query
stringlengths 9
60
| language
stringclasses 1
value | code
stringlengths 105
25.7k
| url
stringlengths 91
217
|
---|---|---|---|
fuzzy match ranking
|
python
|
def _exact_fuzzy_match(response, match, insensitive):
'''
Return True if the response matches fuzzily exactly.
Insensitivity is taken into account.
'''
if insensitive:
response = response.lower()
match = match.lower()
r_words = response.split()
m_words = match.split()
# match whole words first
for word in r_words:
if word in m_words:
r_words.remove(word)
m_words.remove(word)
# no partial matches allowed
# if all the items in the response were matched,
# and all the items in the match were matched,
# then this is an exact fuzzy match
return len(r_words) == 0 and len(m_words) == 0
|
https://github.com/toejough/pimento/blob/cdb00a93976733aa5521f8504152cedeedfc711a/pimento/__init__.py#L276-L295
|
fuzzy match ranking
|
python
|
def _fuzzily_matches(response, candidate):
'''return True if response fuzzily matches candidate'''
r_words = response.split()
c_words = candidate.split()
# match whole words first
for word in r_words:
if word in c_words:
r_words.remove(word)
c_words.remove(word)
# match partial words, fewest matches first
match_pairs = []
for partial in sorted(r_words, key=lambda p: len(p), reverse=True):
matches = [w for w in c_words if partial in w]
match_pairs.append((partial, matches))
# if all items can be uniquly matched, the match is passed
while len(match_pairs):
min_pair = min(match_pairs, key=lambda x:len(x[1]))
# this is the partial and matches with the shortest match list
# if there are ever no matches for something, the match is failed
if len(min_pair[1]) == 0:
return False
# choose the match with the fewest matches to remaining partials.
# that way we leave more options for more partials, for the best
# chance of a full match
partials_left = [p[0] for p in match_pairs]
min_option = min(min_pair[1], key=lambda x:len([p for p in partials_left if x in p]))
# remove the current pair - we've matched it now
match_pairs.remove(min_pair)
# remove the matched option from all pairs' options so it won't be matched again
for pair in match_pairs:
pair_options = pair[1]
if min_option in pair_options:
pair_options.remove(min_option)
# if all the items in the response were matched, this is match
return True
|
https://github.com/toejough/pimento/blob/cdb00a93976733aa5521f8504152cedeedfc711a/pimento/__init__.py#L234-L268
|
fuzzy match ranking
|
python
|
def fuzzy_search_by_title(self, title, ignore_groups=None):
"""Find an entry by by fuzzy match.
This will check things such as:
* case insensitive matching
* typo checks
* prefix matches
If the ``ignore_groups`` argument is provided, then any matching
entries in the ``ignore_groups`` list will not be returned. This
argument can be used to filter out groups you are not interested in.
Returns a list of matches (an empty list is returned if no matches are
found).
"""
entries = []
# Exact matches trump
for entry in self.entries:
if entry.title == title:
entries.append(entry)
if entries:
return self._filter_entries(entries, ignore_groups)
# Case insensitive matches next.
title_lower = title.lower()
for entry in self.entries:
if entry.title.lower() == title.lower():
entries.append(entry)
if entries:
return self._filter_entries(entries, ignore_groups)
# Subsequence/prefix matches next.
for entry in self.entries:
if self._is_subsequence(title_lower, entry.title.lower()):
entries.append(entry)
if entries:
return self._filter_entries(entries, ignore_groups)
# Finally close matches that might have mispellings.
entry_map = {entry.title.lower(): entry for entry in self.entries}
matches = difflib.get_close_matches(
title.lower(), entry_map.keys(), cutoff=0.7)
if matches:
return self._filter_entries(
[entry_map[name] for name in matches], ignore_groups)
return []
|
https://github.com/jamesls/python-keepassx/blob/cf3c8f33b17b8eb6beaa1a8dd83ce1921dcde975/keepassx/db.py#L332-L376
|
fuzzy match ranking
|
python
|
def fuzzy(cls, field, value, boost=None, min_similarity=None, prefix_length=None):
'''
http://www.elasticsearch.org/guide/reference/query-dsl/fuzzy-query.html
A fuzzy based query that uses similarity based on Levenshtein (edit distance) algorithm.
'''
instance = cls(fuzzy={field: {'value': value}})
if boost is not None:
instance['fuzzy'][field]['boost'] = boost
if min_similarity is not None:
instance['fuzzy'][field]['min_similarity'] = min_similarity
if prefix_length is not None:
instance['fuzzy'][field]['prefix_length'] = prefix_length
return instance
|
https://github.com/ooici/elasticpy/blob/ec221800a80c39e80d8c31667c5b138da39219f2/elasticpy/query.py#L156-L168
|
fuzzy match ranking
|
python
|
def fuzzy_match(image, template, normed_tolerance=None, raw_tolerance=None, method='correlation'):
"""Determines, using one of two methods, whether a match(es) is present and returns the positions of
the bottom right corners of the matches.
Fuzzy matches returns regions, so the center of each region is returned as the final match location
USE THIS FUNCTION IF you need to match, e.g. the same image but rendered slightly different with respect to
anti aliasing; the same image on a number of different backgrounds.
The method is the name of the matching method used, the details of this do not matter. Use the default method
unless you have too many false positives, in this case, use the method 'correlation coefficient.' The
correlation coefficient method can also be more robust at matching when the match might not be exact.
The raw_tolerance is the proportion of the value at match positions (i.e. the value returned for an exact match)
that we count as a match. For fuzzy matching, this value will not be exactly the value returned for an exact match
N. B. Lowering raw_tolerance increases the number of potential match tiles requiring normalisation.
This DRAMATICALLY slows down matching as normalisation (a process which eliminates false positives)
The normed_tolerance is how far a potential match value can differ from one after normalisation.
The tolerance values indicated below are from a short investigation, looking to minimise missing items we wish to match,
as all as false positives which inevitably occur when performing fuzzy matching. To generate these values, we
tested maching letters with different type of antialiasing on a number of backgrounds.
"""
if method == 'correlation':
if not raw_tolerance:
raw_tolerance = 0.95
if not normed_tolerance:
normed_tolerance = 0.95
results = np.array(match_via_correlation(image, template, raw_tolerance=raw_tolerance, normed_tolerance=normed_tolerance))
elif method == 'correlation coefficient':
if not raw_tolerance:
raw_tolerance = 0.95
if not normed_tolerance:
normed_tolerance = 0.95
results = np.array(match_via_correlation_coefficient(image, template, raw_tolerance=raw_tolerance, normed_tolerance=normed_tolerance))
elif method == 'squared difference':
if not raw_tolerance:
raw_tolerance = 0.95
if not normed_tolerance:
normed_tolerance = 0.05
results = np.array(match_via_squared_difference(image, template, raw_tolerance=raw_tolerance, sq_diff_tolerance=normed_tolerance))
h, w = image.shape
th, tw = template.shape
results = np.array([(result[0], result[1]) for result in results])
#match_x, match_y = int(np.mean(results[:,1])), int(np.mean(results[:,0]))
results_aggregated_mean_match_position = match_positions((h,w), results)
return results_aggregated_mean_match_position
|
https://github.com/ten10solutions/Geist/blob/a1ef16d8b4c3777735008b671a50acfde3ce7bf1/geist/matchers.py#L64-L110
|
fuzzy match ranking
|
python
|
def query(self, w, ed=1): # Can only handle ed=1
"""
Finds the fuzzy matches (within edit distance 1) of w from words
"""
assert ed <= self._ed
if ed == 0:
return [w] if w in self._L else ['']
w = str(w)
n = len(w)
prefix, suffix = w[:n // 2], w[n // 2:][::-1]
options_w_prefix = self._L.keys(prefix)
options_w_suffix = [x[::-1] for x in self._R.iterkeys(suffix)]
return [
_w
for _w in set(itertools.chain(options_w_prefix, options_w_suffix))
if abs(len(_w) - len(w)) <= 1 and lvdistance(str(_w), str(w), 1) <= 1
]
|
https://github.com/rchatterjee/pwmodels/blob/e277411f8ebaf4ad1c208d2b035b4b68f7471517/src/pwmodel/fast_fuzzysearch.py#L107-L123
|
fuzzy match ranking
|
python
|
def get_similar(obj, labels, default=None, min_similarity=0.5):
"""Similar to fuzzy_get, but allows non-string keys and a list of possible keys
Searches attributes in addition to keys and indexes to find the closest match.
See Also:
`fuzzy_get`
"""
raise NotImplementedError(
"Unfinished implementation, needs to be in fuzzy_get where list of scores & keywords is sorted.")
labels = listify(labels)
def not_found(*args, **kwargs):
return 0
min_score = int(min_similarity * 100)
for similarity_score in [100, 95, 90, 80, 70, 50, 30, 10, 5, 0]:
if similarity_score <= min_score:
similarity_score = min_score
for label in labels:
try:
result = obj.get(label, not_found)
except AttributeError:
try:
result = obj.__getitem__(label)
except (IndexError, TypeError):
result = not_found
if result is not not_found:
return result
if similarity_score == min_score:
if result is not not_found:
return result
|
https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/util.py#L1094-L1126
|
fuzzy match ranking
|
python
|
def best_match_from_list(item,options,fuzzy=90,fname_match=True,fuzzy_fragment=None,guess=False):
'''Returns the best match from :meth:`matches_from_list` or ``None`` if no good matches'''
matches = matches_from_list(item,options,fuzzy,fname_match,fuzzy_fragment,guess)
if len(matches)>0:
return matches[0]
return None
|
https://github.com/azraq27/gini/blob/3c2b5265d096d606b303bfe25ac9adb74b8cee14/gini/matching.py#L56-L61
|
fuzzy match ranking
|
python
|
def fuzzy_index_match(possiblities, label, **kwargs):
"""Find the closest matching column label, key, or integer indexed value
Returns:
type(label): sequence of immutable objects corresponding to best matches to each object in label
if label is an int returns the object (value) in the list of possibilities at that index
if label is a str returns the closest str match in possibilities
>>> from collections import OrderedDict as odict
>>> fuzzy_index_match(pd.DataFrame(pd.np.random.randn(9,4), columns=list('ABCD'), index=range(9)), 'b')
'B'
>>> fuzzy_index_match(odict(zip('12345','ABCDE')), 'r2d2')
'2'
>>> fuzzy_index_match(odict(zip('12345','ABCDE')), 1)
'2'
>>> fuzzy_index_match(odict(zip('12345','ABCDE')), -1)
'5'
>>> fuzzy_index_match(odict(zip(range(4),'FOUR')), -4)
0
"""
possibilities = list(possiblities)
if isinstance(label, basestring):
return fuzzy_get(possibilities, label, **kwargs)
if isinstance(label, int):
return possibilities[label]
if isinstance(label, list):
return [fuzzy_get(possibilities, lbl) for lbl in label]
|
https://github.com/hobson/pug-invest/blob/836911258a0e920083a88c91beae88eefdebb20c/pug/invest/util.py#L1008-L1034
|
fuzzy match ranking
|
python
|
def fuzzy_search(self, *filters):
"""
Perform a "fuzzy" search that matches the given characters in the given order.
:param filters: The pattern(s) to search for.
:returns: The matched password names (a list of strings).
"""
matches = []
logger.verbose(
"Performing fuzzy search on %s (%s) ..", pluralize(len(filters), "pattern"), concatenate(map(repr, filters))
)
patterns = list(map(create_fuzzy_pattern, filters))
for entry in self.filtered_entries:
if all(p.search(entry.name) for p in patterns):
matches.append(entry)
logger.log(
logging.INFO if matches else logging.VERBOSE,
"Matched %s using fuzzy search.",
pluralize(len(matches), "password"),
)
return matches
|
https://github.com/xolox/python-qpass/blob/43ce447b0904ff42a54b8f1dd4d2479f950f258f/qpass/__init__.py#L110-L130
|
fuzzy match ranking
|
python
|
def parse_matchup(self):
"""
Parse the banner matchup meta info for the game.
:returns: ``self`` on success or ``None``
"""
lx_doc = self.html_doc()
try:
if not self.matchup:
self.matchup = self._fill_meta(lx_doc)
return self
except:
return None
|
https://github.com/robhowley/nhlscrapi/blob/2273683497ff27b0e92c8d1557ff0ce962dbf43b/nhlscrapi/scrapr/reportloader.py#L74-L86
|
fuzzy match ranking
|
python
|
def fuzzmatch(self, fuzzkey, multi=False):
"""
Identify a filter by fuzzy string matching.
Partial ('fuzzy') matching performed by `fuzzywuzzy.fuzzy.ratio`
Parameters
----------
fuzzkey : str
A string that partially matches one filter name more than the others.
Returns
-------
The name of the most closely matched filter. : str
"""
keys, ratios = np.array([(f, seqm(None, fuzzkey, f).ratio()) for f in self.components.keys()]).T
mratio = max(ratios)
if multi:
return keys[ratios == mratio]
else:
if sum(ratios == mratio) == 1:
return keys[ratios == mratio][0]
else:
raise ValueError("\nThe filter key provided ('{:}') matches two or more filter names equally well:\n".format(fuzzkey) + ', '.join(keys[ratios == mratio]) + "\nPlease be more specific!")
|
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/filt_obj.py#L319-L344
|
fuzzy match ranking
|
python
|
def _exact_match(response, matches, insensitive, fuzzy):
'''
returns an exact match, if it exists, given parameters
for the match
'''
for match in matches:
if response == match:
return match
elif insensitive and response.lower() == match.lower():
return match
elif fuzzy and _exact_fuzzy_match(response, match, insensitive):
return match
else:
return None
|
https://github.com/toejough/pimento/blob/cdb00a93976733aa5521f8504152cedeedfc711a/pimento/__init__.py#L298-L311
|
fuzzy match ranking
|
python
|
def matches_from_list(item,options,fuzzy=90,fname_match=True,fuzzy_fragment=None,guess=False):
'''Returns the members of ``options`` that best matches ``item``. Will prioritize
exact matches, then filename-style matching, then fuzzy matching. Returns a tuple of item,
index, match type, and fuzziness (if applicable)
:item: string to match
:options: list of examples to test against
:fuzzy: integer (out of 100) describing how close to match string
:fname_match: use filename globbing to match files?
:fuzzy_fragment: if not ``None``, will accept substring matches of
at least ``fuzzy_fragment`` fuzziness
:guess: if ``True``, shortcut for setting ``fuzzy`` and ``min_fragment``
to very lenient options
'''
matches = []
if guess:
fuzzy = min(fuzzy,80)
fuzzy_fragment = min(fuzzy_fragment,70)
option_not_in = lambda item,match_list: all([x[0]!=item for x in match_list])
# Exact matches
if item in options:
matches += [(options[i],i,'exact',None) for i in xrange(len(options)) if options[i].lower()==item.lower()]
# If we have exact matches, don't bother with fuzzy matching
return matches
# Filename-style matches
if fname_match:
matches += [(x,options.index(x),'fname',None) for x in fnmatch.filter(options,item) if option_not_in(x,matches)]
# Fuzzy matches
if fuzzy:
sub_matches = []
for i in xrange(len(options)):
r = fuzz.ratio(item.lower(),options[i].lower())
if r>=fuzzy and option_not_in(options[i],matches):
sub_matches.append((r,i))
matches += [(options[x[1]],x[1],'fuzzy',x[0]) for x in sorted(sub_matches)]
# Fragment matches
if fuzzy_fragment:
sub_matches = []
for i in xrange(len(options)):
r = fuzz.partial_ratio(item.lower(),options[i].lower())
if r>=fuzzy_fragment and option_not_in(options[i],matches):
sub_matches.append((r,i))
matches += [(options[x[1]],x[1],'fuzzy_fragment',x[0]) for x in sorted(sub_matches)]
return matches
|
https://github.com/azraq27/gini/blob/3c2b5265d096d606b303bfe25ac9adb74b8cee14/gini/matching.py#L4-L54
|
fuzzy match ranking
|
python
|
def best_match(self, matches):
"""
Find the most similar string to self.target.
Given a list of candidate strings find the closest match to
self.target, returning the best match with a score indicating closeness
of match.
:param matches: A list of candidate matches
:returns: A tuple of (score, best_match)
"""
best_match = None
for match, message in matches:
self.matcher.set_seq1(message)
ratio = self.matcher.quick_ratio()
if best_match is None or ratio >= best_match[0]:
new_ratio = self.matcher.ratio()
if best_match is None or new_ratio > best_match[0]:
best_match = (new_ratio, match)
return best_match
|
https://github.com/mozilla/treeherder/blob/cc47bdec872e5c668d0f01df89517390a164cda3/treeherder/autoclassify/matchers.py#L186-L205
|
fuzzy match ranking
|
python
|
def best_match(self, matches, default=None):
"""Returns the best match from a list of possible matches based
on the quality of the client. If two items have the same quality,
the one is returned that comes first.
:param matches: a list of matches to check for
:param default: the value that is returned if none match
"""
if matches:
best_quality = -1
result = default
for client_item, quality in self:
for server_item in matches:
if quality <= best_quality:
break
if self._value_matches(server_item, client_item):
best_quality = quality
result = server_item
return result
else:
return self.best
|
https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/apps/wsgi/structures.py#L121-L141
|
fuzzy match ranking
|
python
|
def best_match(self, target, choices):
"""\
Return the best match.
"""
all = self.all_matches
try:
best = next(all(target, choices, group=False))
return best
except StopIteration:
pass
|
https://github.com/chrlie/howabout/blob/780cacbdd9156106cc77f643c75191a824b034bb/src/howabout/__init__.py#L130-L141
|
fuzzy match ranking
|
python
|
def match(column, term, match_type=None, options=None):
"""Generates match predicate for fulltext search
:param column: A reference to a column or an index, or a subcolumn, or a
dictionary of subcolumns with boost values.
:param term: The term to match against. This string is analyzed and the
resulting tokens are compared to the index.
:param match_type (optional): The match type. Determine how the term is
applied and the score calculated.
:param options (optional): The match options. Specify match type behaviour.
(Not possible without a specified match type.) Match options must be
supplied as a dictionary.
"""
return Match(column, term, match_type, options)
|
https://github.com/crate/crate-python/blob/68e39c95f5bbe88b74bbfa26de4347fc644636a8/src/crate/client/sqlalchemy/predicates/__init__.py#L70-L86
|
fuzzy match ranking
|
python
|
def _parse_ranking(self, field, boxscore):
"""
Parse each team's rank if applicable.
Retrieve the team's rank according to the rankings published each week.
The ranking for the week is only located in the scores section at
the top of the page and not in the actual boxscore information. The
rank is after the team name inside a parenthesis with a special
'pollrank' attribute. If this is not in the team's boxscore
information, the team is assumed to not have a rank and will return a
value of None.
Parameters
----------
field : string
The name of the attribute to parse.
boxscore : PyQuery object
A PyQuery obejct containing all of the HTML data from the boxscore.
Returns
-------
int
An int representing the team's ranking or None if the team is not
ranked.
"""
ranking = None
index = BOXSCORE_ELEMENT_INDEX[field]
teams_boxscore = boxscore(BOXSCORE_SCHEME[field])
# Occasionally, the list of boxscores for the day won't be saved on the
# page. If that's the case, return the default ranking.
if str(teams_boxscore) == '':
return ranking
team = pq(teams_boxscore[index])
if 'pollrank' in str(team):
rank_str = re.findall(r'\(\d+\)', str(team))
if len(rank_str) == 1:
ranking = int(rank_str[0].replace('(', '').replace(')', ''))
return ranking
|
https://github.com/roclark/sportsreference/blob/ea0bae432be76450e137671d2998eb38f962dffd/sportsreference/ncaab/boxscore.py#L311-L348
|
fuzzy match ranking
|
python
|
def best_match(self, seqs, scan_rc=True):
"""
give the best match of each motif in each sequence
returns an iterator of nested lists containing tuples:
(score, position, strand)
"""
self.set_threshold(threshold=0.0)
for matches in self.scan(seqs, 1, scan_rc):
yield [m[0] for m in matches]
|
https://github.com/vanheeringen-lab/gimmemotifs/blob/1dc0572179e5d0c8f96958060133c1f8d92c6675/gimmemotifs/scanner.py#L550-L558
|
fuzzy match ranking
|
python
|
def match(self, key=None, year=None, event=None, type='qm', number=None, round=None, simple=False):
"""
Get data on a match.
You may either pass the match's key directly, or pass `year`, `event`, `type`, `match` (the match number), and `round` if applicable (playoffs only). The event year may be specified as part of the event key or specified in the `year` parameter.
:param key: Key of match to get data on. First option for specifying a match (see above).
:param year: Year in which match took place. Optional; if excluded then must be included in event key.
:param event: Key of event in which match took place. Including year is optional; if excluded then must be specified in `year` parameter.
:param type: One of 'qm' (qualifier match), 'qf' (quarterfinal), 'sf' (semifinal), 'f' (final). If unspecified, 'qm' will be assumed.
:param number: Match number. For example, for qualifier 32, you'd pass 32. For Semifinal 2 round 3, you'd pass 2.
:param round: For playoff matches, you will need to specify a round.
:param simple: Get only vital data.
:return: A single Match object.
"""
if key:
return Match(self._get('match/%s%s' % (key, '/simple' if simple else '')))
else:
return Match(self._get('match/{year}{event}_{type}{number}{round}{simple}'.format(year=year if not event[0].isdigit() else '',
event=event,
type=type,
number=number,
round=('m%s' % round) if not type == 'qm' else '',
simple='/simple' if simple else '')))
|
https://github.com/frc1418/tbapy/blob/3866d5a9971fe3dfaf1a1d83638bd6be6070f0c4/tbapy/main.py#L354-L377
|
fuzzy match ranking
|
python
|
def _score(cluster):
"""
score of the cluster, in this case, is the number of non-repetitive matches
"""
x, y = zip(*cluster)[:2]
return min(len(set(x)), len(set(y)))
|
https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/compara/synteny.py#L256-L261
|
fuzzy match ranking
|
python
|
def _match(self):
"""Find all matches and generate a position group for each match."""
#disable optimized matching
optimized_rows = None
optimized_columns = None
for match in self.__match_rows(optimized_rows):
#match in rows
yield match
for match in self.__match_rows(optimized_columns,
transpose=True):
#match in columns and transpose coordinates
yield match
|
https://github.com/kobejohn/PQHelper/blob/d2b78a22dcb631794295e6a159b06f39c3f10db6/pqhelper/base.py#L755-L766
|
fuzzy match ranking
|
python
|
def match(self, fname, flevel, ftype):
'''Returns the result score if the file matches this rule'''
# if filetype is the same
# and level isn't set or level is the same
# and pattern matche the filename
if self.filetype == ftype and (self.level is None or self.level == flevel) and fnmatch.fnmatch(fname, self.pattern):
return self.score
return 0
|
https://github.com/doconix/django-mako-plus/blob/a90f9b4af19e5fa9f83452989cdcaed21569a181/django_mako_plus/management/commands/dmp_collectstatic.py#L31-L38
|
fuzzy match ranking
|
python
|
def findAllMatches(self, needle, similarity):
""" Finds all matches above ``similarity`` using a search pyramid to improve efficiency
Pyramid implementation unashamedly stolen from https://github.com/stb-tester/stb-tester
"""
positions = []
# Use findBestMatch to get the best match
while True:
best_match = self.findBestMatch(needle, similarity)
if best_match is None: # No more matches
break
# Found a match. Add it to our list
positions.append(best_match) # (position, confidence)
# Erase the found match from the haystack.
# Repeat this process until no other matches are found
x, y = best_match[0]
w = needle.shape[1]
h = needle.shape[0]
roi = (x, y, w, h)
# numpy 2D slice
roi_slice = (slice(roi[1], roi[1]+roi[3]), slice(roi[0], roi[0]+roi[2]))
self.haystack[roi_slice] = 0
# Whew! Let's see if there's a match after all that.
positions.sort(key=lambda x: (x[0][1], x[0][0]))
return positions
|
https://github.com/glitchassassin/lackey/blob/7adadfacd7f45d81186710be992f5668b15399fe/lackey/TemplateMatchers.py#L218-L244
|
fuzzy match ranking
|
python
|
def sort_matches(matches):
'''Sorts a ``list`` of matches best to worst'''
multipliers = {'exact':10**5,'fname':10**4,'fuzzy':10**2,'fuzzy_fragment':1}
matches = [(multipliers[x.type]*(x.amount if x.amount else 1),x) for x in matches]
return [x[1] for x in sorted(matches,reverse=True)]
|
https://github.com/azraq27/gini/blob/3c2b5265d096d606b303bfe25ac9adb74b8cee14/gini/semantics.py#L29-L33
|
fuzzy match ranking
|
python
|
def match(self, selector, index):
"""Match the selector."""
pseudo = None
m = self.re_pseudo_name.match(selector, index)
if m:
name = util.lower(css_unescape(m.group('name')))
pattern = self.patterns.get(name)
if pattern:
pseudo = pattern.match(selector, index)
if pseudo:
self.matched_name = pattern
return pseudo
|
https://github.com/facelessuser/soupsieve/blob/24859cc3e756ebf46b75547d49c6b4a7bf35ee82/soupsieve/css_parser.py#L348-L361
|
fuzzy match ranking
|
python
|
def _match_cubes(ccube_clean, ccube_dirty,
bexpcube_clean, bexpcube_dirty,
hpx_order):
""" Match the HEALPIX scheme and order of all the input cubes
return a dictionary of cubes with the same HEALPIX scheme and order
"""
if hpx_order == ccube_clean.hpx.order:
ccube_clean_at_order = ccube_clean
else:
ccube_clean_at_order = ccube_clean.ud_grade(hpx_order, preserve_counts=True)
if hpx_order == ccube_dirty.hpx.order:
ccube_dirty_at_order = ccube_dirty
else:
ccube_dirty_at_order = ccube_dirty.ud_grade(hpx_order, preserve_counts=True)
if hpx_order == bexpcube_clean.hpx.order:
bexpcube_clean_at_order = bexpcube_clean
else:
bexpcube_clean_at_order = bexpcube_clean.ud_grade(hpx_order, preserve_counts=True)
if hpx_order == bexpcube_dirty.hpx.order:
bexpcube_dirty_at_order = bexpcube_dirty
else:
bexpcube_dirty_at_order = bexpcube_dirty.ud_grade(hpx_order, preserve_counts=True)
if ccube_dirty_at_order.hpx.nest != ccube_clean.hpx.nest:
ccube_dirty_at_order = ccube_dirty_at_order.swap_scheme()
if bexpcube_clean_at_order.hpx.nest != ccube_clean.hpx.nest:
bexpcube_clean_at_order = bexpcube_clean_at_order.swap_scheme()
if bexpcube_dirty_at_order.hpx.nest != ccube_clean.hpx.nest:
bexpcube_dirty_at_order = bexpcube_dirty_at_order.swap_scheme()
ret_dict = dict(ccube_clean=ccube_clean_at_order,
ccube_dirty=ccube_dirty_at_order,
bexpcube_clean=bexpcube_clean_at_order,
bexpcube_dirty=bexpcube_dirty_at_order)
return ret_dict
|
https://github.com/fermiPy/fermipy/blob/9df5e7e3728307fd58c5bba36fd86783c39fbad4/fermipy/diffuse/residual_cr.py#L62-L102
|
fuzzy match ranking
|
python
|
async def get_final_ranking(self) -> OrderedDict:
""" Get the ordered players ranking
Returns:
collections.OrderedDict[rank, List[Participant]]:
Raises:
APIException
"""
if self._state != TournamentState.complete.value:
return None
ranking = {}
for p in self.participants:
if p.final_rank in ranking:
ranking[p.final_rank].append(p)
else:
ranking[p.final_rank] = [p]
return OrderedDict(sorted(ranking.items(), key=lambda t: t[0]))
|
https://github.com/fp12/achallonge/blob/25780b3c48b66400a50ff9f884e4287afd4c89e4/challonge/tournament.py#L763-L783
|
fuzzy match ranking
|
python
|
def _compare_frame_rankings(ref, est, transitive=False):
'''Compute the number of ranking disagreements in two lists.
Parameters
----------
ref : np.ndarray, shape=(n,)
est : np.ndarray, shape=(n,)
Reference and estimate ranked lists.
`ref[i]` is the relevance score for point `i`.
transitive : bool
If true, all pairs of reference levels are compared.
If false, only adjacent pairs of reference levels are compared.
Returns
-------
inversions : int
The number of pairs of indices `i, j` where
`ref[i] < ref[j]` but `est[i] >= est[j]`.
normalizer : float
The total number of pairs (i, j) under consideration.
If transitive=True, then this is |{(i,j) : ref[i] < ref[j]}|
If transitive=False, then this is |{i,j) : ref[i] +1 = ref[j]}|
'''
idx = np.argsort(ref)
ref_sorted = ref[idx]
est_sorted = est[idx]
# Find the break-points in ref_sorted
levels, positions, counts = np.unique(ref_sorted,
return_index=True,
return_counts=True)
positions = list(positions)
positions.append(len(ref_sorted))
index = collections.defaultdict(lambda: slice(0))
ref_map = collections.defaultdict(lambda: 0)
for level, cnt, start, end in zip(levels, counts,
positions[:-1], positions[1:]):
index[level] = slice(start, end)
ref_map[level] = cnt
# Now that we have values sorted, apply the inversion-counter to
# pairs of reference values
if transitive:
level_pairs = itertools.combinations(levels, 2)
else:
level_pairs = [(i, i+1) for i in levels]
level_pairs, lcounter = itertools.tee(level_pairs)
normalizer = float(sum([ref_map[i] * ref_map[j] for (i, j) in lcounter]))
if normalizer == 0:
return 0, 0.0
inversions = 0
for level_1, level_2 in level_pairs:
inversions += _count_inversions(est_sorted[index[level_1]],
est_sorted[index[level_2]])
return inversions, float(normalizer)
|
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/hierarchy.py#L370-L436
|
fuzzy match ranking
|
python
|
def bestscore(self,seq, fwd=''):
"""
m.bestscore(seq, fwd='') -- Returns the score of the best matching subsequence in seq.
"""
matches, endpoints, scores = self._scan(seq,threshold=-100000,forw_only=fwd)
if scores: return max(scores)
else: return -1000
|
https://github.com/lucapinello/Haystack/blob/cc080d741f36cd77b07c0b59d08ea6a4cf0ef2f7/haystack/external.py#L800-L806
|
fuzzy match ranking
|
python
|
def rank(self, X, algorithm=None):
"""
Returns the feature ranking.
Parameters
----------
X : ndarray or DataFrame of shape n x m
A matrix of n instances with m features
algorithm : str or None
The ranking mechanism to use, or None for the default
Returns
-------
ranks : ndarray
An n-dimensional, symmetric array of rank scores, where n is the
number of features. E.g. for 1D ranking, it is (n,), for a
2D ranking it is (n,n) and so forth.
"""
algorithm = algorithm or self.ranking_
algorithm = algorithm.lower()
if algorithm not in self.ranking_methods:
raise YellowbrickValueError(
"'{}' is unrecognized ranking method".format(algorithm)
)
# Extract matrix from dataframe if necessary
if is_dataframe(X):
X = X.values
return self.ranking_methods[algorithm](X)
|
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/yellowbrick/features/rankd.py#L148-L179
|
fuzzy match ranking
|
python
|
def order_by(self, *orderings: str) -> "QuerySet":
"""
Accept args to filter by in format like this:
.. code-block:: python3
.order_by('name', '-tournament__name')
Supports ordering by related models too.
"""
queryset = self._clone()
new_ordering = []
for ordering in orderings:
order_type = Order.asc
if ordering[0] == "-":
field_name = ordering[1:]
order_type = Order.desc
else:
field_name = ordering
if not (
field_name.split("__")[0] in self.model._meta.fields
or field_name in self._annotations
):
raise FieldError(
"Unknown field {} for model {}".format(field_name, self.model.__name__)
)
new_ordering.append((field_name, order_type))
queryset._orderings = new_ordering
return queryset
|
https://github.com/tortoise/tortoise-orm/blob/7d16457731905e19d4d06ccd5b4ea16d4a9447b2/tortoise/queryset.py#L187-L216
|
fuzzy match ranking
|
python
|
async def get_next_match(self):
""" Return the first open match found, or if none, the first pending match found
|methcoro|
Raises:
APIException
"""
if self._final_rank is not None:
return None
matches = await self.get_matches(MatchState.open_)
if len(matches) == 0:
matches = await self.get_matches(MatchState.pending)
if len(matches) > 0:
return matches[0]
return None
|
https://github.com/fp12/achallonge/blob/25780b3c48b66400a50ff9f884e4287afd4c89e4/challonge/participant.py#L172-L192
|
fuzzy match ranking
|
python
|
def _match(self, struct1, struct2, fu, s1_supercell=True, use_rms=False,
break_on_match=False):
"""
Matches one struct onto the other
"""
ratio = fu if s1_supercell else 1/fu
if len(struct1) * ratio >= len(struct2):
return self._strict_match(
struct1, struct2, fu, s1_supercell=s1_supercell,
break_on_match=break_on_match, use_rms=use_rms)
else:
return self._strict_match(
struct2, struct1, fu, s1_supercell=(not s1_supercell),
break_on_match=break_on_match, use_rms=use_rms)
|
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/analysis/structure_matcher.py#L648-L661
|
fuzzy match ranking
|
python
|
def rank(self,
method='ordinal',
ascending=True,
mask=NotSpecified,
groupby=NotSpecified):
"""
Construct a new Factor representing the sorted rank of each column
within each row.
Parameters
----------
method : str, {'ordinal', 'min', 'max', 'dense', 'average'}
The method used to assign ranks to tied elements. See
`scipy.stats.rankdata` for a full description of the semantics for
each ranking method. Default is 'ordinal'.
ascending : bool, optional
Whether to return sorted rank in ascending or descending order.
Default is True.
mask : zipline.pipeline.Filter, optional
A Filter representing assets to consider when computing ranks.
If mask is supplied, ranks are computed ignoring any asset/date
pairs for which `mask` produces a value of False.
groupby : zipline.pipeline.Classifier, optional
A classifier defining partitions over which to perform ranking.
Returns
-------
ranks : zipline.pipeline.factors.Rank
A new factor that will compute the ranking of the data produced by
`self`.
Notes
-----
The default value for `method` is different from the default for
`scipy.stats.rankdata`. See that function's documentation for a full
description of the valid inputs to `method`.
Missing or non-existent data on a given day will cause an asset to be
given a rank of NaN for that day.
See Also
--------
:func:`scipy.stats.rankdata`
:class:`zipline.pipeline.factors.factor.Rank`
"""
if groupby is NotSpecified:
return Rank(self, method=method, ascending=ascending, mask=mask)
return GroupedRowTransform(
transform=rankdata if ascending else rankdata_1d_descending,
transform_args=(method,),
factor=self,
groupby=groupby,
dtype=float64_dtype,
missing_value=nan,
mask=mask,
window_safe=True,
)
|
https://github.com/quantopian/zipline/blob/77ad15e6dc4c1cbcdc133653bac8a63fc704f7fe/zipline/pipeline/factors/factor.py#L593-L651
|
fuzzy match ranking
|
python
|
def score(args):
"""
%prog score blastfile query.fasta A.ids
Add up the scores for each query seq. Go through the lines and for each
query sequence, add up the scores when subject is in each pile by A.ids.
"""
from jcvi.formats.base import SetFile
from jcvi.formats.fasta import Fasta
p = OptionParser(score.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
blastfile, fastafile, idsfile = args
ids = SetFile(idsfile)
blast = Blast(blastfile)
scores = defaultdict(int)
for b in blast:
query = b.query
subject = b.subject
if subject not in ids:
continue
scores[query] += b.score
logging.debug("A total of {0} ids loaded.".format(len(ids)))
f = Fasta(fastafile)
for s in f.iterkeys_ordered():
sc = scores.get(s, 0)
print("\t".join((s, str(sc))))
|
https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/formats/blast.py#L444-L477
|
fuzzy match ranking
|
python
|
async def rank(self):
"""
Try to find a choice in what the user did:
- If there is a quick reply, then use its payload as choice slug
- Otherwise, try to match each choice with its intent
"""
from bernard.platforms.facebook import layers as fbl
choices = self.request.get_trans_reg('choices')
if not choices:
return
if self.request.has_layer(fbl.QuickReply):
return self._rank_qr(choices)
elif self.request.has_layer(l.RawText):
return await self._rank_text(choices)
|
https://github.com/BernardFW/bernard/blob/9c55703e5ffe5717c9fa39793df59dbfa5b4c5ab/src/bernard/engine/triggers.py#L246-L263
|
fuzzy match ranking
|
python
|
def _best_match_syn(self, sx, sys, scope_map):
"""
The best match is determined by the highest magnitude weight
"""
SUBSTRING_WEIGHT = 0.2
WBEST = None
sbest = None
sxv = self._standardize_label(sx.val)
sxp = self._id_to_ontology(sx.class_id)
for sy in sys:
syv = self._standardize_label(sy.val)
syp = self._id_to_ontology(sy.class_id)
W = None
if sxv == syv:
confidence = sx.confidence * sy.confidence
if sx.is_abbreviation() or sy.is_abbreviation:
confidence *= self._get_config_val(sxp, 'abbreviation_confidence', 0.5)
confidence *= self._get_config_val(syp, 'abbreviation_confidence', 0.5)
W = scope_map[sx.scope()][sy.scope()] + logit(confidence/2)
elif sxv in syv:
W = np.array((-SUBSTRING_WEIGHT, SUBSTRING_WEIGHT, 0, 0))
elif syv in sxv:
W = np.array((SUBSTRING_WEIGHT, -SUBSTRING_WEIGHT, 0, 0))
if W is not None:
# The best match is determined by the highest magnitude weight
if WBEST is None or max(abs(W)) > max(abs(WBEST)):
WBEST = W
sbest = sy
return WBEST, sbest
|
https://github.com/biolink/ontobio/blob/4e512a7831cfe6bc1b32f2c3be2ba41bc5cf7345/ontobio/lexmap.py#L501-L529
|
fuzzy match ranking
|
python
|
def rank(self, n, mu, sigma, crit=.5, upper=10000, xtol=1):
"""%(super)s
Additional Parameters
----------------------
{0}
"""
return _make_rank(self, n, mu, sigma, crit=crit, upper=upper,
xtol=xtol)
|
https://github.com/jkitzes/macroeco/blob/ee5fac5560a2d64de3a64738b5bc6833e2d7ff2e/macroeco/models/_distributions.py#L1430-L1440
|
fuzzy match ranking
|
python
|
def _match(self, x, op, y):
"""Compare the given `x` and `y` based on `op`
:@param x, y, op
:@type x, y: mixed
:@type op: string
:@return bool
:@throws ValueError
"""
if (op not in self.condition_mapper):
raise ValueError('Invalid where condition given')
func = getattr(self, self.condition_mapper.get(op))
return func(x, y)
|
https://github.com/s1s1ty/py-jsonq/blob/9625597a2578bddcbed4e540174d5253b1fc3b75/pyjsonq/matcher.py#L162-L176
|
fuzzy match ranking
|
python
|
def do_matching(sorting1, sorting2, delta_tp, min_accuracy):
"""
This compute the matching between 2 sorters.
Parameters
----------
sorting1: SortingExtractor instance
sorting2: SortingExtractor instance
delta_tp: int
Output
----------
event_counts_1:
event_counts_2
matching_event_counts_12:
best_match_units_12:
matching_event_counts_21:
best_match_units_21:
unit_map12:
unit_map21:
"""
event_counts_1 = dict()
event_counts_2 = dict()
matching_event_counts_12 = dict()
best_match_units_12 = dict()
matching_event_counts_21 = dict()
best_match_units_21 = dict()
unit_map12 = dict()
unit_map21 = dict()
unit1_ids = sorting1.get_unit_ids()
unit2_ids = sorting2.get_unit_ids()
N1 = len(unit1_ids)
N2 = len(unit2_ids)
# Compute events counts
event_counts1 = np.zeros((N1)).astype(np.int64)
for i1, u1 in enumerate(unit1_ids):
times1 = sorting1.get_unit_spike_train(u1)
event_counts1[i1] = len(times1)
event_counts_1[u1] = len(times1)
event_counts2 = np.zeros((N2)).astype(np.int64)
for i2, u2 in enumerate(unit2_ids):
times2 = sorting2.get_unit_spike_train(u2)
event_counts2[i2] = len(times2)
event_counts_2[u2] = len(times2)
# Compute matching events
matching_event_counts = np.zeros((N1, N2)).astype(np.int64)
scores = np.zeros((N1, N2))
for i1, u1 in enumerate(unit1_ids):
times1 = sorting1.get_unit_spike_train(u1)
for i2, u2 in enumerate(unit2_ids):
times2 = sorting2.get_unit_spike_train(u2)
num_matches = count_matching_events(times1, times2, delta=delta_tp)
matching_event_counts[i1, i2] = num_matches
scores[i1, i2] = compute_agreement_score(num_matches, event_counts1[i1], event_counts2[i2])
# Find best matches for spiketrains 1
for i1, u1 in enumerate(unit1_ids):
scores0 = scores[i1, :]
matching_event_counts_12[u1] = dict()
if len(scores0)>0:
if np.max(scores0) > 0:
inds0 = np.where(scores0 > 0)[0]
for i2 in inds0:
matching_event_counts_12[u1][unit2_ids[i2]] = matching_event_counts[i1, i2]
i2_best = np.argmax(scores0)
best_match_units_12[u1] = unit2_ids[i2_best]
else:
best_match_units_12[u1] = -1
else:
best_match_units_12[u1] = -1
# Find best matches for spiketrains 2
for i2, u2 in enumerate(unit2_ids):
scores0 = scores[:, i2]
matching_event_counts_21[u2] = dict()
if len(scores0)>0:
if np.max(scores0) > 0:
inds0 = np.where(scores0 > 0)[0]
for i1 in inds0:
matching_event_counts_21[u2][unit1_ids[i1]] = matching_event_counts[i1, i2]
i1_best = np.argmax(scores0)
best_match_units_21[u2] = unit1_ids[i1_best]
else:
best_match_units_21[u2] = -1
else:
best_match_units_21[u2] = -1
# Assign best matches
[inds1, inds2] = linear_sum_assignment(-scores)
inds1 = list(inds1)
inds2 = list(inds2)
if len(unit2_ids)>0:
k2 = np.max(unit2_ids) + 1
else:
k2 = 1
for i1, u1 in enumerate(unit1_ids):
if i1 in inds1:
aa = inds1.index(i1)
i2 = inds2[aa]
u2 = unit2_ids[i2]
# criteria on agreement_score
num_matches = matching_event_counts_12[u1].get(u2, 0)
num1 = event_counts_1[u1]
num2 = event_counts_2[u2]
agree_score = compute_agreement_score(num_matches, num1, num2)
if agree_score > min_accuracy:
unit_map12[u1] = u2
else:
unit_map12[u1] = -1
else:
# unit_map12[u1] = k2
# k2 = k2+1
unit_map12[u1] = -1
if len(unit1_ids)>0:
k1 = np.max(unit1_ids) + 1
else:
k1 = 1
for i2, u2 in enumerate(unit2_ids):
if i2 in inds2:
aa = inds2.index(i2)
i1 = inds1[aa]
u1 = unit1_ids[i1]
# criteria on agreement_score
num_matches = matching_event_counts_12[u1].get(u2, 0)
num1 = event_counts_1[u1]
num2 = event_counts_2[u2]
agree_score = compute_agreement_score(num_matches, num1, num2)
if agree_score > min_accuracy:
unit_map21[u2] = u1
else:
unit_map21[u2] = -1
else:
# unit_map21[u2] = k1
# k1 = k1+1
unit_map21[u2] = -1
return (event_counts_1, event_counts_2,
matching_event_counts_12, best_match_units_12,
matching_event_counts_21, best_match_units_21,
unit_map12, unit_map21)
|
https://github.com/SpikeInterface/spiketoolkit/blob/f7c054383d1ebca640966b057c087fa187955d13/spiketoolkit/comparison/comparisontools.py#L35-L190
|
fuzzy match ranking
|
python
|
def rank(self):
"""
Returns an ``int`` of the team's rank at the time the game was played.
"""
rank = re.findall(r'\d+', self._rank)
if len(rank) == 0:
return None
return rank[0]
|
https://github.com/roclark/sportsreference/blob/ea0bae432be76450e137671d2998eb38f962dffd/sportsreference/ncaaf/schedule.py#L235-L242
|
fuzzy match ranking
|
python
|
def fuzzyfinder(text, collection):
"""https://github.com/amjith/fuzzyfinder"""
suggestions = []
if not isinstance(text, six.text_type):
text = six.u(text)
pat = '.*?'.join(map(re.escape, text))
regex = re.compile(pat, flags=re.IGNORECASE)
for item in collection:
r = regex.search(item)
if r:
suggestions.append((len(r.group()), r.start(), item))
return (z for _, _, z in sorted(suggestions))
|
https://github.com/eliangcs/http-prompt/blob/189321f25e3526fa1b79a9dc38c317892c478986/http_prompt/completer.py#L53-L65
|
fuzzy match ranking
|
python
|
def _rank_qr(self, choices):
"""
Look for the QuickReply layer's slug into available choices.
"""
from bernard.platforms.facebook import layers as fbl
try:
qr = self.request.get_layer(fbl.QuickReply)
self.chosen = choices[qr.slug]
self.slug = qr.slug
if self.when is None or self.when == qr.slug:
return 1.0
except KeyError:
pass
|
https://github.com/BernardFW/bernard/blob/9c55703e5ffe5717c9fa39793df59dbfa5b4c5ab/src/bernard/engine/triggers.py#L200-L214
|
fuzzy match ranking
|
python
|
def fuzzy_match_tipnames(ttree, names, wildcard, regex, mrca=True, mono=True):
"""
Used in multiple internal functions (e.g., .root()) and .drop_tips())
to select an internal mrca node, or multiple tipnames, using fuzzy matching
so that every name does not need to be written out by hand.
name: verbose list
wildcard: matching unique string
regex: regex expression
mrca: return mrca node of selected tipnames.
mono: raise error if selected tipnames are not monophyletic
"""
# require arguments
if not any([names, wildcard, regex]):
raise ToytreeError(
"must enter an outgroup, wildcard selector, or regex pattern")
# get list of **nodes** from {list, wildcard, or regex}
tips = []
if names:
if isinstance(names, (str, int)):
names = [names]
notfound = [i for i in names if i not in ttree.get_tip_labels()]
if any(notfound):
raise ToytreeError(
"Sample {} is not in the tree".format(notfound))
tips = [i for i in ttree.treenode.get_leaves() if i.name in names]
# use regex to match tipnames
elif regex:
tips = [
i for i in ttree.treenode.get_leaves() if re.match(regex, i.name)
]
if not any(tips):
raise ToytreeError("No Samples matched the regular expression")
# use wildcard substring matching
elif wildcard:
tips = [i for i in ttree.treenode.get_leaves() if wildcard in i.name]
if not any(tips):
raise ToytreeError("No Samples matched the wildcard")
# build list of **tipnames** from matched nodes
if not tips:
raise ToytreeError("no matching tipnames")
tipnames = [i.name for i in tips]
# if a single tipname matched no need to check for monophyly
if len(tips) == 1:
if mrca:
return tips[0]
else:
return tipnames
# if multiple nodes matched, check if they're monophyletic
mbool, mtype, mnames = (
ttree.treenode.check_monophyly(
tipnames, "name", ignore_missing=True)
)
# get mrca node
node = ttree.treenode.get_common_ancestor(tips)
# raise an error if required to be monophyletic but not
if mono:
if not mbool:
raise ToytreeError(
"Taxon list cannot be paraphyletic")
# return tips or nodes
if not mrca:
return tipnames
else:
return node
|
https://github.com/eaton-lab/toytree/blob/0347ed2098acc5f707fadf52a0ecd411a6d1859c/toytree/utils.py#L424-L497
|
fuzzy match ranking
|
python
|
def checkMatch(input, prediction, sparse=True, verbosity=0):
"""
Compares the actual input with the predicted input and returns results
Parameters:
-----------------------------------------------
input: The actual input
prediction: the predicted input
verbosity: If > 0, print debugging messages
sparse: If true, they are in sparse form (list of
active indices)
retval (foundInInput, totalActiveInInput, missingFromInput,
totalActiveInPrediction)
foundInInput: The number of predicted active elements that were
found in the actual input
totalActiveInInput: The total number of active elements in the input.
missingFromInput: The number of predicted active elements that were not
found in the actual input
totalActiveInPrediction: The total number of active elements in the prediction
"""
if sparse:
activeElementsInInput = set(input)
activeElementsInPrediction = set(prediction)
else:
activeElementsInInput = set(input.nonzero()[0])
activeElementsInPrediction = set(prediction.nonzero()[0])
totalActiveInPrediction = len(activeElementsInPrediction)
totalActiveInInput = len(activeElementsInInput)
foundInInput = len(activeElementsInPrediction.intersection(activeElementsInInput))
missingFromInput = len(activeElementsInPrediction.difference(activeElementsInInput))
missingFromPrediction = len(activeElementsInInput.difference(activeElementsInPrediction))
if verbosity >= 1:
print "preds. found in input:", foundInInput, "out of", totalActiveInPrediction,
print "; preds. missing from input:", missingFromInput, "out of", \
totalActiveInPrediction,
print "; unexpected active in input:", missingFromPrediction, "out of", \
totalActiveInInput
return (foundInInput, totalActiveInInput, missingFromInput,
totalActiveInPrediction)
|
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/fdrutilities.py#L1261-L1307
|
fuzzy match ranking
|
python
|
def match(self, category, pattern):
"""Match the category."""
return fnmatch.fnmatch(category, pattern, flags=self.FNMATCH_FLAGS)
|
https://github.com/facelessuser/pyspelling/blob/c25d5292cc2687ad65891a12ead43f7182ca8bb3/pyspelling/flow_control/wildcard.py#L33-L36
|
fuzzy match ranking
|
python
|
def findBestMatch(self, needle, similarity):
""" Find the best match for ``needle`` that has a similarity better than or equal to ``similarity``.
Returns a tuple of ``(position, confidence)`` if a match is found, or ``None`` otherwise.
*Developer's Note - Despite the name, this method actually returns the **first** result
with enough similarity, not the **best** result.*
"""
method = cv2.TM_CCOEFF_NORMED
position = None
match = cv2.matchTemplate(self.haystack, needle, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(match)
if method == cv2.TM_SQDIFF_NORMED or method == cv2.TM_SQDIFF:
confidence = min_val
if min_val <= 1-similarity:
# Confidence checks out
position = min_loc
else:
confidence = max_val
if max_val >= similarity:
# Confidence checks out
position = max_loc
if not position:
return None
return (position, confidence)
|
https://github.com/glitchassassin/lackey/blob/7adadfacd7f45d81186710be992f5668b15399fe/lackey/TemplateMatchers.py#L16-L43
|
fuzzy match ranking
|
python
|
def create_rank_dicts(self, alt_scores):
"""
Description:
Takes in the scores of the alternatives in the form alt:score and
generates the dictionaries mapping alternatives to rankings and
rankings to alternatives.
Parameters:
alt_scores: dictionary of the scores of every alternative
"""
self.alts_to_ranks = dict()
cur_score = max(alt_scores.values())
cur_rank = 0
self.ranks_to_alts = {cur_rank:[]}
for i in sorted(alt_scores.keys(), key=lambda x: -alt_scores[x]):
if alt_scores[i] == cur_score:
self.ranks_to_alts[cur_rank].append(i)
elif alt_scores[i] < cur_score:
cur_rank += 1
cur_score = alt_scores[i]
self.ranks_to_alts[cur_rank] = [i]
self.alts_to_ranks[i] = cur_rank
|
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/aggregate.py#L71-L91
|
fuzzy match ranking
|
python
|
def all_matches(self, target, choices, group=False, include_rank=False):
"""\
Get all choices listed from best match to worst match.
If `group` is `True`, then matches are grouped based on their distance
returned from `get_distance(target, choice)` and returned as an iterator.
Otherwise, an iterator of all matches is returned.
For example
::
from howabout import all_matches
choices = ['pot', 'cat', 'bat']
for group in all_matches('hat', choices, group=True):
print(list(group))
# ['bat', 'cat']
# ['pot']
:param target: a string
:param choices: a list or iterable of strings to compare with
`target` string
:param group: if `True`, group
"""
dist = self.get_distance
# Keep everything here as an iterator in case we're given a lot of
# choices
matched = ((dist(target, choice), choice) for choice in choices)
matched = sorted(matched)
if group:
for rank, choices in groupby(matched, key=lambda m: m[0]):
yield map(lambda m: m[1], choices)
else:
for rank, choice in matched:
yield choice
|
https://github.com/chrlie/howabout/blob/780cacbdd9156106cc77f643c75191a824b034bb/src/howabout/__init__.py#L68-L109
|
fuzzy match ranking
|
python
|
def search_people_by_bio(query, limit_results=DEFAULT_LIMIT,
index=['onename_people_index']):
""" queries lucene index to find a nearest match, output is profile username
"""
from pyes import QueryStringQuery, ES
conn = ES()
q = QueryStringQuery(query,
search_fields=['username', 'profile_bio'],
default_operator='and')
results = conn.search(query=q, size=20, indices=index)
count = conn.count(query=q)
count = count.count
# having 'or' gives more results but results quality goes down
if(count == 0):
q = QueryStringQuery(query,
search_fields=['username', 'profile_bio'],
default_operator='or')
results = conn.search(query=q, size=20, indices=index)
results_list = []
counter = 0
for profile in results:
username = profile['username']
results_list.append(username)
counter += 1
if(counter == limit_results):
break
return results_list
|
https://github.com/blockstack/blockstack-core/blob/1dcfdd39b152d29ce13e736a6a1a0981401a0505/api/search/substring_search.py#L172-L210
|
fuzzy match ranking
|
python
|
def _is_better_match(x, y, matched_a, matched_b, attributes_dict_a, attributes_dict_b):
"""
:param x: The first element of a possible match.
:param y: The second element of a possible match.
:param matched_a: The current matches for the first set.
:param matched_b: The current matches for the second set.
:param attributes_dict_a: The attributes for each element in the first set.
:param attributes_dict_b: The attributes for each element in the second set.
:returns: True/False
"""
attributes_x = attributes_dict_a[x]
attributes_y = attributes_dict_b[y]
if x in matched_a:
attributes_match = attributes_dict_b[matched_a[x]]
if _euclidean_dist(attributes_x, attributes_y) >= _euclidean_dist(attributes_x, attributes_match):
return False
if y in matched_b:
attributes_match = attributes_dict_a[matched_b[y]]
if _euclidean_dist(attributes_x, attributes_y) >= _euclidean_dist(attributes_y, attributes_match):
return False
return True
|
https://github.com/angr/angr/blob/4e2f97d56af5419ee73bdb30482c8dd8ff5f3e40/angr/analyses/bindiff.py#L131-L151
|
fuzzy match ranking
|
python
|
def wildcards_overlap(name1, name2):
"""Return true if two wildcard patterns can match the same string."""
if not name1 and not name2:
return True
if not name1 or not name2:
return False
for matched1, matched2 in _character_matches(name1, name2):
if wildcards_overlap(name1[matched1:], name2[matched2:]):
return True
return False
|
https://github.com/yougov/mongo-connector/blob/557cafd4b54c848cd54ef28a258391a154650cb4/mongo_connector/namespace_config.py#L344-L353
|
fuzzy match ranking
|
python
|
def closest_match(match, specs, depth=0):
"""
Recursively iterates over type, group, label and overlay key,
finding the closest matching spec.
"""
new_specs = []
match_lengths = []
for i, spec in specs:
if spec[0] == match[0]:
new_specs.append((i, spec[1:]))
else:
if all(isinstance(s[0], basestring) for s in [spec, match]):
match_length = max(i for i in range(len(match[0]))
if match[0].startswith(spec[0][:i]))
elif is_number(match[0]) and is_number(spec[0]):
match_length = -abs(match[0]-spec[0])
else:
match_length = 0
match_lengths.append((i, match_length, spec[0]))
if len(new_specs) == 1:
return new_specs[0][0]
elif new_specs:
depth = depth+1
return closest_match(match[1:], new_specs, depth)
else:
if depth == 0 or not match_lengths:
return None
else:
return sorted(match_lengths, key=lambda x: -x[1])[0][0]
|
https://github.com/pyviz/holoviews/blob/ae0dd2f3de448b0ca5e9065aabd6ef8d84c7e655/holoviews/core/util.py#L2034-L2063
|
fuzzy match ranking
|
python
|
def count(self, index=None, doc_type=None, body=None, **query_params):
"""
Execute a query and get the number of matches for that query.
`<http://www.elastic.co/guide/en/elasticsearch/reference/current/search-count.html>`_
:param index: A comma-separated list of indices to restrict the results
:param doc_type: A comma-separated list of types to restrict the results
:param body: A query to restrict the results specified with the Query DSL
(optional)
:arg allow_no_indices: Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes `_all`
string or when no indices have been specified)
:arg analyze_wildcard: Specify whether wildcard and prefix queries
should be analyzed (default: false)
:arg analyzer: The analyzer to use for the query string
:arg default_operator: The default operator for query string query (AND
or OR), default 'OR', valid choices are: 'AND', 'OR'
:arg df: The field to use as default where no field prefix is given in
the query string
:arg expand_wildcards: Whether to expand wildcard expression to concrete
indices that are open, closed or both., default 'open', valid
choices are: 'open', 'closed', 'none', 'all'
:arg ignore_unavailable: Whether specified concrete indices should be
ignored when unavailable (missing or closed)
:arg lenient: Specify whether format-based query failures (such as
providing text to a numeric field) should be ignored
:arg lowercase_expanded_terms: Specify whether query terms should be
lowercased
:arg min_score: Include only documents with a specific `_score` value in
the result
:arg preference: Specify the node or shard the operation should be
performed on (default: random)
:arg q: Query in the Lucene query string syntax
:arg routing: Specific routing value
"""
if doc_type and not index:
index = EsConst.ALL_VALUES
path = self._es_parser.make_path(index, doc_type, EsMethods.COUNT)
result = yield self._perform_request(HttpMethod.GET, path, body, params=query_params)
returnValue(result)
|
https://github.com/avihad/twistes/blob/9ab8f5aa088b8886aefe3dec85a400e5035e034a/twistes/client.py#L497-L536
|
fuzzy match ranking
|
python
|
def best_score(self, seqs, scan_rc=True, normalize=False):
"""
give the score of the best match of each motif in each sequence
returns an iterator of lists containing floats
"""
self.set_threshold(threshold=0.0)
if normalize and len(self.meanstd) == 0:
self.set_meanstd()
means = np.array([self.meanstd[m][0] for m in self.motif_ids])
stds = np.array([self.meanstd[m][1] for m in self.motif_ids])
for matches in self.scan(seqs, 1, scan_rc):
scores = np.array([sorted(m, key=lambda x: x[0])[0][0] for m in matches if len(m) > 0])
if normalize:
scores = (scores - means) / stds
yield scores
|
https://github.com/vanheeringen-lab/gimmemotifs/blob/1dc0572179e5d0c8f96958060133c1f8d92c6675/gimmemotifs/scanner.py#L533-L548
|
fuzzy match ranking
|
python
|
def matchlist_by_account(
self,
region,
encrypted_account_id,
queue=None,
begin_time=None,
end_time=None,
begin_index=None,
end_index=None,
season=None,
champion=None,
):
"""
Get matchlist for ranked games played on given account ID and platform ID
and filtered using given filter parameters, if any
A number of optional parameters are provided for filtering. It is up to the caller to
ensure that the combination of filter parameters provided is valid for the requested
account, otherwise, no matches may be returned.
Note that if either beginIndex or endIndex are specified, then both must be specified and
endIndex must be greater than beginIndex.
If endTime is specified, but not beginTime, then beginTime is effectively the start of the
account's match history.
If beginTime is specified, but not endTime, then endTime is effectively the current time.
Note that endTime should be greater than beginTime if both are specified, although there is
no maximum limit on their range.
:param string region: The region to execute this request on
:param string encrypted_account_id: The account ID.
:param Set[int] queue: Set of queue IDs for which to filtering matchlist.
:param long begin_time: The begin time to use for filtering matchlist specified as
epoch milliseconds.
:param long end_time: The end time to use for filtering matchlist specified as epoch
milliseconds.
:param int begin_index: The begin index to use for filtering matchlist.
:param int end_index: The end index to use for filtering matchlist.
:param Set[int] season: Set of season IDs for which to filtering matchlist.
:param Set[int] champion: Set of champion IDs for which to filtering matchlist.
:returns: MatchlistDto
"""
url, query = MatchApiV4Urls.matchlist_by_account(
region=region,
encrypted_account_id=encrypted_account_id,
queue=queue,
beginTime=begin_time,
endTime=end_time,
beginIndex=begin_index,
endIndex=end_index,
season=season,
champion=champion,
)
return self._raw_request(self.matchlist_by_account.__name__, region, url, query)
|
https://github.com/pseudonym117/Riot-Watcher/blob/21ab12453a0d824d67e30f5514d02a5c5a411dea/src/riotwatcher/_apis/MatchApiV4.py#L32-L88
|
fuzzy match ranking
|
python
|
def reportMatchCompletion(cfg, results, replayData):
"""send information back to the server about the match's winners/losers"""
payload = json.dumps([cfg.flatten(), results, replayData])
ladder = cfg.ladder
return requests.post(
url = c.URL_BASE%(ladder.ipAddress, ladder.serverPort, "matchfinished"),
data = payload,
#headers=headers,
)
|
https://github.com/ttinies/sc2gameLobby/blob/5352d51d53ddeb4858e92e682da89c4434123e52/sc2gameLobby/connectToServer.py#L57-L65
|
fuzzy match ranking
|
python
|
def _get_rank(self, team):
"""
Find the team's rank when applicable.
If a team is ranked, it will showup in a separate <span> tag with the
actual rank embedded between parentheses. When a team is ranked, the
integer value representing their ranking should be returned. For teams
that are not ranked, None should be returned.
Parameters
----------
team : PyQuery object
A PyQuery object of a team's HTML tag in the boxscore.
Returns
-------
int
Returns an integer representing the team's ranking when applicable,
or None if the team is not ranked.
"""
rank = None
rank_field = team('span[class="pollrank"]')
if len(rank_field) > 0:
rank = re.findall(r'\(\d+\)', str(rank_field))[0]
rank = int(rank.replace('(', '').replace(')', ''))
return rank
|
https://github.com/roclark/sportsreference/blob/ea0bae432be76450e137671d2998eb38f962dffd/sportsreference/ncaab/boxscore.py#L1717-L1742
|
fuzzy match ranking
|
python
|
def matches(self,string,fuzzy=90,fname_match=True,fuzzy_fragment=None,guess=False):
'''Returns whether this :class:`Concept` matches ``string``'''
matches = []
for item in self.examples:
m = best_match_from_list(string,self.examples[item],fuzzy,fname_match,fuzzy_fragment,guess)
if m:
match = ConceptMatch(self)
match.concept = self
match.string = string
match.item = item
match.examples = m[0]
match.type = m[2]
match.amount = m[3]
matches.append(match)
return sort_matches(matches)
|
https://github.com/azraq27/gini/blob/3c2b5265d096d606b303bfe25ac9adb74b8cee14/gini/semantics.py#L72-L87
|
fuzzy match ranking
|
python
|
def do_counting(sorting1, sorting2, delta_tp, unit_map12):
"""
This count all counting score possible lieke:
* TP: true positive
* CL: classification error
* FN: False negative
* FP: False positive
* TOT:
* TOT_ST1:
* TOT_ST2:
Parameters
----------
sorting1: SortingExtractor instance
The ground truth sorting.
sorting2: SortingExtractor instance
The tested sorting.
delta_tp: int
unit_map12: dict
Dict of matching from sorting1 to sorting2.
Output
----------
counts: dict
A dict containing all coutning
labels_st1: np.array of str
Contain label for units of sorting 1
labels_st2: np.array of str
Contain label for units of sorting 2
"""
unit1_ids = sorting1.get_unit_ids()
unit2_ids = sorting2.get_unit_ids()
labels_st1 = dict()
labels_st2 = dict()
N1 = len(unit1_ids)
N2 = len(unit2_ids)
# copy spike trains for faster access from extractors with memmapped data
#~ sts1 = []
#~ for u in sorting1.get_unit_ids():
#~ sts1.append(sorting1.get_unit_spike_train(u))
#~ sts2 = []
#~ for u in sorting2.get_unit_ids():
#~ sts2.append(sorting2.get_unit_spike_train(u))
sts1 = {u1: sorting1.get_unit_spike_train(u1) for u1 in unit1_ids}
sts2 = {u2: sorting2.get_unit_spike_train(u2) for u2 in unit2_ids}
# Evaluate
for u1 in unit1_ids:
lab_st1 = np.array(['UNPAIRED'] * len(sts1[u1]))
labels_st1[u1] = lab_st1
for u2 in unit2_ids:
lab_st2 = np.array(['UNPAIRED'] * len(sts2[u2]))
labels_st2[u2] = lab_st2
for u1 in unit1_ids:
u2 = unit_map12[u1]
if u2 !=-1:
lab_st1 = labels_st1[u1]
lab_st2 = labels_st2[u2]
mapped_st = sorting2.get_unit_spike_train(u2)
# from gtst: TP, TPO, TPSO, FN, FNO, FNSO
for sp_i, n_sp in enumerate(sts1[u1]):
matches = (np.abs(mapped_st.astype(int)-n_sp)<=delta_tp//2)
if np.sum(matches) > 0:
lab_st1[sp_i] = 'TP'
lab_st2[np.where(matches)[0][0]] = 'TP'
else:
lab_st1 = np.array(['FN'] * len(sts1[u1]))
labels_st1[u1] = lab_st1
# find CL-CLO-CLSO
for u1 in unit1_ids:
lab_st1 = labels_st1[u1]
st1 = sts1[u1]
for l_gt, lab in enumerate(lab_st1):
if lab == 'UNPAIRED':
for u2 in unit2_ids:
if u2 in unit_map12.values() and unit_map12[u1] != -1:
lab_st2 = labels_st2[u2]
n_sp = st1[l_gt]
mapped_st = sts2[u2]
matches = (np.abs(mapped_st.astype(int)-n_sp)<=delta_tp//2)
if np.sum(matches) > 0:
lab_st1[l_gt] = 'CL_' + str(u1) + '_' + str(u2)
lab_st2[np.where(matches)[0][0]] = 'CL_' + str(u2) + '_' + str(u1)
for u1 in unit1_ids:
lab_st1 = labels_st1[u1]
for l_gt, lab in enumerate(lab_st1):
if lab == 'UNPAIRED':
lab_st1[l_gt] = 'FN'
for u2 in unit2_ids:
lab_st2 = labels_st2[u2]
for l_gt, lab in enumerate(lab_st2):
if lab == 'UNPAIRED':
lab_st2[l_gt] = 'FP'
TOT_ST1 = sum([len(sts1[u1]) for u1 in unit1_ids])
TOT_ST2 = sum([len(sts2[u2]) for u2 in unit2_ids])
total_spikes = TOT_ST1 + TOT_ST2
TP = sum([len(np.where('TP' == labels_st1[unit])[0]) for unit in unit1_ids])
CL = sum([len([i for i, v in enumerate(labels_st1[u1]) if 'CL' in v]) for u1 in unit1_ids])
FN = sum([len(np.where('FN' == labels_st1[u1])[0]) for u1 in unit1_ids])
FP = sum([len(np.where('FP' == labels_st2[u2])[0]) for u2 in unit2_ids])
counts = {'TP': TP, 'CL': CL, 'FN': FN, 'FP': FP, 'TOT': total_spikes, 'TOT_ST1': TOT_ST1,
'TOT_ST2': TOT_ST2}
return counts, labels_st1, labels_st2
|
https://github.com/SpikeInterface/spiketoolkit/blob/f7c054383d1ebca640966b057c087fa187955d13/spiketoolkit/comparison/comparisontools.py#L197-L315
|
fuzzy match ranking
|
python
|
def fuzzy_match(self, other):
""" Given another token, see if either the major alias identifier
matches the other alias, or if magic matches the alias.
"""
magic, fuzzy = False, False
try:
magic = self.alias == other.magic
except AttributeError:
pass
if '.' in self.alias:
major = self.alias.split('.')[0]
fuzzy = major == other.alias
return magic or fuzzy
|
https://github.com/TorkamaniLab/metapipe/blob/15592e5b0c217afb00ac03503f8d0d7453d4baf4/metapipe/models/tokens.py#L98-L111
|
fuzzy match ranking
|
python
|
def _match(self, check):
"""Find all the matches for a check dict."""
matches = []
tests = {}
for k,v in check.iteritems():
if isinstance(v, dict):
tests[k] = CompositeFilter(v)
else:
tests[k] = lambda o: o==v
for rec in self._records.itervalues():
if self._match_one(rec, tests):
matches.append(copy(rec))
return matches
|
https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/IPython/parallel/controller/dictdb.py#L111-L124
|
fuzzy match ranking
|
python
|
def match(fullname1, fullname2, strictness='default', options=None):
"""
Takes two names and returns true if they describe the same person.
:param string fullname1: first human name
:param string fullname2: second human name
:param string strictness: strictness settings to use
:param dict options: custom strictness settings updates
:return bool: the names match
"""
if options is not None:
settings = deepcopy(SETTINGS[strictness])
deep_update_dict(settings, options)
else:
settings = SETTINGS[strictness]
name1 = Name(fullname1)
name2 = Name(fullname2)
return name1.deep_compare(name2, settings)
|
https://github.com/rliebz/whoswho/blob/0c411e418c240fcec6ea0a23d15bd003056c65d0/whoswho/who.py#L8-L28
|
fuzzy match ranking
|
python
|
def getRankMap(self):
"""
Returns a dictionary that associates the integer representation of each candidate with its
position in the ranking, starting from 1.
"""
# We sort the candidates based on the number of incoming edges they have in the graph. If
# two candidates have the same number, we assume that they are tied.
incEdgesMap = self.getIncEdgesMap()
sortedKeys = sorted(incEdgesMap.keys(), reverse = True)
rankMap = dict()
pos = 1
for key in sortedKeys:
cands = incEdgesMap[key]
for cand in cands:
rankMap[cand] = pos
pos += 1
return rankMap
|
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/preference.py#L76-L93
|
fuzzy match ranking
|
python
|
def get_order_matchresults(self, order_id, _async=False):
"""
查询某个订单的成交明细
:param order_id:
:return:
"""
params = {}
path = f'/v1/order/orders/{order_id}/matchresults'
return api_key_get(params, path, _async=_async)
|
https://github.com/hadrianl/huobi/blob/bbfa2036703ee84a76d5d8e9f89c25fc8a55f2c7/huobitrade/service.py#L298-L306
|
fuzzy match ranking
|
python
|
def create_ranking(ranking_tuples):
"""
Create and return a string suitable for the rankings
field when given tuples of choices and rankings.
Parameters: ranking_tuples should be an iterable
of tuples of form (choice, ranking)
"""
return ",".join([str(r) for c, r in sorted(
ranking_tuples,
key=lambda x: x[0].pk
)])
|
https://github.com/knagra/farnsworth/blob/1b6589f0d9fea154f0a1e2231ed906764ed26d26/elections/models.py#L336-L346
|
fuzzy match ranking
|
python
|
def rank(keys, axis=semantics.axis_default):
"""where each item is in the pecking order.
Parameters
----------
keys : indexable object
Returns
-------
ndarray, [keys.size], int
unique integers, ranking the sorting order
Notes
-----
we should have that index.sorted[index.rank] == keys
"""
index = as_index(keys, axis)
return index.rank
|
https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/funcs.py#L199-L216
|
fuzzy match ranking
|
python
|
def _find_fuzzy_line(
py_line_no, py_by_line_no, cheetah_by_line_no, prefer_first
):
"""Attempt to fuzzily find matching lines."""
stripped_line = _fuzz_py_line(py_by_line_no[py_line_no])
cheetah_lower_bound, cheetah_upper_bound = _find_bounds(
py_line_no, py_by_line_no, cheetah_by_line_no,
)
sliced = list(enumerate(cheetah_by_line_no))[
cheetah_lower_bound:cheetah_upper_bound
]
if not prefer_first:
sliced = reversed(sliced)
for line_no, line in sliced:
if stripped_line in _fuzz_cheetah_line(line):
return line_no
else:
# We've failed to find a matching line
return 0
|
https://github.com/asottile/cheetah_lint/blob/1ecd54933e63073a7e77d65c8a2514a21e145c34/cheetah_lint/flake.py#L184-L204
|
fuzzy match ranking
|
python
|
def squad_v1_exact_match(y_true: List[List[str]], y_predicted: List[str]) -> float:
""" Calculates Exact Match score between y_true and y_predicted
EM score uses the best matching y_true answer:
if y_pred equal at least to one answer in y_true then EM = 1, else EM = 0
Skips examples without an answer.
Args:
y_true: list of correct answers (correct answers are represented by list of strings)
y_predicted: list of predicted answers
Returns:
exact match score : float
"""
EM_total = 0
count = 0
for ground_truth, prediction in zip(y_true, y_predicted):
if len(ground_truth[0]) == 0:
# skip empty answers
continue
count += 1
EMs = [int(normalize_answer(gt) == normalize_answer(prediction)) for gt in ground_truth]
EM_total += max(EMs)
return 100 * EM_total / count if count > 0 else 0
|
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/squad_metrics.py#L44-L64
|
fuzzy match ranking
|
python
|
def _match_show(self, show):
"""Match a query for a specific show/list of shows"""
if self.show:
return match_list(self.show, show)
else:
return True
|
https://github.com/sharibarboza/py_zap/blob/ce90853efcad66d3e28b8f1ac910f275349d016c/py_zap/py_zap.py#L212-L217
|
fuzzy match ranking
|
python
|
def suggest_pairs(top_n=10, per_n=3, ignore_before=300):
""" Find the maximally interesting pairs of players to match up
First, sort the ratings by uncertainty.
Then, take the ten highest players with the highest uncertainty
For each of them, call them `p1`
Sort all the models by their distance from p1's rating and take the 20
nearest rated models. ('candidate_p2s')
Choose pairings, (p1, p2), randomly from this list.
`top_n` will pair the top n models by uncertainty.
`per_n` will give each of the top_n models this many opponents
`ignore_before` is the model number to `filter` off, i.e., the early models.
Returns a list of *model numbers*, not model ids.
"""
db = sqlite3.connect("ratings.db")
data = db.execute("select model_winner, model_loser from wins").fetchall()
bucket_ids = [id[0] for id in db.execute(
"select id from models where bucket = ?", (fsdb.models_dir(),)).fetchall()]
bucket_ids.sort()
data = [d for d in data if d[0] in bucket_ids and d[1] in bucket_ids]
ratings = [(model_num_for(k), v[0], v[1]) for k, v in compute_ratings(data).items()]
ratings.sort()
ratings = ratings[ignore_before:] # Filter off the first 100 models, which improve too fast.
ratings.sort(key=lambda r: r[2], reverse=True)
res = []
for p1 in ratings[:top_n]:
candidate_p2s = sorted(ratings, key=lambda p2_tup: abs(p1[1] - p2_tup[1]))[1:20]
choices = random.sample(candidate_p2s, per_n)
print("Pairing {}, sigma {:.2f} (Rating {:.2f})".format(p1[0], p1[2], p1[1]))
for p2 in choices:
res.append([p1[0], p2[0]])
print(" {}, ratings delta {:.2f}".format(p2[0], abs(p1[1] - p2[1])))
return res
|
https://github.com/mlperf/training/blob/1c6ae725a81d15437a2b2df05cac0673fde5c3a4/reinforcement/tensorflow/minigo/ratings/ratings.py#L233-L268
|
fuzzy match ranking
|
python
|
def fuzzy_like_this(cls, like_text, fields=None, ignore_tf=None, max_query_terms=None, min_similarity=None, prefix_length=None, boost=None, analyzer=None):
'''
http://www.elasticsearch.org/guide/reference/query-dsl/flt-query.html
Fuzzy like this query find documents that are "like" provided text by running it against one or more fields.
> query = ElasticQuery().fuzzy_like_this('text like this one', fields=['name.first', 'name.last'], max_query_terms=12)
> query
{'fuzze_like_this': {'boost': 1.0,
'fields': ['name.first', 'name.last'],
'ifgnore_tf': False,
'like_text': 'text like this one',
'max_query_terms': 12,
'min_similarity': 0.5,
'prefix_length': 0}}
'''
instance = cls(fuzzy_like_this={'like_text': like_text})
if fields is not None:
instance['fuzzy_like_this']['fields'] = fields
if ignore_tf is not None:
instance['fuzzy_like_this']['ignore_tf'] = ignore_tf
if max_query_terms is not None:
instance['fuzzy_like_this']['max_query_terms'] = max_query_terms
if min_similarity is not None:
instance['fuzzy_like_this']['min_similarity'] = min_similarity
if prefix_length is not None:
instance['fuzzy_like_this']['prefix_length'] = prefix_length
if boost is not None:
instance['fuzzy_like_this']['boost'] = boost
if analyzer is not None:
instance['fuzzy_like_this']['analyzer'] = analyzer
return instance
|
https://github.com/ooici/elasticpy/blob/ec221800a80c39e80d8c31667c5b138da39219f2/elasticpy/query.py#L171-L203
|
fuzzy match ranking
|
python
|
def match_name(self, in_string, fuzzy=False):
"""Match a color to a sRGB value.
The matching will be based purely on the input string and the color names in the
registry. If there's no direct hit, a fuzzy matching algorithm is applied. This method
will never fail to return a sRGB value, but depending on the score, it might or might
not be a sensible result – as a rule of thumb, any score less then 90 indicates that
there's a lot of guessing going on. It's the callers responsibility to judge if the return
value should be trusted.
In normalization terms, this method implements "normalize an arbitrary color name
to a sRGB value".
Args:
in_string (string): The input string containing something resembling
a color name.
fuzzy (bool, optional): Try fuzzy matching if no exact match was found.
Defaults to ``False``.
Returns:
A named tuple with the members `hex_code` and `score`.
Raises:
ValueError: If ``fuzzy`` is ``False`` and no match is found
Examples:
>>> tint_registry = TintRegistry()
>>> tint_registry.match_name("rather white", fuzzy=True)
MatchResult(hex_code=u'ffffff', score=95)
"""
in_string = _normalize(in_string)
if in_string in self._hex_by_color:
return MatchResult(self._hex_by_color[in_string], 100)
if not fuzzy:
raise ValueError("No match for %r found." % in_string)
# We want the standard scorer *plus* the set scorer, because colors are often
# (but not always) related by sub-strings
color_names = self._hex_by_color.keys()
set_match = dict(fuzzywuzzy.process.extract(
in_string,
color_names,
scorer=fuzzywuzzy.fuzz.token_set_ratio
))
standard_match = dict(fuzzywuzzy.process.extract(in_string, color_names))
# This would be much easier with a collections.Counter, but alas! it's a 2.7 feature.
key_union = set(set_match) | set(standard_match)
counter = ((n, set_match.get(n, 0) + standard_match.get(n, 0)) for n in key_union)
color_name, score = sorted(counter, key=operator.itemgetter(1))[-1]
return MatchResult(self._hex_by_color[color_name], score / 2)
|
https://github.com/solute/python-tint/blob/a09e44147b9fe81a67892901960f5b8350821c95/tint/registry.py#L156-L209
|
fuzzy match ranking
|
python
|
def matching_details(song_name, song_title, artist):
'''
Provides a score out of 10 that determines the
relevance of the search result
'''
match_name = difflib.SequenceMatcher(None, song_name, song_title).ratio()
match_title = difflib.SequenceMatcher(None, song_name, artist + song_title).ratio()
if max(match_name,match_title) >= 0.55:
return True, max(match_name,match_title)
else:
return False, (match_name + match_title) / 2
|
https://github.com/kalbhor/MusicNow/blob/12ff1ed2ea2bb7dbbfd925d7998b3ea1e20de291/musicnow/repair.py#L60-L73
|
fuzzy match ranking
|
python
|
def __match_interval_overlaps(query, intervals_to, candidates): # pragma: no cover
'''Find the best Jaccard match from query to candidates'''
best_score = -1
best_idx = -1
for idx in candidates:
score = __jaccard(query, intervals_to[idx])
if score > best_score:
best_score, best_idx = score, idx
return best_idx
|
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/util/matching.py#L49-L59
|
fuzzy match ranking
|
python
|
def squad_v2_exact_match(y_true: List[List[str]], y_predicted: List[str]) -> float:
""" Calculates Exact Match score between y_true and y_predicted
EM score uses the best matching y_true answer:
if y_pred equal at least to one answer in y_true then EM = 1, else EM = 0
The same as in SQuAD-v2.0
Args:
y_true: list of correct answers (correct answers are represented by list of strings)
y_predicted: list of predicted answers
Returns:
exact match score : float
"""
EM_total = sum(normalize_answer(prediction) in map(normalize_answer, ground_truth)
for ground_truth, prediction in zip(y_true, y_predicted))
return 100 * EM_total / len(y_true) if len(y_true) > 0 else 0
|
https://github.com/deepmipt/DeepPavlov/blob/f3e4a69a3764d25d2f5bad4f1f1aebc872b00f9c/deeppavlov/metrics/squad_metrics.py#L24-L40
|
fuzzy match ranking
|
python
|
def matches_query(self, key, query):
"""
增加查询条件,限制查询结果对象指定字段的值,与另外一个查询对象的返回结果相同。
:param key: 查询条件字段名
:param query: 查询对象
:type query: Query
:rtype: Query
"""
dumped = query.dump()
dumped['className'] = query._query_class._class_name
self._add_condition(key, '$inQuery', dumped)
return self
|
https://github.com/leancloud/python-sdk/blob/fea3240257ce65e6a32c7312a5cee1f94a51a587/leancloud/query.py#L446-L458
|
fuzzy match ranking
|
python
|
def get_order_matchresults(self, order_id):
"""
查询某个订单的成交明细
:param order_id:
:return:
"""
params = {}
path = f'/v1/order/orders/{order_id}/matchresults'
def _wrapper(_func):
@wraps(_func)
def handle():
_func(api_key_get(params, path))
return handle
return _wrapper
|
https://github.com/hadrianl/huobi/blob/bbfa2036703ee84a76d5d8e9f89c25fc8a55f2c7/huobitrade/service.py#L1022-L1038
|
fuzzy match ranking
|
python
|
def get_suggestions(self, prefix, fuzzy = False, num = 10, with_scores = False, with_payloads=False):
"""
Get a list of suggestions from the AutoCompleter, for a given prefix
### Parameters:
- **prefix**: the prefix we are searching. **Must be valid ascii or utf-8**
- **fuzzy**: If set to true, the prefix search is done in fuzzy mode.
**NOTE**: Running fuzzy searches on short (<3 letters) prefixes can be very slow, and even scan the entire index.
- **with_scores**: if set to true, we also return the (refactored) score of each suggestion.
This is normally not needed, and is NOT the original score inserted into the index
- **with_payloads**: Return suggestion payloads
- **num**: The maximum number of results we return. Note that we might return less. The algorithm trims irrelevant suggestions.
Returns a list of Suggestion objects. If with_scores was False, the score of all suggestions is 1.
"""
args = [AutoCompleter.SUGGET_COMMAND, self.key, prefix, 'MAX', num]
if fuzzy:
args.append(AutoCompleter.FUZZY)
if with_scores:
args.append(AutoCompleter.WITHSCORES)
if with_payloads:
args.append(AutoCompleter.WITHPAYLOADS)
ret = self.redis.execute_command(*args)
results = []
if not ret:
return results
parser = SuggestionParser(with_scores, with_payloads, ret)
return [s for s in parser]
|
https://github.com/RediSearch/redisearch-py/blob/f65d1dd078713cbe9b83584e86655a254d0531ab/redisearch/auto_complete.py#L115-L145
|
fuzzy match ranking
|
python
|
def get_qualification_type_by_name(self, name):
"""Return a Qualification Type by name. If the provided name matches
more than one Qualification, check to see if any of the results
match the provided name exactly. If there's an exact match, return
that Qualification. Otherwise, raise an exception.
"""
max_fuzzy_matches_to_check = 100
query = name.upper()
start = time.time()
args = {
"Query": query,
"MustBeRequestable": False,
"MustBeOwnedByCaller": True,
"MaxResults": max_fuzzy_matches_to_check,
}
results = self.mturk.list_qualification_types(**args)["QualificationTypes"]
# This loop is largely for tests, because there's some indexing that
# needs to happen on MTurk for search to work:
while not results and time.time() - start < self.max_wait_secs:
time.sleep(1)
results = self.mturk.list_qualification_types(**args)["QualificationTypes"]
if not results:
return None
qualifications = [self._translate_qtype(r) for r in results]
if len(qualifications) > 1:
for qualification in qualifications:
if qualification["name"].upper() == query:
return qualification
raise MTurkServiceException("{} was not a unique name".format(query))
return qualifications[0]
|
https://github.com/Dallinger/Dallinger/blob/76ca8217c709989c116d0ebd8fca37bd22f591af/dallinger/mturk.py#L207-L240
|
fuzzy match ranking
|
python
|
def film_search(self, title):
"""film search using fuzzy matching"""
films = []
#check for cache or update
if not hasattr(self, 'film_list'):
self.get_film_list()
#iterate over films and check for fuzzy string match
for film in self.film_list:
strength = WRatio(title, film['title'])
if strength > 80:
film.update({u'strength':strength})
films.append(film)
#sort films by the strength of the fuzzy string match
films_sorted = sorted(films, key=itemgetter('strength'), reverse = True)
return films_sorted
|
https://github.com/oracal/cineworld/blob/073b18ce4f3acf4c44b26a5af1cc0d3c71b8b5d5/cineworld/cineworld.py#L81-L95
|
fuzzy match ranking
|
python
|
def matches(self, string, context=None):
"""
Search for all matches with current configuration against input_string
:param string: string to search into
:type string: str
:param context: context to use
:type context: dict
:return: A custom list of matches
:rtype: Matches
"""
matches = Matches(input_string=string)
if context is None:
context = {}
self._matches_patterns(matches, context)
self._execute_rules(matches, context)
return matches
|
https://github.com/Toilal/rebulk/blob/7511a4671f2fd9493e3df1e5177b7656789069e8/rebulk/rebulk.py#L272-L290
|
fuzzy match ranking
|
python
|
def get_match(session, match_id):
"""Get match metadata."""
url = '{}{}/{}'.format(session.auth.base_url, MATCH_URL, match_id)
parsed = make_scrape_request(session, url)
game = parsed.find('h3').text
if game != GAME_AOC:
raise ValueError('not an aoc match')
date_played = parsed.find(text=MATCH_DATE_PLAYED).find_next('td').text
players = []
colors = {}
player_count = int(parsed.find('td', text='Players:').find_next('td').text)
for div in parsed.find_all('div', style=True):
if not div['style'].startswith('background-color:'):
continue
if len(players) == player_count:
break
username_elem = div.find_next('a', href=re.compile(PROFILE_PATH))
username = username_elem.text
color = div['style'].split(':')[1].split(';')[0].strip()
colors[username] = color
rec = None
for dl_elem in parsed.find_all('a', href=re.compile('^/files/view')):
rec_name = dl_elem.find('b', text=re.compile(username+'$'))
if rec_name:
rec = rec_name.parent
user = parsed.find('a', text=username)
if not user:
# bugged match page
continue
user_id = int(user['href'].split('/')[-1])
children = list(user.find_next('span').children)
rate_after = None
rate_before = None
if str(children[0]).strip() == MATCH_NEW_RATE:
rate_after = int(children[1].text)
rate_before = rate_after - int(children[3].text)
elif str(children[4]).strip() == MATCH_NEW_RATE:
rate_after = int(children[5].text)
rate_before = rate_after - int(children[3].text)
players.append({
'url': rec['href'] if rec else None,
'id': user_id,
'username': username,
'color_id': COLOR_MAPPING.get(colors[username]),
'rate_before': rate_before,
'rate_after': rate_after
})
return {
'timestamp': dateparser.parse(date_played),
'players': players
}
|
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L443-L495
|
fuzzy match ranking
|
python
|
def _match_exists(self, searchable):
"""Make sure the searchable description doesn't already exist
"""
position_searchable = self.get_position_searchable()
for pos,val in position_searchable.iteritems():
if val == searchable:
return pos
return False
|
https://github.com/binbrain/OpenSesame/blob/e32c306385012646400ecb49fc65c64b14ce3a93/OpenSesame/keyring.py#L79-L86
|
fuzzy match ranking
|
python
|
def get_best_match(instance1, attribute1, relation1,
instance2, attribute2, relation2,
prefix1, prefix2, doinstance=True, doattribute=True, dorelation=True):
"""
Get the highest triple match number between two sets of triples via hill-climbing.
Arguments:
instance1: instance triples of AMR 1 ("instance", node name, node value)
attribute1: attribute triples of AMR 1 (attribute name, node name, attribute value)
relation1: relation triples of AMR 1 (relation name, node 1 name, node 2 name)
instance2: instance triples of AMR 2 ("instance", node name, node value)
attribute2: attribute triples of AMR 2 (attribute name, node name, attribute value)
relation2: relation triples of AMR 2 (relation name, node 1 name, node 2 name)
prefix1: prefix label for AMR 1
prefix2: prefix label for AMR 2
Returns:
best_match: the node mapping that results in the highest triple matching number
best_match_num: the highest triple matching number
"""
# Compute candidate pool - all possible node match candidates.
# In the hill-climbing, we only consider candidate in this pool to save computing time.
# weight_dict is a dictionary that maps a pair of node
(candidate_mappings, weight_dict) = compute_pool(instance1, attribute1, relation1,
instance2, attribute2, relation2,
prefix1, prefix2, doinstance=doinstance, doattribute=doattribute,
dorelation=dorelation)
if veryVerbose:
print("Candidate mappings:", file=DEBUG_LOG)
print(candidate_mappings, file=DEBUG_LOG)
print("Weight dictionary", file=DEBUG_LOG)
print(weight_dict, file=DEBUG_LOG)
best_match_num = 0
# initialize best match mapping
# the ith entry is the node index in AMR 2 which maps to the ith node in AMR 1
best_mapping = [-1] * len(instance1)
for i in range(iteration_num):
if veryVerbose:
print("Iteration", i, file=DEBUG_LOG)
if i == 0:
# smart initialization used for the first round
cur_mapping = smart_init_mapping(candidate_mappings, instance1, instance2)
else:
# random initialization for the other round
cur_mapping = random_init_mapping(candidate_mappings)
# compute current triple match number
match_num = compute_match(cur_mapping, weight_dict)
if veryVerbose:
print("Node mapping at start", cur_mapping, file=DEBUG_LOG)
print("Triple match number at start:", match_num, file=DEBUG_LOG)
while True:
# get best gain
(gain, new_mapping) = get_best_gain(cur_mapping, candidate_mappings, weight_dict,
len(instance2), match_num)
if veryVerbose:
print("Gain after the hill-climbing", gain, file=DEBUG_LOG)
# hill-climbing until there will be no gain for new node mapping
if gain <= 0:
break
# otherwise update match_num and mapping
match_num += gain
cur_mapping = new_mapping[:]
if veryVerbose:
print("Update triple match number to:", match_num, file=DEBUG_LOG)
print("Current mapping:", cur_mapping, file=DEBUG_LOG)
if match_num > best_match_num:
best_mapping = cur_mapping[:]
best_match_num = match_num
return best_mapping, best_match_num
|
https://github.com/snowblink14/smatch/blob/ad7e6553a3d52e469b2eef69d7716c87a67eedac/smatch.py#L105-L173
|
fuzzy match ranking
|
python
|
def conflicting(self, match, predicate=None, index=None):
"""
Retrieves a list of ``Match`` objects that conflicts with given match.
:param match:
:type match:
:param predicate:
:type predicate:
:param index:
:type index:
:return:
:rtype:
"""
ret = _BaseMatches._base()
for i in range(*match.span):
for at_match in self.at_index(i):
if at_match not in ret:
ret.append(at_match)
ret.remove(match)
return filter_index(ret, predicate, index)
|
https://github.com/Toilal/rebulk/blob/7511a4671f2fd9493e3df1e5177b7656789069e8/rebulk/match.py#L435-L456
|
fuzzy match ranking
|
python
|
def find_match(self):
"""Load the config and find a matching rule.
returns the results of find_match_command, a dict of
the command and (in the future) other metadata.
"""
self.load()
for yamldoc in self.yamldocs:
self.logdebug('\nchecking rule """%s"""\n' % yamldoc)
if not yamldoc:
continue
if not self.check_client_ip(yamldoc):
# Rejected - Client IP does not match
continue
if not self.check_keyname(yamldoc):
# Rejected - keyname does not match
continue
rules = yamldoc.get('allow')
if not isinstance(rules, list):
rules = [rules]
for rule in rules:
rule_type = rule.get('rule_type', 'command')
if rule_type == 'command':
sub = self.find_match_command
elif rule_type == 'scp':
sub = self.find_match_scp
else:
self.log('fatal: no such rule_type "%s"\n' % rule_type)
self.raise_and_log_error(ConfigError,
'error parsing config.')
match = sub(rule)
if match:
return match
# No matches, time to give up.
raise CommandRejected('command "%s" denied.' %
self.original_command_string)
|
https://github.com/daethnir/authprogs/blob/0b1e13a609ebeabdb0f10d11fc5dc6e0b20c0343/authprogs/authprogs.py#L370-L413
|
fuzzy match ranking
|
python
|
def get_ranking(self, alt):
"""
Description:
Returns the ranking of a given alternative in the
computed aggregate ranking. An error is thrown if
the alternative does not exist. The ranking is the
index in the aggregate ranking, which is 0-indexed.
Parameters:
alt: the key that represents an alternative
"""
if self.alts_to_ranks is None:
raise ValueError("Aggregate ranking must be created first")
try:
rank = self.alts_to_ranks[alt]
return rank
except KeyError:
raise KeyError("No alternative \"{}\" found in ".format(str(alt)) +
"the aggregate ranking")
|
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/aggregate.py#L36-L53
|
fuzzy match ranking
|
python
|
def _get_match_and_classification(self, urls):
"""Get classification for all matching URLs.
:param urls: a sequence of URLs to test
:return: a tuple containing matching URL and classification
string pertaining to it
"""
for url_list, response in self._query(urls):
classification_set = response.text.splitlines()
for url, _class in zip(url_list, classification_set):
if _class != 'ok':
yield url, _class
|
https://github.com/piotr-rusin/spam-lists/blob/fd616e8761b28f3eaa503fee5e45f7748e8f88f2/spam_lists/clients.py#L256-L267
|
fuzzy match ranking
|
python
|
def matches(self, verbosity=Verbosity.TERSE):
"""Shows partial matches and activations.
Returns a tuple containing the combined sum of the matches
for each pattern, the combined sum of partial matches
and the number of activations.
The verbosity parameter controls how much to output:
* Verbosity.VERBOSE: detailed matches are printed to stdout
* Verbosity.SUCCINT: a brief description is printed to stdout
* Verbosity.TERSE: (default) nothing is printed to stdout
"""
data = clips.data.DataObject(self._env)
lib.EnvMatches(self._env, self._rule, verbosity, data.byref)
return tuple(data.value)
|
https://github.com/noxdafox/clipspy/blob/b22d71a6da821c1715d8fa00d7d75cabc09ed364/clips/agenda.py#L269-L287
|
fuzzy match ranking
|
python
|
def findBest(self, pattern):
""" Returns the *best* match in the region (instead of the first match) """
findFailedRetry = True
while findFailedRetry:
best_match = None
all_matches = self.findAll(pattern)
for match in all_matches:
if best_match is None or best_match.getScore() < match.getScore():
best_match = match
self._lastMatch = best_match
if best_match is not None:
break
path = pattern.path if isinstance(pattern, Pattern) else pattern
findFailedRetry = self._raiseFindFailed("Could not find pattern '{}'".format(path))
if findFailedRetry:
time.sleep(self._repeatWaitTime)
return best_match
|
https://github.com/glitchassassin/lackey/blob/7adadfacd7f45d81186710be992f5668b15399fe/lackey/RegionMatching.py#L1352-L1368
|
fuzzy match ranking
|
python
|
def matchfirst(self, event):
'''
Return first match for this event
:param event: an input event
'''
# 1. matches(self.index[ind], event)
# 2. matches(self.any, event)
# 3. self.matches
if self.depth < len(event.indices):
ind = event.indices[self.depth]
if ind in self.index:
m = self.index[ind].matchfirst(event)
if m is not None:
return m
if hasattr(self, 'any'):
m = self.any.matchfirst(event)
if m is not None:
return m
if self._use_dict:
for o, m in self.matchers_dict:
if m is None or m.judge(event):
return o
else:
for o, m in self.matchers_list:
if m is None or m.judge(event):
return o
|
https://github.com/hubo1016/vlcp/blob/239055229ec93a99cc7e15208075724ccf543bd1/vlcp/event/matchtree.py#L166-L192
|
fuzzy match ranking
|
python
|
async def get_match(self, m_id, force_update=False) -> Match:
""" get a single match by id
|methcoro|
Args:
m_id: match id
force_update (default=False): True to force an update to the Challonge API
Returns:
Match
Raises:
APIException
"""
found_m = self._find_match(m_id)
if force_update or found_m is None:
await self.get_matches()
found_m = self._find_match(m_id)
return found_m
|
https://github.com/fp12/achallonge/blob/25780b3c48b66400a50ff9f884e4287afd4c89e4/challonge/tournament.py#L654-L674
|
fuzzy match ranking
|
python
|
def form_query(query_type, query):
"""
Returns a multi match query
"""
fields = [
field + "^" + str(SEARCH_BOOSTS[field]) if field in SEARCH_BOOSTS else field
for field in SEARCH_FIELDS
]
return Q("multi_match", fields=fields, query=query, type=query_type)
|
https://github.com/pypa/warehouse/blob/396e77a0caf6efeccb5a5f86e2c8a27e575bf86d/warehouse/views.py#L455-L463
|
fuzzy match ranking
|
python
|
def get_search_score(query, choice, ignore_case=True, apply_regex=True,
template='{}'):
"""Returns a tuple with the enriched text (if a template is provided) and
a score for the match.
Parameters
----------
query : str
String with letters to search in choice (in order of appearance).
choice : str
Sentence/words in which to search for the 'query' letters.
ignore_case : bool, optional
Optional value perform a case insensitive search (True by default).
apply_regex : bool, optional
Optional value (True by default) to perform a regex search. Useful
when this function is called directly.
template : str, optional
Optional template string to surround letters found in choices. This is
useful when using a rich text editor ('{}' by default).
Examples: '<b>{}</b>', '<code>{}</code>', '<i>{}</i>'
Returns
-------
results : tuple
Tuples where the first item is the text (enriched if a template was
used) and the second item is a search score.
Notes
-----
The score is given according the following precedence (high to low):
- Letters in one word and no spaces with exact match.
Example: 'up' in 'up stroke'
- Letters in one word and no spaces with partial match.
Example: 'up' in 'upstream stroke'
- Letters in one word but with skip letters.
Example: 'cls' in 'close up'
- Letters in two or more words
Example: 'cls' in 'car lost'
"""
original_choice = choice
result = (original_choice, NOT_FOUND_SCORE)
# Handle empty string case
if not query:
return result
if ignore_case:
query = query.lower()
choice = choice.lower()
if apply_regex:
pattern = get_search_regex(query, ignore_case=ignore_case)
r = re.search(pattern, choice)
if r is None:
return result
else:
sep = u'-' # Matches will be replaced by this character
let = u'x' # Nonmatches (except spaed) will be replaced by this
score = 0
exact_words = [query == word for word in choice.split(u' ')]
partial_words = [query in word for word in choice.split(u' ')]
if any(exact_words) or any(partial_words):
pos_start = choice.find(query)
pos_end = pos_start + len(query)
score += pos_start
text = choice.replace(query, sep*len(query), 1)
enriched_text = original_choice[:pos_start] +\
template.format(original_choice[pos_start:pos_end]) +\
original_choice[pos_end:]
if any(exact_words):
# Check if the query words exists in a word with exact match
score += 1
elif any(partial_words):
# Check if the query words exists in a word with partial match
score += 100
else:
# Check letter by letter
text = [l for l in original_choice]
if ignore_case:
temp_text = [l.lower() for l in original_choice]
else:
temp_text = text[:]
# Give points to start of string
score += temp_text.index(query[0])
# Find the query letters and replace them by `sep`, also apply
# template as needed for enricching the letters in the text
enriched_text = text[:]
for char in query:
if char != u'' and char in temp_text:
index = temp_text.index(char)
enriched_text[index] = template.format(text[index])
text[index] = sep
temp_text = [u' ']*(index + 1) + temp_text[index+1:]
enriched_text = u''.join(enriched_text)
patterns_text = []
for i, char in enumerate(text):
if char != u' ' and char != sep:
new_char = let
else:
new_char = char
patterns_text.append(new_char)
patterns_text = u''.join(patterns_text)
for i in reversed(range(1, len(query) + 1)):
score += (len(query) - patterns_text.count(sep*i))*100000
temp = patterns_text.split(sep)
while u'' in temp:
temp.remove(u'')
if not patterns_text.startswith(sep):
temp = temp[1:]
if not patterns_text.endswith(sep):
temp = temp[:-1]
for pat in temp:
score += pat.count(u' ')*10000
score += pat.count(let)*100
return original_choice, enriched_text, score
|
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/utils/stringmatching.py#L50-L176
|
fuzzy match ranking
|
python
|
def query(self, query_text, n=10):
"""Return a list of n (score, docid) pairs for the best matches.
Also handle the special syntax for 'learn: command'."""
if query_text.startswith("learn:"):
doctext = os.popen(query_text[len("learn:"):], 'r').read()
self.index_document(doctext, query_text)
return []
qwords = [w for w in words(query_text) if w not in self.stopwords]
shortest = argmin(qwords, lambda w: len(self.index[w]))
docs = self.index[shortest]
results = [(sum([self.score(w, d) for w in qwords]), d) for d in docs]
results.sort(); results.reverse()
return results[:n]
|
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L126-L138
|
fuzzy match ranking
|
python
|
def ratio(fullname1, fullname2, strictness='default', options=None):
"""
Takes two names and returns true if they describe the same person.
Uses difflib's sequence matching on a per-field basis for names
:param string fullname1: first human name
:param string fullname2: second human name
:param string strictness: strictness settings to use
:param dict options: custom strictness settings updates
:return int: sequence ratio match (out of 100)
"""
if options is not None:
settings = deepcopy(SETTINGS[strictness])
deep_update_dict(settings, options)
else:
settings = SETTINGS[strictness]
name1 = Name(fullname1)
name2 = Name(fullname2)
return name1.ratio_deep_compare(name2, settings)
|
https://github.com/rliebz/whoswho/blob/0c411e418c240fcec6ea0a23d15bd003056c65d0/whoswho/who.py#L31-L52
|
fuzzy match ranking
|
python
|
def compute_similarity_score(self, unit1, unit2):
""" Returns the similarity score between two words.
The type of similarity scoring method used depends on the currently active
method and clustering type.
:param unit1: Unit object corresponding to the first word.
:type unit1: Unit
:param unit2: Unit object corresponding to the second word.
:type unit2: Unit
:return: Number indicating degree of similarity of the two input words.
The maximum value is 1, and a higher value indicates that the words
are more similar.
:rtype : Float
The similarity method used depends both on the type of test being performed
(SEMANTIC or PHONETIC) and the similarity method currently assigned to the
self.current_similarity_measure property of the VFClustEngine object. The
similarity measures used are the following:
- PHONETIC/"phone": the phonetic similarity score (PSS) is calculated
between the phonetic representations of the input units. It is equal
to 1 minus the Levenshtein distance between two strings, normalized
to the length of the longer string. The strings should be compact
phonetic representations of the two words.
(This method is a modification of a Levenshtein distance function
available at http://hetland.org/coding/python/levenshtein.py.)
- PHONETIC/"biphone": the binary common-biphone score (CBS) depends
on whether two words share their initial and/or final biphone
(i.e., set of two phonemes). A score of 1 indicates that two words
have the same intial and/or final biphone; a score of 0 indicates
that two words have neither the same initial nor final biphone.
This is also calculated using the phonetic representation of the
two words.
- SEMANTIC/"lsa": a semantic relatedness score (SRS) is calculated
as the COSINE of the respective term vectors for the first and
second word in an LSA space of the specified clustering_parameter.
Unlike the PHONETIC methods, this method uses the .text property
of the input Unit objects.
"""
if self.type == "PHONETIC":
word1 = unit1.phonetic_representation
word2 = unit2.phonetic_representation
if self.current_similarity_measure == "phone":
word1_length, word2_length = len(word1), len(word2)
if word1_length > word2_length:
# Make sure n <= m, to use O(min(n,m)) space
word1, word2 = word2, word1
word1_length, word2_length = word2_length, word1_length
current = range(word1_length + 1)
for i in range(1, word2_length + 1):
previous, current = current, [i] + [0] * word1_length
for j in range(1, word1_length + 1):
add, delete = previous[j] + 1, current[j - 1] + 1
change = previous[j - 1]
if word1[j - 1] != word2[i - 1]:
change += 1
current[j] = min(add, delete, change)
phonetic_similarity_score = 1 - current[word1_length] / word2_length
return phonetic_similarity_score
elif self.current_similarity_measure == "biphone":
if word1[:2] == word2[:2] or word1[-2:] == word2[-2:]:
common_biphone_score = 1
else:
common_biphone_score = 0
return common_biphone_score
elif self.type == "SEMANTIC":
word1 = unit1.text
word2 = unit2.text
if self.current_similarity_measure == "lsa":
w1_vec = self.term_vectors[word1]
w2_vec = self.term_vectors[word2]
# semantic_relatedness_score = (numpy.dot(w1_vec, w2_vec) /
# numpy.linalg.norm(w1_vec) /
# numpy.linalg.norm(w2_vec))
dot = sum([w1*w2 for w1,w2 in zip(w1_vec, w2_vec)])
norm1 = sqrt(sum([w*w for w in w1_vec]))
norm2 = sqrt(sum([w*w for w in w2_vec]))
semantic_relatedness_score = dot/(norm1 * norm2)
return semantic_relatedness_score
elif self.current_similarity_measure == "custom":
#look it up in dict
try:
similarity = self.custom_similarity_scores[(word1,word2)]
except KeyError:
try:
similarity = self.custom_similarity_scores[(word2,word1)]
except KeyError:
if word1 == word2:
return self.same_word_similarity
#if they're the same word, they pass. This should only happen when checking with
# non-adjacent words in the same cluster
else:
return 0 #if words aren't found, they are defined as dissimilar
return similarity
return None
|
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L943-L1042
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.