query
stringlengths
9
60
language
stringclasses
1 value
code
stringlengths
105
25.7k
url
stringlengths
91
217
deducting the median from each column
python
def median(data, freq_col=1): """Compute the median of the <freq_col>'th column of the values is <data>. >>> chart_data.median([(10,20), (20,4), (30,5)], 0) 20 >>> chart_data.median([(10,20), (20,4), (30,5)], 1) 5. """ nr_data = _nr_data(data, freq_col) median_idx = nr_data / 2 i = 0 for d in data: i += d[freq_col] if i >= median_idx: return d raise Exception("??? median ???")
https://github.com/ska-sa/purr/blob/4c848768d0485d0f88b30850d0d5372221b21b66/Purr/Plugins/local_pychart/chart_data.py#L319-L335
deducting the median from each column
python
def median(x): """ Return a numpy array of column median. It does not affect if the array is one dimension Parameters ---------- x : ndarray A numpy array instance Returns ------- ndarray A 1 x n numpy array instance of column median Examples -------- >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.array_equal(median(a), [2, 5, 8]) True >>> a = np.array([1, 2, 3]) >>> np.array_equal(median(a), [1, 2, 3]) True """ if x.ndim > 1 and len(x[0]) > 1: return np.median(x, axis=1) return x
https://github.com/lambdalisue/maidenhair/blob/d5095c1087d1f4d71cc57410492151d2803a9f0d/src/maidenhair/statistics/__init__.py#L66-L93
deducting the median from each column
python
def median(self, **kwargs): """Returns median of each column or row. Returns: A new QueryCompiler object containing the median of each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().median(**kwargs) # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) func = self._build_mapreduce_func(pandas.DataFrame.median, **kwargs) return self._full_axis_reduce(axis, func)
https://github.com/modin-project/modin/blob/5b77d242596560c646b8405340c9ce64acb183cb/modin/backends/pandas/query_compiler.py#L1251-L1263
deducting the median from each column
python
def median(ls): """ Takes a list and returns the median. """ ls = sorted(ls) return ls[int(floor(len(ls)/2.0))]
https://github.com/emilydolson/avida-spatial-tools/blob/7beb0166ccefad5fa722215b030ac2a53d62b59e/avidaspatial/utils.py#L333-L338
deducting the median from each column
python
def median(ma): """ do it row by row, to save memory....""" _median = 0*ma[0].filled(fill_value=0) for i in range(ma.shape[-1]): t=xmedian(ma[:,:,i]) _median[:,i]=t t=None return _median
https://github.com/OSSOS/MOP/blob/94f91d32ad5ec081d5a1ebd67604a838003465af/src/jjk/preproc/median.py#L3-L10
deducting the median from each column
python
def median(self, values, axis=0, average=True): """compute the median value over each group. Parameters ---------- values : array_like, [keys, ...] values to compute the median of per group axis : int, optional alternative reduction axis for values average : bool, optional when average is true, the average of the two central values is taken for groups with an even key-count Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ mid_2 = self.index.start + self.index.stop hi = (mid_2 ) // 2 lo = (mid_2 - 1) // 2 #need this indirection for lex-index compatibility sorted_group_rank_per_key = self.index.sorted_group_rank_per_key def median1d(slc): #place values at correct keys; preconditions the upcoming lexsort slc = slc[self.index.sorter] #refine value sorting within each keygroup sorter = np.lexsort((slc, sorted_group_rank_per_key)) slc = slc[sorter] return (slc[lo]+slc[hi]) / 2 if average else slc[hi] values = np.asarray(values) if values.ndim>1: #is trying to skip apply_along_axis somewhat premature optimization? values = np.apply_along_axis(median1d, axis, values) else: values = median1d(values) return self.unique, values
https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L343-L382
deducting the median from each column
python
def median(lst): """ Calcuates the median value in a @lst """ #: http://stackoverflow.com/a/24101534 sortedLst = sorted(lst) lstLen = len(lst) index = (lstLen - 1) // 2 if (lstLen % 2): return sortedLst[index] else: return (sortedLst[index] + sortedLst[index + 1])/2.0
https://github.com/jaredLunde/vital-tools/blob/ea924c9bbb6ec22aa66f8095f018b1ee0099ac04/vital/debug/stats.py#L47-L56
deducting the median from each column
python
def median(data): """Calculate the median of a list.""" data.sort() num_values = len(data) half = num_values // 2 if num_values % 2: return data[half] return 0.5 * (data[half-1] + data[half])
https://github.com/tinybike/weightedstats/blob/0e2638099dba7f288a1553a83e957a95522229da/weightedstats/__init__.py#L60-L67
deducting the median from each column
python
def median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n % 2 == 1: return data[n // 2] else: i = n // 2 return (data[i - 1] + data[i]) / 2
https://github.com/avalente/appmetrics/blob/366fc7e1ca897e49a2227cbfa43bfa02a47f1acc/appmetrics/statistics.py#L194-L210
deducting the median from each column
python
def median(self, **kwargs): """ Compute median of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median', **kwargs) except GroupByError: raise except Exception: # pragma: no cover def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis, **kwargs) with _group_selection_context(self): return self._python_agg_general(f)
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/groupby/groupby.py#L1159-L1176
deducting the median from each column
python
def median(array): """ Return the median value of a list of numbers. """ n = len(array) if n < 1: return 0 elif n == 1: return array[0] sorted_vals = sorted(array) midpoint = int(n / 2) if n % 2 == 1: return sorted_vals[midpoint] else: return (sorted_vals[midpoint - 1] + sorted_vals[midpoint]) / 2.0
https://github.com/ChrisCummins/labm8/blob/dd10d67a757aefb180cb508f86696f99440c94f5/labmath.py#L125-L141
deducting the median from each column
python
def median(self, name, **kwargs): """ Median of the distribution. """ data = self.get(name,**kwargs) return np.percentile(data,[50])
https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/stats.py#L294-L299
deducting the median from each column
python
def median_approx(self, expression, percentage=50., binby=[], limits=None, shape=default_shape, percentile_shape=256, percentile_limits="minmax", selection=False, delay=False): """Calculate the median , possibly on a grid defined by binby. NOTE: this value is approximated by calculating the cumulative distribution on a grid defined by percentile_shape and percentile_limits :param expression: {expression} :param binby: {binby} :param limits: {limits} :param shape: {shape} :param percentile_limits: {percentile_limits} :param percentile_shape: {percentile_shape} :param selection: {selection} :param delay: {delay} :return: {return_stat_scalar} """ return self.percentile_approx(expression, 50, binby=binby, limits=limits, shape=shape, percentile_shape=percentile_shape, percentile_limits=percentile_limits, selection=selection, delay=delay)
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L1168-L1185
deducting the median from each column
python
def median(values): """Return median value for the list of values. @param values: list of values for processing. @return: median value. """ values.sort() n = int(len(values) / 2) return values[n]
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilecore/iotile/core/utilities/intelhex/bench.py#L45-L52
deducting the median from each column
python
def median(data): """ Calculates the median of a list of integers or floating point numbers. Args: data: A list of integers or floating point numbers Returns: Sorts the list numerically and returns the middle number if the list has an odd number of items. If the list contains an even number of items the mean of the two middle numbers is returned. """ ordered = sorted(data) length = len(ordered) if length % 2 == 0: return ( ordered[math.floor(length / 2) - 1] + ordered[math.floor(length / 2)] ) / 2.0 elif length % 2 != 0: return ordered[math.floor(length / 2)]
https://github.com/bbusenius/Diablo-Python/blob/646ac5a6f1c79cf9b928a4e2a7979988698b6c82/simple_math/simple_math.py#L261-L281
deducting the median from each column
python
def median(self): """Compute median of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. """ self._prep_pandas_groupby() return DataFrame.fromDataFrameRDD( self._regroup_mergedRDD().values().map( lambda x: x.median()), self.sql_ctx)
https://github.com/sparklingpandas/sparklingpandas/blob/7d549df4348c979042b683c355aa778fc6d3a768/sparklingpandas/groupby.py#L146-L154
deducting the median from each column
python
def median(name, num, minimum=0, maximum=0, ref=None): ''' Calculates the mean of the ``num`` most recent values. Requires a list. USAGE: .. code-block:: yaml foo: calc.median: - name: myregentry - num: 5 ''' return calc( name=name, num=num, oper='median', minimum=minimum, maximum=maximum, ref=ref )
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/thorium/calc.py#L180-L200
deducting the median from each column
python
def median(arr): """median of the values, must have more than 0 entries. :param arr: list of numbers :type arr: number[] a number array :return: median :rtype: float """ if len(arr) == 0: sys.stderr.write("ERROR: no content in array to take average\n") sys.exit() if len(arr) == 1: return arr[0] quot = len(arr)/2 rem = len(arr)%2 if rem != 0: return sorted(arr)[quot] return float(sum(sorted(arr)[quot-1:quot+1]))/float(2)
https://github.com/jason-weirather/py-seq-tools/blob/f642c2c73ffef2acc83656a78059a476fc734ca1/seqtools/statistics/__init__.py#L24-L41
deducting the median from each column
python
def median(data): """ Return the median of numeric data, unsing the "mean of middle two" method. If ``data`` is empty, ``0`` is returned. Examples -------- >>> median([1, 3, 5]) 3.0 When the number of data points is even, the median is interpolated: >>> median([1, 3, 5, 7]) 4.0 """ if len(data) == 0: return None data = sorted(data) return float((data[len(data) // 2] + data[(len(data) - 1) // 2]) / 2.)
https://github.com/yvesalexandre/bandicoot/blob/73a658f6f17331541cf0b1547028db9b70e8d58a/bandicoot/helper/maths.py#L88-L108
deducting the median from each column
python
def median(values): """Return the middle value, when the values are sorted. If there are an odd number of elements, try to average the middle two. If they can't be averaged (e.g. they are strings), choose one at random. >>> median([10, 100, 11]) 11 >>> median([1, 2, 3, 4]) 2.5 """ n = len(values) values = sorted(values) if n % 2 == 1: return values[n/2] else: middle2 = values[(n/2)-1:(n/2)+1] try: return mean(middle2) except TypeError: return random.choice(middle2)
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/utils.py#L459-L477
deducting the median from each column
python
def median(self): """Computes the median of a log-normal distribution built with the stats data.""" mu = self.mean() ret_val = math.exp(mu) if math.isnan(ret_val): ret_val = float("inf") return ret_val
https://github.com/soravux/scoop/blob/d391dfa62f47e49d48328ee9cf08aa114256fd33/scoop/_control.py#L82-L88
deducting the median from each column
python
def median(items): """Note: modifies the input list!""" items.sort() k = len(items)//2 if len(items) % 2 == 0: return (items[k] + items[k - 1]) / 2 else: return items[k]
https://github.com/airspeed-velocity/asv/blob/d23bb8b74e8adacbfa3cf5724bda55fb39d56ba6/asv/step_detect.py#L885-L892
deducting the median from each column
python
def median_high(data): """Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") return data[n // 2]
https://github.com/avalente/appmetrics/blob/366fc7e1ca897e49a2227cbfa43bfa02a47f1acc/appmetrics/statistics.py#L229-L240
deducting the median from each column
python
def median_fill(adf): """ Looks at each row, and chooses the median. Honours the Trump override/failsafe logic. """ ordpt = adf.values[0] if not pd.isnull(ordpt): return ordpt fdmn = adf.iloc[1:-1].median() if not pd.isnull(fdmn): return fdmn flspt = adf.values[-1] if not pd.isnull(flspt): return flspt return nan
https://github.com/Equitable/trump/blob/a2802692bc642fa32096374159eea7ceca2947b4/trump/aggregation/symbol_aggs.py#L93-L108
deducting the median from each column
python
def median(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs): """Computes median across the DataFrame. Args: axis (int): The axis to take the median on. skipna (bool): True to skip NA values, false otherwise. Returns: The median of the DataFrame. (Pandas series) """ axis = self._get_axis_number(axis) if axis is not None else 0 if numeric_only is not None and not numeric_only: self._validate_dtypes(numeric_only=True) return self._reduce_dimension( self._query_compiler.median( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, **kwargs ) )
https://github.com/modin-project/modin/blob/5b77d242596560c646b8405340c9ce64acb183cb/modin/pandas/base.py#L1546-L1567
deducting the median from each column
python
def median_grouped(name, num, minimum=0, maximum=0, ref=None): ''' Calculates the grouped mean of the ``num`` most recent values. Requires a list. USAGE: .. code-block:: yaml foo: calc.median_grouped: - name: myregentry - num: 5 ''' return calc( name=name, num=num, oper='median_grouped', minimum=minimum, maximum=maximum, ref=ref )
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/thorium/calc.py#L249-L270
deducting the median from each column
python
def median(nums): """Return median. With numbers sorted by value, the median is the middle value (if there is an odd number of values) or the arithmetic mean of the two middle values (if there is an even number of values). Cf. https://en.wikipedia.org/wiki/Median Parameters ---------- nums : list A series of numbers Returns ------- int or float The median of nums Examples -------- >>> median([1, 2, 3]) 2 >>> median([1, 2, 3, 4]) 2.5 >>> median([1, 2, 2, 4]) 2 """ nums = sorted(nums) mag = len(nums) if mag % 2: mag = int((mag - 1) / 2) return nums[mag] mag = int(mag / 2) med = (nums[mag - 1] + nums[mag]) / 2 return med if not med.is_integer() else int(med)
https://github.com/chrislit/abydos/blob/165466b3ff6afd8024a4c8660421b0c4e7773db9/abydos/stats/_mean.py#L644-L680
deducting the median from each column
python
def mean(self): """return the median value""" # XXX rename this method if len(self.values) > 0: return sorted(self.values)[len(self.values) / 2] else: return None
https://github.com/TrafficSenseMSD/SumoTools/blob/8607b4f885f1d1798e43240be643efe6dccccdaa/sumolib/miscutils.py#L160-L166
deducting the median from each column
python
def median1d(self, param, return_errors=False): """ Return median 1d marginalized parameters Parameters ---------- name: str The name of the parameter requested return_errors: Optional, {bool, False} If true, return a second and third parameter that represents the lower and upper 90% error on the parameter. Returns ------- param: nump.ndarray or tuple The requested parameter """ v = [self.mergers[m].median1d(param, return_errors=return_errors) for m in self.mergers] if return_errors: value, merror, perror = zip(*v) return numpy.array(value), numpy.array(merror), numpy.array(perror) else: return numpy.array(v)
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/catalog/__init__.py#L137-L158
deducting the median from each column
python
def median_interp(interp_object): """ Find the median of the function represented as an interpolation object. """ new_grid = np.sort(np.concatenate([interp_object.x[:-1] + 0.1*ii*np.diff(interp_object.x) for ii in range(10)]).flatten()) tmp_prop = np.exp(-(interp_object(new_grid)-interp_object.y.min())) tmp_cumsum = np.cumsum(0.5*(tmp_prop[1:]+tmp_prop[:-1])*np.diff(new_grid)) median_index = min(len(tmp_cumsum)-3, max(2,np.searchsorted(tmp_cumsum, tmp_cumsum[-1]*0.5)+1)) return new_grid[median_index]
https://github.com/neherlab/treetime/blob/f6cdb58d19243a18ffdaa2b2ec71872fa00e65c0/treetime/utils.py#L129-L139
deducting the median from each column
python
def median(series): """ Returns the median value of a series. Args: series (pandas.Series): column to summarize. """ if np.issubdtype(series.dtype, np.number): return series.median() else: return np.nan
https://github.com/kieferk/dfply/blob/6a858f066602735a90f8b6b85106bc39ceadc282/dfply/summary_functions.py#L153-L164
deducting the median from each column
python
def median(self, *args, **kwargs): ''' geo.median(axis=None, out=None, overwrite_input=False) axis : int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. ''' return np.ma.median(self.raster, *args, **kwargs)
https://github.com/ozak/georasters/blob/0612bd91bb2a2cb2f1d59ba89c1ff131dae27d70/georasters/georasters.py#L593-L613
deducting the median from each column
python
def median_low(data): """Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n % 2 == 1: return data[n // 2] else: return data[n // 2 - 1]
https://github.com/avalente/appmetrics/blob/366fc7e1ca897e49a2227cbfa43bfa02a47f1acc/appmetrics/statistics.py#L213-L226
deducting the median from each column
python
def median(numbers): """ Return the median of the list of numbers. see: http://mail.python.org/pipermail/python-list/2004-December/294990.html """ # Sort the list and take the middle element. n = len(numbers) copy = sorted(numbers) if n & 1: # There is an odd number of elements return copy[n // 2] else: return (copy[n // 2 - 1] + copy[n // 2]) / 2.0
https://github.com/exhuma/python-cluster/blob/4c0ac14d9beafcd51f0d849151514083c296402f/cluster/util.py#L66-L78
deducting the median from each column
python
def weighted_median(d, w): """A utility function to find a median of d based on w Parameters ---------- d : array (n, 1), variable for which median will be found w : array (n, 1), variable on which d's median will be decided Notes ----- d and w are arranged in the same order Returns ------- float median of d Examples -------- Creating an array including five integers. We will get the median of these integers. >>> d = np.array([5,4,3,1,2]) Creating another array including weight values for the above integers. The median of d will be decided with a consideration to these weight values. >>> w = np.array([10, 22, 9, 2, 5]) Applying weighted_median function >>> weighted_median(d, w) 4 """ dtype = [('w', '%s' % w.dtype), ('v', '%s' % d.dtype)] d_w = np.array(list(zip(w, d)), dtype=dtype) d_w.sort(order='v') reordered_w = d_w['w'].cumsum() cumsum_threshold = reordered_w[-1] * 1.0 / 2 median_inx = (reordered_w >= cumsum_threshold).nonzero()[0][0] if reordered_w[median_inx] == cumsum_threshold and len(d) - 1 > median_inx: return np.sort(d)[median_inx:median_inx + 2].mean() return np.sort(d)[median_inx]
https://github.com/pysal/esda/blob/2fafc6ec505e153152a86601d3e0fba080610c20/esda/smoothing.py#L66-L113
deducting the median from each column
python
def get_median(temp_list): """Return median """ num = len(temp_list) temp_list.sort() print(temp_list) if num % 2 == 0: median = (temp_list[int(num/2)] + temp_list[int(num/2) - 1]) / 2 else: median = temp_list[int(num/2)] return median
https://github.com/Microsoft/nni/blob/c7cc8db32da8d2ec77a382a55089f4e17247ce41/src/sdk/pynni/nni/metis_tuner/metis_tuner.py#L501-L511
deducting the median from each column
python
def median_high(name, num, minimum=0, maximum=0, ref=None): ''' Calculates the high mean of the ``num`` most recent values. Requires a list. USAGE: .. code-block:: yaml foo: calc.median_high: - name: myregentry - num: 5 ''' return calc( name=name, num=num, oper='median_high', minimum=minimum, maximum=maximum, ref=ref )
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/thorium/calc.py#L226-L246
deducting the median from each column
python
def calculate_median(given_list): """ Returns the median of values in the given list. """ median = None if not given_list: return median given_list = sorted(given_list) list_length = len(given_list) if list_length % 2: median = given_list[int(list_length / 2)] else: median = (given_list[int(list_length / 2)] + given_list[int(list_length / 2) - 1]) / 2.0 return median
https://github.com/RIPE-NCC/ripe.atlas.sagan/blob/f0e57221cf0ba3504baddd3ea460fc955bc41cc6/ripe/atlas/sagan/base.py#L264-L281
deducting the median from each column
python
def get_median(values, kdd): """ Given an unsorted list of numeric values, return median value (as a float). Note that in the case of even-length lists of values, we apply the value to the left of the center to be the median (such that the median can only be a value from the list of values). Eg: get_median([1,2,3,4]) == 2, not 2.5. """ if not values: raise Exception("Cannot calculate median of list with no values!") sorted_values = deepcopy(values) sorted_values.sort() # Not calling `sorted` b/c `sorted_values` may not be list. if kdd: return sorted_values[len(values)//2] else: if len(values) % 2 == 0: return sorted_values[len(values)//2-1] else: return sorted_values[len(values)//2]
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/BlackBoxAuditing/repairers/calculators.py#L3-L24
deducting the median from each column
python
def median1d(self, name, return_errors=False): """ Return median 1d marginalized parameters Parameters ---------- name: str The name of the parameter requested return_errors: Optional, {bool, False} If true, return a second and third parameter that represents the lower and upper 90% error on the parameter. Returns ------- param: float or tuple The requested parameter """ if return_errors: mid = self.data[name]['best'] low, high = self.data[name]['err'] return (mid, low, high) else: return self.data[name]['best']
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/catalog/__init__.py#L50-L71
deducting the median from each column
python
def subtract_column_median(df, prefix='Intensity '): """ Apply column-wise normalisation to expression columns. Default is median transform to expression columns beginning with Intensity :param df: :param prefix: The column prefix for expression columns :return: """ df = df.copy() df.replace([np.inf, -np.inf], np.nan, inplace=True) mask = [l.startswith(prefix) for l in df.columns.values] df.iloc[:, mask] = df.iloc[:, mask] - df.iloc[:, mask].median(axis=0) return df
https://github.com/mfitzp/padua/blob/8b14bf4d2f895da6aea5d7885d409315bd303ec6/padua/normalization.py#L4-L22
deducting the median from each column
python
def median(self, func=lambda x: x): """ Return the median value of data elements :param func: lambda expression to project and sort data :return: median value """ if self.count() == 0: raise NoElementsError(u"Iterable contains no elements") result = self.order_by(func).select(func).to_list() length = len(result) i = int(length / 2) return result[i] if length % 2 == 1 else (float(result[i - 1]) + float(result[i])) / float(2)
https://github.com/viralogic/py-enumerable/blob/63363649bccef223379e1e87056747240c83aa9d/py_linq/py_linq.py#L104-L115
deducting the median from each column
python
def median_low(name, num, minimum=0, maximum=0, ref=None): ''' Calculates the low mean of the ``num`` most recent values. Requires a list. USAGE: .. code-block:: yaml foo: calc.median_low: - name: myregentry - num: 5 ''' return calc( name=name, num=num, oper='median_low', minimum=minimum, maximum=maximum, ref=ref )
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/thorium/calc.py#L203-L223
deducting the median from each column
python
def median_filter(X, M=8): """Median filter along the first axis of the feature matrix X.""" for i in range(X.shape[1]): X[:, i] = filters.median_filter(X[:, i], size=M) return X
https://github.com/urinieto/msaf/blob/9dbb57d77a1310465a65cc40f1641d083ca74385/msaf/algorithms/foote/segmenter.py#L15-L19
deducting the median from each column
python
def median_scaler(s): """ Remove median, divide by IQR. """ if sum(~np.isnan(s)) > 2: ss = s[~np.isnan(s)] median = np.median(ss) IQR = np.diff(np.percentile(ss, [25, 75])) return (s - median) / IQR else: return np.full(s.shape, np.nan)
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/filtering/signal_optimiser.py#L75-L85
deducting the median from each column
python
def median_frequency(sig,FS): """Compute median frequency along the specified axes. Parameters ---------- sig: ndarray input from which median frequency is computed. FS: int sampling frequency Returns ------- f_max: int 0.50 of max_frequency using cumsum. """ f, fs = plotfft(sig, FS, doplot=False) t = cumsum(fs) ind_mag = find (t>t[-1]*0.50)[0] f_median=f[ind_mag] return f_median
https://github.com/biosignalsnotebooks/biosignalsnotebooks/blob/aaa01d4125180b3a34f1e26e0d3ff08c23f666d3/biosignalsnotebooks/build/lib/biosignalsnotebooks/external_packages/novainstrumentation/freq_analysis.py#L75-L95
deducting the median from each column
python
def getMedian(numericValues): """ Gets the median of a list of values Returns a float/int """ theValues = sorted(numericValues) if len(theValues) % 2 == 1: return theValues[(len(theValues) + 1) / 2 - 1] else: lower = theValues[len(theValues) / 2 - 1] upper = theValues[len(theValues) / 2] return (float(lower + upper)) / 2
https://github.com/edx/ease/blob/a7890ed403da94d03726b0639cd8ebda45af6bbb/ease/util_functions.py#L485-L498
deducting the median from each column
python
def median2D(const, bin1, label1, bin2, label2, data_label, returnData=False): """Return a 2D average of data_label over a season and label1, label2. Parameters ---------- const: Constellation or Instrument bin#: [min, max, number of bins] label#: string identifies data product for bin# data_label: list-like contains strings identifying data product(s) to be averaged Returns ------- median : dictionary 2D median accessed by data_label as a function of label1 and label2 over the season delineated by bounds of passed instrument objects. Also includes 'count' and 'avg_abs_dev' as well as the values of the bin edges in 'bin_x' and 'bin_y'. """ # const is either an Instrument or a Constellation, and we want to # iterate over it. # If it's a Constellation, then we can do that as is, but if it's # an Instrument, we just have to put that Instrument into something # that will yeild that Instrument, like a list. if isinstance(const, pysat.Instrument): const = [const] elif not isinstance(const, pysat.Constellation): raise ValueError("Parameter must be an Instrument or a Constellation.") # create bins #// seems to create the boundaries used for sorting into bins binx = np.linspace(bin1[0], bin1[1], bin1[2]+1) biny = np.linspace(bin2[0], bin2[1], bin2[2]+1) #// how many bins are used numx = len(binx)-1 numy = len(biny)-1 #// how many different data products numz = len(data_label) # create array to store all values before taking median #// the indices of the bins/data products? used for looping. yarr = np.arange(numy) xarr = np.arange(numx) zarr = np.arange(numz) #// 3d array: stores the data that is sorted into each bin? - in a deque ans = [ [ [collections.deque() for i in xarr] for j in yarr] for k in zarr] for inst in const: # do loop to iterate over instrument season #// probably iterates by date but that all depends on the #// configuration of that particular instrument. #// either way, it iterates over the instrument, loading successive #// data between start and end bounds for inst in inst: # collect data in bins for averaging if len(inst.data) != 0: #// sort the data into bins (x) based on label 1 #// (stores bin indexes in xind) xind = np.digitize(inst.data[label1], binx)-1 #// for each possible x index for xi in xarr: #// get the indicies of those pieces of data in that bin xindex, = np.where(xind==xi) if len(xindex) > 0: #// look up the data along y (label2) at that set of indicies (a given x) yData = inst.data.iloc[xindex] #// digitize that, to sort data into bins along y (label2) (get bin indexes) yind = np.digitize(yData[label2], biny)-1 #// for each possible y index for yj in yarr: #// select data with this y index (and we already filtered for this x index) yindex, = np.where(yind==yj) if len(yindex) > 0: #// for each data product label zk for zk in zarr: #// take the data (already filtered by x); filter it by y and #// select the data product, put it in a list, and extend the deque ans[zk][yj][xi].extend( yData.ix[yindex,data_label[zk]].tolist() ) return _calc_2d_median(ans, data_label, binx, biny, xarr, yarr, zarr, numx, numy, numz, returnData)
https://github.com/rstoneback/pysat/blob/4ae1afd80e15e4449397d39dce8c3e969c32c422/pysat/ssnl/avg.py#L14-L98
deducting the median from each column
python
def median_date(dt_list): """Calcuate median datetime from datetime list """ #dt_list_sort = sorted(dt_list) idx = len(dt_list)/2 if len(dt_list) % 2 == 0: md = mean_date([dt_list[idx-1], dt_list[idx]]) else: md = dt_list[idx] return md
https://github.com/dshean/pygeotools/blob/5ac745717c0098d01eb293ff1fe32fd7358c76ab/pygeotools/lib/timelib.py#L373-L382
deducting the median from each column
python
def _weighted_median(values, weights, quantile): """ Calculate a weighted median for values above a particular quantile cut Used in pseudo continuum normalization Parameters ---------- values: np ndarray of floats the values to take the median of weights: np ndarray of floats the weights associated with the values quantile: float the cut applied to the input data Returns ------ the weighted median """ sindx = np.argsort(values) cvalues = 1. * np.cumsum(weights[sindx]) if cvalues[-1] == 0: # means all the values are 0 return values[0] cvalues = cvalues / cvalues[-1] # div by largest value foo = sindx[cvalues > quantile] if len(foo) == 0: return values[0] indx = foo[0] return values[indx]
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L61-L88
deducting the median from each column
python
def median(arrays, masks=None, dtype=None, out=None, zeros=None, scales=None, weights=None): """Combine arrays using the median, with masks. Arrays and masks are a list of array objects. All input arrays have the same shape. If present, the masks have the same shape also. The function returns an array with one more dimension than the inputs and with size (3, shape). out[0] contains the mean, out[1] the variance and out[2] the number of points used. :param arrays: a list of arrays :param masks: a list of mask arrays, True values are masked :param dtype: data type of the output :param out: optional output, with one more axis than the input arrays :return: median, variance of the median and number of points stored """ return generic_combine(intl_combine.median_method(), arrays, masks=masks, dtype=dtype, out=out, zeros=zeros, scales=scales, weights=weights)
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/combine.py#L62-L85
deducting the median from each column
python
def min(self): """ :returns the minimum of the column """ res = self._qexec("min(%s)" % self._name) if len(res) > 0: self._min = res[0][0] return self._min
https://github.com/grundprinzip/pyxplorer/blob/34c1d166cfef4a94aeb6d5fcb3cbb726d48146e2/pyxplorer/types.py#L64-L71
deducting the median from each column
python
def median_grouped(data, interval=1): """"Return the 50th percentile (median) of grouped continuous data. >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) 3.7 >>> median_grouped([52, 52, 53, 54]) 52.5 This calculates the median as the 50th percentile, and should be used when your data is continuous and grouped. In the above example, the values 1, 2, 3, etc. actually represent the midpoint of classes 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in class 3.5-4.5, and interpolation is used to estimate it. Optional argument ``interval`` represents the class interval, and defaults to 1. Changing the class interval naturally will change the interpolated 50th percentile value: >>> median_grouped([1, 3, 3, 5, 7], interval=1) 3.25 >>> median_grouped([1, 3, 3, 5, 7], interval=2) 3.5 This function does not check whether the data points are at least ``interval`` apart. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") elif n == 1: return data[0] # Find the value at the midpoint. Remember this corresponds to the # centre of the class interval. x = data[n//2] for obj in (x, interval): if isinstance(obj, (str, bytes)): raise TypeError('expected number but got %r' % obj) try: L = x - interval/2 # The lower limit of the median interval. except TypeError: # Mixed type. For now we just coerce to float. L = float(x) - float(interval)/2 cf = data.index(x) # Number of values below the median interval. # FIXME The following line could be more efficient for big lists. f = data.count(x) # Number of data points in the median interval. return L + interval*(n/2 - cf)/f
https://github.com/datalib/StatsCounter/blob/5386c967808bbe451025af1d550f060cd7f86669/statscounter/_stats.py#L154-L200
deducting the median from each column
python
def fn_median(self, a, axis=None): """ Compute the median of an array, ignoring NaNs. :param a: The array. :return: The median value of the array. """ return numpy.nanmedian(self._to_ndarray(a), axis=axis)
https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L380-L388
deducting the median from each column
python
def median_mean(timeseries, segmentlength, noverlap=None, window=None, plan=None): """Calculate a PSD of this `TimeSeries` using a median-mean average method The median-mean average method divides overlapping segments into "even" and "odd" segments, and computes the bin-by-bin median of the "even" segments and the "odd" segments, and then takes the bin-by-bin average of these two median averages. Parameters ---------- timeseries : `~gwpy.timeseries.TimeSeries` input `TimeSeries` data. segmentlength : `int` number of samples in single average. noverlap : `int` number of samples to overlap between segments, defaults to 50%. window : `tuple`, `str`, optional window parameters to apply to timeseries prior to FFT plan : `REAL8FFTPlan`, optional LAL FFT plan to use when generating average spectrum Returns ------- spectrum : `~gwpy.frequencyseries.FrequencySeries` average power `FrequencySeries` See also -------- lal.REAL8AverageSpectrumMedianMean """ return _lal_spectrum(timeseries, segmentlength, noverlap=noverlap, method='median-mean', window=window, plan=plan)
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/signal/spectral/_lal.py#L343-L379
deducting the median from each column
python
def median(values, simple=True, mean_weight=0.0): """ RETURN MEDIAN VALUE IF simple=False THEN IN THE EVENT MULTIPLE INSTANCES OF THE MEDIAN VALUE, THE MEDIAN IS INTERPOLATED BASED ON ITS POSITION IN THE MEDIAN RANGE mean_weight IS TO PICK A MEDIAN VALUE IN THE ODD CASE THAT IS CLOSER TO THE MEAN (PICK A MEDIAN BETWEEN TWO MODES IN BIMODAL CASE) """ if OR(v == None for v in values): Log.error("median is not ready to handle None") try: if not values: return Null l = len(values) _sorted = sorted(values) middle = int(l / 2) _median = float(_sorted[middle]) if len(_sorted) == 1: return _median if simple: if l % 2 == 0: return (_sorted[middle - 1] + _median) / 2 return _median # FIND RANGE OF THE median start_index = middle - 1 while start_index > 0 and _sorted[start_index] == _median: start_index -= 1 start_index += 1 stop_index = middle + 1 while stop_index < l and _sorted[stop_index] == _median: stop_index += 1 num_middle = stop_index - start_index if l % 2 == 0: if num_middle == 1: return (_sorted[middle - 1] + _median) / 2 else: return (_median - 0.5) + (middle - start_index) / num_middle else: if num_middle == 1: return (1 - mean_weight) * _median + mean_weight * (_sorted[middle - 1] + _sorted[middle + 1]) / 2 else: return (_median - 0.5) + (middle + 0.5 - start_index) / num_middle except Exception as e: Log.error("problem with median of {{values}}", values= values, cause=e)
https://github.com/klahnakoski/pyLibrary/blob/fa2dcbc48fda8d26999baef400e9a98149e0b982/mo_math/stats.py#L295-L350
deducting the median from each column
python
def runningMedian(seq, M): """ Purpose: Find the median for the points in a sliding window (odd number in size) as it is moved from left to right by one point at a time. Inputs: seq -- list containing items for which a running median (in a sliding window) is to be calculated M -- number of items in window (window size) -- must be an integer > 1 Otputs: medians -- list of medians with size N - M + 1 Note: 1. The median of a finite list of numbers is the "center" value when this list is sorted in ascending order. 2. If M is an even number the two elements in the window that are close to the center are averaged to give the median (this is not by definition) """ seq = iter(seq) s = [] m = M // 2 #// does a truncated division like integer division in Python 2 # Set up list s (to be sorted) and load deque with first window of seq s = [item for item in islice(seq,M)] d = deque(s) # Simple lambda function to handle even/odd window sizes median = lambda : s[m] if bool(M&1) else (s[m-1]+s[m])*0.5 # Sort it in increasing order and extract the median ("center" of the sorted window) s.sort() medians = [median()] # Now slide the window by one point to the right for each new position (each pass through # the loop). Stop when the item in the right end of the deque contains the last item in seq for item in seq: old = d.popleft() # pop oldest from left d.append(item) # push newest in from right del s[bisect_left(s, old)] # locate insertion point and then remove old insort(s, item) # insert newest such that new sort is not required medians.append(median()) return medians
https://github.com/hollenstein/maspy/blob/f15fcfd24df306d8420540460d902aa3073ec133/maspy/mit_stats.py#L48-L88
deducting the median from each column
python
def median(self, default=None): """ Calculate the median value over the time series. :param default: Value to return as a default should the calculation not be possible. :return: Float representing the median value or `None`. """ return numpy.asscalar(numpy.median(self.values)) if self.values else default
https://github.com/linkedin/luminol/blob/42e4ab969b774ff98f902d064cb041556017f635/src/luminol/modules/time_series.py#L321-L328
deducting the median from each column
python
def median(timeseries, segmentlength, **kwargs): """Calculate a PSD using Welch's method with a median average """ if scipy_version <= '1.1.9999': raise ValueError( "median average PSD estimation requires scipy >= 1.2.0", ) kwargs.setdefault('average', 'median') return welch(timeseries, segmentlength, **kwargs)
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/signal/spectral/_scipy.py#L74-L82
deducting the median from each column
python
def get_median(data_np): """Like :func:`get_mean` but for median.""" i = np.isfinite(data_np) if not np.any(i): return np.nan return np.median(data_np[i])
https://github.com/ejeschke/ginga/blob/a78c893ec6f37a837de851947e9bb4625c597915/ginga/util/iqcalc.py#L46-L51
deducting the median from each column
python
def median_fltr(dem, fsize=7, origmask=False): """Scipy.ndimage median filter Does not properly handle NaN """ print("Applying median filter with size %s" % fsize) from scipy.ndimage.filters import median_filter dem_filt_med = median_filter(dem.filled(np.nan), fsize) #Now mask all nans out = np.ma.fix_invalid(dem_filt_med, copy=False, fill_value=dem.fill_value) if origmask: out = np.ma.array(out, mask=dem.mask, fill_value=dem.fill_value) out.set_fill_value(dem.fill_value) return out
https://github.com/dshean/pygeotools/blob/5ac745717c0098d01eb293ff1fe32fd7358c76ab/pygeotools/lib/filtlib.py#L271-L284
deducting the median from each column
python
def median_hilow(series, confidence_interval=0.95): """ Median and a selected pair of outer quantiles having equal tail areas """ tail = (1 - confidence_interval) / 2 return pd.DataFrame({'y': [np.median(series)], 'ymin': np.percentile(series, 100 * tail), 'ymax': np.percentile(series, 100 * (1 - tail))})
https://github.com/has2k1/plotnine/blob/566e579af705367e584fb27a74e6c5199624ca89/plotnine/stats/stat_summary.py#L65-L72
deducting the median from each column
python
def weighted_median(y, w): """ Compute weighted median of `y` with weights `w`. """ items = sorted(zip(y, w)) midpoint = sum(w) / 2 yvals = [] wsum = 0 for yy, ww in items: wsum += ww if wsum > midpoint: yvals.append(yy) break elif wsum == midpoint: yvals.append(yy) else: yvals = y return sum(yvals) / len(yvals)
https://github.com/airspeed-velocity/asv/blob/d23bb8b74e8adacbfa3cf5724bda55fb39d56ba6/asv/step_detect.py#L933-L953
deducting the median from each column
python
def mad(a): '''Calculate the median absolute deviation of a sample a - a numpy array-like collection of values returns the median of the deviation of a from its median. ''' a = np.asfarray(a).flatten() return np.median(np.abs(a - np.median(a)))
https://github.com/CellProfiler/centrosome/blob/7bd9350a2d4ae1b215b81eabcecfe560bbb1f32a/centrosome/threshold.py#L520-L528
deducting the median from each column
python
def median(self): """ -> #float :func:numpy.median of the timing intervals """ return round(float(np.median(self.array)), self.precision)\ if len(self.array) else None
https://github.com/jaredLunde/vital-tools/blob/ea924c9bbb6ec22aa66f8095f018b1ee0099ac04/vital/debug/__init__.py#L2174-L2177
deducting the median from each column
python
def median_interval(self, name, alpha=_alpha, **kwargs): """ Median including bayesian credible interval. """ data = self.get(name,**kwargs) return median_interval(data,alpha)
https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/stats.py#L301-L306
deducting the median from each column
python
def median(timeseries, segmentlength, noverlap=None, window=None, plan=None): """Calculate a PSD of this `TimeSeries` using a median average method The median average is similar to Welch's method, using a median average rather than mean. Parameters ---------- timeseries : `~gwpy.timeseries.TimeSeries` input `TimeSeries` data. segmentlength : `int` number of samples in single average. noverlap : `int` number of samples to overlap between segments, defaults to 50%. window : `tuple`, `str`, optional window parameters to apply to timeseries prior to FFT plan : `REAL8FFTPlan`, optional LAL FFT plan to use when generating average spectrum Returns ------- spectrum : `~gwpy.frequencyseries.FrequencySeries` average power `FrequencySeries` See also -------- lal.REAL8AverageSpectrumMedian """ return _lal_spectrum(timeseries, segmentlength, noverlap=noverlap, method='median', window=window, plan=plan)
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/signal/spectral/_lal.py#L307-L340
deducting the median from each column
python
def med_cost_fn_val(self): '''Returns median cost function return value for all members''' if len(self.__members) != 0: if self.__num_processes > 1: members = [m.get() for m in self.__members] else: members = self.__members return median([m.cost_fn_val for m in members]) else: return None
https://github.com/tjkessler/PyGenetics/blob/b78ee6393605d6e85d2279fb05f3983f5833df40/pygenetics/ga_core.py#L158-L168
deducting the median from each column
python
def mad(data, axis=None): """ Computes the median absolute deviation of *data* along a given *axis*. See `link <https://en.wikipedia.org/wiki/Median_absolute_deviation>`_ for details. **Parameters** data : array-like **Returns** mad : number or array-like """ return median(absolute(data - median(data, axis)), axis)
https://github.com/astroswego/plotypus/blob/b1162194ca1d4f6c00e79afe3e6fb40f0eaffcb9/src/plotypus/utils.py#L172-L186
deducting the median from each column
python
def cummedian(expr, sort=None, ascending=True, unique=False, preceding=None, following=None): """ Calculate cumulative median of a sequence expression. :param expr: expression for calculation :param sort: name of the sort column :param ascending: whether to sort in ascending order :param unique: whether to eliminate duplicate entries :param preceding: the start point of a window :param following: the end point of a window :return: calculated column """ data_type = _stats_type(expr) return _cumulative_op(expr, CumMedian, sort=sort, ascending=ascending, unique=unique, preceding=preceding, following=following, data_type=data_type)
https://github.com/aliyun/aliyun-odps-python-sdk/blob/4b0de18f5864386df6068f26f026e62f932c41e4/odps/df/expr/window.py#L356-L372
deducting the median from each column
python
def mean_abs(self): """return the median of absolute values""" # XXX rename this method if len(self.values) > 0: return sorted(map(abs, self.values))[len(self.values) / 2] else: return None
https://github.com/TrafficSenseMSD/SumoTools/blob/8607b4f885f1d1798e43240be643efe6dccccdaa/sumolib/miscutils.py#L168-L174
deducting the median from each column
python
def weighted_median(values, weights): ''' Returns element such that sum of weights below and above are (roughly) equal :param values: Values whose median is sought :type values: List of reals :param weights: Weights of each value :type weights: List of positive reals :return: value of weighted median :rtype: Real ''' if len(values) == 1: return values[0] if len(values) == 0: raise ValueError('Cannot take median of empty list') values = [float(value) for value in values] indices_sorted = np.argsort(values) values = [values[ind] for ind in indices_sorted] weights = [weights[ind] for ind in indices_sorted] total_weight = sum(weights) below_weight = 0 i = -1 while below_weight < total_weight / 2: i += 1 below_weight += weights[i] return values[i]
https://github.com/soerenwolfers/swutil/blob/2d598f2deac8b7e20df95dbc68017e5ab5d6180c/swutil/np_tools.py#L212-L237
deducting the median from each column
python
def median_filter(tr, multiplier=10, windowlength=0.5, interp_len=0.05, debug=0): """ Filter out spikes in data above a multiple of MAD of the data. Currently only has the ability to replaces spikes with linear interpolation. In the future we would aim to fill the gap with something more appropriate. Works in-place on data. :type tr: obspy.core.trace.Trace :param tr: trace to despike :type multiplier: float :param multiplier: median absolute deviation multiplier to find spikes above. :type windowlength: float :param windowlength: Length of window to look for spikes in in seconds. :type interp_len: float :param interp_len: Length in seconds to interpolate around spikes. :type debug: int :param debug: Debug output level between 0 and 5, higher is more output. :returns: :class:`obspy.core.trace.Trace` .. warning:: Not particularly effective, and may remove earthquake signals, use with caution. """ num_cores = cpu_count() if debug >= 1: data_in = tr.copy() # Note - might be worth finding spikes in filtered data filt = tr.copy() filt.detrend('linear') try: filt.filter('bandpass', freqmin=10.0, freqmax=(tr.stats.sampling_rate / 2) - 1) except Exception as e: print("Could not filter due to error: {0}".format(e)) data = filt.data del filt # Loop through windows _windowlength = int(windowlength * tr.stats.sampling_rate) _interp_len = int(interp_len * tr.stats.sampling_rate) peaks = [] with Timer() as t: pool = Pool(processes=num_cores) results = [pool.apply_async(_median_window, args=(data[chunk * _windowlength: (chunk + 1) * _windowlength], chunk * _windowlength, multiplier, tr.stats.starttime + windowlength, tr.stats.sampling_rate, debug)) for chunk in range(int(len(data) / _windowlength))] pool.close() for p in results: peaks += p.get() pool.join() for peak in peaks: tr.data = _interp_gap(tr.data, peak[1], _interp_len) print("Despiking took: %s s" % t.secs) if debug >= 1: plt.plot(data_in.data, 'r', label='raw') plt.plot(tr.data, 'k', label='despiked') plt.legend() plt.show() return tr
https://github.com/eqcorrscan/EQcorrscan/blob/3121b4aca801ee5d38f56ca297ce1c0f9515d9ff/eqcorrscan/utils/despike.py#L33-L99
deducting the median from each column
python
def weighted_median(data, weights=None): """Calculate the weighted median of a list.""" if weights is None: return median(data) midpoint = 0.5 * sum(weights) if any([j > midpoint for j in weights]): return data[weights.index(max(weights))] if any([j > 0 for j in weights]): sorted_data, sorted_weights = zip(*sorted(zip(data, weights))) cumulative_weight = 0 below_midpoint_index = 0 while cumulative_weight <= midpoint: below_midpoint_index += 1 cumulative_weight += sorted_weights[below_midpoint_index-1] cumulative_weight -= sorted_weights[below_midpoint_index-1] if cumulative_weight - midpoint < sys.float_info.epsilon: bounds = sorted_data[below_midpoint_index-2:below_midpoint_index] return sum(bounds) / float(len(bounds)) return sorted_data[below_midpoint_index-1]
https://github.com/tinybike/weightedstats/blob/0e2638099dba7f288a1553a83e957a95522229da/weightedstats/__init__.py#L69-L87
deducting the median from each column
python
def fast_median(a): """Fast median operation for masked array using 50th-percentile """ a = checkma(a) #return scoreatpercentile(a.compressed(), 50) if a.count() > 0: out = np.percentile(a.compressed(), 50) else: out = np.ma.masked return out
https://github.com/dshean/pygeotools/blob/5ac745717c0098d01eb293ff1fe32fd7358c76ab/pygeotools/lib/malib.py#L1494-L1503
deducting the median from each column
python
def compute_geometric_median(X, eps=1e-5): """ Estimate the geometric median of points in 2D. Code from https://stackoverflow.com/a/30305181 Parameters ---------- X : (N,2) ndarray Points in 2D. Second axis must be given in xy-form. eps : float, optional Distance threshold when to return the median. Returns ------- (2,) ndarray Geometric median as xy-coordinate. """ y = np.mean(X, 0) while True: D = scipy.spatial.distance.cdist(X, [y]) nonzeros = (D != 0)[:, 0] Dinv = 1 / D[nonzeros] Dinvs = np.sum(Dinv) W = Dinv / Dinvs T = np.sum(W * X[nonzeros], 0) num_zeros = len(X) - np.sum(nonzeros) if num_zeros == 0: y1 = T elif num_zeros == len(X): return y else: R = (T - y) * Dinvs r = np.linalg.norm(R) rinv = 0 if r == 0 else num_zeros/r y1 = max(0, 1-rinv)*T + min(1, rinv)*y if scipy.spatial.distance.euclidean(y, y1) < eps: return y1 y = y1
https://github.com/aleju/imgaug/blob/786be74aa855513840113ea523c5df495dc6a8af/imgaug/augmentables/kps.py#L13-L58
deducting the median from each column
python
def column(self, i): """from right""" return ''.join([str(digitat2(r,i)) for r in self])
https://github.com/pyfca/pyfca/blob/cf8cea9e76076dbf4bb3f38996dcb5491b0eb0b0/pyfca/implications.py#L432-L434
deducting the median from each column
python
def _column_width(self, index=None, name=None, max_width=300, **kwargs): """ :param index: int of the column index :param name: str of the name of the column :param max_width: int of the max size of characters in the width :return: int of the width of this column """ assert name is not None or index is not None if name and name not in self._column_index: return min(max_width, name) if index is not None: name = self.columns[index] else: index = self._column_index[name] values_width = [len(name)] if isinstance(self._parameters.get(name, None), list): values_width += [len(self._safe_str(p, **kwargs)) for p in self._parameters[name]] values_width += [len(self._safe_str(row[index], **kwargs)) for row in self.table] ret = max(values_width) return min(max_width, ret) if max_width else ret
https://github.com/SeabornGames/Table/blob/0c474ef2fb00db0e7cf47e8af91e3556c2e7485a/seaborn_table/table.py#L1709-L1734
deducting the median from each column
python
def mad(data): r"""Median absolute deviation This method calculates the median absolute deviation of the input data. Parameters ---------- data : np.ndarray Input data array Returns ------- float MAD value Examples -------- >>> from modopt.math.stats import mad >>> a = np.arange(9).reshape(3, 3) >>> mad(a) 2.0 Notes ----- The MAD is calculated as follows: .. math:: \mathrm{MAD} = \mathrm{median}\left(|X_i - \mathrm{median}(X)|\right) """ return np.median(np.abs(data - np.median(data)))
https://github.com/CEA-COSMIC/ModOpt/blob/019b189cb897cbb4d210c44a100daaa08468830c/modopt/math/stats.py#L75-L106
deducting the median from each column
python
def median_filter(data, mask, radius, percent=50): '''Masked median filter with octagonal shape data - array of data to be median filtered. mask - mask of significant pixels in data radius - the radius of a circle inscribed into the filtering octagon percent - conceptually, order the significant pixels in the octagon, count them and choose the pixel indexed by the percent times the count divided by 100. More simply, 50 = median returns a filtered array. In areas where the median filter does not overlap the mask, the filtered result is undefined, but in practice, it will be the lowest value in the valid area. ''' if mask is None: mask = np.ones(data.shape, dtype=bool) if np.all(~ mask): return data.copy() # # Normalize the ranked data to 0-255 # if (not np.issubdtype(data.dtype, np.int) or np.min(data) < 0 or np.max(data) > 255): ranked_data, translation = rank_order(data[mask], nbins=255) was_ranked = True else: ranked_data = data[mask] was_ranked = False input = np.zeros(data.shape, np.uint8 ) input[mask] = ranked_data mmask = np.ascontiguousarray(mask, np.uint8) output = np.zeros(data.shape, np.uint8) _filter.median_filter(input, mmask, output, radius, percent) if was_ranked: result = translation[output] else: result = output return result
https://github.com/CellProfiler/centrosome/blob/7bd9350a2d4ae1b215b81eabcecfe560bbb1f32a/centrosome/filter.py#L68-L107
deducting the median from each column
python
def median_interval(data, alpha=_alpha): """ Median including bayesian credible interval. """ q = [100*alpha/2., 50, 100*(1-alpha/2.)] lo,med,hi = np.percentile(data,q) return interval(med,lo,hi)
https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/stats.py#L43-L49
deducting the median from each column
python
def flag_calcmad(data): """ Calculate median absolute deviation of data array """ absdev = np.abs(data - np.median(data)) return np.median(absdev)
https://github.com/caseyjlaw/rtpipe/blob/ac33e4332cf215091a63afbb3137850876d73ec0/rtpipe/rtlib_numba.py#L17-L21
deducting the median from each column
python
def get_range_values_per_column(df): """ Retrieves the finite max, min and mean values per column in the DataFrame `df` and stores them in three dictionaries. Those dictionaries `col_to_max`, `col_to_min`, `col_to_median` map the columnname to the maximal, minimal or median value of that column. If a column does not contain any finite values at all, a 0 is stored instead. :param df: the Dataframe to get columnswise max, min and median from :type df: pandas.DataFrame :return: Dictionaries mapping column names to max, min, mean values :rtype: (dict, dict, dict) """ data = df.get_values() masked = np.ma.masked_invalid(data) columns = df.columns is_col_non_finite = masked.mask.sum(axis=0) == masked.data.shape[0] if np.any(is_col_non_finite): # We have columns that does not contain any finite value at all, so we will store 0 instead. _logger.warning("The columns {} did not have any finite values. Filling with zeros.".format( df.iloc[:, np.where(is_col_non_finite)[0]].columns.values)) masked.data[:, is_col_non_finite] = 0 # Set the values of the columns to 0 masked.mask[:, is_col_non_finite] = False # Remove the mask for this column # fetch max, min and median for all columns col_to_max = dict(zip(columns, np.max(masked, axis=0))) col_to_min = dict(zip(columns, np.min(masked, axis=0))) col_to_median = dict(zip(columns, np.ma.median(masked, axis=0))) return col_to_max, col_to_min, col_to_median
https://github.com/blue-yonder/tsfresh/blob/c72c9c574371cf7dd7d54e00a466792792e5d202/tsfresh/utilities/dataframe_functions.py#L150-L183
deducting the median from each column
python
def medianscore(inlist): """ Returns the 'middle' score of the passed list. If there is an even number of scores, the mean of the 2 middle scores is returned. Usage: lmedianscore(inlist) """ newlist = copy.deepcopy(inlist) newlist.sort() if len(newlist) % 2 == 0: # if even number of scores, average middle 2 index = len(newlist) / 2 # integer division correct median = float(newlist[index] + newlist[index - 1]) / 2 else: index = len(newlist) / 2 # int divsion gives mid value when count from 0 median = newlist[index] return median
https://github.com/klahnakoski/pyLibrary/blob/fa2dcbc48fda8d26999baef400e9a98149e0b982/mo_math/vendor/strangman/stats.py#L306-L322
deducting the median from each column
python
def complex_median(complex_list): """ Get the median value of a list of complex numbers. Parameters ---------- complex_list: list List of complex numbers to calculate the median. Returns ------- a + 1.j*b: complex number The median of the real and imaginary parts. """ median_real = numpy.median([complex_number.real for complex_number in complex_list]) median_imag = numpy.median([complex_number.imag for complex_number in complex_list]) return median_real + 1.j*median_imag
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/strain/lines.py#L22-L39
deducting the median from each column
python
def _masked_median(data, axis=None): """ Calculate the median of a (masked) array. This function is necessary for a consistent interface across all numpy versions. A bug was introduced in numpy v1.10 where `numpy.ma.median` (with ``axis=None``) returns a single-valued `~numpy.ma.MaskedArray` if the input data is a `~numpy.ndarray` or if the data is a `~numpy.ma.MaskedArray`, but the mask is `False` everywhere. Parameters ---------- data : array-like The input data. axis : int or `None`, optional The array axis along which the median is calculated. If `None`, then the entire array is used. Returns ------- result : float or `~numpy.ma.MaskedArray` The resulting median. If ``axis`` is `None`, then a float is returned, otherwise a `~numpy.ma.MaskedArray` is returned. """ _median = np.ma.median(data, axis=axis) if axis is None and np.ma.isMaskedArray(_median): _median = _median.item() return _median
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/background/core.py#L32-L62
deducting the median from each column
python
def median_min_distance(data, metric): """This function computes a graph of nearest-neighbors for each sample point in 'data' and returns the median of the distribution of distances between those nearest-neighbors, the distance metric being specified by 'metric'. Parameters ---------- data : array of shape (n_samples, n_features) The data-set, a fraction of whose sample points will be extracted by density sampling. metric : string The distance metric used to determine the nearest-neighbor to each data-point. The DistanceMetric class defined in scikit-learn's library lists all available metrics. Returns ------- median_min_dist : float The median of the distribution of distances between nearest-neighbors. """ data = np.atleast_2d(data) nearest_distances = kneighbors_graph(data, 1, mode = 'distance', metric = metric, include_self = False).data median_min_dist = np.median(nearest_distances, overwrite_input = True) return round(median_min_dist, 4)
https://github.com/GGiecold/Density_Sampling/blob/8c8e6c63a97fecf958238e12947e5e6542b64102/Density_Sampling.py#L116-L144
deducting the median from each column
python
def expect_column_mean_to_be_between(self, column, min_value=None, max_value=None, result_format=None, include_config=False, catch_exceptions=None, meta=None ): """Expect the column mean to be between a minimum value and a maximum value (inclusive). expect_column_mean_to_be_between is a :func:`column_aggregate_expectation <great_expectations.data_asset.dataset.Dataset.column_aggregate_expectation>`. Args: column (str): \ The column name. min_value (float or None): \ The minimum value for the column mean. max_value (float or None): \ The maximum value for the column mean. Other Parameters: result_format (str or None): \ Which output mode to use: `BOOLEAN_ONLY`, `BASIC`, `COMPLETE`, or `SUMMARY`. For more detail, see :ref:`result_format <result_format>`. include_config (boolean): \ If True, then include the expectation config as part of the result object. \ For more detail, see :ref:`include_config`. catch_exceptions (boolean or None): \ If True, then catch exceptions and include them as part of the result object. \ For more detail, see :ref:`catch_exceptions`. meta (dict or None): \ A JSON-serializable dictionary (nesting allowed) that will be included in the output without modification. \ For more detail, see :ref:`meta`. Returns: A JSON-serializable expectation result object. Exact fields vary depending on the values passed to :ref:`result_format <result_format>` and :ref:`include_config`, :ref:`catch_exceptions`, and :ref:`meta`. Notes: These fields in the result object are customized for this expectation: :: { "observed_value": (float) The true mean for the column } * min_value and max_value are both inclusive. * If min_value is None, then max_value is treated as an upper bound. * If max_value is None, then min_value is treated as a lower bound. See Also: expect_column_median_to_be_between expect_column_stdev_to_be_between """ raise NotImplementedError
https://github.com/great-expectations/great_expectations/blob/08385c40529d4f14a1c46916788aecc47f33ee9d/great_expectations/dataset/dataset.py#L1384-L1438
deducting the median from each column
python
def medfilt(vector, window): """ Apply a window-length median filter to a 1D array vector. Should get rid of 'spike' value 15. >>> print(medfilt(np.array([1., 15., 1., 1., 1.]), 3)) [1. 1. 1. 1. 1.] The 'edge' case is a bit tricky... >>> print(medfilt(np.array([15., 1., 1., 1., 1.]), 3)) [15. 1. 1. 1. 1.] Inspired by: https://gist.github.com/bhawkins/3535131 """ if not window % 2 == 1: raise ValueError("Median filter length must be odd.") if not vector.ndim == 1: raise ValueError("Input must be one-dimensional.") k = (window - 1) // 2 # window movement result = np.zeros((len(vector), window), dtype=vector.dtype) result[:, k] = vector for i in range(k): j = k - i result[j:, i] = vector[:-j] result[:j, i] = vector[0] result[:-j, -(i + 1)] = vector[j:] result[-j:, -(i + 1)] = vector[-1] return np.median(result, axis=1)
https://github.com/DataMedSci/beprof/blob/f94c10929ea357bd0e5ead8f7a2d3061acfd6494/beprof/functions.py#L27-L56
deducting the median from each column
python
def argmin(df, column: str, groups: Union[str, List[str]] = None): """ Keep the row of the data corresponding to the minimal value in a column --- ### Parameters *mandatory :* - `column` (str): name of the column containing the value you want to keep the minimum *optional :* - `groups` (*str or list(str)*): name of the column(s) used for 'groupby' logic (the function will return the argmax by group) --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson argmin: column: 'year' ] ``` **Output** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2015 | 250 | """ if groups is None: df = df[df[column] == df[column].min()].reset_index(drop=True) else: group_min = df.groupby(groups)[column].transform('min') df = (df .loc[df[column] == group_min, :] .drop_duplicates() .reset_index(drop=True) ) return df
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/argmax.py#L54-L101
deducting the median from each column
python
def column_mask(self): """ndarray, True where column margin <= min_base_size, same shape as slice.""" margin = compress_pruned( self._slice.margin( axis=0, weighted=False, include_transforms_for_dims=self._hs_dims, prune=self._prune, ) ) mask = margin < self._size if margin.shape == self._shape: # If margin shape is the same as slice's (such as in a col margin for # MR x CAT), don't broadcast the mask to the array shape, since # they're already the same. return mask # If the row margin is a row vector - broadcast it's mask to the array shape return np.logical_or(np.zeros(self._shape, dtype=bool), mask)
https://github.com/Crunch-io/crunch-cube/blob/a837840755690eb14b2ec8e8d93b4104e01c854f/src/cr/cube/min_base_size_mask.py#L28-L47
deducting the median from each column
python
def max(self): """ :returns the maximum of the column """ res = self._qexec("max(%s)" % self._name) if len(res) > 0: self._max = res[0][0] return self._max
https://github.com/grundprinzip/pyxplorer/blob/34c1d166cfef4a94aeb6d5fcb3cbb726d48146e2/pyxplorer/types.py#L74-L81
deducting the median from each column
python
def column( self, name ): """ Returns the index of the column at the given name. :param name | <str> :return <int> (-1 if not found) """ columns = self.columns() if ( name in columns ): return columns.index(name) return -1
https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xtablewidget.py#L43-L54
deducting the median from each column
python
def primary_dimensions(self): """Iterate over the primary dimension columns, columns which do not have a parent """ from ambry.valuetype.core import ROLE for c in self.columns: if not c.parent and c.role == ROLE.DIMENSION: yield c
https://github.com/CivicSpleen/ambry/blob/d7f2be4bf1f7ffd086f3fadd4fcae60c32473e42/ambry/orm/table.py#L94-L103
deducting the median from each column
python
def min(self, values, axis=0): """return the minimum within each group Parameters ---------- values : array_like, [keys, ...] values to take minimum of per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) return self.unique, self.reduce(values, np.minimum, axis)
https://github.com/EelcoHoogendoorn/Numpy_arraysetops_EP/blob/84dc8114bf8a79c3acb3f7f59128247b9fc97243/numpy_indexed/grouping.py#L409-L427
deducting the median from each column
python
def _filter_matrix_columns(cls, matrix, phandango_header, csv_header): '''phandango_header, csv_header, matrix = output from _to_matrix''' indexes_to_keep = set() for row in matrix: for i in range(len(row)): if row[i] not in {'NA', 'no'}: indexes_to_keep.add(i) indexes_to_keep = sorted(list(indexes_to_keep)) for i in range(len(matrix)): matrix[i] = [matrix[i][j] for j in indexes_to_keep] phandango_header = [phandango_header[i] for i in indexes_to_keep] csv_header = [csv_header[i] for i in indexes_to_keep] return phandango_header, csv_header, matrix
https://github.com/sanger-pathogens/ariba/blob/16a0b1916ce0e886bd22550ba2d648542977001b/ariba/summary.py#L240-L256
deducting the median from each column
python
def numpy_weighted_median(data, weights=None): """Calculate the weighted median of an array/list using numpy.""" import numpy as np if weights is None: return np.median(np.array(data).flatten()) data, weights = np.array(data).flatten(), np.array(weights).flatten() if any(weights > 0): sorted_data, sorted_weights = map(np.array, zip(*sorted(zip(data, weights)))) midpoint = 0.5 * sum(sorted_weights) if any(weights > midpoint): return (data[weights == np.max(weights)])[0] cumulative_weight = np.cumsum(sorted_weights) below_midpoint_index = np.where(cumulative_weight <= midpoint)[0][-1] if cumulative_weight[below_midpoint_index] - midpoint < sys.float_info.epsilon: return np.mean(sorted_data[below_midpoint_index:below_midpoint_index+2]) return sorted_data[below_midpoint_index+1]
https://github.com/tinybike/weightedstats/blob/0e2638099dba7f288a1553a83e957a95522229da/weightedstats/__init__.py#L89-L104
deducting the median from each column
python
def _column_reduction(self): """ Column reduction and reduction transfer steps from LAPJV algorithm """ #assign each column to its lowest cost row, ensuring that only row #or column is assigned once i1, j = np.unique(np.argmin(self.c, axis=0), return_index=True) self._x[i1] = j #if problem is solved, return if len(i1) == self.n: return False self._y[j] = i1 #reduction_transfer #tempc is array with previously assigned matchings masked self._v = np.min(self.c, axis=0) tempc = self.c.copy() tempc[i1, j] = np.inf mu = np.min(tempc[i1, :] - self._v[None, :], axis=1) self._v[j] -= mu return True
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/optimization/linear_assignment_numpy.py#L100-L122
deducting the median from each column
python
def par_compute_residuals(i): """Compute components of the residual and stopping thresholds that can be done in parallel. Parameters ---------- i : int Index of group to compute """ # Compute the residuals in parallel, need to check if the residuals # depend on alpha global mp_ry0 global mp_ry1 global mp_sy0 global mp_sy1 global mp_nrmAx global mp_nrmBy global mp_nrmu mp_ry0[i] = np.sum((mp_DXnr[i] - mp_Y0[i])**2) mp_ry1[i] = mp_alpha**2*np.sum((mp_Xnr[mp_grp[i]:mp_grp[i+1]]- mp_Y1[mp_grp[i]:mp_grp[i+1]])**2) mp_sy0[i] = np.sum((mp_Y0old[i] - mp_Y0[i])**2) mp_sy1[i] = mp_alpha**2*np.sum((mp_Y1old[mp_grp[i]:mp_grp[i+1]]- mp_Y1[mp_grp[i]:mp_grp[i+1]])**2) mp_nrmAx[i] = np.sum(mp_DXnr[i]**2) + mp_alpha**2 * np.sum( mp_Xnr[mp_grp[i]:mp_grp[i+1]]**2) mp_nrmBy[i] = np.sum(mp_Y0[i]**2) + mp_alpha**2 * np.sum( mp_Y1[mp_grp[i]:mp_grp[i+1]]**2) mp_nrmu[i] = np.sum(mp_U0[i]**2) + np.sum(mp_U1[mp_grp[i]:mp_grp[i+1]]**2)
https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/admm/parcbpdn.py#L317-L346
deducting the median from each column
python
def mad(a, axis=None, c=1.4826, return_med=False): """Compute normalized median absolute difference Can also return median array, as this can be expensive, and often we want both med and nmad Note: 1.4826 = 1/0.6745 """ a = checkma(a) #return np.ma.median(np.fabs(a - np.ma.median(a))) / c if a.count() > 0: if axis is None: med = fast_median(a) out = fast_median(np.fabs(a - med)) * c else: med = np.ma.median(a, axis=axis) #This is necessary for broadcasting med = np.expand_dims(med, axis=axis) out = np.ma.median(np.ma.fabs(a - med), axis=axis) * c else: out = np.ma.masked if return_med: out = (out, med) return out
https://github.com/dshean/pygeotools/blob/5ac745717c0098d01eb293ff1fe32fd7358c76ab/pygeotools/lib/malib.py#L1505-L1527