data2) 49 print("\n") 50 print("PERC ERROR MORE THAN 1.0:") 51 error_percent(data3) 52
44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 11 - warning: redefined-outer-name 22 - warning: redefined-outer-name 33 - warning: unused-argument 3 - warning: unused-import
1 import requests 2 from bs4 import BeautifulSoup 3 4 response = requests.get( 5 url="https://en.wikipedia.org/wiki/Toronto_Stock_Exchange", 6 ) 7 soup = BeautifulSoup(response.content, 'html.parser') 8 9 table = soup.find_all('table') 10 print(table)
4 - warning: missing-timeout
1 from tkinter import ttk 2 from tkinter import * 3 4 import sqlite3 5 6 class Product: 7 8 db_name = 'matricula.db' 9 10 def __init__(self, box): 11 self.box=box 12 self.box.title('Registro De Estudiante') 13 14 frame = LabelFrame(self.box, text='Datos del estudiante') 15 frame.grid(row = 0, column = 0, columnspan= 3, pady= 20) 16 17 #Espacio nombres 18 19 Label(frame, text= 'Nombres y apellidos: ').grid(row = 1, column = 0) 20 self.nombre = Entry (frame) 21 self.nombre.focus() 22 self.nombre.grid(row = 1, column = 1) 23 24 #Espacio edad 25 Label(frame, text='NuCedula: ').grid(row=2,column=0) 26 self.edad=Entry (frame) 27 self.edad.grid(row=2,column=1) 28 29 #Espacio Cedula 30 Label(frame, text='Direccion: ').grid(row=3, column= 0) 31 self.cedula = Entry(frame) 32 self.cedula.grid(row=3, column=1) 33 34 #Espacio Celular 35 Label(frame, text='NuTelular: ').grid(row=4, column=0) 36 self.celular = Entry(frame) 37 self.celular.grid(row=4, column=1) 38 39 #Boton agregar 40 ttk.Button(frame,text='Registrar').grid(row = 5,column = 0, columnspan=3, sticky = W+E) 41 #mensaje 42 43 self.menssage = Label(text='',fg='red') 44 self.menssage.grid(row=3,column=0,columnspan=2,sticky=W+E) 45 46 #Tabla 47 self.tree = ttk.Treeview(height = 10,column= ('#1', '#2', '#3')) 48 self.tree.grid(row= 4, column= 0, columnspan=3) 49 self.tree.heading("#0", text = 'Nombre y Apellido', anchor = CENTER) 50 self.tree.heading("#1", text= 'NUmero de Cedula', anchor= CENTER) 51 self.tree.heading("#2", text= 'Direccion', anchor= CENTER) 52 self.tree.heading("#3", text= 'Numero de Telefono', anchor= CENTER) 53 #botones 54 ttk.Button(text='Eliminar').grid(row=5,column=0,sticky=W+E) 55 ttk.Button(text='Editar').grid(row=5, column=2,sticky=W+E) 56 57 self.get_Estudiante() 58 59 #conecto la base de datos 60 def run_query(self, query, parameters=()): 61 with sqlite3.connect(self.db_name) as conn: 62 cursor = conn.cursor() 63 result = cursor.execute(query, parameters) 64 conn.commit() 65 return result 66 67 #Metodo Onbtner estudiante 68 def get_estudiante(self): 69 #limpiar 70 records = self.tree.get_children() 71 for element in records: 72 self.tree.delete(element) 73 74 #consultar datos 75 query = 'SELC * FROM Estudiante ORDER BY name DESC' 76 db_rows = self.run_query(query) 77 #Rellenar datos 78 for row in db_rows: 79 self.tree.insert('',0,txt= row[1], values= row[3]) 80 81 82 83 84 85 86 if __name__ == '__main__': 87 box = Tk() 88 sistema = Product(box) 89 box.mainloop()
2 - warning: wildcard-import 10 - warning: redefined-outer-name 57 - error: no-member 2 - warning: unused-wildcard-import
1 import tweepy 2 from tweepy import OAuthHandler 3 import re 4 5 class TwitterClient(object): 6 ''' 7 Twitter Class for grabbing Tweets 8 ''' 9 def __init__(self): 10 ''' 11 Initialization Method 12 ''' 13 #Keys and Tokens from the Twitter Dev Console 14 consumer_key = 'osoPe1vbrjL6hi83pPaT99JcZ' 15 consumer_secret = '72ePjiWIu8YGRFSTXJdUiww12J6UcR0bJL556VSx73hfd7dwW0' 16 access_token = '1038587928967098368-uX8QbeIua1pXU33gzB5Tcy89qMPrgt' 17 access_token_secret = 'AohvvdBfkYILiwEouMpAfyVDP2TBX6xdLcmfyvAJqojcj' 18 19 #Attempt Authentication 20 try: 21 #Create OAuthhandler object 22 self.auth = OAuthHandler(consumer_key,consumer_secret) 23 #Set access token and secret 24 self.auth.set_access_token(access_token,access_token_secret) 25 #Create tweepy API object to fetch tweets 26 self.api = tweepy.API(self.auth) 27 except: 28 print("Error Authentication Failed") 29 30 def clean_tweet(self, tweet): 31 ''' 32 Utility function to clean tweet text by removing links, special characters 33 using simple regex statements 34 ''' 35 return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split()) 36 37 def get_tweets(self, query, count = 1): 38 ''' 39 Main Function to fetch tweets and parse them 40 ''' 41 #Empty list to store parsed tweets 42 tweets = [] 43 44 try: 45 #call twitter api to fetch tweets 46 fetch_tweets = self.api.search(q=query,count = count) 47 48 #parsing tweets one by one 49 for tweet in fetch_tweets: 50 print(tweet) 51 #empty dictionary to store required params of tweet 52 parsed_tweet = {} 53 54 #saving text of tweet 55 parsed_tweet['text'] = tweet.text 56 57 #appending parsed tweet to tweets list 58 if tweet.retweet_count > 0: 59 #if tweet has a retweet, ensure that is is append only once. 60 if parsed_tweet not in tweets: 61 tweets.append(parsed_tweet) 62 else: 63 tweets.append(parsed_tweet) 64 65 #return parsed tweet 66 return tweets 67 except tweepy.TweepError as e: 68 #print error 69 print("Error : " + str(e)) 70 71 def main(): 72 #Creating Object of twitter client class 73 api = TwitterClient() 74 #calling function to get tweets 75 tweets = api.get_tweets(query = 'Cryptocurrency', count = 1) 76 77 #print tweets 78 print(tweets) 79 80 #running program 81 main()
35 - warning: anomalous-backslash-in-string 35 - warning: anomalous-backslash-in-string 35 - warning: anomalous-backslash-in-string 35 - warning: anomalous-backslash-in-string 5 - refactor: useless-object-inheritance 27 - warning: bare-except 37 - refactor: inconsistent-return-statements
1 import torch 2 import pytest 3 import numpy as np 4 import torch.nn as nn 5 from torch.utils.data import TensorDataset, DataLoader 6 7 from torchensemble import FastGeometricClassifier as clf 8 from torchensemble import FastGeometricRegressor as reg 9 from torchensemble.utils.logging import set_logger 10 11 12 set_logger("pytest_fast_geometric") 13 14 15 # Testing data 16 X_test = torch.Tensor(np.array(([0.5, 0.5], [0.6, 0.6]))) 17 18 y_test_clf = torch.LongTensor(np.array(([1, 0]))) 19 y_test_reg = torch.FloatTensor(np.array(([0.5, 0.6]))) 20 y_test_reg = y_test_reg.view(-1, 1) 21 22 23 # Base estimator 24 class MLP_clf(nn.Module): 25 def __init__(self): 26 super(MLP_clf, self).__init__() 27 self.linear1 = nn.Linear(2, 2) 28 self.linear2 = nn.Linear(2, 2) 29 30 def forward(self, X): 31 X = X.view(X.size()[0], -1) 32 output = self.linear1(X) 33 output = self.linear2(output) 34 return output 35 36 37 class MLP_reg(nn.Module): 38 def __init__(self): 39 super(MLP_reg, self).__init__() 40 self.linear1 = nn.Linear(2, 2) 41 self.linear2 = nn.Linear(2, 1) 42 43 def forward(self, X): 44 X = X.view(X.size()[0], -1) 45 output = self.linear1(X) 46 output = self.linear2(output) 47 return output 48 49 50 def test_fast_geometric_workflow_clf(): 51 """ 52 This unit test checks the error message when calling `predict` before 53 calling `ensemble`. 54 """ 55 model = clf(estimator=MLP_clf, n_estimators=2, cuda=False) 56 57 model.set_optimizer("Adam") 58 59 # Prepare data 60 test = TensorDataset(X_test, y_test_clf) 61 test_loader = DataLoader(test, batch_size=2, shuffle=False) 62 63 # Training 64 with pytest.raises(RuntimeError) as excinfo: 65 model.evaluate(test_loader) 66 assert "Please call the `ensemble` method to build" in str(excinfo.value) 67 68 69 def test_fast_geometric_workflow_reg(): 70 """ 71 This unit test checks the error message when calling `predict` before 72 calling `ensemble`. 73 """ 74 model = reg(estimator=MLP_reg, n_estimators=2, cuda=False) 75 76 model.set_optimizer("Adam") 77 78 # Prepare data 79 test = TensorDataset(X_test, y_test_reg) 80 test_loader = DataLoader(test, batch_size=2, shuffle=False) 81 82 # Training 83 with pytest.raises(RuntimeError) as excinfo: 84 model.evaluate(test_loader) 85 assert "Please call the `ensemble` method to build" in str(excinfo.value)
4 - refactor: consider-using-from-import 26 - refactor: super-with-arguments 39 - refactor: super-with-arguments
1 import os 2 import time 3 import logging 4 5 6 def set_logger(log_file=None, log_console_level="info", log_file_level=None): 7 """Bind the default logger with console and file stream output.""" 8 9 def _get_level(level): 10 if level.lower() == 'debug': 11 return logging.DEBUG 12 elif level.lower() == 'info': 13 return logging.INFO 14 elif level.lower() == 'warning': 15 return logging.WARN 16 elif level.lower() == 'error': 17 return logging.ERROR 18 elif level.lower() == 'critical': 19 return logging.CRITICAL 20 else: 21 msg = ( 22 "`log_console_level` must be one of {{DEBUG, INFO," 23 " WARNING, ERROR, CRITICAL}}, but got {} instead." 24 ) 25 raise ValueError(msg.format(level.upper())) 26 27 _logger = logging.getLogger() 28 29 # Reset 30 for h in _logger.handlers: 31 _logger.removeHandler(h) 32 33 rq = time.strftime('%Y_%m_%d_%H_%M', time.localtime(time.time())) 34 log_path = os.path.join(os.getcwd(), 'logs') 35 36 ch_formatter = logging.Formatter( 37 "%(asctime)s - %(levelname)s: %(message)s" 38 ) 39 ch = logging.StreamHandler() 40 ch.setLevel(_get_level(log_console_level)) 41 ch.setFormatter(ch_formatter) 42 _logger.addHandler(ch) 43 44 if log_file is not None: 45 print('Log will be saved in \'{}\'.'.format(log_path)) 46 if not os.path.exists(log_path): 47 os.mkdir(log_path) 48 print('Create folder \'logs/\'') 49 log_name = os.path.join(log_path, log_file + '-' + rq + '.log') 50 print('Start logging into file {}...'.format(log_name)) 51 fh = logging.FileHandler(log_name, mode='w') 52 fh.setLevel( 53 logging.DEBUG 54 if log_file_level is None 55 else _get_level(log_file_level) 56 ) 57 fh_formatter = logging.Formatter( 58 "%(asctime)s - %(filename)s[line:%(lineno)d] - " 59 "%(levelname)s: %(message)s" 60 ) 61 fh.setFormatter(fh_formatter) 62 _logger.addHandler(fh) 63 _logger.setLevel("DEBUG") 64 65 return _logger
10 - refactor: no-else-return
1 #!/usr/bin/env python 2 from distutils.core import setup 3 4 setup(name='fv-sectools', 5 description='A set of IP-based security checks for websites and applications', 6 long_description=open('README.rst').read(), 7 version='0.1dev', 8 author='F Vicaria', 9 author_email='fvicaria@hotmail.com', 10 url='http://www.vicaria.org/', 11 packages=['fv-sectools', ], 12 python_requires='>=3.6', 13 license='MIT License', 14 platforms=['Windows'] 15 )
2 - warning: deprecated-module 6 - refactor: consider-using-with 6 - warning: unspecified-encoding
1 class Murphy(): 2 '''The Murphy Object represents a bed assembly at a particular angle''' 3 learning_rate = -.2 4 threshold = .001 5 def __init__(self, bedframe, A_link, B_link): 6 ''' Basic structure''' 7 self.bedframe = bedframe 8 self.A = A_link 9 self.B = B_link 10 11 @property 12 def ikea_error(self): 13 '''The total difference between actual positions and intended positions for fixed, rigid components.''' 14 return sum([component.ikea_error for component in [self.A, self.B]]) 15 16 def plot(self): 17 ax = plt.figure().add_subplot(111) 18 ax.set_aspect('equal') 19 for component in [self.bedframe, self.A, self.B]: 20 ax = component.plot(ax) 21 ax.set_title(round(self.ikea_error,2)) 22 plt.show() 23 24 def assemble(self, plot_here = False): 25 ''' For a given structure and bed angle, adjust link angles and bed (x,y) to minimize ikea error.''' 26 # loop over the following variables, making small adjustments until ikea error is minimized (ideally zero): 27 # [bedframe.x, bedframe.y, A_link.angle, B_link.angle, C_link.angle] 28 # Note: it is necessary to reposition C_link (x,y) to B_link.distal after B_link.angle is adjusted. 29 # while True: 30 for i in range(1000): 31 for variable in ['A.angle', 'B.angle', 'bedframe.x', 'bedframe.y']: 32 errors = [] 33 for step in ['+=0.5', '-=1']: 34 exec('self.{variable} {step}'.format(variable = variable, step = step)) 35 errors.append(self.ikea_error) 36 partial_derivative = errors[0]-errors[1] 37 adjustment = self.learning_rate*partial_derivative + .5 38 exec('self.{variable} += {adjustment}'.format(variable = variable, adjustment = adjustment)) 39 if (i%5000==0) and plot_here: 40 self.plot() 41 if self.ikea_error < 0.125: break 42 # print('Assembled in {} steps with Ikea error {}'.format(i,round(self.ikea_error,3))) 43 if plot_here: self.plot()
14 - refactor: consider-using-generator 17 - error: undefined-variable 22 - error: undefined-variable 34 - warning: exec-used 38 - warning: exec-used
1 import numpy as np 2 from math import radians, sin, cos 3 import matplotlib.pyplot as plt 4 from sklearn.linear_model import LinearRegression as LR 5 6 class Bedframe(): 7 def __init__(self, x,y, thickness, length, margin, angle): 8 '''Design elements''' 9 self.t = thickness 10 self.l = length 11 self.margin = margin # the distance from the edges to the point where a link can be connected 12 13 '''Current Position''' 14 self.x, self.y = x,y 15 '''Angle in degrees, 0 is deployed, 90 is stowed''' 16 self.angle = angle 17 18 @property 19 def lower_foot(self): 20 theta = radians(self.angle) 21 return self.x + self.l*cos(theta), self.y + self.l*sin(theta) 22 23 @property 24 def upper_foot(self): 25 theta = radians(self.angle) 26 x = self.x + self.l*cos(theta) - self.t*sin(theta) 27 y = self.y + self.l*sin(theta) + self.t*cos(theta) 28 return x, y 29 30 @property 31 def lower_head(self): 32 return self.x, self.y 33 34 @property 35 def upper_head(self): 36 theta = radians(self.angle) 37 x = self.x - self.t*sin(theta) 38 y = self.y + self.t*cos(theta) 39 return x,y 40 41 @property 42 def left_edge(self): 43 return min(self.lower_foot[0], self.lower_head[0], self.upper_foot[0], self.upper_head[0]) 44 45 @property 46 def right_edge(self): 47 return max(self.lower_foot[0], self.lower_head[0], self.upper_foot[0], self.upper_head[0]) 48 49 @property 50 def top(self): 51 return max(self.lower_foot[1], self.lower_head[1], self.upper_foot[1], self.upper_head[1]) 52 53 @property 54 def bottom(self): 55 return min(self.lower_foot[1], self.lower_head[1], self.upper_foot[1], self.upper_head[1]) 56 57 def _offset_point(self, p, p1, p2, offset): 58 x, y = p 59 x1, y1, = p1 60 x2, y2 = p2 61 62 #vector1 63 d1 = (((x1-x)**2 + (y1-y)**2)**.5)/offset 64 v1 = (x1-x)/d1, (y1-y)/d1 65 66 #vector from (x,y) to (x2,y2) 67 d2 = (((x2-x)**2 + (y2-y)**2)**.5)/offset 68 v2 = (x2-x)/d2, (y2-y)/d2 69 70 return x + v1[0] + v2[0], y + v1[1] + v2[1] 71 72 73 @property 74 def head_lower_margin(self): 75 return self._offset_point(self.lower_head, self.lower_foot, self.upper_head, self.margin) 76 77 @property 78 def head_upper_margin(self): 79 return self._offset_point(self.upper_head, self.lower_head, self.upper_foot, self.margin) 80 81 @property 82 def foot_lower_margin(self): 83 return self._offset_point(self.lower_foot, self.upper_foot, self.lower_head, self.margin) 84 85 @property 86 def foot_upper_margin(self): 87 return self._offset_point(self.upper_foot, self.upper_head, self.lower_foot, self.margin) 88 89 90 91 # @property 92 # def floor_opening(self): 93 # if (self.bottom >= 0) or (self.top <= 0): 94 # return 0 95 96 # #topside 97 # if np.sign(self.upper_head[1]) == np.sign(self.upper_foot[1]): 98 # topside = 0 99 # else: 100 # ys = np.array([[self.upper_head[1]], [self.upper_head[1]]) 101 # xs = np.array([[self.upper_head[0]],[self.lower_head[0]]]) 102 # topside = LR().fit(ys, xs).predict([[0]])[0] 103 104 105 def plot(self, ax = None): 106 color = 'k' 107 plot_here = False 108 if not ax: 109 ax = plt.figure().add_subplot(111) 110 ax.set_aspect('equal') 111 plot_here = True 112 113 xs = [self.lower_head[0], self.lower_foot[0], self.upper_foot[0], self.upper_head[0], self.lower_head[0]] 114 ys = [self.lower_head[1], self.lower_foot[1], self.upper_foot[1], self.upper_head[1], self.lower_head[1]] 115 ax.plot(xs, ys, color = color) 116 117 bounding_xs = [self.left_edge, self.right_edge, self.right_edge, self.left_edge, self.left_edge] 118 bounding_ys = [self.bottom, self.bottom, self.top, self.top, self.bottom] 119 120 ax.plot(bounding_xs, bounding_ys, color = 'gray') 121 122 ax.scatter(self.head_lower_margin[0], self.head_lower_margin[1]) 123 ax.scatter(self.head_upper_margin[0], self.head_upper_margin[1]) 124 ax.scatter(self.foot_upper_margin[0], self.foot_upper_margin[1]) 125 ax.scatter(self.foot_lower_margin[0], self.foot_lower_margin[1]) 126 # # ax.scatter(self.CoG[0], self.CoG[1], marker = 'X', color = color) 127 # # ax.scatter(self.floor_opening, 0, marker = 'o', color = color) 128 # ax.plot([self.extents['left'], self.extents['right'], self.extents['right'], self.extents['left'], self.extents['left']], 129 # [self.extents['bottom'], self.extents['bottom'], self.extents['top'], self.extents['top'], self.extents['bottom']], 130 # alpha = .1, color = color) 131 if plot_here: plt.show() 132 return ax 133 134 135 if __name__ == '__main__': 136 b = Bedframe(0,0, 15, 80, 2, 10) 137 b.plot() 138 plt.show() 139
7 - refactor: too-many-arguments 7 - refactor: too-many-positional-arguments 1 - warning: unused-import 4 - warning: unused-import
1 2 from math import sin, cos, radians, atan 3 import numpy as np 4 import matplotlib.pyplot as plt 5 6 class Link(): 7 def __init__(self, x, y, length, width, angle, color, bedframe, attachment = None): 8 self.x, self.y = x, y 9 self.length, self.width = length, width 10 self.angle = angle 11 self.color = color 12 self.bedframe = bedframe 13 # Attachment point relative to the bedframe 14 self.attachment = {'x':attachment[0],'y':attachment[1]} 15 16 @property 17 def room_attachment(self): 18 # attachment point relative to the room 19 if self.attachment: 20 theta = radians(self.bedframe.angle) 21 l = ((self.attachment['x']**2)+(self.attachment['y']**2))**0.5 22 phi = atan(self.attachment['y']/self.attachment['x']) 23 x = self.bedframe.x + l*cos(theta + phi) 24 y = self.bedframe.y + l*sin(theta + phi) 25 return {'x':x, 'y':y} 26 else: return None 27 28 @property 29 def distal(self): 30 x, y, l, theta = self.x, self.y, self.length, radians(self.angle) 31 X = x + l * cos(theta) 32 Y = y + l * sin(theta) 33 return X,Y 34 35 @property 36 def edges(self): 37 x,y,w, theta = self.x, self.y, self.width/2, radians(self.angle) 38 X,Y = self.distal 39 x0 = x - w*sin(theta) 40 x1 = X - w*sin(theta) 41 y0 = y + w*cos(theta) 42 y1 = Y + w*cos(theta) 43 44 X0 = x + w*sin(theta) 45 X1 = X + w*sin(theta) 46 Y0 = y - w*cos(theta) 47 Y1 = Y - w*cos(theta) 48 return [((x0, y0), (x1, y1)), ((X0, Y0), (X1, Y1))] 49 50 @property 51 def extents(self): 52 left = min(self.x, self.distal[0]) - self.width/2 53 right = max(self.x, self.distal[0]) + self.width/2 54 top = max(self.y, self.distal[1]) + self.width/2 55 bottom = min(self.y, self.distal[1]) - self.width/2 56 return {'left':left, 'right':right, 'top':top, 'bottom':bottom} 57 58 @property 59 def floor_opening(self): 60 w = r = self.width/2 61 theta = radians(self.angle) 62 x,y = self.x, self.y 63 X,Y = self.distal 64 65 if abs(self.y) < r: 66 a0 = self.x + ((r**2)-(self.y)**2)**0.5 67 else: 68 a0 = 0 69 if abs(self.distal[1]) < w: 70 a1 = self.distal[0] + ((r**2)-self.distal[1]**2)**0.5 71 else: 72 a1 = 0 73 if y * Y < 0: 74 a2 = x - y*(X-x)/(Y-y) + abs(w/sin(theta)) 75 else: a2 = 0 76 77 return max(a0,a1,a2) 78 79 @property 80 def CoG(self): 81 return (self.x+self.distal[0])/2, (self.y+self.distal[1])/2 82 83 @property 84 def ikea_error(self): 85 '''Ikea error is the assembly error, or the distance from the distal point of a link to its intended attachment point''' 86 if self.attachment: 87 fit_error = ((self.distal[0]-self.room_attachment['x'])**2+(self.distal[1]-self.room_attachment['y'])**2) 88 else: fit_error = 0 89 return fit_error 90 91 def plot(self, ax = None): 92 plot_here = False 93 if not ax: 94 ax = plt.figure().add_subplot(111) 95 ax.set_aspect('equal') 96 plot_here = True 97 98 r = self.width/2 99 for edge in self.edges: 100 ax.plot([edge[0][0],edge[1][0]], [edge[0][1], edge[1][1]], c = self.color) 101 102 for x,y in zip([self.x,self.distal[0]], [self.y,self.distal[1]]): 103 phi = np.radians(np.linspace(0,360,37)) 104 ax.plot(r*np.cos(phi)+x, r*np.sin(phi)+y, c = self.color ) 105 106 # Extents Box 107 ax.plot([self.extents['left'], self.extents['right'], self.extents['right'], self.extents['left'], self.extents['left']], 108 [self.extents['bottom'], self.extents['bottom'], self.extents['top'], self.extents['top'], self.extents['bottom']], 109 alpha = .1, c = self.color) 110 111 # Floor Opening Point 112 ax.scatter(self.floor_opening, 0, c=self.color) 113 114 # Attachment Point 115 if self.attachment: 116 ax.scatter(self.room_attachment['x'], self.room_attachment['y'], marker = 'x', c = self.color) 117 ax.plot([self.distal[0], self.room_attachment['x']], [self.distal[1], self.room_attachment['y']], c = self.color, linestyle = 'dashed') 118 119 if plot_here: plt.show() 120 return ax
6 - refactor: too-many-instance-attributes 7 - refactor: too-many-arguments 7 - refactor: too-many-positional-arguments 19 - refactor: no-else-return
1 class Point: 2 def __init__(self, x, y): 3 self.x = x 4 self.y = y 5 6 def distance(self, other): 7 if isinstance(other, Point): 8 return self._distance_to_point(other) 9 elif isinstance(other, LineSegment): 10 return self._distance_to_line(other) 11 else: 12 raise Exception 13 14 def _distance_to_point(self, other): 15 return ((self.x-other.x)**2+(self.y-other.y)**2)**.5 16 17 def _distance_to_line(self, line): 18 x,y = self.x, self.y 19 x1, y1 = line.point1.x, line.point1.y 20 x2, y2 = line.point2.x, line.point2.y 21 22 numerator = abs((y2-y1)*x-(x2-x1)*y + x2*y1 - y2*x1) 23 denominator = ((y2-y1)**2 + (x2-x1)**2)**.5 24 25 return numerator/denominator 26 27 def __sub__(self, other): 28 x = self.x - other.x 29 y = self.y - other.y 30 return Point(x,y) 31 32 def __add__(self, other): 33 x = self.x + other.x 34 y = self.y + other.y 35 return Point(x,y) 36 37 def __isub__(self, other): 38 self.x -= other.x 39 self.y -= other.y 40 return self 41 42 def __iadd__(self, other): 43 self.x += other.x 44 self.y += other.y 45 return self 46 47 def __repr__(self): 48 return f'{self.x},{self.y}' 49 50 51 def is_between_lines(self, line1, line2): 52 '''Yields true if the point is in the interior of the rectangle 53 defined by the two parallel, flush, lines''' 54 pass 55 56 57 class LineSegment: 58 def __init__(self, p0, p1): 59 points = list(set([p0, p1])) 60 61 self.p0 = points[0] 62 self.p1 = points[1] 63 64 @property 65 def length(self): 66 return self.p0.distance(self.p1) 67 68 def distance_to_point(self, point): 69 return point.distance(self) 70 71 def __add__(self, point): 72 p0 = self.p0 + point 73 p1 = self.p1 + point 74 return LineSegment(p0, p1) 75 76 def __sub__(self, point): 77 p0 = self.p0 - point 78 p1 = self.p1 - point 79 return LineSegment(p0, p1) 80 81 def __iadd__(self, point): 82 self.p0, self.p1 = self.p0 + point, self.p1 + point 83 84 def __isub__(self, point): 85 self.p0, self.p1 = self.p0 - point, self.p1 - point 86 87 def __repr__(self): 88 return f'({self.p0})<-->({self.p1})' 89
7 - refactor: no-else-return 12 - warning: broad-exception-raised 54 - warning: unnecessary-pass
1 from math import cos, sin, tan, atan, radians 2 import matplotlib.pyplot as plt 3 import numpy as np 4 from copy import deepcopy 5 from Murphy.link import Link 6 from Murphy.bedframe import Bedframe 7 from Murphy.murphy import Murphy 8 import sys 9 import pickle 10 11 class MurphyBed(): 12 '''The MurphyBed Class represents a collection of Murphy objects, all of the same design, solved over the full range of angles from deployed (0) to stowed (90)''' 13 def __init__(self, bed, desired_deployed_height, desired_stowed_height): 14 self.bed = bed 15 self.desired_deployed_height, self.desired_stowed_height = desired_deployed_height, desired_stowed_height 16 self.collected_solutions = {} 17 18 def solve_over_full_range(self, steps): 19 for angle in np.linspace(0,90, steps): 20 self.bed.bedframe.angle = angle 21 self.bed.assemble() 22 self.collected_solutions[angle] = deepcopy(self.bed) 23 24 @property 25 def murphy_error(self): 26 '''murphy_error is the sum of all differences between current design and optimal design. Used to optimize fixed, positions and rigid components. 27 Calculation of Murphy Error requires collected_solutions for all angles between 0 and 90''' 28 deployed = self.collected_solutions[0] 29 stowed = self.collected_solutions[90] 30 errors = [] 31 32 balance = np.array([5, 7, 2, 1, 1, 1, 50, 50, 1, 1,1]) 33 34 # When deployed, the bed should be at desired height 35 errors.append((deployed.bedframe.y+deployed.bedframe.t-self.desired_deployed_height)**2) 36 37 # When deployed, the head of the bed should be close to the wall 38 errors.append(deployed.bedframe.x**2) 39 40 # When stowed, the bed should be flat up against the wall 41 errors.append((stowed.bedframe.x-stowed.bedframe.h_headboard)**2) 42 43 # When stowed, the foot of the bed should be at desired height below the window 44 errors.append((stowed.bedframe.y+stowed.bedframe.l - self.desired_stowed_height)**2) 45 46 # No part of the assembly should ever extend outside of the house 47 left_most = 0 48 for murphy in self.collected_solutions.values(): 49 for component in [murphy.bedframe, murphy.A, murphy.B]: 50 left_most = min(left_most, component.extents['left']) 51 52 errors.append(left_most**2) 53 54 # when stowed, no part of the links should extend forward of the bedframe if it is above the floor 55 def stowed_encroachment(link): 56 if (link.extents['top'] > 0) and (link.extents['right'] > stowed.bedframe.x): 57 return (link.extents['right']-stowed.bedframe.x)**2 58 else: return 0 59 60 errors.append(max([stowed_encroachment(link) for link in [stowed.A, stowed.B]])) 61 62 # when deployed, no part of the links should extend above/forward of the bedframe 63 def deployed_encroachment(link): 64 if (link.extents['right'] > deployed.bedframe.x) and (link.extents['top'] > (deployed.bedframe.y+deployed.bedframe.t)): 65 return (link.extents['top'] - deployed.bedframe.y+deployed.bedframe.t)**2 66 else: return 0 67 68 errors.append(max([deployed_encroachment(link) for link in [deployed.A, deployed.B]])) 69 70 # the floor opening should not be much larger than the thickness of the beframe 71 floor_opening = 0 72 for murphy in self.collected_solutions.values(): 73 for component in [murphy.bedframe, murphy.A, murphy.B]: 74 floor_opening = max(floor_opening, component.floor_opening) 75 76 if floor_opening > stowed.bedframe.x: 77 error = floor_opening**2 78 else: 79 error = 0 80 errors.append(error) 81 82 #the bed should be buildable 83 errors.append(max([i.ikea_error for i in self.collected_solutions.values()])**2) 84 85 # Link A,B Attachment point must be on the bedframe 86 for i in [self.bed.A, self.bed.B]: 87 x = i.attachment['x'] 88 y = i.attachment['y'] 89 if (0 < x < self.bed.bedframe.l) and (0 < y < self.bed.bedframe.t): 90 errors.append(0) 91 elif (0 < x < self.bed.bedframe.depth_of_headboard) and (0 < y < self.bed.bedframe.h_headboard): 92 errors.append(0) 93 else: 94 X,Y = self.bed.bedframe.CoG 95 errors.append((X-x)**2 + (Y-y)**2) 96 97 errors = (np.array(errors)/balance) 98 99 return errors.sum(), errors 100 101 def plot_all(murphy_bed): 102 ax = plt.figure().add_subplot(111) 103 for i in murphy_bed.collected_solutions.values(): 104 for j in [i.bedframe, i.A, i.B]: 105 j.plot(ax) 106 plt.show() 107 108 def cycles(n=10): 109 if len(sys.argv) > 1: 110 try: 111 return int(sys.argv[1]) 112 except: 113 pass 114 return n 115 116 def plot(): 117 plt.plot(adjustments) 118 plt.show() 119 plt.plot(murphy_errors_history) 120 plt.show() 121 plot_all(murphy_bed) 122 123 if __name__ == '__main__': 124 angle_steps = 5 125 learning_rate = -.08 126 # The basic components of a bed 127 bedframe = Bedframe(10,4,10, 72, 12, 8) 128 A_link = Link(x=0,y=0,length=10,width=4,angle=80, color = 'r', bedframe = bedframe, attachment = (5,2)) 129 B_link = Link(x=20, y = -1, length = 10, width = 4, angle = 110, color ='g', bedframe = bedframe, attachment = (18,2)) 130 131 # A bed assembled at a single position 132 assembly = Murphy(bedframe, A_link, B_link) 133 134 # The complete solution of a bed from deployed to stowed 135 murphy_bed = MurphyBed(assembly, 15, 40) 136 # with open('murphy.pkl','rb') as f: 137 # murphy_bed = pickle.load(f) 138 murphy_bed.solve_over_full_range(angle_steps) 139 print('Initial Murphy Error: ', murphy_bed.murphy_error[0]) 140 141 # initial_design = deepcopy(murphy_bed) 142 143 murphy_error_history = [] 144 murphy_errors_history = [] 145 adjustments = [] 146 147 for i in range(cycles()): 148 print('#'*20+'\n'+str(i)+'\n'+'#'*20) 149 murphy_bed.bed = murphy_bed.collected_solutions[0] 150 variable = np.random.choice(np.array(['A.x','A.y', "A.attachment['x']", "A.attachment['y']", 'A.length', 'B.x','B.y','B.length', "B.attachment['x']", "B.attachment['y']"])) 151 print(variable) 152 errors = [] 153 for step in ['+=0.5', '-=1']: 154 exec('murphy_bed.bed.{variable}{step}'.format(variable = variable, step=step)) 155 murphy_bed.solve_over_full_range(angle_steps) 156 errors.append(murphy_bed.murphy_error[0]) 157 partial_derivative = errors[0]-errors[1] 158 adjustment = partial_derivative*learning_rate + 0.5 159 exec('murphy_bed.bed.{variable}+={adjustment}'.format(variable = variable, adjustment = adjustment)) 160 adjustments.append(adjustment) 161 murphy_bed.solve_over_full_range(angle_steps) 162 print('Adjusted Murphy Error: ', murphy_bed.murphy_error[0]) 163 murphy_error_history.append(murphy_bed.murphy_error[0]) 164 murphy_errors_history.append(murphy_bed.murphy_error[1]) 165 166 if i%100==0: 167 with open('murphy.pkl', 'wb') as f: 168 pickle.dump(murphy_bed, f) 169 170 with open('murphy.pkl', 'wb') as f: 171 pickle.dump(murphy_bed, f) 172 173 plot()
171 - warning: bad-indentation 25 - refactor: too-many-locals 30 - warning: redefined-outer-name 86 - warning: redefined-outer-name 56 - refactor: no-else-return 60 - refactor: consider-using-generator 64 - refactor: no-else-return 68 - refactor: consider-using-generator 83 - refactor: consider-using-generator 101 - warning: redefined-outer-name 103 - warning: redefined-outer-name 112 - warning: bare-except 117 - error: possibly-used-before-assignment 119 - error: possibly-used-before-assignment 121 - error: possibly-used-before-assignment 154 - warning: exec-used 159 - warning: exec-used 1 - warning: unused-import 1 - warning: unused-import 1 - warning: unused-import 1 - warning: unused-import 1 - warning: unused-import
1 str = input("Enter a string: ") 2 3 def Dictionary(i): 4 dictionary = {} 5 for letter in i: 6 dictionary[letter] = 1 + dictionary.get(letter, 0) 7 return dictionary 8 9 10 def most_frequent(str): 11 alphabets = [letter.lower() for letter in str if letter.isalpha()] 12 dictionary = Dictionary(alphabets) 13 result = [] 14 for key in dictionary: 15 result.append((dictionary[key], key)) 16 result.sort(reverse=True) 17 for frequency, letter in result: 18 print (letter, frequency) 19 20 most_frequent(str) 21
1 - warning: redefined-builtin 10 - warning: redefined-outer-name
1 from argparse import Namespace 2 import co2_dataset 3 import os 4 import time 5 6 7 8 # Settings 9 data_path = 'CO2/monthly_in_situ_co2_mlo.csv' 10 save_path = 'reg_params/params3' 11 epochs = 10000 12 minibatch_size = 100 13 mc_samples = 50 14 optimizer = 'adam' 15 learning_rate = 1e-1 16 momentum = 0.9 17 l2_weight = 1e-6 18 drop_p = 0.1 19 tau_rc = 0.07 20 tau_ref = 0.0005 21 amplitude = 0.01 22 train = False 23 continue_training = True 24 spiking = True 25 plot = True 26 comment = 'test run' 27 28 args = Namespace(data_path=data_path, epochs=epochs, minibatch_size=minibatch_size, 29 optimizer=optimizer, learning_rate=learning_rate, l2_weight=l2_weight, momentum=momentum, 30 mc_samples=mc_samples, tau_ref=tau_ref, tau_rc=tau_rc, train=train, continue_training=continue_training, 31 save_path=save_path, amplitude=amplitude, drop_p=drop_p, spiking=spiking, plot=plot) 32 33 print('########################') 34 print(comment) # a comment that will be printed in the log file 35 print(args) # print all args in the log file so we know what we were running 36 print('########################') 37 38 39 start = time.time() 40 loss = co2_dataset.main(args) 41 print("The training took {:.1f} minutes with a loss of {:.3f}".format((time.time()-start)/60,loss)) # measure time
3 - warning: unused-import
1 #!/usr/bin/python 2 ''' 3 Apache log analysis script for Amazon Code challenge. 4 July 2nd 2016 by Fred McLain. 5 Copyright (C) 2016 Fred McLain, all rights reserved. 6 7 high level language of your choice (e.g. Python/Ruby/Perl) 8 9 The right fit language appears to be Python, so I'm going with that even though I'm a Java developer. 10 11 required: 12 * Top 10 requested pages and the number of requests made for each 13 * Percentage of successful requests (anything in the 200s and 300s range) 14 * Percentage of unsuccessful requests (anything that is not in the 200s or 300s range) 15 * Top 10 unsuccessful page requests 16 * The top 10 IPs making the most requests, displaying the IP address and number of requests made. 17 * Option parsing to produce only the report for one of the previous points (e.g. only the top 10 urls, only the percentage of successful requests and so on) 18 * A README file explaining how to use the tool, what its dependencies and any assumptions you made while writing it 19 20 optional: 21 * Unit tests for your code. 22 * The total number of requests made every minute in the entire time period covered by the file provided. 23 * For each of the top 10 IPs, show the top 5 pages requested and the number of requests for each. 24 25 Assumptions: 26 * Statistics for the number of pages and requesting IPs does not exceed available memory. 27 * Log file lines are of a uniform format 28 * Log records are in time order 29 30 Sample log lines: 31 10.0.68.207 - - [31/Oct/1994:14:00:17 +0000] "POST /finance/request.php?id=39319 HTTP/1.1" 200 56193 32 10.0.173.204 - - [31/Oct/1994:14:00:20 +0000] "GET /kernel/get.php?name=ndCLVHvbDM HTTP/1.1" 403 759 33 34 Records are new line separated. 35 36 Fields in record are whitespace separated: 37 IP - - [timestamp] "request path status ? 38 ''' 39 from __future__ import division 40 import sys 41 from optparse import OptionParser 42 43 parser = OptionParser() 44 parser.add_option("-f", "--file", dest="fileName", help="file to parse, default=%default", metavar="FILE", default="apache.log") 45 parser.add_option("-a", "--reportAll", action="store_true", dest="reportAll", help="show all reports", default=False) 46 parser.add_option("-t", "--top10", action="store_true", dest="reportTop10", help="Top 10 requested pages and the number of requests made for each", default=False) 47 parser.add_option("-s", "--success", action="store_true", dest="reportSucccessPercentReq", help="Percentage of successful requests (anything in the 200s and 300s range)", default=False) 48 parser.add_option("-u", "--unsuccess", action="store_true", dest="reportUnsucccessPercentReq", help="Percentage of unsuccessful requests (anything that is not in the 200s or 300s range)", default=False) 49 parser.add_option("-r", "--top10Unsuccess", action="store_true", dest="reportTop10Unsuccess", help="Top 10 unsuccessful page requests", default=False) 50 parser.add_option("-i", "--top10IpPages", action="store_true", dest="reportTop10IpPages", help="The top 10 IPs making the most requests, displaying the IP address and number of requests made", default=False) 51 #parser.add_option("-m", "--numReqPerMinute", action="store_true", dest="reportReqPerMinute", help="The total number of requests made every minute in the entire time period covered by the file provided.", default=False) 52 53 (options, args) = parser.parse_args() 54 55 # accumulators for report stats 56 #totalRequests = 0 57 #requestMap = 0 58 #successCount = 0 59 #failCount = 0 60 errorList = [] 61 62 totalPages = {} 63 failPages = {} 64 successPages = {} 65 ipPages={} 66 67 def analizeFile(fileName): 68 print "Parsing file:", fileName 69 try: 70 f = open(fileName) 71 except IOError: 72 errorList.append("Can not read " + fileName) 73 return 74 lineno = 0 75 for line in f: 76 lineno += 1 77 try: 78 analizeLine(line) 79 except: 80 errorList.append("Error in " + fileName + " on line " + str(lineno)) 81 return 82 83 def analizeLine(logLine): 84 ''' 85 Fields in record are whitespace separated: 86 IP - - [timestamp] "request path status ? 87 ''' 88 # print logLine 89 r = logLine.split() 90 #print r 91 ''' 92 0 = IP 3 = timestamp 4 = TZ 5 = method 6 = page 7 = protocol 8 = status 9 = ? 93 ['10.0.16.208', '-', '-', '[31/Oct/1994:23:59:50', '+0000]', '"GET', '/finance/list.php?value=60549', 'HTTP/1.0"', '404', '1595'] 94 ''' 95 ip = r[0] 96 timestamp = r[3].lstrip('[') 97 #timestamp = time.strptime(r[3].lstrip('['),"%d/%b/%Y:%H:%M:%S") 98 method = r[5].lstrip('"') 99 #page = r[6].split("?")[0] 100 page = r[6] 101 stat = int(r[8]) 102 103 if page in totalPages: 104 totalPages[page] = totalPages[page] + 1 105 else: 106 totalPages.update({page:1}) 107 108 if ip in ipPages: 109 ipPages[ip] = ipPages[ip] +1 110 else: 111 ipPages.update({ip:1}) 112 113 if (stat >= 200) and (stat < 400): 114 # success 115 if page in successPages: 116 successPages[page] = successPages[page] + 1 117 else: 118 successPages.update({page:1}) 119 else: 120 # failure 121 if page in failPages: 122 failPages[page] = failPages[page] + 1 123 else: 124 failPages.update({page:1}) 125 126 return 127 128 def reportTop10(dict): 129 s=sorted(dict,key=dict.__getitem__,reverse=True) 130 i = 1 131 for k in s: 132 print i,k,dict[k] 133 if i == 10: 134 break 135 i += 1 136 137 def report(): 138 if options.reportAll or options.reportTop10: 139 print "Most requested pages:" 140 reportTop10(totalPages) 141 ''' not in spec but useful? 142 print "Most successful pages (page, count):" 143 reportTop10(successPages) 144 ''' 145 if options.reportAll or options.reportSucccessPercentReq: 146 # print len(successPages),"/",len(totalPages),len(failPages) 147 print "Percentage of successful requests: ",str(len(successPages)/len(totalPages)*100.),"%" 148 149 if options.reportAll or options.reportUnsucccessPercentReq: 150 print "Most failed pages (page, count):" 151 reportTop10(failPages) 152 153 if options.reportAll or options.reportTop10IpPages: 154 print "The top 10 IPs making the most requests, (IP, count)" 155 reportTop10(ipPages) 156 return 157 158 def usage(): 159 parser.print_help() 160 exit(-1) 161 return 162 163 def go(): 164 print "Apache log file parser demonstration by Fred McLain, July 2nd 2016" 165 if 1 == len(sys.argv): 166 usage() # require command line arguments or show usage and bail out 167 analizeFile(options.fileName) 168 report() 169 if len(errorList) > 0: 170 print "Errors in input",errorList 171 return 172 173 go()
68 - error: syntax-error
1 #!/usr/local/bin/python 2 3 from os.path import expanduser 4 5 execfile(expanduser('~/python/evm2003/brp/wizard.py'))
5 - error: undefined-variable
1 basic.show_string("Think of a number between 1 to 10") 2 basic.show_string("Input your answer here") 3 input.button_is_pressed(Button.A) 4 basic.show_string("The answer was...") 5 basic.show_number(randint(1, 10))
1 - error: undefined-variable 2 - error: undefined-variable 3 - error: undefined-variable 4 - error: undefined-variable 5 - error: undefined-variable 5 - error: undefined-variable
1 import json 2 import codecs 3 import random 4 from sklearn.feature_extraction.text import CountVectorizer 5 from nltk.stem.snowball import SnowballStemmer 6 from sklearn.naive_bayes import MultinomialNB 7 import numpy as np 8 from sklearn import metrics 9 import numpy as np 10 from sklearn import svm 11 from sklearn.feature_extraction.text import TfidfVectorizer 12 from scipy.sparse import hstack 13 from nltk.tokenize import RegexpTokenizer 14 import pickle 15 import sys 16 17 def getclassmore(a): 18 if a>3: return a-2 19 elif a<3: return 0 20 else: return 1 21 22 def getclass(a): 23 if a>3: 24 return 2 25 elif a<3: 26 return 0 27 else: 28 return 1 29 30 def allupper(word): 31 for c in word: 32 if not(c.isupper()): 33 return False 34 return True 35 36 def cleandoc(doc): 37 global imp 38 unclean = doc.split() 39 words = [] 40 for word in unclean: 41 if len(word)>2: 42 words.append(word) 43 if word in imp: 44 for i in range(0, 3): 45 words.append(word) 46 lng = len(words) 47 for i in range(0, lng): 48 word = words[i] 49 if allupper(word): 50 words.append(word) 51 if word=="not": 52 for j in range(1, 5): 53 if(i+j<lng): 54 words[i+j]="NOT_" + words[i+j] 55 lower_words = [word.lower() for word in words] 56 return ' '.join(lower_words) 57 58 print("Reading side files") 59 imp = set() 60 61 file = open('adjectives.txt', 'r') 62 for adj_en in file.readlines(): 63 imp.add(adj_en.split()[0]) 64 65 file = open('adverbs.txt', 'r') 66 for adj_en in file.readlines(): 67 imp.add(adj_en.split()[0]) 68 69 file = open('verbs.txt', 'r') 70 for adj_en in file.readlines(): 71 imp.add(adj_en.split()[0]) 72 73 74 print("Reading test json file") 75 test_data = [] 76 test_it = 0 77 with codecs.open(sys.argv[1],'rU','utf-8') as f: 78 for line in f: 79 test_it = test_it + 1 80 test_data.append(json.loads(line)) 81 82 print("Cleaning test sentences") 83 84 test_sentences = [] 85 end = test_it 86 i = 0 87 while(i<end): 88 sent = test_data[i]['reviewText'] 89 temp = "" 90 for j in range(0, 3): 91 temp = temp + test_data[i]['summary'] 92 sent = sent + temp 93 test_sentences.append(cleandoc(sent)) 94 i = i+1 95 96 with open('vect_uni.pkl', 'rb') as f: 97 vect_uni = pickle.load(f) 98 99 with open('vect_bi.pkl', 'rb') as f: 100 vect_bi = pickle.load(f) 101 102 print("Making Test matrix - Unigrams") 103 test_matrix_uni = vect_uni.transform(test_sentences) 104 105 print("Making Test matrix - Unigrams") 106 test_matrix_bi = vect_bi.transform(test_sentences) 107 108 test_matrix = hstack((test_matrix_uni, test_matrix_bi)) 109 110 print("Predicting") 111 with open('model.pkl', 'rb') as f: 112 model = pickle.load(f) 113 y_pred = model.predict(test_matrix) 114 y_pred_class = [] 115 for ele in y_pred: 116 if(ele==3): 117 y_pred_class.append(2) 118 else: 119 y_pred_class.append(ele) 120 121 122 file = open(sys.argv[2],'w') 123 for ele in y_pred_class: 124 if(ele==0): 125 file.write("1\n") 126 elif(ele==1): 127 file.write("3\n") 128 elif(ele==2): 129 file.write("5\n")
52 - warning: bad-indentation 53 - warning: bad-indentation 54 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 80 - warning: bad-indentation 9 - warning: reimported 18 - refactor: no-else-return 23 - refactor: no-else-return 44 - warning: redefined-outer-name 52 - warning: redefined-outer-name 37 - warning: global-variable-not-assigned 61 - warning: unspecified-encoding 61 - refactor: consider-using-with 65 - warning: unspecified-encoding 65 - refactor: consider-using-with 69 - warning: unspecified-encoding 69 - refactor: consider-using-with 122 - warning: unspecified-encoding 122 - refactor: consider-using-with 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 7 - warning: unused-import 8 - warning: unused-import 10 - warning: unused-import 11 - warning: unused-import 13 - warning: unused-import
1 from shop.models import Article 2 from shop.serializers import ArticleSerializer 3 from rest_framework.viewsets import ModelViewSet 4 5 6 class ArticleViewSet(ModelViewSet): 7 queryset = Article.objects.all() 8 serializer_class = ArticleSerializer
6 - refactor: too-few-public-methods
1 from json import loads 2 from django.http import JsonResponse 3 from django.http import HttpResponseNotAllowed 4 from django.http import HttpResponseNotFound 5 from shop.models import Article 6 7 8 def view_articles(request): 9 """ Handles GET and POST requests for a collection of articles. 10 11 curl --include \ 12 http://localhost:8000/shop/articles/ 13 14 curl --include \ 15 --request POST \ 16 --header "Content-Type: application/json" \ 17 --data '{"name":"test"}' \ 18 http://localhost:8000/shop/articles/ 19 20 """ 21 22 if request.method == 'GET': 23 articles = [] 24 for article in Article.objects.all(): 25 articles.append({ 26 'id': article.id, 27 'name': article.name 28 }) 29 articles = Article.objects.all() 30 return JsonResponse({'articles': articles}) 31 32 if request.method == 'POST': 33 data = loads(request.body) 34 name = data.get('name') 35 article = Article.objects.create(name=name) 36 return JsonResponse({ 37 'id': article.id, 38 'name': article.name 39 }) 40 41 return HttpResponseNotAllowed(['GET', 'POST']) 42 43 44 def view_article(request, id): 45 """ Handles GET, PATCH and DELETE requests for a single article. 46 47 curl --include \ 48 http://localhost:8000/shop/articles/1/ 49 50 curl --include \ 51 --request PATCH \ 52 --header "Content-Type: application/json" \ 53 --data '{"name":"foo"}' \ 54 http://localhost:8000/shop/articles/1/ 55 56 curl --include \ 57 --request DELETE \ 58 http://localhost:8000/shop/articles/1/ 59 60 """ 61 article = Article.objects.filter(id=id).first() 62 if not article: 63 return HttpResponseNotFound() 64 65 if request.method == 'GET': 66 return JsonResponse({ 67 'id': article.id, 68 'name': article.name 69 }) 70 71 if request.method == 'PATCH': 72 data = loads(request.body) 73 name = data.get('name') 74 article.name = name 75 article.save() 76 return JsonResponse({ 77 'id': article.id, 78 'name': article.name 79 }) 80 81 if request.method == 'DELETE': 82 article.delete() 83 return JsonResponse({'id': id}) 84 85 return HttpResponseNotAllowed(['GET', 'PATCH', 'DELETE'])
44 - warning: redefined-builtin
1 from django.urls import path 2 from shop.views import view_article 3 from shop.views import view_articles 4 5 6 urlpatterns = [ 7 path('articles/', view_articles), 8 path('articles/<int:id>/', view_article), 9 ]
Clean Code: No Issues Detected
1 from shop.views import ArticleViewSet 2 from rest_framework.routers import DefaultRouter 3 4 5 router = DefaultRouter() 6 router.register('articles', ArticleViewSet) 7 urlpatterns = router.urls
Clean Code: No Issues Detected
1 from django.db.models import Model 2 from django.db.models import CharField 3 4 5 class Article(Model): 6 name = CharField(max_length=50)
5 - refactor: too-few-public-methods
1 from django_filters import FilterSet 2 from shop.models import Article 3 4 5 class ArticleFilter(FilterSet): 6 7 class Meta: 8 model = Article 9 fields = ['category']
7 - refactor: too-few-public-methods 5 - refactor: too-few-public-methods
1 from django.contrib.admin import ModelAdmin, register 2 from shop.models import Article 3 4 5 @register(Article) 6 class ArticelAdmin(ModelAdmin): 7 pass
6 - refactor: too-few-public-methods
1 from shop.models import Article 2 from rest_framework.serializers import HyperlinkedModelSerializer 3 4 5 class ArticleSerializer(HyperlinkedModelSerializer): 6 7 class Meta: 8 model = Article 9 fields = ['id', 'name', 'category'] 10 read_only_fields = ['id']
7 - refactor: too-few-public-methods 5 - refactor: too-few-public-methods
1 from json import loads 2 from django.http import JsonResponse 3 from django.http import HttpResponseNotAllowed 4 5 6 def view_articles(request): 7 """ Handles GET and POST requests for a collection of articles. 8 9 curl --include \ 10 http://localhost:8000/shop/articles/ 11 12 curl --include \ 13 --request POST \ 14 --header "Content-Type: application/json" \ 15 --data '{"name":"test"}' \ 16 http://localhost:8000/shop/articles/ 17 18 """ 19 20 if request.method == 'GET': 21 return JsonResponse({'ids': [id for id in range(10)]}) 22 23 if request.method == 'POST': 24 data = loads(request.body) 25 data['id'] = 1 26 return JsonResponse(data) 27 28 return HttpResponseNotAllowed(['GET', 'POST']) 29 30 31 def view_article(request, id): 32 """ Handles GET, PATCH and DELETE requests for a single article. 33 34 curl --include \ 35 http://localhost:8000/shop/articles/1/ 36 37 curl --include \ 38 --request PATCH \ 39 --header "Content-Type: application/json" \ 40 --data '{"name":"test"}' \ 41 http://localhost:8000/shop/articles/1/ 42 43 curl --include \ 44 --request DELETE \ 45 http://localhost:8000/shop/articles/1/ 46 47 """ 48 49 if request.method == 'GET': 50 return JsonResponse({'id': id}) 51 52 if request.method == 'PATCH': 53 data = loads(request.body) 54 data['id'] = id 55 return JsonResponse(data) 56 57 if request.method == 'DELETE': 58 return JsonResponse({'id': id}) 59 60 return HttpResponseNotAllowed(['GET', 'PATCH', 'DELETE'])
21 - refactor: unnecessary-comprehension 31 - warning: redefined-builtin
1 def add(x, y): 2 """Add function""" 3 return x+y 4 def subtract(x,y): 5 """Subtract function""" 6 return x-y 7 def multiply(x,y): 8 """Multiply function""" 9 return x*y
Clean Code: No Issues Detected
1 # Generated by Django 3.1 on 2021-09-13 16:42 2 3 import datetime 4 from django.db import migrations, models 5 6 7 class Migration(migrations.Migration): 8 9 dependencies = [ 10 ('charitydonation', '0002_auto_20210909_1554'), 11 ] 12 13 operations = [ 14 migrations.AddField( 15 model_name='donation', 16 name='pick_up_time', 17 field=models.TimeField(default=datetime.time), 18 ), 19 migrations.AlterField( 20 model_name='donation', 21 name='pick_up_date', 22 field=models.DateField(), 23 ), 24 ]
7 - refactor: too-few-public-methods
1 from django.contrib import admin 2 from .models import Category, Institution, Donation 3 4 admin.site.register(Category) 5 admin.site.register(Institution) 6 admin.site.register(Donation)
2 - error: relative-beyond-top-level
1 from django.db import models 2 from django.contrib.auth.models import ( 3 BaseUserManager, AbstractBaseUser, UserManager 4 ) 5 # 6 # class UserManager(BaseUserManager): 7 # def create_user(self, email, password=None): 8 # """ 9 # Creates and saves a User with the given email and password. 10 # """ 11 # if not email: 12 # raise ValueError('Users must have an email address') 13 # 14 # if not password: 15 # raise ValueError("Users must have a password!!! ") 16 # user = self.model( 17 # email=self.normalize_email(email), 18 # ) 19 # 20 # user.set_password(password) 21 # user.staff = is_staff 22 # user.admin = is_admin 23 # user.active = is_active 24 # # user.save(using=self._db) 25 # return user 26 # 27 # def create_staffuser(self, email, password): 28 # """ 29 # Creates and saves a staff user with the given email and password. 30 # """ 31 # user = self.create_user( 32 # email, 33 # password=password, 34 # ) 35 # user.staff = True 36 # # user.save(using=self._db) 37 # return user 38 # 39 # def create_superuser(self, email, password): 40 # """ 41 # Creates and saves a superuser with the given email and password. 42 # """ 43 # user = self.create_user( 44 # email, 45 # password=password, 46 # ) 47 # user.staff = True 48 # user.admin = True 49 # # user.save(using=self._db) 50 # return user 51 # 52 # class User(AbstractBaseUser): 53 # email = models.EmailField( 54 # verbose_name='email address', 55 # max_length=255, 56 # unique=True, 57 # ) 58 # # full_name = models.CharField(max_length=255, blank=True, null=True) 59 # is_active = models.BooleanField(default=True) 60 # staff = models.BooleanField(default=False) # a admin user; non super-user 61 # admin = models.BooleanField(default=False) # a superuser 62 # timestamp = models.DateTimeField(auto_now_add=True) 63 # # notice the absence of a "Password field", that is built in. 64 # 65 # USERNAME_FIELD = 'email' 66 # REQUIRED_FIELDS = [] # Email & Password are required by default. 67 # objects = UserManager() 68 # 69 # def get_full_name(self): 70 # # The user is identified by their email address 71 # return self.email 72 # 73 # def get_short_name(self): 74 # # The user is identified by their email address 75 # return self.email 76 # 77 # def __str__(self): 78 # return self.email 79 # 80 # def has_perm(self, perm, obj=None): 81 # "Does the user have a specific permission?" 82 # # Simplest possible answer: Yes, always 83 # return True 84 # 85 # def has_module_perms(self, app_label): 86 # "Does the user have permissions to view the app `app_label`?" 87 # # Simplest possible answer: Yes, always 88 # return True 89 # 90 # @property 91 # def is_staff(self): 92 # "Is the user a member of staff?" 93 # return self.staff 94 # 95 # @property 96 # def is_active(self): 97 # "Is the user a admin member?" 98 # return self.active 99 # 100 # @property 101 # def is_admin(self): 102 # "Is the user a admin member?" 103 # return self.admin 104 # 105 # 106 # 107 # 108 # 109 # class GuestEmail(models.Model): 110 # email = models.EmailField() 111 # active = models.BooleanField(default=True) 112 # update = models.DateTimeField(auto_now=True) 113 # timestamp = models.DateTimeField(auto_now_add=True) 114 # 115 # def __str__(self): 116 # return self.email 117 118 from django.db import models 119 from django.contrib.auth.models import AbstractUser 120 from django.utils.translation import gettext_lazy as _ 121 122 123 class UserManager(BaseUserManager): 124 def create_user(self, email, password=None, **extra_fields): 125 126 if not email: 127 raise ValueError('Users must have an email address') 128 129 if not password: 130 raise ValueError("Users must have a password!!! ") 131 132 extra_fields.setdefault('is_staff', False) 133 extra_fields.setdefault('is_superuser', False) 134 extra_fields.setdefault('is_active', True) 135 136 email = self.normalize_email(email) 137 user = self.model(email=email, **extra_fields) 138 user.set_password(password) 139 user.save() 140 return user 141 142 def create_superuser(self, email, password, **extra_fields): 143 144 extra_fields.setdefault('is_staff', True) 145 extra_fields.setdefault('is_superuser', True) 146 extra_fields.setdefault('is_active', True) 147 148 if extra_fields.get('is_staff') is not True: 149 raise ValueError(_('Superuser must have is_staff=True.')) 150 if extra_fields.get('is_superuser') is not True: 151 raise ValueError(_('Superuser must have is_superuser=True.')) 152 return self.create_user(email, password, **extra_fields) 153 154 155 class CustomUser(AbstractUser): 156 username = None 157 email = models.EmailField(_('email address'), max_length=255, unique=True) 158 USERNAME_FIELD = 'email' 159 REQUIRED_FIELDS = [] 160 objects = UserManager() 161 162 def __str__(self): 163 return self.email
118 - warning: reimported 123 - error: function-redefined 155 - refactor: too-few-public-methods 2 - warning: unused-import
1 from django.shortcuts import render 2 from django.views import View, generic 3 from django.contrib.auth import views 4 # from .forms import RegisterForm 5 from django.shortcuts import render 6 from django.views import View, generic 7 # from charitydonation.models import Donation, Institution 8 from .forms import CreateUserForm, LoginForm, CustomUserCreationForm 9 from django.contrib.auth import login, logout, authenticate, views 10 from django.shortcuts import redirect 11 from django.urls import reverse_lazy 12 13 14 class LoginView(View): 15 def get(self, request): 16 form = LoginForm() 17 return render(request, 'login.html', {'form': form}) 18 19 def post(self, request, *args, **kwargs): 20 form = LoginForm(request.POST) 21 if form.is_valid(): 22 user = authenticate(email=form.cleaned_data['email'], password=form.cleaned_data['password']) 23 # breakpoint() 24 if user is not None: 25 26 login(request, user) 27 return redirect('landing-page') 28 else: 29 return render(request, 'login.html', {'form': form}) 30 else: 31 return render(request, 'login.html', {'form': form}) 32 33 34 class RegisterView(View): 35 def get(self, request): 36 form = CustomUserCreationForm() 37 return render(request, 'register.html', {'form': form}) 38 39 def post(self, request): 40 form = CustomUserCreationForm(request.POST) 41 if form.is_valid(): 42 form.save() 43 # instance = form.save(commit=False) 44 # instance.set_password(instance.password) 45 # # form.clean_password2() 46 # instance.save() 47 # # email = form.cleaned_data['email'] 48 # raw_password = form.cleaned_data['password'] 49 # user = authenticate(email=email, password=raw_password) 50 # user.save() 51 # login(request, user) 52 return redirect('landing-page') 53 return render(request, 'register.html', {'form': form}) 54 55 56 class LogoutView(View): 57 def get(self, request): 58 logout(request) 59 return redirect('landing-page')
5 - warning: reimported 6 - warning: reimported 6 - warning: reimported 8 - error: relative-beyond-top-level 9 - warning: reimported 24 - refactor: no-else-return 19 - warning: unused-argument 19 - warning: unused-argument 56 - refactor: too-few-public-methods 2 - warning: unused-import 3 - warning: unused-import 8 - warning: unused-import 11 - warning: unused-import
1 from django.shortcuts import render 2 from django.views import View, generic 3 from .models import Donation, Institution, Category 4 from .forms import AddDonationForm 5 from django.contrib.auth import login, logout, authenticate, views 6 from django.shortcuts import redirect 7 from django.urls import reverse_lazy 8 from django.contrib.auth.mixins import LoginRequiredMixin, PermissionRequiredMixin 9 from django.views.generic.edit import CreateView 10 from django.db.models import Avg, Count 11 from django.core.paginator import Paginator 12 from django.contrib.auth.views import PasswordChangeView, PasswordChangeDoneView 13 from django.http import HttpResponse 14 from django.db.models import Q, Sum 15 16 17 class LandingPage(View): 18 def get(self, request): 19 count_bags = Donation.objects.all() 20 count_b = count_bags.aggregate(Sum('quantity'))['quantity__sum'] 21 count_institutions = Donation.objects.distinct("institution").count() 22 23 24 # 25 all_institution_fund = Institution.objects.filter(type='1') 26 all_institution_org = Institution.objects.filter(type='2') 27 all_institution_lok = Institution.objects.filter(type='3') 28 29 return render(request, 'index.html', {'count_b': count_b, 'count_institutions': count_institutions, 30 'all_institution_fund': all_institution_fund, 31 'all_institution_org': all_institution_org, 32 'all_institution_lok': all_institution_lok} 33 ) 34 35 36 class AddDonation(LoginRequiredMixin, View): 37 login_url = '/' 38 # raise_exception = True 39 40 def get(self, request): 41 categories_all = Category.objects.all() 42 institutions_all = Institution.objects.all() 43 form = AddDonationForm() 44 45 # redirect_field_name = 'landing-page' 46 return render(request, 'form.html', 47 {'categories_all': categories_all, 48 'institutions_all': institutions_all, 'form': form}) 49 50 def post(self, request): 51 form = AddDonationForm(request.POST) 52 53 if form.is_valid(): 54 55 # categories_all = Category.objects.all() 56 categories = form.cleaned_data['categories'] 57 # institutions_all = Institution.objects.all() 58 quantity = form.cleaned_data['bags'] 59 # category_id = request.POST.get('category.id') 60 # catogeria = Institution.objects.filter(id=category_id) 61 institution = form.cleaned_data['organization'] 62 # if request.POST.get( 63 # catego = Category.objects.get(id=category_id) 64 address = form.cleaned_data['address'] 65 city = form.cleaned_data['city'] 66 zip_code = form.cleaned_data['postcode'] 67 phone_number = form.cleaned_data['phone'] 68 pick_up_date = form.cleaned_data['data'] 69 pick_up_time = form.cleaned_data['time'] 70 pick_up_comment = form.cleaned_data['more_info'] 71 user = request.user 72 donat = Donation.objects.create( 73 quantity=quantity, categories=categories, institution=institution, 74 address=address, phone_number=phone_number, city=city, zip_code=zip_code, 75 pick_up_date=pick_up_date, pick_up_comment=pick_up_comment, pick_up_time=pick_up_time, 76 user=user) 77 donat.save() 78 # redirect_field_name = 'landing-page' 79 return render(request, 'form-confirmation.html', {'form': form}) 80 81 return render(request, 'form.html', {'form': form}) 82 # return HttpResponse("Źle") 83 # class LoginView(views.LoginView): 84 # form_class = LoginForm 85 # template_name = 'login.html' 86 # 87 # 88 # class RegisterView(generic.CreateView): 89 # form_class = CreateUserForm 90 # template_name = 'register.html' 91 # success_url = reverse_lazy('login') 92 93 94 class UserView(LoginRequiredMixin, View): 95 login_url = '/' 96 97 def get(self, request): 98 donation_user = Donation.objects.filter(user=request.user) 99 return render(request, 'user-view.html', {'donation_user': donation_user}) 100 101 102 class PasswordChangeView(PasswordChangeView): 103 template_name = 'change-password.html' 104 success_url = 'done/' 105 106 107 class PasswordChangeDoneView(PasswordChangeDoneView): 108 template_name = 'change-password-done.html' 109 110 111 class DonationReady(View): 112 def get(self, request): 113 return render(request, 'form-confirmation.html')
3 - error: relative-beyond-top-level 4 - error: relative-beyond-top-level 17 - refactor: too-few-public-methods 94 - refactor: too-few-public-methods 102 - error: function-redefined 102 - refactor: too-few-public-methods 107 - error: function-redefined 107 - refactor: too-few-public-methods 111 - refactor: too-few-public-methods 2 - warning: unused-import 5 - warning: unused-import 5 - warning: unused-import 5 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 7 - warning: unused-import 8 - warning: unused-import 9 - warning: unused-import 10 - warning: unused-import 10 - warning: unused-import 11 - warning: unused-import 13 - warning: unused-import 14 - warning: unused-import
1 from django.contrib.auth.forms import UserCreationForm, UserChangeForm 2 from .models import Donation 3 from django import forms 4 from django.contrib.auth.forms import UserCreationForm, AuthenticationForm 5 from django.contrib.auth.models import User 6 from django.core.exceptions import ValidationError 7 from django.contrib.auth import get_user_model 8 9 10 # class CreateUserForm(UserCreationForm): 11 # class Meta: 12 # model = get_user_model() 13 # fields = ('email', 'username', 'password1', 'password2') 14 15 16 class AddDonationForm(forms.Form): 17 class Meta: 18 model = Donation 19 fields = ('quantity', 'categories', 'institution', 'address', 'phone_number', 20 'city', 'zip_code', 'pick_up_date', 'pick_up_time', 'pick_up_comment', 'user')
2 - error: relative-beyond-top-level 4 - warning: reimported 17 - refactor: too-few-public-methods 16 - refactor: too-few-public-methods 1 - warning: unused-import 1 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 7 - warning: unused-import
1 """donation URL Configuration 2 3 The `urlpatterns` list routes URLs to views. For more information please see: 4 https://docs.djangoproject.com/en/3.2/topics/http/urls/ 5 Examples: 6 Function views 7 1. Add an import: from my_app import views 8 2. Add a URL to urlpatterns: path('', views.home, name='home') 9 Class-based views 10 1. Add an import: from other_app.views import Home 11 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') 12 Including another URLconf 13 1. Import the include() function: from django.urls import include, path 14 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) 15 """ 16 from django.contrib import admin 17 from django.urls import path 18 from charitydonation.views import LandingPage, AddDonation, UserView, PasswordChangeView, PasswordChangeDoneView, DonationReady 19 from accounts.views import RegisterView, LoginView, LogoutView 20 21 22 urlpatterns = [ 23 path('admin/', admin.site.urls), 24 path('', LandingPage.as_view(), name='landing-page'), 25 path('add_donation/', AddDonation.as_view(), name='add-donation'), 26 path('login/', LoginView.as_view(), name='login'), 27 path('register/', RegisterView.as_view(), name='register'), 28 path('logout/', LogoutView.as_view(), name='logout'), 29 path('user_view/', UserView.as_view(), name='user-view'), 30 path('password_change/', PasswordChangeView.as_view(), name='user-change'), 31 path('password_change/done/', PasswordChangeDoneView.as_view(), name='user-change-done'), 32 path('add_donation/form-confirmation/', DonationReady.as_view(), name='form-ready'), 33 34 35 ]
Clean Code: No Issues Detected
1 # Generated by Django 3.1 on 2021-09-09 15:54 2 3 import datetime 4 from django.db import migrations, models 5 6 7 class Migration(migrations.Migration): 8 9 dependencies = [ 10 ('charitydonation', '0001_initial'), 11 ] 12 13 operations = [ 14 migrations.RemoveField( 15 model_name='donation', 16 name='pick_up_time', 17 ), 18 migrations.AlterField( 19 model_name='donation', 20 name='pick_up_date', 21 field=models.DateTimeField(verbose_name=datetime.datetime), 22 ), 23 migrations.AlterField( 24 model_name='institution', 25 name='type', 26 field=models.CharField(choices=[('1', 'Fundacja'), ('2', 'Organizacja pozarządowa'), ('3', 'Zbiórka lokalna')], default='1', max_length=2), 27 ), 28 ]
7 - refactor: too-few-public-methods
1 import datetime 2 from django.contrib.auth.models import User 3 from django.contrib.auth.models import AbstractUser 4 from django.db import models 5 from django.utils.translation import gettext_lazy as _ 6 # from ProjektPortfolioLab.donation import settings 7 from django.conf import settings 8 9 User = settings.AUTH_USER_MODEL 10 11 12 class Category(models.Model): 13 name = models.CharField(max_length=64) 14 15 def __str__(self): 16 return self.name 17 18 INSTITUTIONS = ( 19 ('1', "Fundacja"), 20 ('2', "Organizacja pozarządowa"), 21 ('3', "Zbiórka lokalna"), 22 ) 23 24 25 class Institution(models.Model): 26 27 istitution_name = models.CharField(max_length=128) 28 description = models.TextField() 29 type = models.CharField(max_length=2, choices=INSTITUTIONS, default='1') 30 categories = models.ManyToManyField(Category) 31 32 def __str__(self): 33 return self.istitution_name 34 35 36 class Donation(models.Model): 37 quantity = models.IntegerField() 38 categories = models.ManyToManyField(Category) 39 institution = models.ForeignKey(Institution, on_delete=models.CASCADE) 40 address = models.TextField() 41 phone_number = models.CharField(max_length=12) 42 city = models.CharField(max_length=64) 43 zip_code = models.TextField() 44 pick_up_date = models.DateField() 45 pick_up_time = models.TimeField(default=datetime.time) 46 pick_up_comment = models.TextField() 47 user = models.ForeignKey(User, on_delete=models.CASCADE) 48 49 # 50 # class CustomUser(AbstractUser): 51 # email = models.EmailField(_('email address'), unique=True) 52
12 - refactor: too-few-public-methods 25 - refactor: too-few-public-methods 36 - refactor: too-few-public-methods 3 - warning: unused-import
1 from bs4 import BeautifulSoup 2 from pprint import pprint 3 from functools import reduce 4 import sys 5 6 7 def scrape(html_file_path): 8 9 soup = BeautifulSoup(open(html_file_path), 'html.parser') 10 11 rows = soup.find_all('tr') 12 13 commands = list() 14 15 for row in rows[1:]: 16 cols = row.find_all('td') 17 18 lure_string = list(cols[0].descendants)[0] 19 lure = lure_string.text 20 21 body_of_water = cols[1].string 22 23 location = cols[2].string 24 25 fish_string = cols[3] 26 fish_type = fish_string.font.string 27 fish_level = fish_string.find('font').text 28 29 size_strings = list(map(lambda x: x.string, cols[4].find_all('font'))) 30 weight_idx = -1 31 for idx in range(len(size_strings)): 32 if 'lb' in size_strings[idx]: 33 weight_idx = idx 34 break 35 weight = size_strings[weight_idx].split()[0] 36 fish_class = reduce(lambda x, y: "%s %s" % (x, y), size_strings[weight_idx+1:]) 37 if 'L e g e n d a r y' in fish_class: 38 fish_class = 'Legendary' 39 elif 'B R U I S E R' in fish_class: 40 fish_class = 'Bruiser' 41 42 # size not stored for now 43 # size = reduce(lambda x, y: "%s %s" % (x, y), size_strings[:-3]) 44 45 command = "'%s', '%s', '%s', '%s', '%s', '%s', '%s'" % (lure, body_of_water, location, fish_type, fish_level, 46 weight, fish_class) 47 commands.append(command) 48 49 return commands 50 51 52 if __name__ == '__main__': 53 54 if len(sys.argv) != 2: 55 print("Need one argument: path to html_file", file=sys.stderr) 56 sys.exit(1) 57 58 scrape_data = scrape(sys.argv[1]) 59 pprint(scrape_data)
7 - refactor: too-many-locals 9 - refactor: consider-using-with 9 - warning: unspecified-encoding 13 - refactor: use-list-literal
1 import os.path 2 import sqlite3 3 import Scraper 4 import sys 5 6 7 def create_db(): 8 conn = sqlite3.connect('reellog.db') 9 c = conn.cursor() 10 11 c.execute('''CREATE TABLE reellog 12 (lure text, body text, location text, species text, level integer, weight real, class text, 13 unique(lure, body, location, species, level, weight, class))''') 14 15 conn.commit() 16 conn.close() 17 18 19 def sample_db_entry(): 20 scrape_data = "'Culprit Worm', 'Amazon River', 'Baia de Santa Rosa', 'Matrincha', '6', '0.062', 'Wimpy III'" 21 command = "INSERT INTO reellog VALUES (%s)" % scrape_data 22 23 conn = sqlite3.connect('reellog.db') 24 c = conn.cursor() 25 26 c.execute(command) 27 28 conn.commit() 29 conn.close() 30 31 32 def parse_and_store(html_file_path): 33 conn = sqlite3.connect('reellog.db') 34 c = conn.cursor() 35 36 c.execute("SELECT COUNT(*) from reellog") 37 (old_entry_count, ) = c.fetchone() 38 39 to_write = Scraper.scrape(html_file_path) 40 41 for row in to_write: 42 command = "INSERT INTO reellog VALUES (%s)" % row 43 try: 44 c.execute(command) 45 print('+ %s' % row) 46 except sqlite3.IntegrityError: 47 print('= %s' % row) 48 49 conn.commit() 50 51 c.execute("SELECT COUNT(*) from reellog") 52 (new_entry_count,) = c.fetchone() 53 54 conn.close() 55 56 print("%i new entries added" % (int(new_entry_count) - int(old_entry_count))) 57 58 59 if __name__ == '__main__': 60 61 if len(sys.argv) != 2: 62 print("Need one argument: path to html_file", file=sys.stderr) 63 sys.exit(1) 64 65 if not os.path.isfile('reellog.db'): 66 print('No reellog.db found, creating') 67 create_db() 68 parse_and_store(sys.argv[1]) 69 # sample_db_entry() 70 71 print('Done')
Clean Code: No Issues Detected
1 Numero1 = int (input ('Primeiro numero = ' )) 2 Numero2 = int (input ('Segundo numero = ')) 3 print (Numero1 + Numero2) 4 5 6
Clean Code: No Issues Detected
1 n = input('Digite algo:') 2 print ('Esse número é', (type (n))) 3 print ('Ele é númerico ? ', n.isnumeric ()) 4 print (' Ele é alfabético? ', n.isalpha ()) 5 print (' Ele é um decimal? ', n.isdecimal ()) 6 print (' Ele é minúsculo? ', n .islower ()) 7 print ('Ele é maiúsculo?', n.isupper ()) 8 print ('Ele é um dígito?', n.isdigit ()) 9 print ('Verificação concluída')
Clean Code: No Issues Detected
1 Nome = input('Digite seu nome:') 2 print('Seja bem vindo,',format(Nome)) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Clean Code: No Issues Detected
1 n1 = input('Digite um valor: ') 2 print(type (n1))
Clean Code: No Issues Detected
1 n = input('Digite algo: ') 2 print(n .isnumeric())
Clean Code: No Issues Detected
1 import sys, os 2 import fileinput 3 4 funcString = "function (" 5 openBracket = '(' 6 closingBracket = ') {' 7 closingBracket2 = '){' 8 arrowSyntax = ') => {' 9 10 def main(): 11 12 if (len(sys.argv) < 2 or len(sys.argv) > 3): 13 print 'ERROR:' 14 print 'Please supply either a directory to a folder containing JavaScript files, or a JavaScript file and an optional output file name in the following formats:' 15 print '----------------------------------------' 16 print 'To convert all files in a directory:' 17 print 'python func-to-arrow.py "directory-to-folder"' 18 print 'To convert a single file with optional output file:' 19 print 'python func-to-arrow.py "JavaScript-file.js" "output-file.js"' 20 21 elif (len(sys.argv) == 2): 22 input1 = sys.argv[1] 23 jsFileExt = '.js' 24 # newFileName = sys.argv[1].split('.')[0] + '-new.' + sys.argv[1].split('.')[1] 25 if (jsFileExt in input1): 26 parseFile(input1, False, False) 27 else: 28 parseDir(input1) 29 # for f in os.listdir(input1): 30 # if (jsFileExt in f): 31 # parseFile(f, False, input1) 32 33 elif (len(sys.argv) == 3): 34 fileIn = sys.argv[1] 35 fileOut = sys.argv[2] 36 37 if ((jsFileExt in sys.argv[1]) and (jsFileExt in sys.argv[2])): 38 parseFile(open(fileIn), fileOut, False) 39 else: 40 print 'Please check your file types' 41 42 exit() 43 44 def parseDir(folder): 45 for f in os.listdir(folder): 46 if (('.js' in f) and ('.min.' not in f)): 47 parseFile(f, False, folder) 48 elif (os.path.isdir(os.path.join(folder, f)) and (f != 'node_modules')): 49 parseDir(os.path.join(folder, f)) 50 51 return 52 53 def parseFile(fileIn, fileOut, directory): 54 if (fileOut): 55 newFileName = fileOut 56 57 else: 58 newFileName = str(fileIn).split('.')[0] + '-new.' + fileIn.split('.')[1] 59 60 if (directory): 61 fileIn = os.path.join(directory, fileIn) 62 newFile = open(os.path.join(directory, newFileName), 'a+') 63 64 else: 65 newFile = open(newFileName, 'a+') 66 67 isSame = True 68 69 for line in open(fileIn): 70 toWrite = arrowStyle(line) 71 newFile.write(toWrite) 72 if (line != toWrite): 73 isSame = False 74 75 newFile.close(); 76 77 if isSame: 78 os.remove(os.path.join(directory, newFileName)) 79 print 'No changes were made to ' + fileIn 80 else: 81 print 'Changes were made to ' + fileIn 82 oldFile = os.path.join(directory, newFileName.replace('-new', '-old')) 83 os.rename(fileIn, oldFile) 84 # print fileIn + ' has been renamed to ' + oldFile 85 # print newFileName + ' has been renamed to ' + fileIn 86 os.rename(os.path.join(directory, newFileName), fileIn) 87 88 89 def arrowStyle(line): 90 if (funcString in line): 91 newLine = line.replace(funcString, openBracket) 92 newLine = newLine.replace(closingBracket, arrowSyntax) 93 newLine = newLine.replace(closingBracket2, arrowSyntax) 94 return newLine 95 else: 96 return line 97 98 main()
13 - error: syntax-error
1 import os, sys 2 3 def main(): 4 if (len(sys.argv) == 2): 5 if os.path.isdir(sys.argv[1]): 6 parseDir(sys.argv[1]) 7 8 def parseDir(folder): 9 for f in os.listdir(folder): 10 if ('-old.' in f): 11 os.remove(os.path.join(folder, f)) 12 elif (os.path.isdir(os.path.join(folder, f)) and (f != 'node_modules')): 13 parseDir(os.path.join(folder, f)) 14 15 main()
Clean Code: No Issues Detected
1 import requests 2 from bs4 import BeautifulSoup 3 import discord 4 import os 5 from tabulate import tabulate 6 import handlers 7 import pandas as pd 8 from helpers import get_url, get_problems, trim,load_problems 9 from handlers import start_contest, update_leaderboard,add_cf_user,users,get_recommendations_topics, set_handle, recommendations_handle 10 11 from keep_alive import keep_alive 12 13 import weasyprint as wsp 14 import PIL as pil 15 16 # global running 17 # running = contest_running 18 19 20 21 client = discord.Client() 22 23 @client.event 24 async def on_ready(): 25 print('We have logged in as {0.user}'.format(client)) 26 27 28 @client.event 29 async def on_message(message): 30 global contest_running 31 32 if message.author == client.user: 33 return 34 35 msg = message.content 36 #params = msg.lower().split(' ') 37 params = msg.split(' ') 38 if params[0][0] != '!': 39 return 40 41 if params[0] == '!setrc': 42 handle = params[1] 43 rc = set_handle(handle) 44 if rc < 0: 45 await message.channel.send('Invalid codeforces handle') 46 else: 47 await message.channel.send('Done! Getting recommandations from: '+handle+".") 48 49 50 if params[0] == '!topics': 51 msg = get_recommendations_topics(recommendations_handle) 52 await message.channel.send(msg) 53 54 if params[0] == '!add': 55 username = params[1] 56 rc = add_cf_user(username) 57 if rc == -1: 58 await message.channel.send('User already registered!') 59 elif rc == -2: 60 await message.channel.send('Not a valid user on CodeForces!') 61 else: 62 await message.channel.send(f"Sucessfully added {username}") 63 64 elif params[0] == '!all': 65 await message.channel.send(users) 66 67 elif params[0] == '!start': 68 if handlers.contest_running: 69 await message.channel.send("A contest is already Active !") 70 return 71 task = "_".join(word for word in params[1:]) 72 #img_filepath = 'table.png' 73 #print(task) 74 msg = start_contest(task) 75 76 if msg == "error": 77 await message.channel.send("Please Try Again!") 78 else: 79 e = discord.Embed( 80 title=f"Problem Set {handlers.ID}\n", 81 description=msg, 82 color=0xFF5733) 83 await message.channel.send(embed=e) 84 85 elif params[0] == '!lb': 86 id = params[1] if len(params) > 1 else handlers.ID 87 df_lead = update_leaderboard(id) 88 df_lead['Total'] = df_lead[list(df_lead.columns)[1:]].sum(axis=1) 89 df_lead.sort_values(by='Total',ascending=False, inplace=True) 90 await message.channel.send("```"+tabulate(df_lead, headers='keys', tablefmt='psql', showindex=False)+"```") 91 # f = discord.File('table.png', filename="image.png") 92 # e = discord.Embed(title='Leaderboard', color=0xFF5733) 93 # e.set_image(url="attachment://image.png") 94 # await message.channel.send(file=f, embed=e) 95 96 elif params[0] == "!prob": 97 id = params[1] if len(params) > 1 else handlers.ID 98 msg = load_problems(id) 99 e = discord.Embed( 100 title=f"Problem Set {handlers.ID}\n", 101 description=msg, 102 color=0xFF5733) 103 await message.channel.send(embed=e) 104 105 elif params[0] == "!end": 106 if handlers.contest_running == 0: 107 await message.channel.send("No contest is running !") 108 else: 109 handlers.contest_running = 0 110 await message.channel.send("Contest Abandoned !") 111 112 keep_alive() 113 client.run(os.getenv('TOKEN'))
30 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 35 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 54 - warning: bad-indentation 55 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 58 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 62 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 67 - warning: bad-indentation 68 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 74 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 83 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 87 - warning: bad-indentation 88 - warning: bad-indentation 89 - warning: bad-indentation 90 - warning: bad-indentation 96 - warning: bad-indentation 97 - warning: bad-indentation 98 - warning: bad-indentation 99 - warning: bad-indentation 103 - warning: bad-indentation 105 - warning: bad-indentation 106 - warning: bad-indentation 107 - warning: bad-indentation 108 - warning: bad-indentation 109 - warning: bad-indentation 110 - warning: bad-indentation 86 - warning: redefined-builtin 30 - warning: global-variable-not-assigned 29 - refactor: too-many-branches 29 - refactor: too-many-statements 1 - warning: unused-import 2 - warning: unused-import 7 - warning: unused-import 8 - warning: unused-import 8 - warning: unused-import 8 - warning: unused-import 13 - warning: unused-import 14 - warning: unused-import
1 import requests 2 from bs4 import BeautifulSoup 3 import discord 4 import os 5 import pandas as pd 6 7 import weasyprint as wsp 8 import PIL as pil 9 10 11 def get_url(task,handle): 12 URL = 'https://recommender.codedrills.io/profile?handles=cf%2Fjatinmunjal2k' 13 page = requests.get(URL) 14 15 soup = BeautifulSoup(page.content, 'html.parser') 16 17 # print(task) 18 19 result = soup.find(id=task) 20 21 url = result.find(title='An url for sharing and keeping track of solved problems for this recommendation list') 22 link = "https://recommender.codedrills.io"+url['href'] 23 return link 24 25 def get_problems(task, ID,handle): 26 # print(ID) 27 items = [[],[]] 28 buffer = "" 29 URL = get_url(task,handle) 30 page = requests.get(URL) 31 soup = BeautifulSoup(page.content, 'html.parser') 32 elems = soup.find_all('tr') 33 idx = 1 34 for e in elems: 35 a_tag = e.find('a') 36 buffer = buffer +"["+str(idx)+"](" + a_tag['href'] + ") " + a_tag.text + "\n" 37 items[0].append(a_tag.text) 38 items[1].append(a_tag['href']) 39 idx += 1 40 41 df = pd.DataFrame(list(zip(items[0],items[1])), columns = ['name', 'link']) 42 df.to_csv('contests/problems-contest'+str(ID)+'.csv' , index = False) 43 #print(df.head(3)) 44 45 return buffer 46 47 def load_problems(id): 48 df = pd.read_csv('contests/problems-contest'+str(id)+'.csv') 49 buffer = "" 50 for idx, row in df.iterrows(): 51 buffer = buffer + row['name'] + " [Link](" + row['link'] + ")\n" 52 return buffer 53 54 55 def trim(source_filepath, target_filepath=None, background=None): 56 if not target_filepath: 57 target_filepath = source_filepath 58 img = pil.Image.open(source_filepath) 59 if background is None: 60 background = img.getpixel((0, 0)) 61 border = pil.Image.new(img.mode, img.size, background) 62 diff = pil.ImageChops.difference(img, border) 63 bbox = diff.getbbox() 64 img = img.crop(bbox) if bbox else img 65 img.save(target_filepath) 66
12 - warning: bad-indentation 13 - warning: bad-indentation 15 - warning: bad-indentation 19 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 45 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 13 - warning: missing-timeout 11 - warning: unused-argument 30 - warning: missing-timeout 47 - warning: redefined-builtin 50 - warning: unused-variable 3 - warning: unused-import 4 - warning: unused-import 7 - warning: unused-import
1 import requests 2 from bs4 import BeautifulSoup 3 import discord 4 import os 5 from tabulate import tabulate 6 import pandas as pd 7 from helpers import get_url, get_problems, trim,load_problems 8 from keep_alive import keep_alive 9 10 import weasyprint as wsp 11 import PIL as pil 12 13 global ID, contest_running, users, recommendations_handle 14 ID = 0 15 contest_running = 0 16 users = [] 17 recommendations_handle = 'jatinmunjal2k' 18 19 20 21 def get_recommendations_topics(handle='jatinmunjal2k'): 22 topics = "Available Topics:\n" 23 URL = 'https://recommender.codedrills.io/profile?handles=cf%2F' + handle 24 page = requests.get(URL) 25 soup = BeautifulSoup(page.content, 'html.parser') 26 ul = soup.find("ul", class_="nav nav-pills") 27 tags = ul.find_all('li') 28 for e in tags: 29 topics = topics + e.text.strip() + ", " 30 return topics[:-2] 31 32 33 def set_handle(handle): 34 global recommendations_handle 35 r = requests.head('https://codeforces.com/profile/'+handle) 36 if r.status_code != 200: 37 return -1 38 recommendations_handle = handle 39 return 0 40 41 def start_contest(task): 42 global ID, contest_running 43 try: 44 ID += 1 45 problems_str = get_problems(task, ID,recommendations_handle) 46 init_leaderboard(ID) 47 contest_running = 1 48 return problems_str 49 except: 50 ID -= 1 51 return "error" 52 53 def add_cf_user(cf_handle): 54 global users 55 56 if cf_handle in users: 57 return -1 58 59 r = requests.head('https://codeforces.com/profile/'+cf_handle) 60 if r.status_code != 200: 61 return -2 62 63 users.append(cf_handle) 64 if contest_running == 1: 65 df = pd.read_csv('contests/leaderboard'+str(ID)+'.csv') 66 entry = [cf_handle] + [0]*(df.shape[1]-1) 67 df.loc[len(df)] = entry 68 df.to_csv('contests/leaderboard'+str(ID)+'.csv',index = False) 69 70 return 1 71 72 # def print_leaderboard(id, img_filepath): 73 # df_leaderboard = pd.read_csv('contests/leaderboard'+str(id)+'.csv') 74 # css = wsp.CSS(string=''' 75 # @page { size: 2048px 2048px; padding: 0px; margin: 0px; } 76 # table, td, tr, th { border: 1px solid black; } 77 # td, th { padding: 4px 8px; } 78 # ''') 79 # html = wsp.HTML(string=df_leaderboard.to_html(index=False)) 80 # html.write_png(img_filepath, stylesheets=[css]) 81 # trim(img_filepath) 82 83 def init_leaderboard(id): 84 df = pd.read_csv('contests/problems-contest'+str(id)+'.csv') 85 problems = df['name'] 86 zeros = [ [0]*len(users) for i in range(len(problems))] 87 df_scoreboard = pd.DataFrame(data=list(zip(users,*zeros)), columns=['User']+list(range(1,len(problems)+1))) 88 df_scoreboard.to_csv('contests/leaderboard'+str(id)+'.csv',index=False) 89 90 # print_leaderboard(id, img_filepath) 91 92 93 def update_leaderboard(id): 94 global users 95 df_prob = pd.read_csv('contests/problems-contest'+str(id)+'.csv') 96 df_lead = pd.read_csv('contests/leaderboard'+str(id)+'.csv') 97 98 for idxu, ru in df_lead.iterrows(): 99 user = ru['User'] 100 URL = 'https://codeforces.com/submissions/' + user 101 page = requests.get(URL) 102 soup = BeautifulSoup(page.content, 'html.parser') 103 submissions = soup.find_all('tr') 104 ac = [] 105 for submission in submissions: 106 data = submission.find_all('td') 107 try: 108 url = data[3].find('a')['href'].split('/') 109 verdict = data[5].text 110 #print(url, repr(verdict)) 111 if 'Accepted' in verdict: 112 ac.append('/'+url[2]+'/'+url[-1]) 113 except: 114 continue 115 116 j = 0 117 for idx, row in df_prob.iterrows(): 118 j += 1 119 link = row['link'] 120 for pid in ac: 121 if pid in link: 122 df_lead.at[idxu,str(j)] = 1 123 124 df_lead.to_csv('contests/leaderboard'+str(id)+'.csv',index = False) 125 # print_leaderboard(id, 'table.png') 126 return df_lead 127 128 129
22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 54 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 63 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 68 - warning: bad-indentation 70 - warning: bad-indentation 84 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 87 - warning: bad-indentation 88 - warning: bad-indentation 94 - warning: bad-indentation 95 - warning: bad-indentation 96 - warning: bad-indentation 98 - warning: bad-indentation 99 - warning: bad-indentation 100 - warning: bad-indentation 101 - warning: bad-indentation 102 - warning: bad-indentation 103 - warning: bad-indentation 104 - warning: bad-indentation 105 - warning: bad-indentation 106 - warning: bad-indentation 107 - warning: bad-indentation 108 - warning: bad-indentation 109 - warning: bad-indentation 111 - warning: bad-indentation 112 - warning: bad-indentation 113 - warning: bad-indentation 114 - warning: bad-indentation 116 - warning: bad-indentation 117 - warning: bad-indentation 118 - warning: bad-indentation 119 - warning: bad-indentation 120 - warning: bad-indentation 121 - warning: bad-indentation 122 - warning: bad-indentation 124 - warning: bad-indentation 126 - warning: bad-indentation 13 - warning: global-at-module-level 24 - warning: missing-timeout 34 - warning: global-statement 35 - warning: missing-timeout 42 - warning: global-statement 49 - warning: bare-except 54 - warning: global-variable-not-assigned 59 - warning: missing-timeout 83 - warning: redefined-builtin 93 - refactor: too-many-locals 93 - warning: redefined-builtin 94 - warning: global-variable-not-assigned 101 - warning: missing-timeout 113 - warning: bare-except 117 - warning: unused-variable 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 7 - warning: unused-import 7 - warning: unused-import 7 - warning: unused-import 8 - warning: unused-import 10 - warning: unused-import 11 - warning: unused-import
1 import ie_classifier as ic 2 import argparse 3 import logging as log 4 import sys 5 import cv2 6 7 def build_argparser(): 8 parser = argparse.ArgumentParser() 9 parser.add_argument('-m', '--model', help='Path to an .xml \ 10 file with a trained model.', required=True, type=str) 11 parser.add_argument('-w', '--weights', help='Path to an .bin file \ 12 with a trained weights.', required=True, type=str) 13 parser.add_argument('-i', '--input', help='Path to \ 14 image file', required=True, type=str) 15 parser.add_argument('-c', '--classes', help='File containing \ 16 classnames', type=str, default=None) 17 parser.add_argument('-d', '--device', help='Device name', 18 default = "CPU", type = str) 19 parser.add_argument('-e', '--cpu_extension', help='For custom', 20 default = None, type = str) 21 return parser 22 23 def main(): 24 log.basicConfig(format="[ %(levelname)s ] %(message)s", 25 level=log.INFO, stream=sys.stdout) 26 args = build_argparser().parse_args() 27 log.info("Start IE classification sample") 28 ie_classifier = ic.InferenceEngineClassifier(configPath=args.model, 29 weightsPath=args.weights, device=args.device, extension=args.cpu_extension, 30 classesPath=args.classes) 31 img = cv2.imread(args.input) 32 prob = ie_classifier.classify(img) 33 predictions = ie_classifier.get_top(prob, 5) 34 log.info("Predictions: " + str(predictions)) 35 return 36 37 if __name__ == '__main__': 38 sys.exit(main())
38 - warning: bad-indentation 34 - warning: logging-not-lazy 23 - refactor: useless-return
1 from openvino.inference_engine import IECore 2 import cv2 3 import numpy as np 4 5 class InferenceEngineDetector: 6 def __init__(self, configPath = None, weightsPath = None, 7 device = None, extension = None, classesPath = None): 8 IEc = IECore() 9 if (extension and device == 'CPU'): 10 IEc.add_extension(extension, device) 11 self.net = IEc.read_network(configPath, weightsPath) 12 self.exec_net = IEc.load_network(self.net, device_name = device) 13 with open(classesPath, 'r') as f: 14 self.classes = [i.strip() for i in f] 15 def _prepare_image(self, image, h, w): 16 image = cv2.resize(image, (w, h)) 17 image = image.transpose((2, 0, 1)) 18 return image 19 def detect(self, image): 20 input_blob = next(iter(self.net.inputs)) 21 output_blob = next(iter(self.net.outputs)) 22 n, c, h, w = self.net.inputs[input_blob].shape 23 image = self._prepare_image(image, h, w) 24 output = self.exec_net.infer(inputs={input_blob: image}) 25 output = output[output_blob] 26 return output 27 def draw_detection(self, detections, image, confidence = 0.5, draw_text = True): 28 detections = np.squeeze(detections) 29 h, w, c = image.shape 30 for classdet in detections: 31 if (classdet[2] > confidence): 32 image = cv2.rectangle(image, (int(classdet[3] * w), int(classdet[4] * h)), 33 (int(classdet[5] * w), int(classdet[6] * h)), 34 (0, 255, 0), 1) 35 if (draw_text): 36 image = cv2.putText(image, 37 self.classes[int(classdet[1])] 38 + ' ' + str('{:.2f}'.format(classdet[2] * 100)) + '%', 39 (int(classdet[3] * w - 5), int(classdet[4] * h - 5)), 40 cv2.FONT_HERSHEY_SIMPLEX, 0.45, 41 (0, 0, 255), 1) 42 return image
6 - refactor: too-many-arguments 6 - refactor: too-many-positional-arguments 13 - warning: unspecified-encoding 22 - warning: unused-variable 22 - warning: unused-variable 29 - warning: unused-variable
1 from openvino.inference_engine import IECore 2 import cv2 3 import numpy as np 4 5 class InferenceEngineClassifier: 6 def __init__(self, configPath = None, weightsPath = None, device = None, extension = None, classesPath = None): 7 IEc = IECore() 8 if (extension and device == "CPU"): 9 IEc.add_extension(extension, device) 10 self.net = IEc.read_network(configPath, weightsPath) 11 self.exec_net = IEc.load_network(self.net, device_name=device) 12 with open(classesPath, 'r') as f: 13 self.classes = [i.strip() for i in f] 14 def _prepare_image(self, image, h, w): 15 image = cv2.resize(image, (w, h)) 16 image = image.transpose((2, 0, 1)) 17 return image 18 def classify(self, image): 19 input_blob = next(iter(self.net.inputs)) 20 out_blob = next(iter(self.net.outputs)) 21 n, c, h, w = self.net.inputs[input_blob].shape 22 image = self._prepare_image(image, h, w) 23 output = self.exec_net.infer(inputs={input_blob: image}) 24 output = output[out_blob] 25 return output 26 def get_top(self, prob, topN = 1): 27 prob = np.squeeze(prob) 28 top = np.argsort(prob) 29 out = [] 30 for i in top[1000 - topN:1000]: 31 out.append([self.classes[i], '{:.15f}'.format(prob[i])]) 32 out.reverse() 33 return out
6 - refactor: too-many-arguments 6 - refactor: too-many-positional-arguments 12 - warning: unspecified-encoding 21 - warning: unused-variable 21 - warning: unused-variable
1 import ie_detector as id 2 import logging as log 3 import cv2 4 import argparse 5 import sys 6 7 def build_argparser(): 8 parser = argparse.ArgumentParser() 9 parser.add_argument('-m', '--model', help = 'Path to an .xml \ 10 file with a trained model.', required = True, type = str) 11 parser.add_argument('-w', '--weights', help = 'Path to an .bin file \ 12 with a trained weights.', required = True, type = str) 13 parser.add_argument('-i', '--input', help = 'Path to \ 14 image file.', required = True, type = str) 15 parser.add_argument('-d', '--device', help = 'Device name', 16 default='CPU', type = str) 17 parser.add_argument('-l', '--cpu_extension', 18 help = 'MKLDNN (CPU)-targeted custom layers. \ 19 Absolute path to a shared library with the kernels implementation', 20 type = str, default=None) 21 parser.add_argument('-c', '--classes', help = 'File containing \ 22 classnames', type = str, default=None) 23 return parser 24 25 def main(): 26 log.basicConfig(format="[ %(levelname)s ] %(message)s", 27 level=log.INFO, stream=sys.stdout) 28 args = build_argparser().parse_args() 29 log.info("Start IE detection sample") 30 ie_detector = id.InferenceEngineDetector(configPath=args.model, 31 weightsPath=args.weights, 32 device=args.device, 33 extension=args.cpu_extension, 34 classesPath=args.classes) 35 img = cv2.imread(args.input) 36 detections = ie_detector.detect(img) 37 image_detected = ie_detector.draw_detection(detections, img) 38 cv2.imshow('Image with detections', image_detected) 39 cv2.waitKey(0) 40 cv2.destroyAllWindows() 41 return 42 43 if (__name__ == '__main__'): 44 sys.exit(main())
1 - warning: redefined-builtin 25 - refactor: useless-return
1 import kivy 2 kivy.require('1.11.1') 3 from kivy.app import App 4 from kivy.lang import Builder 5 from kivy.uix.screenmanager import ScreenManager, Screen 6 from kivy.properties import ObjectProperty 7 from collections import Counter 8 import bot 9 import time 10 import tensorflow as tf 11 import facialrecognition as fr 12 import cv2 13 14 class Home(Screen): 15 pass 16 17 18 class Questions(Screen): 19 20 21 ques_path='Personality Test(base)\Questions.txt' 22 personalities={'isfj':'Defender','esfj':'Cousellor','istj':'Logistician','estp':'Entrepreneur','esfp':'Entertainer','istp':'Virtuoso','isfp':'Adventurer','entj':'Commander','entp':'Debator','intj':'Architect','intp':'Logician','enfj':'Protagonist','enfp':'Campaigner','infj':'Advocate','infp':'Mediator','estj':'Executive'} 23 personality='' 24 questions=[] 25 question_1 = ObjectProperty(None) 26 question_2 = ObjectProperty(None) 27 counter=1 28 answers=[0]*20 29 with open(ques_path) as quest_file: 30 questions=[r.split('SPLIT') for r in quest_file.readlines()] 31 32 def personality_exam(self,answers): 33 e,s,j,t=['e','i'],['s','n'],['j','p'],['t','f'] 34 e.extend([answers[r] for r in range(0,20,4)]) 35 s.extend([answers[r] for r in range(1,20,4)]) 36 t.extend([answers[r] for r in range(2,20,4)]) 37 j.extend([answers[r] for r in range(3,20,4)]) 38 personality='' 39 for option in e,s,t,j: 40 temp=Counter(option) 41 personality+=option[0] if temp['a']>temp['b'] else option[1] 42 Report.personality=personality 43 44 def on_enter(self, *args): 45 self.question_1.text=self.questions[0][0] 46 self.question_2.text=self.questions[0][1] 47 48 def ask_question1(self): 49 if(self.counter==20): 50 self.answers[self.counter-1]='a' 51 self.personality_exam(self.answers) 52 self.counter=1 53 sm.current = 'rep' 54 55 else: 56 self.question_1.text=self.questions[self.counter][0] 57 self.question_2.text=self.questions[self.counter][1] 58 self.answers[self.counter-1]='a' 59 self.counter+=1 60 61 def ask_question2(self): 62 if(self.counter==20): 63 self.answers[self.counter-1]='b' 64 self.personality_exam(self.answers) 65 self.counter=1 66 sm.current = 'rep' 67 68 else: 69 self.question_1.text=self.questions[self.counter][0] 70 self.question_2.text=self.questions[self.counter][1] 71 self.answers[self.counter-1]='b' 72 self.counter+=1 73 74 75 76 class Report(Screen): 77 personality='' 78 def on_enter(self, *args): 79 self.per.text=Questions.personalities[self.personality]+'\n'+'('+self.personality+')' 80 self.image.source= Report.personality+'\INTRODUCTION\Image.png' 81 class Description(Screen): 82 def on_enter(self, *args): 83 self.persona.text=Questions.personalities[Report.personality] 84 file_path=Report.personality+'\INTRODUCTION\Introduction.txt' 85 with open(file_path) as file: 86 self.detail.text=file.read() 87 88 class CareerOptions(Screen): 89 def on_enter(self, *args): 90 self.persona.text=Questions.personalities[Report.personality] 91 file_path=Report.personality+'\career.txt' 92 with open(file_path) as file: 93 self.detail.text=file.read() 94 95 class Strengths(Screen): 96 def on_enter(self, *args): 97 self.persona.text=Questions.personalities[Report.personality] 98 file_path=Report.personality+'\STRENGTHS\Strengths.txt' 99 with open(file_path) as file: 100 self.detail.text=file.read() 101 102 class CameraClick(Screen): 103 104 emo = ['Angry', 'Fear', 'Happy', 105 'Sad', 'Surprise', 'Neutral'] 106 model = tf.keras.models.load_model("facial_1 (1)") 107 buddy='' 108 mood='' 109 110 111 def prepare(self, filepath): 112 IMG_SIZE = 48 113 img_array = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) 114 new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) 115 return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1) 116 117 def capture(self): 118 119 camera = self.ids['camera'] 120 timestr = time.strftime("%Y%m%d_%H%M%S") 121 name="IMG_{}.png".format(timestr) 122 camera.export_to_png(name) 123 print("Captured") 124 fc=fr.FaceCropper().generate(name,True) 125 try: 126 prediction = self.model.predict([self.prepare(fc)]) 127 prediction=list(map(float,prediction[0])) 128 except: 129 prediction="prepare function could not run(0 faces detected)" 130 self.mood='Neutral' 131 print(prediction) 132 try: 133 self.mood=self.emo[prediction.index(max(prediction))] # self.emo[list(prediction[0]).index(1)] 134 except: 135 print("Exception handled..!! Picture could not be cleared properly. Please check lighting") 136 self.mood='Neutral' 137 bot.setname(self.textforcamera.text) 138 print(bot.getname()) 139 ChatWindow.mood=self.mood 140 141 142 class ChatWindow(Screen): 143 mood='' 144 bot.pre_processing() 145 #bot.chatcode() 146 def on_enter(self, *args): 147 self.chat_history.text="Hey "+bot.getname()+", what brings you here today!!\n Current Mood: "+self.mood+" !! " 148 def send_message(self): 149 message=self.text.text 150 self.text.text='' 151 #self.history.update_chat_history(f'[color=dd2020]{chat_app.connect_page.username.text}[/color] > {message}') 152 self.chat_history.text += '\n' +"User: "+message 153 154 # Set layout height to whatever height of chat history text is + 15 pixels 155 # (adds a bit of space at teh bottom) 156 # Set chat history label to whatever height of chat history text is 157 # Set width of chat history text to 98 of the label width (adds small margins) 158 #self.layout.height = self.chat_history.texture_size[1] + 15 159 self.chat_history.text_size = (self.chat_history.width * 0.98, None) 160 161 class WindowManager(ScreenManager): 162 pass 163 164 kv=Builder.load_file('design.kv') 165 166 sm = WindowManager() 167 screens=[Home(name="home"), Questions(name="quest"), Report(name="rep"), Description(name='description'), CareerOptions(name='career'), Strengths(name='strengths'), ChatWindow(name='chat'),CameraClick(name='camera')] 168 for screen in screens: 169 sm.add_widget(screen) 170 sm.current = "home" 171 172 class CafeApp(App): 173 def build(self): 174 return sm 175 176 if __name__=='__main__': 177 CafeApp().run()
21 - warning: anomalous-backslash-in-string 80 - warning: anomalous-backslash-in-string 80 - warning: anomalous-backslash-in-string 84 - warning: anomalous-backslash-in-string 84 - warning: anomalous-backslash-in-string 91 - warning: anomalous-backslash-in-string 98 - warning: anomalous-backslash-in-string 98 - warning: anomalous-backslash-in-string 14 - refactor: too-few-public-methods 29 - warning: unspecified-encoding 44 - warning: unused-argument 78 - warning: unused-argument 76 - refactor: too-few-public-methods 85 - warning: unspecified-encoding 82 - warning: unused-argument 81 - refactor: too-few-public-methods 92 - warning: unspecified-encoding 89 - warning: unused-argument 88 - refactor: too-few-public-methods 99 - warning: unspecified-encoding 96 - warning: unused-argument 95 - refactor: too-few-public-methods 128 - warning: bare-except 134 - warning: bare-except 146 - warning: unused-argument 53 - warning: attribute-defined-outside-init 66 - warning: attribute-defined-outside-init 170 - warning: attribute-defined-outside-init 161 - refactor: too-few-public-methods 172 - refactor: too-few-public-methods
1 lst=sorted(list(map(int,input().split())))[::-1] 2 temp=lst[0] 3 for i in range(1,len(lst)): 4 if temp==lst[i]: 5 continue 6 else: 7 print(lst[i]) 8 break 9 10
4 - refactor: no-else-continue
1 """ 2 import tensorflow as tf 3 modeltest=tf.keras.models.load_model("facial_1 (1)") 4 print("--model loaded successfully--") 5 """ 6 import cv2 7 import sys 8 import os 9 10 class FaceCropper(object): 11 cascades_path = 'haarcascade_frontalface_default.xml' 12 13 def __init__(self): 14 self.face_cascade = cv2.CascadeClassifier(self.cascades_path) 15 16 def generate(self, image_path, show_result): 17 name="" 18 img = cv2.imread(image_path) 19 if (img is None): 20 print("Can't open image file") 21 return 0 22 23 #img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 24 faces = self.face_cascade.detectMultiScale(img, 1.1, 3, minSize=(100, 100)) 25 if (faces is None): 26 print('Failed to detect face') 27 return 0 28 29 if (show_result): 30 for (x, y, w, h) in faces: 31 32 cv2.rectangle(img, (x,y), (x+w, y+h), (255,0,0), 2) 33 roi_color = img[y:y + h, x:x + w] 34 print("[INFO] Object found. Saving locally.") 35 name= str(w) + str(h) + '_faces.jpg' 36 cv2.imwrite(str(w) + str(h) + '_faces.jpg', roi_color) 37 #cv2.imshow('cropped image',roi_color) 38 #cv2.imshow('marked image',img) 39 cv2.waitKey(0) 40 cv2.destroyAllWindows() 41 42 facecnt = len(faces) 43 print("Detected faces: %d" % facecnt) 44 i = 0 45 height, width = img.shape[:2] 46 47 for (x, y, w, h) in faces: 48 r = max(w, h) / 2 49 centerx = x + w / 2 50 centery = y + h / 2 51 nx = int(centerx - r) 52 ny = int(centery - r) 53 nr = int(r * 2) 54 55 faceimg = img[ny:ny+nr, nx:nx+nr] 56 lastimg = cv2.resize(faceimg, (32, 32)) 57 i += 1 58 cv2.imwrite("image%d.jpg" % i, lastimg) 59 return name 60 61 #fc=FaceCropper().generate("IMG_20200226_000431.png",True) 62
10 - refactor: useless-object-inheritance 16 - refactor: too-many-locals 45 - warning: unused-variable 45 - warning: unused-variable 10 - refactor: too-few-public-methods 7 - warning: unused-import 8 - warning: unused-import
1 import kivy 2 kivy.require('1.11.1') 3 from kivy.app import App 4 from kivy.lang import Builder 5 from kivy.uix.screenmanager import ScreenManager, Screen 6 from kivy.properties import ObjectProperty 7 import time 8 9 class Home(Screen): 10 def animation_begins(self): 11 textvalue=self.labelvalue.text.split() 12 var=" " 13 for i in textvalue: 14 var+=i 15 self.labelvalue.text=var 16 time.sleep(3) 17 18 class WindowManager(ScreenManager): 19 pass 20 21 kv=Builder.load_file('designing.kv') 22 23 sm = WindowManager() 24 screens=[Home(name="home")] 25 for screen in screens: 26 sm.add_widget(screen) 27 sm.current = "home" 28 29 class CafeApp(App): 30 def build(self): 31 return sm 32 33 if __name__=='__main__': 34 CafeApp().run()
9 - refactor: too-few-public-methods 27 - warning: attribute-defined-outside-init 18 - refactor: too-few-public-methods 29 - refactor: too-few-public-methods 6 - warning: unused-import
1 import kivy 2 kivy.require('1.11.1') 3 from kivy.app import App 4 from kivy.lang import Builder 5 from kivy.uix.screenmanager import ScreenManager, Screen 6 from kivy.properties import ObjectProperty 7 from collections import Counter 8 import time 9 10 11 class Home(Screen): 12 pass 13 14 15 class Questions(Screen): 16 17 18 ques_path='Personality Test(base)\Questions.txt' 19 personalities={'isfj':'Defender','esfj':'Cousellor','istj':'Logistician','estp':'Entrepreneur','esfp':'Entertainer','istp':'Virtuoso','isfp':'Adventurer','entj':'Commander','entp':'Debator','intj':'Architect','intp':'Logician','enfj':'Protagonist','enfp':'Campaigner','infj':'Advocate','infp':'Mediator','estj':'Executive'} 20 personality='' 21 questions=[] 22 question_1 = ObjectProperty(None) 23 question_2 = ObjectProperty(None) 24 counter=1 25 answers=[0]*20 26 with open(ques_path) as quest_file: 27 questions=[r.split('SPLIT') for r in quest_file.readlines()] 28 29 def personality_exam(self,answers): 30 e,s,j,t=['e','i'],['s','n'],['j','p'],['t','f'] 31 e.extend([answers[r] for r in range(0,20,4)]) 32 s.extend([answers[r] for r in range(1,20,4)]) 33 t.extend([answers[r] for r in range(2,20,4)]) 34 j.extend([answers[r] for r in range(3,20,4)]) 35 personality='' 36 for option in e,s,t,j: 37 temp=Counter(option) 38 personality+=option[0] if temp['a']>temp['b'] else option[1] 39 Report.personality=personality 40 41 def on_enter(self, *args): 42 self.question_1.text=self.questions[0][0] 43 self.question_2.text=self.questions[0][1] 44 45 def ask_question1(self): 46 if(self.counter==20): 47 self.answers[self.counter-1]='a' 48 self.personality_exam(self.answers) 49 self.counter=1 50 sm.current = 'rep' 51 52 else: 53 self.question_1.text=self.questions[self.counter][0] 54 self.question_2.text=self.questions[self.counter][1] 55 self.answers[self.counter-1]='a' 56 self.counter+=1 57 58 def ask_question2(self): 59 if(self.counter==20): 60 self.answers[self.counter-1]='b' 61 self.personality_exam(self.answers) 62 self.counter=1 63 sm.current = 'rep' 64 65 else: 66 self.question_1.text=self.questions[self.counter][0] 67 self.question_2.text=self.questions[self.counter][1] 68 self.answers[self.counter-1]='b' 69 self.counter+=1 70 71 72 73 class Report(Screen): 74 personality='' 75 def on_enter(self, *args): 76 self.per.text=Questions.personalities[self.personality]+'\n'+'('+self.personality+')' 77 self.image.source= Report.personality+'\INTRODUCTION\Image.png' 78 class Description(Screen): 79 def on_enter(self, *args): 80 self.persona.text=Questions.personalities[Report.personality] 81 file_path=Report.personality+'\INTRODUCTION\Introduction.txt' 82 with open(file_path) as file: 83 self.detail.text=file.read() 84 85 class CareerOptions(Screen): 86 def on_enter(self, *args): 87 self.persona.text=Questions.personalities[Report.personality] 88 file_path=Report.personality+'\career.txt' 89 with open(file_path) as file: 90 self.detail.text=file.read() 91 92 class Strengths(Screen): 93 def on_enter(self, *args): 94 self.persona.text=Questions.personalities[Report.personality] 95 file_path=Report.personality+'\STRENGTHS\Strengths.txt' 96 with open(file_path) as file: 97 self.detail.text=file.read() 98 99 class CameraClick(Screen): 100 pass 101 102 class ChatWindow(Screen): 103 pass 104 105 class WindowManager(ScreenManager): 106 pass 107 108 kv=Builder.load_file('design_edit.kv') 109 110 sm = WindowManager() 111 screens=[Home(name="home"), Questions(name="quest"), Report(name="rep"), Description(name='description'), CareerOptions(name='career'), Strengths(name='strengths'), ChatWindow(name='chat'),CameraClick(name='camera')] 112 for screen in screens: 113 sm.add_widget(screen) 114 sm.current = "home" 115 116 class CafeApp(App): 117 def build(self): 118 return sm 119 120 if __name__=='__main__': 121 CafeApp().run()
18 - warning: anomalous-backslash-in-string 77 - warning: anomalous-backslash-in-string 77 - warning: anomalous-backslash-in-string 81 - warning: anomalous-backslash-in-string 81 - warning: anomalous-backslash-in-string 88 - warning: anomalous-backslash-in-string 95 - warning: anomalous-backslash-in-string 95 - warning: anomalous-backslash-in-string 11 - refactor: too-few-public-methods 26 - warning: unspecified-encoding 41 - warning: unused-argument 75 - warning: unused-argument 73 - refactor: too-few-public-methods 82 - warning: unspecified-encoding 79 - warning: unused-argument 78 - refactor: too-few-public-methods 89 - warning: unspecified-encoding 86 - warning: unused-argument 85 - refactor: too-few-public-methods 96 - warning: unspecified-encoding 93 - warning: unused-argument 92 - refactor: too-few-public-methods 99 - refactor: too-few-public-methods 102 - refactor: too-few-public-methods 50 - warning: attribute-defined-outside-init 63 - warning: attribute-defined-outside-init 114 - warning: attribute-defined-outside-init 105 - refactor: too-few-public-methods 116 - refactor: too-few-public-methods 8 - warning: unused-import
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Mon Jul 26 15:20:48 2021 4 5 @author: Grant Isaacs 6 """ 7 8 #IMPORT LIBRARIES-------------------------------------------------------------> 9 import numpy as np 10 import pandas as pd 11 import tensorflow as tf 12 from sklearn.preprocessing import LabelEncoder 13 from sklearn.compose import ColumnTransformer 14 from sklearn.preprocessing import OneHotEncoder 15 from sklearn.model_selection import train_test_split 16 from sklearn.preprocessing import StandardScaler 17 from sklearn.metrics import confusion_matrix, accuracy_score 18 19 20 21 22 #PREPROCESS DATA--------------------------------------------------------------> 23 #load data 24 dataset = pd.read_csv("_") 25 X = dataset.iloc[:, 3:-1].values 26 y = dataset.iloc[:, -1].values 27 28 #check for missing values 29 print(sum(np.equal(X, None))) 30 31 #encode categorical variables 32 lencoder = LabelEncoder() 33 X[: , 2] = lencoder.fit_transform(X[:, 2]) 34 35 ctransform = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough') 36 X = np.array(ctransform.fit_transform(X)) 37 38 #split dataset into training and test sets 39 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=361981) 40 41 #scale the features 42 scaler = StandardScaler() 43 X_train = scaler.fit_transform(X_train) 44 X_test = scaler.transform(X_test) 45 46 47 48 49 #STRUCTURE THE ANN------------------------------------------------------------> 50 #initialize the neural network 51 neural_net = tf.keras.models.Sequential() 52 53 #create the input layer and first hidden layer to form a shallow learning model. 54 """Layer quantity is determined by experimentation and expertise.""" 55 neural_net.add(tf.keras.layers.Dense(units=6, activation='relu')) 56 57 #create the second hidden layer to form a deep learning model. 58 neural_net.add(tf.keras.layers.Dense(units=6, activation='relu')) 59 60 #add the output layer 61 """Output units equals the output dimensions minus 1. 62 This model generates a probability between 0 and 1 (Sigmoid)""" 63 neural_net.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) 64 65 66 67 68 #TRAIN THE ANN----------------------------------------------------------------> 69 #compile the neural network 70 """In this example the adam optimizer is used for stochastic gradient desecent. 71 The output is binary so binary cross entropy is selected for the loss function.""" 72 neural_net.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 73 74 #train the neural network 75 """Batch and Epoch arguments were chose based on previous training data. 76 Modify accordingly.""" 77 neural_net.fit(X_train, y_train, batch_size=32, epochs=100) 78 79 80 81 82 #GENERATE PREDICTIONS---------------------------------------------------------> 83 #predict test set 84 y_pred = neural_net.predict(X_test) 85 y_pred = (y_pred > 0.5) 86 y_test = y_test.reshape(len(y_test), 1) 87 y_pred = y_pred.reshape(len(y_pred), 1) 88 print(np.concatenate((y_pred, y_test), 1)) 89 90 #build confusion matrix 91 cmatrix = confusion_matrix(y_test, y_pred) 92 print(cmatrix) 93 print(accuracy_score(y_test, y_pred)) 94 95 #individual prediction 96 """Apply the transform method to scale the variables to the same distribution as the training data.""" 97 pred = neural_net.predict(scaler.transform([[1.0, 0.0, 0.0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])) 98 print("Predicted Probabilty the Customer will leave: {}".format(pred)) 99 100 pred = neural_net.predict(scaler.transform([[1.0, 0.0, 0.0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])) > 0.5 101 print("Binary statement will the customer leave: {}".format(pred))
61 - warning: pointless-string-statement 70 - warning: pointless-string-statement 75 - warning: pointless-string-statement 96 - warning: pointless-string-statement
1 import gzip 2 import json 3 import csv 4 5 6 class Dataset: 7 def __init__(self, filename): 8 self.filename = filename 9 10 def read_json(self, useful_keys=(), required_keys=(), is_gzip=False, encoding='utf8'): 11 """ 12 :param useful_keys: (tuple): Keys to return for each dataset record. Pass empty to return all keys. 13 :param required_keys: (tuple): Required keys for each record. If one of these keys does not exist, this function ignores the dataset record. 14 :param is_gzip: (boolean): Whether the file is a compressed file or not. 15 :param encoding: (string): The default is 'utf8'. 16 :return: (list of dictionary): For each JSON record, return a dictionary inside a list. 17 """ 18 dataset = list() 19 if is_gzip: 20 open_function = gzip.GzipFile 21 else: 22 open_function = open 23 # Load dataset file 24 with open_function(self.filename, 'rb') as file: 25 # For each record in dataset 26 for line in file: 27 data = json.loads(line, encoding=encoding) 28 # By default get the dataset record 29 append_record = True 30 # If required keys does not exist do not get the record otherwise 31 for key in required_keys: 32 if not data.get(key): 33 append_record = False 34 break 35 # get useful reviews 36 if append_record: 37 # Determine useful keys 38 useful = () 39 if 0 == len(useful_keys): 40 useful = data.keys() 41 else: 42 useful = useful_keys 43 temp = {} 44 for key in useful: 45 temp[key] = data.get(key) 46 dataset.append(temp) 47 return dataset 48 49 def read_csv(self, useful_keys=(), required_keys=(), delimiter=',', is_gzip=False, encoding='utf8'): 50 """ 51 :param useful_keys: (tuple or string): Keys to return for each dataset record. Pass empty to return all keys. 52 :param required_keys: (tuple): Required keys for each record. If one of these keys does not exist, this function ignores the dataset record. 53 :param delimiter: (string): CSV delimiter 54 :param is_gzip: (boolean): Whether the file is a compressed file or not. 55 :param encoding: (string): The default is 'utf8'. 56 :return: (list of list | list): For each CSV row, return a list inside another list and a list of headers. 57 """ 58 dataset = list() 59 if is_gzip: 60 open_function = gzip.open 61 else: 62 open_function = open 63 # Load dataset file 64 with open_function(self.filename, mode='rt', encoding=encoding) as file: 65 content = csv.reader((line.replace('\0', '') for line in file), delimiter=delimiter) 66 # Get keys of dataset 67 68 headers = next(content) 69 # Transform keys to index 70 useful = [] 71 required = [] 72 if 0 == len(useful_keys): 73 iteration = headers 74 else: 75 iteration = useful_keys 76 for key in iteration: 77 useful.append(headers.index(key)) 78 for key in required_keys: 79 required.append(headers.index(key)) 80 # For each record in dataset 81 for row in content: 82 if not row: 83 continue 84 # By default get the record from dataset 85 append_record = True 86 # If one of required keys does not exists ignore this dataset record otherwise get the record 87 for i in required: 88 if row[i] == '': 89 append_record = False 90 break 91 if append_record: 92 dataset.append(list(row[index] for index in useful)) 93 return dataset, headers 94
7 - warning: bad-indentation 8 - warning: bad-indentation 10 - warning: bad-indentation 11 - warning: bad-indentation 18 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 24 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 29 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 36 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 58 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 62 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 68 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 72 - warning: bad-indentation 73 - warning: bad-indentation 74 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 81 - warning: bad-indentation 82 - warning: bad-indentation 83 - warning: bad-indentation 85 - warning: bad-indentation 87 - warning: bad-indentation 88 - warning: bad-indentation 89 - warning: bad-indentation 90 - warning: bad-indentation 91 - warning: bad-indentation 92 - warning: bad-indentation 93 - warning: bad-indentation 18 - refactor: use-list-literal 49 - refactor: too-many-arguments 49 - refactor: too-many-positional-arguments 49 - refactor: too-many-locals 58 - refactor: use-list-literal
1 import pandas as pd 2 import os 3 THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) 4 my_file_estate = os.path.join(THIS_FOLDER,'csv\\Real estate.csv') 5 6 def Write_Csv(list_data): 7 df = pd.read_csv(my_file_estate) 8 file = open(my_file_estate,"a") 9 number=df['No'].values[-1] 10 number+=1 11 file.write(str(number)+",") 12 for i in list_data: 13 if i != list_data[6]: 14 file.write(str(i)+",") 15 else :file.write(str(i)+"\n") 16 file.close() 17 df.reset_index(drop = True,inplace=True)
8 - warning: unspecified-encoding 8 - refactor: consider-using-with
1 from flask import Flask,request 2 import scikit_learn 3 import Write_Csv 4 app = Flask(__name__) 5 #append data(from url) to list 6 def Data_append(x1,x2,x3,x4,x5,x6): 7 list_data=[] 8 list_data.append(x1) 9 list_data.append(x2) 10 list_data.append(x3) 11 list_data.append(x4) 12 list_data.append(x5) 13 list_data.append(x6) 14 return list_data 15 16 #route / 17 #take data from url then send them to scikit_learn of Calculate price from scikit 18 #return information 19 @app.route('/') 20 def hello_world(): 21 transaction_date=float(request.args.get('transaction_date')) 22 house_age=float(request.args.get('house_age')) 23 distance_to_the__nearest_MRT_station=float(request.args.get('distance_to_the__nearest_MRT_station')) 24 number_of_convenience_stores=float(request.args.get('number_of_convenience_stores')) 25 latitude=float(request.args.get('latitude')) 26 longitude=float(request.args.get('longitude')) 27 list_data=[] 28 list_data=Data_append(transaction_date,house_age,distance_to_the__nearest_MRT_station,number_of_convenience_stores,latitude,longitude) 29 price=scikit_learn.path(list_data) 30 list_data.append(price) 31 Write_Csv.Write_Csv(list_data) 32 return '''<h3> 33 transaction date : {}<br> 34 house age= {}<br> 35 distance to the nearest MRT station= {}<br> 36 number of convenience stores= {}<br> 37 latitude= {}<br> 38 longitude= {}<br> 39 price ={} 40 </h3>'''.format(transaction_date,house_age,distance_to_the__nearest_MRT_station,number_of_convenience_stores,latitude,longitude,price) 41 42 #to run servier => py app.py -path ./model.pickle 43 if __name__ == '__main__': 44 app.run(port=5060,debug=False,use_reloader=False) 45 # http://127.0.0.1:5060/?transaction_date=2017.917&house_age=10&distance_to_the__nearest_MRT_station=306.59470&number_of_convenience_stores=15&latitude=24.98034&longitude=121.53951
21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 6 - refactor: too-many-arguments 6 - refactor: too-many-positional-arguments
1 import pickle 2 import argparse 3 import numpy as np 4 5 6 #take model 7 #Calculate price from scikit 8 def path(list_data): 9 parser = argparse.ArgumentParser() 10 parser.add_argument("-path","--path",type = str) 11 args = parser.parse_args() 12 # './model.pickle' 13 loaded_model = pickle.load(open(args.path, 'rb')) 14 x = np.array(list_data).reshape(1,6) 15 result = loaded_model.predict(x) 16 if x.shape[0] == 1: 17 result = result[0] 18 return result
13 - refactor: consider-using-with
1 # Menu-Driven program 2 3 import string 4 import random 5 6 # just for reference purposes. 7 from Part_1 import all_prime 8 from Part_2 import even_odd 9 from Part_3 import prime_composite 10 from Part_4 import vowel_consonant 11 from Part_5 import check_in_group 12 13 while True: 14 print('\nChoose your Option - ') 15 print('0. Exit') 16 print('1. Print Prime Numbers between 1 to 1000.') 17 print('2. To Find whether Number is ODD or EVEN.') 18 print('3. To Find whether Number is PRIME or COMPOSITE.') 19 print('4. To Find whether Alphabet is VOWEL or NOT.') 20 print('5. To Check specified Value n Group of Values') 21 option = input('Enter - ') 22 try: 23 option = int(option) 24 except: 25 print('\tINVALID CHOICE.\n\tTRY AGAIN.\n') 26 continue 27 28 if (option < 0 or option > 5): 29 print('\tINVALID CHOICE.\n\tTRY AGAIN.\n') 30 continue 31 32 if option == 0: 33 print('\n\tTHANK YOU FOR JOINING US!') 34 exit(-1) 35 elif option == 1: 36 all_prime() 37 elif option == 2: 38 even_odd() 39 elif option == 3: 40 prime_composite() 41 elif option == 4: 42 vowel_consonant() 43 elif option == 5: 44 check_in_group()
24 - warning: bare-except 34 - refactor: consider-using-sys-exit 3 - warning: unused-import 4 - warning: unused-import
1 # Write a Python program to check whether a 2 # specified value is contained in a group of values. 3 4 # 3 -> [1, 5, 8, 3] : True -1 -> [1, 5, 8, 3] : False 5 6 import random 7 8 def check_in_group(): 9 while True: 10 test_case = [1, 5, 8, 3] 11 print('\nEnter \'-1\' to QUIT.') 12 value = input('Enter - ') 13 try: 14 value = int(value) 15 except: 16 print('\tINVALID CHOICE.\n\tTRY AGAIN.\n') 17 continue 18 if value == -1: 19 print('\tTHANK YOU.\n\tRETURNING TO MAIN MENU.\n') 20 break 21 if value in test_case: 22 print('True') 23 break 24 else: 25 print('False') 26 continue 27 28 29 # in case needed. 30 def check_random(): 31 while True: 32 test_case = list() 33 length = input('\nEnter Length of the test_case - ') 34 try: 35 length = int(length) 36 except: 37 print('\tINVALID CHOICE.\n\tTRY AGAIN.\n') 38 continue 39 for _ in range(length): 40 test_case.append(random.choice(range(10))) 41 break 42 # print(test_case) 43 while True: 44 print('\nEnter \'-1\' to QUIT.') 45 value = input('Enter - ') 46 try: 47 value = int(value) 48 except: 49 print('\tINVALID CHOICE.\n\tTRY AGAIN.\n') 50 continue 51 if value == -1: 52 print('\tTHANK YOU.\n\tRETURNING TO MAIN MENU.\n') 53 break 54 if value in test_case: 55 print('True') 56 break 57 else: 58 print('False') 59 continue
15 - warning: bare-except 21 - refactor: no-else-break 32 - refactor: use-list-literal 36 - warning: bare-except 48 - warning: bare-except 54 - refactor: no-else-break
1 # Realizar un programa que utilizando una estructura repetitiva (bucle) presente por pantalla 2 # los números del 1 al 10 separados por un guión. 3 # El resultado debe ser similar a esto: 4 5 # 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 6 7 8 for i in range(1,11): 9 print(i, end="-")
9 - warning: bad-indentation
1 import string 2 3 4 def open_file(): 5 fname = input('Type the filename: ') 6 fhandler = open(fname, encoding='utf-8') 7 return fhandler 8 9 10 def count_characters(filehandler, text): 11 # print('------Printin filehandler: ', filehandler) 12 13 char_count = dict() 14 for line in filehandler: 15 line = line.strip().lower() 16 line = line.translate(line.maketrans('', '', string.punctuation)) 17 # print('--After doing strip each char, Character: ', line) 18 text = text + line 19 print('') 20 print('____________________________________________') 21 print('The text after concatenate lines: ', text) 22 print('|') 23 print('|___Type of the text variable: ', type(text)) 24 print('____________________________________________') 25 # tratar de no hacer un for anidado aca, eso es lo que hay que mejorar de este codio 26 27 for character in text: 28 # print('') 29 # print('Char in text:', character) 30 if character.isalpha(): 31 if character in char_count: 32 char_count[str(character)] += 1 33 else: 34 char_count[str(character)] = 1 35 # char_count[character] = char_count.get(character) 36 else: 37 continue 38 return char_count 39 40 41 def order_by_decreasing(counter): 42 inverse_counter_lst = list() 43 for element in counter: 44 inverse_counter_lst.append((counter[element], element)) 45 46 inverse_counter_lst.sort(reverse=True) 47 48 for number, element in inverse_counter_lst: 49 print(f'{element} -> {number}') 50 51 52 first_text = "" 53 # order_by_decreasing(count_characters(open_file(), first_text)) 54 print(count_characters(open_file(), first_text))
6 - refactor: consider-using-with 13 - refactor: use-dict-literal 42 - refactor: use-list-literal
1 #!/usr/bin/python 2 # -*- coding: utf-8 -*- 3 4 """ 5 6 Alejandro Valeriano Fernandez - GITT 7 Ejercicio 13.6 8 Calculadora 9 10 """ 11 12 import sys 13 14 def suma(operando1, operando2): 15 try: 16 return int(operando1) + int(operando2) 17 except NameError: 18 print ("Invalid arguments") 19 20 def rest(operando1, operando2): 21 try: 22 return int(operando1) - int(operando2) 23 except NameError: 24 print ("Invalid arguments") 25 26 def mult(operando1, operando2): 27 try: 28 return int(operando1) * int(operando2) 29 except NameError: 30 print ("Invalid arguments") 31 32 def div(operando1, operando2): 33 try: 34 return float(operando1) / float(operando2) 35 except NameError: 36 print ("Invalid arguments") 37 38 39 if __name__ == "__main__": 40 41 if len(sys.argv) != 4: 42 print 43 sys.exit("Usage: $ python calculadora.py funcion operando1 operando2") 44 45 if sys.argv[1] == 'add': 46 print sys.argv[2] + ' mas ' + sys.argv[3] + ' = ' + str(suma (sys.argv[2], sys.argv[3])) 47 48 if sys.argv[1] == 'substract': 49 print sys.argv[2] + ' menos ' + sys.argv[3] + ' = ' + str(rest (sys.argv[2], sys.argv[3])) 50 51 if sys.argv[1] == 'multiply': 52 print sys.argv[2] + ' por ' + sys.argv[3] + ' = ' + str(mult (sys.argv[2], sys.argv[3])) 53 54 if sys.argv[1] == 'divide': 55 try: 56 print sys.argv[2] + ' entre ' + sys.argv[3] + ' = ' + str(div (sys.argv[2], sys.argv[3])) 57 58 except: 59 print 'error al dividir' 60 else: 61 print 'Las posibles operaciones son "add", "substract", "multiply" y "divide"'
46 - error: syntax-error
1 from re import findall 2 from subprocess import check_output 3 from pwd import getpwall 4 5 d = {} 6 filesearch = open("/etc/login.defs","r") 7 8 for line in filesearch: 9 if findall("^UID_(MIN|MAX)",line): 10 a = line.strip().split() 11 d[str(a[0])] = str(a[1]) 12 13 filesearch.close() 14 15 for p in getpwall(): 16 if int(p[2]) >= int(d['UID_MIN']) and int(p[2]) <= int(d['UID_MAX']): 17 print p[0]
17 - error: syntax-error
1 #!/usr/bin/python 2 import pyrax, time, sys, multiprocessing, argparse, os, __builtin__ 3 4 parser = argparse.ArgumentParser(description='Remove Cloud Files Fast') 5 parser.add_argument('--container', nargs='?', dest='cont', required=True, help="The Cloud Contain To Remove Objects From") 6 parser.add_argument('--username', nargs='?', dest='username', help="Your Cloud Username") 7 parser.add_argument('--password', nargs='?', dest='password', help="Your Cloud API Key") 8 parser.add_argument('--file', nargs='?', dest='file', help="Your Cloud API Key File") 9 parser.add_argument('--region', nargs='?', dest='region', help="Set the Cloud File region") 10 args = parser.parse_args() 11 12 def authenticate(username='', passwd='', path=''): 13 if username or passwd: 14 pyrax.set_credentials(username,passwd) 15 elif path: 16 pyrax.set_credential_file(os.path.expanduser(path)) 17 else: 18 print "Authentication Failed... please use username/password or file to authenticate" 19 sys.exit() 20 21 def worker(num): 22 try: 23 global obj 24 print "Deleting:", obj[num].name 25 obj[num].delete() 26 #time.sleep(1 + random.random()*5) 27 #print num 28 except: 29 print "Unexpected error in worker:", sys.exc_info() 30 raise 31 32 def pooling(length): 33 try: 34 pool = multiprocessing.Pool(processes=20) 35 for num in xrange(length): 36 pool.apply_async(worker, [num]) 37 #pool.apply(worker,[num]) 38 pool.apply_async(time.sleep, 5) 39 pool.close() 40 pool.join() 41 except: 42 print "Unexpected error in pooling:", sys.exc_info()[0] 43 raise 44 45 if __name__ == "__main__": 46 authenticate(username=args.username,passwd=args.password,path=args.file) 47 cf = pyrax.connect_to_cloudfiles(region=args.region) 48 limit = 10000 49 marker = "" 50 obj = cf.get_container(args.cont).get_objects(limit=limit, marker=marker) 51 while obj: 52 try: 53 marker = obj.pop() 54 length = len(obj) 55 pooling(length) 56 obj = cf.get_container(args.cont).get_objects(limit=limit, marker=marker.name) 57 except: 58 print "Unexpected error:", sys.exc_info()[0] 59 raise
18 - error: syntax-error
1 import sqlite3 as lite 2 import sys 3 import argparse 4 from time import strftime 5 from subprocess import check_output 6 7 8 def collect(): 9 # Grab information from mtr 10 output = check_output(["mtr","-nr","-c5","50.56.142.146"]) 11 date = strftime('%Y%m%d %H%M') 12 13 # split the data into an array and clean up array a bit 14 a = output.split("\n") 15 del a[0] 16 del a[-1] 17 18 # Connect to the sqlite3 server to place the information into it 19 con = lite.connect('/root/icmp/data.db') 20 cur = con.cursor() 21 22 # loop through the data and store information into sqlite 23 for i in a: 24 array = i.replace("%","").split() 25 del array[0] 26 cur.execute("insert into netreport values ('%s','%s',%0.1f,%i,%0.1f,%0.1f,%0.1f,%0.1f,%0.1f);" % 27 (str(date), str(array[0]), float(array[1]), int(array[2]), float(array[3]), float(array[4]), float(array[5]), float(array[6]), float(array[7]),)) 28 con.commit() 29 if con: 30 con.close() 31 32 if __name__ == '__main__': 33 collect()
10 - warning: bad-indentation 11 - warning: bad-indentation 14 - warning: bad-indentation 15 - warning: bad-indentation 16 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 33 - warning: bad-indentation 2 - warning: unused-import 3 - warning: unused-import
1 #!/usr/bin/python 2 import pyinotify 3 4 class MyEventHandler(pyinotify.ProcessEvent): 5 def process_IN_CREATE(self, event): 6 print "CREATE event:", event.pathname 7 def process_IN_DELETE(self, event): 8 9 def main(): 10 wm = pyinotify.WatchManager() 11 wm.add_watch('/home/brya5376/test'), pyinotify.ALL_EVENTS, rec=True) 12 13 if __name__ == '__main__': 14 main() 15 16 # http://www.saltycrane.com/blog/2010/04/monitoring-filesystem-python-and-pyinotify/
11 - error: syntax-error
1 import os, re 2 def filePop(top): 3 sizeList = [] 4 #exclude = "^/proc.*|^/sys.*|^/boot.*|^/tmp.*|^/mnt.*" 5 exclude = "^/proc.*|^/sys.*|^/boot.*|/tmp.*|/home.*|/var.*|/data.*" 6 # Skip any files that are located in /proc, /sys or /boot 7 for root,dirs,files in os.walk(top): 8 if re.findall(exclude,root): 9 continue 10 for f in files: 11 fullpath = os.path.join(root,f) 12 if (os.path.isfile(fullpath) or os.path.isdir(fullpath)) and not os.path.islink(fullpath): 13 sizeList.append((os.path.getsize(fullpath),fullpath)) 14 return sizeList 15 16 def fileSort(fileList,top=15): 17 sList = sorted(fileList, key=lambda a: a[0], reverse=True) 18 for i in xrange(0,15): 19 size = ((sList[i][0] / 1024) / 1024) 20 directory = sList[i][1] 21 print '%s MB --> %s' % (size,directory) 22 23 fileSort(filePop("/"))
21 - error: syntax-error
1 # import tensorflow as tf 2 import cv2 3 import sys 4 sys.path.append("..") 5 import utils 6 import numpy as np 7 8 model_path = "./models/train_mnist1_model3.h5" 9 img_path = "../img/seven.png" 10 # img_path = "../img/one.png" 11 # img_path = "../img/six.png" 12 13 mnist_model = utils.load_model(model_path) 14 15 ## Way 1 16 print("Way 1") 17 digit_img = utils.standarize_digit_img_to_model_input(img_path, 28) 18 bin_digit_img = utils.binarize_img(digit_img) 19 img = utils.prepare_to_predict(bin_digit_img) 20 21 cv2.imshow("Digit", digit_img) 22 cv2.imshow("Binary digit", bin_digit_img) 23 cv2.waitKey(50) 24 25 prob_predictions = mnist_model.predict(img) 26 prediction = [(np.where(item == np.amax(item)))[0][0] for item in prob_predictions] 27 print("Prediction: {}".format(prediction[0])) 28 29 30 ## Way 2 31 print("Way 2") 32 prediction = utils.predict_digit(mnist_model, img_path) 33 print("Prediction: {}".format(prediction))
Clean Code: No Issues Detected
1 import numpy as np 2 from random import randint 3 from copy import deepcopy 4 import cv2 5 import utils 6 import grid 7 import paho.mqtt.client as mqtt 8 import io 9 from PIL import Image 10 11 # Global variables 12 BROKER_ADRESS = "192.168.9.201" 13 sudoku_grid = [[5, 3, 0, 0, 7, 0, 0, 0, 0], 14 [6, 0, 0, 1, 9, 5, 0, 0, 0], 15 [0, 9, 8, 0, 0, 0, 0, 6, 0], 16 [8, 0, 0, 0, 6, 0, 0, 0, 3], 17 [4, 0, 0, 8, 0, 3, 0, 0, 1], 18 [7, 0, 0, 0, 2, 0, 0, 0, 6], 19 [0, 6, 0, 0, 0, 0, 2, 8, 0], 20 [0, 0, 0, 4, 1, 9, 0, 0, 5], 21 [0, 0, 0, 0, 8, 0, 0, 0, 9]] 22 counter = 0 23 solutions = [] 24 recur_cnt = 0 25 IMG_NAME = 'puzzle1.jpg' 26 27 28 def on_connect(client, userdata, flags, rc): 29 print("Connected to broker with result code " + str(rc)) 30 client.subscribe("sudoku/#") 31 32 33 def on_message(client, userdata, msg): 34 global counter 35 counter = 0 36 if msg.topic == "sudoku/photo": 37 try: 38 stream = io.BytesIO(msg.payload) 39 open_cv_image = np.array(Image.open(stream).convert('RGB')) 40 # Convert RGB to BGR 41 open_cv_image = open_cv_image[:, :, ::-1].copy() 42 cv2.imwrite('./mqtt_com/' + IMG_NAME, open_cv_image) 43 except Exception as e: 44 print("Exception: ") 45 print(e) 46 solve_sudoku() 47 send_solution(client) 48 if msg.payload.decode() == "End": 49 print("Okey! I'm disconnecting :)") 50 client.disconnect() 51 52 53 def send_message(client, topic, msg): 54 client.publish(topic, msg) 55 56 57 def is_possible(y, x, n): 58 global sudoku_grid 59 for i in range(0, 9): 60 if sudoku_grid[y][i] == n: 61 return False 62 for j in range(0, 9): 63 if sudoku_grid[j][x] == n: 64 return False 65 x0 = (x//3)*3 66 y0 = (y//3)*3 67 for k in range(0, 3): 68 for l in range(0, 3): 69 if sudoku_grid[y0+k][x0+l] == n: 70 return False 71 return True 72 73 74 def solve_recursion(): 75 global sudoku_grid, counter, solutions, recur_cnt 76 recur_cnt += 1 77 if recur_cnt > 10**5: 78 return 79 for y in range(9): 80 for x in range(9): 81 if sudoku_grid[y][x] == 0: 82 for n in range(1, 10): 83 if is_possible(y, x, n): 84 sudoku_grid[y][x] = n 85 solve_recursion() 86 sudoku_grid[y][x] = 0 87 return 88 counter += 1 89 solutions.append(deepcopy(sudoku_grid)) 90 91 92 def solve_sudoku(): 93 global sudoku_grid, counter, solutions 94 model = utils.load_mnist_model() 95 img = cv2.imread("./mqtt_com/" + IMG_NAME) 96 sudoku_grid = grid.recognize_grid(model, img) 97 98 solve_recursion() 99 print("Number or recurrent function invocations: {}".format(recur_cnt)) 100 print("There are {} possible solutions".format(counter)) 101 if len(solutions) > 0: 102 print("Random solution:") 103 solved_grid = solutions[randint(0, counter - 1)] 104 print(np.matrix(solved_grid)) 105 106 img_solved = grid.draw_solved_grid(model, img, solved_grid) 107 cv2.imwrite("./results/" + IMG_NAME, img_solved) 108 # cv2.imshow("Solved sudoku", img_solved) 109 # cv2.waitKey(0) 110 111 112 def send_solution(client): 113 global solutions, counter 114 with open("./results/" + IMG_NAME, "rb") as f: 115 fileContent = f.read() 116 byteArrayPhoto = bytearray(fileContent) 117 client.publish("sudoku/solution/photo", byteArrayPhoto) 118 # client.publish("sudoku/solution/grid", str(solutions[randint(0, counter - 1)])) 119 120 121 def main(): 122 client = mqtt.Client() 123 client.connect(BROKER_ADRESS, 1883, 60) 124 client.on_connect = on_connect 125 client.on_message = on_message 126 client.loop_forever() 127 128 129 if __name__ == "__main__": 130 main() 131
28 - warning: unused-argument 28 - warning: unused-argument 34 - warning: global-statement 43 - warning: broad-exception-caught 33 - warning: unused-argument 58 - warning: global-variable-not-assigned 75 - warning: global-variable-not-assigned 75 - warning: global-variable-not-assigned 93 - warning: global-variable-not-assigned 93 - warning: global-variable-not-assigned 113 - warning: global-variable-not-assigned 113 - warning: global-variable-not-assigned
1 import cv2 2 from copy import deepcopy 3 import numpy as np 4 import utils 5 6 RESCALE = 3 7 8 def find_cell_param(joints): 9 # Set up the detector with default parameters. 10 params = cv2.SimpleBlobDetector_Params() 11 # filter by area 12 params.filterByArea = True 13 params.minArea = 1 14 params.maxArea = 50 15 detector = cv2.SimpleBlobDetector_create(params) 16 # Detect blobs 17 keypoints = detector.detect(~joints) 18 sorted_keypoints = sorted(keypoints, key=lambda x: (x.pt[0], x.pt[1])) 19 min_keypoint = sorted_keypoints[0] 20 max_keypoint = sorted_keypoints[-1] 21 # for it, keypoint in enumerate(keypoints): 22 # img_contours = deepcopy(img) 23 # Draw detected blobs as red circles. 24 # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob 25 # im_with_keypoints = cv2.drawKeypoints(img_contours, [min_keypoint, max_keypoint], np.array([]), (0, 0, 255), 26 # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 27 # cv2.imshow("Keypoints", im_with_keypoints) 28 # cv2.waitKey(0) 29 return (max_keypoint.pt[0] - min_keypoint.pt[0]) / 7, (max_keypoint.pt[1] - min_keypoint.pt[1]) / 7, min_keypoint.pt, max_keypoint.pt 30 31 32 def get_joints(img): 33 img = cv2.resize(img, (int(img.shape[1]/RESCALE), int(img.shape[0]/RESCALE))) 34 # retval = cv2.getPerspectiveTransform(img) TO DO https://blog.ayoungprogrammer.com/2013/03/tutorial-creating-multiple-choice.html/ 35 img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 36 bin_img = cv2.adaptiveThreshold(cv2.bitwise_not(img_gray), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 15, -2) 37 # cv2.imshow("Bin: ", bin_img) 38 # cv2.waitKey(0) 39 scale = 20 40 horizontal_size = bin_img.shape[0] // scale 41 horizontal_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontal_size, 1)) 42 img_eroded_horizontal = cv2.erode(bin_img, horizontal_structure, anchor=(-1, -1)) 43 img_dilated_horizontal = cv2.erode(img_eroded_horizontal, horizontal_structure, anchor=(-1, -1)) 44 45 vertical_size = bin_img.shape[1] // scale 46 vertical_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, vertical_size)) 47 img_eroded_vertical = cv2.erode(bin_img, vertical_structure, anchor=(-1, -1)) 48 img_dilated_vertical = cv2.erode(img_eroded_vertical, vertical_structure, anchor=(-1, -1)) 49 50 # mask = img_dilated_vertical + img_dilated_horizontal 51 joints = cv2.bitwise_and(img_dilated_horizontal, img_dilated_vertical) 52 # cv2.imshow("joints: ", joints) 53 # cv2.waitKey(0) 54 return bin_img, joints 55 56 57 def recognize_grid(model, img): 58 bin_img, joints = get_joints(img) 59 cell_height, cell_width, min_pt, max_pt = find_cell_param(joints) 60 grid = [] 61 for x in range(-1, 8): 62 row = [] 63 for y in range(-1, 8): 64 roi = bin_img[int(min_pt[1]+cell_width*x):int(min_pt[1]+cell_width*(x+1)), 65 int(min_pt[0]+cell_height*y):int(min_pt[0]+cell_height*(y+1))] 66 alpha = 0.1 67 roi = roi[int(roi.shape[1]*alpha):int(roi.shape[1]*(1-alpha)), int(roi.shape[0]*alpha):int(roi.shape[0]*(1-alpha))] 68 row.append(utils.predict_digit(model, roi)) 69 # cv2.imshow("ROI: ", roi) 70 # cv2.waitKey(0) 71 grid.append(row) 72 return grid 73 74 75 def draw_solved_grid(model, img, solved_sudoku): 76 solved_img = deepcopy(cv2.resize(img, (int(img.shape[1] / RESCALE), int(img.shape[0] / RESCALE)))) 77 bin_img, joints = get_joints(img) 78 cell_height, cell_width, min_pt, max_pt = find_cell_param(joints) 79 for x in range(-1, 8): 80 for y in range(-1, 8): 81 roi = bin_img[int(min_pt[1]+cell_width*x):int(min_pt[1]+cell_width*(x+1)), 82 int(min_pt[0]+cell_height*y):int(min_pt[0]+cell_height*(y+1))] 83 alpha = 0.1 84 roi = roi[int(roi.shape[1]*alpha):int(roi.shape[1]*(1-alpha)), int(roi.shape[0]*alpha):int(roi.shape[0]*(1-alpha))] 85 if utils.predict_digit(model, roi) == 0: 86 pt = (int((min_pt[0] + cell_height * y + min_pt[0] + cell_height * (y + 1))/2) - 5, int((min_pt[1] + cell_width * x + min_pt[1] + cell_width * (x + 1))/2)+8) 87 cv2.putText(solved_img, str(solved_sudoku[x+1][y+1]), pt, cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) 88 return solved_img 89 90 91 def main(): 92 model = utils.load_mnist_model() 93 img = cv2.imread("./SudokuOnline/puzzle1.jpg") 94 95 sudoku_grid = recognize_grid(model, img) 96 print(np.matrix(sudoku_grid)) 97 98 img = cv2.resize(img, (int(img.shape[1]/RESCALE), int(img.shape[0]/RESCALE))) 99 cv2.imshow("Img: ", img) 100 # cv2.imshow("Gray: ", img_gray) 101 # cv2.imshow("Bin: ", bin_img) 102 # cv2.imshow("Dilated horizontal: ", img_dilated_horizontal) 103 # cv2.imshow("Dilated vertical: ", img_dilated_vertical) 104 # cv2.imshow("Joints: ", joints) 105 # cv2.imshow("Mask: ", mask) 106 cv2.waitKey(0) 107 108 109 if __name__ == "__main__": 110 main()
59 - warning: unused-variable 78 - warning: unused-variable
1 import cv2 2 import numpy as np 3 import tensorflow 4 5 6 def standarize_digit_img_to_model_input(img, size): 7 if isinstance(img, str): 8 img = cv2.imread(img) 9 img_resized = cv2.resize(img, (size, size)) 10 return img_resized 11 12 13 def binarize_img(img): 14 gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 15 blur = cv2.GaussianBlur(gray_img, (5, 5), 0) 16 ret, th = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) 17 return cv2.bitwise_not(th) 18 19 20 def prepare_to_predict(img): 21 return img.reshape(1, 28, 28, 1) / 255.0 22 23 24 def predict_digit(model, img): 25 digit_img = standarize_digit_img_to_model_input(img, 28) 26 if len(img.shape) == 3: 27 bin_digit_img = binarize_img(digit_img) 28 else: 29 bin_digit_img = digit_img 30 img = prepare_to_predict(bin_digit_img) 31 prob_predictions = model.predict(img) 32 if np.any(prob_predictions > 0.7): 33 prediction = [(np.where(item == np.amax(item)))[0][0] for item in prob_predictions] 34 return prediction[0] 35 else: 36 return 0 37 38 39 def load_model(model_path): 40 return tensorflow.keras.models.load_model(model_path) 41 42 43 def load_mnist_model(): 44 model_path = "./MNISTmodel/models/train_mnist1_model3.h5" 45 return tensorflow.keras.models.load_model(model_path) 46
16 - warning: unused-variable 32 - refactor: no-else-return
1 import numpy as np 2 from random import randint 3 from copy import deepcopy 4 import cv2 5 import utils 6 import grid 7 8 # Global variables 9 sudoku_grid = [[5, 3, 0, 0, 7, 0, 0, 0, 0], 10 [6, 0, 0, 1, 9, 5, 0, 0, 0], 11 [0, 9, 8, 0, 0, 0, 0, 6, 0], 12 [8, 0, 0, 0, 6, 0, 0, 0, 3], 13 [4, 0, 0, 8, 0, 3, 0, 0, 1], 14 [7, 0, 0, 0, 2, 0, 0, 0, 6], 15 [0, 6, 0, 0, 0, 0, 2, 8, 0], 16 [0, 0, 0, 4, 1, 9, 0, 0, 5], 17 [0, 0, 0, 0, 8, 0, 0, 0, 9]] 18 counter = 0 19 solutions = [] 20 recur_cnt = 0 21 22 23 def is_possible(y, x, n): 24 global sudoku_grid 25 for i in range(0, 9): 26 if sudoku_grid[y][i] == n: 27 return False 28 for j in range(0, 9): 29 if sudoku_grid[j][x] == n: 30 return False 31 x0 = (x//3)*3 32 y0 = (y//3)*3 33 for k in range(0, 3): 34 for l in range(0, 3): 35 if sudoku_grid[y0+k][x0+l] == n: 36 return False 37 return True 38 39 40 def solve_recursion(): 41 global sudoku_grid, counter, solutions, recur_cnt 42 recur_cnt += 1 43 if recur_cnt > 10**5: 44 return 45 for y in range(9): 46 for x in range(9): 47 if sudoku_grid[y][x] == 0: 48 for n in range(1, 10): 49 if is_possible(y, x, n): 50 sudoku_grid[y][x] = n 51 solve_recursion() 52 sudoku_grid[y][x] = 0 53 return 54 counter += 1 55 solutions.append(deepcopy(sudoku_grid)) 56 57 58 def main(): 59 global sudoku_grid, counter, solutions 60 model = utils.load_mnist_model() 61 img = cv2.imread("./SudokuOnline/puzzle1.jpg") 62 63 sudoku_grid = grid.recognize_grid(model, img) 64 65 solve_recursion() 66 print("Number or recurrent function invocations: {}".format(recur_cnt)) 67 print("There are {} possible solutions".format(counter)) 68 if len(solutions) > 0: 69 print("Random solution:") 70 solved_grid = solutions[randint(0, counter - 1)] 71 print(np.matrix(solved_grid)) 72 73 img_solved = grid.draw_solved_grid(model, img, solved_grid) 74 cv2.imwrite("./results/result1.jpg", img_solved) 75 cv2.imshow("Solved sudoku", img_solved) 76 cv2.waitKey(0) 77 78 79 if __name__ == "__main__": 80 main() 81
24 - warning: global-variable-not-assigned 41 - warning: global-variable-not-assigned 41 - warning: global-variable-not-assigned 59 - warning: global-variable-not-assigned 59 - warning: global-variable-not-assigned
1 import tensorflow as tf 2 import datetime 3 import os 4 import numpy as np 5 from tensorflow.python.keras.callbacks import TensorBoard 6 7 mnist = tf.keras.datasets.mnist 8 (training_images, training_labels), (test_images, test_labels) = mnist.load_data() 9 10 # print(training_images.shape) 11 # print(test_images.shape) 12 training_images = training_images / 255.0 13 test_images = test_images / 255.0 14 training_images = training_images.reshape(training_images.shape[0], 28, 28, 1) 15 test_images = test_images.reshape(test_images.shape[0], 28, 28, 1) 16 17 test_images, validation_images = np.split(test_images, [int(test_images.shape[0]*0.4)]) 18 test_labels, validation_labels = np.split(test_labels, [int(test_labels.shape[0]*0.4)]) 19 20 model = tf.keras.models.Sequential([ 21 tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)), 22 tf.keras.layers.MaxPooling2D(2, 2), 23 tf.keras.layers.Conv2D(64, (3,3), activation='relu'), 24 tf.keras.layers.MaxPooling2D(2, 2), 25 tf.keras.layers.Flatten(), 26 tf.keras.layers.Dense(64, activation='relu'), 27 tf.keras.layers.Dense(10, activation='softmax') 28 ]) 29 30 31 ## Designing callbacks 32 class myCallback(tf.keras.callbacks.Callback): 33 def on_epoch_end(self, epoch, logs={}): 34 print("\nReached {} epoch".format(epoch + 1)) 35 if logs.get('accuracy') > 0.997: 36 print("Reached 99.99% accuracy so cancelling training!") 37 self.model.stop_training = True 38 39 40 log_dir = os.path.join( 41 "logs", 42 "fit", 43 datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) 44 tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1) 45 46 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 47 model.fit(training_images, 48 training_labels, 49 validation_data=(validation_images, validation_labels), 50 epochs=20, 51 callbacks=[myCallback(), tensorboard_callback], 52 verbose=2) 53 54 # model.summary() 55 metrics = model.evaluate(test_images, test_labels) 56 print("[Loss, Accuracy]") 57 print(metrics) 58 model.save("./models/train_mnist1_model3.h5") 59
17 - warning: unbalanced-tuple-unpacking 18 - warning: unbalanced-tuple-unpacking 33 - warning: dangerous-default-value 32 - refactor: too-few-public-methods
1 import os 2 import time 3 4 from selenium.common.exceptions import TimeoutException 5 from selenium.webdriver.common.by import By 6 from selenium.webdriver.common.keys import Keys 7 from selenium.webdriver.support.expected_conditions import presence_of_element_located 8 from selenium.webdriver.support.wait import WebDriverWait 9 10 from helpers import print_timestamp 11 12 13 class Mei: 14 def __init__(self, driver, files_path, uf): 15 self.driver = driver 16 self.files_path = os.path.join(os.getcwd(), files_path) 17 # print(self.files_path) 18 self.uf = uf 19 20 def _retorna_xpath(self, driver, timeout, freq, xpath): 21 wbw = WebDriverWait(driver=driver, 22 timeout=timeout, 23 poll_frequency=freq) 24 wbw.until(presence_of_element_located((By.XPATH, xpath)), 25 "Elemento não encontrado.") 26 xpath = driver.find_element_by_xpath(xpath) 27 return xpath 28 29 def retorna_tabela(self, xpath_btn_consulta, xpath_tab_completa): 30 time.sleep(2) 31 print('Extraindo tabela.', print_timestamp()) 32 tentativas = [1, 2, 3] 33 for i in tentativas: 34 print(f"Tentativa {i} de 3...") 35 self.driver.find_element_by_xpath(xpath_btn_consulta).click() 36 try: 37 self._retorna_xpath(self.driver, 150, 5, xpath_tab_completa) 38 print('Tabela carregada.', print_timestamp()) 39 return True 40 except TimeoutException: 41 print('Tabela não foi carregada.') 42 return False 43 44 def del_arquivos_inuteis(self): 45 files_path = self.files_path 46 for file in os.listdir(files_path): 47 if file[:13] == 'relatorio_mei': 48 os.remove(os.path.join(files_path, file)) 49 50 def renomeia_arquivo(self): 51 files_path = self.files_path 52 uf = self.uf 53 file = r'relatorio_mei.csv' 54 if file in os.listdir(files_path): 55 old_file = os.path.join(files_path, file) 56 new_file = self.nome_arquivo(uf) 57 new_file = os.path.join(files_path, new_file) 58 try: 59 os.rename(old_file, new_file) 60 print(f"Arquivo renomeado para {new_file} " + print_timestamp()) 61 except FileExistsError: 62 print("Arquivo já existe.") 63 64 def verifica_arquivo(self): 65 files_path = self.files_path 66 if not os.path.exists(files_path): 67 os.mkdir(files_path) 68 print(f"Arquivos baixados ficarão na pasta {files_path}.") 69 uf = self.uf 70 name = self.nome_arquivo(uf) 71 if name in os.listdir(files_path): 72 return name 73 else: 74 return False 75 76 def nome_arquivo(self, uf): 77 data = print_timestamp(now=False) 78 return f"{uf}_cnae_e_municipios_{data}.csv" 79 80 def exporta_csv(self): 81 driver = self.driver 82 xpath_btn_exportar = '//*[@id="form:botaoExportarCsv"]' 83 driver.find_element_by_xpath(xpath_btn_exportar).click() 84 time.sleep(10) 85 print('Download concluído.', print_timestamp()) 86 87 def abre_browser(self): 88 url = 'http://www22.receita.fazenda.gov.br/inscricaomei/private/pages/relatorios/opcoesRelatorio.jsf#' 89 xpath = '/html/body/table/tbody/tr[2]/td/form/div/div/div[1]/p' 90 91 while True: 92 driver = self.driver 93 try: 94 driver.get(url) 95 print('Browser iniciado. ' + print_timestamp()) 96 print('Extraindo ' + self.uf + '...') 97 self._retorna_xpath(driver, 15, 5, xpath) 98 break 99 except TimeoutException as e: 100 driver.quit() 101 print(e) 102 103 def carrega_pagina_relatorio(self, xpath_page): 104 driver = self.driver 105 page = driver.find_element_by_xpath(xpath_page) 106 page.click() 107 108 def uf_listbox(self, xpath_listbox): 109 time.sleep(5) 110 driver = self.driver 111 uf = self.uf 112 el = driver.find_element_by_xpath(xpath_listbox) 113 for option in el.find_elements_by_tag_name('option'): 114 if option.text == uf: 115 option.click() 116 break 117 118 119 class MeiCnaeMunicipio(Mei): 120 xpath_page = '/html/body/table/tbody/tr[2]/td/form/div/div/div[1]/ul/li[6]/a' 121 xpath_listbox = '//*[@id="form:uf"]' 122 xpath_municipios = '//*[@id="form:listaMunicipiosUF"]' 123 xpath_relatorio = '//*[@id="form:listaMunicipiosRelatorio"]' 124 xpath_btn_inserir = '//*[@id="form:btnInserir"]' 125 xpath_btn_consulta = '//*[@id="form:botaoConsultar"]' 126 xpath_tab_completa = '//*[@id="form:j_id62"]' 127 128 def __init__(self, driver, files_path, uf): 129 super().__init__(driver, files_path, uf) 130 131 def verifica_listbox_municipios(self): 132 driver = self.driver 133 for tries in [1, 2, 3]: 134 print(f"Carregando municípios. Tentativa {tries}/3.", print_timestamp()) 135 time.sleep(5) 136 # verifica se a 1a listbox está preenchida 137 cities = driver.find_element_by_xpath(self.xpath_municipios) 138 n_cities = len(cities.text.split('\n')) 139 if n_cities > 1 or cities.text == 'BRASILIA': 140 cities.find_elements_by_tag_name('option')[0].click() 141 cities.send_keys(Keys.SHIFT, Keys.END) 142 driver.find_element_by_xpath(self.xpath_btn_inserir).click() 143 time.sleep(5) 144 # verifica se a 2a listbox está preenchida 145 rel = driver.find_element_by_xpath(self.xpath_relatorio) 146 n_rel = len(rel.text.split('\n')) 147 if n_rel > 1 or rel.text == 'BRASILIA': 148 print("Municipíos carregados.") 149 break 150 # se nao atenderem as condições 151 if n_cities <= 1 and tries == 3: 152 print("Não foi possível carregar os municípios.") 153 return False 154 return True 155 156 157 class MeiCnaeSexoUF(Mei): 158 xpath_page = '/html/body/table/tbody/tr[2]/td/form/div/div/div[1]/ul/li[7]/a' 159 xpath_listbox = '//*[@id="form:uf"]' 160 xpath_municipios = '//*[@id="form:municipioUF"]' 161 xpath_btn_consulta = '//*[@id="form:botaoConsultar"]' 162 xpath_tab_completa = '//*[@id="form:botaoExportarCsv"]' 163 164 def __init__(self, driver, files_path, uf): 165 super().__init__(driver, files_path, uf) 166 167 def nome_arquivo(self, uf): 168 data = print_timestamp(now=False) 169 return f"{uf}_cnae_e_sexo_{data}.csv"
71 - refactor: no-else-return 128 - warning: useless-parent-delegation 164 - warning: useless-parent-delegation
1 from selenium import webdriver 2 3 4 def config(path_folder: str, headless: bool): 5 fp = webdriver.FirefoxProfile() 6 fp.set_preference("browser.download.folderList", 2) 7 fp.set_preference("browser.download.manager.showWhenStarting", False) 8 fp.set_preference("browser.download.dir", path_folder) 9 fp.set_preference("browser.helperApps.neverAsk.saveToDisk", "application/csv") 10 fp.set_preference("dom.disable_beforeunload", True) 11 fp.set_preference("browser.download.manager.closeWhenDone", True) 12 13 options = webdriver.FirefoxOptions() 14 if headless: 15 options.add_argument('-headless') 16 17 driver = webdriver.Firefox(fp, options=options) 18 19 return driver
Clean Code: No Issues Detected
1 import time 2 3 4 def print_timestamp(now=True): 5 timestamp = time.localtime(time.time()) 6 if now: 7 print_time = '{}/{}/{} {}:{}:{}'.format(timestamp.tm_mday, timestamp.tm_mon, timestamp.tm_year, 8 timestamp.tm_hour, timestamp.tm_min, timestamp.tm_sec) 9 return print_time 10 print_time = '{:04d}{:02d}{:02d}'.format(timestamp.tm_year, timestamp.tm_mon, timestamp.tm_mday) 11 return print_time 12 13 14 def retorna_ufs(): 15 with open('lista de uf.txt', 'r', encoding='latin-1') as f: 16 file = f.readlines() 17 ufs = [uf[:-1] for uf in file] 18 return ufs
Clean Code: No Issues Detected
1 import os 2 import fire 3 4 from selenium.common.exceptions import NoSuchElementException, \ 5 WebDriverException, NoSuchWindowException 6 7 from init import config 8 from mei import MeiCnaeMunicipio, MeiCnaeSexoUF 9 from helpers import retorna_ufs 10 11 12 def ufs_por_municipio_cnae(pasta="arquivos", invisivel=True): 13 ufs = retorna_ufs() 14 for uf in ufs: 15 uf_por_municipio_cnae(uf=uf, pasta=pasta, invisivel=invisivel) 16 17 18 def uf_por_municipio_cnae(uf="PERNAMBUCO", pasta="arquivos", invisivel=True): 19 path_file = os.path.join(os.getcwd(), pasta) 20 driver = config(path_file, headless=invisivel) 21 mei = MeiCnaeMunicipio(driver, path_file, uf) 22 file = mei.verifica_arquivo() 23 if not file: 24 mei.del_arquivos_inuteis() 25 try: 26 mei.abre_browser() 27 mei.carrega_pagina_relatorio(mei.xpath_page) 28 mei.uf_listbox(mei.xpath_listbox) 29 checkbox = mei.verifica_listbox_municipios() 30 if checkbox: 31 table = mei.retorna_tabela(mei.xpath_btn_consulta, 32 mei.xpath_tab_completa) 33 if table: 34 mei.exporta_csv() 35 mei.renomeia_arquivo() 36 else: 37 print(f"Não foi possível exportar o arquivo") 38 else: 39 print(f"Não foi possível exportar o arquivo.") 40 driver.quit() 41 except (NoSuchElementException, WebDriverException, 42 NoSuchWindowException) as e: 43 print(e) 44 driver.quit() 45 print("Não foi possível exportar o arquivo.") 46 else: 47 print(f"O arquivo {file} já existe.") 48 49 50 def ufs_por_sexo_cnae(pasta="arquivos", invisivel=True): 51 ufs = retorna_ufs() 52 for uf in ufs: 53 uf_por_sexo_cnae(uf=uf, pasta=pasta, invisivel=invisivel) 54 55 56 def uf_por_sexo_cnae(uf="PERNAMBUCO", pasta="arquivos", invisivel=True): 57 path_file = os.path.join(os.getcwd(), pasta) 58 driver = config(path_file, headless=invisivel) 59 mei = MeiCnaeSexoUF(driver, path_file, uf) 60 file = mei.verifica_arquivo() 61 if not file: 62 mei.del_arquivos_inuteis() 63 try: 64 mei.abre_browser() 65 mei.carrega_pagina_relatorio(mei.xpath_page) 66 mei.uf_listbox(mei.xpath_listbox) 67 table = mei.retorna_tabela(mei.xpath_btn_consulta, 68 mei.xpath_tab_completa) 69 if table: 70 mei.exporta_csv() 71 mei.renomeia_arquivo() 72 else: 73 print(f"Não foi possível exportar o arquivo") 74 driver.quit() 75 except (NoSuchElementException, WebDriverException, 76 NoSuchWindowException) as e: 77 print(e) 78 driver.quit() 79 print("Não foi possível exportar o arquivo.") 80 else: 81 print(f"O arquivo {file} já existe.") 82 83 84 if __name__ == '__main__': 85 fire.Fire()
37 - warning: f-string-without-interpolation 39 - warning: f-string-without-interpolation 73 - warning: f-string-without-interpolation
1 from sqlalchemy import create_engine 2 from sqlalchemy.orm import scoped_session, sessionmaker 3 import csv 4 5 database_url = "postgres://ioovleludzhxle:a966a7d36f9e61edd437415d538afd38b89ab723d71177647d3766c32e0b2106@ec2-54-221-243-211.compute-1.amazonaws.com:5432/d3a4ekarkutr2s" 6 engine = create_engine(database_url) 7 db = scoped_session(sessionmaker(bind=engine)) 8 9 def import_books(): 10 csv_file = open('books.csv', 'r') 11 rows = csv.reader(csv_file, delimiter=',') 12 cur_row = 0 13 db.execute("""CREATE TABLE books ( 14 id SERIAL PRIMARY KEY, 15 isbn varchar NOT NULL, 16 title varchar NOT NULL, 17 author varchar NOT NULL, 18 year INTEGER NOT NULL)""") 19 for row in rows: 20 if cur_row != 0: 21 db.execute("INSERT INTO books (isbn, title, author, year) VALUES (:isbn, :title, :author, :year)", 22 {"isbn": row[0], "title": row[1], "author": row[2], "year": int(row[3])}) 23 cur_row += 1 24 db.commit() 25 26 27 28 29 30 31 if __name__ == '__main__': 32 import_books()
10 - warning: unspecified-encoding 10 - refactor: consider-using-with
1 #IF a table has an already defined relationship: 2 # Build a statement to join census and state_fact tables: stmt 3 stmt = select([census.columns.pop2000, state_fact.columns.abbreviation]) 4 5 # Execute the statement and get the first result: result 6 result = connection.execute(stmt).first() 7 8 # Loop over the keys in the result object and print the key and value 9 for key in result.keys(): 10 print(key, getattr(result, key)) 11 12 13 # Build a statement to select the census and state_fact tables: stmt 14 stmt = select([census, state_fact]) 15 16 # Add a select_from clause that wraps a join for the census and state_fact 17 # tables where the census state column and state_fact name column match 18 stmt = stmt.select_from( 19 census.join(state_fact, census.columns.state == state_fact.columns.name)) 20 21 # Execute the statement and get the first result: result 22 result = connection.execute(stmt).first() 23 24 # Loop over the keys in the result object and print the key and value 25 for key in result.keys(): 26 print(key, getattr(result, key)) 27 28 29 # Build a statement to select the state, sum of 2008 population and census 30 # division name: stmt 31 stmt = select([ 32 census.columns.state, 33 func.sum(census.columns.pop2008), 34 state_fact.columns.census_division_name 35 ]) 36 37 # Append select_from to join the census and state_fact tables by the census state and state_fact name columns 38 stmt = stmt.select_from( 39 census.join(state_fact, census.columns.state == state_fact.columns.name) 40 ) 41 42 # Append a group by for the state_fact name column 43 stmt = stmt.group_by(state_fact.columns.name) 44 45 # Execute the statement and get the results: results 46 results = connection.execute(stmt).fetchall()
3 - error: undefined-variable 3 - error: undefined-variable 3 - error: undefined-variable 6 - error: undefined-variable 14 - error: undefined-variable 14 - error: undefined-variable 14 - error: undefined-variable 19 - error: undefined-variable 19 - error: undefined-variable 19 - error: undefined-variable 19 - error: undefined-variable 22 - error: undefined-variable 31 - error: undefined-variable 32 - error: undefined-variable 33 - error: undefined-variable 33 - error: undefined-variable 34 - error: undefined-variable 39 - error: undefined-variable 39 - error: undefined-variable 39 - error: undefined-variable 39 - error: undefined-variable 43 - error: undefined-variable 46 - error: undefined-variable
1 # Import create_engine 2 from sqlalchemy import create_engine 3 4 # Create an engine that connects to the census.sqlite file: engine 5 engine = create_engine('sqlite:///census.sqlite') 6 7 connection = engine.connect() 8 9 # Build select statement for census table: stmt 10 stmt = "SELECT * FROM census" 11 12 # Execute the statement and fetch the results: results 13 results = connection.execute(stmt).fetchall() 14 15 # Print results 16 print(results) 17 18 #ALTERNATIVELY 19 # Import select 20 from sqlalchemy import select 21 22 # Reflect census table via engine: census 23 census = Table('census', metadata, autoload=True, autoload_with=engine) 24 25 # Build select statement for census table: stmt 26 stmt = select([census]) 27 28 # Print the emitted statement to see the SQL emitted 29 print(stmt) 30 31 # Execute the statement and print the results 32 print(connection.execute(stmt).fetchall()) 33 34 # 35 #Recall the differences between a ResultProxy and a ResultSet: 36 # 37 # ResultProxy: The object returned by the .execute() method. It can be used in a variety of ways to get the data returned by the query. 38 # ResultSet: The actual data asked for in the query when using a fetch method such as .fetchall() on a ResultProxy. 39 40 #This separation between the ResultSet and ResultProxy allows us to fetch as much or as little data as we desire. 41 42 results = connection.execute(stmt).fetchall() 43 44 # Get the first row of the results by using an index: first_row 45 first_row = results[0] 46 47 # Print the first row of the results 48 print(first_row) 49 50 # Print the first column of the first row by using an index 51 print(first_row[0]) 52 53 # Print the 'state' column of the first row by using its name 54 print(first_row['state'])
23 - error: undefined-variable 23 - error: undefined-variable
1 #Basics of reading in: 2 filename = 'file.txt' 3 file = open(filename, mode = 'r') #'r' is top read, 'w' is to write 4 text = file.read() 5 file.close() 6 7 with open('huck_finn.txt', 'r') as file: #with is referred to as the context manager 8 print(file.read()) 9 10 11 #Using NumPy - for numeric arrays 12 #This allows use of sci-kit learn 13 import numpy as np 14 15 #Can use: 16 data = np.loadtxt(filename, delimiter = "'", skiprows = 1, usecols=[0, 2], dtype=str) 17 18 #Alternatively, use Pandas (this is preferable) 19 20 import pandas as pd 21 22 data = pd.read_csv(filename, sep = '\t', comment='#', na_values='Nothing') #comment drops everything after '#', na_values are user specified nulls 23 #header=0 and names=new_names will label the rows 24 #parse_date does something 25 #index_col specifies which col should be the index 26 27 28 data.head() #prints first 5 rows .head(10) displays 10 rows 29 30 data_array = data.values #converts to numpy array 31 32 #Other types of import files: 33 34 #Pickled file: files containing python data structures that don't traslate to an obvious readible form (i.e. dicts, lists, tuples) 35 # Import pickle package 36 import pickle 37 38 # Open pickle file and load data: d 39 with open('data.pkl', 'rb') as file: 40 d = pickle.load(file) 41 42 #Excel 43 file = "excel.xlsx" 44 data = pd.ExcelFile(file) 45 46 print(data.sheet_names) 47 48 df1 = data.parse('name_of_sheet') 49 df2 = data.parse(1) #index of sheet 50 df1 = data.parse(0, skiprows=[1], names=['Country', 'AAM due to War (2002)']) 51 52 #SAS 53 # Import sas7bdat package 54 from sas7bdat import SAS7BDAT 55 56 # Save file to a DataFrame: df_sas 57 with SAS7BDAT('sales.sas7bdat') as file: 58 df_sas = file.to_data_frame() 59 60 #Stata 61 # Import pandas 62 import pandas as pd 63 64 # Load Stata file into a pandas DataFrame: df 65 df = pd.read_stata('disarea.dta') 66 67 #HDF5 (Hierarchical Data Format version 5) 68 import h5py 69 70 # Assign filename: file 71 file = 'LIGO_data.hdf5' 72 73 # Load file: data 74 data = h5py.File(file, 'r') 75 76 # Print the datatype of the loaded file 77 print(type(data)) 78 79 # Print the keys of the file. HDF5 files have a heirarchical structure that can be drilled down using the keys 80 for key in data.keys(): 81 print(key) 82 83 group = data['strain'] 84 85 # Check out keys of group 86 for key in group.keys(): 87 print(key) 88 89 # Set variable equal to time series data: strain 90 strain = data['strain']['Strain'].value 91 92 93 #MATLAB 94 # Import package 95 import scipy.io 96 97 # Load MATLAB file: mat 98 mat = scipy.io.loadmat('albeck_gene_expression.mat') #loads a dict with the variables : values of thingfs that were saved in the MATLAB workspace 99
8 - warning: bad-indentation 58 - warning: bad-indentation 3 - warning: unspecified-encoding 7 - warning: unspecified-encoding 62 - warning: reimported 3 - refactor: consider-using-with
1 #Row concatenation 2 row_concat = pd.concat([uber1, uber2, uber3]) 3 #where each is a df 4 #Note though that the original row indices will be maintained 5 #Use the ignore_index = True to reset the indices in sequential order 6 7 #Use the axis =1 to do column concatenation 8 9 #If we have many files to concatenate: 10 # Import necessary modules 11 import glob 12 import pandas as pd 13 14 # Write the pattern: pattern 15 pattern = '*.csv' 16 # * = all strings 17 # ? = single character 18 19 # Save all file matches: csv_files 20 csv_files = glob.glob(pattern) 21 #this gives a list of files that match the pattern 22 23 # Create an empty list: frames 24 frames = [] 25 26 # Iterate over csv_files 27 for csv in csv_files: 28 29 # Read csv into a DataFrame: df 30 df = pd.read_csv(csv) 31 32 # Append df to frames 33 frames.append(df) 34 35 # Concatenate frames into a single DataFrame: uber 36 uber = pd.concat(frames)
2 - error: used-before-assignment 2 - error: undefined-variable 2 - error: undefined-variable 2 - error: undefined-variable
1 #EG: 2 id treatment gender response 3 0 1 A F 5 4 1 2 A M 3 5 2 3 B F 8 6 3 4 B M 9 7 8 df.pivot(index = "treatment", columns = "gender", values = "response") 9 #pivot 10 gender F M 11 treatment 12 A 5 3 13 B 8 9 14 15 #Not specifying the values will pivot all columns
2 - error: syntax-error
1 # Import plotting modules 2 import matplotlib.pyplot as plt 3 import seaborn as sns 4 5 # Plot a linear regression between 'weight' and 'hp' 6 sns.lmplot(x='weight', y='hp', data=auto) 7 8 # Display the plot 9 plt.show() 10 11 #RESIDUALS 12 # Import plotting modules 13 import matplotlib.pyplot as plt 14 import seaborn as sns 15 16 # Generate a green residual plot of the regression between 'hp' and 'mpg' 17 sns.residplot(x='hp', y='mpg', data=auto, color='green') 18 19 # Display the plot 20 plt.show() 21 22 #HIGHER ORDER 23 # Generate a scatter plot of 'weight' and 'mpg' using red circles 24 plt.scatter(auto['weight'], auto['mpg'], label='data', color='red', marker='o') 25 26 # Plot in blue a linear regression of order 1 between 'weight' and 'mpg' 27 sns.regplot(x='weight', y='mpg', data=auto, label='order 1', color='blue', order=1, scatter=None) 28 29 # Plot in green a linear regression of order 2 between 'weight' and 'mpg' 30 sns.regplot(x='weight', y='mpg', data=auto, label='order 2', color='green', order=2, scatter=None) 31 32 # Add a legend and display the plot 33 plt.legend(loc='upper right') 34 plt.show() 35 36 37 # Plot a linear regression between 'weight' and 'hp', with a hue (specifies categories) of 'origin' and palette of 'Set1' 38 sns.lmplot('weight', 'hp', data=auto, hue='origin', palette='Set1') 39 40 # Display the plot 41 plt.show() 42 43 # Plot linear regressions between 'weight' and 'hp' grouped row-wise by 'origin' 44 sns.lmplot('weight', 'hp', data=auto, row='origin') 45 46 # Display the plot 47 plt.show()
6 - error: undefined-variable 13 - warning: reimported 14 - warning: reimported 17 - error: undefined-variable 24 - error: undefined-variable 24 - error: undefined-variable 27 - error: undefined-variable 30 - error: undefined-variable 38 - error: undefined-variable 44 - error: undefined-variable
1 '''This was created after installing virtualenv. This allows use to create a virtual environment that mimics 2 a fresh Python install. This ensures that any updates to packages don't affect previous applications built on previous package versions. 3 4 Run: conda create -n venv python=3.5.0 anaconda 5 to create a virtual env called venv with python 3.5.0 6 7 conda activate venv 8 conda deactivate''' 9 10 from flask import Flask, request 11 from flask_restful import Resource, Api 12 13 app = Flask(__name__) 14 api = Api(app) 15 16 items = [] 17 18 class Item(Resource): 19 def get(self, name): 20 item = next(filter(lambda x: x['name'] == name, items), None) #if next produces nothing, return None 21 return {"item" : item}, 200 if item is not None else 404 22 23 def post(self, name): 24 #Note that the 'Header' and 'Body' need to be set 25 if next(filter(lambda x: x['name'] == name, items), None) is not None: 26 return {"message" : "an item with name '{}' already exists.".format(name)}, 400 #400 = bad request 27 28 data = request.get_json() #args: force:Forces the content header, silent: returns None (generally don't use) 29 item = {'name' : name, 'price' : data['price']} 30 items.append(item) 31 32 return item, 201 #201 is code for created 33 34 class ItemList(Resource): 35 def get(self): 36 return{"items" : items} 37 38 api.add_resource(Item, '/item/<string:name>') #http://127.0.0.1:5000/item/item_name 39 api.add_resource(ItemList, '/items') 40 app.run(port=5000, debug=True) #debug gives better error messages
19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 23 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 32 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 34 - refactor: too-few-public-methods
1 import sqlite3 2 3 connection = sqlite3.connect('data.db') 4 5 cursor = connection.cursor() #similar to a screen cursor, it allows us to selct and start thinigs. It executes the queries 6 7 create_table = "CREATE TABLE users (id int, username text, password text)" 8 cursor.execute(create_table) 9 10 11 user = (1, "damien", "bitches") 12 insert_query = "INSERT INTO users VALUES (?, ?, ?)" 13 cursor.execute(insert_query, user) 14 15 users = [ 16 (2, "not damien", "notbitches"), 17 (3, "other", "otherps") 18 ] 19 cursor.executemany(insert_query, users) 20 21 select_query = "SELECT * from users" 22 a = cursor.execute(select_query) 23 res = connection.execute("SELECT name FROM sqlite_master WHERE type='table';") 24 for name in res: 25 print (name[0]) 26 print(next(a)) 27 28 connection.commit() 29 30 connection.close()
Clean Code: No Issues Detected
1 # Create a select query: stmt 2 stmt = select([census]) 3 4 # Add a where clause to filter the results to only those for New York 5 stmt = stmt.where(census.columns.state == 'New York') 6 7 # Execute the query to retrieve all the data returned: results 8 results = connection.execute(stmt).fetchall() 9 10 # Loop over the results and print the age, sex, and pop2008 11 for result in results: 12 print(result.age, result.sex, result.pop2008) 13 14 # Create a query for the census table: stmt 15 stmt = select([census]) 16 17 # Append a where clause to match all the states in_ the list states 18 stmt = stmt.where(census.columns.state.in_(states)) 19 20 # Loop over the ResultProxy and print the state and its population in 2000 21 for i in connection.execute(stmt).fetchall(): 22 print(i.state, i.pop2000) 23 24 # Import and_ 25 from sqlalchemy import and_ 26 27 # Build a query for the census table: stmt 28 stmt = select([census]) 29 30 # Append a where clause to select only non-male records from California using and_ 31 stmt = stmt.where( 32 # The state of California with a non-male sex 33 and_(census.columns.state == 'California', 34 census.columns.sex != 'M' 35 ) 36 ) 37 38 # Loop over the ResultProxy printing the age and sex 39 for result in connection.execute(stmt).fetchall(): 40 print(result.age, result.sex) 41 42 # Build a query to select the state column: stmt 43 stmt = select([census.columns.state]) 44 45 # Order stmt by the state column 46 stmt = stmt.order_by(census.columns.state) #desc(census.columns.state) 47 48 ## Build a query to select state and age: stmt 49 #stmt = select([census.columns.state, census.columns.age]) 50 # 51 ## Append order by to ascend by state and descend by age 52 #stmt = stmt.order_by(census.columns.state, desc(census.columns.age)) 53 54 # Execute the query and store the results: results 55 results = connection.execute(stmt).fetchall() 56 57 # Print the first 10 results 58 print(results[:10])
2 - error: undefined-variable 2 - error: undefined-variable 5 - error: undefined-variable 8 - error: undefined-variable 15 - error: undefined-variable 15 - error: undefined-variable 18 - error: undefined-variable 18 - error: undefined-variable 21 - error: undefined-variable 28 - error: undefined-variable 28 - error: undefined-variable 33 - error: undefined-variable 34 - error: undefined-variable 39 - error: undefined-variable 43 - error: undefined-variable 43 - error: undefined-variable 46 - error: undefined-variable 55 - error: undefined-variable
1 # Import pandas 2 import pandas as pd 3 4 # Read 'monthly_max_temp.csv' into a DataFrame: weather1 5 weather1 = pd.read_csv('monthly_max_temp.csv', index_col='Month') 6 7 # Print the head of weather1 8 print(weather1.head()) 9 10 # Sort the index of weather1 in alphabetical order: weather2 11 weather2 = weather1.sort_index() 12 13 # Print the head of weather2 14 print(weather2.head()) 15 16 # Sort the index of weather1 in reverse alphabetical order: weather3 17 weather3 = weather1.sort_index(ascending=False) 18 19 # Print the head of weather3 20 print(weather3.head()) 21 22 # Sort weather1 numerically using the values of 'Max TemperatureF': weather4 23 weather4 = weather1.sort_values('Max TemperatureF') 24 25 # Print the head of weather4 26 print(weather4.head()) 27 28 # Import pandas 29 import pandas as pd 30 31 # Reindex weather1 using the list year: weather2 32 weather2 = weather1.reindex(year) 33 34 # Print weather2 35 print(weather2) 36 37 # Reindex weather1 using the list year with forward-fill: weather3 38 weather3 = weather1.reindex(year).ffill() 39 40 # Print weather3 41 print(weather3) 42 43 Mean TemperatureF 44 Month 45 Jan 32.133333 46 Feb NaN 47 Mar NaN 48 Apr 61.956044 49 May NaN 50 Jun NaN 51 Jul 68.934783 52 Aug NaN 53 Sep NaN 54 Oct 43.434783 55 Nov NaN 56 Dec NaN 57 Mean TemperatureF 58 Month 59 Jan 32.133333 60 Feb 32.133333 61 Mar 32.133333 62 Apr 61.956044 63 May 61.956044 64 Jun 61.956044 65 Jul 68.934783 66 Aug 68.934783 67 Sep 68.934783 68 Oct 43.434783 69 Nov 43.434783 70 Dec 43.434783 71 72 # Import pandas 73 import pandas as pd 74 75 # Reindex names_1981 with index of names_1881: common_names 76 common_names = names_1981.reindex(names_1881.index) 77 78 # Print shape of common_names 79 print(common_names.shape) 80 81 # Drop rows with null counts: common_names 82 common_names = common_names.dropna() 83 84 # Print shape of new common_names 85 print(common_names.shape)
43 - error: syntax-error
1 from models.user import UserModel 2 from werkzeug.security import safe_str_cmp 3 4 5 def authenticate(username, password): 6 user = UserModel.find_by_username(username) 7 if user is not None and safe_str_cmp(user.password, password): #safe_str_cmp() alleviates issues with string comparison 8 return user 9 10 #identity function is unique to flask JWT 11 #payload is the contents on the JWT Token 12 def identity(payload): 13 user_id = payload['identity'] 14 return UserModel.find_by_id(user_id) 15 16 17 18 19 20
6 - warning: bad-indentation 7 - warning: bad-indentation 8 - warning: bad-indentation 13 - warning: bad-indentation 14 - warning: bad-indentation 5 - refactor: inconsistent-return-statements
1 # Make an array of translated impact forces: translated_force_b 2 translated_force_b = force_b - np.mean(force_b) + 0.55 3 4 # Take bootstrap replicates of Frog B's translated impact forces: bs_replicates 5 bs_replicates = draw_bs_reps(translated_force_b, np.mean, 10000) 6 7 # Compute fraction of replicates that are less than the observed Frog B force: p 8 p = np.sum(bs_replicates <= np.mean(force_b)) / 10000 9 10 # Print the p-value 11 print('p = ', p) 12 13 14 15 # Compute mean of all forces: mean_force 16 mean_force = np.mean(forces_concat) 17 18 # Generate shifted arrays 19 force_a_shifted = force_a - np.mean(force_a) + mean_force 20 force_b_shifted = force_b - np.mean(force_b) + mean_force 21 22 # Compute 10,000 bootstrap replicates from shifted arrays 23 bs_replicates_a = draw_bs_reps(force_a_shifted, np.mean, 10000) 24 bs_replicates_b = draw_bs_reps(force_b_shifted, np.mean, 10000) 25 26 # Get replicates of difference of means: bs_replicates 27 bs_replicates = bs_replicates_a-bs_replicates_b 28 29 # Compute and print p-value: p 30 p = np.sum(bs_replicates >= (np.mean(force_a)-np.mean(force_b))) / 10000 31 print('p-value =', p)
2 - error: undefined-variable 2 - error: undefined-variable 2 - error: undefined-variable 5 - error: undefined-variable 5 - error: undefined-variable 8 - error: undefined-variable 8 - error: undefined-variable 8 - error: undefined-variable 16 - error: undefined-variable 16 - error: undefined-variable 19 - error: undefined-variable 19 - error: undefined-variable 19 - error: undefined-variable 20 - error: undefined-variable 20 - error: undefined-variable 20 - error: undefined-variable 23 - error: undefined-variable 23 - error: undefined-variable 24 - error: undefined-variable 24 - error: undefined-variable 30 - error: undefined-variable 30 - error: undefined-variable 30 - error: undefined-variable 30 - error: undefined-variable 30 - error: undefined-variable
1 # Create the pivot table: medals_won_by_country 2 medals_won_by_country = medals.pivot_table(index = 'Edition', columns='NOC', values= "Athlete", aggfunc='count') 3 4 # Slice medals_won_by_country: cold_war_usa_urs_medals 5 cold_war_usa_urs_medals = medals_won_by_country.loc[1952:1988, ['USA','URS']] 6 NOC USA URS 7 Edition 8 1952 130.0 117.0 9 1956 118.0 169.0 10 1960 112.0 169.0 11 1964 150.0 174.0 12 1968 149.0 188.0 13 1972 155.0 211.0 14 1976 155.0 285.0 15 1980 NaN 442.0 16 1984 333.0 NaN 17 1988 193.0 294.0 18 19 # If .max() returns the maximum value of Series or 1D array, .idxmax() returns the index of the maximizing element. 20 # Create most_medals 21 most_medals = cold_war_usa_urs_medals.idxmax(axis='columns') 22 Edition 23 1952 USA 24 1956 URS 25 1960 URS 26 1964 URS 27 1968 URS 28 1972 URS 29 1976 URS 30 1980 URS 31 1984 USA 32 1988 URS 33 dtype: object 34 # Print most_medals.value_counts() 35 print(most_medals.value_counts()) 36 37 38 In [5]: cold_war_usa_urs_medals.idxmax() 39 Out[5]: 40 NOC 41 USA 1984 42 URS 1980 43 dtype: int64
6 - error: syntax-error
1 from user import User 2 from werkzeug.security import safe_str_cmp 3 4 #some database 5 users = [ 6 User(1, "bob", "asdf"), 7 User(2, "Damien", "bitches") 8 ] 9 10 11 #below allows us to find the user by username or ID without having to iterate over the above list 12 username_mapping = {u.username : u for u in users} #list comprehension where the function is a key:value pair 13 userid_mapping = {u.id : u for u in users} 14 15 def authenticate(username, password): 16 user = username_mapping.get(username, None) #note that this is the same as the [] notation, but allows a default value 17 if user is not None and safe_str_cmp(user.password, password): #safe_str_cmp() alleviates issues with string comparison 18 return user 19 20 #identity function is unique to flask JWT 21 #payload is the contents on the JWT Token 22 def identity(payload): 23 user_id = payload['identity'] 24 return userid_mapping.get(user_id, None) 25 26 27 28 29 30
16 - warning: bad-indentation 17 - warning: bad-indentation 18 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 15 - refactor: inconsistent-return-statements
1 np.random.binomial(trails, probablity_of_success, size=number_of_reps) 2 3 np.random.poisson(average_rate, size=number_of_reps) 4 5 np.random.normal(mean, std, size=) 6 # Draw 100000 samples from Normal distribution with stds of interest: samples_std1, samples_std3, samples_std10 7 samples_std1 = np.random.normal(20,1,size=100000) 8 samples_std3 = np.random.normal(20,3,size=100000) 9 samples_std10 = np.random.normal(20,10,size=100000) 10 11 # Make histograms 12 _ = plt.hist(samples_std1, normed=True, histtype='step', bins=100) 13 _ = plt.hist(samples_std3, normed=True, histtype='step', bins=100) 14 _ = plt.hist(samples_std10, normed=True, histtype='step', bins=100) 15 16 # Make a legend, set limits and show plot 17 _ = plt.legend(('std = 1', 'std = 3', 'std = 10')) 18 plt.ylim(-0.01, 0.42) 19 plt.show() 20 21 22 # Compute mean and standard deviation: mu, sigma 23 mu = np.mean(belmont_no_outliers) 24 sigma = np.std(belmont_no_outliers) 25 26 # Sample out of a normal distribution with this mu and sigma: samples 27 samples = np.random.normal(mu, sigma, size=10000) 28 29 # Get the CDF of the samples and of the data 30 x_theor, y_theor = ecdf(samples) 31 x, y = ecdf(belmont_no_outliers) 32 33 # Plot the CDFs and show the plot 34 _ = plt.plot(x_theor, y_theor) 35 _ = plt.plot(x, y, marker='.', linestyle='none') 36 _ = plt.xlabel('Belmont winning time (sec.)') 37 _ = plt.ylabel('CDF') 38 plt.show() 39 40 41 np.randm.exponential(mean, size=) 42 def successive_poisson(tau1, tau2, size=1): 43 """Compute time for arrival of 2 successive Poisson processes.""" 44 # Draw samples out of first exponential distribution: t1 45 t1 = np.random.exponential(tau1, size=size) 46 47 # Draw samples out of second exponential distribution: t2 48 t2 = np.random.exponential(tau2, size=size) 49 50 return t1 + t2
5 - error: syntax-error