blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 7
139
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
16
| license_type
stringclasses 2
values | repo_name
stringlengths 7
55
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
int64 1,471B
1,694B
| revision_date
int64 1,378B
1,694B
| committer_date
int64 1,378B
1,694B
| github_id
float64 1.33M
604M
⌀ | star_events_count
int64 0
43.5k
| fork_events_count
int64 0
1.5k
| gha_license_id
stringclasses 6
values | gha_event_created_at
int64 1,402B
1,695B
⌀ | gha_created_at
int64 1,359B
1,637B
⌀ | gha_language
stringclasses 19
values | src_encoding
stringclasses 2
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 3
6.4M
| extension
stringclasses 4
values | content
stringlengths 3
6.12M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11ec02ec85668835f45c61243ea20dfdbcdd3b86
|
36938939954e91f23dec66a02728db08a7acfcf9
|
/lean/deps/typed_smt2/src/galois/smt2/file_writer.lean
|
48bcff536b7bb20d49898542daf5829768703227
|
[
"Apache-2.0"
] |
permissive
|
pnwamk/reopt-vcg
|
f8b56dd0279392a5e1c6aee721be8138e6b558d3
|
c9f9f185fbefc25c36c4b506bbc85fd1a03c3b6d
|
refs/heads/master
| 1,631,145,017,772
| 1,593,549,019,000
| 1,593,549,143,000
| 254,191,418
| 0
| 0
| null | 1,586,377,077,000
| 1,586,377,077,000
| null |
UTF-8
|
Lean
| false
| false
| 1,789
|
lean
|
import .cmd
import .interface
import system.io
namespace smt2
/-- Interface for writing SMTLIB expressions to a handle or file. -/
def file_writer := reader_t io.handle io
namespace file_writer
section
local attribute [reducible] file_writer
instance : monad file_writer := by apply_instance
instance : has_monad_lift io file_writer := by apply_instance
instance : monad_reader io.handle file_writer := by apply_instance
end
/-- Write a command to the file handle. -/
def write (c:cmd) : file_writer punit := do
h <- read,
monad_lift $ do
c.write (h : io.handle),
io.fs.put_str h "\n"
/-- Assert a term is true. -/
protected
def assert (p:term Bool) : file_writer punit := write (cmd.assert p)
/-- Declare a function -/
protected
def declare_fun (nm:symbol) (args:list sort) (res:sort) : file_writer punit :=
write (cmd.declare_fun nm args res)
/-- Declare a constant -/
protected
def declare_const (nm:symbol) (res:sort) : file_writer punit :=
write (cmd.declare_const nm res)
/-- Define a function in terms of inputs -/
protected
def define_fun (nm:symbol) (args:list (symbol × sort)) {res:sort} (rhs : term res)
: file_writer punit := do
write (cmd.define_fun nm args rhs)
/-- Define a function in terms of inputs -/
protected
def check_sat : file_writer punit := do
write cmd.check_sat
instance : is_generator file_writer :=
{ assert := file_writer.assert
, declare_fun := file_writer.declare_fun
, declare_const := file_writer.declare_const
, define_fun := file_writer.define_fun
, check_sat := file_writer.check_sat
}
/-- Run the file writer -/
protected
def run {α} (path:string) (m:file_writer α) : io α := do
h ← io.mk_file_handle path io.mode.write tt,
v ← m.run h,
io.fs.close h,
pure v
end file_writer
end smt2
|
b36e3fce770894bc4957768ad52868ae8efacf06
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/algebra/module/pointwise_pi.lean
|
3572a8a1d31a516b9f96ceed8fa58f087efcb3ca
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,618
|
lean
|
/-
Copyright (c) 2021 Alex J. Best. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alex J. Best
-/
import data.set.pointwise.smul
import group_theory.group_action.pi
/-!
# Pointwise actions on sets in Pi types
This file contains lemmas about pointwise actions on sets in Pi types.
## Tags
set multiplication, set addition, pointwise addition, pointwise multiplication, pi
-/
open_locale pointwise
open set
variables {K ι : Type*} {R : ι → Type*}
@[to_additive]
lemma smul_pi_subset [∀ i, has_smul K (R i)] (r : K) (s : set ι) (t : Π i, set (R i)) :
r • pi s t ⊆ pi s (r • t) :=
begin
rintros x ⟨y, h, rfl⟩ i hi,
exact smul_mem_smul_set (h i hi),
end
@[to_additive]
lemma smul_univ_pi [∀ i, has_smul K (R i)] (r : K) (t : Π i, set (R i)) :
r • pi (univ : set ι) t = pi (univ : set ι) (r • t) :=
subset.antisymm (smul_pi_subset _ _ _) $ λ x h, begin
refine ⟨λ i, classical.some (h i $ set.mem_univ _), λ i hi, _, funext $ λ i, _⟩,
{ exact (classical.some_spec (h i _)).left, },
{ exact (classical.some_spec (h i _)).right, },
end
@[to_additive]
lemma smul_pi [group K] [∀ i, mul_action K (R i)] (r : K) (S : set ι) (t : Π i, set (R i)) :
r • S.pi t = S.pi (r • t) :=
subset.antisymm (smul_pi_subset _ _ _) $ λ x h,
⟨r⁻¹ • x, λ i hiS, mem_smul_set_iff_inv_smul_mem.mp (h i hiS), smul_inv_smul _ _⟩
lemma smul_pi₀ [group_with_zero K] [∀ i, mul_action K (R i)] {r : K} (S : set ι)
(t : Π i, set (R i)) (hr : r ≠ 0) : r • S.pi t = S.pi (r • t) :=
smul_pi (units.mk0 r hr) S t
|
fa74f1a69a3220d0249be2bd6b4d986e72f3a858
|
01f6b345a06ece970e589d4bbc68ee8b9b2cf58a
|
/src/pow_mult_faithful.lean
|
6a053f21efdc7f13dd4740be115e8a11ceefd701
|
[] |
no_license
|
mariainesdff/norm_extensions_journal_submission
|
6077acb98a7200de4553e653d81d54fb5d2314c8
|
d396130660935464fbc683f9aaf37fff8a890baa
|
refs/heads/master
| 1,686,685,693,347
| 1,684,065,115,000
| 1,684,065,115,000
| 603,823,641
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,171
|
lean
|
/-
Copyright (c) 2023 María Inés de Frutos-Fernández. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: María Inés de Frutos-Fernández
-/
import ring_seminorm
import analysis.special_functions.pow
/-!
# Equivalent power-multiplicative norms
In this file, we prove [BGR, Proposition 3.1.5/1]: if `R` is a normed commutative ring and `f₁` and
`f₂` are two power-multiplicative `R`-algebra norms on `S`, then if `f₁` and `f₂` are equivalent on
every subring `R[y]` for `y : S`, it follows that `f₁ = f₂`.
## Main Definitions
* `algebra_norm.restriction` : The restriction of an algebra norm to a subalgebra.
* `ring_hom.is_bounded_wrt` :A ring homomorphism `f : α →+* β` is bounded with respect to the
functions `nα : α → ℝ` and `nβ : β → ℝ` if there exists a positive constant `C` such that for all
`x` in `α`, `nβ (f x) ≤ C * nα x`.
## Main Results
* `eq_of_pow_mult_faithful` : the proof of [BGR, Proposition 3.1.5/1].
## References
* [S. Bosch, U. Güntzer, R. Remmert, *Non-Archimedean Analysis*][bosch-guntzer-remmert]
## Tags
norm, equivalent, power-multiplicative
-/
open_locale topological_space
/-- A homomorphism `f` between semi_normed_rings is bounded if there exists a positive
constant `C` such that for all `x` in `α`, `norm (f x) ≤ C * norm x`. -/
def ring_hom.is_bounded {α : Type*} [semi_normed_ring α] {β : Type*} [semi_normed_ring β]
(f : α →+* β) : Prop := ∃ C : ℝ, 0 < C ∧ ∀ x : α, norm (f x) ≤ C * norm x
/-- A ring homomorphism `f : α →+* β` is bounded with respect to the functions `nα : α → ℝ` and
`nβ : β → ℝ` if there exists a positive constant `C` such that for all `x` in `α`,
`nβ (f x) ≤ C * nα x`. -/
def ring_hom.is_bounded_wrt {α : Type*} [ring α] {β : Type*} [ring β] (nα : α → ℝ) (nβ : β → ℝ)
(f : α →+* β) : Prop :=
∃ C : ℝ, 0 < C ∧ ∀ x : α, nβ (f x) ≤ C * nα x
/-- If `f : α →+* β` is bounded with respect to a ring seminorm `nα` on `α` and a
power-multiplicative function `nβ : β → ℝ`, then `∀ x : α, nβ (f x) ≤ nα x`. -/
lemma contraction_of_is_pm_wrt {F : Type*} {α : out_param(Type*)} [ring α]
[ring_seminorm_class F α] {β : Type*} [ring β] (nα : F) {nβ : β → ℝ} (hβ : is_pow_mul nβ)
{f : α →+* β} (hf : f.is_bounded_wrt nα nβ) (x : α) :
nβ (f x) ≤ nα x :=
begin
obtain ⟨C, hC0, hC⟩ := hf,
have hlim : filter.tendsto (λ n : ℕ, C ^ (1 / (n : ℝ)) * nα x) filter.at_top (𝓝 (nα x)),
{ have : (𝓝 (nα x)) = (𝓝 (1 * (nα x))) := by rw one_mul,
rw this,
apply filter.tendsto.mul,
{ apply filter.tendsto.comp _ (tendsto_const_div_at_top_nhds_0_nat 1),
rw ← real.rpow_zero C,
apply continuous_at.tendsto (real.continuous_at_const_rpow (ne_of_gt hC0)), },
exact tendsto_const_nhds, },
apply ge_of_tendsto hlim,
simp only [filter.eventually_at_top, ge_iff_le],
use 1,
intros n hn,
have h : (C^(1/n : ℝ))^n = C,
{ have hn0 : (n : ℝ) ≠ 0 := nat.cast_ne_zero.mpr (ne_of_gt hn),
rw [← real.rpow_nat_cast, ← real.rpow_mul (le_of_lt hC0), one_div, inv_mul_cancel hn0,
real.rpow_one], },
apply le_of_pow_le_pow n
(mul_nonneg (real.rpow_nonneg_of_nonneg (le_of_lt hC0) _) (map_nonneg _ _)) hn,
{ rw [mul_pow, h, ← hβ _ hn, ← ring_hom.map_pow],
apply le_trans (hC (x^n)),
rw mul_le_mul_left hC0,
exact map_pow_le_pow _ _ (nat.one_le_iff_ne_zero.mp hn), },
end
/-- Given a bounded `f : α →+* β` between seminormed rings, is the seminorm on `β` is
power-multiplicative, then `f` is a contraction. -/
lemma contraction_of_is_pm {α : Type*} [semi_normed_ring α] {β : Type*} [semi_normed_ring β]
(hβ : is_pow_mul (norm : β → ℝ)) {f : α →+* β} (hf : f.is_bounded) (x : α) :
norm (f x) ≤ norm x :=
contraction_of_is_pm_wrt (seminormed_ring.to_ring_seminorm α) hβ hf x
/-- Given two power-multiplicative ring seminorms `f, g` on `α`, if `f` is bounded by a positive
multiple of `g` and viceversa, then `f = g`. -/
lemma eq_seminorms {F : Type*} {α : out_param(Type*)} [ring α] [ring_seminorm_class F α]
(f g : F) (hfpm : is_pow_mul f) (hgpm : is_pow_mul g)
(hfg : ∃ (r : ℝ) (hr : 0 < r), ∀ (a : α), f a ≤ r * g a)
(hgf : ∃ (r : ℝ) (hr : 0 < r), ∀ (a : α), g a ≤ r * f a) : f = g :=
begin
obtain ⟨r, hr0, hr⟩ := hfg,
obtain ⟨s, hs0, hs⟩ := hgf,
have hle : ring_hom.is_bounded_wrt f g (ring_hom.id _) := ⟨s, hs0, hs⟩,
have hge : ring_hom.is_bounded_wrt g f (ring_hom.id _) := ⟨r, hr0, hr⟩,
rw ← function.injective.eq_iff (ring_seminorm_class.coe_injective'),
ext x,
exact le_antisymm (contraction_of_is_pm_wrt g hfpm hge x) (contraction_of_is_pm_wrt f hgpm hle x)
end
variables {R S : Type*} [normed_comm_ring R] [comm_ring S] [algebra R S]
/-- The restriction of a power-multiplicative function to a subalgebra is power-multiplicative. -/
lemma is_pow_mul.restriction (A : subalgebra R S) {f : S → ℝ} (hf_pm : is_pow_mul f) :
is_pow_mul (λ x : A, (f x.val)) :=
λ x n hn, by simpa [subtype.val_eq_coe,subsemiring_class.coe_pow] using (hf_pm ↑x hn)
/-- The restriction of an algebra norm to a subalgebra. -/
def algebra_norm.restriction (A : subalgebra R S) (f : algebra_norm R S) : algebra_norm R A :=
{ to_fun := λ x : A, f x.val,
map_zero' := map_zero f,
add_le' := λ x y, map_add_le_add _ _ _,
neg' := λ x, map_neg_eq_map _ _,
mul_le' := λ x y, map_mul_le_mul _ _ _,
eq_zero_of_map_eq_zero' :=
λ x hx, by {rw ← zero_mem_class.coe_eq_zero; exact eq_zero_of_map_eq_zero f hx},
smul' := λ r x, map_smul_eq_mul _ _ _ }
/-- If `R` is a normed commutative ring and `f₁` and `f₂` are two power-multiplicative `R`-algebra
norms on `S`, then if `f₁` and `f₂` are equivalent on every subring `R[y]` for `y : S`, it
follows that `f₁ = f₂` [BGR, Proposition 3.1.5/1]. -/
lemma eq_of_pow_mult_faithful (f₁ : algebra_norm R S) (hf₁_pm : is_pow_mul f₁)
(f₂ : algebra_norm R S) (hf₂_pm : is_pow_mul f₂)
(h_eq : ∀ (y : S), ∃ (C₁ C₂ : ℝ) (hC₁ : 0 < C₁) (hC₂ : 0 < C₂), ∀ (x : (algebra.adjoin R {y})),
f₁ x.val ≤ C₁ * (f₂ x.val) ∧ f₂ x.val ≤ C₂ * (f₁ x.val) ) :
f₁ = f₂ :=
begin
ext x,
set g₁ : algebra_norm R (algebra.adjoin R ({x} : set S)) := algebra_norm.restriction _ f₁,
set g₂ : algebra_norm R (algebra.adjoin R ({x} : set S)) := algebra_norm.restriction _ f₂,
have hg₁_pm : is_pow_mul g₁ := is_pow_mul.restriction _ hf₁_pm,
have hg₂_pm : is_pow_mul g₂ := is_pow_mul.restriction _ hf₂_pm,
let y : algebra.adjoin R ({x} : set S) := ⟨x, algebra.self_mem_adjoin_singleton R x⟩,
have hy : x = y.val := rfl,
have h1 : f₁ y.val = g₁ y := rfl,
have h2 : f₂ y.val = g₂ y := rfl,
obtain ⟨C₁, C₂, hC₁_pos, hC₂_pos, hC⟩ := h_eq x,
obtain ⟨hC₁, hC₂⟩ := forall_and_distrib.mp hC,
rw [hy, h1, h2, eq_seminorms g₁ g₂ hg₁_pm hg₂_pm ⟨C₁, hC₁_pos, hC₁⟩ ⟨C₂, hC₂_pos, hC₂⟩],
end
|
b34a1c32aa3664f05458b922288fc31dc1277bdd
|
b7fc5b86b12212bea5542eb2c9d9f0988fd78697
|
/src/exercises_sources/friday/analysis.lean
|
83c4b78521940ce61e5cd26dfb0937e49fbb280a
|
[] |
no_license
|
stjordanis/lftcm2020
|
3b16591aec853c8546d9c8b69c0bf3f5f3956fee
|
1f3485e4dafdc587b451ec5144a1d8d3ec9b411e
|
refs/heads/master
| 1,675,958,865,413
| 1,609,901,722,000
| 1,609,901,722,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,763
|
lean
|
import analysis.analytic.composition
import analysis.normed_space.inner_product
import topology.metric_space.pi_Lp
import analysis.calculus.iterated_deriv
import analysis.calculus.mean_value
import analysis.calculus.implicit
import measure_theory.bochner_integration
import measure_theory.lebesgue_measure
namespace lftcm
noncomputable theory
open real
open_locale topological_space filter classical
/-!
# Derivatives
Lean can automatically compute some simple derivatives using `simp` tactic.
-/
example : deriv (λ x : ℝ, x^5) 6 = 5 * 6^4 := sorry
example (x₀ : ℝ) (h₀ : x₀ ≠ 0) : deriv (λ x:ℝ, 1 / x) x₀ = -1 / x₀^2 := sorry
example : deriv sin pi = -1 := sorry
-- Sometimes you need `ring` and/or `field_simp` after `simp`
example (x₀ : ℝ) (h : x₀ ≠ 0) :
deriv (λ x : ℝ, exp(x^2) / x^5) x₀ = (2 * x₀^2 - 5) * exp (x₀^2) / x₀^6 :=
begin
have : x₀^5 ≠ 0, { sorry },
simp [this],
sorry
end
example (a b x₀ : ℝ) (h : x₀ ≠ 1) :
deriv (λ x, (a * x + b) / (x - 1)) x₀ = -(a + b) / (x₀ - 1)^2 :=
begin
sorry
end
-- Currently `simp` is unable to solve the next example.
-- A PR that will make this example provable `by simp` would be very welcome!
example : iterated_deriv 7 (λ x, sin (tan x) - tan (sin x)) 0 = -168 := sorry
variables (m n : Type) [fintype m] [fintype n]
-- Generalizations of the next two instances should go to `analysis/normed_space/basic`
instance : normed_group (matrix m n ℝ) := pi.normed_group
instance : normed_space ℝ (matrix m n ℝ) := pi.normed_space
/-- Trace of a matrix as a continuous linear map. -/
def matrix.trace_clm : matrix n n ℝ →L[ℝ] ℝ :=
(matrix.trace n ℝ ℝ).mk_continuous (fintype.card n)
begin
sorry
end
-- Another hard exercise that would make a very good PR
example :
has_fderiv_at (λ m : matrix n n ℝ, m.det) (matrix.trace_clm n) 1 :=
begin
sorry
end
end lftcm
#check deriv
#check has_fderiv_at
example (y : ℝ) : has_deriv_at (λ x : ℝ, 2 * x + 5) 2 y :=
begin
have := ((has_deriv_at_id y).const_mul 2).add_const 5,
rwa [mul_one] at this,
end
example (y : ℝ) : deriv (λ x : ℝ, 2 * x + 5) y = 2 := by simp
#check exists_has_deriv_at_eq_slope
#check exists_deriv_eq_slope
open set topological_space
namespace measure_theory
variables {α E : Type*} [measurable_space α] [normed_group E] [normed_space ℝ E]
[measurable_space E] [borel_space E] [complete_space E] [second_countable_topology E]
{μ : measure α} {f : α → E}
#check integral
#check ∫ x : ℝ, x ^ 2
#check ∫ x in Icc (0:ℝ) 1, x^2
#check ∫ x, f x ∂μ
#check integral_add
#check integral_add_measure
lemma integral_union (f : α → E) (hfm : measurable f) {s t : set α}
(hs : is_measurable s) (ht : is_measurable t) (hst : disjoint s t)
(hfis : integrable f $ μ.restrict s) (hfit : integrable f $ μ.restrict t) :
∫ x in s ∪ t, f x ∂μ = ∫ x in s, f x ∂μ + ∫ x in t, f x ∂μ :=
begin
rw [measure.restrict_union hst hs ht, integral_add_measure hfis hfit],
end
lemma integral_sdiff (f : α → E) (hfm : measurable f) {s t : set α}
(hs : is_measurable s) (ht : is_measurable t) (hst : s ⊆ t)
(hfi : integrable f $ μ.restrict t) :
∫ x in t \ s, f x ∂μ = ∫ x in t, f x ∂μ - ∫ x in s, f x ∂μ :=
begin
-- hint: apply `integral_union` to `s` and `t \ s`
sorry
end
lemma integral_Icc_sub_Icc_of_le [linear_order α] [topological_space α] [order_topology α]
[borel_space α] {x y z : α} (hxy : x ≤ y) (hyz : y ≤ z)
{f : α → ℝ} (hfm : measurable f) (hfi : integrable f (μ.restrict $ Icc x z)) :
∫ a in Icc x z, f a ∂μ - ∫ a in Icc x y, f a ∂μ = ∫ a in Ioc y z, f a ∂μ :=
begin
rw [sub_eq_iff_eq_add', ← integral_union, Icc_union_Ioc_eq_Icc];
sorry
end
lemma set_integral_const (c : E) {s : set α} (hs : is_measurable s) :
∫ a in s, c ∂μ = (μ s).to_real • c :=
by simp
end measure_theory
open measure_theory
theorem FTC {f : ℝ → ℝ} {x y : ℝ} (hy : continuous_at f y) (h : x < y)
(hfm : measurable f)
(hfi : integrable f (volume.restrict $ Icc x y)) :
has_deriv_at (λ z, ∫ a in Icc x z, f a) (f y) y :=
begin
have A : has_deriv_within_at (λ z, ∫ a in Icc x z, f a) (f y) (Ici y) y,
{ rw [has_deriv_within_at_iff_tendsto, metric.tendsto_nhds_within_nhds],
intros ε ε0,
rw [metric.continuous_at_iff] at hy,
rcases hy ε ε0 with ⟨δ, δ0, hδ⟩,
use [δ, δ0],
intros z hyz hzδ,
rw [integral_Icc_sub_Icc_of_le, dist_zero_right, real.norm_eq_abs, abs_mul, abs_of_nonneg, abs_of_nonneg],
all_goals {sorry } },
have B : has_deriv_within_at (λ z, ∫ a in Icc x z, f a) (f y) (Iic y) y,
{ sorry },
have := B.union A,
simpa using this
end
|
0ce5276619b04805b8905b1476ac275c71c1078b
|
1a61aba1b67cddccce19532a9596efe44be4285f
|
/library/algebra/group.lean
|
c2aad7ca8375e5042c8a6c3427dd73d134df8734
|
[
"Apache-2.0"
] |
permissive
|
eigengrau/lean
|
07986a0f2548688c13ba36231f6cdbee82abf4c6
|
f8a773be1112015e2d232661ce616d23f12874d0
|
refs/heads/master
| 1,610,939,198,566
| 1,441,352,386,000
| 1,441,352,494,000
| 41,903,576
| 0
| 0
| null | 1,441,352,210,000
| 1,441,352,210,000
| null |
UTF-8
|
Lean
| false
| false
| 21,189
|
lean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
Various multiplicative and additive structures. Partially modeled on Isabelle's library.
-/
import logic.eq data.unit data.sigma data.prod
import algebra.binary algebra.priority
open eq eq.ops -- note: ⁻¹ will be overloaded
open binary
namespace algebra
variable {A : Type}
/- overloaded symbols -/
structure has_mul [class] (A : Type) :=
(mul : A → A → A)
structure has_add [class] (A : Type) :=
(add : A → A → A)
structure has_one [class] (A : Type) :=
(one : A)
structure has_zero [class] (A : Type) :=
(zero : A)
structure has_inv [class] (A : Type) :=
(inv : A → A)
structure has_neg [class] (A : Type) :=
(neg : A → A)
infixl [priority algebra.prio] `*` := has_mul.mul
infixl [priority algebra.prio] `+` := has_add.add
postfix [priority algebra.prio] `⁻¹` := has_inv.inv
prefix [priority algebra.prio] `-` := has_neg.neg
notation 1 := !has_one.one
notation 0 := !has_zero.zero
/- semigroup -/
structure semigroup [class] (A : Type) extends has_mul A :=
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))
theorem mul.assoc [s : semigroup A] (a b c : A) : a * b * c = a * (b * c) :=
!semigroup.mul_assoc
structure comm_semigroup [class] (A : Type) extends semigroup A :=
(mul_comm : ∀a b, mul a b = mul b a)
theorem mul.comm [s : comm_semigroup A] (a b : A) : a * b = b * a :=
!comm_semigroup.mul_comm
theorem mul.left_comm [s : comm_semigroup A] (a b c : A) : a * (b * c) = b * (a * c) :=
binary.left_comm (@mul.comm A s) (@mul.assoc A s) a b c
theorem mul.right_comm [s : comm_semigroup A] (a b c : A) : (a * b) * c = (a * c) * b :=
binary.right_comm (@mul.comm A s) (@mul.assoc A s) a b c
structure left_cancel_semigroup [class] (A : Type) extends semigroup A :=
(mul_left_cancel : ∀a b c, mul a b = mul a c → b = c)
theorem mul.left_cancel [s : left_cancel_semigroup A] {a b c : A} :
a * b = a * c → b = c :=
!left_cancel_semigroup.mul_left_cancel
abbreviation eq_of_mul_eq_mul_left' := @mul.left_cancel
structure right_cancel_semigroup [class] (A : Type) extends semigroup A :=
(mul_right_cancel : ∀a b c, mul a b = mul c b → a = c)
theorem mul.right_cancel [s : right_cancel_semigroup A] {a b c : A} :
a * b = c * b → a = c :=
!right_cancel_semigroup.mul_right_cancel
abbreviation eq_of_mul_eq_mul_right' := @mul.right_cancel
/- additive semigroup -/
structure add_semigroup [class] (A : Type) extends has_add A :=
(add_assoc : ∀a b c, add (add a b) c = add a (add b c))
theorem add.assoc [s : add_semigroup A] (a b c : A) : a + b + c = a + (b + c) :=
!add_semigroup.add_assoc
structure add_comm_semigroup [class] (A : Type) extends add_semigroup A :=
(add_comm : ∀a b, add a b = add b a)
theorem add.comm [s : add_comm_semigroup A] (a b : A) : a + b = b + a :=
!add_comm_semigroup.add_comm
theorem add.left_comm [s : add_comm_semigroup A] (a b c : A) :
a + (b + c) = b + (a + c) :=
binary.left_comm (@add.comm A s) (@add.assoc A s) a b c
theorem add.right_comm [s : add_comm_semigroup A] (a b c : A) : (a + b) + c = (a + c) + b :=
binary.right_comm (@add.comm A s) (@add.assoc A s) a b c
structure add_left_cancel_semigroup [class] (A : Type) extends add_semigroup A :=
(add_left_cancel : ∀a b c, add a b = add a c → b = c)
theorem add.left_cancel [s : add_left_cancel_semigroup A] {a b c : A} :
a + b = a + c → b = c :=
!add_left_cancel_semigroup.add_left_cancel
abbreviation eq_of_add_eq_add_left := @add.left_cancel
structure add_right_cancel_semigroup [class] (A : Type) extends add_semigroup A :=
(add_right_cancel : ∀a b c, add a b = add c b → a = c)
theorem add.right_cancel [s : add_right_cancel_semigroup A] {a b c : A} :
a + b = c + b → a = c :=
!add_right_cancel_semigroup.add_right_cancel
abbreviation eq_of_add_eq_add_right := @add.right_cancel
/- monoid -/
structure monoid [class] (A : Type) extends semigroup A, has_one A :=
(one_mul : ∀a, mul one a = a) (mul_one : ∀a, mul a one = a)
theorem one_mul [s : monoid A] (a : A) : 1 * a = a := !monoid.one_mul
theorem mul_one [s : monoid A] (a : A) : a * 1 = a := !monoid.mul_one
structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A
/- additive monoid -/
structure add_monoid [class] (A : Type) extends add_semigroup A, has_zero A :=
(zero_add : ∀a, add zero a = a) (add_zero : ∀a, add a zero = a)
theorem zero_add [s : add_monoid A] (a : A) : 0 + a = a := !add_monoid.zero_add
theorem add_zero [s : add_monoid A] (a : A) : a + 0 = a := !add_monoid.add_zero
structure add_comm_monoid [class] (A : Type) extends add_monoid A, add_comm_semigroup A
definition add_monoid.to_monoid {A : Type} [s : add_monoid A] : monoid A :=
⦃ monoid,
mul := add_monoid.add,
mul_assoc := add_monoid.add_assoc,
one := add_monoid.zero A,
mul_one := add_monoid.add_zero,
one_mul := add_monoid.zero_add
⦄
definition add_comm_monoid.to_comm_monoid {A : Type} [s : add_comm_monoid A] : comm_monoid A :=
⦃ comm_monoid,
add_monoid.to_monoid,
mul_comm := add_comm_monoid.add_comm
⦄
section add_comm_monoid
theorem add_comm_three {A : Type} [s : add_comm_monoid A] (a b c : A) : a + b + c = c + b + a :=
by rewrite [{a + _}add.comm, {_ + c}add.comm, -*add.assoc]
end add_comm_monoid
/- group -/
structure group [class] (A : Type) extends monoid A, has_inv A :=
(mul_left_inv : ∀a, mul (inv a) a = one)
-- Note: with more work, we could derive the axiom one_mul
section group
variable [s : group A]
include s
theorem mul.left_inv (a : A) : a⁻¹ * a = 1 := !group.mul_left_inv
theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) = b :=
by rewrite [-mul.assoc, mul.left_inv, one_mul]
theorem inv_mul_cancel_right (a b : A) : a * b⁻¹ * b = a :=
by rewrite [mul.assoc, mul.left_inv, mul_one]
theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b :=
by rewrite [-mul_one a⁻¹, -H, inv_mul_cancel_left]
theorem one_inv : 1⁻¹ = (1 : A) := inv_eq_of_mul_eq_one (one_mul 1)
theorem inv_inv (a : A) : (a⁻¹)⁻¹ = a := inv_eq_of_mul_eq_one (mul.left_inv a)
theorem inv.inj {a b : A} (H : a⁻¹ = b⁻¹) : a = b :=
by rewrite [-inv_inv, H, inv_inv]
theorem inv_eq_inv_iff_eq (a b : A) : a⁻¹ = b⁻¹ ↔ a = b :=
iff.intro (assume H, inv.inj H) (assume H, congr_arg _ H)
theorem inv_eq_one_iff_eq_one (a : A) : a⁻¹ = 1 ↔ a = 1 :=
one_inv ▸ inv_eq_inv_iff_eq a 1
theorem eq_one_of_inv_eq_one (a : A) : a⁻¹ = 1 → a = 1 :=
iff.mp !inv_eq_one_iff_eq_one
theorem eq_inv_of_eq_inv {a b : A} (H : a = b⁻¹) : b = a⁻¹ :=
by rewrite [H, inv_inv]
theorem eq_inv_iff_eq_inv (a b : A) : a = b⁻¹ ↔ b = a⁻¹ :=
iff.intro !eq_inv_of_eq_inv !eq_inv_of_eq_inv
theorem eq_inv_of_mul_eq_one {a b : A} (H : a * b = 1) : a = b⁻¹ :=
begin rewrite [eq_inv_iff_eq_inv], apply eq.symm, exact inv_eq_of_mul_eq_one H end
theorem mul.right_inv (a : A) : a * a⁻¹ = 1 :=
calc
a * a⁻¹ = (a⁻¹)⁻¹ * a⁻¹ : inv_inv
... = 1 : mul.left_inv
theorem mul_inv_cancel_left (a b : A) : a * (a⁻¹ * b) = b :=
calc
a * (a⁻¹ * b) = a * a⁻¹ * b : by rewrite mul.assoc
... = 1 * b : mul.right_inv
... = b : one_mul
theorem mul_inv_cancel_right (a b : A) : a * b * b⁻¹ = a :=
calc
a * b * b⁻¹ = a * (b * b⁻¹) : mul.assoc
... = a * 1 : mul.right_inv
... = a : mul_one
theorem mul_inv (a b : A) : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
inv_eq_of_mul_eq_one
(calc
a * b * (b⁻¹ * a⁻¹) = a * (b * (b⁻¹ * a⁻¹)) : mul.assoc
... = a * a⁻¹ : mul_inv_cancel_left
... = 1 : mul.right_inv)
theorem eq_of_mul_inv_eq_one {a b : A} (H : a * b⁻¹ = 1) : a = b :=
calc
a = a * b⁻¹ * b : by rewrite inv_mul_cancel_right
... = 1 * b : H
... = b : one_mul
theorem eq_mul_inv_of_mul_eq {a b c : A} (H : a * c = b) : a = b * c⁻¹ :=
by rewrite [-H, mul_inv_cancel_right]
theorem eq_inv_mul_of_mul_eq {a b c : A} (H : b * a = c) : a = b⁻¹ * c :=
by rewrite [-H, inv_mul_cancel_left]
theorem inv_mul_eq_of_eq_mul {a b c : A} (H : b = a * c) : a⁻¹ * b = c :=
by rewrite [H, inv_mul_cancel_left]
theorem mul_inv_eq_of_eq_mul {a b c : A} (H : a = c * b) : a * b⁻¹ = c :=
by rewrite [H, mul_inv_cancel_right]
theorem eq_mul_of_mul_inv_eq {a b c : A} (H : a * c⁻¹ = b) : a = b * c :=
!inv_inv ▸ (eq_mul_inv_of_mul_eq H)
theorem eq_mul_of_inv_mul_eq {a b c : A} (H : b⁻¹ * a = c) : a = b * c :=
!inv_inv ▸ (eq_inv_mul_of_mul_eq H)
theorem mul_eq_of_eq_inv_mul {a b c : A} (H : b = a⁻¹ * c) : a * b = c :=
!inv_inv ▸ (inv_mul_eq_of_eq_mul H)
theorem mul_eq_of_eq_mul_inv {a b c : A} (H : a = c * b⁻¹) : a * b = c :=
!inv_inv ▸ (mul_inv_eq_of_eq_mul H)
theorem mul_eq_iff_eq_inv_mul (a b c : A) : a * b = c ↔ b = a⁻¹ * c :=
iff.intro eq_inv_mul_of_mul_eq mul_eq_of_eq_inv_mul
theorem mul_eq_iff_eq_mul_inv (a b c : A) : a * b = c ↔ a = c * b⁻¹ :=
iff.intro eq_mul_inv_of_mul_eq mul_eq_of_eq_mul_inv
theorem mul_left_cancel {a b c : A} (H : a * b = a * c) : b = c :=
by rewrite [-inv_mul_cancel_left a b, H, inv_mul_cancel_left]
theorem mul_right_cancel {a b c : A} (H : a * b = c * b) : a = c :=
by rewrite [-mul_inv_cancel_right a b, H, mul_inv_cancel_right]
theorem mul_eq_one_of_mul_eq_one {a b : A} (H : b * a = 1) : a * b = 1 :=
by rewrite [-inv_eq_of_mul_eq_one H, mul.left_inv]
theorem mul_eq_one_iff_mul_eq_one (a b : A) : a * b = 1 ↔ b * a = 1 :=
iff.intro !mul_eq_one_of_mul_eq_one !mul_eq_one_of_mul_eq_one
definition conj_by (g a : A) := g * a * g⁻¹
definition is_conjugate (a b : A) := ∃ x, conj_by x b = a
local infixl `~` := is_conjugate
local infixr `∘c`:55 := conj_by
lemma conj_compose (f g a : A) : f ∘c g ∘c a = f*g ∘c a :=
calc f ∘c g ∘c a = f * (g * a * g⁻¹) * f⁻¹ : rfl
... = f * (g * a) * g⁻¹ * f⁻¹ : mul.assoc
... = f * g * a * g⁻¹ * f⁻¹ : mul.assoc
... = f * g * a * (g⁻¹ * f⁻¹) : mul.assoc
... = f * g * a * (f * g)⁻¹ : mul_inv
lemma conj_id (a : A) : 1 ∘c a = a :=
calc 1 * a * 1⁻¹ = a * 1⁻¹ : one_mul
... = a * 1 : one_inv
... = a : mul_one
lemma conj_one (g : A) : g ∘c 1 = 1 :=
calc g * 1 * g⁻¹ = g * g⁻¹ : mul_one
... = 1 : mul.right_inv
lemma conj_inv_cancel (g : A) : ∀ a, g⁻¹ ∘c g ∘c a = a :=
assume a, calc
g⁻¹ ∘c g ∘c a = g⁻¹*g ∘c a : conj_compose
... = 1 ∘c a : mul.left_inv
... = a : conj_id
lemma conj_inv (g : A) : ∀ a, (g ∘c a)⁻¹ = g ∘c a⁻¹ :=
take a, calc
(g * a * g⁻¹)⁻¹ = g⁻¹⁻¹ * (g * a)⁻¹ : mul_inv
... = g⁻¹⁻¹ * (a⁻¹ * g⁻¹) : mul_inv
... = g⁻¹⁻¹ * a⁻¹ * g⁻¹ : mul.assoc
... = g * a⁻¹ * g⁻¹ : inv_inv
lemma is_conj.refl (a : A) : a ~ a := exists.intro 1 (conj_id a)
lemma is_conj.symm (a b : A) : a ~ b → b ~ a :=
assume Pab, obtain x (Pconj : x ∘c b = a), from Pab,
assert Pxinv : x⁻¹ ∘c x ∘c b = x⁻¹ ∘c a, from (congr_arg2 conj_by (eq.refl x⁻¹) Pconj),
exists.intro x⁻¹ (eq.symm (conj_inv_cancel x b ▸ Pxinv))
lemma is_conj.trans (a b c : A) : a ~ b → b ~ c → a ~ c :=
assume Pab, assume Pbc,
obtain x (Px : x ∘c b = a), from Pab,
obtain y (Py : y ∘c c = b), from Pbc,
exists.intro (x*y) (calc
x*y ∘c c = x ∘c y ∘c c : conj_compose
... = x ∘c b : Py
... = a : Px)
definition group.to_left_cancel_semigroup [trans-instance] [coercion] [reducible] :
left_cancel_semigroup A :=
⦃ left_cancel_semigroup, s,
mul_left_cancel := @mul_left_cancel A s ⦄
definition group.to_right_cancel_semigroup [trans-instance] [coercion] [reducible] :
right_cancel_semigroup A :=
⦃ right_cancel_semigroup, s,
mul_right_cancel := @mul_right_cancel A s ⦄
end group
structure comm_group [class] (A : Type) extends group A, comm_monoid A
/- additive group -/
structure add_group [class] (A : Type) extends add_monoid A, has_neg A :=
(add_left_inv : ∀a, add (neg a) a = zero)
definition add_group.to_group {A : Type} [s : add_group A] : group A :=
⦃ group, add_monoid.to_monoid,
mul_left_inv := add_group.add_left_inv ⦄
section add_group
variables [s : add_group A]
include s
theorem add.left_inv (a : A) : -a + a = 0 := !add_group.add_left_inv
theorem neg_add_cancel_left (a b : A) : -a + (a + b) = b :=
by rewrite [-add.assoc, add.left_inv, zero_add]
theorem neg_add_cancel_right (a b : A) : a + -b + b = a :=
by rewrite [add.assoc, add.left_inv, add_zero]
theorem neg_eq_of_add_eq_zero {a b : A} (H : a + b = 0) : -a = b :=
by rewrite [-add_zero, -H, neg_add_cancel_left]
theorem neg_zero : -0 = (0 : A) := neg_eq_of_add_eq_zero (zero_add 0)
theorem neg_neg (a : A) : -(-a) = a := neg_eq_of_add_eq_zero (add.left_inv a)
theorem eq_neg_of_add_eq_zero {a b : A} (H : a + b = 0) : a = -b :=
by rewrite [-neg_eq_of_add_eq_zero H, neg_neg]
theorem neg.inj {a b : A} (H : -a = -b) : a = b :=
calc
a = -(-a) : neg_neg
... = b : neg_eq_of_add_eq_zero (H⁻¹ ▸ (add.left_inv _))
theorem neg_eq_neg_iff_eq (a b : A) : -a = -b ↔ a = b :=
iff.intro (assume H, neg.inj H) (assume H, congr_arg _ H)
theorem eq_of_neg_eq_neg {a b : A} : -a = -b → a = b :=
iff.mp !neg_eq_neg_iff_eq
theorem neg_eq_zero_iff_eq_zero (a : A) : -a = 0 ↔ a = 0 :=
neg_zero ▸ !neg_eq_neg_iff_eq
theorem eq_zero_of_neg_eq_zero {a : A} : -a = 0 → a = 0 :=
iff.mp !neg_eq_zero_iff_eq_zero
theorem eq_neg_of_eq_neg {a b : A} (H : a = -b) : b = -a :=
H⁻¹ ▸ (neg_neg b)⁻¹
theorem eq_neg_iff_eq_neg (a b : A) : a = -b ↔ b = -a :=
iff.intro !eq_neg_of_eq_neg !eq_neg_of_eq_neg
theorem add.right_inv (a : A) : a + -a = 0 :=
calc
a + -a = -(-a) + -a : neg_neg
... = 0 : add.left_inv
theorem add_neg_cancel_left (a b : A) : a + (-a + b) = b :=
by rewrite [-add.assoc, add.right_inv, zero_add]
theorem add_neg_cancel_right (a b : A) : a + b + -b = a :=
by rewrite [add.assoc, add.right_inv, add_zero]
theorem neg_add_rev (a b : A) : -(a + b) = -b + -a :=
neg_eq_of_add_eq_zero
begin
rewrite [add.assoc, add_neg_cancel_left, add.right_inv]
end
-- TODO: delete these in favor of sub rules?
theorem eq_add_neg_of_add_eq {a b c : A} (H : a + c = b) : a = b + -c :=
H ▸ !add_neg_cancel_right⁻¹
theorem eq_neg_add_of_add_eq {a b c : A} (H : b + a = c) : a = -b + c :=
H ▸ !neg_add_cancel_left⁻¹
theorem neg_add_eq_of_eq_add {a b c : A} (H : b = a + c) : -a + b = c :=
H⁻¹ ▸ !neg_add_cancel_left
theorem add_neg_eq_of_eq_add {a b c : A} (H : a = c + b) : a + -b = c :=
H⁻¹ ▸ !add_neg_cancel_right
theorem eq_add_of_add_neg_eq {a b c : A} (H : a + -c = b) : a = b + c :=
!neg_neg ▸ (eq_add_neg_of_add_eq H)
theorem eq_add_of_neg_add_eq {a b c : A} (H : -b + a = c) : a = b + c :=
!neg_neg ▸ (eq_neg_add_of_add_eq H)
theorem add_eq_of_eq_neg_add {a b c : A} (H : b = -a + c) : a + b = c :=
!neg_neg ▸ (neg_add_eq_of_eq_add H)
theorem add_eq_of_eq_add_neg {a b c : A} (H : a = c + -b) : a + b = c :=
!neg_neg ▸ (add_neg_eq_of_eq_add H)
theorem add_eq_iff_eq_neg_add (a b c : A) : a + b = c ↔ b = -a + c :=
iff.intro eq_neg_add_of_add_eq add_eq_of_eq_neg_add
theorem add_eq_iff_eq_add_neg (a b c : A) : a + b = c ↔ a = c + -b :=
iff.intro eq_add_neg_of_add_eq add_eq_of_eq_add_neg
theorem add_left_cancel {a b c : A} (H : a + b = a + c) : b = c :=
calc b = -a + (a + b) : !neg_add_cancel_left⁻¹
... = -a + (a + c) : H
... = c : neg_add_cancel_left
theorem add_right_cancel {a b c : A} (H : a + b = c + b) : a = c :=
calc a = (a + b) + -b : !add_neg_cancel_right⁻¹
... = (c + b) + -b : H
... = c : add_neg_cancel_right
definition add_group.to_left_cancel_semigroup [trans-instance] [coercion] [reducible] :
add_left_cancel_semigroup A :=
⦃ add_left_cancel_semigroup, s,
add_left_cancel := @add_left_cancel A s ⦄
definition add_group.to_add_right_cancel_semigroup [trans-instance] [coercion] [reducible] :
add_right_cancel_semigroup A :=
⦃ add_right_cancel_semigroup, s,
add_right_cancel := @add_right_cancel A s ⦄
theorem add_neg_eq_neg_add_rev {a b : A} : a + -b = -(b + -a) :=
by rewrite [neg_add_rev, neg_neg]
/- sub -/
-- TODO: derive corresponding facts for div in a field
definition sub [reducible] (a b : A) : A := a + -b
infix [priority algebra.prio] `-` := sub
theorem sub_eq_add_neg (a b : A) : a - b = a + -b := rfl
theorem sub_self (a : A) : a - a = 0 := !add.right_inv
theorem sub_add_cancel (a b : A) : a - b + b = a := !neg_add_cancel_right
theorem add_sub_cancel (a b : A) : a + b - b = a := !add_neg_cancel_right
theorem eq_of_sub_eq_zero {a b : A} (H : a - b = 0) : a = b :=
calc
a = (a - b) + b : !sub_add_cancel⁻¹
... = 0 + b : H
... = b : zero_add
theorem eq_iff_sub_eq_zero (a b : A) : a = b ↔ a - b = 0 :=
iff.intro (assume H, H ▸ !sub_self) (assume H, eq_of_sub_eq_zero H)
theorem zero_sub (a : A) : 0 - a = -a := !zero_add
theorem sub_zero (a : A) : a - 0 = a := subst (eq.symm neg_zero) !add_zero
theorem sub_neg_eq_add (a b : A) : a - (-b) = a + b :=
by change a + -(-b) = a + b; rewrite neg_neg
theorem neg_sub (a b : A) : -(a - b) = b - a :=
neg_eq_of_add_eq_zero
(calc
a - b + (b - a) = a - b + b - a : by krewrite -add.assoc
... = a - a : sub_add_cancel
... = 0 : sub_self)
theorem add_sub (a b c : A) : a + (b - c) = a + b - c := !add.assoc⁻¹
theorem sub_add_eq_sub_sub_swap (a b c : A) : a - (b + c) = a - c - b :=
calc
a - (b + c) = a + (-c - b) : neg_add_rev
... = a - c - b : by krewrite -add.assoc
theorem sub_eq_iff_eq_add (a b c : A) : a - b = c ↔ a = c + b :=
iff.intro (assume H, eq_add_of_add_neg_eq H) (assume H, add_neg_eq_of_eq_add H)
theorem eq_sub_iff_add_eq (a b c : A) : a = b - c ↔ a + c = b :=
iff.intro (assume H, add_eq_of_eq_add_neg H) (assume H, eq_add_neg_of_add_eq H)
theorem eq_iff_eq_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a = b ↔ c = d :=
calc
a = b ↔ a - b = 0 : eq_iff_sub_eq_zero
... = (c - d = 0) : H
... ↔ c = d : iff.symm (eq_iff_sub_eq_zero c d)
theorem eq_sub_of_add_eq {a b c : A} (H : a + c = b) : a = b - c :=
!eq_add_neg_of_add_eq H
theorem sub_eq_of_eq_add {a b c : A} (H : a = c + b) : a - b = c :=
!add_neg_eq_of_eq_add H
theorem eq_add_of_sub_eq {a b c : A} (H : a - c = b) : a = b + c :=
eq_add_of_add_neg_eq H
theorem add_eq_of_eq_sub {a b c : A} (H : a = c - b) : a + b = c :=
add_eq_of_eq_add_neg H
end add_group
structure add_comm_group [class] (A : Type) extends add_group A, add_comm_monoid A
section add_comm_group
variable [s : add_comm_group A]
include s
theorem sub_add_eq_sub_sub (a b c : A) : a - (b + c) = a - b - c :=
!add.comm ▸ !sub_add_eq_sub_sub_swap
theorem neg_add_eq_sub (a b : A) : -a + b = b - a := !add.comm
theorem neg_add (a b : A) : -(a + b) = -a + -b := add.comm (-b) (-a) ▸ neg_add_rev a b
theorem sub_add_eq_add_sub (a b c : A) : a - b + c = a + c - b := !add.right_comm
theorem sub_sub (a b c : A) : a - b - c = a - (b + c) :=
by rewrite [▸ a + -b + -c = _, add.assoc, -neg_add]
theorem add_sub_add_left_eq_sub (a b c : A) : (c + a) - (c + b) = a - b :=
by rewrite [sub_add_eq_sub_sub, (add.comm c a), add_sub_cancel]
theorem eq_sub_of_add_eq' {a b c : A} (H : c + a = b) : a = b - c :=
!eq_sub_of_add_eq (!add.comm ▸ H)
theorem sub_eq_of_eq_add' {a b c : A} (H : a = b + c) : a - b = c :=
!sub_eq_of_eq_add (!add.comm ▸ H)
theorem eq_add_of_sub_eq' {a b c : A} (H : a - b = c) : a = b + c :=
!add.comm ▸ eq_add_of_sub_eq H
theorem add_eq_of_eq_sub' {a b c : A} (H : b = c - a) : a + b = c :=
!add.comm ▸ add_eq_of_eq_sub H
theorem sub_sub_self (a b : A) : a - (a - b) = b :=
by rewrite [sub_eq_add_neg, neg_sub, add.comm, sub_add_cancel]
theorem add_sub_comm (a b c d : A) : a + b - (c + d) = (a - c) + (b - d) :=
by rewrite [sub_add_eq_sub_sub, -sub_add_eq_add_sub a c b, add_sub]
theorem sub_eq_sub_add_sub (a b c : A) : a - b = c - b + (a - c) :=
by rewrite [add_sub, sub_add_cancel] ⬝ !add.comm
end add_comm_group
definition group_of_add_group (A : Type) [G : add_group A] : group A :=
⦃group,
mul := has_add.add,
mul_assoc := add.assoc,
one := !has_zero.zero,
one_mul := zero_add,
mul_one := add_zero,
inv := has_neg.neg,
mul_left_inv := add.left_inv⦄
end algebra
|
06dfb823e298cd158d2e0aec8b48f1221aa3de94
|
432d948a4d3d242fdfb44b81c9e1b1baacd58617
|
/src/ring_theory/mv_polynomial/basic.lean
|
ab8e1d5c9e9e730d37749ddb5c7aa3712b7b529c
|
[
"Apache-2.0"
] |
permissive
|
JLimperg/aesop3
|
306cc6570c556568897ed2e508c8869667252e8a
|
a4a116f650cc7403428e72bd2e2c4cda300fe03f
|
refs/heads/master
| 1,682,884,916,368
| 1,620,320,033,000
| 1,620,320,033,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,902
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import ring_theory.ideal.operations
import linear_algebra.finsupp_vector_space
import algebra.char_p.basic
/-!
# Multivariate polynomials over commutative rings
This file contains basic facts about multivariate polynomials over commutative rings, for example
that the monomials form a basis.
## Main definitions
* `restrict_total_degree σ R m`: the subspace of multivariate polynomials indexed by `σ` over the
commutative ring `R` of total degree at most `m`.
* `restrict_degree σ R m`: the subspace of multivariate polynomials indexed by `σ` over the
commutative ring `R` such that the degree in each individual variable is at most `m`.
## Main statements
* The multivariate polynomial ring over a commutative ring of positive characteristic has positive
characteristic.
* `is_basis_monomials`: shows that the monomials form a basis of the vector space of multivariate
polynomials.
## TODO
Generalise to noncommutative (semi)rings
-/
noncomputable theory
open_locale classical
open set linear_map submodule
open_locale big_operators
universes u v
variables (σ : Type u) (R : Type v) [comm_ring R] (p m : ℕ)
namespace mv_polynomial
section char_p
instance [char_p R p] : char_p (mv_polynomial σ R) p :=
{ cast_eq_zero_iff := λ n, by rw [← C_eq_coe_nat, ← C_0, C_inj, char_p.cast_eq_zero_iff R p] }
end char_p
section homomorphism
lemma map_range_eq_map {R S : Type*} [comm_ring R] [comm_ring S] (p : mv_polynomial σ R)
(f : R →+* S) :
finsupp.map_range f f.map_zero p = map f p :=
begin
rw [← finsupp.sum_single p, finsupp.sum],
-- It's not great that we need to use an `erw` here,
-- but hopefully it will become smoother when we move entirely away from `is_semiring_hom`.
erw [finsupp.map_range_finset_sum (f : R →+ S)],
rw [← (finsupp.support p).sum_hom (map f)],
{ refine finset.sum_congr rfl (assume n _, _),
rw [finsupp.map_range_single, ← monomial, ← monomial, map_monomial], refl, },
apply_instance
end
end homomorphism
section degree
/-- The submodule of polynomials of total degree less than or equal to `m`.-/
def restrict_total_degree : submodule R (mv_polynomial σ R) :=
finsupp.supported _ _ {n | n.sum (λn e, e) ≤ m }
/-- The submodule of polynomials such that the degree with respect to each individual variable is
less than or equal to `m`.-/
def restrict_degree (m : ℕ) : submodule R (mv_polynomial σ R) :=
finsupp.supported _ _ {n | ∀i, n i ≤ m }
variable {R}
lemma mem_restrict_total_degree (p : mv_polynomial σ R) :
p ∈ restrict_total_degree σ R m ↔ p.total_degree ≤ m :=
begin
rw [total_degree, finset.sup_le_iff],
refl
end
lemma mem_restrict_degree (p : mv_polynomial σ R) (n : ℕ) :
p ∈ restrict_degree σ R n ↔ (∀s ∈ p.support, ∀i, (s : σ →₀ ℕ) i ≤ n) :=
begin
rw [restrict_degree, finsupp.mem_supported],
refl
end
lemma mem_restrict_degree_iff_sup (p : mv_polynomial σ R) (n : ℕ) :
p ∈ restrict_degree σ R n ↔ ∀i, p.degrees.count i ≤ n :=
begin
simp only [mem_restrict_degree, degrees, multiset.count_sup, finsupp.count_to_multiset,
finset.sup_le_iff],
exact ⟨assume h n s hs, h s hs n, assume h s hs n, h n s hs⟩
end
variables (σ R)
lemma is_basis_monomials :
is_basis R ((λs, (monomial s 1 : mv_polynomial σ R))) :=
suffices is_basis R (λ (sa : Σ _, unit), (monomial sa.1 1 : mv_polynomial σ R)),
begin
apply is_basis.comp this (λ (s : σ →₀ ℕ), ⟨s, punit.star⟩),
split,
{ intros x y hxy,
simpa using hxy },
{ rintros ⟨x₁, x₂⟩,
use x₁,
rw punit_eq punit.star x₂ }
end,
begin
apply finsupp.is_basis_single (λ _ _, (1 : R)),
intro _,
apply is_basis_singleton_one,
end
end degree
end mv_polynomial
|
066499afffea31f8f9c43b3cd63e648a9599618e
|
3d2a7f1582fe5bae4d0bdc2fe86e997521239a65
|
/spatial-reasoning/spatial-reasoning-problem-17.lean
|
141b4ff409b2d792c1c78388b70db8c651778557
|
[] |
no_license
|
own-pt/common-sense-lean
|
e4fa643ae010459de3d1bf673be7cbc7062563c9
|
f672210aecb4172f5bae265e43e6867397e13b1c
|
refs/heads/master
| 1,622,065,660,261
| 1,589,487,533,000
| 1,589,487,533,000
| 254,167,782
| 3
| 2
| null | 1,589,487,535,000
| 1,586,370,214,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 191
|
lean
|
/- Spatial Reasoning Problem 17 -/
/- It can be found at: SpatialQs.txt -/
/- (17) A string passes through a ring.
If John picks up both ends of the string, does he lift the ring too? -/
|
d3bf985c3f82a044d1bdde46e7b5ef829e8f2010
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/prod/lex.lean
|
af22f85079807461330da8004acd0ff5748289ac
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,203
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Minchao Wu
-/
import order.bounded_order
/-!
# Lexicographic order
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines the lexicographic relation for pairs of orders, partial orders and linear orders.
## Main declarations
* `prod.lex.<pre/partial_/linear_>order`: Instances lifting the orders on `α` and `β` to `α ×ₗ β`.
## Notation
* `α ×ₗ β`: `α × β` equipped with the lexicographic order
## See also
Related files are:
* `data.finset.colex`: Colexicographic order on finite sets.
* `data.list.lex`: Lexicographic order on lists.
* `data.pi.lex`: Lexicographic order on `Πₗ i, α i`.
* `data.psigma.order`: Lexicographic order on `Σ' i, α i`.
* `data.sigma.order`: Lexicographic order on `Σ i, α i`.
-/
variables {α β γ : Type*}
namespace prod.lex
notation α ` ×ₗ `:35 β:34 := lex (prod α β)
meta instance [has_to_format α] [has_to_format β] : has_to_format (α ×ₗ β) :=
prod.has_to_format
instance decidable_eq (α β : Type*) [decidable_eq α] [decidable_eq β] : decidable_eq (α ×ₗ β) :=
prod.decidable_eq
instance inhabited (α β : Type*) [inhabited α] [inhabited β] : inhabited (α ×ₗ β) :=
prod.inhabited
/-- Dictionary / lexicographic ordering on pairs. -/
instance has_le (α β : Type*) [has_lt α] [has_le β] : has_le (α ×ₗ β) :=
{ le := prod.lex (<) (≤) }
instance has_lt (α β : Type*) [has_lt α] [has_lt β] : has_lt (α ×ₗ β) :=
{ lt := prod.lex (<) (<) }
lemma le_iff [has_lt α] [has_le β] (a b : α × β) :
to_lex a ≤ to_lex b ↔ a.1 < b.1 ∨ a.1 = b.1 ∧ a.2 ≤ b.2 := prod.lex_def (<) (≤)
lemma lt_iff [has_lt α] [has_lt β] (a b : α × β) :
to_lex a < to_lex b ↔ a.1 < b.1 ∨ a.1 = b.1 ∧ a.2 < b.2 := prod.lex_def (<) (<)
/-- Dictionary / lexicographic preorder for pairs. -/
instance preorder (α β : Type*) [preorder α] [preorder β] : preorder (α ×ₗ β) :=
{ le_refl := refl_of $ prod.lex _ _,
le_trans := λ _ _ _, trans_of $ prod.lex _ _,
lt_iff_le_not_le := λ x₁ x₂, match x₁, x₂ with
| to_lex (a₁, b₁), to_lex (a₂, b₂) := begin
split,
{ rintro (⟨_, _, hlt⟩ | ⟨_, hlt⟩),
{ split,
{ left, assumption },
{ rintro ⟨⟩,
{ apply lt_asymm hlt, assumption },
{ apply lt_irrefl _ hlt } } },
{ split,
{ right, rw lt_iff_le_not_le at hlt, exact hlt.1 },
{ rintro ⟨⟩,
{ apply lt_irrefl a₁, assumption },
{ rw lt_iff_le_not_le at hlt, apply hlt.2, assumption } } } },
{ rintros ⟨⟨⟩, h₂r⟩,
{ left, assumption },
{ right, rw lt_iff_le_not_le, split,
{ assumption },
{ intro h, apply h₂r, right, exact h } } }
end
end,
.. prod.lex.has_le α β,
.. prod.lex.has_lt α β }
section preorder
variables [partial_order α] [preorder β]
lemma to_lex_mono : monotone (to_lex : α × β → α ×ₗ β) :=
begin
rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ ⟨ha, hb⟩,
obtain rfl | ha : a₁ = a₂ ∨ _ := ha.eq_or_lt,
{ exact right _ hb },
{ exact left _ _ ha }
end
lemma to_lex_strict_mono : strict_mono (to_lex : α × β → α ×ₗ β) :=
begin
rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ h,
obtain rfl | ha : a₁ = a₂ ∨ _ := h.le.1.eq_or_lt,
{ exact right _ (prod.mk_lt_mk_iff_right.1 h) },
{ exact left _ _ ha }
end
end preorder
/-- Dictionary / lexicographic partial_order for pairs. -/
instance partial_order (α β : Type*) [partial_order α] [partial_order β] : partial_order (α ×ₗ β) :=
{ le_antisymm := by
{ haveI : is_strict_order α (<) := { irrefl := lt_irrefl, trans := λ _ _ _, lt_trans },
haveI : is_antisymm β (≤) := ⟨λ _ _, le_antisymm⟩,
exact @antisymm _ (prod.lex _ _) _, },
.. prod.lex.preorder α β }
/-- Dictionary / lexicographic linear_order for pairs. -/
instance linear_order (α β : Type*) [linear_order α] [linear_order β] : linear_order (α ×ₗ β) :=
{ le_total := total_of (prod.lex _ _),
decidable_le := prod.lex.decidable _ _,
decidable_lt := prod.lex.decidable _ _,
decidable_eq := lex.decidable_eq _ _,
.. prod.lex.partial_order α β }
instance order_bot [partial_order α] [preorder β] [order_bot α] [order_bot β] :
order_bot (α ×ₗ β) :=
{ bot := to_lex ⊥,
bot_le := λ a, to_lex_mono bot_le }
instance order_top [partial_order α] [preorder β] [order_top α] [order_top β] :
order_top (α ×ₗ β) :=
{ top := to_lex ⊤,
le_top := λ a, to_lex_mono le_top }
instance bounded_order [partial_order α] [preorder β] [bounded_order α] [bounded_order β] :
bounded_order (α ×ₗ β) :=
{ ..lex.order_bot, ..lex.order_top }
instance [preorder α] [preorder β] [densely_ordered α] [densely_ordered β] :
densely_ordered (α ×ₗ β) :=
⟨begin
rintro _ _ (@⟨a₁, b₁, a₂, b₂, h⟩ | @⟨a, b₁, b₂, h⟩),
{ obtain ⟨c, h₁, h₂⟩ := exists_between h,
exact ⟨(c, b₁), left _ _ h₁, left _ _ h₂⟩ },
{ obtain ⟨c, h₁, h₂⟩ := exists_between h,
exact ⟨(a, c), right _ h₁, right _ h₂⟩ }
end⟩
instance no_max_order_of_left [preorder α] [preorder β] [no_max_order α] : no_max_order (α ×ₗ β) :=
⟨by { rintro ⟨a, b⟩, obtain ⟨c, h⟩ := exists_gt a, exact ⟨⟨c, b⟩, left _ _ h⟩ }⟩
instance no_min_order_of_left [preorder α] [preorder β] [no_min_order α] : no_min_order (α ×ₗ β) :=
⟨by { rintro ⟨a, b⟩, obtain ⟨c, h⟩ := exists_lt a, exact ⟨⟨c, b⟩, left _ _ h⟩ }⟩
instance no_max_order_of_right [preorder α] [preorder β] [no_max_order β] : no_max_order (α ×ₗ β) :=
⟨by { rintro ⟨a, b⟩, obtain ⟨c, h⟩ := exists_gt b, exact ⟨⟨a, c⟩, right _ h⟩ }⟩
instance no_min_order_of_right [preorder α] [preorder β] [no_min_order β] : no_min_order (α ×ₗ β) :=
⟨by { rintro ⟨a, b⟩, obtain ⟨c, h⟩ := exists_lt b, exact ⟨⟨a, c⟩, right _ h⟩ }⟩
end prod.lex
|
33161229c3b12f3a64e89a996060bacca05996fd
|
fecda8e6b848337561d6467a1e30cf23176d6ad0
|
/src/data/lazy_list/basic.lean
|
ab48e9ab5ce8ff372b020c652b62417c42c9be5f
|
[
"Apache-2.0"
] |
permissive
|
spolu/mathlib
|
bacf18c3d2a561d00ecdc9413187729dd1f705ed
|
480c92cdfe1cf3c2d083abded87e82162e8814f4
|
refs/heads/master
| 1,671,684,094,325
| 1,600,736,045,000
| 1,600,736,045,000
| 297,564,749
| 1
| 0
| null | 1,600,758,368,000
| 1,600,758,367,000
| null |
UTF-8
|
Lean
| false
| false
| 5,848
|
lean
|
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
Traversable instance for lazy_lists.
-/
import control.traversable.equiv
import control.traversable.instances
import data.lazy_list
/-!
## Definitions on lazy lists
This file contains various definitions and proofs on lazy lists.
TODO: move the `lazy_list.lean` file from core to mathlib.
-/
universes u
namespace thunk
/-- Creates a thunk with a (non-lazy) constant value. -/
def mk {α} (x : α) : thunk α := λ _, x
instance {α : Type u} [decidable_eq α] : decidable_eq (thunk α) | a b :=
have a = b ↔ a () = b (), from ⟨by cc, by intro; ext x; cases x; assumption⟩,
by rw this; apply_instance
end thunk
namespace lazy_list
open function
/-- Isomorphism between strict and lazy lists. -/
def list_equiv_lazy_list (α : Type*) : list α ≃ lazy_list α :=
{ to_fun := lazy_list.of_list,
inv_fun := lazy_list.to_list,
right_inv := by { intro, induction x, refl, simp! [*],
ext, cases x, refl },
left_inv := by { intro, induction x, refl, simp! [*] } }
instance {α : Type u} : inhabited (lazy_list α) := ⟨nil⟩
instance {α : Type u} [decidable_eq α] : decidable_eq (lazy_list α)
| nil nil := is_true rfl
| (cons x xs) (cons y ys) :=
if h : x = y then
match decidable_eq (xs ()) (ys ()) with
| is_false h2 := is_false (by intro; cc)
| is_true h2 :=
have xs = ys, by ext u; cases u; assumption,
is_true (by cc)
end
else
is_false (by intro; cc)
| nil (cons _ _) := is_false (by cc)
| (cons _ _) nil := is_false (by cc)
/-- Traversal of lazy lists using an applicative effect. -/
protected def traverse {m : Type u → Type u} [applicative m] {α β : Type u}
(f : α → m β) : lazy_list α → m (lazy_list β)
| lazy_list.nil := pure lazy_list.nil
| (lazy_list.cons x xs) := lazy_list.cons <$> f x <*> (thunk.mk <$> traverse (xs ()))
instance : traversable lazy_list :=
{ map := @lazy_list.traverse id _,
traverse := @lazy_list.traverse }
instance : is_lawful_traversable lazy_list :=
begin
apply equiv.is_lawful_traversable' list_equiv_lazy_list;
intros ; resetI; ext,
{ induction x, refl,
simp! [equiv.map,functor.map] at *,
simp [*], refl, },
{ induction x, refl,
simp! [equiv.map,functor.map_const] at *,
simp [*], refl, },
{ induction x,
{ simp! [traversable.traverse,equiv.traverse] with functor_norm, refl },
simp! [equiv.map,functor.map_const,traversable.traverse] at *, rw x_ih,
dsimp [list_equiv_lazy_list,equiv.traverse,to_list,traversable.traverse,list.traverse],
simp! with functor_norm, refl },
end
/-- `init xs`, if `xs` non-empty, drops the last element of the list.
Otherwise, return the empty list. -/
def init {α} : lazy_list α → lazy_list α
| lazy_list.nil := lazy_list.nil
| (lazy_list.cons x xs) :=
let xs' := xs () in
match xs' with
| lazy_list.nil := lazy_list.nil
| (lazy_list.cons _ _) := lazy_list.cons x (init xs')
end
/-- Return the first object contained in the list that satisfies
predicate `p` -/
def find {α} (p : α → Prop) [decidable_pred p] : lazy_list α → option α
| nil := none
| (cons h t) := if p h then some h else find (t ())
/-- `interleave xs ys` creates a list where elements of `xs` and `ys` alternate. -/
def interleave {α} : lazy_list α → lazy_list α → lazy_list α
| lazy_list.nil xs := xs
| a@(lazy_list.cons x xs) lazy_list.nil := a
| (lazy_list.cons x xs) (lazy_list.cons y ys) :=
lazy_list.cons x (lazy_list.cons y (interleave (xs ()) (ys ())))
/-- `interleave_all (xs::ys::zs::xss)` creates a list where elements of `xs`, `ys`
and `zs` and the rest alternate. Every other element of the resulting list is taken from
`xs`, every fourth is taken from `ys`, every eighth is taken from `zs` and so on. -/
def interleave_all {α} : list (lazy_list α) → lazy_list α
| [] := lazy_list.nil
| (x :: xs) := interleave x (interleave_all xs)
/-- Monadic bind operation for `lazy_list`. -/
protected def bind {α β} : lazy_list α → (α → lazy_list β) → lazy_list β
| lazy_list.nil _ := lazy_list.nil
| (lazy_list.cons x xs) f := lazy_list.append (f x) (bind (xs ()) f)
/-- Reverse the order of a `lazy_list`.
It is done by converting to a `list` first because reversal involves evaluating all
the list and if the list is all evaluated, `list` is a better representation for
it than a series of thunks. -/
def reverse {α} (xs : lazy_list α) : lazy_list α :=
of_list xs.to_list.reverse
instance : monad lazy_list :=
{ pure := @lazy_list.singleton,
bind := @lazy_list.bind }
lemma append_nil {α} (xs : lazy_list α) : xs.append lazy_list.nil = xs :=
begin
induction xs, refl,
simp [lazy_list.append, xs_ih],
ext, congr,
end
lemma append_assoc {α} (xs ys zs : lazy_list α) : (xs.append ys).append zs = xs.append (ys.append zs) :=
by induction xs; simp [append, *]
lemma append_bind {α β} (xs : lazy_list α) (ys : thunk (lazy_list α)) (f : α → lazy_list β) :
(@lazy_list.append _ xs ys).bind f = (xs.bind f).append ((ys ()).bind f) :=
by induction xs; simp [lazy_list.bind, append, *, append_assoc, append, lazy_list.bind]
instance : is_lawful_monad lazy_list :=
{ pure_bind := by { intros, apply append_nil },
bind_assoc := by { intros, dsimp [(>>=)], induction x; simp [lazy_list.bind, append_bind, *], },
id_map :=
begin
intros,
simp [(<$>)],
induction x; simp [lazy_list.bind, *, singleton, append],
ext ⟨ ⟩, refl,
end }
/-- Try applying function `f` to every element of a `lazy_list` and
return the result of the first attempt that succeeds. -/
def mfirst {m} [alternative m] {α β} (f : α → m β) : lazy_list α → m β
| nil := failure
| (cons x xs) :=
f x <|> mfirst (xs ())
end lazy_list
|
a1d8869c288e70de9882e25e9edebbeb0211c73d
|
5842125af0946f8797927ce44a1a4c3ba27ad5b4
|
/src/Neptune.lean
|
cf94b4e735083c852da22f7be5727fc96bf85425
|
[] |
no_license
|
Anderssorby/Neptune.lean
|
5c2f3e4885b4a5635718ac827069690703bc1ffb
|
378317a3e4383c7874d01907efb84b1e39180cf3
|
refs/heads/main
| 1,692,962,529,542
| 1,636,564,929,000
| 1,636,564,929,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 792
|
lean
|
/-
Lean bindings to the Neptune hash function
-/
import BinaryTools
namespace Neptune
constant NEPTUNE_OUT_LEN: Nat := 32
/-
A dependent ByteArray which guarantees the correct byte length.
-/
def NeptuneHash : Type := { r : ByteArray // r.size = NEPTUNE_OUT_LEN }
@[defaultInstance]
instance : Into ByteArray NeptuneHash := ⟨Subtype.val⟩
instance : Into String NeptuneHash := ⟨toBase64⟩
instance : ToString NeptuneHash := ⟨into⟩
instance : Inhabited NeptuneHash where
default := ⟨(List.replicate NEPTUNE_OUT_LEN 0).toByteArray, by simp⟩
constant HasherPointed : PointedType
def Hasher : Type := HasherPointed.type
instance : Inhabited Hasher := ⟨HasherPointed.val⟩
def hash {I: Type u} [Into ByteArray I] (input : I) : NeptuneHash :=
Inhabited.default
|
b649ce169e907120c5b2d257c707076491750f76
|
c213e436cb87414954d055137f2a847a9674d7d2
|
/src/linear_algebra/basic.lean
|
1162f7cca8d747e155f3c83b1d8008de85f04b8f
|
[
"Apache-2.0"
] |
permissive
|
dsanjen/mathlib
|
642d270c3d209cfdfb097c2ddc9dd36c102fae9f
|
a3844c85c606acca5922408217d55891b760fad6
|
refs/heads/master
| 1,606,199,308,451
| 1,576,274,676,000
| 1,576,274,676,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 72,131
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard
-/
import algebra.pi_instances data.finsupp data.equiv.algebra order.order_iso
/-!
# Linear algebra
This file defines the basics of linear algebra. It sets up the "categorical/lattice structure" of
modules over a ring, submodules, and linear maps. If `p` and `q` are submodules of a module, `p ≤ q`
means that `p ⊆ q`.
Many of the relevant definitions, including `module`, `submodule`, and `linear_map`, are found in
`src/algebra/module.lean`.
## Main definitions
* Many constructors for linear maps, including `pair` and `copair`
* `submodule.span s` is defined to be the smallest submodule containing the set `s`.
* If `p` is a submodule of `M`, `submodule.quotient p` is the quotient of `M` with respect to `p`:
that is, elements of `M` are identified if their difference is in `p`. This is itself a module.
* The kernel `ker` and range `range` of a linear map are submodules of the domain and codomain
respectively.
* `linear_equiv M M₂`, the type of linear equivalences between `M` and `M₂`, is a structure that
extends `linear_map` and `equiv`.
* The general linear group is defined to be the group of invertible linear maps from `M` to itself.
## Main statements
* The first and second isomorphism laws for modules are proved as `quot_ker_equiv_range` and
`sup_quotient_equiv_quotient_inf`.
## Notations
* We continue to use the notation `M →ₗ[R] M₂` for the type of linear maps from `M` to `M₂` over the
ring `R`.
* We introduce the notations `M ≃ₗ M₂` and `M ≃ₗ[R] M₂` for `linear_equiv M M₂`. In the first, the
ring `R` is implicit.
## Implementation notes
We note that, when constructing linear maps, it is convenient to use operations defined on bundled
maps (`pair`, `copair`, arithmetic operations like `+`) instead of defining a function and proving
it is linear.
## Tags
linear algebra, vector space, module
-/
open function lattice
reserve infix ` ≃ₗ `:25
universes u v w x y z u' v' w' y'
variables {R : Type u} {K : Type u'} {M : Type v} {V : Type v'} {M₂ : Type w} {V₂ : Type w'}
variables {M₃ : Type y} {V₃ : Type y'} {M₄ : Type z} {ι : Type x}
namespace finset
lemma smul_sum {α : Type u} {M : Type v} {R : Type w}
[ring R] [add_comm_group M] [module R M]
{s : finset α} {a : R} {f : α → M} :
a • (s.sum f) = s.sum (λc, a • f c) :=
(finset.sum_hom ((•) a)).symm
lemma smul_sum' {α : Type u} {M : Type v} {R : Type w}
[ring R] [add_comm_group M] [module R M]
{s : finset α} {f : α → R} {x : M} :
(s.sum f) • x = s.sum (λa, (f a) • x) :=
begin
-- TODO : where should I put this instance?
haveI : is_add_monoid_hom (λ (r : R), r • x) :=
{ map_add := λ a b, add_smul _ _ _, map_zero := zero_smul _ _ },
exact (finset.sum_hom (λ (r : R), r • x)).symm
end
end finset
namespace finsupp
lemma smul_sum {α : Type u} {β : Type v} {R : Type w} {M : Type y}
[has_zero β] [ring R] [add_comm_group M] [module R M]
{v : α →₀ β} {c : R} {h : α → β → M} :
c • (v.sum h) = v.sum (λa b, c • h a b) :=
finset.smul_sum
end finsupp
section
open_locale classical
/-- decomposing `x : ι → R` as a sum along the canonical basis -/
lemma pi_eq_sum_univ {ι : Type u} [fintype ι] {R : Type v} [semiring R] (x : ι → R) :
x = finset.sum finset.univ (λi:ι, x i • (λj, if i = j then 1 else 0)) :=
begin
ext k,
rw pi.finset_sum_apply,
have : finset.sum finset.univ (λ (x_1 : ι), x x_1 * ite (k = x_1) 1 0) = x k,
by { have := finset.sum_mul_boole finset.univ x k, rwa if_pos (finset.mem_univ _) at this },
rw ← this,
apply finset.sum_congr rfl (λl hl, _),
simp only [smul_eq_mul, mul_ite, pi.smul_apply],
conv_lhs { rw eq_comm }
end
end
namespace linear_map
section
variables [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] [add_comm_group M₄]
variables [module R M] [module R M₂] [module R M₃] [module R M₄]
variables (f g : M →ₗ[R] M₂)
include R
@[simp] theorem comp_id : f.comp id = f :=
linear_map.ext $ λ x, rfl
@[simp] theorem id_comp : id.comp f = f :=
linear_map.ext $ λ x, rfl
theorem comp_assoc (g : M₂ →ₗ[R] M₃) (h : M₃ →ₗ[R] M₄) : (h.comp g).comp f = h.comp (g.comp f) :=
rfl
/-- A linear map `f : M₂ → M` whose values lie in a submodule `p ⊆ M` can be restricted to a
linear map M₂ → p. -/
def cod_restrict (p : submodule R M) (f : M₂ →ₗ[R] M) (h : ∀c, f c ∈ p) : M₂ →ₗ[R] p :=
by refine {to_fun := λc, ⟨f c, h c⟩, ..}; intros; apply set_coe.ext; simp
@[simp] theorem cod_restrict_apply (p : submodule R M) (f : M₂ →ₗ[R] M) {h} (x : M₂) :
(cod_restrict p f h x : M) = f x := rfl
@[simp] lemma comp_cod_restrict (p : submodule R M₂) (h : ∀b, f b ∈ p) (g : M₃ →ₗ[R] M) :
(cod_restrict p f h).comp g = cod_restrict p (f.comp g) (assume b, h _) :=
ext $ assume b, rfl
@[simp] lemma subtype_comp_cod_restrict (p : submodule R M₂) (h : ∀b, f b ∈ p) :
p.subtype.comp (cod_restrict p f h) = f :=
ext $ assume b, rfl
/-- If a function `g` is a left and right inverse of a linear map `f`, then `g` is linear itself. -/
def inverse (g : M₂ → M) (h₁ : left_inverse g f) (h₂ : right_inverse g f) : M₂ →ₗ[R] M :=
by dsimp [left_inverse, function.right_inverse] at h₁ h₂; exact
⟨g, λ x y, by rw [← h₁ (g (x + y)), ← h₁ (g x + g y)]; simp [h₂],
λ a b, by rw [← h₁ (g (a • b)), ← h₁ (a • g b)]; simp [h₂]⟩
/-- The constant 0 map is linear. -/
instance : has_zero (M →ₗ[R] M₂) := ⟨⟨λ _, 0, by simp, by simp⟩⟩
@[simp] lemma zero_apply (x : M) : (0 : M →ₗ[R] M₂) x = 0 := rfl
/-- The negation of a linear map is linear. -/
instance : has_neg (M →ₗ[R] M₂) := ⟨λ f, ⟨λ b, - f b, by simp, by simp⟩⟩
@[simp] lemma neg_apply (x : M) : (- f) x = - f x := rfl
/-- The sum of two linear maps is linear. -/
instance : has_add (M →ₗ[R] M₂) := ⟨λ f g, ⟨λ b, f b + g b, by simp, by simp [smul_add]⟩⟩
@[simp] lemma add_apply (x : M) : (f + g) x = f x + g x := rfl
/-- The type of linear maps is an additive group. -/
instance : add_comm_group (M →ₗ[R] M₂) :=
by refine {zero := 0, add := (+), neg := has_neg.neg, ..};
intros; ext; simp
instance linear_map.is_add_group_hom : is_add_group_hom f :=
{ map_add := f.add }
instance linear_map_apply_is_add_group_hom (a : M) :
is_add_group_hom (λ f : M →ₗ[R] M₂, f a) :=
{ map_add := λ f g, linear_map.add_apply f g a }
lemma sum_apply (t : finset ι) (f : ι → M →ₗ[R] M₂) (b : M) :
t.sum f b = t.sum (λd, f d b) :=
(@finset.sum_hom _ _ _ t f _ _ (λ g : M →ₗ[R] M₂, g b) _).symm
@[simp] lemma sub_apply (x : M) : (f - g) x = f x - g x := rfl
/-- `λb, f b • x` is a linear map. -/
def smul_right (f : M₂ →ₗ[R] R) (x : M) : M₂ →ₗ[R] M :=
⟨λb, f b • x, by simp [add_smul], by simp [smul_smul]⟩.
@[simp] theorem smul_right_apply (f : M₂ →ₗ[R] R) (x : M) (c : M₂) :
(smul_right f x : M₂ → M) c = f c • x := rfl
instance : has_one (M →ₗ[R] M) := ⟨linear_map.id⟩
instance : has_mul (M →ₗ[R] M) := ⟨linear_map.comp⟩
@[simp] lemma one_app (x : M) : (1 : M →ₗ[R] M) x = x := rfl
@[simp] lemma mul_app (A B : M →ₗ[R] M) (x : M) : (A * B) x = A (B x) := rfl
@[simp] theorem comp_zero : f.comp (0 : M₃ →ₗ[R] M) = 0 :=
ext $ assume c, by rw [comp_apply, zero_apply, zero_apply, f.map_zero]
@[simp] theorem zero_comp : (0 : M₂ →ₗ[R] M₃).comp f = 0 :=
rfl
section
variables (R M)
include M
instance endomorphism_ring : ring (M →ₗ[R] M) :=
by refine {mul := (*), one := 1, ..linear_map.add_comm_group, ..};
{ intros, apply linear_map.ext, simp }
end
section
open_locale classical
/-- A linear map `f` applied to `x : ι → R` can be computed using the image under `f` of elements
of the canonical basis. -/
lemma pi_apply_eq_sum_univ [fintype ι] (f : (ι → R) →ₗ[R] M) (x : ι → R) :
f x = finset.sum finset.univ (λi:ι, x i • (f (λj, if i = j then 1 else 0))) :=
begin
conv_lhs { rw [pi_eq_sum_univ x, f.map_sum] },
apply finset.sum_congr rfl (λl hl, _),
rw f.map_smul
end
end
section
variables (R M M₂)
/-- The first projection of a product is a linear map. -/
def fst : M × M₂ →ₗ[R] M := ⟨prod.fst, λ x y, rfl, λ x y, rfl⟩
/-- The second projection of a product is a linear map. -/
def snd : M × M₂ →ₗ[R] M₂ := ⟨prod.snd, λ x y, rfl, λ x y, rfl⟩
end
@[simp] theorem fst_apply (x : M × M₂) : fst R M M₂ x = x.1 := rfl
@[simp] theorem snd_apply (x : M × M₂) : snd R M M₂ x = x.2 := rfl
/-- The pair of two linear maps is a linear map. -/
def pair (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) : M →ₗ[R] M₂ × M₃ :=
⟨λ x, (f x, g x), λ x y, by simp, λ x y, by simp⟩
@[simp] theorem pair_apply (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) (x : M) :
pair f g x = (f x, g x) := rfl
@[simp] theorem fst_pair (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) :
(fst R M₂ M₃).comp (pair f g) = f := by ext; refl
@[simp] theorem snd_pair (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) :
(snd R M₂ M₃).comp (pair f g) = g := by ext; refl
@[simp] theorem pair_fst_snd : pair (fst R M M₂) (snd R M M₂) = linear_map.id :=
by ext; refl
section
variables (R M M₂)
/-- The left injection into a product is a linear map. -/
def inl : M →ₗ[R] M × M₂ := by refine ⟨prod.inl, _, _⟩; intros; simp [prod.inl]
/-- The right injection into a product is a linear map. -/
def inr : M₂ →ₗ[R] M × M₂ := by refine ⟨prod.inr, _, _⟩; intros; simp [prod.inr]
end
@[simp] theorem inl_apply (x : M) : inl R M M₂ x = (x, 0) := rfl
@[simp] theorem inr_apply (x : M₂) : inr R M M₂ x = (0, x) := rfl
/-- The copair function `λ x : M × M₂, f x.1 + g x.2` is a linear map. -/
def copair (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) : M × M₂ →ₗ[R] M₃ :=
⟨λ x, f x.1 + g x.2, λ x y, by simp, λ x y, by simp [smul_add]⟩
@[simp] theorem copair_apply (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (x : M) (y : M₂) :
copair f g (x, y) = f x + g y := rfl
@[simp] theorem copair_inl (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) :
(copair f g).comp (inl R M M₂) = f := by ext; simp
@[simp] theorem copair_inr (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) :
(copair f g).comp (inr R M M₂) = g := by ext; simp
@[simp] theorem copair_inl_inr : copair (inl R M M₂) (inr R M M₂) = linear_map.id :=
by ext ⟨x, y⟩; simp
theorem fst_eq_copair : fst R M M₂ = copair linear_map.id 0 := by ext ⟨x, y⟩; simp
theorem snd_eq_copair : snd R M M₂ = copair 0 linear_map.id := by ext ⟨x, y⟩; simp
theorem inl_eq_pair : inl R M M₂ = pair linear_map.id 0 := rfl
theorem inr_eq_pair : inr R M M₂ = pair 0 linear_map.id := rfl
end
section comm_ring
variables [comm_ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R M₂] [module R M₃]
variables (f g : M →ₗ[R] M₂)
include R
instance : has_scalar R (M →ₗ[R] M₂) := ⟨λ a f,
⟨λ b, a • f b, by simp [smul_add], by simp [smul_smul, mul_comm]⟩⟩
@[simp] lemma smul_apply (a : R) (x : M) : (a • f) x = a • f x := rfl
instance : module R (M →ₗ[R] M₂) :=
module.of_core $ by refine { smul := (•), ..};
intros; ext; simp [smul_add, add_smul, smul_smul]
/-- Composition by `f : M₂ → M₃` is a linear map from the space of linear maps `M → M₂` to the space of
linear maps `M₂ → M₃`. -/
def congr_right (f : M₂ →ₗ[R] M₃) : (M →ₗ[R] M₂) →ₗ[R] (M →ₗ[R] M₃) :=
⟨linear_map.comp f,
λ _ _, linear_map.ext $ λ _, f.2 _ _,
λ _ _, linear_map.ext $ λ _, f.3 _ _⟩
theorem smul_comp (g : M₂ →ₗ[R] M₃) (a : R) : (a • g).comp f = a • (g.comp f) :=
rfl
theorem comp_smul (g : M₂ →ₗ[R] M₃) (a : R) : g.comp (a • f) = a • (g.comp f) :=
ext $ assume b, by rw [comp_apply, smul_apply, g.map_smul]; refl
end comm_ring
end linear_map
namespace submodule
variables [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R M₂] [module R M₃]
variables (p p' : submodule R M) (q q' : submodule R M₂)
variables {r : R} {x y : M}
open set lattice
instance : partial_order (submodule R M) :=
partial_order.lift (coe : submodule R M → set M) (λ a b, ext') (by apply_instance)
lemma le_def {p p' : submodule R M} : p ≤ p' ↔ (p : set M) ⊆ p' := iff.rfl
lemma le_def' {p p' : submodule R M} : p ≤ p' ↔ ∀ x ∈ p, x ∈ p' := iff.rfl
/-- If two submodules p and p' satisfy p ⊆ p', then `of_le p p'` is the linear map version of this
inclusion. -/
def of_le {p p' : submodule R M} (h : p ≤ p') : p →ₗ[R] p' :=
linear_map.cod_restrict _ p.subtype $ λ ⟨x, hx⟩, h hx
@[simp] theorem of_le_apply {p p' : submodule R M} (h : p ≤ p')
(x : p) : (of_le h x : M) = x := rfl
lemma subtype_comp_of_le (p q : submodule R M) (h : p ≤ q) :
(submodule.subtype q).comp (of_le h) = submodule.subtype p :=
by ext ⟨b, hb⟩; simp
/-- The set `{0}` is the bottom element of the lattice of submodules. -/
instance : has_bot (submodule R M) :=
⟨by split; try {exact {0}}; simp {contextual := tt}⟩
@[simp] lemma bot_coe : ((⊥ : submodule R M) : set M) = {0} := rfl
section
variables (R)
@[simp] lemma mem_bot : x ∈ (⊥ : submodule R M) ↔ x = 0 := mem_singleton_iff
end
instance : order_bot (submodule R M) :=
{ bot := ⊥,
bot_le := λ p x, by simp {contextual := tt},
..submodule.partial_order }
/-- The universal set is the top element of the lattice of submodules. -/
instance : has_top (submodule R M) :=
⟨by split; try {exact set.univ}; simp⟩
@[simp] lemma top_coe : ((⊤ : submodule R M) : set M) = univ := rfl
@[simp] lemma mem_top : x ∈ (⊤ : submodule R M) := trivial
lemma eq_bot_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : p = ⊥ :=
by ext x; simp [semimodule.eq_zero_of_zero_eq_one _ x zero_eq_one]
instance : order_top (submodule R M) :=
{ top := ⊤,
le_top := λ p x _, trivial,
..submodule.partial_order }
instance : has_Inf (submodule R M) :=
⟨λ S, {
carrier := ⋂ s ∈ S, ↑s,
zero := by simp,
add := by simp [add_mem] {contextual := tt},
smul := by simp [smul_mem] {contextual := tt} }⟩
private lemma Inf_le' {S : set (submodule R M)} {p} : p ∈ S → Inf S ≤ p :=
bInter_subset_of_mem
private lemma le_Inf' {S : set (submodule R M)} {p} : (∀p' ∈ S, p ≤ p') → p ≤ Inf S :=
subset_bInter
instance : has_inf (submodule R M) :=
⟨λ p p', {
carrier := p ∩ p',
zero := by simp,
add := by simp [add_mem] {contextual := tt},
smul := by simp [smul_mem] {contextual := tt} }⟩
instance : complete_lattice (submodule R M) :=
{ sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x},
le_sup_left := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, ha,
le_sup_right := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, hb,
sup_le := λ a b c h₁ h₂, Inf_le' ⟨h₁, h₂⟩,
inf := (⊓),
le_inf := λ a b c, subset_inter,
inf_le_left := λ a b, inter_subset_left _ _,
inf_le_right := λ a b, inter_subset_right _ _,
Sup := λtt, Inf {t | ∀t'∈tt, t' ≤ t},
le_Sup := λ s p hs, le_Inf' $ λ p' hp', hp' _ hs,
Sup_le := λ s p hs, Inf_le' hs,
Inf := Inf,
le_Inf := λ s a, le_Inf',
Inf_le := λ s a, Inf_le',
..submodule.lattice.order_top,
..submodule.lattice.order_bot }
instance : add_comm_monoid (submodule R M) :=
{ add := (⊔),
add_assoc := λ _ _ _, sup_assoc,
zero := ⊥,
zero_add := λ _, bot_sup_eq,
add_zero := λ _, sup_bot_eq,
add_comm := λ _ _, sup_comm }
@[simp] lemma add_eq_sup (p q : submodule R M) : p + q = p ⊔ q := rfl
@[simp] lemma zero_eq_bot : (0 : submodule R M) = ⊥ := rfl
lemma eq_top_iff' {p : submodule R M} : p = ⊤ ↔ ∀ x, x ∈ p :=
eq_top_iff.trans ⟨λ h x, @h x trivial, λ h x _, h x⟩
@[simp] theorem inf_coe : (p ⊓ p' : set M) = p ∩ p' := rfl
@[simp] theorem mem_inf {p p' : submodule R M} :
x ∈ p ⊓ p' ↔ x ∈ p ∧ x ∈ p' := iff.rfl
@[simp] theorem Inf_coe (P : set (submodule R M)) : (↑(Inf P) : set M) = ⋂ p ∈ P, ↑p := rfl
@[simp] theorem infi_coe {ι} (p : ι → submodule R M) :
(↑⨅ i, p i : set M) = ⋂ i, ↑(p i) :=
by rw [infi, Inf_coe]; ext a; simp; exact
⟨λ h i, h _ i rfl, λ h i x e, e ▸ h _⟩
@[simp] theorem mem_infi {ι} (p : ι → submodule R M) :
x ∈ (⨅ i, p i) ↔ ∀ i, x ∈ p i :=
by rw [← mem_coe, infi_coe, mem_Inter]; refl
theorem disjoint_def {p p' : submodule R M} :
disjoint p p' ↔ ∀ x ∈ p, x ∈ p' → x = (0:M) :=
show (∀ x, x ∈ p ∧ x ∈ p' → x ∈ ({0} : set M)) ↔ _, by simp
/-- The pushforward of a submodule `p ⊆ M` by `f : M → M₂` -/
def map (f : M →ₗ[R] M₂) (p : submodule R M) : submodule R M₂ :=
{ carrier := f '' p,
zero := ⟨0, p.zero_mem, f.map_zero⟩,
add := by rintro _ _ ⟨b₁, hb₁, rfl⟩ ⟨b₂, hb₂, rfl⟩;
exact ⟨_, p.add_mem hb₁ hb₂, f.map_add _ _⟩,
smul := by rintro a _ ⟨b, hb, rfl⟩;
exact ⟨_, p.smul_mem _ hb, f.map_smul _ _⟩ }
lemma map_coe (f : M →ₗ[R] M₂) (p : submodule R M) :
(map f p : set M₂) = f '' p := rfl
@[simp] lemma mem_map {f : M →ₗ[R] M₂} {p : submodule R M} {x : M₂} :
x ∈ map f p ↔ ∃ y, y ∈ p ∧ f y = x := iff.rfl
theorem mem_map_of_mem {f : M →ₗ[R] M₂} {p : submodule R M} {r} (h : r ∈ p) : f r ∈ map f p :=
set.mem_image_of_mem _ h
lemma map_id : map linear_map.id p = p :=
submodule.ext $ λ a, by simp
lemma map_comp (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) (p : submodule R M) :
map (g.comp f) p = map g (map f p) :=
submodule.ext' $ by simp [map_coe]; rw ← image_comp
lemma map_mono {f : M →ₗ[R] M₂} {p p' : submodule R M} : p ≤ p' → map f p ≤ map f p' :=
image_subset _
@[simp] lemma map_zero : map (0 : M →ₗ[R] M₂) p = ⊥ :=
have ∃ (x : M), x ∈ p := ⟨0, p.zero_mem⟩,
ext $ by simp [this, eq_comm]
/-- The pullback of a submodule `p ⊆ M₂` along `f : M → M₂` -/
def comap (f : M →ₗ[R] M₂) (p : submodule R M₂) : submodule R M :=
{ carrier := f ⁻¹' p,
zero := by simp,
add := λ x y h₁ h₂, by simp [p.add_mem h₁ h₂],
smul := λ a x h, by simp [p.smul_mem _ h] }
@[simp] lemma comap_coe (f : M →ₗ[R] M₂) (p : submodule R M₂) :
(comap f p : set M) = f ⁻¹' p := rfl
@[simp] lemma mem_comap {f : M →ₗ[R] M₂} {p : submodule R M₂} :
x ∈ comap f p ↔ f x ∈ p := iff.rfl
lemma comap_id : comap linear_map.id p = p :=
submodule.ext' rfl
lemma comap_comp (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) (p : submodule R M₃) :
comap (g.comp f) p = comap f (comap g p) := rfl
lemma comap_mono {f : M →ₗ[R] M₂} {q q' : submodule R M₂} : q ≤ q' → comap f q ≤ comap f q' :=
preimage_mono
lemma map_le_iff_le_comap {f : M →ₗ[R] M₂} {p : submodule R M} {q : submodule R M₂} :
map f p ≤ q ↔ p ≤ comap f q := image_subset_iff
lemma gc_map_comap (f : M →ₗ[R] M₂) : galois_connection (map f) (comap f)
| p q := map_le_iff_le_comap
@[simp] lemma map_bot (f : M →ₗ[R] M₂) : map f ⊥ = ⊥ :=
(gc_map_comap f).l_bot
@[simp] lemma map_sup (f : M →ₗ[R] M₂) : map f (p ⊔ p') = map f p ⊔ map f p' :=
(gc_map_comap f).l_sup
@[simp] lemma map_supr {ι : Sort*} (f : M →ₗ[R] M₂) (p : ι → submodule R M) :
map f (⨆i, p i) = (⨆i, map f (p i)) :=
(gc_map_comap f).l_supr
@[simp] lemma comap_top (f : M →ₗ[R] M₂) : comap f ⊤ = ⊤ := rfl
@[simp] lemma comap_inf (f : M →ₗ[R] M₂) : comap f (q ⊓ q') = comap f q ⊓ comap f q' := rfl
@[simp] lemma comap_infi {ι : Sort*} (f : M →ₗ[R] M₂) (p : ι → submodule R M₂) :
comap f (⨅i, p i) = (⨅i, comap f (p i)) :=
(gc_map_comap f).u_infi
@[simp] lemma comap_zero : comap (0 : M →ₗ[R] M₂) q = ⊤ :=
ext $ by simp
lemma map_comap_le (f : M →ₗ[R] M₂) (q : submodule R M₂) : map f (comap f q) ≤ q :=
(gc_map_comap f).l_u_le _
lemma le_comap_map (f : M →ₗ[R] M₂) (p : submodule R M) : p ≤ comap f (map f p) :=
(gc_map_comap f).le_u_l _
--TODO(Mario): is there a way to prove this from order properties?
lemma map_inf_eq_map_inf_comap {f : M →ₗ[R] M₂}
{p : submodule R M} {p' : submodule R M₂} :
map f p ⊓ p' = map f (p ⊓ comap f p') :=
le_antisymm
(by rintro _ ⟨⟨x, h₁, rfl⟩, h₂⟩; exact ⟨_, ⟨h₁, h₂⟩, rfl⟩)
(le_inf (map_mono inf_le_left) (map_le_iff_le_comap.2 inf_le_right))
lemma map_comap_subtype : map p.subtype (comap p.subtype p') = p ⊓ p' :=
ext $ λ x, ⟨by rintro ⟨⟨_, h₁⟩, h₂, rfl⟩; exact ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨⟨_, h₁⟩, h₂, rfl⟩⟩
lemma eq_zero_of_bot_submodule : ∀(b : (⊥ : submodule R M)), b = 0
| ⟨b', hb⟩ := subtype.eq $ show b' = 0, from (mem_bot R).1 hb
section
variables (R)
/-- The span of a set `s ⊆ M` is the smallest submodule of M that contains `s`. -/
def span (s : set M) : submodule R M := Inf {p | s ⊆ p}
end
variables {s t : set M}
lemma mem_span : x ∈ span R s ↔ ∀ p : submodule R M, s ⊆ p → x ∈ p :=
mem_bInter_iff
lemma subset_span : s ⊆ span R s :=
λ x h, mem_span.2 $ λ p hp, hp h
lemma span_le {p} : span R s ≤ p ↔ s ⊆ p :=
⟨subset.trans subset_span, λ ss x h, mem_span.1 h _ ss⟩
lemma span_mono (h : s ⊆ t) : span R s ≤ span R t :=
span_le.2 $ subset.trans h subset_span
lemma span_eq_of_le (h₁ : s ⊆ p) (h₂ : p ≤ span R s) : span R s = p :=
le_antisymm (span_le.2 h₁) h₂
@[simp] lemma span_eq : span R (p : set M) = p :=
span_eq_of_le _ (subset.refl _) subset_span
/-- An induction principle for span membership. If `p` holds for 0 and all elements of `s`, and is
preserved under addition and scalar multiplication, then `p` holds for all elements of the span of
`s`. -/
@[elab_as_eliminator] lemma span_induction {p : M → Prop} (h : x ∈ span R s)
(Hs : ∀ x ∈ s, p x) (H0 : p 0)
(H1 : ∀ x y, p x → p y → p (x + y))
(H2 : ∀ (a:R) x, p x → p (a • x)) : p x :=
(@span_le _ _ _ _ _ _ ⟨p, H0, H1, H2⟩).2 Hs h
section
variables (R M)
/-- `span` forms a Galois insertion with the coercion from submodule to set. -/
protected def gi : galois_insertion (@span R M _ _ _) coe :=
{ choice := λ s _, span R s,
gc := λ s t, span_le,
le_l_u := λ s, subset_span,
choice_eq := λ s h, rfl }
end
@[simp] lemma span_empty : span R (∅ : set M) = ⊥ :=
(submodule.gi R M).gc.l_bot
@[simp] lemma span_univ : span R (univ : set M) = ⊤ :=
eq_top_iff.2 $ le_def.2 $ subset_span
lemma span_union (s t : set M) : span R (s ∪ t) = span R s ⊔ span R t :=
(submodule.gi R M).gc.l_sup
lemma span_Union {ι} (s : ι → set M) : span R (⋃ i, s i) = ⨆ i, span R (s i) :=
(submodule.gi R M).gc.l_supr
@[simp] theorem Union_coe_of_directed {ι} (hι : nonempty ι)
(S : ι → submodule R M)
(H : ∀ i j, ∃ k, S i ≤ S k ∧ S j ≤ S k) :
((supr S : submodule R M) : set M) = ⋃ i, S i :=
begin
refine subset.antisymm _ (Union_subset $ le_supr S),
rw [show supr S = ⨆ i, span R (S i), by simp, ← span_Union],
unfreezeI,
refine λ x hx, span_induction hx (λ _, id) _ _ _,
{ cases hι with i, exact mem_Union.2 ⟨i, by simp⟩ },
{ simp, intros x y i hi j hj,
rcases H i j with ⟨k, ik, jk⟩,
exact ⟨k, add_mem _ (ik hi) (jk hj)⟩ },
{ simp [-mem_coe]; exact λ a x i hi, ⟨i, smul_mem _ a hi⟩ },
end
lemma mem_supr_of_mem {ι : Sort*} {b : M} (p : ι → submodule R M) (i : ι) (h : b ∈ p i) :
b ∈ (⨆i, p i) :=
have p i ≤ (⨆i, p i) := le_supr p i,
@this b h
@[simp] theorem mem_supr_of_directed {ι} (hι : nonempty ι)
(S : ι → submodule R M)
(H : ∀ i j, ∃ k, S i ≤ S k ∧ S j ≤ S k) {x} :
x ∈ supr S ↔ ∃ i, x ∈ S i :=
by rw [← mem_coe, Union_coe_of_directed hι S H, mem_Union]; refl
theorem mem_Sup_of_directed {s : set (submodule R M)}
{z} (hzs : z ∈ Sup s) (x ∈ s)
(hdir : ∀ i ∈ s, ∀ j ∈ s, ∃ k ∈ s, i ≤ k ∧ j ≤ k) :
∃ y ∈ s, z ∈ y :=
begin
haveI := classical.dec, rw Sup_eq_supr at hzs,
have : ∃ (i : submodule R M), z ∈ ⨆ (H : i ∈ s), i,
{ refine (mem_supr_of_directed ⟨⊥⟩ _ (λ i j, _)).1 hzs,
by_cases his : i ∈ s; by_cases hjs : j ∈ s,
{ rcases hdir i his j hjs with ⟨k, hks, hik, hjk⟩,
exact ⟨k, le_supr_of_le hks (supr_le $ λ _, hik),
le_supr_of_le hks (supr_le $ λ _, hjk)⟩ },
{ exact ⟨i, le_refl _, supr_le $ hjs.elim⟩ },
{ exact ⟨j, supr_le $ his.elim, le_refl _⟩ },
{ exact ⟨⊥, supr_le $ his.elim, supr_le $ hjs.elim⟩ } },
cases this with N hzn, by_cases hns : N ∈ s,
{ have : (⨆ (H : N ∈ s), N) ≤ N := supr_le (λ _, le_refl _),
exact ⟨N, hns, this hzn⟩ },
{ have : (⨆ (H : N ∈ s), N) ≤ ⊥ := supr_le hns.elim,
cases (mem_bot R).1 (this hzn), exact ⟨x, H, x.zero_mem⟩ }
end
section
variables {p p'}
lemma mem_sup : x ∈ p ⊔ p' ↔ ∃ (y ∈ p) (z ∈ p'), y + z = x :=
⟨λ h, begin
rw [← span_eq p, ← span_eq p', ← span_union] at h,
apply span_induction h,
{ rintro y (h | h),
{ exact ⟨y, h, 0, by simp, by simp⟩ },
{ exact ⟨0, by simp, y, h, by simp⟩ } },
{ exact ⟨0, by simp, 0, by simp⟩ },
{ rintro _ _ ⟨y₁, hy₁, z₁, hz₁, rfl⟩ ⟨y₂, hy₂, z₂, hz₂, rfl⟩,
exact ⟨_, add_mem _ hy₁ hy₂, _, add_mem _ hz₁ hz₂, by simp⟩ },
{ rintro a _ ⟨y, hy, z, hz, rfl⟩,
exact ⟨_, smul_mem _ a hy, _, smul_mem _ a hz, by simp [smul_add]⟩ }
end,
by rintro ⟨y, hy, z, hz, rfl⟩; exact add_mem _
((le_sup_left : p ≤ p ⊔ p') hy)
((le_sup_right : p' ≤ p ⊔ p') hz)⟩
end
lemma mem_span_singleton {y : M} : x ∈ span R ({y} : set M) ↔ ∃ a:R, a • y = x :=
⟨λ h, begin
apply span_induction h,
{ rintro y (rfl|⟨⟨⟩⟩), exact ⟨1, by simp⟩ },
{ exact ⟨0, by simp⟩ },
{ rintro _ _ ⟨a, rfl⟩ ⟨b, rfl⟩,
exact ⟨a + b, by simp [add_smul]⟩ },
{ rintro a _ ⟨b, rfl⟩,
exact ⟨a * b, by simp [smul_smul]⟩ }
end,
by rintro ⟨a, y, rfl⟩; exact
smul_mem _ _ (subset_span $ by simp)⟩
lemma span_singleton_eq_range (y : M) : (span R ({y} : set M) : set M) = range ((• y) : R → M) :=
set.ext $ λ x, mem_span_singleton
lemma mem_span_insert {y} : x ∈ span R (insert y s) ↔ ∃ (a:R) (z ∈ span R s), x = a • y + z :=
begin
rw [← union_singleton, span_union, mem_sup],
simp [mem_span_singleton], split,
{ rintro ⟨z, hz, _, ⟨a, rfl⟩, rfl⟩, exact ⟨a, z, hz, rfl⟩ },
{ rintro ⟨a, z, hz, rfl⟩, exact ⟨z, hz, _, ⟨a, rfl⟩, rfl⟩ }
end
lemma mem_span_insert' {y} : x ∈ span R (insert y s) ↔ ∃(a:R), x + a • y ∈ span R s :=
begin
rw mem_span_insert, split,
{ rintro ⟨a, z, hz, rfl⟩, exact ⟨-a, by simp [hz]⟩ },
{ rintro ⟨a, h⟩, exact ⟨-a, _, h, by simp⟩ }
end
lemma span_insert_eq_span (h : x ∈ span R s) : span R (insert x s) = span R s :=
span_eq_of_le _ (set.insert_subset.mpr ⟨h, subset_span⟩) (span_mono $ subset_insert _ _)
lemma span_span : span R (span R s : set M) = span R s := span_eq _
lemma span_eq_bot : span R (s : set M) = ⊥ ↔ ∀ x ∈ s, (x:M) = 0 :=
eq_bot_iff.trans ⟨
λ H x h, (mem_bot R).1 $ H $ subset_span h,
λ H, span_le.2 (λ x h, (mem_bot R).2 $ H x h)⟩
lemma span_singleton_eq_bot : span R ({x} : set M) = ⊥ ↔ x = 0 :=
span_eq_bot.trans $ by simp
@[simp] lemma span_image (f : M →ₗ[R] M₂) : span R (f '' s) = map f (span R s) :=
span_eq_of_le _ (image_subset _ subset_span) $ map_le_iff_le_comap.2 $
span_le.2 $ image_subset_iff.1 subset_span
lemma linear_eq_on (s : set M) {f g : M →ₗ[R] M₂} (H : ∀x∈s, f x = g x) {x} (h : x ∈ span R s) :
f x = g x :=
by apply span_induction h H; simp {contextual := tt}
/-- The product of two submodules is a submodule. -/
def prod : submodule R (M × M₂) :=
{ carrier := set.prod p q,
zero := ⟨zero_mem _, zero_mem _⟩,
add := by rintro ⟨x₁, y₁⟩ ⟨x₂, y₂⟩ ⟨hx₁, hy₁⟩ ⟨hx₂, hy₂⟩;
exact ⟨add_mem _ hx₁ hx₂, add_mem _ hy₁ hy₂⟩,
smul := by rintro a ⟨x, y⟩ ⟨hx, hy⟩;
exact ⟨smul_mem _ a hx, smul_mem _ a hy⟩ }
@[simp] lemma prod_coe :
(prod p q : set (M × M₂)) = set.prod p q := rfl
@[simp] lemma mem_prod {p : submodule R M} {q : submodule R M₂} {x : M × M₂} :
x ∈ prod p q ↔ x.1 ∈ p ∧ x.2 ∈ q := set.mem_prod
lemma span_prod_le (s : set M) (t : set M₂) :
span R (set.prod s t) ≤ prod (span R s) (span R t) :=
span_le.2 $ set.prod_mono subset_span subset_span
@[simp] lemma prod_top : (prod ⊤ ⊤ : submodule R (M × M₂)) = ⊤ :=
by ext; simp
@[simp] lemma prod_bot : (prod ⊥ ⊥ : submodule R (M × M₂)) = ⊥ :=
by ext ⟨x, y⟩; simp [prod.zero_eq_mk]
lemma prod_mono {p p' : submodule R M} {q q' : submodule R M₂} :
p ≤ p' → q ≤ q' → prod p q ≤ prod p' q' := prod_mono
@[simp] lemma prod_inf_prod : prod p q ⊓ prod p' q' = prod (p ⊓ p') (q ⊓ q') :=
ext' set.prod_inter_prod
@[simp] lemma prod_sup_prod : prod p q ⊔ prod p' q' = prod (p ⊔ p') (q ⊔ q') :=
begin
refine le_antisymm (sup_le
(prod_mono le_sup_left le_sup_left)
(prod_mono le_sup_right le_sup_right)) _,
simp [le_def'], intros xx yy hxx hyy,
rcases mem_sup.1 hxx with ⟨x, hx, x', hx', rfl⟩,
rcases mem_sup.1 hyy with ⟨y, hy, y', hy', rfl⟩,
refine mem_sup.2 ⟨(x, y), ⟨hx, hy⟩, (x', y'), ⟨hx', hy'⟩, rfl⟩
end
-- TODO(Mario): Factor through add_subgroup
/-- The equivalence relation associated to a submodule `p`, defined by `x ≈ y` iff `y - x ∈ p`. -/
def quotient_rel : setoid M :=
⟨λ x y, x - y ∈ p, λ x, by simp,
λ x y h, by simpa using neg_mem _ h,
λ x y z h₁ h₂, by simpa using add_mem _ h₁ h₂⟩
/-- The quotient of a module `M` by a submodule `p ⊆ M`. -/
def quotient : Type* := quotient (quotient_rel p)
namespace quotient
/-- Map associating to an element of `M` the corresponding element of `M/p`,
when `p` is a submodule of `M`. -/
def mk {p : submodule R M} : M → quotient p := quotient.mk'
@[simp] theorem mk_eq_mk {p : submodule R M} (x : M) : (quotient.mk x : quotient p) = mk x := rfl
@[simp] theorem mk'_eq_mk {p : submodule R M} (x : M) : (quotient.mk' x : quotient p) = mk x := rfl
@[simp] theorem quot_mk_eq_mk {p : submodule R M} (x : M) : (quot.mk _ x : quotient p) = mk x := rfl
protected theorem eq {x y : M} : (mk x : quotient p) = mk y ↔ x - y ∈ p := quotient.eq'
instance : has_zero (quotient p) := ⟨mk 0⟩
@[simp] theorem mk_zero : mk 0 = (0 : quotient p) := rfl
@[simp] theorem mk_eq_zero : (mk x : quotient p) = 0 ↔ x ∈ p :=
by simpa using (quotient.eq p : mk x = 0 ↔ _)
instance : has_add (quotient p) :=
⟨λ a b, quotient.lift_on₂' a b (λ a b, mk (a + b)) $
λ a₁ a₂ b₁ b₂ h₁ h₂, (quotient.eq p).2 $ by simpa using add_mem p h₁ h₂⟩
@[simp] theorem mk_add : (mk (x + y) : quotient p) = mk x + mk y := rfl
instance : has_neg (quotient p) :=
⟨λ a, quotient.lift_on' a (λ a, mk (-a)) $
λ a b h, (quotient.eq p).2 $ by simpa using neg_mem p h⟩
@[simp] theorem mk_neg : (mk (-x) : quotient p) = -mk x := rfl
instance : add_comm_group (quotient p) :=
by refine {zero := 0, add := (+), neg := has_neg.neg, ..};
repeat {rintro ⟨⟩};
simp [-mk_zero, (mk_zero p).symm, -mk_add, (mk_add p).symm, -mk_neg, (mk_neg p).symm]
instance : has_scalar R (quotient p) :=
⟨λ a x, quotient.lift_on' x (λ x, mk (a • x)) $
λ x y h, (quotient.eq p).2 $ by simpa [smul_add] using smul_mem p a h⟩
@[simp] theorem mk_smul : (mk (r • x) : quotient p) = r • mk x := rfl
instance : module R (quotient p) :=
module.of_core $ by refine {smul := (•), ..};
repeat {rintro ⟨⟩ <|> intro}; simp [smul_add, add_smul, smul_smul,
-mk_add, (mk_add p).symm, -mk_smul, (mk_smul p).symm]
instance {K M} {R:discrete_field K} [add_comm_group M] [vector_space K M]
(p : submodule K M) : vector_space K (quotient p) := {}
end quotient
end submodule
namespace submodule
variables [discrete_field K]
variables [add_comm_group V] [vector_space K V]
variables [add_comm_group V₂] [vector_space K V₂]
lemma comap_smul (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) (h : a ≠ 0) :
p.comap (a • f) = p.comap f :=
by ext b; simp only [submodule.mem_comap, p.smul_mem_iff h, linear_map.smul_apply]
lemma map_smul (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) (h : a ≠ 0) :
p.map (a • f) = p.map f :=
le_antisymm
begin rw [map_le_iff_le_comap, comap_smul f _ a h, ← map_le_iff_le_comap], exact le_refl _ end
begin rw [map_le_iff_le_comap, ← comap_smul f _ a h, ← map_le_iff_le_comap], exact le_refl _ end
set_option class.instance_max_depth 40
lemma comap_smul' (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) :
p.comap (a • f) = (⨅ h : a ≠ 0, p.comap f) :=
by by_cases a = 0; simp [h, comap_smul]
lemma map_smul' (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) :
p.map (a • f) = (⨆ h : a ≠ 0, p.map f) :=
by by_cases a = 0; simp [h, map_smul]
end submodule
namespace linear_map
variables [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R M₂] [module R M₃]
include R
open submodule
@[simp] lemma finsupp_sum {R M M₂ γ} [ring R] [add_comm_group M] [module R M]
[add_comm_group M₂] [module R M₂] [has_zero γ]
(f : M →ₗ[R] M₂) {t : ι →₀ γ} {g : ι → γ → M} :
f (t.sum g) = t.sum (λi d, f (g i d)) := f.map_sum
theorem map_cod_restrict (p : submodule R M) (f : M₂ →ₗ[R] M) (h p') :
submodule.map (cod_restrict p f h) p' = comap p.subtype (p'.map f) :=
submodule.ext $ λ ⟨x, hx⟩, by simp [subtype.coe_ext]
theorem comap_cod_restrict (p : submodule R M) (f : M₂ →ₗ[R] M) (hf p') :
submodule.comap (cod_restrict p f hf) p' = submodule.comap f (map p.subtype p') :=
submodule.ext $ λ x, ⟨λ h, ⟨⟨_, hf x⟩, h, rfl⟩, by rintro ⟨⟨_, _⟩, h, ⟨⟩⟩; exact h⟩
/-- The range of a linear map `f : M → M₂` is a submodule of `M₂`. -/
def range (f : M →ₗ[R] M₂) : submodule R M₂ := map f ⊤
theorem range_coe (f : M →ₗ[R] M₂) : (range f : set M₂) = set.range f := set.image_univ
@[simp] theorem mem_range {f : M →ₗ[R] M₂} : ∀ {x}, x ∈ range f ↔ ∃ y, f y = x :=
(set.ext_iff _ _).1 (range_coe f).
@[simp] theorem range_id : range (linear_map.id : M →ₗ[R] M) = ⊤ := map_id _
theorem range_comp (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : range (g.comp f) = map g (range f) :=
map_comp _ _ _
theorem range_comp_le_range (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : range (g.comp f) ≤ range g :=
by rw range_comp; exact map_mono le_top
theorem range_eq_top {f : M →ₗ[R] M₂} : range f = ⊤ ↔ surjective f :=
by rw [← submodule.ext'_iff, range_coe, top_coe, set.range_iff_surjective]
lemma range_le_iff_comap {f : M →ₗ[R] M₂} {p : submodule R M₂} : range f ≤ p ↔ comap f p = ⊤ :=
by rw [range, map_le_iff_le_comap, eq_top_iff]
lemma map_le_range {f : M →ₗ[R] M₂} {p : submodule R M} : map f p ≤ range f :=
map_mono le_top
lemma sup_range_inl_inr :
(inl R M M₂).range ⊔ (inr R M M₂).range = ⊤ :=
begin
refine eq_top_iff'.2 (λ x, mem_sup.2 _),
rcases x with ⟨x₁, x₂⟩ ,
have h₁ : prod.mk x₁ (0 : M₂) ∈ (inl R M M₂).range,
by simp,
have h₂ : prod.mk (0 : M) x₂ ∈ (inr R M M₂).range,
by simp,
use [⟨x₁, 0⟩, h₁, ⟨0, x₂⟩, h₂],
simp
end
/-- The kernel of a linear map `f : M → M₂` is defined to be `comap f ⊥`. This is equivalent to the
set of `x : M` such that `f x = 0`. The kernel is a submodule of `M`. -/
def ker (f : M →ₗ[R] M₂) : submodule R M := comap f ⊥
@[simp] theorem mem_ker {f : M →ₗ[R] M₂} {y} : y ∈ ker f ↔ f y = 0 := mem_bot R
@[simp] theorem ker_id : ker (linear_map.id : M →ₗ[R] M) = ⊥ := rfl
theorem ker_comp (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : ker (g.comp f) = comap f (ker g) := rfl
theorem ker_le_ker_comp (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : ker f ≤ ker (g.comp f) :=
by rw ker_comp; exact comap_mono bot_le
theorem sub_mem_ker_iff {f : M →ₗ[R] M₂} {x y} : x - y ∈ f.ker ↔ f x = f y :=
by rw [mem_ker, map_sub, sub_eq_zero]
theorem disjoint_ker {f : M →ₗ[R] M₂} {p : submodule R M} :
disjoint p (ker f) ↔ ∀ x ∈ p, f x = 0 → x = 0 :=
by simp [disjoint_def]
theorem disjoint_ker' {f : M →ₗ[R] M₂} {p : submodule R M} :
disjoint p (ker f) ↔ ∀ x y ∈ p, f x = f y → x = y :=
disjoint_ker.trans
⟨λ H x y hx hy h, eq_of_sub_eq_zero $ H _ (sub_mem _ hx hy) (by simp [h]),
λ H x h₁ h₂, H x 0 h₁ (zero_mem _) (by simpa using h₂)⟩
theorem inj_of_disjoint_ker {f : M →ₗ[R] M₂} {p : submodule R M}
{s : set M} (h : s ⊆ p) (hd : disjoint p (ker f)) :
∀ x y ∈ s, f x = f y → x = y :=
λ x y hx hy, disjoint_ker'.1 hd _ _ (h hx) (h hy)
lemma disjoint_inl_inr : disjoint (inl R M M₂).range (inr R M M₂).range :=
by simp [disjoint_def, @eq_comm M 0, @eq_comm M₂ 0] {contextual := tt}; intros; refl
theorem ker_eq_bot {f : M →ₗ[R] M₂} : ker f = ⊥ ↔ injective f :=
by simpa [disjoint] using @disjoint_ker' _ _ _ _ _ _ _ _ f ⊤
theorem ker_eq_bot' {f : M →ₗ[R] M₂} :
ker f = ⊥ ↔ (∀ m, f m = 0 → m = 0) :=
have h : (∀ m ∈ (⊤ : submodule R M), f m = 0 → m = 0) ↔ (∀ m, f m = 0 → m = 0),
from ⟨λ h m, h m mem_top, λ h m _, h m⟩,
by simpa [h, disjoint] using @disjoint_ker _ _ _ _ _ _ _ _ f ⊤
lemma le_ker_iff_map {f : M →ₗ[R] M₂} {p : submodule R M} : p ≤ ker f ↔ map f p = ⊥ :=
by rw [ker, eq_bot_iff, map_le_iff_le_comap]
lemma ker_cod_restrict (p : submodule R M) (f : M₂ →ₗ[R] M) (hf) :
ker (cod_restrict p f hf) = ker f :=
by rw [ker, comap_cod_restrict, map_bot]; refl
lemma range_cod_restrict (p : submodule R M) (f : M₂ →ₗ[R] M) (hf) :
range (cod_restrict p f hf) = comap p.subtype f.range :=
map_cod_restrict _ _ _ _
lemma map_comap_eq (f : M →ₗ[R] M₂) (q : submodule R M₂) :
map f (comap f q) = range f ⊓ q :=
le_antisymm (le_inf (map_mono le_top) (map_comap_le _ _)) $
by rintro _ ⟨⟨x, _, rfl⟩, hx⟩; exact ⟨x, hx, rfl⟩
lemma map_comap_eq_self {f : M →ₗ[R] M₂} {q : submodule R M₂} (h : q ≤ range f) :
map f (comap f q) = q :=
by rw [map_comap_eq, inf_of_le_right h]
lemma comap_map_eq (f : M →ₗ[R] M₂) (p : submodule R M) :
comap f (map f p) = p ⊔ ker f :=
begin
refine le_antisymm _ (sup_le (le_comap_map _ _) (comap_mono bot_le)),
rintro x ⟨y, hy, e⟩,
exact mem_sup.2 ⟨y, hy, x - y, by simpa using sub_eq_zero.2 e.symm, by simp⟩
end
lemma comap_map_eq_self {f : M →ₗ[R] M₂} {p : submodule R M} (h : ker f ≤ p) :
comap f (map f p) = p :=
by rw [comap_map_eq, sup_of_le_left h]
@[simp] theorem ker_zero : ker (0 : M →ₗ[R] M₂) = ⊤ :=
eq_top_iff'.2 $ λ x, by simp
@[simp] theorem range_zero : range (0 : M →ₗ[R] M₂) = ⊥ :=
submodule.map_zero _
theorem ker_eq_top {f : M →ₗ[R] M₂} : ker f = ⊤ ↔ f = 0 :=
⟨λ h, ext $ λ x, mem_ker.1 $ h.symm ▸ trivial, λ h, h.symm ▸ ker_zero⟩
lemma range_le_bot_iff (f : M →ₗ[R] M₂) : range f ≤ ⊥ ↔ f = 0 :=
by rw [range_le_iff_comap]; exact ker_eq_top
theorem map_le_map_iff {f : M →ₗ[R] M₂} (hf : ker f = ⊥) {p p'} : map f p ≤ map f p' ↔ p ≤ p' :=
⟨λ H x hx, let ⟨y, hy, e⟩ := H ⟨x, hx, rfl⟩ in ker_eq_bot.1 hf e ▸ hy, map_mono⟩
theorem map_injective {f : M →ₗ[R] M₂} (hf : ker f = ⊥) : injective (map f) :=
λ p p' h, le_antisymm ((map_le_map_iff hf).1 (le_of_eq h)) ((map_le_map_iff hf).1 (ge_of_eq h))
theorem comap_le_comap_iff {f : M →ₗ[R] M₂} (hf : range f = ⊤) {p p'} : comap f p ≤ comap f p' ↔ p ≤ p' :=
⟨λ H x hx, by rcases range_eq_top.1 hf x with ⟨y, hy, rfl⟩; exact H hx, comap_mono⟩
theorem comap_injective {f : M →ₗ[R] M₂} (hf : range f = ⊤) : injective (comap f) :=
λ p p' h, le_antisymm ((comap_le_comap_iff hf).1 (le_of_eq h)) ((comap_le_comap_iff hf).1 (ge_of_eq h))
theorem map_copair_prod (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (p : submodule R M) (q : submodule R M₂) :
map (copair f g) (p.prod q) = map f p ⊔ map g q :=
begin
refine le_antisymm _ (sup_le (map_le_iff_le_comap.2 _) (map_le_iff_le_comap.2 _)),
{ rw le_def', rintro _ ⟨x, ⟨h₁, h₂⟩, rfl⟩,
exact mem_sup.2 ⟨_, ⟨_, h₁, rfl⟩, _, ⟨_, h₂, rfl⟩, rfl⟩ },
{ exact λ x hx, ⟨(x, 0), by simp [hx]⟩ },
{ exact λ x hx, ⟨(0, x), by simp [hx]⟩ }
end
theorem comap_pair_prod (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) (p : submodule R M₂) (q : submodule R M₃) :
comap (pair f g) (p.prod q) = comap f p ⊓ comap g q :=
submodule.ext $ λ x, iff.rfl
theorem prod_eq_inf_comap (p : submodule R M) (q : submodule R M₂) :
p.prod q = p.comap (linear_map.fst R M M₂) ⊓ q.comap (linear_map.snd R M M₂) :=
submodule.ext $ λ x, iff.rfl
theorem prod_eq_sup_map (p : submodule R M) (q : submodule R M₂) :
p.prod q = p.map (linear_map.inl R M M₂) ⊔ q.map (linear_map.inr R M M₂) :=
by rw [← map_copair_prod, copair_inl_inr, map_id]
lemma span_inl_union_inr {s : set M} {t : set M₂} :
span R (prod.inl '' s ∪ prod.inr '' t) = (span R s).prod (span R t) :=
by rw [span_union, prod_eq_sup_map, ← span_image, ← span_image]; refl
lemma ker_pair (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) :
ker (pair f g) = ker f ⊓ ker g :=
by rw [ker, ← prod_bot, comap_pair_prod]; refl
end linear_map
namespace linear_map
variables [discrete_field K]
variables [add_comm_group V] [vector_space K V]
variables [add_comm_group V₂] [vector_space K V₂]
lemma ker_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : ker (a • f) = ker f :=
submodule.comap_smul f _ a h
lemma ker_smul' (f : V →ₗ[K] V₂) (a : K) : ker (a • f) = ⨅(h : a ≠ 0), ker f :=
submodule.comap_smul' f _ a
lemma range_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : range (a • f) = range f :=
submodule.map_smul f _ a h
lemma range_smul' (f : V →ₗ[K] V₂) (a : K) : range (a • f) = ⨆(h : a ≠ 0), range f :=
submodule.map_smul' f _ a
end linear_map
namespace is_linear_map
lemma is_linear_map_add {R M : Type*} [ring R] [add_comm_group M] [module R M]:
is_linear_map R (λ (x : M × M), x.1 + x.2) :=
begin
apply is_linear_map.mk,
{ intros x y,
simp },
{ intros x y,
simp [smul_add] }
end
lemma is_linear_map_sub {R M : Type*} [ring R] [add_comm_group M] [module R M]:
is_linear_map R (λ (x : M × M), x.1 - x.2) :=
begin
apply is_linear_map.mk,
{ intros x y,
simp },
{ intros x y,
simp [smul_add] }
end
end is_linear_map
namespace submodule
variables {T : ring R} [add_comm_group M] [add_comm_group M₂] [module R M] [module R M₂]
variables (p p' : submodule R M) (q : submodule R M₂)
include T
open linear_map
@[simp] theorem map_top (f : M →ₗ[R] M₂) : map f ⊤ = range f := rfl
@[simp] theorem comap_bot (f : M →ₗ[R] M₂) : comap f ⊥ = ker f := rfl
@[simp] theorem ker_subtype : p.subtype.ker = ⊥ :=
ker_eq_bot.2 $ λ x y, subtype.eq'
@[simp] theorem range_subtype : p.subtype.range = p :=
by simpa using map_comap_subtype p ⊤
lemma map_subtype_le (p' : submodule R p) : map p.subtype p' ≤ p :=
by simpa using (map_mono le_top : map p.subtype p' ≤ p.subtype.range)
/-- Under the canonical linear map from a submodule `p` to the ambient space `M`, the image of the
maximal submodule of `p` is just `p `. -/
@[simp] lemma map_subtype_top : map p.subtype (⊤ : submodule R p) = p :=
by simp
@[simp] theorem ker_of_le (p p' : submodule R M) (h : p ≤ p') : (of_le h).ker = ⊥ :=
by rw [of_le, ker_cod_restrict, ker_subtype]
lemma range_of_le (p q : submodule R M) (h : p ≤ q) : (of_le h).range = comap q.subtype p :=
by rw [← map_top, of_le, linear_map.map_cod_restrict, map_top, range_subtype]
lemma disjoint_iff_comap_eq_bot (p q : submodule R M) :
disjoint p q ↔ comap p.subtype q = ⊥ :=
by rw [eq_bot_iff, ← map_le_map_iff p.ker_subtype, map_bot, map_comap_subtype]; refl
/-- If N ⊆ M then submodules of N are the same as submodules of M contained in N -/
def map_subtype.order_iso :
((≤) : submodule R p → submodule R p → Prop) ≃o
((≤) : {p' : submodule R M // p' ≤ p} → {p' : submodule R M // p' ≤ p} → Prop) :=
{ to_fun := λ p', ⟨map p.subtype p', map_subtype_le p _⟩,
inv_fun := λ q, comap p.subtype q,
left_inv := λ p', comap_map_eq_self $ by simp,
right_inv := λ ⟨q, hq⟩, subtype.eq' $ by simp [map_comap_subtype p, inf_of_le_right hq],
ord := λ p₁ p₂, (map_le_map_iff $ ker_subtype _).symm }
/-- If `p ⊆ M` is a submodule, the ordering of submodules of `p` is embedded in the ordering of
submodules of M. -/
def map_subtype.le_order_embedding :
((≤) : submodule R p → submodule R p → Prop) ≼o ((≤) : submodule R M → submodule R M → Prop) :=
(order_iso.to_order_embedding $ map_subtype.order_iso p).trans (subtype.order_embedding _ _)
@[simp] lemma map_subtype_embedding_eq (p' : submodule R p) :
map_subtype.le_order_embedding p p' = map p.subtype p' := rfl
/-- If `p ⊆ M` is a submodule, the ordering of submodules of `p` is embedded in the ordering of
submodules of M. -/
def map_subtype.lt_order_embedding :
((<) : submodule R p → submodule R p → Prop) ≼o ((<) : submodule R M → submodule R M → Prop) :=
(map_subtype.le_order_embedding p).lt_embedding_of_le_embedding
@[simp] theorem map_inl : p.map (inl R M M₂) = prod p ⊥ :=
by ext ⟨x, y⟩; simp [and.left_comm, eq_comm]
@[simp] theorem map_inr : q.map (inr R M M₂) = prod ⊥ q :=
by ext ⟨x, y⟩; simp [and.left_comm, eq_comm]
@[simp] theorem comap_fst : p.comap (fst R M M₂) = prod p ⊤ :=
by ext ⟨x, y⟩; simp
@[simp] theorem comap_snd : q.comap (snd R M M₂) = prod ⊤ q :=
by ext ⟨x, y⟩; simp
@[simp] theorem prod_comap_inl : (prod p q).comap (inl R M M₂) = p := by ext; simp
@[simp] theorem prod_comap_inr : (prod p q).comap (inr R M M₂) = q := by ext; simp
@[simp] theorem prod_map_fst : (prod p q).map (fst R M M₂) = p :=
by ext x; simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ q)]
@[simp] theorem prod_map_snd : (prod p q).map (snd R M M₂) = q :=
by ext x; simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ p)]
@[simp] theorem ker_inl : (inl R M M₂).ker = ⊥ :=
by rw [ker, ← prod_bot, prod_comap_inl]
@[simp] theorem ker_inr : (inr R M M₂).ker = ⊥ :=
by rw [ker, ← prod_bot, prod_comap_inr]
@[simp] theorem range_fst : (fst R M M₂).range = ⊤ :=
by rw [range, ← prod_top, prod_map_fst]
@[simp] theorem range_snd : (snd R M M₂).range = ⊤ :=
by rw [range, ← prod_top, prod_map_snd]
/-- The map from a module `M` to the quotient of `M` by a submodule `p` as a linear map. -/
def mkq : M →ₗ[R] p.quotient := ⟨quotient.mk, by simp, by simp⟩
@[simp] theorem mkq_apply (x : M) : p.mkq x = quotient.mk x := rfl
/-- The map from the quotient of `M` by a submodule `p` to `M₂` induced by a linear map `f : M → M₂`
vanishing on `p`, as a linear map. -/
def liftq (f : M →ₗ[R] M₂) (h : p ≤ f.ker) : p.quotient →ₗ[R] M₂ :=
⟨λ x, _root_.quotient.lift_on' x f $
λ a b (ab : a - b ∈ p), eq_of_sub_eq_zero $ by simpa using h ab,
by rintro ⟨x⟩ ⟨y⟩; exact f.map_add x y,
by rintro a ⟨x⟩; exact f.map_smul a x⟩
@[simp] theorem liftq_apply (f : M →ₗ[R] M₂) {h} (x : M) :
p.liftq f h (quotient.mk x) = f x := rfl
@[simp] theorem liftq_mkq (f : M →ₗ[R] M₂) (h) : (p.liftq f h).comp p.mkq = f :=
by ext; refl
@[simp] theorem range_mkq : p.mkq.range = ⊤ :=
eq_top_iff'.2 $ by rintro ⟨x⟩; exact ⟨x, trivial, rfl⟩
@[simp] theorem ker_mkq : p.mkq.ker = p :=
by ext; simp
lemma le_comap_mkq (p' : submodule R p.quotient) : p ≤ comap p.mkq p' :=
by simpa using (comap_mono bot_le : p.mkq.ker ≤ comap p.mkq p')
@[simp] theorem mkq_map_self : map p.mkq p = ⊥ :=
by rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkq]; exact le_refl _
@[simp] theorem comap_map_mkq : comap p.mkq (map p.mkq p') = p ⊔ p' :=
by simp [comap_map_eq, sup_comm]
/-- The map from the quotient of `M` by submodule `p` to the quotient of `M₂` by submodule `q` along
`f : M → M₂` is linear. -/
def mapq (f : M →ₗ[R] M₂) (h : p ≤ comap f q) : p.quotient →ₗ[R] q.quotient :=
p.liftq (q.mkq.comp f) $ by simpa [ker_comp] using h
@[simp] theorem mapq_apply (f : M →ₗ[R] M₂) {h} (x : M) :
mapq p q f h (quotient.mk x) = quotient.mk (f x) := rfl
theorem mapq_mkq (f : M →ₗ[R] M₂) {h} : (mapq p q f h).comp p.mkq = q.mkq.comp f :=
by ext x; refl
theorem comap_liftq (f : M →ₗ[R] M₂) (h) :
q.comap (p.liftq f h) = (q.comap f).map (mkq p) :=
le_antisymm
(by rintro ⟨x⟩ hx; exact ⟨_, hx, rfl⟩)
(by rw [map_le_iff_le_comap, ← comap_comp, liftq_mkq]; exact le_refl _)
theorem map_liftq (f : M →ₗ[R] M₂) (h) (q : submodule R (quotient p)) :
q.map (p.liftq f h) = (q.comap p.mkq).map f :=
le_antisymm
(by rintro _ ⟨⟨x⟩, hxq, rfl⟩; exact ⟨x, hxq, rfl⟩)
(by rintro _ ⟨x, hxq, rfl⟩; exact ⟨quotient.mk x, hxq, rfl⟩)
theorem ker_liftq (f : M →ₗ[R] M₂) (h) :
ker (p.liftq f h) = (ker f).map (mkq p) := comap_liftq _ _ _ _
theorem range_liftq (f : M →ₗ[R] M₂) (h) :
range (p.liftq f h) = range f := map_liftq _ _ _ _
theorem ker_liftq_eq_bot (f : M →ₗ[R] M₂) (h) (h' : ker f ≤ p) : ker (p.liftq f h) = ⊥ :=
by rw [ker_liftq, le_antisymm h h', mkq_map_self]
/-- The correspondence theorem for modules: there is an order isomorphism between submodules of the
quotient of `M` by `p`, and submodules of `M` larger than `p`. -/
def comap_mkq.order_iso :
((≤) : submodule R p.quotient → submodule R p.quotient → Prop) ≃o
((≤) : {p' : submodule R M // p ≤ p'} → {p' : submodule R M // p ≤ p'} → Prop) :=
{ to_fun := λ p', ⟨comap p.mkq p', le_comap_mkq p _⟩,
inv_fun := λ q, map p.mkq q,
left_inv := λ p', map_comap_eq_self $ by simp,
right_inv := λ ⟨q, hq⟩, subtype.eq' $ by simp [comap_map_mkq p, sup_of_le_right hq],
ord := λ p₁ p₂, (comap_le_comap_iff $ range_mkq _).symm }
/-- The ordering on submodules of the quotient of `M` by `p` embeds into the ordering on submodules
of `M`. -/
def comap_mkq.le_order_embedding :
((≤) : submodule R p.quotient → submodule R p.quotient → Prop) ≼o ((≤) : submodule R M → submodule R M → Prop) :=
(order_iso.to_order_embedding $ comap_mkq.order_iso p).trans (subtype.order_embedding _ _)
@[simp] lemma comap_mkq_embedding_eq (p' : submodule R p.quotient) :
comap_mkq.le_order_embedding p p' = comap p.mkq p' := rfl
/-- The ordering on submodules of the quotient of `M` by `p` embeds into the ordering on submodules
of `M`. -/
def comap_mkq.lt_order_embedding :
((<) : submodule R p.quotient → submodule R p.quotient → Prop) ≼o ((<) : submodule R M → submodule R M → Prop) :=
(comap_mkq.le_order_embedding p).lt_embedding_of_le_embedding
end submodule
section
set_option old_structure_cmd true
/-- A linear equivalence is an invertible linear map. -/
structure linear_equiv (R : Type u) (M : Type v) (M₂ : Type w)
[ring R] [add_comm_group M] [add_comm_group M₂] [module R M] [module R M₂]
extends M →ₗ[R] M₂, M ≃ M₂
end
infix ` ≃ₗ ` := linear_equiv _
notation M ` ≃ₗ[`:50 R `] ` M₂ := linear_equiv R M M₂
namespace linear_equiv
section ring
variables [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R M₂] [module R M₃]
include R
instance : has_coe (M ≃ₗ[R] M₂) (M →ₗ[R] M₂) := ⟨to_linear_map⟩
@[simp] theorem coe_apply (e : M ≃ₗ[R] M₂) (b : M) : (e : M →ₗ[R] M₂) b = e b := rfl
lemma to_equiv_injective : function.injective (to_equiv : (M ≃ₗ[R] M₂) → M ≃ M₂) :=
λ ⟨_, _, _, _, _, _⟩ ⟨_, _, _, _, _, _⟩ h, linear_equiv.mk.inj_eq.mpr (equiv.mk.inj h)
@[ext] lemma ext {f g : M ≃ₗ[R] M₂} (h : (f : M → M₂) = g) : f = g :=
to_equiv_injective (equiv.eq_of_to_fun_eq h)
section
variable (M)
/-- The identity map is a linear equivalence. -/
def refl : M ≃ₗ[R] M := { .. linear_map.id, .. equiv.refl M }
end
/-- Linear equivalences are symmetric. -/
def symm (e : M ≃ₗ[R] M₂) : M₂ ≃ₗ[R] M :=
{ .. e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv,
.. e.to_equiv.symm }
/-- Linear equivalences are transitive. -/
def trans (e₁ : M ≃ₗ[R] M₂) (e₂ : M₂ ≃ₗ[R] M₃) : M ≃ₗ[R] M₃ :=
{ .. e₂.to_linear_map.comp e₁.to_linear_map,
.. e₁.to_equiv.trans e₂.to_equiv }
@[simp] theorem apply_symm_apply (e : M ≃ₗ[R] M₂) (c : M₂) : e (e.symm c) = c := e.6 c
@[simp] theorem symm_apply_apply (e : M ≃ₗ[R] M₂) (b : M) : e.symm (e b) = b := e.5 b
/-- A bijective linear map is a linear equivalence. Here, bijectivity is described by saying that
the kernel of `f` is `{0}` and the range is the universal set. -/
noncomputable def of_bijective
(f : M →ₗ[R] M₂) (hf₁ : f.ker = ⊥) (hf₂ : f.range = ⊤) : M ≃ₗ[R] M₂ :=
{ ..f, ..@equiv.of_bijective _ _ f
⟨linear_map.ker_eq_bot.1 hf₁, linear_map.range_eq_top.1 hf₂⟩ }
@[simp] theorem of_bijective_apply (f : M →ₗ[R] M₂) {hf₁ hf₂} (x : M) :
of_bijective f hf₁ hf₂ x = f x := rfl
/-- If a linear map has an inverse, it is a linear equivalence. -/
def of_linear (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M)
(h₁ : f.comp g = linear_map.id) (h₂ : g.comp f = linear_map.id) : M ≃ₗ[R] M₂ :=
{ inv_fun := g,
left_inv := linear_map.ext_iff.1 h₂,
right_inv := linear_map.ext_iff.1 h₁,
..f }
@[simp] theorem of_linear_apply (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M) {h₁ h₂}
(x : M) : of_linear f g h₁ h₂ x = f x := rfl
@[simp] theorem of_linear_symm_apply (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M) {h₁ h₂}
(x : M₂) : (of_linear f g h₁ h₂).symm x = g x := rfl
@[simp] protected theorem ker (f : M ≃ₗ[R] M₂) : (f : M →ₗ[R] M₂).ker = ⊥ :=
linear_map.ker_eq_bot.2 f.to_equiv.injective
@[simp] protected theorem range (f : M ≃ₗ[R] M₂) : (f : M →ₗ[R] M₂).range = ⊤ :=
linear_map.range_eq_top.2 f.to_equiv.surjective
/-- The top submodule of `M` is linearly equivalent to `M`. -/
def of_top (p : submodule R M) (h : p = ⊤) : p ≃ₗ[R] M :=
{ inv_fun := λ x, ⟨x, h.symm ▸ trivial⟩,
left_inv := λ ⟨x, h⟩, rfl,
right_inv := λ x, rfl,
.. p.subtype }
@[simp] theorem of_top_apply (p : submodule R M) {h} (x : p) :
of_top p h x = x := rfl
@[simp] theorem of_top_symm_apply (p : submodule R M) {h} (x : M) :
↑((of_top p h).symm x) = x := rfl
lemma eq_bot_of_equiv (p : submodule R M) (e : p ≃ₗ[R] (⊥ : submodule R M₂)) :
p = ⊥ :=
begin
refine bot_unique (submodule.le_def'.2 $ assume b hb, (submodule.mem_bot R).2 _),
have := e.symm_apply_apply ⟨b, hb⟩,
rw [← e.coe_apply, submodule.eq_zero_of_bot_submodule ((e : p →ₗ[R] (⊥ : submodule R M₂)) ⟨b, hb⟩),
← e.symm.coe_apply, linear_map.map_zero] at this,
exact congr_arg (coe : p → M) this.symm
end
end ring
section comm_ring
variables [comm_ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R M₂] [module R M₃]
include R
open linear_map
set_option class.instance_max_depth 39
/-- Multiplying by a unit `a` of the ring `R` is a linear equivalence. -/
def smul_of_unit (a : units R) : M ≃ₗ[R] M :=
of_linear ((a:R) • 1 : M →ₗ M) (((a⁻¹ : units R) : R) • 1 : M →ₗ M)
(by rw [smul_comp, comp_smul, smul_smul, units.mul_inv, one_smul]; refl)
(by rw [smul_comp, comp_smul, smul_smul, units.inv_mul, one_smul]; refl)
/-- A linear isomorphism between the domains and codomains of two spaces of linear maps gives a
linear isomorphism between the two function spaces. -/
def arrow_congr {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_ring R]
[add_comm_group M₁] [add_comm_group M₂] [add_comm_group M₂₁] [add_comm_group M₂₂]
[module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂]
(e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) :
(M₁ →ₗ[R] M₂₁) ≃ₗ[R] (M₂ →ₗ[R] M₂₂) :=
{ to_fun := λ f, e₂.to_linear_map.comp $ f.comp e₁.symm.to_linear_map,
inv_fun := λ f, e₂.symm.to_linear_map.comp $ f.comp e₁.to_linear_map,
left_inv := λ f, by { ext x, unfold_coes,
change e₂.inv_fun (e₂.to_fun $ f.to_fun $ e₁.inv_fun $ e₁.to_fun x) = _,
rw [e₁.left_inv, e₂.left_inv] },
right_inv := λ f, by { ext x, unfold_coes,
change e₂.to_fun (e₂.inv_fun $ f.to_fun $ e₁.to_fun $ e₁.inv_fun x) = _,
rw [e₁.right_inv, e₂.right_inv] },
add := λ f g, by { ext x, change e₂.to_fun ((f + g) (e₁.inv_fun x)) = _,
rw [linear_map.add_apply, e₂.add], refl },
smul := λ c f, by { ext x, change e₂.to_fun ((c • f) (e₁.inv_fun x)) = _,
rw [linear_map.smul_apply, e₂.smul], refl } }
/-- If M₂ and M₃ are linearly isomorphic then the two spaces of linear maps from M into M₂ and
M into M₃ are linearly isomorphic. -/
def congr_right (f : M₂ ≃ₗ[R] M₃) : (M →ₗ[R] M₂) ≃ₗ (M →ₗ M₃) := arrow_congr (linear_equiv.refl M) f
/-- If M and M₂ are linearly isomorphic then the two spaces of linear maps from M and M₂ to themselves
are linearly isomorphic. -/
def conj (e : M ≃ₗ[R] M₂) : (M →ₗ[R] M) ≃ₗ[R] (M₂ →ₗ[R] M₂) := arrow_congr e e
end comm_ring
section field
variables [field K] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module K M] [module K M₂] [module K M₃]
variable (M)
open linear_map
/-- Multiplying by a nonzero element `a` of the field `K` is a linear equivalence. -/
def smul_of_ne_zero (a : K) (ha : a ≠ 0) : M ≃ₗ[K] M :=
smul_of_unit $ units.mk0 a ha
end field
end linear_equiv
namespace equiv
variables [ring R] [add_comm_group M] [module R M] [add_comm_group M₂] [module R M₂]
/-- An equivalence whose underlying function is linear is a linear equivalence. -/
def to_linear_equiv (e : M ≃ M₂) (h : is_linear_map R (e : M → M₂)) : M ≃ₗ[R] M₂ :=
{ add := h.add, smul := h.smul, .. e}
end equiv
namespace linear_map
variables [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R M₂] [module R M₃]
variables (f : M →ₗ[R] M₂)
/-- The first isomorphism law for modules. The quotient of `M` by the kernel of `f` is linearly
equivalent to the range of `f`. -/
noncomputable def quot_ker_equiv_range : f.ker.quotient ≃ₗ[R] f.range :=
have hr : ∀ x : f.range, ∃ y, f y = ↑x := λ x, x.2.imp $ λ _, and.right,
let F : f.ker.quotient →ₗ[R] f.range :=
f.ker.liftq (cod_restrict f.range f $ λ x, ⟨x, trivial, rfl⟩)
(λ x hx, by simp; apply subtype.coe_ext.2; simpa using hx) in
{ inv_fun := λx, submodule.quotient.mk (classical.some (hr x)),
left_inv := by rintro ⟨x⟩; exact
(submodule.quotient.eq _).2 (sub_mem_ker_iff.2 $
classical.some_spec $ hr $ F $ submodule.quotient.mk x),
right_inv := λ x : range f, subtype.eq $ classical.some_spec (hr x),
.. F }
open submodule
/--
Canonical linear map from the quotient p/(p ∩ p') to (p+p')/p', mapping x + (p ∩ p') to x + p',
where p and p' are submodules of an ambient module.
-/
def sup_quotient_to_quotient_inf (p p' : submodule R M) :
(comap p.subtype (p ⊓ p')).quotient →ₗ[R] (comap (p ⊔ p').subtype p').quotient :=
(comap p.subtype (p ⊓ p')).liftq
((comap (p ⊔ p').subtype p').mkq.comp (of_le le_sup_left)) begin
rw [ker_comp, of_le, comap_cod_restrict, ker_mkq, map_comap_subtype],
exact comap_mono (inf_le_inf le_sup_left (le_refl _)) end
set_option class.instance_max_depth 41
/--
Second Isomorphism Law : the canonical map from p/(p ∩ p') to (p+p')/p' as a linear isomorphism.
-/
noncomputable def sup_quotient_equiv_quotient_inf (p p' : submodule R M) :
(comap p.subtype (p ⊓ p')).quotient ≃ₗ[R] (comap (p ⊔ p').subtype p').quotient :=
{ .. sup_quotient_to_quotient_inf p p',
.. show (comap p.subtype (p ⊓ p')).quotient ≃ (comap (p ⊔ p').subtype p').quotient, from
@equiv.of_bijective _ _ (sup_quotient_to_quotient_inf p p') begin
constructor,
{ rw [← ker_eq_bot, sup_quotient_to_quotient_inf, ker_liftq_eq_bot],
rw [ker_comp, ker_mkq],
rintros ⟨x, hx1⟩ hx2, exact ⟨hx1, hx2⟩ },
rw [← range_eq_top, sup_quotient_to_quotient_inf, range_liftq, eq_top_iff'],
rintros ⟨x, hx⟩, rcases mem_sup.1 hx with ⟨y, hy, z, hz, rfl⟩,
use [⟨y, hy⟩, trivial], apply (submodule.quotient.eq _).2,
change y - (y + z) ∈ p', rwa [sub_add_eq_sub_sub, sub_self, zero_sub, neg_mem_iff]
end }
section prod
/-- The cartesian product of two linear maps as a linear map. -/
def prod {R M M₂ M₃ : Type*} [ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
[module R M] [module R M₂] [module R M₃]
(f₁ : M →ₗ[R] M₂) (f₂ : M →ₗ[R] M₃) : M →ₗ[R] (M₂ × M₃) :=
{ to_fun := λx, (f₁ x, f₂ x),
add := λx y, begin
change (f₁ (x + y), f₂ (x+y)) = (f₁ x, f₂ x) + (f₁ y, f₂ y),
simp only [linear_map.map_add],
refl
end,
smul := λc x, by simp only [linear_map.map_smul] }
lemma is_linear_map_prod_iso {R M M₂ M₃ : Type*} [comm_ring R] [add_comm_group M] [add_comm_group M₂]
[add_comm_group M₃] [module R M] [module R M₂] [module R M₃] :
is_linear_map R (λ(p : (M →ₗ[R] M₂) × (M →ₗ[R] M₃)), (linear_map.prod p.1 p.2 : (M →ₗ[R] (M₂ × M₃)))) :=
⟨λu v, rfl, λc u, rfl⟩
end prod
section pi
universe i
variables {φ : ι → Type i}
variables [∀i, add_comm_group (φ i)] [∀i, module R (φ i)]
/-- `pi` construction for linear functions. From a family of linear functions it produces a linear
function into a family of modules. -/
def pi (f : Πi, M₂ →ₗ[R] φ i) : M₂ →ₗ[R] (Πi, φ i) :=
⟨λc i, f i c,
assume c d, funext $ assume i, (f i).add _ _, assume c d, funext $ assume i, (f i).smul _ _⟩
@[simp] lemma pi_apply (f : Πi, M₂ →ₗ[R] φ i) (c : M₂) (i : ι) :
pi f c i = f i c := rfl
lemma ker_pi (f : Πi, M₂ →ₗ[R] φ i) : ker (pi f) = (⨅i:ι, ker (f i)) :=
by ext c; simp [funext_iff]; refl
lemma pi_eq_zero (f : Πi, M₂ →ₗ[R] φ i) : pi f = 0 ↔ (∀i, f i = 0) :=
by simp only [linear_map.ext_iff, pi_apply, funext_iff]; exact ⟨λh a b, h b a, λh a b, h b a⟩
lemma pi_zero : pi (λi, 0 : Πi, M₂ →ₗ[R] φ i) = 0 :=
by ext; refl
lemma pi_comp (f : Πi, M₂ →ₗ[R] φ i) (g : M₃ →ₗ[R] M₂) : (pi f).comp g = pi (λi, (f i).comp g) :=
rfl
/-- The projections from a family of modules are linear maps. -/
def proj (i : ι) : (Πi, φ i) →ₗ[R] φ i :=
⟨ λa, a i, assume f g, rfl, assume c f, rfl ⟩
@[simp] lemma proj_apply (i : ι) (b : Πi, φ i) : (proj i : (Πi, φ i) →ₗ[R] φ i) b = b i := rfl
lemma proj_pi (f : Πi, M₂ →ₗ[R] φ i) (i : ι) : (proj i).comp (pi f) = f i :=
ext $ assume c, rfl
lemma infi_ker_proj : (⨅i, ker (proj i) : submodule R (Πi, φ i)) = ⊥ :=
bot_unique $ submodule.le_def'.2 $ assume a h,
begin
simp only [mem_infi, mem_ker, proj_apply] at h,
exact (mem_bot _).2 (funext $ assume i, h i)
end
section
variables (R φ)
/-- If `I` and `J` are disjoint index sets, the product of the kernels of the `J`th projections of
`φ` is linearly equivalent to the product over `I`. -/
def infi_ker_proj_equiv {I J : set ι} [decidable_pred (λi, i ∈ I)]
(hd : disjoint I J) (hu : set.univ ⊆ I ∪ J) :
(⨅i ∈ J, ker (proj i) : submodule R (Πi, φ i)) ≃ₗ[R] (Πi:I, φ i) :=
begin
refine linear_equiv.of_linear
(pi $ λi, (proj (i:ι)).comp (submodule.subtype _))
(cod_restrict _ (pi $ λi, if h : i ∈ I then proj (⟨i, h⟩ : I) else 0) _) _ _,
{ assume b,
simp only [mem_infi, mem_ker, funext_iff, proj_apply, pi_apply],
assume j hjJ,
have : j ∉ I := assume hjI, hd ⟨hjI, hjJ⟩,
rw [dif_neg this, zero_apply] },
{ simp only [pi_comp, comp_assoc, subtype_comp_cod_restrict, proj_pi, dif_pos, subtype.val_prop'],
ext b ⟨j, hj⟩, refl },
{ ext ⟨b, hb⟩,
apply subtype.coe_ext.2,
ext j,
have hb : ∀i ∈ J, b i = 0,
{ simpa only [mem_infi, mem_ker, proj_apply] using (mem_infi _).1 hb },
simp only [comp_apply, pi_apply, id_apply, proj_apply, subtype_apply, cod_restrict_apply],
split_ifs,
{ rw [dif_pos h], refl },
{ rw [dif_neg h],
exact (hb _ $ (hu trivial).resolve_left h).symm } }
end
end
section
variable [decidable_eq ι]
/-- `diag i j` is the identity map if `i = j`. Otherwise it is the constant 0 map. -/
def diag (i j : ι) : φ i →ₗ[R] φ j :=
@function.update ι (λj, φ i →ₗ[R] φ j) _ 0 i id j
lemma update_apply (f : Πi, M₂ →ₗ[R] φ i) (c : M₂) (i j : ι) (b : M₂ →ₗ[R] φ i) :
(update f i b j) c = update (λi, f i c) i (b c) j :=
begin
by_cases j = i,
{ rw [h, update_same, update_same] },
{ rw [update_noteq h, update_noteq h] }
end
end
section
variable [decidable_eq ι]
variables (R φ)
/-- The standard basis of the product of `φ`. -/
def std_basis (i : ι) : φ i →ₗ[R] (Πi, φ i) := pi (diag i)
lemma std_basis_apply (i : ι) (b : φ i) : std_basis R φ i b = update 0 i b :=
by ext j; rw [std_basis, pi_apply, diag, update_apply]; refl
@[simp] lemma std_basis_same (i : ι) (b : φ i) : std_basis R φ i b i = b :=
by rw [std_basis_apply, update_same]
lemma std_basis_ne (i j : ι) (h : j ≠ i) (b : φ i) : std_basis R φ i b j = 0 :=
by rw [std_basis_apply, update_noteq h]; refl
lemma ker_std_basis (i : ι) : ker (std_basis R φ i) = ⊥ :=
ker_eq_bot.2 $ assume f g hfg,
have std_basis R φ i f i = std_basis R φ i g i := hfg ▸ rfl,
by simpa only [std_basis_same]
lemma proj_comp_std_basis (i j : ι) : (proj i).comp (std_basis R φ j) = diag j i :=
by rw [std_basis, proj_pi]
lemma proj_std_basis_same (i : ι) : (proj i).comp (std_basis R φ i) = id :=
by ext b; simp
lemma proj_std_basis_ne (i j : ι) (h : i ≠ j) : (proj i).comp (std_basis R φ j) = 0 :=
by ext b; simp [std_basis_ne R φ _ _ h]
lemma supr_range_std_basis_le_infi_ker_proj (I J : set ι) (h : disjoint I J) :
(⨆i∈I, range (std_basis R φ i)) ≤ (⨅i∈J, ker (proj i)) :=
begin
refine (supr_le $ assume i, supr_le $ assume hi, range_le_iff_comap.2 _),
simp only [(ker_comp _ _).symm, eq_top_iff, le_def', mem_ker, comap_infi, mem_infi],
assume b hb j hj,
have : i ≠ j := assume eq, h ⟨hi, eq.symm ▸ hj⟩,
rw [proj_std_basis_ne R φ j i this.symm, zero_apply]
end
lemma infi_ker_proj_le_supr_range_std_basis {I : finset ι} {J : set ι} (hu : set.univ ⊆ ↑I ∪ J) :
(⨅ i∈J, ker (proj i)) ≤ (⨆i∈I, range (std_basis R φ i)) :=
submodule.le_def'.2
begin
assume b hb,
simp only [mem_infi, mem_ker, proj_apply] at hb,
rw ← show I.sum (λi, std_basis R φ i (b i)) = b,
{ ext i,
rw [pi.finset_sum_apply, ← std_basis_same R φ i (b i)],
refine finset.sum_eq_single i (assume j hjI ne, std_basis_ne _ _ _ _ ne.symm _) _,
assume hiI,
rw [std_basis_same],
exact hb _ ((hu trivial).resolve_left hiI) },
exact sum_mem _ (assume i hiI, mem_supr_of_mem _ i $ mem_supr_of_mem _ hiI $
linear_map.mem_range.2 ⟨_, rfl⟩)
end
lemma supr_range_std_basis_eq_infi_ker_proj {I J : set ι}
(hd : disjoint I J) (hu : set.univ ⊆ I ∪ J) (hI : set.finite I) :
(⨆i∈I, range (std_basis R φ i)) = (⨅i∈J, ker (proj i)) :=
begin
refine le_antisymm (supr_range_std_basis_le_infi_ker_proj _ _ _ _ hd) _,
have : set.univ ⊆ ↑hI.to_finset ∪ J, { rwa [finset.coe_to_finset] },
refine le_trans (infi_ker_proj_le_supr_range_std_basis R φ this) (supr_le_supr $ assume i, _),
rw [← finset.mem_coe, finset.coe_to_finset],
exact le_refl _
end
lemma supr_range_std_basis [fintype ι] : (⨆i:ι, range (std_basis R φ i)) = ⊤ :=
have (set.univ : set ι) ⊆ ↑(finset.univ : finset ι) ∪ ∅ := by rw [finset.coe_univ, set.union_empty],
begin
apply top_unique,
convert (infi_ker_proj_le_supr_range_std_basis R φ this),
exact infi_emptyset.symm,
exact (funext $ λi, (@supr_pos _ _ _ (λh, range (std_basis R φ i)) $ finset.mem_univ i).symm)
end
lemma disjoint_std_basis_std_basis (I J : set ι) (h : disjoint I J) :
disjoint (⨆i∈I, range (std_basis R φ i)) (⨆i∈J, range (std_basis R φ i)) :=
begin
refine disjoint_mono
(supr_range_std_basis_le_infi_ker_proj _ _ _ _ $ set.disjoint_compl I)
(supr_range_std_basis_le_infi_ker_proj _ _ _ _ $ set.disjoint_compl J) _,
simp only [disjoint, submodule.le_def', mem_infi, mem_inf, mem_ker, mem_bot, proj_apply,
funext_iff],
rintros b ⟨hI, hJ⟩ i,
classical,
by_cases hiI : i ∈ I,
{ by_cases hiJ : i ∈ J,
{ exact (h ⟨hiI, hiJ⟩).elim },
{ exact hJ i hiJ } },
{ exact hI i hiI }
end
lemma std_basis_eq_single {a : R} :
(λ (i : ι), (std_basis R (λ _ : ι, R) i) a) = λ (i : ι), (finsupp.single i a) :=
begin
ext i j,
rw [std_basis_apply, finsupp.single_apply],
split_ifs,
{ rw [h, function.update_same] },
{ rw [function.update_noteq (ne.symm h)], refl },
end
end
end pi
variables (R M)
instance automorphism_group : group (M ≃ₗ[R] M) :=
{ mul := λ f g, g.trans f,
one := linear_equiv.refl M,
inv := λ f, f.symm,
mul_assoc := λ f g h, by {ext, refl},
mul_one := λ f, by {ext, refl},
one_mul := λ f, by {ext, refl},
mul_left_inv := λ f, by {ext, exact f.left_inv x} }
instance automorphism_group.to_linear_map_is_monoid_hom :
is_monoid_hom (linear_equiv.to_linear_map : (M ≃ₗ[R] M) → (M →ₗ[R] M)) :=
{ map_one := rfl,
map_mul := λ f g, rfl }
/-- The group of invertible linear maps from `M` to itself -/
def general_linear_group := units (M →ₗ[R] M)
namespace general_linear_group
variables {R M}
instance : group (general_linear_group R M) := by delta general_linear_group; apply_instance
/-- An invertible linear map `f` determines an equivalence from `M` to itself. -/
def to_linear_equiv (f : general_linear_group R M) : (M ≃ₗ[R] M) :=
{ inv_fun := f.inv.to_fun,
left_inv := λ m, show (f.inv * f.val) m = m,
by erw f.inv_val; simp,
right_inv := λ m, show (f.val * f.inv) m = m,
by erw f.val_inv; simp,
..f.val }
/-- An equivalence from `M` to itself determines an invertible linear map. -/
def of_linear_equiv (f : (M ≃ₗ[R] M)) : general_linear_group R M :=
{ val := f,
inv := f.symm,
val_inv := linear_map.ext $ λ _, f.apply_symm_apply _,
inv_val := linear_map.ext $ λ _, f.symm_apply_apply _ }
variables (R M)
/-- The general linear group on `R` and `M` is multiplicatively equivalent to the type of linear
equivalences between `M` and itself. -/
def general_linear_equiv : general_linear_group R M ≃* (M ≃ₗ[R] M) :=
{ to_fun := to_linear_equiv,
inv_fun := of_linear_equiv,
left_inv := λ f,
begin
delta to_linear_equiv of_linear_equiv,
cases f with f f_inv, cases f, cases f_inv,
congr
end,
right_inv := λ f,
begin
delta to_linear_equiv of_linear_equiv,
cases f,
congr
end,
map_mul' := λ x y, by {ext, refl} }
@[simp] lemma general_linear_equiv_to_linear_map (f : general_linear_group R M) :
((general_linear_equiv R M).to_equiv f).to_linear_map = f.val :=
by {ext, refl}
end general_linear_group
end linear_map
|
280456bf71701c737eab56e3c88c421b89dca28c
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/algebra/homology/image_to_kernel.lean
|
5b100a5aec890325c55aa8c147cc7bdf87769a82
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 15,746
|
lean
|
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.subobject.limits
/-!
# Image-to-kernel comparison maps
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
Whenever `f : A ⟶ B` and `g : B ⟶ C` satisfy `w : f ≫ g = 0`,
we have `image_le_kernel f g w : image_subobject f ≤ kernel_subobject g`
(assuming the appropriate images and kernels exist).
`image_to_kernel f g w` is the corresponding morphism between objects in `C`.
We define `homology f g w` of such a pair as the cokernel of `image_to_kernel f g w`.
-/
universes v u
open category_theory category_theory.limits
variables {ι : Type*}
variables {V : Type u} [category.{v} V] [has_zero_morphisms V]
open_locale classical
noncomputable theory
section
variables {A B C : V} (f : A ⟶ B) [has_image f] (g : B ⟶ C) [has_kernel g]
lemma image_le_kernel (w : f ≫ g = 0) :
image_subobject f ≤ kernel_subobject g :=
image_subobject_le_mk _ _ (kernel.lift _ _ w) (by simp)
/--
The canonical morphism `image_subobject f ⟶ kernel_subobject g` when `f ≫ g = 0`.
-/
@[derive mono]
def image_to_kernel (w : f ≫ g = 0) :
(image_subobject f : V) ⟶ (kernel_subobject g : V) :=
(subobject.of_le _ _ (image_le_kernel _ _ w))
/-- Prefer `image_to_kernel`. -/
@[simp] lemma subobject_of_le_as_image_to_kernel (w : f ≫ g = 0) (h) :
subobject.of_le (image_subobject f) (kernel_subobject g) h = image_to_kernel f g w :=
rfl
@[simp, reassoc, elementwise]
lemma image_to_kernel_arrow (w : f ≫ g = 0) :
image_to_kernel f g w ≫ (kernel_subobject g).arrow = (image_subobject f).arrow :=
by simp [image_to_kernel]
-- This is less useful as a `simp` lemma than it initially appears,
-- as it "loses" the information the morphism factors through the image.
lemma factor_thru_image_subobject_comp_image_to_kernel (w : f ≫ g = 0) :
factor_thru_image_subobject f ≫ image_to_kernel f g w = factor_thru_kernel_subobject g f w :=
by { ext, simp, }
end
section
variables {A B C : V} (f : A ⟶ B) (g : B ⟶ C)
@[simp]
lemma image_to_kernel_zero_left [has_kernels V] [has_zero_object V] {w} :
image_to_kernel (0 : A ⟶ B) g w = 0 :=
by { ext, simp, }
lemma image_to_kernel_zero_right [has_images V] {w} :
image_to_kernel f (0 : B ⟶ C) w =
(image_subobject f).arrow ≫ inv (kernel_subobject (0 : B ⟶ C)).arrow :=
by { ext, simp }
section
variables [has_kernels V] [has_images V]
lemma image_to_kernel_comp_right {D : V} (h : C ⟶ D) (w : f ≫ g = 0) :
image_to_kernel f (g ≫ h) (by simp [reassoc_of w]) =
image_to_kernel f g w ≫ subobject.of_le _ _ (kernel_subobject_comp_le g h) :=
by { ext, simp }
lemma image_to_kernel_comp_left {Z : V} (h : Z ⟶ A) (w : f ≫ g = 0) :
image_to_kernel (h ≫ f) g (by simp [w]) =
subobject.of_le _ _ (image_subobject_comp_le h f) ≫ image_to_kernel f g w :=
by { ext, simp }
@[simp]
lemma image_to_kernel_comp_mono {D : V} (h : C ⟶ D) [mono h] (w) :
image_to_kernel f (g ≫ h) w =
image_to_kernel f g ((cancel_mono h).mp (by simpa using w : (f ≫ g) ≫ h = 0 ≫ h)) ≫
(subobject.iso_of_eq _ _ (kernel_subobject_comp_mono g h)).inv :=
by { ext, simp, }
@[simp]
lemma image_to_kernel_epi_comp {Z : V} (h : Z ⟶ A) [epi h] (w) :
image_to_kernel (h ≫ f) g w =
subobject.of_le _ _ (image_subobject_comp_le h f) ≫
image_to_kernel f g ((cancel_epi h).mp (by simpa using w : h ≫ f ≫ g = h ≫ 0)) :=
by { ext, simp, }
end
@[simp]
lemma image_to_kernel_comp_hom_inv_comp [has_equalizers V] [has_images V] {Z : V} {i : B ≅ Z} (w) :
image_to_kernel (f ≫ i.hom) (i.inv ≫ g) w =
(image_subobject_comp_iso _ _).hom ≫ image_to_kernel f g (by simpa using w) ≫
(kernel_subobject_iso_comp i.inv g).inv :=
by { ext, simp, }
open_locale zero_object
/--
`image_to_kernel` for `A --0--> B --g--> C`, where `g` is a mono is itself an epi
(i.e. the sequence is exact at `B`).
-/
instance image_to_kernel_epi_of_zero_of_mono [has_kernels V] [has_zero_object V] [mono g] :
epi (image_to_kernel (0 : A ⟶ B) g (by simp)) :=
epi_of_target_iso_zero _ (kernel_subobject_iso g ≪≫ kernel.of_mono g)
/--
`image_to_kernel` for `A --f--> B --0--> C`, where `g` is an epi is itself an epi
(i.e. the sequence is exact at `B`).
-/
instance image_to_kernel_epi_of_epi_of_zero [has_images V] [epi f] :
epi (image_to_kernel f (0 : B ⟶ C) (by simp)) :=
begin
simp only [image_to_kernel_zero_right],
haveI := epi_image_of_epi f,
rw ←image_subobject_arrow,
refine @epi_comp _ _ _ _ _ _ (epi_comp _ _) _ _,
end
end
section
variables {A B C : V} (f : A ⟶ B) [has_image f] (g : B ⟶ C) [has_kernel g]
/--
The homology of a pair of morphisms `f : A ⟶ B` and `g : B ⟶ C` satisfying `f ≫ g = 0`
is the cokernel of the `image_to_kernel` morphism for `f` and `g`.
-/
def homology {A B C : V} (f : A ⟶ B) [has_image f] (g : B ⟶ C) [has_kernel g]
(w : f ≫ g = 0) [has_cokernel (image_to_kernel f g w)] : V :=
cokernel (image_to_kernel f g w)
section
variables (w : f ≫ g = 0) [has_cokernel (image_to_kernel f g w)]
/-- The morphism from cycles to homology. -/
def homology.π : (kernel_subobject g : V) ⟶ homology f g w :=
cokernel.π _
@[simp] lemma homology.condition : image_to_kernel f g w ≫ homology.π f g w = 0 :=
cokernel.condition _
/--
To construct a map out of homology, it suffices to construct a map out of the cycles
which vanishes on boundaries.
-/
def homology.desc {D : V} (k : (kernel_subobject g : V) ⟶ D) (p : image_to_kernel f g w ≫ k = 0) :
homology f g w ⟶ D :=
cokernel.desc _ k p
@[simp, reassoc, elementwise]
lemma homology.π_desc
{D : V} (k : (kernel_subobject g : V) ⟶ D) (p : image_to_kernel f g w ≫ k = 0) :
homology.π f g w ≫ homology.desc f g w k p = k :=
by { simp [homology.π, homology.desc], }
/-- To check two morphisms out of `homology f g w` are equal, it suffices to check on cycles. -/
@[ext]
lemma homology.ext {D : V} {k k' : homology f g w ⟶ D}
(p : homology.π f g w ≫ k = homology.π f g w ≫ k') : k = k' :=
by { ext, exact p, }
/-- The cokernel of the map `Im f ⟶ Ker 0` is isomorphic to the cokernel of `f.` -/
def homology_of_zero_right [has_cokernel (image_to_kernel f (0 : B ⟶ C) comp_zero)]
[has_cokernel f] [has_cokernel (image.ι f)] [epi (factor_thru_image f)] :
homology f (0 : B ⟶ C) comp_zero ≅ cokernel f :=
(cokernel.map_iso _ _ (image_subobject_iso _) ((kernel_subobject_iso 0).trans
kernel_zero_iso_source) (by simp)).trans (cokernel_image_ι _)
/-- The kernel of the map `Im 0 ⟶ Ker f` is isomorphic to the kernel of `f.` -/
def homology_of_zero_left [has_zero_object V] [has_kernels V] [has_image (0 : A ⟶ B)]
[has_cokernel (image_to_kernel (0 : A ⟶ B) g zero_comp)] :
homology (0 : A ⟶ B) g zero_comp ≅ kernel g :=
((cokernel_iso_of_eq $ image_to_kernel_zero_left _).trans cokernel_zero_iso_target).trans
(kernel_subobject_iso _)
/-- `homology 0 0 _` is just the middle object. -/
@[simps]
def homology_zero_zero [has_zero_object V]
[has_image (0 : A ⟶ B)] [has_cokernel (image_to_kernel (0 : A ⟶ B) (0 : B ⟶ C) (by simp))] :
homology (0 : A ⟶ B) (0 : B ⟶ C) (by simp) ≅ B :=
{ hom := homology.desc (0 : A ⟶ B) (0 : B ⟶ C) (by simp) (kernel_subobject 0).arrow (by simp),
inv := inv (kernel_subobject 0).arrow ≫ homology.π _ _ _, }
end
section
variables {f g} (w : f ≫ g = 0)
{A' B' C' : V} {f' : A' ⟶ B'} [has_image f'] {g' : B' ⟶ C'} [has_kernel g'] (w' : f' ≫ g' = 0)
(α : arrow.mk f ⟶ arrow.mk f') [has_image_map α] (β : arrow.mk g ⟶ arrow.mk g')
{A₁ B₁ C₁ : V} {f₁ : A₁ ⟶ B₁} [has_image f₁] {g₁ : B₁ ⟶ C₁} [has_kernel g₁] (w₁ : f₁ ≫ g₁ = 0)
{A₂ B₂ C₂ : V} {f₂ : A₂ ⟶ B₂} [has_image f₂] {g₂ : B₂ ⟶ C₂} [has_kernel g₂] (w₂ : f₂ ≫ g₂ = 0)
{A₃ B₃ C₃ : V} {f₃ : A₃ ⟶ B₃} [has_image f₃] {g₃ : B₃ ⟶ C₃} [has_kernel g₃] (w₃ : f₃ ≫ g₃ = 0)
(α₁ : arrow.mk f₁ ⟶ arrow.mk f₂) [has_image_map α₁] (β₁ : arrow.mk g₁ ⟶ arrow.mk g₂)
(α₂ : arrow.mk f₂ ⟶ arrow.mk f₃) [has_image_map α₂] (β₂ : arrow.mk g₂ ⟶ arrow.mk g₃)
/--
Given compatible commutative squares between
a pair `f g` and a pair `f' g'` satisfying `f ≫ g = 0` and `f' ≫ g' = 0`,
the `image_to_kernel` morphisms intertwine the induced map on kernels and the induced map on images.
-/
@[reassoc]
lemma image_subobject_map_comp_image_to_kernel (p : α.right = β.left) :
image_to_kernel f g w ≫ kernel_subobject_map β =
image_subobject_map α ≫ image_to_kernel f' g' w' :=
by { ext, simp [p], }
variables [has_cokernel (image_to_kernel f g w)] [has_cokernel (image_to_kernel f' g' w')]
variables [has_cokernel (image_to_kernel f₁ g₁ w₁)]
variables [has_cokernel (image_to_kernel f₂ g₂ w₂)]
variables [has_cokernel (image_to_kernel f₃ g₃ w₃)]
/--
Given compatible commutative squares between
a pair `f g` and a pair `f' g'` satisfying `f ≫ g = 0` and `f' ≫ g' = 0`,
we get a morphism on homology.
-/
def homology.map (p : α.right = β.left) :
homology f g w ⟶ homology f' g' w' :=
cokernel.desc _ (kernel_subobject_map β ≫ cokernel.π _)
begin
rw [image_subobject_map_comp_image_to_kernel_assoc w w' α β p],
simp only [cokernel.condition, comp_zero],
end
@[simp, reassoc, elementwise]
lemma homology.π_map (p : α.right = β.left) :
homology.π f g w ≫ homology.map w w' α β p = kernel_subobject_map β ≫ homology.π f' g' w' :=
by simp only [homology.π, homology.map, cokernel.π_desc]
@[simp, reassoc, elementwise]
lemma homology.map_desc (p : α.right = β.left)
{D : V} (k : (kernel_subobject g' : V) ⟶ D) (z : image_to_kernel f' g' w' ≫ k = 0) :
homology.map w w' α β p ≫ homology.desc f' g' w' k z =
homology.desc f g w (kernel_subobject_map β ≫ k)
(by simp only [image_subobject_map_comp_image_to_kernel_assoc w w' α β p, z, comp_zero]) :=
by ext; simp only [homology.π_desc, homology.π_map_assoc]
@[simp]
lemma homology.map_id : homology.map w w (𝟙 _) (𝟙 _) rfl = 𝟙 _ :=
by ext; simp only [homology.π_map, kernel_subobject_map_id, category.id_comp, category.comp_id]
/-- Auxiliary lemma for homology computations. -/
lemma homology.comp_right_eq_comp_left
{V : Type*} [category V] {A₁ B₁ C₁ A₂ B₂ C₂ A₃ B₃ C₃ : V}
{f₁ : A₁ ⟶ B₁} {g₁ : B₁ ⟶ C₁} {f₂ : A₂ ⟶ B₂} {g₂ : B₂ ⟶ C₂} {f₃ : A₃ ⟶ B₃} {g₃ : B₃ ⟶ C₃}
{α₁ : arrow.mk f₁ ⟶ arrow.mk f₂} {β₁ : arrow.mk g₁ ⟶ arrow.mk g₂}
{α₂ : arrow.mk f₂ ⟶ arrow.mk f₃} {β₂ : arrow.mk g₂ ⟶ arrow.mk g₃}
(p₁ : α₁.right = β₁.left) (p₂ : α₂.right = β₂.left) :
(α₁ ≫ α₂).right = (β₁ ≫ β₂).left :=
by simp only [comma.comp_left, comma.comp_right, p₁, p₂]
@[reassoc]
lemma homology.map_comp (p₁ : α₁.right = β₁.left) (p₂ : α₂.right = β₂.left) :
homology.map w₁ w₂ α₁ β₁ p₁ ≫ homology.map w₂ w₃ α₂ β₂ p₂ =
homology.map w₁ w₃ (α₁ ≫ α₂) (β₁ ≫ β₂) (homology.comp_right_eq_comp_left p₁ p₂) :=
by ext; simp only [kernel_subobject_map_comp, homology.π_map_assoc, homology.π_map, category.assoc]
/-- An isomorphism between two three-term complexes induces an isomorphism on homology. -/
def homology.map_iso (α : arrow.mk f₁ ≅ arrow.mk f₂) (β : arrow.mk g₁ ≅ arrow.mk g₂)
(p : α.hom.right = β.hom.left) :
homology f₁ g₁ w₁ ≅ homology f₂ g₂ w₂ :=
{ hom := homology.map w₁ w₂ α.hom β.hom p,
inv := homology.map w₂ w₁ α.inv β.inv
(by { rw [← cancel_mono (α.hom.right), ← comma.comp_right, α.inv_hom_id, comma.id_right, p,
← comma.comp_left, β.inv_hom_id, comma.id_left], refl }),
hom_inv_id' := by { rw [homology.map_comp], convert homology.map_id _; rw [iso.hom_inv_id] },
inv_hom_id' := by { rw [homology.map_comp], convert homology.map_id _; rw [iso.inv_hom_id] } }
end
end
section
variables {A B C : V} {f : A ⟶ B} {g : B ⟶ C} (w : f ≫ g = 0)
{f' : A ⟶ B} {g' : B ⟶ C} (w' : f' ≫ g' = 0)
[has_kernels V] [has_cokernels V] [has_images V] [has_image_maps V]
/-- Custom tactic to golf and speedup boring proofs in `homology.congr`. -/
private meta def aux_tac : tactic unit :=
`[ dsimp only [auto_param_eq], erw [category.id_comp, category.comp_id], cases pf, cases pg, refl ]
/--
`homology f g w ≅ homology f' g' w'` if `f = f'` and `g = g'`.
(Note the objects are not changing here.)
-/
@[simps]
def homology.congr (pf : f = f') (pg : g = g') : homology f g w ≅ homology f' g' w' :=
{ hom := homology.map w w' ⟨𝟙 _, 𝟙 _, by aux_tac⟩ ⟨𝟙 _, 𝟙 _, by aux_tac⟩ rfl,
inv := homology.map w' w ⟨𝟙 _, 𝟙 _, by aux_tac⟩ ⟨𝟙 _, 𝟙 _, by aux_tac⟩ rfl,
hom_inv_id' := begin
cases pf, cases pg, rw [homology.map_comp, ← homology.map_id],
congr' 1; exact category.comp_id _,
end,
inv_hom_id' := begin
cases pf, cases pg, rw [homology.map_comp, ← homology.map_id],
congr' 1; exact category.comp_id _,
end, }
end
/-!
We provide a variant `image_to_kernel' : image f ⟶ kernel g`,
and use this to give alternative formulas for `homology f g w`.
-/
section image_to_kernel'
variables {A B C : V} (f : A ⟶ B) (g : B ⟶ C) (w : f ≫ g = 0)
[has_kernels V] [has_images V]
/--
While `image_to_kernel f g w` provides a morphism
`image_subobject f ⟶ kernel_subobject g`
in terms of the subobject API,
this variant provides a morphism
`image f ⟶ kernel g`,
which is sometimes more convenient.
-/
def image_to_kernel' (w : f ≫ g = 0) : image f ⟶ kernel g :=
kernel.lift g (image.ι f) (by { ext, simpa using w, })
@[simp] lemma image_subobject_iso_image_to_kernel' (w : f ≫ g = 0) :
(image_subobject_iso f).hom ≫ image_to_kernel' f g w =
image_to_kernel f g w ≫ (kernel_subobject_iso g).hom :=
by { ext, simp [image_to_kernel'], }
@[simp] lemma image_to_kernel'_kernel_subobject_iso (w : f ≫ g = 0) :
image_to_kernel' f g w ≫ (kernel_subobject_iso g).inv =
(image_subobject_iso f).inv ≫ image_to_kernel f g w :=
by { ext, simp [image_to_kernel'], }
variables [has_cokernels V]
/--
`homology f g w` can be computed as the cokernel of `image_to_kernel' f g w`.
-/
def homology_iso_cokernel_image_to_kernel' (w : f ≫ g = 0) :
homology f g w ≅ cokernel (image_to_kernel' f g w) :=
{ hom := cokernel.map _ _ (image_subobject_iso f).hom (kernel_subobject_iso g).hom
(by simp only [image_subobject_iso_image_to_kernel']),
inv := cokernel.map _ _ (image_subobject_iso f).inv (kernel_subobject_iso g).inv
(by simp only [image_to_kernel'_kernel_subobject_iso]),
hom_inv_id' := begin
apply coequalizer.hom_ext,
simp only [iso.hom_inv_id_assoc, cokernel.π_desc, cokernel.π_desc_assoc, category.assoc,
coequalizer_as_cokernel],
exact (category.comp_id _).symm,
end,
inv_hom_id' := by { ext1, simp only [iso.inv_hom_id_assoc, cokernel.π_desc, category.comp_id,
cokernel.π_desc_assoc, category.assoc], } }
variables [has_equalizers V]
/--
`homology f g w` can be computed as the cokernel of `kernel.lift g f w`.
-/
def homology_iso_cokernel_lift (w : f ≫ g = 0) :
homology f g w ≅ cokernel (kernel.lift g f w) :=
begin
refine homology_iso_cokernel_image_to_kernel' f g w ≪≫ _,
have p : factor_thru_image f ≫ image_to_kernel' f g w = kernel.lift g f w,
{ ext, simp [image_to_kernel'], },
exact (cokernel_epi_comp _ _).symm ≪≫ cokernel_iso_of_eq p,
end
end image_to_kernel'
|
07537759a3f1c878f7d3eec3f0936cafaec8adf6
|
b9a81ebb9de684db509231c4469a7d2c88915808
|
/src/super/superposition.lean
|
12f6de1d9d953879411783b8f6c89628d29b3403
|
[] |
no_license
|
leanprover/super
|
3dd81ce8d9ac3cba20bce55e84833fadb2f5716e
|
47b107b4cec8f3b41d72daba9cbda2f9d54025de
|
refs/heads/master
| 1,678,482,996,979
| 1,676,526,367,000
| 1,676,526,367,000
| 92,215,900
| 12
| 6
| null | 1,513,327,539,000
| 1,495,570,640,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,884
|
lean
|
/-
Copyright (c) 2017 Gabriel Ebner. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Gabriel Ebner
-/
import .clause .prover_state .utils
open tactic monad expr native
namespace super
def position := list ℕ
meta def get_rwr_positions : expr → list position
| (app a b) := [[]] ++
do arg ← list.zip_with_index (get_app_args (app a b)),
pos ← get_rwr_positions arg.1,
[arg.2 :: pos]
| (var _) := []
| e := [[]]
meta def get_position : expr → position → expr
| (app a b) (p::ps) :=
match list.nth (get_app_args (app a b)) p with
| some arg := get_position arg ps
| none := (app a b)
end
| e _ := e
meta def replace_position (v : expr) : expr → position → expr
| (app a b) (p::ps) :=
let args := get_app_args (app a b) in
match args.nth p with
| some arg := app_of_list a.get_app_fn $ args.update_nth p $ replace_position arg ps
| none := app a b
end
| e [] := v
| e _ := e
variable gt : expr → expr → bool
variables (c1 c2 : clause)
variables (ac1 ac2 : derived_clause)
variables (i1 i2 : nat)
variable pos : list ℕ
variable ltr : bool
variable lt_in_termorder : bool
variable congr_ax : name
lemma {u v w} sup_ltr (F : Sort u) (A : Sort v) (a1 a2) (f : A → Sort w) : (f a1 → F) → f a2 → a1 = a2 → F :=
assume hnfa1 hfa2 he, hnfa1 (@eq.rec A a2 f hfa2 a1 he.symm)
lemma {u v w} sup_rtl (F : Sort u) (A : Sort v) (a1 a2) (f : A → Sort w) : (f a1 → F) → f a2 → a2 = a1 → F :=
assume hnfa1 hfa2 heq, hnfa1 (@eq.rec A a2 f hfa2 a1 heq)
meta def is_eq_dir (e : expr) (ltr : bool) : option (expr × expr) :=
match is_eq e with
| some (lhs, rhs) := if ltr then some (lhs, rhs) else some (rhs, lhs)
| none := none
end
meta def try_sup : tactic clause := do
guard $ (c1.get_lit i1).is_pos,
qf1 ← c1.open_metan c1.num_quants,
qf2 ← c2.open_metan c2.num_quants,
(rwr_from, rwr_to) ← (is_eq_dir (qf1.1.get_lit i1).formula ltr).to_monad,
atom ← return (qf2.1.get_lit i2).formula,
eq_type ← infer_type rwr_from,
atom_at_pos ← return $ get_position atom pos,
atom_at_pos_type ← infer_type atom_at_pos,
unify eq_type atom_at_pos_type,
unify rwr_from atom_at_pos transparency.none,
rwr_from' ← instantiate_mvars atom_at_pos,
rwr_to' ← instantiate_mvars rwr_to,
if lt_in_termorder
then guard (gt rwr_from' rwr_to')
else guard (¬gt rwr_to' rwr_from'),
rwr_ctx_varn ← mk_fresh_name,
abs_rwr_ctx ← return $
lam rwr_ctx_varn binder_info.default eq_type
(if (qf2.1.get_lit i2).is_neg
then replace_position (mk_var 0) atom pos
else imp (replace_position (mk_var 0) atom pos) c2.local_false),
lf_univ ← infer_univ c1.local_false,
univ ← infer_univ eq_type,
atom_univ ← infer_univ atom,
op1 ← qf1.1.open_constn i1,
op2 ← qf2.1.open_constn c2.num_lits,
hi2 ← (op2.2.nth i2).to_monad,
new_atom ← whnf_no_delta $ app abs_rwr_ctx rwr_to',
new_hi2 ← return $ local_const hi2.local_uniq_name `H binder_info.default new_atom,
new_fin_prf ←
return $ app_of_list (const congr_ax [lf_univ, univ, atom_univ]) [c1.local_false, eq_type, rwr_from, rwr_to,
abs_rwr_ctx, (op2.1.close_const hi2).proof, new_hi2],
clause.meta_closure (qf1.2 ++ qf2.2) $ (op1.1.inst new_fin_prf).close_constn (op1.2 ++ op2.2.update_nth i2 new_hi2)
meta def rwr_positions (c : clause) (i : nat) : list (list ℕ) :=
get_rwr_positions (c.get_lit i).formula
meta def try_add_sup : prover unit :=
(do c' ← try_sup gt ac1.c ac2.c i1 i2 pos ltr ff congr_ax,
inf_score 2 [ac1.sc, ac2.sc] >>= mk_derived c' >>= add_inferred)
<|> return ()
meta def superposition_back_inf : inference :=
assume given, do active ← get_active, sequence' $ do
given_i ← given.selected,
guard (given.c.get_lit given_i).is_pos,
option.to_monad $ is_eq (given.c.get_lit given_i).formula,
other ← rb_map.values active,
guard $ ¬given.sc.in_sos ∨ ¬other.sc.in_sos,
other_i ← other.selected,
pos ← rwr_positions other.c other_i,
-- FIXME(gabriel): ``sup_ltr fails to resolve at runtime
[do try_add_sup gt given other given_i other_i pos tt ``super.sup_ltr,
try_add_sup gt given other given_i other_i pos ff ``super.sup_rtl]
meta def superposition_fwd_inf : inference :=
assume given, do active ← get_active, sequence' $ do
given_i ← given.selected,
other ← rb_map.values active,
guard $ ¬given.sc.in_sos ∨ ¬other.sc.in_sos,
other_i ← other.selected,
guard (other.c.get_lit other_i).is_pos,
option.to_monad $ is_eq (other.c.get_lit other_i).formula,
pos ← rwr_positions given.c given_i,
[do try_add_sup gt other given other_i given_i pos tt ``super.sup_ltr,
try_add_sup gt other given other_i given_i pos ff ``super.sup_rtl]
@[super.inf]
meta def superposition_inf : inf_decl := inf_decl.mk 40 $
assume given, do gt ← get_term_order,
superposition_fwd_inf gt given,
superposition_back_inf gt given
end super
|
f79aae0994569f3ffeb2d3b67cc15e17d08482cc
|
59cb0b250f036506a327b29abf0b51ff1efbb0c9
|
/src/linear_binary_code.lean
|
687a0e04cdaacfbc0a21396c19e6730243609aaf
|
[] |
no_license
|
GeorgeTillisch/coding_theory_lean
|
ea26861a3d5d8ca897ca50b056d9cae53104bc27
|
920e14b433080854d4248714c93a09ce4e391522
|
refs/heads/main
| 1,681,707,926,918
| 1,619,008,763,000
| 1,619,008,763,000
| 343,145,352
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,337
|
lean
|
import tactic
import binary
import hamming
import binary_codes
import algebra.module.submodule
/-!
# Linear Binary Codes
This file contains the definition of a linear binary code.
We also use this definition to formalize the Hamming(7,4) code
and some of its properties.
-/
open B BW binary_code
structure linear_binary_code (n M d : ℕ) extends binary_code n M d :=
(is_subspace : subspace B (BW n))
def H74C : finset (BW 7) := {
val := {
ᴮ[O,O,O,O,O,O,O],
ᴮ[I,I,O,I,O,O,I],
ᴮ[O,I,O,I,O,I,O],
ᴮ[I,O,O,O,O,I,I],
ᴮ[I,O,O,I,I,O,O],
ᴮ[O,I,O,O,I,O,I],
ᴮ[I,I,O,O,I,I,O],
ᴮ[O,O,O,I,I,I,I],
ᴮ[I,I,I,O,O,O,O],
ᴮ[O,O,I,I,O,O,I],
ᴮ[I,O,I,I,O,I,O],
ᴮ[O,I,I,O,O,I,I],
ᴮ[O,I,I,I,I,O,O],
ᴮ[I,O,I,O,I,O,I],
ᴮ[O,O,I,O,I,I,O],
ᴮ[I,I,I,I,I,I,I]
},
nodup := by simp,
}
def hamming74Code : linear_binary_code 7 16 3 :=
{
cws := H74C,
has_card_M := rfl,
card_gte := by {have : H74C.card = 16, from rfl, linarith},
has_min_distance_d := rfl,
is_subspace := {
carrier := H74C,
zero_mem' := by {simp, left, refl},
add_mem' := begin
rintros a b
(rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | ha)
(rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | hb),
all_goals {
try {rw list.eq_of_mem_singleton ha},
try {rw list.eq_of_mem_singleton hb},
repeat {{left, refl} <|> right <|> refl},
},
all_goals {simp, refl},
end,
smul_mem' := begin
intros c x x_mem,
cases c,
{conv {congr, apply_congr zero_smul}, simp, left, refl},
{conv {congr, apply_congr one_smul}, exact x_mem}
end,
},
}
lemma hamming74Code_2_error_detecting :
hamming74Code.to_binary_code.error_detecting 2 :=
begin
rw [s_error_detecting_iff_min_distance_gt_s, hamming74Code.has_min_distance_d],
linarith,
end
lemma hamming74Code_1_error_correcting :
hamming74Code.to_binary_code.error_correcting 1 :=
begin
rw [t_error_correcting_iff_min_distance_gte, hamming74Code.has_min_distance_d],
linarith,
end
lemma hamming74Code_perfect :
hamming74Code.to_binary_code.perfect :=
begin
unfold perfect,
rw [hamming74Code.has_card_M],
simp,
refl,
end
|
f8137dec578385c49811502ccc0a449fb14896c1
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/mv_polynomial/monad_auto.lean
|
d39de4d3ea0907ff086cf4240d683bf234a83c74
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 18,448
|
lean
|
/-
Copyright (c) 2020 Johan Commelin and Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin and Robert Y. Lewis
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.mv_polynomial.rename
import Mathlib.PostPort
universes u_1 u_2 u_3 u_4 u_5
namespace Mathlib
/-!
# Monad operations on `mv_polynomial`
This file defines two monadic operations on `mv_polynomial`. Given `p : mv_polynomial σ R`,
* `mv_polynomial.bind₁` and `mv_polynomial.join₁` operate on the variable type `σ`.
* `mv_polynomial.bind₂` and `mv_polynomial.join₂` operate on the coefficient type `R`.
- `mv_polynomial.bind₁ f φ` with `f : σ → mv_polynomial τ R` and `φ : mv_polynomial σ R`,
is the polynomial `φ(f 1, ..., f i, ...) : mv_polynomial τ R`.
- `mv_polynomial.join₁ φ` with `φ : mv_polynomial (mv_polynomial σ R) R` collapses `φ` to
a `mv_polynomial σ R`, by evaluating `φ` under the map `X f ↦ f` for `f : mv_polynomial σ R`.
In other words, if you have a polynomial `φ` in a set of variables indexed by a polynomial ring,
you evaluate the polynomial in these indexing polynomials.
- `mv_polynomial.bind₂ f φ` with `f : R →+* mv_polynomial σ S` and `φ : mv_polynomial σ R`
is the `mv_polynomial σ S` obtained from `φ` by mapping the coefficients of `φ` through `f`
and considering the resulting polynomial as polynomial expression in `mv_polynomial σ R`.
- `mv_polynomial.join₂ φ` with `φ : mv_polynomial σ (mv_polynomial σ R)` collapses `φ` to
a `mv_polynomial σ R`, by considering `φ` as polynomial expression in `mv_polynomial σ R`.
These operations themselves have algebraic structure: `mv_polynomial.bind₁`
and `mv_polynomial.join₁` are algebra homs and
`mv_polynomial.bind₂` and `mv_polynomial.join₂` are ring homs.
They interact in convenient ways with `mv_polynomial.rename`, `mv_polynomial.map`,
`mv_polynomial.vars`, and other polynomial operations.
Indeed, `mv_polynomial.rename` is the "map" operation for the (`bind₁`, `join₁`) pair,
whereas `mv_polynomial.map` is the "map" operation for the other pair.
## Implementation notes
We add an `is_lawful_monad` instance for the (`bind₁`, `join₁`) pair.
The second pair cannot be instantiated as a `monad`,
since it is not a monad in `Type` but in `CommRing` (or rather `CommSemiRing`).
-/
namespace mv_polynomial
/--
`bind₁` is the "left hand side" bind operation on `mv_polynomial`, operating on the variable type.
Given a polynomial `p : mv_polynomial σ R` and a map `f : σ → mv_polynomial τ R` taking variables
in `p` to polynomials in the variable type `τ`, `bind₁ f p` replaces each variable in `p` with
its value under `f`, producing a new polynomial in `τ`. The coefficient type remains the same.
This operation is an algebra hom.
-/
def bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) : alg_hom R (mv_polynomial σ R) (mv_polynomial τ R) :=
aeval f
/--
`bind₂` is the "right hand side" bind operation on `mv_polynomial`, operating on the coefficient type.
Given a polynomial `p : mv_polynomial σ R` and a map `f : R → mv_polynomial σ S` taking coefficients
in `p` to polynomials over a new ring `S`, `bind₂ f p` replaces each coefficient in `p` with its
value under `f`, producing a new polynomial over `S`. The variable type remains the same.
This operation is a ring hom.
-/
def bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R] [comm_semiring S]
(f : R →+* mv_polynomial σ S) : mv_polynomial σ R →+* mv_polynomial σ S :=
eval₂_hom f X
/--
`join₁` is the monadic join operation corresponding to `mv_polynomial.bind₁`. Given a polynomial `p`
with coefficients in `R` whose variables are polynomials in `σ` with coefficients in `R`,
`join₁ p` collapses `p` to a polynomial with variables in `σ` and coefficients in `R`.
This operation is an algebra hom.
-/
def join₁ {σ : Type u_1} {R : Type u_3} [comm_semiring R] :
alg_hom R (mv_polynomial (mv_polynomial σ R) R) (mv_polynomial σ R) :=
aeval id
/--
`join₂` is the monadic join operation corresponding to `mv_polynomial.bind₂`. Given a polynomial `p`
with variables in `σ` whose coefficients are polynomials in `σ` with coefficients in `R`,
`join₂ p` collapses `p` to a polynomial with variables in `σ` and coefficients in `R`.
This operation is a ring hom.
-/
def join₂ {σ : Type u_1} {R : Type u_3} [comm_semiring R] :
mv_polynomial σ (mv_polynomial σ R) →+* mv_polynomial σ R :=
eval₂_hom (ring_hom.id (mv_polynomial σ R)) X
@[simp] theorem aeval_eq_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) : aeval f = bind₁ f :=
rfl
@[simp] theorem eval₂_hom_C_eq_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) : eval₂_hom C f = ↑(bind₁ f) :=
rfl
@[simp] theorem eval₂_hom_eq_bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) : eval₂_hom f X = bind₂ f :=
rfl
@[simp] theorem aeval_id_eq_join₁ (σ : Type u_1) (R : Type u_3) [comm_semiring R] :
aeval id = join₁ :=
rfl
theorem eval₂_hom_C_id_eq_join₁ (σ : Type u_1) (R : Type u_3) [comm_semiring R]
(φ : mv_polynomial (mv_polynomial σ R) R) : coe_fn (eval₂_hom C id) φ = coe_fn join₁ φ :=
rfl
@[simp] theorem eval₂_hom_id_X_eq_join₂ (σ : Type u_1) (R : Type u_3) [comm_semiring R] :
eval₂_hom (ring_hom.id (mv_polynomial σ R)) X = join₂ :=
rfl
-- In this file, we don't want to use these simp lemmas,
-- because we first need to show how these new definitions interact
-- and the proofs fall back on unfolding the definitions and call simp afterwards
@[simp] theorem bind₁_X_right {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) (i : σ) : coe_fn (bind₁ f) (X i) = f i :=
aeval_X f i
@[simp] theorem bind₂_X_right {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) (i : σ) : coe_fn (bind₂ f) (X i) = X i :=
eval₂_hom_X' f X i
@[simp] theorem bind₁_X_left {σ : Type u_1} {R : Type u_3} [comm_semiring R] :
bind₁ X = alg_hom.id R (mv_polynomial σ R) :=
sorry
theorem aeval_X_left {σ : Type u_1} {R : Type u_3} [comm_semiring R] :
aeval X = alg_hom.id R (mv_polynomial σ R) :=
eq.mpr (id (Eq._oldrec (Eq.refl (aeval X = alg_hom.id R (mv_polynomial σ R))) (aeval_eq_bind₁ X)))
(eq.mpr (id (Eq._oldrec (Eq.refl (bind₁ X = alg_hom.id R (mv_polynomial σ R))) bind₁_X_left))
(Eq.refl (alg_hom.id R (mv_polynomial σ R))))
theorem aeval_X_left_apply {σ : Type u_1} {R : Type u_3} [comm_semiring R] (φ : mv_polynomial σ R) :
coe_fn (aeval X) φ = φ :=
sorry
@[simp] theorem bind₁_C_right {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) (x : R) : coe_fn (bind₁ f) (coe_fn C x) = coe_fn C x :=
sorry
@[simp] theorem bind₂_C_right {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) (r : R) :
coe_fn (bind₂ f) (coe_fn C r) = coe_fn f r :=
eval₂_hom_C f X r
@[simp] theorem bind₂_C_left {σ : Type u_1} {R : Type u_3} [comm_semiring R] :
bind₂ C = ring_hom.id (mv_polynomial σ R) :=
sorry
@[simp] theorem bind₂_comp_C {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) : ring_hom.comp (bind₂ f) C = f :=
ring_hom.ext (bind₂_C_right f)
@[simp] theorem join₂_map {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) (φ : mv_polynomial σ R) :
coe_fn join₂ (coe_fn (map f) φ) = coe_fn (bind₂ f) φ :=
sorry
@[simp] theorem join₂_comp_map {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) : ring_hom.comp join₂ (map f) = bind₂ f :=
ring_hom.ext (join₂_map f)
theorem aeval_id_rename {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) (p : mv_polynomial σ R) :
coe_fn (aeval id) (coe_fn (rename f) p) = coe_fn (aeval f) p :=
eq.mpr
(id
(Eq._oldrec (Eq.refl (coe_fn (aeval id) (coe_fn (rename f) p) = coe_fn (aeval f) p))
(aeval_rename f id p)))
(eq.mpr
(id
(Eq._oldrec (Eq.refl (coe_fn (aeval (id ∘ f)) p = coe_fn (aeval f) p))
(function.comp.left_id f)))
(Eq.refl (coe_fn (aeval f) p)))
@[simp] theorem join₁_rename {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) (φ : mv_polynomial σ R) :
coe_fn join₁ (coe_fn (rename f) φ) = coe_fn (bind₁ f) φ :=
aeval_id_rename f φ
@[simp] theorem bind₁_id {σ : Type u_1} {R : Type u_3} [comm_semiring R] : bind₁ id = join₁ := rfl
@[simp] theorem bind₂_id {σ : Type u_1} {R : Type u_3} [comm_semiring R] :
bind₂ (ring_hom.id (mv_polynomial σ R)) = join₂ :=
rfl
theorem bind₁_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R] {υ : Type u_4}
(f : σ → mv_polynomial τ R) (g : τ → mv_polynomial υ R) (φ : mv_polynomial σ R) :
coe_fn (bind₁ g) (coe_fn (bind₁ f) φ) =
coe_fn (bind₁ fun (i : σ) => coe_fn (bind₁ g) (f i)) φ :=
sorry
theorem bind₁_comp_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
{υ : Type u_4} (f : σ → mv_polynomial τ R) (g : τ → mv_polynomial υ R) :
alg_hom.comp (bind₁ g) (bind₁ f) = bind₁ fun (i : σ) => coe_fn (bind₁ g) (f i) :=
alg_hom_ext fun (i : σ) => bind₁_bind₁ (fun (n : σ) => f n) (fun (n : τ) => g n) (X i)
theorem bind₂_comp_bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5}
[comm_semiring R] [comm_semiring S] [comm_semiring T] (f : R →+* mv_polynomial σ S)
(g : S →+* mv_polynomial σ T) :
ring_hom.comp (bind₂ g) (bind₂ f) = bind₂ (ring_hom.comp (bind₂ g) f) :=
sorry
theorem bind₂_bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5} [comm_semiring R]
[comm_semiring S] [comm_semiring T] (f : R →+* mv_polynomial σ S) (g : S →+* mv_polynomial σ T)
(φ : mv_polynomial σ R) :
coe_fn (bind₂ g) (coe_fn (bind₂ f) φ) = coe_fn (bind₂ (ring_hom.comp (bind₂ g) f)) φ :=
ring_hom.congr_fun (bind₂_comp_bind₂ f g) φ
theorem rename_comp_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
{υ : Type u_4} (f : σ → mv_polynomial τ R) (g : τ → υ) :
alg_hom.comp (rename g) (bind₁ f) = bind₁ fun (i : σ) => coe_fn (rename g) (f i) :=
sorry
theorem rename_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R] {υ : Type u_4}
(f : σ → mv_polynomial τ R) (g : τ → υ) (φ : mv_polynomial σ R) :
coe_fn (rename g) (coe_fn (bind₁ f) φ) =
coe_fn (bind₁ fun (i : σ) => coe_fn (rename g) (f i)) φ :=
alg_hom.congr_fun (rename_comp_bind₁ f g) φ
theorem map_bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5} [comm_semiring R]
[comm_semiring S] [comm_semiring T] (f : R →+* mv_polynomial σ S) (g : S →+* T)
(φ : mv_polynomial σ R) :
coe_fn (map g) (coe_fn (bind₂ f) φ) = coe_fn (bind₂ (ring_hom.comp (map g) f)) φ :=
sorry
theorem bind₁_comp_rename {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
{υ : Type u_4} (f : τ → mv_polynomial υ R) (g : σ → τ) :
alg_hom.comp (bind₁ f) (rename g) = bind₁ (f ∘ g) :=
sorry
theorem bind₁_rename {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R] {υ : Type u_4}
(f : τ → mv_polynomial υ R) (g : σ → τ) (φ : mv_polynomial σ R) :
coe_fn (bind₁ f) (coe_fn (rename g) φ) = coe_fn (bind₁ (f ∘ g)) φ :=
alg_hom.congr_fun (bind₁_comp_rename f g) φ
theorem bind₂_map {σ : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5} [comm_semiring R]
[comm_semiring S] [comm_semiring T] (f : S →+* mv_polynomial σ T) (g : R →+* S)
(φ : mv_polynomial σ R) :
coe_fn (bind₂ f) (coe_fn (map g) φ) = coe_fn (bind₂ (ring_hom.comp f g)) φ :=
sorry
@[simp] theorem map_comp_C {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* S) : ring_hom.comp (map f) C = ring_hom.comp C f :=
ring_hom.ext fun (x : R) => map_C f x
-- mixing the two monad structures
theorem hom_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : mv_polynomial τ R →+* S) (g : σ → mv_polynomial τ R)
(φ : mv_polynomial σ R) :
coe_fn f (coe_fn (bind₁ g) φ) =
coe_fn (eval₂_hom (ring_hom.comp f C) fun (i : σ) => coe_fn f (g i)) φ :=
sorry
theorem map_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* S) (g : σ → mv_polynomial τ R) (φ : mv_polynomial σ R) :
coe_fn (map f) (coe_fn (bind₁ g) φ) =
coe_fn (bind₁ fun (i : σ) => coe_fn (map f) (g i)) (coe_fn (map f) φ) :=
sorry
@[simp] theorem eval₂_hom_comp_C {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* S) (g : σ → S) : ring_hom.comp (eval₂_hom f g) C = f :=
ring_hom.ext fun (r : R) => eval₂_C f g r
theorem eval₂_hom_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} {S : Type u_4}
[comm_semiring R] [comm_semiring S] (f : R →+* S) (g : τ → S) (h : σ → mv_polynomial τ R)
(φ : mv_polynomial σ R) :
coe_fn (eval₂_hom f g) (coe_fn (bind₁ h) φ) =
coe_fn (eval₂_hom f fun (i : σ) => coe_fn (eval₂_hom f g) (h i)) φ :=
sorry
theorem aeval_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] [algebra R S] (f : τ → S) (g : σ → mv_polynomial τ R)
(φ : mv_polynomial σ R) :
coe_fn (aeval f) (coe_fn (bind₁ g) φ) =
coe_fn (aeval fun (i : σ) => coe_fn (aeval f) (g i)) φ :=
eval₂_hom_bind₁ (algebra_map R S) (fun (n : τ) => f n) g φ
theorem aeval_comp_bind₁ {σ : Type u_1} {τ : Type u_2} {R : Type u_3} {S : Type u_4}
[comm_semiring R] [comm_semiring S] [algebra R S] (f : τ → S) (g : σ → mv_polynomial τ R) :
alg_hom.comp (aeval f) (bind₁ g) = aeval fun (i : σ) => coe_fn (aeval f) (g i) :=
alg_hom_ext fun (i : σ) => aeval_bind₁ (fun (n : τ) => f n) (fun (n : σ) => g n) (X i)
theorem eval₂_hom_comp_bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5}
[comm_semiring R] [comm_semiring S] [comm_semiring T] (f : S →+* T) (g : σ → T)
(h : R →+* mv_polynomial σ S) :
ring_hom.comp (eval₂_hom f g) (bind₂ h) = eval₂_hom (ring_hom.comp (eval₂_hom f g) h) g :=
sorry
theorem eval₂_hom_bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5}
[comm_semiring R] [comm_semiring S] [comm_semiring T] (f : S →+* T) (g : σ → T)
(h : R →+* mv_polynomial σ S) (φ : mv_polynomial σ R) :
coe_fn (eval₂_hom f g) (coe_fn (bind₂ h) φ) =
coe_fn (eval₂_hom (ring_hom.comp (eval₂_hom f g) h) g) φ :=
ring_hom.congr_fun (eval₂_hom_comp_bind₂ f g h) φ
theorem aeval_bind₂ {σ : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5} [comm_semiring R]
[comm_semiring S] [comm_semiring T] [algebra S T] (f : σ → T) (g : R →+* mv_polynomial σ S)
(φ : mv_polynomial σ R) :
coe_fn (aeval f) (coe_fn (bind₂ g) φ) = coe_fn (eval₂_hom (ring_hom.comp (↑(aeval f)) g) f) φ :=
eval₂_hom_bind₂ (algebra_map S T) (fun (n : σ) => f n) g φ
theorem eval₂_hom_C_left {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) : eval₂_hom C f = ↑(bind₁ f) :=
rfl
theorem bind₁_monomial {σ : Type u_1} {τ : Type u_2} {R : Type u_3} [comm_semiring R]
(f : σ → mv_polynomial τ R) (d : σ →₀ ℕ) (r : R) :
coe_fn (bind₁ f) (monomial d r) =
coe_fn C r * finset.prod (finsupp.support d) fun (i : σ) => f i ^ coe_fn d i :=
sorry
theorem bind₂_monomial {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) (d : σ →₀ ℕ) (r : R) :
coe_fn (bind₂ f) (monomial d r) = coe_fn f r * monomial d 1 :=
sorry
@[simp] theorem bind₂_monomial_one {σ : Type u_1} {R : Type u_3} {S : Type u_4} [comm_semiring R]
[comm_semiring S] (f : R →+* mv_polynomial σ S) (d : σ →₀ ℕ) :
coe_fn (bind₂ f) (monomial d 1) = monomial d 1 :=
sorry
protected instance monad {R : Type u_3} [comm_semiring R] :
Monad fun (σ : Type u_1) => mv_polynomial σ R :=
sorry
protected instance is_lawful_functor {R : Type u_3} [comm_semiring R] :
is_lawful_functor fun (σ : Type u_1) => mv_polynomial σ R :=
is_lawful_functor.mk
(fun (α : Type u_1) (x : mv_polynomial α R) =>
eq.mpr
(id
(Eq.trans
((fun (a a_1 : mv_polynomial α R) (e_1 : a = a_1) (ᾰ ᾰ_1 : mv_polynomial α R)
(e_2 : ᾰ = ᾰ_1) => congr (congr_arg Eq e_1) e_2)
(id <$> x) x (rename_id x) x x (Eq.refl x))
(propext (eq_self_iff_true x))))
trivial)
fun (α β γ : Type u_1) (g : α → β) (h : β → γ) (x : mv_polynomial α R) =>
eq.mpr
(id
(Eq.trans
((fun (a a_1 : mv_polynomial γ R) (e_1 : a = a_1) (ᾰ ᾰ_1 : mv_polynomial γ R)
(e_2 : ᾰ = ᾰ_1) => congr (congr_arg Eq e_1) e_2)
((h ∘ g) <$> x) (coe_fn (rename (h ∘ g)) x) (Eq.refl (coe_fn (rename (h ∘ g)) x))
(h <$> g <$> x) (coe_fn (rename (h ∘ g)) x) (rename_rename g h x))
(propext (eq_self_iff_true (coe_fn (rename (h ∘ g)) x)))))
trivial
protected instance is_lawful_monad {R : Type u_3} [comm_semiring R] :
is_lawful_monad fun (σ : Type u_1) => mv_polynomial σ R :=
sorry
end Mathlib
|
d13b7862a15e3bab6cee9cb44343af777d3d10cd
|
359199d7253811b032ab92108191da7336eba86e
|
/src/instructor/lectures/lecture_16.lean
|
d76953e5f404709b6cab8becc92af817af152a02
|
[] |
no_license
|
arte-et-marte/my_cs2120f21
|
0bc6215cb5018a3b7c90d9d399a173233f587064
|
91609c3609ad81fda895bee8b97cc76813241e17
|
refs/heads/main
| 1,693,298,928,348
| 1,634,931,202,000
| 1,634,931,202,000
| 399,946,705
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,384
|
lean
|
/- OBJECTS
The objects of this algebraic structure are
values of type "set T," where T is the type **set: a collection of objects of some kind**
of objects "in" the set: of the "members" of
the set.
**Operations that can be performed on sets: unions, intersections, creating a power set, complement of a set, subset**
For example, consider the set, written in
what's called display notation: { 1, 2, 3, 4 }.
The set has four members, as enumerated here.
A key distinction is between the type of the
elements of a set, here ℕ, and the type of the
set, itself, here, set ℕ.
-/
/- OPERATIONS
Assume that we've been given some type, T. The
algebraic structure set T includes the following
constants and operations:
membership (s : set T) (v : T) : is v in s?
empty set -- containing no elements of type T
complete set -- containing all T-valued elts
membership (s : set T) (val : T) : is member?
complement (s : set T) : set T -- not in s **is whatever that's not in the set**
union (s1 s2 : set T) : set T -- in either **no multiplicity, an object is either in a set or not / union = "contains"**
intersection (s1 s2 : set T) : set T -- in both **what's in both/all sets is included in the intersection**
complement (s : set T) : set T -- not in s
subset (s1 s2 : set T) : Prop
difference (s1 s2 : set T) : set T -- in s1 not s2
union (s1 s2 : set T) : set T -- in either
intersection (s1 s2 : set T) : set T -- in both
product (s1 : set T) (s2 : set V) : set (T × V)
power (s : set T) : set (set T) -- set of subsets **power set of a given set, s: all the possible sets that could be made from the elements of that set, set of all possible subsets**
**subset: if an element is in s, it is in S (can think of it as an implication), but a subset doesn't have to necessarily be smaller, it can be the whole set**
**membership**
**empty set is a subset of a single value set**
**type of the power set of {1, 2, 3}: set of set of natural number**
**adding 1 more element to a set doubles the size of the power set**
**product of two sets: the set of ordered pairs; nice cat, mean cat, nice dog, mean dog**
**how many elements in product set: m x n (product of the sizes of the two sets)**
**{n : ℕ | n % 2 = 0} set is defined by a predicate: type of this set (nat → Prop)**
-/
/- membership:
Membership in a set, s, is defined by a predicate:
one that's satisfied by (true for) all and only the
element values considered to be "in" s. Indeed, we
can represent a set by its predicate, and that's
just what we're now going to do. Think of a set as
a predicate, applicable to a potential member, and
yielding a true proposition is the value is in the
set and a false proposition otherwise.
Let's revisit our favorite one-place predicate, the
evenness predicated, ev, on values of type ℕ. We can
now think of this predicate as (defining) a set: the
set of all even natural numbers! Indeed, we have a
notation for sets defined explicitly by predicates.
-/
def ev (n : ℕ) : Prop := n % 2 = 0
def even_nat_set : set ℕ := { n : ℕ | ev n }
/-
Let's pronounce that in English. We define even_nat_set
to be (bound to) a value of type, set ℕ, representing a
set of natural numbers, namely the set of values, n, of
type nat, such that ev n (is true). In other words, we
define even_nat_set as the set of natural numbers that
satisfy the (ev _) predicate.
This is the crucial notion. It both builds immediately
on everything we've covered up to now, and it gives us
a strong foundation to make sense of sets as objects
that we can define and reason about using logic and
proofs.
-/
-- The type, set T, actually just means T → Prop!
def even_nat_set' : ℕ → Prop := { n : ℕ | ev n }
-- notice we changed the apparent type to ℕ → Prop
-- but use "set T" because it provides set notation
/-
{ n : ℕ | ev n } is notation for a predicate,
of type ℕ → Prop, that when applied to nat, n,
yields the proposition, ev n. Here we write it
in yet another form, as an ordinary function.
-/
def even_nat_set'' ( n : ℕ) : Prop := ev n
/-
There are many ways to write such a predicate.
Here we use a tactic script (to write a function!)
-/
def even_nat_set''' : ℕ → Prop :=
begin
assume (n : ℕ), -- assume we're given a data value!
exact ev n -- return corresponding proposition
-- voila, our predicate
end
/-
All of the preceding definitions are equivalent.
They all define the set of even numbers. It's an
infinite set, of course, so we can't possibly just
enumerate all of its elements. Our trick then is
to define the set by giving a predicate that all
and only the desired values will satisfy -- here
all and only even natural numbers.
-/
/- empty set:
The empty set of values of a given type T is the set
containing no elements. It must thus be defined by a
one-place predicate that is not satisfied by *any*
values of the element type. If the element type is T,
what exactly is this predicate? To be more concrete,
if the element type is ℕ, what is the predicate that
defines the set containing no elements?
-/
You might visualize a set as being a
collection of objects (such as natural
numbers, for example). But let's make
a fundamental shift in perspective, one
that builds on everything we've learned
so far.
We will **now think of a set defined by**
**the property that distinguishes objects**
**that are in the set from those that are**
**not.** s set of all sets that don't contain themselves, does s contain itself, whether it does or not, driven to conclusion that it does not
def empty_set_nat : set ℕ := _
/- CHANGE IN PERSPECTIVE!
We will now think of a set as being
defined defined by its membership predicate.
-/
-- **sets can range from 0 (empty) to all objects of the collection**
def s1 : set ℕ := { n : ℕ | n = 0 }
#check s1
#reduce s1
#check s1 0
#reduce s1 0
#reduce s1 1
#reduce s1 2
#reduce s1 3
/-
In a sense that we can now make precise,
this *predicate* defines a set: the set
of all natural numbers that *satisfy* it.
We can think of ev as being a membership
predicate that indicates whether a given
value is in a given set or not.
It should be clear that every predicate
can be understood as defining a set: the
set of values that satisfy the predicate.
The next section of the course introduces
the lovely topic of set theory based exactly
on this idea: represent sets as predicates,
and operations on sets (such as intersection
and union) as corresponding to operations on
predicates.
Indeed we will define the type "set T" just
to be the predicate T → Prop! A set is thus
represented *exactly* as a predicate in our
logic.
-/
-- set comprehension notation
def s0 : set ℕ := { n : ℕ | ev n }
--We can prove these two
example : s0 0 := rfl
example : s0 2 := rfl
-- But not these two
example : s0 1 := rfl
example : s0 3 := rfl
-- set membership notation
-- v ∈ s just means s v
#reduce 0 ∈ s0 -- yes
#reduce 1 ∈ s0 -- no
#reduce 2 ∈ s0 -- yes
#reduce 3 ∈ s0 -- no
example : 0 ∈ s0 := rfl -- why rfl?
example : 2 ∈ s0 := rfl -- why rfl?
example : 1 ∉ s0 :=
begin
assume h,
cases h,
end
example : 3 ∈ s0 :=
begin
show s0 3,
show ev 3,
simp [ev],
show 1 = 0,
-- stuck
end
-- set display notation
def s1'' : set nat := { 1, 2, 3, 4 }
def s1''' := {1, 2, 3, 4} -- need explicit type
|
d14711c33675a0250b0975db489b89cb810d538b
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/tactic/ext.lean
|
5ba433d513f463cbad8ec4e12dea2560ce3bdc95
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,554
|
lean
|
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Jesse Michael Han
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.tactic.rcases
import Mathlib.data.sum
import Mathlib.logic.function.basic
import Mathlib.PostPort
universes r s u u_1
namespace Mathlib
/--
`derive_struct_ext_lemma n` generates two extensionality lemmas based on
the equality of all non-propositional projections.
On the following:
```lean
@[ext]
structure foo (α : Type*) :=
(x y : ℕ)
(z : {z // z < x})
(k : α)
(h : x < y)
```
`derive_struct_lemma` generates:
```lean
lemma foo.ext : ∀ {α : Type u_1} (x y : foo α),
x.x = y.x → x.y = y.y → x.z == y.z → x.k = y.k → x = y
lemma foo.ext_iff : ∀ {α : Type u_1} (x y : foo α),
x = y ↔ x.x = y.x ∧ x.y = y.y ∧ x.z == y.z ∧ x.k = y.k
```
-/
def ext_param_type :=
Option name ⊕ Option name
/--
For performance reasons, it is inadvisable to use `user_attribute.get_param`.
The parameter is stored as a reflected expression. When calling `get_param`,
the stored parameter is evaluated using `eval_expr`, which first compiles the
expression into VM bytecode. The unevaluated expression is available using
`user_attribute.get_param_untyped`.
In particular, `user_attribute.get_param` MUST NEVER BE USED in the
implementation of an attribute cache. This is because calling `eval_expr`
disables the attribute cache.
There are several possible workarounds:
1. Set a different attribute depending on the parameter.
2. Use your own evaluation function instead of `eval_expr`, such as e.g. `expr.to_nat`.
3. Write your own `has_reflect Param` instance (using a more efficient serialization format).
The `user_attribute` code unfortunately checks whether the expression has the correct type,
but you can use `` `(id %%e : Param) `` to pretend that your expression `e` has type `Param`.
-/
/-!
For performance reasons, the parameters of the `@[ext]` attribute are stored
in two auxiliary attributes:
```lean
attribute [ext [thunk]] funext
-- is turned into
-- is turned into
attribute [_ext_core (@id name @funext)] thunk
attribute [_ext_lemma_core] funext
```
see Note [user attribute parameters]
-/
/-- Private attribute used to tag extensionality lemmas. -/
/--
Returns the extensionality lemmas in the environment, as a map from structure
name to lemma name.
-/
/--
Returns the extensionality lemmas in the environment, as a list of lemma names.
-/
/--
Tag lemmas of the form:
```lean
@[ext]
lemma my_collection.ext (a b : my_collection)
(h : ∀ x, a.lookup x = b.lookup y) :
a = b := ...
```
The attribute indexes extensionality lemma using the type of the
objects (i.e. `my_collection`) which it gets from the statement of
the lemma. In some cases, the same lemma can be used to state the
extensionality of multiple types that are definitionally equivalent.
```lean
attribute [ext [(→),thunk,stream]] funext
```
Those parameters are cumulative. The following are equivalent:
```lean
attribute [ext [(→),thunk]] funext
attribute [ext [stream]] funext
```
and
```lean
attribute [ext [(→),thunk,stream]] funext
```
One removes type names from the list for one lemma with:
```lean
attribute [ext [-stream,-thunk]] funext
```
Also, the following:
```lean
@[ext]
lemma my_collection.ext (a b : my_collection)
(h : ∀ x, a.lookup x = b.lookup y) :
a = b := ...
```
is equivalent to
```lean
@[ext *]
lemma my_collection.ext (a b : my_collection)
(h : ∀ x, a.lookup x = b.lookup y) :
a = b := ...
```
This allows us specify type synonyms along with the type
that is referred to in the lemma statement.
```lean
@[ext [*,my_type_synonym]]
lemma my_collection.ext (a b : my_collection)
(h : ∀ x, a.lookup x = b.lookup y) :
a = b := ...
```
The `ext` attribute can be applied to a structure to generate its extensionality lemmas:
```lean
@[ext]
structure foo (α : Type*) :=
(x y : ℕ)
(z : {z // z < x})
(k : α)
(h : x < y)
```
will generate:
```lean
@[ext] lemma foo.ext : ∀ {α : Type u_1} (x y : foo α),
x.x = y.x → x.y = y.y → x.z == y.z → x.k = y.k → x = y
lemma foo.ext_iff : ∀ {α : Type u_1} (x y : foo α),
x = y ↔ x.x = y.x ∧ x.y = y.y ∧ x.z == y.z ∧ x.k = y.k
```
-/
/--
When possible, `ext` lemmas are stated without a full set of arguments. As an example, for bundled
homs `f`, `g`, and `of`, `f.comp of = g.comp of → f = g` is a better `ext` lemma than
`(∀ x, f (of x) = g (of x)) → f = g`, as the former allows a second type-specific extensionality
lemmas to be applied to `f.comp of = g.comp of`.
If the domain of `of` is `ℕ` or `ℤ` and `of` is a `ring_hom`, such a lemma could then make the goal
`f (of 1) = g (of 1)`.
For bundled morphisms, there is a `ext` lemma that always applies of the form
`(∀ x, ⇑f x = ⇑g x) → f = g`. When adding type-specific `ext` lemmas like the one above, we want
these to be tried first. This happens automatically since the type-specific lemmas are inevitably
defined later.
-/
-- We mark some existing extensionality lemmas.
-- We create some extensionality lemmas for existing structures.
theorem ulift.ext {α : Type s} (x : ulift α) (y : ulift α) (h : ulift.down x = ulift.down y) : x = y := sorry
namespace plift
-- This is stronger than the one generated automatically.
theorem ext {P : Prop} (a : plift P) (b : plift P) : a = b :=
cases_on a fun (a : P) => cases_on b fun (b : P) => Eq.refl (up a)
end plift
-- Conservatively, we'll only add extensionality lemmas for `has_*` structures
-- as they become useful.
theorem has_zero.ext_iff {α : Type u} (x : HasZero α) (y : HasZero α) : x = y ↔ 0 = 0 := sorry
theorem unit.ext {x : Unit} {y : Unit} : x = y :=
punit.cases_on x (punit.cases_on y (Eq.refl PUnit.unit))
theorem punit.ext {x : PUnit} {y : PUnit} : x = y :=
punit.cases_on x (punit.cases_on y (Eq.refl PUnit.unit))
namespace tactic
/-- Helper structure for `ext` and `ext1`. `lemmas` keeps track of extensionality lemmas
applied so far. -/
/-- Helper function for `try_intros`. Additionally populates the `trace_msg` field
of `ext_state`. -/
/-- Try to introduce as many arguments as possible, using the given patterns to destruct the
introduced variables. Returns the unused patterns. -/
/-- Apply one extensionality lemma, and destruct the arguments using the patterns
in the ext_state. -/
/-- Apply multiple extensionality lemmas, destructing the arguments using the given patterns. -/
/-- Apply one extensionality lemma, and destruct the arguments using the given patterns.
Returns the unused patterns. -/
/-- Apply multiple extensionality lemmas, destructing the arguments using the given patterns.
`ext ps (some n)` applies at most `n` extensionality lemmas. Returns the unused patterns. -/
/--
`ext1 id` selects and apply one extensionality lemma (with attribute
`ext`), using `id`, if provided, to name a local constant
introduced by the lemma. If `id` is omitted, the local constant is
named automatically, as per `intro`. Placing a `?` after `ext1`
(e.g. `ext1? i ⟨a,b⟩ : 3`) will display a sequence of tactic
applications that can replace the call to `ext1`.
-/
/--
- `ext` applies as many extensionality lemmas as possible;
- `ext ids`, with `ids` a list of identifiers, finds extentionality and applies them
until it runs out of identifiers in `ids` to name the local constants.
- `ext` can also be given an `rcases` pattern in place of an identifier.
This will destruct the introduced local constant.
- Placing a `?` after `ext` (e.g. `ext? i ⟨a,b⟩ : 3`) will display
a sequence of tactic applications that can replace the call to `ext`.
When trying to prove:
```lean
α β : Type,
f g : α → set β
⊢ f = g
```
applying `ext x y` yields:
```lean
α β : Type,
f g : α → set β,
x : α,
y : β
⊢ y ∈ f x ↔ y ∈ f x
```
by applying functional extensionality and set extensionality.
When trying to prove:
```lean
α β γ : Type
f g : α × β → γ
⊢ f = g
```
applying `ext ⟨a, b⟩` yields:
```lean
α β γ : Type,
f g : α × β → γ,
a : α,
b : β
⊢ f (a, b) = g (a, b)
```
by applying functional extensionality and destructing the introduced pair.
In the previous example, applying `ext? ⟨a,b⟩` will produce the trace message:
```lean
Try this: apply funext, rintro ⟨a, b⟩
```
A maximum depth can be provided with `ext x y z : 3`.
-/
/--
* `ext1 id` selects and apply one extensionality lemma (with
|
43b40a62698aec82448f994af343e99918da779f
|
fe25de614feb5587799621c41487aaee0d083b08
|
/tests/lean/interactive/plainTermGoal.lean
|
096f799c5c7dc7f118299c6b82909b211067d5a2
|
[
"Apache-2.0"
] |
permissive
|
pollend/lean4
|
e8469c2f5fb8779b773618c3267883cf21fb9fac
|
c913886938c4b3b83238a3f99673c6c5a9cec270
|
refs/heads/master
| 1,687,973,251,481
| 1,628,039,739,000
| 1,628,039,739,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 939
|
lean
|
example : 0 < 2 :=
Nat.ltTrans Nat.zeroLtOne (Nat.ltSuccSelf _)
--^ $/lean/plainTermGoal
--^ $/lean/plainTermGoal
--^ $/lean/plainTermGoal
--^ $/lean/plainTermGoal
--^ $/lean/plainTermGoal
example : OptionM Unit := do
let y : Int ← none
let x ← Nat.zero
--^ $/lean/plainTermGoal
return ()
example (m n : Nat) : m < n :=
Nat.ltTrans _ _
--^ $/lean/plainTermGoal
example : True := sorry
--^ $/lean/plainTermGoal
example : ∀ n, n < n + 42 :=
fun n => Nat.ltOfLeOfLt (Nat.leAddRight n 41) (Nat.ltSuccSelf _)
--^ $/lean/plainTermGoal
--^ $/lean/plainTermGoal
example : ∀ n, n < 1 + n := by
intro n
rw [Nat.add_comm]
--^ $/lean/plainTermGoal
exact Nat.ltSuccSelf _
--^ $/lean/plainTermGoal
#check fun (n m : Nat) => m
--^ $/lean/plainTermGoal
|
c5723c872b4d43e2a38a1145c80569ec976b435a
|
70f8755415fa7a17f87402cde4651e9f4db1b5bb
|
/src/pfunctor/M.lean
|
6c9856746c7d53154df25ac33486001cce175695
|
[
"Apache-2.0"
] |
permissive
|
shingarov/qpf
|
ab935dc2298db12c87ac011a2e4d2c27e0bdef4b
|
debe2eacb8cf46b21aba2eaf3f2e20940da0263b
|
refs/heads/master
| 1,653,705,576,607
| 1,570,136,035,000
| 1,570,136,035,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 21,623
|
lean
|
/-
Copyright (c) 2017 Simon Hudon All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
Basic machinery for defining general coinductive types
Work in progress
-/
import data.pfun tactic.interactive ..for_mathlib .basic
universes u v w
open nat function list (hiding head')
variables (F : pfunctor.{u})
local prefix `♯`:0 := cast (by simp [*] <|> cc <|> solve_by_elim)
namespace pfunctor
namespace approx
inductive cofix_a : ℕ → Type u
| continue : cofix_a 0
| intro {n} : ∀ a, (F.B a → cofix_a n) → cofix_a (succ n)
@[extensionality]
lemma cofix_a_eq_zero : ∀ x y : cofix_a F 0, x = y
| (cofix_a.continue _) (cofix_a.continue _) := rfl
variables {F}
def head' : Π {n}, cofix_a F (succ n) → F.A
| n (cofix_a.intro i _) := i
def children' : Π {n} (x : cofix_a F (succ n)), F.B (head' x) → cofix_a F n
| n (cofix_a.intro a f) := f
lemma approx_eta {n : ℕ} (x : cofix_a F (n+1)) :
x = cofix_a.intro (head' x) (children' x) :=
by cases x; refl
inductive agree
: ∀ {n : ℕ}, cofix_a F n → cofix_a F (n+1) → Prop
| continue (x : cofix_a F 0) (y : cofix_a F 1) : agree x y
| intro {n} {a} (x : F.B a → cofix_a F n) (x' : F.B a → cofix_a F (n+1)) :
(∀ i : F.B a, agree (x i) (x' i)) →
agree (cofix_a.intro a x) (cofix_a.intro a x')
def all_agree (x : Π n, cofix_a F n) :=
∀ n, agree (x n) (x (succ n))
@[simp]
lemma agree_trival {x : cofix_a F 0} {y : cofix_a F 1}
: agree x y :=
by { constructor }
lemma agree_children {n : ℕ} (x : cofix_a F (succ n)) (y : cofix_a F (succ n+1))
{i j}
(h₀ : i == j)
(h₁ : agree x y)
: agree (children' x i) (children' y j) :=
begin
cases h₁, cases h₀,
apply h₁_a_1,
end
def truncate
: ∀ {n : ℕ}, cofix_a F (n+1) → cofix_a F n
| 0 (cofix_a.intro _ _) := cofix_a.continue _
| (succ n) (cofix_a.intro i f) := cofix_a.intro i $ truncate ∘ f
lemma truncate_eq_of_agree {n : ℕ}
(x : cofix_a F n)
(y : cofix_a F (succ n))
(h : agree x y)
: truncate y = x :=
begin
induction n generalizing x y
; cases x ; cases y,
{ refl },
{ cases h with _ _ _ _ _ h₀ h₁,
cases h,
simp [truncate,exists_imp_distrib,(∘)],
ext y, apply n_ih,
apply h₁ }
end
variables {X : Type w}
variables (f : X → F.apply X)
def s_corec : Π (i : X) n, cofix_a F n
| _ 0 := cofix_a.continue _
| j (succ n) :=
let ⟨y,g⟩ := f j in
cofix_a.intro y (λ i, s_corec (g i) _)
lemma P_corec (i : X) (n : ℕ) : agree (s_corec f i n) (s_corec f i (succ n)) :=
begin
induction n with n generalizing i,
constructor,
cases h : f i with y g,
simp [s_corec,h,s_corec._match_1] at ⊢ n_ih,
constructor,
introv,
apply n_ih,
end
def path (F : pfunctor.{u}) := list F.Idx
open list
instance : subsingleton (cofix_a F 0) :=
⟨ by { intros, casesm* cofix_a F 0, refl } ⟩
open list nat
lemma head_succ' (n m : ℕ) (x : Π n, cofix_a F n)
(Hconsistent : all_agree x)
: head' (x (succ n)) = head' (x (succ m)) :=
begin
suffices : ∀ n, head' (x (succ n)) = head' (x 1),
{ simp [this] },
clear m n, intro,
cases h₀ : x (succ n) with _ i₀ f₀,
cases h₁ : x 1 with _ i₁ f₁,
simp [head'],
induction n with n,
{ rw h₁ at h₀, cases h₀, trivial },
{ have H := Hconsistent (succ n),
cases h₂ : x (succ n) with _ i₂ f₂,
rw [h₀,h₂] at H,
apply n_ih (truncate ∘ f₀),
rw h₂,
cases H,
congr, funext j, dsimp [comp],
rw truncate_eq_of_agree,
apply H_a_1 }
end
end approx
open approx
structure M_intl :=
(approx : ∀ n, cofix_a F n)
(consistent : all_agree approx)
def M := M_intl
namespace M
lemma ext' (x y : M F)
(H : ∀ i : ℕ, x.approx i = y.approx i)
: x = y :=
begin
cases x, cases y,
congr, ext, apply H,
end
variables {X : Type*}
variables (f : X → F.apply X)
variables {F}
protected def corec (i : X) : M F :=
{ approx := s_corec f i
, consistent := P_corec _ _ }
variables {F}
def head : M F → F.A
| x := head' (x.1 1)
def children : Π (x : M F), F.B (head x) → M F
| x i :=
let H := λ n : ℕ, @head_succ' _ n 0 x.1 x.2 in
{ approx := λ n, children' (x.1 _) (cast (congr_arg _ $ by simp [head,H]; refl) i)
, consistent :=
begin
intro,
have P' := x.2 (succ n),
apply agree_children _ _ _ P',
transitivity i,
apply cast_heq,
symmetry,
apply cast_heq,
end }
def ichildren [inhabited (M F)] [decidable_eq F.A] : F.Idx → M F → M F
| i x :=
if H' : i.1 = head x
then children x (cast (congr_arg _ $ by simp [head,H']; refl) i.2)
else default _
lemma head_succ (n m : ℕ) (x : M F)
: head' (x.approx (succ n)) = head' (x.approx (succ m)) :=
head_succ' n m _ x.consistent
lemma head_eq_head' : Π (x : M F) (n : ℕ),
head x = head' (x.approx $ n+1)
| ⟨x,h⟩ n := head_succ' _ _ _ h
lemma head'_eq_head : Π (x : M F) (n : ℕ),
head' (x.approx $ n+1) = head x
| ⟨x,h⟩ n := head_succ' _ _ _ h
lemma truncate_approx (x : M F) (n : ℕ) :
truncate (x.approx $ n+1) = x.approx n :=
truncate_eq_of_agree _ _ (x.consistent _)
def from_cofix : M F → F.apply (M F)
| x := ⟨head x,λ i, children x i ⟩
namespace approx
protected def s_mk (x : F.apply $ M F) : Π n, cofix_a F n
| 0 := cofix_a.continue _
| (succ n) := cofix_a.intro x.1 (λ i, (x.2 i).approx n)
protected def P_mk (x : F.apply $ M F)
: all_agree (approx.s_mk x)
| 0 := by { constructor }
| (succ n) := by { constructor, introv,
apply (x.2 i).consistent }
end approx
protected def mk (x : F.apply $ M F) : M F :=
{ approx := approx.s_mk x
, consistent := approx.P_mk x }
inductive agree' : ℕ → M F → M F → Prop
| trivial (x y : M F) : agree' 0 x y
| step {n : ℕ} {a} (x y : F.B a → M F) {x' y'} :
x' = M.mk ⟨a,x⟩ →
y' = M.mk ⟨a,y⟩ →
(∀ i, agree' n (x i) (y i)) →
agree' (succ n) x' y'
@[simp]
lemma from_cofix_mk (x : F.apply $ M F)
: from_cofix (M.mk x) = x :=
begin
funext i,
dsimp [M.mk,from_cofix],
cases x with x ch, congr, ext i,
cases h : ch i,
simp [children,M.approx.s_mk,children',cast_eq],
dsimp [M.approx.s_mk,children'],
congr, rw h,
end
lemma mk_from_cofix (x : M F)
: M.mk (from_cofix x) = x :=
begin
apply ext', intro n,
dsimp [M.mk],
induction n with n,
{ dsimp [head], ext },
dsimp [approx.s_mk,from_cofix,head],
cases h : x.approx (succ n) with _ hd ch,
have h' : hd = head' (x.approx 1),
{ rw [← head_succ' n,h,head'], apply x.consistent },
revert ch, rw h', intros, congr,
{ ext a, dsimp [children],
h_generalize! hh : a == a'',
rw h, intros, cases hh, refl },
end
lemma mk_inj {x y : F.apply $ M F}
(h : M.mk x = M.mk y) : x = y :=
by rw [← from_cofix_mk x,h,from_cofix_mk]
protected def cases {r : M F → Sort w}
(f : ∀ (x : F.apply $ M F), r (M.mk x)) (x : M F) : r x :=
suffices r (M.mk (from_cofix x)),
by { haveI := classical.prop_decidable,
haveI := inhabited.mk x,
rw [← mk_from_cofix x], exact this },
f _
protected def cases_on {r : M F → Sort w}
(x : M F) (f : ∀ (x : F.apply $ M F), r (M.mk x)) : r x :=
M.cases f x
protected def cases_on' {r : M F → Sort w}
(x : M F) (f : ∀ a f, r (M.mk ⟨a,f⟩)) : r x :=
M.cases_on x (λ ⟨a,g⟩, f a _)
lemma approx_mk (a : F.A) (f : F.B a → M F) (i : ℕ) :
(M.mk ⟨a, f⟩).approx (succ i) = cofix_a.intro a (λ j, (f j).approx i) :=
by refl
lemma agree'_refl [inhabited (M F)] [decidable_eq F.A] {n : ℕ} (x : M F) :
agree' n x x :=
by { induction n generalizing x; induction x using pfunctor.M.cases_on'; constructor; try { refl }, intros, apply n_ih }
lemma agree_iff_agree' [inhabited (M F)] [decidable_eq F.A] {n : ℕ} (x y : M F) :
agree (x.approx n) (y.approx $ n+1) ↔ agree' n x y :=
begin
split; intros h,
{ induction n generalizing x y, constructor,
{ induction x using pfunctor.M.cases_on',
induction y using pfunctor.M.cases_on',
simp only [approx_mk] at h, cases h,
constructor; try { refl },
intro i, apply n_ih, apply h_a_1 } },
{ induction n generalizing x y, constructor,
{ cases h,
induction x using pfunctor.M.cases_on',
induction y using pfunctor.M.cases_on',
simp only [approx_mk],
replace h_a_1 := mk_inj h_a_1, cases h_a_1,
replace h_a_2 := mk_inj h_a_2, cases h_a_2,
constructor, intro i, apply n_ih, apply h_a_3 } },
end
@[simp]
lemma cases_mk {r : M F → Sort*} (x : F.apply $ M F) (f : Π (x : F.apply $ M F), r (M.mk x))
: pfunctor.M.cases f (M.mk x) = f x :=
begin
dsimp [M.mk,pfunctor.M.cases,from_cofix,head,approx.s_mk,head'],
cases x, dsimp [approx.s_mk],
apply eq_of_heq,
apply rec_heq_of_heq, congr,
ext, dsimp [children,approx.s_mk,children'],
cases h : x_snd x, dsimp [head],
congr, ext,
change (x_snd (x)).approx x_1 = _,
rw h
end
@[simp]
lemma cases_on_mk {r : M F → Sort*} (x : F.apply $ M F) (f : Π x : F.apply $ M F, r (M.mk x))
: pfunctor.M.cases_on (M.mk x) f = f x :=
cases_mk x f
@[simp]
lemma cases_on_mk' {r : M F → Sort*} {a} (x : F.B a → M F) (f : Π a (f : F.B a → M F), r (M.mk ⟨a,f⟩))
: pfunctor.M.cases_on' (M.mk ⟨a,x⟩) f = f a x :=
cases_mk ⟨_,x⟩ _
inductive is_path : path F → M F → Prop
| nil (x : M F) : is_path [] x
| cons (xs : path F) {a} (x : M F) (f : F.B a → M F) (i : F.B a) :
x = M.mk ⟨a,f⟩ →
is_path xs (f i) →
is_path (⟨a,i⟩ :: xs) x
lemma is_path_cons {xs : path F} {a a'} {f : F.B a → M F} {i : F.B a'}
(h : is_path (⟨a',i⟩ :: xs) (M.mk ⟨a,f⟩)) :
a = a' :=
begin
revert h, generalize h : (M.mk ⟨a,f⟩) = x,
intros h', cases h', subst x,
cases mk_inj h'_a_1, refl,
end
lemma is_path_cons' {xs : path F} {a} {f : F.B a → M F} {i : F.B a}
(h : is_path (⟨a,i⟩ :: xs) (M.mk ⟨a,f⟩)) :
is_path xs (f i) :=
begin
revert h, generalize h : (M.mk ⟨a,f⟩) = x,
intros h', cases h', subst x,
cases mk_inj h'_a_1, exact h'_a_2,
end
def isubtree [decidable_eq F.A] [inhabited (M F)] : path F → M F → M F
| [] x := x
| (⟨a, i⟩ :: ps) x :=
pfunctor.M.cases_on' x (λ a' f,
(if h : a = a' then isubtree ps (f $ cast (by rw h) i)
else default (M F) : (λ x, M F) (M.mk ⟨a',f⟩)))
def iselect [decidable_eq F.A] [inhabited (M F)] (ps : path F) : M F → F.A :=
λ (x : M F), head $ isubtree ps x
lemma iselect_eq_default [decidable_eq F.A] [inhabited (M F)] (ps : path F) (x : M F)
(h : ¬ is_path ps x) :
iselect ps x = head (default $ M F) :=
begin
induction ps generalizing x,
{ exfalso, apply h, constructor },
{ cases ps_hd with a i,
induction x using pfunctor.M.cases_on',
simp [iselect,isubtree] at ps_ih ⊢,
by_cases h'' : a = x_a, subst x_a,
{ simp *, rw ps_ih, intro h', apply h,
constructor; try { refl }, apply h' },
{ simp * } }
end
lemma head_mk (x : F.apply (M F)) :
head (M.mk x) = x.1 :=
eq.symm $
calc x.1
= (from_cofix (M.mk x)).1 : by rw from_cofix_mk
... = head (M.mk x) : by refl
lemma children_mk {a} (x : F.B a → (M F)) (i : F.B (head (M.mk ⟨a,x⟩)))
: children (M.mk ⟨a,x⟩) i = x (cast (by rw head_mk) i) :=
by apply ext'; intro n; refl
lemma ichildren_mk [decidable_eq F.A] [inhabited (M F)] (x : F.apply (M F)) (i : F.Idx)
: ichildren i (M.mk x) = x.iget i :=
by { dsimp [ichildren,pfunctor.apply.iget],
congr, ext, apply ext',
dsimp [children',M.mk,approx.s_mk],
intros, refl }
lemma isubtree_cons [decidable_eq F.A] [inhabited (M F)] (ps : path F) {a} (f : F.B a → M F) {i : F.B a} :
isubtree (⟨_,i⟩ :: ps) (M.mk ⟨a,f⟩) = isubtree ps (f i) :=
by simp only [isubtree,ichildren_mk,pfunctor.apply.iget,dif_pos,isubtree,M.cases_on_mk']; refl
lemma iselect_nil [decidable_eq F.A] [inhabited (M F)] {a} (f : F.B a → M F) :
iselect nil (M.mk ⟨a,f⟩) = a :=
by refl
lemma iselect_cons [decidable_eq F.A] [inhabited (M F)] (ps : path F) {a} (f : F.B a → M F) {i} :
iselect (⟨a,i⟩ :: ps) (M.mk ⟨a,f⟩) = iselect ps (f i) :=
by simp only [iselect,isubtree_cons]
lemma corec_def {X} (f : X → F.apply X) (x₀ : X) :
M.corec f x₀ = M.mk (M.corec f <$> f x₀) :=
begin
dsimp [M.corec,M.mk],
congr, ext n,
cases n with n,
{ dsimp [s_corec,approx.s_mk], refl, },
{ dsimp [s_corec,approx.s_mk], cases h : (f x₀),
dsimp [s_corec._match_1,(<$>),pfunctor.map],
congr, }
end
lemma ext_aux [inhabited (M F)] [decidable_eq F.A] {n : ℕ} (x y z : M F)
(hx : agree' n z x)
(hy : agree' n z y)
(hrec : ∀ (ps : path F),
n = ps.length →
iselect ps x = iselect ps y)
: x.approx (n+1) = y.approx (n+1) :=
begin
induction n with n generalizing x y z,
{ specialize hrec [] rfl,
induction x using pfunctor.M.cases_on', induction y using pfunctor.M.cases_on',
simp only [iselect_nil] at hrec, subst hrec,
simp only [approx_mk, true_and, eq_self_iff_true, heq_iff_eq],
ext, },
{ cases hx, cases hy,
induction x using pfunctor.M.cases_on', induction y using pfunctor.M.cases_on',
subst z,
replace hx_a_2 := mk_inj hx_a_2, cases hx_a_2,
replace hy_a_1 := mk_inj hy_a_1, cases hy_a_1,
replace hy_a_2 := mk_inj hy_a_2, cases hy_a_2,
simp [approx_mk], ext i, apply n_ih,
{ apply hx_a_3 }, { apply hy_a_3 },
introv h, specialize hrec (⟨_,i⟩ :: ps) (congr_arg _ h),
simp [iselect_cons] at hrec, exact hrec }
end
open pfunctor.approx
-- variables (F : pfunctor.{v})
variables {F}
local prefix `♯`:0 := cast (by simp [*] <|> cc <|> solve_by_elim)
local attribute [instance, priority 0] classical.prop_decidable
lemma ext [inhabited (M F)] [decidable_eq F.A]
(x y : M F)
(H : ∀ (ps : path F), iselect ps x = iselect ps y)
: x = y :=
begin
apply ext', intro i,
induction i with i,
{ cases x.approx 0, cases y.approx 0, constructor },
{ apply ext_aux x y x,
{ rw ← agree_iff_agree', apply x.consistent },
{ rw [← agree_iff_agree',i_ih], apply y.consistent },
introv H',
simp [iselect] at H,
cases H',
apply H ps }
end
section bisim
variable (R : M F → M F → Prop)
local infix ~ := R
structure is_bisimulation :=
(head : ∀ {a a'} {f f'}, M.mk ⟨a,f⟩ ~ M.mk ⟨a',f'⟩ → a = a')
(tail : ∀ {a} {f f' : F.B a → M F},
M.mk ⟨a,f⟩ ~ M.mk ⟨a,f'⟩ →
(∀ (i : F.B a), f i ~ f' i) )
variables [inhabited (M F)] [decidable_eq F.A]
theorem nth_of_bisim (bisim : is_bisimulation R) (s₁ s₂) (ps : path F) :
s₁ ~ s₂ →
is_path ps s₁ ∨ is_path ps s₂ →
iselect ps s₁ = iselect ps s₂ ∧
∃ a (f f' : F.B a → M F),
isubtree ps s₁ = M.mk ⟨a,f⟩ ∧
isubtree ps s₂ = M.mk ⟨a,f'⟩ ∧
∀ (i : F.B a), f i ~ f' i :=
begin
intros h₀ hh,
induction s₁ using pfunctor.M.cases_on' with a f,
induction s₂ using pfunctor.M.cases_on' with a' f',
have : a = a' := bisim.head h₀, subst a',
induction ps with i ps generalizing a f f',
{ existsi [rfl,a,f,f',rfl,rfl],
apply bisim.tail h₀ },
cases i with a' i,
have : a = a',
{ cases hh; cases is_path_cons hh; refl },
subst a', dsimp [iselect] at ps_ih ⊢,
have h₁ := bisim.tail h₀ i,
induction h : (f i) using pfunctor.M.cases_on' with a₀ f₀,
induction h' : (f' i) using pfunctor.M.cases_on' with a₁ f₁,
simp only [h,h',isubtree_cons] at ps_ih ⊢,
rw [h,h'] at h₁,
have : a₀ = a₁ := bisim.head h₁, subst a₁,
apply (ps_ih _ _ _ h₁),
rw [← h,← h'], apply or_of_or_of_imp_of_imp hh is_path_cons' is_path_cons'
end
theorem eq_of_bisim (bisim : is_bisimulation R) : ∀ s₁ s₂, s₁ ~ s₂ → s₁ = s₂ :=
begin
introv Hr, apply ext,
introv,
by_cases h : is_path ps s₁ ∨ is_path ps s₂,
{ have H := nth_of_bisim R bisim _ _ ps Hr h,
exact H.left },
{ rw not_or_distrib at h, cases h with h₀ h₁,
simp only [iselect_eq_default,*,not_false_iff] }
end
end bisim
section coinduction
variables F
coinductive R : Π (s₁ s₂ : M F), Prop
| intro {a} (s₁ s₂ : F.B a → M F) :
(∀ i, R (s₁ i) (s₂ i)) →
R (M.mk ⟨_,s₁⟩) (M.mk ⟨_,s₂⟩)
section
variables [decidable_eq F.A] [inhabited $ M F]
open ulift
lemma R_is_bisimulation : is_bisimulation (R F) :=
begin
constructor; introv hr,
{ suffices : (λ a b, head a = head b) (M.mk ⟨a, f⟩) (M.mk ⟨a', f'⟩),
{ simp only [head_mk] at this, exact this },
refine R.cases_on _ hr _,
intros, simp only [head_mk] },
{ suffices : (λ a b, ∀ i j, i == j → R F (children a i) (children b j)) (M.mk ⟨a, f⟩) (M.mk ⟨a, f'⟩),
{ specialize this (cast (by rw head_mk) i) (cast (by rw head_mk) i) heq.rfl,
simp only [children_mk] at this, exact this, },
refine R.cases_on _ hr _,
introv h₂ h₃,
let k := cast (by rw head_mk) i_1,
have h₀ : (children (M.mk ⟨a_1, s₁⟩) i_1) = s₁ k := children_mk _ _,
have h₁ : (children (M.mk ⟨a_1, s₂⟩) j) = s₂ k,
{ rw children_mk, congr, symmetry, apply eq_of_heq h₃ },
rw [h₀,h₁], apply h₂ },
end
end
variables {F}
lemma coinduction {s₁ s₂ : M F}
(hh : R _ s₁ s₂)
: s₁ = s₂ :=
begin
haveI := inhabited.mk s₁,
exact eq_of_bisim
(R F) (R_is_bisimulation F) _ _
hh
end
lemma coinduction' {s₁ s₂ : M F}
(hh : R _ s₁ s₂)
: s₁ = s₂ :=
begin
have hh' := hh, revert hh',
apply R.cases_on F hh, clear hh s₁ s₂,
introv h₀ h₁,
rw coinduction h₁
end
end coinduction
universes u' v'
def corec_on {X : Type*} (x₀ : X) (f : X → F.apply X) : M F :=
M.corec f x₀
end M
end pfunctor
namespace tactic.interactive
open tactic (hiding coinduction) lean.parser interactive
meta def bisim (g : parse $ optional (tk "generalizing" *> many ident)) : tactic unit :=
do applyc ``pfunctor.M.coinduction,
coinduction ``pfunctor.M.R.corec_on g
end tactic.interactive
namespace pfunctor
open M
variables {P : pfunctor.{u}} {α : Type u}
def M_dest : M P → P.apply (M P) := from_cofix
def M_corec : (α → P.apply α) → (α → M P) := M.corec
lemma M_dest_corec (g : α → P.apply α) (x : α) :
M_dest (M_corec g x) = M_corec g <$> g x :=
by rw [M_corec,M_dest,corec_def,from_cofix_mk]
lemma M_bisim (R : M P → M P → Prop)
(h : ∀ x y, R x y → ∃ a f f',
M_dest x = ⟨a, f⟩ ∧
M_dest y = ⟨a, f'⟩ ∧
∀ i, R (f i) (f' i)) :
∀ x y, R x y → x = y :=
begin
intros,
bisim generalizing x y, rename w x; rename h_1_w y; rename h_1_h_left ih,
rcases h _ _ ih with ⟨ a', f, f', h₀, h₁, h₂ ⟩, clear h, dsimp [M_dest] at h₀ h₁,
existsi [a',f,f'], split,
{ intro, existsi [f i,f' i,h₂ _,rfl], refl },
split,
{ rw [← h₀,mk_from_cofix] },
{ rw [← h₁,mk_from_cofix] },
end
theorem M_bisim' {α : Type*} (Q : α → Prop) (u v : α → M P)
(h : ∀ x, Q x → ∃ a f f',
M_dest (u x) = ⟨a, f⟩ ∧
M_dest (v x) = ⟨a, f'⟩ ∧
∀ i, ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x') :
∀ x, Q x → u x = v x :=
λ x Qx,
let R := λ w z : M P, ∃ x', Q x' ∧ w = u x' ∧ z = v x' in
@M_bisim P R
(λ x y ⟨x', Qx', xeq, yeq⟩,
let ⟨a, f, f', ux'eq, vx'eq, h'⟩ := h x' Qx' in
⟨a, f, f', xeq.symm ▸ ux'eq, yeq.symm ▸ vx'eq, h'⟩)
_ _ ⟨x, Qx, rfl, rfl⟩
-- for the record, show M_bisim follows from M_bisim'
theorem M_bisim_equiv (R : M P → M P → Prop)
(h : ∀ x y, R x y → ∃ a f f',
M_dest x = ⟨a, f⟩ ∧
M_dest y = ⟨a, f'⟩ ∧
∀ i, R (f i) (f' i)) :
∀ x y, R x y → x = y :=
λ x y Rxy,
let Q : M P × M P → Prop := λ p, R p.fst p.snd in
M_bisim' Q prod.fst prod.snd
(λ p Qp,
let ⟨a, f, f', hx, hy, h'⟩ := h p.fst p.snd Qp in
⟨a, f, f', hx, hy, λ i, ⟨⟨f i, f' i⟩, h' i, rfl, rfl⟩⟩)
⟨x, y⟩ Rxy
theorem M_corec_unique (g : α → P.apply α) (f : α → M P)
(hyp : ∀ x, M_dest (f x) = f <$> (g x)) :
f = M_corec g :=
begin
ext x,
apply M_bisim' (λ x, true) _ _ _ _ trivial,
clear x,
intros x _,
cases gxeq : g x with a f',
have h₀ : M_dest (f x) = ⟨a, f ∘ f'⟩,
{ rw [hyp, gxeq, pfunctor.map_eq] },
have h₁ : M_dest (M_corec g x) = ⟨a, M_corec g ∘ f'⟩,
{ rw [M_dest_corec, gxeq, pfunctor.map_eq], },
refine ⟨_, _, _, h₀, h₁, _⟩,
intro i,
exact ⟨f' i, trivial, rfl, rfl⟩
end
def M_mk : P.apply (M P) → M P := M_corec (λ x, M_dest <$> x)
theorem M_mk_M_dest (x : M P) : M_mk (M_dest x) = x :=
begin
apply M_bisim' (λ x, true) (M_mk ∘ M_dest) _ _ _ trivial,
clear x,
intros x _,
cases Mxeq : M_dest x with a f',
have : M_dest (M_mk (M_dest x)) = ⟨a, _⟩,
{ rw [M_mk, M_dest_corec, Mxeq, pfunctor.map_eq, pfunctor.map_eq] },
refine ⟨_, _, _, this, rfl, _⟩,
intro i,
exact ⟨f' i, trivial, rfl, rfl⟩
end
theorem M_dest_M_mk (x : P.apply (M P)) : M_dest (M_mk x) = x :=
begin
have : M_mk ∘ M_dest = id := funext M_mk_M_dest,
rw [M_mk, M_dest_corec, ←comp_map, ←M_mk, this, id_map, id]
end
def corec₁ {α : Type u} (F : Π X, (α → X) → α → P.apply X) : α → M P :=
M_corec (F _ id)
def M_corec' {α : Type u} (F : Π {X : Type u}, (α → X) → α → M P ⊕ P.apply X) (x : α) : M P :=
corec₁
(λ X rec (a : M P ⊕ α),
let y := a >>= F (rec ∘ sum.inr) in
match y with
| sum.inr y := y
| sum.inl y := (rec ∘ sum.inl) <$> M_dest y
end )
(@sum.inr (M P) _ x)
end pfunctor
|
e2d896ecf02c1af19862fa31459c32e1e0bc8996
|
f57749ca63d6416f807b770f67559503fdb21001
|
/library/init/reserved_notation.lean
|
e3c59b15ff36adc22a8b193b4c742b60528df83a
|
[
"Apache-2.0"
] |
permissive
|
aliassaf/lean
|
bd54e85bed07b1ff6f01396551867b2677cbc6ac
|
f9b069b6a50756588b309b3d716c447004203152
|
refs/heads/master
| 1,610,982,152,948
| 1,438,916,029,000
| 1,438,916,029,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,245
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
-/
prelude
import init.datatypes
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
/-
Global declarations of right binding strength
If a module reassigns these, it will be incompatible with other modules that adhere to these
conventions.
When hovering over a symbol, use "C-c C-k" to see how to input it.
-/
definition std.prec.max : num := 1024 -- the strength of application, identifiers, (, [, etc.
definition std.prec.arrow : num := 25
/-
The next definition is "max + 10". It can be used e.g. for postfix operations that should
be stronger than application.
-/
definition std.prec.max_plus :=
num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ
(num.succ std.prec.max)))))))))
/- Logical operations and relations -/
reserve prefix `¬`:40
reserve prefix `~`:40
reserve infixr `∧`:35
reserve infixr `/\`:35
reserve infixr `\/`:30
reserve infixr `∨`:30
reserve infix `<->`:20
reserve infix `↔`:20
reserve infix `=`:50
reserve infix `≠`:50
reserve infix `≈`:50
reserve infix `~`:50
reserve infix `≡`:50
reserve infixr `∘`:60 -- input with \comp
reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv
reserve infixl `⬝`:75
reserve infixr `▸`:75
reserve infixr `▹`:75
/- types and type constructors -/
reserve infixl `⊎`:25
reserve infixl `×`:30
/- arithmetic operations -/
reserve infixl `+`:65
reserve infixl `-`:65
reserve infixl `*`:70
reserve infixl `div`:70
reserve infixl `mod`:70
reserve infixl `/`:70
reserve prefix `-`:100
reserve infix `^`:80
reserve infix `<=`:50
reserve infix `≤`:50
reserve infix `<`:50
reserve infix `>=`:50
reserve infix `≥`:50
reserve infix `>`:50
/- boolean operations -/
reserve infixl `&&`:70
reserve infixl `||`:65
/- set operations -/
reserve infix `∈`:50
reserve infix `∉`:50
reserve infixl `∩`:70
reserve infixl `∪`:65
reserve infix `⊆`:50
/- other symbols -/
reserve infix `∣`:50
reserve infixl `++`:65
reserve infixr `::`:65
|
877482331a1816ead2456987c3516e07575e20c0
|
46125763b4dbf50619e8846a1371029346f4c3db
|
/src/tactic/fin_cases.lean
|
24417c16b62ed6c97cbfd3432e4cd5cf395fc60f
|
[
"Apache-2.0"
] |
permissive
|
thjread/mathlib
|
a9d97612cedc2c3101060737233df15abcdb9eb1
|
7cffe2520a5518bba19227a107078d83fa725ddc
|
refs/heads/master
| 1,615,637,696,376
| 1,583,953,063,000
| 1,583,953,063,000
| 246,680,271
| 0
| 0
|
Apache-2.0
| 1,583,960,875,000
| 1,583,960,875,000
| null |
UTF-8
|
Lean
| false
| false
| 4,132
|
lean
|
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Scott Morrison
Case bashing:
* on `x ∈ A`, for `A : finset α` or `A : list α`, or
* on `x : A`, with `[fintype A]`.
-/
import data.fintype
import tactic.norm_num
namespace tactic
open lean.parser
open interactive interactive.types expr
open conv.interactive
/-- Checks that the expression looks like `x ∈ A` for `A : finset α`, `multiset α` or `A : list α`,
and returns the type α. -/
meta def guard_mem_fin (e : expr) : tactic expr :=
do t ← infer_type e,
α ← mk_mvar,
to_expr ``(_ ∈ (_ : finset %%α)) tt ff >>= unify t <|>
to_expr ``(_ ∈ (_ : multiset %%α)) tt ff >>= unify t <|>
to_expr ``(_ ∈ (_ : list %%α)) tt ff >>= unify t,
instantiate_mvars α
meta def expr_list_to_list_expr : Π (e : expr), tactic (list expr)
| `(list.cons %%h %%t) := list.cons h <$> expr_list_to_list_expr t
| `([]) := return []
| _ := failed
meta def fin_cases_at_aux : Π (with_list : list expr) (e : expr), tactic unit
| with_list e :=
(do
result ← cases_core e,
match result with
-- We have a goal with an equation `s`, and a second goal with a smaller `e : x ∈ _`.
| [(_, [s], _), (_, [e], _)] :=
do let sn := local_pp_name s,
ng ← num_goals,
-- tidy up the new value
match with_list.nth 0 with
-- If an explicit value was specified via the `with` keyword, use that.
| (some h) := tactic.interactive.conv (some sn) none
(to_rhs >> conv.interactive.change (to_pexpr h))
-- Otherwise, call `norm_num`. We let `norm_num` unfold `max` and `min`
-- because it's helpful for the `interval_cases` tactic.
| _ := try $ tactic.interactive.norm_num
[simp_arg_type.expr ``(max), simp_arg_type.expr ``(min)] (loc.ns [some sn])
end,
s ← get_local sn,
try `[subst %%s],
ng' ← num_goals,
when (ng = ng') (rotate_left 1),
fin_cases_at_aux with_list.tail e
-- No cases; we're done.
| [] := skip
| _ := failed
end)
meta def fin_cases_at : Π (with_list : option pexpr) (e : expr), tactic unit
| with_list e :=
do ty ← try_core $ guard_mem_fin e,
match ty with
| none := -- Deal with `x : A`, where `[fintype A]` is available:
(do
ty ← infer_type e,
i ← to_expr ``(fintype %%ty) >>= mk_instance <|> fail "Failed to find `fintype` instance.",
t ← to_expr ``(%%e ∈ @fintype.elems %%ty %%i),
v ← to_expr ``(@fintype.complete %%ty %%i %%e),
h ← assertv `h t v,
fin_cases_at with_list h)
| (some ty) := -- Deal with `x ∈ A` hypotheses:
(do
with_list ← match with_list with
| (some e) := do e ← to_expr ``(%%e : list %%ty), expr_list_to_list_expr e
| none := return []
end,
fin_cases_at_aux with_list e)
end
namespace interactive
private meta def hyp := tk "*" *> return none <|> some <$> ident
local postfix `?`:9001 := optional
/--
`fin_cases h` performs case analysis on a hypothesis of the form
`h : A`, where `[fintype A]` is available, or
`h ∈ A`, where `A : finset X`, `A : multiset X` or `A : list X`.
`fin_cases *` performs case analysis on all suitable hypotheses.
As an example, in
```
example (f : ℕ → Prop) (p : fin 3) (h0 : f 0) (h1 : f 1) (h2 : f 2) : f p.val :=
begin
fin_cases *; simp,
all_goals { assumption }
end
```
after `fin_cases p; simp`, there are three goals, `f 0`, `f 1`, and `f 2`.
-/
meta def fin_cases : parse hyp → parse (tk "with" *> texpr)? → tactic unit
| none none := focus1 $
do ctx ← local_context,
ctx.mfirst (fin_cases_at none) <|> fail "No hypothesis of the forms `x ∈ A`, where `A : finset X`, `A : list X`, or `A : multiset X`, or `x : A`, with `[fintype A]`."
| none (some _) := fail "Specify a single hypothesis when using a `with` argument."
| (some n) with_list :=
do
h ← get_local n,
focus1 $ fin_cases_at with_list h
end interactive
end tactic
|
c4c1fedeb0fb851dfdb65ceedfd48cab94a02439
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/bitvec/core.lean
|
e2ee68b65d47c6f0ca23a6d5d4d2a725e9a4e8d9
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,889
|
lean
|
/-
Copyright (c) 2015 Joe Hendrix. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joe Hendrix, Sebastian Ullrich
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.vector2
import Mathlib.data.nat.basic
import Mathlib.PostPort
namespace Mathlib
/-!
# Basic operations on bitvectors
This is a work-in-progress, and contains additions to other theories.
This file was moved to mathlib from core Lean in the switch to Lean 3.20.0c. It is not fully in compliance with mathlib style standards.
-/
/-- `bitvec n` is a `vector` of `bool` with length `n`. -/
def bitvec (n : ℕ) :=
vector Bool n
namespace bitvec
/-- Create a zero bitvector -/
protected def zero (n : ℕ) : bitvec n :=
vector.repeat false n
/-- Create a bitvector of length `n` whose `n-1`st entry is 1 and other entries are 0. -/
protected def one (n : ℕ) : bitvec n :=
sorry
/-- Create a bitvector from another with a provably equal length. -/
protected def cong {a : ℕ} {b : ℕ} (h : a = b) : bitvec a → bitvec b :=
sorry
/-- `bitvec` specific version of `vector.append` -/
def append {m : ℕ} {n : ℕ} : bitvec m → bitvec n → bitvec (m + n) :=
vector.append
/-! ### Shift operations -/
/-- `shl x i` is the bitvector obtained by left-shifting `x` `i` times and padding with `ff`.
If `x.length < i` then this will return the all-`ff`s bitvector. -/
def shl {n : ℕ} (x : bitvec n) (i : ℕ) : bitvec n :=
bitvec.cong sorry (vector.append (vector.drop i x) (vector.repeat false (min n i)))
/-- `fill_shr x i fill` is the bitvector obtained by right-shifting `x` `i` times and then
padding with `fill : bool`. If `x.length < i` then this will return the constant `fill`
bitvector. -/
def fill_shr {n : ℕ} (x : bitvec n) (i : ℕ) (fill : Bool) : bitvec n :=
bitvec.cong sorry (vector.append (vector.repeat fill (min n i)) (vector.take (n - i) x))
/-- unsigned shift right -/
def ushr {n : ℕ} (x : bitvec n) (i : ℕ) : bitvec n :=
fill_shr x i false
/-- signed shift right -/
def sshr {m : ℕ} : bitvec m → ℕ → bitvec m :=
sorry
/-! ### Bitwise operations -/
/-- bitwise not -/
/-- bitwise and -/
def not {n : ℕ} : bitvec n → bitvec n :=
vector.map bnot
/-- bitwise or -/
def and {n : ℕ} : bitvec n → bitvec n → bitvec n :=
vector.map₂ band
/-- bitwise xor -/
def or {n : ℕ} : bitvec n → bitvec n → bitvec n :=
vector.map₂ bor
def xor {n : ℕ} : bitvec n → bitvec n → bitvec n :=
vector.map₂ bxor
/-! ### Arithmetic operators -/
/-- `xor3 x y c` is `((x XOR y) XOR c)`. -/
/-- `carry x y c` is `x && y || x && c || y && c`. -/
protected def xor3 (x : Bool) (y : Bool) (c : Bool) : Bool :=
bxor (bxor x y) c
protected def carry (x : Bool) (y : Bool) (c : Bool) : Bool :=
x && y || x && c || y && c
/-- `neg x` is the two's complement of `x`. -/
protected def neg {n : ℕ} (x : bitvec n) : bitvec n :=
let f : Bool → Bool → Bool × Bool := fun (y c : Bool) => (y || c, bxor y c);
prod.snd (vector.map_accumr f x false)
/-- Add with carry (no overflow) -/
def adc {n : ℕ} (x : bitvec n) (y : bitvec n) (c : Bool) : bitvec (n + 1) :=
let f : Bool → Bool → Bool → Bool × Bool := fun (x y c : Bool) => (bitvec.carry x y c, bitvec.xor3 x y c);
sorry
/-- The sum of two bitvectors -/
protected def add {n : ℕ} (x : bitvec n) (y : bitvec n) : bitvec n :=
vector.tail (adc x y false)
/-- Subtract with borrow -/
def sbb {n : ℕ} (x : bitvec n) (y : bitvec n) (b : Bool) : Bool × bitvec n :=
let f : Bool → Bool → Bool → Bool × Bool := fun (x y c : Bool) => (bitvec.carry (!x) y c, bitvec.xor3 x y c);
vector.map_accumr₂ f x y b
/-- The difference of two bitvectors -/
protected def sub {n : ℕ} (x : bitvec n) (y : bitvec n) : bitvec n :=
prod.snd (sbb x y false)
protected instance has_zero {n : ℕ} : HasZero (bitvec n) :=
{ zero := bitvec.zero n }
protected instance has_one {n : ℕ} : HasOne (bitvec n) :=
{ one := bitvec.one n }
protected instance has_add {n : ℕ} : Add (bitvec n) :=
{ add := bitvec.add }
protected instance has_sub {n : ℕ} : Sub (bitvec n) :=
{ sub := bitvec.sub }
protected instance has_neg {n : ℕ} : Neg (bitvec n) :=
{ neg := bitvec.neg }
/-- The product of two bitvectors -/
protected def mul {n : ℕ} (x : bitvec n) (y : bitvec n) : bitvec n :=
let f : bitvec n → Bool → bitvec n := fun (r : bitvec n) (b : Bool) => cond b (r + r + y) (r + r);
list.foldl f 0 (vector.to_list x)
protected instance has_mul {n : ℕ} : Mul (bitvec n) :=
{ mul := bitvec.mul }
/-! ### Comparison operators -/
/-- `uborrow x y` returns `tt` iff the "subtract with borrow" operation on `x`, `y` and `ff`
required a borrow. -/
def uborrow {n : ℕ} (x : bitvec n) (y : bitvec n) : Bool :=
prod.fst (sbb x y false)
/-- unsigned less-than proposition -/
/-- unsigned greater-than proposition -/
def ult {n : ℕ} (x : bitvec n) (y : bitvec n) :=
↥(uborrow x y)
def ugt {n : ℕ} (x : bitvec n) (y : bitvec n) :=
ult y x
/-- unsigned less-than-or-equal-to proposition -/
/-- unsigned greater-than-or-equal-to proposition -/
def ule {n : ℕ} (x : bitvec n) (y : bitvec n) :=
¬ult y x
def uge {n : ℕ} (x : bitvec n) (y : bitvec n) :=
ule y x
/-- `sborrow x y` returns `tt` iff `x < y` as two's complement integers -/
def sborrow {n : ℕ} : bitvec n → bitvec n → Bool :=
sorry
/-- signed less-than proposition -/
/-- signed greater-than proposition -/
def slt {n : ℕ} (x : bitvec n) (y : bitvec n) :=
↥(sborrow x y)
/-- signed less-than-or-equal-to proposition -/
def sgt {n : ℕ} (x : bitvec n) (y : bitvec n) :=
slt y x
/-- signed greater-than-or-equal-to proposition -/
def sle {n : ℕ} (x : bitvec n) (y : bitvec n) :=
¬slt y x
def sge {n : ℕ} (x : bitvec n) (y : bitvec n) :=
sle y x
/-! ### Conversion to `nat` and `int` -/
/-- Create a bitvector from a `nat` -/
protected def of_nat (n : ℕ) : ℕ → bitvec n :=
sorry
/-- Create a bitvector in the two's complement representation from an `int` -/
protected def of_int (n : ℕ) : ℤ → bitvec (Nat.succ n) :=
sorry
/-- `add_lsb r b` is `r + r + 1` if `b` is `tt` and `r + r` otherwise. -/
def add_lsb (r : ℕ) (b : Bool) : ℕ :=
r + r + cond b 1 0
/-- Given a `list` of `bool`s, return the `nat` they represent as a list of binary digits. -/
def bits_to_nat (v : List Bool) : ℕ :=
list.foldl add_lsb 0 v
/-- Return the natural number encoded by the input bitvector -/
protected def to_nat {n : ℕ} (v : bitvec n) : ℕ :=
bits_to_nat (vector.to_list v)
theorem bits_to_nat_to_list {n : ℕ} (x : bitvec n) : bitvec.to_nat x = bits_to_nat (vector.to_list x) :=
rfl
-- mul_left_comm
theorem to_nat_append {m : ℕ} (xs : bitvec m) (b : Bool) : bitvec.to_nat (vector.append xs (b::ᵥvector.nil)) = bitvec.to_nat xs * bit0 1 + bitvec.to_nat (b::ᵥvector.nil) := sorry
theorem bits_to_nat_to_bool (n : ℕ) : bitvec.to_nat (to_bool (n % bit0 1 = 1)::ᵥvector.nil) = n % bit0 1 := sorry
theorem of_nat_succ {k : ℕ} {n : ℕ} : bitvec.of_nat (Nat.succ k) n = vector.append (bitvec.of_nat k (n / bit0 1)) (to_bool (n % bit0 1 = 1)::ᵥvector.nil) :=
rfl
theorem to_nat_of_nat {k : ℕ} {n : ℕ} : bitvec.to_nat (bitvec.of_nat k n) = n % bit0 1 ^ k := sorry
/-- Return the integer encoded by the input bitvector -/
protected def to_int {n : ℕ} : bitvec n → ℤ :=
sorry
/-! ### Miscellaneous instances -/
protected instance has_repr (n : ℕ) : has_repr (bitvec n) :=
has_repr.mk repr
end bitvec
protected instance bitvec.ult.decidable {n : ℕ} {x : bitvec n} {y : bitvec n} : Decidable (bitvec.ult x y) :=
bool.decidable_eq (bitvec.uborrow x y) tt
protected instance bitvec.ugt.decidable {n : ℕ} {x : bitvec n} {y : bitvec n} : Decidable (bitvec.ugt x y) :=
bool.decidable_eq (bitvec.uborrow y x) tt
|
8a0f6891316742ab2f01cf6dd9502f3b61060378
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/geometry/manifold/instances/units_of_normed_algebra.lean
|
da73c982e5180aa02e108f504b3d4ae6968b11ac
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,497
|
lean
|
/-
Copyright © 2021 Nicolò Cavalleri. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nicolò Cavalleri, Heather Macbeth
-/
import geometry.manifold.smooth_manifold_with_corners
import analysis.normed_space.units
/-!
# Units of a normed algebra
This file is a stub, containing a construction of the charted space structure on the group of units
of a complete normed ring `R`, and of the smooth manifold structure on the group of units of a
complete normed `𝕜`-algebra `R`.
This manifold is actually a Lie group, which eventually should be the main result of this file.
An important special case of this construction is the general linear group. For a normed space `V`
over a field `𝕜`, the `𝕜`-linear endomorphisms of `V` are a normed `𝕜`-algebra (see
`continuous_linear_map.to_normed_algebra`), so this construction provides a Lie group structure on
its group of units, the general linear group GL(`𝕜`, `V`).
## TODO
The Lie group instance requires the following fields:
```
instance : lie_group 𝓘(𝕜, R) Rˣ :=
{ smooth_mul := sorry,
smooth_inv := sorry,
..units.smooth_manifold_with_corners }
```
The ingredients needed for the construction are
* smoothness of multiplication and inversion in the charts, i.e. as functions on the normed
`𝕜`-space `R`: see `times_cont_diff_at_ring_inverse` for the inversion result, and
`times_cont_diff_mul` (needs to be generalized from field to algebra) for the multiplication
result
* for an open embedding `f`, whose domain is equipped with the induced manifold structure
`f.singleton_smooth_manifold_with_corners`, characterization of smoothness of functions to/from
this manifold in terms of smoothness in the target space. See the pair of lemmas
`times_cont_mdiff_coe_sphere` and `times_cont_mdiff.cod_restrict_sphere` for a model.
None of this should be particularly difficult.
-/
noncomputable theory
open_locale manifold
namespace units
variables {R : Type*} [normed_ring R] [complete_space R]
instance : charted_space R Rˣ := open_embedding_coe.singleton_charted_space
lemma chart_at_apply {a : Rˣ} {b : Rˣ} : chart_at R a b = b := rfl
lemma chart_at_source {a : Rˣ} : (chart_at R a).source = set.univ := rfl
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] [normed_algebra 𝕜 R]
instance : smooth_manifold_with_corners 𝓘(𝕜, R) Rˣ :=
open_embedding_coe.singleton_smooth_manifold_with_corners 𝓘(𝕜, R)
end units
|
d72849d84b5512c7bfc0bd98b5c34d404e60ceb8
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/number_theory/number_field/units.lean
|
106abb57e643777b1655f67a5099cbefde6a252f
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 1,369
|
lean
|
/-
Copyright (c) 2023 Xavier Roblot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Xavier Roblot
-/
import number_theory.number_field.norm
/-!
# Units of a number field
We prove results about the group `(𝓞 K)ˣ` of units of the ring of integers `𝓞 K` of a number
field `K`.
## Main results
* `number_field.is_unit_iff_norm`: an algebraic integer `x : 𝓞 K` is a unit if and only if
`|norm ℚ x| = 1`
## Tags
number field, units
-/
open_locale number_field
noncomputable theory
open number_field units
section rat
lemma rat.ring_of_integers.is_unit_iff {x : 𝓞 ℚ} :
is_unit x ↔ ((x : ℚ) = 1) ∨ ((x : ℚ) = -1) :=
by simp_rw [(is_unit_map_iff (rat.ring_of_integers_equiv : 𝓞 ℚ →+* ℤ) x).symm, int.is_unit_iff,
ring_equiv.coe_to_ring_hom, ring_equiv.map_eq_one_iff, ring_equiv.map_eq_neg_one_iff,
← subtype.coe_injective.eq_iff, add_subgroup_class.coe_neg, algebra_map.coe_one]
end rat
variables (K : Type*) [field K]
section is_unit
local attribute [instance] number_field.ring_of_integers_algebra
variable {K}
lemma is_unit_iff_norm [number_field K] (x : 𝓞 K) :
is_unit x ↔ |(ring_of_integers.norm ℚ x : ℚ)| = 1 :=
by { convert (ring_of_integers.is_unit_norm ℚ).symm,
rw [← abs_one, abs_eq_abs, ← rat.ring_of_integers.is_unit_iff], }
end is_unit
|
48eb1d15e104613c07d62c8ba4dc95dab337d8de
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/run/mk_dec_eq_instance_nested.lean
|
8bc5f46570275a44c69828d18ac9639da059b6ed
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 464
|
lean
|
open tactic
namespace X1
inductive Wrap (A : Type) : Type
| mk : A -> Wrap
inductive Foo : Type
| mk : Wrap Foo -> Foo
instance : decidable_eq Foo := by mk_dec_eq_instance
end X1
namespace X2
inductive Foo : Type
| mk : list Foo -> Foo
instance : decidable_eq Foo := by mk_dec_eq_instance
end X2
namespace X3
inductive Foo : bool -> Type
| mk : list (list (Foo tt)) -> Foo ff
instance (b : bool) : decidable_eq (Foo b) := by mk_dec_eq_instance
end X3
|
61b6c19d6e12639831b4dcbabfd66c324de5c810
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/data/mv_polynomial/invertible.lean
|
89f5ca9f55b4ca04782bef3659341c0ae4a33cfb
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 1,058
|
lean
|
/-
Copyright (c) 2020 Johan Commelin, Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Robert Y. Lewis
-/
import data.mv_polynomial.basic
import ring_theory.algebra_tower
/-!
# Invertible polynomials
This file is a stub containing some basic facts about
invertible elements in the ring of polynomials.
-/
open mv_polynomial
noncomputable instance mv_polynomial.invertible_C
(σ : Type*) {R : Type*} [comm_semiring R] (r : R) [invertible r] :
invertible (C r : mv_polynomial σ R) :=
invertible.map (C.to_monoid_hom : R →* mv_polynomial σ R) _
/-- A natural number that is invertible when coerced to a commutative semiring `R`
is also invertible when coerced to any polynomial ring with rational coefficients.
Short-cut for typeclass resolution. -/
noncomputable instance mv_polynomial.invertible_coe_nat
(σ R : Type*) (p : ℕ) [comm_semiring R] [invertible (p : R)] :
invertible (p : mv_polynomial σ R) :=
is_scalar_tower.invertible_algebra_coe_nat R _ _
|
198da7c9d401bf12a6f6ca322e831750e8602d64
|
ed2fefcfa8b4fe534e01e6245f2696fd7c890d95
|
/2019-04-01_aula3.lean
|
53e5fe9c8593543c442adc104e6788b3bb55f4ca
|
[] |
no_license
|
Bpalkmim/EstOrientadoLean
|
2036194e2211badb8ae18c1440edfe557b8e11d2
|
05a11f20cb5d0da612c9767fd97d0dbf698a405a
|
refs/heads/master
| 1,588,562,078,354
| 1,557,777,940,000
| 1,557,777,940,000
| 178,943,165
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 176
|
lean
|
constants A B C : Type
constant f : A
constant h : A → B
constant g : A → (B → C)
#check g f (h f)
#check (λg : A → (B → C), (λh : A → B, (λf : A, g f (h f))))
|
8aecb6802673e786fdd3cb6ce1ec70eb946b728d
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/ring_theory/laurent_series.lean
|
99ba18b74afa72bd63ff729124fdf9e823335ccb
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,327
|
lean
|
/-
Copyright (c) 2021 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import ring_theory.hahn_series
import ring_theory.localization.fraction_ring
/-!
# Laurent Series
## Main Definitions
* Defines `laurent_series` as an abbreviation for `hahn_series ℤ`.
* Provides a coercion `power_series R` into `laurent_series R` given by
`hahn_series.of_power_series`.
* Defines `laurent_series.power_series_part`
* Defines the localization map `laurent_series.of_power_series_localization` which evaluates to
`hahn_series.of_power_series`.
-/
open hahn_series
open_locale big_operators classical polynomial
noncomputable theory
universe u
/-- A `laurent_series` is implemented as a `hahn_series` with value group `ℤ`. -/
abbreviation laurent_series (R : Type*) [has_zero R] := hahn_series ℤ R
variables {R : Type u}
namespace laurent_series
section semiring
variable [semiring R]
instance : has_coe (power_series R) (laurent_series R) :=
⟨hahn_series.of_power_series ℤ R⟩
lemma coe_power_series (x : power_series R) : (x : laurent_series R) =
hahn_series.of_power_series ℤ R x := rfl
@[simp] lemma coeff_coe_power_series (x : power_series R) (n : ℕ) :
hahn_series.coeff (x : laurent_series R) n = power_series.coeff R n x :=
by rw [coe_power_series, of_power_series_apply_coeff]
/-- This is a power series that can be multiplied by an integer power of `X` to give our
Laurent series. If the Laurent series is nonzero, `power_series_part` has a nonzero
constant term. -/
def power_series_part (x : laurent_series R) : power_series R :=
power_series.mk (λ n, x.coeff (x.order + n))
@[simp] lemma power_series_part_coeff (x : laurent_series R) (n : ℕ) :
power_series.coeff R n x.power_series_part = x.coeff (x.order + n) :=
power_series.coeff_mk _ _
@[simp] lemma power_series_part_zero : power_series_part (0 : laurent_series R) = 0 :=
by { ext, simp }
@[simp] lemma power_series_part_eq_zero (x : laurent_series R) :
x.power_series_part = 0 ↔ x = 0 :=
begin
split,
{ contrapose!,
intro h,
rw [power_series.ext_iff, not_forall],
refine ⟨0, _⟩,
simp [coeff_order_ne_zero h] },
{ rintro rfl,
simp }
end
@[simp] lemma single_order_mul_power_series_part (x : laurent_series R) :
(single x.order 1 : laurent_series R) * x.power_series_part = x :=
begin
ext n,
rw [← sub_add_cancel n x.order, single_mul_coeff_add, sub_add_cancel, one_mul],
by_cases h : x.order ≤ n,
{ rw [int.eq_nat_abs_of_zero_le (sub_nonneg_of_le h), coeff_coe_power_series,
power_series_part_coeff, ← int.eq_nat_abs_of_zero_le (sub_nonneg_of_le h),
add_sub_cancel'_right] },
{ rw [coe_power_series, of_power_series_apply, emb_domain_notin_range],
{ contrapose! h,
exact order_le_of_coeff_ne_zero h.symm },
{ contrapose! h,
simp only [set.mem_range, rel_embedding.coe_fn_mk, function.embedding.coe_fn_mk] at h,
obtain ⟨m, hm⟩ := h,
rw [← sub_nonneg, ← hm],
exact int.zero_le_of_nat _ } }
end
lemma of_power_series_power_series_part (x : laurent_series R) :
of_power_series ℤ R x.power_series_part = single (-x.order) 1 * x :=
begin
refine eq.trans _ (congr rfl x.single_order_mul_power_series_part),
rw [← mul_assoc, single_mul_single, neg_add_self, mul_one, ← C_apply, C_one, one_mul,
coe_power_series],
end
end semiring
instance [comm_semiring R] : algebra (power_series R) (laurent_series R) :=
(hahn_series.of_power_series ℤ R).to_algebra
@[simp] lemma coe_algebra_map [comm_semiring R] :
⇑(algebra_map (power_series R) (laurent_series R)) = hahn_series.of_power_series ℤ R :=
rfl
/-- The localization map from power series to Laurent series. -/
@[simps] instance of_power_series_localization [comm_ring R] :
is_localization (submonoid.powers (power_series.X : power_series R)) (laurent_series R) :=
{ map_units := (begin rintro ⟨_, n, rfl⟩,
refine ⟨⟨single (n : ℤ) 1, single (-n : ℤ) 1, _, _⟩, _⟩,
{ simp only [single_mul_single, mul_one, add_right_neg],
refl },
{ simp only [single_mul_single, mul_one, add_left_neg],
refl },
{ simp } end),
surj := (begin intro z,
by_cases h : 0 ≤ z.order,
{ refine ⟨⟨power_series.X ^ (int.nat_abs z.order) * power_series_part z, 1⟩, _⟩,
simp only [ring_hom.map_one, mul_one, ring_hom.map_mul, coe_algebra_map,
of_power_series_X_pow, submonoid.coe_one],
rw [int.nat_abs_of_nonneg h, ← coe_power_series, single_order_mul_power_series_part] },
{ refine ⟨⟨power_series_part z, power_series.X ^ (int.nat_abs z.order), ⟨_, rfl⟩⟩, _⟩,
simp only [coe_algebra_map, of_power_series_power_series_part],
rw [mul_comm _ z],
refine congr rfl _,
rw [subtype.coe_mk, of_power_series_X_pow, int.of_nat_nat_abs_of_nonpos],
exact le_of_not_ge h } end),
eq_iff_exists := (begin intros x y,
rw [coe_algebra_map, of_power_series_injective.eq_iff],
split,
{ rintro rfl,
exact ⟨1, rfl⟩ },
{ rintro ⟨⟨_, n, rfl⟩, hc⟩,
rw [← sub_eq_zero, ← sub_mul, power_series.ext_iff] at hc,
rw [← sub_eq_zero, power_series.ext_iff],
intro m,
have h := hc (m + n),
rw [linear_map.map_zero, subtype.coe_mk, power_series.X_pow_eq, power_series.monomial,
power_series.coeff, finsupp.single_add, mv_power_series.coeff_add_mul_monomial,
mul_one] at h,
exact h } end) }
instance {K : Type u} [field K] : is_fraction_ring (power_series K) (laurent_series K) :=
is_localization.of_le (submonoid.powers (power_series.X : power_series K)) _
(powers_le_non_zero_divisors_of_no_zero_divisors power_series.X_ne_zero)
(λ f hf, is_unit_of_mem_non_zero_divisors $ map_mem_non_zero_divisors _
hahn_series.of_power_series_injective hf)
end laurent_series
namespace power_series
open laurent_series
variables {R' : Type*} [semiring R] [ring R'] (f g : power_series R) (f' g' : power_series R')
@[simp, norm_cast] lemma coe_zero : ((0 : power_series R) : laurent_series R) = 0 :=
(of_power_series ℤ R).map_zero
@[simp, norm_cast] lemma coe_one : ((1 : power_series R) : laurent_series R) = 1 :=
(of_power_series ℤ R).map_one
@[simp, norm_cast] lemma coe_add : ((f + g : power_series R) : laurent_series R) = f + g :=
(of_power_series ℤ R).map_add _ _
@[simp, norm_cast] lemma coe_sub : ((f' - g' : power_series R') : laurent_series R') = f' - g' :=
(of_power_series ℤ R').map_sub _ _
@[simp, norm_cast] lemma coe_neg : ((-f' : power_series R') : laurent_series R') = -f' :=
(of_power_series ℤ R').map_neg _
@[simp, norm_cast] lemma coe_mul : ((f * g : power_series R) : laurent_series R) = f * g :=
(of_power_series ℤ R).map_mul _ _
lemma coeff_coe (i : ℤ) :
((f : power_series R) : laurent_series R).coeff i =
if i < 0 then 0 else power_series.coeff R i.nat_abs f :=
begin
cases i,
{ rw [int.nat_abs_of_nat_core, int.of_nat_eq_coe, coeff_coe_power_series,
if_neg (int.coe_nat_nonneg _).not_lt] },
{ rw [coe_power_series, of_power_series_apply, emb_domain_notin_image_support,
if_pos (int.neg_succ_lt_zero _)],
simp only [not_exists, rel_embedding.coe_fn_mk, set.mem_image, not_and,
function.embedding.coe_fn_mk, ne.def, to_power_series_symm_apply_coeff, mem_support,
int.coe_nat_eq, implies_true_iff, not_false_iff] }
end
@[simp, norm_cast] lemma coe_C (r : R) : ((C R r : power_series R) : laurent_series R) =
hahn_series.C r :=
of_power_series_C _
@[simp] lemma coe_X : ((X : power_series R) : laurent_series R) = single 1 1 :=
of_power_series_X
@[simp, norm_cast] lemma coe_smul {S : Type*} [semiring S] [module R S]
(r : R) (x : power_series S) : ((r • x : power_series S) : laurent_series S) = r • x :=
by { ext, simp [coeff_coe, coeff_smul, smul_ite] }
@[simp, norm_cast] lemma coe_bit0 :
((bit0 f : power_series R) : laurent_series R) = bit0 f :=
(of_power_series ℤ R).map_bit0 _
@[simp, norm_cast] lemma coe_bit1 :
((bit1 f : power_series R) : laurent_series R) = bit1 f :=
(of_power_series ℤ R).map_bit1 _
@[simp, norm_cast] lemma coe_pow (n : ℕ) :
((f ^ n : power_series R) : laurent_series R) = f ^ n :=
(of_power_series ℤ R).map_pow _ _
end power_series
|
1fda21239d9b96253e75a89ca0fc46112908bdc2
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/fintype/sort.lean
|
5d72701738f3609c246d2a816e6b36990fad3894
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,354
|
lean
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.finset.sort
import data.fintype.basic
/-!
# Sorting a finite type
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file provides two equivalences for linearly ordered fintypes:
* `mono_equiv_of_fin`: Order isomorphism between `α` and `fin (card α)`.
* `fin_sum_equiv_of_finset`: Equivalence between `α` and `fin m ⊕ fin n` where `m` and `n` are
respectively the cardinalities of some `finset α` and its complement.
-/
open finset
/-- Given a linearly ordered fintype `α` of cardinal `k`, the order isomorphism
`mono_equiv_of_fin α h` is the increasing bijection between `fin k` and `α`. Here, `h` is a proof
that the cardinality of `α` is `k`. We use this instead of an isomorphism `fin (card α) ≃o α` to
avoid casting issues in further uses of this function. -/
def mono_equiv_of_fin (α : Type*) [fintype α] [linear_order α] {k : ℕ} (h : fintype.card α = k) :
fin k ≃o α :=
(univ.order_iso_of_fin h).trans $ (order_iso.set_congr _ _ coe_univ).trans order_iso.set.univ
variables {α : Type*} [decidable_eq α] [fintype α] [linear_order α] {m n : ℕ} {s : finset α}
/-- If `α` is a linearly ordered fintype, `s : finset α` has cardinality `m` and its complement has
cardinality `n`, then `fin m ⊕ fin n ≃ α`. The equivalence sends elements of `fin m` to
elements of `s` and elements of `fin n` to elements of `sᶜ` while preserving order on each
"half" of `fin m ⊕ fin n` (using `set.order_iso_of_fin`). -/
def fin_sum_equiv_of_finset (hm : s.card = m) (hn : sᶜ.card = n) : fin m ⊕ fin n ≃ α :=
calc fin m ⊕ fin n ≃ (s : set α) ⊕ (sᶜ : set α) :
equiv.sum_congr (s.order_iso_of_fin hm).to_equiv $
(sᶜ.order_iso_of_fin hn).to_equiv.trans $ equiv.set.of_eq s.coe_compl
... ≃ α : equiv.set.sum_compl _
@[simp] lemma fin_sum_equiv_of_finset_inl (hm : s.card = m) (hn : sᶜ.card = n) (i : fin m) :
fin_sum_equiv_of_finset hm hn (sum.inl i) = s.order_emb_of_fin hm i :=
rfl
@[simp] lemma fin_sum_equiv_of_finset_inr (hm : s.card = m) (hn : sᶜ.card = n) (i : fin n) :
fin_sum_equiv_of_finset hm hn (sum.inr i) = sᶜ.order_emb_of_fin hn i :=
rfl
|
708382cf6d646902ef42c38542656f56554a7a7c
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/category_theory/isomorphism.lean
|
d319cb58c5762e4dbf3d0f3565ff987f7fec119f
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 16,320
|
lean
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Tim Baumann, Stephen Morgan, Scott Morrison, Floris van Doorn
-/
import category_theory.functor.basic
/-!
# Isomorphisms
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines isomorphisms between objects of a category.
## Main definitions
- `structure iso` : a bundled isomorphism between two objects of a category;
- `class is_iso` : an unbundled version of `iso`;
note that `is_iso f` is a `Prop`, and only asserts the existence of an inverse.
Of course, this inverse is unique, so it doesn't cost us much to use choice to retrieve it.
- `inv f`, for the inverse of a morphism with `[is_iso f]`
- `as_iso` : convert from `is_iso` to `iso` (noncomputable);
- `of_iso` : convert from `iso` to `is_iso`;
- standard operations on isomorphisms (composition, inverse etc)
## Notations
- `X ≅ Y` : same as `iso X Y`;
- `α ≪≫ β` : composition of two isomorphisms; it is called `iso.trans`
## Tags
category, category theory, isomorphism
-/
universes v u -- morphism levels before object levels. See note [category_theory universes].
namespace category_theory
open category
/--
An isomorphism (a.k.a. an invertible morphism) between two objects of a category.
The inverse morphism is bundled.
See also `category_theory.core` for the category with the same objects and isomorphisms playing
the role of morphisms.
See <https://stacks.math.columbia.edu/tag/0017>.
-/
structure iso {C : Type u} [category.{v} C] (X Y : C) :=
(hom : X ⟶ Y)
(inv : Y ⟶ X)
(hom_inv_id' : hom ≫ inv = 𝟙 X . obviously)
(inv_hom_id' : inv ≫ hom = 𝟙 Y . obviously)
restate_axiom iso.hom_inv_id'
restate_axiom iso.inv_hom_id'
attribute [simp, reassoc] iso.hom_inv_id iso.inv_hom_id
infixr ` ≅ `:10 := iso -- type as \cong or \iso
variables {C : Type u} [category.{v} C]
variables {X Y Z : C}
namespace iso
@[ext] lemma ext ⦃α β : X ≅ Y⦄ (w : α.hom = β.hom) : α = β :=
suffices α.inv = β.inv, by cases α; cases β; cc,
calc α.inv
= α.inv ≫ (β.hom ≫ β.inv) : by rw [iso.hom_inv_id, category.comp_id]
... = (α.inv ≫ α.hom) ≫ β.inv : by rw [category.assoc, ←w]
... = β.inv : by rw [iso.inv_hom_id, category.id_comp]
/-- Inverse isomorphism. -/
@[symm] def symm (I : X ≅ Y) : Y ≅ X :=
{ hom := I.inv,
inv := I.hom,
hom_inv_id' := I.inv_hom_id',
inv_hom_id' := I.hom_inv_id' }
@[simp] lemma symm_hom (α : X ≅ Y) : α.symm.hom = α.inv := rfl
@[simp] lemma symm_inv (α : X ≅ Y) : α.symm.inv = α.hom := rfl
@[simp] lemma symm_mk {X Y : C} (hom : X ⟶ Y) (inv : Y ⟶ X) (hom_inv_id) (inv_hom_id) :
iso.symm {hom := hom, inv := inv, hom_inv_id' := hom_inv_id, inv_hom_id' := inv_hom_id} =
{hom := inv, inv := hom, hom_inv_id' := inv_hom_id, inv_hom_id' := hom_inv_id} := rfl
@[simp] lemma symm_symm_eq {X Y : C} (α : X ≅ Y) : α.symm.symm = α :=
by cases α; refl
@[simp] lemma symm_eq_iff {X Y : C} {α β : X ≅ Y} : α.symm = β.symm ↔ α = β :=
⟨λ h, symm_symm_eq α ▸ symm_symm_eq β ▸ congr_arg symm h, congr_arg symm⟩
lemma nonempty_iso_symm (X Y : C) : nonempty (X ≅ Y) ↔ nonempty (Y ≅ X) :=
⟨λ h, ⟨h.some.symm⟩, λ h, ⟨h.some.symm⟩⟩
/-- Identity isomorphism. -/
@[refl, simps] def refl (X : C) : X ≅ X :=
{ hom := 𝟙 X,
inv := 𝟙 X }
instance : inhabited (X ≅ X) := ⟨iso.refl X⟩
@[simp] lemma refl_symm (X : C) : (iso.refl X).symm = iso.refl X := rfl
/-- Composition of two isomorphisms -/
@[trans, simps] def trans (α : X ≅ Y) (β : Y ≅ Z) : X ≅ Z :=
{ hom := α.hom ≫ β.hom,
inv := β.inv ≫ α.inv }
infixr ` ≪≫ `:80 := iso.trans -- type as `\ll \gg`.
@[simp] lemma trans_mk {X Y Z : C}
(hom : X ⟶ Y) (inv : Y ⟶ X) (hom_inv_id) (inv_hom_id)
(hom' : Y ⟶ Z) (inv' : Z ⟶ Y) (hom_inv_id') (inv_hom_id') (hom_inv_id'') (inv_hom_id'') :
iso.trans
{hom := hom, inv := inv, hom_inv_id' := hom_inv_id, inv_hom_id' := inv_hom_id}
{hom := hom', inv := inv', hom_inv_id' := hom_inv_id', inv_hom_id' := inv_hom_id'} =
{ hom := hom ≫ hom', inv := inv' ≫ inv, hom_inv_id' := hom_inv_id'',
inv_hom_id' := inv_hom_id''} :=
rfl
@[simp] lemma trans_symm (α : X ≅ Y) (β : Y ≅ Z) : (α ≪≫ β).symm = β.symm ≪≫ α.symm := rfl
@[simp] lemma trans_assoc {Z' : C} (α : X ≅ Y) (β : Y ≅ Z) (γ : Z ≅ Z') :
(α ≪≫ β) ≪≫ γ = α ≪≫ β ≪≫ γ :=
by ext; simp only [trans_hom, category.assoc]
@[simp] lemma refl_trans (α : X ≅ Y) : (iso.refl X) ≪≫ α = α := by ext; apply category.id_comp
@[simp] lemma trans_refl (α : X ≅ Y) : α ≪≫ (iso.refl Y) = α := by ext; apply category.comp_id
@[simp] lemma symm_self_id (α : X ≅ Y) : α.symm ≪≫ α = iso.refl Y := ext α.inv_hom_id
@[simp] lemma self_symm_id (α : X ≅ Y) : α ≪≫ α.symm = iso.refl X := ext α.hom_inv_id
@[simp] lemma symm_self_id_assoc (α : X ≅ Y) (β : Y ≅ Z) : α.symm ≪≫ α ≪≫ β = β :=
by rw [← trans_assoc, symm_self_id, refl_trans]
@[simp] lemma self_symm_id_assoc (α : X ≅ Y) (β : X ≅ Z) : α ≪≫ α.symm ≪≫ β = β :=
by rw [← trans_assoc, self_symm_id, refl_trans]
lemma inv_comp_eq (α : X ≅ Y) {f : X ⟶ Z} {g : Y ⟶ Z} : α.inv ≫ f = g ↔ f = α.hom ≫ g :=
⟨λ H, by simp [H.symm], λ H, by simp [H]⟩
lemma eq_inv_comp (α : X ≅ Y) {f : X ⟶ Z} {g : Y ⟶ Z} : g = α.inv ≫ f ↔ α.hom ≫ g = f :=
(inv_comp_eq α.symm).symm
lemma comp_inv_eq (α : X ≅ Y) {f : Z ⟶ Y} {g : Z ⟶ X} : f ≫ α.inv = g ↔ f = g ≫ α.hom :=
⟨λ H, by simp [H.symm], λ H, by simp [H]⟩
lemma eq_comp_inv (α : X ≅ Y) {f : Z ⟶ Y} {g : Z ⟶ X} : g = f ≫ α.inv ↔ g ≫ α.hom = f :=
(comp_inv_eq α.symm).symm
lemma inv_eq_inv (f g : X ≅ Y) : f.inv = g.inv ↔ f.hom = g.hom :=
have ∀{X Y : C} (f g : X ≅ Y), f.hom = g.hom → f.inv = g.inv, from λ X Y f g h, by rw [ext h],
⟨this f.symm g.symm, this f g⟩
lemma hom_comp_eq_id (α : X ≅ Y) {f : Y ⟶ X} : α.hom ≫ f = 𝟙 X ↔ f = α.inv :=
by rw [←eq_inv_comp, comp_id]
lemma comp_hom_eq_id (α : X ≅ Y) {f : Y ⟶ X} : f ≫ α.hom = 𝟙 Y ↔ f = α.inv :=
by rw [←eq_comp_inv, id_comp]
lemma inv_comp_eq_id (α : X ≅ Y) {f : X ⟶ Y} : α.inv ≫ f = 𝟙 Y ↔ f = α.hom :=
hom_comp_eq_id α.symm
lemma comp_inv_eq_id (α : X ≅ Y) {f : X ⟶ Y} : f ≫ α.inv = 𝟙 X ↔ f = α.hom :=
comp_hom_eq_id α.symm
lemma hom_eq_inv (α : X ≅ Y) (β : Y ≅ X) : α.hom = β.inv ↔ β.hom = α.inv :=
by { erw [inv_eq_inv α.symm β, eq_comm], refl }
end iso
/-- `is_iso` typeclass expressing that a morphism is invertible. -/
class is_iso (f : X ⟶ Y) : Prop :=
(out : ∃ inv : Y ⟶ X, f ≫ inv = 𝟙 X ∧ inv ≫ f = 𝟙 Y)
/--
The inverse of a morphism `f` when we have `[is_iso f]`.
-/
noncomputable def inv (f : X ⟶ Y) [I : is_iso f] := classical.some I.1
namespace is_iso
@[simp, reassoc] lemma hom_inv_id (f : X ⟶ Y) [I : is_iso f] : f ≫ inv f = 𝟙 X :=
(classical.some_spec I.1).left
@[simp, reassoc] lemma inv_hom_id (f : X ⟶ Y) [I : is_iso f] : inv f ≫ f = 𝟙 Y :=
(classical.some_spec I.1).right
end is_iso
open is_iso
/-- Reinterpret a morphism `f` with an `is_iso f` instance as an `iso`. -/
noncomputable
def as_iso (f : X ⟶ Y) [h : is_iso f] : X ≅ Y := ⟨f, inv f, hom_inv_id f, inv_hom_id f⟩
@[simp] lemma as_iso_hom (f : X ⟶ Y) [is_iso f] : (as_iso f).hom = f := rfl
@[simp] lemma as_iso_inv (f : X ⟶ Y) [is_iso f] : (as_iso f).inv = inv f := rfl
namespace is_iso
@[priority 100] -- see Note [lower instance priority]
instance epi_of_iso (f : X ⟶ Y) [is_iso f] : epi f :=
{ left_cancellation := λ Z g h w,
-- This is an interesting test case for better rewrite automation.
by rw [← is_iso.inv_hom_id_assoc f g, w, is_iso.inv_hom_id_assoc f h] }
@[priority 100] -- see Note [lower instance priority]
instance mono_of_iso (f : X ⟶ Y) [is_iso f] : mono f :=
{ right_cancellation := λ Z g h w,
by rw [← category.comp_id g, ← category.comp_id h, ← is_iso.hom_inv_id f, ← category.assoc, w,
← category.assoc] }
@[ext] lemma inv_eq_of_hom_inv_id {f : X ⟶ Y} [is_iso f] {g : Y ⟶ X}
(hom_inv_id : f ≫ g = 𝟙 X) : inv f = g :=
begin
apply (cancel_epi f).mp,
simp [hom_inv_id],
end
lemma inv_eq_of_inv_hom_id {f : X ⟶ Y} [is_iso f] {g : Y ⟶ X}
(inv_hom_id : g ≫ f = 𝟙 Y) : inv f = g :=
begin
apply (cancel_mono f).mp,
simp [inv_hom_id],
end
@[ext] lemma eq_inv_of_hom_inv_id {f : X ⟶ Y} [is_iso f] {g : Y ⟶ X}
(hom_inv_id : f ≫ g = 𝟙 X) : g = inv f :=
(inv_eq_of_hom_inv_id hom_inv_id).symm
lemma eq_inv_of_inv_hom_id {f : X ⟶ Y} [is_iso f] {g : Y ⟶ X}
(inv_hom_id : g ≫ f = 𝟙 Y) : g = inv f :=
(inv_eq_of_inv_hom_id inv_hom_id).symm
instance id (X : C) : is_iso (𝟙 X) :=
⟨⟨𝟙 X, by simp⟩⟩
instance of_iso (f : X ≅ Y) : is_iso f.hom :=
⟨⟨f.inv, by simp⟩⟩
instance of_iso_inv (f : X ≅ Y) : is_iso f.inv :=
is_iso.of_iso f.symm
variables {f g : X ⟶ Y} {h : Y ⟶ Z}
instance inv_is_iso [is_iso f] : is_iso (inv f) :=
is_iso.of_iso_inv (as_iso f)
/- The following instance has lower priority for the following reason:
Suppose we are given `f : X ≅ Y` with `X Y : Type u`.
Without the lower priority, typeclass inference cannot deduce `is_iso f.hom`
because `f.hom` is defeq to `(λ x, x) ≫ f.hom`, triggering a loop. -/
@[priority 900]
instance comp_is_iso [is_iso f] [is_iso h] : is_iso (f ≫ h) :=
is_iso.of_iso $ (as_iso f) ≪≫ (as_iso h)
@[simp] lemma inv_id : inv (𝟙 X) = 𝟙 X := by { ext, simp, }
@[simp] lemma inv_comp [is_iso f] [is_iso h] : inv (f ≫ h) = inv h ≫ inv f := by { ext, simp, }
@[simp] lemma inv_inv [is_iso f] : inv (inv f) = f := by { ext, simp, }
@[simp] lemma iso.inv_inv (f : X ≅ Y) : inv (f.inv) = f.hom := by { ext, simp, }
@[simp] lemma iso.inv_hom (f : X ≅ Y) : inv (f.hom) = f.inv := by { ext, simp, }
@[simp]
lemma inv_comp_eq (α : X ⟶ Y) [is_iso α] {f : X ⟶ Z} {g : Y ⟶ Z} : inv α ≫ f = g ↔ f = α ≫ g :=
(as_iso α).inv_comp_eq
@[simp]
lemma eq_inv_comp (α : X ⟶ Y) [is_iso α] {f : X ⟶ Z} {g : Y ⟶ Z} : g = inv α ≫ f ↔ α ≫ g = f :=
(as_iso α).eq_inv_comp
@[simp]
lemma comp_inv_eq (α : X ⟶ Y) [is_iso α] {f : Z ⟶ Y} {g : Z ⟶ X} : f ≫ inv α = g ↔ f = g ≫ α :=
(as_iso α).comp_inv_eq
@[simp]
lemma eq_comp_inv (α : X ⟶ Y) [is_iso α] {f : Z ⟶ Y} {g : Z ⟶ X} : g = f ≫ inv α ↔ g ≫ α = f :=
(as_iso α).eq_comp_inv
lemma of_is_iso_comp_left {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z)
[is_iso f] [is_iso (f ≫ g)] : is_iso g :=
by { rw [← id_comp g, ← inv_hom_id f, assoc], apply_instance, }
lemma of_is_iso_comp_right {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z)
[is_iso g] [is_iso (f ≫ g)] : is_iso f :=
by { rw [← comp_id f, ← hom_inv_id g, ← assoc], apply_instance, }
lemma of_is_iso_fac_left {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} {h : X ⟶ Z}
[is_iso f] [hh : is_iso h] (w : f ≫ g = h) : is_iso g :=
by { rw ← w at hh, haveI := hh, exact of_is_iso_comp_left f g, }
lemma of_is_iso_fac_right {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} {h : X ⟶ Z}
[is_iso g] [hh : is_iso h] (w : f ≫ g = h) : is_iso f :=
by { rw ← w at hh, haveI := hh, exact of_is_iso_comp_right f g, }
end is_iso
open is_iso
lemma eq_of_inv_eq_inv {f g : X ⟶ Y} [is_iso f] [is_iso g] (p : inv f = inv g) : f = g :=
begin
apply (cancel_epi (inv f)).1,
erw [inv_hom_id, p, inv_hom_id],
end
lemma is_iso.inv_eq_inv {f g : X ⟶ Y} [is_iso f] [is_iso g] : inv f = inv g ↔ f = g :=
iso.inv_eq_inv (as_iso f) (as_iso g)
lemma hom_comp_eq_id (g : X ⟶ Y) [is_iso g] {f : Y ⟶ X} : g ≫ f = 𝟙 X ↔ f = inv g :=
(as_iso g).hom_comp_eq_id
lemma comp_hom_eq_id (g : X ⟶ Y) [is_iso g] {f : Y ⟶ X} : f ≫ g = 𝟙 Y ↔ f = inv g :=
(as_iso g).comp_hom_eq_id
lemma inv_comp_eq_id (g : X ⟶ Y) [is_iso g] {f : X ⟶ Y} : inv g ≫ f = 𝟙 Y ↔ f = g :=
(as_iso g).inv_comp_eq_id
lemma comp_inv_eq_id (g : X ⟶ Y) [is_iso g] {f : X ⟶ Y} : f ≫ inv g = 𝟙 X ↔ f = g :=
(as_iso g).comp_inv_eq_id
lemma is_iso_of_hom_comp_eq_id (g : X ⟶ Y) [is_iso g] {f : Y ⟶ X} (h : g ≫ f = 𝟙 X) : is_iso f :=
by { rw [(hom_comp_eq_id _).mp h], apply_instance }
lemma is_iso_of_comp_hom_eq_id (g : X ⟶ Y) [is_iso g] {f : Y ⟶ X} (h : f ≫ g = 𝟙 Y) : is_iso f :=
by { rw [(comp_hom_eq_id _).mp h], apply_instance }
namespace iso
@[ext] lemma inv_ext {f : X ≅ Y} {g : Y ⟶ X}
(hom_inv_id : f.hom ≫ g = 𝟙 X) : f.inv = g :=
((hom_comp_eq_id f).1 hom_inv_id).symm
@[ext] lemma inv_ext' {f : X ≅ Y} {g : Y ⟶ X}
(hom_inv_id : f.hom ≫ g = 𝟙 X) : g = f.inv :=
(hom_comp_eq_id f).1 hom_inv_id
/-!
All these cancellation lemmas can be solved by `simp [cancel_mono]` (or `simp [cancel_epi]`),
but with the current design `cancel_mono` is not a good `simp` lemma,
because it generates a typeclass search.
When we can see syntactically that a morphism is a `mono` or an `epi`
because it came from an isomorphism, it's fine to do the cancellation via `simp`.
In the longer term, it might be worth exploring making `mono` and `epi` structures,
rather than typeclasses, with coercions back to `X ⟶ Y`.
Presumably we could write `X ↪ Y` and `X ↠ Y`.
-/
@[simp] lemma cancel_iso_hom_left {X Y Z : C} (f : X ≅ Y) (g g' : Y ⟶ Z) :
f.hom ≫ g = f.hom ≫ g' ↔ g = g' :=
by simp only [cancel_epi]
@[simp] lemma cancel_iso_inv_left {X Y Z : C} (f : Y ≅ X) (g g' : Y ⟶ Z) :
f.inv ≫ g = f.inv ≫ g' ↔ g = g' :=
by simp only [cancel_epi]
@[simp] lemma cancel_iso_hom_right {X Y Z : C} (f f' : X ⟶ Y) (g : Y ≅ Z) :
f ≫ g.hom = f' ≫ g.hom ↔ f = f' :=
by simp only [cancel_mono]
@[simp] lemma cancel_iso_inv_right {X Y Z : C} (f f' : X ⟶ Y) (g : Z ≅ Y) :
f ≫ g.inv = f' ≫ g.inv ↔ f = f' :=
by simp only [cancel_mono]
/-
Unfortunately cancelling an isomorphism from the right of a chain of compositions is awkward.
We would need separate lemmas for each chain length (worse: for each pair of chain lengths).
We provide two more lemmas, for case of three morphisms, because this actually comes up in practice,
but then stop.
-/
@[simp] lemma cancel_iso_hom_right_assoc {W X X' Y Z : C}
(f : W ⟶ X) (g : X ⟶ Y) (f' : W ⟶ X') (g' : X' ⟶ Y)
(h : Y ≅ Z) :
f ≫ g ≫ h.hom = f' ≫ g' ≫ h.hom ↔ f ≫ g = f' ≫ g' :=
by simp only [←category.assoc, cancel_mono]
@[simp] lemma cancel_iso_inv_right_assoc {W X X' Y Z : C}
(f : W ⟶ X) (g : X ⟶ Y) (f' : W ⟶ X') (g' : X' ⟶ Y)
(h : Z ≅ Y) :
f ≫ g ≫ h.inv = f' ≫ g' ≫ h.inv ↔ f ≫ g = f' ≫ g' :=
by simp only [←category.assoc, cancel_mono]
end iso
namespace functor
universes u₁ v₁ u₂ v₂
variables {D : Type u₂}
variables [category.{v₂} D]
/-- A functor `F : C ⥤ D` sends isomorphisms `i : X ≅ Y` to isomorphisms `F.obj X ≅ F.obj Y` -/
@[simps]
def map_iso (F : C ⥤ D) {X Y : C} (i : X ≅ Y) : F.obj X ≅ F.obj Y :=
{ hom := F.map i.hom,
inv := F.map i.inv,
hom_inv_id' := by rw [←map_comp, iso.hom_inv_id, ←map_id],
inv_hom_id' := by rw [←map_comp, iso.inv_hom_id, ←map_id] }
@[simp] lemma map_iso_symm (F : C ⥤ D) {X Y : C} (i : X ≅ Y) :
F.map_iso i.symm = (F.map_iso i).symm :=
rfl
@[simp] lemma map_iso_trans (F : C ⥤ D) {X Y Z : C} (i : X ≅ Y) (j : Y ≅ Z) :
F.map_iso (i ≪≫ j) = (F.map_iso i) ≪≫ (F.map_iso j) :=
by ext; apply functor.map_comp
@[simp] lemma map_iso_refl (F : C ⥤ D) (X : C) : F.map_iso (iso.refl X) = iso.refl (F.obj X) :=
iso.ext $ F.map_id X
instance map_is_iso (F : C ⥤ D) (f : X ⟶ Y) [is_iso f] : is_iso (F.map f) :=
is_iso.of_iso $ F.map_iso (as_iso f)
@[simp] lemma map_inv (F : C ⥤ D) {X Y : C} (f : X ⟶ Y) [is_iso f] :
F.map (inv f) = inv (F.map f) :=
by { ext, simp [←F.map_comp], }
lemma map_hom_inv (F : C ⥤ D) {X Y : C} (f : X ⟶ Y) [is_iso f] :
F.map f ≫ F.map (inv f) = 𝟙 (F.obj X) :=
by simp
lemma map_inv_hom (F : C ⥤ D) {X Y : C} (f : X ⟶ Y) [is_iso f] :
F.map (inv f) ≫ F.map f = 𝟙 (F.obj Y) :=
by simp
end functor
end category_theory
|
b2303c65de5d6776e7f1fceaaf6b6b9965120553
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/data/set/finite.lean
|
ddc4def3d29cd99812106565db08ce77e3f32350
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 49,818
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kyle Miller
-/
import data.finset.sort
import data.set.functor
import data.finite.basic
/-!
# Finite sets
This file defines predicates for finite and infinite sets and provides
`fintype` instances for many set constructions. It also proves basic facts
about finite sets and gives ways to manipulate `set.finite` expressions.
## Main definitions
* `set.finite : set α → Prop`
* `set.infinite : set α → Prop`
* `set.to_finite` to prove `set.finite` for a `set` from a `finite` instance.
* `set.finite.to_finset` to noncomputably produce a `finset` from a `set.finite` proof.
(See `set.to_finset` for a computable version.)
## Implementation
A finite set is defined to be a set whose coercion to a type has a `fintype` instance.
Since `set.finite` is `Prop`-valued, this is the mere fact that the `fintype` instance
exists.
There are two components to finiteness constructions. The first is `fintype` instances for each
construction. This gives a way to actually compute a `finset` that represents the set, and these
may be accessed using `set.to_finset`. This gets the `finset` in the correct form, since otherwise
`finset.univ : finset s` is a `finset` for the subtype for `s`. The second component is
"constructors" for `set.finite` that give proofs that `fintype` instances exist classically given
other `set.finite` proofs. Unlike the `fintype` instances, these *do not* use any decidability
instances since they do not compute anything.
## Tags
finite sets
-/
open set function
universes u v w x
variables {α : Type u} {β : Type v} {ι : Sort w} {γ : Type x}
namespace set
/-- A set is finite if there is a `finset` with the same elements.
This is represented as there being a `fintype` instance for the set
coerced to a type.
Note: this is a custom inductive type rather than `nonempty (fintype s)`
so that it won't be frozen as a local instance. -/
@[protected] inductive finite (s : set α) : Prop
| intro : fintype s → finite
-- The `protected` attribute does not take effect within the same namespace block.
end set
namespace set
lemma finite_def {s : set α} : s.finite ↔ nonempty (fintype s) := ⟨λ ⟨h⟩, ⟨h⟩, λ ⟨h⟩, ⟨h⟩⟩
alias finite_def ↔ finite.nonempty_fintype _
lemma finite_coe_iff {s : set α} : finite s ↔ s.finite :=
by rw [finite_iff_nonempty_fintype, finite_def]
/-- Constructor for `set.finite` using a `finite` instance. -/
theorem to_finite (s : set α) [finite s] : s.finite :=
finite_coe_iff.mp ‹_›
/-- Construct a `finite` instance for a `set` from a `finset` with the same elements. -/
protected lemma finite.of_finset {p : set α} (s : finset α) (H : ∀ x, x ∈ s ↔ x ∈ p) : p.finite :=
⟨fintype.of_finset s H⟩
/-- Projection of `set.finite` to its `finite` instance.
This is intended to be used with dot notation.
See also `set.finite.fintype` and `set.finite.nonempty_fintype`. -/
protected lemma finite.to_subtype {s : set α} (h : s.finite) : finite s :=
finite_coe_iff.mpr h
/-- A finite set coerced to a type is a `fintype`.
This is the `fintype` projection for a `set.finite`.
Note that because `finite` isn't a typeclass, this definition will not fire if it
is made into an instance -/
noncomputable def finite.fintype {s : set α} (h : s.finite) : fintype s :=
h.nonempty_fintype.some
/-- Using choice, get the `finset` that represents this `set.` -/
noncomputable def finite.to_finset {s : set α} (h : s.finite) : finset α :=
@set.to_finset _ _ h.fintype
theorem finite.exists_finset {s : set α} (h : s.finite) :
∃ s' : finset α, ∀ a : α, a ∈ s' ↔ a ∈ s :=
by { casesI h, exact ⟨s.to_finset, λ _, mem_to_finset⟩ }
theorem finite.exists_finset_coe {s : set α} (h : s.finite) :
∃ s' : finset α, ↑s' = s :=
by { casesI h, exact ⟨s.to_finset, s.coe_to_finset⟩ }
/-- Finite sets can be lifted to finsets. -/
instance : can_lift (set α) (finset α) :=
{ coe := coe,
cond := set.finite,
prf := λ s hs, hs.exists_finset_coe }
/-- A set is infinite if it is not finite.
This is protected so that it does not conflict with global `infinite`. -/
protected def infinite (s : set α) : Prop := ¬ s.finite
@[simp] lemma not_infinite {s : set α} : ¬ s.infinite ↔ s.finite := not_not
/-- See also `fintype_or_infinite`. -/
lemma finite_or_infinite {s : set α} : s.finite ∨ s.infinite := em _
/-! ### Basic properties of `set.finite.to_finset` -/
section finite_to_finset
variables {s t : set α}
@[simp] lemma finite.coe_to_finset {s : set α} (h : s.finite) : (h.to_finset : set α) = s :=
@set.coe_to_finset _ s h.fintype
@[simp] theorem finite.mem_to_finset {s : set α} (h : s.finite) {a : α} : a ∈ h.to_finset ↔ a ∈ s :=
@mem_to_finset _ _ h.fintype _
@[simp] theorem finite.nonempty_to_finset {s : set α} (h : s.finite) :
h.to_finset.nonempty ↔ s.nonempty :=
by rw [← finset.coe_nonempty, finite.coe_to_finset]
@[simp] lemma finite.coe_sort_to_finset {s : set α} (h : s.finite) :
(h.to_finset : Type*) = s :=
by rw [← finset.coe_sort_coe _, h.coe_to_finset]
@[simp] lemma finite_empty_to_finset (h : (∅ : set α).finite) : h.to_finset = ∅ :=
by rw [← finset.coe_inj, h.coe_to_finset, finset.coe_empty]
@[simp] lemma finite_univ_to_finset [fintype α] (h : (set.univ : set α).finite) :
h.to_finset = finset.univ :=
finset.ext $ by simp
@[simp] lemma finite.to_finset_inj {s t : set α} {hs : s.finite} {ht : t.finite} :
hs.to_finset = ht.to_finset ↔ s = t :=
by simp only [←finset.coe_inj, finite.coe_to_finset]
lemma subset_to_finset_iff {s : finset α} {t : set α} (ht : t.finite) :
s ⊆ ht.to_finset ↔ ↑s ⊆ t :=
by rw [← finset.coe_subset, ht.coe_to_finset]
@[simp] lemma finite_to_finset_eq_empty_iff {s : set α} {h : s.finite} :
h.to_finset = ∅ ↔ s = ∅ :=
by simp only [←finset.coe_inj, finite.coe_to_finset, finset.coe_empty]
@[simp, mono] lemma finite.to_finset_subset {hs : s.finite} {ht : t.finite} :
hs.to_finset ⊆ ht.to_finset ↔ s ⊆ t :=
by simp only [← finset.coe_subset, finite.coe_to_finset]
@[simp, mono] lemma finite.to_finset_ssubset {hs : s.finite} {ht : t.finite} :
hs.to_finset ⊂ ht.to_finset ↔ s ⊂ t :=
by simp only [← finset.coe_ssubset, finite.coe_to_finset]
end finite_to_finset
/-! ### Fintype instances
Every instance here should have a corresponding `set.finite` constructor in the next section.
-/
section fintype_instances
instance fintype_univ [fintype α] : fintype (@univ α) :=
fintype.of_equiv α (equiv.set.univ α).symm
/-- If `(set.univ : set α)` is finite then `α` is a finite type. -/
noncomputable def fintype_of_finite_univ (H : (univ : set α).finite) : fintype α :=
@fintype.of_equiv _ (univ : set α) H.fintype (equiv.set.univ _)
instance fintype_union [decidable_eq α] (s t : set α) [fintype s] [fintype t] :
fintype (s ∪ t : set α) := fintype.of_finset (s.to_finset ∪ t.to_finset) $ by simp
instance fintype_sep (s : set α) (p : α → Prop) [fintype s] [decidable_pred p] :
fintype ({a ∈ s | p a} : set α) := fintype.of_finset (s.to_finset.filter p) $ by simp
instance fintype_inter (s t : set α) [decidable_eq α] [fintype s] [fintype t] :
fintype (s ∩ t : set α) := fintype.of_finset (s.to_finset ∩ t.to_finset) $ by simp
/-- A `fintype` instance for set intersection where the left set has a `fintype` instance. -/
instance fintype_inter_of_left (s t : set α) [fintype s] [decidable_pred (∈ t)] :
fintype (s ∩ t : set α) := fintype.of_finset (s.to_finset.filter (∈ t)) $ by simp
/-- A `fintype` instance for set intersection where the right set has a `fintype` instance. -/
instance fintype_inter_of_right (s t : set α) [fintype t] [decidable_pred (∈ s)] :
fintype (s ∩ t : set α) := fintype.of_finset (t.to_finset.filter (∈ s)) $ by simp [and_comm]
/-- A `fintype` structure on a set defines a `fintype` structure on its subset. -/
def fintype_subset (s : set α) {t : set α} [fintype s] [decidable_pred (∈ t)] (h : t ⊆ s) :
fintype t :=
by { rw ← inter_eq_self_of_subset_right h, apply set.fintype_inter_of_left }
instance fintype_diff [decidable_eq α] (s t : set α) [fintype s] [fintype t] :
fintype (s \ t : set α) := fintype.of_finset (s.to_finset \ t.to_finset) $ by simp
instance fintype_diff_left (s t : set α) [fintype s] [decidable_pred (∈ t)] :
fintype (s \ t : set α) := set.fintype_sep s (∈ tᶜ)
instance fintype_Union [decidable_eq α] [fintype (plift ι)]
(f : ι → set α) [∀ i, fintype (f i)] : fintype (⋃ i, f i) :=
fintype.of_finset (finset.univ.bUnion (λ i : plift ι, (f i.down).to_finset)) $ by simp
instance fintype_sUnion [decidable_eq α] {s : set (set α)}
[fintype s] [H : ∀ (t : s), fintype (t : set α)] : fintype (⋃₀ s) :=
by { rw sUnion_eq_Union, exact @set.fintype_Union _ _ _ _ _ H }
/-- A union of sets with `fintype` structure over a set with `fintype` structure has a `fintype`
structure. -/
def fintype_bUnion [decidable_eq α] {ι : Type*} (s : set ι) [fintype s]
(t : ι → set α) (H : ∀ i ∈ s, fintype (t i)) : fintype (⋃(x ∈ s), t x) :=
fintype.of_finset
(s.to_finset.attach.bUnion
(λ x, by { haveI := H x (by simpa using x.property), exact (t x).to_finset })) $ by simp
instance fintype_bUnion' [decidable_eq α] {ι : Type*} (s : set ι) [fintype s]
(t : ι → set α) [∀ i, fintype (t i)] : fintype (⋃(x ∈ s), t x) :=
fintype.of_finset (s.to_finset.bUnion (λ x, (t x).to_finset)) $ by simp
/-- If `s : set α` is a set with `fintype` instance and `f : α → set β` is a function such that
each `f a`, `a ∈ s`, has a `fintype` structure, then `s >>= f` has a `fintype` structure. -/
def fintype_bind {α β} [decidable_eq β] (s : set α) [fintype s]
(f : α → set β) (H : ∀ a ∈ s, fintype (f a)) : fintype (s >>= f) :=
set.fintype_bUnion s f H
instance fintype_bind' {α β} [decidable_eq β] (s : set α) [fintype s]
(f : α → set β) [H : ∀ a, fintype (f a)] : fintype (s >>= f) :=
set.fintype_bUnion' s f
instance fintype_empty : fintype (∅ : set α) := fintype.of_finset ∅ $ by simp
instance fintype_singleton (a : α) : fintype ({a} : set α) := fintype.of_finset {a} $ by simp
instance fintype_pure : ∀ a : α, fintype (pure a : set α) :=
set.fintype_singleton
/-- A `fintype` instance for inserting an element into a `set` using the
corresponding `insert` function on `finset`. This requires `decidable_eq α`.
There is also `set.fintype_insert'` when `a ∈ s` is decidable. -/
instance fintype_insert (a : α) (s : set α) [decidable_eq α] [fintype s] :
fintype (insert a s : set α) :=
fintype.of_finset (insert a s.to_finset) $ by simp
/-- A `fintype` structure on `insert a s` when inserting a new element. -/
def fintype_insert_of_not_mem {a : α} (s : set α) [fintype s] (h : a ∉ s) :
fintype (insert a s : set α) :=
fintype.of_finset ⟨a ::ₘ s.to_finset.1, s.to_finset.nodup.cons (by simp [h]) ⟩ $ by simp
/-- A `fintype` structure on `insert a s` when inserting a pre-existing element. -/
def fintype_insert_of_mem {a : α} (s : set α) [fintype s] (h : a ∈ s) :
fintype (insert a s : set α) :=
fintype.of_finset s.to_finset $ by simp [h]
/-- The `set.fintype_insert` instance requires decidable equality, but when `a ∈ s`
is decidable for this particular `a` we can still get a `fintype` instance by using
`set.fintype_insert_of_not_mem` or `set.fintype_insert_of_mem`.
This instance pre-dates `set.fintype_insert`, and it is less efficient.
When `decidable_mem_of_fintype` is made a local instance, then this instance would
override `set.fintype_insert` if not for the fact that its priority has been
adjusted. See Note [lower instance priority]. -/
@[priority 100]
instance fintype_insert' (a : α) (s : set α) [decidable $ a ∈ s] [fintype s] :
fintype (insert a s : set α) :=
if h : a ∈ s then fintype_insert_of_mem s h else fintype_insert_of_not_mem s h
instance fintype_image [decidable_eq β] (s : set α) (f : α → β) [fintype s] : fintype (f '' s) :=
fintype.of_finset (s.to_finset.image f) $ by simp
/-- If a function `f` has a partial inverse and sends a set `s` to a set with `[fintype]` instance,
then `s` has a `fintype` structure as well. -/
def fintype_of_fintype_image (s : set α)
{f : α → β} {g} (I : is_partial_inv f g) [fintype (f '' s)] : fintype s :=
fintype.of_finset ⟨_, (f '' s).to_finset.2.filter_map g $ injective_of_partial_inv_right I⟩ $ λ a,
begin
suffices : (∃ b x, f x = b ∧ g b = some a ∧ x ∈ s) ↔ a ∈ s,
by simpa [exists_and_distrib_left.symm, and.comm, and.left_comm, and.assoc],
rw exists_swap,
suffices : (∃ x, x ∈ s ∧ g (f x) = some a) ↔ a ∈ s, {simpa [and.comm, and.left_comm, and.assoc]},
simp [I _, (injective_of_partial_inv I).eq_iff]
end
instance fintype_range [decidable_eq α] (f : ι → α) [fintype (plift ι)] :
fintype (range f) :=
fintype.of_finset (finset.univ.image $ f ∘ plift.down) $ by simp [equiv.plift.exists_congr_left]
instance fintype_map {α β} [decidable_eq β] :
∀ (s : set α) (f : α → β) [fintype s], fintype (f <$> s) := set.fintype_image
instance fintype_lt_nat (n : ℕ) : fintype {i | i < n} :=
fintype.of_finset (finset.range n) $ by simp
instance fintype_le_nat (n : ℕ) : fintype {i | i ≤ n} :=
by simpa [nat.lt_succ_iff] using set.fintype_lt_nat (n+1)
/-- This is not an instance so that it does not conflict with the one
in src/order/locally_finite. -/
def nat.fintype_Iio (n : ℕ) : fintype (Iio n) :=
set.fintype_lt_nat n
instance fintype_prod (s : set α) (t : set β) [fintype s] [fintype t] :
fintype (s ×ˢ t : set (α × β)) :=
fintype.of_finset (s.to_finset ×ˢ t.to_finset) $ by simp
/-- `image2 f s t` is `fintype` if `s` and `t` are. -/
instance fintype_image2 [decidable_eq γ] (f : α → β → γ) (s : set α) (t : set β)
[hs : fintype s] [ht : fintype t] : fintype (image2 f s t : set γ) :=
by { rw ← image_prod, apply set.fintype_image }
instance fintype_seq [decidable_eq β] (f : set (α → β)) (s : set α) [fintype f] [fintype s] :
fintype (f.seq s) :=
by { rw seq_def, apply set.fintype_bUnion' }
instance fintype_seq' {α β : Type u} [decidable_eq β]
(f : set (α → β)) (s : set α) [fintype f] [fintype s] : fintype (f <*> s) :=
set.fintype_seq f s
instance fintype_mem_finset (s : finset α) : fintype {a | a ∈ s} :=
finset.fintype_coe_sort s
end fintype_instances
end set
/-! ### Finset -/
namespace finset
/-- Gives a `set.finite` for the `finset` coerced to a `set`.
This is a wrapper around `set.to_finite`. -/
lemma finite_to_set (s : finset α) : (s : set α).finite := set.to_finite _
@[simp] lemma finite_to_set_to_finset (s : finset α) : s.finite_to_set.to_finset = s :=
by { ext, rw [set.finite.mem_to_finset, mem_coe] }
end finset
namespace multiset
lemma finite_to_set (s : multiset α) : {x | x ∈ s}.finite :=
by { classical, simpa only [← multiset.mem_to_finset] using s.to_finset.finite_to_set }
@[simp] lemma finite_to_set_to_finset [decidable_eq α] (s : multiset α) :
s.finite_to_set.to_finset = s.to_finset :=
by { ext x, simp }
end multiset
lemma list.finite_to_set (l : list α) : {x | x ∈ l}.finite :=
(show multiset α, from ⟦l⟧).finite_to_set
/-! ### Finite instances
There is seemingly some overlap between the following instances and the `fintype` instances
in `data.set.finite`. While every `fintype` instance gives a `finite` instance, those
instances that depend on `fintype` or `decidable` instances need an additional `finite` instance
to be able to generally apply.
Some set instances do not appear here since they are consequences of others, for example
`subtype.finite` for subsets of a finite type.
-/
namespace finite.set
open_locale classical
example {s : set α} [finite α] : finite s := infer_instance
example : finite (∅ : set α) := infer_instance
example (a : α) : finite ({a} : set α) := infer_instance
instance finite_union (s t : set α) [finite s] [finite t] :
finite (s ∪ t : set α) :=
by { casesI nonempty_fintype s, casesI nonempty_fintype t, apply_instance }
instance finite_sep (s : set α) (p : α → Prop) [finite s] :
finite ({a ∈ s | p a} : set α) :=
by { casesI nonempty_fintype s, apply_instance }
protected lemma subset (s : set α) {t : set α} [finite s] (h : t ⊆ s) : finite t :=
by { rw eq_sep_of_subset h, apply_instance }
instance finite_inter_of_right (s t : set α) [finite t] :
finite (s ∩ t : set α) := finite.set.subset t (inter_subset_right s t)
instance finite_inter_of_left (s t : set α) [finite s] :
finite (s ∩ t : set α) := finite.set.subset s (inter_subset_left s t)
instance finite_diff (s t : set α) [finite s] :
finite (s \ t : set α) := finite.set.subset s (diff_subset s t)
instance finite_range (f : ι → α) [finite ι] : finite (range f) :=
by { haveI := fintype.of_finite (plift ι), apply_instance }
instance finite_Union [finite ι] (f : ι → set α) [∀ i, finite (f i)] : finite (⋃ i, f i) :=
begin
rw [Union_eq_range_psigma],
apply set.finite_range
end
instance finite_sUnion {s : set (set α)} [finite s] [H : ∀ (t : s), finite (t : set α)] :
finite (⋃₀ s) :=
by { rw sUnion_eq_Union, exact @finite.set.finite_Union _ _ _ _ H }
lemma finite_bUnion {ι : Type*} (s : set ι) [finite s] (t : ι → set α) (H : ∀ i ∈ s, finite (t i)) :
finite (⋃(x ∈ s), t x) :=
begin
rw [bUnion_eq_Union],
haveI : ∀ (i : s), finite (t i) := λ i, H i i.property,
apply_instance,
end
instance finite_bUnion' {ι : Type*} (s : set ι) [finite s] (t : ι → set α) [∀ i, finite (t i)] :
finite (⋃(x ∈ s), t x) :=
finite_bUnion s t (λ i h, infer_instance)
/--
Example: `finite (⋃ (i < n), f i)` where `f : ℕ → set α` and `[∀ i, finite (f i)]`
(when given instances from `data.nat.interval`).
-/
instance finite_bUnion'' {ι : Type*} (p : ι → Prop) [h : finite {x | p x}]
(t : ι → set α) [∀ i, finite (t i)] :
finite (⋃ x (h : p x), t x) :=
@finite.set.finite_bUnion' _ _ (set_of p) h t _
instance finite_Inter {ι : Sort*} [nonempty ι] (t : ι → set α) [∀ i, finite (t i)] :
finite (⋂ i, t i) :=
finite.set.subset (t $ classical.arbitrary ι) (Inter_subset _ _)
instance finite_insert (a : α) (s : set α) [finite s] : finite (insert a s : set α) :=
finite.set.finite_union {a} s
instance finite_image (s : set α) (f : α → β) [finite s] : finite (f '' s) :=
by { casesI nonempty_fintype s, apply_instance }
instance finite_replacement [finite α] (f : α → β) : finite {(f x) | (x : α)} :=
finite.set.finite_range f
instance finite_prod (s : set α) (t : set β) [finite s] [finite t] :
finite (s ×ˢ t : set (α × β)) :=
finite.of_equiv _ (equiv.set.prod s t).symm
instance finite_image2 (f : α → β → γ) (s : set α) (t : set β) [finite s] [finite t] :
finite (image2 f s t : set γ) :=
by { rw ← image_prod, apply_instance }
instance finite_seq (f : set (α → β)) (s : set α) [finite f] [finite s] : finite (f.seq s) :=
by { rw seq_def, apply_instance }
end finite.set
namespace set
/-! ### Constructors for `set.finite`
Every constructor here should have a corresponding `fintype` instance in the previous section
(or in the `fintype` module).
The implementation of these constructors ideally should be no more than `set.to_finite`,
after possibly setting up some `fintype` and classical `decidable` instances.
-/
section set_finite_constructors
@[nontriviality] lemma finite.of_subsingleton [subsingleton α] (s : set α) : s.finite := s.to_finite
theorem finite_univ [finite α] : (@univ α).finite := set.to_finite _
theorem finite_univ_iff : (@univ α).finite ↔ finite α :=
finite_coe_iff.symm.trans (equiv.set.univ α).finite_iff
alias finite_univ_iff ↔ _root_.finite.of_finite_univ _
theorem finite.union {s t : set α} (hs : s.finite) (ht : t.finite) : (s ∪ t).finite :=
by { casesI hs, casesI ht, apply to_finite }
lemma finite.sup {s t : set α} : s.finite → t.finite → (s ⊔ t).finite := finite.union
theorem finite.sep {s : set α} (hs : s.finite) (p : α → Prop) : {a ∈ s | p a}.finite :=
by { casesI hs, apply to_finite }
theorem finite.inter_of_left {s : set α} (hs : s.finite) (t : set α) : (s ∩ t).finite :=
by { casesI hs, apply to_finite }
theorem finite.inter_of_right {s : set α} (hs : s.finite) (t : set α) : (t ∩ s).finite :=
by { casesI hs, apply to_finite }
theorem finite.inf_of_left {s : set α} (h : s.finite) (t : set α) : (s ⊓ t).finite :=
h.inter_of_left t
theorem finite.inf_of_right {s : set α} (h : s.finite) (t : set α) : (t ⊓ s).finite :=
h.inter_of_right t
theorem finite.subset {s : set α} (hs : s.finite) {t : set α} (ht : t ⊆ s) : t.finite :=
by { casesI hs, haveI := finite.set.subset _ ht, apply to_finite }
theorem finite.diff {s : set α} (hs : s.finite) (t : set α) : (s \ t).finite :=
by { casesI hs, apply to_finite }
theorem finite.of_diff {s t : set α} (hd : (s \ t).finite) (ht : t.finite) : s.finite :=
(hd.union ht).subset $ subset_diff_union _ _
theorem finite_Union [finite ι] {f : ι → set α} (H : ∀ i, (f i).finite) :
(⋃ i, f i).finite :=
by { haveI := λ i, (H i).fintype, apply to_finite }
theorem finite.sUnion {s : set (set α)} (hs : s.finite) (H : ∀ t ∈ s, set.finite t) :
(⋃₀ s).finite :=
by { casesI hs, haveI := λ (i : s), (H i i.2).to_subtype, apply to_finite }
theorem finite.bUnion {ι} {s : set ι} (hs : s.finite)
{t : ι → set α} (ht : ∀ i ∈ s, (t i).finite) : (⋃(i ∈ s), t i).finite :=
by { classical, casesI hs,
haveI := fintype_bUnion s t (λ i hi, (ht i hi).fintype), apply to_finite }
/-- Dependent version of `finite.bUnion`. -/
theorem finite.bUnion' {ι} {s : set ι} (hs : s.finite)
{t : Π (i ∈ s), set α} (ht : ∀ i ∈ s, (t i ‹_›).finite) : (⋃(i ∈ s), t i ‹_›).finite :=
by { casesI hs, rw [bUnion_eq_Union], apply finite_Union (λ (i : s), ht i.1 i.2), }
theorem finite.sInter {α : Type*} {s : set (set α)} {t : set α} (ht : t ∈ s)
(hf : t.finite) : (⋂₀ s).finite :=
hf.subset (sInter_subset_of_mem ht)
theorem finite.bind {α β} {s : set α} {f : α → set β} (h : s.finite) (hf : ∀ a ∈ s, (f a).finite) :
(s >>= f).finite :=
h.bUnion hf
@[simp] theorem finite_empty : (∅ : set α).finite := to_finite _
@[simp] theorem finite_singleton (a : α) : ({a} : set α).finite := to_finite _
theorem finite_pure (a : α) : (pure a : set α).finite := to_finite _
@[simp] theorem finite.insert (a : α) {s : set α} (hs : s.finite) : (insert a s).finite :=
by { casesI hs, apply to_finite }
theorem finite.image {s : set α} (f : α → β) (hs : s.finite) : (f '' s).finite :=
by { casesI hs, apply to_finite }
theorem finite_range (f : ι → α) [finite ι] : (range f).finite :=
to_finite _
lemma finite.dependent_image {s : set α} (hs : s.finite) (F : Π i ∈ s, β) :
{y : β | ∃ x (hx : x ∈ s), y = F x hx}.finite :=
by { casesI hs, simpa [range, eq_comm] using finite_range (λ x : s, F x x.2) }
theorem finite.map {α β} {s : set α} : ∀ (f : α → β), s.finite → (f <$> s).finite :=
finite.image
theorem finite.of_finite_image {s : set α} {f : α → β} (h : (f '' s).finite) (hi : set.inj_on f s) :
s.finite :=
by { casesI h, exact ⟨fintype.of_injective (λ a, (⟨f a.1, mem_image_of_mem f a.2⟩ : f '' s))
(λ a b eq, subtype.eq $ hi a.2 b.2 $ subtype.ext_iff_val.1 eq)⟩ }
theorem finite.of_preimage {f : α → β} {s : set β} (h : (f ⁻¹' s).finite) (hf : surjective f) :
s.finite :=
hf.image_preimage s ▸ h.image _
theorem finite.preimage {s : set β} {f : α → β}
(I : set.inj_on f (f⁻¹' s)) (h : s.finite) : (f ⁻¹' s).finite :=
(h.subset (image_preimage_subset f s)).of_finite_image I
theorem finite.preimage_embedding {s : set β} (f : α ↪ β) (h : s.finite) : (f ⁻¹' s).finite :=
h.preimage (λ _ _ _ _ h', f.injective h')
lemma finite_lt_nat (n : ℕ) : set.finite {i | i < n} := to_finite _
lemma finite_le_nat (n : ℕ) : set.finite {i | i ≤ n} := to_finite _
lemma finite.prod {s : set α} {t : set β} (hs : s.finite) (ht : t.finite) :
(s ×ˢ t : set (α × β)).finite :=
by { casesI hs, casesI ht, apply to_finite }
lemma finite.image2 (f : α → β → γ) {s : set α} {t : set β} (hs : s.finite) (ht : t.finite) :
(image2 f s t).finite :=
by { casesI hs, casesI ht, apply to_finite }
theorem finite.seq {f : set (α → β)} {s : set α} (hf : f.finite) (hs : s.finite) :
(f.seq s).finite :=
by { classical, casesI hf, casesI hs, apply to_finite }
theorem finite.seq' {α β : Type u} {f : set (α → β)} {s : set α} (hf : f.finite) (hs : s.finite) :
(f <*> s).finite :=
hf.seq hs
theorem finite_mem_finset (s : finset α) : {a | a ∈ s}.finite := to_finite _
lemma subsingleton.finite {s : set α} (h : s.subsingleton) : s.finite :=
h.induction_on finite_empty finite_singleton
theorem exists_finite_iff_finset {p : set α → Prop} :
(∃ s : set α, s.finite ∧ p s) ↔ ∃ s : finset α, p ↑s :=
⟨λ ⟨s, hs, hps⟩, ⟨hs.to_finset, hs.coe_to_finset.symm ▸ hps⟩,
λ ⟨s, hs⟩, ⟨s, s.finite_to_set, hs⟩⟩
/-- There are finitely many subsets of a given finite set -/
lemma finite.finite_subsets {α : Type u} {a : set α} (h : a.finite) : {b | b ⊆ a}.finite :=
⟨fintype.of_finset ((finset.powerset h.to_finset).map finset.coe_emb.1) $ λ s,
by simpa [← @exists_finite_iff_finset α (λ t, t ⊆ a ∧ t = s), subset_to_finset_iff,
← and.assoc] using h.subset⟩
/-- Finite product of finite sets is finite -/
lemma finite.pi {δ : Type*} [finite δ] {κ : δ → Type*} {t : Π d, set (κ d)}
(ht : ∀ d, (t d).finite) :
(pi univ t).finite :=
begin
casesI nonempty_fintype δ,
lift t to Π d, finset (κ d) using ht,
classical,
rw ← fintype.coe_pi_finset,
apply finset.finite_to_set
end
/-- A finite union of finsets is finite. -/
lemma union_finset_finite_of_range_finite (f : α → finset β) (h : (range f).finite) :
(⋃ a, (f a : set β)).finite :=
by { rw ← bUnion_range, exact h.bUnion (λ y hy, y.finite_to_set) }
lemma finite_range_ite {p : α → Prop} [decidable_pred p] {f g : α → β} (hf : (range f).finite)
(hg : (range g).finite) : (range (λ x, if p x then f x else g x)).finite :=
(hf.union hg).subset range_ite_subset
lemma finite_range_const {c : β} : (range (λ x : α, c)).finite :=
(finite_singleton c).subset range_const_subset
end set_finite_constructors
/-! ### Properties -/
instance finite.inhabited : inhabited {s : set α // s.finite} := ⟨⟨∅, finite_empty⟩⟩
@[simp] lemma finite_union {s t : set α} : (s ∪ t).finite ↔ s.finite ∧ t.finite :=
⟨λ h, ⟨h.subset (subset_union_left _ _), h.subset (subset_union_right _ _)⟩,
λ ⟨hs, ht⟩, hs.union ht⟩
theorem finite_image_iff {s : set α} {f : α → β} (hi : inj_on f s) :
(f '' s).finite ↔ s.finite :=
⟨λ h, h.of_finite_image hi, finite.image _⟩
lemma univ_finite_iff_nonempty_fintype :
(univ : set α).finite ↔ nonempty (fintype α) :=
⟨λ h, ⟨fintype_of_finite_univ h⟩, λ ⟨_i⟩, by exactI finite_univ⟩
@[simp] lemma finite.to_finset_singleton {a : α} (ha : ({a} : set α).finite := finite_singleton _) :
ha.to_finset = {a} :=
finset.ext $ by simp
@[simp] lemma finite.to_finset_insert [decidable_eq α] {s : set α} {a : α}
(hs : (insert a s).finite) :
hs.to_finset = insert a (hs.subset $ subset_insert _ _).to_finset :=
finset.ext $ by simp
lemma finite.to_finset_insert' [decidable_eq α] {a : α} {s : set α} (hs : s.finite) :
(hs.insert a).to_finset = insert a hs.to_finset :=
finite.to_finset_insert _
lemma finite.fin_embedding {s : set α} (h : s.finite) : ∃ (n : ℕ) (f : fin n ↪ α), range f = s :=
⟨_, (fintype.equiv_fin (h.to_finset : set α)).symm.as_embedding, by simp⟩
lemma finite.fin_param {s : set α} (h : s.finite) :
∃ (n : ℕ) (f : fin n → α), injective f ∧ range f = s :=
let ⟨n, f, hf⟩ := h.fin_embedding in ⟨n, f, f.injective, hf⟩
lemma finite_option {s : set (option α)} : s.finite ↔ {x : α | some x ∈ s}.finite :=
⟨λ h, h.preimage_embedding embedding.some,
λ h, ((h.image some).insert none).subset $
λ x, option.cases_on x (λ _, or.inl rfl) (λ x hx, or.inr $ mem_image_of_mem _ hx)⟩
lemma finite_image_fst_and_snd_iff {s : set (α × β)} :
(prod.fst '' s).finite ∧ (prod.snd '' s).finite ↔ s.finite :=
⟨λ h, (h.1.prod h.2).subset $ λ x h, ⟨mem_image_of_mem _ h, mem_image_of_mem _ h⟩,
λ h, ⟨h.image _, h.image _⟩⟩
lemma forall_finite_image_eval_iff {δ : Type*} [finite δ] {κ : δ → Type*} {s : set (Π d, κ d)} :
(∀ d, (eval d '' s).finite) ↔ s.finite :=
⟨λ h, (finite.pi h).subset $ subset_pi_eval_image _ _, λ h d, h.image _⟩
lemma finite_subset_Union {s : set α} (hs : s.finite)
{ι} {t : ι → set α} (h : s ⊆ ⋃ i, t i) : ∃ I : set ι, I.finite ∧ s ⊆ ⋃ i ∈ I, t i :=
begin
casesI hs,
choose f hf using show ∀ x : s, ∃ i, x.1 ∈ t i, {simpa [subset_def] using h},
refine ⟨range f, finite_range f, λ x hx, _⟩,
rw [bUnion_range, mem_Union],
exact ⟨⟨x, hx⟩, hf _⟩
end
lemma eq_finite_Union_of_finite_subset_Union {ι} {s : ι → set α} {t : set α} (tfin : t.finite)
(h : t ⊆ ⋃ i, s i) :
∃ I : set ι, I.finite ∧ ∃ σ : {i | i ∈ I} → set α,
(∀ i, (σ i).finite) ∧ (∀ i, σ i ⊆ s i) ∧ t = ⋃ i, σ i :=
let ⟨I, Ifin, hI⟩ := finite_subset_Union tfin h in
⟨I, Ifin, λ x, s x ∩ t,
λ i, tfin.subset (inter_subset_right _ _),
λ i, inter_subset_left _ _,
begin
ext x,
rw mem_Union,
split,
{ intro x_in,
rcases mem_Union.mp (hI x_in) with ⟨i, _, ⟨hi, rfl⟩, H⟩,
use [i, hi, H, x_in] },
{ rintros ⟨i, hi, H⟩,
exact H }
end⟩
@[elab_as_eliminator]
theorem finite.induction_on {C : set α → Prop} {s : set α} (h : s.finite)
(H0 : C ∅) (H1 : ∀ {a s}, a ∉ s → set.finite s → C s → C (insert a s)) : C s :=
begin
lift s to finset α using h,
induction s using finset.cons_induction_on with a s ha hs,
{ rwa [finset.coe_empty] },
{ rw [finset.coe_cons],
exact @H1 a s ha (set.to_finite _) hs }
end
/-- Analogous to `finset.induction_on'`. -/
@[elab_as_eliminator]
theorem finite.induction_on' {C : set α → Prop} {S : set α} (h : S.finite)
(H0 : C ∅) (H1 : ∀ {a s}, a ∈ S → s ⊆ S → a ∉ s → C s → C (insert a s)) : C S :=
begin
refine @set.finite.induction_on α (λ s, s ⊆ S → C s) S h (λ _, H0) _ subset.rfl,
intros a s has hsf hCs haS,
rw insert_subset at haS,
exact H1 haS.1 haS.2 has (hCs haS.2)
end
@[elab_as_eliminator]
theorem finite.dinduction_on {C : ∀ (s : set α), s.finite → Prop} {s : set α} (h : s.finite)
(H0 : C ∅ finite_empty)
(H1 : ∀ {a s}, a ∉ s → ∀ h : set.finite s, C s h → C (insert a s) (h.insert a)) :
C s h :=
have ∀ h : s.finite, C s h,
from finite.induction_on h (λ h, H0) (λ a s has hs ih h, H1 has hs (ih _)),
this h
section
local attribute [instance] nat.fintype_Iio
/--
If `P` is some relation between terms of `γ` and sets in `γ`,
such that every finite set `t : set γ` has some `c : γ` related to it,
then there is a recursively defined sequence `u` in `γ`
so `u n` is related to the image of `{0, 1, ..., n-1}` under `u`.
(We use this later to show sequentially compact sets
are totally bounded.)
-/
lemma seq_of_forall_finite_exists {γ : Type*}
{P : γ → set γ → Prop} (h : ∀ t : set γ, t.finite → ∃ c, P c t) :
∃ u : ℕ → γ, ∀ n, P (u n) (u '' Iio n) :=
⟨λ n, @nat.strong_rec_on' (λ _, γ) n $ λ n ih, classical.some $ h
(range $ λ m : Iio n, ih m.1 m.2)
(finite_range _),
λ n, begin
classical,
refine nat.strong_rec_on' n (λ n ih, _),
rw nat.strong_rec_on_beta', convert classical.some_spec (h _ _),
ext x, split,
{ rintros ⟨m, hmn, rfl⟩, exact ⟨⟨m, hmn⟩, rfl⟩ },
{ rintros ⟨⟨m, hmn⟩, rfl⟩, exact ⟨m, hmn, rfl⟩ }
end⟩
end
/-! ### Cardinality -/
theorem empty_card : fintype.card (∅ : set α) = 0 := rfl
@[simp] theorem empty_card' {h : fintype.{u} (∅ : set α)} :
@fintype.card (∅ : set α) h = 0 :=
eq.trans (by congr) empty_card
theorem card_fintype_insert_of_not_mem {a : α} (s : set α) [fintype s] (h : a ∉ s) :
@fintype.card _ (fintype_insert_of_not_mem s h) = fintype.card s + 1 :=
by rw [fintype_insert_of_not_mem, fintype.card_of_finset];
simp [finset.card, to_finset]; refl
@[simp] theorem card_insert {a : α} (s : set α)
[fintype s] (h : a ∉ s) {d : fintype.{u} (insert a s : set α)} :
@fintype.card _ d = fintype.card s + 1 :=
by rw ← card_fintype_insert_of_not_mem s h; congr
lemma card_image_of_inj_on {s : set α} [fintype s]
{f : α → β} [fintype (f '' s)] (H : ∀x∈s, ∀y∈s, f x = f y → x = y) :
fintype.card (f '' s) = fintype.card s :=
by haveI := classical.prop_decidable; exact
calc fintype.card (f '' s) = (s.to_finset.image f).card : fintype.card_of_finset' _ (by simp)
... = s.to_finset.card : finset.card_image_of_inj_on
(λ x hx y hy hxy, H x (mem_to_finset.1 hx) y (mem_to_finset.1 hy) hxy)
... = fintype.card s : (fintype.card_of_finset' _ (λ a, mem_to_finset)).symm
lemma card_image_of_injective (s : set α) [fintype s]
{f : α → β} [fintype (f '' s)] (H : function.injective f) :
fintype.card (f '' s) = fintype.card s :=
card_image_of_inj_on $ λ _ _ _ _ h, H h
@[simp] theorem card_singleton (a : α) :
fintype.card ({a} : set α) = 1 :=
fintype.card_of_subsingleton _
lemma card_lt_card {s t : set α} [fintype s] [fintype t] (h : s ⊂ t) :
fintype.card s < fintype.card t :=
fintype.card_lt_of_injective_not_surjective (set.inclusion h.1) (set.inclusion_injective h.1) $
λ hst, (ssubset_iff_subset_ne.1 h).2 (eq_of_inclusion_surjective hst)
lemma card_le_of_subset {s t : set α} [fintype s] [fintype t] (hsub : s ⊆ t) :
fintype.card s ≤ fintype.card t :=
fintype.card_le_of_injective (set.inclusion hsub) (set.inclusion_injective hsub)
lemma eq_of_subset_of_card_le {s t : set α} [fintype s] [fintype t]
(hsub : s ⊆ t) (hcard : fintype.card t ≤ fintype.card s) : s = t :=
(eq_or_ssubset_of_subset hsub).elim id
(λ h, absurd hcard $ not_le_of_lt $ card_lt_card h)
lemma card_range_of_injective [fintype α] {f : α → β} (hf : injective f)
[fintype (range f)] : fintype.card (range f) = fintype.card α :=
eq.symm $ fintype.card_congr $ equiv.of_injective f hf
lemma finite.card_to_finset {s : set α} [fintype s] (h : s.finite) :
h.to_finset.card = fintype.card s :=
begin
rw [← finset.card_attach, finset.attach_eq_univ, ← fintype.card],
refine fintype.card_congr (equiv.set_congr _),
ext x,
show x ∈ h.to_finset ↔ x ∈ s,
simp,
end
lemma card_ne_eq [fintype α] (a : α) [fintype {x : α | x ≠ a}] :
fintype.card {x : α | x ≠ a} = fintype.card α - 1 :=
begin
haveI := classical.dec_eq α,
rw [←to_finset_card, to_finset_ne_eq_erase, finset.card_erase_of_mem (finset.mem_univ _),
finset.card_univ],
end
/-! ### Infinite sets -/
theorem infinite_univ_iff : (@univ α).infinite ↔ infinite α :=
by rw [set.infinite, finite_univ_iff, not_finite_iff_infinite]
theorem infinite_univ [h : infinite α] : (@univ α).infinite :=
infinite_univ_iff.2 h
theorem infinite_coe_iff {s : set α} : infinite s ↔ s.infinite :=
not_finite_iff_infinite.symm.trans finite_coe_iff.not
alias infinite_coe_iff ↔ _ infinite.to_subtype
/-- Embedding of `ℕ` into an infinite set. -/
noncomputable def infinite.nat_embedding (s : set α) (h : s.infinite) : ℕ ↪ s :=
by { haveI := h.to_subtype, exact infinite.nat_embedding s }
lemma infinite.exists_subset_card_eq {s : set α} (hs : s.infinite) (n : ℕ) :
∃ t : finset α, ↑t ⊆ s ∧ t.card = n :=
⟨((finset.range n).map (hs.nat_embedding _)).map (embedding.subtype _), by simp⟩
lemma infinite.nonempty {s : set α} (h : s.infinite) : s.nonempty :=
let a := infinite.nat_embedding s h 37 in ⟨a.1, a.2⟩
lemma infinite_of_finite_compl [infinite α] {s : set α} (hs : sᶜ.finite) : s.infinite :=
λ h, set.infinite_univ (by simpa using hs.union h)
lemma finite.infinite_compl [infinite α] {s : set α} (hs : s.finite) : sᶜ.infinite :=
λ h, set.infinite_univ (by simpa using hs.union h)
protected theorem infinite.mono {s t : set α} (h : s ⊆ t) : s.infinite → t.infinite :=
mt (λ ht, ht.subset h)
lemma infinite.diff {s t : set α} (hs : s.infinite) (ht : t.finite) : (s \ t).infinite :=
λ h, hs $ h.of_diff ht
@[simp] lemma infinite_union {s t : set α} : (s ∪ t).infinite ↔ s.infinite ∨ t.infinite :=
by simp only [set.infinite, finite_union, not_and_distrib]
theorem infinite_of_infinite_image (f : α → β) {s : set α} (hs : (f '' s).infinite) :
s.infinite :=
mt (finite.image f) hs
theorem infinite_image_iff {s : set α} {f : α → β} (hi : inj_on f s) :
(f '' s).infinite ↔ s.infinite :=
not_congr $ finite_image_iff hi
theorem infinite_of_inj_on_maps_to {s : set α} {t : set β} {f : α → β}
(hi : inj_on f s) (hm : maps_to f s t) (hs : s.infinite) : t.infinite :=
((infinite_image_iff hi).2 hs).mono (maps_to'.mp hm)
theorem infinite.exists_ne_map_eq_of_maps_to {s : set α} {t : set β} {f : α → β}
(hs : s.infinite) (hf : maps_to f s t) (ht : t.finite) :
∃ (x ∈ s) (y ∈ s), x ≠ y ∧ f x = f y :=
begin
contrapose! ht,
exact infinite_of_inj_on_maps_to (λ x hx y hy, not_imp_not.1 (ht x hx y hy)) hf hs
end
theorem infinite_range_of_injective [infinite α] {f : α → β} (hi : injective f) :
(range f).infinite :=
by { rw [←image_univ, infinite_image_iff (inj_on_of_injective hi _)], exact infinite_univ }
theorem infinite_of_injective_forall_mem [infinite α] {s : set β} {f : α → β}
(hi : injective f) (hf : ∀ x : α, f x ∈ s) : s.infinite :=
by { rw ←range_subset_iff at hf, exact (infinite_range_of_injective hi).mono hf }
lemma infinite.exists_nat_lt {s : set ℕ} (hs : s.infinite) (n : ℕ) : ∃ m ∈ s, n < m :=
let ⟨m, hm⟩ := (hs.diff $ set.finite_le_nat n).nonempty in ⟨m, by simpa using hm⟩
lemma infinite.exists_not_mem_finset {s : set α} (hs : s.infinite) (f : finset α) :
∃ a ∈ s, a ∉ f :=
let ⟨a, has, haf⟩ := (hs.diff (to_finite f)).nonempty
in ⟨a, has, λ h, haf $ finset.mem_coe.1 h⟩
/-! ### Order properties -/
lemma finite_is_top (α : Type*) [partial_order α] : {x : α | is_top x}.finite :=
(subsingleton_is_top α).finite
lemma finite_is_bot (α : Type*) [partial_order α] : {x : α | is_bot x}.finite :=
(subsingleton_is_bot α).finite
theorem infinite.exists_lt_map_eq_of_maps_to [linear_order α] {s : set α} {t : set β} {f : α → β}
(hs : s.infinite) (hf : maps_to f s t) (ht : t.finite) :
∃ (x ∈ s) (y ∈ s), x < y ∧ f x = f y :=
let ⟨x, hx, y, hy, hxy, hf⟩ := hs.exists_ne_map_eq_of_maps_to hf ht
in hxy.lt_or_lt.elim (λ hxy, ⟨x, hx, y, hy, hxy, hf⟩) (λ hyx, ⟨y, hy, x, hx, hyx, hf.symm⟩)
lemma finite.exists_lt_map_eq_of_forall_mem [linear_order α] [infinite α] {t : set β}
{f : α → β} (hf : ∀ a, f a ∈ t) (ht : t.finite) :
∃ a b, a < b ∧ f a = f b :=
begin
rw ←maps_univ_to at hf,
obtain ⟨a, -, b, -, h⟩ := (@infinite_univ α _).exists_lt_map_eq_of_maps_to hf ht,
exact ⟨a, b, h⟩,
end
lemma exists_min_image [linear_order β] (s : set α) (f : α → β) (h1 : s.finite) :
s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f a ≤ f b
| ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset]
using h1.to_finset.exists_min_image f ⟨x, h1.mem_to_finset.2 hx⟩
lemma exists_max_image [linear_order β] (s : set α) (f : α → β) (h1 : s.finite) :
s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f b ≤ f a
| ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset]
using h1.to_finset.exists_max_image f ⟨x, h1.mem_to_finset.2 hx⟩
theorem exists_lower_bound_image [hα : nonempty α] [linear_order β] (s : set α) (f : α → β)
(h : s.finite) : ∃ (a : α), ∀ b ∈ s, f a ≤ f b :=
begin
by_cases hs : set.nonempty s,
{ exact let ⟨x₀, H, hx₀⟩ := set.exists_min_image s f h hs in ⟨x₀, λ x hx, hx₀ x hx⟩ },
{ exact nonempty.elim hα (λ a, ⟨a, λ x hx, absurd (set.nonempty_of_mem hx) hs⟩) }
end
theorem exists_upper_bound_image [hα : nonempty α] [linear_order β] (s : set α) (f : α → β)
(h : s.finite) : ∃ (a : α), ∀ b ∈ s, f b ≤ f a :=
begin
by_cases hs : set.nonempty s,
{ exact let ⟨x₀, H, hx₀⟩ := set.exists_max_image s f h hs in ⟨x₀, λ x hx, hx₀ x hx⟩ },
{ exact nonempty.elim hα (λ a, ⟨a, λ x hx, absurd (set.nonempty_of_mem hx) hs⟩) }
end
lemma finite.supr_binfi_of_monotone {ι ι' α : Type*} [preorder ι'] [nonempty ι']
[is_directed ι' (≤)] [order.frame α] {s : set ι} (hs : s.finite) {f : ι → ι' → α}
(hf : ∀ i ∈ s, monotone (f i)) :
(⨆ j, ⨅ i ∈ s, f i j) = ⨅ i ∈ s, ⨆ j, f i j :=
begin
revert hf,
refine hs.induction_on _ _,
{ intro hf, simp [supr_const] },
{ intros a s has hs ihs hf,
rw [ball_insert_iff] at hf,
simp only [infi_insert, ← ihs hf.2],
exact supr_inf_of_monotone hf.1 (λ j₁ j₂ hj, infi₂_mono $ λ i hi, hf.2 i hi hj) }
end
lemma finite.supr_binfi_of_antitone {ι ι' α : Type*} [preorder ι'] [nonempty ι']
[is_directed ι' (swap (≤))] [order.frame α] {s : set ι} (hs : s.finite) {f : ι → ι' → α}
(hf : ∀ i ∈ s, antitone (f i)) :
(⨆ j, ⨅ i ∈ s, f i j) = ⨅ i ∈ s, ⨆ j, f i j :=
@finite.supr_binfi_of_monotone ι ι'ᵒᵈ α _ _ _ _ _ hs _ (λ i hi, (hf i hi).dual_left)
lemma finite.infi_bsupr_of_monotone {ι ι' α : Type*} [preorder ι'] [nonempty ι']
[is_directed ι' (swap (≤))] [order.coframe α] {s : set ι} (hs : s.finite) {f : ι → ι' → α}
(hf : ∀ i ∈ s, monotone (f i)) :
(⨅ j, ⨆ i ∈ s, f i j) = ⨆ i ∈ s, ⨅ j, f i j :=
hs.supr_binfi_of_antitone (λ i hi, (hf i hi).dual_right)
lemma finite.infi_bsupr_of_antitone {ι ι' α : Type*} [preorder ι'] [nonempty ι']
[is_directed ι' (≤)] [order.coframe α] {s : set ι} (hs : s.finite) {f : ι → ι' → α}
(hf : ∀ i ∈ s, antitone (f i)) :
(⨅ j, ⨆ i ∈ s, f i j) = ⨆ i ∈ s, ⨅ j, f i j :=
hs.supr_binfi_of_monotone (λ i hi, (hf i hi).dual_right)
lemma _root_.supr_infi_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι']
[is_directed ι' (≤)] [order.frame α] {f : ι → ι' → α} (hf : ∀ i, monotone (f i)) :
(⨆ j, ⨅ i, f i j) = ⨅ i, ⨆ j, f i j :=
by simpa only [infi_univ] using finite_univ.supr_binfi_of_monotone (λ i hi, hf i)
lemma _root_.supr_infi_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι']
[is_directed ι' (swap (≤))] [order.frame α] {f : ι → ι' → α} (hf : ∀ i, antitone (f i)) :
(⨆ j, ⨅ i, f i j) = ⨅ i, ⨆ j, f i j :=
@supr_infi_of_monotone ι ι'ᵒᵈ α _ _ _ _ _ _ (λ i, (hf i).dual_left)
lemma _root_.infi_supr_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι']
[is_directed ι' (swap (≤))] [order.coframe α] {f : ι → ι' → α} (hf : ∀ i, monotone (f i)) :
(⨅ j, ⨆ i, f i j) = ⨆ i, ⨅ j, f i j :=
supr_infi_of_antitone (λ i, (hf i).dual_right)
lemma _root_.infi_supr_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι']
[is_directed ι' (≤)] [order.coframe α] {f : ι → ι' → α} (hf : ∀ i, antitone (f i)) :
(⨅ j, ⨆ i, f i j) = ⨆ i, ⨅ j, f i j :=
supr_infi_of_monotone (λ i, (hf i).dual_right)
/-- An increasing union distributes over finite intersection. -/
lemma Union_Inter_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (≤)]
[nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, monotone (s i)) :
(⋃ j : ι', ⋂ i : ι, s i j) = ⋂ i : ι, ⋃ j : ι', s i j :=
supr_infi_of_monotone hs
/-- A decreasing union distributes over finite intersection. -/
lemma Union_Inter_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (swap (≤))]
[nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, antitone (s i)) :
(⋃ j : ι', ⋂ i : ι, s i j) = ⋂ i : ι, ⋃ j : ι', s i j :=
supr_infi_of_antitone hs
/-- An increasing intersection distributes over finite union. -/
lemma Inter_Union_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (swap (≤))]
[nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, monotone (s i)) :
(⋂ j : ι', ⋃ i : ι, s i j) = ⋃ i : ι, ⋂ j : ι', s i j :=
infi_supr_of_monotone hs
/-- A decreasing intersection distributes over finite union. -/
lemma Inter_Union_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (≤)]
[nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, antitone (s i)) :
(⋂ j : ι', ⋃ i : ι, s i j) = ⋃ i : ι, ⋂ j : ι', s i j :=
infi_supr_of_antitone hs
lemma Union_pi_of_monotone {ι ι' : Type*} [linear_order ι'] [nonempty ι'] {α : ι → Type*}
{I : set ι} {s : Π i, ι' → set (α i)} (hI : I.finite) (hs : ∀ i ∈ I, monotone (s i)) :
(⋃ j : ι', I.pi (λ i, s i j)) = I.pi (λ i, ⋃ j, s i j) :=
begin
simp only [pi_def, bInter_eq_Inter, preimage_Union],
haveI := hI.fintype,
exact Union_Inter_of_monotone (λ i j₁ j₂ h, preimage_mono $ hs i i.2 h)
end
lemma Union_univ_pi_of_monotone {ι ι' : Type*} [linear_order ι'] [nonempty ι'] [finite ι]
{α : ι → Type*} {s : Π i, ι' → set (α i)} (hs : ∀ i, monotone (s i)) :
(⋃ j : ι', pi univ (λ i, s i j)) = pi univ (λ i, ⋃ j, s i j) :=
Union_pi_of_monotone finite_univ (λ i _, hs i)
lemma finite_range_find_greatest {P : α → ℕ → Prop} [∀ x, decidable_pred (P x)] {b : ℕ} :
(range (λ x, nat.find_greatest (P x) b)).finite :=
(finite_le_nat b).subset $ range_subset_iff.2 $ λ x, nat.find_greatest_le _
lemma finite.exists_maximal_wrt [partial_order β] (f : α → β) (s : set α) (h : set.finite s) :
s.nonempty → ∃ a ∈ s, ∀ a' ∈ s, f a ≤ f a' → f a = f a' :=
begin
refine h.induction_on _ _,
{ exact λ h, absurd h empty_not_nonempty },
intros a s his _ ih _,
cases s.eq_empty_or_nonempty with h h,
{ use a, simp [h] },
rcases ih h with ⟨b, hb, ih⟩,
by_cases f b ≤ f a,
{ refine ⟨a, set.mem_insert _ _, λ c hc hac, le_antisymm hac _⟩,
rcases set.mem_insert_iff.1 hc with rfl | hcs,
{ refl },
{ rwa [← ih c hcs (le_trans h hac)] } },
{ refine ⟨b, set.mem_insert_of_mem _ hb, λ c hc hbc, _⟩,
rcases set.mem_insert_iff.1 hc with rfl | hcs,
{ exact (h hbc).elim },
{ exact ih c hcs hbc } }
end
section
variables [semilattice_sup α] [nonempty α] {s : set α}
/--A finite set is bounded above.-/
protected lemma finite.bdd_above (hs : s.finite) : bdd_above s :=
finite.induction_on hs bdd_above_empty $ λ a s _ _ h, h.insert a
/--A finite union of sets which are all bounded above is still bounded above.-/
lemma finite.bdd_above_bUnion {I : set β} {S : β → set α} (H : I.finite) :
(bdd_above (⋃i∈I, S i)) ↔ (∀i ∈ I, bdd_above (S i)) :=
finite.induction_on H
(by simp only [bUnion_empty, bdd_above_empty, ball_empty_iff])
(λ a s ha _ hs, by simp only [bUnion_insert, ball_insert_iff, bdd_above_union, hs])
lemma infinite_of_not_bdd_above : ¬ bdd_above s → s.infinite :=
begin
contrapose!,
rw not_infinite,
apply finite.bdd_above,
end
end
section
variables [semilattice_inf α] [nonempty α] {s : set α}
/--A finite set is bounded below.-/
protected lemma finite.bdd_below (hs : s.finite) : bdd_below s := @finite.bdd_above αᵒᵈ _ _ _ hs
/--A finite union of sets which are all bounded below is still bounded below.-/
lemma finite.bdd_below_bUnion {I : set β} {S : β → set α} (H : I.finite) :
bdd_below (⋃ i ∈ I, S i) ↔ ∀ i ∈ I, bdd_below (S i) :=
@finite.bdd_above_bUnion αᵒᵈ _ _ _ _ _ H
lemma infinite_of_not_bdd_below : ¬ bdd_below s → s.infinite :=
begin
contrapose!,
rw not_infinite,
apply finite.bdd_below,
end
end
end set
namespace finset
/-- A finset is bounded above. -/
protected lemma bdd_above [semilattice_sup α] [nonempty α] (s : finset α) :
bdd_above (↑s : set α) :=
s.finite_to_set.bdd_above
/-- A finset is bounded below. -/
protected lemma bdd_below [semilattice_inf α] [nonempty α] (s : finset α) :
bdd_below (↑s : set α) :=
s.finite_to_set.bdd_below
end finset
/--
If a set `s` does not contain any elements between any pair of elements `x, z ∈ s` with `x ≤ z`
(i.e if given `x, y, z ∈ s` such that `x ≤ y ≤ z`, then `y` is either `x` or `z`), then `s` is
finite.
-/
lemma set.finite_of_forall_between_eq_endpoints {α : Type*} [linear_order α] (s : set α)
(h : ∀ (x ∈ s) (y ∈ s) (z ∈ s), x ≤ y → y ≤ z → x = y ∨ y = z) :
set.finite s :=
begin
by_contra hinf,
change s.infinite at hinf,
rcases hinf.exists_subset_card_eq 3 with ⟨t, hts, ht⟩,
let f := t.order_iso_of_fin ht,
let x := f 0,
let y := f 1,
let z := f 2,
have := h x (hts x.2) y (hts y.2) z (hts z.2)
(f.monotone $ by dec_trivial) (f.monotone $ by dec_trivial),
have key₁ : (0 : fin 3) ≠ 1 := by dec_trivial,
have key₂ : (1 : fin 3) ≠ 2 := by dec_trivial,
cases this,
{ dsimp only [x, y] at this, exact key₁ (f.injective $ subtype.coe_injective this) },
{ dsimp only [y, z] at this, exact key₂ (f.injective $ subtype.coe_injective this) }
end
|
7a844a55767dbb6d237fc57e90a79bb02ce2bae3
|
ee8cdbabf07f77e7be63a449b8483ce308d37218
|
/lean/src/test/mathd-algebra-80.lean
|
cd8035548411d3211b5d27f3e887cd1ed59ec3c6
|
[
"MIT",
"Apache-2.0"
] |
permissive
|
zeta1999/miniF2F
|
6d66c75d1c18152e224d07d5eed57624f731d4b7
|
c1ba9629559c5273c92ec226894baa0c1ce27861
|
refs/heads/main
| 1,681,897,460,642
| 1,620,646,361,000
| 1,620,646,361,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 266
|
lean
|
/-
Copyright (c) 2021 OpenAI. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kunhao Zheng
-/
import data.real.basic
example (x : ℝ) (h₀ : x ≠ -1) (h₁ : (x - 9) / (x + 1) = 2) : x = -11 :=
begin
sorry
end
|
a0da3bc48c503c98413e424d67913892c1976fb4
|
1e561612e7479c100cd9302e3fe08cbd2914aa25
|
/mathlib4_experiments/Data/List/Perm.lean
|
39362a7f4fcecbedfdf97d5f73a89cfe68f6b64a
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib4_experiments
|
8de8ed7193f70748a7529e05d831203a7c64eedb
|
87cb879b4d602c8ecfd9283b7c0b06015abdbab1
|
refs/heads/master
| 1,687,971,389,316
| 1,620,336,942,000
| 1,620,336,942,000
| 353,994,588
| 7
| 4
|
Apache-2.0
| 1,622,410,748,000
| 1,617,361,732,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 48,289
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Mario Carneiro
-/
--import data.list.bag_inter
--import data.list.erase_dup
--import data.list.zip
--import logic.relation
--import data.nat.factorial
import mathlib4_experiments.Data.List.Defs
namespace List
/-!
# List permutations
-/
/-- `perm l₁ l₂` or `l₁ ~ l₂` asserts that `l₁` and `l₂` are permutations
of each other. This is defined by induction using pairwise swaps. -/
inductive perm : List α → List α → Prop
| nil : perm [] []
| cons : ∀ (x : α) {l₁ l₂ : List α}, perm l₁ l₂ → perm (x::l₁) (x::l₂)
| swap : ∀ (x y : α) (l : List α), perm (y::x::l) (x::y::l)
| trans : ∀ {l₁ l₂ l₃ : List α}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃
open perm (swap)
infix:50 " ~ " => perm
--@[refl]
protected theorem perm.refl : ∀ (l : List α), l ~ l
| [] => perm.nil
| (x::xs) => (perm.refl xs).cons x
-- TODO: whinge that I have to provide the motive in Lean 4
--@[symm]
protected theorem perm.symm {l₁ l₂ : List α} (p : l₁ ~ l₂) : l₂ ~ l₁ :=
perm.recOn (motive := λ x y p => y ~ x) p
perm.nil
(λ x l₁ l₂ p₁ r₁ => r₁.cons x)
(λ x y l => swap y x l)
(λ p₁ p₂ r₁ r₂ => r₂.trans r₁)
theorem perm_comm {l₁ l₂ : List α} : l₁ ~ l₂ ↔ l₂ ~ l₁ := ⟨perm.symm, perm.symm⟩
theorem perm.swap'
(x y : α) {l₁ l₂ : List α} (p : l₁ ~ l₂) : y::x::l₁ ~ x::y::l₂ :=
(swap _ _ _).trans ((p.cons _).cons _)
--attribute [trans] perm.trans
theorem perm.eqv (α) : Equivalence (perm (α := α)) where
refl := perm.refl
symm := perm.symm
trans := perm.trans
-- TODO: whinge about how `#print Setoid` doesn't tell me constructor names
instance is_setoid (α) : Setoid (List α) where
r := perm
iseqv := perm.eqv α
theorem perm.subset {l₁ l₂ : List α} (p : l₁ ~ l₂) : l₁ ⊆ l₂ :=
by intro a; induction p with
| nil => exact id;
| cons x p₁ r₁ => intro i; match i with
| Or.inl ax => simp [ax];
| Or.inr al₁ => exact Or.inr (r₁ al₁)
| swap x y l => intro ayxl; match ayxl with
| Or.inl ay => simp [ay];
| Or.inr axl => match axl with
| Or.inl ax => simp [ax]
| Or.inr al => exact Or.inr (Or.inr al)
| trans _ _ r₁ r₂ => intro ainl₁; exact r₂ (r₁ ainl₁);
theorem perm.length_eq {l₁ l₂ : List α} (p : l₁ ~ l₂) : length l₁ = length l₂ := by
induction p with
| nil => rfl
| cons x p r => simp [r];
| swap x y l => simp;
| trans p₁ p₂ r₁ r₂ => exact r₁.trans r₂
theorem perm.eq_nil {l : List α} (p : l ~ []) : l = [] :=
eq_nil_of_length_eq_zero p.length_eq
theorem perm.nil_eq {l : List α} (p : [] ~ l) : [] = l :=
p.symm.eq_nil.symm
theorem perm_nil {l₁ : List α} : l₁ ~ [] ↔ l₁ = [] :=
⟨λ p => p.eq_nil, λ e => e ▸ perm.refl _⟩
theorem not_perm_nil_cons (x : α) (l : List α) : ¬ [] ~ x::l
| p => by injection p.symm.eq_nil
theorem perm.pairwise_iff {R : α → α → Prop} (S : symmetric R) :
∀ {l₁ l₂ : List α} (p : l₁ ~ l₂), pairwise R l₁ ↔ pairwise R l₂ :=
suffices ∀ {l₁ l₂}, l₁ ~ l₂ → pairwise R l₁ → pairwise R l₂ from λ p => ⟨this p, this p.symm⟩ by
intros l₁ l₂ p d;
-- revert l₂;
induction d generalizing l₂ with
| nil => { rw ← p.nil_eq; exact pairwise.nil }
| @cons a l₁ h d IH => {
have this : a ∈ l₂ := p.subset (mem_cons_self _ _);
skip;
admit;
}
#exit
rcases mem_split this with ⟨s₂, t₂, rfl⟩,
have p' := (p.trans perm_middle).cons_inv,
refine (pairwise_middle S).2 (pairwise_cons.2 ⟨λ b m, _, IH _ p'⟩),
exact h _ (p'.symm.subset m) }
end
theorem perm.nodup_iff {l₁ l₂ : list α} : l₁ ~ l₂ → (nodup l₁ ↔ nodup l₂) :=
perm.pairwise_iff $ @ne.symm α
end List
/-
TO BE PORTED
open_locale nat
universe variables uu vv
variables {α : Type uu} {β : Type vv}
theorem perm.mem_iff {a : α} {l₁ l₂ : list α} (h : l₁ ~ l₂) : a ∈ l₁ ↔ a ∈ l₂ :=
iff.intro (λ m, h.subset m) (λ m, h.symm.subset m)
theorem perm.append_right {l₁ l₂ : list α} (t₁ : list α) (p : l₁ ~ l₂) : l₁++t₁ ~ l₂++t₁ :=
perm.rec_on p
(perm.refl ([] ++ t₁))
(λ x l₁ l₂ p₁ r₁, r₁.cons x)
(λ x y l, swap x y _)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, r₁.trans r₂)
theorem perm.append_left {t₁ t₂ : list α} : ∀ (l : list α), t₁ ~ t₂ → l++t₁ ~ l++t₂
| [] p := p
| (x::xs) p := (perm.append_left xs p).cons x
theorem perm.append {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁++t₁ ~ l₂++t₂ :=
(p₁.append_right t₁).trans (p₂.append_left l₂)
theorem perm.append_cons (a : α) {h₁ h₂ t₁ t₂ : list α}
(p₁ : h₁ ~ h₂) (p₂ : t₁ ~ t₂) : h₁ ++ a::t₁ ~ h₂ ++ a::t₂ :=
p₁.append (p₂.cons a)
@[simp] theorem perm_middle {a : α} : ∀ {l₁ l₂ : list α}, l₁++a::l₂ ~ a::(l₁++l₂)
| [] l₂ := perm.refl _
| (b::l₁) l₂ := ((@perm_middle l₁ l₂).cons _).trans (swap a b _)
@[simp] theorem perm_append_singleton (a : α) (l : list α) : l ++ [a] ~ a::l :=
perm_middle.trans $ by rw [append_nil]
theorem perm_append_comm : ∀ {l₁ l₂ : list α}, (l₁++l₂) ~ (l₂++l₁)
| [] l₂ := by simp
| (a::t) l₂ := (perm_append_comm.cons _).trans perm_middle.symm
theorem concat_perm (l : list α) (a : α) : concat l a ~ a :: l :=
by simp
-- kmb ported perm.length_eq and perm.eq_nil and perm.nil_eq and perm_nil and not_perm_nil_cons
@[simp] theorem reverse_perm : ∀ (l : list α), reverse l ~ l
| [] := perm.nil
| (a::l) := by { rw reverse_cons,
exact (perm_append_singleton _ _).trans ((reverse_perm l).cons a) }
theorem perm_cons_append_cons {l l₁ l₂ : list α} (a : α) (p : l ~ l₁++l₂) :
a::l ~ l₁++(a::l₂) :=
(p.cons a).trans perm_middle.symm
@[simp] theorem perm_repeat {a : α} {n : ℕ} {l : list α} : l ~ repeat a n ↔ l = repeat a n :=
⟨λ p, (eq_repeat.2
⟨p.length_eq.trans $ length_repeat _ _,
λ b m, eq_of_mem_repeat $ p.subset m⟩),
λ h, h ▸ perm.refl _⟩
@[simp] theorem repeat_perm {a : α} {n : ℕ} {l : list α} : repeat a n ~ l ↔ repeat a n = l :=
(perm_comm.trans perm_repeat).trans eq_comm
@[simp] theorem perm_singleton {a : α} {l : list α} : l ~ [a] ↔ l = [a] :=
@perm_repeat α a 1 l
@[simp] theorem singleton_perm {a : α} {l : list α} : [a] ~ l ↔ [a] = l :=
@repeat_perm α a 1 l
theorem perm.eq_singleton {a : α} {l : list α} (p : l ~ [a]) : l = [a] :=
perm_singleton.1 p
theorem perm.singleton_eq {a : α} {l : list α} (p : [a] ~ l) : [a] = l :=
p.symm.eq_singleton.symm
theorem singleton_perm_singleton {a b : α} : [a] ~ [b] ↔ a = b :=
by simp
theorem perm_cons_erase [decidable_eq α] {a : α} {l : list α} (h : a ∈ l) :
l ~ a :: l.erase a :=
let ⟨l₁, l₂, _, e₁, e₂⟩ := exists_erase_eq h in
e₂.symm ▸ e₁.symm ▸ perm_middle
@[elab_as_eliminator] theorem perm_induction_on
{P : list α → list α → Prop} {l₁ l₂ : list α} (p : l₁ ~ l₂)
(h₁ : P [] [])
(h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂))
(h₃ : ∀ x y l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (y::x::l₁) (x::y::l₂))
(h₄ : ∀ l₁ l₂ l₃, l₁ ~ l₂ → l₂ ~ l₃ → P l₁ l₂ → P l₂ l₃ → P l₁ l₃) :
P l₁ l₂ :=
have P_refl : ∀ l, P l l, from
assume l,
list.rec_on l h₁ (λ x xs ih, h₂ x xs xs (perm.refl xs) ih),
perm.rec_on p h₁ h₂ (λ x y l, h₃ x y l l (perm.refl l) (P_refl l)) h₄
@[congr] theorem perm.filter_map (f : α → option β) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
filter_map f l₁ ~ filter_map f l₂ :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂,
{ simp },
{ simp only [filter_map], cases f x with a; simp [filter_map, IH, perm.cons] },
{ simp only [filter_map], cases f x with a; cases f y with b; simp [filter_map, swap] },
{ exact IH₁.trans IH₂ }
end
@[congr] theorem perm.map (f : α → β) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
map f l₁ ~ map f l₂ :=
filter_map_eq_map f ▸ p.filter_map _
theorem perm.pmap {p : α → Prop} (f : Π a, p a → β)
{l₁ l₂ : list α} (p : l₁ ~ l₂) {H₁ H₂} : pmap f l₁ H₁ ~ pmap f l₂ H₂ :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂,
{ simp },
{ simp [IH, perm.cons] },
{ simp [swap] },
{ refine IH₁.trans IH₂,
exact λ a m, H₂ a (p₂.subset m) }
end
theorem perm.filter (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} (s : l₁ ~ l₂) : filter p l₁ ~ filter p l₂ :=
by rw ← filter_map_eq_filter; apply s.filter_map _
theorem exists_perm_sublist {l₁ l₂ l₂' : list α}
(s : l₁ <+ l₂) (p : l₂ ~ l₂') : ∃ l₁' ~ l₁, l₁' <+ l₂' :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂ generalizing l₁ s,
{ exact ⟨[], eq_nil_of_sublist_nil s ▸ perm.refl _, nil_sublist _⟩ },
{ cases s with _ _ _ s l₁ _ _ s,
{ exact let ⟨l₁', p', s'⟩ := IH s in ⟨l₁', p', s'.cons _ _ _⟩ },
{ exact let ⟨l₁', p', s'⟩ := IH s in ⟨x::l₁', p'.cons x, s'.cons2 _ _ _⟩ } },
{ cases s with _ _ _ s l₁ _ _ s; cases s with _ _ _ s l₁ _ _ s,
{ exact ⟨l₁, perm.refl _, (s.cons _ _ _).cons _ _ _⟩ },
{ exact ⟨x::l₁, perm.refl _, (s.cons _ _ _).cons2 _ _ _⟩ },
{ exact ⟨y::l₁, perm.refl _, (s.cons2 _ _ _).cons _ _ _⟩ },
{ exact ⟨x::y::l₁, perm.swap _ _ _, (s.cons2 _ _ _).cons2 _ _ _⟩ } },
{ exact let ⟨m₁, pm, sm⟩ := IH₁ s, ⟨r₁, pr, sr⟩ := IH₂ sm in
⟨r₁, pr.trans pm, sr⟩ }
end
theorem perm.sizeof_eq_sizeof [has_sizeof α] {l₁ l₂ : list α} (h : l₁ ~ l₂) :
l₁.sizeof = l₂.sizeof :=
begin
induction h with hd l₁ l₂ h₁₂ h_sz₁₂ a b l l₁ l₂ l₃ h₁₂ h₂₃ h_sz₁₂ h_sz₂₃,
{ refl },
{ simp only [list.sizeof, h_sz₁₂] },
{ simp only [list.sizeof, add_left_comm] },
{ simp only [h_sz₁₂, h_sz₂₃] }
end
section rel
open relator
variables {γ : Type*} {δ : Type*} {r : α → β → Prop} {p : γ → δ → Prop}
local infixr ` ∘r ` : 80 := relation.comp
lemma perm_comp_perm : (perm ∘r perm : list α → list α → Prop) = perm :=
begin
funext a c, apply propext,
split,
{ exact assume ⟨b, hab, hba⟩, perm.trans hab hba },
{ exact assume h, ⟨a, perm.refl a, h⟩ }
end
lemma perm_comp_forall₂ {l u v} (hlu : perm l u) (huv : forall₂ r u v) : (forall₂ r ∘r perm) l v :=
begin
induction hlu generalizing v,
case perm.nil { cases huv, exact ⟨[], forall₂.nil, perm.nil⟩ },
case perm.cons : a l u hlu ih {
cases huv with _ b _ v hab huv',
rcases ih huv' with ⟨l₂, h₁₂, h₂₃⟩,
exact ⟨b::l₂, forall₂.cons hab h₁₂, h₂₃.cons _⟩
},
case perm.swap : a₁ a₂ l₁ l₂ h₂₃ {
cases h₂₃ with _ b₁ _ l₂ h₁ hr_₂₃,
cases hr_₂₃ with _ b₂ _ l₂ h₂ h₁₂,
exact ⟨b₂::b₁::l₂, forall₂.cons h₂ (forall₂.cons h₁ h₁₂), perm.swap _ _ _⟩
},
case perm.trans : la₁ la₂ la₃ _ _ ih₁ ih₂ {
rcases ih₂ huv with ⟨lb₂, hab₂, h₂₃⟩,
rcases ih₁ hab₂ with ⟨lb₁, hab₁, h₁₂⟩,
exact ⟨lb₁, hab₁, perm.trans h₁₂ h₂₃⟩
}
end
lemma forall₂_comp_perm_eq_perm_comp_forall₂ : forall₂ r ∘r perm = perm ∘r forall₂ r :=
begin
funext l₁ l₃, apply propext,
split,
{ assume h, rcases h with ⟨l₂, h₁₂, h₂₃⟩,
have : forall₂ (flip r) l₂ l₁, from h₁₂.flip ,
rcases perm_comp_forall₂ h₂₃.symm this with ⟨l', h₁, h₂⟩,
exact ⟨l', h₂.symm, h₁.flip⟩ },
{ exact assume ⟨l₂, h₁₂, h₂₃⟩, perm_comp_forall₂ h₁₂ h₂₃ }
end
lemma rel_perm_imp (hr : right_unique r) : (forall₂ r ⇒ forall₂ r ⇒ implies) perm perm :=
assume a b h₁ c d h₂ h,
have (flip (forall₂ r) ∘r (perm ∘r forall₂ r)) b d, from ⟨a, h₁, c, h, h₂⟩,
have ((flip (forall₂ r) ∘r forall₂ r) ∘r perm) b d,
by rwa [← forall₂_comp_perm_eq_perm_comp_forall₂, ← relation.comp_assoc] at this,
let ⟨b', ⟨c', hbc, hcb⟩, hbd⟩ := this in
have b' = b, from right_unique_forall₂' hr hcb hbc,
this ▸ hbd
lemma rel_perm (hr : bi_unique r) : (forall₂ r ⇒ forall₂ r ⇒ (↔)) perm perm :=
assume a b hab c d hcd, iff.intro
(rel_perm_imp hr.2 hab hcd)
(rel_perm_imp (left_unique_flip hr.1) hab.flip hcd.flip)
end rel
section subperm
/-- `subperm l₁ l₂`, denoted `l₁ <+~ l₂`, means that `l₁` is a sublist of
a permutation of `l₂`. This is an analogue of `l₁ ⊆ l₂` which respects
multiplicities of elements, and is used for the `≤` relation on multisets. -/
def subperm (l₁ l₂ : list α) : Prop := ∃ l ~ l₁, l <+ l₂
infix ` <+~ `:50 := subperm
theorem nil_subperm {l : list α} : [] <+~ l :=
⟨[], perm.nil, by simp⟩
theorem perm.subperm_left {l l₁ l₂ : list α} (p : l₁ ~ l₂) : l <+~ l₁ ↔ l <+~ l₂ :=
suffices ∀ {l₁ l₂ : list α}, l₁ ~ l₂ → l <+~ l₁ → l <+~ l₂,
from ⟨this p, this p.symm⟩,
λ l₁ l₂ p ⟨u, pu, su⟩,
let ⟨v, pv, sv⟩ := exists_perm_sublist su p in
⟨v, pv.trans pu, sv⟩
theorem perm.subperm_right {l₁ l₂ l : list α} (p : l₁ ~ l₂) : l₁ <+~ l ↔ l₂ <+~ l :=
⟨λ ⟨u, pu, su⟩, ⟨u, pu.trans p, su⟩,
λ ⟨u, pu, su⟩, ⟨u, pu.trans p.symm, su⟩⟩
theorem sublist.subperm {l₁ l₂ : list α} (s : l₁ <+ l₂) : l₁ <+~ l₂ :=
⟨l₁, perm.refl _, s⟩
theorem perm.subperm {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₁ <+~ l₂ :=
⟨l₂, p.symm, sublist.refl _⟩
@[refl] theorem subperm.refl (l : list α) : l <+~ l := (perm.refl _).subperm
@[trans] theorem subperm.trans {l₁ l₂ l₃ : list α} : l₁ <+~ l₂ → l₂ <+~ l₃ → l₁ <+~ l₃
| s ⟨l₂', p₂, s₂⟩ :=
let ⟨l₁', p₁, s₁⟩ := p₂.subperm_left.2 s in ⟨l₁', p₁, s₁.trans s₂⟩
theorem subperm.length_le {l₁ l₂ : list α} : l₁ <+~ l₂ → length l₁ ≤ length l₂
| ⟨l, p, s⟩ := p.length_eq ▸ length_le_of_sublist s
theorem subperm.perm_of_length_le {l₁ l₂ : list α} : l₁ <+~ l₂ → length l₂ ≤ length l₁ → l₁ ~ l₂
| ⟨l, p, s⟩ h :=
suffices l = l₂, from this ▸ p.symm,
eq_of_sublist_of_length_le s $ p.symm.length_eq ▸ h
theorem subperm.antisymm {l₁ l₂ : list α} (h₁ : l₁ <+~ l₂) (h₂ : l₂ <+~ l₁) : l₁ ~ l₂ :=
h₁.perm_of_length_le h₂.length_le
theorem subperm.subset {l₁ l₂ : list α} : l₁ <+~ l₂ → l₁ ⊆ l₂
| ⟨l, p, s⟩ := subset.trans p.symm.subset s.subset
end subperm
theorem sublist.exists_perm_append : ∀ {l₁ l₂ : list α}, l₁ <+ l₂ → ∃ l, l₂ ~ l₁ ++ l
| ._ ._ sublist.slnil := ⟨nil, perm.refl _⟩
| ._ ._ (sublist.cons l₁ l₂ a s) :=
let ⟨l, p⟩ := sublist.exists_perm_append s in
⟨a::l, (p.cons a).trans perm_middle.symm⟩
| ._ ._ (sublist.cons2 l₁ l₂ a s) :=
let ⟨l, p⟩ := sublist.exists_perm_append s in
⟨l, p.cons a⟩
theorem perm.countp_eq (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} (s : l₁ ~ l₂) : countp p l₁ = countp p l₂ :=
by rw [countp_eq_length_filter, countp_eq_length_filter];
exact (s.filter _).length_eq
theorem subperm.countp_le (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} : l₁ <+~ l₂ → countp p l₁ ≤ countp p l₂
| ⟨l, p', s⟩ := p'.countp_eq p ▸ countp_le_of_sublist p s
theorem perm.count_eq [decidable_eq α] {l₁ l₂ : list α}
(p : l₁ ~ l₂) (a) : count a l₁ = count a l₂ :=
p.countp_eq _
theorem subperm.count_le [decidable_eq α] {l₁ l₂ : list α}
(s : l₁ <+~ l₂) (a) : count a l₁ ≤ count a l₂ :=
s.countp_le _
theorem perm.foldl_eq' {f : β → α → β} {l₁ l₂ : list α} (p : l₁ ~ l₂) :
(∀ (x ∈ l₁) (y ∈ l₁) z, f (f z x) y = f (f z y) x) → ∀ b, foldl f b l₁ = foldl f b l₂ :=
perm_induction_on p
(λ H b, rfl)
(λ x t₁ t₂ p r H b, r (λ x hx y hy, H _ (or.inr hx) _ (or.inr hy)) _)
(λ x y t₁ t₂ p r H b,
begin
simp only [foldl],
rw [H x (or.inr $ or.inl rfl) y (or.inl rfl)],
exact r (λ x hx y hy, H _ (or.inr $ or.inr hx) _ (or.inr $ or.inr hy)) _
end)
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ H b, eq.trans (r₁ H b)
(r₂ (λ x hx y hy, H _ (p₁.symm.subset hx) _ (p₁.symm.subset hy)) b))
theorem perm.foldl_eq {f : β → α → β} {l₁ l₂ : list α} (rcomm : right_commutative f) (p : l₁ ~ l₂) :
∀ b, foldl f b l₁ = foldl f b l₂ :=
p.foldl_eq' $ λ x hx y hy z, rcomm z x y
theorem perm.foldr_eq {f : α → β → β} {l₁ l₂ : list α} (lcomm : left_commutative f) (p : l₁ ~ l₂) :
∀ b, foldr f b l₁ = foldr f b l₂ :=
perm_induction_on p
(λ b, rfl)
(λ x t₁ t₂ p r b, by simp; rw [r b])
(λ x y t₁ t₂ p r b, by simp; rw [lcomm, r b])
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ a, eq.trans (r₁ a) (r₂ a))
lemma perm.rec_heq {β : list α → Sort*} {f : Πa l, β l → β (a::l)} {b : β []} {l l' : list α}
(hl : perm l l')
(f_congr : ∀{a l l' b b'}, perm l l' → b == b' → f a l b == f a l' b')
(f_swap : ∀{a a' l b}, f a (a'::l) (f a' l b) == f a' (a::l) (f a l b)) :
@list.rec α β b f l == @list.rec α β b f l' :=
begin
induction hl,
case list.perm.nil { refl },
case list.perm.cons : a l l' h ih { exact f_congr h ih },
case list.perm.swap : a a' l { exact f_swap },
case list.perm.trans : l₁ l₂ l₃ h₁ h₂ ih₁ ih₂ { exact heq.trans ih₁ ih₂ }
end
section
variables {op : α → α → α} [is_associative α op] [is_commutative α op]
local notation a * b := op a b
local notation l <*> a := foldl op a l
lemma perm.fold_op_eq {l₁ l₂ : list α} {a : α} (h : l₁ ~ l₂) : l₁ <*> a = l₂ <*> a :=
h.foldl_eq (right_comm _ is_commutative.comm is_associative.assoc) _
end
section comm_monoid
/-- If elements of a list commute with each other, then their product does not
depend on the order of elements-/
@[to_additive]
lemma perm.prod_eq' [monoid α] {l₁ l₂ : list α} (h : l₁ ~ l₂)
(hc : l₁.pairwise (λ x y, x * y = y * x)) :
l₁.prod = l₂.prod :=
h.foldl_eq' (forall_of_forall_of_pairwise (λ x y h z, (h z).symm) (λ x hx z, rfl) $
hc.imp $ λ x y h z, by simp only [mul_assoc, h]) _
variable [comm_monoid α]
@[to_additive]
lemma perm.prod_eq {l₁ l₂ : list α} (h : perm l₁ l₂) : prod l₁ = prod l₂ :=
h.fold_op_eq
@[to_additive]
lemma prod_reverse (l : list α) : prod l.reverse = prod l :=
(reverse_perm l).prod_eq
end comm_monoid
theorem perm_inv_core {a : α} {l₁ l₂ r₁ r₂ : list α} : l₁++a::r₁ ~ l₂++a::r₂ → l₁++r₁ ~ l₂++r₂ :=
begin
generalize e₁ : l₁++a::r₁ = s₁, generalize e₂ : l₂++a::r₂ = s₂,
intro p, revert l₁ l₂ r₁ r₂ e₁ e₂,
refine perm_induction_on p _ (λ x t₁ t₂ p IH, _) (λ x y t₁ t₂ p IH, _)
(λ t₁ t₂ t₃ p₁ p₂ IH₁ IH₂, _); intros l₁ l₂ r₁ r₂ e₁ e₂,
{ apply (not_mem_nil a).elim, rw ← e₁, simp },
{ cases l₁ with y l₁; cases l₂ with z l₂;
dsimp at e₁ e₂; injections; subst x,
{ substs t₁ t₂, exact p },
{ substs z t₁ t₂, exact p.trans perm_middle },
{ substs y t₁ t₂, exact perm_middle.symm.trans p },
{ substs z t₁ t₂, exact (IH rfl rfl).cons y } },
{ rcases l₁ with _|⟨y, _|⟨z, l₁⟩⟩; rcases l₂ with _|⟨u, _|⟨v, l₂⟩⟩;
dsimp at e₁ e₂; injections; substs x y,
{ substs r₁ r₂, exact p.cons a },
{ substs r₁ r₂, exact p.cons u },
{ substs r₁ v t₂, exact (p.trans perm_middle).cons u },
{ substs r₁ r₂, exact p.cons y },
{ substs r₁ r₂ y u, exact p.cons a },
{ substs r₁ u v t₂, exact ((p.trans perm_middle).cons y).trans (swap _ _ _) },
{ substs r₂ z t₁, exact (perm_middle.symm.trans p).cons y },
{ substs r₂ y z t₁, exact (swap _ _ _).trans ((perm_middle.symm.trans p).cons u) },
{ substs u v t₁ t₂, exact (IH rfl rfl).swap' _ _ } },
{ substs t₁ t₃,
have : a ∈ t₂ := p₁.subset (by simp),
rcases mem_split this with ⟨l₂, r₂, e₂⟩,
subst t₂, exact (IH₁ rfl rfl).trans (IH₂ rfl rfl) }
end
theorem perm.cons_inv {a : α} {l₁ l₂ : list α} : a::l₁ ~ a::l₂ → l₁ ~ l₂ :=
@perm_inv_core _ _ [] [] _ _
@[simp] theorem perm_cons (a : α) {l₁ l₂ : list α} : a::l₁ ~ a::l₂ ↔ l₁ ~ l₂ :=
⟨perm.cons_inv, perm.cons a⟩
theorem perm_append_left_iff {l₁ l₂ : list α} : ∀ l, l++l₁ ~ l++l₂ ↔ l₁ ~ l₂
| [] := iff.rfl
| (a::l) := (perm_cons a).trans (perm_append_left_iff l)
theorem perm_append_right_iff {l₁ l₂ : list α} (l) : l₁++l ~ l₂++l ↔ l₁ ~ l₂ :=
⟨λ p, (perm_append_left_iff _).1 $ perm_append_comm.trans $ p.trans perm_append_comm,
perm.append_right _⟩
theorem perm_option_to_list {o₁ o₂ : option α} : o₁.to_list ~ o₂.to_list ↔ o₁ = o₂ :=
begin
refine ⟨λ p, _, λ e, e ▸ perm.refl _⟩,
cases o₁ with a; cases o₂ with b, {refl},
{ cases p.length_eq },
{ cases p.length_eq },
{ exact option.mem_to_list.1 (p.symm.subset $ by simp) }
end
theorem subperm_cons (a : α) {l₁ l₂ : list α} : a::l₁ <+~ a::l₂ ↔ l₁ <+~ l₂ :=
⟨λ ⟨l, p, s⟩, begin
cases s with _ _ _ s' u _ _ s',
{ exact (p.subperm_left.2 $ (sublist_cons _ _).subperm).trans s'.subperm },
{ exact ⟨u, p.cons_inv, s'⟩ }
end, λ ⟨l, p, s⟩, ⟨a::l, p.cons a, s.cons2 _ _ _⟩⟩
theorem cons_subperm_of_mem {a : α} {l₁ l₂ : list α} (d₁ : nodup l₁) (h₁ : a ∉ l₁) (h₂ : a ∈ l₂)
(s : l₁ <+~ l₂) : a :: l₁ <+~ l₂ :=
begin
rcases s with ⟨l, p, s⟩,
induction s generalizing l₁,
case list.sublist.slnil { cases h₂ },
case list.sublist.cons : r₁ r₂ b s' ih {
simp at h₂,
cases h₂ with e m,
{ subst b, exact ⟨a::r₁, p.cons a, s'.cons2 _ _ _⟩ },
{ rcases ih m d₁ h₁ p with ⟨t, p', s'⟩, exact ⟨t, p', s'.cons _ _ _⟩ } },
case list.sublist.cons2 : r₁ r₂ b s' ih {
have bm : b ∈ l₁ := (p.subset $ mem_cons_self _ _),
have am : a ∈ r₂ := h₂.resolve_left (λ e, h₁ $ e.symm ▸ bm),
rcases mem_split bm with ⟨t₁, t₂, rfl⟩,
have st : t₁ ++ t₂ <+ t₁ ++ b :: t₂ := by simp,
rcases ih am (nodup_of_sublist st d₁)
(mt (λ x, st.subset x) h₁)
(perm.cons_inv $ p.trans perm_middle) with ⟨t, p', s'⟩,
exact ⟨b::t, (p'.cons b).trans $ (swap _ _ _).trans (perm_middle.symm.cons a), s'.cons2 _ _ _⟩ }
end
theorem subperm_append_left {l₁ l₂ : list α} : ∀ l, l++l₁ <+~ l++l₂ ↔ l₁ <+~ l₂
| [] := iff.rfl
| (a::l) := (subperm_cons a).trans (subperm_append_left l)
theorem subperm_append_right {l₁ l₂ : list α} (l) : l₁++l <+~ l₂++l ↔ l₁ <+~ l₂ :=
(perm_append_comm.subperm_left.trans perm_append_comm.subperm_right).trans (subperm_append_left l)
theorem subperm.exists_of_length_lt {l₁ l₂ : list α} :
l₁ <+~ l₂ → length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂
| ⟨l, p, s⟩ h :=
suffices length l < length l₂ → ∃ (a : α), a :: l <+~ l₂, from
(this $ p.symm.length_eq ▸ h).imp (λ a, (p.cons a).subperm_right.1),
begin
clear subperm.exists_of_length_lt p h l₁, rename l₂ u,
induction s with l₁ l₂ a s IH _ _ b s IH; intro h,
{ cases h },
{ cases lt_or_eq_of_le (nat.le_of_lt_succ h : length l₁ ≤ length l₂) with h h,
{ exact (IH h).imp (λ a s, s.trans (sublist_cons _ _).subperm) },
{ exact ⟨a, eq_of_sublist_of_length_eq s h ▸ subperm.refl _⟩ } },
{ exact (IH $ nat.lt_of_succ_lt_succ h).imp
(λ a s, (swap _ _ _).subperm_right.1 $ (subperm_cons _).2 s) }
end
theorem subperm_of_subset_nodup
{l₁ l₂ : list α} (d : nodup l₁) (H : l₁ ⊆ l₂) : l₁ <+~ l₂ :=
begin
induction d with a l₁' h d IH,
{ exact ⟨nil, perm.nil, nil_sublist _⟩ },
{ cases forall_mem_cons.1 H with H₁ H₂,
simp at h,
exact cons_subperm_of_mem d h H₁ (IH H₂) }
end
theorem perm_ext {l₁ l₂ : list α} (d₁ : nodup l₁) (d₂ : nodup l₂) :
l₁ ~ l₂ ↔ ∀a, a ∈ l₁ ↔ a ∈ l₂ :=
⟨λ p a, p.mem_iff, λ H, subperm.antisymm
(subperm_of_subset_nodup d₁ (λ a, (H a).1))
(subperm_of_subset_nodup d₂ (λ a, (H a).2))⟩
theorem nodup.sublist_ext {l₁ l₂ l : list α} (d : nodup l)
(s₁ : l₁ <+ l) (s₂ : l₂ <+ l) : l₁ ~ l₂ ↔ l₁ = l₂ :=
⟨λ h, begin
induction s₂ with l₂ l a s₂ IH l₂ l a s₂ IH generalizing l₁,
{ exact h.eq_nil },
{ simp at d,
cases s₁ with _ _ _ s₁ l₁ _ _ s₁,
{ exact IH d.2 s₁ h },
{ apply d.1.elim,
exact subperm.subset ⟨_, h.symm, s₂⟩ (mem_cons_self _ _) } },
{ simp at d,
cases s₁ with _ _ _ s₁ l₁ _ _ s₁,
{ apply d.1.elim,
exact subperm.subset ⟨_, h, s₁⟩ (mem_cons_self _ _) },
{ rw IH d.2 s₁ h.cons_inv } }
end, λ h, by rw h⟩
section
variable [decidable_eq α]
-- attribute [congr]
theorem perm.erase (a : α) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
l₁.erase a ~ l₂.erase a :=
if h₁ : a ∈ l₁ then
have h₂ : a ∈ l₂, from p.subset h₁,
perm.cons_inv $ (perm_cons_erase h₁).symm.trans $ p.trans (perm_cons_erase h₂)
else
have h₂ : a ∉ l₂, from mt p.mem_iff.2 h₁,
by rw [erase_of_not_mem h₁, erase_of_not_mem h₂]; exact p
theorem subperm_cons_erase (a : α) (l : list α) : l <+~ a :: l.erase a :=
begin
by_cases h : a ∈ l,
{ exact (perm_cons_erase h).subperm },
{ rw [erase_of_not_mem h],
exact (sublist_cons _ _).subperm }
end
theorem erase_subperm (a : α) (l : list α) : l.erase a <+~ l :=
(erase_sublist _ _).subperm
theorem subperm.erase {l₁ l₂ : list α} (a : α) (h : l₁ <+~ l₂) : l₁.erase a <+~ l₂.erase a :=
let ⟨l, hp, hs⟩ := h in ⟨l.erase a, hp.erase _, hs.erase _⟩
theorem perm.diff_right {l₁ l₂ : list α} (t : list α) (h : l₁ ~ l₂) : l₁.diff t ~ l₂.diff t :=
by induction t generalizing l₁ l₂ h; simp [*, perm.erase]
theorem perm.diff_left (l : list α) {t₁ t₂ : list α} (h : t₁ ~ t₂) : l.diff t₁ = l.diff t₂ :=
by induction h generalizing l; simp [*, perm.erase, erase_comm]
<|> exact (ih_1 _).trans (ih_2 _)
theorem perm.diff {l₁ l₂ t₁ t₂ : list α} (hl : l₁ ~ l₂) (ht : t₁ ~ t₂) :
l₁.diff t₁ ~ l₂.diff t₂ :=
ht.diff_left l₂ ▸ hl.diff_right _
theorem subperm.diff_right {l₁ l₂ : list α} (h : l₁ <+~ l₂) (t : list α) :
l₁.diff t <+~ l₂.diff t :=
by induction t generalizing l₁ l₂ h; simp [*, subperm.erase]
theorem erase_cons_subperm_cons_erase (a b : α) (l : list α) :
(a :: l).erase b <+~ a :: l.erase b :=
begin
by_cases h : a = b,
{ subst b,
rw [erase_cons_head],
apply subperm_cons_erase },
{ rw [erase_cons_tail _ h] }
end
theorem subperm_cons_diff {a : α} : ∀ {l₁ l₂ : list α}, (a :: l₁).diff l₂ <+~ a :: l₁.diff l₂
| l₁ [] := ⟨a::l₁, by simp⟩
| l₁ (b::l₂) :=
begin
simp only [diff_cons],
refine ((erase_cons_subperm_cons_erase a b l₁).diff_right l₂).trans _,
apply subperm_cons_diff
end
theorem subset_cons_diff {a : α} {l₁ l₂ : list α} : (a :: l₁).diff l₂ ⊆ a :: l₁.diff l₂ :=
subperm_cons_diff.subset
theorem perm.bag_inter_right {l₁ l₂ : list α} (t : list α) (h : l₁ ~ l₂) :
l₁.bag_inter t ~ l₂.bag_inter t :=
begin
induction h with x _ _ _ _ x y _ _ _ _ _ _ ih_1 ih_2 generalizing t, {simp},
{ by_cases x ∈ t; simp [*, perm.cons] },
{ by_cases x = y, {simp [h]},
by_cases xt : x ∈ t; by_cases yt : y ∈ t,
{ simp [xt, yt, mem_erase_of_ne h, mem_erase_of_ne (ne.symm h), erase_comm, swap] },
{ simp [xt, yt, mt mem_of_mem_erase, perm.cons] },
{ simp [xt, yt, mt mem_of_mem_erase, perm.cons] },
{ simp [xt, yt] } },
{ exact (ih_1 _).trans (ih_2 _) }
end
theorem perm.bag_inter_left (l : list α) {t₁ t₂ : list α} (p : t₁ ~ t₂) :
l.bag_inter t₁ = l.bag_inter t₂ :=
begin
induction l with a l IH generalizing t₁ t₂ p, {simp},
by_cases a ∈ t₁,
{ simp [h, p.subset h, IH (p.erase _)] },
{ simp [h, mt p.mem_iff.2 h, IH p] }
end
theorem perm.bag_inter {l₁ l₂ t₁ t₂ : list α} (hl : l₁ ~ l₂) (ht : t₁ ~ t₂) :
l₁.bag_inter t₁ ~ l₂.bag_inter t₂ :=
ht.bag_inter_left l₂ ▸ hl.bag_inter_right _
theorem cons_perm_iff_perm_erase {a : α} {l₁ l₂ : list α} : a::l₁ ~ l₂ ↔ a ∈ l₂ ∧ l₁ ~ l₂.erase a :=
⟨λ h, have a ∈ l₂, from h.subset (mem_cons_self a l₁),
⟨this, (h.trans $ perm_cons_erase this).cons_inv⟩,
λ ⟨m, h⟩, (h.cons a).trans (perm_cons_erase m).symm⟩
theorem perm_iff_count {l₁ l₂ : list α} : l₁ ~ l₂ ↔ ∀ a, count a l₁ = count a l₂ :=
⟨perm.count_eq, λ H, begin
induction l₁ with a l₁ IH generalizing l₂,
{ cases l₂ with b l₂, {refl},
specialize H b, simp at H, contradiction },
{ have : a ∈ l₂ := count_pos.1 (by rw ← H; simp; apply nat.succ_pos),
refine ((IH $ λ b, _).cons a).trans (perm_cons_erase this).symm,
specialize H b,
rw (perm_cons_erase this).count_eq at H,
by_cases b = a; simp [h] at H ⊢; assumption }
end⟩
instance decidable_perm : ∀ (l₁ l₂ : list α), decidable (l₁ ~ l₂)
| [] [] := is_true $ perm.refl _
| [] (b::l₂) := is_false $ λ h, by have := h.nil_eq; contradiction
| (a::l₁) l₂ := by haveI := decidable_perm l₁ (l₂.erase a);
exact decidable_of_iff' _ cons_perm_iff_perm_erase
-- @[congr]
theorem perm.erase_dup {l₁ l₂ : list α} (p : l₁ ~ l₂) :
erase_dup l₁ ~ erase_dup l₂ :=
perm_iff_count.2 $ λ a,
if h : a ∈ l₁
then by simp [nodup_erase_dup, h, p.subset h]
else by simp [h, mt p.mem_iff.2 h]
-- attribute [congr]
theorem perm.insert (a : α)
{l₁ l₂ : list α} (p : l₁ ~ l₂) : insert a l₁ ~ insert a l₂ :=
if h : a ∈ l₁
then by simpa [h, p.subset h] using p
else by simpa [h, mt p.mem_iff.2 h] using p.cons a
theorem perm_insert_swap (x y : α) (l : list α) :
insert x (insert y l) ~ insert y (insert x l) :=
begin
by_cases xl : x ∈ l; by_cases yl : y ∈ l; simp [xl, yl],
by_cases xy : x = y, { simp [xy] },
simp [not_mem_cons_of_ne_of_not_mem xy xl,
not_mem_cons_of_ne_of_not_mem (ne.symm xy) yl],
constructor
end
theorem perm_insert_nth {α} (x : α) (l : list α) {n} (h : n ≤ l.length) :
insert_nth n x l ~ x :: l :=
begin
induction l generalizing n,
{ cases n, refl, cases h },
cases n,
{ simp [insert_nth] },
{ simp only [insert_nth, modify_nth_tail],
transitivity,
{ apply perm.cons, apply l_ih,
apply nat.le_of_succ_le_succ h },
{ apply perm.swap } }
end
theorem perm.union_right {l₁ l₂ : list α} (t₁ : list α) (h : l₁ ~ l₂) : l₁ ∪ t₁ ~ l₂ ∪ t₁ :=
begin
induction h with a _ _ _ ih _ _ _ _ _ _ _ _ ih_1 ih_2; try {simp},
{ exact ih.insert a },
{ apply perm_insert_swap },
{ exact ih_1.trans ih_2 }
end
theorem perm.union_left (l : list α) {t₁ t₂ : list α} (h : t₁ ~ t₂) : l ∪ t₁ ~ l ∪ t₂ :=
by induction l; simp [*, perm.insert]
-- @[congr]
theorem perm.union {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁ ∪ t₁ ~ l₂ ∪ t₂ :=
(p₁.union_right t₁).trans (p₂.union_left l₂)
theorem perm.inter_right {l₁ l₂ : list α} (t₁ : list α) : l₁ ~ l₂ → l₁ ∩ t₁ ~ l₂ ∩ t₁ :=
perm.filter _
theorem perm.inter_left (l : list α) {t₁ t₂ : list α} (p : t₁ ~ t₂) : l ∩ t₁ = l ∩ t₂ :=
by { dsimp [(∩), list.inter], congr, funext a, rw [p.mem_iff] }
-- @[congr]
theorem perm.inter {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁ ∩ t₁ ~ l₂ ∩ t₂ :=
p₂.inter_left l₂ ▸ p₁.inter_right t₁
theorem perm.inter_append {l t₁ t₂ : list α} (h : disjoint t₁ t₂) :
l ∩ (t₁ ++ t₂) ~ l ∩ t₁ ++ l ∩ t₂ :=
begin
induction l,
case list.nil
{ simp },
case list.cons : x xs l_ih
{ by_cases h₁ : x ∈ t₁,
{ have h₂ : x ∉ t₂ := h h₁,
simp * },
by_cases h₂ : x ∈ t₂,
{ simp only [*, inter_cons_of_not_mem, false_or, mem_append, inter_cons_of_mem, not_false_iff],
transitivity,
{ apply perm.cons _ l_ih, },
change [x] ++ xs ∩ t₁ ++ xs ∩ t₂ ~ xs ∩ t₁ ++ ([x] ++ xs ∩ t₂),
rw [← list.append_assoc],
solve_by_elim [perm.append_right, perm_append_comm] },
{ simp * } },
end
end
-- kmb ported perm.pairwise_iff
theorem perm.bind_right {l₁ l₂ : list α} (f : α → list β) (p : l₁ ~ l₂) :
l₁.bind f ~ l₂.bind f :=
begin
induction p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ p₂ IH₁ IH₂, {simp},
{ simp, exact IH.append_left _ },
{ simp, rw [← append_assoc, ← append_assoc], exact perm_append_comm.append_right _ },
{ exact IH₁.trans IH₂ }
end
theorem perm.bind_left (l : list α) {f g : α → list β} (h : ∀ a, f a ~ g a) :
l.bind f ~ l.bind g :=
by induction l with a l IH; simp; exact (h a).append IH
theorem perm.product_right {l₁ l₂ : list α} (t₁ : list β) (p : l₁ ~ l₂) :
product l₁ t₁ ~ product l₂ t₁ :=
p.bind_right _
theorem perm.product_left (l : list α) {t₁ t₂ : list β} (p : t₁ ~ t₂) :
product l t₁ ~ product l t₂ :=
perm.bind_left _ $ λ a, p.map _
@[congr] theorem perm.product {l₁ l₂ : list α} {t₁ t₂ : list β}
(p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : product l₁ t₁ ~ product l₂ t₂ :=
(p₁.product_right t₁).trans (p₂.product_left l₂)
theorem sublists_cons_perm_append (a : α) (l : list α) :
sublists (a :: l) ~ sublists l ++ map (cons a) (sublists l) :=
begin
simp only [sublists, sublists_aux_cons_cons, cons_append, perm_cons],
refine (perm.cons _ _).trans perm_middle.symm,
induction sublists_aux l cons with b l IH; simp,
exact (IH.cons _).trans perm_middle.symm
end
theorem sublists_perm_sublists' : ∀ l : list α, sublists l ~ sublists' l
| [] := perm.refl _
| (a::l) := let IH := sublists_perm_sublists' l in
by rw sublists'_cons; exact
(sublists_cons_perm_append _ _).trans (IH.append (IH.map _))
theorem revzip_sublists (l : list α) :
∀ l₁ l₂, (l₁, l₂) ∈ revzip l.sublists → l₁ ++ l₂ ~ l :=
begin
rw revzip,
apply list.reverse_rec_on l,
{ intros l₁ l₂ h, simp at h, simp [h] },
{ intros l a IH l₁ l₂ h,
rw [sublists_concat, reverse_append, zip_append, ← map_reverse,
zip_map_right, zip_map_left] at h; [skip, {simp}],
simp only [prod.mk.inj_iff, mem_map, mem_append, prod.map_mk, prod.exists] at h,
rcases h with ⟨l₁, l₂', h, rfl, rfl⟩ | ⟨l₁', l₂, h, rfl, rfl⟩,
{ rw ← append_assoc,
exact (IH _ _ h).append_right _ },
{ rw append_assoc,
apply (perm_append_comm.append_left _).trans,
rw ← append_assoc,
exact (IH _ _ h).append_right _ } }
end
theorem revzip_sublists' (l : list α) :
∀ l₁ l₂, (l₁, l₂) ∈ revzip l.sublists' → l₁ ++ l₂ ~ l :=
begin
rw revzip,
induction l with a l IH; intros l₁ l₂ h,
{ simp at h, simp [h] },
{ rw [sublists'_cons, reverse_append, zip_append, ← map_reverse,
zip_map_right, zip_map_left] at h; [simp at h, simp],
rcases h with ⟨l₁, l₂', h, rfl, rfl⟩ | ⟨l₁', h, rfl⟩,
{ exact perm_middle.trans ((IH _ _ h).cons _) },
{ exact (IH _ _ h).cons _ } }
end
theorem perm_lookmap (f : α → option α) {l₁ l₂ : list α}
(H : pairwise (λ a b, ∀ (c ∈ f a) (d ∈ f b), a = b ∧ c = d) l₁)
(p : l₁ ~ l₂) : lookmap f l₁ ~ lookmap f l₂ :=
begin
let F := λ a b, ∀ (c ∈ f a) (d ∈ f b), a = b ∧ c = d,
change pairwise F l₁ at H,
induction p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ p₂ IH₁ IH₂, {simp},
{ cases h : f a,
{ simp [h], exact IH (pairwise_cons.1 H).2 },
{ simp [lookmap_cons_some _ _ h, p] } },
{ cases h₁ : f a with c; cases h₂ : f b with d,
{ simp [h₁, h₂], apply swap },
{ simp [h₁, lookmap_cons_some _ _ h₂], apply swap },
{ simp [lookmap_cons_some _ _ h₁, h₂], apply swap },
{ simp [lookmap_cons_some _ _ h₁, lookmap_cons_some _ _ h₂],
rcases (pairwise_cons.1 H).1 _ (or.inl rfl) _ h₂ _ h₁ with ⟨rfl, rfl⟩,
refl } },
{ refine (IH₁ H).trans (IH₂ ((p₁.pairwise_iff _).1 H)),
exact λ a b h c h₁ d h₂, (h d h₂ c h₁).imp eq.symm eq.symm }
end
theorem perm.erasep (f : α → Prop) [decidable_pred f] {l₁ l₂ : list α}
(H : pairwise (λ a b, f a → f b → false) l₁)
(p : l₁ ~ l₂) : erasep f l₁ ~ erasep f l₂ :=
begin
let F := λ a b, f a → f b → false,
change pairwise F l₁ at H,
induction p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ p₂ IH₁ IH₂, {simp},
{ by_cases h : f a,
{ simp [h, p] },
{ simp [h], exact IH (pairwise_cons.1 H).2 } },
{ by_cases h₁ : f a; by_cases h₂ : f b; simp [h₁, h₂],
{ cases (pairwise_cons.1 H).1 _ (or.inl rfl) h₂ h₁ },
{ apply swap } },
{ refine (IH₁ H).trans (IH₂ ((p₁.pairwise_iff _).1 H)),
exact λ a b h h₁ h₂, h h₂ h₁ }
end
lemma perm.take_inter {α} [decidable_eq α] {xs ys : list α} (n : ℕ)
(h : xs ~ ys) (h' : ys.nodup) :
xs.take n ~ ys.inter (xs.take n) :=
begin
simp only [list.inter] at *,
induction h generalizing n,
case list.perm.nil : n
{ simp only [not_mem_nil, filter_false, take_nil] },
case list.perm.cons : h_x h_l₁ h_l₂ h_a h_ih n
{ cases n; simp only [mem_cons_iff, true_or, eq_self_iff_true, filter_cons_of_pos,
perm_cons, take, not_mem_nil, filter_false],
cases h' with _ _ h₁ h₂,
convert h_ih h₂ n using 1,
apply filter_congr,
introv h, simp only [(h₁ x h).symm, false_or], },
case list.perm.swap : h_x h_y h_l n
{ cases h' with _ _ h₁ h₂,
cases h₂ with _ _ h₂ h₃,
have := h₁ _ (or.inl rfl),
cases n; simp only [mem_cons_iff, not_mem_nil, filter_false, take],
cases n; simp only [mem_cons_iff, false_or, true_or, filter, *, nat.nat_zero_eq_zero, if_true,
not_mem_nil, eq_self_iff_true, or_false, if_false, perm_cons, take],
{ rw filter_eq_nil.2, intros, solve_by_elim [ne.symm], },
{ convert perm.swap _ _ _, rw @filter_congr _ _ (∈ take n h_l),
{ clear h₁, induction n generalizing h_l; simp only [not_mem_nil, filter_false, take],
cases h_l; simp only [mem_cons_iff, true_or, eq_self_iff_true, filter_cons_of_pos,
true_and, take, not_mem_nil, filter_false, take_nil],
cases h₃ with _ _ h₃ h₄,
rwa [@filter_congr _ _ (∈ take n_n h_l_tl), n_ih],
{ introv h, apply h₂ _ (or.inr h), },
{ introv h, simp only [(h₃ x h).symm, false_or], }, },
{ introv h, simp only [(h₂ x h).symm, (h₁ x (or.inr h)).symm, false_or], } } },
case list.perm.trans : h_l₁ h_l₂ h_l₃ h₀ h₁ h_ih₀ h_ih₁ n
{ transitivity,
{ apply h_ih₀, rwa h₁.nodup_iff },
{ apply perm.filter _ h₁, } },
end
lemma perm.drop_inter {α} [decidable_eq α] {xs ys : list α} (n : ℕ)
(h : xs ~ ys) (h' : ys.nodup) :
xs.drop n ~ ys.inter (xs.drop n) :=
begin
by_cases h'' : n ≤ xs.length,
{ let n' := xs.length - n,
have h₀ : n = xs.length - n',
{ dsimp [n'], rwa nat.sub_sub_self, } ,
have h₁ : n' ≤ xs.length,
{ apply nat.sub_le_self },
have h₂ : xs.drop n = (xs.reverse.take n').reverse,
{ rw [reverse_take _ h₁, h₀, reverse_reverse], },
rw [h₂],
apply (reverse_perm _).trans,
rw inter_reverse,
apply perm.take_inter _ _ h',
apply (reverse_perm _).trans; assumption, },
{ have : drop n xs = [],
{ apply eq_nil_of_length_eq_zero,
rw [length_drop, nat.sub_eq_zero_iff_le],
apply le_of_not_ge h'' },
simp [this, list.inter], }
end
lemma perm.slice_inter {α} [decidable_eq α] {xs ys : list α} (n m : ℕ)
(h : xs ~ ys) (h' : ys.nodup) :
list.slice n m xs ~ ys ∩ (list.slice n m xs) :=
begin
simp only [slice_eq],
have : n ≤ n + m := nat.le_add_right _ _,
have := h.nodup_iff.2 h',
apply perm.trans _ (perm.inter_append _).symm;
solve_by_elim [perm.append, perm.drop_inter, perm.take_inter, disjoint_take_drop, h, h']
{ max_depth := 7 },
end
/- enumerating permutations -/
section permutations
theorem permutations_aux2_fst (t : α) (ts : list α) (r : list β) : ∀ (ys : list α) (f : list α → β),
(permutations_aux2 t ts r ys f).1 = ys ++ ts
| [] f := rfl
| (y::ys) f := match _, permutations_aux2_fst ys _ : ∀ o : list α × list β, o.1 = ys ++ ts →
(permutations_aux2._match_1 t y f o).1 = y :: ys ++ ts with
| ⟨_, zs⟩, rfl := rfl
end
@[simp] theorem permutations_aux2_snd_nil (t : α) (ts : list α) (r : list β) (f : list α → β) :
(permutations_aux2 t ts r [] f).2 = r := rfl
@[simp] theorem permutations_aux2_snd_cons (t : α) (ts : list α) (r : list β) (y : α) (ys : list α)
(f : list α → β) :
(permutations_aux2 t ts r (y::ys) f).2 = f (t :: y :: ys ++ ts) ::
(permutations_aux2 t ts r ys (λx : list α, f (y::x))).2 :=
match _, permutations_aux2_fst t ts r _ _ : ∀ o : list α × list β, o.1 = ys ++ ts →
(permutations_aux2._match_1 t y f o).2 = f (t :: y :: ys ++ ts) :: o.2 with
| ⟨_, zs⟩, rfl := rfl
end
theorem permutations_aux2_append (t : α) (ts : list α) (r : list β) (ys : list α) (f : list α → β) :
(permutations_aux2 t ts nil ys f).2 ++ r = (permutations_aux2 t ts r ys f).2 :=
by induction ys generalizing f; simp *
theorem mem_permutations_aux2 {t : α} {ts : list α} {ys : list α} {l l' : list α} :
l' ∈ (permutations_aux2 t ts [] ys (append l)).2 ↔
∃ l₁ l₂, l₂ ≠ [] ∧ ys = l₁ ++ l₂ ∧ l' = l ++ l₁ ++ t :: l₂ ++ ts :=
begin
induction ys with y ys ih generalizing l,
{ simp {contextual := tt} },
{ rw [permutations_aux2_snd_cons, show (λ (x : list α), l ++ y :: x) = append (l ++ [y]),
by funext; simp, mem_cons_iff, ih], split; intro h,
{ rcases h with e | ⟨l₁, l₂, l0, ye, _⟩,
{ subst l', exact ⟨[], y::ys, by simp⟩ },
{ substs l' ys, exact ⟨y::l₁, l₂, l0, by simp⟩ } },
{ rcases h with ⟨_ | ⟨y', l₁⟩, l₂, l0, ye, rfl⟩,
{ simp [ye] },
{ simp at ye, rcases ye with ⟨rfl, rfl⟩,
exact or.inr ⟨l₁, l₂, l0, by simp⟩ } } }
end
theorem mem_permutations_aux2' {t : α} {ts : list α} {ys : list α} {l : list α} :
l ∈ (permutations_aux2 t ts [] ys id).2 ↔
∃ l₁ l₂, l₂ ≠ [] ∧ ys = l₁ ++ l₂ ∧ l = l₁ ++ t :: l₂ ++ ts :=
by rw [show @id (list α) = append nil, by funext; refl]; apply mem_permutations_aux2
theorem length_permutations_aux2 (t : α) (ts : list α) (ys : list α) (f : list α → β) :
length (permutations_aux2 t ts [] ys f).2 = length ys :=
by induction ys generalizing f; simp *
theorem foldr_permutations_aux2 (t : α) (ts : list α) (r L : list (list α)) :
foldr (λy r, (permutations_aux2 t ts r y id).2) r L =
L.bind (λ y, (permutations_aux2 t ts [] y id).2) ++ r :=
by induction L with l L ih; [refl, {simp [ih], rw ← permutations_aux2_append}]
theorem mem_foldr_permutations_aux2 {t : α} {ts : list α} {r L : list (list α)} {l' : list α} :
l' ∈ foldr (λy r, (permutations_aux2 t ts r y id).2) r L ↔ l' ∈ r ∨
∃ l₁ l₂, l₁ ++ l₂ ∈ L ∧ l₂ ≠ [] ∧ l' = l₁ ++ t :: l₂ ++ ts :=
have (∃ (a : list α), a ∈ L ∧
∃ (l₁ l₂ : list α), ¬l₂ = nil ∧ a = l₁ ++ l₂ ∧ l' = l₁ ++ t :: (l₂ ++ ts)) ↔
∃ (l₁ l₂ : list α), ¬l₂ = nil ∧ l₁ ++ l₂ ∈ L ∧ l' = l₁ ++ t :: (l₂ ++ ts),
from ⟨λ ⟨a, aL, l₁, l₂, l0, e, h⟩, ⟨l₁, l₂, l0, e ▸ aL, h⟩,
λ ⟨l₁, l₂, l0, aL, h⟩, ⟨_, aL, l₁, l₂, l0, rfl, h⟩⟩,
by rw foldr_permutations_aux2; simp [mem_permutations_aux2', this,
or.comm, or.left_comm, or.assoc, and.comm, and.left_comm, and.assoc]
theorem length_foldr_permutations_aux2 (t : α) (ts : list α) (r L : list (list α)) :
length (foldr (λy r, (permutations_aux2 t ts r y id).2) r L) = sum (map length L) + length r :=
by simp [foldr_permutations_aux2, (∘), length_permutations_aux2]
theorem length_foldr_permutations_aux2' (t : α) (ts : list α) (r L : list (list α))
(n) (H : ∀ l ∈ L, length l = n) :
length (foldr (λy r, (permutations_aux2 t ts r y id).2) r L) = n * length L + length r :=
begin
rw [length_foldr_permutations_aux2, (_ : sum (map length L) = n * length L)],
induction L with l L ih, {simp},
have sum_map : sum (map length L) = n * length L :=
ih (λ l m, H l (mem_cons_of_mem _ m)),
have length_l : length l = n := H _ (mem_cons_self _ _),
simp [sum_map, length_l, mul_add, add_comm]
end
theorem perm_of_mem_permutations_aux :
∀ {ts is l : list α}, l ∈ permutations_aux ts is → l ~ ts ++ is :=
begin
refine permutations_aux.rec (by simp) _,
introv IH1 IH2 m,
rw [permutations_aux_cons, permutations, mem_foldr_permutations_aux2] at m,
rcases m with m | ⟨l₁, l₂, m, _, e⟩,
{ exact (IH1 m).trans perm_middle },
{ subst e,
have p : l₁ ++ l₂ ~ is,
{ simp [permutations] at m,
cases m with e m, {simp [e]},
exact is.append_nil ▸ IH2 m },
exact ((perm_middle.trans (p.cons _)).append_right _).trans (perm_append_comm.cons _) }
end
theorem perm_of_mem_permutations {l₁ l₂ : list α}
(h : l₁ ∈ permutations l₂) : l₁ ~ l₂ :=
(eq_or_mem_of_mem_cons h).elim (λ e, e ▸ perm.refl _)
(λ m, append_nil l₂ ▸ perm_of_mem_permutations_aux m)
theorem length_permutations_aux : ∀ ts is : list α,
length (permutations_aux ts is) + is.length! = (length ts + length is)! :=
begin
refine permutations_aux.rec (by simp) _,
intros t ts is IH1 IH2,
have IH2 : length (permutations_aux is nil) + 1 = is.length!,
{ simpa using IH2 },
simp [-add_comm, nat.factorial, nat.add_succ, mul_comm] at IH1,
rw [permutations_aux_cons,
length_foldr_permutations_aux2' _ _ _ _ _
(λ l m, (perm_of_mem_permutations m).length_eq),
permutations, length, length, IH2,
nat.succ_add, nat.factorial_succ, mul_comm (nat.succ _), ← IH1,
add_comm (_*_), add_assoc, nat.mul_succ, mul_comm]
end
theorem length_permutations (l : list α) : length (permutations l) = (length l)! :=
length_permutations_aux l []
theorem mem_permutations_of_perm_lemma {is l : list α}
(H : l ~ [] ++ is → (∃ ts' ~ [], l = ts' ++ is) ∨ l ∈ permutations_aux is [])
: l ~ is → l ∈ permutations is :=
by simpa [permutations, perm_nil] using H
theorem mem_permutations_aux_of_perm :
∀ {ts is l : list α}, l ~ is ++ ts → (∃ is' ~ is, l = is' ++ ts) ∨ l ∈ permutations_aux ts is :=
begin
refine permutations_aux.rec (by simp) _,
intros t ts is IH1 IH2 l p,
rw [permutations_aux_cons, mem_foldr_permutations_aux2],
rcases IH1 (p.trans perm_middle) with ⟨is', p', e⟩ | m,
{ clear p, subst e,
rcases mem_split (p'.symm.subset (mem_cons_self _ _)) with ⟨l₁, l₂, e⟩,
subst is',
have p := (perm_middle.symm.trans p').cons_inv,
cases l₂ with a l₂',
{ exact or.inl ⟨l₁, by simpa using p⟩ },
{ exact or.inr (or.inr ⟨l₁, a::l₂',
mem_permutations_of_perm_lemma IH2 p, by simp⟩) } },
{ exact or.inr (or.inl m) }
end
@[simp] theorem mem_permutations (s t : list α) : s ∈ permutations t ↔ s ~ t :=
⟨perm_of_mem_permutations, mem_permutations_of_perm_lemma mem_permutations_aux_of_perm⟩
end permutations
end list
-/
|
b2a2bb41238f633668313ee2c5390dcb7a0e9a6a
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/test/finish2.lean
|
1f8aa8774688b93b4cf9caaeb32cd565b27ae19a
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 12,718
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Nathaniel Thomas
More examples to test automation, stolen shamelessly by Jeremy from Nathaniel's "tauto".
-/
import tactic.finish
open nat
section
variables (a b c d e f : Prop)
variable even : ℕ → Prop
variable P : ℕ → Prop
-- these next five are things that tauto doesn't get
example : (∀ x, P x) ∧ b → (∀ y, P y) ∧ P 0 ∨ b ∧ P 0 := by finish
example : (∀ A, A ∨ ¬A) → ∀ x y : ℕ, x = y ∨ x ≠ y := by finish
example : ∀ b1 b2, b1 = b2 ↔ (b1 = tt ↔ b2 = tt) := begin intro b1, cases b1; finish [iff_def] end
example : ∀ (P Q : nat → Prop), (∀ n, Q n → P n) → (∀ n, Q n) → P 2 := by finish
example (a b c : Prop) : ¬ true ∨ false ∨ b ↔ b := by finish
example : true := by finish
example : false → a := by finish
example : a → a := by finish
example : (a → b) → a → b := by finish
example : ¬ a → ¬ a := by finish
example : a → (false ∨ a) := by finish
example : (a → b → c) → (a → b) → a → c := by finish
example : a → ¬ a → (a → b) → (a ∨ b) → (a ∧ b) → a → false := by finish
example : ((a ∧ b) ∧ c) → b := by finish
example : ((a → b) → c) → b → c := by finish
example : (a ∨ b) → (b ∨ a) := by finish
example : (a → b ∧ c) → (a → b) ∨ (a → c) := by finish
example : ∀ (x0 : a ∨ b) (x1 : b ∧ c), a → b := by finish
example : a → b → (c ∨ b) := by finish
example : (a ∧ b → c) → b → a → c := by finish
example : (a ∨ b → c) → a → c := by finish
example : (a ∨ b → c) → b → c := by finish
example : (a ∧ b) → (b ∧ a) := by finish
example : (a ↔ b) → a → b := by finish
example : a → ¬¬a := by finish
example : ¬¬(a ∨ ¬a) := by finish
example : ¬¬(a ∨ b → a ∨ b) := by finish
example : ¬¬((∀ n, even n) ∨ ¬(∀ m, even m)) := by finish
example : (¬¬b → b) → (a → b) → ¬¬a → b := by finish
example : (¬¬b → b) → (¬b → ¬ a) → ¬¬a → b := by finish
example : ((a → b → false) → false) → (b → false) → false := by finish
example : ((((c → false) → a) → ((b → false) → a) → false) → false) →
(((c → b → false) → false) → false) → ¬a → a := by finish
example (p q r : Prop) (a b : nat) : true → a = a → q → q → p → p := by finish
example : ∀ (F F' : Prop), F ∧ F' → F := by finish
example : ∀ (F1 F2 F3 : Prop), ((¬F1 ∧ F3) ∨ (F2 ∧ ¬F3)) → (F2 → F1) → (F2 → F3) → ¬F2 := by finish
example : ∀ (f : nat → Prop), f 2 → ∃ x, f x := by finish
example : true ∧ true ∧ true ∧ true ∧ true ∧ true ∧ true := by finish
example : ∀ (P : nat → Prop), P 0 → (P 0 → P 1) → (P 1 → P 2) → (P 2) := by finish
example : ¬¬¬¬¬a → ¬¬¬¬¬¬¬¬a → false := by finish
example : ∀ n, ¬¬(even n ∨ ¬even n) := by finish
example : ∀ (p q r s : Prop) (a b : nat), r ∨ s → p ∨ q → a = b → q ∨ p := by finish
example : (∀ x, P x) → (∀ y, P y) := by finish
/- TODO(Jeremy): reinstate after simp * at * bug is fixed.
example : ((a ↔ b) → (b ↔ c)) → ((b ↔ c) → (c ↔ a)) → ((c ↔ a) → (a ↔ b)) → (a ↔ b) :=
by finish [iff_def]
-/
example : ((¬a ∨ b) ∧ (¬b ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬b ∨ ¬b) → false) → ¬((a → b) → b) → false :=
by finish
example : ¬((a → b) → b) → ((¬b ∨ ¬b) ∧ (¬b ∨ ¬a) ∧ (b ∨ ¬b) ∧ (b ∨ ¬a) → false) → false :=
by finish
example : (¬a ↔ b) → (¬b ↔ a) → (¬¬a ↔ a) := by finish
example : (¬ a ↔ b) → (¬ (c ∨ e) ↔ d ∧ f) → (¬ (c ∨ a ∨ e) ↔ d ∧ b ∧ f) := by finish
example {A : Type} (p q : A → Prop) (a b : A) : q a → p b → ∃ x, (p x ∧ x = b) ∨ q x := by finish
example {A : Type} (p q : A → Prop) (a b : A) : p b → ∃ x, q x ∨ (p x ∧ x = b) := by finish
example : ¬ a → b → a → c := by finish
example : a → b → b → ¬ a → c := by finish
example (a b : nat) : a = b → b = a := by finish
-- good examples of things we don't get, even using the simplifier
example (a b c : nat) : a = b → a = c → b = c := by finish
example (p : nat → Prop) (a b c : nat) : a = b → a = c → p b → p c := by finish
example (p : Prop) (a b : nat) : a = b → p → p := by finish
-- safe should look for contradictions with constructors
example (a : nat) : (0 : ℕ) = succ a → a = a → false := by finish
example (p : Prop) (a b c : nat) : [a, b, c] = [] → p := by finish
example (a b c : nat) : succ (succ a) = succ (succ b) → c = c := by finish
example (p : Prop) (a b : nat) : a = b → b ≠ a → p := by finish
example : (a ↔ b) → ((b ↔ a) ↔ (a ↔ b)) := by finish
example (a b c : nat) : b = c → (a = b ↔ c = a) := by finish [iff_def]
example : ¬¬¬¬¬¬¬¬a → ¬¬¬¬¬a → false := by finish
example (a b c : Prop) : a ∧ b ∧ c ↔ c ∧ b ∧ a := by finish
example (a b c : Prop) : a ∧ false ∧ c ↔ false := by finish
example (a b c : Prop) : a ∨ false ∨ b ↔ b ∨ a := by finish
example : a ∧ not a ↔ false := by finish
example : a ∧ b ∧ true → b ∧ a := by finish
example (A : Type) (a₁ a₂ : A) : a₁ = a₂ →
(λ (B : Type) (f : A → B), f a₁) = (λ (B : Type) (f : A → B), f a₂) := by finish
example (a : nat) : ¬ a = a → false := by finish
example (A : Type) (p : Prop) (a b c : A) : a = b → b ≠ a → p := by finish
example (p q r s : Prop) : r ∧ s → p ∧ q → q ∧ p := by finish
example (p q : Prop) : p ∧ p ∧ q ∧ q → q ∧ p := by finish
example (p : nat → Prop) (q : nat → nat → Prop) :
(∃ x y, p x ∧ q x y) → q 0 0 ∧ q 1 1 → (∃ x, p x) := by finish
example (p q r s : Prop) (a b : nat) : r ∨ s → p ∨ q → a = b → q ∨ p := by finish
example (p q r : Prop) (a b : nat) : true → a = a → q → q → p → p := by finish
example (a b : Prop) : a → b → a := by finish
example (p q : nat → Prop) (a b : nat) : p a → q b → ∃ x, p x := by finish
example : ∀ b1 b2, b1 && b2 = ff ↔ (b1 = ff ∨ b2 = ff) := by finish
example : ∀ b1 b2, b1 && b2 = tt ↔ (b1 = tt ∧ b2 = tt) := by finish
example : ∀ b1 b2, b1 || b2 = ff ↔ (b1 = ff ∧ b2 = ff) := by finish
example : ∀ b1 b2, b1 || b2 = tt ↔ (b1 = tt ∨ b2 = tt) := by finish
example : ∀ b, bnot b = tt ↔ b = ff := by finish
example : ∀ b, bnot b = ff ↔ b = tt := by finish
example : ∀ b c, b = c ↔ ¬ (b = bnot c) := by intros b c; cases b; cases c; finish [iff_def]
inductive and3 (a b c : Prop) : Prop
| mk : a → b → c → and3
example (h : and3 a b c) : and3 b c a := by cases h; split; finish
inductive or3 (a b c : Prop) : Prop
| in1 : a → or3
| in2 : b → or3
| in3 : c → or3
/- TODO(Jeremy): write a tactic that tries all constructors
example (h : a) : or3 a b c := sorry
example (h : b) : or3 a b c := sorry
example (h : c) : or3 a b c := sorry
-/
variables (A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Prop)
-- H first, all pos
example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
(a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) : B₄ := by finish
example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
(a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₄) : B₃ := by finish
example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
(a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n3 : ¬B₃) (n3 : ¬B₄) : B₂ := by finish
example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
(a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : B₁ := by finish
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
(a1 : A₁) (a2 : A₂) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : ¬A₃ := by finish
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
(a1 : A₁) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : ¬A₂ := by finish
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
(a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : ¬A₁ := by finish
-- H last, all pos
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃)
(H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₄ := by finish
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₄)
(H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₃ := by finish
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n3 : ¬B₃) (n3 : ¬B₄)
(H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₂ := by finish
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
(H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₁ := by finish
example (a1 : A₁) (a2 : A₂) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
(H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬A₃ := by finish
example (a1 : A₁) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
(H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬A₂ := by finish
example (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
(H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬A₁ := by finish
-- H first, all neg
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
(n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) : ¬B₄ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
(n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄) : ¬B₃ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
(n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄) : ¬B₂ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
(n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬B₁ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
(n1 : ¬A₁) (n2 : ¬A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬¬A₃ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
(n1 : ¬A₁) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬¬A₂ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
(n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬¬A₁ := by finish
-- H last, all neg
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃)
(H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₄ := by finish
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄)
(H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₃ := by finish
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄)
(H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₂ := by finish
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄)
(H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₁ := by finish
example (n1 : ¬A₁) (n2 : ¬A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄)
(H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬¬A₃ := by finish
example (n1 : ¬A₁) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄)
(H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬¬A₂ := by finish
example (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄)
(H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬¬A₁ := by finish
section club
variables Scottish RedSocks WearKilt Married GoOutSunday : Prop
theorem NoMember : (¬Scottish → RedSocks) → (WearKilt ∨ ¬RedSocks) → (Married → ¬GoOutSunday) →
(GoOutSunday ↔ Scottish) → (WearKilt → Scottish ∧ Married) →
(Scottish → WearKilt) → false := by finish
end club
end
|
09090ff5ebe96ed9d808e23dde4e77bffe2f281f
|
86f6f4f8d827a196a32bfc646234b73328aeb306
|
/examples/logic/unnamed_1180.lean
|
ce5c4e51fdc40686fddb1eacdc94e5bc4974278b
|
[] |
no_license
|
jamescheuk91/mathematics_in_lean
|
09f1f87d2b0dce53464ff0cbe592c568ff59cf5e
|
4452499264e2975bca2f42565c0925506ba5dda3
|
refs/heads/master
| 1,679,716,410,967
| 1,613,957,947,000
| 1,613,957,947,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 278
|
lean
|
import data.real.basic
-- BEGIN
example :
¬ ∀ {f : ℝ → ℝ}, monotone f → ∀ {a b}, f a ≤ f b → a ≤ b :=
begin
intro h,
let f := λ x : ℝ, (0 : ℝ),
have monof : monotone f,
{ sorry },
have h' : f 1 ≤ f 0,
from le_refl _,
sorry
end
-- END
|
93f12a2a9e0e893c6deb7263f4ced847be0a988c
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/906.lean
|
f92ab10552d00961df22423c5e3c770df8e6999a
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 687
|
lean
|
-- Print a nat using well-founded recursion
def natPrintAux (n : Nat) (sink : List Char) : List Char :=
if h0 : n < 10
then (n.digitChar :: sink)
else natPrintAux (n / 10) (Nat.digitChar (n % 10) :: sink)
termination_by' measure (fun ⟨n, _⟩ => n)
decreasing_by sorry
set_option maxRecDepth 100 -- default takes ages in debug mode and triggers stack space threshold
-- I meant to write `simp only [natPrintAux]`, but accidentally referenced the current theorem
theorem natPrintAux_eq (n : Nat) (sink : List Char) :
natPrintAux n sink = if n < 10 then (n.digitChar :: sink) else natPrintAux (n / 10) (Nat.digitChar (n % 10) :: sink) := by
simp only [natPrintAux_eq]
|
6e27a1b311e2a8c382d1bd982130ed1e33c8059b
|
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
|
/stage0/src/Init/Lean/Meta/Tactic/Util.lean
|
404f93afe4de40fea9f712bb4b24da856428e9e8
|
[
"Apache-2.0"
] |
permissive
|
mhuisi/lean4
|
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
|
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
|
refs/heads/master
| 1,621,225,489,283
| 1,585,142,689,000
| 1,585,142,689,000
| 250,590,438
| 0
| 2
|
Apache-2.0
| 1,602,443,220,000
| 1,585,327,814,000
|
C
|
UTF-8
|
Lean
| false
| false
| 1,631
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import Init.Lean.Meta.Basic
import Init.Lean.Meta.LevelDefEq
namespace Lean
namespace Meta
/-- Aka user name -/
def getMVarTag (mvarId : MVarId) : MetaM Name := do
mvarDecl ← getMVarDecl mvarId;
pure mvarDecl.userName
def setMVarTag (mvarId : MVarId) (tag : Name) : MetaM Unit := do
modify $ fun s => { mctx := s.mctx.setMVarUserName mvarId tag, .. s }
def mkFreshExprSyntheticOpaqueMVar (type : Expr) (userName : Name := Name.anonymous) : MetaM Expr :=
mkFreshExprMVar type userName MetavarKind.syntheticOpaque
def throwTacticEx {α} (tacticName : Name) (mvarId : MVarId) (msg : MessageData) : MetaM α := do
throwEx $ fun ctx => Exception.tactic tacticName mvarId (MessageData.withContext ctx msg) ctx
def checkNotAssigned (mvarId : MVarId) (tacticName : Name) : MetaM Unit :=
whenM (isExprMVarAssigned mvarId) $ throwTacticEx tacticName mvarId "metavariable has already been assigned"
def getMVarType (mvarId : MVarId) : MetaM Expr := do
mvarDecl ← getMVarDecl mvarId;
pure mvarDecl.type
def ppGoal (mvarId : MVarId) : MetaM Format := do
env ← getEnv;
mctx ← getMCtx;
opts ← getOptions;
pure $ ppGoal env mctx opts mvarId
@[inline] protected def orelse {α} (x y : MetaM α) : MetaM α := do
s ← get; catch x (fun _ => do restore s.env s.mctx s.postponed; y)
instance Meta.hasOrelse {α} : HasOrelse (MetaM α) := ⟨Meta.orelse⟩
@[init] private def regTraceClasses : IO Unit :=
registerTraceClass `Meta.Tactic
end Meta
end Lean
|
a3b665a5f1c2b78a9616d9d05f438d2707358608
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/analysis/convex/extreme.lean
|
02c965c3353ef65833fbd8a6fdbb7cab799213b3
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 9,522
|
lean
|
/-
Copyright (c) 2021 Yaël Dillies, Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies, Bhavik Mehta
-/
import analysis.convex.hull
/-!
# Extreme sets
This file defines extreme sets and extreme points for sets in a module.
An extreme set of `A` is a subset of `A` that is as far as it can get in any outward direction: If
point `x` is in it and point `y ∈ A`, then the line passing through `x` and `y` leaves `A` at `x`.
This is an analytic notion of "being on the side of". It is weaker than being exposed (see
`is_exposed.is_extreme`).
## Main declarations
* `is_extreme 𝕜 A B`: States that `B` is an extreme set of `A` (in the literature, `A` is often
implicit).
* `set.extreme_points 𝕜 A`: Set of extreme points of `A` (corresponding to extreme singletons).
* `convex.mem_extreme_points_iff_convex_diff`: A useful equivalent condition to being an extreme
point: `x` is an extreme point iff `A \ {x}` is convex.
## Implementation notes
The exact definition of extremeness has been carefully chosen so as to make as many lemmas
unconditional (in particular, the Krein-Milman theorem doesn't need the set to be convex!).
In practice, `A` is often assumed to be a convex set.
## References
See chapter 8 of [Barry Simon, *Convexity*][simon2011]
## TODO
Define intrinsic frontier and prove lemmas related to extreme sets and points.
More not-yet-PRed stuff is available on the branch `sperner_again`.
-/
open_locale classical affine
open set
variables (𝕜 : Type*) {E : Type*}
section has_smul
variables [ordered_semiring 𝕜] [add_comm_monoid E] [has_smul 𝕜 E]
/-- A set `B` is an extreme subset of `A` if `B ⊆ A` and all points of `B` only belong to open
segments whose ends are in `B`. -/
def is_extreme (A B : set E) : Prop :=
B ⊆ A ∧ ∀ ⦃x₁⦄, x₁ ∈ A → ∀ ⦃x₂⦄, x₂ ∈ A → ∀ ⦃x⦄, x ∈ B → x ∈ open_segment 𝕜 x₁ x₂ → x₁ ∈ B ∧ x₂ ∈ B
/-- A point `x` is an extreme point of a set `A` if `x` belongs to no open segment with ends in
`A`, except for the obvious `open_segment x x`. -/
def set.extreme_points (A : set E) : set E :=
{x ∈ A | ∀ ⦃x₁⦄, x₁ ∈ A → ∀ ⦃x₂⦄, x₂ ∈ A → x ∈ open_segment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x}
@[refl] protected lemma is_extreme.refl (A : set E) :
is_extreme 𝕜 A A :=
⟨subset.rfl, λ x₁ hx₁A x₂ hx₂A x hxA hx, ⟨hx₁A, hx₂A⟩⟩
variables {𝕜} {A B C : set E} {x : E}
protected lemma is_extreme.rfl :
is_extreme 𝕜 A A :=
is_extreme.refl 𝕜 A
@[trans] protected lemma is_extreme.trans (hAB : is_extreme 𝕜 A B) (hBC : is_extreme 𝕜 B C) :
is_extreme 𝕜 A C :=
begin
refine ⟨subset.trans hBC.1 hAB.1, λ x₁ hx₁A x₂ hx₂A x hxC hx, _⟩,
obtain ⟨hx₁B, hx₂B⟩ := hAB.2 hx₁A hx₂A (hBC.1 hxC) hx,
exact hBC.2 hx₁B hx₂B hxC hx,
end
protected lemma is_extreme.antisymm :
anti_symmetric (is_extreme 𝕜 : set E → set E → Prop) :=
λ A B hAB hBA, subset.antisymm hBA.1 hAB.1
instance : is_partial_order (set E) (is_extreme 𝕜) :=
{ refl := is_extreme.refl 𝕜,
trans := λ A B C, is_extreme.trans,
antisymm := is_extreme.antisymm }
lemma is_extreme.inter (hAB : is_extreme 𝕜 A B) (hAC : is_extreme 𝕜 A C) :
is_extreme 𝕜 A (B ∩ C) :=
begin
use subset.trans (inter_subset_left _ _) hAB.1,
rintro x₁ hx₁A x₂ hx₂A x ⟨hxB, hxC⟩ hx,
obtain ⟨hx₁B, hx₂B⟩ := hAB.2 hx₁A hx₂A hxB hx,
obtain ⟨hx₁C, hx₂C⟩ := hAC.2 hx₁A hx₂A hxC hx,
exact ⟨⟨hx₁B, hx₁C⟩, hx₂B, hx₂C⟩,
end
protected lemma is_extreme.mono (hAC : is_extreme 𝕜 A C) (hBA : B ⊆ A) (hCB : C ⊆ B) :
is_extreme 𝕜 B C :=
⟨hCB, λ x₁ hx₁B x₂ hx₂B x hxC hx, hAC.2 (hBA hx₁B) (hBA hx₂B) hxC hx⟩
lemma is_extreme_Inter {ι : Type*} [nonempty ι] {F : ι → set E}
(hAF : ∀ i : ι, is_extreme 𝕜 A (F i)) :
is_extreme 𝕜 A (⋂ i : ι, F i) :=
begin
obtain i := classical.arbitrary ι,
refine ⟨Inter_subset_of_subset i (hAF i).1, λ x₁ hx₁A x₂ hx₂A x hxF hx, _⟩,
simp_rw mem_Inter at ⊢ hxF,
have h := λ i, (hAF i).2 hx₁A hx₂A (hxF i) hx,
exact ⟨λ i, (h i).1, λ i, (h i).2⟩,
end
lemma is_extreme_bInter {F : set (set E)} (hF : F.nonempty)
(hAF : ∀ B ∈ F, is_extreme 𝕜 A B) :
is_extreme 𝕜 A (⋂ B ∈ F, B) :=
begin
obtain ⟨B, hB⟩ := hF,
refine ⟨(bInter_subset_of_mem hB).trans (hAF B hB).1, λ x₁ hx₁A x₂ hx₂A x hxF hx, _⟩,
simp_rw mem_Inter₂ at ⊢ hxF,
have h := λ B hB, (hAF B hB).2 hx₁A hx₂A (hxF B hB) hx,
exact ⟨λ B hB, (h B hB).1, λ B hB, (h B hB).2⟩,
end
lemma is_extreme_sInter {F : set (set E)} (hF : F.nonempty)
(hAF : ∀ B ∈ F, is_extreme 𝕜 A B) :
is_extreme 𝕜 A (⋂₀ F) :=
begin
obtain ⟨B, hB⟩ := hF,
refine ⟨(sInter_subset_of_mem hB).trans (hAF B hB).1, λ x₁ hx₁A x₂ hx₂A x hxF hx, _⟩,
simp_rw mem_sInter at ⊢ hxF,
have h := λ B hB, (hAF B hB).2 hx₁A hx₂A (hxF B hB) hx,
exact ⟨λ B hB, (h B hB).1, λ B hB, (h B hB).2⟩,
end
lemma extreme_points_def :
x ∈ A.extreme_points 𝕜 ↔ x ∈ A ∧ ∀ (x₁ x₂ ∈ A), x ∈ open_segment 𝕜 x₁ x₂ → x₁ = x ∧ x₂ = x :=
iff.rfl
/-- x is an extreme point to A iff {x} is an extreme set of A. -/
lemma mem_extreme_points_iff_extreme_singleton :
x ∈ A.extreme_points 𝕜 ↔ is_extreme 𝕜 A {x} :=
begin
refine ⟨_, λ hx, ⟨singleton_subset_iff.1 hx.1, λ x₁ hx₁ x₂ hx₂, hx.2 hx₁ hx₂ rfl⟩⟩,
rintro ⟨hxA, hAx⟩,
use singleton_subset_iff.2 hxA,
rintro x₁ hx₁A x₂ hx₂A y (rfl : y = x),
exact hAx hx₁A hx₂A,
end
lemma extreme_points_subset : A.extreme_points 𝕜 ⊆ A := λ x hx, hx.1
@[simp] lemma extreme_points_empty :
(∅ : set E).extreme_points 𝕜 = ∅ :=
subset_empty_iff.1 extreme_points_subset
@[simp] lemma extreme_points_singleton :
({x} : set E).extreme_points 𝕜 = {x} :=
extreme_points_subset.antisymm $ singleton_subset_iff.2
⟨mem_singleton x, λ x₁ hx₁ x₂ hx₂ _, ⟨hx₁, hx₂⟩⟩
lemma inter_extreme_points_subset_extreme_points_of_subset (hBA : B ⊆ A) :
B ∩ A.extreme_points 𝕜 ⊆ B.extreme_points 𝕜 :=
λ x ⟨hxB, hxA⟩, ⟨hxB, λ x₁ hx₁ x₂ hx₂ hx, hxA.2 (hBA hx₁) (hBA hx₂) hx⟩
lemma is_extreme.extreme_points_subset_extreme_points (hAB : is_extreme 𝕜 A B) :
B.extreme_points 𝕜 ⊆ A.extreme_points 𝕜 :=
λ x hx, mem_extreme_points_iff_extreme_singleton.2 (hAB.trans
(mem_extreme_points_iff_extreme_singleton.1 hx))
lemma is_extreme.extreme_points_eq (hAB : is_extreme 𝕜 A B) :
B.extreme_points 𝕜 = B ∩ A.extreme_points 𝕜 :=
subset.antisymm (λ x hx, ⟨hx.1, hAB.extreme_points_subset_extreme_points hx⟩)
(inter_extreme_points_subset_extreme_points_of_subset hAB.1)
end has_smul
section ordered_semiring
variables {𝕜} [ordered_semiring 𝕜] [add_comm_group E] [module 𝕜 E] {A B : set E} {x : E}
lemma is_extreme.convex_diff (hA : convex 𝕜 A) (hAB : is_extreme 𝕜 A B) :
convex 𝕜 (A \ B) :=
convex_iff_open_segment_subset.2 (λ x₁ ⟨hx₁A, hx₁B⟩ x₂ ⟨hx₂A, hx₂B⟩ x hx,
⟨hA.open_segment_subset hx₁A hx₂A hx, λ hxB, hx₁B (hAB.2 hx₁A hx₂A hxB hx).1⟩)
end ordered_semiring
section linear_ordered_ring
variables {𝕜} [linear_ordered_ring 𝕜] [add_comm_group E] [module 𝕜 E]
variables [densely_ordered 𝕜] [no_zero_smul_divisors 𝕜 E] {A B : set E} {x : E}
/-- A useful restatement using `segment`: `x` is an extreme point iff the only (closed) segments
that contain it are those with `x` as one of their endpoints. -/
lemma mem_extreme_points_iff_forall_segment :
x ∈ A.extreme_points 𝕜 ↔ x ∈ A ∧ ∀ (x₁ x₂ ∈ A), x ∈ segment 𝕜 x₁ x₂ → x₁ = x ∨ x₂ = x :=
begin
refine and_congr_right (λ hxA, forall₄_congr $ λ x₁ h₁ x₂ h₂, _),
split,
{ rw ← insert_endpoints_open_segment,
rintro H (rfl|rfl|hx),
exacts [or.inl rfl, or.inr rfl, or.inl $ (H hx).1] },
{ intros H hx,
rcases H (open_segment_subset_segment _ _ _ hx) with rfl | rfl,
exacts [⟨rfl, (left_mem_open_segment_iff.1 hx).symm⟩, ⟨right_mem_open_segment_iff.1 hx, rfl⟩] }
end
lemma convex.mem_extreme_points_iff_convex_diff (hA : convex 𝕜 A) :
x ∈ A.extreme_points 𝕜 ↔ x ∈ A ∧ convex 𝕜 (A \ {x}) :=
begin
use λ hx, ⟨hx.1, (mem_extreme_points_iff_extreme_singleton.1 hx).convex_diff hA⟩,
rintro ⟨hxA, hAx⟩,
refine mem_extreme_points_iff_forall_segment.2 ⟨hxA, λ x₁ hx₁ x₂ hx₂ hx, _⟩,
rw convex_iff_segment_subset at hAx,
by_contra' h,
exact (hAx ⟨hx₁, λ hx₁, h.1 (mem_singleton_iff.2 hx₁)⟩
⟨hx₂, λ hx₂, h.2 (mem_singleton_iff.2 hx₂)⟩ hx).2 rfl,
end
lemma convex.mem_extreme_points_iff_mem_diff_convex_hull_diff (hA : convex 𝕜 A) :
x ∈ A.extreme_points 𝕜 ↔ x ∈ A \ convex_hull 𝕜 (A \ {x}) :=
by rw [hA.mem_extreme_points_iff_convex_diff, hA.convex_remove_iff_not_mem_convex_hull_remove,
mem_diff]
lemma extreme_points_convex_hull_subset :
(convex_hull 𝕜 A).extreme_points 𝕜 ⊆ A :=
begin
rintro x hx,
rw (convex_convex_hull 𝕜 _).mem_extreme_points_iff_convex_diff at hx,
by_contra,
exact (convex_hull_min (subset_diff.2 ⟨subset_convex_hull 𝕜 _, disjoint_singleton_right.2 h⟩) hx.2
hx.1).2 rfl,
apply_instance
end
end linear_ordered_ring
|
3172f0623cd9c59807c522cf3c1aa865e5d0d7ce
|
7da5ceac20aaab989eeb795a4be9639982e7b35a
|
/src/data/dvector.lean
|
3677940aa0d79f42de34b42f77fa0d4509713782
|
[
"MIT"
] |
permissive
|
formalabstracts/formalabstracts
|
46c2f1b3a172e62ca6ffeb46fbbdf1705718af49
|
b0173da1af45421239d44492eeecd54bf65ee0f6
|
refs/heads/master
| 1,606,896,370,374
| 1,572,988,776,000
| 1,572,988,776,000
| 96,763,004
| 165
| 28
| null | 1,555,709,319,000
| 1,499,680,948,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 10,601
|
lean
|
import tactic.tidy data.pnat
universes u v w
@[derive decidable_eq]inductive dvector (α : Type u) : ℕ → Type u
| nil {} : dvector 0
| cons : ∀{n} (x : α) (xs : dvector n), dvector (n+1)
@[derive decidable_eq]inductive dfin : ℕ → Type
| fz {n} : dfin (n+1)
| fs {n} : dfin n → dfin (n+1)
namespace dfin
@[simp] def to_nat : ∀ {n}, dfin n → ℕ
| _ fz := 0
| _ (fs n) := n.to_nat + 1
theorem to_nat_lt : ∀ {n} (x : dfin n), x.to_nat < n
| _ fz := nat.succ_pos _
| _ (fs n) := nat.succ_lt_succ (to_nat_lt n)
def to_fin : ∀ {n}, dfin n → fin n
| 0 x := by {cases x}
| (n+1) x := ⟨to_nat x, by apply to_nat_lt⟩
@[extensionality] theorem to_nat_inj {n} {x y : dfin n} (e : x.to_nat = y.to_nat) : x = y :=
by induction x; cases y; injection e with e; [refl, rw x_ih e]
def raise : ∀ {n}, dfin n → dfin (n+1)
| _ fz := fz
| _ (fs n) := fs n.raise
def elim0 {α : Sort*} : dfin 0 → α.
def cast_le : ∀ {m n}, n ≤ m → dfin n → dfin m
| 0 n h x := false.elim (by cases h; cases x)
| (m+1) _ _ fz := fz
| (m+1) _ h (@fs n s) :=
fs (s.cast_le (nat.le_of_succ_le_succ h))
@[simp] theorem cast_le_to_nat : ∀ {m n}
(h : n ≤ m) (x : dfin n), (x.cast_le h).to_nat = x.to_nat
| 0 n h x := false.elim (by cases h; cases x)
| (m+1) _ _ fz := rfl
| (m+1) _ h (@fs n s) :=
congr_arg (+1) (cast_le_to_nat _ _)
theorem cast_le_rfl {n} (x : dfin n) : x.cast_le (le_refl _) = x :=
to_nat_inj (by simp)
def last : ∀ n, dfin (n+1)
| 0 := fz
| (n+1) := fs (last n)
def of_nat : ∀ n, ℕ → option (dfin n)
| 0 m := none
| (n+1) 0 := some fz
| (n+1) (m+1) := fs <$> of_nat n m
def of_nat_lt : ∀ {n} m, m < n → dfin n
| 0 m h := (nat.not_lt_zero _ h).elim
| (n+1) 0 _ := fz
| (n+1) (m+1) h := fs (of_nat_lt m (nat.lt_of_succ_lt_succ h))
@[simp] theorem of_nat_lt_to_nat : ∀ {n m} (h : m < n),
(of_nat_lt m h).to_nat = m
| 0 m h := (nat.not_lt_zero _ h).elim
| (n+1) 0 _ := rfl
| (n+1) (m+1) h := congr_arg (+1)
(of_nat_lt_to_nat (nat.lt_of_succ_lt_succ h))
def of_fin : ∀{n}, fin n → dfin n
| n ⟨val, h⟩ := of_nat_lt val h
meta instance reflect : ∀ n, has_reflect (dfin n)
| _ fz := `(fz)
| _ (fs n) := `(fs).subst (reflect _ n)
def fz' : Π{n : ℕ+}, dfin n
| ⟨0, h⟩ := false.elim (lt_irrefl 0 h)
| ⟨k+1, h⟩ := fz
end dfin
meta def tactic.interactive.to_dfin (m : ℕ) : tactic unit := do
n ← do {
`(dfin %%n) ← tactic.target | return (m+1),
tactic.eval_expr ℕ n },
m ← dfin.of_nat n m,
tactic.exact (reflect m)
namespace dfin
instance has_zero_dfin {n} : has_zero $ dfin (n+1) := ⟨fz⟩
instance has_one_dfin : ∀ {n}, has_one (dfin (nat.succ n))
| 0 := ⟨fz⟩
| (n+1) := ⟨fs fz⟩
instance has_zero_dfin_pnat {n : ℕ+} : has_zero (dfin n) := ⟨fz'⟩
instance has_one_dfin_pnat : Π{n : ℕ+}, has_one (dfin n)
| ⟨0, h⟩ := false.elim (lt_irrefl 0 h)
| ⟨1, h⟩ := ⟨fz⟩
| ⟨n+2, h⟩ := ⟨fs fz⟩
instance has_add_dfin {n} : has_add (dfin(n)) :=
⟨λ x y, of_fin $ (to_fin x) + (to_fin y)⟩
def max : ∀{n}, dfin n → dfin n → dfin n
| 0 x y := by cases x
| (n+1) (fz) y := y
| (n+1) x (fz) := x
| (n+1) (fs k₁) (fs k₂) := fs $ max k₁ k₂
end dfin
local notation h :: t := dvector.cons h t
local notation `[` l:(foldr `, ` (h t, dvector.cons h t) dvector.nil `]`) := l
namespace dvector
variables {α : Type u} {β : Type v} {γ : Type w} {n : ℕ}
@[simp] protected def zero_eq : ∀(xs : dvector α 0), xs = []
| [] := rfl
@[simp] protected def concat : ∀{n : ℕ} (xs : dvector α n) (x : α), dvector α (n+1)
| _ [] x' := [x']
| _ (x::xs) x' := x::concat xs x'
@[simp] protected def nth : ∀{n : ℕ} (xs : dvector α n) (m : ℕ) (h : m < n), α
| _ [] m h := by exfalso; exact nat.not_lt_zero m h
| _ (x::xs) 0 h := x
| _ (x::xs) (m+1) h := nth xs m (lt_of_add_lt_add_right h)
@[reducible, simp] protected def last {n : ℕ} (xs : dvector α (n+1)) : α :=
xs.nth n (by {repeat{constructor}})
protected def nth' {n : ℕ} (xs : dvector α n) (m : fin n) : α :=
xs.nth m.1 m.2
protected def nth'' : ∀ {n : ℕ} (xs : dvector α n) (m : dfin n), α
| _ (x::xs) dfin.fz := x
| _ (x::xs) (dfin.fs (m)) := nth'' xs m
protected def mem : ∀{n : ℕ} (x : α) (xs : dvector α n), Prop
| _ x [] := false
| _ x (x'::xs) := x = x' ∨ mem x xs
instance {n : ℕ} : has_mem α (dvector α n) := ⟨dvector.mem⟩
protected def to_set : ∀{n : ℕ}, dvector α n → set α :=
λ n xs, λ a, dvector.mem a xs
protected def pmem : ∀{n : ℕ} (x : α) (xs : dvector α n), Type
| _ x [] := empty
| _ x (x'::xs) := psum (x = x') (pmem x xs)
protected def mem_of_pmem : ∀{n : ℕ} {x : α} {xs : dvector α n} (hx : xs.pmem x), x ∈ xs
| _ x [] hx := by cases hx
| _ x (x'::xs) hx := by cases hx;[exact or.inl hx, exact or.inr (mem_of_pmem hx)]
@[simp] protected def map (f : α → β) : ∀{n : ℕ}, dvector α n → dvector β n
| _ [] := []
| _ (x::xs) := f x :: map xs
@[simp] protected lemma map_id : ∀{n : ℕ} (xs : dvector α n), xs.map (λx, x) = xs
| _ [] := rfl
| _ (x::xs) := by dsimp; simp*
@[simp] protected lemma map_congr_pmem {f g : α → β} :
∀{n : ℕ} {xs : dvector α n} (h : ∀x, xs.pmem x → f x = g x), xs.map f = xs.map g
| _ [] h := rfl
| _ (x::xs) h :=
begin
dsimp, congr' 1, exact h x (psum.inl rfl), apply map_congr_pmem,
intros x hx, apply h, right, exact hx
end
@[simp] protected lemma map_congr_mem {f g : α → β} {n : ℕ} {xs : dvector α n}
(h : ∀x, x ∈ xs → f x = g x) : xs.map f = xs.map g :=
dvector.map_congr_pmem $ λx hx, h x $ dvector.mem_of_pmem hx
@[simp] protected lemma map_congr {f g : α → β} (h : ∀x, f x = g x) :
∀{n : ℕ} (xs : dvector α n), xs.map f = xs.map g
| _ [] := rfl
| _ (x::xs) := by dsimp; simp*
@[simp] protected lemma map_map (g : β → γ) (f : α → β): ∀{n : ℕ} (xs : dvector α n),
(xs.map f).map g = xs.map (λx, g (f x))
| _ [] := rfl
| _ (x::xs) := by dsimp; simp*
protected lemma map_inj {f : α → β} (hf : ∀{{x x'}}, f x = f x' → x = x') {n : ℕ}
{xs xs' : dvector α n} (h : xs.map f = xs'.map f) : xs = xs' :=
begin
induction xs; cases xs', refl, simp at h, congr;[apply hf, apply xs_ih]; simp [h]
end
@[simp] protected lemma map_concat (f : α → β) : ∀{n : ℕ} (xs : dvector α n) (x : α),
(xs.concat x).map f = (xs.map f).concat (f x)
| _ [] x' := by refl
| _ (x::xs) x' := by dsimp; congr' 1; exact map_concat xs x'
@[simp] protected lemma map_nth (f : α → β) : ∀{n : ℕ} (xs : dvector α n) (m : ℕ) (h : m < n),
(xs.map f).nth m h = f (xs.nth m h)
| _ [] m h := by exfalso; exact nat.not_lt_zero m h
| _ (x::xs) 0 h := by refl
| _ (x::xs) (m+1) h := by exact map_nth xs m _
protected lemma concat_nth : ∀{n : ℕ} (xs : dvector α n) (x : α) (m : ℕ) (h' : m < n+1)
(h : m < n), (xs.concat x).nth m h' = xs.nth m h
| _ [] x' m h' h := by exfalso; exact nat.not_lt_zero m h
| _ (x::xs) x' 0 h' h := by refl
| _ (x::xs) x' (m+1) h' h := by dsimp; exact concat_nth xs x' m _ _
@[simp] protected lemma concat_nth_last : ∀{n : ℕ} (xs : dvector α n) (x : α) (h : n < n+1),
(xs.concat x).nth n h = x
| _ [] x' h := by refl
| _ (x::xs) x' h := by dsimp; exact concat_nth_last xs x' _
@[simp] protected lemma concat_nth_last' : ∀{n : ℕ} (xs : dvector α n) (x : α) (h : n < n+1),
(xs.concat x).last = x
:= by apply dvector.concat_nth_last
@[simp] protected def append : ∀{n m : ℕ} (xs : dvector α n) (xs' : dvector α m), dvector α (m+n)
| _ _ [] xs := xs
| _ _ (x'::xs) xs' := x'::append xs xs'
@[simp]protected def insert : ∀{n : ℕ} (x : α) (k : ℕ) (xs : dvector α n), dvector α (n+1)
| n x 0 xs := (x::xs)
| 0 x k xs := (x::xs)
| (n+1) x (k+1) (y::ys) := (y::insert x k ys)
@[simp] protected lemma insert_at_zero : ∀{n : ℕ} (x : α) (xs : dvector α n), dvector.insert x 0 xs = (x::xs) := by {intros, induction n; refl} -- why doesn't {intros, refl} work?
@[simp] protected lemma insert_nth : ∀{n : ℕ} (x : α) (k : ℕ) (xs : dvector α n) (h : k < n+1), (dvector.insert x k xs).nth k h = x
| 0 x k xs h := by {cases h, refl, exfalso, apply nat.not_lt_zero, exact h_a}
| n x 0 xs h := by {induction n, refl, simp*}
| (n+1) x (k+1) (y::ys) h := by simp*
protected lemma insert_cons {n k} {x y : α} {v : dvector α n} : (x::(v.insert y k)) = (x::v).insert y (k+1) :=
by {induction v, refl, simp*}
/- Given a proof that n ≤ m, return the nth initial segment of -/
@[simp]protected def trunc : ∀ (n) {m : ℕ} (h : n ≤ m) (xs : dvector α m), dvector α n
| 0 0 _ xs := []
| 0 (m+1) _ xs := []
| (n+1) 0 _ xs := by {exfalso, cases _x}
| (n+1) (m+1) h (x::xs) := (x::@trunc n m (nat.le_of_succ_le_succ h) xs)
@[simp]protected lemma trunc_n_n {n : ℕ} {h : n ≤ n} {v : dvector α n} : dvector.trunc n h v = v :=
by {induction v, refl, solve_by_elim}
@[simp]protected lemma trunc_0_n {n : ℕ} {h : 0 ≤ n} {v : dvector α n} : dvector.trunc 0 h v = [] :=
by {induction v, refl, simp}
@[simp]protected lemma trunc_nth {n m l: ℕ} {h : n ≤ m} {h' : l < n} {v : dvector α m} : (v.trunc n h).nth l h' = v.nth l (lt_of_lt_of_le h' h) :=
begin
induction m generalizing n l, have : n = 0, by cases h; simp, subst this, cases h',
cases n; cases l, {cases h'}, {cases h'}, {cases v, refl},
cases v, simp only [m_ih, dvector.nth, dvector.trunc]
end
protected lemma nth_irrel1 : ∀{n k : ℕ} {h : k < n + 1} {h' : k < n + 1 + 1} (v : dvector α (n+1)) (x : α),
(x :: (v.trunc n (nat.le_succ n))).nth k h = (x::v).nth k h' :=
by {intros, apply @dvector.trunc_nth _ _ _ _ (nat.le_succ _) h (x::v)}
protected def cast {n m} (p : n = m) : dvector α n → dvector α m :=
by subst p; exact id
@[simp] protected lemma cast_irrel {n m} {p p' : n = m} {v : dvector α n} : v.cast p = v.cast p' := by refl
@[simp] protected lemma cast_rfl {n m} {p : n = m} {q : m = n} {v : dvector α n} : (v.cast p).cast q = v := by {subst p, refl}
protected lemma cast_hrfl {n m} {p : n = m} {v : dvector α n} : v.cast p == v :=
by subst p; refl
@[simp] protected lemma cast_trans {n m o} {p : n = m} {q : m = o} {v : dvector α n} : (v.cast p).cast q = v.cast (trans p q) := by subst p; subst q; refl
@[simp] protected def remove_mth : ∀ {n : ℕ} (m : ℕ) (xs : dvector α (n+1)) , dvector α (n)
| 0 _ _ := dvector.nil
| n 0 (dvector.cons y ys) := ys
| (n+1) (k+1) (dvector.cons y ys) := dvector.cons y (remove_mth k ys)
end dvector
|
ed64dbcc2b360726ca6c67f93d8f81983288e813
|
c055f4b7c29cf1aac2223bd8c1ac8d181a7c6447
|
/src/categories/isomorphism.lean
|
d97fc9a6351a6f5928cb8b47e07cd2448b4e585c
|
[
"Apache-2.0"
] |
permissive
|
rwbarton/lean-category-theory-pr
|
77207b6674eeec1e258ec85dea58f3bff8d27065
|
591847d70c6a11c4d5561cd0eaf69b1fe85a70ab
|
refs/heads/master
| 1,584,595,111,303
| 1,528,029,041,000
| 1,528,029,041,000
| 135,919,126
| 0
| 0
| null | 1,528,041,805,000
| 1,528,041,805,000
| null |
UTF-8
|
Lean
| false
| false
| 8,108
|
lean
|
-- Copyright (c) 2017 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Tim Baumann, Stephen Morgan, Scott Morrison
import .category
import .functor
open categories
open categories.functor
universes u v
namespace categories.isomorphism
structure Isomorphism {C : Type u} [category.{u v} C] (X Y : C) :=
(morphism : X ⟶ Y)
(inverse : Y ⟶ X)
(witness_1 : morphism ≫ inverse = 𝟙 X . obviously)
(witness_2 : inverse ≫ morphism = 𝟙 Y . obviously)
-- structure Isomorphism_small {C : Type u} [small_category C] (X Y : C) extends Isomorphism.{u u} X Y.
-- structure Isomorphism_large {C : Type (u+1)} [category C] (X Y : C) extends Isomorphism.{u+1 u} X Y.
make_lemma Isomorphism.witness_1
make_lemma Isomorphism.witness_2
attribute [simp,ematch] Isomorphism.witness_1_lemma Isomorphism.witness_2_lemma
infixr ` ≅ `:10 := Isomorphism -- type as \cong
-- infixr ` ≅ `:11 := Isomorphism_small
-- infixr ` ≅ `:12 := Isomorphism_large
set_option pp.universes true
variable {C : Type u}
variable [C_cat : category.{u v} C]
include C_cat
variables {X Y Z : C}
-- These lemmas are quite common, to help us avoid having to muck around with associativity.
-- If anyone has a suggestion for automating them away, I would be very appreciative.
@[simp,ematch] lemma Isomorphism.witness_1_assoc_lemma (I : Isomorphism X Y) (f : X ⟶ Z) : I.morphism ≫ I.inverse ≫ f = f :=
begin
-- `obviously'` says:
erw [←category.associativity_lemma, Isomorphism.witness_1_lemma, category.left_identity_lemma]
end
@[simp,ematch] lemma Isomorphism.witness_2_assoc_lemma (I : Isomorphism X Y) (f : Y ⟶ Z) : I.inverse ≫ I.morphism ≫ f = f :=
begin
-- `obviously'` says:
erw [←category.associativity_lemma, Isomorphism.witness_2_lemma, category.left_identity_lemma]
end
instance Isomorphism_coercion_to_morphism : has_coe (Isomorphism.{u v} X Y) (X ⟶ Y) :=
{ coe := Isomorphism.morphism }
definition Isomorphism.refl (X : C) : Isomorphism X X :=
{ morphism := category.identity X,
inverse := category.identity X,
witness_1 := begin
-- `obviously'` says:
simp
end,
witness_2 := begin
-- `obviously'` says:
simp
end }
@[simp,ematch] lemma Isomorphism.refl.morphism (X : C) : (Isomorphism.refl X).morphism = 𝟙 X := by refl
@[simp,ematch] lemma Isomorphism.refl.inverse (X : C) : (Isomorphism.refl X).inverse = 𝟙 X := by refl
definition Isomorphism.trans (α : Isomorphism X Y) (β : Isomorphism Y Z) : Isomorphism X Z :=
{ morphism := α.morphism ≫ β.morphism,
inverse := β.inverse ≫ α.inverse,
witness_1 := begin
-- `obviously'` says:
simp
end,
witness_2 := begin
-- `obviously'` says:
simp
end }
infixr ` ♢ `:80 := Isomorphism.trans -- type as \diamonds
@[simp,ematch] lemma Isomorphism.trans.morphism (α : Isomorphism X Y) (β : Isomorphism Y Z) : (α ♢ β).morphism = α.morphism ≫ β.morphism := by refl
@[simp,ematch] lemma Isomorphism.trans.inverse (α : Isomorphism X Y) (β : Isomorphism Y Z) : (α ♢ β).inverse = β.inverse ≫ α.inverse := by refl
@[applicable] lemma Isomorphism_pointwise_equal
(α β : Isomorphism X Y)
(w : α.morphism = β.morphism) : α = β :=
begin
induction α with f g wα1 wα2,
induction β with h k wβ1 wβ2,
simp at w,
have p : g = k,
begin
induction w,
dsimp at *,
rw [← category.left_identity_lemma C k, ←wα2, category.associativity_lemma, wβ1, category.right_identity_lemma]
end,
-- `obviously'` says:
induction p, induction w,
refl
end
definition Isomorphism.symm (I : Isomorphism X Y) : Isomorphism Y X :=
{ morphism := I.inverse,
inverse := I.morphism,
witness_1 := begin
-- `obviously'` says:
simp
end,
witness_2 := begin
-- `obviously'` says:
simp
end }
class is_Isomorphism (f : X ⟶ Y) :=
(inverse : Y ⟶ X)
(witness_1 : f ≫ inverse = 𝟙 X . obviously)
(witness_2 : inverse ≫ f = 𝟙 Y . obviously)
make_lemma is_Isomorphism.witness_1
make_lemma is_Isomorphism.witness_2
attribute [simp,ematch] is_Isomorphism.witness_1_lemma is_Isomorphism.witness_2_lemma
instance is_Isomorphism_of_identity (X : C) : is_Isomorphism (𝟙 X) :=
{ inverse := 𝟙 X }
instance is_Isomorphism_of_Isomorphism (f : Isomorphism X Y) : is_Isomorphism f.morphism :=
{ inverse := f.inverse,
witness_1 := begin
-- `obviously'` says:
simp
end,
witness_2 := begin
-- `obviously'` says:
simp
end }
instance is_Isomorphism_of_Isomorphism_inverse (f : Isomorphism X Y) : is_Isomorphism f.inverse :=
{ inverse := f.morphism,
witness_1 := begin
-- `obviously'` says:
simp
end,
witness_2 := begin
-- `obviously'` says:
simp
end }
instance (f : X ⟶ Y): has_coe (is_Isomorphism f) (X ⟶ Y) :=
{ coe := λ _, f }
class Epimorphism (f : X ⟶ Y) :=
(left_cancellation : Π {Z : C} (g h : Y ⟶ Z) (w : f ≫ g = f ≫ h), g = h)
class Monomorphism (f : X ⟶ Y) :=
(right_cancellation : Π {Z : C} (g h : Z ⟶ X) (w : g ≫ f = h ≫ f), g = h)
instance Epimorphism_of_Isomorphism (f : X ⟶ Y) [is_Isomorphism f] : Epimorphism f :=
{ left_cancellation := begin
intros,
rw [←category.left_identity_lemma C g, ←category.left_identity_lemma C h],
rw [← is_Isomorphism.witness_2_lemma f],
rewrite_search_using `ematch, -- PROJECT Scott is thinking about completing the automation here.
end }
instance Monomorphism_of_Isomorphism (f : X ⟶ Y) [is_Isomorphism f] : Monomorphism f :=
{ right_cancellation := begin
intros,
rw [←category.right_identity_lemma C g, ←category.right_identity_lemma C h],
rw [← is_Isomorphism.witness_1_lemma f],
rewrite_search_using `ematch,
end }
@[simp] lemma cancel_Epimorphism (f : X ⟶ Y) [Epimorphism f] (g h : Y ⟶ Z) : (f ≫ g = f ≫ h) ↔ g = h :=
⟨ λ p, Epimorphism.left_cancellation g h p, begin
-- `obviously'` says:
intros,
induction a,
refl
end ⟩
@[simp] lemma cancel_Monomorphism (f : X ⟶ Y) [Monomorphism f] (g h : Z ⟶ X) : (g ≫ f = h ≫ f) ↔ g = h :=
⟨ λ p, Monomorphism.right_cancellation g h p, begin
-- `obviously'` says:
intros,
induction a,
refl
end ⟩
end categories.isomorphism
namespace categories.functor
universes u₁ v₁ u₂ v₂
variables {C : Type u₁} {D : Type u₂}
variables [𝒞 : category.{u₁ v₁} C]
variables [𝒟 : category.{u₂ v₂} D]
include 𝒞 𝒟
definition Functor.onIsomorphisms (F : C ↝ D) {X Y : C} (i : X ≅ Y) : (F +> X) ≅ (F +> Y) :=
{ morphism := F &> i.morphism,
inverse := F &> i.inverse }
@[simp,ematch] lemma Functor.onIsomorphisms.morphism (F : C ↝ D) {X Y : C} (i : X ≅ Y) : (F.onIsomorphisms i).morphism = F &> i.morphism := by refl
@[simp,ematch] lemma Functor.onIsomorphisms.inverse (F : C ↝ D) {X Y : C} (i : X ≅ Y) : (F.onIsomorphisms i).morphism = F &> i.morphism := by refl
end categories.functor
|
3da194858ff39f8d007659fb58a61a69b6902e4b
|
957a80ea22c5abb4f4670b250d55534d9db99108
|
/library/init/meta/lean/parser.lean
|
7ea5fde13e7c4721a9b005722d133a783e77131f
|
[
"Apache-2.0"
] |
permissive
|
GaloisInc/lean
|
aa1e64d604051e602fcf4610061314b9a37ab8cd
|
f1ec117a24459b59c6ff9e56a1d09d9e9e60a6c0
|
refs/heads/master
| 1,592,202,909,807
| 1,504,624,387,000
| 1,504,624,387,000
| 75,319,626
| 2
| 1
|
Apache-2.0
| 1,539,290,164,000
| 1,480,616,104,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 3,158
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sebastian Ullrich
-/
prelude
import init.meta.tactic
namespace lean
-- TODO: make inspectable (and pure)
meta constant parser_state : Type
meta constant parser_state.env : parser_state → environment
meta constant parser_state.options : parser_state → options
meta constant parser_state.cur_pos : parser_state → pos
@[reducible] meta def parser := interaction_monad parser_state
@[reducible] meta def parser_result := interaction_monad.result parser_state
open interaction_monad
open interaction_monad.result
namespace parser
variable {α : Type}
meta constant set_env : environment → parser unit
/-- Make sure the next token is an identifier, consume it, and
produce the quoted name `t, where t is the identifier. -/
meta constant ident : parser name
/-- Make sure the next token is a small nat, consume it, and produce it -/
meta constant small_nat : parser nat
/-- Check that the next token is `tk` and consume it. `tk` must be a registered token. -/
meta constant tk (tk : string) : parser unit
/-- Parse an unelaborated expression using the given right-binding power. -/
protected meta constant pexpr (rbp := std.prec.max) : parser pexpr
/-- Do not report info from content parsed by `p`. -/
meta constant skip_info (p : parser α) : parser α
/-- Set goal info position of content parsed by `p` to current position. Nested calls take precedence. -/
meta constant set_goal_info_pos (p : parser α) : parser α
/-- Return the current parser position without consuming any input. -/
meta def cur_pos : parser pos := λ s, success (parser_state.cur_pos s) s
/-- Temporarily replace input of the parser state, run `p`, and return remaining input. -/
meta constant with_input (p : parser α) (input : string) : parser (α × string)
/-- Parse a top-level command. -/
meta constant command_like : parser unit
meta def parser_orelse (p₁ p₂ : parser α) : parser α :=
λ s,
let pos₁ := parser_state.cur_pos s in
result.cases_on (p₁ s)
success
(λ e₁ ref₁ s',
let pos₂ := parser_state.cur_pos s' in
if pos₁ ≠ pos₂ then
exception e₁ ref₁ s'
else result.cases_on (p₂ s)
success
exception)
meta instance : alternative parser :=
{ interaction_monad.monad with
failure := @interaction_monad.failed _,
orelse := @parser_orelse }
-- TODO: move
meta def {u v} many {f : Type u → Type v} [monad f] [alternative f] {a : Type u} : f a → f (list a)
| x := (do y ← x,
ys ← many x,
return $ y::ys) <|> pure list.nil
local postfix `?`:100 := optional
local postfix `*`:100 := many
meta def sep_by : parser unit → parser α → parser (list α)
| s p := (list.cons <$> p <*> (s *> p)*) <|> return []
meta def tactic_to_parser : tactic α → parser α :=
λ t s, match t (tactic_state.mk_empty s.env s.options) with
| success x ts := (set_env ts.env >> pure x) s
| exception f p _ := exception f p s
end
meta instance : has_coe (tactic α) (parser α) :=
⟨tactic_to_parser⟩
end parser
end lean
|
5873f911aad8c5cd1cb864fb049ebf8db2c5065f
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/category_theory/adjunction/basic.lean
|
be7efd850e1dfaf2de5b7c2850c7d31020204947
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 17,498
|
lean
|
/-
Copyright (c) 2019 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Johan Commelin, Bhavik Mehta
-/
import category_theory.equivalence
import data.equiv.basic
namespace category_theory
open category
universes v₁ v₂ v₃ u₁ u₂ u₃ -- declare the `v`'s first; see `category_theory.category` for an explanation
local attribute [elab_simple] whisker_left whisker_right
variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D]
/--
`F ⊣ G` represents the data of an adjunction between two functors
`F : C ⥤ D` and `G : D ⥤ C`. `F` is the left adjoint and `G` is the right adjoint.
To construct an `adjunction` between two functors, it's often easier to instead use the
constructors `mk_of_hom_equiv` or `mk_of_unit_counit`. To construct a left adjoint,
there are also constructors `left_adjoint_of_equiv` and `adjunction_of_equiv_left` (as
well as their duals) which can be simpler in practice.
Uniqueness of adjoints is shown in `category_theory.adjunction.opposites`.
See https://stacks.math.columbia.edu/tag/0037.
-/
structure adjunction (F : C ⥤ D) (G : D ⥤ C) :=
(hom_equiv : Π (X Y), (F.obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
(unit : 𝟭 C ⟶ F.comp G)
(counit : G.comp F ⟶ 𝟭 D)
(hom_equiv_unit' : Π {X Y f}, (hom_equiv X Y) f = (unit : _ ⟶ _).app X ≫ G.map f . obviously)
(hom_equiv_counit' : Π {X Y g}, (hom_equiv X Y).symm g = F.map g ≫ counit.app Y . obviously)
infix ` ⊣ `:15 := adjunction
/-- A class giving a chosen right adjoint to the functor `left`. -/
class is_left_adjoint (left : C ⥤ D) :=
(right : D ⥤ C)
(adj : left ⊣ right)
/-- A class giving a chosen left adjoint to the functor `right`. -/
class is_right_adjoint (right : D ⥤ C) :=
(left : C ⥤ D)
(adj : left ⊣ right)
/-- Extract the left adjoint from the instance giving the chosen adjoint. -/
def left_adjoint (R : D ⥤ C) [is_right_adjoint R] : C ⥤ D :=
is_right_adjoint.left R
/-- Extract the right adjoint from the instance giving the chosen adjoint. -/
def right_adjoint (L : C ⥤ D) [is_left_adjoint L] : D ⥤ C :=
is_left_adjoint.right L
/-- The adjunction associated to a functor known to be a left adjoint. -/
def adjunction.of_left_adjoint (left : C ⥤ D) [is_left_adjoint left] :
adjunction left (right_adjoint left) :=
is_left_adjoint.adj
/-- The adjunction associated to a functor known to be a right adjoint. -/
def adjunction.of_right_adjoint (right : C ⥤ D) [is_right_adjoint right] :
adjunction (left_adjoint right) right :=
is_right_adjoint.adj
namespace adjunction
restate_axiom hom_equiv_unit'
restate_axiom hom_equiv_counit'
attribute [simp, priority 10] hom_equiv_unit hom_equiv_counit
section
variables {F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X' X : C} {Y Y' : D}
@[simp, priority 10] lemma hom_equiv_naturality_left_symm (f : X' ⟶ X) (g : X ⟶ G.obj Y) :
(adj.hom_equiv X' Y).symm (f ≫ g) = F.map f ≫ (adj.hom_equiv X Y).symm g :=
by rw [hom_equiv_counit, F.map_comp, assoc, adj.hom_equiv_counit.symm]
@[simp] lemma hom_equiv_naturality_left (f : X' ⟶ X) (g : F.obj X ⟶ Y) :
(adj.hom_equiv X' Y) (F.map f ≫ g) = f ≫ (adj.hom_equiv X Y) g :=
by rw [← equiv.eq_symm_apply]; simp [-hom_equiv_unit]
@[simp, priority 10] lemma hom_equiv_naturality_right (f : F.obj X ⟶ Y) (g : Y ⟶ Y') :
(adj.hom_equiv X Y') (f ≫ g) = (adj.hom_equiv X Y) f ≫ G.map g :=
by rw [hom_equiv_unit, G.map_comp, ← assoc, ←hom_equiv_unit]
@[simp] lemma hom_equiv_naturality_right_symm (f : X ⟶ G.obj Y) (g : Y ⟶ Y') :
(adj.hom_equiv X Y').symm (f ≫ G.map g) = (adj.hom_equiv X Y).symm f ≫ g :=
by rw [equiv.symm_apply_eq]; simp [-hom_equiv_counit]
@[simp] lemma left_triangle :
(whisker_right adj.unit F) ≫ (whisker_left F adj.counit) = nat_trans.id _ :=
begin
ext, dsimp,
erw [← adj.hom_equiv_counit, equiv.symm_apply_eq, adj.hom_equiv_unit],
simp
end
@[simp] lemma right_triangle :
(whisker_left G adj.unit) ≫ (whisker_right adj.counit G) = nat_trans.id _ :=
begin
ext, dsimp,
erw [← adj.hom_equiv_unit, ← equiv.eq_symm_apply, adj.hom_equiv_counit],
simp
end
@[simp, reassoc] lemma left_triangle_components :
F.map (adj.unit.app X) ≫ adj.counit.app (F.obj X) = 𝟙 (F.obj X) :=
congr_arg (λ (t : nat_trans _ (𝟭 C ⋙ F)), t.app X) adj.left_triangle
@[simp, reassoc] lemma right_triangle_components {Y : D} :
adj.unit.app (G.obj Y) ≫ G.map (adj.counit.app Y) = 𝟙 (G.obj Y) :=
congr_arg (λ (t : nat_trans _ (G ⋙ 𝟭 C)), t.app Y) adj.right_triangle
@[simp, reassoc] lemma counit_naturality {X Y : D} (f : X ⟶ Y) :
F.map (G.map f) ≫ (adj.counit).app Y = (adj.counit).app X ≫ f :=
adj.counit.naturality f
@[simp, reassoc] lemma unit_naturality {X Y : C} (f : X ⟶ Y) :
(adj.unit).app X ≫ G.map (F.map f) = f ≫ (adj.unit).app Y :=
(adj.unit.naturality f).symm
lemma hom_equiv_apply_eq {A : C} {B : D} (f : F.obj A ⟶ B) (g : A ⟶ G.obj B) :
adj.hom_equiv A B f = g ↔ f = (adj.hom_equiv A B).symm g :=
⟨λ h, by {cases h, simp}, λ h, by {cases h, simp}⟩
lemma eq_hom_equiv_apply {A : C} {B : D} (f : F.obj A ⟶ B) (g : A ⟶ G.obj B) :
g = adj.hom_equiv A B f ↔ (adj.hom_equiv A B).symm g = f :=
⟨λ h, by {cases h, simp}, λ h, by {cases h, simp}⟩
end
end adjunction
namespace adjunction
structure core_hom_equiv (F : C ⥤ D) (G : D ⥤ C) :=
(hom_equiv : Π (X Y), (F.obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
(hom_equiv_naturality_left_symm' : Π {X' X Y} (f : X' ⟶ X) (g : X ⟶ G.obj Y),
(hom_equiv X' Y).symm (f ≫ g) = F.map f ≫ (hom_equiv X Y).symm g . obviously)
(hom_equiv_naturality_right' : Π {X Y Y'} (f : F.obj X ⟶ Y) (g : Y ⟶ Y'),
(hom_equiv X Y') (f ≫ g) = (hom_equiv X Y) f ≫ G.map g . obviously)
namespace core_hom_equiv
restate_axiom hom_equiv_naturality_left_symm'
restate_axiom hom_equiv_naturality_right'
attribute [simp, priority 10] hom_equiv_naturality_left_symm hom_equiv_naturality_right
variables {F : C ⥤ D} {G : D ⥤ C} (adj : core_hom_equiv F G) {X' X : C} {Y Y' : D}
@[simp] lemma hom_equiv_naturality_left (f : X' ⟶ X) (g : F.obj X ⟶ Y) :
(adj.hom_equiv X' Y) (F.map f ≫ g) = f ≫ (adj.hom_equiv X Y) g :=
by rw [← equiv.eq_symm_apply]; simp
@[simp] lemma hom_equiv_naturality_right_symm (f : X ⟶ G.obj Y) (g : Y ⟶ Y') :
(adj.hom_equiv X Y').symm (f ≫ G.map g) = (adj.hom_equiv X Y).symm f ≫ g :=
by rw [equiv.symm_apply_eq]; simp
end core_hom_equiv
structure core_unit_counit (F : C ⥤ D) (G : D ⥤ C) :=
(unit : 𝟭 C ⟶ F.comp G)
(counit : G.comp F ⟶ 𝟭 D)
(left_triangle' : whisker_right unit F ≫ (functor.associator F G F).hom ≫ whisker_left F counit = nat_trans.id (𝟭 C ⋙ F) . obviously)
(right_triangle' : whisker_left G unit ≫ (functor.associator G F G).inv ≫ whisker_right counit G = nat_trans.id (G ⋙ 𝟭 C) . obviously)
namespace core_unit_counit
restate_axiom left_triangle'
restate_axiom right_triangle'
attribute [simp] left_triangle right_triangle
end core_unit_counit
variables {F : C ⥤ D} {G : D ⥤ C}
/-- Construct an adjunction between `F` and `G` out of a natural bijection between each
`F.obj X ⟶ Y` and `X ⟶ G.obj Y`. -/
def mk_of_hom_equiv (adj : core_hom_equiv F G) : F ⊣ G :=
{ unit :=
{ app := λ X, (adj.hom_equiv X (F.obj X)) (𝟙 (F.obj X)),
naturality' :=
begin
intros,
erw [← adj.hom_equiv_naturality_left, ← adj.hom_equiv_naturality_right],
dsimp, simp -- See note [dsimp, simp].
end },
counit :=
{ app := λ Y, (adj.hom_equiv _ _).inv_fun (𝟙 (G.obj Y)),
naturality' :=
begin
intros,
erw [← adj.hom_equiv_naturality_left_symm, ← adj.hom_equiv_naturality_right_symm],
dsimp, simp
end },
hom_equiv_unit' := λ X Y f, by erw [← adj.hom_equiv_naturality_right]; simp,
hom_equiv_counit' := λ X Y f, by erw [← adj.hom_equiv_naturality_left_symm]; simp,
.. adj }
/-- Construct an adjunction between functors `F` and `G` given a unit and counit for the adjunction
satisfying the triangle identities. -/
def mk_of_unit_counit (adj : core_unit_counit F G) : F ⊣ G :=
{ hom_equiv := λ X Y,
{ to_fun := λ f, adj.unit.app X ≫ G.map f,
inv_fun := λ g, F.map g ≫ adj.counit.app Y,
left_inv := λ f, begin
change F.map (_ ≫ _) ≫ _ = _,
rw [F.map_comp, assoc, ←functor.comp_map, adj.counit.naturality, ←assoc],
convert id_comp f,
have t := congr_arg (λ t : nat_trans _ _, t.app _) adj.left_triangle,
dsimp at t,
simp only [id_comp] at t,
exact t,
end,
right_inv := λ g, begin
change _ ≫ G.map (_ ≫ _) = _,
rw [G.map_comp, ←assoc, ←functor.comp_map, ←adj.unit.naturality, assoc],
convert comp_id g,
have t := congr_arg (λ t : nat_trans _ _, t.app _) adj.right_triangle,
dsimp at t,
simp only [id_comp] at t,
exact t,
end },
.. adj }
/-- The adjunction between the identity functor on a category and itself. -/
def id : 𝟭 C ⊣ 𝟭 C :=
{ hom_equiv := λ X Y, equiv.refl _,
unit := 𝟙 _,
counit := 𝟙 _ }
-- Satisfy the inhabited linter.
instance : inhabited (adjunction (𝟭 C) (𝟭 C)) := ⟨id⟩
/-- If F and G are naturally isomorphic functors, establish an equivalence of hom-sets. -/
def equiv_homset_left_of_nat_iso
{F F' : C ⥤ D} (iso : F ≅ F') {X : C} {Y : D} :
(F.obj X ⟶ Y) ≃ (F'.obj X ⟶ Y) :=
{ to_fun := λ f, iso.inv.app _ ≫ f,
inv_fun := λ g, iso.hom.app _ ≫ g,
left_inv := λ f, by simp,
right_inv := λ g, by simp }
@[simp]
lemma equiv_homset_left_of_nat_iso_apply {F F' : C ⥤ D} (iso : F ≅ F') {X : C} {Y : D} (f : F.obj X ⟶ Y) :
(equiv_homset_left_of_nat_iso iso) f = iso.inv.app _ ≫ f := rfl
@[simp]
lemma equiv_homset_left_of_nat_iso_symm_apply {F F' : C ⥤ D} (iso : F ≅ F') {X : C} {Y : D} (g : F'.obj X ⟶ Y) :
(equiv_homset_left_of_nat_iso iso).symm g = iso.hom.app _ ≫ g := rfl
/-- If G and H are naturally isomorphic functors, establish an equivalence of hom-sets. -/
def equiv_homset_right_of_nat_iso
{G G' : D ⥤ C} (iso : G ≅ G') {X : C} {Y : D} :
(X ⟶ G.obj Y) ≃ (X ⟶ G'.obj Y) :=
{ to_fun := λ f, f ≫ iso.hom.app _,
inv_fun := λ g, g ≫ iso.inv.app _,
left_inv := λ f, by simp,
right_inv := λ g, by simp }
@[simp]
lemma equiv_homset_right_of_nat_iso_apply {G G' : D ⥤ C} (iso : G ≅ G') {X : C} {Y : D} (f : X ⟶ G.obj Y) :
(equiv_homset_right_of_nat_iso iso) f = f ≫ iso.hom.app _ := rfl
@[simp]
lemma equiv_homset_right_of_nat_iso_symm_apply {G G' : D ⥤ C} (iso : G ≅ G') {X : C} {Y : D} (g : X ⟶ G'.obj Y) :
(equiv_homset_right_of_nat_iso iso).symm g = g ≫ iso.inv.app _ := rfl
/-- Transport an adjunction along an natural isomorphism on the left. -/
def of_nat_iso_left
{F G : C ⥤ D} {H : D ⥤ C} (adj : F ⊣ H) (iso : F ≅ G) :
G ⊣ H :=
adjunction.mk_of_hom_equiv
{ hom_equiv := λ X Y, (equiv_homset_left_of_nat_iso iso.symm).trans (adj.hom_equiv X Y) }
/-- Transport an adjunction along an natural isomorphism on the right. -/
def of_nat_iso_right
{F : C ⥤ D} {G H : D ⥤ C} (adj : F ⊣ G) (iso : G ≅ H) :
F ⊣ H :=
adjunction.mk_of_hom_equiv
{ hom_equiv := λ X Y, (adj.hom_equiv X Y).trans (equiv_homset_right_of_nat_iso iso) }
/-- Transport being a right adjoint along a natural isomorphism. -/
def right_adjoint_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [r : is_right_adjoint F] : is_right_adjoint G :=
{ left := r.left,
adj := of_nat_iso_right r.adj h }
/-- Transport being a left adjoint along a natural isomorphism. -/
def left_adjoint_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [r : is_left_adjoint F] : is_left_adjoint G :=
{ right := r.right,
adj := of_nat_iso_left r.adj h }
section
variables {E : Type u₃} [ℰ : category.{v₃} E] (H : D ⥤ E) (I : E ⥤ D)
/--
Composition of adjunctions.
See https://stacks.math.columbia.edu/tag/0DV0.
-/
def comp (adj₁ : F ⊣ G) (adj₂ : H ⊣ I) : F ⋙ H ⊣ I ⋙ G :=
{ hom_equiv := λ X Z, equiv.trans (adj₂.hom_equiv _ _) (adj₁.hom_equiv _ _),
unit := adj₁.unit ≫
(whisker_left F $ whisker_right adj₂.unit G) ≫ (functor.associator _ _ _).inv,
counit := (functor.associator _ _ _).hom ≫
(whisker_left I $ whisker_right adj₁.counit H) ≫ adj₂.counit }
/-- If `F` and `G` are left adjoints then `F ⋙ G` is a left adjoint too. -/
instance left_adjoint_of_comp {E : Type u₃} [ℰ : category.{v₃} E] (F : C ⥤ D) (G : D ⥤ E)
[Fl : is_left_adjoint F] [Gl : is_left_adjoint G] : is_left_adjoint (F ⋙ G) :=
{ right := Gl.right ⋙ Fl.right,
adj := comp _ _ Fl.adj Gl.adj }
/-- If `F` and `G` are right adjoints then `F ⋙ G` is a right adjoint too. -/
instance right_adjoint_of_comp {E : Type u₃} [ℰ : category.{v₃} E] {F : C ⥤ D} {G : D ⥤ E}
[Fr : is_right_adjoint F] [Gr : is_right_adjoint G] : is_right_adjoint (F ⋙ G) :=
{ left := Gr.left ⋙ Fr.left,
adj := comp _ _ Gr.adj Fr.adj }
end
section construct_left
-- Construction of a left adjoint. In order to construct a left
-- adjoint to a functor G : D → C, it suffices to give the object part
-- of a functor F : C → D together with isomorphisms Hom(FX, Y) ≃
-- Hom(X, GY) natural in Y. The action of F on morphisms can be
-- constructed from this data.
variables {F_obj : C → D} {G}
variables (e : Π X Y, (F_obj X ⟶ Y) ≃ (X ⟶ G.obj Y))
variables (he : ∀ X Y Y' g h, e X Y' (h ≫ g) = e X Y h ≫ G.map g)
include he
private lemma he' {X Y Y'} (f g) : (e X Y').symm (f ≫ G.map g) = (e X Y).symm f ≫ g :=
by intros; rw [equiv.symm_apply_eq, he]; simp
/-- Construct a left adjoint functor to `G`, given the functor's value on objects `F_obj` and
a bijection `e` between `F_obj X ⟶ Y` and `X ⟶ G.obj Y` satisfying a naturality law
`he : ∀ X Y Y' g h, e X Y' (h ≫ g) = e X Y h ≫ G.map g`.
Dual to `right_adjoint_of_equiv`. -/
def left_adjoint_of_equiv : C ⥤ D :=
{ obj := F_obj,
map := λ X X' f, (e X (F_obj X')).symm (f ≫ e X' (F_obj X') (𝟙 _)),
map_comp' := λ X X' X'' f f', begin
rw [equiv.symm_apply_eq, he, equiv.apply_symm_apply],
conv { to_rhs, rw [assoc, ←he, id_comp, equiv.apply_symm_apply] },
simp
end }
/-- Show that the functor given by `left_adjoint_of_equiv` is indeed left adjoint to `G`. Dual
to `adjunction_of_equiv_right`. -/
def adjunction_of_equiv_left : left_adjoint_of_equiv e he ⊣ G :=
mk_of_hom_equiv
{ hom_equiv := e,
hom_equiv_naturality_left_symm' :=
begin
intros,
erw [← he' e he, ← equiv.apply_eq_iff_eq],
simp [(he _ _ _ _ _).symm]
end }
end construct_left
section construct_right
-- Construction of a right adjoint, analogous to the above.
variables {F} {G_obj : D → C}
variables (e : Π X Y, (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y))
variables (he : ∀ X' X Y f g, e X' Y (F.map f ≫ g) = f ≫ e X Y g)
include he
private lemma he' {X' X Y} (f g) : F.map f ≫ (e X Y).symm g = (e X' Y).symm (f ≫ g) :=
by intros; rw [equiv.eq_symm_apply, he]; simp
/-- Construct a right adjoint functor to `F`, given the functor's value on objects `G_obj` and
a bijection `e` between `F.obj X ⟶ Y` and `X ⟶ G_obj Y` satisfying a naturality law
`he : ∀ X Y Y' g h, e X' Y (F.map f ≫ g) = f ≫ e X Y g`.
Dual to `left_adjoint_of_equiv`. -/
def right_adjoint_of_equiv : D ⥤ C :=
{ obj := G_obj,
map := λ Y Y' g, (e (G_obj Y) Y') ((e (G_obj Y) Y).symm (𝟙 _) ≫ g),
map_comp' := λ Y Y' Y'' g g', begin
rw [← equiv.eq_symm_apply, ← he' e he, equiv.symm_apply_apply],
conv { to_rhs, rw [← assoc, he' e he, comp_id, equiv.symm_apply_apply] },
simp
end }
/-- Show that the functor given by `right_adjoint_of_equiv` is indeed right adjoint to `F`. Dual
to `adjunction_of_equiv_left`. -/
def adjunction_of_equiv_right : F ⊣ right_adjoint_of_equiv e he :=
mk_of_hom_equiv
{ hom_equiv := e,
hom_equiv_naturality_left_symm' := by intros; rw [equiv.symm_apply_eq, he]; simp,
hom_equiv_naturality_right' :=
begin
intros X Y Y' g h,
erw [←he, equiv.apply_eq_iff_eq, ←assoc, he' e he, comp_id, equiv.symm_apply_apply]
end }
end construct_right
end adjunction
open adjunction
namespace equivalence
/-- The adjunction given by an equivalence of categories. (To obtain the opposite adjunction,
simply use `e.symm.to_adjunction`. -/
def to_adjunction (e : C ≌ D) : e.functor ⊣ e.inverse :=
mk_of_unit_counit ⟨e.unit, e.counit,
by { ext, dsimp, simp only [id_comp], exact e.functor_unit_comp _, },
by { ext, dsimp, simp only [id_comp], exact e.unit_inverse_comp _, }⟩
end equivalence
namespace functor
/-- An equivalence `E` is left adjoint to its inverse. -/
def adjunction (E : C ⥤ D) [is_equivalence E] : E ⊣ E.inv :=
(E.as_equivalence).to_adjunction
/-- If `F` is an equivalence, it's a left adjoint. -/
@[priority 10]
instance left_adjoint_of_equivalence {F : C ⥤ D} [is_equivalence F] : is_left_adjoint F :=
{ right := _,
adj := functor.adjunction F }
@[simp]
lemma right_adjoint_of_is_equivalence {F : C ⥤ D} [is_equivalence F] : right_adjoint F = inv F :=
rfl
/-- If `F` is an equivalence, it's a right adjoint. -/
@[priority 10]
instance right_adjoint_of_equivalence {F : C ⥤ D} [is_equivalence F] : is_right_adjoint F :=
{ left := _,
adj := functor.adjunction F.inv }
@[simp]
lemma left_adjoint_of_is_equivalence {F : C ⥤ D} [is_equivalence F] : left_adjoint F = inv F :=
rfl
end functor
end category_theory
|
a1e1ebac85f96256df31ff9ea89a92b733c7e005
|
97f752b44fd85ec3f635078a2dd125ddae7a82b6
|
/library/data/set/basic.lean
|
d9e1454d4a90a5cf6816b6760c3126e4f343acd4
|
[
"Apache-2.0"
] |
permissive
|
tectronics/lean
|
ab977ba6be0fcd46047ddbb3c8e16e7c26710701
|
f38af35e0616f89c6e9d7e3eb1d48e47ee666efe
|
refs/heads/master
| 1,532,358,526,384
| 1,456,276,623,000
| 1,456,276,623,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 35,868
|
lean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Leonardo de Moura
-/
import logic.connectives logic.identities algebra.binary
open eq.ops binary function
definition set (X : Type) := X → Prop
namespace set
variable {X : Type}
/- membership and subset -/
definition mem (x : X) (a : set X) := a x
infix ∈ := mem
notation a ∉ b := ¬ mem a b
theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
funext (take x, propext (H x))
definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b
infix ⊆ := subset
definition superset (s t : set X) : Prop := t ⊆ s
infix ⊇ := superset
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
take x, assume ax, subbc (subab ax)
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
-- an alterantive name
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
subset.antisymm h₁ h₂
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
assume h₁ h₂, h₁ _ h₂
/- strict subset -/
definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b
infix ` ⊂ `:50 := strict_subset
theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a :=
assume h, absurd rfl (and.elim_right h)
/- bounded quantification -/
abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x
notation `forallb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r
notation `∀₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r
abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x
notation `existsb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r
notation `∃₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r
theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) :
∃₀ x ∈ s, P x :=
exists.intro x (and.intro xs Px)
lemma bounded_forall_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x∈S, P x ↔ Q x) :
(∀₀ x ∈ S, P x) = (∀₀ x ∈ S, Q x) :=
begin
apply propext,
apply forall_congr,
intros x,
apply imp_congr_right,
apply H
end
lemma bounded_exists_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x∈S, P x ↔ Q x) :
(∃₀ x ∈ S, P x) = (∃₀ x ∈ S, Q x) :=
begin
apply propext,
apply exists_congr,
intros x,
apply and_congr_right,
apply H
end
section
open classical
lemma not_bounded_exists {A : Type} {S : set A} {P : A → Prop} :
(¬ (∃₀ x ∈ S, P x)) = (∀₀ x ∈ S, ¬ P x) :=
begin
rewrite forall_iff_not_exists,
apply propext,
apply forall_congr,
intro x,
rewrite not_and_iff_not_or_not,
rewrite imp_iff_not_or
end
lemma not_bounded_forall {A : Type} {S : set A} {P : A → Prop} :
(¬ (∀₀ x ∈ S, P x)) = (∃₀ x ∈ S, ¬ P x) :=
calc (¬ (∀₀ x ∈ S, P x)) = ¬ ¬ (∃₀ x ∈ S, ¬ P x) :
begin
rewrite not_bounded_exists,
apply (congr_arg not),
apply bounded_forall_congr,
intros x H,
rewrite not_not_iff
end
... = (∃₀ x ∈ S, ¬ P x) : by (rewrite not_not_iff)
end
/- empty set -/
definition empty : set X := λx, false
notation `∅` := empty
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
ext (take x, iff.intro
(assume xs, absurd xs (H x))
(assume xe, absurd xe !not_mem_empty))
theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end
section
open classical
theorem exists_mem_of_ne_empty {s : set X} (H : s ≠ ∅) : ∃ x, x ∈ s :=
by_contradiction (assume H', H (eq_empty_of_forall_not_mem (forall_not_of_not_exists H')))
end
theorem empty_subset (s : set X) : ∅ ⊆ s :=
take x, assume H, false.elim H
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
subset.antisymm H (empty_subset s)
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
lemma bounded_forall_empty_iff {P : X → Prop} :
(∀₀x∈∅, P x) ↔ true :=
iff.intro (take H, true.intro) (take H, by contradiction)
/- universal set -/
definition univ : set X := λx, true
theorem mem_univ (x : X) : x ∈ univ := trivial
theorem mem_univ_iff (x : X) : x ∈ univ ↔ true := !iff.refl
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
assume H : empty = univ,
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _))
theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial
theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ :=
eq_of_subset_of_subset (subset_univ s) H
theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ :=
ext (take x, iff.intro (assume H', trivial) (assume H', H x))
/- union -/
definition union (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b
notation a ∪ b := union a b
theorem mem_union_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a ∪ b :=
assume h, or.inl h
theorem mem_union_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a ∪ b :=
assume h, or.inr h
theorem mem_unionl {x : X} {a b : set X} : x ∈ a → x ∈ a ∪ b :=
assume h, or.inl h
theorem mem_unionr {x : X} {a b : set X} : x ∈ b → x ∈ a ∪ b :=
assume h, or.inr h
theorem mem_or_mem_of_mem_union {x : X} {a b : set X} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H
theorem mem_union.elim {x : X} {a b : set X} {P : Prop}
(H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P :=
or.elim H₁ H₂ H₃
theorem mem_union_iff (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl
theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl
theorem union_self (a : set X) : a ∪ a = a :=
ext (take x, !or_self)
theorem union_empty (a : set X) : a ∪ ∅ = a :=
ext (take x, !or_false)
theorem empty_union (a : set X) : ∅ ∪ a = a :=
ext (take x, !false_or)
theorem union_comm (a b : set X) : a ∪ b = b ∪ a :=
ext (take x, or.comm)
theorem union_assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) :=
ext (take x, or.assoc)
theorem union_left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) :=
!left_comm union_comm union_assoc s₁ s₂ s₃
theorem union_right_comm (s₁ s₂ s₃ : set X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ :=
!right_comm union_comm union_assoc s₁ s₂ s₃
theorem subset_union_left (s t : set X) : s ⊆ s ∪ t := λ x H, or.inl H
theorem subset_union_right (s t : set X) : t ⊆ s ∪ t := λ x H, or.inr H
theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r :=
λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt)
/- intersection -/
definition inter (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter_iff (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem mem_inter {x : X} {a b : set X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b :=
and.intro Ha Hb
theorem mem_of_mem_inter_left {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ a :=
and.left H
theorem mem_of_mem_inter_right {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ b :=
and.right H
theorem inter_self (a : set X) : a ∩ a = a :=
ext (take x, !and_self)
theorem inter_empty (a : set X) : a ∩ ∅ = ∅ :=
ext (take x, !and_false)
theorem empty_inter (a : set X) : ∅ ∩ a = ∅ :=
ext (take x, !false_and)
theorem nonempty_of_inter_nonempty_right {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : t ≠ ∅ :=
suppose t = ∅,
have s ∩ t = ∅, by rewrite this; apply inter_empty,
H this
theorem nonempty_of_inter_nonempty_left {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : s ≠ ∅ :=
suppose s = ∅,
have s ∩ t = ∅, by rewrite this; apply empty_inter,
H this
theorem inter_comm (a b : set X) : a ∩ b = b ∩ a :=
ext (take x, !and.comm)
theorem inter_assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
ext (take x, !and.assoc)
theorem inter_left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
!left_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
!right_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_univ (a : set X) : a ∩ univ = a :=
ext (take x, !and_true)
theorem univ_inter (a : set X) : univ ∩ a = a :=
ext (take x, !true_and)
theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H
theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H
theorem inter_subset_inter_right {s t : set X} (u : set X) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
take x, assume xsu, and.intro (H (and.left xsu)) (and.right xsu)
theorem inter_subset_inter_left {s t : set X} (u : set X) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t :=
take x, assume xus, and.intro (and.left xus) (H (and.right xus))
theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t :=
λ x xr, and.intro (rs xr) (rt xr)
theorem not_mem_of_mem_of_not_mem_inter_left {s t : set X} {x : X} (Hxs : x ∈ s) (Hnm : x ∉ s ∩ t) : x ∉ t :=
suppose x ∈ t,
have x ∈ s ∩ t, from and.intro Hxs this,
show false, from Hnm this
theorem not_mem_of_mem_of_not_mem_inter_right {s t : set X} {x : X} (Hxs : x ∈ t) (Hnm : x ∉ s ∩ t) : x ∉ s :=
suppose x ∈ s,
have x ∈ s ∩ t, from and.intro this Hxs,
show false, from Hnm this
/- distributivity laws -/
theorem inter_distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) :=
ext (take x, !and.left_distrib)
theorem inter_distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) :=
ext (take x, !and.right_distrib)
theorem union_distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) :=
ext (take x, !or.left_distrib)
theorem union_distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) :=
ext (take x, !or.right_distrib)
/- set-builder notation -/
-- {x : X | P}
definition set_of (P : X → Prop) : set X := P
notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r
-- {x ∈ s | P}
definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
/- insert -/
definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a}
-- '{x, y, z}
notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
take y, assume ys, or.inr ys
theorem mem_insert (x : X) (s : set X) : x ∈ insert x s :=
or.inl rfl
theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s :=
assume h, or.inr h
theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s :=
assume h, h
theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
or_resolve_right (eq_or_mem_of_mem_insert xin)
theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a ∨ x ∈ s) :=
propext (iff.intro !eq_or_mem_of_mem_insert
(or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem))
theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s :=
ext (λ x, eq.substr (mem_insert_eq x a s)
(or_iff_right_of_imp (λH1, eq.substr H1 H)))
theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) :=
ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm])
-- useful in proofs by induction
theorem forall_of_forall_insert {P : X → Prop} {a : X} {s : set X}
(H : ∀ x, x ∈ insert a s → P x) :
∀ x, x ∈ s → P x :=
λ x xs, H x (!mem_insert_of_mem xs)
lemma bounded_forall_insert_iff {P : X → Prop} {a : X} {s : set X} :
(∀₀x ∈ insert a s, P x) ↔ P a ∧ (∀₀x ∈ s, P x) :=
begin
apply iff.intro, all_goals (intro H),
{ apply and.intro,
{ apply H, apply mem_insert },
{ intro x Hx, apply H, apply mem_insert_of_mem, assumption } },
{ intro x Hx, cases Hx with eq Hx,
{ cases eq, apply (and.elim_left H) },
{ apply (and.elim_right H), assumption } }
end
/- singleton -/
theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b :=
iff.intro
(assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f))
(assume aeqb, or.inl aeqb)
theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert
theorem eq_of_mem_singleton {x y : X} (h : x ∈ '{y}) : x = y :=
or.elim (eq_or_mem_of_mem_insert h)
(suppose x = y, this)
(suppose x ∈ ∅, absurd this !not_mem_empty)
theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} :=
eq.symm H ▸ mem_singleton y
theorem insert_eq (x : X) (s : set X) : insert x s = '{x} ∪ s :=
ext (take y, iff.intro
(suppose y ∈ insert x s,
or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this))
(suppose y ∈ '{x} ∪ s,
or.elim this
(suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this))
(suppose y ∈ s, or.inr this)))
theorem pair_eq_singleton (a : X) : '{a, a} = '{a} :=
by rewrite [insert_eq_of_mem !mem_singleton]
theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ :=
begin
intro H,
apply not_mem_empty a,
rewrite -H,
apply mem_insert
end
/- separation -/
theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} :=
and.intro xs Px
theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
ext (take x, iff.intro
(suppose x ∈ s, and.intro (ssubt this) this)
(suppose x ∈ {x ∈ t | x ∈ s}, and.right this))
theorem mem_sep_iff {s : set X} {P : X → Prop} {x : X} : x ∈ {x ∈ s | P x} ↔ x ∈ s ∧ P x :=
!iff.refl
theorem sep_subset (s : set X) (P : X → Prop) : {x ∈ s | P x} ⊆ s :=
take x, assume H, and.left H
theorem forall_not_of_sep_empty {s : set X} {P : X → Prop} (H : {x ∈ s | P x} = ∅) : ∀₀ x ∈ s, ¬ P x :=
take x, suppose x ∈ s, suppose P x,
have x ∈ {x ∈ s | P x}, from and.intro `x ∈ s` this,
show false, from ne_empty_of_mem this H
/- complement -/
definition compl (s : set X) : set X := {x | x ∉ s}
prefix `-` := compl
theorem mem_compl {s : set X} {x : X} (H : x ∉ s) : x ∈ -s := H
theorem not_mem_of_mem_compl {s : set X} {x : X} (H : x ∈ -s) : x ∉ s := H
theorem mem_compl_iff (s : set X) (x : X) : x ∈ -s ↔ x ∉ s := !iff.refl
theorem inter_compl_self (s : set X) : s ∩ -s = ∅ :=
ext (take x, !and_not_self_iff)
theorem compl_inter_self (s : set X) : -s ∩ s = ∅ :=
ext (take x, !not_and_self_iff)
/- some classical identities -/
section
open classical
theorem compl_empty : -(∅ : set X) = univ :=
ext (take x, iff.intro (assume H, trivial) (assume H, not_false))
theorem compl_union (s t : set X) : -(s ∪ t) = -s ∩ -t :=
ext (take x, !not_or_iff_not_and_not)
theorem compl_compl (s : set X) : -(-s) = s :=
ext (take x, !not_not_iff)
theorem compl_inter (s t : set X) : -(s ∩ t) = -s ∪ -t :=
ext (take x, !not_and_iff_not_or_not)
theorem compl_univ : -(univ : set X) = ∅ :=
by rewrite [-compl_empty, compl_compl]
theorem union_eq_compl_compl_inter_compl (s t : set X) : s ∪ t = -(-s ∩ -t) :=
ext (take x, !or_iff_not_and_not)
theorem inter_eq_compl_compl_union_compl (s t : set X) : s ∩ t = -(-s ∪ -t) :=
ext (take x, !and_iff_not_or_not)
theorem union_compl_self (s : set X) : s ∪ -s = univ :=
ext (take x, !or_not_self_iff)
theorem compl_union_self (s : set X) : -s ∪ s = univ :=
ext (take x, !not_or_self_iff)
theorem compl_comp_compl :
#function compl ∘ compl = @id (set X) :=
funext (λ s, compl_compl s)
end
/- set difference -/
definition diff (s t : set X) : set X := {x ∈ s | x ∉ t}
infix `\`:70 := diff
theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
and.intro H1 H2
theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s :=
and.left H
theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t :=
and.right H
theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl
theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl
theorem diff_eq (s t : set X) : s \ t = s ∩ -t := rfl
theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s ∪ (t \ s) = t :=
ext (take x, iff.intro
(assume H1 : x ∈ s ∪ (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2))
(assume H1 : x ∈ t,
decidable.by_cases
(suppose x ∈ s, or.inl this)
(suppose x ∉ s, or.inr (and.intro H1 this))))
theorem diff_subset (s t : set X) : s \ t ⊆ s := inter_subset_left s _
theorem compl_eq_univ_diff (s : set X) : -s = univ \ s :=
ext (take x, iff.intro (assume H, and.intro trivial H) (assume H, and.right H))
/- powerset -/
definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s}
prefix `𝒫`:100 := powerset
theorem mem_powerset {x s : set X} (H : x ⊆ s) : x ∈ 𝒫 s := H
theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H
theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl
/- function image -/
section image
variables {Y Z : Type}
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
∀₀ x ∈ a, f1 x = f2 x
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
infix ` ' ` := image
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
f1 ' a = f2 ' a :=
ext (take y, iff.intro
(assume H2,
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
exists.intro x (and.intro H4 H5))
(assume H2,
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
exists.intro x (and.intro H4 H5)))
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f ' a :=
exists.intro x (and.intro H1 H2)
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
mem_image H rfl
lemma image_comp (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) ' a = f ' (g ' a) :=
ext (take z,
iff.intro
(assume Hz : z ∈ (f ∘ g) ' a,
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
have Hgx : g x ∈ g ' a, from mem_image Hx₁ rfl,
show z ∈ f ' (g ' a), from mem_image Hgx Hx₂)
(assume Hz : z ∈ f ' (g 'a),
obtain y (Hy₁ : y ∈ g ' a) (Hy₂ : f y = z), from Hz,
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
show z ∈ (f ∘ g) ' a, from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f ' a ⊆ f ' b :=
take y, assume Hy : y ∈ f ' a,
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
mem_image (H Hx₁) Hx₂
theorem image_union (f : X → Y) (s t : set X) :
image f (s ∪ t) = image f s ∪ image f t :=
ext (take y, iff.intro
(assume H : y ∈ image f (s ∪ t),
obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from H,
or.elim xst
(assume xs, or.inl (mem_image xs fxy))
(assume xt, or.inr (mem_image xt fxy)))
(assume H : y ∈ image f s ∪ image f t,
or.elim H
(assume yifs : y ∈ image f s,
obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs,
mem_image (or.inl xs) fxy)
(assume yift : y ∈ image f t,
obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift,
mem_image (or.inr xt) fxy)))
theorem image_empty (f : X → Y) : image f ∅ = ∅ :=
eq_empty_of_forall_not_mem
(take y, suppose y ∈ image f ∅,
obtain x [(H : x ∈ empty) H'], from this,
H)
theorem mem_image_compl (t : set X) (S : set (set X)) :
t ∈ compl ' S ↔ -t ∈ S :=
iff.intro
(suppose t ∈ compl ' S,
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
show -t ∈ S, by rewrite [-Ht, compl_compl]; exact Ht')
(suppose -t ∈ S,
have -(-t) ∈ compl 'S, from mem_image_of_mem compl this,
show t ∈ compl 'S, from compl_compl t ▸ this)
theorem image_id (s : set X) : id ' s = s :=
ext (take x, iff.intro
(suppose x ∈ id ' s,
obtain x' [(Hx' : x' ∈ s) (x'eq : x' = x)], from this,
show x ∈ s, by rewrite [-x'eq]; apply Hx')
(suppose x ∈ s, mem_image_of_mem id this))
theorem compl_compl_image (S : set (set X)) :
compl ' (compl ' S) = S :=
by rewrite [-image_comp, compl_comp_compl, image_id]
lemma bounded_forall_image_of_bounded_forall {f : X → Y} {S : set X} {P : Y → Prop}
(H : ∀₀ x ∈ S, P (f x)) : ∀₀ y ∈ f ' S, P y :=
begin
intro x' Hx;
cases Hx with x Hx;
cases Hx with Hx eq;
rewrite (eq⁻¹);
apply H;
assumption
end
lemma bounded_forall_image_iff {f : X → Y} {S : set X} {P : Y → Prop} :
(∀₀ y ∈ f ' S, P y) ↔ (∀₀ x ∈ S, P (f x)) :=
iff.intro (take H x Hx, H _ (!mem_image_of_mem `x ∈ S`)) bounded_forall_image_of_bounded_forall
lemma image_insert_eq {f : X → Y} {a : X} {S : set X} :
f ' insert a S = insert (f a) (f ' S) :=
begin
apply set.ext,
intro x, apply iff.intro, all_goals (intros H),
{ cases H with y Hy, cases Hy with Hy eq, rewrite (eq⁻¹), cases Hy with y_eq,
{ rewrite y_eq, apply mem_insert },
{ apply mem_insert_of_mem, apply mem_image_of_mem, assumption } },
{ cases H with eq Hx,
{ rewrite eq, apply mem_image_of_mem, apply mem_insert },
{ cases Hx with y Hy, cases Hy with Hy eq,
rewrite (eq⁻¹), apply mem_image_of_mem, apply mem_insert_of_mem, assumption } }
end
end image
/- collections of disjoint sets -/
definition disjoint_sets (S : set (set X)) : Prop := ∀ a b, a ∈ S → b ∈ S → a ≠ b → a ∩ b = ∅
theorem disjoint_sets_empty : disjoint_sets (∅ : set (set X)) :=
take a b, assume H, !not.elim !not_mem_empty H
theorem disjoint_sets_union {s t : set (set X)} (Hs : disjoint_sets s) (Ht : disjoint_sets t)
(H : ∀ x y, x ∈ s ∧ y ∈ t → x ∩ y = ∅) :
disjoint_sets (s ∪ t) :=
take a b, assume Ha Hb Hneq, or.elim Ha
(assume H1, or.elim Hb
(suppose b ∈ s, (Hs a b) H1 this Hneq)
(suppose b ∈ t, (H a b) (and.intro H1 this)))
(assume H2, or.elim Hb
(suppose b ∈ s, !inter_comm ▸ ((H b a) (and.intro this H2)))
(suppose b ∈ t, (Ht a b) H2 this Hneq))
theorem disjoint_sets_singleton (s : set (set X)) : disjoint_sets '{s} :=
take a b, assume Ha Hb Hneq,
absurd (eq.trans ((iff.elim_left !mem_singleton_iff) Ha) ((iff.elim_left !mem_singleton_iff) Hb)⁻¹)
Hneq
/- large unions -/
section large_unions
variables {I : Type}
variable a : set I
variable b : I → set X
variable C : set (set X)
definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c}
definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c}
prefix `⋃₀`:110 := sUnion
prefix `⋂₀`:110 := sInter
definition Union : set X := {x : X | ∃i, x ∈ b i}
definition Inter : set X := {x : X | ∀i, x ∈ b i}
notation `⋃` binders `, ` r:(scoped f, Union f) := r
notation `⋂` binders `, ` r:(scoped f, Inter f) := r
definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i}
definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i}
notation `⋃` binders ` ∈ ` s `, ` r:(scoped f, bUnion s f) := r
notation `⋂` binders ` ∈ ` s `, ` r:(scoped f, bInter s f) := r
end large_unions
-- sUnion and sInter: a collection (set) of sets
theorem mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∈ t) (Ht : t ∈ S) :
x ∈ ⋃₀ S :=
exists.intro t (and.intro Ht Hx)
theorem not_mem_of_not_mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∉ ⋃₀ S) (Ht : t ∈ S) :
x ∉ t :=
suppose x ∈ t,
have x ∈ ⋃₀ S, from mem_sUnion this Ht,
show false, from Hx this
theorem mem_sInter {x : X} {t : set X} {S : set (set X)} (H : ∀₀ t ∈ S, x ∈ t) :
x ∈ ⋂₀ S :=
H
theorem sInter_subset_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) :
(⋂₀ S) ⊆ t :=
take x, assume H, H t tS
theorem subset_sUnion_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) :
t ⊆ (⋃₀ S) :=
take x, assume H, exists.intro t (and.intro tS H)
theorem sUnion_empty : ⋃₀ ∅ = (∅ : set X) :=
eq_empty_of_forall_not_mem
(take x, suppose x ∈ sUnion ∅,
obtain t [(Ht : t ∈ ∅) Ht'], from this,
show false, from Ht)
theorem sInter_empty : ⋂₀ ∅ = (univ : set X) :=
eq_univ_of_forall (λ x s H, false.elim H)
theorem sUnion_singleton (s : set X) : ⋃₀ '{s} = s :=
ext (take x, iff.intro
(suppose x ∈ sUnion '{s},
obtain u [(Hu : u ∈ '{s}) (xu : x ∈ u)], from this,
have u = s, from eq_of_mem_singleton Hu,
show x ∈ s, using this, by rewrite -this; apply xu)
(suppose x ∈ s,
mem_sUnion this (mem_singleton s)))
theorem sInter_singleton (s : set X) : ⋂₀ '{s} = s :=
ext (take x, iff.intro
(suppose x ∈ ⋂₀ '{s}, show x ∈ s, from this (mem_singleton s))
(suppose x ∈ s, take u, suppose u ∈ '{s},
show x ∈ u, by+ rewrite [eq_of_mem_singleton this]; assumption))
theorem sUnion_union (S T : set (set X)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T :=
ext (take x, iff.intro
(suppose x ∈ sUnion (S ∪ T),
obtain u [(Hu : u ∈ S ∪ T) (xu : x ∈ u)], from this,
or.elim Hu
(assume uS, or.inl (mem_sUnion xu uS))
(assume uT, or.inr (mem_sUnion xu uT)))
(suppose x ∈ sUnion S ∪ sUnion T,
or.elim this
(suppose x ∈ sUnion S,
obtain u [(uS : u ∈ S) (xu : x ∈ u)], from this,
mem_sUnion xu (or.inl uS))
(suppose x ∈ sUnion T,
obtain u [(uT : u ∈ T) (xu : x ∈ u)], from this,
mem_sUnion xu (or.inr uT))))
theorem sInter_union (S T : set (set X)) : ⋂₀ (S ∪ T) = ⋂₀ S ∩ ⋂₀ T :=
ext (take x, iff.intro
(assume H : x ∈ ⋂₀ (S ∪ T),
and.intro (λ u uS, H (or.inl uS)) (λ u uT, H (or.inr uT)))
(assume H : x ∈ ⋂₀ S ∩ ⋂₀ T,
take u, suppose u ∈ S ∪ T, or.elim this (λ uS, and.left H u uS) (λ uT, and.right H u uT)))
theorem sUnion_insert (s : set X) (T : set (set X)) :
⋃₀ (insert s T) = s ∪ ⋃₀ T :=
by rewrite [insert_eq, sUnion_union, sUnion_singleton]
theorem sInter_insert (s : set X) (T : set (set X)) :
⋂₀ (insert s T) = s ∩ ⋂₀ T :=
by rewrite [insert_eq, sInter_union, sInter_singleton]
theorem compl_sUnion (S : set (set X)) :
- ⋃₀ S = ⋂₀ (compl ' S) :=
ext (take x, iff.intro
(assume H : x ∈ -(⋃₀ S),
take t, suppose t ∈ compl ' S,
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
have x ∈ -t', from suppose x ∈ t', H (mem_sUnion this Ht'),
show x ∈ t, using this, by rewrite -Ht; apply this)
(assume H : x ∈ ⋂₀ (compl ' S),
suppose x ∈ ⋃₀ S,
obtain t [(tS : t ∈ S) (xt : x ∈ t)], from this,
have -t ∈ compl ' S, from mem_image_of_mem compl tS,
have x ∈ -t, from H this,
show false, proof this xt qed))
theorem sUnion_eq_compl_sInter_compl (S : set (set X)) :
⋃₀ S = - ⋂₀ (compl ' S) :=
by rewrite [-compl_compl, compl_sUnion]
theorem compl_sInter (S : set (set X)) :
- ⋂₀ S = ⋃₀ (compl ' S) :=
by rewrite [sUnion_eq_compl_sInter_compl, compl_compl_image]
theorem sInter_eq_comp_sUnion_compl (S : set (set X)) :
⋂₀ S = -(⋃₀ (compl ' S)) :=
by rewrite [-compl_compl, compl_sInter]
theorem inter_sUnion_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : s ∩ t ≠ ∅) :
s ∩ ⋃₀ S ≠ ∅ :=
obtain x Hsx Htx, from exists_mem_of_ne_empty Hne,
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
ne_empty_of_mem (mem_inter Hsx this)
theorem sUnion_inter_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : t ∩ s ≠ ∅) :
(⋃₀ S) ∩ s ≠ ∅ :=
obtain x Htx Hsx, from exists_mem_of_ne_empty Hne,
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
ne_empty_of_mem (mem_inter this Hsx)
-- Union and Inter: a family of sets indexed by a type
theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : (⋃ i, b i) ⊆ c :=
take x,
suppose x ∈ Union b,
obtain i (Hi : x ∈ b i), from this,
show x ∈ c, from H i Hi
theorem subset_Inter {I : Type} {b : I → set X} {c : set X} (H : ∀ i, c ⊆ b i) : c ⊆ ⋂ i, b i :=
λ x cx i, H i cx
theorem Union_eq_sUnion_image {X I : Type} (s : I → set X) : (⋃ i, s i) = ⋃₀ (s ' univ) :=
ext (take x, iff.intro
(suppose x ∈ Union s,
obtain i (Hi : x ∈ s i), from this,
mem_sUnion Hi (mem_image_of_mem s trivial))
(suppose x ∈ sUnion (s ' univ),
obtain t [(Ht : t ∈ s ' univ) (Hx : x ∈ t)], from this,
obtain i [univi (Hi : s i = t)], from Ht,
exists.intro i (show x ∈ s i, by rewrite Hi; apply Hx)))
theorem Inter_eq_sInter_image {X I : Type} (s : I → set X) : (⋂ i, s i) = ⋂₀ (s ' univ) :=
ext (take x, iff.intro
(assume H : x ∈ Inter s,
take t,
suppose t ∈ s 'univ,
obtain i [univi (Hi : s i = t)], from this,
show x ∈ t, by rewrite -Hi; exact H i)
(assume H : x ∈ ⋂₀ (s ' univ),
take i,
have s i ∈ s ' univ, from mem_image_of_mem s trivial,
show x ∈ s i, from H this))
theorem compl_Union {X I : Type} (s : I → set X) : - (⋃ i, s i) = (⋂ i, - s i) :=
by rewrite [Union_eq_sUnion_image, compl_sUnion, -image_comp, -Inter_eq_sInter_image]
theorem compl_Inter {X I : Type} (s : I → set X) : -(⋂ i, s i) = (⋃ i, - s i) :=
by rewrite [Inter_eq_sInter_image, compl_sInter, -image_comp, -Union_eq_sUnion_image]
theorem Union_eq_comp_Inter_comp {X I : Type} (s : I → set X) : (⋃ i, s i) = - (⋂ i, - s i) :=
by rewrite [-compl_compl, compl_Union]
theorem Inter_eq_comp_Union_comp {X I : Type} (s : I → set X) : (⋂ i, s i) = - (⋃ i, -s i) :=
by rewrite [-compl_compl, compl_Inter]
lemma inter_distrib_Union_left {X I : Type} (s : I → set X) (a : set X) :
a ∩ (⋃ i, s i) = ⋃ i, a ∩ s i :=
ext (take x, iff.intro
(assume H, obtain i Hi, from and.elim_right H,
have x ∈ a ∩ s i, from and.intro (and.elim_left H) Hi,
show _, from exists.intro i this)
(assume H, obtain i [xa xsi], from H,
show _, from and.intro xa (exists.intro i xsi)))
section
open classical
lemma union_distrib_Inter_left {X I : Type} (s : I → set X) (a : set X) :
a ∪ (⋂ i, s i) = ⋂ i, a ∪ s i :=
ext (take x, iff.intro
(assume H, or.elim H
(assume H1, take i, or.inl H1)
(assume H1, take i, or.inr (H1 i)))
(assume H,
by_cases
(suppose x ∈ a, or.inl this)
(suppose x ∉ a, or.inr (take i, or.resolve_left (H i) this))))
end
-- these are useful for turning binary union / intersection into countable ones
definition bin_ext (s t : set X) (n : ℕ) : set X :=
nat.cases_on n s (λ m, t)
lemma Union_bin_ext (s t : set X) : (⋃ i, bin_ext s t i) = s ∪ t :=
ext (take x, iff.intro
(assume H,
obtain i (Hi : x ∈ (bin_ext s t) i), from H,
by cases i; apply or.inl Hi; apply or.inr Hi)
(assume H,
or.elim H
(suppose x ∈ s, exists.intro 0 this)
(suppose x ∈ t, exists.intro 1 this)))
lemma Inter_bin_ext (s t : set X) : (⋂ i, bin_ext s t i) = s ∩ t :=
ext (take x, iff.intro
(assume H, and.intro (H 0) (H 1))
(assume H, by intro i; cases i;
apply and.elim_left H; apply and.elim_right H))
-- bUnion and bInter: a family of sets indexed by a set ("b" is for bounded)
variable {Y : Type}
theorem mem_bUnion {s : set X} {f : X → set Y} {x : X} {y : Y}
(xs : x ∈ s) (yfx : y ∈ f x) :
y ∈ ⋃ x ∈ s, f x :=
exists.intro x (and.intro xs yfx)
theorem mem_bInter {s : set X} {f : X → set Y} {y : Y} (H : ∀₀ x ∈ s, y ∈ f x) :
y ∈ ⋂ x ∈ s, f x :=
H
theorem bUnion_subset {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, f x ⊆ t) :
(⋃ x ∈ s, f x) ⊆ t :=
take y, assume Hy,
obtain x [xs yfx], from Hy,
show y ∈ t, from H xs yfx
theorem subset_bInter {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, t ⊆ f x) :
t ⊆ ⋂ x ∈ s, f x :=
take y, assume yt, take x, assume xs, H xs yt
theorem subset_bUnion_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) :
f x ⊆ ⋃ x ∈ s, f x :=
take y, assume Hy, mem_bUnion xs Hy
theorem bInter_subset_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) :
(⋂ x ∈ s, f x) ⊆ f x :=
take y, assume Hy, Hy x xs
theorem bInter_empty (f : X → set Y) : (⋂ x ∈ (∅ : set X), f x) = univ :=
eq_univ_of_forall (take y x xine, absurd xine !not_mem_empty)
theorem bInter_singleton (a : X) (f : X → set Y) : (⋂ x ∈ '{a}, f x) = f a :=
ext (take y, iff.intro
(assume H, H a !mem_singleton)
(assume H, λ x xa, by rewrite [eq_of_mem_singleton xa]; apply H))
theorem bInter_union (s t : set X) (f : X → set Y) :
(⋂ x ∈ s ∪ t, f x) = (⋂ x ∈ s, f x) ∩ (⋂ x ∈ t, f x) :=
ext (take y, iff.intro
(assume H, and.intro (λ x xs, H x (or.inl xs)) (λ x xt, H x (or.inr xt)))
(assume H, λ x xst, or.elim (xst) (λ xs, and.left H x xs) (λ xt, and.right H x xt)))
theorem bInter_insert (a : X) (s : set X) (f : X → set Y) :
(⋂ x ∈ insert a s, f x) = f a ∩ (⋂ x ∈ s, f x) :=
by rewrite [insert_eq, bInter_union, bInter_singleton]
theorem bInter_pair (a b : X) (f : X → set Y) :
(⋂ x ∈ '{a, b}, f x) = f a ∩ f b :=
by rewrite [*bInter_insert, bInter_empty, inter_univ]
theorem bUnion_empty (f : X → set Y) : (⋃ x ∈ (∅ : set X), f x) = ∅ :=
eq_empty_of_forall_not_mem (λ y H, obtain x [xine yfx], from H,
!not_mem_empty xine)
theorem bUnion_singleton (a : X) (f : X → set Y) : (⋃ x ∈ '{a}, f x) = f a :=
ext (take y, iff.intro
(assume H, obtain x [xina yfx], from H,
show y ∈ f a, by rewrite [-eq_of_mem_singleton xina]; exact yfx)
(assume H, exists.intro a (and.intro !mem_singleton H)))
theorem bUnion_union (s t : set X) (f : X → set Y) :
(⋃ x ∈ s ∪ t, f x) = (⋃ x ∈ s, f x) ∪ (⋃ x ∈ t, f x) :=
ext (take y, iff.intro
(assume H, obtain x [xst yfx], from H,
or.elim xst
(λ xs, or.inl (exists.intro x (and.intro xs yfx)))
(λ xt, or.inr (exists.intro x (and.intro xt yfx))))
(assume H, or.elim H
(assume H1, obtain x [xs yfx], from H1,
exists.intro x (and.intro (or.inl xs) yfx))
(assume H1, obtain x [xt yfx], from H1,
exists.intro x (and.intro (or.inr xt) yfx))))
theorem bUnion_insert (a : X) (s : set X) (f : X → set Y) :
(⋃ x ∈ insert a s, f x) = f a ∪ (⋃ x ∈ s, f x) :=
by rewrite [insert_eq, bUnion_union, bUnion_singleton]
theorem bUnion_pair (a b : X) (f : X → set Y) :
(⋃ x ∈ '{a, b}, f x) = f a ∪ f b :=
by rewrite [*bUnion_insert, bUnion_empty, union_empty]
end set
|
797b5852274cd969f81e8adb15d66140ab27d83a
|
626e312b5c1cb2d88fca108f5933076012633192
|
/src/topology/instances/real.lean
|
22a22764dcfcf956c7ebf862c93089f4ba40f999
|
[
"Apache-2.0"
] |
permissive
|
Bioye97/mathlib
|
9db2f9ee54418d29dd06996279ba9dc874fd6beb
|
782a20a27ee83b523f801ff34efb1a9557085019
|
refs/heads/master
| 1,690,305,956,488
| 1,631,067,774,000
| 1,631,067,774,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 15,958
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.metric_space.basic
import topology.algebra.uniform_group
import topology.algebra.ring
import ring_theory.subring
import group_theory.archimedean
import algebra.periodic
/-!
# Topological properties of ℝ
-/
noncomputable theory
open classical set filter topological_space metric
open_locale classical
open_locale topological_space filter uniformity
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
instance : metric_space ℚ :=
metric_space.induced coe rat.cast_injective real.metric_space
theorem rat.dist_eq (x y : ℚ) : dist x y = abs (x - y) := rfl
@[norm_cast, simp] lemma rat.dist_cast (x y : ℚ) : dist (x : ℝ) y = dist x y := rfl
namespace int
lemma uniform_embedding_coe_real : uniform_embedding (coe : ℤ → ℝ) :=
{ comap_uniformity :=
begin
refine le_antisymm (le_principal_iff.2 _) (@refl_le_uniformity ℤ $
uniform_space.comap coe (infer_instance : uniform_space ℝ)),
refine (uniformity_basis_dist.comap _).mem_iff.2 ⟨1, zero_lt_one, _⟩,
rintro ⟨a, b⟩ (h : abs (a - b : ℝ) < 1),
norm_cast at h,
erw [@int.lt_add_one_iff _ 0, abs_nonpos_iff, sub_eq_zero] at h, assumption
end,
inj := int.cast_injective }
instance : metric_space ℤ := int.uniform_embedding_coe_real.comap_metric_space _
theorem dist_eq (x y : ℤ) : dist x y = abs (x - y) := rfl
@[norm_cast, simp] theorem dist_cast_real (x y : ℤ) : dist (x : ℝ) y = dist x y := rfl
@[norm_cast, simp] theorem dist_cast_rat (x y : ℤ) : dist (x : ℚ) y = dist x y :=
by rw [← int.dist_cast_real, ← rat.dist_cast]; congr' 1; norm_cast
theorem preimage_ball (x : ℤ) (r : ℝ) : coe ⁻¹' (ball (x : ℝ) r) = ball x r := rfl
theorem preimage_closed_ball (x : ℤ) (r : ℝ) :
coe ⁻¹' (closed_ball (x : ℝ) r) = closed_ball x r := rfl
theorem ball_eq (x : ℤ) (r : ℝ) : ball x r = Ioo ⌊↑x - r⌋ ⌈↑x + r⌉ :=
by rw [← preimage_ball, real.ball_eq, preimage_Ioo]
theorem closed_ball_eq (x : ℤ) (r : ℝ) : closed_ball x r = Icc ⌈↑x - r⌉ ⌊↑x + r⌋ :=
by rw [← preimage_closed_ball, real.closed_ball_eq, preimage_Icc]
instance : proper_space ℤ :=
⟨ begin
intros x r,
rw closed_ball_eq,
exact (set.Icc_ℤ_finite _ _).is_compact,
end ⟩
end int
theorem uniform_continuous_of_rat : uniform_continuous (coe : ℚ → ℝ) :=
uniform_continuous_comap
theorem uniform_embedding_of_rat : uniform_embedding (coe : ℚ → ℝ) :=
uniform_embedding_comap rat.cast_injective
theorem dense_embedding_of_rat : dense_embedding (coe : ℚ → ℝ) :=
uniform_embedding_of_rat.dense_embedding $
λ x, mem_closure_iff_nhds.2 $ λ t ht,
let ⟨ε,ε0, hε⟩ := metric.mem_nhds_iff.1 ht in
let ⟨q, h⟩ := exists_rat_near x ε0 in
⟨_, hε (mem_ball'.2 h), q, rfl⟩
theorem embedding_of_rat : embedding (coe : ℚ → ℝ) := dense_embedding_of_rat.to_embedding
theorem continuous_of_rat : continuous (coe : ℚ → ℝ) := uniform_continuous_of_rat.continuous
theorem real.uniform_continuous_add : uniform_continuous (λp : ℝ × ℝ, p.1 + p.2) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0 in
⟨δ, δ0, λ a b h, let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ h₁ h₂⟩
-- TODO(Mario): Find a way to use rat_add_continuous_lemma
theorem rat.uniform_continuous_add : uniform_continuous (λp : ℚ × ℚ, p.1 + p.2) :=
uniform_embedding_of_rat.to_uniform_inducing.uniform_continuous_iff.2 $ by simp [(∘)]; exact
real.uniform_continuous_add.comp ((uniform_continuous_of_rat.comp uniform_continuous_fst).prod_mk
(uniform_continuous_of_rat.comp uniform_continuous_snd))
theorem real.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℝ _) :=
metric.uniform_continuous_iff.2 $ λ ε ε0, ⟨_, ε0, λ a b h,
by rw dist_comm at h; simpa [real.dist_eq] using h⟩
theorem rat.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℚ _) :=
metric.uniform_continuous_iff.2 $ λ ε ε0, ⟨_, ε0, λ a b h,
by rw dist_comm at h; simpa [rat.dist_eq] using h⟩
instance : uniform_add_group ℝ :=
uniform_add_group.mk' real.uniform_continuous_add real.uniform_continuous_neg
instance : uniform_add_group ℚ :=
uniform_add_group.mk' rat.uniform_continuous_add rat.uniform_continuous_neg
-- short-circuit type class inference
instance : topological_add_group ℝ := by apply_instance
instance : topological_add_group ℚ := by apply_instance
instance : order_topology ℚ :=
induced_order_topology _ (λ x y, rat.cast_lt) (@exists_rat_btwn _ _ _)
instance : proper_space ℝ :=
{ compact_ball := λx r, by { rw real.closed_ball_eq, apply is_compact_Icc } }
instance : second_countable_topology ℝ := second_countable_of_proper
lemma real.is_topological_basis_Ioo_rat :
@is_topological_basis ℝ _ (⋃(a b : ℚ) (h : a < b), {Ioo a b}) :=
is_topological_basis_of_open_of_nhds
(by simp [is_open_Ioo] {contextual:=tt})
(assume a v hav hv,
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (is_open.mem_nhds hv hav),
⟨q, hlq, hqa⟩ := exists_rat_btwn hl,
⟨p, hap, hpu⟩ := exists_rat_btwn hu in
⟨Ioo q p,
by { simp only [mem_Union], exact ⟨q, p, rat.cast_lt.1 $ hqa.trans hap, rfl⟩ },
⟨hqa, hap⟩, assume a' ⟨hqa', ha'p⟩, h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩)
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (λp:ℚ, p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
lemma real.mem_closure_iff {s : set ℝ} {x : ℝ} :
x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, abs (y - x) < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, real.dist_eq]
lemma real.uniform_continuous_inv (s : set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ abs x) :
uniform_continuous (λp:s, p.1⁻¹) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0 in
⟨δ, δ0, λ a b h, Hδ (H _ a.2) (H _ b.2) h⟩
lemma real.uniform_continuous_abs : uniform_continuous (abs : ℝ → ℝ) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
⟨ε, ε0, λ a b, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
lemma rat.uniform_continuous_abs : uniform_continuous (abs : ℚ → ℚ) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
⟨ε, ε0, λ a b h, lt_of_le_of_lt
(by simpa [rat.dist_eq] using abs_abs_sub_abs_le_abs_sub _ _) h⟩
lemma real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : tendsto (λq, q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
by rw ← abs_pos at r0; exact
tendsto_of_uniform_continuous_subtype
(real.uniform_continuous_inv {x | abs r / 2 < abs x} (half_pos r0) (λ x h, le_of_lt h))
(is_open.mem_nhds ((is_open_lt' (abs r / 2)).preimage continuous_abs) (half_lt_self r0))
lemma real.continuous_inv : continuous (λa:{r:ℝ // r ≠ 0}, a.val⁻¹) :=
continuous_iff_continuous_at.mpr $ assume ⟨r, hr⟩,
tendsto.comp (real.tendsto_inv hr) (continuous_iff_continuous_at.mp continuous_subtype_val _)
lemma real.continuous.inv [topological_space α] {f : α → ℝ} (h : ∀a, f a ≠ 0) (hf : continuous f) :
continuous (λa, (f a)⁻¹) :=
show continuous ((has_inv.inv ∘ @subtype.val ℝ (λr, r ≠ 0)) ∘ λa, ⟨f a, h a⟩),
from real.continuous_inv.comp (continuous_subtype_mk _ hf)
lemma real.uniform_continuous_mul_const {x : ℝ} : uniform_continuous ((*) x) :=
metric.uniform_continuous_iff.2 $ λ ε ε0, begin
cases no_top (abs x) with y xy,
have y0 := lt_of_le_of_lt (abs_nonneg _) xy,
refine ⟨_, div_pos ε0 y0, λ a b h, _⟩,
rw [real.dist_eq, ← mul_sub, abs_mul, ← mul_div_cancel' ε (ne_of_gt y0)],
exact mul_lt_mul' (le_of_lt xy) h (abs_nonneg _) y0
end
lemma real.uniform_continuous_mul (s : set (ℝ × ℝ))
{r₁ r₂ : ℝ} (H : ∀ x ∈ s, abs (x : ℝ × ℝ).1 < r₁ ∧ abs x.2 < r₂) :
uniform_continuous (λp:s, p.1.1 * p.1.2) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0 in
⟨δ, δ0, λ a b h,
let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
protected lemma real.continuous_mul : continuous (λp : ℝ × ℝ, p.1 * p.2) :=
continuous_iff_continuous_at.2 $ λ ⟨a₁, a₂⟩,
tendsto_of_uniform_continuous_subtype
(real.uniform_continuous_mul
({x | abs x < abs a₁ + 1}.prod {x | abs x < abs a₂ + 1})
(λ x, id))
(is_open.mem_nhds
(((is_open_gt' (abs a₁ + 1)).preimage continuous_abs).prod
((is_open_gt' (abs a₂ + 1)).preimage continuous_abs ))
⟨lt_add_one (abs a₁), lt_add_one (abs a₂)⟩)
instance : topological_ring ℝ :=
{ continuous_mul := real.continuous_mul, ..real.topological_add_group }
lemma rat.continuous_mul : continuous (λp : ℚ × ℚ, p.1 * p.2) :=
embedding_of_rat.continuous_iff.2 $ by simp [(∘)]; exact
real.continuous_mul.comp ((continuous_of_rat.comp continuous_fst).prod_mk
(continuous_of_rat.comp continuous_snd))
instance : topological_ring ℚ :=
{ continuous_mul := rat.continuous_mul, ..rat.topological_add_group }
theorem real.ball_eq_Ioo (x ε : ℝ) : ball x ε = Ioo (x - ε) (x + ε) :=
set.ext $ λ y, by rw [mem_ball, real.dist_eq,
abs_sub_lt_iff, sub_lt_iff_lt_add', and_comm, sub_lt]; refl
theorem real.Ioo_eq_ball (x y : ℝ) : Ioo x y = ball ((x + y) / 2) ((y - x) / 2) :=
by rw [real.ball_eq_Ioo, ← sub_div, add_comm, ← sub_add,
add_sub_cancel', add_self_div_two, ← add_div,
add_assoc, add_sub_cancel'_right, add_self_div_two]
instance : complete_space ℝ :=
begin
apply complete_of_cauchy_seq_tendsto,
intros u hu,
let c : cau_seq ℝ abs := ⟨u, metric.cauchy_seq_iff'.1 hu⟩,
refine ⟨c.lim, λ s h, _⟩,
rcases metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩,
have := c.equiv_lim ε ε0,
simp only [mem_map, mem_at_top_sets, mem_set_of_eq],
refine this.imp (λ N hN n hn, hε (hN n hn))
end
lemma real.totally_bounded_ball (x ε : ℝ) : totally_bounded (ball x ε) :=
by rw real.ball_eq_Ioo; apply totally_bounded_Ioo
lemma rat.totally_bounded_Icc (a b : ℚ) : totally_bounded (Icc a b) :=
begin
have := totally_bounded_preimage uniform_embedding_of_rat (totally_bounded_Icc a b),
rwa (set.ext (λ q, _) : Icc _ _ = _), simp
end
section
lemma closure_of_rat_image_lt {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q < x}) = {r | ↑q ≤ r} :=
subset.antisymm
((is_closed_ge' _).closure_subset_iff.2
(image_subset_iff.2 $ λ p h, le_of_lt $ (@rat.cast_lt ℝ _ _ _).2 h)) $
λ x hx, mem_closure_iff_nhds.2 $ λ t ht,
let ⟨ε, ε0, hε⟩ := metric.mem_nhds_iff.1 ht in
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0) in
⟨_, hε (show abs _ < _,
by rwa [abs_of_nonneg (le_of_lt $ sub_pos.2 h₁), sub_lt_iff_lt_add']),
p, rat.cast_lt.1 (@lt_of_le_of_lt ℝ _ _ _ _ hx h₁), rfl⟩
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_-/
lemma real.bounded_iff_bdd_below_bdd_above {s : set ℝ} : bounded s ↔ bdd_below s ∧ bdd_above s :=
⟨begin
assume bdd,
rcases (bounded_iff_subset_ball 0).1 bdd with ⟨r, hr⟩, -- hr : s ⊆ closed_ball 0 r
rw real.closed_ball_eq at hr, -- hr : s ⊆ Icc (0 - r) (0 + r)
exact ⟨bdd_below_Icc.mono hr, bdd_above_Icc.mono hr⟩
end,
begin
intro h,
rcases bdd_below_bdd_above_iff_subset_Icc.1 h with ⟨m, M, I : s ⊆ Icc m M⟩,
exact (bounded_Icc m M).subset I
end⟩
lemma real.subset_Icc_Inf_Sup_of_bounded {s : set ℝ} (h : bounded s) :
s ⊆ Icc (Inf s) (Sup s) :=
subset_Icc_cInf_cSup (real.bounded_iff_bdd_below_bdd_above.1 h).1
(real.bounded_iff_bdd_below_bdd_above.1 h).2
lemma real.image_Icc {f : ℝ → ℝ} {a b : ℝ} (hab : a ≤ b) (h : continuous_on f $ Icc a b) :
f '' Icc a b = Icc (Inf $ f '' Icc a b) (Sup $ f '' Icc a b) :=
eq_Icc_of_connected_compact ⟨(nonempty_Icc.2 hab).image f, is_preconnected_Icc.image f h⟩
(is_compact_Icc.image_of_continuous_on h)
end
section periodic
namespace function
lemma periodic.compact_of_continuous' [topological_space α] {f : ℝ → α} {c : ℝ}
(hp : periodic f c) (hc : 0 < c) (hf : continuous f) :
is_compact (range f) :=
begin
convert is_compact_Icc.image hf,
ext x,
refine ⟨_, mem_range_of_mem_image f (Icc 0 c)⟩,
rintros ⟨y, h1⟩,
obtain ⟨z, hz, h2⟩ := hp.exists_mem_Ico hc y,
exact ⟨z, mem_Icc_of_Ico hz, h2.symm.trans h1⟩,
end
/-- A continuous, periodic function has compact range. -/
lemma periodic.compact_of_continuous [topological_space α] {f : ℝ → α} {c : ℝ}
(hp : periodic f c) (hc : c ≠ 0) (hf : continuous f) :
is_compact (range f) :=
begin
cases lt_or_gt_of_ne hc with hneg hpos,
exacts [hp.neg.compact_of_continuous' (neg_pos.mpr hneg) hf, hp.compact_of_continuous' hpos hf],
end
/-- A continuous, periodic function is bounded. -/
lemma periodic.bounded_of_continuous [pseudo_metric_space α] {f : ℝ → α} {c : ℝ}
(hp : periodic f c) (hc : c ≠ 0) (hf : continuous f) :
bounded (range f) :=
(hp.compact_of_continuous hc hf).bounded
end function
end periodic
section subgroups
/-- Given a nontrivial subgroup `G ⊆ ℝ`, if `G ∩ ℝ_{>0}` has no minimum then `G` is dense. -/
lemma real.subgroup_dense_of_no_min {G : add_subgroup ℝ} {g₀ : ℝ} (g₀_in : g₀ ∈ G) (g₀_ne : g₀ ≠ 0)
(H' : ¬ ∃ a : ℝ, is_least {g : ℝ | g ∈ G ∧ 0 < g} a) :
dense (G : set ℝ) :=
begin
let G_pos := {g : ℝ | g ∈ G ∧ 0 < g},
push_neg at H',
intros x,
suffices : ∀ ε > (0 : ℝ), ∃ g ∈ G, abs (x - g) < ε,
by simpa only [real.mem_closure_iff, abs_sub_comm],
intros ε ε_pos,
obtain ⟨g₁, g₁_in, g₁_pos⟩ : ∃ g₁ : ℝ, g₁ ∈ G ∧ 0 < g₁,
{ cases lt_or_gt_of_ne g₀_ne with Hg₀ Hg₀,
{ exact ⟨-g₀, G.neg_mem g₀_in, neg_pos.mpr Hg₀⟩ },
{ exact ⟨g₀, g₀_in, Hg₀⟩ } },
obtain ⟨a, ha⟩ : ∃ a, is_glb G_pos a :=
⟨Inf G_pos, is_glb_cInf ⟨g₁, g₁_in, g₁_pos⟩ ⟨0, λ _ hx, le_of_lt hx.2⟩⟩,
have a_notin : a ∉ G_pos,
{ intros H,
exact H' a ⟨H, ha.1⟩ },
obtain ⟨g₂, g₂_in, g₂_pos, g₂_lt⟩ : ∃ g₂ : ℝ, g₂ ∈ G ∧ 0 < g₂ ∧ g₂ < ε,
{ obtain ⟨b, hb, hb', hb''⟩ := ha.exists_between_self_add' a_notin ε_pos,
obtain ⟨c, hc, hc', hc''⟩ := ha.exists_between_self_add' a_notin (sub_pos.2 hb'),
refine ⟨b - c, G.sub_mem hb.1 hc.1, _, _⟩ ;
linarith },
refine ⟨floor (x/g₂) * g₂, _, _⟩,
{ exact add_subgroup.int_mul_mem _ g₂_in },
{ rw abs_of_nonneg (sub_floor_div_mul_nonneg x g₂_pos),
linarith [sub_floor_div_mul_lt x g₂_pos] }
end
/-- Subgroups of `ℝ` are either dense or cyclic. See `real.subgroup_dense_of_no_min` and
`subgroup_cyclic_of_min` for more precise statements. -/
lemma real.subgroup_dense_or_cyclic (G : add_subgroup ℝ) :
dense (G : set ℝ) ∨ ∃ a : ℝ, G = add_subgroup.closure {a} :=
begin
cases add_subgroup.bot_or_exists_ne_zero G with H H,
{ right,
use 0,
rw [H, add_subgroup.closure_singleton_zero] },
{ let G_pos := {g : ℝ | g ∈ G ∧ 0 < g},
by_cases H' : ∃ a, is_least G_pos a,
{ right,
rcases H' with ⟨a, ha⟩,
exact ⟨a, add_subgroup.cyclic_of_min ha⟩ },
{ left,
rcases H with ⟨g₀, g₀_in, g₀_ne⟩,
exact real.subgroup_dense_of_no_min g₀_in g₀_ne H' } }
end
end subgroups
|
6ea8c1bf6575acf9922a2b4f869ab95093f5fa0b
|
f5373ccdc976e6390397d9f4220a74c76f706f4a
|
/src/tools/serialization.lean
|
554392029859f5b2b1efb6ff24fd1bd27abcafc4
|
[] |
no_license
|
jasonrute/lean_gym_prototype
|
fcd91fdc454f9e351bbe258c765f50276407547e
|
ab29624d14e4e069e15afe0b1d90248b5b394b86
|
refs/heads/master
| 1,682,628,526,780
| 1,590,539,315,000
| 1,590,539,315,000
| 264,938,525
| 3
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 14,768
|
lean
|
import data.buffer.parser
import init.data.unsigned
def join (sep : string) : list string → string
| [x] := x
| [] := ""
| (x::xs) := x ++ sep ++ join xs
namespace expr
namespace representation
private def escapec : char → string
| '\"' := "\\\""
| '\t' := "\\t"
| '\n' := "\\n"
| '\\' := "\\\\"
| c := string.singleton c
private def escape (s : string) : string :=
s.fold "" (λ s c, s ++ escapec c)
def wrap_in_parens (ss : list string) : string := "( " ++ (join " " ss) ++ " )"
meta def form_of_string (s : string) : string := "\"" ++ (escape s) ++ "\""
meta def form_of_nat (n : nat) : string := to_string n
meta def form_of_unsigned (n : unsigned) : string := to_string n
meta def form_of_name : name → string
| name.anonymous := wrap_in_parens ["name.anonymous"]
| (name.mk_string s nm) := wrap_in_parens ["name.mk_string", form_of_string s, form_of_name nm]
| (name.mk_numeral i nm) := wrap_in_parens ["name.mk_numeral", form_of_unsigned i, form_of_name nm]
meta def form_of_lvl : level → string
| level.zero := wrap_in_parens ["level.zero"]
| (level.succ l) := wrap_in_parens ["level.succ", form_of_lvl l]
| (level.max l1 l2) := wrap_in_parens ["level.max", form_of_lvl l1, form_of_lvl l2]
| (level.imax l1 l2) := wrap_in_parens ["level.imax", form_of_lvl l1, form_of_lvl l2]
| (level.param nm) := wrap_in_parens ["level.param", form_of_name nm]
| (level.mvar nm) := wrap_in_parens ["level.mvar", form_of_name nm]
meta def form_of_lvl_list : list level → string
| [] := wrap_in_parens ["list.nil"]
| (h :: t) := wrap_in_parens ["list.cons", form_of_lvl h, form_of_lvl_list t]
meta def form_of_binder_info : binder_info → string
| binder_info.default := wrap_in_parens ["binder_info.default"]
| binder_info.implicit := wrap_in_parens ["binder_info.implicit"]
| binder_info.strict_implicit := wrap_in_parens ["binder_info.strict_implicit"]
| binder_info.inst_implicit := wrap_in_parens ["binder_info.inst_implicit"]
| other := wrap_in_parens ["<other>"]
meta def form_of_expr : expr → string
| (expr.var i) := wrap_in_parens ["expr.var", (format.to_string (to_fmt i) options.mk)]
| (expr.sort lvl) := wrap_in_parens ["expr.sort", form_of_lvl lvl]
| (expr.const nm lvls) := wrap_in_parens ["expr.const", form_of_name nm, form_of_lvl_list lvls]
| (expr.mvar nm nm' tp) := wrap_in_parens ["expr.mvar", form_of_name nm, form_of_name nm',form_of_expr tp]
| (expr.local_const nm ppnm bi tp) := wrap_in_parens ["expr.local_const", form_of_name nm, form_of_name ppnm, form_of_binder_info bi, form_of_expr tp]
| (expr.app f e) := wrap_in_parens ["expr.app", form_of_expr f, form_of_expr e]
| (expr.lam nm bi tp bod) := wrap_in_parens ["expr.lam", form_of_name nm, form_of_binder_info bi, form_of_expr tp, form_of_expr bod]
| (expr.pi nm bi tp bod) := wrap_in_parens ["expr.pi", form_of_name nm, form_of_binder_info bi, form_of_expr tp, form_of_expr bod]
| (expr.elet nm tp val bod) := wrap_in_parens ["<expr.elet>"]
| (expr.macro mdf mlst) := wrap_in_parens ["<expr.macro>"]
meta instance name_has_repr : has_repr name := {
repr := form_of_name
}
meta instance level_has_repr : has_repr level := {
repr := form_of_lvl
}
meta instance binder_info_has_repr : has_repr binder_info := {
repr := form_of_binder_info
}
meta instance expr_has_repr : has_repr expr := {
repr := form_of_expr
}
end representation
open parser
def Ws : parser unit :=
decorate_error "<whitespace>" $
many' $ one_of' " \t\x0d\n".to_list
def tok (s : string) := str s >> Ws
def StringChar : parser char :=
sat (λc, c ≠ '\"' ∧ c ≠ '\\' ∧ c.val > 0x1f)
<|> (do str "\\",
(str "t" >> return '\t') <|>
(str "n" >> return '\n') <|>
(str "\\" >> return '\\') <|>
(str "\"" >> return '\"'))
def BasicString : parser string :=
str "\"" *> (many_char StringChar) <* str "\"" <* Ws
def String := BasicString
def Nat : parser nat :=
do s ← many_char1 (one_of "0123456789".to_list),
Ws,
return s.to_nat
def Unsigned : parser unsigned := unsigned.of_nat <$> Nat
def Boolean : parser bool :=
(tok "true" >> return tt) <|>
(tok "false" >> return ff)
section name
parameter Name : parser name
def NameAnonymous : parser name :=
do
tok "name.anonymous",
return name.anonymous
def NameString : parser name :=
do
tok "name.mk_string",
s ← String,
nm ← Name,
return $ name.mk_string s nm
def NameNumeral : parser name :=
do
tok "name.mk_numeral",
i ← Unsigned,
nm ← Name,
return $ name.mk_numeral i nm
end name
def Name : parser name :=
fix $ λ Name,
let inner := NameAnonymous <|> (NameString Name) <|> (NameNumeral Name) in
tok "(" *> inner <* tok ")"
section level
parameter Level : parser level
meta def LevelZero : parser level :=
do
do
tok "level.zero",
return level.zero
meta def LevelSucc : parser level :=
do
tok "level.succ",
l ← Level,
return $ level.succ l
meta def LevelMax : parser level :=
do
tok "level.max",
l1 ← Level,
l2 ← Level,
return $ level.max l1 l2
meta def LevelIMax : parser level :=
do
tok "level.imax",
l1 ← Level,
l2 ← Level,
return $ level.imax l1 l2
meta def LevelParam : parser level :=
do
tok "level.param",
nm ← Name,
return $ level.param nm
meta def LevelMVar : parser level :=
do
tok "level.mvar",
nm ← Name,
return $ level.mvar nm
end level
meta def Level : parser level :=
fix $ λ Level,
let inner := LevelZero <|> LevelSucc Level <|> LevelMax Level <|>
LevelIMax Level <|> LevelParam <|> LevelMVar in
tok "(" *> inner <* tok ")"
section list_level
parameter ListLevel : parser (list level)
meta def ListLevelNil : parser (list level) :=
do
tok "list.nil",
return list.nil
meta def ListLevelCons : parser (list level) :=
do
tok "list.cons",
h ← Level,
t ← ListLevel,
return $ list.cons h t
end list_level
meta def ListLevel : parser (list level) :=
fix $ λ ListLevel,
let inner := ListLevelNil <|> ListLevelCons ListLevel in
tok "(" *> inner <* tok ")"
section binder_info
parameter BinderInfo : parser binder_info
def BinderInfoDefault : parser binder_info :=
do
tok "binder_info.default",
return binder_info.default
def BinderInfoImplicit : parser binder_info :=
do
tok "binder_info.implicit",
return binder_info.implicit
def BinderInfoStrictImplicit : parser binder_info :=
do
tok "binder_info.strict_implicit",
return binder_info.strict_implicit
def BinderInfoInstImplicit : parser binder_info :=
do
tok "binder_info.inst_implicit",
return binder_info.inst_implicit
end binder_info
def BinderInfo : parser binder_info :=
fix $ λ BinderInfo,
let inner := BinderInfoDefault <|> BinderInfoImplicit <|>
BinderInfoStrictImplicit <|> BinderInfoInstImplicit in
tok "(" *> inner <* tok ")"
section expr
parameter Expr : parser expr
--TODO: Fix the optional params in these
meta def ExprVar : parser expr :=
do
tok "expr.var",
i ← Nat,
return $ expr.var i
meta def ExprSort : parser expr :=
do
tok "expr.sort",
lvl ← Level,
return $ expr.sort lvl
meta def ExprConst : parser expr :=
do
tok "expr.const",
nm ← Name,
lvls ← ListLevel,
return $ expr.const nm lvls
meta def ExprMVar : parser expr :=
do
tok "expr.mvar",
nm1 ← Name,
nm2 ← Name,
tp ← Expr,
return $ expr.mvar nm1 nm2 tp
meta def ExprLocalConst : parser expr :=
do
tok "expr.local_const",
nm ← Name,
ppnm ← Name,
bi ← BinderInfo,
tp ← Expr,
return $ expr.local_const nm ppnm bi tp
meta def ExprApp : parser expr :=
do
tok "expr.app",
f ← Expr,
e ← Expr,
return $ expr.app f e
meta def ExprLam : parser expr :=
do
tok "expr.lam",
nm ← Name,
bi ← BinderInfo,
tp ← Expr,
bod ← Expr,
return $ expr.lam nm bi tp bod
meta def ExprPi : parser expr :=
do
tok "expr.pi",
nm ← Name,
bi ← BinderInfo,
tp ← Expr,
bod ← Expr,
return $ expr.pi nm bi tp bod
end expr
meta def Expr : parser expr :=
fix $ λ Expr,
let inner := ExprVar <|> ExprSort <|> ExprConst <|> ExprMVar Expr <|>
ExprLocalConst Expr <|> ExprApp Expr <|> ExprLam Expr <|> ExprPi Expr in
tok "(" *> inner <* tok ")"
meta def deserialize : string → string ⊕ expr := run_string Expr
meta def deserialize_name : string → string ⊕ name := run_string Name
/-
meta def get_right {α β : Type} (s: α ⊕ β) : β :=
match s with
| (sum.inl a) := sorry
| (sum.inr b) := b
end
#eval get_right $ run_string Name $ "( name.anonymous )"
#eval get_right $ run_string Name $ "( name.mk_string \"hello\" ( name.anonymous ) )"
#eval get_right $ run_string Name $ "( name.mk_numeral 145 ( name.anonymous ) )"
#eval get_right $ run_string ListLevel $ "( list.nil )"
#eval get_right $ run_string ListLevel $ "( list.cons ( level.zero ) ( list.nil ) )"
#eval get_right $ run_string Level $ "( level.zero )"
#eval get_right $ run_string Level $ "( level.succ ( level.zero ) )"
#eval get_right $ run_string Level $ "( level.max ( level.zero ) ( level.zero ) )"
#eval get_right $ run_string Level $ "( level.imax ( level.zero ) ( level.zero ) )"
#eval get_right $ run_string Level $ "( level.param ( name.anonymous ) )"
#eval get_right $ run_string Level $ "( level.mvar ( name.anonymous ) )"
#eval get_right $ run_string BinderInfo $ "( binder_info.default )"
#eval get_right $ run_string BinderInfo $ "( binder_info.implicit )"
#eval get_right $ run_string BinderInfo $ "( binder_info.strict_implicit )"
#eval get_right $ run_string BinderInfo $ "( binder_info.inst_implicit )"
#eval get_right $ run_string BinderInfo $ "( <other> )"
#eval get_right $ run_string Expr $ "( expr.var 145 )"
#eval get_right $ run_string Expr $ "( expr.sort ( level.zero ) )"
#eval get_right $ run_string Expr $ "( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) )"
#eval get_right $ run_string Expr $ "( expr.mvar ( name.mk_numeral 477 ( name.mk_numeral 2140 ( name.mk_string \"_fresh\" ( name.mk_string \"_mlocal\" ( name.anonymous ) ) ) ) ) ( name.mk_numeral 477 ( name.mk_numeral 2140 ( name.mk_string \"_fresh\" ( name.mk_string \"_mlocal\" ( name.anonymous ) ) ) ) ) ( expr.const ( name.mk_numeral 2 ( name.anonymous ) ) ( list.nil ) ) )"
#eval get_right $ run_string Expr $ "( expr.local_const ( name.mk_string \"hello\" ( name.anonymous ) ) ( name.mk_string \"hello\" ( name.anonymous ) ) ( binder_info.default ) ( expr.sort ( level.zero ) ) )"
#eval get_right $ run_string Expr $ "( expr.app ( expr.local_const ( name.mk_numeral 1319 ( name.mk_numeral 1092 ( name.mk_string \"_fresh\" ( name.mk_numeral 0 ( name.anonymous ) ) ) ) ) ( name.mk_string \"p\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_numeral 1 ( name.anonymous ) ) ( list.nil ) ) ) ( expr.local_const ( name.mk_numeral 1320 ( name.mk_numeral 1092 ( name.mk_string \"_fresh\" ( name.mk_numeral 0 ( name.anonymous ) ) ) ) ) ( name.mk_string \"n\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_numeral 1 ( name.anonymous ) ) ( list.nil ) ) ) )"
#eval get_right $ run_string Expr $ "( expr.lam ( name.mk_string \"n\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ( expr.app ( expr.local_const ( name.mk_numeral 939 ( name.mk_numeral 2261 ( name.mk_string \"_fresh\" ( name.mk_numeral 0 ( name.anonymous ) ) ) ) ) ( name.mk_string \"p\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_numeral 1 ( name.anonymous ) ) ( list.nil ) ) ) ( expr.var 0 ) ) )"
#eval get_right $ run_string Expr $ "( expr.pi ( name.mk_string \"a\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ( expr.sort ( level.zero ) ) )"
#eval get_right $ run_string Expr $ "( expr.app ( expr.app ( expr.app ( expr.const ( name.mk_string \"eq\" ( name.anonymous ) ) ( list.cons ( level.succ ( level.zero ) ) ( list.nil ) ) ) ( expr.pi ( name.mk_string \"a\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ( expr.sort ( level.zero ) ) ) ) ( expr.local_const ( name.mk_numeral 939 ( name.mk_numeral 2261 ( name.mk_string \"_fresh\" ( name.mk_numeral 0 ( name.anonymous ) ) ) ) ) ( name.mk_string \"p\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_numeral 1 ( name.anonymous ) ) ( list.nil ) ) ) ) ( expr.lam ( name.mk_string \"n\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ( expr.app ( expr.local_const ( name.mk_numeral 939 ( name.mk_numeral 2261 ( name.mk_string \"_fresh\" ( name.mk_numeral 0 ( name.anonymous ) ) ) ) ) ( name.mk_string \"p\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_numeral 1 ( name.anonymous ) ) ( list.nil ) ) ) ( expr.var 0 ) ) ) )"
#eval get_right $ run_string Expr $ "( expr.pi ( name.mk_string \"n\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ( expr.pi ( name.mk_string \"m\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ( expr.app ( expr.app ( expr.app ( expr.const ( name.mk_string \"eq\" ( name.anonymous ) ) ( list.cons ( level.succ ( level.zero ) ) ( list.nil ) ) ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ) ( expr.app ( expr.app ( expr.app ( expr.app ( expr.const ( name.mk_string \"add\" ( name.mk_string \"has_add\" ( name.anonymous ) ) ) ( list.cons ( level.zero ) ( list.nil ) ) ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ) ( expr.const ( name.mk_string \"has_add\" ( name.mk_string \"nat\" ( name.anonymous ) ) ) ( list.nil ) ) ) ( expr.var 1 ) ) ( expr.var 0 ) ) ) ( expr.app ( expr.app ( expr.app ( expr.app ( expr.const ( name.mk_string \"add\" ( name.mk_string \"has_add\" ( name.anonymous ) ) ) ( list.cons ( level.zero ) ( list.nil ) ) ) ( expr.const ( name.mk_string \"nat\" ( name.anonymous ) ) ( list.nil ) ) ) ( expr.const ( name.mk_string \"has_add\" ( name.mk_string \"nat\" ( name.anonymous ) ) ) ( list.nil ) ) ) ( expr.var 0 ) ) ( expr.var 1 ) ) ) ) )"
#eval get_right $ run_string Expr $ "( expr.local_const ( name.mk_numeral 1094 ( name.mk_numeral 2785 ( name.mk_string \"_fresh\" ( name.mk_numeral 0 ( name.anonymous ) ) ) ) ) ( name.mk_string \"n\" ( name.anonymous ) ) ( binder_info.default ) ( expr.const ( name.mk_numeral 1 ( name.anonymous ) ) ( list.nil ) ) )"
-/
end expr
|
e39967d977e2c081aa97d242d0c54649a96cc5d6
|
5ae26df177f810c5006841e9c73dc56e01b978d7
|
/src/category_theory/limits/functor_category.lean
|
698d9a4a287b53642e9dc42e238b91ae1e5e3d5d
|
[
"Apache-2.0"
] |
permissive
|
ChrisHughes24/mathlib
|
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
|
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
|
refs/heads/master
| 1,583,848,251,477
| 1,565,164,247,000
| 1,565,164,247,000
| 129,409,993
| 0
| 1
|
Apache-2.0
| 1,565,164,817,000
| 1,523,628,059,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,859
|
lean
|
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.products
import category_theory.limits.preserves
open category_theory category_theory.category
namespace category_theory.limits
universes v u -- declare the `v`'s first; see `category_theory.category` for an explanation
variables {C : Type u} [𝒞 : category.{v+1} C]
include 𝒞
variables {J K : Type v} [small_category J] [small_category K]
@[simp] lemma cone.functor_w {F : J ⥤ (K ⥤ C)} (c : cone F) {j j' : J} (f : j ⟶ j') (k : K) :
(c.π.app j).app k ≫ (F.map f).app k = (c.π.app j').app k :=
by convert ←nat_trans.congr_app (c.π.naturality f).symm k; apply id_comp
@[simp] lemma cocone.functor_w {F : J ⥤ (K ⥤ C)} (c : cocone F) {j j' : J} (f : j ⟶ j') (k : K) :
(F.map f).app k ≫ (c.ι.app j').app k = (c.ι.app j).app k :=
by convert ←nat_trans.congr_app (c.ι.naturality f) k; apply comp_id
@[simp] def functor_category_limit_cone [has_limits_of_shape J C] (F : J ⥤ K ⥤ C) :
cone F :=
{ X := F.flip ⋙ lim,
π :=
{ app := λ j,
{ app := λ k, limit.π (F.flip.obj k) j },
naturality' := λ j j' f,
by ext k; convert (limit.w (F.flip.obj k) _).symm using 1; apply id_comp } }
@[simp] def functor_category_colimit_cocone [has_colimits_of_shape J C] (F : J ⥤ K ⥤ C) :
cocone F :=
{ X := F.flip ⋙ colim,
ι :=
{ app := λ j,
{ app := λ k, colimit.ι (F.flip.obj k) j },
naturality' := λ j j' f,
by ext k; convert (colimit.w (F.flip.obj k) _) using 1; apply comp_id } }
@[simp] def evaluate_functor_category_limit_cone
[has_limits_of_shape J C] (F : J ⥤ K ⥤ C) (k : K) :
((evaluation K C).obj k).map_cone (functor_category_limit_cone F) ≅
limit.cone (F.flip.obj k) :=
cones.ext (iso.refl _) (by tidy)
@[simp] def evaluate_functor_category_colimit_cocone
[has_colimits_of_shape J C] (F : J ⥤ K ⥤ C) (k : K) :
((evaluation K C).obj k).map_cocone (functor_category_colimit_cocone F) ≅
colimit.cocone (F.flip.obj k) :=
cocones.ext (iso.refl _) (by tidy)
def functor_category_is_limit_cone [has_limits_of_shape J C] (F : J ⥤ K ⥤ C) :
is_limit (functor_category_limit_cone F) :=
{ lift := λ s,
{ app := λ k, limit.lift (F.flip.obj k) (((evaluation K C).obj k).map_cone s) },
uniq' := λ s m w,
begin
ext1 k,
exact is_limit.uniq _
(((evaluation K C).obj k).map_cone s) (m.app k) (λ j, nat_trans.congr_app (w j) k)
end }
def functor_category_is_colimit_cocone [has_colimits_of_shape.{v} J C] (F : J ⥤ K ⥤ C) :
is_colimit (functor_category_colimit_cocone F) :=
{ desc := λ s,
{ app := λ k, colimit.desc (F.flip.obj k) (((evaluation K C).obj k).map_cocone s) },
uniq' := λ s m w,
begin
ext1 k,
exact is_colimit.uniq _
(((evaluation K C).obj k).map_cocone s) (m.app k) (λ j, nat_trans.congr_app (w j) k)
end }
instance functor_category_has_limits_of_shape
[has_limits_of_shape J C] : has_limits_of_shape J (K ⥤ C) :=
{ has_limit := λ F,
{ cone := functor_category_limit_cone F,
is_limit := functor_category_is_limit_cone F } }
instance functor_category_has_colimits_of_shape
[has_colimits_of_shape J C] : has_colimits_of_shape J (K ⥤ C) :=
{ has_colimit := λ F,
{ cocone := functor_category_colimit_cocone F,
is_colimit := functor_category_is_colimit_cocone F } }
instance functor_category_has_limits [has_limits.{v} C] : has_limits.{v} (K ⥤ C) :=
{ has_limits_of_shape := λ J 𝒥, by resetI; apply_instance }
instance functor_category_has_colimits [has_colimits.{v} C] : has_colimits.{v} (K ⥤ C) :=
{ has_colimits_of_shape := λ J 𝒥, by resetI; apply_instance }
instance evaluation_preserves_limits_of_shape [has_limits_of_shape J C] (k : K) :
preserves_limits_of_shape J ((evaluation K C).obj k) :=
{ preserves_limit :=
λ F, preserves_limit_of_preserves_limit_cone (limit.is_limit _) $
is_limit.of_iso_limit (limit.is_limit _)
(evaluate_functor_category_limit_cone F k).symm }
instance evaluation_preserves_colimits_of_shape [has_colimits_of_shape J C] (k : K) :
preserves_colimits_of_shape J ((evaluation K C).obj k) :=
{ preserves_colimit :=
λ F, preserves_colimit_of_preserves_colimit_cocone (colimit.is_colimit _) $
is_colimit.of_iso_colimit (colimit.is_colimit _)
(evaluate_functor_category_colimit_cocone F k).symm }
instance evaluation_preserves_limits [has_limits.{v} C] (k : K) :
preserves_limits ((evaluation K C).obj k) :=
{ preserves_limits_of_shape := λ J 𝒥, by resetI; apply_instance }
instance evaluation_preserves_colimits [has_colimits.{v} C] (k : K) :
preserves_colimits ((evaluation K C).obj k) :=
{ preserves_colimits_of_shape := λ J 𝒥, by resetI; apply_instance }
end category_theory.limits
|
5f35b30881115c558c9c60866bb0d80e8211948d
|
aa3f8992ef7806974bc1ffd468baa0c79f4d6643
|
/tests/lean/calc1.lean
|
e019a57b0e122bb91ebe09183084c0b767412ac6
|
[
"Apache-2.0"
] |
permissive
|
codyroux/lean
|
7f8dff750722c5382bdd0a9a9275dc4bb2c58dd3
|
0cca265db19f7296531e339192e9b9bae4a31f8b
|
refs/heads/master
| 1,610,909,964,159
| 1,407,084,399,000
| 1,416,857,075,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,562
|
lean
|
constant A : Type.{1}
definition bool : Type.{1} := Type.{0}
constant eq : A → A → bool
infixl `=`:50 := eq
axiom subst (P : A → bool) (a b : A) (H1 : a = b) (H2 : P a) : P b
axiom eq_trans (a b c : A) (H1 : a = b) (H2 : b = c) : a = c
axiom eq_refl (a : A) : a = a
constant le : A → A → bool
infixl `≤`:50 := le
axiom le_trans (a b c : A) (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c
axiom le_refl (a : A) : a ≤ a
axiom eq_le_trans (a b c : A) (H1 : a = b) (H2 : b ≤ c) : a ≤ c
axiom le_eq_trans (a b c : A) (H1 : a ≤ b) (H2 : b = c) : a ≤ c
calc_subst subst
calc_refl eq_refl
calc_refl le_refl
calc_trans eq_trans
calc_trans le_trans
calc_trans eq_le_trans
calc_trans le_eq_trans
constants a b c d e f : A
axiom H1 : a = b
axiom H2 : b ≤ c
axiom H3 : c ≤ d
axiom H4 : d = e
check calc a = b : H1
... ≤ c : H2
... ≤ d : H3
... = e : H4
constant lt : A → A → bool
infixl `<`:50 := lt
axiom lt_trans (a b c : A) (H1 : a < b) (H2 : b < c) : a < c
axiom le_lt_trans (a b c : A) (H1 : a ≤ b) (H2 : b < c) : a < c
axiom lt_le_trans (a b c : A) (H1 : a < b) (H2 : b ≤ c) : a < c
axiom H5 : c < d
check calc b ≤ c : H2
... < d : H5 -- Error le_lt_trans was not registered yet
calc_trans le_lt_trans
check calc b ≤ c : H2
... < d : H5
constant le2 : A → A → bool
infixl `≤`:50 := le2
constant le2_trans (a b c : A) (H1 : le2 a b) (H2 : le2 b c) : le2 a c
calc_trans le2_trans
print raw calc b ≤ c : H2
... ≤ d : H3
... ≤ e : H4
|
b52e8fdcdceb13f0ca72ac8642235b33d1a1155e
|
ba4794a0deca1d2aaa68914cd285d77880907b5c
|
/src/game/world8/level5.lean
|
f82d4723025c7e6796e2f49d315864bca9bebf75
|
[
"Apache-2.0"
] |
permissive
|
ChrisHughes24/natural_number_game
|
c7c00aa1f6a95004286fd456ed13cf6e113159ce
|
9d09925424da9f6275e6cfe427c8bcf12bb0944f
|
refs/heads/master
| 1,600,715,773,528
| 1,573,910,462,000
| 1,573,910,462,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 952
|
lean
|
import mynat.definition -- hide
import mynat.add -- hide
import game.world8.level4 -- hide
namespace mynat -- hide
/-
# Advanced Addition World
## Level 5: `add_right_cancel`
The theorem `add_right_cancel` is the theorem that you can cancel on the left
when you're doing addition -- if `a + t = b + t` then `a = b`. After `intro h`
I'd recommend induction on `t`. Don't forget that `rw add_zero at h` can be used
to do rewriting of hypotheses rather than the goal.
-/
/- Theorem
On the set of natural numbers, addition has the right cancellation property.
In other words, if there are natural numbers $a, b$ and $c$ such that
$$ a + t = b + t, $$
then we have $a = b$.
-/
theorem add_right_cancel (a t b : mynat) : a + t = b + t → a = b :=
begin [less_leaky]
intro h,
induction t with d hd,
rw add_zero at h,
rw add_zero at h,
exact h,
apply hd,
rw add_succ at h,
rw add_succ at h,
exact succ_inj(h),
end
end mynat -- hide
|
8f1b9d4d90d88052f96cb0156f39c958dfef0da9
|
7e64227df02adbcb36600fbf0725f39f6052bbcc
|
/src/unyeet3.lean
|
efe8618316fe47e72e791662b938c077dbdc4484
|
[
"MIT"
] |
permissive
|
ocornoc/yeet
|
d686ee3400774cc7ac6d1517602b77ab835baa05
|
36796d756c451a7a1807e3e8714c552eca6dac65
|
refs/heads/master
| 1,676,263,361,122
| 1,610,192,452,000
| 1,610,192,452,000
| 326,520,706
| 2
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,299
|
lean
|
import tactic data.nat.digits .yeet
theorem unyeetable_3p2 : ¬ ∃ b, yeet b 3 2 :=
begin
rintro ⟨b, h⟩,
unfold yeet at h,
cases b, { change 9 = 3 at h, norm_num at h },
cases b, { change 9 = 5 at h, norm_num at h },
cases b, { norm_num [nat.of_digits] at h },
cases b, { norm_num [nat.of_digits] at h },
have h2b : 2 < b + 4 := by linarith,
have h3b : 3 < b + 4 := by linarith,
rw nat.digits_of_lt _ _ dec_trivial h2b at h,
rw nat.digits_of_lt _ _ dec_trivial h3b at h,
change 9 = nat.of_digits _ [3, 2] at h,
change 9 = 3 + (b + 4) * 2 at h,
rw [add_mul, ←add_assoc, add_comm, ←add_assoc] at h,
exact absurd (le_trans (le_add_right (le_refl _)) (ge_of_eq h)) dec_trivial
end
theorem unyeetable_3p4 : ¬ ∃ b, yeet b 3 4 :=
begin
rintro ⟨b, h⟩,
unfold yeet at h,
cases b, { change _ = 3 at h, norm_num at h },
cases b, { change _ = 7 at h, norm_num at h },
cases b, { norm_num [nat.of_digits] at h },
cases b, { norm_num [nat.of_digits] at h },
cases b, { norm_num [nat.of_digits] at h },
have h3b : 3 < b + 5 := by linarith,
have h4b : 4 < b + 5 := by linarith,
rw nat.digits_of_lt _ _ dec_trivial h3b at h,
rw nat.digits_of_lt _ _ dec_trivial h4b at h,
norm_num [nat.of_digits] at h,
apply_fun (% 4) at h,
norm_num at h
end
|
ef4028bd9df0b4bded18a693315556e4a8787aae
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/order/partial_sups.lean
|
d8b326407c8d423046fb2935a89170c7f2bd6272
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,953
|
lean
|
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.finset.lattice
import order.hom.basic
import order.conditionally_complete_lattice.finset
/-!
# The monotone sequence of partial supremums of a sequence
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
We define `partial_sups : (ℕ → α) → ℕ →o α` inductively. For `f : ℕ → α`, `partial_sups f` is
the sequence `f 0 `, `f 0 ⊔ f 1`, `f 0 ⊔ f 1 ⊔ f 2`, ... The point of this definition is that
* it doesn't need a `⨆`, as opposed to `⨆ (i ≤ n), f i` (which also means the wrong thing on
`conditionally_complete_lattice`s).
* it doesn't need a `⊥`, as opposed to `(finset.range (n + 1)).sup f`.
* it avoids needing to prove that `finset.range (n + 1)` is nonempty to use `finset.sup'`.
Equivalence with those definitions is shown by `partial_sups_eq_bsupr`, `partial_sups_eq_sup_range`,
`partial_sups_eq_sup'_range` and respectively.
## Notes
One might dispute whether this sequence should start at `f 0` or `⊥`. We choose the former because :
* Starting at `⊥` requires... having a bottom element.
* `λ f n, (finset.range n).sup f` is already effectively the sequence starting at `⊥`.
* If we started at `⊥` we wouldn't have the Galois insertion. See `partial_sups.gi`.
## TODO
One could generalize `partial_sups` to any locally finite bot preorder domain, in place of `ℕ`.
Necessary for the TODO in the module docstring of `order.disjointed`.
-/
variables {α : Type*}
section semilattice_sup
variables [semilattice_sup α]
/-- The monotone sequence whose value at `n` is the supremum of the `f m` where `m ≤ n`. -/
def partial_sups (f : ℕ → α) : ℕ →o α :=
⟨@nat.rec (λ _, α) (f 0) (λ (n : ℕ) (a : α), a ⊔ f (n + 1)),
monotone_nat_of_le_succ (λ n, le_sup_left)⟩
@[simp] lemma partial_sups_zero (f : ℕ → α) : partial_sups f 0 = f 0 := rfl
@[simp] lemma partial_sups_succ (f : ℕ → α) (n : ℕ) :
partial_sups f (n + 1) = partial_sups f n ⊔ f (n + 1) := rfl
lemma le_partial_sups_of_le (f : ℕ → α) {m n : ℕ} (h : m ≤ n) :
f m ≤ partial_sups f n :=
begin
induction n with n ih,
{ cases h, exact le_rfl, },
{ cases h with h h,
{ exact le_sup_right, },
{ exact (ih h).trans le_sup_left, } },
end
lemma le_partial_sups (f : ℕ → α) :
f ≤ partial_sups f :=
λ n, le_partial_sups_of_le f le_rfl
lemma partial_sups_le (f : ℕ → α) (n : ℕ)
(a : α) (w : ∀ m, m ≤ n → f m ≤ a) : partial_sups f n ≤ a :=
begin
induction n with n ih,
{ apply w 0 le_rfl, },
{ exact sup_le (ih (λ m p, w m (nat.le_succ_of_le p))) (w (n + 1) le_rfl) }
end
@[simp] lemma bdd_above_range_partial_sups {f : ℕ → α} :
bdd_above (set.range (partial_sups f)) ↔ bdd_above (set.range f) :=
begin
apply exists_congr (λ a, _),
split,
{ rintros h b ⟨i, rfl⟩,
exact (le_partial_sups _ _).trans (h (set.mem_range_self i)) },
{ rintros h b ⟨i, rfl⟩,
exact (partial_sups_le _ _ _ $ λ _ _, h (set.mem_range_self _)), },
end
lemma monotone.partial_sups_eq {f : ℕ → α} (hf : monotone f) :
(partial_sups f : ℕ → α) = f :=
begin
ext n,
induction n with n ih,
{ refl },
{ rw [partial_sups_succ, ih, sup_eq_right.2 (hf (nat.le_succ _))] }
end
lemma partial_sups_mono : monotone (partial_sups : (ℕ → α) → ℕ →o α) :=
begin
rintro f g h n,
induction n with n ih,
{ exact h 0 },
{ exact sup_le_sup ih (h _) }
end
/-- `partial_sups` forms a Galois insertion with the coercion from monotone functions to functions.
-/
def partial_sups.gi : galois_insertion (partial_sups : (ℕ → α) → ℕ →o α) coe_fn :=
{ choice := λ f h, ⟨f, begin
convert (partial_sups f).monotone,
exact (le_partial_sups f).antisymm h,
end⟩,
gc := λ f g, begin
refine ⟨(le_partial_sups f).trans, λ h, _⟩,
convert partial_sups_mono h,
exact order_hom.ext _ _ g.monotone.partial_sups_eq.symm,
end,
le_l_u := λ f, le_partial_sups f,
choice_eq := λ f h, order_hom.ext _ _ ((le_partial_sups f).antisymm h) }
lemma partial_sups_eq_sup'_range (f : ℕ → α) (n : ℕ) :
partial_sups f n = (finset.range (n + 1)).sup' ⟨n, finset.self_mem_range_succ n⟩ f :=
begin
induction n with n ih,
{ simp },
{ dsimp [partial_sups] at ih ⊢,
simp_rw @finset.range_succ n.succ,
rw [ih, finset.sup'_insert, sup_comm] }
end
end semilattice_sup
lemma partial_sups_eq_sup_range [semilattice_sup α] [order_bot α] (f : ℕ → α) (n : ℕ) :
partial_sups f n = (finset.range (n + 1)).sup f :=
begin
induction n with n ih,
{ simp },
{ dsimp [partial_sups] at ih ⊢,
rw [finset.range_succ, finset.sup_insert, sup_comm, ih] }
end
/- Note this lemma requires a distributive lattice, so is not useful (or true) in situations such as
submodules. -/
lemma partial_sups_disjoint_of_disjoint [distrib_lattice α] [order_bot α]
(f : ℕ → α) (h : pairwise (disjoint on f)) {m n : ℕ} (hmn : m < n) :
disjoint (partial_sups f m) (f n) :=
begin
induction m with m ih,
{ exact h hmn.ne, },
{ rw [partial_sups_succ, disjoint_sup_left],
exact ⟨ih (nat.lt_of_succ_lt hmn), h hmn.ne⟩ }
end
section conditionally_complete_lattice
variables [conditionally_complete_lattice α]
lemma partial_sups_eq_csupr_Iic (f : ℕ → α) (n : ℕ) : partial_sups f n = ⨆ i : set.Iic n, f i :=
begin
have : set.Iio (n + 1) = set.Iic n := set.ext (λ _, nat.lt_succ_iff),
rw [partial_sups_eq_sup'_range, finset.sup'_eq_cSup_image, finset.coe_range,
supr, set.range_comp, subtype.range_coe, this],
end
@[simp] lemma csupr_partial_sups_eq {f : ℕ → α} (h : bdd_above (set.range f)) :
(⨆ n, partial_sups f n) = ⨆ n, f n :=
begin
refine (csupr_le $ λ n, _).antisymm (csupr_mono _ $ le_partial_sups f),
{ rw partial_sups_eq_csupr_Iic,
exact csupr_le (λ i, le_csupr h _), },
{ rwa bdd_above_range_partial_sups },
end
end conditionally_complete_lattice
section complete_lattice
variables [complete_lattice α]
lemma partial_sups_eq_bsupr (f : ℕ → α) (n : ℕ) :
partial_sups f n = ⨆ (i ≤ n), f i :=
by simpa only [supr_subtype] using partial_sups_eq_csupr_Iic f n
@[simp] lemma supr_partial_sups_eq (f : ℕ → α) :
(⨆ n, partial_sups f n) = ⨆ n, f n :=
csupr_partial_sups_eq $ order_top.bdd_above _
lemma supr_le_supr_of_partial_sups_le_partial_sups {f g : ℕ → α}
(h : partial_sups f ≤ partial_sups g) :
(⨆ n, f n) ≤ ⨆ n, g n :=
begin
rw [←supr_partial_sups_eq f, ←supr_partial_sups_eq g],
exact supr_mono h,
end
lemma supr_eq_supr_of_partial_sups_eq_partial_sups {f g : ℕ → α}
(h : partial_sups f = partial_sups g) :
(⨆ n, f n) = ⨆ n, g n :=
by simp_rw [←supr_partial_sups_eq f, ←supr_partial_sups_eq g, h]
end complete_lattice
|
566ba7693788b85dfffaa8776b3955f05375a300
|
947b78d97130d56365ae2ec264df196ce769371a
|
/tests/elabissues/structInst.lean
|
f0df75f8e7760be2dcce3e11d35c95c1691dc259
|
[
"Apache-2.0"
] |
permissive
|
shyamalschandra/lean4
|
27044812be8698f0c79147615b1d5090b9f4b037
|
6e7a883b21eaf62831e8111b251dc9b18f40e604
|
refs/heads/master
| 1,671,417,126,371
| 1,601,859,995,000
| 1,601,860,020,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,466
|
lean
|
namespace Ex1
structure A :=
(x : Nat)
structure B extends A :=
(y : Nat := x + 2) (x := y + 1)
structure C extends B :=
(z : Nat) (x := z + 10)
#check { y := 1 : B } -- works
#check { z := 1 : C } -- doesn't work, expected { z := 1, x := 1 + 10, y := (1 + 10) + 2 }
end Ex1
namespace Ex2
structure A :=
(x : Nat) (y : Nat)
structure B extends A :=
(z : Nat := x + 1) (y := z + x)
#print B.y._default
#check { x := 1 : B } -- works, but reduced a `HasAdd.add` into `Nat.add`: `{toA := {x := 1, y := Nat.add (1+1) 1}, z := 1+1} : B`.
end Ex2
namespace Ex3
structure A :=
(x : Nat)
structure B extends A :=
(y : Nat := x + 2) (x := y + 1)
structure C extends B :=
(z : Nat := 2*y) (x := z + 2) (y := z + 3)
#check { x := 1 : C } -- doesn't work, should be { x := 1, y := 1+2, z := 2*(1+2) }
#check { y := 1 : C } -- doesn't work, should be { y := 1, z := 2*1, x := 2*1 + 2 }
#check { z := 1 : C } -- doesn't work, should be { z := 1, x := 1 + 2, y := 1 + 3 }
end Ex3
namespace Ex4
structure A :=
(x : Nat)
structure B extends A :=
(y : Nat := x + 1) (x := y + 1)
structure C extends B :=
(z : Nat := 2*y) (x := z + 3)
#check { x := 1 : C } -- works
#check { y := 1 : C } -- doesn't work, should be { y := 1, z := 2*1, x := 2*1 + 3 }
#check { z := 1 : C } -- doesn't work, should be { z := 1, x := 1 + 3, y := (1 + 3) + 1 }
#check { z := 1, x := 2 : C } -- works
#check { y := 1 : B } -- works, but reduced a `HasAdd.add` into `Nat.add`
end Ex4
|
1e4e240111b329dbc20e404132095505ea6e3815
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/library/init/data/array/basic.lean
|
75aac8d372d799f598b019b13e7c42aced572f22
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 10,354
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
-/
prelude
import init.data.nat init.data.bool init.ite_simp
universes u v w
/-- In the VM, d_array is implemented as a persistent array. -/
structure d_array (n : nat) (α : fin n → Type u) :=
(data : Π i : fin n, α i)
namespace d_array
variables {n : nat} {α : fin n → Type u} {α' : fin n → Type v} {β : Type w}
/-- The empty array. -/
def nil {α} : d_array 0 α :=
{data := λ ⟨x, h⟩, absurd h (nat.not_lt_zero x)}
/-- `read a i` reads the `i`th member of `a`. Has builtin VM implementation. -/
def read (a : d_array n α) (i : fin n) : α i :=
a.data i
/-- `write a i v` sets the `i`th member of `a` to be `v`. Has builtin VM implementation. -/
def write (a : d_array n α) (i : fin n) (v : α i) : d_array n α :=
{data := λ j, if h : i = j then eq.rec_on h v else a.read j}
def iterate_aux (a : d_array n α) (f : Π i : fin n, α i → β → β) : Π (i : nat), i ≤ n → β → β
| 0 h b := b
| (j+1) h b :=
let i : fin n := ⟨j, h⟩ in
f i (a.read i) (iterate_aux j (le_of_lt h) b)
/-- Fold over the elements of the given array in ascending order. Has builtin VM implementation. -/
def iterate (a : d_array n α) (b : β) (f : Π i : fin n, α i → β → β) : β :=
iterate_aux a f n (le_refl _) b
/-- Map the array. Has builtin VM implementation. -/
def foreach (a : d_array n α) (f : Π i : fin n, α i → α' i) : d_array n α' :=
⟨λ i, f _ (a.read i)⟩
def map (f : Π i : fin n, α i → α' i) (a : d_array n α) : d_array n α' :=
foreach a f
def map₂ {α'' : fin n → Type w} (f : Π i : fin n, α i → α' i → α'' i) (a : d_array n α) (b : d_array n α') :
d_array n α'' :=
foreach b (λ i, f i (a.read i))
def foldl (a : d_array n α) (b : β) (f : Π i : fin n, α i → β → β) : β :=
iterate a b f
def rev_iterate_aux (a : d_array n α) (f : Π i : fin n, α i → β → β) : Π (i : nat), i ≤ n → β → β
| 0 h b := b
| (j+1) h b :=
let i : fin n := ⟨j, h⟩ in
rev_iterate_aux j (le_of_lt h) (f i (a.read i) b)
def rev_iterate (a : d_array n α) (b : β) (f : Π i : fin n, α i → β → β) : β :=
rev_iterate_aux a f n (le_refl _) b
@[simp] lemma read_write (a : d_array n α) (i : fin n) (v : α i) : read (write a i v) i = v :=
by simp [read, write]
@[simp] lemma read_write_of_ne (a : d_array n α) {i j : fin n} (v : α i) : i ≠ j → read (write a i v) j = read a j :=
by intro h; simp [read, write, h]
protected lemma ext {a b : d_array n α} (h : ∀ i, read a i = read b i) : a = b :=
by cases a; cases b; congr; exact funext h
protected lemma ext' {a b : d_array n α} (h : ∀ (i : nat) (h : i < n), read a ⟨i, h⟩ = read b ⟨i, h⟩) : a = b :=
begin cases a, cases b, congr, funext i, cases i, apply h end
protected def beq_aux [∀ i, decidable_eq (α i)] (a b : d_array n α) : Π (i : nat), i ≤ n → bool
| 0 h := tt
| (i+1) h := if a.read ⟨i, h⟩ = b.read ⟨i, h⟩ then beq_aux i (le_of_lt h) else ff
/-- Boolean element-wise equality check. -/
protected def beq [∀ i, decidable_eq (α i)] (a b : d_array n α) : bool :=
d_array.beq_aux a b n (le_refl _)
lemma of_beq_aux_eq_tt [∀ i, decidable_eq (α i)] {a b : d_array n α} : ∀ (i : nat) (h : i ≤ n), d_array.beq_aux a b i h = tt →
∀ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h⟩ = b.read ⟨j, lt_of_lt_of_le h' h⟩
| 0 h₁ h₂ j h₃ := absurd h₃ (nat.not_lt_zero _)
| (i+1) h₁ h₂ j h₃ :=
begin
have h₂' : read a ⟨i, h₁⟩ = read b ⟨i, h₁⟩ ∧ d_array.beq_aux a b i _ = tt, {simp [d_array.beq_aux] at h₂, assumption},
have h₁' : i ≤ n, from le_of_lt h₁,
have ih : ∀ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h₁'⟩ = b.read ⟨j, lt_of_lt_of_le h' h₁'⟩, from of_beq_aux_eq_tt i h₁' h₂'.2,
by_cases hji : j = i,
{ subst hji, exact h₂'.1 },
{ have j_lt_i : j < i, from lt_of_le_of_ne (nat.le_of_lt_succ h₃) hji,
exact ih j j_lt_i }
end
lemma of_beq_eq_tt [∀ i, decidable_eq (α i)] {a b : d_array n α} : d_array.beq a b = tt → a = b :=
begin
unfold d_array.beq,
intro h,
have : ∀ (j : nat) (h : j < n), a.read ⟨j, h⟩ = b.read ⟨j, h⟩, from
of_beq_aux_eq_tt n (le_refl _) h,
apply d_array.ext' this
end
lemma of_beq_aux_eq_ff [∀ i, decidable_eq (α i)] {a b : d_array n α} : ∀ (i : nat) (h : i ≤ n), d_array.beq_aux a b i h = ff →
∃ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h⟩ ≠ b.read ⟨j, lt_of_lt_of_le h' h⟩
| 0 h₁ h₂ := begin simp [d_array.beq_aux] at h₂, contradiction end
| (i+1) h₁ h₂ :=
begin
have h₂' : read a ⟨i, h₁⟩ ≠ read b ⟨i, h₁⟩ ∨ d_array.beq_aux a b i _ = ff, {simp [d_array.beq_aux] at h₂, assumption},
cases h₂' with h h,
{ existsi i, existsi (nat.lt_succ_self _), exact h },
{ have h₁' : i ≤ n, from le_of_lt h₁,
have ih : ∃ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h₁'⟩ ≠ b.read ⟨j, lt_of_lt_of_le h' h₁'⟩, from of_beq_aux_eq_ff i h₁' h,
cases ih with j ih,
cases ih with h' ih,
existsi j, existsi (nat.lt_succ_of_lt h'),
exact ih }
end
lemma of_beq_eq_ff [∀ i, decidable_eq (α i)] {a b : d_array n α} : d_array.beq a b = ff → a ≠ b :=
begin
unfold d_array.beq,
intros h hne,
have : ∃ (j : nat) (h' : j < n), a.read ⟨j, h'⟩ ≠ b.read ⟨j, h'⟩, from of_beq_aux_eq_ff n (le_refl _) h,
cases this with j this,
cases this with h' this,
subst hne,
contradiction
end
instance [∀ i, decidable_eq (α i)] : decidable_eq (d_array n α) :=
λ a b, if h : d_array.beq a b = tt then is_true (of_beq_eq_tt h) else is_false (of_beq_eq_ff (eq_ff_of_not_eq_tt h))
end d_array
/-- A non-dependent array (see `d_array`). Implemented in the VM as a persistent array. -/
def array (n : nat) (α : Type u) : Type u :=
d_array n (λ _, α)
/-- `mk_array n v` creates a new array of length `n` where each element is `v`. Has builtin VM implementation. -/
def mk_array {α} (n) (v : α) : array n α :=
{data := λ _, v}
namespace array
variables {n : nat} {α : Type u} {β : Type v}
def nil {α} : array 0 α :=
d_array.nil
@[inline]
def read (a : array n α) (i : fin n) : α :=
d_array.read a i
@[inline]
def write (a : array n α) (i : fin n) (v : α) : array n α :=
d_array.write a i v
/-- Fold array starting from 0, folder function includes an index argument. -/
@[inline]
def iterate (a : array n α) (b : β) (f : fin n → α → β → β) : β :=
d_array.iterate a b f
/-- Map each element of the given array with an index argument. -/
@[inline]
def foreach (a : array n α) (f : fin n → α → β) : array n β :=
d_array.foreach a f
@[inline]
def map₂ (f : α → α → α) (a b : array n α) : array n α :=
foreach b (λ i, f (a.read i))
@[inline]
def foldl (a : array n α) (b : β) (f : α → β → β) : β :=
iterate a b (λ _, f)
def rev_list (a : array n α) : list α :=
a.foldl [] (::)
def rev_iterate (a : array n α) (b : β) (f : fin n → α → β → β) : β :=
d_array.rev_iterate a b f
def rev_foldl (a : array n α) (b : β) (f : α → β → β) : β :=
rev_iterate a b (λ _, f)
def to_list (a : array n α) : list α :=
a.rev_foldl [] (::)
lemma push_back_idx {j n} (h₁ : j < n + 1) (h₂ : j ≠ n) : j < n :=
nat.lt_of_le_and_ne (nat.le_of_lt_succ h₁) h₂
/-- `push_back a v` pushes value `v` to the end of the array. Has builtin VM implementation. -/
def push_back (a : array n α) (v : α) : array (n+1) α :=
{data := λ ⟨j, h₁⟩, if h₂ : j = n then v else a.read ⟨j, push_back_idx h₁ h₂⟩}
lemma pop_back_idx {j n} (h : j < n) : j < n + 1 :=
nat.lt.step h
/-- Discard _last_ element in the array. Has builtin VM implementation. -/
def pop_back (a : array (n+1) α) : array n α :=
{data := λ ⟨j, h⟩, a.read ⟨j, pop_back_idx h⟩}
/-- Auxilliary function for monadically mapping a function over an array. -/
@[inline]
def mmap_core {β : Type v} {m : Type v → Type w} [monad m] (a : array n α) (f : α → m β) :
∀ i ≤ n, m (array i β)
| 0 _ := pure d_array.nil
| (i+1) h := do
bs ← mmap_core i (le_of_lt h),
b ← f (a.read ⟨i, h⟩),
pure $ bs.push_back b
/-- Monadically map a function over the array. -/
@[inline]
def mmap {β : Type v} {m} [monad m] (a : array n α) (f : α → m β) : m (array n β) :=
a.mmap_core f _ (le_refl _)
/-- Map a function over the array. -/
@[inline]
def map {β : Type v} (a : array n α) (f : α → β) : array n β :=
a.map (λ _, f)
protected def mem (v : α) (a : array n α) : Prop :=
∃ i : fin n, read a i = v
instance : has_mem α (array n α) := ⟨array.mem⟩
theorem read_mem (a : array n α) (i) : read a i ∈ a :=
exists.intro i rfl
instance [has_repr α] : has_repr (array n α) :=
⟨repr ∘ to_list⟩
meta instance [has_to_format α] : has_to_format (array n α) :=
⟨to_fmt ∘ to_list⟩
meta instance [has_to_tactic_format α] : has_to_tactic_format (array n α) :=
⟨tactic.pp ∘ to_list⟩
@[simp] lemma read_write (a : array n α) (i : fin n) (v : α) : read (write a i v) i = v :=
d_array.read_write a i v
@[simp] lemma read_write_of_ne (a : array n α) {i j : fin n} (v : α) : i ≠ j → read (write a i v) j = read a j :=
d_array.read_write_of_ne a v
def read' [inhabited β] (a : array n β) (i : nat) : β :=
if h : i < n then a.read ⟨i,h⟩ else default
def write' (a : array n α) (i : nat) (v : α) : array n α :=
if h : i < n then a.write ⟨i, h⟩ v else a
lemma read_eq_read' [inhabited α] (a : array n α) {i : nat} (h : i < n) : read a ⟨i, h⟩ = read' a i :=
by simp [read', h]
lemma write_eq_write' (a : array n α) {i : nat} (h : i < n) (v : α) : write a ⟨i, h⟩ v = write' a i v :=
by simp [write', h]
protected lemma ext {a b : array n α} (h : ∀ i, read a i = read b i) : a = b :=
d_array.ext h
protected lemma ext' {a b : array n α} (h : ∀ (i : nat) (h : i < n), read a ⟨i, h⟩ = read b ⟨i, h⟩) : a = b :=
d_array.ext' h
instance [decidable_eq α] : decidable_eq (array n α) :=
begin unfold array, apply_instance end
end array
|
a3614ce4aaabca954c6f5f2474d66a519a84ac5b
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/src/Lean/Compiler/LCNF/CompilerM.lean
|
5e261a4c7f78eadf2ed31dad200842e216c18d85
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 18,622
|
lean
|
/-
Copyright (c) 2022 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.CoreM
import Lean.Compiler.LCNF.Basic
import Lean.Compiler.LCNF.LCtx
import Lean.Compiler.LCNF.ConfigOptions
namespace Lean.Compiler.LCNF
/--
The pipeline phase a certain `Pass` is supposed to happen in.
-/
inductive Phase where
/-- Here we still carry most of the original type information, most
of the dependent portion is already (partially) erased though. -/
| base
/-- In this phase polymorphism has been eliminated. -/
| mono
/-- In this phase impure stuff such as RC or efficient BaseIO transformations happen. -/
| impure
deriving Inhabited
/--
The state managed by the `CompilerM` `Monad`.
-/
structure CompilerM.State where
/--
A `LocalContext` to store local declarations from let binders
and other constructs in as we move through `Expr`s.
-/
lctx : LCtx := {}
/-- Next auxiliary variable suffix -/
nextIdx : Nat := 1
deriving Inhabited
structure CompilerM.Context where
phase : Phase
config : ConfigOptions
deriving Inhabited
abbrev CompilerM := ReaderT CompilerM.Context $ StateRefT CompilerM.State CoreM
@[always_inline]
instance : Monad CompilerM := let i := inferInstanceAs (Monad CompilerM); { pure := i.pure, bind := i.bind }
@[inline] def withPhase (phase : Phase) (x : CompilerM α) : CompilerM α :=
withReader (fun ctx => { ctx with phase }) x
def getPhase : CompilerM Phase :=
return (← read).phase
def inBasePhase : CompilerM Bool :=
return (← getPhase) matches .base
instance : AddMessageContext CompilerM where
addMessageContext msgData := do
let env ← getEnv
let lctx := (← get).lctx.toLocalContext
let opts ← getOptions
return MessageData.withContext { env, lctx, opts, mctx := {} } msgData
def getType (fvarId : FVarId) : CompilerM Expr := do
let lctx := (← get).lctx
if let some decl := lctx.letDecls.find? fvarId then
return decl.type
else if let some decl := lctx.params.find? fvarId then
return decl.type
else if let some decl := lctx.funDecls.find? fvarId then
return decl.type
else
throwError "unknown free variable {fvarId.name}"
def getBinderName (fvarId : FVarId) : CompilerM Name := do
let lctx := (← get).lctx
if let some decl := lctx.letDecls.find? fvarId then
return decl.binderName
else if let some decl := lctx.params.find? fvarId then
return decl.binderName
else if let some decl := lctx.funDecls.find? fvarId then
return decl.binderName
else
throwError "unknown free variable {fvarId.name}"
def findParam? (fvarId : FVarId) : CompilerM (Option Param) :=
return (← get).lctx.params.find? fvarId
def findLetDecl? (fvarId : FVarId) : CompilerM (Option LetDecl) :=
return (← get).lctx.letDecls.find? fvarId
def findFunDecl? (fvarId : FVarId) : CompilerM (Option FunDecl) :=
return (← get).lctx.funDecls.find? fvarId
def findLetValue? (fvarId : FVarId) : CompilerM (Option LetValue) := do
let some { value, .. } ← findLetDecl? fvarId | return none
return some value
def isConstructorApp (fvarId : FVarId) : CompilerM Bool := do
let some (.const declName _ _) ← findLetValue? fvarId | return false
return (← getEnv).find? declName matches some (.ctorInfo ..)
def Arg.isConstructorApp (arg : Arg) : CompilerM Bool := do
let .fvar fvarId := arg | return false
LCNF.isConstructorApp fvarId
def getParam (fvarId : FVarId) : CompilerM Param := do
let some param ← findParam? fvarId | throwError "unknown parameter {fvarId.name}"
return param
def getLetDecl (fvarId : FVarId) : CompilerM LetDecl := do
let some decl ← findLetDecl? fvarId | throwError "unknown let-declaration {fvarId.name}"
return decl
def getFunDecl (fvarId : FVarId) : CompilerM FunDecl := do
let some decl ← findFunDecl? fvarId | throwError "unknown local function {fvarId.name}"
return decl
@[inline] def modifyLCtx (f : LCtx → LCtx) : CompilerM Unit := do
modify fun s => { s with lctx := f s.lctx }
def eraseLetDecl (decl : LetDecl) : CompilerM Unit := do
modifyLCtx fun lctx => lctx.eraseLetDecl decl
def eraseFunDecl (decl : FunDecl) (recursive := true) : CompilerM Unit := do
modifyLCtx fun lctx => lctx.eraseFunDecl decl recursive
def eraseCode (code : Code) : CompilerM Unit := do
modifyLCtx fun lctx => lctx.eraseCode code
def eraseParam (param : Param) : CompilerM Unit :=
modifyLCtx fun lctx => lctx.eraseParam param
def eraseParams (params : Array Param) : CompilerM Unit :=
modifyLCtx fun lctx => lctx.eraseParams params
def eraseCodeDecl (decl : CodeDecl) : CompilerM Unit := do
match decl with
| .let decl => eraseLetDecl decl
| .jp decl | .fun decl => eraseFunDecl decl
/--
Erase all free variables occurring in `decls` from the local context.
-/
def eraseCodeDecls (decls : Array CodeDecl) : CompilerM Unit := do
decls.forM fun decl => eraseCodeDecl decl
def eraseDecl (decl : Decl) : CompilerM Unit := do
eraseParams decl.params
eraseCode decl.value
abbrev Decl.erase (decl : Decl) : CompilerM Unit :=
eraseDecl decl
/--
A free variable substitution.
We use these substitutions when inlining definitions and "internalizing" LCNF code into `CompilerM`.
During the internalization process, we ensure all free variables in the LCNF code do not collide with existing ones
at the `CompilerM` local context.
Remark: in LCNF, (computationally relevant) data is in A-normal form, but this is not the case for types and type formers.
So, when inlining we often want to replace a free variable with a type or type former.
The substitution contains entries `fvarId ↦ e` s.t., `e` is a valid LCNF argument. That is,
it is a free variable, a type (or type former), or `lcErased`.
`Check.lean` contains a substitution validator.
-/
abbrev FVarSubst := HashMap FVarId Expr
/--
Replace the free variables in `e` using the given substitution.
If `translator = true`, then we assume the free variables occurring in the range of the substitution are in another
local context. For example, `translator = true` during internalization where we are making sure all free variables
in a given expression are replaced with new ones that do not collide with the ones in the current local context.
If `translator = false`, we assume the substitution contains free variable replacements in the same local context,
and given entries such as `x₁ ↦ x₂`, `x₂ ↦ x₃`, ..., `xₙ₋₁ ↦ xₙ`, and the expression `f x₁ x₂`, we want the resulting
expression to be `f xₙ xₙ`. We use this setting, for example, in the simplifier.
-/
private partial def normExprImp (s : FVarSubst) (e : Expr) (translator : Bool) : Expr :=
go e
where
goApp (e : Expr) : Expr :=
match e with
| .app f a => e.updateApp! (goApp f) (go a)
| _ => go e
go (e : Expr) : Expr :=
if e.hasFVar then
match e with
| .fvar fvarId => match s.find? fvarId with
| some e => if translator then e else go e
| none => e
| .lit .. | .const .. | .sort .. | .mvar .. | .bvar .. => e
| .app f a => e.updateApp! (goApp f) (go a) |>.headBeta
| .mdata _ b => e.updateMData! (go b)
| .proj _ _ b => e.updateProj! (go b)
| .forallE _ d b _ => e.updateForallE! (go d) (go b)
| .lam _ d b _ => e.updateLambdaE! (go d) (go b)
| .letE .. => unreachable! -- Valid LCNF does not contain `let`-declarations
else
e
/--
Result type for `normFVar` and `normFVarImp`.
-/
inductive NormFVarResult where
| /-- New free variable. -/
fvar (fvarId : FVarId)
| /--
Free variable has been erased. This can happen when instantiating polymorphic code
with computationally irrelant stuff. -/
erased
deriving Inhabited
/--
Normalize the given free variable.
See `normExprImp` for documentation on the `translator` parameter.
This function is meant to be used in contexts where the input free-variable is computationally relevant.
This function panics if the substitution is mapping `fvarId` to an expression that is not another free variable.
That is, it is not a type (or type former), nor `lcErased`. Recall that a valid `FVarSubst` contains only
expressions that are free variables, `lcErased`, or type formers.
-/
private partial def normFVarImp (s : FVarSubst) (fvarId : FVarId) (translator : Bool) : NormFVarResult :=
match s.find? fvarId with
| some (.fvar fvarId') =>
if translator then
.fvar fvarId'
else
normFVarImp s fvarId' translator
| some e =>
if e.isErased then
.erased
else
panic! s!"invalid LCNF substitution of free variable with expression {e}"
| none => .fvar fvarId
/--
Replace the free variables in `arg` using the given substitution.
See `normExprImp`
-/
private partial def normArgImp (s : FVarSubst) (arg : Arg) (translator : Bool) : Arg :=
match arg with
| .erased => arg
| .fvar fvarId =>
match s.find? fvarId with
| some (.fvar fvarId') =>
let arg' := .fvar fvarId'
if translator then arg' else normArgImp s arg' translator
| some e => if e.isErased then .erased else .type e
| none => arg
| .type e => arg.updateType! (normExprImp s e translator)
private def normArgsImp (s : FVarSubst) (args : Array Arg) (translator : Bool) : Array Arg :=
args.mapMono (normArgImp s · translator)
/--
Replace the free variables in `e` using the given substitution.
See `normExprImp`
-/
private partial def normLetValueImp (s : FVarSubst) (e : LetValue) (translator : Bool) : LetValue :=
match e with
| .erased | .value .. => e
| .proj _ _ fvarId => match normFVarImp s fvarId translator with
| .fvar fvarId' => e.updateProj! fvarId'
| .erased => .erased
| .const _ _ args => e.updateArgs! (normArgsImp s args translator)
| .fvar fvarId args => match normFVarImp s fvarId translator with
| .fvar fvarId' => e.updateFVar! fvarId' (normArgsImp s args translator)
| .erased => .erased
/--
Interface for monads that have a free substitutions.
-/
class MonadFVarSubst (m : Type → Type) (translator : outParam Bool) where
getSubst : m FVarSubst
export MonadFVarSubst (getSubst)
instance (m n) [MonadLift m n] [MonadFVarSubst m t] : MonadFVarSubst n t where
getSubst := liftM (getSubst : m _)
class MonadFVarSubstState (m : Type → Type) where
modifySubst : (FVarSubst → FVarSubst) → m Unit
export MonadFVarSubstState (modifySubst)
instance (m n) [MonadLift m n] [MonadFVarSubstState m] : MonadFVarSubstState n where
modifySubst f := liftM (modifySubst f : m _)
/--
Add the entry `fvarId ↦ fvarId'` to the free variable substitution.
-/
@[inline] def addFVarSubst [MonadFVarSubstState m] (fvarId : FVarId) (fvarId' : FVarId) : m Unit :=
modifySubst fun s => s.insert fvarId (.fvar fvarId')
/--
Add the substitution `fvarId ↦ e`, `e` must be a valid LCNF argument.
That is, it must be a free variable, type (or type former), or `lcErased`.
See `Check.lean` for the free variable substitution checker.
-/
@[inline] def addSubst [MonadFVarSubstState m] (fvarId : FVarId) (e : Expr) : m Unit :=
modifySubst fun s => s.insert fvarId e
@[inline, inherit_doc normFVarImp] def normFVar [MonadFVarSubst m t] [Monad m] (fvarId : FVarId) : m NormFVarResult :=
return normFVarImp (← getSubst) fvarId t
@[inline, inherit_doc normExprImp] def normExpr [MonadFVarSubst m t] [Monad m] (e : Expr) : m Expr :=
return normExprImp (← getSubst) e t
@[inline, inherit_doc normArgImp] def normArg [MonadFVarSubst m t] [Monad m] (arg : Arg) : m Arg :=
return normArgImp (← getSubst) arg t
@[inline, inherit_doc normLetValueImp] def normLetValue [MonadFVarSubst m t] [Monad m] (e : LetValue) : m LetValue :=
return normLetValueImp (← getSubst) e t
@[inherit_doc normExprImp]
abbrev normExprCore (s : FVarSubst) (e : Expr) (translator : Bool) : Expr :=
normExprImp s e translator
/--
Normalize the given arguments using the current substitution.
-/
def normArgs [MonadFVarSubst m t] [Monad m] (args : Array Arg) : m (Array Arg) :=
return normArgsImp (← getSubst) args t
def mkFreshBinderName (binderName := `_x): CompilerM Name := do
let declName := .num binderName (← get).nextIdx
modify fun s => { s with nextIdx := s.nextIdx + 1 }
return declName
def ensureNotAnonymous (binderName : Name) (baseName : Name) : CompilerM Name :=
if binderName.isAnonymous then
mkFreshBinderName baseName
else
return binderName
/-!
Helper functions for creating LCNF local declarations.
-/
def mkParam (binderName : Name) (type : Expr) (borrow : Bool) : CompilerM Param := do
let fvarId ← mkFreshFVarId
let binderName ← ensureNotAnonymous binderName `_y
let param := { fvarId, binderName, type, borrow }
modifyLCtx fun lctx => lctx.addParam param
return param
def mkLetDecl (binderName : Name) (type : Expr) (value : LetValue) : CompilerM LetDecl := do
let fvarId ← mkFreshFVarId
let binderName ← ensureNotAnonymous binderName `_x
let decl := { fvarId, binderName, type, value }
modifyLCtx fun lctx => lctx.addLetDecl decl
return decl
def mkFunDecl (binderName : Name) (type : Expr) (params : Array Param) (value : Code) : CompilerM FunDecl := do
let fvarId ← mkFreshFVarId
let binderName ← ensureNotAnonymous binderName `_f
let funDecl := { fvarId, binderName, type, params, value }
modifyLCtx fun lctx => lctx.addFunDecl funDecl
return funDecl
def mkLetDeclErased : CompilerM LetDecl := do
mkLetDecl (← mkFreshBinderName `_x) erasedExpr .erased
def mkReturnErased : CompilerM Code := do
let auxDecl ← mkLetDeclErased
return .let auxDecl (.return auxDecl.fvarId)
private unsafe def updateParamImp (p : Param) (type : Expr) : CompilerM Param := do
if ptrEq type p.type then
return p
else
let p := { p with type }
modifyLCtx fun lctx => lctx.addParam p
return p
@[implemented_by updateParamImp] opaque Param.update (p : Param) (type : Expr) : CompilerM Param
private unsafe def updateLetDeclImp (decl : LetDecl) (type : Expr) (value : LetValue) : CompilerM LetDecl := do
if ptrEq type decl.type && ptrEq value decl.value then
return decl
else
let decl := { decl with type, value }
modifyLCtx fun lctx => lctx.addLetDecl decl
return decl
@[implemented_by updateLetDeclImp] opaque LetDecl.update (decl : LetDecl) (type : Expr) (value : LetValue) : CompilerM LetDecl
def LetDecl.updateValue (decl : LetDecl) (value : LetValue) : CompilerM LetDecl :=
decl.update decl.type value
private unsafe def updateFunDeclImp (decl: FunDecl) (type : Expr) (params : Array Param) (value : Code) : CompilerM FunDecl := do
if ptrEq type decl.type && ptrEq params decl.params && ptrEq value decl.value then
return decl
else
let decl := { decl with type, params, value }
modifyLCtx fun lctx => lctx.addFunDecl decl
return decl
@[implemented_by updateFunDeclImp] opaque FunDeclCore.update (decl: FunDecl) (type : Expr) (params : Array Param) (value : Code) : CompilerM FunDecl
abbrev FunDeclCore.update' (decl : FunDecl) (type : Expr) (value : Code) : CompilerM FunDecl :=
decl.update type decl.params value
abbrev FunDeclCore.updateValue (decl : FunDecl) (value : Code) : CompilerM FunDecl :=
decl.update decl.type decl.params value
@[inline] def normParam [MonadLiftT CompilerM m] [Monad m] [MonadFVarSubst m t] (p : Param) : m Param := do
p.update (← normExpr p.type)
def normParams [MonadLiftT CompilerM m] [Monad m] [MonadFVarSubst m t] (ps : Array Param) : m (Array Param) :=
ps.mapMonoM normParam
def normLetDecl [MonadLiftT CompilerM m] [Monad m] [MonadFVarSubst m t] (decl : LetDecl) : m LetDecl := do
decl.update (← normExpr decl.type) (← normLetValue decl.value)
abbrev NormalizerM (_translator : Bool) := ReaderT FVarSubst CompilerM
instance : MonadFVarSubst (NormalizerM t) t where
getSubst := read
/--
If `result` is `.fvar fvarId`, then return `x fvarId`. Otherwise, it is `.erased`,
and method returns `let _x.i := .erased; return _x.i`.
-/
@[inline] def withNormFVarResult [MonadLiftT CompilerM m] [Monad m] (result : NormFVarResult) (x : FVarId → m Code) : m Code := do
match result with
| .fvar fvarId => x fvarId
| .erased => mkReturnErased
mutual
partial def normFunDeclImp (decl : FunDecl) : NormalizerM t FunDecl := do
let type ← normExpr decl.type
let params ← normParams decl.params
let value ← normCodeImp decl.value
decl.update type params value
partial def normCodeImp (code : Code) : NormalizerM t Code := do
match code with
| .let decl k => return code.updateLet! (← normLetDecl decl) (← normCodeImp k)
| .fun decl k | .jp decl k => return code.updateFun! (← normFunDeclImp decl) (← normCodeImp k)
| .return fvarId => withNormFVarResult (← normFVar fvarId) fun fvarId => return code.updateReturn! fvarId
| .jmp fvarId args => withNormFVarResult (← normFVar fvarId) fun fvarId => return code.updateJmp! fvarId (← normArgs args)
| .unreach type => return code.updateUnreach! (← normExpr type)
| .cases c =>
let resultType ← normExpr c.resultType
withNormFVarResult (← normFVar c.discr) fun discr => do
let alts ← c.alts.mapMonoM fun alt =>
match alt with
| .alt _ params k => return alt.updateAlt! (← normParams params) (← normCodeImp k)
| .default k => return alt.updateCode (← normCodeImp k)
return code.updateCases! resultType discr alts
end
@[inline] def normFunDecl [MonadLiftT CompilerM m] [Monad m] [MonadFVarSubst m t] (decl : FunDecl) : m FunDecl := do
normFunDeclImp (t := t) decl (← getSubst)
/-- Similar to `internalize`, but does not refresh `FVarId`s. -/
@[inline] def normCode [MonadLiftT CompilerM m] [Monad m] [MonadFVarSubst m t] (code : Code) : m Code := do
normCodeImp (t := t) code (← getSubst)
def replaceExprFVars (e : Expr) (s : FVarSubst) (translator : Bool) : CompilerM Expr :=
(normExpr e : NormalizerM translator Expr).run s
def replaceFVars (code : Code) (s : FVarSubst) (translator : Bool) : CompilerM Code :=
(normCode code : NormalizerM translator Code).run s
def mkFreshJpName : CompilerM Name := do
mkFreshBinderName `_jp
def mkAuxParam (type : Expr) (borrow := false) : CompilerM Param := do
mkParam (← mkFreshBinderName `_y) type borrow
def getConfig : CompilerM ConfigOptions :=
return (← read).config
def CompilerM.run (x : CompilerM α) (s : State := {}) (phase : Phase := .base) : CoreM α := do
x { phase, config := toConfigOptions (← getOptions) } |>.run' s
end Lean.Compiler.LCNF
|
5b724bc6c2ffa25310a44c5391ea07111183986d
|
5756a081670ba9c1d1d3fca7bd47cb4e31beae66
|
/Test/importLeanbin/lakefile.lean
|
54ff009109bab06794f586cdfee34535ed3e8ca3
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathport
|
2c9bdc8292168febf59799efdc5451dbf0450d4a
|
13051f68064f7638970d39a8fecaede68ffbf9e1
|
refs/heads/master
| 1,693,841,364,079
| 1,693,813,111,000
| 1,693,813,111,000
| 379,357,010
| 27
| 10
|
Apache-2.0
| 1,691,309,132,000
| 1,624,384,521,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 240
|
lean
|
import Lake
open Lake DSL System
package importLeanbin where
defaultFacet := PackageFacet.oleans
dependencies := #[{
name := "lean3port",
src := Source.git "https://github.com/leanprover-community/lean3port.git" "master"
}]
|
e02b79410a61790a3e61af2175f9907873e9e41f
|
82e44445c70db0f03e30d7be725775f122d72f3e
|
/src/geometry/euclidean/sphere.lean
|
fa07f45142b6a2371679baca7060d15ebc6749b4
|
[
"Apache-2.0"
] |
permissive
|
stjordanis/mathlib
|
51e286d19140e3788ef2c470bc7b953e4991f0c9
|
2568d41bca08f5d6bf39d915434c8447e21f42ee
|
refs/heads/master
| 1,631,748,053,501
| 1,627,938,886,000
| 1,627,938,886,000
| 228,728,358
| 0
| 0
|
Apache-2.0
| 1,576,630,588,000
| 1,576,630,587,000
| null |
UTF-8
|
Lean
| false
| false
| 8,423
|
lean
|
/-
Copyright (c) 2021 Manuel Candales. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
-/
import geometry.euclidean.triangle
/-!
# Spheres
This file proves basic geometrical results about distances and angles
in spheres in real inner product spaces and Euclidean affine spaces.
## Main theorems
* `mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi`: Intersecting Chords Theorem (Freek No. 55).
* `mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero`: Intersecting Secants Theorem.
* `mul_dist_add_mul_dist_eq_mul_dist_of_cospherical`: Ptolemy’s Theorem (Freek No. 95).
TODO: The current statement of Ptolemy’s theorem works around the lack of a "cyclic polygon" concept
in mathlib, which is what the theorem statement would naturally use (or two such concepts, since
both a strict version, where all vertices must be distinct, and a weak version, where consecutive
vertices may be equal, would be useful; Ptolemy's theorem should then use the weak one).
An API needs to be built around that concept, which would include:
- strict cyclic implies weak cyclic,
- weak cyclic and consecutive points distinct implies strict cyclic,
- weak/strict cyclic implies weak/strict cyclic for any subsequence,
- any three points on a sphere are weakly or strictly cyclic according to whether they are distinct,
- any number of points on a sphere intersected with a two-dimensional affine subspace are cyclic in
some order,
- a list of points is cyclic if and only if its reversal is,
- a list of points is cyclic if and only if any cyclic permutation is, while other permutations
are not when the points are distinct,
- a point P where the diagonals of a cyclic polygon cross exists (and is unique) with weak/strict
betweenness depending on weak/strict cyclicity,
- four points on a sphere with such a point P are cyclic in the appropriate order,
and so on.
-/
open real
open_locale euclidean_geometry real_inner_product_space real
variables {V : Type*} [inner_product_space ℝ V]
namespace inner_product_geometry
/-!
### Geometrical results on spheres in real inner product spaces
This section develops some results on spheres in real inner product spaces,
which are used to deduce corresponding results for Euclidean affine spaces.
-/
lemma mul_norm_eq_abs_sub_sq_norm {x y z : V}
(h₁ : ∃ k : ℝ, k ≠ 1 ∧ x + y = k • (x - y)) (h₂ : ∥z - y∥ = ∥z + y∥) :
∥x - y∥ * ∥x + y∥ = abs (∥z + y∥ ^ 2 - ∥z - x∥ ^ 2) :=
begin
obtain ⟨k, hk_ne_one, hk⟩ := h₁,
let r := (k - 1)⁻¹ * (k + 1),
have hxy : x = r • y,
{ rw [← smul_smul, eq_inv_smul_iff' (sub_ne_zero.mpr hk_ne_one), ← sub_eq_zero],
calc (k - 1) • x - (k + 1) • y
= (k • x - x) - (k • y + y) : by simp_rw [sub_smul, add_smul, one_smul]
... = (k • x - k • y) - (x + y) : by simp_rw [← sub_sub, sub_right_comm]
... = k • (x - y) - (x + y) : by rw ← smul_sub k x y
... = 0 : sub_eq_zero.mpr hk.symm },
have hzy : ⟪z, y⟫ = 0,
{ rw [← eq_of_sq_eq_sq (norm_nonneg (z - y)) (norm_nonneg (z + y)),
norm_add_sq_real, norm_sub_sq_real] at h₂,
linarith },
have hzx : ⟪z, x⟫ = 0 := by rw [hxy, inner_smul_right, hzy, mul_zero],
calc ∥x - y∥ * ∥x + y∥
= ∥(r - 1) • y∥ * ∥(r + 1) • y∥ : by simp [sub_smul, add_smul, hxy]
... = ∥r - 1∥ * ∥y∥ * (∥r + 1∥ * ∥y∥) : by simp_rw [norm_smul]
... = ∥r - 1∥ * ∥r + 1∥ * ∥y∥ ^ 2 : by ring
... = abs ((r - 1) * (r + 1) * ∥y∥ ^ 2) : by simp [abs_mul, norm_eq_abs]
... = abs (r ^ 2 * ∥y∥ ^ 2 - ∥y∥ ^ 2) : by ring_nf
... = abs (∥x∥ ^ 2 - ∥y∥ ^ 2) : by simp [hxy, norm_smul, mul_pow, norm_eq_abs, sq_abs]
... = abs (∥z + y∥ ^ 2 - ∥z - x∥ ^ 2) : by simp [norm_add_sq_real, norm_sub_sq_real,
hzy, hzx, abs_sub_comm],
end
end inner_product_geometry
namespace euclidean_geometry
/-!
### Geometrical results on spheres in Euclidean affine spaces
This section develops some results on spheres in Euclidean affine spaces.
-/
open inner_product_geometry
variables {P : Type*} [metric_space P] [normed_add_torsor V P]
include V
/-- If `P` is a point on the line `AB` and `Q` is equidistant from `A` and `B`, then
`AP * BP = abs (BQ ^ 2 - PQ ^ 2)`. -/
lemma mul_dist_eq_abs_sub_sq_dist {a b p q : P}
(hp : ∃ k : ℝ, k ≠ 1 ∧ b -ᵥ p = k • (a -ᵥ p)) (hq : dist a q = dist b q) :
dist a p * dist b p = abs (dist b q ^ 2 - dist p q ^ 2) :=
begin
let m : P := midpoint ℝ a b,
obtain ⟨v, h1, h2, h3⟩ := ⟨vsub_sub_vsub_cancel_left, v a p m, v p q m, v a q m⟩,
have h : ∀ r, b -ᵥ r = (m -ᵥ r) + (m -ᵥ a) :=
λ r, by rw [midpoint_vsub_left, ← right_vsub_midpoint, add_comm, vsub_add_vsub_cancel],
iterate 4 { rw dist_eq_norm_vsub V },
rw [← h1, ← h2, h, h],
rw [← h1, h] at hp,
rw [dist_eq_norm_vsub V a q, dist_eq_norm_vsub V b q, ← h3, h] at hq,
exact mul_norm_eq_abs_sub_sq_norm hp hq,
end
/-- If `A`, `B`, `C`, `D` are cospherical and `P` is on both lines `AB` and `CD`, then
`AP * BP = CP * DP`. -/
lemma mul_dist_eq_mul_dist_of_cospherical {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hapb : ∃ k₁ : ℝ, k₁ ≠ 1 ∧ b -ᵥ p = k₁ • (a -ᵥ p))
(hcpd : ∃ k₂ : ℝ, k₂ ≠ 1 ∧ d -ᵥ p = k₂ • (c -ᵥ p)) :
dist a p * dist b p = dist c p * dist d p :=
begin
obtain ⟨q, r, h'⟩ := (cospherical_def {a, b, c, d}).mp h,
obtain ⟨ha, hb, hc, hd⟩ := ⟨h' a _, h' b _, h' c _, h' d _⟩,
{ rw ← hd at hc,
rw ← hb at ha,
rw [mul_dist_eq_abs_sub_sq_dist hapb ha, hb, mul_dist_eq_abs_sub_sq_dist hcpd hc, hd] },
all_goals { simp },
end
/-- **Intersecting Chords Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hapb : ∠ a p b = π) (hcpd : ∠ c p d = π) :
dist a p * dist b p = dist c p * dist d p :=
begin
obtain ⟨-, k₁, _, hab⟩ := angle_eq_pi_iff.mp hapb,
obtain ⟨-, k₂, _, hcd⟩ := angle_eq_pi_iff.mp hcpd,
exact mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, (by linarith), hab⟩ ⟨k₂, (by linarith), hcd⟩,
end
/-- **Intersecting Secants Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hab : a ≠ b) (hcd : c ≠ d) (hapb : ∠ a p b = 0) (hcpd : ∠ c p d = 0) :
dist a p * dist b p = dist c p * dist d p :=
begin
obtain ⟨-, k₁, -, hab₁⟩ := angle_eq_zero_iff.mp hapb,
obtain ⟨-, k₂, -, hcd₁⟩ := angle_eq_zero_iff.mp hcpd,
refine mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, _, hab₁⟩ ⟨k₂, _, hcd₁⟩;
by_contra hnot;
simp only [not_not, *, one_smul] at *,
exacts [hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm],
end
/-- **Ptolemy’s Theorem**. -/
theorem mul_dist_add_mul_dist_eq_mul_dist_of_cospherical {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hapc : ∠ a p c = π) (hbpd : ∠ b p d = π) :
dist a b * dist c d + dist b c * dist d a = dist a c * dist b d :=
begin
have h' : cospherical ({a, c, b, d} : set P), { rwa set.insert_comm c b {d} },
have hmul := mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi h' hapc hbpd,
have hbp := left_dist_ne_zero_of_angle_eq_pi hbpd,
have h₁ : dist c d = dist c p / dist b p * dist a b,
{ rw [dist_mul_of_eq_angle_of_dist_mul b p a c p d, dist_comm a b],
{ rw [angle_eq_angle_of_angle_eq_pi_of_angle_eq_pi hbpd hapc, angle_comm] },
all_goals { field_simp [mul_comm, hmul] } },
have h₂ : dist d a = dist a p / dist b p * dist b c,
{ rw [dist_mul_of_eq_angle_of_dist_mul c p b d p a, dist_comm c b],
{ rwa [angle_comm, angle_eq_angle_of_angle_eq_pi_of_angle_eq_pi], rwa angle_comm },
all_goals { field_simp [mul_comm, hmul] } },
have h₃ : dist d p = dist a p * dist c p / dist b p, { field_simp [mul_comm, hmul] },
have h₄ : ∀ x y : ℝ, x * (y * x) = x * x * y := λ x y, by rw [mul_left_comm, mul_comm],
field_simp [h₁, h₂, dist_eq_add_dist_of_angle_eq_pi hbpd, h₃, hbp, dist_comm a b,
h₄, ← sq, dist_sq_mul_dist_add_dist_sq_mul_dist b, hapc],
end
end euclidean_geometry
|
0ff98801733caf9a765cfb7901ddcfb1a3c9a75c
|
d1bbf1801b3dcb214451d48214589f511061da63
|
/src/category_theory/abelian/basic.lean
|
dbb2f1e6beccb339c97a450fec4e02343e9ee225
|
[
"Apache-2.0"
] |
permissive
|
cheraghchi/mathlib
|
5c366f8c4f8e66973b60c37881889da8390cab86
|
f29d1c3038422168fbbdb2526abf7c0ff13e86db
|
refs/heads/master
| 1,676,577,831,283
| 1,610,894,638,000
| 1,610,894,638,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 23,386
|
lean
|
/-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import category_theory.limits.constructions.pullbacks
import category_theory.limits.shapes.biproducts
import category_theory.limits.shapes.images
import category_theory.abelian.non_preadditive
/-!
# Abelian categories
This file contains the definition and basic properties of abelian categories.
There are many definitions of abelian category. Our definition is as follows:
A category is called abelian if it is preadditive,
has a finite products, kernels and cokernels,
and if every monomorphism and epimorphism is normal.
It should be noted that if we also assume coproducts, then preadditivity is
actually a consequence of the other properties, as we show in
`non_preadditive_abelian.lean`. However, this fact is of little practical
relevance, since essentially all interesting abelian categories come with a
preadditive structure. In this way, by requiring preadditivity, we allow the
user to pass in the preadditive structure the specific category they are
working with has natively.
## Main definitions
* `abelian` is the type class indicating that a category is abelian. It extends `preadditive`.
* `abelian.image f` is `kernel (cokernel.π f)`, and
* `abelian.coimage f` is `cokernel (kernel.ι f)`.
## Main results
* In an abelian category, mono + epi = iso.
* If `f : X ⟶ Y`, then the map `factor_thru_image f : X ⟶ image f` is an epimorphism, and the map
`factor_thru_coimage f : coimage f ⟶ Y` is a monomorphism.
* Factoring through the image and coimage is a strong epi-mono factorisation. This means that
* every abelian category has images. We instantiated this in such a way that `abelian.image f` is
definitionally equal to `limits.image f`, and
* there is a canonical isomorphism `coimage_iso_image : coimage f ≅ image f` such that
`coimage.π f ≫ (coimage_iso_image f).hom ≫ image.ι f = f`. The lemma stating this is called
`full_image_factorisation`.
* Every epimorphism is a cokernel of its kernel. Every monomorphism is a kernel of its cokernel.
* The pullback of an epimorphism is an epimorphism. The pushout of a monomorphism is a monomorphism.
(This is not to be confused with the fact that the pullback of a monomorphism is a monomorphism,
which is true in any category).
## Implementation notes
The typeclass `abelian` does not extend `non_preadditive_abelian`,
to avoid having to deal with comparing the two `has_zero_morphisms` instances
(one from `preadditive` in `abelian`, and the other a field of `non_preadditive_abelian`).
As a consequence, at the beginning of this file we trivially build
a `non_preadditive_abelian` instance from an `abelian` instance,
and use this to restate a number of theorems,
in each case just reusing the proof from `non_preadditive_abelian.lean`.
We don't show this yet, but abelian categories are finitely complete and finitely cocomplete.
However, the limits we can construct at this level of generality will most likely be less nice than
the ones that can be created in specific applications. For this reason, we adopt the following
convention:
* If the statement of a theorem involves limits, the existence of these limits should be made an
explicit typeclass parameter.
* If a limit only appears in a proof, but not in the statement of a theorem, the limit should not
be a typeclass parameter, but instead be created using `abelian.has_pullbacks` or a similar
definition.
## References
* [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2]
* [P. Aluffi, *Algebra: Chaper 0*][aluffi2016]
-/
noncomputable theory
open category_theory
open category_theory.preadditive
open category_theory.limits
universes v u
namespace category_theory
variables {C : Type u} [category.{v} C]
variables (C)
/--
A (preadditive) category `C` is called abelian if it has all finite products,
all kernels and cokernels, and if every monomorphism is the kernel of some morphism
and every epimorphism is the cokernel of some morphism.
(This definition implies the existence of zero objects:
finite products give a terminal object, and in a preadditive category
any terminal object is a zero object.)
-/
class abelian extends preadditive C :=
[has_finite_products : has_finite_products C]
[has_kernels : has_kernels C]
[has_cokernels : has_cokernels C]
(normal_mono : Π {X Y : C} (f : X ⟶ Y) [mono f], normal_mono f)
(normal_epi : Π {X Y : C} (f : X ⟶ Y) [epi f], normal_epi f)
attribute [instance, priority 100] abelian.has_finite_products
attribute [instance, priority 100] abelian.has_kernels abelian.has_cokernels
end category_theory
open category_theory
namespace category_theory.abelian
variables {C : Type u} [category.{v} C] [abelian C]
/-- An abelian category has finite biproducts. -/
lemma has_finite_biproducts : has_finite_biproducts C :=
limits.has_finite_biproducts.of_has_finite_products
section to_non_preadditive_abelian
local attribute [instance] has_finite_biproducts
/-- Every abelian category is, in particular, `non_preadditive_abelian`. -/
def non_preadditive_abelian : non_preadditive_abelian C := { ..‹abelian C› }
end to_non_preadditive_abelian
section strong
local attribute [instance] abelian.normal_epi
/-- In an abelian category, every epimorphism is strong. -/
lemma strong_epi_of_epi {P Q : C} (f : P ⟶ Q) [epi f] : strong_epi f := by apply_instance
end strong
section mono_epi_iso
variables {X Y : C} (f : X ⟶ Y)
local attribute [instance] strong_epi_of_epi
/-- In an abelian category, a monomorphism which is also an epimorphism is an isomorphism. -/
def is_iso_of_mono_of_epi [mono f] [epi f] : is_iso f :=
is_iso_of_mono_of_strong_epi _
end mono_epi_iso
section factor
local attribute [instance] non_preadditive_abelian
variables {P Q : C} (f : P ⟶ Q)
section
lemma mono_of_zero_kernel (R : C)
(l : is_limit (kernel_fork.of_ι (0 : R ⟶ P) (show 0 ≫ f = 0, by simp))) : mono f :=
non_preadditive_abelian.mono_of_zero_kernel _ _ l
lemma mono_of_kernel_ι_eq_zero (h : kernel.ι f = 0) : mono f :=
begin
apply mono_of_zero_kernel _ (kernel f),
simp_rw ←h,
exact is_limit.of_iso_limit (limit.is_limit (parallel_pair f 0)) (iso_of_ι _)
end
lemma epi_of_zero_cokernel (R : C)
(l : is_colimit (cokernel_cofork.of_π (0 : Q ⟶ R) (show f ≫ 0 = 0, by simp))) : epi f :=
non_preadditive_abelian.epi_of_zero_cokernel _ _ l
lemma epi_of_cokernel_π_eq_zero (h : cokernel.π f = 0) : epi f :=
begin
apply epi_of_zero_cokernel _ (cokernel f),
simp_rw ←h,
exact is_colimit.of_iso_colimit (colimit.is_colimit (parallel_pair f 0)) (iso_of_π _)
end
end
namespace images
/-- The kernel of the cokernel of `f` is called the image of `f`. -/
protected abbreviation image : C := kernel (cokernel.π f)
/-- The inclusion of the image into the codomain. -/
protected abbreviation image.ι : images.image f ⟶ Q :=
kernel.ι (cokernel.π f)
/-- There is a canonical epimorphism `p : P ⟶ image f` for every `f`. -/
protected abbreviation factor_thru_image : P ⟶ images.image f :=
kernel.lift (cokernel.π f) f $ cokernel.condition f
/-- `f` factors through its image via the canonical morphism `p`. -/
@[simp, reassoc] protected lemma image.fac :
images.factor_thru_image f ≫ image.ι f = f :=
kernel.lift_ι _ _ _
/-- The map `p : P ⟶ image f` is an epimorphism -/
instance : epi (images.factor_thru_image f) :=
show epi (non_preadditive_abelian.factor_thru_image f), by apply_instance
section
variables {f}
lemma image_ι_comp_eq_zero {R : C} {g : Q ⟶ R} (h : f ≫ g = 0) : images.image.ι f ≫ g = 0 :=
zero_of_epi_comp (images.factor_thru_image f) $ by simp [h]
end
instance mono_factor_thru_image [mono f] : mono (images.factor_thru_image f) :=
mono_of_mono_fac $ image.fac f
instance is_iso_factor_thru_image [mono f] : is_iso (images.factor_thru_image f) :=
is_iso_of_mono_of_epi _
/-- Factoring through the image is a strong epi-mono factorisation. -/
@[simps] def image_strong_epi_mono_factorisation : strong_epi_mono_factorisation f :=
{ I := images.image f,
m := image.ι f,
m_mono := by apply_instance,
e := images.factor_thru_image f,
e_strong_epi := strong_epi_of_epi _ }
end images
namespace coimages
/-- The cokernel of the kernel of `f` is called the coimage of `f`. -/
protected abbreviation coimage : C := cokernel (kernel.ι f)
/-- The projection onto the coimage. -/
protected abbreviation coimage.π : P ⟶ coimages.coimage f :=
cokernel.π (kernel.ι f)
/-- There is a canonical monomorphism `i : coimage f ⟶ Q`. -/
protected abbreviation factor_thru_coimage : coimages.coimage f ⟶ Q :=
cokernel.desc (kernel.ι f) f $ kernel.condition f
/-- `f` factors through its coimage via the canonical morphism `p`. -/
protected lemma coimage.fac : coimage.π f ≫ coimages.factor_thru_coimage f = f :=
cokernel.π_desc _ _ _
/-- The canonical morphism `i : coimage f ⟶ Q` is a monomorphism -/
instance : mono (coimages.factor_thru_coimage f) :=
show mono (non_preadditive_abelian.factor_thru_coimage f), by apply_instance
instance epi_factor_thru_coimage [epi f] : epi (coimages.factor_thru_coimage f) :=
epi_of_epi_fac $ coimage.fac f
instance is_iso_factor_thru_coimage [epi f] : is_iso (coimages.factor_thru_coimage f) :=
is_iso_of_mono_of_epi _
/-- Factoring through the coimage is a strong epi-mono factorisation. -/
@[simps] def coimage_strong_epi_mono_factorisation : strong_epi_mono_factorisation f :=
{ I := coimages.coimage f,
m := coimages.factor_thru_coimage f,
m_mono := by apply_instance,
e := coimage.π f,
e_strong_epi := strong_epi_of_epi _ }
end coimages
end factor
section has_strong_epi_mono_factorisations
/-- An abelian category has strong epi-mono factorisations. -/
@[priority 100] instance : has_strong_epi_mono_factorisations C :=
has_strong_epi_mono_factorisations.mk $ λ X Y f, images.image_strong_epi_mono_factorisation f
/- In particular, this means that it has well-behaved images. -/
example : has_images C := by apply_instance
example : has_image_maps C := by apply_instance
end has_strong_epi_mono_factorisations
section images
variables {X Y : C} (f : X ⟶ Y)
/-- There is a canonical isomorphism between the coimage and the image of a morphism. -/
abbreviation coimage_iso_image : coimages.coimage f ≅ images.image f :=
is_image.iso_ext (coimages.coimage_strong_epi_mono_factorisation f).to_mono_is_image
(images.image_strong_epi_mono_factorisation f).to_mono_is_image
/-- There is a canonical isomorphism between the abelian image and the categorical image of a
morphism. -/
abbreviation image_iso_image : images.image f ≅ image f :=
is_image.iso_ext (images.image_strong_epi_mono_factorisation f).to_mono_is_image (image.is_image f)
/-- There is a canonical isomorphism between the abelian coimage and the categorical image of a
morphism. -/
abbreviation coimage_iso_image' : coimages.coimage f ≅ image f :=
is_image.iso_ext (coimages.coimage_strong_epi_mono_factorisation f).to_mono_is_image
(image.is_image f)
lemma full_image_factorisation : coimages.coimage.π f ≫ (coimage_iso_image f).hom ≫
images.image.ι f = f :=
by rw [limits.is_image.iso_ext_hom,
←images.image_strong_epi_mono_factorisation_to_mono_factorisation_m, is_image.lift_fac,
coimages.coimage_strong_epi_mono_factorisation_to_mono_factorisation_m, coimages.coimage.fac]
end images
section cokernel_of_kernel
variables {X Y : C} {f : X ⟶ Y}
local attribute [instance] non_preadditive_abelian
/-- In an abelian category, an epi is the cokernel of its kernel. More precisely:
If `f` is an epimorphism and `s` is some limit kernel cone on `f`, then `f` is a cokernel
of `fork.ι s`. -/
def epi_is_cokernel_of_kernel [epi f] (s : fork f 0) (h : is_limit s) :
is_colimit (cokernel_cofork.of_π f (kernel_fork.condition s)) :=
non_preadditive_abelian.epi_is_cokernel_of_kernel s h
/-- In an abelian category, a mono is the kernel of its cokernel. More precisely:
If `f` is a monomorphism and `s` is some colimit cokernel cocone on `f`, then `f` is a kernel
of `cofork.π s`. -/
def mono_is_kernel_of_cokernel [mono f] (s : cofork f 0) (h : is_colimit s) :
is_limit (kernel_fork.of_ι f (cokernel_cofork.condition s)) :=
non_preadditive_abelian.mono_is_kernel_of_cokernel s h
end cokernel_of_kernel
section
local attribute [instance] preadditive.has_equalizers_of_has_kernels
/-- Any abelian category has pullbacks -/
lemma has_pullbacks : has_pullbacks C :=
has_pullbacks_of_has_binary_products_of_has_equalizers C
end
section
local attribute [instance] preadditive.has_coequalizers_of_has_cokernels
local attribute [instance] has_binary_biproducts.of_has_binary_products
/-- Any abelian category has pushouts -/
lemma has_pushouts : has_pushouts C :=
has_pushouts_of_has_binary_coproducts_of_has_coequalizers C
end
namespace pullback_to_biproduct_is_kernel
variables [limits.has_pullbacks C] {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
local attribute [instance] has_binary_biproducts.of_has_binary_products
/-! This section contains a slightly technical result about pullbacks and biproducts.
We will need it in the proof that the pullback of an epimorphism is an epimorpism. -/
/-- The canonical map `pullback f g ⟶ X ⊞ Y` -/
abbreviation pullback_to_biproduct : pullback f g ⟶ X ⊞ Y :=
biprod.lift pullback.fst pullback.snd
/-- The canonical map `pullback f g ⟶ X ⊞ Y` induces a kernel cone on the map
`biproduct X Y ⟶ Z` induced by `f` and `g`. A slightly more intuitive way to think of
this may be that it induces an equalizer fork on the maps induced by `(f, 0)` and
`(0, g)`. -/
abbreviation pullback_to_biproduct_fork : kernel_fork (biprod.desc f (-g)) :=
kernel_fork.of_ι (pullback_to_biproduct f g) $
by rw [biprod.lift_desc, comp_neg, pullback.condition, add_right_neg]
local attribute [irreducible] has_limit_cospan_of_has_limit_pair_of_has_limit_parallel_pair
/-- The canonical map `pullback f g ⟶ X ⊞ Y` is a kernel of the map induced by
`(f, -g)`. -/
def is_limit_pullback_to_biproduct : is_limit (pullback_to_biproduct_fork f g) :=
fork.is_limit.mk _
(λ s, pullback.lift (fork.ι s ≫ biprod.fst) (fork.ι s ≫ biprod.snd) $
sub_eq_zero.1 $ by rw [category.assoc, category.assoc, ←comp_sub, sub_eq_add_neg, ←comp_neg,
←biprod.desc_eq, kernel_fork.condition s])
(λ s,
begin
ext; rw [fork.ι_of_ι, category.assoc],
{ rw [biprod.lift_fst, pullback.lift_fst] },
{ rw [biprod.lift_snd, pullback.lift_snd] }
end)
(λ s m h, by ext; simp [fork.ι_eq_app_zero, ←h walking_parallel_pair.zero])
end pullback_to_biproduct_is_kernel
namespace biproduct_to_pushout_is_cokernel
variables [limits.has_pushouts C] {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
local attribute [instance] has_binary_biproducts.of_has_binary_products
/-- The canonical map `Y ⊞ Z ⟶ pushout f g` -/
abbreviation biproduct_to_pushout : Y ⊞ Z ⟶ pushout f g :=
biprod.desc pushout.inl pushout.inr
/-- The canonical map `Y ⊞ Z ⟶ pushout f g` induces a cokernel cofork on the map
`X ⟶ Y ⊞ Z` induced by `f` and `-g`. -/
abbreviation biproduct_to_pushout_cofork : cokernel_cofork (biprod.lift f (-g)) :=
cokernel_cofork.of_π (biproduct_to_pushout f g) $
by rw [biprod.lift_desc, neg_comp, pushout.condition, add_right_neg]
/-- The cofork induced by the canonical map `Y ⊞ Z ⟶ pushout f g` is in fact a colimit cokernel
cofork. -/
def is_colimit_biproduct_to_pushout : is_colimit (biproduct_to_pushout_cofork f g) :=
cofork.is_colimit.mk _
(λ s, pushout.desc (biprod.inl ≫ cofork.π s) (biprod.inr ≫ cofork.π s) $
sub_eq_zero.1 $ by rw [←category.assoc, ←category.assoc, ←sub_comp, sub_eq_add_neg, ←neg_comp,
←biprod.lift_eq, cofork.condition s, zero_comp])
(λ s, by ext; simp)
(λ s m h, by ext; simp [cofork.π_eq_app_one, ←h walking_parallel_pair.one] )
end biproduct_to_pushout_is_cokernel
section epi_pullback
variables [limits.has_pullbacks C] {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
local attribute [instance] has_binary_biproducts.of_has_binary_products
/-- In an abelian category, the pullback of an epimorphism is an epimorphism.
Proof from [aluffi2016, IX.2.3], cf. [borceux-vol2, 1.7.6] -/
instance epi_pullback_of_epi_f [epi f] : epi (pullback.snd : pullback f g ⟶ Y) :=
-- It will suffice to consider some morphism e : Y ⟶ R such that
-- pullback.snd ≫ e = 0 and show that e = 0.
epi_of_cancel_zero _ $ λ R e h,
begin
-- Consider the morphism u := (0, e) : X ⊞ Y⟶ R.
let u := biprod.desc (0 : X ⟶ R) e,
-- The composite pullback f g ⟶ X ⊞ Y ⟶ R is zero by assumption.
have hu : pullback_to_biproduct_is_kernel.pullback_to_biproduct f g ≫ u = 0 := by simpa,
-- pullback_to_biproduct f g is a kernel of (f, -g), so (f, -g) is a
-- cokernel of pullback_to_biproduct f g
have := epi_is_cokernel_of_kernel _
(pullback_to_biproduct_is_kernel.is_limit_pullback_to_biproduct f g),
-- We use this fact to obtain a factorization of u through (f, -g) via some d : Z ⟶ R.
obtain ⟨d, hd⟩ := cokernel_cofork.is_colimit.desc' this u hu,
change Z ⟶ R at d,
change biprod.desc f (-g) ≫ d = u at hd,
-- But then f ≫ d = 0:
have : f ≫ d = 0, calc
f ≫ d = (biprod.inl ≫ biprod.desc f (-g)) ≫ d : by rw biprod.inl_desc
... = biprod.inl ≫ u : by rw [category.assoc, hd]
... = 0 : biprod.inl_desc _ _,
-- But f is an epimorphism, so d = 0...
have : d = 0 := (cancel_epi f).1 (by simpa),
-- ...or, in other words, e = 0.
calc
e = biprod.inr ≫ u : by rw biprod.inr_desc
... = biprod.inr ≫ biprod.desc f (-g) ≫ d : by rw ←hd
... = biprod.inr ≫ biprod.desc f (-g) ≫ 0 : by rw this
... = (biprod.inr ≫ biprod.desc f (-g)) ≫ 0 : by rw ←category.assoc
... = 0 : has_zero_morphisms.comp_zero _ _
end
/-- In an abelian category, the pullback of an epimorphism is an epimorphism. -/
instance epi_pullback_of_epi_g [epi g] : epi (pullback.fst : pullback f g ⟶ X) :=
-- It will suffice to consider some morphism e : X ⟶ R such that
-- pullback.fst ≫ e = 0 and show that e = 0.
epi_of_cancel_zero _ $ λ R e h,
begin
-- Consider the morphism u := (e, 0) : X ⊞ Y ⟶ R.
let u := biprod.desc e (0 : Y ⟶ R),
-- The composite pullback f g ⟶ X ⊞ Y ⟶ R is zero by assumption.
have hu : pullback_to_biproduct_is_kernel.pullback_to_biproduct f g ≫ u = 0 := by simpa,
-- pullback_to_biproduct f g is a kernel of (f, -g), so (f, -g) is a
-- cokernel of pullback_to_biproduct f g
have := epi_is_cokernel_of_kernel _
(pullback_to_biproduct_is_kernel.is_limit_pullback_to_biproduct f g),
-- We use this fact to obtain a factorization of u through (f, -g) via some d : Z ⟶ R.
obtain ⟨d, hd⟩ := cokernel_cofork.is_colimit.desc' this u hu,
change Z ⟶ R at d,
change biprod.desc f (-g) ≫ d = u at hd,
-- But then (-g) ≫ d = 0:
have : (-g) ≫ d = 0, calc
(-g) ≫ d = (biprod.inr ≫ biprod.desc f (-g)) ≫ d : by rw biprod.inr_desc
... = biprod.inr ≫ u : by rw [category.assoc, hd]
... = 0 : biprod.inr_desc _ _,
-- But g is an epimorphism, thus so is -g, so d = 0...
have : d = 0 := (cancel_epi (-g)).1 (by simpa),
-- ...or, in other words, e = 0.
calc
e = biprod.inl ≫ u : by rw biprod.inl_desc
... = biprod.inl ≫ biprod.desc f (-g) ≫ d : by rw ←hd
... = biprod.inl ≫ biprod.desc f (-g) ≫ 0 : by rw this
... = (biprod.inl ≫ biprod.desc f (-g)) ≫ 0 : by rw ←category.assoc
... = 0 : has_zero_morphisms.comp_zero _ _
end
end epi_pullback
section mono_pushout
variables [limits.has_pushouts C] {X Y Z : C} (f : X ⟶ Y) (g : X ⟶ Z)
local attribute [instance] has_binary_biproducts.of_has_binary_products
instance mono_pushout_of_mono_f [mono f] : mono (pushout.inr : Z ⟶ pushout f g) :=
mono_of_cancel_zero _ $ λ R e h,
begin
let u := biprod.lift (0 : R ⟶ Y) e,
have hu : u ≫ biproduct_to_pushout_is_cokernel.biproduct_to_pushout f g = 0 := by simpa,
have := mono_is_kernel_of_cokernel _
(biproduct_to_pushout_is_cokernel.is_colimit_biproduct_to_pushout f g),
obtain ⟨d, hd⟩ := kernel_fork.is_limit.lift' this u hu,
change R ⟶ X at d,
change d ≫ biprod.lift f (-g) = u at hd,
have : d ≫ f = 0, calc
d ≫ f = d ≫ biprod.lift f (-g) ≫ biprod.fst : by rw biprod.lift_fst
... = u ≫ biprod.fst : by rw [←category.assoc, hd]
... = 0 : biprod.lift_fst _ _,
have : d = 0 := (cancel_mono f).1 (by simpa),
calc
e = u ≫ biprod.snd : by rw biprod.lift_snd
... = (d ≫ biprod.lift f (-g)) ≫ biprod.snd : by rw ←hd
... = (0 ≫ biprod.lift f (-g)) ≫ biprod.snd : by rw this
... = 0 ≫ biprod.lift f (-g) ≫ biprod.snd : by rw category.assoc
... = 0 : zero_comp
end
instance mono_pushout_of_mono_g [mono g] : mono (pushout.inl : Y ⟶ pushout f g) :=
mono_of_cancel_zero _ $ λ R e h,
begin
let u := biprod.lift e (0 : R ⟶ Z),
have hu : u ≫ biproduct_to_pushout_is_cokernel.biproduct_to_pushout f g = 0 := by simpa,
have := mono_is_kernel_of_cokernel _
(biproduct_to_pushout_is_cokernel.is_colimit_biproduct_to_pushout f g),
obtain ⟨d, hd⟩ := kernel_fork.is_limit.lift' this u hu,
change R ⟶ X at d,
change d ≫ biprod.lift f (-g) = u at hd,
have : d ≫ (-g) = 0, calc
d ≫ (-g) = d ≫ biprod.lift f (-g) ≫ biprod.snd : by rw biprod.lift_snd
... = u ≫ biprod.snd : by rw [←category.assoc, hd]
... = 0 : biprod.lift_snd _ _,
have : d = 0 := (cancel_mono (-g)).1 (by simpa),
calc
e = u ≫ biprod.fst : by rw biprod.lift_fst
... = (d ≫ biprod.lift f (-g)) ≫ biprod.fst : by rw ←hd
... = (0 ≫ biprod.lift f (-g)) ≫ biprod.fst : by rw this
... = 0 ≫ biprod.lift f (-g) ≫ biprod.fst : by rw category.assoc
... = 0 : zero_comp
end
end mono_pushout
end category_theory.abelian
namespace category_theory.non_preadditive_abelian
variables (C : Type u) [category.{v} C] [non_preadditive_abelian C]
/-- Every non_preadditive_abelian category can be promoted to an abelian category. -/
def abelian : abelian C :=
{ has_finite_products := by apply_instance,
/- We need the `convert`s here because the instances we have are slightly different from the
instances we need: `has_kernels` depends on an instance of `has_zero_morphisms`. In the
case of `non_preadditive_abelian`, this instance is an explicit argument. However, in the case
of `abelian`, the `has_zero_morphisms` instance is derived from `preadditive`. So we need to
transform an instance of "has kernels with non_preadditive_abelian.has_zero_morphisms" to an
instance of "has kernels with non_preadditive_abelian.preadditive.has_zero_morphisms". Luckily,
we have a `subsingleton` instance for `has_zero_morphisms`, so `convert` can immediately close
the goal it creates for the two instances of `has_zero_morphisms`, and the proof is complete. -/
has_kernels := by convert (by apply_instance : limits.has_kernels C),
has_cokernels := by convert (by apply_instance : limits.has_cokernels C),
normal_mono := by { introsI, convert normal_mono f },
normal_epi := by { introsI, convert normal_epi f },
..non_preadditive_abelian.preadditive }
end category_theory.non_preadditive_abelian
|
8893a83bff9d8bc9dfd88a84af5213c7fc93f91e
|
ae1e94c332e17c7dc7051ce976d5a9eebe7ab8a5
|
/src/Lean/Elab/Deriving/FromToJson.lean
|
2be4970bf7de7ed967fbd5bd65272d1c2b3c865d
|
[
"Apache-2.0"
] |
permissive
|
dupuisf/lean4
|
d082d13b01243e1de29ae680eefb476961221eef
|
6a39c65bd28eb0e28c3870188f348c8914502718
|
refs/heads/master
| 1,676,948,755,391
| 1,610,665,114,000
| 1,610,665,114,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,573
|
lean
|
/-
Copyright (c) 2020 Sebastian Ullrich. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sebastian Ullrich
-/
import Lean.Meta.Transform
import Lean.Elab.Deriving.Basic
import Lean.Elab.Deriving.Util
import Lean.Data.Json.FromToJson
namespace Lean.Elab.Deriving.FromToJson
open Lean.Elab.Command
open Lean.Json
def mkJsonField (n : Name) : Bool × Syntax :=
let s := n.toString
let s₁ := s.dropRightWhile (· == '?')
(s != s₁, Syntax.mkStrLit s₁)
def mkToJsonInstanceHandler (declNames : Array Name) : CommandElabM Bool := do
if declNames.size == 1 && (← isStructure (← getEnv) declNames[0]) then
let cmds ← liftTermElabM none <| do
let ctx ← mkContext "toJson" declNames[0]
let header ← mkHeader ctx ``ToJson 1 ctx.typeInfos[0]
let fields := getStructureFieldsFlattened (← getEnv) declNames[0]
let fields : Array Syntax ← fields.mapM fun field => do
let (isOptField, nm) ← mkJsonField field
if isOptField then `(opt $nm $(mkIdent <| header.targetNames[0] ++ field))
else `([($nm, toJson $(mkIdent <| header.targetNames[0] ++ field))])
let cmd ← `(private def $(mkIdent ctx.auxFunNames[0]):ident $header.binders:explicitBinder* :=
mkObj <| List.join [$fields,*])
return #[cmd] ++ (← mkInstanceCmds ctx ``ToJson declNames)
cmds.forM elabCommand
return true
else
return false
def mkFromJsonInstanceHandler (declNames : Array Name) : CommandElabM Bool := do
if declNames.size == 1 && (← isStructure (← getEnv) declNames[0]) then
let cmds ← liftTermElabM none <| do
let ctx ← mkContext "fromJson" declNames[0]
let header ← mkHeader ctx ``FromJson 0 ctx.typeInfos[0]
let fields := getStructureFieldsFlattened (← getEnv) declNames[0]
let jsonFields := fields.map (Prod.snd ∘ mkJsonField)
let fields := fields.map mkIdent
let cmd ← `(private def $(mkIdent ctx.auxFunNames[0]):ident $header.binders:explicitBinder* (j : Json)
: Option $(← mkInductiveApp ctx.typeInfos[0] header.argNames) := do
$[let $fields:ident ← getObjValAs? j _ $jsonFields]*
return { $[$fields:ident := $(id fields)]* })
return #[cmd] ++ (← mkInstanceCmds ctx ``FromJson declNames)
cmds.forM elabCommand
return true
else
return false
builtin_initialize
registerBuiltinDerivingHandler ``ToJson mkToJsonInstanceHandler
registerBuiltinDerivingHandler ``FromJson mkFromJsonInstanceHandler
end Lean.Elab.Deriving.FromToJson
|
73a5a5bfbf53470e1fc6cf81b01d8e91af7a2770
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/topology/uniform_space/cauchy.lean
|
5d8a70689d356ac6f2c09c6fe96e2063dc92aa04
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 33,860
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.bases
import topology.uniform_space.basic
/-!
# Theory of Cauchy filters in uniform spaces. Complete uniform spaces. Totally bounded subsets.
-/
universes u v
open filter topological_space set classical uniform_space function
open_locale classical uniformity topological_space filter
variables {α : Type u} {β : Type v} [uniform_space α]
/-- A filter `f` is Cauchy if for every entourage `r`, there exists an
`s ∈ f` such that `s × s ⊆ r`. This is a generalization of Cauchy
sequences, because if `a : ℕ → α` then the filter of sets containing
cofinitely many of the `a n` is Cauchy iff `a` is a Cauchy sequence. -/
def cauchy (f : filter α) := ne_bot f ∧ f ×ᶠ f ≤ (𝓤 α)
/-- A set `s` is called *complete*, if any Cauchy filter `f` such that `s ∈ f`
has a limit in `s` (formally, it satisfies `f ≤ 𝓝 x` for some `x ∈ s`). -/
def is_complete (s : set α) := ∀f, cauchy f → f ≤ 𝓟 s → ∃x∈s, f ≤ 𝓝 x
lemma filter.has_basis.cauchy_iff {ι} {p : ι → Prop} {s : ι → set (α × α)} (h : (𝓤 α).has_basis p s)
{f : filter α} :
cauchy f ↔ (ne_bot f ∧ (∀ i, p i → ∃ t ∈ f, ∀ x y ∈ t, (x, y) ∈ s i)) :=
and_congr iff.rfl $ (f.basis_sets.prod_self.le_basis_iff h).trans $
by simp only [subset_def, prod.forall, mem_prod_eq, and_imp, id, ball_mem_comm]
lemma cauchy_iff' {f : filter α} :
cauchy f ↔ (ne_bot f ∧ (∀ s ∈ 𝓤 α, ∃t∈f, ∀ x y ∈ t, (x, y) ∈ s)) :=
(𝓤 α).basis_sets.cauchy_iff
lemma cauchy_iff {f : filter α} :
cauchy f ↔ (ne_bot f ∧ (∀ s ∈ 𝓤 α, ∃t∈f, t ×ˢ t ⊆ s)) :=
cauchy_iff'.trans $ by simp only [subset_def, prod.forall, mem_prod_eq, and_imp, id, ball_mem_comm]
lemma cauchy.ultrafilter_of {l : filter α} (h : cauchy l) :
cauchy (@ultrafilter.of _ l h.1 : filter α) :=
begin
haveI := h.1,
have := ultrafilter.of_le l,
exact ⟨ultrafilter.ne_bot _, (filter.prod_mono this this).trans h.2⟩
end
lemma cauchy_map_iff {l : filter β} {f : β → α} :
cauchy (l.map f) ↔ (ne_bot l ∧ tendsto (λp:β×β, (f p.1, f p.2)) (l ×ᶠ l) (𝓤 α)) :=
by rw [cauchy, map_ne_bot_iff, prod_map_map_eq, tendsto]
lemma cauchy_map_iff' {l : filter β} [hl : ne_bot l] {f : β → α} :
cauchy (l.map f) ↔ tendsto (λp:β×β, (f p.1, f p.2)) (l ×ᶠ l) (𝓤 α) :=
cauchy_map_iff.trans $ and_iff_right hl
lemma cauchy.mono {f g : filter α} [hg : ne_bot g] (h_c : cauchy f) (h_le : g ≤ f) : cauchy g :=
⟨hg, le_trans (filter.prod_mono h_le h_le) h_c.right⟩
lemma cauchy.mono' {f g : filter α} (h_c : cauchy f) (hg : ne_bot g) (h_le : g ≤ f) : cauchy g :=
h_c.mono h_le
lemma cauchy_nhds {a : α} : cauchy (𝓝 a) :=
⟨nhds_ne_bot, nhds_prod_eq.symm.trans_le (nhds_le_uniformity a)⟩
lemma cauchy_pure {a : α} : cauchy (pure a) :=
cauchy_nhds.mono (pure_le_nhds a)
lemma filter.tendsto.cauchy_map {l : filter β} [ne_bot l] {f : β → α} {a : α}
(h : tendsto f l (𝓝 a)) :
cauchy (map f l) :=
cauchy_nhds.mono h
lemma cauchy.prod [uniform_space β] {f : filter α} {g : filter β} (hf : cauchy f) (hg : cauchy g) :
cauchy (f ×ᶠ g) :=
begin
refine ⟨hf.1.prod hg.1, _⟩,
simp only [uniformity_prod, le_inf_iff, ← map_le_iff_le_comap, ← prod_map_map_eq],
exact ⟨le_trans (prod_mono tendsto_fst tendsto_fst) hf.2,
le_trans (prod_mono tendsto_snd tendsto_snd) hg.2⟩
end
/-- The common part of the proofs of `le_nhds_of_cauchy_adhp` and
`sequentially_complete.le_nhds_of_seq_tendsto_nhds`: if for any entourage `s`
one can choose a set `t ∈ f` of diameter `s` such that it contains a point `y`
with `(x, y) ∈ s`, then `f` converges to `x`. -/
lemma le_nhds_of_cauchy_adhp_aux {f : filter α} {x : α}
(adhs : ∀ s ∈ 𝓤 α, ∃ t ∈ f, (t ×ˢ t ⊆ s) ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t) :
f ≤ 𝓝 x :=
begin
-- Consider a neighborhood `s` of `x`
assume s hs,
-- Take an entourage twice smaller than `s`
rcases comp_mem_uniformity_sets (mem_nhds_uniformity_iff_right.1 hs) with ⟨U, U_mem, hU⟩,
-- Take a set `t ∈ f`, `t × t ⊆ U`, and a point `y ∈ t` such that `(x, y) ∈ U`
rcases adhs U U_mem with ⟨t, t_mem, ht, y, hxy, hy⟩,
apply mem_of_superset t_mem,
-- Given a point `z ∈ t`, we have `(x, y) ∈ U` and `(y, z) ∈ t × t ⊆ U`, hence `z ∈ s`
exact (λ z hz, hU (prod_mk_mem_comp_rel hxy (ht $ mk_mem_prod hy hz)) rfl)
end
/-- If `x` is an adherent (cluster) point for a Cauchy filter `f`, then it is a limit point
for `f`. -/
lemma le_nhds_of_cauchy_adhp {f : filter α} {x : α} (hf : cauchy f)
(adhs : cluster_pt x f) : f ≤ 𝓝 x :=
le_nhds_of_cauchy_adhp_aux
begin
assume s hs,
obtain ⟨t, t_mem, ht⟩ : ∃ t ∈ f, t ×ˢ t ⊆ s,
from (cauchy_iff.1 hf).2 s hs,
use [t, t_mem, ht],
exact (forall_mem_nonempty_iff_ne_bot.2 adhs _
(inter_mem_inf (mem_nhds_left x hs) t_mem ))
end
lemma le_nhds_iff_adhp_of_cauchy {f : filter α} {x : α} (hf : cauchy f) :
f ≤ 𝓝 x ↔ cluster_pt x f :=
⟨assume h, cluster_pt.of_le_nhds' h hf.1, le_nhds_of_cauchy_adhp hf⟩
lemma cauchy.map [uniform_space β] {f : filter α} {m : α → β}
(hf : cauchy f) (hm : uniform_continuous m) : cauchy (map m f) :=
⟨hf.1.map _,
calc map m f ×ᶠ map m f = map (λp:α×α, (m p.1, m p.2)) (f ×ᶠ f) : filter.prod_map_map_eq
... ≤ map (λp:α×α, (m p.1, m p.2)) (𝓤 α) : map_mono hf.right
... ≤ 𝓤 β : hm⟩
lemma cauchy.comap [uniform_space β] {f : filter β} {m : α → β}
(hf : cauchy f) (hm : comap (λp:α×α, (m p.1, m p.2)) (𝓤 β) ≤ 𝓤 α)
[ne_bot (comap m f)] : cauchy (comap m f) :=
⟨‹_›,
calc comap m f ×ᶠ comap m f = comap (λp:α×α, (m p.1, m p.2)) (f ×ᶠ f) : filter.prod_comap_comap_eq
... ≤ comap (λp:α×α, (m p.1, m p.2)) (𝓤 β) : comap_mono hf.right
... ≤ 𝓤 α : hm⟩
lemma cauchy.comap' [uniform_space β] {f : filter β} {m : α → β}
(hf : cauchy f) (hm : comap (λp:α×α, (m p.1, m p.2)) (𝓤 β) ≤ 𝓤 α)
(hb : ne_bot (comap m f)) : cauchy (comap m f) :=
hf.comap hm
/-- Cauchy sequences. Usually defined on ℕ, but often it is also useful to say that a function
defined on ℝ is Cauchy at +∞ to deduce convergence. Therefore, we define it in a type class that
is general enough to cover both ℕ and ℝ, which are the main motivating examples. -/
def cauchy_seq [semilattice_sup β] (u : β → α) := cauchy (at_top.map u)
lemma cauchy_seq.tendsto_uniformity [semilattice_sup β] {u : β → α} (h : cauchy_seq u) :
tendsto (prod.map u u) at_top (𝓤 α) :=
by simpa only [tendsto, prod_map_map_eq', prod_at_top_at_top_eq] using h.right
lemma cauchy_seq.nonempty [semilattice_sup β] {u : β → α} (hu : cauchy_seq u) : nonempty β :=
@nonempty_of_ne_bot _ _ $ (map_ne_bot_iff _).1 hu.1
lemma cauchy_seq.mem_entourage {β : Type*} [semilattice_sup β] {u : β → α}
(h : cauchy_seq u) {V : set (α × α)} (hV : V ∈ 𝓤 α) :
∃ k₀, ∀ i j, k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V :=
begin
haveI := h.nonempty,
have := h.tendsto_uniformity, rw ← prod_at_top_at_top_eq at this,
simpa [maps_to] using at_top_basis.prod_self.tendsto_left_iff.1 this V hV
end
lemma filter.tendsto.cauchy_seq [semilattice_sup β] [nonempty β] {f : β → α} {x}
(hx : tendsto f at_top (𝓝 x)) :
cauchy_seq f :=
hx.cauchy_map
lemma cauchy_seq_const [semilattice_sup β] [nonempty β] (x : α) : cauchy_seq (λ n : β, x) :=
tendsto_const_nhds.cauchy_seq
lemma cauchy_seq_iff_tendsto [nonempty β] [semilattice_sup β] {u : β → α} :
cauchy_seq u ↔ tendsto (prod.map u u) at_top (𝓤 α) :=
cauchy_map_iff'.trans $ by simp only [prod_at_top_at_top_eq, prod.map_def]
lemma cauchy_seq.comp_tendsto {γ} [semilattice_sup β] [semilattice_sup γ] [nonempty γ]
{f : β → α} (hf : cauchy_seq f) {g : γ → β} (hg : tendsto g at_top at_top) :
cauchy_seq (f ∘ g) :=
cauchy_seq_iff_tendsto.2 $ hf.tendsto_uniformity.comp (hg.prod_at_top hg)
lemma cauchy_seq.comp_injective [semilattice_sup β] [no_max_order β] [nonempty β]
{u : ℕ → α} (hu : cauchy_seq u) {f : β → ℕ} (hf : injective f) :
cauchy_seq (u ∘ f) :=
hu.comp_tendsto $ nat.cofinite_eq_at_top ▸ hf.tendsto_cofinite.mono_left at_top_le_cofinite
lemma function.bijective.cauchy_seq_comp_iff {f : ℕ → ℕ} (hf : bijective f) (u : ℕ → α) :
cauchy_seq (u ∘ f) ↔ cauchy_seq u :=
begin
refine ⟨λ H, _, λ H, H.comp_injective hf.injective⟩,
lift f to ℕ ≃ ℕ using hf,
simpa only [(∘), f.apply_symm_apply] using H.comp_injective f.symm.injective
end
lemma cauchy_seq.subseq_subseq_mem {V : ℕ → set (α × α)} (hV : ∀ n, V n ∈ 𝓤 α)
{u : ℕ → α} (hu : cauchy_seq u)
{f g : ℕ → ℕ} (hf : tendsto f at_top at_top) (hg : tendsto g at_top at_top) :
∃ φ : ℕ → ℕ, strict_mono φ ∧ ∀ n, ((u ∘ f ∘ φ) n, (u ∘ g ∘ φ) n) ∈ V n :=
begin
rw cauchy_seq_iff_tendsto at hu,
exact ((hu.comp $ hf.prod_at_top hg).comp tendsto_at_top_diagonal).subseq_mem hV,
end
lemma cauchy_seq_iff' {u : ℕ → α} :
cauchy_seq u ↔ ∀ V ∈ 𝓤 α, ∀ᶠ k in at_top, k ∈ (prod.map u u) ⁻¹' V :=
by simpa only [cauchy_seq_iff_tendsto]
lemma cauchy_seq_iff {u : ℕ → α} :
cauchy_seq u ↔ ∀ V ∈ 𝓤 α, ∃ N, ∀ k ≥ N, ∀ l ≥ N, (u k, u l) ∈ V :=
by simp [cauchy_seq_iff', filter.eventually_at_top_prod_self', prod_map]
lemma cauchy_seq.prod_map {γ δ} [uniform_space β] [semilattice_sup γ] [semilattice_sup δ]
{u : γ → α} {v : δ → β}
(hu : cauchy_seq u) (hv : cauchy_seq v) : cauchy_seq (prod.map u v) :=
by simpa only [cauchy_seq, prod_map_map_eq', prod_at_top_at_top_eq] using hu.prod hv
lemma cauchy_seq.prod {γ} [uniform_space β] [semilattice_sup γ] {u : γ → α} {v : γ → β}
(hu : cauchy_seq u) (hv : cauchy_seq v) : cauchy_seq (λ x, (u x, v x)) :=
begin
haveI := hu.nonempty,
exact (hu.prod hv).mono (tendsto.prod_mk le_rfl le_rfl)
end
lemma cauchy_seq.eventually_eventually [semilattice_sup β] {u : β → α} (hu : cauchy_seq u)
{V : set (α × α)} (hV : V ∈ 𝓤 α) :
∀ᶠ k in at_top, ∀ᶠ l in at_top, (u k, u l) ∈ V :=
eventually_at_top_curry $ hu.tendsto_uniformity hV
lemma uniform_continuous.comp_cauchy_seq {γ} [uniform_space β] [semilattice_sup γ]
{f : α → β} (hf : uniform_continuous f) {u : γ → α} (hu : cauchy_seq u) :
cauchy_seq (f ∘ u) :=
hu.map hf
lemma cauchy_seq.subseq_mem {V : ℕ → set (α × α)} (hV : ∀ n, V n ∈ 𝓤 α)
{u : ℕ → α} (hu : cauchy_seq u) :
∃ φ : ℕ → ℕ, strict_mono φ ∧ ∀ n, (u $ φ (n + 1), u $ φ n) ∈ V n :=
begin
have : ∀ n, ∃ N, ∀ k ≥ N, ∀ l ≥ k, (u l, u k) ∈ V n,
{ intro n,
rw [cauchy_seq_iff] at hu,
rcases hu _ (hV n) with ⟨N, H⟩,
exact ⟨N, λ k hk l hl, H _ (le_trans hk hl) _ hk ⟩ },
obtain ⟨φ : ℕ → ℕ, φ_extr : strict_mono φ, hφ : ∀ n, ∀ l ≥ φ n, (u l, u $ φ n) ∈ V n⟩ :=
extraction_forall_of_eventually' this,
exact ⟨φ, φ_extr, λ n, hφ _ _ (φ_extr $ lt_add_one n).le⟩,
end
lemma filter.tendsto.subseq_mem_entourage {V : ℕ → set (α × α)} (hV : ∀ n, V n ∈ 𝓤 α)
{u : ℕ → α} {a : α} (hu : tendsto u at_top (𝓝 a)) :
∃ φ : ℕ → ℕ, strict_mono φ ∧ (u (φ 0), a) ∈ V 0 ∧ ∀ n, (u $ φ (n + 1), u $ φ n) ∈ V (n + 1) :=
begin
rcases mem_at_top_sets.1 (hu (ball_mem_nhds a (symm_le_uniformity $ hV 0))) with ⟨n, hn⟩,
rcases (hu.comp (tendsto_add_at_top_nat n)).cauchy_seq.subseq_mem (λ n, hV (n + 1))
with ⟨φ, φ_mono, hφV⟩,
exact ⟨λ k, φ k + n, φ_mono.add_const _, hn _ le_add_self, hφV⟩
end
/-- If a Cauchy sequence has a convergent subsequence, then it converges. -/
lemma tendsto_nhds_of_cauchy_seq_of_subseq
[semilattice_sup β] {u : β → α} (hu : cauchy_seq u)
{ι : Type*} {f : ι → β} {p : filter ι} [ne_bot p]
(hf : tendsto f p at_top) {a : α} (ha : tendsto (u ∘ f) p (𝓝 a)) :
tendsto u at_top (𝓝 a) :=
le_nhds_of_cauchy_adhp hu (map_cluster_pt_of_comp hf ha)
@[nolint ge_or_gt] -- see Note [nolint_ge]
lemma filter.has_basis.cauchy_seq_iff {γ} [nonempty β] [semilattice_sup β] {u : β → α}
{p : γ → Prop} {s : γ → set (α × α)} (h : (𝓤 α).has_basis p s) :
cauchy_seq u ↔ ∀ i, p i → ∃N, ∀m n≥N, (u m, u n) ∈ s i :=
begin
rw [cauchy_seq_iff_tendsto, ← prod_at_top_at_top_eq],
refine (at_top_basis.prod_self.tendsto_iff h).trans _,
simp only [exists_prop, true_and, maps_to, preimage, subset_def, prod.forall,
mem_prod_eq, mem_set_of_eq, mem_Ici, and_imp, prod.map, ge_iff_le, @forall_swap (_ ≤ _) β]
end
lemma filter.has_basis.cauchy_seq_iff' {γ} [nonempty β] [semilattice_sup β] {u : β → α}
{p : γ → Prop} {s : γ → set (α × α)} (H : (𝓤 α).has_basis p s) :
cauchy_seq u ↔ ∀ i, p i → ∃N, ∀n≥N, (u n, u N) ∈ s i :=
begin
refine H.cauchy_seq_iff.trans ⟨λ h i hi, _, λ h i hi, _⟩,
{ exact (h i hi).imp (λ N hN n hn, hN n hn N le_rfl) },
{ rcases comp_symm_of_uniformity (H.mem_of_mem hi) with ⟨t, ht, ht', hts⟩,
rcases H.mem_iff.1 ht with ⟨j, hj, hjt⟩,
refine (h j hj).imp (λ N hN m hm n hn, hts ⟨u N, hjt _, ht' $ hjt _⟩),
{ exact hN m hm },
{ exact hN n hn } }
end
lemma cauchy_seq_of_controlled [semilattice_sup β] [nonempty β]
(U : β → set (α × α)) (hU : ∀ s ∈ 𝓤 α, ∃ n, U n ⊆ s)
{f : β → α} (hf : ∀ {N m n : β}, N ≤ m → N ≤ n → (f m, f n) ∈ U N) :
cauchy_seq f :=
cauchy_seq_iff_tendsto.2
begin
assume s hs,
rw [mem_map, mem_at_top_sets],
cases hU s hs with N hN,
refine ⟨(N, N), λ mn hmn, _⟩,
cases mn with m n,
exact hN (hf hmn.1 hmn.2)
end
lemma is_complete_iff_cluster_pt {s : set α} :
is_complete s ↔ ∀ l, cauchy l → l ≤ 𝓟 s → ∃ x ∈ s, cluster_pt x l :=
forall₃_congr $ λ l hl hls, exists₂_congr $ λ x hx, le_nhds_iff_adhp_of_cauchy hl
lemma is_complete_iff_ultrafilter {s : set α} :
is_complete s ↔ ∀ l : ultrafilter α, cauchy (l : filter α) → ↑l ≤ 𝓟 s → ∃ x ∈ s, ↑l ≤ 𝓝 x :=
begin
refine ⟨λ h l, h l, λ H, is_complete_iff_cluster_pt.2 $ λ l hl hls, _⟩,
haveI := hl.1,
rcases H (ultrafilter.of l) hl.ultrafilter_of ((ultrafilter.of_le l).trans hls)
with ⟨x, hxs, hxl⟩,
exact ⟨x, hxs, (cluster_pt.of_le_nhds hxl).mono (ultrafilter.of_le l)⟩
end
lemma is_complete_iff_ultrafilter' {s : set α} :
is_complete s ↔ ∀ l : ultrafilter α, cauchy (l : filter α) → s ∈ l → ∃ x ∈ s, ↑l ≤ 𝓝 x :=
is_complete_iff_ultrafilter.trans $ by simp only [le_principal_iff, ultrafilter.mem_coe]
protected lemma is_complete.union {s t : set α} (hs : is_complete s) (ht : is_complete t) :
is_complete (s ∪ t) :=
begin
simp only [is_complete_iff_ultrafilter', ultrafilter.union_mem_iff, or_imp_distrib] at *,
exact λ l hl, ⟨λ hsl, (hs l hl hsl).imp $ λ x hx, ⟨or.inl hx.fst, hx.snd⟩,
λ htl, (ht l hl htl).imp $ λ x hx, ⟨or.inr hx.fst, hx.snd⟩⟩
end
lemma is_complete_Union_separated {ι : Sort*} {s : ι → set α} (hs : ∀ i, is_complete (s i))
{U : set (α × α)} (hU : U ∈ 𝓤 α) (hd : ∀ (i j : ι) (x ∈ s i) (y ∈ s j), (x, y) ∈ U → i = j) :
is_complete (⋃ i, s i) :=
begin
set S := ⋃ i, s i,
intros l hl hls,
rw le_principal_iff at hls,
casesI cauchy_iff.1 hl with hl_ne hl',
obtain ⟨t, htS, htl, htU⟩ : ∃ t ⊆ S, t ∈ l ∧ t ×ˢ t ⊆ U,
{ rcases hl' U hU with ⟨t, htl, htU⟩,
exact ⟨t ∩ S, inter_subset_right _ _, inter_mem htl hls,
(set.prod_mono (inter_subset_left _ _) (inter_subset_left _ _)).trans htU⟩ },
obtain ⟨i, hi⟩ : ∃ i, t ⊆ s i,
{ rcases filter.nonempty_of_mem htl with ⟨x, hx⟩,
rcases mem_Union.1 (htS hx) with ⟨i, hi⟩,
refine ⟨i, λ y hy, _⟩,
rcases mem_Union.1 (htS hy) with ⟨j, hj⟩,
convert hj, exact hd i j x hi y hj (htU $ mk_mem_prod hx hy) },
rcases hs i l hl (le_principal_iff.2 $ mem_of_superset htl hi) with ⟨x, hxs, hlx⟩,
exact ⟨x, mem_Union.2 ⟨i, hxs⟩, hlx⟩
end
/-- A complete space is defined here using uniformities. A uniform space
is complete if every Cauchy filter converges. -/
class complete_space (α : Type u) [uniform_space α] : Prop :=
(complete : ∀{f:filter α}, cauchy f → ∃x, f ≤ 𝓝 x)
lemma complete_univ {α : Type u} [uniform_space α] [complete_space α] :
is_complete (univ : set α) :=
begin
assume f hf _,
rcases complete_space.complete hf with ⟨x, hx⟩,
exact ⟨x, mem_univ x, hx⟩
end
instance complete_space.prod [uniform_space β] [complete_space α] [complete_space β] :
complete_space (α × β) :=
{ complete := λ f hf,
let ⟨x1, hx1⟩ := complete_space.complete $ hf.map uniform_continuous_fst in
let ⟨x2, hx2⟩ := complete_space.complete $ hf.map uniform_continuous_snd in
⟨(x1, x2), by rw [nhds_prod_eq, filter.prod_def];
from filter.le_lift (λ s hs, filter.le_lift' $ λ t ht,
have H1 : prod.fst ⁻¹' s ∈ f.sets := hx1 hs,
have H2 : prod.snd ⁻¹' t ∈ f.sets := hx2 ht,
filter.inter_mem H1 H2)⟩ }
/--If `univ` is complete, the space is a complete space -/
lemma complete_space_of_is_complete_univ (h : is_complete (univ : set α)) : complete_space α :=
⟨λ f hf, let ⟨x, _, hx⟩ := h f hf ((@principal_univ α).symm ▸ le_top) in ⟨x, hx⟩⟩
lemma complete_space_iff_is_complete_univ :
complete_space α ↔ is_complete (univ : set α) :=
⟨@complete_univ α _, complete_space_of_is_complete_univ⟩
lemma complete_space_iff_ultrafilter :
complete_space α ↔ ∀ l : ultrafilter α, cauchy (l : filter α) → ∃ x : α, ↑l ≤ 𝓝 x :=
by simp [complete_space_iff_is_complete_univ, is_complete_iff_ultrafilter]
lemma cauchy_iff_exists_le_nhds [complete_space α] {l : filter α} [ne_bot l] :
cauchy l ↔ (∃x, l ≤ 𝓝 x) :=
⟨complete_space.complete, assume ⟨x, hx⟩, cauchy_nhds.mono hx⟩
lemma cauchy_map_iff_exists_tendsto [complete_space α] {l : filter β} {f : β → α} [ne_bot l] :
cauchy (l.map f) ↔ (∃x, tendsto f l (𝓝 x)) :=
cauchy_iff_exists_le_nhds
/-- A Cauchy sequence in a complete space converges -/
theorem cauchy_seq_tendsto_of_complete [semilattice_sup β] [complete_space α]
{u : β → α} (H : cauchy_seq u) : ∃x, tendsto u at_top (𝓝 x) :=
complete_space.complete H
/-- If `K` is a complete subset, then any cauchy sequence in `K` converges to a point in `K` -/
lemma cauchy_seq_tendsto_of_is_complete [semilattice_sup β] {K : set α} (h₁ : is_complete K)
{u : β → α} (h₂ : ∀ n, u n ∈ K) (h₃ : cauchy_seq u) : ∃ v ∈ K, tendsto u at_top (𝓝 v) :=
h₁ _ h₃ $ le_principal_iff.2 $ mem_map_iff_exists_image.2 ⟨univ, univ_mem,
by { simp only [image_univ], rintros _ ⟨n, rfl⟩, exact h₂ n }⟩
theorem cauchy.le_nhds_Lim [complete_space α] [nonempty α] {f : filter α} (hf : cauchy f) :
f ≤ 𝓝 (Lim f) :=
le_nhds_Lim (complete_space.complete hf)
theorem cauchy_seq.tendsto_lim [semilattice_sup β] [complete_space α] [nonempty α] {u : β → α}
(h : cauchy_seq u) :
tendsto u at_top (𝓝 $ lim at_top u) :=
h.le_nhds_Lim
lemma is_closed.is_complete [complete_space α] {s : set α}
(h : is_closed s) : is_complete s :=
λ f cf fs, let ⟨x, hx⟩ := complete_space.complete cf in
⟨x, is_closed_iff_cluster_pt.mp h x (cf.left.mono (le_inf hx fs)), hx⟩
/-- A set `s` is totally bounded if for every entourage `d` there is a finite
set of points `t` such that every element of `s` is `d`-near to some element of `t`. -/
def totally_bounded (s : set α) : Prop :=
∀d ∈ 𝓤 α, ∃t : set α, finite t ∧ s ⊆ (⋃ y ∈ t, {x | (x, y) ∈ d})
theorem totally_bounded.exists_subset {s : set α} (hs : totally_bounded s) {U : set (α × α)}
(hU : U ∈ 𝓤 α) :
∃ t ⊆ s, finite t ∧ s ⊆ ⋃ y ∈ t, {x | (x, y) ∈ U} :=
begin
rcases comp_symm_of_uniformity hU with ⟨r, hr, rs, rU⟩,
rcases hs r hr with ⟨k, fk, ks⟩,
let u := k ∩ {y | ∃ x ∈ s, (x, y) ∈ r},
choose hk f hfs hfr using λ x : u, x.coe_prop,
refine ⟨range f, _, _, _⟩,
{ exact range_subset_iff.2 hfs },
{ haveI : fintype u := (fk.inter_of_left _).fintype,
exact finite_range f },
{ intros x xs,
obtain ⟨y, hy, xy⟩ : ∃ y ∈ k, (x, y) ∈ r, from mem_Union₂.1 (ks xs),
rw [bUnion_range, mem_Union],
set z : ↥u := ⟨y, hy, ⟨x, xs, xy⟩⟩,
exact ⟨z, rU $ mem_comp_rel.2 ⟨y, xy, rs (hfr z)⟩⟩ }
end
theorem totally_bounded_iff_subset {s : set α} : totally_bounded s ↔
∀d ∈ 𝓤 α, ∃t ⊆ s, finite t ∧ s ⊆ (⋃y∈t, {x | (x,y) ∈ d}) :=
⟨λ H d hd, H.exists_subset hd, λ H d hd, let ⟨t, _, ht⟩ := H d hd in ⟨t, ht⟩⟩
lemma filter.has_basis.totally_bounded_iff {ι} {p : ι → Prop} {U : ι → set (α × α)}
(H : (𝓤 α).has_basis p U) {s : set α} :
totally_bounded s ↔ ∀ i, p i → ∃ t : set α, finite t ∧ s ⊆ ⋃ y ∈ t, {x | (x, y) ∈ U i} :=
H.forall_iff $ λ U V hUV h, h.imp $ λ t ht, ⟨ht.1, ht.2.trans $ Union₂_mono $ λ x hx y hy, hUV hy⟩
lemma totally_bounded_of_forall_symm {s : set α}
(h : ∀ V ∈ 𝓤 α, symmetric_rel V → ∃ t : set α, finite t ∧ s ⊆ ⋃ y ∈ t, ball y V) :
totally_bounded s :=
uniform_space.has_basis_symmetric.totally_bounded_iff.2 $ λ V hV,
by simpa only [ball_eq_of_symmetry hV.2] using h V hV.1 hV.2
lemma totally_bounded_subset {s₁ s₂ : set α} (hs : s₁ ⊆ s₂)
(h : totally_bounded s₂) : totally_bounded s₁ :=
assume d hd, let ⟨t, ht₁, ht₂⟩ := h d hd in ⟨t, ht₁, subset.trans hs ht₂⟩
lemma totally_bounded_empty : totally_bounded (∅ : set α) :=
λ d hd, ⟨∅, finite_empty, empty_subset _⟩
/-- The closure of a totally bounded set is totally bounded. -/
lemma totally_bounded.closure {s : set α} (h : totally_bounded s) :
totally_bounded (closure s) :=
uniformity_has_basis_closed.totally_bounded_iff.2 $ λ V hV, let ⟨t, htf, hst⟩ := h V hV.1
in ⟨t, htf, closure_minimal hst $ is_closed_bUnion htf $
λ y hy, hV.2.preimage (continuous_id.prod_mk continuous_const)⟩
/-- The image of a totally bounded set under a uniformly continuous map is totally bounded. -/
lemma totally_bounded.image [uniform_space β] {f : α → β} {s : set α}
(hs : totally_bounded s) (hf : uniform_continuous f) : totally_bounded (f '' s) :=
assume t ht,
have {p:α×α | (f p.1, f p.2) ∈ t} ∈ 𝓤 α,
from hf ht,
let ⟨c, hfc, hct⟩ := hs _ this in
⟨f '' c, hfc.image f,
begin
simp [image_subset_iff],
simp [subset_def] at hct,
intros x hx, simp,
exact hct x hx
end⟩
lemma ultrafilter.cauchy_of_totally_bounded {s : set α} (f : ultrafilter α)
(hs : totally_bounded s) (h : ↑f ≤ 𝓟 s) : cauchy (f : filter α) :=
⟨f.ne_bot', assume t ht,
let ⟨t', ht'₁, ht'_symm, ht'_t⟩ := comp_symm_of_uniformity ht in
let ⟨i, hi, hs_union⟩ := hs t' ht'₁ in
have (⋃y∈i, {x | (x,y) ∈ t'}) ∈ f,
from mem_of_superset (le_principal_iff.mp h) hs_union,
have ∃y∈i, {x | (x,y) ∈ t'} ∈ f,
from (ultrafilter.finite_bUnion_mem_iff hi).1 this,
let ⟨y, hy, hif⟩ := this in
have {x | (x,y) ∈ t'} ×ˢ {x | (x,y) ∈ t'} ⊆ comp_rel t' t',
from assume ⟨x₁, x₂⟩ ⟨(h₁ : (x₁, y) ∈ t'), (h₂ : (x₂, y) ∈ t')⟩,
⟨y, h₁, ht'_symm h₂⟩,
mem_of_superset (prod_mem_prod hif hif) (subset.trans this ht'_t)⟩
lemma totally_bounded_iff_filter {s : set α} :
totally_bounded s ↔ (∀f, ne_bot f → f ≤ 𝓟 s → ∃c ≤ f, cauchy c) :=
begin
split,
{ introsI H f hf hfs,
exact ⟨ultrafilter.of f, ultrafilter.of_le f,
(ultrafilter.of f).cauchy_of_totally_bounded H ((ultrafilter.of_le f).trans hfs)⟩ },
{ intros H d hd,
contrapose! H with hd_cover,
set f := ⨅ t : finset α, 𝓟 (s \ ⋃ y ∈ t, {x | (x, y) ∈ d}),
have : ne_bot f,
{ refine infi_ne_bot_of_directed' (directed_of_sup _) _,
{ intros t₁ t₂ h,
exact principal_mono.2 (diff_subset_diff_right $ bUnion_subset_bUnion_left h) },
{ intro t,
simpa [nonempty_diff] using hd_cover t t.finite_to_set } },
have : f ≤ 𝓟 s, from infi_le_of_le ∅ (by simp),
refine ⟨f, ‹_›, ‹_›, λ c hcf hc, _⟩,
rcases mem_prod_same_iff.1 (hc.2 hd) with ⟨m, hm, hmd⟩,
have : m ∩ s ∈ c, from inter_mem hm (le_principal_iff.mp (hcf.trans ‹_›)),
rcases hc.1.nonempty_of_mem this with ⟨y, hym, hys⟩,
set ys := ⋃ y' ∈ ({y} : finset α), {x | (x, y') ∈ d},
have : m ⊆ ys, by simpa [ys] using λ x hx, hmd (mk_mem_prod hx hym),
have : c ≤ 𝓟 (s \ ys) := hcf.trans (infi_le_of_le {y} le_rfl),
refine hc.1.ne (empty_mem_iff_bot.mp _),
filter_upwards [le_principal_iff.1 this, hm],
refine λ x hx hxm, hx.2 _,
simpa [ys] using hmd (mk_mem_prod hxm hym) }
end
lemma totally_bounded_iff_ultrafilter {s : set α} :
totally_bounded s ↔ (∀f : ultrafilter α, ↑f ≤ 𝓟 s → cauchy (f : filter α)) :=
begin
refine ⟨λ hs f, f.cauchy_of_totally_bounded hs, λ H, totally_bounded_iff_filter.2 _⟩,
introsI f hf hfs,
exact ⟨ultrafilter.of f, ultrafilter.of_le f, H _ ((ultrafilter.of_le f).trans hfs)⟩
end
lemma compact_iff_totally_bounded_complete {s : set α} :
is_compact s ↔ totally_bounded s ∧ is_complete s :=
⟨λ hs, ⟨totally_bounded_iff_ultrafilter.2 (λ f hf,
let ⟨x, xs, fx⟩ := is_compact_iff_ultrafilter_le_nhds.1 hs f hf in cauchy_nhds.mono fx),
λ f fc fs,
let ⟨a, as, fa⟩ := @hs f fc.1 fs in
⟨a, as, le_nhds_of_cauchy_adhp fc fa⟩⟩,
λ ⟨ht, hc⟩, is_compact_iff_ultrafilter_le_nhds.2
(λf hf, hc _ (totally_bounded_iff_ultrafilter.1 ht f hf) hf)⟩
protected lemma is_compact.totally_bounded {s : set α} (h : is_compact s) : totally_bounded s :=
(compact_iff_totally_bounded_complete.1 h).1
protected lemma is_compact.is_complete {s : set α} (h : is_compact s) : is_complete s :=
(compact_iff_totally_bounded_complete.1 h).2
@[priority 100] -- see Note [lower instance priority]
instance complete_of_compact {α : Type u} [uniform_space α] [compact_space α] : complete_space α :=
⟨λf hf, by simpa using (compact_iff_totally_bounded_complete.1 compact_univ).2 f hf⟩
lemma compact_of_totally_bounded_is_closed [complete_space α] {s : set α}
(ht : totally_bounded s) (hc : is_closed s) : is_compact s :=
(@compact_iff_totally_bounded_complete α _ s).2 ⟨ht, hc.is_complete⟩
/-!
### Sequentially complete space
In this section we prove that a uniform space is complete provided that it is sequentially complete
(i.e., any Cauchy sequence converges) and its uniformity filter admits a countable generating set.
In particular, this applies to (e)metric spaces, see the files `topology/metric_space/emetric_space`
and `topology/metric_space/basic`.
More precisely, we assume that there is a sequence of entourages `U_n` such that any other
entourage includes one of `U_n`. Then any Cauchy filter `f` generates a decreasing sequence of
sets `s_n ∈ f` such that `s_n × s_n ⊆ U_n`. Choose a sequence `x_n∈s_n`. It is easy to show
that this is a Cauchy sequence. If this sequence converges to some `a`, then `f ≤ 𝓝 a`. -/
namespace sequentially_complete
variables {f : filter α} (hf : cauchy f) {U : ℕ → set (α × α)}
(U_mem : ∀ n, U n ∈ 𝓤 α) (U_le : ∀ s ∈ 𝓤 α, ∃ n, U n ⊆ s)
open set finset
noncomputable theory
/-- An auxiliary sequence of sets approximating a Cauchy filter. -/
def set_seq_aux (n : ℕ) : {s : set α // ∃ (_ : s ∈ f), s ×ˢ s ⊆ U n } :=
indefinite_description _ $ (cauchy_iff.1 hf).2 (U n) (U_mem n)
/-- Given a Cauchy filter `f` and a sequence `U` of entourages, `set_seq` provides
an antitone sequence of sets `s n ∈ f` such that `s n ×ˢ s n ⊆ U`. -/
def set_seq (n : ℕ) : set α := ⋂ m ∈ set.Iic n, (set_seq_aux hf U_mem m).val
lemma set_seq_mem (n : ℕ) : set_seq hf U_mem n ∈ f :=
(bInter_mem (finite_le_nat n)).2 (λ m _, (set_seq_aux hf U_mem m).2.fst)
lemma set_seq_mono ⦃m n : ℕ⦄ (h : m ≤ n) : set_seq hf U_mem n ⊆ set_seq hf U_mem m :=
bInter_subset_bInter_left (λ k hk, le_trans hk h)
lemma set_seq_sub_aux (n : ℕ) : set_seq hf U_mem n ⊆ set_seq_aux hf U_mem n :=
bInter_subset_of_mem right_mem_Iic
lemma set_seq_prod_subset {N m n} (hm : N ≤ m) (hn : N ≤ n) :
set_seq hf U_mem m ×ˢ set_seq hf U_mem n ⊆ U N :=
begin
assume p hp,
refine (set_seq_aux hf U_mem N).2.snd ⟨_, _⟩;
apply set_seq_sub_aux,
exact set_seq_mono hf U_mem hm hp.1,
exact set_seq_mono hf U_mem hn hp.2
end
/-- A sequence of points such that `seq n ∈ set_seq n`. Here `set_seq` is an antitone
sequence of sets `set_seq n ∈ f` with diameters controlled by a given sequence
of entourages. -/
def seq (n : ℕ) : α := some $ hf.1.nonempty_of_mem (set_seq_mem hf U_mem n)
lemma seq_mem (n : ℕ) : seq hf U_mem n ∈ set_seq hf U_mem n :=
some_spec $ hf.1.nonempty_of_mem (set_seq_mem hf U_mem n)
lemma seq_pair_mem ⦃N m n : ℕ⦄ (hm : N ≤ m) (hn : N ≤ n) :
(seq hf U_mem m, seq hf U_mem n) ∈ U N :=
set_seq_prod_subset hf U_mem hm hn ⟨seq_mem hf U_mem m, seq_mem hf U_mem n⟩
include U_le
theorem seq_is_cauchy_seq : cauchy_seq $ seq hf U_mem :=
cauchy_seq_of_controlled U U_le $ seq_pair_mem hf U_mem
/-- If the sequence `sequentially_complete.seq` converges to `a`, then `f ≤ 𝓝 a`. -/
theorem le_nhds_of_seq_tendsto_nhds ⦃a : α⦄ (ha : tendsto (seq hf U_mem) at_top (𝓝 a)) :
f ≤ 𝓝 a :=
le_nhds_of_cauchy_adhp_aux
begin
assume s hs,
rcases U_le s hs with ⟨m, hm⟩,
rcases tendsto_at_top'.1 ha _ (mem_nhds_left a (U_mem m)) with ⟨n, hn⟩,
refine ⟨set_seq hf U_mem (max m n), set_seq_mem hf U_mem _, _,
seq hf U_mem (max m n), _, seq_mem hf U_mem _⟩,
{ have := le_max_left m n,
exact set.subset.trans (set_seq_prod_subset hf U_mem this this) hm },
{ exact hm (hn _ $ le_max_right m n) }
end
end sequentially_complete
namespace uniform_space
open sequentially_complete
variables [is_countably_generated (𝓤 α)]
/-- A uniform space is complete provided that (a) its uniformity filter has a countable basis;
(b) any sequence satisfying a "controlled" version of the Cauchy condition converges. -/
theorem complete_of_convergent_controlled_sequences (U : ℕ → set (α × α)) (U_mem : ∀ n, U n ∈ 𝓤 α)
(HU : ∀ u : ℕ → α, (∀ N m n, N ≤ m → N ≤ n → (u m, u n) ∈ U N) → ∃ a, tendsto u at_top (𝓝 a)) :
complete_space α :=
begin
obtain ⟨U', U'_mono, hU'⟩ := (𝓤 α).exists_antitone_seq,
have Hmem : ∀ n, U n ∩ U' n ∈ 𝓤 α,
from λ n, inter_mem (U_mem n) (hU'.2 ⟨n, subset.refl _⟩),
refine ⟨λ f hf, (HU (seq hf Hmem) (λ N m n hm hn, _)).imp $
le_nhds_of_seq_tendsto_nhds _ _ (λ s hs, _)⟩,
{ rcases (hU'.1 hs) with ⟨N, hN⟩,
exact ⟨N, subset.trans (inter_subset_right _ _) hN⟩ },
{ exact inter_subset_left _ _ (seq_pair_mem hf Hmem hm hn) }
end
/-- A sequentially complete uniform space with a countable basis of the uniformity filter is
complete. -/
theorem complete_of_cauchy_seq_tendsto
(H' : ∀ u : ℕ → α, cauchy_seq u → ∃a, tendsto u at_top (𝓝 a)) :
complete_space α :=
let ⟨U', U'_mono, hU'⟩ := (𝓤 α).exists_antitone_seq in
complete_of_convergent_controlled_sequences U' (λ n, hU'.2 ⟨n, subset.refl _⟩)
(λ u hu, H' u $ cauchy_seq_of_controlled U' (λ s hs, hU'.1 hs) hu)
variable (α)
@[priority 100]
instance first_countable_topology : first_countable_topology α :=
⟨λ a, by { rw nhds_eq_comap_uniformity, apply_instance }⟩
/-- A separable uniform space with countably generated uniformity filter is second countable:
one obtains a countable basis by taking the balls centered at points in a dense subset,
and with rational "radii" from a countable open symmetric antitone basis of `𝓤 α`. We do not
register this as an instance, as there is already an instance going in the other direction
from second countable spaces to separable spaces, and we want to avoid loops. -/
lemma second_countable_of_separable [separable_space α] : second_countable_topology α :=
begin
rcases exists_countable_dense α with ⟨s, hsc, hsd⟩,
obtain ⟨t : ℕ → set (α × α),
hto : ∀ (i : ℕ), t i ∈ (𝓤 α).sets ∧ is_open (t i) ∧ symmetric_rel (t i),
h_basis : (𝓤 α).has_antitone_basis t⟩ :=
(@uniformity_has_basis_open_symmetric α _).exists_antitone_subbasis,
choose ht_mem hto hts using hto,
refine ⟨⟨⋃ (x ∈ s), range (λ k, ball x (t k)), hsc.bUnion (λ x hx, countable_range _), _⟩⟩,
refine (is_topological_basis_of_open_of_nhds _ _).eq_generate_from,
{ simp only [mem_Union₂, mem_range],
rintros _ ⟨x, hxs, k, rfl⟩,
exact is_open_ball x (hto k) },
{ intros x V hxV hVo,
simp only [mem_Union₂, mem_range, exists_prop],
rcases uniform_space.mem_nhds_iff.1 (is_open.mem_nhds hVo hxV) with ⟨U, hU, hUV⟩,
rcases comp_symm_of_uniformity hU with ⟨U', hU', hsymm, hUU'⟩,
rcases h_basis.to_has_basis.mem_iff.1 hU' with ⟨k, -, hk⟩,
rcases hsd.inter_open_nonempty (ball x $ t k) (is_open_ball x (hto k))
⟨x, uniform_space.mem_ball_self _ (ht_mem k)⟩ with ⟨y, hxy, hys⟩,
refine ⟨_, ⟨y, hys, k, rfl⟩, (hts k).subset hxy, λ z hz, _⟩,
exact hUV (ball_subset_of_comp_subset (hk hxy) hUU' (hk hz)) }
end
end uniform_space
|
8ec66d1d9e9f6ac22970a7b495bda641057fbfd6
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/topology/compacts.lean
|
4c48592969f71566a5580b309c697a774d41e42d
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,342
|
lean
|
/-
Copyright (c) 2020 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import topology.homeomorph
/-!
# Compact sets
## Summary
We define the subtype of compact sets in a topological space.
## Main Definitions
- `closeds α` is the type of closed subsets of a topological space `α`.
- `compacts α` is the type of compact subsets of a topological space `α`.
- `nonempty_compacts α` is the type of non-empty compact subsets.
- `positive_compacts α` is the type of compact subsets with non-empty interior.
-/
open set
variables (α : Type*) {β : Type*} [topological_space α] [topological_space β]
namespace topological_space
/-- The type of closed subsets of a topological space. -/
def closeds := {s : set α // is_closed s}
/-- The type of closed subsets is inhabited, with default element the empty set. -/
instance : inhabited (closeds α) := ⟨⟨∅, is_closed_empty ⟩⟩
/-- The compact sets of a topological space. See also `nonempty_compacts`. -/
def compacts : Type* := { s : set α // is_compact s }
/-- The type of non-empty compact subsets of a topological space. The
non-emptiness will be useful in metric spaces, as we will be able to put
a distance (and not merely an edistance) on this space. -/
def nonempty_compacts := {s : set α // s.nonempty ∧ is_compact s}
/-- In an inhabited space, the type of nonempty compact subsets is also inhabited, with
default element the singleton set containing the default element. -/
instance nonempty_compacts_inhabited [inhabited α] : inhabited (nonempty_compacts α) :=
⟨⟨{default}, singleton_nonempty default, is_compact_singleton ⟩⟩
/-- The compact sets with nonempty interior of a topological space. See also `compacts` and
`nonempty_compacts`. -/
@[nolint has_inhabited_instance]
def positive_compacts: Type* := { s : set α // is_compact s ∧ (interior s).nonempty }
/-- In a nonempty compact space, `set.univ` is a member of `positive_compacts`, the compact sets
with nonempty interior. -/
def positive_compacts_univ {α : Type*} [topological_space α] [compact_space α] [nonempty α] :
positive_compacts α :=
⟨set.univ, compact_univ, by simp⟩
@[simp] lemma positive_compacts_univ_val (α : Type*) [topological_space α] [compact_space α]
[nonempty α] : (positive_compacts_univ : positive_compacts α).val = univ := rfl
variables {α}
namespace compacts
instance : semilattice_sup (compacts α) :=
subtype.semilattice_sup (λ K₁ K₂, is_compact.union)
instance : order_bot (compacts α) :=
subtype.order_bot is_compact_empty
instance [t2_space α]: semilattice_inf (compacts α) :=
subtype.semilattice_inf (λ K₁ K₂, is_compact.inter)
instance [t2_space α] : lattice (compacts α) :=
subtype.lattice (λ K₁ K₂, is_compact.union) (λ K₁ K₂, is_compact.inter)
@[simp] lemma bot_val : (⊥ : compacts α).1 = ∅ := rfl
@[simp] lemma sup_val {K₁ K₂ : compacts α} : (K₁ ⊔ K₂).1 = K₁.1 ∪ K₂.1 := rfl
@[ext] protected lemma ext {K₁ K₂ : compacts α} (h : K₁.1 = K₂.1) : K₁ = K₂ :=
subtype.eq h
@[simp] lemma finset_sup_val {β} {K : β → compacts α} {s : finset β} :
(s.sup K).1 = s.sup (λ x, (K x).1) :=
finset.sup_coe _ _
instance : inhabited (compacts α) := ⟨⊥⟩
/-- The image of a compact set under a continuous function. -/
protected def map (f : α → β) (hf : continuous f) (K : compacts α) : compacts β :=
⟨f '' K.1, K.2.image hf⟩
@[simp] lemma map_val {f : α → β} (hf : continuous f) (K : compacts α) :
(K.map f hf).1 = f '' K.1 := rfl
/-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/
@[simp] protected def equiv (f : α ≃ₜ β) : compacts α ≃ compacts β :=
{ to_fun := compacts.map f f.continuous,
inv_fun := compacts.map _ f.symm.continuous,
left_inv := by { intro K, ext1, simp only [map_val, ← image_comp, f.symm_comp_self, image_id] },
right_inv := by { intro K, ext1,
simp only [map_val, ← image_comp, f.self_comp_symm, image_id] } }
/-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/
lemma equiv_to_fun_val (f : α ≃ₜ β) (K : compacts α) :
(compacts.equiv f K).1 = f.symm ⁻¹' K.1 :=
congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1
end compacts
section nonempty_compacts
open topological_space set
variable {α}
instance nonempty_compacts.to_compact_space {p : nonempty_compacts α} : compact_space p.val :=
⟨is_compact_iff_is_compact_univ.1 p.property.2⟩
instance nonempty_compacts.to_nonempty {p : nonempty_compacts α} : nonempty p.val :=
p.property.1.to_subtype
/-- Associate to a nonempty compact subset the corresponding closed subset -/
def nonempty_compacts.to_closeds [t2_space α] : nonempty_compacts α → closeds α :=
set.inclusion $ λ s hs, hs.2.is_closed
end nonempty_compacts
section positive_compacts
variable (α)
/-- In a nonempty locally compact space, there exists a compact set with nonempty interior. -/
instance nonempty_positive_compacts [locally_compact_space α] [h : nonempty α] :
nonempty (positive_compacts α) :=
let ⟨K, hK⟩ := exists_compact_subset is_open_univ $ mem_univ h.some in ⟨⟨K, hK.1, ⟨_, hK.2.1⟩⟩⟩
end positive_compacts
end topological_space
|
a1616731be522e6a1ada1a0215dd21c946948458
|
a4673261e60b025e2c8c825dfa4ab9108246c32e
|
/stage0/src/Lean/Compiler/IR/LiveVars.lean
|
c6cdfdb8077e6efb2c5488a5260312de9c39633a
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/lean4
|
c02dec0cc32c4bccab009285475f265f17d73228
|
2909313475588cc20ac0436e55548a4502050d0a
|
refs/heads/master
| 1,674,129,550,893
| 1,606,415,348,000
| 1,606,415,348,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,947
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Compiler.IR.Basic
import Lean.Compiler.IR.FreeVars
namespace Lean.IR
/- Remark: in the paper "Counting Immutable Beans" the concepts of
free and live variables coincide because the paper does *not* consider
join points. For example, consider the function body `B`
```
let x := ctor_0;
jmp block_1 x
```
in a context where we have the join point `block_1` defined as
```
block_1 (x : obj) : obj :=
let z := ctor_0 x y;
ret z
``
The variable `y` is live in the function body `B` since it occurs in
`block_1` which is "invoked" by `B`.
-/
namespace IsLive
/-
We use `State Context` instead of `ReaderT Context Id` because we remove
non local joint points from `Context` whenever we visit them instead of
maintaining a set of visited non local join points.
Remark: we don't need to track local join points because we assume there is
no variable or join point shadowing in our IR.
-/
abbrev M := StateM LocalContext
abbrev visitVar (w : Index) (x : VarId) : M Bool := pure (HasIndex.visitVar w x)
abbrev visitJP (w : Index) (x : JoinPointId) : M Bool := pure (HasIndex.visitJP w x)
abbrev visitArg (w : Index) (a : Arg) : M Bool := pure (HasIndex.visitArg w a)
abbrev visitArgs (w : Index) (as : Array Arg) : M Bool := pure (HasIndex.visitArgs w as)
abbrev visitExpr (w : Index) (e : Expr) : M Bool := pure (HasIndex.visitExpr w e)
partial def visitFnBody (w : Index) : FnBody → M Bool
| FnBody.vdecl x _ v b => visitExpr w v <||> visitFnBody w b
| FnBody.jdecl j ys v b => visitFnBody w v <||> visitFnBody w b
| FnBody.set x _ y b => visitVar w x <||> visitArg w y <||> visitFnBody w b
| FnBody.uset x _ y b => visitVar w x <||> visitVar w y <||> visitFnBody w b
| FnBody.sset x _ _ y _ b => visitVar w x <||> visitVar w y <||> visitFnBody w b
| FnBody.setTag x _ b => visitVar w x <||> visitFnBody w b
| FnBody.inc x _ _ _ b => visitVar w x <||> visitFnBody w b
| FnBody.dec x _ _ _ b => visitVar w x <||> visitFnBody w b
| FnBody.del x b => visitVar w x <||> visitFnBody w b
| FnBody.mdata _ b => visitFnBody w b
| FnBody.jmp j ys => visitArgs w ys <||> do
let ctx ← get
match ctx.getJPBody j with
| some b =>
-- `j` is not a local join point since we assume we cannot shadow join point declarations.
-- Instead of marking the join points that we have already been visited, we permanently remove `j` from the context.
set (ctx.eraseJoinPointDecl j) *> visitFnBody w b
| none =>
-- `j` must be a local join point. So do nothing since we have already visite its body.
pure false
| FnBody.ret x => visitArg w x
| FnBody.case _ x _ alts => visitVar w x <||> alts.anyM (fun alt => visitFnBody w alt.body)
| FnBody.unreachable => pure false
end IsLive
/- Return true if `x` is live in the function body `b` in the context `ctx`.
Remark: the context only needs to contain all (free) join point declarations.
Recall that we say that a join point `j` is free in `b` if `b` contains
`FnBody.jmp j ys` and `j` is not local. -/
def FnBody.hasLiveVar (b : FnBody) (ctx : LocalContext) (x : VarId) : Bool :=
(IsLive.visitFnBody x.idx b).run' ctx
abbrev LiveVarSet := VarIdSet
abbrev JPLiveVarMap := Std.RBMap JoinPointId LiveVarSet (fun j₁ j₂ => j₁.idx < j₂.idx)
instance : Inhabited LiveVarSet := ⟨{}⟩
def mkLiveVarSet (x : VarId) : LiveVarSet :=
Std.RBTree.empty.insert x
namespace LiveVars
abbrev Collector := LiveVarSet → LiveVarSet
@[inline] private def skip : Collector := fun s => s
@[inline] private def collectVar (x : VarId) : Collector := fun s => s.insert x
private def collectArg : Arg → Collector
| Arg.var x => collectVar x
| irrelevant => skip
@[specialize] private def collectArray {α : Type} (as : Array α) (f : α → Collector) : Collector := fun s =>
as.foldl (fun s a => f a s) s
private def collectArgs (as : Array Arg) : Collector :=
collectArray as collectArg
private def accumulate (s' : LiveVarSet) : Collector :=
fun s => s'.fold (fun s x => s.insert x) s
private def collectJP (m : JPLiveVarMap) (j : JoinPointId) : Collector :=
match m.find? j with
| some xs => accumulate xs
| none => skip -- unreachable for well-formed code
private def bindVar (x : VarId) : Collector := fun s =>
s.erase x
private def bindParams (ps : Array Param) : Collector := fun s =>
ps.foldl (fun s p => s.erase p.x) s
def collectExpr : Expr → Collector
| Expr.ctor _ ys => collectArgs ys
| Expr.reset _ x => collectVar x
| Expr.reuse x _ _ ys => collectVar x ∘ collectArgs ys
| Expr.proj _ x => collectVar x
| Expr.uproj _ x => collectVar x
| Expr.sproj _ _ x => collectVar x
| Expr.fap _ ys => collectArgs ys
| Expr.pap _ ys => collectArgs ys
| Expr.ap x ys => collectVar x ∘ collectArgs ys
| Expr.box _ x => collectVar x
| Expr.unbox x => collectVar x
| Expr.lit v => skip
| Expr.isShared x => collectVar x
| Expr.isTaggedPtr x => collectVar x
partial def collectFnBody : FnBody → JPLiveVarMap → Collector
| FnBody.vdecl x _ v b, m => collectExpr v ∘ bindVar x ∘ collectFnBody b m
| FnBody.jdecl j ys v b, m =>
let jLiveVars := (bindParams ys ∘ collectFnBody v m) {};
let m := m.insert j jLiveVars;
collectFnBody b m
| FnBody.set x _ y b, m => collectVar x ∘ collectArg y ∘ collectFnBody b m
| FnBody.setTag x _ b, m => collectVar x ∘ collectFnBody b m
| FnBody.uset x _ y b, m => collectVar x ∘ collectVar y ∘ collectFnBody b m
| FnBody.sset x _ _ y _ b, m => collectVar x ∘ collectVar y ∘ collectFnBody b m
| FnBody.inc x _ _ _ b, m => collectVar x ∘ collectFnBody b m
| FnBody.dec x _ _ _ b, m => collectVar x ∘ collectFnBody b m
| FnBody.del x b, m => collectVar x ∘ collectFnBody b m
| FnBody.mdata _ b, m => collectFnBody b m
| FnBody.ret x, m => collectArg x
| FnBody.case _ x _ alts, m => collectVar x ∘ collectArray alts (fun alt => collectFnBody alt.body m)
| FnBody.unreachable, m => skip
| FnBody.jmp j xs, m => collectJP m j ∘ collectArgs xs
def updateJPLiveVarMap (j : JoinPointId) (ys : Array Param) (v : FnBody) (m : JPLiveVarMap) : JPLiveVarMap :=
let jLiveVars := (bindParams ys ∘ collectFnBody v m) {};
m.insert j jLiveVars
end LiveVars
def updateLiveVars (e : Expr) (v : LiveVarSet) : LiveVarSet :=
LiveVars.collectExpr e v
def collectLiveVars (b : FnBody) (m : JPLiveVarMap) (v : LiveVarSet := {}) : LiveVarSet :=
LiveVars.collectFnBody b m v
export LiveVars (updateJPLiveVarMap)
end Lean.IR
|
0699f9ccc18c8774c70eec988ec0e6d6a5943d17
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/order/basic.lean
|
b6cabbb517c8c66526d2ac1b5c6d6c7cce4f1634
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 25,601
|
lean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Mario Carneiro
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.subtype
import Mathlib.data.prod
import Mathlib.PostPort
universes u_1 u_2 u v w l
namespace Mathlib
/-!
# Basic definitions about `≤` and `<`
## Definitions
### Predicates on functions
- `monotone f`: a function between two types equipped with `≤` is monotone
if `a ≤ b` implies `f a ≤ f b`.
- `strict_mono f` : a function between two types equipped with `<` is strictly monotone
if `a < b` implies `f a < f b`.
- `order_dual α` : a type tag reversing the meaning of all inequalities.
### Transfering orders
- `order.preimage`, `preorder.lift`: transfer a (pre)order on `β` to an order on `α`
using a function `f : α → β`.
- `partial_order.lift`, `linear_order.lift`: transfer a partial (resp., linear) order on `β` to a
partial (resp., linear) order on `α` using an injective function `f`.
### Extra classes
- `no_top_order`, `no_bot_order`: an order without a maximal/minimal element.
- `densely_ordered`: an order with no gaps, i.e. for any two elements `a<b` there exists
`c`, `a<c<b`.
## Main theorems
- `monotone_of_monotone_nat`: if `f : ℕ → α` and `f n ≤ f (n + 1)` for all `n`, then
`f` is monotone;
- `strict_mono.nat`: if `f : ℕ → α` and `f n < f (n + 1)` for all `n`, then f is strictly monotone.
## TODO
- expand module docs
- automatic construction of dual definitions / theorems
## See also
- `algebra.order` for basic lemmas about orders, and projection notation for orders
## Tags
preorder, order, partial order, linear order, monotone, strictly monotone
-/
theorem preorder.ext {α : Type u_1} {A : preorder α} {B : preorder α} (H : ∀ (x y : α), x ≤ y ↔ x ≤ y) : A = B := sorry
theorem partial_order.ext {α : Type u_1} {A : partial_order α} {B : partial_order α} (H : ∀ (x y : α), x ≤ y ↔ x ≤ y) : A = B := sorry
theorem linear_order.ext {α : Type u_1} {A : linear_order α} {B : linear_order α} (H : ∀ (x y : α), x ≤ y ↔ x ≤ y) : A = B := sorry
/-- Given a relation `R` on `β` and a function `f : α → β`,
the preimage relation on `α` is defined by `x ≤ y ↔ f x ≤ f y`.
It is the unique relation on `α` making `f` a `rel_embedding`
(assuming `f` is injective). -/
@[simp] def order.preimage {α : Sort u_1} {β : Sort u_2} (f : α → β) (s : β → β → Prop) (x : α) (y : α) :=
s (f x) (f y)
infixl:80 " ⁻¹'o " => Mathlib.order.preimage
/-- The preimage of a decidable order is decidable. -/
protected instance order.preimage.decidable {α : Sort u_1} {β : Sort u_2} (f : α → β) (s : β → β → Prop) [H : DecidableRel s] : DecidableRel (f ⁻¹'o s) :=
fun (x y : α) => H (f x) (f y)
/-- A function between preorders is monotone if
`a ≤ b` implies `f a ≤ f b`. -/
def monotone {α : Type u} {β : Type v} [preorder α] [preorder β] (f : α → β) :=
∀ {a b : α}, a ≤ b → f a ≤ f b
theorem monotone_id {α : Type u} [preorder α] : monotone id :=
fun (x y : α) (h : x ≤ y) => h
theorem monotone_const {α : Type u} {β : Type v} [preorder α] [preorder β] {b : β} : monotone fun (a : α) => b :=
fun (x y : α) (h : x ≤ y) => le_refl b
protected theorem monotone.comp {α : Type u} {β : Type v} {γ : Type w} [preorder α] [preorder β] [preorder γ] {g : β → γ} {f : α → β} (m_g : monotone g) (m_f : monotone f) : monotone (g ∘ f) :=
fun (a b : α) (h : a ≤ b) => m_g (m_f h)
protected theorem monotone.iterate {α : Type u} [preorder α] {f : α → α} (hf : monotone f) (n : ℕ) : monotone (nat.iterate f n) :=
nat.rec_on n monotone_id fun (n : ℕ) (ihn : monotone (nat.iterate f n)) => monotone.comp ihn hf
theorem monotone_of_monotone_nat {α : Type u} [preorder α] {f : ℕ → α} (hf : ∀ (n : ℕ), f n ≤ f (n + 1)) : monotone f := sorry
theorem monotone.reflect_lt {α : Type u_1} {β : Type u_2} [linear_order α] [preorder β] {f : α → β} (hf : monotone f) {x : α} {x' : α} (h : f x < f x') : x < x' :=
eq.mpr (id (Eq._oldrec (Eq.refl (x < x')) (Eq.symm (propext not_le)))) (id fun (h' : x' ≤ x) => not_le_of_lt h (hf h'))
/-- If `f` is a monotone function from `ℕ` to a preorder such that `y` lies between `f x` and
`f (x + 1)`, then `y` doesn't lie in the range of `f`. -/
theorem monotone.ne_of_lt_of_lt_nat {α : Type u_1} [preorder α] {f : ℕ → α} (hf : monotone f) (x : ℕ) (x' : ℕ) {y : α} (h1 : f x < y) (h2 : y < f (x + 1)) : f x' ≠ y := sorry
/-- If `f` is a monotone function from `ℤ` to a preorder such that `y` lies between `f x` and
`f (x + 1)`, then `y` doesn't lie in the range of `f`. -/
theorem monotone.ne_of_lt_of_lt_int {α : Type u_1} [preorder α] {f : ℤ → α} (hf : monotone f) (x : ℤ) (x' : ℤ) {y : α} (h1 : f x < y) (h2 : y < f (x + 1)) : f x' ≠ y := sorry
/-- A function `f` is strictly monotone if `a < b` implies `f a < f b`. -/
def strict_mono {α : Type u} {β : Type v} [HasLess α] [HasLess β] (f : α → β) :=
∀ {a b : α}, a < b → f a < f b
theorem strict_mono_id {α : Type u} [HasLess α] : strict_mono id :=
fun (a b : α) => id
/-- A function `f` is strictly monotone increasing on `t` if `x < y` for `x,y ∈ t` implies
`f x < f y`. -/
def strict_mono_incr_on {α : Type u} {β : Type v} [HasLess α] [HasLess β] (f : α → β) (t : set α) :=
∀ {x : α}, x ∈ t → ∀ {y : α}, y ∈ t → x < y → f x < f y
/-- A function `f` is strictly monotone decreasing on `t` if `x < y` for `x,y ∈ t` implies
`f y < f x`. -/
def strict_mono_decr_on {α : Type u} {β : Type v} [HasLess α] [HasLess β] (f : α → β) (t : set α) :=
∀ {x : α}, x ∈ t → ∀ {y : α}, y ∈ t → x < y → f y < f x
/-- Type tag for a set with dual order: `≤` means `≥` and `<` means `>`. -/
def order_dual (α : Type u_1) :=
α
namespace order_dual
protected instance nonempty (α : Type u_1) [h : Nonempty α] : Nonempty (order_dual α) :=
h
protected instance subsingleton (α : Type u_1) [h : subsingleton α] : subsingleton (order_dual α) :=
h
protected instance has_le (α : Type u_1) [HasLessEq α] : HasLessEq (order_dual α) :=
{ LessEq := fun (x y : α) => y ≤ x }
protected instance has_lt (α : Type u_1) [HasLess α] : HasLess (order_dual α) :=
{ Less := fun (x y : α) => y < x }
-- `dual_le` and `dual_lt` should not be simp lemmas:
-- they cause a loop since `α` and `order_dual α` are definitionally equal
theorem dual_le {α : Type u} [HasLessEq α] {a : α} {b : α} : a ≤ b ↔ b ≤ a :=
iff.rfl
theorem dual_lt {α : Type u} [HasLess α] {a : α} {b : α} : a < b ↔ b < a :=
iff.rfl
theorem dual_compares {α : Type u} [HasLess α] {a : α} {b : α} {o : ordering} : ordering.compares o a b ↔ ordering.compares o b a :=
ordering.cases_on o iff.rfl eq_comm iff.rfl
protected instance preorder (α : Type u_1) [preorder α] : preorder (order_dual α) :=
preorder.mk LessEq Less sorry sorry
protected instance partial_order (α : Type u_1) [partial_order α] : partial_order (order_dual α) :=
partial_order.mk preorder.le preorder.lt sorry sorry sorry
protected instance linear_order (α : Type u_1) [linear_order α] : linear_order (order_dual α) :=
linear_order.mk partial_order.le partial_order.lt sorry sorry sorry sorry
((fun (this : DecidableRel fun (a b : α) => b ≤ a) => this) fun (a b : α) => has_le.le.decidable b a)
Mathlib.decidable_eq_of_decidable_le
((fun (this : DecidableRel fun (a b : α) => b < a) => this) fun (a b : α) => has_lt.lt.decidable b a)
protected instance inhabited {α : Type u} [Inhabited α] : Inhabited (order_dual α) :=
id
theorem preorder.dual_dual (α : Type u_1) [H : preorder α] : order_dual.preorder (order_dual α) = H :=
preorder.ext fun (_x _x_1 : order_dual (order_dual α)) => iff.rfl
theorem partial_order.dual_dual (α : Type u_1) [H : partial_order α] : order_dual.partial_order (order_dual α) = H :=
partial_order.ext fun (_x _x_1 : order_dual (order_dual α)) => iff.rfl
theorem linear_order.dual_dual (α : Type u_1) [H : linear_order α] : order_dual.linear_order (order_dual α) = H :=
linear_order.ext fun (_x _x_1 : order_dual (order_dual α)) => iff.rfl
theorem cmp_le_flip {α : Type u_1} [HasLessEq α] [DecidableRel LessEq] (x : α) (y : α) : cmp_le x y = cmp_le y x :=
rfl
end order_dual
namespace strict_mono_incr_on
protected theorem dual {α : Type u} {β : Type v} [preorder α] [preorder β] {f : α → β} {s : set α} (H : strict_mono_incr_on f s) : strict_mono_incr_on f s :=
fun (x : order_dual α) (hx : x ∈ s) (y : order_dual α) (hy : y ∈ s) => H hy hx
protected theorem dual_right {α : Type u} {β : Type v} [preorder α] [preorder β] {f : α → β} {s : set α} (H : strict_mono_incr_on f s) : strict_mono_decr_on f s :=
H
theorem le_iff_le {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} {s : set α} {x : α} {y : α} (H : strict_mono_incr_on f s) (hx : x ∈ s) (hy : y ∈ s) : f x ≤ f y ↔ x ≤ y := sorry
theorem lt_iff_lt {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} {s : set α} {x : α} {y : α} (H : strict_mono_incr_on f s) (hx : x ∈ s) (hy : y ∈ s) : f x < f y ↔ x < y := sorry
protected theorem compares {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} {s : set α} {x : α} {y : α} (H : strict_mono_incr_on f s) (hx : x ∈ s) (hy : y ∈ s) {o : ordering} : ordering.compares o (f x) (f y) ↔ ordering.compares o x y := sorry
end strict_mono_incr_on
namespace strict_mono_decr_on
protected theorem dual {α : Type u} {β : Type v} [preorder α] [preorder β] {f : α → β} {s : set α} (H : strict_mono_decr_on f s) : strict_mono_decr_on f s :=
fun (x : order_dual α) (hx : x ∈ s) (y : order_dual α) (hy : y ∈ s) => H hy hx
protected theorem dual_right {α : Type u} {β : Type v} [preorder α] [preorder β] {f : α → β} {s : set α} (H : strict_mono_decr_on f s) : strict_mono_incr_on f s :=
H
theorem le_iff_le {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} {s : set α} {x : α} {y : α} (H : strict_mono_decr_on f s) (hx : x ∈ s) (hy : y ∈ s) : f x ≤ f y ↔ y ≤ x :=
strict_mono_incr_on.le_iff_le (strict_mono_decr_on.dual_right H) hy hx
theorem lt_iff_lt {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} {s : set α} {x : α} {y : α} (H : strict_mono_decr_on f s) (hx : x ∈ s) (hy : y ∈ s) : f x < f y ↔ y < x :=
strict_mono_incr_on.lt_iff_lt (strict_mono_decr_on.dual_right H) hy hx
protected theorem compares {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} {s : set α} {x : α} {y : α} (H : strict_mono_decr_on f s) (hx : x ∈ s) (hy : y ∈ s) {o : ordering} : ordering.compares o (f x) (f y) ↔ ordering.compares o y x :=
iff.trans order_dual.dual_compares (strict_mono_incr_on.compares (strict_mono_decr_on.dual_right H) hy hx)
end strict_mono_decr_on
namespace strict_mono
protected theorem strict_mono_incr_on {α : Type u} {β : Type v} [HasLess α] [HasLess β] {f : α → β} (hf : strict_mono f) (s : set α) : strict_mono_incr_on f s :=
fun (x : α) (hx : x ∈ s) (y : α) (hy : y ∈ s) (hxy : x < y) => hf hxy
theorem comp {α : Type u} {β : Type v} {γ : Type w} [HasLess α] [HasLess β] [HasLess γ] {g : β → γ} {f : α → β} (hg : strict_mono g) (hf : strict_mono f) : strict_mono (g ∘ f) :=
fun (a b : α) (h : a < b) => hg (hf h)
protected theorem iterate {α : Type u} [HasLess α] {f : α → α} (hf : strict_mono f) (n : ℕ) : strict_mono (nat.iterate f n) :=
nat.rec_on n strict_mono_id fun (n : ℕ) (ihn : strict_mono (nat.iterate f n)) => comp ihn hf
theorem id_le {φ : ℕ → ℕ} (h : strict_mono φ) (n : ℕ) : n ≤ φ n :=
nat.rec_on n (nat.zero_le (φ 0))
fun (n : ℕ) (hn : n ≤ φ n) => nat.succ_le_of_lt (lt_of_le_of_lt hn (h (nat.lt_succ_self n)))
protected theorem ite' {α : Type u} {β : Type v} [preorder α] [HasLess β] {f : α → β} {g : α → β} (hf : strict_mono f) (hg : strict_mono g) {p : α → Prop} [decidable_pred p] (hp : ∀ {x y : α}, x < y → p y → p x) (hfg : ∀ {x y : α}, p x → ¬p y → x < y → f x < g y) : strict_mono fun (x : α) => ite (p x) (f x) (g x) := sorry
protected theorem ite {α : Type u} {β : Type v} [preorder α] [preorder β] {f : α → β} {g : α → β} (hf : strict_mono f) (hg : strict_mono g) {p : α → Prop} [decidable_pred p] (hp : ∀ {x y : α}, x < y → p y → p x) (hfg : ∀ (x : α), f x ≤ g x) : strict_mono fun (x : α) => ite (p x) (f x) (g x) :=
strict_mono.ite' hf hg hp fun (x y : α) (hx : p x) (hy : ¬p y) (h : x < y) => has_lt.lt.trans_le (hf h) (hfg y)
theorem lt_iff_lt {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} (H : strict_mono f) {a : α} {b : α} : f a < f b ↔ a < b :=
strict_mono_incr_on.lt_iff_lt (strict_mono.strict_mono_incr_on H set.univ) trivial trivial
protected theorem compares {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} (H : strict_mono f) {a : α} {b : α} {o : ordering} : ordering.compares o (f a) (f b) ↔ ordering.compares o a b :=
strict_mono_incr_on.compares (strict_mono.strict_mono_incr_on H set.univ) trivial trivial
theorem injective {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} (H : strict_mono f) : function.injective f :=
fun (x y : α) (h : f x = f y) =>
(fun (this : ordering.compares ordering.eq x y) => this) (iff.mp (strict_mono.compares H) h)
theorem le_iff_le {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} (H : strict_mono f) {a : α} {b : α} : f a ≤ f b ↔ a ≤ b :=
strict_mono_incr_on.le_iff_le (strict_mono.strict_mono_incr_on H set.univ) trivial trivial
theorem top_preimage_top {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} (H : strict_mono f) {a : α} (h_top : ∀ (p : β), p ≤ f a) (x : α) : x ≤ a :=
iff.mp (le_iff_le H) (h_top (f x))
theorem bot_preimage_bot {α : Type u} {β : Type v} [linear_order α] [preorder β] {f : α → β} (H : strict_mono f) {a : α} (h_bot : ∀ (p : β), f a ≤ p) (x : α) : a ≤ x :=
iff.mp (le_iff_le H) (h_bot (f x))
protected theorem nat {β : Type u_1} [preorder β] {f : ℕ → β} (h : ∀ (n : ℕ), f n < f (n + 1)) : strict_mono f := sorry
-- `preorder α` isn't strong enough: if the preorder on α is an equivalence relation,
-- then `strict_mono f` is vacuously true.
theorem monotone {α : Type u} {β : Type v} [partial_order α] [preorder β] {f : α → β} (H : strict_mono f) : monotone f :=
fun (a b : α) (h : a ≤ b) =>
Or._oldrec (le_of_lt ∘ H) (fun (h_1 : a = b) => Eq._oldrec (fun (h : a ≤ a) => le_refl (f a)) h_1 h)
(lt_or_eq_of_le h)
end strict_mono
theorem injective_of_lt_imp_ne {α : Type u} {β : Type v} [linear_order α] {f : α → β} (h : ∀ (x y : α), x < y → f x ≠ f y) : function.injective f := sorry
theorem strict_mono_of_monotone_of_injective {α : Type u} {β : Type v} [partial_order α] [partial_order β] {f : α → β} (h₁ : monotone f) (h₂ : function.injective f) : strict_mono f := sorry
theorem monotone.strict_mono_iff_injective {α : Type u} {β : Type v} [linear_order α] [partial_order β] {f : α → β} (h : monotone f) : strict_mono f ↔ function.injective f :=
{ mp := fun (h : strict_mono f) => strict_mono.injective h, mpr := strict_mono_of_monotone_of_injective h }
theorem strict_mono_of_le_iff_le {α : Type u} {β : Type v} [preorder α] [preorder β] {f : α → β} (h : ∀ (x y : α), x ≤ y ↔ f x ≤ f y) : strict_mono f := sorry
/-! ### Order instances on the function space -/
protected instance pi.preorder {ι : Type u} {α : ι → Type v} [(i : ι) → preorder (α i)] : preorder ((i : ι) → α i) :=
preorder.mk (fun (x y : (i : ι) → α i) => ∀ (i : ι), x i ≤ y i)
(fun (a b : (i : ι) → α i) => (∀ (i : ι), a i ≤ b i) ∧ ¬∀ (i : ι), b i ≤ a i) sorry sorry
theorem pi.le_def {ι : Type u} {α : ι → Type v} [(i : ι) → preorder (α i)] {x : (i : ι) → α i} {y : (i : ι) → α i} : x ≤ y ↔ ∀ (i : ι), x i ≤ y i :=
iff.rfl
theorem le_update_iff {ι : Type u} {α : ι → Type v} [(i : ι) → preorder (α i)] [DecidableEq ι] {x : (i : ι) → α i} {y : (i : ι) → α i} {i : ι} {a : α i} : x ≤ function.update y i a ↔ x i ≤ a ∧ ∀ (j : ι), j ≠ i → x j ≤ y j :=
function.forall_update_iff y fun (j : ι) (z : α j) => x j ≤ z
theorem update_le_iff {ι : Type u} {α : ι → Type v} [(i : ι) → preorder (α i)] [DecidableEq ι] {x : (i : ι) → α i} {y : (i : ι) → α i} {i : ι} {a : α i} : function.update x i a ≤ y ↔ a ≤ y i ∧ ∀ (j : ι), j ≠ i → x j ≤ y j :=
function.forall_update_iff x fun (j : ι) (z : α j) => z ≤ y j
protected instance pi.partial_order {ι : Type u} {α : ι → Type v} [(i : ι) → partial_order (α i)] : partial_order ((i : ι) → α i) :=
partial_order.mk preorder.le preorder.lt sorry sorry sorry
theorem comp_le_comp_left_of_monotone {α : Type u} {β : Type v} {γ : Type w} [preorder α] [preorder β] {f : β → α} {g : γ → β} {h : γ → β} (m_f : monotone f) (le_gh : g ≤ h) : f ∘ g ≤ f ∘ h :=
fun (x : γ) => m_f (le_gh x)
protected theorem monotone.order_dual {α : Type u} {γ : Type w} [preorder α] [preorder γ] {f : α → γ} (hf : monotone f) : monotone f :=
fun (x y : order_dual α) (hxy : x ≤ y) => hf hxy
theorem monotone_lam {α : Type u} {β : Type v} {γ : Type w} [preorder α] [preorder γ] {f : α → β → γ} (m : ∀ (b : β), monotone fun (a : α) => f a b) : monotone f :=
fun (a a' : α) (h : a ≤ a') (b : β) => m b h
theorem monotone_app {α : Type u} {β : Type v} {γ : Type w} [preorder α] [preorder γ] (f : β → α → γ) (b : β) (m : monotone fun (a : α) (b : β) => f b a) : monotone (f b) :=
fun (a a' : α) (h : a ≤ a') => m h b
theorem strict_mono.order_dual {α : Type u} {β : Type v} [HasLess α] [HasLess β] {f : α → β} (hf : strict_mono f) : strict_mono f :=
fun (x y : order_dual α) (hxy : x < y) => hf hxy
/-- Transfer a `preorder` on `β` to a `preorder` on `α` using a function `f : α → β`. -/
def preorder.lift {α : Type u_1} {β : Type u_2} [preorder β] (f : α → β) : preorder α :=
preorder.mk (fun (x y : α) => f x ≤ f y) (fun (x y : α) => f x < f y) sorry sorry
/-- Transfer a `partial_order` on `β` to a `partial_order` on `α` using an injective
function `f : α → β`. -/
def partial_order.lift {α : Type u_1} {β : Type u_2} [partial_order β] (f : α → β) (inj : function.injective f) : partial_order α :=
partial_order.mk preorder.le preorder.lt sorry sorry sorry
/-- Transfer a `linear_order` on `β` to a `linear_order` on `α` using an injective
function `f : α → β`. -/
def linear_order.lift {α : Type u_1} {β : Type u_2} [linear_order β] (f : α → β) (inj : function.injective f) : linear_order α :=
linear_order.mk partial_order.le partial_order.lt sorry sorry sorry sorry (fun (x y : α) => infer_instance)
(fun (x y : α) => decidable_of_iff (f x = f y) (function.injective.eq_iff inj)) fun (x y : α) => infer_instance
protected instance subtype.preorder {α : Type u_1} [preorder α] (p : α → Prop) : preorder (Subtype p) :=
preorder.lift subtype.val
@[simp] theorem subtype.mk_le_mk {α : Type u_1} [preorder α] {p : α → Prop} {x : α} {y : α} {hx : p x} {hy : p y} : { val := x, property := hx } ≤ { val := y, property := hy } ↔ x ≤ y :=
iff.rfl
@[simp] theorem subtype.mk_lt_mk {α : Type u_1} [preorder α] {p : α → Prop} {x : α} {y : α} {hx : p x} {hy : p y} : { val := x, property := hx } < { val := y, property := hy } ↔ x < y :=
iff.rfl
@[simp] theorem subtype.coe_le_coe {α : Type u_1} [preorder α] {p : α → Prop} {x : Subtype p} {y : Subtype p} : ↑x ≤ ↑y ↔ x ≤ y :=
iff.rfl
@[simp] theorem subtype.coe_lt_coe {α : Type u_1} [preorder α] {p : α → Prop} {x : Subtype p} {y : Subtype p} : ↑x < ↑y ↔ x < y :=
iff.rfl
protected instance subtype.partial_order {α : Type u_1} [partial_order α] (p : α → Prop) : partial_order (Subtype p) :=
partial_order.lift subtype.val subtype.val_injective
protected instance subtype.linear_order {α : Type u_1} [linear_order α] (p : α → Prop) : linear_order (Subtype p) :=
linear_order.lift subtype.val subtype.val_injective
theorem subtype.mono_coe {α : Type u} [preorder α] (t : set α) : monotone coe :=
fun (x y : Subtype t) => id
theorem subtype.strict_mono_coe {α : Type u} [preorder α] (t : set α) : strict_mono coe :=
fun (x y : Subtype t) => id
protected instance prod.has_le (α : Type u) (β : Type v) [HasLessEq α] [HasLessEq β] : HasLessEq (α × β) :=
{ LessEq := fun (p q : α × β) => prod.fst p ≤ prod.fst q ∧ prod.snd p ≤ prod.snd q }
protected instance prod.preorder (α : Type u) (β : Type v) [preorder α] [preorder β] : preorder (α × β) :=
preorder.mk LessEq (fun (a b : α × β) => a ≤ b ∧ ¬b ≤ a) sorry sorry
/-- The pointwise partial order on a product.
(The lexicographic ordering is defined in order/lexicographic.lean, and the instances are
available via the type synonym `lex α β = α × β`.) -/
protected instance prod.partial_order (α : Type u) (β : Type v) [partial_order α] [partial_order β] : partial_order (α × β) :=
partial_order.mk preorder.le preorder.lt sorry sorry sorry
/-!
### Additional order classes
-/
/-- order without a top element; somtimes called cofinal -/
class no_top_order (α : Type u) [preorder α]
where
no_top : ∀ (a : α), ∃ (a' : α), a < a'
theorem no_top {α : Type u} [preorder α] [no_top_order α] (a : α) : ∃ (a' : α), a < a' :=
no_top_order.no_top
protected instance nonempty_gt {α : Type u} [preorder α] [no_top_order α] (a : α) : Nonempty (Subtype fun (x : α) => a < x) :=
iff.mpr nonempty_subtype (no_top a)
/-- order without a bottom element; somtimes called coinitial or dense -/
class no_bot_order (α : Type u) [preorder α]
where
no_bot : ∀ (a : α), ∃ (a' : α), a' < a
theorem no_bot {α : Type u} [preorder α] [no_bot_order α] (a : α) : ∃ (a' : α), a' < a :=
no_bot_order.no_bot
protected instance order_dual.no_top_order (α : Type u) [preorder α] [no_bot_order α] : no_top_order (order_dual α) :=
no_top_order.mk fun (a : order_dual α) => no_bot a
protected instance order_dual.no_bot_order (α : Type u) [preorder α] [no_top_order α] : no_bot_order (order_dual α) :=
no_bot_order.mk fun (a : order_dual α) => no_top a
protected instance nonempty_lt {α : Type u} [preorder α] [no_bot_order α] (a : α) : Nonempty (Subtype fun (x : α) => x < a) :=
iff.mpr nonempty_subtype (no_bot a)
/-- An order is dense if there is an element between any pair of distinct elements. -/
class densely_ordered (α : Type u) [preorder α]
where
dense : ∀ (a₁ a₂ : α), a₁ < a₂ → ∃ (a : α), a₁ < a ∧ a < a₂
theorem exists_between {α : Type u} [preorder α] [densely_ordered α] {a₁ : α} {a₂ : α} : a₁ < a₂ → ∃ (a : α), a₁ < a ∧ a < a₂ :=
densely_ordered.dense
protected instance order_dual.densely_ordered (α : Type u) [preorder α] [densely_ordered α] : densely_ordered (order_dual α) :=
densely_ordered.mk fun (a₁ a₂ : order_dual α) (ha : a₁ < a₂) => Exists.imp (fun (a : α) => and.symm) (exists_between ha)
theorem le_of_forall_le_of_dense {α : Type u} [linear_order α] [densely_ordered α] {a₁ : α} {a₂ : α} (h : ∀ (a₃ : α), a₃ > a₂ → a₁ ≤ a₃) : a₁ ≤ a₂ := sorry
theorem eq_of_le_of_forall_le_of_dense {α : Type u} [linear_order α] [densely_ordered α] {a₁ : α} {a₂ : α} (h₁ : a₂ ≤ a₁) (h₂ : ∀ (a₃ : α), a₃ > a₂ → a₁ ≤ a₃) : a₁ = a₂ :=
le_antisymm (le_of_forall_le_of_dense h₂) h₁
theorem le_of_forall_ge_of_dense {α : Type u} [linear_order α] [densely_ordered α] {a₁ : α} {a₂ : α} (h : ∀ (a₃ : α), a₃ < a₁ → a₃ ≤ a₂) : a₁ ≤ a₂ := sorry
theorem eq_of_le_of_forall_ge_of_dense {α : Type u} [linear_order α] [densely_ordered α] {a₁ : α} {a₂ : α} (h₁ : a₂ ≤ a₁) (h₂ : ∀ (a₃ : α), a₃ < a₁ → a₃ ≤ a₂) : a₁ = a₂ :=
le_antisymm (le_of_forall_ge_of_dense h₂) h₁
theorem dense_or_discrete {α : Type u} [linear_order α] (a₁ : α) (a₂ : α) : (∃ (a : α), a₁ < a ∧ a < a₂) ∨ (∀ (a : α), a > a₁ → a₂ ≤ a) ∧ ∀ (a : α), a < a₂ → a ≤ a₁ := sorry
/-- Type synonym to create an instance of `linear_order` from a
`partial_order` and `[is_total α (≤)]` -/
def as_linear_order (α : Type u) :=
α
protected instance as_linear_order.inhabited {α : Type u_1} [Inhabited α] : Inhabited (as_linear_order α) :=
{ default := Inhabited.default }
protected instance as_linear_order.linear_order {α : Type u_1} [partial_order α] [is_total α LessEq] : linear_order (as_linear_order α) :=
linear_order.mk partial_order.le partial_order.lt partial_order.le_refl partial_order.le_trans partial_order.le_antisymm
sorry (classical.dec_rel LessEq) Mathlib.decidable_eq_of_decidable_le Mathlib.decidable_lt_of_decidable_le
|
c8559becc683d572af5173e22d31fee9428edd59
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/algebra/order/field/canonical/defs.lean
|
30e193fa74c166df9c2e8e88aa4dbddb51bf2c5a
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,496
|
lean
|
/-
Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
-/
import algebra.order.field.defs
import algebra.order.ring.canonical
import algebra.order.with_zero
/-!
# Canonically ordered semifields
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
-/
set_option old_structure_cmd true
variables {α : Type*}
/-- A canonically linear ordered field is a linear ordered field in which `a ≤ b` iff there exists
`c` with `b = a + c`. -/
@[protect_proj, ancestor canonically_ordered_comm_semiring linear_ordered_semifield]
class canonically_linear_ordered_semifield (α : Type*)
extends canonically_ordered_comm_semiring α, linear_ordered_semifield α
@[priority 100] -- See note [lower instance priority]
instance canonically_linear_ordered_semifield.to_linear_ordered_comm_group_with_zero
[canonically_linear_ordered_semifield α] : linear_ordered_comm_group_with_zero α :=
{ mul_le_mul_left := λ a b h c, mul_le_mul_of_nonneg_left h $ zero_le _,
..‹canonically_linear_ordered_semifield α› }
@[priority 100] -- See note [lower instance priority]
instance canonically_linear_ordered_semifield.to_canonically_linear_ordered_add_monoid
[canonically_linear_ordered_semifield α] : canonically_linear_ordered_add_monoid α :=
{ ..‹canonically_linear_ordered_semifield α› }
|
4b18107df6b8feb029ae22ca5ee473532044ffff
|
5756a081670ba9c1d1d3fca7bd47cb4e31beae66
|
/Mathport/Syntax/Translate/Tactic/Basic.lean
|
5a693b60f5750f017c7d8e8887e88c9517d1b1db
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathport
|
2c9bdc8292168febf59799efdc5451dbf0450d4a
|
13051f68064f7638970d39a8fecaede68ffbf9e1
|
refs/heads/master
| 1,693,841,364,079
| 1,693,813,111,000
| 1,693,813,111,000
| 379,357,010
| 27
| 10
|
Apache-2.0
| 1,691,309,132,000
| 1,624,384,521,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,539
|
lean
|
/-
Copyright (c) 2021 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathport.Syntax.Translate.Basic
import Mathport.Syntax.Translate.Parser
import Mathlib.Mathport.Syntax
open Lean
open Lean.Elab.Tactic (Location)
namespace Mathport
namespace Translate
open AST3 Parser
namespace Tactic
structure Context where
args : Array (Spanned Param)
structure State where
pos : Nat := 0
abbrev TacM := ReaderT Context $ StateT State M
def TacM.run (m : TacM α) (name : Name) (args : Array (Spanned Param)) : M α := do
let (a, ⟨n⟩) ← (m ⟨args⟩).run {}
unless args.size = n do
warn! "unsupported: too many args: {name} ... {(repr <| args.extract n args.size).pretty 999999}"
pure a
def next? : TacM (Option Param) := do
let args := (← read).args
let i := (← get).pos
if h : i < args.size then
modify fun s => { s with pos := i+1 }
pure (args.get ⟨i, h⟩).kind
else pure none
instance : Warnable (Spanned AST3.Expr) where
warn s := ⟨default, .string s⟩
instance : Warnable Block where
warn _ := default
instance : Warnable Param where
warn _ := .block default
def next! : TacM Param := do
match ← next? with | some p => pure p | none => warn! "missing argument"
def parse (p : Parser.ParserM α) : TacM α := do
let Param.parse _ args ← next! | throw! "expecting parse arg"
p.run' args
def expr? : TacM (Option (Spanned AST3.Expr)) := do
match ← next? with
| none => pure none
| some (Param.expr e) => pure e
| some e => warn! "parse error: {repr e}"
def expr! : TacM (Spanned AST3.Expr) := do
match ← expr? with | some p => pure p | none => warn! "missing argument"
def itactic : TacM AST3.Block := do
let Param.block bl ← next! | warn! "expecting tactic arg"
pure bl
structure Parse1 (α) := run : TacM α
def parse1 (p : Parser.ParserM α) (f : α → M β) : Parse1 β := ⟨do f (← parse p)⟩
def parse0 (x : M α) : Parse1 α := parse1 (pure ()) fun _ => x
def tagAttr (n : Name) : Parse1 Syntax.Attr := parse0 <| pure (mkSimpleAttr n)
def withNoMods (tac : Parse1 α) : Modifiers → Parse1 α
| #[] => tac
| _ => ⟨warn! "expecting no modifiers" | tac.run⟩
scoped instance : Coe (Parse1 α) (Modifiers → Parse1 α) := ⟨withNoMods⟩
def withDocString (tac : Option String → Parse1 α) : Modifiers → Parse1 α
| #[] => tac none
| #[⟨_, Modifier.doc s⟩] => tac (some s)
| _ => ⟨warn! "unsupported modifiers in user command" | (tac none).run⟩
scoped instance : Coe (Option String → Parse1 α) (Modifiers → Parse1 α) := ⟨withDocString⟩
scoped instance : Coe (α → Parse1 Syntax.Command) (α → Parse1 Unit) :=
⟨fun tac mods => ⟨do push (← (tac mods).run)⟩⟩
open Qq
abbrev NameExt (_α : Q(Type)) :=
SimplePersistentEnvExtension (Name × Name) (NameMap Name)
open Meta Elab Term in
private def mkExt (attr : Name) (descr : String)
(name : Name := by exact decl_name%) : IO (NameExt α) := do
let addEntryFn m | (n3, n4) => m.insert n3 n4
let ext ← registerSimplePersistentEnvExtension {
name, addEntryFn
addImportedFn := mkStateFromImportedEntries addEntryFn {}
}
registerBuiltinAttribute {
name := attr
descr
add := fun declName stx attrKind => do
let s := ext.getState (← getEnv)
_ ← MetaM.run' <| TermElabM.run' <| Lean.Elab.Term.ensureHasType α (.const declName [])
let ns ← stx[1].getArgs.mapM fun stx => do
let n := stx.getId
if s.contains n then throwErrorAt stx "translation for {n} already declared"
pure n
modifyEnv $ ns.foldl fun env n =>
ext.addEntry env (n, declName)
}
pure ext
private def mkElab (ext : NameExt α) : Elab.Term.TermElabM Lean.Expr := do
let mut stx := #[]
let m ← α.toSyntax
for (n3, n4) in ext.getState (← getEnv) do
stx := stx.push $ ← `(($(Quote.quote n3), ($(mkIdent n4):ident : $m)))
Elab.Term.elabTerm (← `(#[$stx,*])) q(Array (Name × $α))
syntax (name := tr_tactic) "tr_tactic " ident+ : attr
syntax (name := tr_ni_tactic) "tr_ni_tactic " ident+ : attr
syntax (name := tr_conv) "tr_conv " ident+ : attr
syntax (name := tr_user_nota) "tr_user_nota " ident+ : attr
syntax (name := tr_user_attr) "tr_user_attr " ident+ : attr
syntax (name := tr_user_cmd) "tr_user_cmd " ident+ : attr
initialize trTacExtension : NameExt q(TacM Syntax.Tactic) ←
mkExt `tr_tactic "lean 3 → 4 interactive tactic translation"
initialize trNITacExtension : NameExt q(AST3.Expr → M Syntax.Tactic) ←
mkExt `tr_ni_tactic "lean 3 → 4 noninteractive tactic translation"
initialize trConvExtension : NameExt q(TacM Syntax.Conv) ←
mkExt `tr_conv "lean 3 → 4 interactive conv tactic translation"
initialize trUserNotaExtension : NameExt q(TacM Syntax.Term) ←
mkExt `tr_user_nota "lean 3 → 4 user notation translation"
initialize trUserAttrExtension : NameExt q(Parse1 Syntax.Attr) ←
mkExt `tr_user_attr "lean 3 → 4 user attribute translation"
initialize trUserCmdExtension : NameExt q(Modifiers → Parse1 Unit) ←
mkExt `tr_user_cmd "lean 3 → 4 user attribute translation"
elab "tr_tactics%" : term => mkElab trTacExtension
elab "tr_ni_tactics%" : term => mkElab trNITacExtension
elab "tr_convs%" : term => mkElab trConvExtension
elab "tr_user_notas%" : term => mkElab trUserNotaExtension
elab "tr_user_attrs%" : term => mkElab trUserAttrExtension
elab "tr_user_cmds%" : term => mkElab trUserCmdExtension
|
25bc83de34b1164a5d31a7e207cee88266c0ab7c
|
626e312b5c1cb2d88fca108f5933076012633192
|
/src/topology/compact_open.lean
|
35ac139a9353859480e5305b598bcea74f515db4
|
[
"Apache-2.0"
] |
permissive
|
Bioye97/mathlib
|
9db2f9ee54418d29dd06996279ba9dc874fd6beb
|
782a20a27ee83b523f801ff34efb1a9557085019
|
refs/heads/master
| 1,690,305,956,488
| 1,631,067,774,000
| 1,631,067,774,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 9,366
|
lean
|
/-
Copyright (c) 2018 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton
Type of continuous maps and the compact-open topology on them.
-/
import topology.subset_properties
import topology.continuous_function.basic
import topology.homeomorph
import tactic.tidy
/-!
# The compact-open topology
In this file, we define the compact-open topology on the set of continuous maps between two
topological spaces.
## Main definitions
* `compact_open` is the compact-open topology on `C(α, β)`. It is declared as an instance.
* `ev` is the evaluation map `C(α, β) × α → β`. It is continuous as long as `α` is locally compact.
* `coev` is the coevaluation map `β → C(α, β × α)`. It is always continuous.
* `continuous_map.curry` is the currying map `C(α × β, γ) → C(α, C(β, γ))`. This map always exists
and it is continuous as long as `α × β` is locally compact.
* `continuous_map.uncurry` is the uncurrying map `C(α, C(β, γ)) → C(α × β, γ)`. For this map to
exist, we need `β` to be locally compact. If `α` is also locally compact, then this map is
continuous.
* `homeomorph.curry` combines the currying and uncurrying operations into a homeomorphism
`C(α × β, γ) ≃ₜ C(α, C(β, γ))`. This homeomorphism exists if `α` and `β` are locally compact.
## Tags
compact-open, curry, function space
-/
open set
open_locale topological_space
namespace continuous_map
section compact_open
variables {α : Type*} {β : Type*} {γ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]
def compact_open.gen (s : set α) (u : set β) : set C(α,β) := {f | f '' s ⊆ u}
-- The compact-open topology on the space of continuous maps α → β.
instance compact_open : topological_space C(α, β) :=
topological_space.generate_from
{m | ∃ (s : set α) (hs : is_compact s) (u : set β) (hu : is_open u), m = compact_open.gen s u}
private lemma is_open_gen {s : set α} (hs : is_compact s) {u : set β} (hu : is_open u) :
is_open (compact_open.gen s u) :=
topological_space.generate_open.basic _ (by dsimp [mem_set_of_eq]; tauto)
section functorial
variables {g : β → γ} (hg : continuous g)
def induced (f : C(α, β)) : C(α, γ) := ⟨g ∘ f, hg.comp f.continuous⟩
private lemma preimage_gen {s : set α} (hs : is_compact s) {u : set γ} (hu : is_open u) :
continuous_map.induced hg ⁻¹' (compact_open.gen s u) = compact_open.gen s (g ⁻¹' u) :=
begin
ext ⟨f, _⟩,
change g ∘ f '' s ⊆ u ↔ f '' s ⊆ g ⁻¹' u,
rw [image_comp, image_subset_iff]
end
/-- C(α, -) is a functor. -/
lemma continuous_induced : continuous (continuous_map.induced hg : C(α, β) → C(α, γ)) :=
continuous_generated_from $ assume m ⟨s, hs, u, hu, hm⟩,
by rw [hm, preimage_gen hg hs hu]; exact is_open_gen hs (hu.preimage hg)
end functorial
section ev
variables (α β)
def ev (p : C(α, β) × α) : β := p.1 p.2
variables {α β}
-- The evaluation map C(α, β) × α → β is continuous if α is locally compact.
lemma continuous_ev [locally_compact_space α] : continuous (ev α β) :=
continuous_iff_continuous_at.mpr $ assume ⟨f, x⟩ n hn,
let ⟨v, vn, vo, fxv⟩ := mem_nhds_iff.mp hn in
have v ∈ 𝓝 (f x), from is_open.mem_nhds vo fxv,
let ⟨s, hs, sv, sc⟩ :=
locally_compact_space.local_compact_nhds x (f ⁻¹' v)
(f.continuous.tendsto x this) in
let ⟨u, us, uo, xu⟩ := mem_nhds_iff.mp hs in
show (ev α β) ⁻¹' n ∈ 𝓝 (f, x), from
let w := set.prod (compact_open.gen s v) u in
have w ⊆ ev α β ⁻¹' n, from assume ⟨f', x'⟩ ⟨hf', hx'⟩, calc
f' x' ∈ f' '' s : mem_image_of_mem f' (us hx')
... ⊆ v : hf'
... ⊆ n : vn,
have is_open w, from (is_open_gen sc vo).prod uo,
have (f, x) ∈ w, from ⟨image_subset_iff.mpr sv, xu⟩,
mem_nhds_iff.mpr ⟨w, by assumption, by assumption, by assumption⟩
end ev
section coev
variables (α β)
def coev (b : β) : C(α, β × α) := ⟨λ a, (b, a), continuous.prod_mk continuous_const continuous_id⟩
variables {α β}
lemma image_coev {y : β} (s : set α) : (coev α β y) '' s = set.prod {y} s := by tidy
-- The coevaluation map β → C(α, β × α) is continuous (always).
lemma continuous_coev : continuous (coev α β) :=
continuous_generated_from $ begin
rintros _ ⟨s, sc, u, uo, rfl⟩,
rw is_open_iff_forall_mem_open,
intros y hy,
change (coev α β y) '' s ⊆ u at hy,
rw image_coev s at hy,
rcases generalized_tube_lemma is_compact_singleton sc uo hy
with ⟨v, w, vo, wo, yv, sw, vwu⟩,
refine ⟨v, _, vo, singleton_subset_iff.mp yv⟩,
intros y' hy',
change (coev α β y') '' s ⊆ u,
rw image_coev s,
exact subset.trans (prod_mono (singleton_subset_iff.mpr hy') sw) vwu
end
end coev
section curry
/-- Auxiliary definition, see `continuous_map.curry` and `homeomorph.curry`. -/
def curry' (f : C(α × β, γ)) (a : α) : C(β, γ) := ⟨function.curry f a⟩
/-- If a map `α × β → γ` is continuous, then its curried form `α → C(β, γ)` is continuous. -/
lemma continuous_curry' (f : C(α × β, γ)) : continuous (curry' f) :=
have hf : curry' f = continuous_map.induced f.continuous_to_fun ∘ coev _ _, by { ext, refl },
hf ▸ continuous.comp (continuous_induced f.continuous_to_fun) continuous_coev
/-- To show continuity of a map `α → C(β, γ)`, it suffices to show that its uncurried form
`α × β → γ` is continuous. -/
lemma continuous_of_continuous_uncurry (f : α → C(β, γ))
(h : continuous (function.uncurry (λ x y, f x y))) : continuous f :=
by { convert continuous_curry' ⟨_, h⟩, ext, refl }
/-- The curried form of a continuous map `α × β → γ` as a continuous map `α → C(β, γ)`.
If `a × β` is locally compact, this is continuous. If `α` and `β` are both locally
compact, then this is a homeomorphism, see `homeomorph.curry`. -/
def curry (f : C(α × β, γ)) : C(α, C(β, γ)) :=
⟨_, continuous_curry' f⟩
/-- The currying process is a continuous map between function spaces. -/
lemma continuous_curry [locally_compact_space (α × β)] :
continuous (curry : C(α × β, γ) → C(α, C(β, γ))) :=
begin
apply continuous_of_continuous_uncurry,
apply continuous_of_continuous_uncurry,
rw ←homeomorph.comp_continuous_iff' (homeomorph.prod_assoc _ _ _).symm,
convert continuous_ev;
tidy
end
/-- The uncurried form of a continuous map `α → C(β, γ)` is a continuous map `α × β → γ`. -/
lemma continuous_uncurry_of_continuous [locally_compact_space β] (f : C(α, C(β, γ))) :
continuous (function.uncurry (λ x y, f x y)) :=
have hf : function.uncurry (λ x y, f x y) = ev β γ ∘ prod.map f id, by { ext, refl },
hf ▸ continuous.comp continuous_ev $ continuous.prod_map f.2 id.2
/-- The uncurried form of a continuous map `α → C(β, γ)` as a continuous map `α × β → γ` (if `β` is
locally compact). If `α` is also locally compact, then this is a homeomorphism between the two
function spaces, see `homeomorph.curry`. -/
def uncurry [locally_compact_space β] (f : C(α, C(β, γ))) : C(α × β, γ) :=
⟨_, continuous_uncurry_of_continuous f⟩
/-- The uncurrying process is a continuous map between function spaces. -/
lemma continuous_uncurry [locally_compact_space α] [locally_compact_space β] :
continuous (uncurry : C(α, C(β, γ)) → C(α × β, γ)) :=
begin
apply continuous_of_continuous_uncurry,
rw ←homeomorph.comp_continuous_iff' (homeomorph.prod_assoc _ _ _),
apply continuous.comp continuous_ev (continuous.prod_map continuous_ev id.2);
apply_instance
end
/-- The family of constant maps: `β → C(α, β)` as a continuous map. -/
def const' : C(β, C(α, β)) := curry ⟨prod.fst, continuous_fst⟩
@[simp] lemma coe_const' : (const' : β → C(α, β)) = const := rfl
lemma continuous_const' : continuous (const : β → C(α, β)) := const'.continuous
end curry
end compact_open
end continuous_map
open continuous_map
namespace homeomorph
variables {α : Type*} {β : Type*} {γ : Type*}
variables [topological_space α] [topological_space β] [topological_space γ]
/-- Currying as a homeomorphism between the function spaces `C(α × β, γ)` and `C(α, C(β, γ))`. -/
def curry [locally_compact_space α] [locally_compact_space β] : C(α × β, γ) ≃ₜ C(α, C(β, γ)) :=
⟨⟨curry, uncurry, by tidy, by tidy⟩, continuous_curry, continuous_uncurry⟩
/-- If `α` has a single element, then `β` is homeomorphic to `C(α, β)`. -/
def continuous_map_of_unique [unique α] : β ≃ₜ C(α, β) :=
{ to_fun := continuous_map.induced continuous_fst ∘ coev α β,
inv_fun := ev α β ∘ (λ f, (f, default α)),
left_inv := λ a, rfl,
right_inv := λ f, by { ext, rw unique.eq_default x, refl },
continuous_to_fun := continuous.comp (continuous_induced _) continuous_coev,
continuous_inv_fun :=
continuous.comp continuous_ev (continuous.prod_mk continuous_id continuous_const) }
@[simp] lemma continuous_map_of_unique_apply [unique α] (b : β) (a : α) :
continuous_map_of_unique b a = b :=
rfl
@[simp] lemma continuous_map_of_unique_symm_apply [unique α] (f : C(α, β)) :
continuous_map_of_unique.symm f = f (default α) :=
rfl
end homeomorph
|
cb7d5872d8f4d96a484bbae8602419e92573346e
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/data/bracket.lean
|
f83892d912682f87fbea93659955497825be64e2
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 1,458
|
lean
|
/-
Copyright (c) 2021 Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Lutz, Oliver Nash
-/
/-!
# Bracket Notation
This file provides notation which can be used for the Lie bracket, for the commutator of two
subgroups, and for other similar operations.
## Main Definitions
* `has_bracket L M` for a binary operation that takes something in `L` and something in `M` and
produces something in `M`. Defining an instance of this structure gives access to the notation `⁅ ⁆`
## Notation
We introduce the notation `⁅x, y⁆` for the `bracket` of any `has_bracket` structure. Note that
these are the Unicode "square with quill" brackets rather than the usual square brackets.
-/
/-- The has_bracket class has three intended uses:
1. for certain binary operations on structures, like the product `⁅x, y⁆` of two elements
`x`, `y` in a Lie algebra or the commutator of two elements `x` and `y` in a group.
2. for certain actions of one structure on another, like the action `⁅x, m⁆` of an element `x`
of a Lie algebra on an element `m` in one of its modules (analogous to `has_scalar` in the
associative setting).
3. for binary operations on substructures, like the commutator `⁅H, K⁆` of two subgroups `H` and
`K` of a group. -/
class has_bracket (L M : Type*) := (bracket : L → M → M)
notation `⁅`x`,` y`⁆` := has_bracket.bracket x y
|
33bd8a9f8c10f0b9bd5f37bb1c80033e24da088e
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/hott/init/ua.hlean
|
d2dce74cd006d077d54159a7231b5b6f892bfdc2
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 3,150
|
hlean
|
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
prelude
import .equiv
open eq equiv is_equiv
axiom univalence (A B : Type) : is_equiv (@equiv_of_eq A B)
attribute univalence [instance]
-- This is the version of univalence axiom we will probably use most often
definition ua [reducible] {A B : Type} : A ≃ B → A = B :=
equiv_of_eq⁻¹
definition eq_equiv_equiv (A B : Type) : (A = B) ≃ (A ≃ B) :=
equiv.mk equiv_of_eq _
definition equiv_of_eq_ua [reducible] {A B : Type} (f : A ≃ B) : equiv_of_eq (ua f) = f :=
right_inv equiv_of_eq f
definition cast_ua_fn {A B : Type} (f : A ≃ B) : cast (ua f) = f :=
ap to_fun (equiv_of_eq_ua f)
definition cast_ua {A B : Type} (f : A ≃ B) (a : A) : cast (ua f) a = f a :=
ap10 (cast_ua_fn f) a
definition cast_ua_inv_fn {A B : Type} (f : A ≃ B) : cast (ua f)⁻¹ = to_inv f :=
ap to_inv (equiv_of_eq_ua f)
definition cast_ua_inv {A B : Type} (f : A ≃ B) (b : B) : cast (ua f)⁻¹ b = to_inv f b :=
ap10 (cast_ua_inv_fn f) b
definition ua_equiv_of_eq [reducible] {A B : Type} (p : A = B) : ua (equiv_of_eq p) = p :=
left_inv equiv_of_eq p
definition eq_of_equiv_lift {A B : Type} (f : A ≃ B) : A = lift B :=
ua (f ⬝e !equiv_lift)
namespace equiv
-- One consequence of UA is that we can transport along equivalencies of types
-- We can use this for calculation evironments
protected definition transport_of_equiv [subst] (P : Type → Type) {A B : Type} (H : A ≃ B)
: P A → P B :=
eq.transport P (ua H)
-- we can "recurse" on equivalences, by replacing them by (equiv_of_eq _)
definition rec_on_ua [recursor] {A B : Type} {P : A ≃ B → Type}
(f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q)) : P f :=
right_inv equiv_of_eq f ▸ H (ua f)
-- a variant where we immediately recurse on the equality in the new goal
definition rec_on_ua_idp [recursor] {A : Type} {P : Π{B}, A ≃ B → Type} {B : Type}
(f : A ≃ B) (H : P equiv.rfl) : P f :=
rec_on_ua f (λq, eq.rec_on q H)
-- a variant where (equiv_of_eq (ua f)) will be replaced by f in the new goal
definition rec_on_ua' {A B : Type} {P : A ≃ B → A = B → Type}
(f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q) q) : P f (ua f) :=
right_inv equiv_of_eq f ▸ H (ua f)
-- a variant where we do both
definition rec_on_ua_idp' {A : Type} {P : Π{B}, A ≃ B → A = B → Type} {B : Type}
(f : A ≃ B) (H : P equiv.rfl idp) : P f (ua f) :=
rec_on_ua' f (λq, eq.rec_on q H)
definition ua_refl (A : Type) : ua erfl = idpath A :=
eq_of_fn_eq_fn !eq_equiv_equiv (right_inv !eq_equiv_equiv erfl)
definition ua_symm {A B : Type} (f : A ≃ B) : ua f⁻¹ᵉ = (ua f)⁻¹ :=
begin
apply rec_on_ua_idp f,
refine !ua_refl ⬝ inverse2 !ua_refl⁻¹
end
definition ua_trans {A B C : Type} (f : A ≃ B) (g : B ≃ C) : ua (f ⬝e g) = ua f ⬝ ua g :=
begin
apply rec_on_ua_idp g, apply rec_on_ua_idp f,
refine !ua_refl ⬝ concat2 !ua_refl⁻¹ !ua_refl⁻¹
end
end equiv
|
c035a8ec8c926540a7ef7bd4489183c3cbfdf958
|
a721fe7446524f18ba361625fc01033d9c8b7a78
|
/src/principia/mynat/lt.lean
|
fc12beae1e0bf094444b49a81769c1a7406eb80d
|
[] |
no_license
|
Sterrs/leaning
|
8fd80d1f0a6117a220bb2e57ece639b9a63deadc
|
3901cc953694b33adda86cb88ca30ba99594db31
|
refs/heads/master
| 1,627,023,822,744
| 1,616,515,221,000
| 1,616,515,221,000
| 245,512,190
| 2
| 0
| null | 1,616,429,050,000
| 1,583,527,118,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,268
|
lean
|
-- vim: ts=2 sw=0 sts=-1 et ai tw=70
import .le
import ..logic
namespace hidden
namespace mynat
def lt (m n: mynat) := ¬n ≤ m
instance: has_lt mynat := ⟨lt⟩
instance decidable_lt: ∀ m n: mynat, decidable (m < n) :=
(λ m n, not.decidable)
variables {m n p k : mynat}
theorem lt_nrefl: ¬m < m :=
(λ h, h le_refl)
theorem lt_succ_cancel: succ m < succ n → m < n :=
mp_to_contrapositive succ_le_succ
theorem lt_cancel (k: mynat): m + k < n + k → m < n :=
mp_to_contrapositive (le_add k)
theorem lt_cancel_strong: m + k < n → m < n :=
mp_to_contrapositive le_add_rhs
theorem lt_add_rhs: m < n → m < n + k :=
mp_to_contrapositive (le_cancel_strong k)
theorem nzero_iff_zero_lt: m ≠ 0 ↔ 0 < m :=
iff_to_contrapositive le_zero_iff.symm
theorem zero_lt_iff_succ: 0 < m ↔ ∃ n, m = succ n :=
by rw ←nzero_iff_zero_lt; from nzero_iff_succ
theorem lt_to_add_succ: m < m + succ n :=
begin
assume hmmsn,
cases hmmsn with d hd,
rw [←add_zero m, add_assoc m _ _, add_assoc m _ _] at hd,
have hd' := add_cancel hd,
simp at hd',
from succ_ne_zero hd'.symm,
end
theorem lt_nzero: ¬m < 0 := (λ h, h zero_le)
theorem zero_lt_succ: 0 < succ m := succ_nle_zero
theorem lt_add: m < n → m + k < n + k :=
mp_to_contrapositive le_cancel
theorem succ_lt_succ: m < n → succ m < succ n := @lt_add _ _ 1
theorem lt_impl_le: m < n → m ≤ n :=
begin
assume hmn,
cases (le_total_order m n) with hmltn hnm,
from hmltn,
exfalso, from hmn hnm,
end
theorem lt_impl_neq : m < n → m ≠ n :=
begin
assume h heq,
apply @lt_nrefl n,
rwa heq at h,
end
-- pair of transformation theorems. Can be useful in a pinch
theorem le_iff_lt_succ: m ≤ n ↔ m < succ n :=
begin
split, {
assume hmn,
cases hmn with d hd,
rw hd,
assume hmsd,
cases hmsd with d' hd',
rw [succ_add, add_assoc, ←add_succ,
←add_zero m, add_assoc] at hd',
have hzsucc := add_cancel hd',
rw zero_add at hzsucc,
from succ_ne_zero hzsucc.symm,
}, {
assume hmsn,
-- this total ordering theorem is crazy powerful. It feels like
-- you need classical logic until you remember it exists
cases (le_total_order m n) with hmn hnm,
from hmn,
cases hnm with d hd,
cases d, {
rw [hd, zz, add_zero],
}, {
have hsnm: succ n ≤ m,
existsi d,
rw [hd, add_succ, succ_add],
exfalso, from hmsn hsnm,
},
},
end
theorem lt_iff_succ_le: m < n ↔ succ m ≤ n :=
begin
split, {
cases n, {
assume h,
exfalso, from lt_nzero h,
}, {
assume h,
apply succ_le_succ, -- /o/
rw le_iff_lt_succ, assumption,
},
}, {
cases n, {
assume h,
cases h with d hd,
exfalso, from succ_ne_zero (add_integral hd.symm),
}, {
assume h,
rw ←le_iff_lt_succ,
from le_succ_cancel h,
},
},
end
theorem zero_lt_one: (0 : mynat) < (1 : mynat) :=
by rw [←one_eq_succ_zero, ←le_iff_lt_succ]
-- somehow this feels like it's not using le_iff_lt_succ enough
theorem le_iff_lt_or_eq: m ≤ n ↔ m < n ∨ m = n :=
begin
split, {
assume hmn,
cases hmn with d hd,
cases d, {
simp at hd,
right, rw hd,
}, {
left,
rw hd,
from lt_to_add_succ,
},
}, {
assume hmnmn,
cases hmnmn, {
from lt_impl_le hmnmn,
}, {
rw hmnmn,
},
},
end
theorem lt_iff_le_and_neq: m < n ↔ m ≤ n ∧ m ≠ n :=
begin
split, {
assume hmn,
apply and.intro (lt_impl_le hmn),
assume h,
rw h at hmn,
from lt_nrefl hmn,
}, {
assume h,
cases h with hmn hneq,
cases hmn with d hd,
cases d, {
exfalso,
from hneq hd.symm,
}, {
rw lt_iff_succ_le,
rw [hd, add_succ, ←succ_add],
from le_to_add,
},
},
end
-- surely this is a library function somewhere
theorem lt_dne: ¬m < n → n ≤ m :=
begin
by_cases (n ≤ m), {
from (λ _, h),
}, {
assume h2,
contradiction,
},
end
theorem lt_strict: ¬(m < n ∧ n < m) :=
begin
assume hmnnm,
cases hmnnm with hmnnm_left hmnnm_right,
from hmnnm_left (lt_impl_le hmnnm_right),
end
theorem lt_trichotomy: m = n ∨ m < n ∨ n < m :=
begin
cases (le_total_order m n), {
rw le_iff_lt_or_eq at h,
cases h, {
right, left, assumption,
}, {
left, assumption,
},
}, {
rw le_iff_lt_or_eq at h,
cases h, {
right, right, assumption,
}, {
left, symmetry, assumption,
},
},
end
@[trans]
theorem lt_trans: m < n → n < k → m < k :=
begin
assume hmn hnk hkm,
cases hkm with d hd,
cases d,
simp at hd,
rw hd at hmn,
from lt_strict (and.intro hnk hmn),
rw hd at hmn,
have hkln: k ≤ n
:= le_cancel_strong (succ d) (lt_impl_le hmn),
from hnk hkln,
end
theorem lt_comb {a b : mynat}: m < n → a < b → m + a < n + b :=
begin
assume hmn hab,
have h1: m + a < n + a, {
apply lt_add,
assumption,
},
have h2: n + a < n + b, {
rw [add_comm n, add_comm n],
apply lt_add,
assumption,
},
from lt_trans h1 h2,
end
theorem lt_mul: k ≠ 0 → m < n → k * m < k * n :=
begin
assume hknz hmln hknkm,
cases hknkm with d hd,
cases n, {
from lt_nzero hmln,
}, {
rw ←le_iff_lt_succ at hmln,
cases hmln with d' hd',
rw [hd', mul_succ, mul_add] at hd,
have : k + (k * m + k * d') + d = k * m + (k + k * d' + d),
ac_refl,
rw this at hd, clear this,
have hcancel := add_cancel_to_zero hd,
rw add_assoc at hcancel,
from hknz (add_integral hcancel),
},
end
theorem le_square: m ≤ n → m * m ≤ n * n :=
begin
assume hle,
have h₁ := le_mul n hle,
have h₂ := le_mul m hle,
rw mul_comm at h₁,
from le_trans h₂ h₁,
end
theorem le_sqrt: m * m ≤ n * n → m ≤ n :=
begin
assume hm2n2,
cases (le_total_order m n), {
assumption,
}, {
cases h with d hd,
cases d, {
simp [hd],
}, {
cases hm2n2 with d' hd',
rw [hd] at hd',
repeat { rw mul_succ at hd' <|>
rw succ_mul at hd' <|>
rw mul_add at hd' <|>
rw add_mul at hd' },
have : n * n + (d * n + n) + (n + d.succ + (n * d + (d * d + d))) + d' =
n * n + (d.succ + (d * n + n + n + n * d + d * d + d + d')),
ac_refl,
rw this at hd', clear this,
have := add_cancel_to_zero hd',
exfalso, from succ_ne_zero (add_integral this),
},
},
end
theorem lt_sqrt: m * m < n * n → m < n :=
begin
assume hlt hnlem,
have := le_square hnlem,
contradiction,
end
theorem lt_le_chain (n : mynat): m < n → n ≤ k → m < k :=
begin
assume hmn hnk,
rw lt_iff_succ_le at hmn,
rw lt_iff_succ_le,
transitivity n,
assumption,
assumption,
end
theorem le_lt_chain (n : mynat): m ≤ n → n < k → m < k :=
begin
assume hmn hnk,
rw lt_iff_succ_le at hnk,
rw le_iff_lt_succ at hmn,
apply lt_le_chain (succ n),
assumption,
assumption,
end
theorem lt_comb_mul {a b : mynat}: m < n → a < b → m * a < n * b :=
begin
assume hmn hab,
rw lt_iff_succ_le at *,
apply le_trans _ (le_mul_comb hmn hab),
rw [mul_succ, succ_add, succ_mul, ←add_one_succ, ←add_one_succ],
existsi m + a,
ac_refl,
end
end mynat
end hidden
|
97069b78da373e5fc4ec45fea5c09b34335c2175
|
69d4931b605e11ca61881fc4f66db50a0a875e39
|
/src/combinatorics/simple_graph/adj_matrix.lean
|
08810203ebe4e48341bc318ec813e2dc37eae152
|
[
"Apache-2.0"
] |
permissive
|
abentkamp/mathlib
|
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
|
5360e476391508e092b5a1e5210bd0ed22dc0755
|
refs/heads/master
| 1,682,382,954,948
| 1,622,106,077,000
| 1,622,106,077,000
| 149,285,665
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,160
|
lean
|
/-
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-/
import combinatorics.simple_graph.basic
import data.rel
import linear_algebra.matrix.trace
/-!
# Adjacency Matrices
This module defines the adjacency matrix of a graph, and provides theorems connecting graph
properties to computational properties of the matrix.
## Main definitions
* `adj_matrix` is the adjacency matrix of a `simple_graph` with coefficients in a given semiring.
-/
open_locale big_operators matrix
open finset matrix simple_graph
universes u v
variables {α : Type u} [fintype α]
variables (R : Type v) [semiring R]
namespace simple_graph
variables (G : simple_graph α) (R) [decidable_rel G.adj]
/-- `adj_matrix G R` is the matrix `A` such that `A i j = (1 : R)` if `i` and `j` are
adjacent in the simple graph `G`, and otherwise `A i j = 0`. -/
def adj_matrix : matrix α α R
| i j := if (G.adj i j) then 1 else 0
variable {R}
@[simp]
lemma adj_matrix_apply (v w : α) : G.adj_matrix R v w = if (G.adj v w) then 1 else 0 := rfl
@[simp]
theorem transpose_adj_matrix : (G.adj_matrix R)ᵀ = G.adj_matrix R :=
by { ext, simp [edge_symm] }
@[simp]
lemma adj_matrix_dot_product (v : α) (vec : α → R) :
dot_product (G.adj_matrix R v) vec = ∑ u in G.neighbor_finset v, vec u :=
by simp [neighbor_finset_eq_filter, dot_product, sum_filter]
@[simp]
lemma dot_product_adj_matrix (v : α) (vec : α → R) :
dot_product vec (G.adj_matrix R v) = ∑ u in G.neighbor_finset v, vec u :=
by simp [neighbor_finset_eq_filter, dot_product, sum_filter, sum_apply]
@[simp]
lemma adj_matrix_mul_vec_apply (v : α) (vec : α → R) :
((G.adj_matrix R).mul_vec vec) v = ∑ u in G.neighbor_finset v, vec u :=
by rw [mul_vec, adj_matrix_dot_product]
@[simp]
lemma adj_matrix_vec_mul_apply (v : α) (vec : α → R) :
((G.adj_matrix R).vec_mul vec) v = ∑ u in G.neighbor_finset v, vec u :=
begin
rw [← dot_product_adj_matrix, vec_mul],
refine congr rfl _, ext,
rw [← transpose_apply (adj_matrix R G) x v, transpose_adj_matrix],
end
@[simp]
lemma adj_matrix_mul_apply (M : matrix α α R) (v w : α) :
(G.adj_matrix R ⬝ M) v w = ∑ u in G.neighbor_finset v, M u w :=
by simp [mul_apply, neighbor_finset_eq_filter, sum_filter]
@[simp]
lemma mul_adj_matrix_apply (M : matrix α α R) (v w : α) :
(M ⬝ G.adj_matrix R) v w = ∑ u in G.neighbor_finset w, M v u :=
by simp [mul_apply, neighbor_finset_eq_filter, sum_filter, edge_symm]
variable (R)
theorem trace_adj_matrix : matrix.trace α R R (G.adj_matrix R) = 0 := by simp
variable {R}
theorem adj_matrix_mul_self_apply_self (i : α) :
((G.adj_matrix R) ⬝ (G.adj_matrix R)) i i = degree G i :=
by simp [degree]
variable {G}
@[simp]
lemma adj_matrix_mul_vec_const_apply {r : R} {v : α} :
(G.adj_matrix R).mul_vec (function.const _ r) v = G.degree v * r :=
by simp [degree]
lemma adj_matrix_mul_vec_const_apply_of_regular {d : ℕ} {r : R} (hd : G.is_regular_of_degree d)
{v : α} :
(G.adj_matrix R).mul_vec (function.const _ r) v = (d * r) :=
by simp [hd v]
end simple_graph
|
732d43fd9aeb994074e8f14e7b77e93d12cd6709
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/extra/rec.lean
|
07373f1a5c5902bd556c621d1e1e92bdcbb5cde6
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 1,448
|
lean
|
import data.examples.vector
open nat vector
definition fib : nat → nat,
fib 0 := 1,
fib 1 := 1,
fib (a+2) := (fib a ↓ lt.step (lt.base a)) + (fib (a+1) ↓ lt.base (a+1))
[wf] lt.wf
definition gcd : nat → nat → nat,
gcd 0 x := x,
gcd x 0 := x,
gcd (succ x) (succ y) := if y ≤ x
then gcd (x - y) (succ y) ↓ !sigma.lex.left (lt_succ_of_le (sub_le x y))
else gcd (succ x) (y - x) ↓ !sigma.lex.right (lt_succ_of_le (sub_le y x))
[wf] sigma.lex.wf lt.wf (λ x, lt.wf)
definition add : nat → nat → nat,
add zero b := b,
add (succ a) b := succ (add a b)
definition map {A B C : Type} (f : A → B → C) : Π {n}, vector A n → vector B n → vector C n,
map nil nil := nil,
map (a :: va) (b :: vb) := f a b :: map va vb
definition half : nat → nat,
half 0 := 0,
half 1 := 0,
half (x+2) := half x + 1
variables {A B : Type}
inductive image_of (f : A → B) : B → Type :=
mk : Π a, image_of f (f a)
definition inv {f : A → B} : Π b, image_of f b → A,
inv ⌞f a⌟ (image_of.mk f a) := a
namespace tst
definition fib : nat → nat,
fib 0 := 1,
fib 1 := 1,
fib (a+2) := fib a + fib (a+1)
end tst
definition simple : nat → nat → nat,
simple x y := x + y
definition simple2 : nat → nat → nat,
simple2 (x+1) y := x + y,
simple2 ⌞y+1⌟ y := y
check @vector.brec_on
check @vector.cases_on
|
82b069c8fa236103445ec0791b0b08822447e576
|
9338c56dfd6ceacc3e5e63e32a7918cfec5d5c69
|
/src/sheaves/sheaf_of_rings_on_standard_basis.lean
|
48a64fe61cce330ae9a638358bd31149c7fcbb98
|
[] |
no_license
|
Project-Reykjavik/lean-scheme
|
7322eefce504898ba33737970be89dc751108e2b
|
6d3ec18fecfd174b79d0ce5c85a783f326dd50f6
|
refs/heads/master
| 1,669,426,172,632
| 1,578,284,588,000
| 1,578,284,588,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 24,835
|
lean
|
/-
Extension of a sheaf of rings on the basis to a sheaf of rings on the whole space.
https://stacks.math.columbia.edu/tag/009M
https://stacks.math.columbia.edu/tag/009N
-/
import topology.opens
import sheaves.stalk_of_rings
import sheaves.stalk_of_rings_on_standard_basis
import sheaves.presheaf_of_rings_on_basis
import sheaves.presheaf_of_rings_extension
import sheaves.sheaf_on_basis
import sheaves.sheaf_on_standard_basis
import sheaves.sheaf_of_rings
open topological_space classical
noncomputable theory
universe u
section presheaf_of_rings_extension
variables {α : Type u} [T : topological_space α]
variables {B : set (opens α)} {HB : opens.is_basis B}
variables (Bstd : opens.univ ∈ B ∧ ∀ {U V}, U ∈ B → V ∈ B → U ∩ V ∈ B)
include Bstd
theorem extension_is_sheaf_of_rings
(F : presheaf_of_rings_on_basis α HB)
(HF : sheaf_on_standard_basis.is_sheaf_on_standard_basis Bstd F.to_presheaf_on_basis)
: is_sheaf_of_rings (F ᵣₑₓₜ Bstd) :=
begin
show is_sheaf (F ᵣₑₓₜ Bstd).to_presheaf,
constructor,
{ intros U OC s t Hres,
apply subtype.eq,
apply funext,
intros x,
apply funext,
intros HxU,
rw OC.Hcov.symm at HxU,
rcases HxU with ⟨Uj1, ⟨⟨⟨Uj2, OUj⟩, ⟨⟨j, HUj⟩, Heq⟩⟩, HxUj⟩⟩,
rcases Heq, rcases Heq,
have Hstj := congr_fun (subtype.mk_eq_mk.1 (Hres j)),
have HxUj1 : x ∈ OC.Uis j := HUj.symm ▸ HxUj,
have Hstjx := congr_fun (Hstj x) HxUj1,
exact Hstjx, },
{ intros U OC s Hsec,
existsi (global_section (F.to_presheaf_on_basis) U OC s Hsec),
intros i,
apply subtype.eq,
apply funext,
intros x,
apply funext,
intros HxUi,
have HxU : x ∈ U := OC.Hcov ▸ (opens_supr_subset OC.Uis i) HxUi,
let HyUi := λ t, ∃ (H : t ∈ set.range OC.Uis), x ∈ t,
dunfold presheaf_of_rings_extension; dsimp,
dunfold global_section; dsimp,
-- Same process of dealing with subtype.rec.
let HyUi := λ t, ∃ (H : t ∈ subtype.val '' set.range OC.Uis), x ∈ t,
rcases (classical.indefinite_description HyUi _) with ⟨S, HS⟩; dsimp,
let HyS := λ H : S ∈ subtype.val '' set.range OC.Uis, x ∈ S,
rcases (classical.indefinite_description HyS HS) with ⟨HSUiR, HySUiR⟩; dsimp,
let HOUksub := λ t : subtype is_open, t ∈ set.range (OC.Uis) ∧ t.val = S,
rcases (classical.indefinite_description HOUksub _) with ⟨OUl, ⟨HOUl, HOUleq⟩⟩; dsimp,
let HSUi := λ i, OC.Uis i = OUl,
cases (classical.indefinite_description HSUi _) with l HSUil; dsimp,
-- Now we just need to apply Hsec in the right way.
dunfold presheaf_of_rings_extension at Hsec,
dunfold res_to_inter_left at Hsec,
dunfold res_to_inter_right at Hsec,
dsimp at Hsec,
replace Hsec := Hsec i l,
rw subtype.ext at Hsec,
dsimp at Hsec,
replace Hsec := congr_fun Hsec x,
dsimp at Hsec,
replace Hsec := congr_fun Hsec,
have HxOUk : x ∈ OUl.val := HOUleq.symm ▸ HySUiR,
have HxUl : x ∈ OC.Uis l := HSUil.symm ▸ HxOUk,
exact (Hsec ⟨HxUi, HxUl⟩).symm, },
end
section extension_coincides
-- The extension is done in a way that F(U) ≅ Fext(U).
-- The map ψ : F(U) → Π x ∈ U, Fx
def to_stalk_product (F : presheaf_on_basis α HB) {U : opens α} (BU : U ∈ B)
: F.F BU → Π (x ∈ U), stalk_on_basis F x :=
λ s x Hx, ⟦{U := U, BU := BU, Hx := Hx, s := s}⟧
lemma to_stalk_product.injective
(F : presheaf_on_basis α HB)
(HF : sheaf_on_standard_basis.is_sheaf_on_standard_basis Bstd F)
{U : opens α} (BU : U ∈ B)
: function.injective (to_stalk_product Bstd F BU) :=
begin
intros s₁ s₂ Hs,
have Hsx := λ (HxU : U), congr_fun (congr_fun Hs HxU.1) HxU.2,
let OC : covering_standard_basis B U :=
{ γ := U,
Uis := λ HxU, some (quotient.eq.1 (Hsx HxU)),
BUis := λ HxU, some (some_spec (quotient.eq.1 (Hsx HxU))),
Hcov :=
begin
ext z,
split,
{ rintros ⟨Ui, ⟨⟨OUi, ⟨⟨i, HUi⟩, HUival⟩⟩, HzUi⟩⟩,
rw [←HUival, ←HUi] at HzUi,
exact some (some_spec (some_spec (some_spec (quotient.eq.1 (Hsx i))))) HzUi, },
{ intros Hz,
use [(some (quotient.eq.1 (Hsx ⟨z, Hz⟩))).val],
have Hin : (some (quotient.eq.1 (Hsx ⟨z, Hz⟩))).val
∈ subtype.val '' set.range (λ (HxU : U), some ((quotient.eq.1 (Hsx HxU)))),
use [classical.some ((quotient.eq.1 (Hsx ⟨z, Hz⟩)))],
split,
{ use ⟨z, Hz⟩, },
{ refl, },
use Hin,
exact some (some_spec (some_spec (quotient.eq.1 (Hsx ⟨z, Hz⟩)))), },
end, },
apply (HF BU OC).1,
intros i,
replace Hs := congr_fun (congr_fun Hs i.1) i.2,
exact some_spec (some_spec (some_spec (some_spec (some_spec (quotient.eq.1 (Hsx i)))))),
end
-- The map φ : F(U) → im(ψ).
def to_presheaf_of_rings_extension (F : presheaf_of_rings_on_basis α HB) {U : opens α} (BU : U ∈ B)
: F.F BU → (F ᵣₑₓₜ Bstd).F U :=
λ s,
⟨to_stalk_product Bstd F.to_presheaf_on_basis BU s,
λ x Hx, ⟨U, BU, Hx, s, λ y Hy, funext $ λ Hy',
quotient.sound $ ⟨U, BU, Hy', set.subset.refl U, set.subset.refl U, rfl⟩⟩⟩
lemma to_presheaf_of_rings_extension.injective
(F : presheaf_of_rings_on_basis α HB)
(HF : sheaf_on_standard_basis.is_sheaf_on_standard_basis Bstd F.to_presheaf_on_basis)
{U : opens α} (BU : U ∈ B)
: function.injective (to_presheaf_of_rings_extension Bstd F BU) :=
begin
intros s₁ s₂ Hs,
erw subtype.mk_eq_mk at Hs,
have Hinj := to_stalk_product.injective Bstd F.to_presheaf_on_basis (λ V BV OC, HF BV OC) BU,
exact Hinj Hs,
end
lemma to_presheaf_of_rings_extension.surjective
(F : presheaf_of_rings_on_basis α HB)
(HF : sheaf_on_standard_basis.is_sheaf_on_standard_basis Bstd F.to_presheaf_on_basis)
{U : opens α} (BU : U ∈ B)
: function.surjective (to_presheaf_of_rings_extension Bstd F BU) :=
begin
intros s,
let V := λ (HxU : U), some (s.2 HxU.1 HxU.2),
let BV := λ (HxU : U), some (some_spec (s.2 HxU.1 HxU.2)),
let HxV := λ (HxU : U), some (some_spec (some_spec (s.2 HxU.1 HxU.2))),
let σ := λ (HxU : U), some (some_spec (some_spec (some_spec (s.2 HxU.1 HxU.2)))),
let Hσ := λ (HxU : U), some_spec (some_spec (some_spec (some_spec (s.2 HxU.1 HxU.2)))),
let OC : covering_standard_basis B U :=
{ γ := U,
Uis := λ HxU, (V HxU) ∩ U,
BUis := λ HxU, Bstd.2 (BV HxU) BU,
Hcov :=
begin
ext z,
split,
{ rintros ⟨Ui, ⟨⟨OUi, ⟨⟨i, HUi⟩, HUival⟩⟩, HzUi⟩⟩,
rw [←HUival, ←HUi] at HzUi,
exact HzUi.2, },
{ intros Hz,
use [(some (s.2 z Hz) ∩ U).val],
have Hin : (some (s.2 z Hz) ∩ U).val
∈ subtype.val '' set.range (λ (HxU : U), ((some (s.2 HxU.1 HxU.2) ∩ U : opens α))),
use [(some (s.2 z Hz) ∩ U : opens α)],
split,
{ use ⟨z, Hz⟩, },
{ refl, },
use Hin,
exact ⟨some (some_spec (some_spec (s.2 z Hz))), Hz⟩, },
end, },
-- Now let's try to apply sheaf condition.
let res := λ (HxU : OC.γ), F.res (BV HxU) (Bstd.2 (BV HxU) BU) (set.inter_subset_left _ _),
let sx := λ (HxU : OC.γ), res HxU (σ HxU),
have Hglue := (HF BU OC).2 sx,
have Hsx : ∀ j k,
sheaf_on_standard_basis.res_to_inter_left Bstd F.to_presheaf_on_basis (OC.BUis j) (OC.BUis k) (sx j) =
sheaf_on_standard_basis.res_to_inter_right Bstd F.to_presheaf_on_basis (OC.BUis j) (OC.BUis k) (sx k),
intros j k,
dsimp only [sheaf_on_standard_basis.res_to_inter_left],
dsimp only [sheaf_on_standard_basis.res_to_inter_right],
dsimp only [sx, res],
iterate 2 { rw ←presheaf_on_basis.Hcomp', },
show (F.to_presheaf_on_basis).res (BV j) (Bstd.2 (OC.BUis j) (OC.BUis k)) _ (σ j)
= (F.to_presheaf_on_basis).res (BV k) (Bstd.2 (OC.BUis j) (OC.BUis k)) _ (σ k),
-- We can cover the U ∩ Vj ∩ Vk and use locality.
-- But first let's check that all the stalks coincide in the intersectons.
have Hstalks : ∀ {y} (Hy : y ∈ (OC.Uis j) ∩ (OC.Uis k)),
(⟦{U := V j, BU := BV j, Hx := Hy.1.1, s := σ j}⟧ : stalk_on_basis F.to_presheaf_on_basis y)
= ⟦{U := V k, BU := BV k, Hx := Hy.2.1, s := σ k}⟧,
intros y Hy,
have Hj := congr_fun (Hσ j y ⟨Hy.1.2, Hy.1.1⟩) Hy.1.2; dsimp at Hj,
have Hk := congr_fun (Hσ k y ⟨Hy.2.2, Hy.2.1⟩) Hy.2.2; dsimp at Hk,
erw [←Hj, ←Hk],
-- Therefore there exists Wjk where σj|Wjk = σk|Wjk. We will use these as a cover.
let Ujk : opens α := (OC.Uis j) ∩ (OC.Uis k),
let BUjk := Bstd.2 (OC.BUis j) (OC.BUis k),
-- Again, all the information we will need but on Uj ∩ Uk.
let Hjk := λ (HxUjk : Ujk), quotient.eq.1 (Hstalks HxUjk.2),
let Wjk := λ (HxUjk : Ujk), some (Hjk HxUjk) ∩ U,
let BWjk := λ (HxUjk : Ujk), Bstd.2 (some (some_spec (Hjk HxUjk))) BU,
let HxWjk := λ (HxUjk : Ujk), some (some_spec (some_spec (Hjk HxUjk))),
let HWjkUj := λ (HxUjk : Ujk), some (some_spec (some_spec (some_spec (Hjk HxUjk)))),
let HWjkUk := λ (HxUjk : Ujk), some (some_spec (some_spec (some_spec (some_spec (Hjk HxUjk))))),
let HWjk := λ (HxUjk : Ujk), some_spec (some_spec (some_spec (some_spec (some_spec (Hjk HxUjk))))),
let OCjk : covering_standard_basis B ((OC.Uis j) ∩ (OC.Uis k)) :=
{ γ := Ujk,
Uis := Wjk,
BUis := BWjk,
Hcov :=
begin
ext z,
split,
{ rintros ⟨W, ⟨⟨OW, ⟨⟨i, HWi⟩, HWival⟩⟩, HzW⟩⟩,
rw [←HWival, ←HWi] at HzW,
have HzUj := (HWjkUj i) HzW.1,
have HzUk := (HWjkUk i) HzW.1,
exact ⟨⟨HzUj, HzW.2⟩, ⟨HzUk, HzW.2⟩⟩, },
{ intros Hz,
use [(some (Hjk ⟨z, Hz⟩) ∩ U).val],
have Hin : (some (Hjk ⟨z, Hz⟩) ∩ U).val
∈ subtype.val '' set.range (λ (HxUjk : Ujk), ((some (Hjk HxUjk) ∩ U : opens α))),
use [(some (Hjk ⟨z, Hz⟩) ∩ U : opens α)],
split,
{ use ⟨z, Hz⟩, },
{ refl, },
use Hin,
have HzWjk := HxWjk ⟨z, Hz⟩,
have HzU := Hz.1.2,
exact ⟨HzWjk, HzU⟩, }
end, },
apply (HF BUjk OCjk).1,
intros i,
rw ←presheaf_on_basis.Hcomp',
rw ←presheaf_on_basis.Hcomp',
have Hres :
F.res (some (some_spec (Hjk i))) (BWjk i) (set.inter_subset_left _ _)
(F.res (BV j) (some (some_spec (Hjk i))) (HWjkUj i) (σ j))
= F.res (some (some_spec (Hjk i))) (BWjk i) (set.inter_subset_left _ _)
(F.res (BV k) (some (some_spec (Hjk i))) (HWjkUk i) (σ k)),
rw (HWjk i),
rw ←presheaf_on_basis.Hcomp' at Hres,
rw ←presheaf_on_basis.Hcomp' at Hres,
use Hres,
-- Ready to prove it.
rcases (Hglue Hsx) with ⟨S, HS⟩,
existsi S,
apply subtype.eq,
dsimp [to_presheaf_of_rings_extension],
apply funext,
intros x,
dsimp [to_stalk_product],
apply funext,
intros Hx,
replace HS := HS ⟨x, Hx⟩,
dsimp [sx, res] at HS,
rw Hσ ⟨x, Hx⟩,
swap,
{ exact ⟨Hx, HxV ⟨x, Hx⟩⟩, },
dsimp,
apply quotient.sound,
use [(V ⟨x, Hx⟩) ∩ U],
use [Bstd.2 (BV ⟨x, Hx⟩) BU],
use [⟨HxV ⟨x, Hx⟩, Hx⟩],
use [set.inter_subset_right _ _],
use [set.inter_subset_left _ _],
dsimp,
erw HS,
end
lemma to_presheaf_of_rings_extension.bijective
(F : presheaf_of_rings_on_basis α HB)
(HF : sheaf_on_standard_basis.is_sheaf_on_standard_basis Bstd F.to_presheaf_on_basis)
{U : opens α} (BU : U ∈ B)
: function.bijective (to_presheaf_of_rings_extension Bstd F BU) :=
⟨to_presheaf_of_rings_extension.injective Bstd F (λ U BU OC, HF BU OC) BU,
to_presheaf_of_rings_extension.surjective Bstd F (λ U BU OC, HF BU OC) BU ⟩
-- We now that they are equivalent as sets.
-- Now we to assert that they're isomorphic as rings.
-- It suffices to show that it is a ring homomorphism.
lemma to_presheaf_of_rings_extension.is_ring_hom
(F : presheaf_of_rings_on_basis α HB)
{U : opens α} (BU : U ∈ B)
: is_ring_hom (to_presheaf_of_rings_extension Bstd F BU) :=
{ map_one :=
begin
apply subtype.eq,
funext x Hx,
apply quotient.sound,
use [U, BU, Hx, set.subset.refl _, set.subset_univ _],
iterate 2 { erw (F.res_is_ring_hom _ _ _).map_one, },
end,
map_mul :=
begin
intros x y,
apply subtype.eq,
funext z Hz,
apply quotient.sound,
use [U, BU, Hz],
use [set.subset.refl _, set.subset_inter (set.subset.refl _) (set.subset.refl _)],
erw ←(F.res_is_ring_hom _ _ _).map_mul,
erw ←presheaf_on_basis.Hcomp',
end,
map_add :=
begin
intros x y,
apply subtype.eq,
funext z Hz,
apply quotient.sound,
use [U, BU, Hz],
use [set.subset.refl _, set.subset_inter (set.subset.refl _) (set.subset.refl _)],
erw ←(F.res_is_ring_hom _ _ _).map_add,
erw ←presheaf_on_basis.Hcomp',
end, }
def to_presheaf_of_rings_extension.ring_equiv
(F : presheaf_of_rings_on_basis α HB)
(HF : sheaf_on_standard_basis.is_sheaf_on_standard_basis Bstd F.to_presheaf_on_basis)
{U : opens α} (BU : U ∈ B)
: F BU ≃+* (presheaf_of_rings_extension Bstd F) U :=
@@ring_equiv.of' _ _
(equiv.of_bijective $ to_presheaf_of_rings_extension.bijective Bstd F @HF BU)
(to_presheaf_of_rings_extension.is_ring_hom Bstd F BU)
-- Moreover, for all x, Fₓ ≅ Fextₓ.
-- We will need this to show that the stalks of the structure sheaf on
-- Spec(R) are local rings.
open stalk_of_rings_on_standard_basis
def to_stalk_extension
(F : presheaf_of_rings_on_basis α HB)
(x : α)
: stalk_of_rings_on_standard_basis Bstd F x → stalk_of_rings (F ᵣₑₓₜ Bstd) x :=
begin
intros BUs,
let Us := quotient.out BUs,
exact ⟦{U := Us.U,
HxU := Us.Hx,
s := (to_presheaf_of_rings_extension Bstd F Us.BU) Us.s}⟧,
end
lemma to_stalk_extension.injective
(F : presheaf_of_rings_on_basis α HB)
(x : α)
: function.injective (to_stalk_extension Bstd F x) :=
begin
intros Us₁' Us₂',
apply quotient.induction_on₂ Us₁' Us₂',
rintros Us₁ Us₂ HUs,
rcases (quotient.mk_out Us₁) with ⟨W₁, BW₁, HxW₁, HW₁Us₁, HW₁U₁, Hres₁⟩,
rcases (quotient.mk_out Us₂) with ⟨W₂, BW₂, HxW₂, HW₂Us₂, HW₂U₂, Hres₂⟩,
dunfold to_stalk_extension at HUs,
rw quotient.eq at HUs,
rcases HUs with ⟨W, HxW, HWU₁, HWU₂, Hres⟩,
dsimp at HWU₁,
dsimp at HWU₂,
dunfold to_presheaf_of_rings_extension at Hres,
dunfold to_stalk_product at Hres,
erw subtype.mk.inj_eq at Hres,
replace Hres := congr_fun (congr_fun Hres x) HxW,
dsimp at Hres,
rw quotient.eq at Hres,
rcases Hres with ⟨W₃, BW₃, HxW₃, HW₃U₁, HW₃U₂, Hres₃⟩,
dsimp at HW₃U₁,
dsimp at HW₃U₂,
dsimp at Hres₃,
apply quotient.sound,
have BW₁₂₃ : W₁ ∩ W₂ ∩ W₃ ∈ B := Bstd.2 (Bstd.2 BW₁ BW₂) BW₃,
have HW₁₂₃U₁ : W₁ ∩ W₂ ∩ W₃ ⊆ Us₁.U := λ x Hx, HW₁U₁ Hx.1.1,
have HW₁₂₃U₂ : W₁ ∩ W₂ ∩ W₃ ⊆ Us₂.U := λ x Hx, HW₂U₂ Hx.1.2,
use [W₁ ∩ W₂ ∩ W₃, BW₁₂₃, ⟨⟨HxW₁, HxW₂⟩, HxW₃⟩, HW₁₂₃U₁, HW₁₂₃U₂],
have HW₁W₁₂₃ : W₁ ∩ W₂ ∩ W₃ ⊆ W₁ := λ x Hx, Hx.1.1,
have HW₂W₁₂₃ : W₁ ∩ W₂ ∩ W₃ ⊆ W₂ := λ x Hx, Hx.1.2,
have HW₃W₁₂₃ : W₁ ∩ W₂ ∩ W₃ ⊆ W₃ := λ x Hx, Hx.2,
replace Hres₁ := congr_arg (F.res BW₁ BW₁₂₃ HW₁W₁₂₃) Hres₁,
replace Hres₂ := congr_arg (F.res BW₂ BW₁₂₃ HW₂W₁₂₃) Hres₂,
replace Hres₃ := congr_arg (F.res BW₃ BW₁₂₃ HW₃W₁₂₃) Hres₃,
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₁, },
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₂, },
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₃, },
erw [←Hres₁, ←Hres₂],
exact Hres₃,
end
lemma to_stalk_extension.surjective
(F : presheaf_of_rings_on_basis α HB)
(x : α)
: function.surjective (to_stalk_extension Bstd F x) :=
begin
intros Us',
apply quotient.induction_on Us',
rintros ⟨U, HxU, s⟩,
rcases (s.2 x HxU) with ⟨V, BV, HxV, t, Ht⟩,
let Vt : stalk_on_basis.elem (F.to_presheaf_on_basis) x
:= {U := V, BU := BV, Hx := HxV, s := t},
use ⟦Vt⟧,
dunfold to_stalk_extension,
apply quotient.sound,
rcases (quotient.mk_out Vt) with ⟨W, BW, HxW, HWVtV, HWV, Hres⟩,
have HUVWV : U ∩ V ∩ W ⊆ (quotient.out ⟦Vt⟧).U := λ x Hx, HWVtV Hx.2,
have HUVWU : U ∩ V ∩ W ⊆ U := λ x Hx, Hx.1.1,
use [U ∩ V ∩ W, ⟨⟨HxU, HxV⟩, HxW⟩, HUVWV, HUVWU],
apply subtype.eq,
dsimp only [presheaf_of_rings_extension],
dsimp only [to_presheaf_of_rings_extension],
dsimp only [to_stalk_product],
funext y Hy,
rw (Ht y Hy.1),
apply quotient.sound,
have BVW : V ∩ W ∈ B := Bstd.2 BV BW,
have HVWVtV : V ∩ W ⊆ (quotient.out ⟦Vt⟧).U := λ x Hx, HWVtV Hx.2,
have HVWV : V ∩ W ⊆ V := λ x Hx, Hx.1,
use [V ∩ W, BVW, ⟨Hy.1.2,Hy.2⟩, HVWVtV, HVWV],
have HVWW : V ∩ W ⊆ W := λ x Hx, Hx.2,
replace Hres := congr_arg (F.res BW BVW HVWW) Hres,
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres, },
exact Hres,
end
lemma to_stalk_extension.bijective
(F : presheaf_of_rings_on_basis α HB)
(x : α)
: function.bijective (to_stalk_extension Bstd F x) :=
⟨to_stalk_extension.injective Bstd F x,
to_stalk_extension.surjective Bstd F x⟩
lemma to_stalk_extension.is_ring_hom
(F : presheaf_of_rings_on_basis α HB)
(x : α)
: is_ring_hom (to_stalk_extension Bstd F x) :=
{ map_one :=
begin
dunfold to_stalk_extension,
let one.elem : stalk_on_basis.elem F.to_presheaf_on_basis x
:= {U := opens.univ, BU := Bstd.1, Hx := trivial, s:= 1},
let one.stalk : stalk_of_rings_on_standard_basis Bstd F x := ⟦one.elem⟧,
let one := quotient.out one.stalk,
apply quotient.sound,
rcases (quotient.mk_out one.elem) with ⟨W₁, BW₁, HxW₁, HW₁Uout, HW₁U, Hres₁⟩,
have BUW₁ : one.U ∩ W₁ ∈ B := Bstd.2 one.BU BW₁,
have HUUW₁ : one.U ∩ W₁ ⊆ one.U := set.inter_subset_left _ _,
use [one.U ∩ W₁, ⟨one.Hx, HxW₁⟩, HUUW₁, set.subset_univ _],
apply subtype.eq,
dsimp only [presheaf_of_rings_extension],
dsimp only [to_presheaf_of_rings_extension],
dsimp only [to_stalk_product],
funext z Hz,
apply quotient.sound,
use [one.U ∩ W₁, BUW₁, Hz, set.inter_subset_left _ _, set.subset_univ _],
dsimp,
have HUW₁W₁ : one.U ∩ W₁ ⊆ W₁ := set.inter_subset_right _ _,
replace Hres₁ := congr_arg (F.res BW₁ BUW₁ HUW₁W₁) Hres₁,
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₁, },
exact Hres₁,
end,
map_mul :=
begin
intros y z,
apply quotient.induction_on₂ y z,
intros Us₁ Us₂,
simp,
let Us₃ : stalk_on_basis.elem F.to_presheaf_on_basis x :=
{ U := Us₁.U ∩ Us₂.U,
BU := Bstd.2 Us₁.BU Us₂.BU,
Hx := ⟨Us₁.Hx, Us₂.Hx⟩,
s := F.res Us₁.BU _ (set.inter_subset_left _ _) Us₁.s *
F.res Us₂.BU _ (set.inter_subset_right _ _) Us₂.s },
dunfold to_stalk_extension,
apply quotient.sound,
rcases (quotient.mk_out Us₁) with ⟨W₁, BW₁, HxW₁, HW₁U₁out, HW₁U₁, Hres₁⟩,
rcases (quotient.mk_out Us₂) with ⟨W₂, BW₂, HxW₂, HW₂U₂out, HW₂U₂, Hres₂⟩,
rcases (quotient.mk_out Us₃) with ⟨W₃, BW₃, HxW₃, HW₃U₃out, HW₃U₃, Hres₃⟩,
let W := W₁ ∩ W₂ ∩ W₃,
have HxW : x ∈ W := ⟨⟨HxW₁, HxW₂⟩, HxW₃⟩,
have HWW₁ : W ⊆ W₁ := λ x Hx, Hx.1.1,
have HWW₂ : W ⊆ W₂ := λ x Hx, Hx.1.2,
have HWW₃ : W ⊆ W₃ := λ x Hx, Hx.2,
have HWU₁out : W ⊆ (quotient.out ⟦Us₁⟧).U := set.subset.trans HWW₁ HW₁U₁out,
have HWU₂out : W ⊆ (quotient.out ⟦Us₂⟧).U := set.subset.trans HWW₂ HW₂U₂out,
have HWU₃out : W ⊆ (quotient.out ⟦Us₃⟧).U := set.subset.trans HWW₃ HW₃U₃out,
have HWU₁₂out : W ⊆ (quotient.out ⟦Us₁⟧).U ∩ (quotient.out ⟦Us₂⟧).U
:= set.subset_inter HWU₁out HWU₂out,
use [W, HxW, HWU₃out, HWU₁₂out],
apply subtype.eq,
dsimp only [presheaf_of_rings_extension],
dsimp only [to_presheaf_of_rings_extension],
dsimp only [to_stalk_product],
funext z HzW,
apply quotient.sound,
have BW : W ∈ B := Bstd.2 (Bstd.2 BW₁ BW₂) BW₃,
use [W, BW, HzW, HWU₃out, HWU₁₂out],
rw (presheaf_of_rings_on_basis.res_is_ring_hom _ _ _ _).map_mul,
rw ←presheaf_on_basis.Hcomp',
rw ←presheaf_on_basis.Hcomp',
replace Hres₁ := congr_arg (F.res BW₁ BW HWW₁) Hres₁,
replace Hres₂ := congr_arg (F.res BW₂ BW HWW₂) Hres₂,
replace Hres₃ := congr_arg (F.res BW₃ BW HWW₃) Hres₃,
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₁, },
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₂, },
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₃, },
erw [Hres₁, Hres₂, Hres₃],
rw (presheaf_of_rings_on_basis.res_is_ring_hom _ _ _ _).map_mul,
rw ←presheaf_on_basis.Hcomp',
rw ←presheaf_on_basis.Hcomp',
end,
map_add :=
begin
intros y z,
apply quotient.induction_on₂ y z,
intros Us₁ Us₂,
simp,
let Us₃ : stalk_on_basis.elem F.to_presheaf_on_basis x :=
{ U := Us₁.U ∩ Us₂.U,
BU := Bstd.2 Us₁.BU Us₂.BU,
Hx := ⟨Us₁.Hx, Us₂.Hx⟩,
s := F.res Us₁.BU _ (set.inter_subset_left _ _) Us₁.s +
F.res Us₂.BU _ (set.inter_subset_right _ _) Us₂.s },
dunfold to_stalk_extension,
apply quotient.sound,
rcases (quotient.mk_out Us₁) with ⟨W₁, BW₁, HxW₁, HW₁U₁out, HW₁U₁, Hres₁⟩,
rcases (quotient.mk_out Us₂) with ⟨W₂, BW₂, HxW₂, HW₂U₂out, HW₂U₂, Hres₂⟩,
rcases (quotient.mk_out Us₃) with ⟨W₃, BW₃, HxW₃, HW₃U₃out, HW₃U₃, Hres₃⟩,
let W := W₁ ∩ W₂ ∩ W₃,
have HxW : x ∈ W := ⟨⟨HxW₁, HxW₂⟩, HxW₃⟩,
have HWW₁ : W ⊆ W₁ := λ x Hx, Hx.1.1,
have HWW₂ : W ⊆ W₂ := λ x Hx, Hx.1.2,
have HWW₃ : W ⊆ W₃ := λ x Hx, Hx.2,
have HWU₁out : W ⊆ (quotient.out ⟦Us₁⟧).U := set.subset.trans HWW₁ HW₁U₁out,
have HWU₂out : W ⊆ (quotient.out ⟦Us₂⟧).U := set.subset.trans HWW₂ HW₂U₂out,
have HWU₃out : W ⊆ (quotient.out ⟦Us₃⟧).U := set.subset.trans HWW₃ HW₃U₃out,
have HWU₁₂out : W ⊆ (quotient.out ⟦Us₁⟧).U ∩ (quotient.out ⟦Us₂⟧).U
:= set.subset_inter HWU₁out HWU₂out,
use [W, HxW, HWU₃out, HWU₁₂out],
apply subtype.eq,
dsimp only [presheaf_of_rings_extension],
dsimp only [to_presheaf_of_rings_extension],
dsimp only [to_stalk_product],
funext z HzW,
apply quotient.sound,
have BW : W ∈ B := Bstd.2 (Bstd.2 BW₁ BW₂) BW₃,
use [W, BW, HzW, HWU₃out, HWU₁₂out],
rw (presheaf_of_rings_on_basis.res_is_ring_hom _ _ _ _).map_add,
rw ←presheaf_on_basis.Hcomp',
rw ←presheaf_on_basis.Hcomp',
replace Hres₁ := congr_arg (F.res BW₁ BW HWW₁) Hres₁,
replace Hres₂ := congr_arg (F.res BW₂ BW HWW₂) Hres₂,
replace Hres₃ := congr_arg (F.res BW₃ BW HWW₃) Hres₃,
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₁, },
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₂, },
iterate 2 { rw ←presheaf_on_basis.Hcomp' at Hres₃, },
erw [Hres₁, Hres₂, Hres₃],
rw (presheaf_of_rings_on_basis.res_is_ring_hom _ _ _ _).map_add,
rw ←presheaf_on_basis.Hcomp',
rw ←presheaf_on_basis.Hcomp',
end, }
lemma to_stalk_extension.ring_equiv
(F : presheaf_of_rings_on_basis α HB)
(x : α)
: stalk_of_rings_on_standard_basis Bstd F x ≃+*
stalk_of_rings (presheaf_of_rings_extension Bstd F) x :=
begin
have H := function.bijective_iff_has_inverse.1 (to_stalk_extension.bijective Bstd F x),
rcases (classical.indefinite_description _ H) with ⟨inv, Hlinv, Hrinv⟩,
use [(to_stalk_extension Bstd F x), inv, Hlinv, Hrinv],
{ apply (to_stalk_extension.is_ring_hom Bstd F x).map_mul, },
{ apply (to_stalk_extension.is_ring_hom Bstd F x).map_add, }
end
end extension_coincides
end presheaf_of_rings_extension
|
f4f09dbb4ce01ad0ff09834225cada91df36f67d
|
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
|
/tests/bench/parser.lean
|
7770d57ddd243793172a1cb58e89564f51771acd
|
[
"Apache-2.0"
] |
permissive
|
mhuisi/lean4
|
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
|
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
|
refs/heads/master
| 1,621,225,489,283
| 1,585,142,689,000
| 1,585,142,689,000
| 250,590,438
| 0
| 2
|
Apache-2.0
| 1,602,443,220,000
| 1,585,327,814,000
|
C
|
UTF-8
|
Lean
| false
| false
| 242
|
lean
|
import Init.Lean.Parser
def main : List String → IO Unit
| [fname, n] => do
env ← Lean.mkEmptyEnvironment;
n.toNat!.forM $ fun _ =>
Lean.Parser.parseFile env fname *> pure ();
pure ()
| _ => throw $ IO.userError "give file"
|
2ccad046f96b27bf34414e217e5e0762657168f5
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/category_theory/limits/shapes/products.lean
|
399e23ac332ba1b4ab9e6d73308b5252e24adc89
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 6,781
|
lean
|
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Bhavik Mehta
-/
import category_theory.limits.limits
import category_theory.discrete_category
noncomputable theory
universes v u u₂
open category_theory
namespace category_theory.limits
variables {β : Type v}
variables {C : Type u} [category.{v} C]
-- We don't need an analogue of `pair` (for binary products), `parallel_pair` (for equalizers),
-- or `(co)span`, since we already have `discrete.functor`.
/-- A fan over `f : β → C` consists of a collection of maps from an object `P` to every `f b`. -/
abbreviation fan (f : β → C) := cone (discrete.functor f)
/-- A cofan over `f : β → C` consists of a collection of maps from every `f b` to an object `P`. -/
abbreviation cofan (f : β → C) := cocone (discrete.functor f)
/-- A fan over `f : β → C` consists of a collection of maps from an object `P` to every `f b`. -/
@[simps]
def fan.mk {f : β → C} (P : C) (p : Π b, P ⟶ f b) : fan f :=
{ X := P,
π := { app := p } }
/-- A cofan over `f : β → C` consists of a collection of maps from every `f b` to an object `P`. -/
@[simps]
def cofan.mk {f : β → C} (P : C) (p : Π b, f b ⟶ P) : cofan f :=
{ X := P,
ι := { app := p } }
/-- An abbreviation for `has_limit (discrete.functor f)`. -/
abbreviation has_product (f : β → C) := has_limit (discrete.functor f)
/-- An abbreviation for `has_colimit (discrete.functor f)`. -/
abbreviation has_coproduct (f : β → C) := has_colimit (discrete.functor f)
section
variables (C)
/-- An abbreviation for `has_limits_of_shape (discrete f)`. -/
abbreviation has_products_of_shape (β : Type v) := has_limits_of_shape.{v} (discrete β)
/-- An abbreviation for `has_colimits_of_shape (discrete f)`. -/
abbreviation has_coproducts_of_shape (β : Type v) := has_colimits_of_shape.{v} (discrete β)
end
/-- `pi_obj f` computes the product of a family of elements `f`.
(It is defined as an abbreviation for `limit (discrete.functor f)`,
so for most facts about `pi_obj f`, you will just use general facts about limits.) -/
abbreviation pi_obj (f : β → C) [has_product f] := limit (discrete.functor f)
/-- `sigma_obj f` computes the coproduct of a family of elements `f`.
(It is defined as an abbreviation for `colimit (discrete.functor f)`,
so for most facts about `sigma_obj f`, you will just use general facts about colimits.) -/
abbreviation sigma_obj (f : β → C) [has_coproduct f] := colimit (discrete.functor f)
notation `∏ ` f:20 := pi_obj f
notation `∐ ` f:20 := sigma_obj f
/-- The `b`-th projection from the pi object over `f` has the form `∏ f ⟶ f b`. -/
abbreviation pi.π (f : β → C) [has_product f] (b : β) : ∏ f ⟶ f b :=
limit.π (discrete.functor f) b
/-- The `b`-th inclusion into the sigma object over `f` has the form `f b ⟶ ∐ f`. -/
abbreviation sigma.ι (f : β → C) [has_coproduct f] (b : β) : f b ⟶ ∐ f :=
colimit.ι (discrete.functor f) b
/-- The fan constructed of the projections from the product is limiting. -/
def product_is_product (f : β → C) [has_product f] :
is_limit (fan.mk _ (pi.π f)) :=
is_limit.of_iso_limit (limit.is_limit (discrete.functor f)) (cones.ext (iso.refl _) (by tidy))
/-- A collection of morphisms `P ⟶ f b` induces a morphism `P ⟶ ∏ f`. -/
abbreviation pi.lift {f : β → C} [has_product f] {P : C} (p : Π b, P ⟶ f b) : P ⟶ ∏ f :=
limit.lift _ (fan.mk P p)
/-- A collection of morphisms `f b ⟶ P` induces a morphism `∐ f ⟶ P`. -/
abbreviation sigma.desc {f : β → C} [has_coproduct f] {P : C} (p : Π b, f b ⟶ P) : ∐ f ⟶ P :=
colimit.desc _ (cofan.mk P p)
/--
Construct a morphism between categorical products (indexed by the same type)
from a family of morphisms between the factors.
-/
abbreviation pi.map {f g : β → C} [has_product f] [has_product g]
(p : Π b, f b ⟶ g b) : ∏ f ⟶ ∏ g :=
lim_map (discrete.nat_trans p)
/--
Construct an isomorphism between categorical products (indexed by the same type)
from a family of isomorphisms between the factors.
-/
abbreviation pi.map_iso {f g : β → C} [has_products_of_shape β C]
(p : Π b, f b ≅ g b) : ∏ f ≅ ∏ g :=
lim.map_iso (discrete.nat_iso p)
/--
Construct a morphism between categorical coproducts (indexed by the same type)
from a family of morphisms between the factors.
-/
abbreviation sigma.map {f g : β → C} [has_coproduct f] [has_coproduct g]
(p : Π b, f b ⟶ g b) : ∐ f ⟶ ∐ g :=
colim_map (discrete.nat_trans p)
/--
Construct an isomorphism between categorical coproducts (indexed by the same type)
from a family of isomorphisms between the factors.
-/
abbreviation sigma.map_iso {f g : β → C} [has_coproducts_of_shape β C]
(p : Π b, f b ≅ g b) : ∐ f ≅ ∐ g :=
colim.map_iso (discrete.nat_iso p)
section comparison
variables {D : Type u₂} [category.{v} D] (G : C ⥤ D)
variables (f : β → C)
-- TODO: show this is an iso iff G preserves the product of f.
/-- The comparison morphism for the product of `f`. -/
def pi_comparison [has_product f] [has_product (λ b, G.obj (f b))] :
G.obj (∏ f) ⟶ ∏ (λ b, G.obj (f b)) :=
pi.lift (λ b, G.map (pi.π f b))
@[simp, reassoc]
lemma pi_comparison_comp_π [has_product f] [has_product (λ b, G.obj (f b))] (b : β) :
pi_comparison G f ≫ pi.π _ b = G.map (pi.π f b) :=
limit.lift_π _ b
@[simp, reassoc]
lemma map_lift_pi_comparison [has_product f] [has_product (λ b, G.obj (f b))]
(P : C) (g : Π j, P ⟶ f j) :
G.map (pi.lift g) ≫ pi_comparison G f = pi.lift (λ j, G.map (g j)) :=
by { ext, simp [← G.map_comp] }
-- TODO: show this is an iso iff G preserves the coproduct of f.
/-- The comparison morphism for the coproduct of `f`. -/
def sigma_comparison [has_coproduct f] [has_coproduct (λ b, G.obj (f b))] :
∐ (λ b, G.obj (f b)) ⟶ G.obj (∐ f) :=
sigma.desc (λ b, G.map (sigma.ι f b))
@[simp, reassoc]
lemma ι_comp_sigma_comparison [has_coproduct f] [has_coproduct (λ b, G.obj (f b))] (b : β) :
sigma.ι _ b ≫ sigma_comparison G f = G.map (sigma.ι f b) :=
colimit.ι_desc _ b
@[simp, reassoc]
lemma sigma_comparison_map_desc [has_coproduct f] [has_coproduct (λ b, G.obj (f b))]
(P : C) (g : Π j, f j ⟶ P) :
sigma_comparison G f ≫ G.map (sigma.desc g) = sigma.desc (λ j, G.map (g j)) :=
by { ext, simp [← G.map_comp] }
end comparison
variables (C)
/-- An abbreviation for `Π J, has_limits_of_shape (discrete J) C` -/
abbreviation has_products := Π (J : Type v), has_limits_of_shape (discrete J) C
/-- An abbreviation for `Π J, has_colimits_of_shape (discrete J) C` -/
abbreviation has_coproducts := Π (J : Type v), has_colimits_of_shape (discrete J) C
end category_theory.limits
|
fc61879cc56421a82c5e1741839bf1fe3bdeed1c
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/tactic/explode.lean
|
fa17d1f75abc38f61d4b127063a423c0992535ee
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,146
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Mario Carneiro, Minchao Wu
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.tactic.core
import Mathlib.PostPort
universes l
namespace Mathlib
/-!
# `#explode` command
Displays a proof term in a line by line format somewhat akin to a Fitch style
proof or the Metamath proof style.
-/
namespace tactic
namespace explode
inductive status
where
| reg : status
| intro : status
| lam : status
| sintro : status
/--
A type to distinguish introduction or elimination rules represented as
strings from theorems referred to by their names.
-/
/--
Turn a thm into a string.
-/
end explode
/--
`#explode decl_name` displays a proof term in a line-by-line format somewhat akin to a Fitch-style
proof or the Metamath proof style.
`#explode_widget decl_name` renders a widget that displays an `#explode` proof.
`#explode iff_true_intro` produces
```lean
iff_true_intro : ∀ {a : Prop}, a → (a ↔ true)
0│ │ a ├ Prop
1│ │ h ├ a
2│ │ hl │ ┌ a
3│ │ trivial │ │ true
4│2,3│ ∀I │ a → true
5│ │ hr │ ┌ true
6│5,1│ ∀I │ true → a
7│4,6│ iff.intro │ a ↔ true
8│1,7│ ∀I │ a → (a ↔ true)
9│0,8│ ∀I │ ∀ {a : Prop}, a → (a ↔ true)
```
In more detail:
The output of `#explode` is a Fitch-style proof in a four-column diagram modeled after Metamath
proof displays like [this](http://us.metamath.org/mpeuni/ru.html). The headers of the columns are
"Step", "Hyp", "Ref", "Type" (or "Expression" in the case of Metamath):
* Step: An increasing sequence of numbers to number each step in the proof, used in the Hyp field.
* Hyp: The direct children of the current step. Most theorems are implications like `A -> B -> C`,
and so on the step proving `C` the Hyp field will refer to the steps that prove `A` and `B`.
* Ref: The name of the theorem being applied. This is well-defined in Metamath, but in Lean there
are some special steps that may have long names because the structure of proof terms doesn't
exactly match this mold.
* If the theorem is `foo (x y : Z) : A x -> B y -> C x y`:
* the Ref field will contain `foo`,
* `x` and `y` will be suppressed, because term construction is not interesting, and
* the Hyp field will reference steps proving `A x` and `B y`. This corresponds to a proof term
like `@foo x y pA pB` where `pA` and `pB` are subproofs.
* If the head of the proof term is a local constant or lambda, then in this case the Ref will
say `∀E` for forall-elimination. This happens when you have for example `h : A -> B` and
`ha : A` and prove `b` by `h ha`; we reinterpret this as if it said `∀E h ha` where `∀E` is
(n-ary) modus ponens.
* If the proof term is a lambda, we will also use `∀I` for forall-introduction, referencing the
body of the lambda. The indentation level will increase, and a bracket will surround the proof
of the body of the lambda, starting at a proof step labeled with the name of the lambda variable
and its type, and ending with the `∀I` step. Metamath doesn't have steps like this, but the
style is based on Fitch proofs in first-order logic.
* Type: This contains the type of the proof term, the theorem being proven at the current step.
This proof layout differs from `#print` in using lots of intermediate step displays so that you
can follow along and don't have to see term construction steps because they are implicitly in the
intermediate step displays.
Also, it is common for a Lean theorem to begin with a sequence of lambdas introducing local
constants of the theorem. In order to minimize the indentation level, the `∀I` steps at the end of
the proof will be introduced in a group and the indentation will stay fixed. (The indentation
brackets are only needed in order to delimit the scope of assumptions, and these assumptions
have global scope anyway so detailed tracking is not necessary.)
-/
|
19b5ac0f0fa8f80eb341e71408b2b425cbd8709c
|
7bf54883c04ff2856c37f76a79599ceb380c1996
|
/non-mathlib/field_definition.lean
|
17400ceaa028f2826677fd8c2c5e57cc9f15918b
|
[] |
no_license
|
anonymousLeanDocsHosting/lean-polynomials
|
4094466bf19acc0d1a47b4cabb60d8c21ddb2b00
|
361ef4cb7b68ef47d43b85cfa2d13f2ea0a47613
|
refs/heads/main
| 1,691,112,899,935
| 1,631,819,522,000
| 1,631,819,522,000
| 405,448,439
| 0
| 2
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,540
|
lean
|
class myfld (f : Type) :=
(add : f -> f -> f)
(mul : f -> f -> f)
(negate : f -> f)
(zero : f)
(reciprocal : ∀ (x : f), (x ≠ zero) -> f) /- Reciprocal of zero is undefined.-/
(one : f)
(add_assoc : ∀ (x y z : f), (add x (add y z)) = (add (add x y) z))
(mul_assoc : ∀ (x y z : f), (mul x (mul y z)) = (mul (mul x y) z))
(add_comm : ∀ (x y : f), (add x y) = (add y x))
(mul_comm : ∀ (x y : f), (mul x y) = (mul y x))
(add_zero : ∀ (x : f), x = (add x zero))
(mul_one : ∀ (x : f), x = (mul x one))
(add_negate : ∀ (x : f), (add x (negate x)) = zero)
(mul_reciprocal : ∀ (x : f), ∀ (proof : x ≠ zero), (mul x (reciprocal x proof)) = one)
(distrib : ∀ (x y z : f), (add (mul x z) (mul y z)) = (mul (add x y) z))
(zero_distinct_one : one ≠ zero) /- By definition, 0 and 1 can't be the same element. -/
infix ` .+ `:1000000 := myfld.add
infix ` .* `:1000001 := myfld.mul
prefix ` .- `:1000002 := myfld.negate
def square (f : Type) [myfld f] : f -> f
| x := x .* x
@[simp] lemma add_comm (f : Type) [myfld f] (x y : f) : x .+ y = y .+ x :=
begin
exact (myfld.add_comm : ∀ (x y : f), (x .+ y) = (y .+ x)) x y,
end
@[simp] lemma one_mul_simp (f : Type) [myfld f] (x : f) : myfld.one .* x = x :=
begin
rw myfld.mul_comm, have h : x = x .* myfld.one, exact myfld.mul_one x, cc,
end
@[simp] lemma add_assoc (f : Type) [myfld f] (x y z : f) : ((x .+ y) .+ z) = (x .+ (y .+ z)) :=
begin
symmetry, exact myfld.add_assoc x y z,
end
@[simp] lemma mul_comm (f : Type) [myfld f] (x y : f) : x .* y = y .* x :=
begin
exact myfld.mul_comm x y,
end
@[simp] lemma mul_assoc (f : Type) [myfld f] (x y z : f) : ((x .* y) .* z) = (x .* (y .* z)) :=
begin
symmetry, exact myfld.mul_assoc x y z,
end
lemma zero_add (f : Type) [myfld f] (x : f) : x = (myfld.zero : f) .+ x :=
begin
rw add_comm f (myfld.zero : f) x,
exact (myfld.add_zero : ∀ (x : f), x = (x .+ myfld.zero)) x,
end
@[simp] lemma zero_simp (f : Type) [myfld f] (x : f) : (x .+ myfld.zero) = x :=
begin
symmetry, exact myfld.add_zero x,
end
@[simp] lemma simp_zero (f : Type) [myfld f] (x : f) : (myfld.zero .+ x) = x :=
begin
symmetry, exact zero_add f x,
end
@[simp] lemma distrib_simp (f : Type) [myfld f] (x y z : f) : ((x .+ y) .* z) = ((x .* z) .+ (y .* z)) :=
begin
symmetry, exact myfld.distrib x y z,
end
@[simp] lemma distrib_simp_alt (f : Type) [myfld f] (x y z : f) : (x .* (y .+ z)) = (x .* y) .+ (x .* z) :=
begin
rw myfld.mul_comm x (y .+ z), rw myfld.mul_comm x y, rw myfld.mul_comm x z,
exact distrib_simp f y z x,
end
@[simp] lemma one_mul (f : Type) [myfld f] (x : f) : (myfld.one : f) .* x = x :=
begin
rw (myfld.mul_comm), symmetry, exact (myfld.mul_one) x,
end
@[simp] lemma simp_mul_one (f : Type) [myfld f] (x : f) : x .* (myfld.one : f) = x :=
begin
rw myfld.mul_comm, exact one_mul f x,
end
@[simp] lemma add_negate_simp (f : Type) [myfld f] (x : f) : x .+ .-x = myfld.zero :=
begin
exact myfld.add_negate x,
end
@[simp] lemma add_negate_simp_alt (f : Type) [myfld f] (x : f) : (.- x) .+ x = myfld.zero :=
begin
rw myfld.add_comm (.- x) x, exact add_negate_simp f x,
end
@[simp] lemma mul_reciprocal (f : Type) [myfld f] (x : f) (proof : x ≠ myfld.zero) :
x .* (myfld.reciprocal x proof) = myfld.one :=
begin
exact myfld.mul_reciprocal x proof,
end
lemma equal_ne_zero (f : Type) [myfld f] (x y : f) : (x = y) -> (x ≠ myfld.zero) -> (y ≠ myfld.zero) :=
begin
intros h1 h2, rw h1 at h2, exact h2,
end
|
2c659c6202e6790ea4971e25178615f2521d92c9
|
ad0c7d243dc1bd563419e2767ed42fb323d7beea
|
/linear_algebra/linear_map_module.lean
|
59a84a1b7614387622d03d1c3d50e0c519a3980d
|
[
"Apache-2.0"
] |
permissive
|
sebzim4500/mathlib
|
e0b5a63b1655f910dee30badf09bd7e191d3cf30
|
6997cafbd3a7325af5cb318561768c316ceb7757
|
refs/heads/master
| 1,585,549,958,618
| 1,538,221,723,000
| 1,538,221,723,000
| 150,869,076
| 0
| 0
|
Apache-2.0
| 1,538,229,323,000
| 1,538,229,323,000
| null |
UTF-8
|
Lean
| false
| false
| 8,592
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Kenny Lau
Type of linear functions
-/
import linear_algebra.basic
linear_algebra.prod_module
linear_algebra.quotient_module
linear_algebra.subtype_module
noncomputable theory
local attribute [instance] classical.prop_decidable
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
/-- The type of linear maps `β → γ` between α-modules β and γ -/
def linear_map {α : Type u} (β : Type v) (γ : Type w) [ring α] [module α β] [module α γ] :=
subtype (@is_linear_map α β γ _ _ _)
namespace linear_map
variables [ring α] [module α β] [module α γ]
variables {r : α} {A B C : linear_map β γ} {x y : β}
include α
instance : has_coe_to_fun (linear_map β γ) := ⟨_, subtype.val⟩
theorem ext (h : ∀ x, A x = B x) : A = B := subtype.eq $ funext h
lemma is_linear_map_coe : is_linear_map A := A.property
@[simp] lemma map_add : A (x + y) = A x + A y := is_linear_map_coe.add x y
@[simp] lemma map_smul : A (r • x) = r • A x := is_linear_map_coe.smul r x
@[simp] lemma map_zero : A 0 = 0 := is_linear_map_coe.zero
@[simp] lemma map_neg : A (-x) = -A x := is_linear_map_coe.neg _
@[simp] lemma map_sub : A (x - y) = A x - A y := is_linear_map_coe.sub _ _
/- kernel -/
/-- Kernel of a linear map, i.e. the set of vectors mapped to zero by the map -/
def ker (A : linear_map β γ) : set β := {y | A y = 0}
section ker
@[simp] lemma mem_ker : x ∈ A.ker ↔ A x = 0 := iff.rfl
theorem ker_of_map_eq_map (h : A x = A y) : x - y ∈ A.ker :=
by rw [mem_ker, map_sub]; exact sub_eq_zero_of_eq h
theorem inj_of_trivial_ker (H : A.ker ⊆ {0}) (h : A x = A y) : x = y :=
eq_of_sub_eq_zero $ set.eq_of_mem_singleton $ H $ ker_of_map_eq_map h
variables (α A)
instance ker.is_submodule : is_submodule A.ker :=
{ zero_ := map_zero,
add_ := λ x y HU HV, by rw mem_ker at *; simp [HU, HV, mem_ker],
smul := λ r x HV, by rw mem_ker at *; simp [HV] }
theorem sub_ker (HU : x ∈ A.ker) (HV : y ∈ A.ker) : x - y ∈ A.ker :=
is_submodule.sub HU HV
end ker
/- image -/
/-- Image of a linear map, the set of vectors of the form `A x` for some β -/
def im (A : linear_map β γ) : set γ := {x | ∃ y, A y = x}
@[simp] lemma mem_im {A : linear_map β γ} {z : γ} :
z ∈ A.im ↔ ∃ y, A y = z := iff.rfl
instance im.is_submodule : is_submodule A.im :=
{ zero_ := ⟨0, map_zero⟩,
add_ := λ a b ⟨x, hx⟩ ⟨y, hy⟩, ⟨x + y, by simp [hx, hy]⟩,
smul := λ r a ⟨x, hx⟩, ⟨r • x, by simp [hx]⟩ }
/- equivalences -/
section
open is_submodule quotient_module
/-- first isomorphism law -/
def quot_ker_equiv_im (f : linear_map β γ) : (quotient β f.ker) ≃ₗ f.im :=
{ to_fun := quotient_module.quotient.lift _
(is_linear_map_subtype_mk f.1 f.2 $ assume b, ⟨b, rfl⟩) (assume b eq, subtype.eq eq),
inv_fun := λb, @quotient.mk _ (quotient_rel _) (classical.some b.2),
left_inv := assume b', @quotient.induction_on _ (quotient_rel _) _ b' $
begin
assume b,
apply quotient.sound,
apply classical.some_spec2 (λa, f (a - b) = 0),
show (∀a, f a = f b → f (a - b) = 0), simp {contextual := tt}
end,
right_inv := assume c, subtype.eq $ classical.some_spec2 (λa, f a = c) $ assume b, id,
linear_fun :=
is_linear_map_quotient_lift _ $ @is_linear_map_subtype_mk _ _ _ _ _ _ f.im _ f f.2 _ }
lemma is_submodule.add_left_iff {s : set β} [is_submodule s] {b₁ b₂ : β} (h₂ : b₂ ∈ s) :
b₁ + b₂ ∈ s ↔ b₁ ∈ s :=
iff.intro
(assume h,
have b₁ + b₂ - b₂ ∈ s, from is_submodule.sub h h₂,
by rwa [add_sub_cancel] at this)
(assume h₁, is_submodule.add h₁ h₂)
lemma is_submodule.neg_iff {s : set β} [is_submodule s] {b : β} :
- b ∈ s ↔ b ∈ s :=
iff.intro
(assume h,
have - - b ∈ s, from is_submodule.neg h,
by rwa [neg_neg] at this)
is_submodule.neg
/-- second isomorphism law -/
def union_quotient_equiv_quotient_inter {s t : set β} [is_submodule s] [is_submodule t] :
quotient s ((coe : s → β) ⁻¹' (s ∩ t)) ≃ₗ quotient (span (s ∪ t)) ((coe : span (s ∪ t) → β) ⁻¹' t) :=
let sel₁ : s → span (s ∪ t) := λb, ⟨(b : β), subset_span $ or.inl b.2⟩ in
have sel₁_val : ∀b:s, (sel₁ b : β) = b, from assume b, rfl,
have ∀b'∈span (s ∪ t), ∃x:s, ∃y∈t, b' = x.1 + y,
by simp [span_union, span_eq_of_is_submodule, _inst_4, _inst_5] {contextual := tt},
let sel₂ : span (s ∪ t) → s := λb', classical.some (this b'.1 b'.2) in
have sel₂_spec : ∀b':span (s ∪ t), ∃y∈t, (b' : β) = (sel₂ b' : β) + y,
from assume b', classical.some_spec (this b'.1 b'.2),
{ to_fun :=
begin
intro b,
fapply quotient.lift_on' b,
{ intro b', exact sel₁ b' },
{ assume b₁ b₂ h,
change b₁ - b₂ ∈ coe ⁻¹' (s ∩ t) at h,
apply quotient_module.eq.2, simp * at * }
end,
inv_fun :=
begin
intro b,
fapply quotient.lift_on' b,
{ intro b', exact sel₂ b' },
{ intros b₁ b₂ h,
change b₁ - b₂ ∈ _ at h,
rcases (sel₂_spec b₁) with ⟨c₁, hc₁, eq_c₁⟩,
rcases (sel₂_spec b₂) with ⟨c₂, hc₂, eq_c₂⟩,
have : ((sel₂ b₁ : β) - (sel₂ b₂ : β)) + (c₁ - c₂) ∈ t,
{ simpa [eq_c₁, eq_c₂, add_comm, add_left_comm, add_assoc] using h, },
have ht : (sel₂ b₁ : β) - (sel₂ b₂ : β) ∈ t,
{ rwa [is_submodule.add_left_iff (is_submodule.sub hc₁ hc₂)] at this },
have hs : (sel₂ b₁ : β) - (sel₂ b₂ : β) ∈ s,
{ from is_submodule.sub (sel₂ b₁).2 (sel₂ b₂).2 },
apply quotient_module.eq.2,
simp * at * }
end,
right_inv := assume b', quotient.induction_on' b'
begin
intro b, apply quotient_module.eq.2,
rcases (sel₂_spec b) with ⟨c, hc, eq_c⟩,
simp [eq_c, hc, is_submodule.neg_iff]
end,
left_inv := assume b', @quotient.induction_on _ (quotient_rel _) _ b'
begin
intro b, apply quotient_module.eq.2,
rcases (sel₂_spec (sel₁ b)) with ⟨c, hct, eq⟩,
have b_eq : (b : β) = c + (sel₂ (sel₁ b)),
{ simpa [sel₁_val] using eq },
have : (b : β) ∈ s, from b.2,
have hcs : c ∈ s,
{ rwa [b_eq, is_submodule.add_left_iff (sel₂ (sel₁ b)).mem] at this },
show (sel₂ (sel₁ b) - b : β) ∈ s ∩ t, { simp [b_eq, hct, hcs, is_submodule.neg_iff] }
end,
linear_fun := is_linear_map_quotient_lift _ $ (is_linear_map_quotient_mk _).comp $
is_linear_map_subtype_mk _ (is_submodule.is_linear_map_coe s) _ }
end
section add_comm_group
instance : has_add (linear_map β γ) := ⟨λhf hg, ⟨_, hf.2.map_add hg.2⟩⟩
instance : has_zero (linear_map β γ) := ⟨⟨_, is_linear_map.map_zero⟩⟩
instance : has_neg (linear_map β γ) := ⟨λhf, ⟨_, hf.2.map_neg⟩⟩
@[simp] lemma add_app : (A + B) x = A x + B x := rfl
@[simp] lemma zero_app : (0 : linear_map β γ) x = 0 := rfl
@[simp] lemma neg_app : (-A) x = -A x := rfl
instance : add_comm_group (linear_map β γ) :=
by refine {add := (+), zero := 0, neg := has_neg.neg, ..}; { intros, apply ext, simp }
end add_comm_group
end linear_map
namespace linear_map
variables [comm_ring α] [module α β] [module α γ]
instance : has_scalar α (linear_map β γ) := ⟨λr f, ⟨λb, r • f b, f.2.map_smul_right⟩⟩
@[simp] lemma smul_app {r : α} {x : β} {A : linear_map β γ} : (r • A) x = r • (A x) := rfl
variables (α β γ)
instance : module α (linear_map β γ) :=
by refine {smul := (•), ..linear_map.add_comm_group, ..};
{ intros, apply ext, simp [smul_add, add_smul, mul_smul] }
end linear_map
namespace module
variables [ring α] [module α β]
include α β
instance : has_one (linear_map β β) := ⟨⟨id, is_linear_map.id⟩⟩
instance : has_mul (linear_map β β) := ⟨λf g, ⟨_, is_linear_map.comp f.2 g.2⟩⟩
@[simp] lemma one_app (x : β) : (1 : linear_map β β) x = x := rfl
@[simp] lemma mul_app (A B : linear_map β β) (x : β) : (A * B) x = A (B x) := rfl
variables (α β)
-- declaring this an instance breaks `real.lean` with reaching max. instance resolution depth
def endomorphism_ring : ring (linear_map β β) :=
by refine {mul := (*), one := 1, ..linear_map.add_comm_group, ..};
{ intros, apply linear_map.ext, simp }
/-- The group of invertible linear maps from `β` to itself -/
def general_linear_group :=
by haveI := endomorphism_ring α β; exact units (linear_map β β)
end module
|
62ba0281145cbbe81858b13e39e2a12fa6f1b232
|
492a7e27d49633a89f7ce6e1e28f676b062fcbc9
|
/src/monoidal_categories_reboot/examples/products.lean
|
c3ce939a94064e81132bbba180b499380d9abdc7
|
[
"Apache-2.0"
] |
permissive
|
semorrison/monoidal-categories-reboot
|
9edba30277de48a234b63813cf85b171772ce36f
|
48b5f1d535daba4e591672042a298ac36be2e6dd
|
refs/heads/master
| 1,642,472,396,149
| 1,560,587,477,000
| 1,560,587,477,000
| 156,465,626
| 0
| 1
| null | 1,541,549,278,000
| 1,541,549,278,000
| null |
UTF-8
|
Lean
| false
| false
| 3,800
|
lean
|
-- has_binary_products etc is still missing from mathlib :-(
-- -- Copyright (c) 2018 Scott Morrison. All rights reserved.
-- -- Released under Apache 2.0 license as described in the file LICENSE.
-- -- Authors: Scott Morrison
-- import category_theory.limits.binary_products
-- import category_theory.limits.terminal
-- import category_theory.limits.types
-- import ..braided_monoidal_category
-- open category_theory
-- open category_theory.monoidal
-- universes u v
-- @[obviously] meta def obviously_products := tactic.tidy { tactics := extended_tidy_tactics }
-- namespace category_theory.limits
-- attribute [search] prod.lift_fst prod.lift_snd prod.map_fst prod.map_snd
-- variables {C : Type u} [𝒞 : category.{v} C]
-- [has_binary_products.{u v} C] [has_terminal.{u v} C]
-- include 𝒞
-- @[simp] def binary_product.braiding (P Q : C) : limits.prod P Q ≅ limits.prod Q P :=
-- { hom := prod.lift (prod.snd P Q) (prod.fst P Q),
-- inv := prod.lift (prod.snd Q P) (prod.fst Q P) }
-- def binary_product.symmetry (P Q : C) :
-- (binary_product.braiding P Q).hom ≫ (binary_product.braiding Q P).hom = 𝟙 _ :=
-- by tidy
-- @[simp] def binary_product.associativity
-- (P Q R : C) : (limits.prod (limits.prod P Q) R) ≅ (limits.prod P (limits.prod Q R)) :=
-- { hom :=
-- prod.lift
-- (prod.fst _ _ ≫ prod.fst _ _)
-- (prod.lift (prod.fst _ _ ≫ prod.snd _ _) (prod.snd _ _)),
-- inv :=
-- prod.lift
-- (prod.lift (prod.fst _ _) (prod.snd _ _ ≫ prod.fst _ _))
-- (prod.snd _ _ ≫ prod.snd _ _) }
-- @[simp] def binary_product.left_unitor
-- (P : C) : (limits.prod (terminal.{u v} C) P) ≅ P :=
-- { hom := prod.snd _ _,
-- inv := prod.lift (terminal.from P) (𝟙 _) }
-- @[simp] def binary_product.right_unitor
-- (P : C) : (limits.prod P (terminal.{u v} C)) ≅ P :=
-- { hom := prod.fst _ _,
-- inv := prod.lift (𝟙 _) (terminal.from P) }
-- end category_theory.limits
-- open category_theory.limits
-- namespace category_theory.monoidal
-- variables (C : Type u) [𝒞 : category.{v} C] [has_products.{u v} C]
-- include 𝒞
-- instance : has_binary_products.{u v} C := has_binary_products_of_has_products
-- instance : has_terminal.{u v} C := has_terminal_of_has_products C
-- -- TODO extract the rewrite proofs obviously produces below.
-- def monoidal_of_has_products : monoidal_category.{v} C :=
-- { tensor_obj := λ X Y, limits.prod X Y,
-- tensor_hom := λ _ _ _ _ f g, limits.prod.map f g,
-- tensor_unit := terminal C,
-- associator := binary_product.associativity,
-- left_unitor := binary_product.left_unitor,
-- right_unitor := binary_product.right_unitor,
-- tensor_map_id' := sorry, -- works `by obviously`
-- tensor_map_comp' := sorry, -- works `by obviously`
-- associator_naturality' := sorry, -- works `by obviously`
-- left_unitor_naturality' := sorry, -- works `by obviously
-- right_unitor_naturality' := sorry, -- works `by obviously
-- pentagon' := sorry, -- works `by obviously`, but slow,
-- triangle' := sorry, -- works `by obviously`
-- }
-- def braided_monoidal_of_has_products : braided_monoidal_category.{v} C :=
-- { braiding := binary_product.braiding,
-- braiding_naturality' := sorry, -- works `by obviously`
-- hexagon_forward' := sorry, -- works `by obviously`, but slow,
-- hexagon_reverse' := sorry, -- works `by obviously`, but slow
-- .. monoidal_of_has_products C
-- }
-- def symmetric_monoidal_of_has_products : symmetric_monoidal_category.{v} C :=
-- { symmetry' := binary_product.symmetry,
-- .. braided_monoidal_of_has_products C }
-- end category_theory.monoidal
-- open category_theory.monoidal
-- instance Type_symmetric : symmetric_monoidal_category.{u+1 u} (Type u) :=
-- symmetric_monoidal_of_has_products (Type u)
|
fb310c208810b0eba1bd04a95c818d80f9067f8c
|
69bc7d0780be17e452d542a93f9599488f1c0c8e
|
/10-29-2019.lean
|
ea55f375e1ba337ccc4359cd038390f08d73ac16
|
[] |
no_license
|
joek13/cs2102-notes
|
b7352285b1d1184fae25594f89f5926d74e6d7b4
|
25bb18788641b20af9cf3c429afe1da9b2f5eafb
|
refs/heads/master
| 1,673,461,162,867
| 1,575,561,090,000
| 1,575,561,090,000
| 207,573,549
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,975
|
lean
|
-- Notes 10/29/2019
/-
Moving from propositional logic to predicate logic
Over what values do variables range in prop. logic? → true and false
In predicate logic, variables range over arbitrary domains.
∀ p: Person, ∃ q: Person, p likes q
"For every person p, there exists a person q such that p likes q" → "everyone likes someone"
∃ p: Person, ∀ q: Person, p likes q
"someone likes everyone"
∃ p: Person, ∀ q: Person, ¬ (q likes p)
"there exists someone who everybody dislikes"
"everyone dislikes someone"
∀ p, ∃ q, ¬ likes p q
Propositions & existential quantifiers
(∃ p, ∀ q, ¬likes q p) → ¬likes p p
if everybody dislikes p, then p dislikes themselves
We need a way to reason with predicate logic and propositions
How do we verify whether a predicate logic propositions are true?
Proof!
We can use our logical rules of deduction to reason about whether proofs are valid
IFF introduction:
If we have a proof of P and a proof of Q, we have a proof of P ∧ Q
If we have a proof of P ∧ Q, we have a proof of P and we have a proof of Q
If we need to prove P ↔ Q, it suffices to prove P ⇒ Q and Q ⇒ P
Syllogism:
To prove P ⇒ R, it suffices to show that
P ⇒ Q and Q ⇒ R
Can we automatically prove these?
-/
-- Remember the "day" inductive?
inductive day : Type
| monday
| tuesday
| wednesday
| thursday
| friday
| saturday
| sunday
def is_weekend : day → bool
| day.saturday := tt
| day.sunday := tt
| _ := ff
def is_weekday : day → bool := λ d, ¬is_weekend d
inductive emily_is_from_cville : Prop
-- the constructors for this prop are types of proofs
-- these are axioms: they are accepted to be true without further truth
| drivers_license
| passport
| utility_bill
open emily_is_from_cville
def a_proof : emily_is_from_cville := drivers_license -- axiomatically, we accept that a drivers' license is sufficient to conclude that emily is from cville
theorem a_proof' : emily_is_from_cville := passport
|
38d6978c57c5ce0ebe1943acc131b9a00b5d2e9d
|
4efff1f47634ff19e2f786deadd394270a59ecd2
|
/src/tactic/norm_num.lean
|
5293f0ba2ee0160017e43637f1092db5bd5f06f2
|
[
"Apache-2.0"
] |
permissive
|
agjftucker/mathlib
|
d634cd0d5256b6325e3c55bb7fb2403548371707
|
87fe50de17b00af533f72a102d0adefe4a2285e8
|
refs/heads/master
| 1,625,378,131,941
| 1,599,166,526,000
| 1,599,166,526,000
| 160,748,509
| 0
| 0
|
Apache-2.0
| 1,544,141,789,000
| 1,544,141,789,000
| null |
UTF-8
|
Lean
| false
| false
| 62,097
|
lean
|
/-
Copyright (c) 2017 Simon Hudon All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Mario Carneiro
-/
import data.rat.cast
import data.rat.meta_defs
/-!
# `norm_num`
Evaluating arithmetic expressions including *, +, -, ^, ≤
-/
universes u v w
namespace tactic
/-- Reflexivity conversion: given `e` returns `(e, ⊢ e = e)` -/
meta def refl_conv (e : expr) : tactic (expr × expr) :=
do p ← mk_eq_refl e, return (e, p)
/-- Transitivity conversion: given two conversions (which take an
expression `e` and returns `(e', ⊢ e = e')`), produces another
conversion that combines them with transitivity, treating failures
as reflexivity conversions. -/
meta def trans_conv (t₁ t₂ : expr → tactic (expr × expr)) (e : expr) :
tactic (expr × expr) :=
(do (e₁, p₁) ← t₁ e,
(do (e₂, p₂) ← t₂ e₁,
p ← mk_eq_trans p₁ p₂, return (e₂, p)) <|>
return (e₁, p₁)) <|> t₂ e
namespace instance_cache
/-- Faster version of `mk_app ``bit0 [e]`. -/
meta def mk_bit0 (c : instance_cache) (e : expr) : tactic (instance_cache × expr) :=
do (c, ai) ← c.get ``has_add,
return (c, (expr.const ``bit0 [c.univ]).mk_app [c.α, ai, e])
/-- Faster version of `mk_app ``bit1 [e]`. -/
meta def mk_bit1 (c : instance_cache) (e : expr) : tactic (instance_cache × expr) :=
do (c, ai) ← c.get ``has_add,
(c, oi) ← c.get ``has_one,
return (c, (expr.const ``bit1 [c.univ]).mk_app [c.α, oi, ai, e])
end instance_cache
end tactic
open tactic
namespace norm_num
variable {α : Type u}
lemma subst_into_add {α} [has_add α] (l r tl tr t)
(prl : (l : α) = tl) (prr : r = tr) (prt : tl + tr = t) : l + r = t :=
by rw [prl, prr, prt]
lemma subst_into_mul {α} [has_mul α] (l r tl tr t)
(prl : (l : α) = tl) (prr : r = tr) (prt : tl * tr = t) : l * r = t :=
by rw [prl, prr, prt]
lemma subst_into_neg {α} [has_neg α] (a ta t : α) (pra : a = ta) (prt : -ta = t) : -a = t :=
by simp [pra, prt]
/-- The result type of `match_numeral`, either `0`, `1`, or a top level
decomposition of `bit0 e` or `bit1 e`. The `other` case means it is not a numeral. -/
meta inductive match_numeral_result
| zero | one | bit0 (e : expr) | bit1 (e : expr) | other
/-- Unfold the top level constructor of the numeral expression. -/
meta def match_numeral : expr → match_numeral_result
| `(bit0 %%e) := match_numeral_result.bit0 e
| `(bit1 %%e) := match_numeral_result.bit1 e
| `(@has_zero.zero _ _) := match_numeral_result.zero
| `(@has_one.one _ _) := match_numeral_result.one
| _ := match_numeral_result.other
theorem zero_succ {α} [semiring α] : (0 + 1 : α) = 1 := zero_add _
theorem one_succ {α} [semiring α] : (1 + 1 : α) = 2 := rfl
theorem bit0_succ {α} [semiring α] (a : α) : bit0 a + 1 = bit1 a := rfl
theorem bit1_succ {α} [semiring α] (a b : α) (h : a + 1 = b) : bit1 a + 1 = bit0 b :=
h ▸ by simp [bit1, bit0, add_left_comm, add_assoc]
section
open match_numeral_result
/-- Given `a`, `b` natural numerals, proves `⊢ a + 1 = b`, assuming that this is provable.
(It may prove garbage instead of failing if `a + 1 = b` is false.) -/
meta def prove_succ : instance_cache → expr → expr → tactic (instance_cache × expr)
| c e r := match match_numeral e with
| zero := c.mk_app ``zero_succ []
| one := c.mk_app ``one_succ []
| bit0 e := c.mk_app ``bit0_succ [e]
| bit1 e := do
let r := r.app_arg,
(c, p) ← prove_succ c e r,
c.mk_app ``bit1_succ [e, r, p]
| _ := failed
end
end
theorem zero_adc {α} [semiring α] (a b : α) (h : a + 1 = b) : 0 + a + 1 = b := by rwa zero_add
theorem adc_zero {α} [semiring α] (a b : α) (h : a + 1 = b) : a + 0 + 1 = b := by rwa add_zero
theorem one_add {α} [semiring α] (a b : α) (h : a + 1 = b) : 1 + a = b := by rwa add_comm
theorem add_bit0_bit0 {α} [semiring α] (a b c : α) (h : a + b = c) : bit0 a + bit0 b = bit0 c :=
h ▸ by simp [bit0, add_left_comm, add_assoc]
theorem add_bit0_bit1 {α} [semiring α] (a b c : α) (h : a + b = c) : bit0 a + bit1 b = bit1 c :=
h ▸ by simp [bit0, bit1, add_left_comm, add_assoc]
theorem add_bit1_bit0 {α} [semiring α] (a b c : α) (h : a + b = c) : bit1 a + bit0 b = bit1 c :=
h ▸ by simp [bit0, bit1, add_left_comm, add_comm]
theorem add_bit1_bit1 {α} [semiring α] (a b c : α) (h : a + b + 1 = c) : bit1 a + bit1 b = bit0 c :=
h ▸ by simp [bit0, bit1, add_left_comm, add_comm]
theorem adc_one_one {α} [semiring α] : (1 + 1 + 1 : α) = 3 := rfl
theorem adc_bit0_one {α} [semiring α] (a b : α) (h : a + 1 = b) : bit0 a + 1 + 1 = bit0 b :=
h ▸ by simp [bit0, add_left_comm, add_assoc]
theorem adc_one_bit0 {α} [semiring α] (a b : α) (h : a + 1 = b) : 1 + bit0 a + 1 = bit0 b :=
h ▸ by simp [bit0, add_left_comm, add_assoc]
theorem adc_bit1_one {α} [semiring α] (a b : α) (h : a + 1 = b) : bit1 a + 1 + 1 = bit1 b :=
h ▸ by simp [bit1, bit0, add_left_comm, add_assoc]
theorem adc_one_bit1 {α} [semiring α] (a b : α) (h : a + 1 = b) : 1 + bit1 a + 1 = bit1 b :=
h ▸ by simp [bit1, bit0, add_left_comm, add_assoc]
theorem adc_bit0_bit0 {α} [semiring α] (a b c : α) (h : a + b = c) : bit0 a + bit0 b + 1 = bit1 c :=
h ▸ by simp [bit1, bit0, add_left_comm, add_assoc]
theorem adc_bit1_bit0 {α} [semiring α] (a b c : α) (h : a + b + 1 = c) : bit1 a + bit0 b + 1 = bit0 c :=
h ▸ by simp [bit1, bit0, add_left_comm, add_assoc]
theorem adc_bit0_bit1 {α} [semiring α] (a b c : α) (h : a + b + 1 = c) : bit0 a + bit1 b + 1 = bit0 c :=
h ▸ by simp [bit1, bit0, add_left_comm, add_assoc]
theorem adc_bit1_bit1 {α} [semiring α] (a b c : α) (h : a + b + 1 = c) : bit1 a + bit1 b + 1 = bit1 c :=
h ▸ by simp [bit1, bit0, add_left_comm, add_assoc]
section
open match_numeral_result
meta mutual def prove_add_nat, prove_adc_nat
with prove_add_nat : instance_cache → expr → expr → expr → tactic (instance_cache × expr)
| c a b r := do
match match_numeral a, match_numeral b with
| zero, _ := c.mk_app ``zero_add [b]
| _, zero := c.mk_app ``add_zero [a]
| _, one := prove_succ c a r
| one, _ := do (c, p) ← prove_succ c b r, c.mk_app ``one_add [b, r, p]
| bit0 a, bit0 b := do let r := r.app_arg, (c, p) ← prove_add_nat c a b r, c.mk_app ``add_bit0_bit0 [a, b, r, p]
| bit0 a, bit1 b := do let r := r.app_arg, (c, p) ← prove_add_nat c a b r, c.mk_app ``add_bit0_bit1 [a, b, r, p]
| bit1 a, bit0 b := do let r := r.app_arg, (c, p) ← prove_add_nat c a b r, c.mk_app ``add_bit1_bit0 [a, b, r, p]
| bit1 a, bit1 b := do let r := r.app_arg, (c, p) ← prove_adc_nat c a b r, c.mk_app ``add_bit1_bit1 [a, b, r, p]
| _, _ := failed
end
with prove_adc_nat : instance_cache → expr → expr → expr → tactic (instance_cache × expr)
| c a b r := do
match match_numeral a, match_numeral b with
| zero, _ := do (c, p) ← prove_succ c b r, c.mk_app ``zero_adc [b, r, p]
| _, zero := do (c, p) ← prove_succ c b r, c.mk_app ``adc_zero [b, r, p]
| one, one := c.mk_app ``adc_one_one []
| bit0 a, one := do let r := r.app_arg, (c, p) ← prove_succ c a r, c.mk_app ``adc_bit0_one [a, r, p]
| one, bit0 b := do let r := r.app_arg, (c, p) ← prove_succ c b r, c.mk_app ``adc_one_bit0 [b, r, p]
| bit1 a, one := do let r := r.app_arg, (c, p) ← prove_succ c a r, c.mk_app ``adc_bit1_one [a, r, p]
| one, bit1 b := do let r := r.app_arg, (c, p) ← prove_succ c b r, c.mk_app ``adc_one_bit1 [b, r, p]
| bit0 a, bit0 b := do let r := r.app_arg, (c, p) ← prove_add_nat c a b r, c.mk_app ``adc_bit0_bit0 [a, b, r, p]
| bit0 a, bit1 b := do let r := r.app_arg, (c, p) ← prove_adc_nat c a b r, c.mk_app ``adc_bit0_bit1 [a, b, r, p]
| bit1 a, bit0 b := do let r := r.app_arg, (c, p) ← prove_adc_nat c a b r, c.mk_app ``adc_bit1_bit0 [a, b, r, p]
| bit1 a, bit1 b := do let r := r.app_arg, (c, p) ← prove_adc_nat c a b r, c.mk_app ``adc_bit1_bit1 [a, b, r, p]
| _, _ := failed
end
/-- Given `a`,`b`,`r` natural numerals, proves `⊢ a + b = r`. -/
add_decl_doc prove_add_nat
/-- Given `a`,`b`,`r` natural numerals, proves `⊢ a + b + 1 = r`. -/
add_decl_doc prove_adc_nat
/-- Given `a`,`b` natural numerals, returns `(r, ⊢ a + b = r)`. -/
meta def prove_add_nat' (c : instance_cache) (a b : expr) : tactic (instance_cache × expr × expr) := do
na ← a.to_nat,
nb ← b.to_nat,
(c, r) ← c.of_nat (na + nb),
(c, p) ← prove_add_nat c a b r,
return (c, r, p)
end
theorem bit0_mul {α} [semiring α] (a b c : α) (h : a * b = c) :
bit0 a * b = bit0 c := h ▸ by simp [bit0, add_mul]
theorem mul_bit0' {α} [semiring α] (a b c : α) (h : a * b = c) :
a * bit0 b = bit0 c := h ▸ by simp [bit0, mul_add]
theorem mul_bit0_bit0 {α} [semiring α] (a b c : α) (h : a * b = c) :
bit0 a * bit0 b = bit0 (bit0 c) := bit0_mul _ _ _ (mul_bit0' _ _ _ h)
theorem mul_bit1_bit1 {α} [semiring α] (a b c d e : α)
(hc : a * b = c) (hd : a + b = d) (he : bit0 c + d = e) :
bit1 a * bit1 b = bit1 e :=
by rw [← he, ← hd, ← hc]; simp [bit1, bit0, mul_add, add_mul, add_left_comm, add_assoc]
section
open match_numeral_result
/-- Given `a`,`b` natural numerals, returns `(r, ⊢ a * b = r)`. -/
meta def prove_mul_nat : instance_cache → expr → expr → tactic (instance_cache × expr × expr)
| ic a b :=
match match_numeral a, match_numeral b with
| zero, _ := do
(ic, z) ← ic.mk_app ``has_zero.zero [],
(ic, p) ← ic.mk_app ``zero_mul [b],
return (ic, z, p)
| _, zero := do
(ic, z) ← ic.mk_app ``has_zero.zero [],
(ic, p) ← ic.mk_app ``mul_zero [a],
return (ic, z, p)
| one, _ := do (ic, p) ← ic.mk_app ``one_mul [b], return (ic, b, p)
| _, one := do (ic, p) ← ic.mk_app ``mul_one [a], return (ic, a, p)
| bit0 a, bit0 b := do
(ic, c, p) ← prove_mul_nat ic a b,
(ic, p) ← ic.mk_app ``mul_bit0_bit0 [a, b, c, p],
(ic, c') ← ic.mk_bit0 c,
(ic, c') ← ic.mk_bit0 c',
return (ic, c', p)
| bit0 a, _ := do
(ic, c, p) ← prove_mul_nat ic a b,
(ic, p) ← ic.mk_app ``bit0_mul [a, b, c, p],
(ic, c') ← ic.mk_bit0 c,
return (ic, c', p)
| _, bit0 b := do
(ic, c, p) ← prove_mul_nat ic a b,
(ic, p) ← ic.mk_app ``mul_bit0' [a, b, c, p],
(ic, c') ← ic.mk_bit0 c,
return (ic, c', p)
| bit1 a, bit1 b := do
(ic, c, pc) ← prove_mul_nat ic a b,
(ic, d, pd) ← prove_add_nat' ic a b,
(ic, c') ← ic.mk_bit0 c,
(ic, e, pe) ← prove_add_nat' ic c' d,
(ic, p) ← ic.mk_app ``mul_bit1_bit1 [a, b, c, d, e, pc, pd, pe],
(ic, e') ← ic.mk_bit1 e,
return (ic, e', p)
| _, _ := failed
end
end
section
open match_numeral_result
/-- Given `a` a positive natural numeral, returns `⊢ 0 < a`. -/
meta def prove_pos_nat (c : instance_cache) : expr → tactic (instance_cache × expr)
| e :=
match match_numeral e with
| one := c.mk_app ``zero_lt_one []
| bit0 e := do (c, p) ← prove_pos_nat e, c.mk_app ``bit0_pos [e, p]
| bit1 e := do (c, p) ← prove_pos_nat e, c.mk_app ``bit1_pos' [e, p]
| _ := failed
end
end
/-- Given `a` a rational numeral, returns `⊢ 0 < a`. -/
meta def prove_pos (c : instance_cache) : expr → tactic (instance_cache × expr)
| `(%%e₁ / %%e₂) := do
(c, p₁) ← prove_pos_nat c e₁, (c, p₂) ← prove_pos_nat c e₂,
c.mk_app ``div_pos [e₁, e₂, p₁, p₂]
| e := prove_pos_nat c e
/-- `match_neg (- e) = some e`, otherwise `none` -/
meta def match_neg : expr → option expr
| `(- %%e) := some e
| _ := none
/-- `match_sign (- e) = inl e`, `match_sign 0 = inr ff`, otherwise `inr tt` -/
meta def match_sign : expr → expr ⊕ bool
| `(- %%e) := sum.inl e
| `(has_zero.zero) := sum.inr ff
| _ := sum.inr tt
theorem ne_zero_of_pos {α} [ordered_add_comm_group α] (a : α) : 0 < a → a ≠ 0 := ne_of_gt
theorem ne_zero_neg {α} [add_group α] (a : α) : a ≠ 0 → -a ≠ 0 := mt neg_eq_zero.1
/-- Given `a` a rational numeral, returns `⊢ a ≠ 0`. -/
meta def prove_ne_zero (c : instance_cache) : expr → tactic (instance_cache × expr)
| a :=
match match_neg a with
| some a := do (c, p) ← prove_ne_zero a, c.mk_app ``ne_zero_neg [a, p]
| none := do (c, p) ← prove_pos c a, c.mk_app ``ne_zero_of_pos [a, p]
end
theorem clear_denom_div {α} [division_ring α] (a b b' c d : α)
(h₀ : b ≠ 0) (h₁ : b * b' = d) (h₂ : a * b' = c) : (a / b) * d = c :=
by rwa [← h₁, ← mul_assoc, div_mul_cancel _ h₀]
/-- Given `a` nonnegative rational and `d` a natural number, returns `(b, ⊢ a * d = b)`.
(`d` should be a multiple of the denominator of `a`, so that `b` is a natural number.) -/
meta def prove_clear_denom (c : instance_cache) (a d : expr) (na : ℚ) (nd : ℕ) : tactic (instance_cache × expr × expr) :=
if na.denom = 1 then
prove_mul_nat c a d
else do
[_, _, a, b] ← return a.get_app_args,
(c, b') ← c.of_nat (nd / na.denom),
(c, p₀) ← prove_ne_zero c b,
(c, _, p₁) ← prove_mul_nat c b b',
(c, r, p₂) ← prove_mul_nat c a b',
(c, p) ← c.mk_app ``clear_denom_div [a, b, b', r, d, p₀, p₁, p₂],
return (c, r, p)
theorem clear_denom_add {α} [division_ring α] (a a' b b' c c' d : α)
(h₀ : d ≠ 0) (ha : a * d = a') (hb : b * d = b') (hc : c * d = c')
(h : a' + b' = c') : a + b = c :=
mul_right_cancel' h₀ $ by rwa [add_mul, ha, hb, hc]
/-- Given `a`,`b`,`c` nonnegative rational numerals, returns `⊢ a + b = c`. -/
meta def prove_add_nonneg_rat (ic : instance_cache) (a b c : expr) (na nb nc : ℚ) : tactic (instance_cache × expr) :=
if na.denom = 1 ∧ nb.denom = 1 then
prove_add_nat ic a b c
else do
let nd := na.denom.lcm nb.denom,
(ic, d) ← ic.of_nat nd,
(ic, p₀) ← prove_ne_zero ic d,
(ic, a', pa) ← prove_clear_denom ic a d na nd,
(ic, b', pb) ← prove_clear_denom ic b d nb nd,
(ic, c', pc) ← prove_clear_denom ic c d nc nd,
(ic, p) ← prove_add_nat ic a' b' c',
ic.mk_app ``clear_denom_add [a, a', b, b', c, c', d, p₀, pa, pb, pc, p]
theorem add_pos_neg_pos {α} [add_group α] (a b c : α) (h : c + b = a) : a + -b = c :=
h ▸ by simp
theorem add_pos_neg_neg {α} [add_group α] (a b c : α) (h : c + a = b) : a + -b = -c :=
h ▸ by simp
theorem add_neg_pos_pos {α} [add_group α] (a b c : α) (h : a + c = b) : -a + b = c :=
h ▸ by simp
theorem add_neg_pos_neg {α} [add_group α] (a b c : α) (h : b + c = a) : -a + b = -c :=
h ▸ by simp
theorem add_neg_neg {α} [add_group α] (a b c : α) (h : b + a = c) : -a + -b = -c :=
h ▸ by simp
/-- Given `a`,`b`,`c` rational numerals, returns `⊢ a + b = c`. -/
meta def prove_add_rat (ic : instance_cache) (ea eb ec : expr) (a b c : ℚ) : tactic (instance_cache × expr) :=
match match_neg ea, match_neg eb, match_neg ec with
| some ea, some eb, some ec := do
(ic, p) ← prove_add_nonneg_rat ic eb ea ec (-b) (-a) (-c),
ic.mk_app ``add_neg_neg [ea, eb, ec, p]
| some ea, none, some ec := do
(ic, p) ← prove_add_nonneg_rat ic eb ec ea b (-c) (-a),
ic.mk_app ``add_neg_pos_neg [ea, eb, ec, p]
| some ea, none, none := do
(ic, p) ← prove_add_nonneg_rat ic ea ec eb (-a) c b,
ic.mk_app ``add_neg_pos_pos [ea, eb, ec, p]
| none, some eb, some ec := do
(ic, p) ← prove_add_nonneg_rat ic ec ea eb (-c) a (-b),
ic.mk_app ``add_pos_neg_neg [ea, eb, ec, p]
| none, some eb, none := do
(ic, p) ← prove_add_nonneg_rat ic ec eb ea c (-b) a,
ic.mk_app ``add_pos_neg_pos [ea, eb, ec, p]
| _, _, _ := prove_add_nonneg_rat ic ea eb ec a b c
end
/-- Given `a`,`b` rational numerals, returns `(c, ⊢ a + b = c)`. -/
meta def prove_add_rat' (ic : instance_cache) (a b : expr) : tactic (instance_cache × expr × expr) := do
na ← a.to_rat,
nb ← b.to_rat,
let nc := na + nb,
(ic, c) ← ic.of_rat nc,
(ic, p) ← prove_add_rat ic a b c na nb nc,
return (ic, c, p)
theorem clear_denom_simple_nat {α} [division_ring α] (a : α) :
(1:α) ≠ 0 ∧ a * 1 = a := ⟨one_ne_zero, mul_one _⟩
theorem clear_denom_simple_div {α} [division_ring α] (a b : α) (h : b ≠ 0) :
b ≠ 0 ∧ a / b * b = a := ⟨h, div_mul_cancel _ h⟩
/-- Given `a` a nonnegative rational numeral, returns `(b, c, ⊢ a * b = c)`
where `b` and `c` are natural numerals. (`b` will be the denominator of `a`.) -/
meta def prove_clear_denom_simple (c : instance_cache) (a : expr) (na : ℚ) : tactic (instance_cache × expr × expr × expr) :=
if na.denom = 1 then do
(c, d) ← c.mk_app ``has_one.one [],
(c, p) ← c.mk_app ``clear_denom_simple_nat [a],
return (c, d, a, p)
else do
[α, _, a, b] ← return a.get_app_args,
(c, p₀) ← prove_ne_zero c b,
(c, p) ← c.mk_app ``clear_denom_simple_div [a, b, p₀],
return (c, b, a, p)
theorem clear_denom_mul {α} [field α] (a a' b b' c c' d₁ d₂ d : α)
(ha : d₁ ≠ 0 ∧ a * d₁ = a') (hb : d₂ ≠ 0 ∧ b * d₂ = b')
(hc : c * d = c') (hd : d₁ * d₂ = d)
(h : a' * b' = c') : a * b = c :=
mul_right_cancel' ha.1 $ mul_right_cancel' hb.1 $
by rw [mul_assoc c, hd, hc, ← h, ← ha.2, ← hb.2, ← mul_assoc, mul_right_comm a]
/-- Given `a`,`b` nonnegative rational numerals, returns `(c, ⊢ a * b = c)`. -/
meta def prove_mul_nonneg_rat (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr × expr) :=
if na.denom = 1 ∧ nb.denom = 1 then
prove_mul_nat ic a b
else do
let nc := na * nb, (ic, c) ← ic.of_rat nc,
(ic, d₁, a', pa) ← prove_clear_denom_simple ic a na,
(ic, d₂, b', pb) ← prove_clear_denom_simple ic b nb,
(ic, d, pd) ← prove_mul_nat ic d₁ d₂, nd ← d.to_nat,
(ic, c', pc) ← prove_clear_denom ic c d nc nd,
(ic, _, p) ← prove_mul_nat ic a' b',
(ic, p) ← ic.mk_app ``clear_denom_mul [a, a', b, b', c, c', d₁, d₂, d, pa, pb, pc, pd, p],
return (ic, c, p)
theorem mul_neg_pos {α} [ring α] (a b c : α) (h : a * b = c) : -a * b = -c := h ▸ by simp
theorem mul_pos_neg {α} [ring α] (a b c : α) (h : a * b = c) : a * -b = -c := h ▸ by simp
theorem mul_neg_neg {α} [ring α] (a b c : α) (h : a * b = c) : -a * -b = c := h ▸ by simp
/-- Given `a`,`b` rational numerals, returns `(c, ⊢ a * b = c)`. -/
meta def prove_mul_rat (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr × expr) :=
match match_sign a, match_sign b with
| sum.inl a, sum.inl b := do
(ic, c, p) ← prove_mul_nonneg_rat ic a b (-na) (-nb),
(ic, p) ← ic.mk_app ``mul_neg_neg [a, b, c, p],
return (ic, c, p)
| sum.inr ff, _ := do
(ic, z) ← ic.mk_app ``has_zero.zero [],
(ic, p) ← ic.mk_app ``zero_mul [b],
return (ic, z, p)
| _, sum.inr ff := do
(ic, z) ← ic.mk_app ``has_zero.zero [],
(ic, p) ← ic.mk_app ``mul_zero [a],
return (ic, z, p)
| sum.inl a, sum.inr tt := do
(ic, c, p) ← prove_mul_nonneg_rat ic a b (-na) nb,
(ic, p) ← ic.mk_app ``mul_neg_pos [a, b, c, p],
(ic, c') ← ic.mk_app ``has_neg.neg [c],
return (ic, c', p)
| sum.inr tt, sum.inl b := do
(ic, c, p) ← prove_mul_nonneg_rat ic a b na (-nb),
(ic, p) ← ic.mk_app ``mul_pos_neg [a, b, c, p],
(ic, c') ← ic.mk_app ``has_neg.neg [c],
return (ic, c', p)
| sum.inr tt, sum.inr tt := prove_mul_nonneg_rat ic a b na nb
end
theorem inv_neg {α} [division_ring α] (a b : α) (h : a⁻¹ = b) : (-a)⁻¹ = -b :=
h ▸ by simp only [inv_eq_one_div, one_div_neg_eq_neg_one_div]
theorem inv_one {α} [division_ring α] : (1 : α)⁻¹ = 1 := inv_one
theorem inv_one_div {α} [division_ring α] (a : α) : (1 / a)⁻¹ = a :=
by rw [one_div, inv_inv']
theorem inv_div_one {α} [division_ring α] (a : α) : a⁻¹ = 1 / a :=
inv_eq_one_div _
theorem inv_div {α} [division_ring α] (a b : α) : (a / b)⁻¹ = b / a :=
by simp only [inv_eq_one_div, one_div_div]
/-- Given `a` a rational numeral, returns `(b, ⊢ a⁻¹ = b)`. -/
meta def prove_inv : instance_cache → expr → ℚ → tactic (instance_cache × expr × expr)
| ic e n :=
match match_sign e with
| sum.inl e := do
(ic, e', p) ← prove_inv ic e (-n),
(ic, r) ← ic.mk_app ``has_neg.neg [e'],
(ic, p) ← ic.mk_app ``inv_neg [e, e', p],
return (ic, r, p)
| sum.inr ff := do
(ic, p) ← ic.mk_app ``inv_zero [],
return (ic, e, p)
| sum.inr tt :=
if n.num = 1 then
if n.denom = 1 then do
(ic, p) ← ic.mk_app ``inv_one [],
return (ic, e, p)
else do
let e := e.app_arg,
(ic, p) ← ic.mk_app ``inv_one_div [e],
return (ic, e, p)
else if n.denom = 1 then do
(ic, p) ← ic.mk_app ``inv_div_one [e],
e ← infer_type p,
return (ic, e.app_arg, p)
else do
[_, _, a, b] ← return e.get_app_args,
(ic, e') ← ic.mk_app ``has_div.div [b, a],
(ic, p) ← ic.mk_app ``inv_div [a, b],
return (ic, e', p)
end
theorem div_eq {α} [division_ring α] (a b b' c : α)
(hb : b⁻¹ = b') (h : a * b' = c) : a / b = c := by rwa ← hb at h
/-- Given `a`,`b` rational numerals, returns `(c, ⊢ a / b = c)`. -/
meta def prove_div (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr × expr) :=
do (ic, b', pb) ← prove_inv ic b nb,
(ic, c, p) ← prove_mul_rat ic a b' na nb⁻¹,
(ic, p) ← ic.mk_app ``div_eq [a, b, b', c, pb, p],
return (ic, c, p)
/-- Given `a` a rational numeral, returns `(b, ⊢ -a = b)`. -/
meta def prove_neg (ic : instance_cache) (a : expr) : tactic (instance_cache × expr × expr) :=
match match_sign a with
| sum.inl a := do
(ic, p) ← ic.mk_app ``neg_neg [a],
return (ic, a, p)
| sum.inr ff := do
(ic, p) ← ic.mk_app ``neg_zero [],
return (ic, a, p)
| sum.inr tt := do
(ic, a') ← ic.mk_app ``has_neg.neg [a],
p ← mk_eq_refl a',
return (ic, a', p)
end
theorem sub_pos {α} [add_group α] (a b b' c : α) (hb : -b = b') (h : a + b' = c) : a - b = c :=
by rwa ← hb at h
theorem sub_neg {α} [add_group α] (a b c : α) (h : a + b = c) : a - -b = c :=
by rwa sub_neg_eq_add
/-- Given `a`,`b` rational numerals, returns `(c, ⊢ a - b = c)`. -/
meta def prove_sub (ic : instance_cache) (a b : expr) : tactic (instance_cache × expr × expr) :=
match match_sign b with
| sum.inl b := do
(ic, c, p) ← prove_add_rat' ic a b,
(ic, p) ← ic.mk_app ``sub_neg [a, b, c, p],
return (ic, c, p)
| sum.inr ff := do
(ic, p) ← ic.mk_app ``sub_zero [a],
return (ic, a, p)
| sum.inr tt := do
(ic, b', pb) ← prove_neg ic b,
(ic, c, p) ← prove_add_rat' ic a b',
(ic, p) ← ic.mk_app ``sub_pos [a, b, b', c, pb, p],
return (ic, c, p)
end
theorem sub_nat_pos (a b c : ℕ) (h : b + c = a) : a - b = c :=
h ▸ nat.add_sub_cancel_left _ _
theorem sub_nat_neg (a b c : ℕ) (h : a + c = b) : a - b = 0 :=
nat.sub_eq_zero_of_le $ h ▸ nat.le_add_right _ _
/-- Given `a : nat`,`b : nat` natural numerals, returns `(c, ⊢ a - b = c)`. -/
meta def prove_sub_nat (ic : instance_cache) (a b : expr) : tactic (expr × expr) :=
do na ← a.to_nat, nb ← b.to_nat,
if nb ≤ na then do
(ic, c) ← ic.of_nat (na - nb),
(ic, p) ← prove_add_nat ic b c a,
return (c, `(sub_nat_pos).mk_app [a, b, c, p])
else do
(ic, c) ← ic.of_nat (nb - na),
(ic, p) ← prove_add_nat ic a c b,
return (`(0 : ℕ), `(sub_nat_neg).mk_app [a, b, c, p])
/-- This is needed because when `a` and `b` are numerals lean is more likely to unfold them
than unfold the instances in order to prove that `add_group_has_sub = int.has_sub`. -/
theorem int_sub_hack (a b c : ℤ) (h : @has_sub.sub ℤ add_group_has_sub a b = c) : a - b = c := h
/-- Given `a : ℤ`, `b : ℤ` integral numerals, returns `(c, ⊢ a - b = c)`. -/
meta def prove_sub_int (ic : instance_cache) (a b : expr) : tactic (expr × expr) :=
do (_, c, p) ← prove_sub ic a b,
return (c, `(int_sub_hack).mk_app [a, b, c, p])
/-- Evaluates the basic field operations `+`,`neg`,`-`,`*`,`inv`,`/` on numerals.
Also handles nat subtraction. Does not do recursive simplification; that is,
`1 + 1 + 1` will not simplify but `2 + 1` will. This is handled by the top level
`simp` call in `norm_num.derive`. -/
meta def eval_field : expr → tactic (expr × expr)
| `(%%e₁ + %%e₂) := do
n₁ ← e₁.to_rat, n₂ ← e₂.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
let n₃ := n₁ + n₂,
(c, e₃) ← c.of_rat n₃,
(_, p) ← prove_add_rat c e₁ e₂ e₃ n₁ n₂ n₃,
return (e₃, p)
| `(%%e₁ * %%e₂) := do
n₁ ← e₁.to_rat, n₂ ← e₂.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
prod.snd <$> prove_mul_rat c e₁ e₂ n₁ n₂
| `(- %%e) := do
c ← infer_type e >>= mk_instance_cache,
prod.snd <$> prove_neg c e
| `(@has_sub.sub %%α %%inst %%a %%b) := do
c ← mk_instance_cache α,
if α = `(nat) then prove_sub_nat c a b
else if inst = `(int.has_sub) then prove_sub_int c a b
else prod.snd <$> prove_sub c a b
| `(has_inv.inv %%e) := do
n ← e.to_rat,
c ← infer_type e >>= mk_instance_cache,
prod.snd <$> prove_inv c e n
| `(%%e₁ / %%e₂) := do
n₁ ← e₁.to_rat, n₂ ← e₂.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
prod.snd <$> prove_div c e₁ e₂ n₁ n₂
| _ := failed
lemma pow_bit0 [monoid α] (a c' c : α) (b : ℕ)
(h : a ^ b = c') (h₂ : c' * c' = c) : a ^ bit0 b = c :=
h₂ ▸ by simp [pow_bit0, h]
lemma pow_bit1 [monoid α] (a c₁ c₂ c : α) (b : ℕ)
(h : a ^ b = c₁) (h₂ : c₁ * c₁ = c₂) (h₃ : c₂ * a = c) : a ^ bit1 b = c :=
by rw [← h₃, ← h₂]; simp [pow_bit1, h]
section
open match_numeral_result
/-- Given `a` a rational numeral and `b : nat`, returns `(c, ⊢ a ^ b = c)`. -/
meta def prove_pow (a : expr) (na : ℚ) : instance_cache → expr → tactic (instance_cache × expr × expr)
| ic b :=
match match_numeral b with
| zero := do
(ic, p) ← ic.mk_app ``pow_zero [a],
(ic, o) ← ic.mk_app ``has_one.one [],
return (ic, o, p)
| one := do
(ic, p) ← ic.mk_app ``pow_one [a],
return (ic, a, p)
| bit0 b := do
(ic, c', p) ← prove_pow ic b,
nc' ← expr.to_rat c',
(ic, c, p₂) ← prove_mul_rat ic c' c' nc' nc',
(ic, p) ← ic.mk_app ``pow_bit0 [a, c', c, b, p, p₂],
return (ic, c, p)
| bit1 b := do
(ic, c₁, p) ← prove_pow ic b,
nc₁ ← expr.to_rat c₁,
(ic, c₂, p₂) ← prove_mul_rat ic c₁ c₁ nc₁ nc₁,
(ic, c, p₃) ← prove_mul_rat ic c₂ a (nc₁ * nc₁) na,
(ic, p) ← ic.mk_app ``pow_bit1 [a, c₁, c₂, c, b, p, p₂, p₃],
return (ic, c, p)
| _ := failed
end
end
lemma from_nat_pow (a b c : ℕ) (h : @has_pow.pow _ _ monoid.has_pow a b = c) : a ^ b = c :=
(nat.pow_eq_pow _ _).symm.trans h
/-- Evaluates expressions of the form `a ^ b`, `monoid.pow a b` or `nat.pow a b`. -/
meta def eval_pow : expr → tactic (expr × expr)
| `(@has_pow.pow %%α _ %%m %%e₁ %%e₂) := do
n₁ ← e₁.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
match m with
| `(@monoid.has_pow %%_ %%_) := prod.snd <$> prove_pow e₁ n₁ c e₂
| `(nat.has_pow) := do
(_, c, p) ← prove_pow e₁ n₁ c e₂,
return (c, `(from_nat_pow).mk_app [e₁, e₂, c, p])
| _ := failed
end
| `(monoid.pow %%e₁ %%e₂) := do
n₁ ← e₁.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
prod.snd <$> prove_pow e₁ n₁ c e₂
| `(nat.pow %%e₁ %%e₂) := do
n₁ ← e₁.to_rat,
c ← mk_instance_cache `(ℕ),
(_, c, p) ← prove_pow e₁ n₁ c e₂,
return (c, `(from_nat_pow).mk_app [e₁, e₂, c, p])
| _ := failed
theorem nonneg_pos {α} [ordered_cancel_add_comm_monoid α] (a : α) : 0 < a → 0 ≤ a := le_of_lt
theorem lt_one_bit0 {α} [linear_ordered_semiring α] (a : α) (h : 1 ≤ a) : 1 < bit0 a :=
lt_of_lt_of_le one_lt_two (bit0_le_bit0.2 h)
theorem lt_one_bit1 {α} [linear_ordered_semiring α] (a : α) (h : 0 < a) : 1 < bit1 a :=
one_lt_bit1.2 h
theorem lt_bit0_bit0 {α} [linear_ordered_semiring α] (a b : α) : a < b → bit0 a < bit0 b := bit0_lt_bit0.2
theorem lt_bit0_bit1 {α} [linear_ordered_semiring α] (a b : α) (h : a ≤ b) : bit0 a < bit1 b :=
lt_of_le_of_lt (bit0_le_bit0.2 h) (lt_add_one _)
theorem lt_bit1_bit0 {α} [linear_ordered_semiring α] (a b : α) (h : a + 1 ≤ b) : bit1 a < bit0 b :=
lt_of_lt_of_le (by simp [bit0, bit1, zero_lt_one, add_assoc]) (bit0_le_bit0.2 h)
theorem lt_bit1_bit1 {α} [linear_ordered_semiring α] (a b : α) : a < b → bit1 a < bit1 b := bit1_lt_bit1.2
theorem le_one_bit0 {α} [linear_ordered_semiring α] (a : α) (h : 1 ≤ a) : 1 ≤ bit0 a :=
le_of_lt (lt_one_bit0 _ h)
-- deliberately strong hypothesis because bit1 0 is not a numeral
theorem le_one_bit1 {α} [linear_ordered_semiring α] (a : α) (h : 0 < a) : 1 ≤ bit1 a :=
le_of_lt (lt_one_bit1 _ h)
theorem le_bit0_bit0 {α} [linear_ordered_semiring α] (a b : α) : a ≤ b → bit0 a ≤ bit0 b := bit0_le_bit0.2
theorem le_bit0_bit1 {α} [linear_ordered_semiring α] (a b : α) (h : a ≤ b) : bit0 a ≤ bit1 b :=
le_of_lt (lt_bit0_bit1 _ _ h)
theorem le_bit1_bit0 {α} [linear_ordered_semiring α] (a b : α) (h : a + 1 ≤ b) : bit1 a ≤ bit0 b :=
le_of_lt (lt_bit1_bit0 _ _ h)
theorem le_bit1_bit1 {α} [linear_ordered_semiring α] (a b : α) : a ≤ b → bit1 a ≤ bit1 b := bit1_le_bit1.2
theorem sle_one_bit0 {α} [linear_ordered_semiring α] (a : α) : 1 ≤ a → 1 + 1 ≤ bit0 a := bit0_le_bit0.2
theorem sle_one_bit1 {α} [linear_ordered_semiring α] (a : α) : 1 ≤ a → 1 + 1 ≤ bit1 a := le_bit0_bit1 _ _
theorem sle_bit0_bit0 {α} [linear_ordered_semiring α] (a b : α) : a + 1 ≤ b → bit0 a + 1 ≤ bit0 b := le_bit1_bit0 _ _
theorem sle_bit0_bit1 {α} [linear_ordered_semiring α] (a b : α) (h : a ≤ b) : bit0 a + 1 ≤ bit1 b := bit1_le_bit1.2 h
theorem sle_bit1_bit0 {α} [linear_ordered_semiring α] (a b : α) (h : a + 1 ≤ b) : bit1 a + 1 ≤ bit0 b :=
(bit1_succ a _ rfl).symm ▸ bit0_le_bit0.2 h
theorem sle_bit1_bit1 {α} [linear_ordered_semiring α] (a b : α) (h : a + 1 ≤ b) : bit1 a + 1 ≤ bit1 b :=
(bit1_succ a _ rfl).symm ▸ le_bit0_bit1 _ _ h
/-- Given `a` a rational numeral, returns `⊢ 0 ≤ a`. -/
meta def prove_nonneg (ic : instance_cache) : expr → tactic (instance_cache × expr)
| e@`(has_zero.zero) := ic.mk_app ``le_refl [e]
| e :=
if ic.α = `(ℕ) then
return (ic, `(nat.zero_le).mk_app [e])
else do
(ic, p) ← prove_pos ic e,
ic.mk_app ``nonneg_pos [e, p]
section
open match_numeral_result
/-- Given `a` a rational numeral, returns `⊢ 1 ≤ a`. -/
meta def prove_one_le_nat (ic : instance_cache) : expr → tactic (instance_cache × expr)
| a :=
match match_numeral a with
| one := ic.mk_app ``le_refl [a]
| bit0 a := do (ic, p) ← prove_one_le_nat a, ic.mk_app ``le_one_bit0 [a, p]
| bit1 a := do (ic, p) ← prove_pos_nat ic a, ic.mk_app ``le_one_bit1 [a, p]
| _ := failed
end
meta mutual def prove_le_nat, prove_sle_nat (ic : instance_cache)
with prove_le_nat : expr → expr → tactic (instance_cache × expr)
| a b :=
if a = b then ic.mk_app ``le_refl [a] else
match match_numeral a, match_numeral b with
| zero, _ := prove_nonneg ic b
| one, bit0 b := do (ic, p) ← prove_one_le_nat ic b, ic.mk_app ``le_one_bit0 [b, p]
| one, bit1 b := do (ic, p) ← prove_pos_nat ic b, ic.mk_app ``le_one_bit1 [b, p]
| bit0 a, bit0 b := do (ic, p) ← prove_le_nat a b, ic.mk_app ``le_bit0_bit0 [a, b, p]
| bit0 a, bit1 b := do (ic, p) ← prove_le_nat a b, ic.mk_app ``le_bit0_bit1 [a, b, p]
| bit1 a, bit0 b := do (ic, p) ← prove_sle_nat a b, ic.mk_app ``le_bit1_bit0 [a, b, p]
| bit1 a, bit1 b := do (ic, p) ← prove_le_nat a b, ic.mk_app ``le_bit1_bit1 [a, b, p]
| _, _ := failed
end
with prove_sle_nat : expr → expr → tactic (instance_cache × expr)
| a b :=
match match_numeral a, match_numeral b with
| zero, _ := prove_nonneg ic b
| one, bit0 b := do (ic, p) ← prove_one_le_nat ic b, ic.mk_app ``sle_one_bit0 [b, p]
| one, bit1 b := do (ic, p) ← prove_one_le_nat ic b, ic.mk_app ``sle_one_bit1 [b, p]
| bit0 a, bit0 b := do (ic, p) ← prove_sle_nat a b, ic.mk_app ``sle_bit0_bit0 [a, b, p]
| bit0 a, bit1 b := do (ic, p) ← prove_le_nat a b, ic.mk_app ``sle_bit0_bit1 [a, b, p]
| bit1 a, bit0 b := do (ic, p) ← prove_sle_nat a b, ic.mk_app ``sle_bit1_bit0 [a, b, p]
| bit1 a, bit1 b := do (ic, p) ← prove_sle_nat a b, ic.mk_app ``sle_bit1_bit1 [a, b, p]
| _, _ := failed
end
/-- Given `a`,`b` natural numerals, proves `⊢ a ≤ b`. -/
add_decl_doc prove_le_nat
/-- Given `a`,`b` natural numerals, proves `⊢ a + 1 ≤ b`. -/
add_decl_doc prove_sle_nat
/-- Given `a`,`b` natural numerals, proves `⊢ a < b`. -/
meta def prove_lt_nat (ic : instance_cache) : expr → expr → tactic (instance_cache × expr)
| a b :=
match match_numeral a, match_numeral b with
| zero, _ := prove_pos ic b
| one, bit0 b := do (ic, p) ← prove_one_le_nat ic b, ic.mk_app ``lt_one_bit0 [b, p]
| one, bit1 b := do (ic, p) ← prove_pos_nat ic b, ic.mk_app ``lt_one_bit1 [b, p]
| bit0 a, bit0 b := do (ic, p) ← prove_lt_nat a b, ic.mk_app ``lt_bit0_bit0 [a, b, p]
| bit0 a, bit1 b := do (ic, p) ← prove_le_nat ic a b, ic.mk_app ``lt_bit0_bit1 [a, b, p]
| bit1 a, bit0 b := do (ic, p) ← prove_sle_nat ic a b, ic.mk_app ``lt_bit1_bit0 [a, b, p]
| bit1 a, bit1 b := do (ic, p) ← prove_lt_nat a b, ic.mk_app ``lt_bit1_bit1 [a, b, p]
| _, _ := failed
end
end
theorem clear_denom_lt {α} [linear_ordered_semiring α] (a a' b b' d : α)
(h₀ : 0 < d) (ha : a * d = a') (hb : b * d = b') (h : a' < b') : a < b :=
lt_of_mul_lt_mul_right (by rwa [ha, hb]) (le_of_lt h₀)
/-- Given `a`,`b` nonnegative rational numerals, proves `⊢ a < b`. -/
meta def prove_lt_nonneg_rat (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr) :=
if na.denom = 1 ∧ nb.denom = 1 then
prove_lt_nat ic a b
else do
let nd := na.denom.lcm nb.denom,
(ic, d) ← ic.of_nat nd,
(ic, p₀) ← prove_pos ic d,
(ic, a', pa) ← prove_clear_denom ic a d na nd,
(ic, b', pb) ← prove_clear_denom ic b d nb nd,
(ic, p) ← prove_lt_nat ic a' b',
ic.mk_app ``clear_denom_lt [a, a', b, b', d, p₀, pa, pb, p]
lemma lt_neg_pos {α} [ordered_add_comm_group α] (a b : α) (ha : 0 < a) (hb : 0 < b) : -a < b :=
lt_trans (neg_neg_of_pos ha) hb
/-- Given `a`,`b` rational numerals, proves `⊢ a < b`. -/
meta def prove_lt_rat (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr) :=
match match_sign a, match_sign b with
| sum.inl a, sum.inl b := do
(ic, p) ← prove_lt_nonneg_rat ic a b (-na) (-nb),
ic.mk_app ``neg_lt_neg [a, b, p]
| sum.inl a, sum.inr ff := do
(ic, p) ← prove_pos ic a,
ic.mk_app ``neg_neg_of_pos [a, p]
| sum.inl a, sum.inr tt := do
(ic, pa) ← prove_pos ic a,
(ic, pb) ← prove_pos ic b,
ic.mk_app ``lt_neg_pos [a, b, pa, pb]
| sum.inr ff, _ := prove_pos ic b
| sum.inr tt, _ := prove_lt_nonneg_rat ic a b na nb
end
theorem clear_denom_le {α} [linear_ordered_semiring α] (a a' b b' d : α)
(h₀ : 0 < d) (ha : a * d = a') (hb : b * d = b') (h : a' ≤ b') : a ≤ b :=
le_of_mul_le_mul_right (by rwa [ha, hb]) h₀
/-- Given `a`,`b` nonnegative rational numerals, proves `⊢ a ≤ b`. -/
meta def prove_le_nonneg_rat (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr) :=
if na.denom = 1 ∧ nb.denom = 1 then
prove_le_nat ic a b
else do
let nd := na.denom.lcm nb.denom,
(ic, d) ← ic.of_nat nd,
(ic, p₀) ← prove_pos ic d,
(ic, a', pa) ← prove_clear_denom ic a d na nd,
(ic, b', pb) ← prove_clear_denom ic b d nb nd,
(ic, p) ← prove_le_nat ic a' b',
ic.mk_app ``clear_denom_le [a, a', b, b', d, p₀, pa, pb, p]
lemma le_neg_pos {α} [ordered_add_comm_group α] (a b : α) (ha : 0 ≤ a) (hb : 0 ≤ b) : -a ≤ b :=
le_trans (neg_nonpos_of_nonneg ha) hb
/-- Given `a`,`b` rational numerals, proves `⊢ a ≤ b`. -/
meta def prove_le_rat (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr) :=
match match_sign a, match_sign b with
| sum.inl a, sum.inl b := do
(ic, p) ← prove_le_nonneg_rat ic a b (-na) (-nb),
ic.mk_app ``neg_le_neg [a, b, p]
| sum.inl a, sum.inr ff := do
(ic, p) ← prove_nonneg ic a,
ic.mk_app ``neg_nonpos_of_nonneg [a, p]
| sum.inl a, sum.inr tt := do
(ic, pa) ← prove_nonneg ic a,
(ic, pb) ← prove_nonneg ic b,
ic.mk_app ``le_neg_pos [a, b, pa, pb]
| sum.inr ff, _ := prove_nonneg ic b
| sum.inr tt, _ := prove_le_nonneg_rat ic a b na nb
end
/-- Given `a`,`b` rational numerals, proves `⊢ a ≠ b`. This version
tries to prove `⊢ a < b` or `⊢ b < a`, and so is not appropriate for types without an order relation. -/
meta def prove_ne_rat (ic : instance_cache) (a b : expr) (na nb : ℚ) : tactic (instance_cache × expr) :=
if na < nb then do
(ic, p) ← prove_lt_rat ic a b na nb,
ic.mk_app ``ne_of_lt [a, b, p]
else do
(ic, p) ← prove_lt_rat ic b a nb na,
ic.mk_app ``ne_of_gt [a, b, p]
theorem nat_cast_zero {α} [semiring α] : ↑(0 : ℕ) = (0 : α) := nat.cast_zero
theorem nat_cast_one {α} [semiring α] : ↑(1 : ℕ) = (1 : α) := nat.cast_one
theorem nat_cast_bit0 {α} [semiring α] (a : ℕ) (a' : α) (h : ↑a = a') : ↑(bit0 a) = bit0 a' :=
h ▸ nat.cast_bit0 _
theorem nat_cast_bit1 {α} [semiring α] (a : ℕ) (a' : α) (h : ↑a = a') : ↑(bit1 a) = bit1 a' :=
h ▸ nat.cast_bit1 _
theorem int_cast_zero {α} [ring α] : ↑(0 : ℤ) = (0 : α) := int.cast_zero
theorem int_cast_one {α} [ring α] : ↑(1 : ℤ) = (1 : α) := int.cast_one
theorem int_cast_bit0 {α} [ring α] (a : ℤ) (a' : α) (h : ↑a = a') : ↑(bit0 a) = bit0 a' :=
h ▸ int.cast_bit0 _
theorem int_cast_bit1 {α} [ring α] (a : ℤ) (a' : α) (h : ↑a = a') : ↑(bit1 a) = bit1 a' :=
h ▸ int.cast_bit1 _
theorem rat_cast_bit0 {α} [division_ring α] [char_zero α] (a : ℚ) (a' : α) (h : ↑a = a') : ↑(bit0 a) = bit0 a' :=
h ▸ rat.cast_bit0 _
theorem rat_cast_bit1 {α} [division_ring α] [char_zero α] (a : ℚ) (a' : α) (h : ↑a = a') : ↑(bit1 a) = bit1 a' :=
h ▸ rat.cast_bit1 _
/-- Given `a' : α` a natural numeral, returns `(a : ℕ, ⊢ ↑a = a')`.
(Note that the returned value is on the left of the equality.) -/
meta def prove_nat_uncast (ic nc : instance_cache) : ∀ (a' : expr),
tactic (instance_cache × instance_cache × expr × expr)
| a' :=
match match_numeral a' with
| match_numeral_result.zero := do
(nc, e) ← nc.mk_app ``has_zero.zero [],
(ic, p) ← ic.mk_app ``nat_cast_zero [],
return (ic, nc, e, p)
| match_numeral_result.one := do
(nc, e) ← nc.mk_app ``has_one.one [],
(ic, p) ← ic.mk_app ``nat_cast_one [],
return (ic, nc, e, p)
| match_numeral_result.bit0 a' := do
(ic, nc, a, p) ← prove_nat_uncast a',
(nc, a0) ← nc.mk_bit0 a,
(ic, p) ← ic.mk_app ``nat_cast_bit0 [a, a', p],
return (ic, nc, a0, p)
| match_numeral_result.bit1 a' := do
(ic, nc, a, p) ← prove_nat_uncast a',
(nc, a1) ← nc.mk_bit1 a,
(ic, p) ← ic.mk_app ``nat_cast_bit1 [a, a', p],
return (ic, nc, a1, p)
| _ := failed
end
/-- Given `a' : α` a natural numeral, returns `(a : ℤ, ⊢ ↑a = a')`.
(Note that the returned value is on the left of the equality.) -/
meta def prove_int_uncast_nat (ic zc : instance_cache) : ∀ (a' : expr),
tactic (instance_cache × instance_cache × expr × expr)
| a' :=
match match_numeral a' with
| match_numeral_result.zero := do
(zc, e) ← zc.mk_app ``has_zero.zero [],
(ic, p) ← ic.mk_app ``int_cast_zero [],
return (ic, zc, e, p)
| match_numeral_result.one := do
(zc, e) ← zc.mk_app ``has_one.one [],
(ic, p) ← ic.mk_app ``int_cast_one [],
return (ic, zc, e, p)
| match_numeral_result.bit0 a' := do
(ic, zc, a, p) ← prove_int_uncast_nat a',
(zc, a0) ← zc.mk_bit0 a,
(ic, p) ← ic.mk_app ``int_cast_bit0 [a, a', p],
return (ic, zc, a0, p)
| match_numeral_result.bit1 a' := do
(ic, zc, a, p) ← prove_int_uncast_nat a',
(zc, a1) ← zc.mk_bit1 a,
(ic, p) ← ic.mk_app ``int_cast_bit1 [a, a', p],
return (ic, zc, a1, p)
| _ := failed
end
/-- Given `a' : α` a natural numeral, returns `(a : ℚ, ⊢ ↑a = a')`.
(Note that the returned value is on the left of the equality.) -/
meta def prove_rat_uncast_nat (ic qc : instance_cache) (cz_inst : expr) : ∀ (a' : expr),
tactic (instance_cache × instance_cache × expr × expr)
| a' :=
match match_numeral a' with
| match_numeral_result.zero := do
(qc, e) ← qc.mk_app ``has_zero.zero [],
(ic, p) ← ic.mk_app ``rat.cast_zero [cz_inst],
return (ic, qc, e, p)
| match_numeral_result.one := do
(qc, e) ← qc.mk_app ``has_one.one [],
(ic, p) ← ic.mk_app ``rat.cast_one [],
return (ic, qc, e, p)
| match_numeral_result.bit0 a' := do
(ic, qc, a, p) ← prove_rat_uncast_nat a',
(qc, a0) ← qc.mk_bit0 a,
(ic, p) ← ic.mk_app ``rat_cast_bit0 [cz_inst, a, a', p],
return (ic, qc, a0, p)
| match_numeral_result.bit1 a' := do
(ic, qc, a, p) ← prove_rat_uncast_nat a',
(qc, a1) ← qc.mk_bit1 a,
(ic, p) ← ic.mk_app ``rat_cast_bit1 [cz_inst, a, a', p],
return (ic, qc, a1, p)
| _ := failed
end
theorem rat_cast_div {α} [division_ring α] [char_zero α] (a b : ℚ) (a' b' : α)
(ha : ↑a = a') (hb : ↑b = b') : ↑(a / b) = a' / b' :=
ha ▸ hb ▸ rat.cast_div _ _
/-- Given `a' : α` a nonnegative rational numeral, returns `(a : ℚ, ⊢ ↑a = a')`.
(Note that the returned value is on the left of the equality.) -/
meta def prove_rat_uncast_nonneg (ic qc : instance_cache) (cz_inst a' : expr) (na' : ℚ) :
tactic (instance_cache × instance_cache × expr × expr) :=
if na'.denom = 1 then
prove_rat_uncast_nat ic qc cz_inst a'
else do
[_, _, a', b'] ← return a'.get_app_args,
(ic, qc, a, pa) ← prove_rat_uncast_nat ic qc cz_inst a',
(ic, qc, b, pb) ← prove_rat_uncast_nat ic qc cz_inst b',
(qc, e) ← qc.mk_app ``has_div.div [a, b],
(ic, p) ← ic.mk_app ``rat_cast_div [cz_inst, a, b, a', b', pa, pb],
return (ic, qc, e, p)
theorem int_cast_neg {α} [ring α] (a : ℤ) (a' : α) (h : ↑a = a') : ↑-a = -a' :=
h ▸ int.cast_neg _
theorem rat_cast_neg {α} [division_ring α] (a : ℚ) (a' : α) (h : ↑a = a') : ↑-a = -a' :=
h ▸ rat.cast_neg _
/-- Given `a' : α` an integer numeral, returns `(a : ℤ, ⊢ ↑a = a')`.
(Note that the returned value is on the left of the equality.) -/
meta def prove_int_uncast (ic zc : instance_cache) (a' : expr) :
tactic (instance_cache × instance_cache × expr × expr) :=
match match_neg a' with
| some a' := do
(ic, zc, a, p) ← prove_int_uncast_nat ic zc a',
(zc, e) ← zc.mk_app ``has_neg.neg [a],
(ic, p) ← ic.mk_app ``int_cast_neg [a, a', p],
return (ic, zc, e, p)
| none := prove_int_uncast_nat ic zc a'
end
/-- Given `a' : α` a rational numeral, returns `(a : ℚ, ⊢ ↑a = a')`.
(Note that the returned value is on the left of the equality.) -/
meta def prove_rat_uncast (ic qc : instance_cache) (cz_inst a' : expr) (na' : ℚ) :
tactic (instance_cache × instance_cache × expr × expr) :=
match match_neg a' with
| some a' := do
(ic, qc, a, p) ← prove_rat_uncast_nonneg ic qc cz_inst a' (-na'),
(qc, e) ← qc.mk_app ``has_neg.neg [a],
(ic, p) ← ic.mk_app ``rat_cast_neg [a, a', p],
return (ic, qc, e, p)
| none := prove_rat_uncast_nonneg ic qc cz_inst a' na'
end
theorem nat_cast_ne {α} [semiring α] [char_zero α] (a b : ℕ) (a' b' : α)
(ha : ↑a = a') (hb : ↑b = b') (h : a ≠ b) : a' ≠ b' :=
ha ▸ hb ▸ mt nat.cast_inj.1 h
theorem int_cast_ne {α} [ring α] [char_zero α] (a b : ℤ) (a' b' : α)
(ha : ↑a = a') (hb : ↑b = b') (h : a ≠ b) : a' ≠ b' :=
ha ▸ hb ▸ mt int.cast_inj.1 h
theorem rat_cast_ne {α} [division_ring α] [char_zero α] (a b : ℚ) (a' b' : α)
(ha : ↑a = a') (hb : ↑b = b') (h : a ≠ b) : a' ≠ b' :=
ha ▸ hb ▸ mt rat.cast_inj.1 h
/-- Given `a`,`b` rational numerals, proves `⊢ a ≠ b`. Currently it tries two methods:
* Prove `⊢ a < b` or `⊢ b < a`, if the base type has an order
* Embed `↑(a':ℚ) = a` and `↑(b':ℚ) = b`, and then prove `a' ≠ b'`.
This requires that the base type be `char_zero`, and also that it be a `division_ring`
so that the coercion from `ℚ` is well defined.
We may also add coercions to `ℤ` and `ℕ` as well in order to support `char_zero`
rings and semirings. -/
meta def prove_ne : instance_cache → expr → expr → ℚ → ℚ → tactic (instance_cache × expr)
| ic a b na nb := prove_ne_rat ic a b na nb <|> do
cz_inst ← mk_mapp ``char_zero [ic.α, none, none] >>= mk_instance,
if na.denom = 1 ∧ nb.denom = 1 then
if na ≥ 0 ∧ nb ≥ 0 then do
guard (ic.α ≠ `(ℕ)),
nc ← mk_instance_cache `(ℕ),
(ic, nc, a', pa) ← prove_nat_uncast ic nc a,
(ic, nc, b', pb) ← prove_nat_uncast ic nc b,
(nc, p) ← prove_ne_rat nc a' b' na nb,
ic.mk_app ``nat_cast_ne [cz_inst, a', b', a, b, pa, pb, p]
else do
guard (ic.α ≠ `(ℤ)),
zc ← mk_instance_cache `(ℤ),
(ic, zc, a', pa) ← prove_int_uncast ic zc a,
(ic, zc, b', pb) ← prove_int_uncast ic zc b,
(zc, p) ← prove_ne_rat zc a' b' na nb,
ic.mk_app ``int_cast_ne [cz_inst, a', b', a, b, pa, pb, p]
else do
guard (ic.α ≠ `(ℚ)),
qc ← mk_instance_cache `(ℚ),
(ic, qc, a', pa) ← prove_rat_uncast ic qc cz_inst a na,
(ic, qc, b', pb) ← prove_rat_uncast ic qc cz_inst b nb,
(qc, p) ← prove_ne_rat qc a' b' na nb,
ic.mk_app ``rat_cast_ne [cz_inst, a', b', a, b, pa, pb, p]
/-- Given `∣- p`, returns `(true, ⊢ p = true)`. -/
meta def true_intro (p : expr) : tactic (expr × expr) :=
prod.mk `(true) <$> mk_app ``eq_true_intro [p]
/-- Given `∣- ¬ p`, returns `(false, ⊢ p = false)`. -/
meta def false_intro (p : expr) : tactic (expr × expr) :=
prod.mk `(false) <$> mk_app ``eq_false_intro [p]
theorem not_refl_false_intro {α} (a : α) : (a ≠ a) = false :=
eq_false_intro $ not_not_intro rfl
/-- Evaluates the inequality operations `=`,`<`,`>`,`≤`,`≥`,`≠` on numerals. -/
meta def eval_ineq : expr → tactic (expr × expr)
| `(%%e₁ < %%e₂) := do
n₁ ← e₁.to_rat, n₂ ← e₂.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
if n₁ < n₂ then
do (_, p) ← prove_lt_rat c e₁ e₂ n₁ n₂, true_intro p
else if n₁ = n₂ then do
(_, p) ← c.mk_app ``lt_irrefl [e₁],
false_intro p
else do
(c, p') ← prove_lt_rat c e₂ e₁ n₂ n₁,
(_, p) ← c.mk_app ``not_lt_of_gt [e₁, e₂, p'],
false_intro p
| `(%%e₁ ≤ %%e₂) := do
n₁ ← e₁.to_rat, n₂ ← e₂.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
if n₁ ≤ n₂ then do
(_, p) ←
if n₁ = n₂ then c.mk_app ``le_refl [e₁]
else prove_le_rat c e₁ e₂ n₁ n₂,
true_intro p
else do
(c, p) ← prove_lt_rat c e₂ e₁ n₂ n₁,
(_, p) ← c.mk_app ``not_le_of_gt [e₁, e₂, p],
false_intro p
| `(%%e₁ = %%e₂) := do
n₁ ← e₁.to_rat, n₂ ← e₂.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
if n₁ = n₂ then mk_eq_refl e₁ >>= true_intro
else do (_, p) ← prove_ne c e₁ e₂ n₁ n₂, false_intro p
| `(%%e₁ > %%e₂) := mk_app ``has_lt.lt [e₂, e₁] >>= eval_ineq
| `(%%e₁ ≥ %%e₂) := mk_app ``has_le.le [e₂, e₁] >>= eval_ineq
| `(%%e₁ ≠ %%e₂) := do
n₁ ← e₁.to_rat, n₂ ← e₂.to_rat,
c ← infer_type e₁ >>= mk_instance_cache,
if n₁ = n₂ then
prod.mk `(false) <$> mk_app ``not_refl_false_intro [e₁]
else do (_, p) ← prove_ne c e₁ e₂ n₁ n₂, true_intro p
| _ := failed
theorem nat_succ_eq (a b c : ℕ) (h₁ : a = b) (h₂ : b + 1 = c) : nat.succ a = c := by rwa h₁
/-- Evaluates the expression `nat.succ ... (nat.succ n)` where `n` is a natural numeral.
(We could also just handle `nat.succ n` here and rely on `simp` to work bottom up, but we figure
that towers of successors coming from e.g. `induction` are a common case.) -/
meta def prove_nat_succ (ic : instance_cache) : expr → tactic (instance_cache × ℕ × expr × expr)
| `(nat.succ %%a) := do
(ic, n, b, p₁) ← prove_nat_succ a,
let n' := n + 1,
(ic, c) ← ic.of_nat n',
(ic, p₂) ← prove_add_nat ic b `(1) c,
return (ic, n', c, `(nat_succ_eq).mk_app [a, b, c, p₁, p₂])
| e := do
n ← e.to_nat,
p ← mk_eq_refl e,
return (ic, n, e, p)
lemma nat_div (a b q r m : ℕ) (hm : q * b = m) (h : r + m = a) (h₂ : r < b) : a / b = q :=
by rw [← h, ← hm, nat.add_mul_div_right _ _ (lt_of_le_of_lt (nat.zero_le _) h₂),
nat.div_eq_of_lt h₂, zero_add]
lemma int_div (a b q r m : ℤ) (hm : q * b = m) (h : r + m = a) (h₁ : 0 ≤ r) (h₂ : r < b) : a / b = q :=
by rw [← h, ← hm, int.add_mul_div_right _ _ (ne_of_gt (lt_of_le_of_lt h₁ h₂)),
int.div_eq_zero_of_lt h₁ h₂, zero_add]
lemma nat_mod (a b q r m : ℕ) (hm : q * b = m) (h : r + m = a) (h₂ : r < b) : a % b = r :=
by rw [← h, ← hm, nat.add_mul_mod_self_right, nat.mod_eq_of_lt h₂]
lemma int_mod (a b q r m : ℤ) (hm : q * b = m) (h : r + m = a) (h₁ : 0 ≤ r) (h₂ : r < b) : a % b = r :=
by rw [← h, ← hm, int.add_mul_mod_self, int.mod_eq_of_lt h₁ h₂]
lemma int_div_neg (a b c' c : ℤ) (h : a / b = c') (h₂ : -c' = c) : a / -b = c :=
h₂ ▸ h ▸ int.div_neg _ _
lemma int_mod_neg (a b c : ℤ) (h : a % b = c) : a % -b = c :=
(int.mod_neg _ _).trans h
/-- Given `a`,`b` numerals in `nat` or `int`,
* `prove_div_mod ic a b ff` returns `(c, ⊢ a / b = c)`
* `prove_div_mod ic a b tt` returns `(c, ⊢ a % b = c)`
-/
meta def prove_div_mod (ic : instance_cache) : expr → expr → bool → tactic (instance_cache × expr × expr)
| a b mod :=
match match_neg b with
| some b := do
(ic, c', p) ← prove_div_mod a b mod,
if mod then
return (ic, c', `(int_mod_neg).mk_app [a, b, c', p])
else do
(ic, c, p₂) ← prove_neg ic c',
return (ic, c, `(int_div_neg).mk_app [a, b, c', c, p, p₂])
| none := do
nb ← b.to_nat,
na ← a.to_int,
let nq := na / nb,
let nr := na % nb,
let nm := nq * nr,
(ic, q) ← ic.of_int nq,
(ic, r) ← ic.of_int nr,
(ic, m, pm) ← prove_mul_rat ic q b (rat.of_int nq) (rat.of_int nb),
(ic, p) ← prove_add_rat ic r m a (rat.of_int nr) (rat.of_int nm) (rat.of_int na),
(ic, p') ← prove_lt_nat ic r b,
if ic.α = `(nat) then
if mod then return (ic, r, `(nat_mod).mk_app [a, b, q, r, m, pm, p, p'])
else return (ic, q, `(nat_div).mk_app [a, b, q, r, m, pm, p, p'])
else if ic.α = `(int) then do
(ic, p₀) ← prove_nonneg ic r,
if mod then return (ic, r, `(int_mod).mk_app [a, b, q, r, m, pm, p, p₀, p'])
else return (ic, q, `(int_div).mk_app [a, b, q, r, m, pm, p, p₀, p'])
else failed
end
theorem dvd_eq_nat (a b c : ℕ) (p) (h₁ : b % a = c) (h₂ : (c = 0) = p) : (a ∣ b) = p :=
(propext $ by rw [← h₁, nat.dvd_iff_mod_eq_zero]).trans h₂
theorem dvd_eq_int (a b c : ℤ) (p) (h₁ : b % a = c) (h₂ : (c = 0) = p) : (a ∣ b) = p :=
(propext $ by rw [← h₁, int.dvd_iff_mod_eq_zero]).trans h₂
/-- Evaluates some extra numeric operations on `nat` and `int`, specifically
`nat.succ`, `/` and `%`, and `∣` (divisibility). -/
meta def eval_nat_int_ext : expr → tactic (expr × expr)
| e@`(nat.succ _) := do
ic ← mk_instance_cache `(ℕ),
(_, _, ep) ← prove_nat_succ ic e,
return ep
| `(%%a / %%b) := do
c ← infer_type a >>= mk_instance_cache,
prod.snd <$> prove_div_mod c a b ff
| `(%%a % %%b) := do
c ← infer_type a >>= mk_instance_cache,
prod.snd <$> prove_div_mod c a b tt
| `(%%a ∣ %%b) := do
α ← infer_type a,
ic ← mk_instance_cache α,
th ← if α = `(nat) then return (`(dvd_eq_nat):expr) else
if α = `(int) then return `(dvd_eq_int) else failed,
(ic, c, p₁) ← prove_div_mod ic b a tt,
(ic, z) ← ic.mk_app ``has_zero.zero [],
(e', p₂) ← mk_app ``eq [c, z] >>= eval_ineq,
return (e', th.mk_app [a, b, c, e', p₁, p₂])
| _ := failed
lemma not_prime_helper (a b n : ℕ)
(h : a * b = n) (h₁ : 1 < a) (h₂ : 1 < b) : ¬ nat.prime n :=
by rw ← h; exact nat.not_prime_mul h₁ h₂
lemma is_prime_helper (n : ℕ)
(h₁ : 1 < n) (h₂ : nat.min_fac n = n) : nat.prime n :=
nat.prime_def_min_fac.2 ⟨h₁, h₂⟩
lemma min_fac_bit0 (n : ℕ) : nat.min_fac (bit0 n) = 2 :=
by simp [nat.min_fac_eq, show 2 ∣ bit0 n, by simp [bit0_eq_two_mul n]]
/-- A predicate representing partial progress in a proof of `min_fac`. -/
def min_fac_helper (n k : ℕ) : Prop :=
0 < k ∧ bit1 k ≤ nat.min_fac (bit1 n)
theorem min_fac_helper.n_pos {n k : ℕ} (h : min_fac_helper n k) : 0 < n :=
nat.pos_iff_ne_zero.2 $ λ e,
by rw e at h; exact not_le_of_lt (nat.bit1_lt h.1) h.2
lemma min_fac_ne_bit0 {n k : ℕ} : nat.min_fac (bit1 n) ≠ bit0 k :=
by rw bit0_eq_two_mul; exact λ e, absurd
((nat.dvd_add_iff_right (by simp [bit0_eq_two_mul n])).2
(dvd_trans ⟨_, e⟩ (nat.min_fac_dvd _)))
dec_trivial
lemma min_fac_helper_0 (n : ℕ) (h : 0 < n) : min_fac_helper n 1 :=
begin
refine ⟨zero_lt_one, lt_of_le_of_ne _ min_fac_ne_bit0.symm⟩,
refine @lt_of_le_of_ne ℕ _ _ _ (nat.min_fac_pos _) _,
intro e,
have := nat.min_fac_prime _,
{ rw ← e at this, exact nat.not_prime_one this },
{ exact ne_of_gt (nat.bit1_lt h) }
end
lemma min_fac_helper_1 {n k k' : ℕ} (e : k + 1 = k')
(np : nat.min_fac (bit1 n) ≠ bit1 k)
(h : min_fac_helper n k) : min_fac_helper n k' :=
begin
rw ← e,
refine ⟨nat.succ_pos _,
(lt_of_le_of_ne (lt_of_le_of_ne _ _ : k+1+k < _)
min_fac_ne_bit0.symm : bit0 (k+1) < _)⟩,
{ rw add_right_comm, exact h.2 },
{ rw add_right_comm, exact np.symm }
end
lemma min_fac_helper_2 (n k k' : ℕ) (e : k + 1 = k')
(np : ¬ nat.prime (bit1 k)) (h : min_fac_helper n k) : min_fac_helper n k' :=
begin
refine min_fac_helper_1 e _ h,
intro e₁, rw ← e₁ at np,
exact np (nat.min_fac_prime $ ne_of_gt $ nat.bit1_lt h.n_pos)
end
lemma min_fac_helper_3 (n k k' c : ℕ) (e : k + 1 = k')
(nc : bit1 n % bit1 k = c) (c0 : 0 < c)
(h : min_fac_helper n k) : min_fac_helper n k' :=
begin
refine min_fac_helper_1 e _ h,
refine mt _ (ne_of_gt c0), intro e₁,
rw [← nc, ← nat.dvd_iff_mod_eq_zero, ← e₁],
apply nat.min_fac_dvd
end
lemma min_fac_helper_4 (n k : ℕ) (hd : bit1 n % bit1 k = 0)
(h : min_fac_helper n k) : nat.min_fac (bit1 n) = bit1 k :=
by rw ← nat.dvd_iff_mod_eq_zero at hd; exact
le_antisymm (nat.min_fac_le_of_dvd (nat.bit1_lt h.1) hd) h.2
lemma min_fac_helper_5 (n k k' : ℕ) (e : bit1 k * bit1 k = k')
(hd : bit1 n < k') (h : min_fac_helper n k) : nat.min_fac (bit1 n) = bit1 n :=
begin
refine (nat.prime_def_min_fac.1 (nat.prime_def_le_sqrt.2
⟨nat.bit1_lt h.n_pos, _⟩)).2,
rw ← e at hd,
intros m m2 hm md,
have := le_trans h.2 (le_trans (nat.min_fac_le_of_dvd m2 md) hm),
rw nat.le_sqrt at this,
exact not_le_of_lt hd this
end
/-- Given `e` a natural numeral and `d : nat` a factor of it, return `⊢ ¬ prime e`. -/
meta def prove_non_prime (e : expr) (n d₁ : ℕ) : tactic expr :=
do let e₁ := reflect d₁,
c ← mk_instance_cache `(nat),
(c, p₁) ← prove_lt_nat c `(1) e₁,
let d₂ := n / d₁, let e₂ := reflect d₂,
(c, e', p) ← prove_mul_nat c e₁ e₂,
guard (e' =ₐ e),
(c, p₂) ← prove_lt_nat c `(1) e₂,
return $ `(not_prime_helper).mk_app [e₁, e₂, e, p, p₁, p₂]
/-- Given `a`,`a1 := bit1 a`, `n1` the value of `a1`, `b` and `p : min_fac_helper a b`,
returns `(c, ⊢ min_fac a1 = c)`. -/
meta def prove_min_fac_aux (a a1 : expr) (n1 : ℕ) :
instance_cache → expr → expr → tactic (instance_cache × expr × expr)
| ic b p := do
k ← b.to_nat,
let k1 := bit1 k,
let b1 := `(bit1:ℕ→ℕ).mk_app [b],
if n1 < k1*k1 then do
(ic, e', p₁) ← prove_mul_nat ic b1 b1,
(ic, p₂) ← prove_lt_nat ic a1 e',
return (ic, a1, `(min_fac_helper_5).mk_app [a, b, e', p₁, p₂, p])
else let d := k1.min_fac in
if to_bool (d < k1) then do
let k' := k+1, let e' := reflect k',
(ic, p₁) ← prove_succ ic b e',
p₂ ← prove_non_prime b1 k1 d,
prove_min_fac_aux ic e' $ `(min_fac_helper_2).mk_app [a, b, e', p₁, p₂, p]
else do
let nc := n1 % k1,
(ic, c, pc) ← prove_div_mod ic a1 b1 tt,
if nc = 0 then
return (ic, b1, `(min_fac_helper_4).mk_app [a, b, pc, p])
else do
(ic, p₀) ← prove_pos ic c,
let k' := k+1, let e' := reflect k',
(ic, p₁) ← prove_succ ic b e',
prove_min_fac_aux ic e' $ `(min_fac_helper_3).mk_app [a, b, e', c, p₁, pc, p₀, p]
/-- Given `a` a natural numeral, returns `(b, ⊢ min_fac a = b)`. -/
meta def prove_min_fac (ic : instance_cache) (e : expr) : tactic (instance_cache × expr × expr) :=
match match_numeral e with
| match_numeral_result.zero := return (ic, `(2:ℕ), `(nat.min_fac_zero))
| match_numeral_result.one := return (ic, `(1:ℕ), `(nat.min_fac_one))
| match_numeral_result.bit0 e := return (ic, `(2), `(min_fac_bit0).mk_app [e])
| match_numeral_result.bit1 e := do
n ← e.to_nat,
c ← mk_instance_cache `(nat),
(c, p) ← prove_pos c e,
let a1 := `(bit1:ℕ→ℕ).mk_app [e],
prove_min_fac_aux e a1 (bit1 n) c `(1) (`(min_fac_helper_0).mk_app [e, p])
| _ := failed
end
/-- Evaluates the `prime` and `min_fac` functions. -/
meta def eval_prime : expr → tactic (expr × expr)
| `(nat.prime %%e) := do
n ← e.to_nat,
match n with
| 0 := false_intro `(nat.not_prime_zero)
| 1 := false_intro `(nat.not_prime_one)
| _ := let d₁ := n.min_fac in
if d₁ < n then prove_non_prime e n d₁ >>= false_intro
else do
let e₁ := reflect d₁,
c ← mk_instance_cache `(nat),
(c, p₁) ← prove_lt_nat c `(1) e₁,
(c, e₁, p) ← prove_min_fac c e,
true_intro $ `(is_prime_helper).mk_app [e, p₁, p]
end
| `(nat.min_fac %%e) := do
ic ← mk_instance_cache `(ℕ),
prod.snd <$> prove_min_fac ic e
| _ := failed
/-- This version of `derive` does not fail when the input is already a numeral -/
meta def derive' (e : expr) : tactic (expr × expr) :=
eval_field e <|> eval_nat_int_ext e <|>
eval_pow e <|> eval_ineq e <|> eval_prime e
meta def derive : expr → tactic (expr × expr) | e :=
do e ← instantiate_mvars e,
(_, e', pr) ←
ext_simplify_core () {} simp_lemmas.mk (λ _, failed) (λ _ _ _ _ _, failed)
(λ _ _ _ _ e,
do (new_e, pr) ← derive' e,
guard (¬ new_e =ₐ e),
return ((), new_e, some pr, tt))
`eq e,
return (e', pr)
end norm_num
namespace tactic.interactive
open norm_num interactive interactive.types
/-- Basic version of `norm_num` that does not call `simp`. -/
meta def norm_num1 (loc : parse location) : tactic unit :=
do ns ← loc.get_locals,
tt ← tactic.replace_at derive ns loc.include_goal
| fail "norm_num failed to simplify",
when loc.include_goal $ try tactic.triv,
when (¬ ns.empty) $ try tactic.contradiction
/-- Normalize numerical expressions. Supports the operations
`+` `-` `*` `/` `^` and `%` over numerical types such as
`ℕ`, `ℤ`, `ℚ`, `ℝ`, `ℂ` and some general algebraic types,
and can prove goals of the form `A = B`, `A ≠ B`, `A < B` and `A ≤ B`,
where `A` and `B` are numerical expressions.
It also has a relatively simple primality prover. -/
meta def norm_num (hs : parse simp_arg_list) (l : parse location) : tactic unit :=
repeat1 $ orelse' (norm_num1 l) $
simp_core {} (norm_num1 (loc.ns [none])) ff hs [] l
add_hint_tactic "norm_num"
/-- Normalizes a numerical expression and tries to close the goal with the result. -/
meta def apply_normed (x : parse texpr) : tactic unit :=
do x₁ ← to_expr x,
(x₂,_) ← derive x₁,
tactic.exact x₂
/--
Normalises numerical expressions. It supports the operations `+` `-` `*` `/` `^` and `%` over
numerical types such as `ℕ`, `ℤ`, `ℚ`, `ℝ`, `ℂ`, and can prove goals of the form `A = B`, `A ≠ B`,
`A < B` and `A ≤ B`, where `A` and `B` are
numerical expressions. It also has a relatively simple primality prover.
```lean
import data.real.basic
example : (2 : ℝ) + 2 = 4 := by norm_num
example : (12345.2 : ℝ) ≠ 12345.3 := by norm_num
example : (73 : ℝ) < 789/2 := by norm_num
example : 123456789 + 987654321 = 1111111110 := by norm_num
example (R : Type*) [ring R] : (2 : R) + 2 = 4 := by norm_num
example (F : Type*) [linear_ordered_field F] : (2 : F) + 2 < 5 := by norm_num
example : nat.prime (2^13 - 1) := by norm_num
example : ¬ nat.prime (2^11 - 1) := by norm_num
example (x : ℝ) (h : x = 123 + 456) : x = 579 := by norm_num at h; assumption
```
The variant `norm_num1` does not call `simp`.
Both `norm_num` and `norm_num1` can be called inside the `conv` tactic.
The tactic `apply_normed` normalises a numerical expression and tries to close the goal with
the result. Compare:
```lean
def a : ℕ := 2^100
#print a -- 2 ^ 100
def normed_a : ℕ := by apply_normed 2^100
#print normed_a -- 1267650600228229401496703205376
```
-/
add_tactic_doc
{ name := "norm_num",
category := doc_category.tactic,
decl_names := [`tactic.interactive.norm_num1, `tactic.interactive.norm_num,
`tactic.interactive.apply_normed],
tags := ["arithmetic", "decision procedure"] }
end tactic.interactive
namespace conv.interactive
open conv interactive tactic.interactive
open norm_num (derive)
/-- Basic version of `norm_num` that does not call `simp`. -/
meta def norm_num1 : conv unit := replace_lhs derive
/-- Normalize numerical expressions. Supports the operations
`+` `-` `*` `/` `^` and `%` over numerical types such as
`ℕ`, `ℤ`, `ℚ`, `ℝ`, `ℂ` and some general algebraic types,
and can prove goals of the form `A = B`, `A ≠ B`, `A < B` and `A ≤ B`,
where `A` and `B` are numerical expressions.
It also has a relatively simple primality prover. -/
meta def norm_num (hs : parse simp_arg_list) : conv unit :=
repeat1 $ orelse' norm_num1 $
conv.interactive.simp ff hs [] { discharger := tactic.interactive.norm_num1 (loc.ns [none]) }
end conv.interactive
|
7a92284031378993351d5abcf3f5bbfb4d5a1bc2
|
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
|
/src/Lean/Server.lean
|
5c4bfb8d622f8559183cf4a31d6e32f8e5a90505
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
EdAyers/lean4
|
57ac632d6b0789cb91fab2170e8c9e40441221bd
|
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
|
refs/heads/master
| 1,676,463,245,298
| 1,660,619,433,000
| 1,660,619,433,000
| 183,433,437
| 1
| 0
|
Apache-2.0
| 1,657,612,672,000
| 1,556,196,574,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 253
|
lean
|
/-
Copyright (c) 2020 Marc Huisinga. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Marc Huisinga, Wojciech Nawrocki
-/
import Lean.Server.Watchdog
import Lean.Server.FileWorker
import Lean.Server.Rpc
|
50ac4891cb7f23ec975452f54108cadaaab8997f
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/algebra/continued_fractions/translations.lean
|
67a3ac6193baf47599b3196fac9fdaf103300788
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 4,976
|
lean
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import algebra.continued_fractions.basic
/-!
# Basic Translation Lemmas Between Functions Defined for Continued Fractions
## Summary
Some simple translation lemmas between the different definitions of functions defined in
`algebra.continued_fractions.basic`.
-/
namespace generalized_continued_fraction
open generalized_continued_fraction as gcf
section general
/-!
### Translations Between General Access Functions
Here we give some basic translations that hold by definition between the various methods that allow
us to access the numerators and denominators of a continued fraction.
-/
variables {α : Type*} {g : gcf α} {n : ℕ}
lemma terminated_at_iff_s_terminated_at : g.terminated_at n ↔ g.s.terminated_at n := by refl
lemma terminated_at_iff_s_none : g.terminated_at n ↔ g.s.nth n = none := by refl
lemma part_num_none_iff_s_none : g.partial_numerators.nth n = none ↔ g.s.nth n = none :=
by cases s_nth_eq : (g.s.nth n); simp [partial_numerators, s_nth_eq]
lemma terminated_at_iff_part_num_none : g.terminated_at n ↔ g.partial_numerators.nth n = none :=
by rw [terminated_at_iff_s_none, part_num_none_iff_s_none]
lemma part_denom_none_iff_s_none : g.partial_denominators.nth n = none ↔ g.s.nth n = none :=
by cases s_nth_eq : (g.s.nth n); simp [partial_denominators, s_nth_eq]
lemma terminated_at_iff_part_denom_none : g.terminated_at n ↔ g.partial_denominators.nth n = none :=
by rw [terminated_at_iff_s_none, part_denom_none_iff_s_none]
lemma part_num_eq_s_a {gp : gcf.pair α} (s_nth_eq : g.s.nth n = some gp) :
g.partial_numerators.nth n = some gp.a :=
by simp [partial_numerators, s_nth_eq]
lemma part_denom_eq_s_b {gp : gcf.pair α} (s_nth_eq : g.s.nth n = some gp) :
g.partial_denominators.nth n = some gp.b :=
by simp [partial_denominators, s_nth_eq]
lemma exists_s_a_of_part_num {a : α} (nth_part_num_eq : g.partial_numerators.nth n = some a) :
∃ gp, g.s.nth n = some gp ∧ gp.a = a :=
by simpa [partial_numerators, seq.map_nth] using nth_part_num_eq
lemma exists_s_b_of_part_denom {b : α} (nth_part_denom_eq : g.partial_denominators.nth n = some b) :
∃ gp, g.s.nth n = some gp ∧ gp.b = b :=
by simpa [partial_denominators, seq.map_nth] using nth_part_denom_eq
end general
section with_division_ring
/-!
### Translations Between Computational Functions
Here we give some basic translations that hold by definition for the computational methods of a
continued fraction.
-/
variables {K : Type*} {g : gcf K} {n : ℕ} [division_ring K]
lemma nth_cont_eq_succ_nth_cont_aux : g.continuants n = g.continuants_aux (n + 1) := rfl
lemma num_eq_conts_a : g.numerators n = (g.continuants n).a := rfl
lemma denom_eq_conts_b : g.denominators n = (g.continuants n).b := rfl
lemma convergent_eq_num_div_denom : g.convergents n = g.numerators n / g.denominators n := rfl
lemma convergent_eq_conts_a_div_conts_b :
g.convergents n = (g.continuants n).a / (g.continuants n).b := rfl
lemma exists_conts_a_of_num {A : K} (nth_num_eq : g.numerators n = A) :
∃ conts, g.continuants n = conts ∧ conts.a = A :=
by simpa
lemma exists_conts_b_of_denom {B : K} (nth_denom_eq : g.denominators n = B) :
∃ conts, g.continuants n = conts ∧ conts.b = B :=
by simpa
@[simp]
lemma zeroth_continuant_aux_eq_one_zero : g.continuants_aux 0 = ⟨1, 0⟩ := rfl
@[simp]
lemma first_continuant_aux_eq_h_one : g.continuants_aux 1 = ⟨g.h, 1⟩ := rfl
@[simp]
lemma zeroth_continuant_eq_h_one : g.continuants 0 = ⟨g.h, 1⟩ := rfl
@[simp]
lemma zeroth_numerator_eq_h : g.numerators 0 = g.h := rfl
@[simp]
lemma zeroth_denominator_eq_one : g.denominators 0 = 1 := rfl
@[simp]
lemma zeroth_convergent_eq_h : g.convergents 0 = g.h :=
by simp [convergent_eq_num_div_denom, num_eq_conts_a, denom_eq_conts_b, div_one]
lemma second_continuant_aux_eq {gp : gcf.pair K} (zeroth_s_eq : g.s.nth 0 = some gp) :
g.continuants_aux 2 = ⟨gp.b * g.h + gp.a, gp.b⟩ :=
by simp [zeroth_s_eq, continuants_aux, next_continuants, next_denominator, next_numerator]
lemma first_continuant_eq {gp : gcf.pair K} (zeroth_s_eq : g.s.nth 0 = some gp) :
g.continuants 1 = ⟨gp.b * g.h + gp.a, gp.b⟩ :=
by simp [nth_cont_eq_succ_nth_cont_aux, (second_continuant_aux_eq zeroth_s_eq)]
lemma first_numerator_eq {gp : gcf.pair K} (zeroth_s_eq : g.s.nth 0 = some gp) :
g.numerators 1 = gp.b * g.h + gp.a :=
by simp[num_eq_conts_a, (first_continuant_eq zeroth_s_eq)]
lemma first_denominator_eq {gp : gcf.pair K} (zeroth_s_eq : g.s.nth 0 = some gp) :
g.denominators 1 = gp.b :=
by simp[denom_eq_conts_b, (first_continuant_eq zeroth_s_eq)]
@[simp]
lemma zeroth_convergent'_aux_eq_zero {s : seq $ gcf.pair K} : convergents'_aux s 0 = 0 := rfl
@[simp]
lemma zeroth_convergent'_eq_h : g.convergents' 0 = g.h := by simp [convergents']
end with_division_ring
end generalized_continued_fraction
|
73950530eb82750680c3c0663550c14a5cbe58d9
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/unexpected_result_with_bind.lean
|
e055fe1071e8979084897c5839f72d8da0369425
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 687
|
lean
|
namespace Repro
def FooM (α : Type) : Type := Unit → α
def FooM.run {α : Type} (ψ : FooM α) (x : Unit) : α := ψ x
def bind {α β : Type} : ∀ (ψ₁ : FooM α) (ψ₂ : α → FooM β), FooM β
| ψ₁, ψ₂ => λ _ => ψ₂ (ψ₁.run ()) ()
instance : Pure FooM := ⟨λ x => λ _ => x⟩
instance : Bind FooM := ⟨@bind⟩
instance : Monad FooM := {}
def unexpectedBehavior : FooM String := do
let b : Bool := (#[] : Array Nat).isEmpty;
let trueBranch ← pure "trueBranch";
let falseBranch ← pure "falseBranch";
(1 : Nat).foldM (λ _ (s : String) => do
let s ← pure $ if b then trueBranch else falseBranch; pure s) ""
#eval unexpectedBehavior ()
end Repro
|
829d78acfcb3f48132ff25de424c86966981501f
|
8b9f17008684d796c8022dab552e42f0cb6fb347
|
/tests/lean/run/match2.lean
|
b0e3368cb510d893f26f089990cd02cc64f01214
|
[
"Apache-2.0"
] |
permissive
|
chubbymaggie/lean
|
0d06ae25f9dd396306fb02190e89422ea94afd7b
|
d2c7b5c31928c98f545b16420d37842c43b4ae9a
|
refs/heads/master
| 1,611,313,622,901
| 1,430,266,839,000
| 1,430,267,083,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 830
|
lean
|
import data.nat.basic
open nat
definition two1 : nat := 2
definition two2 : nat := succ (succ (zero))
definition f (x : nat) (y : nat) := y
constant g : nat → nat → nat
constants a b : nat
(*
local tc = type_checker_with_hints(get_env(), true)
local plugin = whnf_match_plugin(tc)
function tst_match(p, t)
local r1, r2 = match(p, t, plugin)
assert(r1)
print("--------------")
for i = 1, #r1 do
print(" expr:#" .. i .. " := " .. tostring(r1[i]))
end
for i = 1, #r2 do
print(" lvl:#" .. i .. " := " .. tostring(r2[i]))
end
end
local nat = Const("nat")
local f = Const("f")
local g = Const("g")
local a = Const("a")
local b = Const("b")
local x = mk_idx_meta(0, nat)
local p = g(x, f(x, a))
local t = g(a, f(b, a))
tst_match(p, t)
tst_match(f(x, x), f(a, b))
*)
|
1bcd1f16ca2858e3273ef3ac1afc0b7c09b70470
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/category_theory/monoidal/natural_transformation.lean
|
478f462028274cc4465c8273c603f1758f15fd69
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,541
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.monoidal.functor
import category_theory.full_subcategory
/-!
# Monoidal natural transformations
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
Natural transformations between (lax) monoidal functors must satisfy
an additional compatibility relation with the tensorators:
`F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y`.
(Lax) monoidal functors between a fixed pair of monoidal categories
themselves form a category.
-/
open category_theory
universes v₁ v₂ v₃ u₁ u₂ u₃
open category_theory.category
open category_theory.functor
namespace category_theory
open monoidal_category
variables {C : Type u₁} [category.{v₁} C] [monoidal_category.{v₁} C]
{D : Type u₂} [category.{v₂} D] [monoidal_category.{v₂} D]
/--
A monoidal natural transformation is a natural transformation between (lax) monoidal functors
additionally satisfying:
`F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y`
-/
@[ext]
structure monoidal_nat_trans (F G : lax_monoidal_functor C D)
extends nat_trans F.to_functor G.to_functor :=
(unit' : F.ε ≫ app (𝟙_ C) = G.ε . obviously)
(tensor' : ∀ X Y, F.μ _ _ ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ _ _ . obviously)
restate_axiom monoidal_nat_trans.tensor'
attribute [simp, reassoc] monoidal_nat_trans.tensor
restate_axiom monoidal_nat_trans.unit'
attribute [simp, reassoc] monoidal_nat_trans.unit
namespace monoidal_nat_trans
/--
The identity monoidal natural transformation.
-/
@[simps]
def id (F : lax_monoidal_functor C D) : monoidal_nat_trans F F :=
{ ..(𝟙 F.to_functor) }
instance (F : lax_monoidal_functor C D) : inhabited (monoidal_nat_trans F F) := ⟨id F⟩
/--
Vertical composition of monoidal natural transformations.
-/
@[simps]
def vcomp {F G H : lax_monoidal_functor C D}
(α : monoidal_nat_trans F G) (β : monoidal_nat_trans G H) : monoidal_nat_trans F H :=
{ ..(nat_trans.vcomp α.to_nat_trans β.to_nat_trans) }
instance category_lax_monoidal_functor : category (lax_monoidal_functor C D) :=
{ hom := monoidal_nat_trans,
id := id,
comp := λ F G H α β, vcomp α β, }
@[simp] lemma comp_to_nat_trans_lax {F G H : lax_monoidal_functor C D} {α : F ⟶ G} {β : G ⟶ H} :
(α ≫ β).to_nat_trans =
@category_struct.comp (C ⥤ D) _ _ _ _ (α.to_nat_trans) (β.to_nat_trans) := rfl
instance category_monoidal_functor : category (monoidal_functor C D) :=
induced_category.category monoidal_functor.to_lax_monoidal_functor
@[simp] lemma comp_to_nat_trans {F G H : monoidal_functor C D} {α : F ⟶ G} {β : G ⟶ H} :
(α ≫ β).to_nat_trans =
@category_struct.comp (C ⥤ D) _ _ _ _ (α.to_nat_trans) (β.to_nat_trans) := rfl
variables {E : Type u₃} [category.{v₃} E] [monoidal_category.{v₃} E]
/--
Horizontal composition of monoidal natural transformations.
-/
@[simps]
def hcomp {F G : lax_monoidal_functor C D} {H K : lax_monoidal_functor D E}
(α : monoidal_nat_trans F G) (β : monoidal_nat_trans H K) :
monoidal_nat_trans (F ⊗⋙ H) (G ⊗⋙ K) :=
{ unit' :=
begin
dsimp, simp,
conv_lhs { rw [←K.to_functor.map_comp, α.unit], },
end,
tensor' := λ X Y,
begin
dsimp, simp,
conv_lhs { rw [←K.to_functor.map_comp, α.tensor, K.to_functor.map_comp], },
end,
..(nat_trans.hcomp α.to_nat_trans β.to_nat_trans) }
section
local attribute [simp] nat_trans.naturality monoidal_nat_trans.unit monoidal_nat_trans.tensor
/-- The cartesian product of two monoidal natural transformations is monoidal. -/
@[simps]
def prod {F G : lax_monoidal_functor C D} {H K : lax_monoidal_functor C E}
(α : monoidal_nat_trans F G) (β : monoidal_nat_trans H K) :
monoidal_nat_trans (F.prod' H) (G.prod' K) :=
{ app := λ X, (α.app X, β.app X) }
end
end monoidal_nat_trans
namespace monoidal_nat_iso
variables {F G : lax_monoidal_functor C D}
/--
Construct a monoidal natural isomorphism from object level isomorphisms,
and the monoidal naturality in the forward direction.
-/
def of_components
(app : ∀ X : C, F.obj X ≅ G.obj X)
(naturality : ∀ {X Y : C} (f : X ⟶ Y), F.map f ≫ (app Y).hom = (app X).hom ≫ G.map f)
(unit : F.ε ≫ (app (𝟙_ C)).hom = G.ε)
(tensor : ∀ X Y, F.μ X Y ≫ (app (X ⊗ Y)).hom = ((app X).hom ⊗ (app Y).hom) ≫ G.μ X Y) :
F ≅ G :=
{ hom := { app := λ X, (app X).hom, },
inv :=
{ app := λ X, (app X).inv,
unit' := by { dsimp, rw [←unit, assoc, iso.hom_inv_id, comp_id], },
tensor' := λ X Y,
begin
dsimp,
rw [iso.comp_inv_eq, assoc, tensor, ←tensor_comp_assoc,
iso.inv_hom_id, iso.inv_hom_id, tensor_id, id_comp],
end,
..(nat_iso.of_components app @naturality).inv, }, }
@[simp] lemma of_components.hom_app
(app : ∀ X : C, F.obj X ≅ G.obj X) (naturality) (unit) (tensor) (X) :
(of_components app naturality unit tensor).hom.app X = (app X).hom := rfl
@[simp] lemma of_components.inv_app
(app : ∀ X : C, F.obj X ≅ G.obj X) (naturality) (unit) (tensor) (X) :
(of_components app naturality unit tensor).inv.app X = (app X).inv :=
by simp [of_components]
instance is_iso_of_is_iso_app (α : F ⟶ G) [∀ X : C, is_iso (α.app X)] : is_iso α :=
⟨(is_iso.of_iso (of_components (λ X, as_iso (α.app X))
(λ X Y f, α.to_nat_trans.naturality f) α.unit α.tensor)).1⟩
end monoidal_nat_iso
noncomputable theory
/-- The unit of a monoidal equivalence can be upgraded to a monoidal natural transformation. -/
@[simps]
def monoidal_unit (F : monoidal_functor C D) [is_equivalence F.to_functor] :
lax_monoidal_functor.id C ⟶
F.to_lax_monoidal_functor ⊗⋙ (monoidal_inverse F).to_lax_monoidal_functor :=
let e := F.to_functor.as_equivalence in
{ to_nat_trans := e.unit,
tensor' := λ X Y, begin
-- This proof is not pretty; golfing welcome!
dsimp,
simp only [adjunction.hom_equiv_unit, adjunction.hom_equiv_naturality_right,
category.id_comp, category.assoc],
simp only [←functor.map_comp],
erw [e.counit_app_functor, e.counit_app_functor, F.to_lax_monoidal_functor.μ_natural,
is_iso.inv_hom_id_assoc],
simp only [category_theory.is_equivalence.inv_fun_map],
slice_rhs 2 3 { erw iso.hom_inv_id_app, },
dsimp,
simp only [category_theory.category.id_comp],
slice_rhs 1 2 { rw [←tensor_comp, iso.hom_inv_id_app, iso.hom_inv_id_app],
dsimp, rw [tensor_id], },
simp,
end }.
instance (F : monoidal_functor C D) [is_equivalence F.to_functor] : is_iso (monoidal_unit F) :=
begin
haveI : ∀ (X : C), is_iso ((monoidal_unit F).to_nat_trans.app X),
{ intros, dsimp, apply_instance, },
exact monoidal_nat_iso.is_iso_of_is_iso_app _
end
/-- The counit of a monoidal equivalence can be upgraded to a monoidal natural transformation. -/
@[simps]
def monoidal_counit (F : monoidal_functor C D) [is_equivalence F.to_functor] :
(monoidal_inverse F).to_lax_monoidal_functor ⊗⋙ F.to_lax_monoidal_functor ⟶
lax_monoidal_functor.id D :=
let e := F.to_functor.as_equivalence in
{ to_nat_trans := e.counit,
unit' := begin
dsimp,
simp only [category.comp_id, category.assoc, functor.map_inv, functor.map_comp,
nat_iso.inv_inv_app, is_iso.inv_comp, is_equivalence.fun_inv_map, adjunction.hom_equiv_unit],
erw [e.counit_app_functor, ←e.functor.map_comp_assoc, iso.hom_inv_id_app],
dsimp, simp,
end,
tensor' := λ X Y, begin
dsimp,
simp only [adjunction.hom_equiv_unit, adjunction.hom_equiv_naturality_right, category.assoc,
category.comp_id, functor.map_comp],
simp only [is_equivalence.fun_inv_map],
erw [e.counit_app_functor],
simp only [category.assoc],
erw [←e.functor.map_comp_assoc],
simp only [category_theory.iso.inv_hom_id_app,
category_theory.iso.inv_hom_id_app_assoc],
erw [iso.hom_inv_id_app],
erw [category_theory.functor.map_id],
simp only [category.id_comp],
simp only [category_theory.iso.inv_hom_id_app,
category_theory.is_iso.hom_inv_id_assoc],
erw [iso.inv_hom_id_app],
dsimp, simp, refl,
end }
instance (F : monoidal_functor C D) [is_equivalence F.to_functor] : is_iso (monoidal_counit F) :=
begin
haveI : ∀ (X : D), is_iso ((monoidal_counit F).to_nat_trans.app X),
{ intros, dsimp, apply_instance, },
exact monoidal_nat_iso.is_iso_of_is_iso_app _
end
end category_theory
|
d0b037b9a0966c0498459a575533ea762b653914
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/data/finset/pi.lean
|
2cd46e633ffc06f7305f3cdb2c8525e78d11dcad
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 4,059
|
lean
|
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl
-/
import data.finset.basic
import data.multiset.pi
/-!
# The cartesian product of finsets
-/
namespace finset
open multiset
/-! ### pi -/
section pi
variables {α : Type*} {δ : α → Type*} [decidable_eq α]
/-- Given a finset `s` of `α` and for all `a : α` a finset `t a` of `δ a`, then one can define the
finset `s.pi t` of all functions defined on elements of `s` taking values in `t a` for `a ∈ s`.
Note that the elements of `s.pi t` are only partially defined, on `s`. -/
def pi (s : finset α) (t : Πa, finset (δ a)) : finset (Πa∈s, δ a) :=
⟨s.1.pi (λ a, (t a).1), nodup_pi s.2 (λ a _, (t a).2)⟩
@[simp] lemma pi_val (s : finset α) (t : Πa, finset (δ a)) :
(s.pi t).1 = s.1.pi (λ a, (t a).1) := rfl
@[simp] lemma mem_pi {s : finset α} {t : Πa, finset (δ a)} {f : Πa∈s, δ a} :
f ∈ s.pi t ↔ (∀a (h : a ∈ s), f a h ∈ t a) :=
mem_pi _ _ _
/-- The empty dependent product function, defined on the emptyset. The assumption `a ∈ ∅` is never
satisfied. -/
def pi.empty (β : α → Sort*) (a : α) (h : a ∈ (∅ : finset α)) : β a :=
multiset.pi.empty β a h
/-- Given a function `f` defined on a finset `s`, define a new function on the finset `s ∪ {a}`,
equal to `f` on `s` and sending `a` to a given value `b`. This function is denoted
`s.pi.cons a b f`. If `a` already belongs to `s`, the new function takes the value `b` at `a`
anyway. -/
def pi.cons (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (a' : α) (h : a' ∈ insert a s) :
δ a' :=
multiset.pi.cons s.1 a b f _ (multiset.mem_cons.2 $ mem_insert.symm.2 h)
@[simp]
lemma pi.cons_same (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (h : a ∈ insert a s) :
pi.cons s a b f a h = b :=
multiset.pi.cons_same _
lemma pi.cons_ne {s : finset α} {a a' : α} {b : δ a} {f : Πa, a ∈ s → δ a} {h : a' ∈ insert a s}
(ha : a ≠ a') :
pi.cons s a b f a' h = f a' ((mem_insert.1 h).resolve_left ha.symm) :=
multiset.pi.cons_ne _ _
lemma pi_cons_injective {a : α} {b : δ a} {s : finset α} (hs : a ∉ s) :
function.injective (pi.cons s a b) :=
assume e₁ e₂ eq,
@multiset.pi_cons_injective α _ δ a b s.1 hs _ _ $
funext $ assume e, funext $ assume h,
have pi.cons s a b e₁ e (by simpa only [multiset.mem_cons, mem_insert] using h) =
pi.cons s a b e₂ e (by simpa only [multiset.mem_cons, mem_insert] using h),
{ rw [eq] },
this
@[simp] lemma pi_empty {t : Πa:α, finset (δ a)} :
pi (∅ : finset α) t = singleton (pi.empty δ) := rfl
@[simp] lemma pi_insert [∀a, decidable_eq (δ a)]
{s : finset α} {t : Πa:α, finset (δ a)} {a : α} (ha : a ∉ s) :
pi (insert a s) t = (t a).bind (λb, (pi s t).image (pi.cons s a b)) :=
begin
apply eq_of_veq,
rw ← multiset.erase_dup_eq_self.2 (pi (insert a s) t).2,
refine (λ s' (h : s' = a :: s.1), (_ : erase_dup (multiset.pi s' (λ a, (t a).1)) =
erase_dup ((t a).1.bind $ λ b,
erase_dup $ (multiset.pi s.1 (λ (a : α), (t a).val)).map $
λ f a' h', multiset.pi.cons s.1 a b f a' (h ▸ h')))) _ (insert_val_of_not_mem ha),
subst s', rw pi_cons,
congr, funext b,
rw multiset.erase_dup_eq_self.2,
exact multiset.nodup_map (multiset.pi_cons_injective ha) (pi s t).2,
end
lemma pi_subset {s : finset α} (t₁ t₂ : Πa, finset (δ a)) (h : ∀ a ∈ s, t₁ a ⊆ t₂ a) :
s.pi t₁ ⊆ s.pi t₂ :=
λ g hg, mem_pi.2 $ λ a ha, h a ha (mem_pi.mp hg a ha)
lemma pi_disjoint_of_disjoint {δ : α → Type*} [∀a, decidable_eq (δ a)]
{s : finset α} [decidable_eq (Πa∈s, δ a)]
(t₁ t₂ : Πa, finset (δ a)) {a : α} (ha : a ∈ s) (h : disjoint (t₁ a) (t₂ a)) :
disjoint (s.pi t₁) (s.pi t₂) :=
disjoint_iff_ne.2 $ λ f₁ hf₁ f₂ hf₂ eq₁₂,
disjoint_iff_ne.1 h (f₁ a ha) (mem_pi.mp hf₁ a ha) (f₂ a ha) (mem_pi.mp hf₂ a ha)
$ congr_fun (congr_fun eq₁₂ a) ha
end pi
end finset
|
845486e3520b5c58572b0bf160e80afb546fe471
|
d642a6b1261b2cbe691e53561ac777b924751b63
|
/src/data/real/ennreal.lean
|
fe988fe02908149c95a41c7c383d32b9fdf35c64
|
[
"Apache-2.0"
] |
permissive
|
cipher1024/mathlib
|
fee56b9954e969721715e45fea8bcb95f9dc03fe
|
d077887141000fefa5a264e30fa57520e9f03522
|
refs/heads/master
| 1,651,806,490,504
| 1,573,508,694,000
| 1,573,508,694,000
| 107,216,176
| 0
| 0
|
Apache-2.0
| 1,647,363,136,000
| 1,508,213,014,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 33,237
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl
Extended non-negative reals
-/
import data.real.nnreal order.bounds data.set.intervals tactic.norm_num
noncomputable theory
open classical set lattice
open_locale classical
variables {α : Type*} {β : Type*}
/-- The extended nonnegative real numbers. This is usually denoted [0, ∞],
and is relevant as the codomain of a measure. -/
def ennreal := with_top nnreal
localized "notation `∞` := (⊤ : ennreal)" in ennreal
namespace ennreal
variables {a b c d : ennreal} {r p q : nnreal}
instance : canonically_ordered_comm_semiring ennreal := by unfold ennreal; apply_instance
instance : decidable_linear_order ennreal := by unfold ennreal; apply_instance
instance : complete_linear_order ennreal := by unfold ennreal; apply_instance
instance : inhabited ennreal := ⟨0⟩
instance : densely_ordered ennreal := with_top.densely_ordered
instance : has_coe nnreal ennreal := ⟨ option.some ⟩
lemma none_eq_top : (none : ennreal) = (⊤ : ennreal) := rfl
lemma some_eq_coe (a : nnreal) : (some a : ennreal) = (↑a : ennreal) := rfl
/-- `to_nnreal x` returns `x` if it is real, otherwise 0. -/
protected def to_nnreal : ennreal → nnreal
| (some r) := r
| none := 0
/-- `to_real x` returns `x` if it is real, `0` otherwise. -/
protected def to_real (a : ennreal) : real := coe (a.to_nnreal)
/-- `of_real x` returns `x` if it is nonnegative, `0` otherwise. -/
protected def of_real (r : real) : ennreal := coe (nnreal.of_real r)
@[simp] lemma to_nnreal_coe : (r : ennreal).to_nnreal = r := rfl
@[simp] lemma coe_to_nnreal : ∀{a:ennreal}, a ≠ ∞ → ↑(a.to_nnreal) = a
| (some r) h := rfl
| none h := (h rfl).elim
@[simp] lemma of_real_to_real {a : ennreal} (h : a ≠ ∞) : ennreal.of_real (a.to_real) = a :=
by simp [ennreal.to_real, ennreal.of_real, h]
@[simp] lemma to_real_of_real {r : real} (h : 0 ≤ r) : ennreal.to_real (ennreal.of_real r) = r :=
by simp [ennreal.to_real, ennreal.of_real, nnreal.coe_of_real _ h]
lemma coe_to_nnreal_le_self : ∀{a:ennreal}, ↑(a.to_nnreal) ≤ a
| (some r) := by rw [some_eq_coe, to_nnreal_coe]; exact le_refl _
| none := le_top
lemma coe_nnreal_eq (r : nnreal) : (r : ennreal) = ennreal.of_real r :=
by { rw [ennreal.of_real, nnreal.of_real], cases r with r h, congr, dsimp, rw max_eq_left h }
lemma of_real_eq_coe_nnreal {x : real} (h : 0 ≤ x) :
ennreal.of_real x = @coe nnreal ennreal _ (⟨x, h⟩ : nnreal) :=
by { rw [coe_nnreal_eq], refl }
@[simp] lemma coe_zero : ↑(0 : nnreal) = (0 : ennreal) := rfl
@[simp] lemma coe_one : ↑(1 : nnreal) = (1 : ennreal) := rfl
@[simp] lemma to_real_nonneg {a : ennreal} : 0 ≤ a.to_real := by simp [ennreal.to_real]
@[simp] lemma top_to_nnreal : ∞.to_nnreal = 0 := rfl
@[simp] lemma top_to_real : ∞.to_real = 0 := rfl
@[simp] lemma zero_to_nnreal : (0 : ennreal).to_nnreal = 0 := rfl
@[simp] lemma zero_to_real : (0 : ennreal).to_real = 0 := rfl
@[simp] lemma of_real_zero : ennreal.of_real (0 : ℝ) = 0 :=
by simp [ennreal.of_real]; refl
@[simp] lemma of_real_one : ennreal.of_real (1 : ℝ) = (1 : ennreal) :=
by simp [ennreal.of_real]
lemma forall_ennreal {p : ennreal → Prop} : (∀a, p a) ↔ (∀r:nnreal, p r) ∧ p ∞ :=
⟨assume h, ⟨assume r, h _, h _⟩,
assume ⟨h₁, h₂⟩ a, match a with some r := h₁ _ | none := h₂ end⟩
lemma to_nnreal_eq_zero_iff (x : ennreal) : x.to_nnreal = 0 ↔ x = 0 ∨ x = ⊤ :=
⟨begin
cases x,
{ simp [none_eq_top] },
{ have A : some (0:nnreal) = (0:ennreal) := rfl,
simp [ennreal.to_nnreal, A] {contextual := tt} }
end,
by intro h; cases h; simp [h]⟩
lemma to_real_eq_zero_iff (x : ennreal) : x.to_real = 0 ↔ x = 0 ∨ x = ⊤ :=
by simp [ennreal.to_real, to_nnreal_eq_zero_iff]
@[simp] lemma coe_ne_top : (r : ennreal) ≠ ∞ := with_top.coe_ne_top
@[simp] lemma top_ne_coe : ∞ ≠ (r : ennreal) := with_top.top_ne_coe
@[simp] lemma of_real_ne_top {r : ℝ} : ennreal.of_real r ≠ ∞ := by simp [ennreal.of_real]
@[simp] lemma top_ne_of_real {r : ℝ} : ∞ ≠ ennreal.of_real r := by simp [ennreal.of_real]
@[simp] lemma zero_ne_top : 0 ≠ ∞ := coe_ne_top
@[simp] lemma top_ne_zero : ∞ ≠ 0 := top_ne_coe
@[simp] lemma one_ne_top : 1 ≠ ∞ := coe_ne_top
@[simp] lemma top_ne_one : ∞ ≠ 1 := top_ne_coe
@[simp] lemma coe_eq_coe : (↑r : ennreal) = ↑q ↔ r = q := with_top.coe_eq_coe
@[simp] lemma coe_le_coe : (↑r : ennreal) ≤ ↑q ↔ r ≤ q := with_top.coe_le_coe
@[simp] lemma coe_lt_coe : (↑r : ennreal) < ↑q ↔ r < q := with_top.coe_lt_coe
@[simp] lemma coe_eq_zero : (↑r : ennreal) = 0 ↔ r = 0 := coe_eq_coe
@[simp] lemma zero_eq_coe : 0 = (↑r : ennreal) ↔ 0 = r := coe_eq_coe
@[simp] lemma coe_eq_one : (↑r : ennreal) = 1 ↔ r = 1 := coe_eq_coe
@[simp] lemma one_eq_coe : 1 = (↑r : ennreal) ↔ 1 = r := coe_eq_coe
@[simp] lemma coe_nonneg : 0 ≤ (↑r : ennreal) ↔ 0 ≤ r := coe_le_coe
@[simp] lemma coe_pos : 0 < (↑r : ennreal) ↔ 0 < r := coe_lt_coe
@[simp] lemma coe_add : ↑(r + p) = (r + p : ennreal) := with_top.coe_add
@[simp] lemma coe_mul : ↑(r * p) = (r * p : ennreal) := with_top.coe_mul
@[simp] lemma coe_bit0 : (↑(bit0 r) : ennreal) = bit0 r := coe_add
@[simp] lemma coe_bit1 : (↑(bit1 r) : ennreal) = bit1 r := by simp [bit1]
@[simp] lemma add_top : a + ∞ = ∞ := with_top.add_top
@[simp] lemma top_add : ∞ + a = ∞ := with_top.top_add
instance : is_semiring_hom (coe : nnreal → ennreal) :=
by refine_struct {..}; simp
lemma add_eq_top : a + b = ∞ ↔ a = ∞ ∨ b = ∞ := with_top.add_eq_top _ _
lemma add_lt_top : a + b < ∞ ↔ a < ∞ ∧ b < ∞ := with_top.add_lt_top _ _
lemma to_nnreal_add {r₁ r₂ : ennreal} (h₁ : r₁ < ⊤) (h₂ : r₂ < ⊤) :
(r₁ + r₂).to_nnreal = r₁.to_nnreal + r₂.to_nnreal :=
begin
rw [← coe_eq_coe, coe_add, coe_to_nnreal, coe_to_nnreal, coe_to_nnreal];
apply @ne_top_of_lt ennreal _ _ ⊤,
exact h₂,
exact h₁,
exact add_lt_top.2 ⟨h₁, h₂⟩
end
/- rw has trouble with the generic lt_top_iff_ne_top and bot_lt_iff_ne_bot
(contrary to erw). This is solved with the next lemmas -/
protected lemma lt_top_iff_ne_top : a < ∞ ↔ a ≠ ∞ := lt_top_iff_ne_top
protected lemma bot_lt_iff_ne_bot : 0 < a ↔ a ≠ 0 := bot_lt_iff_ne_bot
lemma mul_top : a * ∞ = (if a = 0 then 0 else ∞) :=
begin split_ifs, { simp [h] }, { exact with_top.mul_top h } end
lemma top_mul : ∞ * a = (if a = 0 then 0 else ∞) :=
begin split_ifs, { simp [h] }, { exact with_top.top_mul h } end
@[simp] lemma top_mul_top : ∞ * ∞ = ∞ := with_top.top_mul_top
lemma mul_eq_top {a b : ennreal} : a * b = ⊤ ↔ (a ≠ 0 ∧ b = ⊤) ∨ (a = ⊤ ∧ b ≠ 0) :=
with_top.mul_eq_top_iff
lemma mul_lt_top {a b : ennreal} : a < ⊤ → b < ⊤ → a * b < ⊤ :=
by simp [ennreal.lt_top_iff_ne_top, (≠), mul_eq_top] {contextual := tt}
@[simp] lemma coe_finset_sum {s : finset α} {f : α → nnreal} : ↑(s.sum f) = (s.sum (λa, f a) : ennreal) :=
(finset.sum_hom coe).symm
@[simp] lemma coe_finset_prod {s : finset α} {f : α → nnreal} : ↑(s.prod f) = (s.prod (λa, f a) : ennreal) :=
(finset.prod_hom coe).symm
@[simp] lemma bot_eq_zero : (⊥ : ennreal) = 0 := rfl
section order
@[simp] lemma coe_lt_top : coe r < ∞ := with_top.coe_lt_top r
@[simp] lemma not_top_le_coe : ¬ (⊤:ennreal) ≤ ↑r := with_top.not_top_le_coe r
@[simp] lemma zero_lt_coe_iff : 0 < (↑p : ennreal) ↔ 0 < p := coe_lt_coe
@[simp] lemma one_le_coe_iff : (1:ennreal) ≤ ↑r ↔ 1 ≤ r := coe_le_coe
@[simp] lemma coe_le_one_iff : ↑r ≤ (1:ennreal) ↔ r ≤ 1 := coe_le_coe
@[simp] lemma coe_lt_one_iff : (↑p : ennreal) < 1 ↔ p < 1 := coe_lt_coe
@[simp] lemma one_lt_zero_iff : 1 < (↑p : ennreal) ↔ 1 < p := coe_lt_coe
@[simp] lemma coe_nat (n : nat) : ((n : nnreal) : ennreal) = n := with_top.coe_nat n
@[simp] lemma nat_ne_top (n : nat) : (n : ennreal) ≠ ⊤ := with_top.nat_ne_top n
@[simp] lemma top_ne_nat (n : nat) : (⊤ : ennreal) ≠ n := with_top.top_ne_nat n
lemma le_coe_iff : a ≤ ↑r ↔ (∃p:nnreal, a = p ∧ p ≤ r) := with_top.le_coe_iff r a
lemma coe_le_iff : ↑r ≤ a ↔ (∀p:nnreal, a = p → r ≤ p) := with_top.coe_le_iff r a
lemma lt_iff_exists_coe : a < b ↔ (∃p:nnreal, a = p ∧ ↑p < b) := with_top.lt_iff_exists_coe a b
-- TODO: move to canonically ordered semiring ...
protected lemma zero_lt_one : 0 < (1 : ennreal) := zero_lt_coe_iff.mpr zero_lt_one
@[simp] lemma not_lt_zero : ¬ a < 0 := by simp
lemma add_lt_add_iff_left : a < ⊤ → (a + c < a + b ↔ c < b) :=
with_top.add_lt_add_iff_left
lemma add_lt_add_iff_right : a < ⊤ → (c + a < b + a ↔ c < b) :=
with_top.add_lt_add_iff_right
lemma lt_add_right (ha : a < ⊤) (hb : 0 < b) : a < a + b :=
by rwa [← add_lt_add_iff_left ha, add_zero] at hb
lemma le_of_forall_epsilon_le : ∀{a b : ennreal}, (∀ε:nnreal, 0 < ε → b < ∞ → a ≤ b + ε) → a ≤ b
| a none h := le_top
| none (some a) h :=
have (⊤:ennreal) ≤ ↑a + ↑(1:nnreal), from h 1 zero_lt_one coe_lt_top,
by rw [← coe_add] at this; exact (not_top_le_coe this).elim
| (some a) (some b) h :=
by simp only [none_eq_top, some_eq_coe, coe_add.symm, coe_le_coe, coe_lt_top, true_implies_iff] at *;
exact nnreal.le_of_forall_epsilon_le h
lemma lt_iff_exists_rat_btwn :
a < b ↔ (∃q:ℚ, 0 ≤ q ∧ a < nnreal.of_real q ∧ (nnreal.of_real q:ennreal) < b) :=
⟨λ h,
begin
rcases lt_iff_exists_coe.1 h with ⟨p, rfl, _⟩,
rcases dense h with ⟨c, pc, cb⟩,
rcases lt_iff_exists_coe.1 cb with ⟨r, rfl, _⟩,
rcases (nnreal.lt_iff_exists_rat_btwn _ _).1 (coe_lt_coe.1 pc) with ⟨q, hq0, pq, qr⟩,
exact ⟨q, hq0, coe_lt_coe.2 pq, lt_trans (coe_lt_coe.2 qr) cb⟩
end,
λ ⟨q, q0, qa, qb⟩, lt_trans qa qb⟩
lemma lt_iff_exists_real_btwn :
a < b ↔ (∃r:ℝ, 0 ≤ r ∧ a < ennreal.of_real r ∧ (ennreal.of_real r:ennreal) < b) :=
⟨λ h, let ⟨q, q0, aq, qb⟩ := ennreal.lt_iff_exists_rat_btwn.1 h in
⟨q, rat.cast_nonneg.2 q0, aq, qb⟩,
λ ⟨q, q0, qa, qb⟩, lt_trans qa qb⟩
protected lemma exists_nat_gt {r : ennreal} (h : r ≠ ⊤) : ∃n:ℕ, r < n :=
begin
rcases lt_iff_exists_coe.1 (lt_top_iff_ne_top.2 h) with ⟨r, rfl, hb⟩,
rcases exists_nat_gt r with ⟨n, hn⟩,
refine ⟨n, _⟩,
rwa [← ennreal.coe_nat, ennreal.coe_lt_coe],
end
lemma add_lt_add (ac : a < c) (bd : b < d) : a + b < c + d :=
begin
rcases dense ac with ⟨a', aa', a'c⟩,
rcases lt_iff_exists_coe.1 aa' with ⟨aR, rfl, _⟩,
rcases lt_iff_exists_coe.1 a'c with ⟨a'R, rfl, _⟩,
rcases dense bd with ⟨b', bb', b'd⟩,
rcases lt_iff_exists_coe.1 bb' with ⟨bR, rfl, _⟩,
rcases lt_iff_exists_coe.1 b'd with ⟨b'R, rfl, _⟩,
have I : ↑aR + ↑bR < ↑a'R + ↑b'R :=
begin
rw [← coe_add, ← coe_add, coe_lt_coe],
apply add_lt_add (coe_lt_coe.1 aa') (coe_lt_coe.1 bb')
end,
have J : ↑a'R + ↑b'R ≤ c + d := add_le_add' (le_of_lt a'c) (le_of_lt b'd),
apply lt_of_lt_of_le I J
end
end order
section complete_lattice
lemma coe_Sup {s : set nnreal} : bdd_above s → (↑(Sup s) : ennreal) = (⨆a∈s, ↑a) := with_top.coe_Sup
lemma coe_Inf {s : set nnreal} : s ≠ ∅ → (↑(Inf s) : ennreal) = (⨅a∈s, ↑a) := with_top.coe_Inf
@[simp] lemma top_mem_upper_bounds {s : set ennreal} : ∞ ∈ upper_bounds s :=
assume x hx, le_top
lemma coe_mem_upper_bounds {s : set nnreal} :
↑r ∈ upper_bounds ((coe : nnreal → ennreal) '' s) ↔ r ∈ upper_bounds s :=
by simp [upper_bounds, ball_image_iff, -mem_image, *] {contextual := tt}
lemma infi_ennreal {α : Type*} [complete_lattice α] {f : ennreal → α} :
(⨅n, f n) = (⨅n:nnreal, f n) ⊓ f ⊤ :=
le_antisymm
(le_inf (le_infi $ assume i, infi_le _ _) (infi_le _ _))
(le_infi $ forall_ennreal.2 ⟨assume r, inf_le_left_of_le $ infi_le _ _, inf_le_right⟩)
end complete_lattice
section mul
lemma mul_eq_mul_left : a ≠ 0 → a ≠ ⊤ → (a * b = a * c ↔ b = c) :=
begin
cases a; cases b; cases c;
simp [none_eq_top, some_eq_coe, mul_top, top_mul, -coe_mul, coe_mul.symm,
nnreal.mul_eq_mul_left] {contextual := tt},
end
lemma mul_le_mul_left : a ≠ 0 → a ≠ ⊤ → (a * b ≤ a * c ↔ b ≤ c) :=
begin
cases a; cases b; cases c;
simp [none_eq_top, some_eq_coe, mul_top, top_mul, -coe_mul, coe_mul.symm] {contextual := tt},
assume h, exact mul_le_mul_left (zero_lt_iff_ne_zero.2 h)
end
lemma mul_eq_zero {a b : ennreal} : a * b = 0 ↔ a = 0 ∨ b = 0 :=
canonically_ordered_comm_semiring.mul_eq_zero_iff _ _
end mul
section sub
instance : has_sub ennreal := ⟨λa b, Inf {d | a ≤ d + b}⟩
lemma coe_sub : ↑(p - r) = (↑p:ennreal) - r :=
le_antisymm
(le_Inf $ assume b (hb : ↑p ≤ b + r), coe_le_iff.2 $
by rintros d rfl; rwa [← coe_add, coe_le_coe, ← nnreal.sub_le_iff_le_add] at hb)
(Inf_le $ show (↑p : ennreal) ≤ ↑(p - r) + ↑r,
by rw [← coe_add, coe_le_coe, ← nnreal.sub_le_iff_le_add])
@[simp] lemma top_sub_coe : ∞ - ↑r = ∞ :=
top_unique $ le_Inf $ by simp [add_eq_top]
@[simp] lemma sub_eq_zero_of_le (h : a ≤ b) : a - b = 0 :=
le_antisymm (Inf_le $ le_add_left h) (zero_le _)
@[simp] lemma sub_self : a - a = 0 := sub_eq_zero_of_le $ le_refl _
@[simp] lemma zero_sub : 0 - a = 0 :=
le_antisymm (Inf_le $ zero_le _) (zero_le _)
@[simp] lemma sub_infty : a - ∞ = 0 :=
le_antisymm (Inf_le $ by simp) (zero_le _)
lemma sub_le_sub (h₁ : a ≤ b) (h₂ : d ≤ c) : a - c ≤ b - d :=
Inf_le_Inf $ assume e (h : b ≤ e + d),
calc a ≤ b : h₁
... ≤ e + d : h
... ≤ e + c : add_le_add' (le_refl _) h₂
@[simp] lemma add_sub_self : ∀{a b : ennreal}, b < ∞ → (a + b) - b = a
| a none := by simp [none_eq_top]
| none (some b) := by simp [none_eq_top, some_eq_coe]
| (some a) (some b) :=
by simp [some_eq_coe]; rw [← coe_add, ← coe_sub, coe_eq_coe, nnreal.add_sub_cancel]
@[simp] lemma add_sub_self' (h : a < ∞) : (a + b) - a = b :=
by rw [add_comm, add_sub_self h]
lemma add_left_inj (h : a < ∞) : a + b = a + c ↔ b = c :=
⟨λ e, by simpa [h] using congr_arg (λ x, x - a) e, congr_arg _⟩
lemma add_right_inj (h : a < ∞) : b + a = c + a ↔ b = c :=
by rw [add_comm, add_comm c, add_left_inj h]
@[simp] lemma sub_add_cancel_of_le : ∀{a b : ennreal}, b ≤ a → (a - b) + b = a :=
begin
simp [forall_ennreal, le_coe_iff, -add_comm] {contextual := tt},
rintros r p x rfl h,
rw [← coe_sub, ← coe_add, nnreal.sub_add_cancel_of_le h]
end
@[simp] lemma add_sub_cancel_of_le (h : b ≤ a) : b + (a - b) = a :=
by rwa [add_comm, sub_add_cancel_of_le]
lemma sub_add_self_eq_max : (a - b) + b = max a b :=
match le_total a b with
| or.inl h := by simp [h, max_eq_right]
| or.inr h := by simp [h, max_eq_left]
end
@[simp] protected lemma sub_le_iff_le_add : a - b ≤ c ↔ a ≤ c + b :=
iff.intro
(assume h : a - b ≤ c,
calc a ≤ (a - b) + b : by rw [sub_add_self_eq_max]; exact le_max_left _ _
... ≤ c + b : add_le_add' h (le_refl _))
(assume h : a ≤ c + b,
calc a - b ≤ (c + b) - b : sub_le_sub h (le_refl _)
... ≤ c : Inf_le (le_refl (c + b)))
protected lemma sub_le_of_sub_le (h : a - b ≤ c) : a - c ≤ b :=
ennreal.sub_le_iff_le_add.2 $ by { rw add_comm, exact ennreal.sub_le_iff_le_add.1 h }
protected lemma sub_lt_sub_self : a ≠ ⊤ → a ≠ 0 → 0 < b → a - b < a :=
match a, b with
| none, _ := by { have := none_eq_top, assume h, contradiction }
| (some a), none := by {intros, simp only [none_eq_top, sub_infty, zero_lt_iff_ne_zero], assumption}
| (some a), (some b) :=
begin
simp only [some_eq_coe, coe_sub.symm, coe_pos, coe_eq_zero, coe_lt_coe, ne.def],
assume h₁ h₂, apply nnreal.sub_lt_self, exact zero_lt_iff_ne_zero.2 h₂
end
end
@[simp] lemma sub_eq_zero_iff_le : a - b = 0 ↔ a ≤ b :=
by simpa [-ennreal.sub_le_iff_le_add] using @ennreal.sub_le_iff_le_add a b 0
@[simp] lemma zero_lt_sub_iff_lt : 0 < a - b ↔ b < a :=
by simpa [ennreal.bot_lt_iff_ne_bot, -sub_eq_zero_iff_le] using not_iff_not.2 (@sub_eq_zero_iff_le a b)
lemma sub_le_self (a b : ennreal) : a - b ≤ a :=
ennreal.sub_le_iff_le_add.2 $ le_add_of_nonneg_right' $ zero_le _
@[simp] lemma sub_zero : a - 0 = a :=
eq.trans (add_zero (a - 0)).symm $ by simp
lemma sub_sub_cancel (h : a < ∞) (h2 : b ≤ a) : a - (a - b) = b :=
by rw [← add_right_inj (lt_of_le_of_lt (sub_le_self _ _) h),
sub_add_cancel_of_le (sub_le_self _ _), add_sub_cancel_of_le h2]
lemma sub_left_inj {a b c : ennreal} (ha : a < ⊤) (hb : b ≤ a) (hc : c ≤ a) :
a - b = a - c ↔ b = c :=
iff.intro
begin
assume h, have : a - (a - b) = a - (a - c), rw h,
rw [sub_sub_cancel ha hb, sub_sub_cancel ha hc] at this, exact this
end
(λ h, by rw h)
end sub
section sum
open finset
/-- sum of finte numbers is still finite -/
lemma sum_lt_top [decidable_eq α] {s : finset α} {f : α → ennreal} :
(∀a∈s, f a < ⊤) → s.sum f < ⊤ :=
with_top.sum_lt_top
/-- sum of finte numbers is still finite -/
lemma sum_lt_top_iff [decidable_eq α] {s : finset α} {f : α → ennreal} :
s.sum f < ⊤ ↔ (∀a∈s, f a < ⊤) :=
with_top.sum_lt_top_iff
/-- seeing `ennreal` as `nnreal` does not change their sum, unless one of the `ennreal` is infinity -/
lemma to_nnreal_sum [decidable_eq α] {s : finset α} {f : α → ennreal} (hf : ∀a∈s, f a < ⊤) :
ennreal.to_nnreal (s.sum f) = s.sum (λa, ennreal.to_nnreal (f a)) :=
begin
rw [← coe_eq_coe, coe_to_nnreal, coe_finset_sum, sum_congr],
{ refl },
{ intros x hx, rw coe_to_nnreal, rw ← ennreal.lt_top_iff_ne_top, exact hf x hx },
{ rw ← ennreal.lt_top_iff_ne_top, exact sum_lt_top hf }
end
/-- seeing `ennreal` as `real` does not change their sum, unless one of the `ennreal` is infinity -/
lemma to_real_sum [decidable_eq α] {s : finset α} {f : α → ennreal} (hf : ∀a∈s, f a < ⊤) :
ennreal.to_real (s.sum f) = s.sum (λa, ennreal.to_real (f a)) :=
by { rw [ennreal.to_real, to_nnreal_sum hf, nnreal.sum_coe], refl }
end sum
section interval
variables {x y z : ennreal} {ε ε₁ ε₂ : ennreal} {s : set ennreal}
protected lemma Ico_eq_Iio : (Ico 0 y) = (Iio y) :=
ext $ assume a, iff.intro
(assume ⟨_, hx⟩, hx)
(assume hx, ⟨zero_le _, hx⟩)
lemma mem_Iio_self_add : x ≠ ⊤ → 0 < ε → x ∈ Iio (x + ε) :=
assume xt ε0, lt_add_right (by rwa lt_top_iff_ne_top) ε0
lemma not_mem_Ioo_self_sub : x = 0 → x ∉ Ioo (x - ε) y :=
assume x0, by simp [x0]
lemma mem_Ioo_self_sub_add : x ≠ ⊤ → x ≠ 0 → 0 < ε₁ → 0 < ε₂ → x ∈ Ioo (x - ε₁) (x + ε₂) :=
assume xt x0 ε0 ε0',
⟨ennreal.sub_lt_sub_self xt x0 ε0, lt_add_right (by rwa [lt_top_iff_ne_top]) ε0'⟩
end interval
section bit
@[simp] lemma bit0_inj : bit0 a = bit0 b ↔ a = b :=
⟨λh, begin
rcases (lt_trichotomy a b) with h₁| h₂| h₃,
{ exact (absurd h (ne_of_lt (add_lt_add h₁ h₁))) },
{ exact h₂ },
{ exact (absurd h.symm (ne_of_lt (add_lt_add h₃ h₃))) }
end,
λh, congr_arg _ h⟩
@[simp] lemma bit0_eq_zero_iff : bit0 a = 0 ↔ a = 0 :=
by simpa only [bit0_zero] using @bit0_inj a 0
@[simp] lemma bit0_eq_top_iff : bit0 a = ∞ ↔ a = ∞ :=
by rw [bit0, add_eq_top, or_self]
@[simp] lemma bit1_inj : bit1 a = bit1 b ↔ a = b :=
⟨λh, begin
unfold bit1 at h,
rwa [add_right_inj, bit0_inj] at h,
simp [lt_top_iff_ne_top]
end,
λh, congr_arg _ h⟩
@[simp] lemma bit1_ne_zero : bit1 a ≠ 0 :=
by unfold bit1; simp
@[simp] lemma bit1_eq_one_iff : bit1 a = 1 ↔ a = 0 :=
by simpa only [bit1_zero] using @bit1_inj a 0
@[simp] lemma bit1_eq_top_iff : bit1 a = ∞ ↔ a = ∞ :=
by unfold bit1; rw add_eq_top; simp
end bit
section inv
instance : has_inv ennreal := ⟨λa, Inf {b | 1 ≤ a * b}⟩
instance : has_div ennreal := ⟨λa b, a * b⁻¹⟩
lemma div_def : a / b = a * b⁻¹ := rfl
@[simp] lemma inv_zero : (0 : ennreal)⁻¹ = ∞ :=
show Inf {b : ennreal | 1 ≤ 0 * b} = ∞, by simp; refl
@[simp] lemma inv_top : (∞ : ennreal)⁻¹ = 0 :=
bot_unique $ le_of_forall_le_of_dense $ λ a (h : a > 0), Inf_le $ by simp [*, ne_of_gt h, top_mul]
@[simp] lemma coe_inv (hr : r ≠ 0) : (↑r⁻¹ : ennreal) = (↑r)⁻¹ :=
le_antisymm
(le_Inf $ assume b (hb : 1 ≤ ↑r * b), coe_le_iff.2 $
by rintros b rfl; rwa [← coe_mul, ← coe_one, coe_le_coe, ← nnreal.inv_le hr] at hb)
(Inf_le $ by simp; rw [← coe_mul, nnreal.mul_inv_cancel hr]; exact le_refl 1)
@[simp] lemma coe_div (hr : r ≠ 0) : (↑(p / r) : ennreal) = p / r :=
show ↑(p * r⁻¹) = ↑p * (↑r)⁻¹, by rw [coe_mul, coe_inv hr]
@[simp] lemma inv_inv : (a⁻¹)⁻¹ = a :=
by by_cases a = 0; cases a; simp [*, none_eq_top, some_eq_coe,
-coe_inv, (coe_inv _).symm] at *
@[simp] lemma inv_eq_top : a⁻¹ = ∞ ↔ a = 0 :=
by by_cases a = 0; cases a; simp [*, none_eq_top, some_eq_coe,
-coe_inv, (coe_inv _).symm] at *
lemma inv_ne_top : a⁻¹ ≠ ∞ ↔ a ≠ 0 := by simp
@[simp] lemma inv_eq_zero : a⁻¹ = 0 ↔ a = ∞ :=
by rw [← inv_eq_top, inv_inv]
lemma inv_ne_zero : a⁻¹ ≠ 0 ↔ a ≠ ∞ := by simp
lemma le_div_iff_mul_le : ∀{b}, b ≠ 0 → b ≠ ⊤ → (a ≤ c / b ↔ a * b ≤ c)
| none h0 ht := (ht rfl).elim
| (some r) h0 ht :=
begin
have hr : r ≠ 0, from mt coe_eq_coe.2 h0,
rw [← ennreal.mul_le_mul_left h0 ht],
suffices : ↑r * a ≤ (↑r * ↑r⁻¹) * c ↔ a * ↑r ≤ c,
{ simpa [some_eq_coe, div_def, hr, mul_left_comm, mul_comm, mul_assoc] },
rw [← coe_mul, nnreal.mul_inv_cancel hr, coe_one, one_mul, mul_comm]
end
lemma div_le_iff_le_mul (hb0 : b ≠ 0) (hbt : b ≠ ⊤) : a / b ≤ c ↔ a ≤ c * b :=
suffices a * b⁻¹ ≤ c ↔ a ≤ c / b⁻¹, by simpa [div_def],
(le_div_iff_mul_le (inv_ne_zero.2 hbt) (inv_ne_top.2 hb0)).symm
lemma inv_le_iff_le_mul : (b = ⊤ → a ≠ 0) → (a = ⊤ → b ≠ 0) → (a⁻¹ ≤ b ↔ 1 ≤ a * b) :=
begin
cases a; cases b; simp [none_eq_top, some_eq_coe, mul_top, top_mul] {contextual := tt},
by_cases a = 0; simp [*, -coe_mul, coe_mul.symm, -coe_inv, (coe_inv _).symm, nnreal.inv_le]
end
@[simp] lemma le_inv_iff_mul_le : a ≤ b⁻¹ ↔ a * b ≤ 1 :=
begin
cases b, { by_cases a = 0; simp [*, none_eq_top, mul_top] },
by_cases b = 0; simp [*, some_eq_coe, le_div_iff_mul_le],
suffices : a ≤ 1 / b ↔ a * b ≤ 1, { simpa [div_def, h] },
exact le_div_iff_mul_le (mt coe_eq_coe.1 h) coe_ne_top
end
lemma mul_inv_cancel : ∀{r : ennreal}, r ≠ 0 → r ≠ ⊤ → r * r⁻¹ = 1 :=
begin
refine forall_ennreal.2 ⟨λ r, _, _⟩; simp [-coe_inv, (coe_inv _).symm] {contextual := tt},
assume h, rw [← ennreal.coe_mul, nnreal.mul_inv_cancel h, coe_one]
end
lemma mul_le_if_le_inv {a b r : ennreal} (hr₀ : r ≠ 0) (hr₁ : r ≠ ⊤) : (r * a ≤ b ↔ a ≤ r⁻¹ * b) :=
by rw [← @ennreal.mul_le_mul_left _ a _ hr₀ hr₁, ← mul_assoc, mul_inv_cancel hr₀ hr₁, one_mul]
lemma le_of_forall_lt_one_mul_lt : ∀{x y : ennreal}, (∀a<1, a * x ≤ y) → x ≤ y :=
forall_ennreal.2 $ and.intro
(assume r, forall_ennreal.2 $ and.intro
(assume q h, coe_le_coe.2 $ nnreal.le_of_forall_lt_one_mul_lt $ assume a ha,
begin rw [← coe_le_coe, coe_mul], exact h _ (coe_lt_coe.2 ha) end)
(assume h, le_top))
(assume r hr,
have ((1 / 2 : nnreal) : ennreal) * ⊤ ≤ r :=
hr _ (coe_lt_coe.2 ((@nnreal.coe_lt (1/2) 1).2 one_half_lt_one)),
have ne : ((1 / 2 : nnreal) : ennreal) ≠ 0,
begin
rw [(≠), coe_eq_zero],
refine zero_lt_iff_ne_zero.1 _,
show 0 < (1 / 2 : ℝ),
exact div_pos zero_lt_one two_pos
end,
by rwa [mul_top, if_neg ne] at this)
lemma div_add_div_same {a b c : ennreal} : a / c + b / c = (a + b) / c :=
eq.symm $ right_distrib a b (c⁻¹)
lemma div_self {a : ennreal} (h0 : a ≠ 0) (hI : a ≠ ∞) : a / a = 1 :=
have A : 1 ≤ a / a := by simp [le_div_iff_mul_le h0 hI, le_refl],
have B : a / a ≤ 1 := by simp [div_le_iff_le_mul h0 hI, le_refl],
le_antisymm B A
lemma add_halves (a : ennreal) : a / 2 + a / 2 = a :=
have ¬((2 : nnreal) : ennreal) = (0 : nnreal) := by rw [coe_eq_coe]; norm_num,
have A : (2:ennreal) * 2⁻¹ = 1 := by rw [←div_def, div_self]; [assumption, apply coe_ne_top],
calc
a / 2 + a / 2 = (a + a) / 2 : by rw div_add_div_same
... = (a * 1 + a * 1) / 2 : by rw mul_one
... = (a * (1 + 1)) / 2 : by rw left_distrib
... = (a * 2) / 2 : by rw one_add_one_eq_two
... = (a * 2) * 2⁻¹ : by rw div_def
... = a * (2 * 2⁻¹) : by rw mul_assoc
... = a * 1 : by rw A
... = a : by rw mul_one
@[simp] lemma div_zero_iff {a b : ennreal} : a / b = 0 ↔ a = 0 ∨ b = ⊤ :=
by simp [div_def, mul_eq_zero]
@[simp] lemma div_pos_iff {a b : ennreal} : 0 < a / b ↔ a ≠ 0 ∧ b ≠ ⊤ :=
by simp [zero_lt_iff_ne_zero, not_or_distrib]
lemma half_pos {a : ennreal} (h : 0 < a) : 0 < a / 2 :=
by simp [ne_of_gt h]
lemma half_lt_self {a : ennreal} (hz : a ≠ 0) (ht : a ≠ ⊤) : a / 2 < a :=
begin
cases a,
{ cases ht none_eq_top },
{ simp [some_eq_coe] at hz,
simpa [-coe_lt_coe, coe_div two_ne_zero'] using
coe_lt_coe.2 (nnreal.half_lt_self hz) }
end
lemma exists_inv_nat_lt {a : ennreal} (h : a ≠ 0) :
∃n:ℕ, (n:ennreal)⁻¹ < a :=
begin
rcases dense (bot_lt_iff_ne_bot.2 h) with ⟨b, bz, ba⟩,
have bz' : b ≠ 0 := bot_lt_iff_ne_bot.1 bz,
have : b⁻¹ ≠ ⊤ := by simp [bz'],
rcases ennreal.exists_nat_gt this with ⟨n, bn⟩,
have I : ((n : ℕ) : ennreal)⁻¹ ≤ b := begin
rw [ennreal.inv_le_iff_le_mul, mul_comm, ← ennreal.inv_le_iff_le_mul],
exact le_of_lt bn,
simp only [h, ennreal.nat_ne_top, forall_prop_of_false, ne.def, not_false_iff],
exact λ_, ne_bot_of_gt bn,
exact λ_, ne_bot_of_gt bn,
exact λ_, bz'
end,
exact ⟨n, lt_of_le_of_lt I ba⟩
end
end inv
section real
lemma to_real_add (ha : a ≠ ⊤) (hb : b ≠ ⊤) : (a+b).to_real = a.to_real + b.to_real :=
begin
cases a,
{ simpa [none_eq_top] using ha },
cases b,
{ simpa [none_eq_top] using hb },
refl
end
lemma of_real_add {p q : ℝ} (hp : 0 ≤ p) (hq : 0 ≤ q) :
ennreal.of_real (p + q) = ennreal.of_real p + ennreal.of_real q :=
by rw [ennreal.of_real, ennreal.of_real, ennreal.of_real, ← coe_add,
coe_eq_coe, nnreal.of_real_add hp hq]
@[simp] lemma to_real_le_to_real (ha : a ≠ ⊤) (hb : b ≠ ⊤) : a.to_real ≤ b.to_real ↔ a ≤ b :=
begin
cases a,
{ simpa [none_eq_top] using ha },
cases b,
{ simpa [none_eq_top] using hb },
simp only [ennreal.to_real, nnreal.coe_le.symm, with_top.some_le_some],
refl
end
@[simp] lemma to_real_lt_to_real (ha : a ≠ ⊤) (hb : b ≠ ⊤) : a.to_real < b.to_real ↔ a < b :=
begin
cases a,
{ simpa [none_eq_top] using ha },
cases b,
{ simpa [none_eq_top] using hb },
rw [with_top.some_lt_some],
refl
end
lemma of_real_le_of_real {p q : ℝ} (h : p ≤ q) : ennreal.of_real p ≤ ennreal.of_real q :=
by simp [ennreal.of_real, nnreal.of_real_le_of_real h]
@[simp] lemma of_real_le_of_real_iff {p q : ℝ} (h : 0 ≤ q) : ennreal.of_real p ≤ ennreal.of_real q ↔ p ≤ q :=
by rw [ennreal.of_real, ennreal.of_real, coe_le_coe, nnreal.of_real_le_of_real_iff h]
@[simp] lemma of_real_lt_of_real_iff {p q : ℝ} (h : 0 < q) : ennreal.of_real p < ennreal.of_real q ↔ p < q :=
by rw [ennreal.of_real, ennreal.of_real, coe_lt_coe, nnreal.of_real_lt_of_real_iff h]
@[simp] lemma of_real_pos {p : ℝ} : 0 < ennreal.of_real p ↔ 0 < p :=
by simp [ennreal.of_real]
@[simp] lemma of_real_eq_zero {p : ℝ} : ennreal.of_real p = 0 ↔ p ≤ 0 :=
by simp [ennreal.of_real]
lemma of_real_le_iff_le_to_real {a : ℝ} {b : ennreal} (hb : b ≠ ⊤) :
ennreal.of_real a ≤ b ↔ a ≤ ennreal.to_real b :=
begin
rcases b,
{ have := none_eq_top, contradiction },
{ have := nnreal.of_real_le_iff_le_coe,
simpa [ennreal.of_real, ennreal.to_real, some_eq_coe] }
end
lemma of_real_lt_iff_lt_to_real {a : ℝ} {b : ennreal} (ha : 0 ≤ a) (hb : b ≠ ⊤) :
ennreal.of_real a < b ↔ a < ennreal.to_real b :=
begin
rcases b,
{ have := none_eq_top, contradiction },
{ have := nnreal.of_real_lt_iff_lt_coe ha,
simpa [ennreal.of_real, ennreal.to_real, some_eq_coe] }
end
lemma le_of_real_iff_to_real_le {a : ennreal} {b : ℝ} (ha : a ≠ ⊤) (hb : 0 ≤ b) :
a ≤ ennreal.of_real b ↔ ennreal.to_real a ≤ b :=
begin
rcases a,
{ have := none_eq_top, contradiction },
{ have := nnreal.le_of_real_iff_coe_le hb,
simpa [ennreal.of_real, ennreal.to_real, some_eq_coe] }
end
lemma lt_of_real_iff_to_real_lt {a : ennreal} {b : ℝ} (ha : a ≠ ⊤) :
a < ennreal.of_real b ↔ ennreal.to_real a < b :=
begin
rcases a,
{ have := none_eq_top, contradiction },
{ have := nnreal.lt_of_real_iff_coe_lt,
simpa [ennreal.of_real, ennreal.to_real, some_eq_coe] }
end
lemma of_real_mul {p q : ℝ} (hp : 0 ≤ p) :
ennreal.of_real (p * q) = (ennreal.of_real p) * (ennreal.of_real q) :=
by { simp only [ennreal.of_real, coe_mul.symm, coe_eq_coe], exact nnreal.of_real_mul hp }
lemma to_real_of_real_mul (c : ℝ) (a : ennreal) (h : 0 ≤ c) :
ennreal.to_real ((ennreal.of_real c) * a) = c * ennreal.to_real a :=
begin
cases a,
{ simp only [none_eq_top, ennreal.to_real, top_to_nnreal, nnreal.coe_zero, mul_zero, mul_top],
by_cases h' : c ≤ 0,
{ rw [if_pos], { simp }, { convert of_real_zero, exact le_antisymm h' h } },
{ rw [if_neg], refl, rw [of_real_eq_zero], assumption } },
{ simp only [ennreal.to_real, ennreal.to_nnreal],
simp only [some_eq_coe, ennreal.of_real, coe_mul.symm, to_nnreal_coe, nnreal.coe_mul],
congr, apply nnreal.coe_of_real, exact h }
end
@[simp] lemma to_real_mul_top (a : ennreal) : ennreal.to_real (a * ⊤) = 0 :=
begin
by_cases h : a = 0,
{ rw [h, zero_mul, zero_to_real] },
{ rw [mul_top, if_neg h, top_to_real] }
end
@[simp] lemma to_real_top_mul (a : ennreal) : ennreal.to_real (⊤ * a) = 0 :=
by { rw mul_comm, exact to_real_mul_top _ }
lemma to_real_eq_to_real {a b : ennreal} (ha : a < ⊤) (hb : b < ⊤) :
ennreal.to_real a = ennreal.to_real b ↔ a = b :=
begin
rw ennreal.lt_top_iff_ne_top at *,
split,
{ assume h, apply le_antisymm,
rw ← to_real_le_to_real ha hb, exact le_of_eq h,
rw ← to_real_le_to_real hb ha, exact le_of_eq h.symm },
{ assume h, rw h }
end
lemma to_real_mul_to_real {a b : ennreal} :
(ennreal.to_real a) * (ennreal.to_real b) = ennreal.to_real (a * b) :=
begin
by_cases ha : a = ⊤,
{ rw ha, simp },
by_cases hb : b = ⊤,
{ rw hb, simp },
have ha : ennreal.of_real (ennreal.to_real a) = a := of_real_to_real ha,
have hb : ennreal.of_real (ennreal.to_real b) = b := of_real_to_real hb,
conv_rhs { rw [← ha, ← hb, ← of_real_mul to_real_nonneg] },
rw [to_real_of_real (mul_nonneg to_real_nonneg to_real_nonneg)]
end
end real
section infi
variables {ι : Sort*} {f g : ι → ennreal}
lemma infi_add : infi f + a = ⨅i, f i + a :=
le_antisymm
(le_infi $ assume i, add_le_add' (infi_le _ _) $ le_refl _)
(ennreal.sub_le_iff_le_add.1 $ le_infi $ assume i, ennreal.sub_le_iff_le_add.2 $ infi_le _ _)
lemma supr_sub : (⨆i, f i) - a = (⨆i, f i - a) :=
le_antisymm
(ennreal.sub_le_iff_le_add.2 $ supr_le $ assume i, ennreal.sub_le_iff_le_add.1 $ le_supr _ i)
(supr_le $ assume i, ennreal.sub_le_sub (le_supr _ _) (le_refl a))
lemma sub_infi : a - (⨅i, f i) = (⨆i, a - f i) :=
begin
refine (eq_of_forall_ge_iff $ λ c, _),
rw [ennreal.sub_le_iff_le_add, add_comm, infi_add],
simp [ennreal.sub_le_iff_le_add]
end
lemma Inf_add {s : set ennreal} : Inf s + a = ⨅b∈s, b + a :=
by simp [Inf_eq_infi, infi_add]
lemma add_infi {a : ennreal} : a + infi f = ⨅b, a + f b :=
by rw [add_comm, infi_add]; simp
lemma infi_add_infi (h : ∀i j, ∃k, f k + g k ≤ f i + g j) : infi f + infi g = (⨅a, f a + g a) :=
suffices (⨅a, f a + g a) ≤ infi f + infi g,
from le_antisymm (le_infi $ assume a, add_le_add' (infi_le _ _) (infi_le _ _)) this,
calc (⨅a, f a + g a) ≤ (⨅ a a', f a + g a') :
le_infi $ assume a, le_infi $ assume a',
let ⟨k, h⟩ := h a a' in infi_le_of_le k h
... ≤ infi f + infi g :
by simp [add_infi, infi_add, -add_comm, -le_infi_iff]; exact le_refl _
lemma infi_sum {f : ι → α → ennreal} {s : finset α} [nonempty ι]
(h : ∀(t : finset α) (i j : ι), ∃k, ∀a∈t, f k a ≤ f i a ∧ f k a ≤ f j a) :
(⨅i, s.sum (f i)) = s.sum (λa, ⨅i, f i a) :=
finset.induction_on s (by simp) $ assume a s ha ih,
have ∀ (i j : ι), ∃ (k : ι), f k a + s.sum (f k) ≤ f i a + s.sum (f j),
from assume i j,
let ⟨k, hk⟩ := h (insert a s) i j in
⟨k, add_le_add' (hk a (finset.mem_insert_self _ _)).left $ finset.sum_le_sum $
assume a ha, (hk _ $ finset.mem_insert_of_mem ha).right⟩,
by simp [ha, ih.symm, infi_add_infi this]
end infi
section supr
lemma supr_coe_nat : (⨆n:ℕ, (n : ennreal)) = ⊤ :=
(lattice.supr_eq_top _).2 $ assume b hb, ennreal.exists_nat_gt (lt_top_iff_ne_top.1 hb)
end supr
end ennreal
|
351e48b0d64a55d8f97f97bf3a3c84dbc0733c02
|
618003631150032a5676f229d13a079ac875ff77
|
/src/ring_theory/ideals.lean
|
6b28c1a54f723f4a99b439322b12f31bd386a186
|
[
"Apache-2.0"
] |
permissive
|
awainverse/mathlib
|
939b68c8486df66cfda64d327ad3d9165248c777
|
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
|
refs/heads/master
| 1,659,592,962,036
| 1,590,987,592,000
| 1,590,987,592,000
| 268,436,019
| 1
| 0
|
Apache-2.0
| 1,590,990,500,000
| 1,590,990,500,000
| null |
UTF-8
|
Lean
| false
| false
| 18,935
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Chris Hughes, Mario Carneiro
-/
import algebra.associated
import linear_algebra.basic
import order.zorn
universes u v
variables {α : Type u} {β : Type v} {a b : α}
open set function
open_locale classical
namespace ideal
variables [comm_ring α] (I : ideal α)
@[ext] lemma ext {I J : ideal α} (h : ∀ x, x ∈ I ↔ x ∈ J) : I = J :=
submodule.ext h
theorem eq_top_of_unit_mem
(x y : α) (hx : x ∈ I) (h : y * x = 1) : I = ⊤ :=
eq_top_iff.2 $ λ z _, calc
z = z * (y * x) : by simp [h]
... = (z * y) * x : eq.symm $ mul_assoc z y x
... ∈ I : I.mul_mem_left hx
theorem eq_top_of_is_unit_mem {x} (hx : x ∈ I) (h : is_unit x) : I = ⊤ :=
let ⟨y, hy⟩ := is_unit_iff_exists_inv'.1 h in eq_top_of_unit_mem I x y hx hy
theorem eq_top_iff_one : I = ⊤ ↔ (1:α) ∈ I :=
⟨by rintro rfl; trivial,
λ h, eq_top_of_unit_mem _ _ 1 h (by simp)⟩
theorem ne_top_iff_one : I ≠ ⊤ ↔ (1:α) ∉ I :=
not_congr I.eq_top_iff_one
def span (s : set α) : ideal α := submodule.span α s
lemma subset_span {s : set α} : s ⊆ span s := submodule.subset_span
lemma span_le {s : set α} {I} : span s ≤ I ↔ s ⊆ I := submodule.span_le
lemma span_mono {s t : set α} : s ⊆ t → span s ≤ span t := submodule.span_mono
@[simp] lemma span_eq : span (I : set α) = I := submodule.span_eq _
@[simp] lemma span_singleton_one : span ({1} : set α) = ⊤ :=
(eq_top_iff_one _).2 $ subset_span $ mem_singleton _
lemma mem_span_insert {s : set α} {x y} :
x ∈ span (insert y s) ↔ ∃ a (z ∈ span s), x = a * y + z := submodule.mem_span_insert
lemma mem_span_insert' {s : set α} {x y} :
x ∈ span (insert y s) ↔ ∃a, x + a * y ∈ span s := submodule.mem_span_insert'
lemma mem_span_singleton' {x y : α} :
x ∈ span ({y} : set α) ↔ ∃ a, a * y = x := submodule.mem_span_singleton
lemma mem_span_singleton {x y : α} :
x ∈ span ({y} : set α) ↔ y ∣ x :=
mem_span_singleton'.trans $ exists_congr $ λ _, by rw [eq_comm, mul_comm]
lemma span_singleton_le_span_singleton {x y : α} :
span ({x} : set α) ≤ span ({y} : set α) ↔ y ∣ x :=
span_le.trans $ singleton_subset_iff.trans mem_span_singleton
lemma span_eq_bot {s : set α} : span s = ⊥ ↔ ∀ x ∈ s, (x:α) = 0 := submodule.span_eq_bot
lemma span_singleton_eq_bot {x} : span ({x} : set α) = ⊥ ↔ x = 0 := submodule.span_singleton_eq_bot
lemma span_singleton_eq_top {x} : span ({x} : set α) = ⊤ ↔ is_unit x :=
by rw [is_unit_iff_dvd_one, ← span_singleton_le_span_singleton, span_singleton_one, eq_top_iff]
@[class] def is_prime (I : ideal α) : Prop :=
I ≠ ⊤ ∧ ∀ {x y : α}, x * y ∈ I → x ∈ I ∨ y ∈ I
theorem is_prime.mem_or_mem {I : ideal α} (hI : I.is_prime) :
∀ {x y : α}, x * y ∈ I → x ∈ I ∨ y ∈ I := hI.2
theorem is_prime.mem_or_mem_of_mul_eq_zero {I : ideal α} (hI : I.is_prime)
{x y : α} (h : x * y = 0) : x ∈ I ∨ y ∈ I :=
hI.2 (h.symm ▸ I.zero_mem)
theorem is_prime.mem_of_pow_mem {I : ideal α} (hI : I.is_prime)
{r : α} (n : ℕ) (H : r^n ∈ I) : r ∈ I :=
begin
induction n with n ih,
{ exact (mt (eq_top_iff_one _).2 hI.1).elim H },
exact or.cases_on (hI.mem_or_mem H) id ih
end
theorem zero_ne_one_of_proper {I : ideal α} (h : I ≠ ⊤) : (0:α) ≠ 1 :=
λ hz, I.ne_top_iff_one.1 h $ hz ▸ I.zero_mem
theorem span_singleton_prime {p : α} (hp : p ≠ 0) :
is_prime (span ({p} : set α)) ↔ prime p :=
by simp [is_prime, prime, span_singleton_eq_top, hp, mem_span_singleton]
@[class] def is_maximal (I : ideal α) : Prop :=
I ≠ ⊤ ∧ ∀ J, I < J → J = ⊤
theorem is_maximal_iff {I : ideal α} : I.is_maximal ↔
(1:α) ∉ I ∧ ∀ (J : ideal α) x, I ≤ J → x ∉ I → x ∈ J → (1:α) ∈ J :=
and_congr I.ne_top_iff_one $ forall_congr $ λ J,
by rw [lt_iff_le_not_le]; exact
⟨λ H x h hx₁ hx₂, J.eq_top_iff_one.1 $
H ⟨h, not_subset.2 ⟨_, hx₂, hx₁⟩⟩,
λ H ⟨h₁, h₂⟩, let ⟨x, xJ, xI⟩ := not_subset.1 h₂ in
J.eq_top_iff_one.2 $ H x h₁ xI xJ⟩
theorem is_maximal.eq_of_le {I J : ideal α}
(hI : I.is_maximal) (hJ : J ≠ ⊤) (IJ : I ≤ J) : I = J :=
eq_iff_le_not_lt.2 ⟨IJ, λ h, hJ (hI.2 _ h)⟩
theorem is_maximal.exists_inv {I : ideal α}
(hI : I.is_maximal) {x} (hx : x ∉ I) : ∃ y, y * x - 1 ∈ I :=
begin
cases is_maximal_iff.1 hI with H₁ H₂,
rcases mem_span_insert'.1 (H₂ (span (insert x I)) x
(set.subset.trans (subset_insert _ _) subset_span)
hx (subset_span (mem_insert _ _))) with ⟨y, hy⟩,
rw [span_eq, ← neg_mem_iff, add_comm, neg_add', neg_mul_eq_neg_mul] at hy,
exact ⟨-y, hy⟩
end
theorem is_maximal.is_prime {I : ideal α} (H : I.is_maximal) : I.is_prime :=
⟨H.1, λ x y hxy, or_iff_not_imp_left.2 $ λ hx, begin
cases H.exists_inv hx with z hz,
have := I.mul_mem_left hz,
rw [mul_sub, mul_one, mul_comm, mul_assoc] at this,
exact I.neg_mem_iff.1 ((I.add_mem_iff_right $ I.mul_mem_left hxy).1 this)
end⟩
@[priority 100] -- see Note [lower instance priority]
instance is_maximal.is_prime' (I : ideal α) : ∀ [H : I.is_maximal], I.is_prime := is_maximal.is_prime
theorem exists_le_maximal (I : ideal α) (hI : I ≠ ⊤) :
∃ M : ideal α, M.is_maximal ∧ I ≤ M :=
begin
rcases zorn.zorn_partial_order₀ { J : ideal α | J ≠ ⊤ } _ I hI with ⟨M, M0, IM, h⟩,
{ refine ⟨M, ⟨M0, λ J hJ, by_contradiction $ λ J0, _⟩, IM⟩,
cases h J J0 (le_of_lt hJ), exact lt_irrefl _ hJ },
{ intros S SC cC I IS,
refine ⟨Sup S, λ H, _, λ _, le_Sup⟩,
obtain ⟨J, JS, J0⟩ : ∃ J ∈ S, (1 : α) ∈ J,
from (submodule.mem_Sup_of_directed ⟨I, IS⟩ cC.directed_on).1 ((eq_top_iff_one _).1 H),
exact SC JS ((eq_top_iff_one _).2 J0) }
end
def is_coprime (x y : α) : Prop :=
span ({x, y} : set α) = ⊤
theorem mem_span_pair {x y z : α} :
z ∈ span ({x, y} : set α) ↔ ∃ a b, a * x + b * y = z :=
by simp [mem_span_insert, mem_span_singleton', @eq_comm _ _ z]
theorem is_coprime_def {x y : α} :
is_coprime x y ↔ ∀ z, ∃ a b, a * x + b * y = z :=
by simp [is_coprime, submodule.eq_top_iff', mem_span_pair]
theorem is_coprime_self {x : α} :
is_coprime x x ↔ is_unit x :=
by rw [← span_singleton_eq_top]; simp [is_coprime]
lemma span_singleton_lt_span_singleton [integral_domain β] {x y : β} :
span ({x} : set β) < span ({y} : set β) ↔ y ≠ 0 ∧ ∃ d : β, ¬ is_unit d ∧ x = y * d :=
by rw [lt_iff_le_not_le, span_singleton_le_span_singleton, span_singleton_le_span_singleton,
dvd_and_not_dvd_iff]
def quotient (I : ideal α) := I.quotient
namespace quotient
variables {I} {x y : α}
def mk (I : ideal α) (a : α) : I.quotient := submodule.quotient.mk a
protected theorem eq : mk I x = mk I y ↔ x - y ∈ I := submodule.quotient.eq I
instance (I : ideal α) : has_one I.quotient := ⟨mk I 1⟩
@[simp] lemma mk_one (I : ideal α) : mk I 1 = 1 := rfl
instance (I : ideal α) : has_mul I.quotient :=
⟨λ a b, quotient.lift_on₂' a b (λ a b, mk I (a * b)) $
λ a₁ a₂ b₁ b₂ h₁ h₂, quot.sound $ begin
refine calc a₁ * a₂ - b₁ * b₂ = a₂ * (a₁ - b₁) + (a₂ - b₂) * b₁ : _
... ∈ I : I.add_mem (I.mul_mem_left h₁) (I.mul_mem_right h₂),
rw [mul_sub, sub_mul, sub_add_sub_cancel, mul_comm, mul_comm b₁]
end⟩
@[simp] theorem mk_mul : mk I (x * y) = mk I x * mk I y := rfl
instance (I : ideal α) : comm_ring I.quotient :=
{ mul := (*),
one := 1,
mul_assoc := λ a b c, quotient.induction_on₃' a b c $
λ a b c, congr_arg (mk _) (mul_assoc a b c),
mul_comm := λ a b, quotient.induction_on₂' a b $
λ a b, congr_arg (mk _) (mul_comm a b),
one_mul := λ a, quotient.induction_on' a $
λ a, congr_arg (mk _) (one_mul a),
mul_one := λ a, quotient.induction_on' a $
λ a, congr_arg (mk _) (mul_one a),
left_distrib := λ a b c, quotient.induction_on₃' a b c $
λ a b c, congr_arg (mk _) (left_distrib a b c),
right_distrib := λ a b c, quotient.induction_on₃' a b c $
λ a b c, congr_arg (mk _) (right_distrib a b c),
..submodule.quotient.add_comm_group I }
/-- `ideal.quotient.mk` as a `ring_hom` -/
def mk_hom (I : ideal α) : α →+* I.quotient := ⟨mk I, rfl, λ _ _, rfl, rfl, λ _ _, rfl⟩
lemma mk_eq_mk_hom (I : ideal α) (x : α) : ideal.quotient.mk I x = ideal.quotient.mk_hom I x := rfl
def map_mk (I J : ideal α) : ideal I.quotient :=
{ carrier := mk I '' J,
zero := ⟨0, J.zero_mem, rfl⟩,
add := by rintro _ _ ⟨x, hx, rfl⟩ ⟨y, hy, rfl⟩;
exact ⟨x + y, J.add_mem hx hy, rfl⟩,
smul := by rintro ⟨c⟩ _ ⟨x, hx, rfl⟩;
exact ⟨c * x, J.mul_mem_left hx, rfl⟩ }
@[simp] lemma mk_zero (I : ideal α) : mk I 0 = 0 := rfl
@[simp] lemma mk_add (I : ideal α) (a b : α) : mk I (a + b) = mk I a + mk I b := rfl
@[simp] lemma mk_neg (I : ideal α) (a : α) : mk I (-a : α) = -mk I a := rfl
@[simp] lemma mk_sub (I : ideal α) (a b : α) : mk I (a - b : α) = mk I a - mk I b := rfl
@[simp] lemma mk_pow (I : ideal α) (a : α) (n : ℕ) : mk I (a ^ n : α) = mk I a ^ n :=
(mk_hom I).map_pow a n
lemma mk_prod {ι} (I : ideal α) (s : finset ι) (f : ι → α) :
mk I (s.prod f) = s.prod (λ i, mk I (f i)) :=
(mk_hom I).map_prod f s
lemma mk_sum {ι} (I : ideal α) (s : finset ι) (f : ι → α) :
mk I (s.sum f) = s.sum (λ i, mk I (f i)) :=
(mk_hom I).map_sum f s
lemma eq_zero_iff_mem {I : ideal α} : mk I a = 0 ↔ a ∈ I :=
by conv {to_rhs, rw ← sub_zero a }; exact quotient.eq'
theorem zero_eq_one_iff {I : ideal α} : (0 : I.quotient) = 1 ↔ I = ⊤ :=
eq_comm.trans $ eq_zero_iff_mem.trans (eq_top_iff_one _).symm
theorem zero_ne_one_iff {I : ideal α} : (0 : I.quotient) ≠ 1 ↔ I ≠ ⊤ :=
not_congr zero_eq_one_iff
protected theorem nonzero {I : ideal α} (hI : I ≠ ⊤) : nonzero I.quotient :=
{ zero_ne_one := zero_ne_one_iff.2 hI }
instance (I : ideal α) [hI : I.is_prime] : integral_domain I.quotient :=
{ eq_zero_or_eq_zero_of_mul_eq_zero := λ a b,
quotient.induction_on₂' a b $ λ a b hab,
(hI.mem_or_mem (eq_zero_iff_mem.1 hab)).elim
(or.inl ∘ eq_zero_iff_mem.2)
(or.inr ∘ eq_zero_iff_mem.2),
..quotient.nonzero hI.1,
..quotient.comm_ring I }
lemma exists_inv {I : ideal α} [hI : I.is_maximal] :
∀ {a : I.quotient}, a ≠ 0 → ∃ b : I.quotient, a * b = 1 :=
begin
rintro ⟨a⟩ h,
cases hI.exists_inv (mt eq_zero_iff_mem.2 h) with b hb,
rw [mul_comm] at hb,
exact ⟨mk _ b, quot.sound hb⟩
end
/-- quotient by maximal ideal is a field. def rather than instance, since users will have
computable inverses in some applications -/
protected noncomputable def field (I : ideal α) [hI : I.is_maximal] : field I.quotient :=
{ inv := λ a, if ha : a = 0 then 0 else classical.some (exists_inv ha),
mul_inv_cancel := λ a (ha : a ≠ 0), show a * dite _ _ _ = _,
by rw dif_neg ha;
exact classical.some_spec (exists_inv ha),
inv_zero := dif_pos rfl,
..quotient.integral_domain I }
variable [comm_ring β]
/-- Given a ring homomorphism `f : α →+* β` sending all elements of an ideal to zero,
lift it to the quotient by this ideal. -/
def lift (S : ideal α) (f : α →+* β) (H : ∀ (a : α), a ∈ S → f a = 0) :
quotient S →+* β :=
{ to_fun := λ x, quotient.lift_on' x f $ λ (a b) (h : _ ∈ _),
eq_of_sub_eq_zero $ by rw [← f.map_sub, H _ h],
map_one' := f.map_one,
map_zero' := f.map_zero,
map_add' := λ a₁ a₂, quotient.induction_on₂' a₁ a₂ f.map_add,
map_mul' := λ a₁ a₂, quotient.induction_on₂' a₁ a₂ f.map_mul }
@[simp] lemma lift_mk (S : ideal α) (f : α →+* β) (H : ∀ (a : α), a ∈ S → f a = 0) :
lift S f H (mk S a) = f a := rfl
end quotient
section lattice
variables {R : Type u} [comm_ring R]
theorem mem_Inf {s : set (ideal R)} {x : R} :
x ∈ Inf s ↔ ∀ ⦃I⦄, I ∈ s → x ∈ I :=
⟨λ hx I his, hx I ⟨I, infi_pos his⟩, λ H I ⟨J, hij⟩, hij ▸ λ S ⟨hj, hS⟩, hS ▸ H hj⟩
end lattice
/-- All ideals in a field are trivial. -/
lemma eq_bot_or_top {K : Type u} [field K] (I : ideal K) :
I = ⊥ ∨ I = ⊤ :=
begin
rw classical.or_iff_not_imp_right,
change _ ≠ _ → _,
rw ideal.ne_top_iff_one,
intro h1,
rw eq_bot_iff,
intros r hr,
by_cases H : r = 0, {simpa},
simpa [H, h1] using submodule.smul_mem I r⁻¹ hr,
end
lemma eq_bot_of_prime {K : Type u} [field K] (I : ideal K) [h : I.is_prime] :
I = ⊥ :=
classical.or_iff_not_imp_right.mp I.eq_bot_or_top h.1
end ideal
/-- The set of non-invertible elements of a monoid. -/
def nonunits (α : Type u) [monoid α] : set α := { a | ¬is_unit a }
@[simp] theorem mem_nonunits_iff [comm_monoid α] : a ∈ nonunits α ↔ ¬ is_unit a := iff.rfl
theorem mul_mem_nonunits_right [comm_monoid α] :
b ∈ nonunits α → a * b ∈ nonunits α :=
mt is_unit_of_mul_is_unit_right
theorem mul_mem_nonunits_left [comm_monoid α] :
a ∈ nonunits α → a * b ∈ nonunits α :=
mt is_unit_of_mul_is_unit_left
theorem zero_mem_nonunits [semiring α] : 0 ∈ nonunits α ↔ (0:α) ≠ 1 :=
not_congr is_unit_zero_iff
@[simp] theorem one_not_mem_nonunits [monoid α] : (1:α) ∉ nonunits α :=
not_not_intro is_unit_one
theorem coe_subset_nonunits [comm_ring α] {I : ideal α} (h : I ≠ ⊤) :
(I : set α) ⊆ nonunits α :=
λ x hx hu, h $ I.eq_top_of_is_unit_mem hx hu
lemma exists_max_ideal_of_mem_nonunits [comm_ring α] (h : a ∈ nonunits α) :
∃ I : ideal α, I.is_maximal ∧ a ∈ I :=
begin
have : ideal.span ({a} : set α) ≠ ⊤,
{ intro H, rw ideal.span_singleton_eq_top at H, contradiction },
rcases ideal.exists_le_maximal _ this with ⟨I, Imax, H⟩,
use [I, Imax], apply H, apply ideal.subset_span, exact set.mem_singleton a
end
section prio
set_option default_priority 100 -- see Note [default priority]
class local_ring (α : Type u) extends comm_ring α, nonzero α :=
(is_local : ∀ (a : α), (is_unit a) ∨ (is_unit (1 - a)))
end prio
namespace local_ring
variable [local_ring α]
lemma is_unit_or_is_unit_one_sub_self (a : α) :
(is_unit a) ∨ (is_unit (1 - a)) :=
is_local a
lemma is_unit_of_mem_nonunits_one_sub_self (a : α) (h : (1 - a) ∈ nonunits α) :
is_unit a :=
or_iff_not_imp_right.1 (is_local a) h
lemma is_unit_one_sub_self_of_mem_nonunits (a : α) (h : a ∈ nonunits α) :
is_unit (1 - a) :=
or_iff_not_imp_left.1 (is_local a) h
lemma nonunits_add {x y} (hx : x ∈ nonunits α) (hy : y ∈ nonunits α) :
x + y ∈ nonunits α :=
begin
rintros ⟨u, hu⟩,
apply hy,
suffices : is_unit ((↑u⁻¹ : α) * y),
{ rcases this with ⟨s, hs⟩,
use u * s,
convert congr_arg (λ z, (u : α) * z) hs,
rw ← mul_assoc, simp },
rw show (↑u⁻¹ * y) = (1 - ↑u⁻¹ * x),
{ rw eq_sub_iff_add_eq,
replace hu := congr_arg (λ z, (↑u⁻¹ : α) * z) hu.symm,
simpa [mul_add, add_comm] using hu },
apply is_unit_one_sub_self_of_mem_nonunits,
exact mul_mem_nonunits_right hx
end
variable (α)
def nonunits_ideal : ideal α :=
{ carrier := nonunits α,
zero := zero_mem_nonunits.2 $ zero_ne_one,
add := λ x y hx hy, nonunits_add hx hy,
smul := λ a x, mul_mem_nonunits_right }
instance nonunits_ideal.is_maximal : (nonunits_ideal α).is_maximal :=
begin
rw ideal.is_maximal_iff,
split,
{ intro h, apply h, exact is_unit_one },
{ intros I x hI hx H,
erw not_not at hx,
rcases hx with ⟨u,rfl⟩,
simpa using I.smul_mem ↑u⁻¹ H }
end
lemma max_ideal_unique :
∃! I : ideal α, I.is_maximal :=
⟨nonunits_ideal α, nonunits_ideal.is_maximal α,
λ I hI, hI.eq_of_le (nonunits_ideal.is_maximal α).1 $
λ x hx, hI.1 ∘ I.eq_top_of_is_unit_mem hx⟩
variable {α}
@[simp] lemma mem_nonunits_ideal (x) :
x ∈ nonunits_ideal α ↔ x ∈ nonunits α := iff.rfl
end local_ring
def is_local_ring (α : Type u) [comm_ring α] : Prop :=
((0:α) ≠ 1) ∧ ∀ (a : α), (is_unit a) ∨ (is_unit (1 - a))
def local_of_is_local_ring [comm_ring α] (h : is_local_ring α) : local_ring α :=
{ zero_ne_one := h.1,
is_local := h.2,
.. ‹comm_ring α› }
def local_of_unit_or_unit_one_sub [comm_ring α] (hnze : (0:α) ≠ 1)
(h : ∀ x : α, is_unit x ∨ is_unit (1 - x)) : local_ring α :=
local_of_is_local_ring ⟨hnze, h⟩
def local_of_nonunits_ideal [comm_ring α] (hnze : (0:α) ≠ 1)
(h : ∀ x y ∈ nonunits α, x + y ∈ nonunits α) : local_ring α :=
local_of_is_local_ring ⟨hnze,
λ x, or_iff_not_imp_left.mpr $ λ hx,
begin
by_contra H,
apply h _ _ hx H,
simp [-sub_eq_add_neg, add_sub_cancel'_right]
end⟩
def local_of_unique_max_ideal [comm_ring α] (h : ∃! I : ideal α, I.is_maximal) :
local_ring α :=
local_of_nonunits_ideal
(let ⟨I, Imax, _⟩ := h in (λ (H : 0 = 1), Imax.1 $ I.eq_top_iff_one.2 $ H ▸ I.zero_mem))
$ λ x y hx hy H,
let ⟨I, Imax, Iuniq⟩ := h in
let ⟨Ix, Ixmax, Hx⟩ := exists_max_ideal_of_mem_nonunits hx in
let ⟨Iy, Iymax, Hy⟩ := exists_max_ideal_of_mem_nonunits hy in
have xmemI : x ∈ I, from ((Iuniq Ix Ixmax) ▸ Hx),
have ymemI : y ∈ I, from ((Iuniq Iy Iymax) ▸ Hy),
Imax.1 $ I.eq_top_of_is_unit_mem (I.add_mem xmemI ymemI) H
section prio
set_option default_priority 100 -- see Note [default priority]
class is_local_ring_hom [semiring α] [semiring β] (f : α →+* β) : Prop :=
(map_nonunit : ∀ a, is_unit (f a) → is_unit a)
end prio
@[simp] lemma is_unit_of_map_unit [semiring α] [semiring β] (f : α →+* β) [is_local_ring_hom f]
(a) (h : is_unit (f a)) : is_unit a :=
is_local_ring_hom.map_nonunit a h
section
open local_ring
variables [local_ring α] [local_ring β]
variables (f : α →+* β) [is_local_ring_hom f]
lemma map_nonunit (a) (h : a ∈ nonunits_ideal α) : f a ∈ nonunits_ideal β :=
λ H, h $ is_unit_of_map_unit f a H
end
namespace local_ring
variables [local_ring α] [local_ring β]
variable (α)
def residue_field := (nonunits_ideal α).quotient
noncomputable instance residue_field.field : field (residue_field α) :=
ideal.quotient.field (nonunits_ideal α)
/-- The quotient map from a local ring to it's residue field. -/
def residue : α →+* (residue_field α) :=
ideal.quotient.mk_hom _
namespace residue_field
variables {α β}
noncomputable def map (f : α →+* β) [is_local_ring_hom f] :
residue_field α →+* residue_field β :=
ideal.quotient.lift (nonunits_ideal α) ((ideal.quotient.mk_hom _).comp f) $
λ a ha,
begin
erw ideal.quotient.eq_zero_iff_mem,
exact map_nonunit f a ha
end
end residue_field
end local_ring
namespace field
variables [field α]
@[priority 100] -- see Note [lower instance priority]
instance : local_ring α :=
{ is_local := λ a,
if h : a = 0
then or.inr (by rw [h, sub_zero]; exact is_unit_one)
else or.inl $ is_unit_of_mul_eq_one a a⁻¹ $ div_self h }
end field
|
12631c577ea5e5389928e369ae79e364eea720bc
|
02005f45e00c7ecf2c8ca5db60251bd1e9c860b5
|
/src/analysis/special_functions/trigonometric.lean
|
960ab572a621ceb5eb3052e55bdd1c4d5e8e3fe6
|
[
"Apache-2.0"
] |
permissive
|
anthony2698/mathlib
|
03cd69fe5c280b0916f6df2d07c614c8e1efe890
|
407615e05814e98b24b2ff322b14e8e3eb5e5d67
|
refs/heads/master
| 1,678,792,774,873
| 1,614,371,563,000
| 1,614,371,563,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 138,811
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import analysis.special_functions.exp_log
import data.set.intervals.infinite
import algebra.quadratic_discriminant
import ring_theory.polynomial.chebyshev.defs
import analysis.calculus.times_cont_diff
/-!
# Trigonometric functions
## Main definitions
This file contains the following definitions:
* π, arcsin, arccos, arctan
* argument of a complex number
* logarithm on complex numbers
## Main statements
Many basic inequalities on trigonometric functions are established.
The continuity and differentiability of the usual trigonometric functions are proved, and their
derivatives are computed.
* `polynomial.chebyshev₁_complex_cos`: the `n`-th Chebyshev polynomial evaluates on `complex.cos θ`
to the value `n * complex.cos θ`.
## Tags
log, sin, cos, tan, arcsin, arccos, arctan, angle, argument
-/
noncomputable theory
open_locale classical topological_space filter
open set filter
namespace complex
/-- The complex sine function is everywhere strictly differentiable, with the derivative `cos x`. -/
lemma has_strict_deriv_at_sin (x : ℂ) : has_strict_deriv_at sin (cos x) x :=
begin
simp only [cos, div_eq_mul_inv],
convert ((((has_strict_deriv_at_id x).neg.mul_const I).cexp.sub
((has_strict_deriv_at_id x).mul_const I).cexp).mul_const I).mul_const (2:ℂ)⁻¹,
simp only [function.comp, id],
rw [sub_mul, mul_assoc, mul_assoc, I_mul_I, neg_one_mul, neg_neg, mul_one, one_mul, mul_assoc,
I_mul_I, mul_neg_one, sub_neg_eq_add, add_comm]
end
/-- The complex sine function is everywhere differentiable, with the derivative `cos x`. -/
lemma has_deriv_at_sin (x : ℂ) : has_deriv_at sin (cos x) x :=
(has_strict_deriv_at_sin x).has_deriv_at
lemma times_cont_diff_sin {n} : times_cont_diff ℂ n sin :=
(((times_cont_diff_neg.mul times_cont_diff_const).cexp.sub
(times_cont_diff_id.mul times_cont_diff_const).cexp).mul times_cont_diff_const).div_const
lemma differentiable_sin : differentiable ℂ sin :=
λx, (has_deriv_at_sin x).differentiable_at
lemma differentiable_at_sin {x : ℂ} : differentiable_at ℂ sin x :=
differentiable_sin x
@[simp] lemma deriv_sin : deriv sin = cos :=
funext $ λ x, (has_deriv_at_sin x).deriv
@[continuity]
lemma continuous_sin : continuous sin :=
differentiable_sin.continuous
lemma continuous_on_sin {s : set ℂ} : continuous_on sin s := continuous_sin.continuous_on
lemma measurable_sin : measurable sin := continuous_sin.measurable
/-- The complex cosine function is everywhere strictly differentiable, with the derivative
`-sin x`. -/
lemma has_strict_deriv_at_cos (x : ℂ) : has_strict_deriv_at cos (-sin x) x :=
begin
simp only [sin, div_eq_mul_inv, neg_mul_eq_neg_mul],
convert (((has_strict_deriv_at_id x).mul_const I).cexp.add
((has_strict_deriv_at_id x).neg.mul_const I).cexp).mul_const (2:ℂ)⁻¹,
simp only [function.comp, id],
ring
end
/-- The complex cosine function is everywhere differentiable, with the derivative `-sin x`. -/
lemma has_deriv_at_cos (x : ℂ) : has_deriv_at cos (-sin x) x :=
(has_strict_deriv_at_cos x).has_deriv_at
lemma times_cont_diff_cos {n} : times_cont_diff ℂ n cos :=
((times_cont_diff_id.mul times_cont_diff_const).cexp.add
(times_cont_diff_neg.mul times_cont_diff_const).cexp).div_const
lemma differentiable_cos : differentiable ℂ cos :=
λx, (has_deriv_at_cos x).differentiable_at
lemma differentiable_at_cos {x : ℂ} : differentiable_at ℂ cos x :=
differentiable_cos x
lemma deriv_cos {x : ℂ} : deriv cos x = -sin x :=
(has_deriv_at_cos x).deriv
@[simp] lemma deriv_cos' : deriv cos = (λ x, -sin x) :=
funext $ λ x, deriv_cos
@[continuity]
lemma continuous_cos : continuous cos :=
differentiable_cos.continuous
lemma continuous_on_cos {s : set ℂ} : continuous_on cos s := continuous_cos.continuous_on
lemma measurable_cos : measurable cos := continuous_cos.measurable
/-- The complex hyperbolic sine function is everywhere strictly differentiable, with the derivative
`cosh x`. -/
lemma has_strict_deriv_at_sinh (x : ℂ) : has_strict_deriv_at sinh (cosh x) x :=
begin
simp only [cosh, div_eq_mul_inv],
convert ((has_strict_deriv_at_exp x).sub (has_strict_deriv_at_id x).neg.cexp).mul_const (2:ℂ)⁻¹,
rw [id, mul_neg_one, sub_eq_add_neg, neg_neg]
end
/-- The complex hyperbolic sine function is everywhere differentiable, with the derivative
`cosh x`. -/
lemma has_deriv_at_sinh (x : ℂ) : has_deriv_at sinh (cosh x) x :=
(has_strict_deriv_at_sinh x).has_deriv_at
lemma times_cont_diff_sinh {n} : times_cont_diff ℂ n sinh :=
(times_cont_diff_exp.sub times_cont_diff_neg.cexp).div_const
lemma differentiable_sinh : differentiable ℂ sinh :=
λx, (has_deriv_at_sinh x).differentiable_at
lemma differentiable_at_sinh {x : ℂ} : differentiable_at ℂ sinh x :=
differentiable_sinh x
@[simp] lemma deriv_sinh : deriv sinh = cosh :=
funext $ λ x, (has_deriv_at_sinh x).deriv
@[continuity]
lemma continuous_sinh : continuous sinh :=
differentiable_sinh.continuous
lemma measurable_sinh : measurable sinh := continuous_sinh.measurable
/-- The complex hyperbolic cosine function is everywhere strictly differentiable, with the
derivative `sinh x`. -/
lemma has_strict_deriv_at_cosh (x : ℂ) : has_strict_deriv_at cosh (sinh x) x :=
begin
simp only [sinh, div_eq_mul_inv],
convert ((has_strict_deriv_at_exp x).add (has_strict_deriv_at_id x).neg.cexp).mul_const (2:ℂ)⁻¹,
rw [id, mul_neg_one, sub_eq_add_neg]
end
/-- The complex hyperbolic cosine function is everywhere differentiable, with the derivative
`sinh x`. -/
lemma has_deriv_at_cosh (x : ℂ) : has_deriv_at cosh (sinh x) x :=
(has_strict_deriv_at_cosh x).has_deriv_at
lemma times_cont_diff_cosh {n} : times_cont_diff ℂ n cosh :=
(times_cont_diff_exp.add times_cont_diff_neg.cexp).div_const
lemma differentiable_cosh : differentiable ℂ cosh :=
λx, (has_deriv_at_cosh x).differentiable_at
lemma differentiable_at_cosh {x : ℂ} : differentiable_at ℂ cos x :=
differentiable_cos x
@[simp] lemma deriv_cosh : deriv cosh = sinh :=
funext $ λ x, (has_deriv_at_cosh x).deriv
@[continuity]
lemma continuous_cosh : continuous cosh :=
differentiable_cosh.continuous
lemma measurable_cosh : measurable cosh := continuous_cosh.measurable
end complex
section
/-! ### Simp lemmas for derivatives of `λ x, complex.cos (f x)` etc., `f : ℂ → ℂ` -/
variables {f : ℂ → ℂ} {f' x : ℂ} {s : set ℂ}
/-! #### `complex.cos` -/
lemma measurable.ccos {α : Type*} [measurable_space α] {f : α → ℂ} (hf : measurable f) :
measurable (λ x, complex.cos (f x)) :=
complex.measurable_cos.comp hf
lemma has_strict_deriv_at.ccos (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, complex.cos (f x)) (- complex.sin (f x) * f') x :=
(complex.has_strict_deriv_at_cos (f x)).comp x hf
lemma has_deriv_at.ccos (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, complex.cos (f x)) (- complex.sin (f x) * f') x :=
(complex.has_deriv_at_cos (f x)).comp x hf
lemma has_deriv_within_at.ccos (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, complex.cos (f x)) (- complex.sin (f x) * f') s x :=
(complex.has_deriv_at_cos (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_ccos (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
deriv_within (λx, complex.cos (f x)) s x = - complex.sin (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.ccos.deriv_within hxs
@[simp] lemma deriv_ccos (hc : differentiable_at ℂ f x) :
deriv (λx, complex.cos (f x)) x = - complex.sin (f x) * (deriv f x) :=
hc.has_deriv_at.ccos.deriv
/-! #### `complex.sin` -/
lemma measurable.csin {α : Type*} [measurable_space α] {f : α → ℂ} (hf : measurable f) :
measurable (λ x, complex.sin (f x)) :=
complex.measurable_sin.comp hf
lemma has_strict_deriv_at.csin (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, complex.sin (f x)) (complex.cos (f x) * f') x :=
(complex.has_strict_deriv_at_sin (f x)).comp x hf
lemma has_deriv_at.csin (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, complex.sin (f x)) (complex.cos (f x) * f') x :=
(complex.has_deriv_at_sin (f x)).comp x hf
lemma has_deriv_within_at.csin (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, complex.sin (f x)) (complex.cos (f x) * f') s x :=
(complex.has_deriv_at_sin (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_csin (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
deriv_within (λx, complex.sin (f x)) s x = complex.cos (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.csin.deriv_within hxs
@[simp] lemma deriv_csin (hc : differentiable_at ℂ f x) :
deriv (λx, complex.sin (f x)) x = complex.cos (f x) * (deriv f x) :=
hc.has_deriv_at.csin.deriv
/-! #### `complex.cosh` -/
lemma measurable.ccosh {α : Type*} [measurable_space α] {f : α → ℂ} (hf : measurable f) :
measurable (λ x, complex.cosh (f x)) :=
complex.measurable_cosh.comp hf
lemma has_strict_deriv_at.ccosh (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, complex.cosh (f x)) (complex.sinh (f x) * f') x :=
(complex.has_strict_deriv_at_cosh (f x)).comp x hf
lemma has_deriv_at.ccosh (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, complex.cosh (f x)) (complex.sinh (f x) * f') x :=
(complex.has_deriv_at_cosh (f x)).comp x hf
lemma has_deriv_within_at.ccosh (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, complex.cosh (f x)) (complex.sinh (f x) * f') s x :=
(complex.has_deriv_at_cosh (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_ccosh (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
deriv_within (λx, complex.cosh (f x)) s x = complex.sinh (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.ccosh.deriv_within hxs
@[simp] lemma deriv_ccosh (hc : differentiable_at ℂ f x) :
deriv (λx, complex.cosh (f x)) x = complex.sinh (f x) * (deriv f x) :=
hc.has_deriv_at.ccosh.deriv
/-! #### `complex.sinh` -/
lemma measurable.csinh {α : Type*} [measurable_space α] {f : α → ℂ} (hf : measurable f) :
measurable (λ x, complex.sinh (f x)) :=
complex.measurable_sinh.comp hf
lemma has_strict_deriv_at.csinh (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, complex.sinh (f x)) (complex.cosh (f x) * f') x :=
(complex.has_strict_deriv_at_sinh (f x)).comp x hf
lemma has_deriv_at.csinh (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, complex.sinh (f x)) (complex.cosh (f x) * f') x :=
(complex.has_deriv_at_sinh (f x)).comp x hf
lemma has_deriv_within_at.csinh (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, complex.sinh (f x)) (complex.cosh (f x) * f') s x :=
(complex.has_deriv_at_sinh (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_csinh (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
deriv_within (λx, complex.sinh (f x)) s x = complex.cosh (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.csinh.deriv_within hxs
@[simp] lemma deriv_csinh (hc : differentiable_at ℂ f x) :
deriv (λx, complex.sinh (f x)) x = complex.cosh (f x) * (deriv f x) :=
hc.has_deriv_at.csinh.deriv
end
section
/-! ### Simp lemmas for derivatives of `λ x, complex.cos (f x)` etc., `f : E → ℂ` -/
variables {E : Type*} [normed_group E] [normed_space ℂ E] {f : E → ℂ} {f' : E →L[ℂ] ℂ}
{x : E} {s : set E}
/-! #### `complex.cos` -/
lemma has_strict_fderiv_at.ccos (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, complex.cos (f x)) (- complex.sin (f x) • f') x :=
(complex.has_strict_deriv_at_cos (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.ccos (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, complex.cos (f x)) (- complex.sin (f x) • f') x :=
(complex.has_deriv_at_cos (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.ccos (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, complex.cos (f x)) (- complex.sin (f x) • f') s x :=
(complex.has_deriv_at_cos (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.ccos (hf : differentiable_within_at ℂ f s x) :
differentiable_within_at ℂ (λ x, complex.cos (f x)) s x :=
hf.has_fderiv_within_at.ccos.differentiable_within_at
@[simp] lemma differentiable_at.ccos (hc : differentiable_at ℂ f x) :
differentiable_at ℂ (λx, complex.cos (f x)) x :=
hc.has_fderiv_at.ccos.differentiable_at
lemma differentiable_on.ccos (hc : differentiable_on ℂ f s) :
differentiable_on ℂ (λx, complex.cos (f x)) s :=
λx h, (hc x h).ccos
@[simp] lemma differentiable.ccos (hc : differentiable ℂ f) :
differentiable ℂ (λx, complex.cos (f x)) :=
λx, (hc x).ccos
lemma fderiv_within_ccos (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
fderiv_within ℂ (λx, complex.cos (f x)) s x = - complex.sin (f x) • (fderiv_within ℂ f s x) :=
hf.has_fderiv_within_at.ccos.fderiv_within hxs
@[simp] lemma fderiv_ccos (hc : differentiable_at ℂ f x) :
fderiv ℂ (λx, complex.cos (f x)) x = - complex.sin (f x) • (fderiv ℂ f x) :=
hc.has_fderiv_at.ccos.fderiv
lemma times_cont_diff.ccos {n} (h : times_cont_diff ℂ n f) :
times_cont_diff ℂ n (λ x, complex.cos (f x)) :=
complex.times_cont_diff_cos.comp h
lemma times_cont_diff_at.ccos {n} (hf : times_cont_diff_at ℂ n f x) :
times_cont_diff_at ℂ n (λ x, complex.cos (f x)) x :=
complex.times_cont_diff_cos.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.ccos {n} (hf : times_cont_diff_on ℂ n f s) :
times_cont_diff_on ℂ n (λ x, complex.cos (f x)) s :=
complex.times_cont_diff_cos.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.ccos {n} (hf : times_cont_diff_within_at ℂ n f s x) :
times_cont_diff_within_at ℂ n (λ x, complex.cos (f x)) s x :=
complex.times_cont_diff_cos.times_cont_diff_at.comp_times_cont_diff_within_at x hf
/-! #### `complex.sin` -/
lemma has_strict_fderiv_at.csin (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, complex.sin (f x)) (complex.cos (f x) • f') x :=
(complex.has_strict_deriv_at_sin (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.csin (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, complex.sin (f x)) (complex.cos (f x) • f') x :=
(complex.has_deriv_at_sin (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.csin (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, complex.sin (f x)) (complex.cos (f x) • f') s x :=
(complex.has_deriv_at_sin (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.csin (hf : differentiable_within_at ℂ f s x) :
differentiable_within_at ℂ (λ x, complex.sin (f x)) s x :=
hf.has_fderiv_within_at.csin.differentiable_within_at
@[simp] lemma differentiable_at.csin (hc : differentiable_at ℂ f x) :
differentiable_at ℂ (λx, complex.sin (f x)) x :=
hc.has_fderiv_at.csin.differentiable_at
lemma differentiable_on.csin (hc : differentiable_on ℂ f s) :
differentiable_on ℂ (λx, complex.sin (f x)) s :=
λx h, (hc x h).csin
@[simp] lemma differentiable.csin (hc : differentiable ℂ f) :
differentiable ℂ (λx, complex.sin (f x)) :=
λx, (hc x).csin
lemma fderiv_within_csin (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
fderiv_within ℂ (λx, complex.sin (f x)) s x = complex.cos (f x) • (fderiv_within ℂ f s x) :=
hf.has_fderiv_within_at.csin.fderiv_within hxs
@[simp] lemma fderiv_csin (hc : differentiable_at ℂ f x) :
fderiv ℂ (λx, complex.sin (f x)) x = complex.cos (f x) • (fderiv ℂ f x) :=
hc.has_fderiv_at.csin.fderiv
lemma times_cont_diff.csin {n} (h : times_cont_diff ℂ n f) :
times_cont_diff ℂ n (λ x, complex.sin (f x)) :=
complex.times_cont_diff_sin.comp h
lemma times_cont_diff_at.csin {n} (hf : times_cont_diff_at ℂ n f x) :
times_cont_diff_at ℂ n (λ x, complex.sin (f x)) x :=
complex.times_cont_diff_sin.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.csin {n} (hf : times_cont_diff_on ℂ n f s) :
times_cont_diff_on ℂ n (λ x, complex.sin (f x)) s :=
complex.times_cont_diff_sin.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.csin {n} (hf : times_cont_diff_within_at ℂ n f s x) :
times_cont_diff_within_at ℂ n (λ x, complex.sin (f x)) s x :=
complex.times_cont_diff_sin.times_cont_diff_at.comp_times_cont_diff_within_at x hf
/-! #### `complex.cosh` -/
lemma has_strict_fderiv_at.ccosh (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, complex.cosh (f x)) (complex.sinh (f x) • f') x :=
(complex.has_strict_deriv_at_cosh (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.ccosh (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, complex.cosh (f x)) (complex.sinh (f x) • f') x :=
(complex.has_deriv_at_cosh (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.ccosh (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, complex.cosh (f x)) (complex.sinh (f x) • f') s x :=
(complex.has_deriv_at_cosh (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.ccosh (hf : differentiable_within_at ℂ f s x) :
differentiable_within_at ℂ (λ x, complex.cosh (f x)) s x :=
hf.has_fderiv_within_at.ccosh.differentiable_within_at
@[simp] lemma differentiable_at.ccosh (hc : differentiable_at ℂ f x) :
differentiable_at ℂ (λx, complex.cosh (f x)) x :=
hc.has_fderiv_at.ccosh.differentiable_at
lemma differentiable_on.ccosh (hc : differentiable_on ℂ f s) :
differentiable_on ℂ (λx, complex.cosh (f x)) s :=
λx h, (hc x h).ccosh
@[simp] lemma differentiable.ccosh (hc : differentiable ℂ f) :
differentiable ℂ (λx, complex.cosh (f x)) :=
λx, (hc x).ccosh
lemma fderiv_within_ccosh (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
fderiv_within ℂ (λx, complex.cosh (f x)) s x = complex.sinh (f x) • (fderiv_within ℂ f s x) :=
hf.has_fderiv_within_at.ccosh.fderiv_within hxs
@[simp] lemma fderiv_ccosh (hc : differentiable_at ℂ f x) :
fderiv ℂ (λx, complex.cosh (f x)) x = complex.sinh (f x) • (fderiv ℂ f x) :=
hc.has_fderiv_at.ccosh.fderiv
lemma times_cont_diff.ccosh {n} (h : times_cont_diff ℂ n f) :
times_cont_diff ℂ n (λ x, complex.cosh (f x)) :=
complex.times_cont_diff_cosh.comp h
lemma times_cont_diff_at.ccosh {n} (hf : times_cont_diff_at ℂ n f x) :
times_cont_diff_at ℂ n (λ x, complex.cosh (f x)) x :=
complex.times_cont_diff_cosh.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.ccosh {n} (hf : times_cont_diff_on ℂ n f s) :
times_cont_diff_on ℂ n (λ x, complex.cosh (f x)) s :=
complex.times_cont_diff_cosh.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.ccosh {n} (hf : times_cont_diff_within_at ℂ n f s x) :
times_cont_diff_within_at ℂ n (λ x, complex.cosh (f x)) s x :=
complex.times_cont_diff_cosh.times_cont_diff_at.comp_times_cont_diff_within_at x hf
/-! #### `complex.sinh` -/
lemma has_strict_fderiv_at.csinh (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, complex.sinh (f x)) (complex.cosh (f x) • f') x :=
(complex.has_strict_deriv_at_sinh (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.csinh (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, complex.sinh (f x)) (complex.cosh (f x) • f') x :=
(complex.has_deriv_at_sinh (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.csinh (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, complex.sinh (f x)) (complex.cosh (f x) • f') s x :=
(complex.has_deriv_at_sinh (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.csinh (hf : differentiable_within_at ℂ f s x) :
differentiable_within_at ℂ (λ x, complex.sinh (f x)) s x :=
hf.has_fderiv_within_at.csinh.differentiable_within_at
@[simp] lemma differentiable_at.csinh (hc : differentiable_at ℂ f x) :
differentiable_at ℂ (λx, complex.sinh (f x)) x :=
hc.has_fderiv_at.csinh.differentiable_at
lemma differentiable_on.csinh (hc : differentiable_on ℂ f s) :
differentiable_on ℂ (λx, complex.sinh (f x)) s :=
λx h, (hc x h).csinh
@[simp] lemma differentiable.csinh (hc : differentiable ℂ f) :
differentiable ℂ (λx, complex.sinh (f x)) :=
λx, (hc x).csinh
lemma fderiv_within_csinh (hf : differentiable_within_at ℂ f s x)
(hxs : unique_diff_within_at ℂ s x) :
fderiv_within ℂ (λx, complex.sinh (f x)) s x = complex.cosh (f x) • (fderiv_within ℂ f s x) :=
hf.has_fderiv_within_at.csinh.fderiv_within hxs
@[simp] lemma fderiv_csinh (hc : differentiable_at ℂ f x) :
fderiv ℂ (λx, complex.sinh (f x)) x = complex.cosh (f x) • (fderiv ℂ f x) :=
hc.has_fderiv_at.csinh.fderiv
lemma times_cont_diff.csinh {n} (h : times_cont_diff ℂ n f) :
times_cont_diff ℂ n (λ x, complex.sinh (f x)) :=
complex.times_cont_diff_sinh.comp h
lemma times_cont_diff_at.csinh {n} (hf : times_cont_diff_at ℂ n f x) :
times_cont_diff_at ℂ n (λ x, complex.sinh (f x)) x :=
complex.times_cont_diff_sinh.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.csinh {n} (hf : times_cont_diff_on ℂ n f s) :
times_cont_diff_on ℂ n (λ x, complex.sinh (f x)) s :=
complex.times_cont_diff_sinh.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.csinh {n} (hf : times_cont_diff_within_at ℂ n f s x) :
times_cont_diff_within_at ℂ n (λ x, complex.sinh (f x)) s x :=
complex.times_cont_diff_sinh.times_cont_diff_at.comp_times_cont_diff_within_at x hf
end
namespace real
variables {x y z : ℝ}
lemma has_strict_deriv_at_sin (x : ℝ) : has_strict_deriv_at sin (cos x) x :=
(complex.has_strict_deriv_at_sin x).real_of_complex
lemma has_deriv_at_sin (x : ℝ) : has_deriv_at sin (cos x) x :=
(has_strict_deriv_at_sin x).has_deriv_at
lemma times_cont_diff_sin {n} : times_cont_diff ℝ n sin :=
complex.times_cont_diff_sin.real_of_complex
lemma differentiable_sin : differentiable ℝ sin :=
λx, (has_deriv_at_sin x).differentiable_at
lemma differentiable_at_sin : differentiable_at ℝ sin x :=
differentiable_sin x
@[simp] lemma deriv_sin : deriv sin = cos :=
funext $ λ x, (has_deriv_at_sin x).deriv
@[continuity]
lemma continuous_sin : continuous sin :=
differentiable_sin.continuous
lemma measurable_sin : measurable sin := continuous_sin.measurable
lemma has_strict_deriv_at_cos (x : ℝ) : has_strict_deriv_at cos (-sin x) x :=
(complex.has_strict_deriv_at_cos x).real_of_complex
lemma has_deriv_at_cos (x : ℝ) : has_deriv_at cos (-sin x) x :=
(complex.has_deriv_at_cos x).real_of_complex
lemma times_cont_diff_cos {n} : times_cont_diff ℝ n cos :=
complex.times_cont_diff_cos.real_of_complex
lemma differentiable_cos : differentiable ℝ cos :=
λx, (has_deriv_at_cos x).differentiable_at
lemma differentiable_at_cos : differentiable_at ℝ cos x :=
differentiable_cos x
lemma deriv_cos : deriv cos x = - sin x :=
(has_deriv_at_cos x).deriv
@[simp] lemma deriv_cos' : deriv cos = (λ x, - sin x) :=
funext $ λ _, deriv_cos
@[continuity]
lemma continuous_cos : continuous cos :=
differentiable_cos.continuous
lemma continuous_on_cos {s} : continuous_on cos s := continuous_cos.continuous_on
lemma measurable_cos : measurable cos := continuous_cos.measurable
lemma has_strict_deriv_at_sinh (x : ℝ) : has_strict_deriv_at sinh (cosh x) x :=
(complex.has_strict_deriv_at_sinh x).real_of_complex
lemma has_deriv_at_sinh (x : ℝ) : has_deriv_at sinh (cosh x) x :=
(complex.has_deriv_at_sinh x).real_of_complex
lemma times_cont_diff_sinh {n} : times_cont_diff ℝ n sinh :=
complex.times_cont_diff_sinh.real_of_complex
lemma differentiable_sinh : differentiable ℝ sinh :=
λx, (has_deriv_at_sinh x).differentiable_at
lemma differentiable_at_sinh : differentiable_at ℝ sinh x :=
differentiable_sinh x
@[simp] lemma deriv_sinh : deriv sinh = cosh :=
funext $ λ x, (has_deriv_at_sinh x).deriv
@[continuity]
lemma continuous_sinh : continuous sinh :=
differentiable_sinh.continuous
lemma measurable_sinh : measurable sinh := continuous_sinh.measurable
lemma has_strict_deriv_at_cosh (x : ℝ) : has_strict_deriv_at cosh (sinh x) x :=
(complex.has_strict_deriv_at_cosh x).real_of_complex
lemma has_deriv_at_cosh (x : ℝ) : has_deriv_at cosh (sinh x) x :=
(complex.has_deriv_at_cosh x).real_of_complex
lemma times_cont_diff_cosh {n} : times_cont_diff ℝ n cosh :=
complex.times_cont_diff_cosh.real_of_complex
lemma differentiable_cosh : differentiable ℝ cosh :=
λx, (has_deriv_at_cosh x).differentiable_at
lemma differentiable_at_cosh : differentiable_at ℝ cosh x :=
differentiable_cosh x
@[simp] lemma deriv_cosh : deriv cosh = sinh :=
funext $ λ x, (has_deriv_at_cosh x).deriv
@[continuity]
lemma continuous_cosh : continuous cosh :=
differentiable_cosh.continuous
lemma measurable_cosh : measurable cosh := continuous_cosh.measurable
/-- `sinh` is strictly monotone. -/
lemma sinh_strict_mono : strict_mono sinh :=
strict_mono_of_deriv_pos differentiable_sinh (by { rw [real.deriv_sinh], exact cosh_pos })
end real
section
/-! ### Simp lemmas for derivatives of `λ x, real.cos (f x)` etc., `f : ℝ → ℝ` -/
variables {f : ℝ → ℝ} {f' x : ℝ} {s : set ℝ}
/-! #### `real.cos` -/
lemma measurable.cos {α : Type*} [measurable_space α] {f : α → ℝ} (hf : measurable f) :
measurable (λ x, real.cos (f x)) :=
real.measurable_cos.comp hf
lemma has_strict_deriv_at.cos (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, real.cos (f x)) (- real.sin (f x) * f') x :=
(real.has_strict_deriv_at_cos (f x)).comp x hf
lemma has_deriv_at.cos (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, real.cos (f x)) (- real.sin (f x) * f') x :=
(real.has_deriv_at_cos (f x)).comp x hf
lemma has_deriv_within_at.cos (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, real.cos (f x)) (- real.sin (f x) * f') s x :=
(real.has_deriv_at_cos (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_cos (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λx, real.cos (f x)) s x = - real.sin (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.cos.deriv_within hxs
@[simp] lemma deriv_cos (hc : differentiable_at ℝ f x) :
deriv (λx, real.cos (f x)) x = - real.sin (f x) * (deriv f x) :=
hc.has_deriv_at.cos.deriv
/-! #### `real.sin` -/
lemma measurable.sin {α : Type*} [measurable_space α] {f : α → ℝ} (hf : measurable f) :
measurable (λ x, real.sin (f x)) :=
real.measurable_sin.comp hf
lemma has_strict_deriv_at.sin (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, real.sin (f x)) (real.cos (f x) * f') x :=
(real.has_strict_deriv_at_sin (f x)).comp x hf
lemma has_deriv_at.sin (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, real.sin (f x)) (real.cos (f x) * f') x :=
(real.has_deriv_at_sin (f x)).comp x hf
lemma has_deriv_within_at.sin (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, real.sin (f x)) (real.cos (f x) * f') s x :=
(real.has_deriv_at_sin (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_sin (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λx, real.sin (f x)) s x = real.cos (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.sin.deriv_within hxs
@[simp] lemma deriv_sin (hc : differentiable_at ℝ f x) :
deriv (λx, real.sin (f x)) x = real.cos (f x) * (deriv f x) :=
hc.has_deriv_at.sin.deriv
/-! #### `real.cosh` -/
lemma measurable.cosh {α : Type*} [measurable_space α] {f : α → ℝ} (hf : measurable f) :
measurable (λ x, real.cosh (f x)) :=
real.measurable_cosh.comp hf
lemma has_strict_deriv_at.cosh (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, real.cosh (f x)) (real.sinh (f x) * f') x :=
(real.has_strict_deriv_at_cosh (f x)).comp x hf
lemma has_deriv_at.cosh (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, real.cosh (f x)) (real.sinh (f x) * f') x :=
(real.has_deriv_at_cosh (f x)).comp x hf
lemma has_deriv_within_at.cosh (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, real.cosh (f x)) (real.sinh (f x) * f') s x :=
(real.has_deriv_at_cosh (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_cosh (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λx, real.cosh (f x)) s x = real.sinh (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.cosh.deriv_within hxs
@[simp] lemma deriv_cosh (hc : differentiable_at ℝ f x) :
deriv (λx, real.cosh (f x)) x = real.sinh (f x) * (deriv f x) :=
hc.has_deriv_at.cosh.deriv
/-! #### `real.sinh` -/
lemma measurable.sinh {α : Type*} [measurable_space α] {f : α → ℝ} (hf : measurable f) :
measurable (λ x, real.sinh (f x)) :=
real.measurable_sinh.comp hf
lemma has_strict_deriv_at.sinh (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, real.sinh (f x)) (real.cosh (f x) * f') x :=
(real.has_strict_deriv_at_sinh (f x)).comp x hf
lemma has_deriv_at.sinh (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, real.sinh (f x)) (real.cosh (f x) * f') x :=
(real.has_deriv_at_sinh (f x)).comp x hf
lemma has_deriv_within_at.sinh (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, real.sinh (f x)) (real.cosh (f x) * f') s x :=
(real.has_deriv_at_sinh (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_sinh (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λx, real.sinh (f x)) s x = real.cosh (f x) * (deriv_within f s x) :=
hf.has_deriv_within_at.sinh.deriv_within hxs
@[simp] lemma deriv_sinh (hc : differentiable_at ℝ f x) :
deriv (λx, real.sinh (f x)) x = real.cosh (f x) * (deriv f x) :=
hc.has_deriv_at.sinh.deriv
end
section
/-! ### Simp lemmas for derivatives of `λ x, real.cos (f x)` etc., `f : E → ℝ` -/
variables {E : Type*} [normed_group E] [normed_space ℝ E] {f : E → ℝ} {f' : E →L[ℝ] ℝ}
{x : E} {s : set E}
/-! #### `real.cos` -/
lemma has_strict_fderiv_at.cos (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, real.cos (f x)) (- real.sin (f x) • f') x :=
(real.has_strict_deriv_at_cos (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.cos (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, real.cos (f x)) (- real.sin (f x) • f') x :=
(real.has_deriv_at_cos (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.cos (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, real.cos (f x)) (- real.sin (f x) • f') s x :=
(real.has_deriv_at_cos (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.cos (hf : differentiable_within_at ℝ f s x) :
differentiable_within_at ℝ (λ x, real.cos (f x)) s x :=
hf.has_fderiv_within_at.cos.differentiable_within_at
@[simp] lemma differentiable_at.cos (hc : differentiable_at ℝ f x) :
differentiable_at ℝ (λx, real.cos (f x)) x :=
hc.has_fderiv_at.cos.differentiable_at
lemma differentiable_on.cos (hc : differentiable_on ℝ f s) :
differentiable_on ℝ (λx, real.cos (f x)) s :=
λx h, (hc x h).cos
@[simp] lemma differentiable.cos (hc : differentiable ℝ f) :
differentiable ℝ (λx, real.cos (f x)) :=
λx, (hc x).cos
lemma fderiv_within_cos (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λx, real.cos (f x)) s x = - real.sin (f x) • (fderiv_within ℝ f s x) :=
hf.has_fderiv_within_at.cos.fderiv_within hxs
@[simp] lemma fderiv_cos (hc : differentiable_at ℝ f x) :
fderiv ℝ (λx, real.cos (f x)) x = - real.sin (f x) • (fderiv ℝ f x) :=
hc.has_fderiv_at.cos.fderiv
lemma times_cont_diff.cos {n} (h : times_cont_diff ℝ n f) :
times_cont_diff ℝ n (λ x, real.cos (f x)) :=
real.times_cont_diff_cos.comp h
lemma times_cont_diff_at.cos {n} (hf : times_cont_diff_at ℝ n f x) :
times_cont_diff_at ℝ n (λ x, real.cos (f x)) x :=
real.times_cont_diff_cos.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.cos {n} (hf : times_cont_diff_on ℝ n f s) :
times_cont_diff_on ℝ n (λ x, real.cos (f x)) s :=
real.times_cont_diff_cos.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.cos {n} (hf : times_cont_diff_within_at ℝ n f s x) :
times_cont_diff_within_at ℝ n (λ x, real.cos (f x)) s x :=
real.times_cont_diff_cos.times_cont_diff_at.comp_times_cont_diff_within_at x hf
/-! #### `real.sin` -/
lemma has_strict_fderiv_at.sin (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, real.sin (f x)) (real.cos (f x) • f') x :=
(real.has_strict_deriv_at_sin (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.sin (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, real.sin (f x)) (real.cos (f x) • f') x :=
(real.has_deriv_at_sin (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.sin (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, real.sin (f x)) (real.cos (f x) • f') s x :=
(real.has_deriv_at_sin (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.sin (hf : differentiable_within_at ℝ f s x) :
differentiable_within_at ℝ (λ x, real.sin (f x)) s x :=
hf.has_fderiv_within_at.sin.differentiable_within_at
@[simp] lemma differentiable_at.sin (hc : differentiable_at ℝ f x) :
differentiable_at ℝ (λx, real.sin (f x)) x :=
hc.has_fderiv_at.sin.differentiable_at
lemma differentiable_on.sin (hc : differentiable_on ℝ f s) :
differentiable_on ℝ (λx, real.sin (f x)) s :=
λx h, (hc x h).sin
@[simp] lemma differentiable.sin (hc : differentiable ℝ f) :
differentiable ℝ (λx, real.sin (f x)) :=
λx, (hc x).sin
lemma fderiv_within_sin (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λx, real.sin (f x)) s x = real.cos (f x) • (fderiv_within ℝ f s x) :=
hf.has_fderiv_within_at.sin.fderiv_within hxs
@[simp] lemma fderiv_sin (hc : differentiable_at ℝ f x) :
fderiv ℝ (λx, real.sin (f x)) x = real.cos (f x) • (fderiv ℝ f x) :=
hc.has_fderiv_at.sin.fderiv
lemma times_cont_diff.sin {n} (h : times_cont_diff ℝ n f) :
times_cont_diff ℝ n (λ x, real.sin (f x)) :=
real.times_cont_diff_sin.comp h
lemma times_cont_diff_at.sin {n} (hf : times_cont_diff_at ℝ n f x) :
times_cont_diff_at ℝ n (λ x, real.sin (f x)) x :=
real.times_cont_diff_sin.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.sin {n} (hf : times_cont_diff_on ℝ n f s) :
times_cont_diff_on ℝ n (λ x, real.sin (f x)) s :=
real.times_cont_diff_sin.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.sin {n} (hf : times_cont_diff_within_at ℝ n f s x) :
times_cont_diff_within_at ℝ n (λ x, real.sin (f x)) s x :=
real.times_cont_diff_sin.times_cont_diff_at.comp_times_cont_diff_within_at x hf
/-! #### `real.cosh` -/
lemma has_strict_fderiv_at.cosh (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, real.cosh (f x)) (real.sinh (f x) • f') x :=
(real.has_strict_deriv_at_cosh (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.cosh (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, real.cosh (f x)) (real.sinh (f x) • f') x :=
(real.has_deriv_at_cosh (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.cosh (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, real.cosh (f x)) (real.sinh (f x) • f') s x :=
(real.has_deriv_at_cosh (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.cosh (hf : differentiable_within_at ℝ f s x) :
differentiable_within_at ℝ (λ x, real.cosh (f x)) s x :=
hf.has_fderiv_within_at.cosh.differentiable_within_at
@[simp] lemma differentiable_at.cosh (hc : differentiable_at ℝ f x) :
differentiable_at ℝ (λx, real.cosh (f x)) x :=
hc.has_fderiv_at.cosh.differentiable_at
lemma differentiable_on.cosh (hc : differentiable_on ℝ f s) :
differentiable_on ℝ (λx, real.cosh (f x)) s :=
λx h, (hc x h).cosh
@[simp] lemma differentiable.cosh (hc : differentiable ℝ f) :
differentiable ℝ (λx, real.cosh (f x)) :=
λx, (hc x).cosh
lemma fderiv_within_cosh (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λx, real.cosh (f x)) s x = real.sinh (f x) • (fderiv_within ℝ f s x) :=
hf.has_fderiv_within_at.cosh.fderiv_within hxs
@[simp] lemma fderiv_cosh (hc : differentiable_at ℝ f x) :
fderiv ℝ (λx, real.cosh (f x)) x = real.sinh (f x) • (fderiv ℝ f x) :=
hc.has_fderiv_at.cosh.fderiv
lemma times_cont_diff.cosh {n} (h : times_cont_diff ℝ n f) :
times_cont_diff ℝ n (λ x, real.cosh (f x)) :=
real.times_cont_diff_cosh.comp h
lemma times_cont_diff_at.cosh {n} (hf : times_cont_diff_at ℝ n f x) :
times_cont_diff_at ℝ n (λ x, real.cosh (f x)) x :=
real.times_cont_diff_cosh.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.cosh {n} (hf : times_cont_diff_on ℝ n f s) :
times_cont_diff_on ℝ n (λ x, real.cosh (f x)) s :=
real.times_cont_diff_cosh.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.cosh {n} (hf : times_cont_diff_within_at ℝ n f s x) :
times_cont_diff_within_at ℝ n (λ x, real.cosh (f x)) s x :=
real.times_cont_diff_cosh.times_cont_diff_at.comp_times_cont_diff_within_at x hf
/-! #### `real.sinh` -/
lemma has_strict_fderiv_at.sinh (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, real.sinh (f x)) (real.cosh (f x) • f') x :=
(real.has_strict_deriv_at_sinh (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.sinh (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, real.sinh (f x)) (real.cosh (f x) • f') x :=
(real.has_deriv_at_sinh (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.sinh (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, real.sinh (f x)) (real.cosh (f x) • f') s x :=
(real.has_deriv_at_sinh (f x)).comp_has_fderiv_within_at x hf
lemma differentiable_within_at.sinh (hf : differentiable_within_at ℝ f s x) :
differentiable_within_at ℝ (λ x, real.sinh (f x)) s x :=
hf.has_fderiv_within_at.sinh.differentiable_within_at
@[simp] lemma differentiable_at.sinh (hc : differentiable_at ℝ f x) :
differentiable_at ℝ (λx, real.sinh (f x)) x :=
hc.has_fderiv_at.sinh.differentiable_at
lemma differentiable_on.sinh (hc : differentiable_on ℝ f s) :
differentiable_on ℝ (λx, real.sinh (f x)) s :=
λx h, (hc x h).sinh
@[simp] lemma differentiable.sinh (hc : differentiable ℝ f) :
differentiable ℝ (λx, real.sinh (f x)) :=
λx, (hc x).sinh
lemma fderiv_within_sinh (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λx, real.sinh (f x)) s x = real.cosh (f x) • (fderiv_within ℝ f s x) :=
hf.has_fderiv_within_at.sinh.fderiv_within hxs
@[simp] lemma fderiv_sinh (hc : differentiable_at ℝ f x) :
fderiv ℝ (λx, real.sinh (f x)) x = real.cosh (f x) • (fderiv ℝ f x) :=
hc.has_fderiv_at.sinh.fderiv
lemma times_cont_diff.sinh {n} (h : times_cont_diff ℝ n f) :
times_cont_diff ℝ n (λ x, real.sinh (f x)) :=
real.times_cont_diff_sinh.comp h
lemma times_cont_diff_at.sinh {n} (hf : times_cont_diff_at ℝ n f x) :
times_cont_diff_at ℝ n (λ x, real.sinh (f x)) x :=
real.times_cont_diff_sinh.times_cont_diff_at.comp x hf
lemma times_cont_diff_on.sinh {n} (hf : times_cont_diff_on ℝ n f s) :
times_cont_diff_on ℝ n (λ x, real.sinh (f x)) s :=
real.times_cont_diff_sinh.comp_times_cont_diff_on hf
lemma times_cont_diff_within_at.sinh {n} (hf : times_cont_diff_within_at ℝ n f s x) :
times_cont_diff_within_at ℝ n (λ x, real.sinh (f x)) s x :=
real.times_cont_diff_sinh.times_cont_diff_at.comp_times_cont_diff_within_at x hf
end
namespace real
lemma exists_cos_eq_zero : 0 ∈ cos '' Icc (1:ℝ) 2 :=
intermediate_value_Icc' (by norm_num) continuous_on_cos
⟨le_of_lt cos_two_neg, le_of_lt cos_one_pos⟩
/-- The number π = 3.14159265... Defined here using choice as twice a zero of cos in [1,2], from
which one can derive all its properties. For explicit bounds on π, see `data.real.pi`. -/
protected noncomputable def pi : ℝ := 2 * classical.some exists_cos_eq_zero
localized "notation `π` := real.pi" in real
@[simp] lemma cos_pi_div_two : cos (π / 2) = 0 :=
by rw [real.pi, mul_div_cancel_left _ (@two_ne_zero' ℝ _ _ _)];
exact (classical.some_spec exists_cos_eq_zero).2
lemma one_le_pi_div_two : (1 : ℝ) ≤ π / 2 :=
by rw [real.pi, mul_div_cancel_left _ (@two_ne_zero' ℝ _ _ _)];
exact (classical.some_spec exists_cos_eq_zero).1.1
lemma pi_div_two_le_two : π / 2 ≤ 2 :=
by rw [real.pi, mul_div_cancel_left _ (@two_ne_zero' ℝ _ _ _)];
exact (classical.some_spec exists_cos_eq_zero).1.2
lemma two_le_pi : (2 : ℝ) ≤ π :=
(div_le_div_right (show (0 : ℝ) < 2, by norm_num)).1
(by rw div_self (@two_ne_zero' ℝ _ _ _); exact one_le_pi_div_two)
lemma pi_le_four : π ≤ 4 :=
(div_le_div_right (show (0 : ℝ) < 2, by norm_num)).1
(calc π / 2 ≤ 2 : pi_div_two_le_two
... = 4 / 2 : by norm_num)
lemma pi_pos : 0 < π :=
lt_of_lt_of_le (by norm_num) two_le_pi
lemma pi_ne_zero : π ≠ 0 :=
ne_of_gt pi_pos
lemma pi_div_two_pos : 0 < π / 2 :=
half_pos pi_pos
lemma two_pi_pos : 0 < 2 * π :=
by linarith [pi_pos]
@[simp] lemma sin_pi : sin π = 0 :=
by rw [← mul_div_cancel_left π (@two_ne_zero ℝ _ _), two_mul, add_div,
sin_add, cos_pi_div_two]; simp
@[simp] lemma cos_pi : cos π = -1 :=
by rw [← mul_div_cancel_left π (@two_ne_zero ℝ _ _), mul_div_assoc,
cos_two_mul, cos_pi_div_two];
simp [bit0, pow_add]
@[simp] lemma sin_two_pi : sin (2 * π) = 0 :=
by simp [two_mul, sin_add]
@[simp] lemma cos_two_pi : cos (2 * π) = 1 :=
by simp [two_mul, cos_add]
lemma sin_add_pi (x : ℝ) : sin (x + π) = -sin x :=
by simp [sin_add]
lemma sin_add_two_pi (x : ℝ) : sin (x + 2 * π) = sin x :=
by simp [sin_add_pi, sin_add, sin_two_pi, cos_two_pi]
lemma cos_add_two_pi (x : ℝ) : cos (x + 2 * π) = cos x :=
by simp [cos_add, cos_two_pi, sin_two_pi]
lemma sin_pi_sub (x : ℝ) : sin (π - x) = sin x :=
by simp [sub_eq_add_neg, sin_add]
lemma cos_add_pi (x : ℝ) : cos (x + π) = -cos x :=
by simp [cos_add]
lemma cos_pi_sub (x : ℝ) : cos (π - x) = -cos x :=
by simp [sub_eq_add_neg, cos_add]
lemma sin_pos_of_pos_of_lt_pi {x : ℝ} (h0x : 0 < x) (hxp : x < π) : 0 < sin x :=
if hx2 : x ≤ 2 then sin_pos_of_pos_of_le_two h0x hx2
else
have (2 : ℝ) + 2 = 4, from rfl,
have π - x ≤ 2, from sub_le_iff_le_add.2
(le_trans pi_le_four (this ▸ add_le_add_left (le_of_not_ge hx2) _)),
sin_pi_sub x ▸ sin_pos_of_pos_of_le_two (sub_pos.2 hxp) this
lemma sin_pos_of_mem_Ioo {x : ℝ} (hx : x ∈ Ioo 0 π) : 0 < sin x :=
sin_pos_of_pos_of_lt_pi hx.1 hx.2
lemma sin_nonneg_of_mem_Icc {x : ℝ} (hx : x ∈ Icc 0 π) : 0 ≤ sin x :=
begin
rw ← closure_Ioo pi_pos at hx,
exact closure_lt_subset_le continuous_const continuous_sin
(closure_mono (λ y, sin_pos_of_mem_Ioo) hx)
end
lemma sin_nonneg_of_nonneg_of_le_pi {x : ℝ} (h0x : 0 ≤ x) (hxp : x ≤ π) : 0 ≤ sin x :=
sin_nonneg_of_mem_Icc ⟨h0x, hxp⟩
lemma sin_neg_of_neg_of_neg_pi_lt {x : ℝ} (hx0 : x < 0) (hpx : -π < x) : sin x < 0 :=
neg_pos.1 $ sin_neg x ▸ sin_pos_of_pos_of_lt_pi (neg_pos.2 hx0) (neg_lt.1 hpx)
lemma sin_nonpos_of_nonnpos_of_neg_pi_le {x : ℝ} (hx0 : x ≤ 0) (hpx : -π ≤ x) : sin x ≤ 0 :=
neg_nonneg.1 $ sin_neg x ▸ sin_nonneg_of_nonneg_of_le_pi (neg_nonneg.2 hx0) (neg_le.1 hpx)
@[simp] lemma sin_pi_div_two : sin (π / 2) = 1 :=
have sin (π / 2) = 1 ∨ sin (π / 2) = -1 :=
by simpa [pow_two, mul_self_eq_one_iff] using sin_sq_add_cos_sq (π / 2),
this.resolve_right
(λ h, (show ¬(0 : ℝ) < -1, by norm_num) $
h ▸ sin_pos_of_pos_of_lt_pi pi_div_two_pos (half_lt_self pi_pos))
lemma sin_add_pi_div_two (x : ℝ) : sin (x + π / 2) = cos x :=
by simp [sin_add]
lemma sin_sub_pi_div_two (x : ℝ) : sin (x - π / 2) = -cos x :=
by simp [sub_eq_add_neg, sin_add]
lemma sin_pi_div_two_sub (x : ℝ) : sin (π / 2 - x) = cos x :=
by simp [sub_eq_add_neg, sin_add]
lemma cos_add_pi_div_two (x : ℝ) : cos (x + π / 2) = -sin x :=
by simp [cos_add]
lemma cos_sub_pi_div_two (x : ℝ) : cos (x - π / 2) = sin x :=
by simp [sub_eq_add_neg, cos_add]
lemma cos_pi_div_two_sub (x : ℝ) : cos (π / 2 - x) = sin x :=
by rw [← cos_neg, neg_sub, cos_sub_pi_div_two]
lemma cos_pos_of_mem_Ioo {x : ℝ} (hx : x ∈ Ioo (-(π / 2)) (π / 2)) : 0 < cos x :=
sin_add_pi_div_two x ▸ sin_pos_of_mem_Ioo ⟨by linarith [hx.1], by linarith [hx.2]⟩
lemma cos_nonneg_of_mem_Icc {x : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) : 0 ≤ cos x :=
sin_add_pi_div_two x ▸ sin_nonneg_of_mem_Icc ⟨by linarith [hx.1], by linarith [hx.2]⟩
lemma cos_neg_of_pi_div_two_lt_of_lt {x : ℝ} (hx₁ : π / 2 < x) (hx₂ : x < π + π / 2) : cos x < 0 :=
neg_pos.1 $ cos_pi_sub x ▸ cos_pos_of_mem_Ioo ⟨by linarith, by linarith⟩
lemma cos_nonpos_of_pi_div_two_le_of_le {x : ℝ} (hx₁ : π / 2 ≤ x) (hx₂ : x ≤ π + π / 2) :
cos x ≤ 0 :=
neg_nonneg.1 $ cos_pi_sub x ▸ cos_nonneg_of_mem_Icc ⟨by linarith, by linarith⟩
lemma sin_nat_mul_pi (n : ℕ) : sin (n * π) = 0 :=
by induction n; simp [add_mul, sin_add, *]
lemma sin_int_mul_pi (n : ℤ) : sin (n * π) = 0 :=
by cases n; simp [add_mul, sin_add, *, sin_nat_mul_pi]
lemma cos_nat_mul_two_pi (n : ℕ) : cos (n * (2 * π)) = 1 :=
by induction n; simp [*, mul_add, cos_add, add_mul, cos_two_pi, sin_two_pi]
lemma cos_int_mul_two_pi (n : ℤ) : cos (n * (2 * π)) = 1 :=
by cases n; simp only [cos_nat_mul_two_pi, int.of_nat_eq_coe,
int.neg_succ_of_nat_coe, int.cast_coe_nat, int.cast_neg,
(neg_mul_eq_neg_mul _ _).symm, cos_neg]
lemma cos_int_mul_two_pi_add_pi (n : ℤ) : cos (n * (2 * π) + π) = -1 :=
by simp [cos_add, sin_add, cos_int_mul_two_pi]
lemma sin_eq_zero_iff_of_lt_of_lt {x : ℝ} (hx₁ : -π < x) (hx₂ : x < π) :
sin x = 0 ↔ x = 0 :=
⟨λ h, le_antisymm
(le_of_not_gt (λ h0, lt_irrefl (0 : ℝ) $
calc 0 < sin x : sin_pos_of_pos_of_lt_pi h0 hx₂
... = 0 : h))
(le_of_not_gt (λ h0, lt_irrefl (0 : ℝ) $
calc 0 = sin x : h.symm
... < 0 : sin_neg_of_neg_of_neg_pi_lt h0 hx₁)),
λ h, by simp [h]⟩
lemma sin_eq_zero_iff {x : ℝ} : sin x = 0 ↔ ∃ n : ℤ, (n : ℝ) * π = x :=
⟨λ h, ⟨⌊x / π⌋, le_antisymm (sub_nonneg.1 (sub_floor_div_mul_nonneg _ pi_pos))
(sub_nonpos.1 $ le_of_not_gt $ λ h₃,
(sin_pos_of_pos_of_lt_pi h₃ (sub_floor_div_mul_lt _ pi_pos)).ne
(by simp [sub_eq_add_neg, sin_add, h, sin_int_mul_pi]))⟩,
λ ⟨n, hn⟩, hn ▸ sin_int_mul_pi _⟩
lemma sin_ne_zero_iff {x : ℝ} : sin x ≠ 0 ↔ ∀ n : ℤ, (n : ℝ) * π ≠ x :=
by rw [← not_exists, not_iff_not, sin_eq_zero_iff]
lemma sin_eq_zero_iff_cos_eq {x : ℝ} : sin x = 0 ↔ cos x = 1 ∨ cos x = -1 :=
by rw [← mul_self_eq_one_iff, ← sin_sq_add_cos_sq x,
pow_two, pow_two, ← sub_eq_iff_eq_add, sub_self];
exact ⟨λ h, by rw [h, mul_zero], eq_zero_of_mul_self_eq_zero ∘ eq.symm⟩
lemma cos_eq_one_iff (x : ℝ) : cos x = 1 ↔ ∃ n : ℤ, (n : ℝ) * (2 * π) = x :=
⟨λ h, let ⟨n, hn⟩ := sin_eq_zero_iff.1 (sin_eq_zero_iff_cos_eq.2 (or.inl h)) in
⟨n / 2, (int.mod_two_eq_zero_or_one n).elim
(λ hn0, by rwa [← mul_assoc, ← @int.cast_two ℝ, ← int.cast_mul, int.div_mul_cancel
((int.dvd_iff_mod_eq_zero _ _).2 hn0)])
(λ hn1, by rw [← int.mod_add_div n 2, hn1, int.cast_add, int.cast_one, add_mul,
one_mul, add_comm, mul_comm (2 : ℤ), int.cast_mul, mul_assoc, int.cast_two] at hn;
rw [← hn, cos_int_mul_two_pi_add_pi] at h;
exact absurd h (by norm_num))⟩,
λ ⟨n, hn⟩, hn ▸ cos_int_mul_two_pi _⟩
lemma cos_eq_one_iff_of_lt_of_lt {x : ℝ} (hx₁ : -(2 * π) < x) (hx₂ : x < 2 * π) :
cos x = 1 ↔ x = 0 :=
⟨λ h,
begin
rcases (cos_eq_one_iff _).1 h with ⟨n, rfl⟩,
rw [mul_lt_iff_lt_one_left two_pi_pos] at hx₂,
rw [neg_lt, neg_mul_eq_neg_mul, mul_lt_iff_lt_one_left two_pi_pos] at hx₁,
norm_cast at hx₁ hx₂,
obtain rfl : n = 0 := le_antisymm (by linarith) (by linarith),
simp
end,
λ h, by simp [h]⟩
lemma cos_lt_cos_of_nonneg_of_le_pi_div_two {x y : ℝ} (hx₁ : 0 ≤ x) (hy₂ : y ≤ π / 2)
(hxy : x < y) :
cos y < cos x :=
begin
rw [← sub_lt_zero, cos_sub_cos],
have : 0 < sin ((y + x) / 2),
{ refine sin_pos_of_pos_of_lt_pi _ _; linarith },
have : 0 < sin ((y - x) / 2),
{ refine sin_pos_of_pos_of_lt_pi _ _; linarith },
nlinarith,
end
lemma cos_lt_cos_of_nonneg_of_le_pi {x y : ℝ} (hx₁ : 0 ≤ x) (hy₂ : y ≤ π) (hxy : x < y) :
cos y < cos x :=
match (le_total x (π / 2) : x ≤ π / 2 ∨ π / 2 ≤ x), le_total y (π / 2) with
| or.inl hx, or.inl hy := cos_lt_cos_of_nonneg_of_le_pi_div_two hx₁ hy hxy
| or.inl hx, or.inr hy := (lt_or_eq_of_le hx).elim
(λ hx, calc cos y ≤ 0 : cos_nonpos_of_pi_div_two_le_of_le hy (by linarith [pi_pos])
... < cos x : cos_pos_of_mem_Ioo ⟨by linarith, hx⟩)
(λ hx, calc cos y < 0 : cos_neg_of_pi_div_two_lt_of_lt (by linarith) (by linarith [pi_pos])
... = cos x : by rw [hx, cos_pi_div_two])
| or.inr hx, or.inl hy := by linarith
| or.inr hx, or.inr hy := neg_lt_neg_iff.1 (by rw [← cos_pi_sub, ← cos_pi_sub];
apply cos_lt_cos_of_nonneg_of_le_pi_div_two; linarith)
end
lemma strict_mono_decr_on_cos : strict_mono_decr_on cos (Icc 0 π) :=
λ x hx y hy hxy, cos_lt_cos_of_nonneg_of_le_pi hx.1 hy.2 hxy
lemma cos_le_cos_of_nonneg_of_le_pi {x y : ℝ} (hx₁ : 0 ≤ x) (hy₂ : y ≤ π) (hxy : x ≤ y) :
cos y ≤ cos x :=
(strict_mono_decr_on_cos.le_iff_le ⟨hx₁.trans hxy, hy₂⟩ ⟨hx₁, hxy.trans hy₂⟩).2 hxy
lemma sin_lt_sin_of_lt_of_le_pi_div_two {x y : ℝ} (hx₁ : -(π / 2) ≤ x)
(hy₂ : y ≤ π / 2) (hxy : x < y) : sin x < sin y :=
by rw [← cos_sub_pi_div_two, ← cos_sub_pi_div_two, ← cos_neg (x - _), ← cos_neg (y - _)];
apply cos_lt_cos_of_nonneg_of_le_pi; linarith
lemma strict_mono_incr_on_sin : strict_mono_incr_on sin (Icc (-(π / 2)) (π / 2)) :=
λ x hx y hy hxy, sin_lt_sin_of_lt_of_le_pi_div_two hx.1 hy.2 hxy
lemma sin_le_sin_of_le_of_le_pi_div_two {x y : ℝ} (hx₁ : -(π / 2) ≤ x)
(hy₂ : y ≤ π / 2) (hxy : x ≤ y) : sin x ≤ sin y :=
(strict_mono_incr_on_sin.le_iff_le ⟨hx₁, hxy.trans hy₂⟩ ⟨hx₁.trans hxy, hy₂⟩).2 hxy
lemma inj_on_sin : inj_on sin (Icc (-(π / 2)) (π / 2)) :=
strict_mono_incr_on_sin.inj_on
lemma inj_on_cos : inj_on cos (Icc 0 π) := strict_mono_decr_on_cos.inj_on
lemma surj_on_sin : surj_on sin (Icc (-(π / 2)) (π / 2)) (Icc (-1) 1) :=
by simpa only [sin_neg, sin_pi_div_two]
using intermediate_value_Icc (neg_le_self pi_div_two_pos.le) continuous_sin.continuous_on
lemma surj_on_cos : surj_on cos (Icc 0 π) (Icc (-1) 1) :=
by simpa only [cos_zero, cos_pi]
using intermediate_value_Icc' pi_pos.le continuous_cos.continuous_on
lemma sin_mem_Icc (x : ℝ) : sin x ∈ Icc (-1 : ℝ) 1 := ⟨neg_one_le_sin x, sin_le_one x⟩
lemma cos_mem_Icc (x : ℝ) : cos x ∈ Icc (-1 : ℝ) 1 := ⟨neg_one_le_cos x, cos_le_one x⟩
lemma maps_to_sin (s : set ℝ) : maps_to sin s (Icc (-1 : ℝ) 1) := λ x _, sin_mem_Icc x
lemma maps_to_cos (s : set ℝ) : maps_to cos s (Icc (-1 : ℝ) 1) := λ x _, cos_mem_Icc x
lemma bij_on_sin : bij_on sin (Icc (-(π / 2)) (π / 2)) (Icc (-1) 1) :=
⟨maps_to_sin _, inj_on_sin, surj_on_sin⟩
lemma bij_on_cos : bij_on cos (Icc 0 π) (Icc (-1) 1) :=
⟨maps_to_cos _, inj_on_cos, surj_on_cos⟩
@[simp] lemma range_cos : range cos = (Icc (-1) 1 : set ℝ) :=
subset.antisymm (range_subset_iff.2 cos_mem_Icc) surj_on_cos.subset_range
@[simp] lemma range_sin : range sin = (Icc (-1) 1 : set ℝ) :=
subset.antisymm (range_subset_iff.2 sin_mem_Icc) surj_on_sin.subset_range
lemma range_cos_infinite : (range real.cos).infinite :=
by { rw real.range_cos, exact Icc.infinite (by norm_num) }
lemma range_sin_infinite : (range real.sin).infinite :=
by { rw real.range_sin, exact Icc.infinite (by norm_num) }
lemma sin_lt {x : ℝ} (h : 0 < x) : sin x < x :=
begin
cases le_or_gt x 1 with h' h',
{ have hx : abs x = x := abs_of_nonneg (le_of_lt h),
have : abs x ≤ 1, rwa [hx],
have := sin_bound this, rw [abs_le] at this,
have := this.2, rw [sub_le_iff_le_add', hx] at this,
apply lt_of_le_of_lt this, rw [sub_add], apply lt_of_lt_of_le _ (le_of_eq (sub_zero x)),
apply sub_lt_sub_left, rw [sub_pos, div_eq_mul_inv (x ^ 3)], apply mul_lt_mul',
{ rw [pow_succ x 3], refine le_trans _ (le_of_eq (one_mul _)),
rw mul_le_mul_right, exact h', apply pow_pos h },
norm_num, norm_num, apply pow_pos h },
exact lt_of_le_of_lt (sin_le_one x) h'
end
/- note 1: this inequality is not tight, the tighter inequality is sin x > x - x ^ 3 / 6.
note 2: this is also true for x > 1, but it's nontrivial for x just above 1. -/
lemma sin_gt_sub_cube {x : ℝ} (h : 0 < x) (h' : x ≤ 1) : x - x ^ 3 / 4 < sin x :=
begin
have hx : abs x = x := abs_of_nonneg (le_of_lt h),
have : abs x ≤ 1, rwa [hx],
have := sin_bound this, rw [abs_le] at this,
have := this.1, rw [le_sub_iff_add_le, hx] at this,
refine lt_of_lt_of_le _ this,
rw [add_comm, sub_add, sub_neg_eq_add], apply sub_lt_sub_left,
apply add_lt_of_lt_sub_left,
rw (show x ^ 3 / 4 - x ^ 3 / 6 = x ^ 3 * 12⁻¹,
by simp [div_eq_mul_inv, ← mul_sub]; norm_num),
apply mul_lt_mul',
{ rw [pow_succ x 3], refine le_trans _ (le_of_eq (one_mul _)),
rw mul_le_mul_right, exact h', apply pow_pos h },
norm_num, norm_num, apply pow_pos h
end
section cos_div_pow_two
variable (x : ℝ)
/-- the series `sqrt_two_add_series x n` is `sqrt(2 + sqrt(2 + ... ))` with `n` square roots,
starting with `x`. We define it here because `cos (pi / 2 ^ (n+1)) = sqrt_two_add_series 0 n / 2`
-/
@[simp, pp_nodot] noncomputable def sqrt_two_add_series (x : ℝ) : ℕ → ℝ
| 0 := x
| (n+1) := sqrt (2 + sqrt_two_add_series n)
lemma sqrt_two_add_series_zero : sqrt_two_add_series x 0 = x := by simp
lemma sqrt_two_add_series_one : sqrt_two_add_series 0 1 = sqrt 2 := by simp
lemma sqrt_two_add_series_two : sqrt_two_add_series 0 2 = sqrt (2 + sqrt 2) := by simp
lemma sqrt_two_add_series_zero_nonneg : ∀(n : ℕ), 0 ≤ sqrt_two_add_series 0 n
| 0 := le_refl 0
| (n+1) := sqrt_nonneg _
lemma sqrt_two_add_series_nonneg {x : ℝ} (h : 0 ≤ x) : ∀(n : ℕ), 0 ≤ sqrt_two_add_series x n
| 0 := h
| (n+1) := sqrt_nonneg _
lemma sqrt_two_add_series_lt_two : ∀(n : ℕ), sqrt_two_add_series 0 n < 2
| 0 := by norm_num
| (n+1) :=
begin
refine lt_of_lt_of_le _ (le_of_eq $ sqrt_sqr $ le_of_lt zero_lt_two),
rw [sqrt_two_add_series, sqrt_lt, ← lt_sub_iff_add_lt'],
{ refine (sqrt_two_add_series_lt_two n).trans_le _, norm_num },
{ exact add_nonneg zero_le_two (sqrt_two_add_series_zero_nonneg n) }
end
lemma sqrt_two_add_series_succ (x : ℝ) :
∀(n : ℕ), sqrt_two_add_series x (n+1) = sqrt_two_add_series (sqrt (2 + x)) n
| 0 := rfl
| (n+1) := by rw [sqrt_two_add_series, sqrt_two_add_series_succ, sqrt_two_add_series]
lemma sqrt_two_add_series_monotone_left {x y : ℝ} (h : x ≤ y) :
∀(n : ℕ), sqrt_two_add_series x n ≤ sqrt_two_add_series y n
| 0 := h
| (n+1) :=
begin
rw [sqrt_two_add_series, sqrt_two_add_series],
exact sqrt_le_sqrt (add_le_add_left (sqrt_two_add_series_monotone_left _) _)
end
@[simp] lemma cos_pi_over_two_pow : ∀(n : ℕ), cos (π / 2 ^ (n+1)) = sqrt_two_add_series 0 n / 2
| 0 := by simp
| (n+1) :=
begin
have : (2 : ℝ) ≠ 0 := two_ne_zero,
symmetry, rw [div_eq_iff_mul_eq this], symmetry,
rw [sqrt_two_add_series, sqrt_eq_iff_sqr_eq, mul_pow, cos_square, ←mul_div_assoc,
nat.add_succ, pow_succ, mul_div_mul_left _ _ this, cos_pi_over_two_pow, add_mul],
congr, { norm_num },
rw [mul_comm, pow_two, mul_assoc, ←mul_div_assoc, mul_div_cancel_left, ←mul_div_assoc,
mul_div_cancel_left]; try { exact this },
apply add_nonneg, norm_num, apply sqrt_two_add_series_zero_nonneg, norm_num,
apply le_of_lt, apply cos_pos_of_mem_Ioo ⟨_, _⟩,
{ transitivity (0 : ℝ), rw neg_lt_zero, apply pi_div_two_pos,
apply div_pos pi_pos, apply pow_pos, norm_num },
apply div_lt_div' (le_refl π) _ pi_pos _,
refine lt_of_le_of_lt (le_of_eq (pow_one _).symm) _,
apply pow_lt_pow, norm_num, apply nat.succ_lt_succ, apply nat.succ_pos, all_goals {norm_num}
end
lemma sin_square_pi_over_two_pow (n : ℕ) :
sin (π / 2 ^ (n+1)) ^ 2 = 1 - (sqrt_two_add_series 0 n / 2) ^ 2 :=
by rw [sin_square, cos_pi_over_two_pow]
lemma sin_square_pi_over_two_pow_succ (n : ℕ) :
sin (π / 2 ^ (n+2)) ^ 2 = 1 / 2 - sqrt_two_add_series 0 n / 4 :=
begin
rw [sin_square_pi_over_two_pow, sqrt_two_add_series, div_pow, sqr_sqrt, add_div, ←sub_sub],
congr, norm_num, norm_num, apply add_nonneg, norm_num, apply sqrt_two_add_series_zero_nonneg,
end
@[simp] lemma sin_pi_over_two_pow_succ (n : ℕ) :
sin (π / 2 ^ (n+2)) = sqrt (2 - sqrt_two_add_series 0 n) / 2 :=
begin
symmetry, rw [div_eq_iff_mul_eq], symmetry,
rw [sqrt_eq_iff_sqr_eq, mul_pow, sin_square_pi_over_two_pow_succ, sub_mul],
{ congr, norm_num, rw [mul_comm], convert mul_div_cancel' _ _, norm_num, norm_num },
{ rw [sub_nonneg], apply le_of_lt, apply sqrt_two_add_series_lt_two },
apply le_of_lt, apply mul_pos, apply sin_pos_of_pos_of_lt_pi,
{ apply div_pos pi_pos, apply pow_pos, norm_num },
refine lt_of_lt_of_le _ (le_of_eq (div_one _)), rw [div_lt_div_left],
refine lt_of_le_of_lt (le_of_eq (pow_zero 2).symm) _,
apply pow_lt_pow, norm_num, apply nat.succ_pos, apply pi_pos,
apply pow_pos, all_goals {norm_num}
end
@[simp] lemma cos_pi_div_four : cos (π / 4) = sqrt 2 / 2 :=
by { transitivity cos (π / 2 ^ 2), congr, norm_num, simp }
@[simp] lemma sin_pi_div_four : sin (π / 4) = sqrt 2 / 2 :=
by { transitivity sin (π / 2 ^ 2), congr, norm_num, simp }
@[simp] lemma cos_pi_div_eight : cos (π / 8) = sqrt (2 + sqrt 2) / 2 :=
by { transitivity cos (π / 2 ^ 3), congr, norm_num, simp }
@[simp] lemma sin_pi_div_eight : sin (π / 8) = sqrt (2 - sqrt 2) / 2 :=
by { transitivity sin (π / 2 ^ 3), congr, norm_num, simp }
@[simp] lemma cos_pi_div_sixteen : cos (π / 16) = sqrt (2 + sqrt (2 + sqrt 2)) / 2 :=
by { transitivity cos (π / 2 ^ 4), congr, norm_num, simp }
@[simp] lemma sin_pi_div_sixteen : sin (π / 16) = sqrt (2 - sqrt (2 + sqrt 2)) / 2 :=
by { transitivity sin (π / 2 ^ 4), congr, norm_num, simp }
@[simp] lemma cos_pi_div_thirty_two : cos (π / 32) = sqrt (2 + sqrt (2 + sqrt (2 + sqrt 2))) / 2 :=
by { transitivity cos (π / 2 ^ 5), congr, norm_num, simp }
@[simp] lemma sin_pi_div_thirty_two : sin (π / 32) = sqrt (2 - sqrt (2 + sqrt (2 + sqrt 2))) / 2 :=
by { transitivity sin (π / 2 ^ 5), congr, norm_num, simp }
-- This section is also a convenient location for other explicit values of `sin` and `cos`.
/-- The cosine of `π / 3` is `1 / 2`. -/
@[simp] lemma cos_pi_div_three : cos (π / 3) = 1 / 2 :=
begin
have h₁ : (2 * cos (π / 3) - 1) ^ 2 * (2 * cos (π / 3) + 2) = 0,
{ have : cos (3 * (π / 3)) = cos π := by { congr' 1, ring },
linarith [cos_pi, cos_three_mul (π / 3)] },
cases mul_eq_zero.mp h₁ with h h,
{ linarith [pow_eq_zero h] },
{ have : cos π < cos (π / 3),
{ refine cos_lt_cos_of_nonneg_of_le_pi _ rfl.ge _;
linarith [pi_pos] },
linarith [cos_pi] }
end
/-- The square of the cosine of `π / 6` is `3 / 4` (this is sometimes more convenient than the
result for cosine itself). -/
lemma square_cos_pi_div_six : cos (π / 6) ^ 2 = 3 / 4 :=
begin
have h1 : cos (π / 6) ^ 2 = 1 / 2 + 1 / 2 / 2,
{ convert cos_square (π / 6),
have h2 : 2 * (π / 6) = π / 3 := by cancel_denoms,
rw [h2, cos_pi_div_three] },
rw ← sub_eq_zero at h1 ⊢,
convert h1 using 1,
ring
end
/-- The cosine of `π / 6` is `√3 / 2`. -/
@[simp] lemma cos_pi_div_six : cos (π / 6) = (sqrt 3) / 2 :=
begin
suffices : sqrt 3 = cos (π / 6) * 2,
{ field_simp [(by norm_num : 0 ≠ 2)], exact this.symm },
rw sqrt_eq_iff_sqr_eq,
{ have h1 := (mul_right_inj' (by norm_num : (4:ℝ) ≠ 0)).mpr square_cos_pi_div_six,
rw ← sub_eq_zero at h1 ⊢,
convert h1 using 1,
ring },
{ norm_num },
{ have : 0 < cos (π / 6) := by { apply cos_pos_of_mem_Ioo; split; linarith [pi_pos] },
linarith },
end
/-- The sine of `π / 6` is `1 / 2`. -/
@[simp] lemma sin_pi_div_six : sin (π / 6) = 1 / 2 :=
begin
rw [← cos_pi_div_two_sub, ← cos_pi_div_three],
congr,
ring
end
/-- The square of the sine of `π / 3` is `3 / 4` (this is sometimes more convenient than the
result for cosine itself). -/
lemma square_sin_pi_div_three : sin (π / 3) ^ 2 = 3 / 4 :=
begin
rw [← cos_pi_div_two_sub, ← square_cos_pi_div_six],
congr,
ring
end
/-- The sine of `π / 3` is `√3 / 2`. -/
@[simp] lemma sin_pi_div_three : sin (π / 3) = (sqrt 3) / 2 :=
begin
rw [← cos_pi_div_two_sub, ← cos_pi_div_six],
congr,
ring
end
end cos_div_pow_two
/-- The type of angles -/
def angle : Type :=
quotient_add_group.quotient (add_subgroup.gmultiples (2 * π))
namespace angle
instance angle.add_comm_group : add_comm_group angle :=
quotient_add_group.add_comm_group _
instance : inhabited angle := ⟨0⟩
instance angle.has_coe : has_coe ℝ angle :=
⟨quotient.mk'⟩
@[simp] lemma coe_zero : ↑(0 : ℝ) = (0 : angle) := rfl
@[simp] lemma coe_add (x y : ℝ) : ↑(x + y : ℝ) = (↑x + ↑y : angle) := rfl
@[simp] lemma coe_neg (x : ℝ) : ↑(-x : ℝ) = -(↑x : angle) := rfl
@[simp] lemma coe_sub (x y : ℝ) : ↑(x - y : ℝ) = (↑x - ↑y : angle) :=
by rw [sub_eq_add_neg, sub_eq_add_neg, coe_add, coe_neg]
@[simp, norm_cast] lemma coe_nat_mul_eq_nsmul (x : ℝ) (n : ℕ) :
↑((n : ℝ) * x) = n •ℕ (↑x : angle) :=
by simpa using add_monoid_hom.map_nsmul ⟨coe, coe_zero, coe_add⟩ _ _
@[simp, norm_cast] lemma coe_int_mul_eq_gsmul (x : ℝ) (n : ℤ) :
↑((n : ℝ) * x : ℝ) = n •ℤ (↑x : angle) :=
by simpa using add_monoid_hom.map_gsmul ⟨coe, coe_zero, coe_add⟩ _ _
@[simp] lemma coe_two_pi : ↑(2 * π : ℝ) = (0 : angle) :=
quotient.sound' ⟨-1, show (-1 : ℤ) •ℤ (2 * π) = _, by rw [neg_one_gsmul, add_zero]⟩
lemma angle_eq_iff_two_pi_dvd_sub {ψ θ : ℝ} : (θ : angle) = ψ ↔ ∃ k : ℤ, θ - ψ = 2 * π * k :=
by simp only [quotient_add_group.eq, add_subgroup.gmultiples_eq_closure,
add_subgroup.mem_closure_singleton, gsmul_eq_mul', (sub_eq_neg_add _ _).symm, eq_comm]
theorem cos_eq_iff_eq_or_eq_neg {θ ψ : ℝ} : cos θ = cos ψ ↔ (θ : angle) = ψ ∨ (θ : angle) = -ψ :=
begin
split,
{ intro Hcos,
rw [← sub_eq_zero, cos_sub_cos, mul_eq_zero, mul_eq_zero, neg_eq_zero,
eq_false_intro two_ne_zero, false_or, sin_eq_zero_iff, sin_eq_zero_iff] at Hcos,
rcases Hcos with ⟨n, hn⟩ | ⟨n, hn⟩,
{ right,
rw [eq_div_iff_mul_eq (@two_ne_zero ℝ _ _), ← sub_eq_iff_eq_add] at hn,
rw [← hn, coe_sub, eq_neg_iff_add_eq_zero, sub_add_cancel, mul_assoc,
coe_int_mul_eq_gsmul, mul_comm, coe_two_pi, gsmul_zero] },
{ left,
rw [eq_div_iff_mul_eq (@two_ne_zero ℝ _ _), eq_sub_iff_add_eq] at hn,
rw [← hn, coe_add, mul_assoc,
coe_int_mul_eq_gsmul, mul_comm, coe_two_pi, gsmul_zero, zero_add] },
apply_instance, },
{ rw [angle_eq_iff_two_pi_dvd_sub, ← coe_neg, angle_eq_iff_two_pi_dvd_sub],
rintro (⟨k, H⟩ | ⟨k, H⟩),
rw [← sub_eq_zero_iff_eq, cos_sub_cos, H, mul_assoc 2 π k,
mul_div_cancel_left _ (@two_ne_zero ℝ _ _), mul_comm π _, sin_int_mul_pi, mul_zero],
rw [← sub_eq_zero_iff_eq, cos_sub_cos, ← sub_neg_eq_add, H, mul_assoc 2 π k,
mul_div_cancel_left _ (@two_ne_zero ℝ _ _), mul_comm π _, sin_int_mul_pi, mul_zero,
zero_mul] }
end
theorem sin_eq_iff_eq_or_add_eq_pi {θ ψ : ℝ} :
sin θ = sin ψ ↔ (θ : angle) = ψ ∨ (θ : angle) + ψ = π :=
begin
split,
{ intro Hsin, rw [← cos_pi_div_two_sub, ← cos_pi_div_two_sub] at Hsin,
cases cos_eq_iff_eq_or_eq_neg.mp Hsin with h h,
{ left, rw [coe_sub, coe_sub] at h, exact sub_right_inj.1 h },
right, rw [coe_sub, coe_sub, eq_neg_iff_add_eq_zero, add_sub,
sub_add_eq_add_sub, ← coe_add, add_halves, sub_sub, sub_eq_zero] at h,
exact h.symm },
{ rw [angle_eq_iff_two_pi_dvd_sub, ←eq_sub_iff_add_eq, ←coe_sub, angle_eq_iff_two_pi_dvd_sub],
rintro (⟨k, H⟩ | ⟨k, H⟩),
rw [← sub_eq_zero_iff_eq, sin_sub_sin, H, mul_assoc 2 π k,
mul_div_cancel_left _ (@two_ne_zero ℝ _ _), mul_comm π _, sin_int_mul_pi, mul_zero, zero_mul],
have H' : θ + ψ = (2 * k) * π + π := by rwa [←sub_add, sub_add_eq_add_sub, sub_eq_iff_eq_add,
mul_assoc, mul_comm π _, ←mul_assoc] at H,
rw [← sub_eq_zero_iff_eq, sin_sub_sin, H', add_div, mul_assoc 2 _ π,
mul_div_cancel_left _ (@two_ne_zero ℝ _ _), cos_add_pi_div_two, sin_int_mul_pi, neg_zero,
mul_zero] }
end
theorem cos_sin_inj {θ ψ : ℝ} (Hcos : cos θ = cos ψ) (Hsin : sin θ = sin ψ) : (θ : angle) = ψ :=
begin
cases cos_eq_iff_eq_or_eq_neg.mp Hcos with hc hc, { exact hc },
cases sin_eq_iff_eq_or_add_eq_pi.mp Hsin with hs hs, { exact hs },
rw [eq_neg_iff_add_eq_zero, hs] at hc,
cases quotient.exact' hc with n hn, change n •ℤ _ = _ at hn,
rw [← neg_one_mul, add_zero, ← sub_eq_zero_iff_eq, gsmul_eq_mul, ← mul_assoc, ← sub_mul,
mul_eq_zero, eq_false_intro (ne_of_gt pi_pos), or_false, sub_neg_eq_add,
← int.cast_zero, ← int.cast_one, ← int.cast_bit0, ← int.cast_mul, ← int.cast_add,
int.cast_inj] at hn,
have : (n * 2 + 1) % (2:ℤ) = 0 % (2:ℤ) := congr_arg (%(2:ℤ)) hn,
rw [add_comm, int.add_mul_mod_self] at this,
exact absurd this one_ne_zero
end
end angle
/-- `real.sin` as an `order_iso` between `[-(π / 2), π / 2]` and `[-1, 1]`. -/
def sin_order_iso : Icc (-(π / 2)) (π / 2) ≃o Icc (-1:ℝ) 1 :=
(strict_mono_incr_on_sin.order_iso _ _).trans $ order_iso.set_congr _ _ bij_on_sin.image_eq
@[simp] lemma coe_sin_order_iso_apply (x : Icc (-(π / 2)) (π / 2)) :
(sin_order_iso x : ℝ) = sin x := rfl
lemma sin_order_iso_apply (x : Icc (-(π / 2)) (π / 2)) :
sin_order_iso x = ⟨sin x, sin_mem_Icc x⟩ := rfl
/-- Inverse of the `sin` function, returns values in the range `-π / 2 ≤ arcsin x ≤ π / 2`.
It defaults to `-π / 2` on `(-∞, -1)` and to `π / 2` to `(1, ∞)`. -/
@[pp_nodot] noncomputable def arcsin : ℝ → ℝ :=
coe ∘ Icc_extend (neg_le_self zero_le_one) sin_order_iso.symm
lemma arcsin_mem_Icc (x : ℝ) : arcsin x ∈ Icc (-(π / 2)) (π / 2) := subtype.coe_prop _
@[simp] lemma range_arcsin : range arcsin = Icc (-(π / 2)) (π / 2) :=
by { rw [arcsin, range_comp coe], simp [Icc] }
lemma arcsin_le_pi_div_two (x : ℝ) : arcsin x ≤ π / 2 := (arcsin_mem_Icc x).2
lemma neg_pi_div_two_le_arcsin (x : ℝ) : -(π / 2) ≤ arcsin x := (arcsin_mem_Icc x).1
lemma arcsin_proj_Icc (x : ℝ) :
arcsin (proj_Icc (-1) 1 (neg_le_self $ @zero_le_one ℝ _) x) = arcsin x :=
by rw [arcsin, function.comp_app, Icc_extend_coe, function.comp_app, Icc_extend]
lemma sin_arcsin' {x : ℝ} (hx : x ∈ Icc (-1 : ℝ) 1) : sin (arcsin x) = x :=
by simpa [arcsin, Icc_extend_of_mem _ _ hx, -order_iso.apply_symm_apply]
using subtype.ext_iff.1 (sin_order_iso.apply_symm_apply ⟨x, hx⟩)
lemma sin_arcsin {x : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) : sin (arcsin x) = x :=
sin_arcsin' ⟨hx₁, hx₂⟩
lemma arcsin_sin' {x : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) : arcsin (sin x) = x :=
inj_on_sin (arcsin_mem_Icc _) hx $ by rw [sin_arcsin (neg_one_le_sin _) (sin_le_one _)]
lemma arcsin_sin {x : ℝ} (hx₁ : -(π / 2) ≤ x) (hx₂ : x ≤ π / 2) : arcsin (sin x) = x :=
arcsin_sin' ⟨hx₁, hx₂⟩
lemma strict_mono_incr_on_arcsin : strict_mono_incr_on arcsin (Icc (-1) 1) :=
(subtype.strict_mono_coe _).comp_strict_mono_incr_on $
sin_order_iso.symm.strict_mono.strict_mono_incr_on_Icc_extend _
lemma monotone_arcsin : monotone arcsin :=
(subtype.mono_coe _).comp $ sin_order_iso.symm.monotone.Icc_extend _
lemma inj_on_arcsin : inj_on arcsin (Icc (-1) 1) := strict_mono_incr_on_arcsin.inj_on
lemma arcsin_inj {x y : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) (hy₁ : -1 ≤ y) (hy₂ : y ≤ 1) :
arcsin x = arcsin y ↔ x = y :=
inj_on_arcsin.eq_iff ⟨hx₁, hx₂⟩ ⟨hy₁, hy₂⟩
@[continuity]
lemma continuous_arcsin : continuous arcsin :=
continuous_subtype_coe.comp sin_order_iso.symm.continuous.Icc_extend
lemma continuous_at_arcsin {x : ℝ} : continuous_at arcsin x :=
continuous_arcsin.continuous_at
lemma arcsin_eq_of_sin_eq {x y : ℝ} (h₁ : sin x = y) (h₂ : x ∈ Icc (-(π / 2)) (π / 2)) :
arcsin y = x :=
begin
subst y,
exact inj_on_sin (arcsin_mem_Icc _) h₂ (sin_arcsin' (sin_mem_Icc x))
end
@[simp] lemma arcsin_zero : arcsin 0 = 0 :=
arcsin_eq_of_sin_eq sin_zero ⟨neg_nonpos.2 pi_div_two_pos.le, pi_div_two_pos.le⟩
@[simp] lemma arcsin_one : arcsin 1 = π / 2 :=
arcsin_eq_of_sin_eq sin_pi_div_two $ right_mem_Icc.2 (neg_le_self pi_div_two_pos.le)
lemma arcsin_of_one_le {x : ℝ} (hx : 1 ≤ x) : arcsin x = π / 2 :=
by rw [← arcsin_proj_Icc, proj_Icc_of_right_le _ hx, subtype.coe_mk, arcsin_one]
lemma arcsin_neg_one : arcsin (-1) = -(π / 2) :=
arcsin_eq_of_sin_eq (by rw [sin_neg, sin_pi_div_two]) $
left_mem_Icc.2 (neg_le_self pi_div_two_pos.le)
lemma arcsin_of_le_neg_one {x : ℝ} (hx : x ≤ -1) : arcsin x = -(π / 2) :=
by rw [← arcsin_proj_Icc, proj_Icc_of_le_left _ hx, subtype.coe_mk, arcsin_neg_one]
@[simp] lemma arcsin_neg (x : ℝ) : arcsin (-x) = -arcsin x :=
begin
cases le_total x (-1) with hx₁ hx₁,
{ rw [arcsin_of_le_neg_one hx₁, neg_neg, arcsin_of_one_le (le_neg.2 hx₁)] },
cases le_total 1 x with hx₂ hx₂,
{ rw [arcsin_of_one_le hx₂, arcsin_of_le_neg_one (neg_le_neg hx₂)] },
refine arcsin_eq_of_sin_eq _ _,
{ rw [sin_neg, sin_arcsin hx₁ hx₂] },
{ exact ⟨neg_le_neg (arcsin_le_pi_div_two _), neg_le.2 (neg_pi_div_two_le_arcsin _)⟩ }
end
lemma arcsin_le_iff_le_sin {x y : ℝ} (hx : x ∈ Icc (-1 : ℝ) 1) (hy : y ∈ Icc (-(π / 2)) (π / 2)) :
arcsin x ≤ y ↔ x ≤ sin y :=
by rw [← arcsin_sin' hy, strict_mono_incr_on_arcsin.le_iff_le hx (sin_mem_Icc _), arcsin_sin' hy]
lemma arcsin_le_iff_le_sin' {x y : ℝ} (hy : y ∈ Ico (-(π / 2)) (π / 2)) :
arcsin x ≤ y ↔ x ≤ sin y :=
begin
cases le_total x (-1) with hx₁ hx₁,
{ simp [arcsin_of_le_neg_one hx₁, hy.1, hx₁.trans (neg_one_le_sin _)] },
cases lt_or_le 1 x with hx₂ hx₂,
{ simp [arcsin_of_one_le hx₂.le, hy.2.not_le, (sin_le_one y).trans_lt hx₂] },
exact arcsin_le_iff_le_sin ⟨hx₁, hx₂⟩ (mem_Icc_of_Ico hy)
end
lemma le_arcsin_iff_sin_le {x y : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) (hy : y ∈ Icc (-1 : ℝ) 1) :
x ≤ arcsin y ↔ sin x ≤ y :=
by rw [← neg_le_neg_iff, ← arcsin_neg,
arcsin_le_iff_le_sin ⟨neg_le_neg hy.2, neg_le.2 hy.1⟩ ⟨neg_le_neg hx.2, neg_le.2 hx.1⟩,
sin_neg, neg_le_neg_iff]
lemma le_arcsin_iff_sin_le' {x y : ℝ} (hx : x ∈ Ioc (-(π / 2)) (π / 2)) :
x ≤ arcsin y ↔ sin x ≤ y :=
by rw [← neg_le_neg_iff, ← arcsin_neg, arcsin_le_iff_le_sin' ⟨neg_le_neg hx.2, neg_lt.2 hx.1⟩,
sin_neg, neg_le_neg_iff]
lemma arcsin_lt_iff_lt_sin {x y : ℝ} (hx : x ∈ Icc (-1 : ℝ) 1) (hy : y ∈ Icc (-(π / 2)) (π / 2)) :
arcsin x < y ↔ x < sin y :=
not_le.symm.trans $ (not_congr $ le_arcsin_iff_sin_le hy hx).trans not_le
lemma arcsin_lt_iff_lt_sin' {x y : ℝ} (hy : y ∈ Ioc (-(π / 2)) (π / 2)) :
arcsin x < y ↔ x < sin y :=
not_le.symm.trans $ (not_congr $ le_arcsin_iff_sin_le' hy).trans not_le
lemma lt_arcsin_iff_sin_lt {x y : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) (hy : y ∈ Icc (-1 : ℝ) 1) :
x < arcsin y ↔ sin x < y :=
not_le.symm.trans $ (not_congr $ arcsin_le_iff_le_sin hy hx).trans not_le
lemma lt_arcsin_iff_sin_lt' {x y : ℝ} (hx : x ∈ Ico (-(π / 2)) (π / 2)) :
x < arcsin y ↔ sin x < y :=
not_le.symm.trans $ (not_congr $ arcsin_le_iff_le_sin' hx).trans not_le
lemma arcsin_eq_iff_eq_sin {x y : ℝ} (hy : y ∈ Ioo (-(π / 2)) (π / 2)) :
arcsin x = y ↔ x = sin y :=
by simp only [le_antisymm_iff, arcsin_le_iff_le_sin' (mem_Ico_of_Ioo hy),
le_arcsin_iff_sin_le' (mem_Ioc_of_Ioo hy)]
@[simp] lemma arcsin_nonneg {x : ℝ} : 0 ≤ arcsin x ↔ 0 ≤ x :=
(le_arcsin_iff_sin_le' ⟨neg_lt_zero.2 pi_div_two_pos, pi_div_two_pos.le⟩).trans $ by rw [sin_zero]
@[simp] lemma arcsin_nonpos {x : ℝ} : arcsin x ≤ 0 ↔ x ≤ 0 :=
neg_nonneg.symm.trans $ arcsin_neg x ▸ arcsin_nonneg.trans neg_nonneg
@[simp] lemma arcsin_eq_zero_iff {x : ℝ} : arcsin x = 0 ↔ x = 0 :=
by simp [le_antisymm_iff]
@[simp] lemma zero_eq_arcsin_iff {x} : 0 = arcsin x ↔ x = 0 :=
eq_comm.trans arcsin_eq_zero_iff
@[simp] lemma arcsin_pos {x : ℝ} : 0 < arcsin x ↔ 0 < x :=
lt_iff_lt_of_le_iff_le arcsin_nonpos
@[simp] lemma arcsin_lt_zero {x : ℝ} : arcsin x < 0 ↔ x < 0 :=
lt_iff_lt_of_le_iff_le arcsin_nonneg
@[simp] lemma arcsin_lt_pi_div_two {x : ℝ} : arcsin x < π / 2 ↔ x < 1 :=
(arcsin_lt_iff_lt_sin' (right_mem_Ioc.2 $ neg_lt_self pi_div_two_pos)).trans $
by rw sin_pi_div_two
@[simp] lemma neg_pi_div_two_lt_arcsin {x : ℝ} : -(π / 2) < arcsin x ↔ -1 < x :=
(lt_arcsin_iff_sin_lt' $ left_mem_Ico.2 $ neg_lt_self pi_div_two_pos).trans $
by rw [sin_neg, sin_pi_div_two]
@[simp] lemma arcsin_eq_pi_div_two {x : ℝ} : arcsin x = π / 2 ↔ 1 ≤ x :=
⟨λ h, not_lt.1 $ λ h', (arcsin_lt_pi_div_two.2 h').ne h, arcsin_of_one_le⟩
@[simp] lemma pi_div_two_eq_arcsin {x} : π / 2 = arcsin x ↔ 1 ≤ x :=
eq_comm.trans arcsin_eq_pi_div_two
@[simp] lemma pi_div_two_le_arcsin {x} : π / 2 ≤ arcsin x ↔ 1 ≤ x :=
(arcsin_le_pi_div_two x).le_iff_eq.trans pi_div_two_eq_arcsin
@[simp] lemma arcsin_eq_neg_pi_div_two {x : ℝ} : arcsin x = -(π / 2) ↔ x ≤ -1 :=
⟨λ h, not_lt.1 $ λ h', (neg_pi_div_two_lt_arcsin.2 h').ne' h, arcsin_of_le_neg_one⟩
@[simp] lemma neg_pi_div_two_eq_arcsin {x} : -(π / 2) = arcsin x ↔ x ≤ -1 :=
eq_comm.trans arcsin_eq_neg_pi_div_two
@[simp] lemma arcsin_le_neg_pi_div_two {x} : arcsin x ≤ -(π / 2) ↔ x ≤ -1 :=
(neg_pi_div_two_le_arcsin x).le_iff_eq.trans arcsin_eq_neg_pi_div_two
lemma maps_to_sin_Ioo : maps_to sin (Ioo (-(π / 2)) (π / 2)) (Ioo (-1) 1) :=
λ x h, by rwa [mem_Ioo, ← arcsin_lt_pi_div_two, ← neg_pi_div_two_lt_arcsin,
arcsin_sin h.1.le h.2.le]
/-- `real.sin` as a `local_homeomorph` between `(-π / 2, π / 2)` and `(-1, 1)`. -/
@[simp] def sin_local_homeomorph : local_homeomorph ℝ ℝ :=
{ to_fun := sin,
inv_fun := arcsin,
source := Ioo (-(π / 2)) (π / 2),
target := Ioo (-1) 1,
map_source' := maps_to_sin_Ioo,
map_target' := λ y hy, ⟨neg_pi_div_two_lt_arcsin.2 hy.1, arcsin_lt_pi_div_two.2 hy.2⟩,
left_inv' := λ x hx, arcsin_sin hx.1.le hx.2.le,
right_inv' := λ y hy, sin_arcsin hy.1.le hy.2.le,
open_source := is_open_Ioo,
open_target := is_open_Ioo,
continuous_to_fun := continuous_sin.continuous_on,
continuous_inv_fun := continuous_arcsin.continuous_on }
lemma cos_arcsin_nonneg (x : ℝ) : 0 ≤ cos (arcsin x) :=
cos_nonneg_of_mem_Icc ⟨neg_pi_div_two_le_arcsin _, arcsin_le_pi_div_two _⟩
lemma cos_arcsin {x : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) : cos (arcsin x) = sqrt (1 - x ^ 2) :=
have sin (arcsin x) ^ 2 + cos (arcsin x) ^ 2 = 1 := sin_sq_add_cos_sq (arcsin x),
begin
rw [← eq_sub_iff_add_eq', ← sqrt_inj (pow_two_nonneg _) (sub_nonneg.2 (sin_sq_le_one (arcsin x))),
pow_two, sqrt_mul_self (cos_arcsin_nonneg _)] at this,
rw [this, sin_arcsin hx₁ hx₂],
end
lemma deriv_arcsin_aux {x : ℝ} (h₁ : x ≠ -1) (h₂ : x ≠ 1) :
has_strict_deriv_at arcsin (1 / sqrt (1 - x ^ 2)) x ∧ times_cont_diff_at ℝ ⊤ arcsin x :=
begin
cases h₁.lt_or_lt with h₁ h₁,
{ have : 1 - x ^ 2 < 0, by nlinarith [h₁],
rw [sqrt_eq_zero'.2 this.le, div_zero],
have : arcsin =ᶠ[𝓝 x] λ _, -(π / 2) :=
(gt_mem_nhds h₁).mono (λ y hy, arcsin_of_le_neg_one hy.le),
exact ⟨(has_strict_deriv_at_const _ _).congr_of_eventually_eq this.symm,
times_cont_diff_at_const.congr_of_eventually_eq this⟩ },
cases h₂.lt_or_lt with h₂ h₂,
{ have : 0 < sqrt (1 - x ^ 2) := sqrt_pos.2 (by nlinarith [h₁, h₂]),
simp only [← cos_arcsin h₁.le h₂.le, one_div] at this ⊢,
exact ⟨sin_local_homeomorph.has_strict_deriv_at_symm ⟨h₁, h₂⟩ this.ne'
(has_strict_deriv_at_sin _),
sin_local_homeomorph.times_cont_diff_at_symm_deriv this.ne' ⟨h₁, h₂⟩
(has_deriv_at_sin _) times_cont_diff_sin.times_cont_diff_at⟩ },
{ have : 1 - x ^ 2 < 0, by nlinarith [h₂],
rw [sqrt_eq_zero'.2 this.le, div_zero],
have : arcsin =ᶠ[𝓝 x] λ _, π / 2 := (lt_mem_nhds h₂).mono (λ y hy, arcsin_of_one_le hy.le),
exact ⟨(has_strict_deriv_at_const _ _).congr_of_eventually_eq this.symm,
times_cont_diff_at_const.congr_of_eventually_eq this⟩ }
end
lemma has_strict_deriv_at_arcsin {x : ℝ} (h₁ : x ≠ -1) (h₂ : x ≠ 1) :
has_strict_deriv_at arcsin (1 / sqrt (1 - x ^ 2)) x :=
(deriv_arcsin_aux h₁ h₂).1
lemma has_deriv_at_arcsin {x : ℝ} (h₁ : x ≠ -1) (h₂ : x ≠ 1) :
has_deriv_at arcsin (1 / sqrt (1 - x ^ 2)) x :=
(has_strict_deriv_at_arcsin h₁ h₂).has_deriv_at
lemma times_cont_diff_at_arcsin {x : ℝ} (h₁ : x ≠ -1) (h₂ : x ≠ 1) {n : with_top ℕ} :
times_cont_diff_at ℝ n arcsin x :=
(deriv_arcsin_aux h₁ h₂).2.of_le le_top
lemma has_deriv_within_at_arcsin_Ici {x : ℝ} (h : x ≠ -1) :
has_deriv_within_at arcsin (1 / sqrt (1 - x ^ 2)) (Ici x) x :=
begin
rcases em (x = 1) with (rfl|h'),
{ convert (has_deriv_within_at_const _ _ (π / 2)).congr _ _;
simp [arcsin_of_one_le] { contextual := tt } },
{ exact (has_deriv_at_arcsin h h').has_deriv_within_at }
end
lemma has_deriv_within_at_arcsin_Iic {x : ℝ} (h : x ≠ 1) :
has_deriv_within_at arcsin (1 / sqrt (1 - x ^ 2)) (Iic x) x :=
begin
rcases em (x = -1) with (rfl|h'),
{ convert (has_deriv_within_at_const _ _ (-(π / 2))).congr _ _;
simp [arcsin_of_le_neg_one] { contextual := tt } },
{ exact (has_deriv_at_arcsin h' h).has_deriv_within_at }
end
lemma differentiable_within_at_arcsin_Ici {x : ℝ} :
differentiable_within_at ℝ arcsin (Ici x) x ↔ x ≠ -1 :=
begin
refine ⟨_, λ h, (has_deriv_within_at_arcsin_Ici h).differentiable_within_at⟩,
rintro h rfl,
have : sin ∘ arcsin =ᶠ[𝓝[Ici (-1:ℝ)] (-1)] id,
{ filter_upwards [Icc_mem_nhds_within_Ici ⟨le_rfl, neg_lt_self (@zero_lt_one ℝ _ _)⟩],
exact λ x, sin_arcsin' },
have := h.has_deriv_within_at.sin.congr_of_eventually_eq this.symm (by simp),
simpa using (unique_diff_on_Ici _ _ left_mem_Ici).eq_deriv _ this (has_deriv_within_at_id _ _)
end
lemma differentiable_within_at_arcsin_Iic {x : ℝ} :
differentiable_within_at ℝ arcsin (Iic x) x ↔ x ≠ 1 :=
begin
refine ⟨λ h, _, λ h, (has_deriv_within_at_arcsin_Iic h).differentiable_within_at⟩,
rw [← neg_neg x, ← image_neg_Ici] at h,
have := (h.comp (-x) differentiable_within_at_id.neg (maps_to_image _ _)).neg,
simpa [(∘), differentiable_within_at_arcsin_Ici] using this
end
lemma differentiable_at_arcsin {x : ℝ} :
differentiable_at ℝ arcsin x ↔ x ≠ -1 ∧ x ≠ 1 :=
⟨λ h, ⟨differentiable_within_at_arcsin_Ici.1 h.differentiable_within_at,
differentiable_within_at_arcsin_Iic.1 h.differentiable_within_at⟩,
λ h, (has_deriv_at_arcsin h.1 h.2).differentiable_at⟩
@[simp] lemma deriv_arcsin : deriv arcsin = λ x, 1 / sqrt (1 - x ^ 2) :=
begin
funext x,
by_cases h : x ≠ -1 ∧ x ≠ 1,
{ exact (has_deriv_at_arcsin h.1 h.2).deriv },
{ rw [deriv_zero_of_not_differentiable_at (mt differentiable_at_arcsin.1 h)],
simp only [not_and_distrib, ne.def, not_not] at h,
rcases h with (rfl|rfl); simp }
end
lemma differentiable_on_arcsin : differentiable_on ℝ arcsin {-1, 1}ᶜ :=
λ x hx, (differentiable_at_arcsin.2
⟨λ h, hx (or.inl h), λ h, hx (or.inr h)⟩).differentiable_within_at
lemma times_cont_diff_on_arcsin {n : with_top ℕ} :
times_cont_diff_on ℝ n arcsin {-1, 1}ᶜ :=
λ x hx, (times_cont_diff_at_arcsin (mt or.inl hx) (mt or.inr hx)).times_cont_diff_within_at
lemma times_cont_diff_at_arcsin_iff {x : ℝ} {n : with_top ℕ} :
times_cont_diff_at ℝ n arcsin x ↔ n = 0 ∨ (x ≠ -1 ∧ x ≠ 1) :=
⟨λ h, or_iff_not_imp_left.2 $ λ hn, differentiable_at_arcsin.1 $ h.differentiable_at $
with_top.one_le_iff_pos.2 (pos_iff_ne_zero.2 hn),
λ h, h.elim (λ hn, hn.symm ▸ (times_cont_diff_zero.2 continuous_arcsin).times_cont_diff_at) $
λ hx, times_cont_diff_at_arcsin hx.1 hx.2⟩
lemma measurable_arcsin : measurable arcsin := continuous_arcsin.measurable
/-- Inverse of the `cos` function, returns values in the range `0 ≤ arccos x` and `arccos x ≤ π`.
If the argument is not between `-1` and `1` it defaults to `π / 2` -/
@[pp_nodot] noncomputable def arccos (x : ℝ) : ℝ :=
π / 2 - arcsin x
lemma arccos_eq_pi_div_two_sub_arcsin (x : ℝ) : arccos x = π / 2 - arcsin x := rfl
lemma arcsin_eq_pi_div_two_sub_arccos (x : ℝ) : arcsin x = π / 2 - arccos x :=
by simp [arccos]
lemma arccos_le_pi (x : ℝ) : arccos x ≤ π :=
by unfold arccos; linarith [neg_pi_div_two_le_arcsin x]
lemma arccos_nonneg (x : ℝ) : 0 ≤ arccos x :=
by unfold arccos; linarith [arcsin_le_pi_div_two x]
lemma cos_arccos {x : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) : cos (arccos x) = x :=
by rw [arccos, cos_pi_div_two_sub, sin_arcsin hx₁ hx₂]
lemma arccos_cos {x : ℝ} (hx₁ : 0 ≤ x) (hx₂ : x ≤ π) : arccos (cos x) = x :=
by rw [arccos, ← sin_pi_div_two_sub, arcsin_sin]; simp [sub_eq_add_neg]; linarith
lemma strict_mono_decr_on_arccos : strict_mono_decr_on arccos (Icc (-1) 1) :=
λ x hx y hy h, sub_lt_sub_left (strict_mono_incr_on_arcsin hx hy h) _
lemma arccos_inj_on : inj_on arccos (Icc (-1) 1) := strict_mono_decr_on_arccos.inj_on
lemma arccos_inj {x y : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) (hy₁ : -1 ≤ y) (hy₂ : y ≤ 1) :
arccos x = arccos y ↔ x = y :=
arccos_inj_on.eq_iff ⟨hx₁, hx₂⟩ ⟨hy₁, hy₂⟩
@[simp] lemma arccos_zero : arccos 0 = π / 2 := by simp [arccos]
@[simp] lemma arccos_one : arccos 1 = 0 := by simp [arccos]
@[simp] lemma arccos_neg_one : arccos (-1) = π := by simp [arccos, add_halves]
@[simp] lemma arccos_eq_zero {x} : arccos x = 0 ↔ 1 ≤ x :=
by simp [arccos, sub_eq_zero]
@[simp] lemma arccos_eq_pi_div_two {x} : arccos x = π / 2 ↔ x = 0 :=
by simp [arccos, sub_eq_iff_eq_add]
@[simp] lemma arccos_eq_pi {x} : arccos x = π ↔ x ≤ -1 :=
by rw [arccos, sub_eq_iff_eq_add, ← sub_eq_iff_eq_add', div_two_sub_self, neg_pi_div_two_eq_arcsin]
lemma arccos_neg (x : ℝ) : arccos (-x) = π - arccos x :=
by rw [← add_halves π, arccos, arcsin_neg, arccos, add_sub_assoc, sub_sub_self, sub_neg_eq_add]
lemma sin_arccos {x : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) : sin (arccos x) = sqrt (1 - x ^ 2) :=
by rw [arccos_eq_pi_div_two_sub_arcsin, sin_pi_div_two_sub, cos_arcsin hx₁ hx₂]
@[continuity]
lemma continuous_arccos : continuous arccos := continuous_const.sub continuous_arcsin
lemma has_strict_deriv_at_arccos {x : ℝ} (h₁ : x ≠ -1) (h₂ : x ≠ 1) :
has_strict_deriv_at arccos (-(1 / sqrt (1 - x ^ 2))) x :=
(has_strict_deriv_at_arcsin h₁ h₂).const_sub (π / 2)
lemma has_deriv_at_arccos {x : ℝ} (h₁ : x ≠ -1) (h₂ : x ≠ 1) :
has_deriv_at arccos (-(1 / sqrt (1 - x ^ 2))) x :=
(has_deriv_at_arcsin h₁ h₂).const_sub (π / 2)
lemma times_cont_diff_at_arccos {x : ℝ} (h₁ : x ≠ -1) (h₂ : x ≠ 1) {n : with_top ℕ} :
times_cont_diff_at ℝ n arccos x :=
times_cont_diff_at_const.sub (times_cont_diff_at_arcsin h₁ h₂)
lemma has_deriv_within_at_arccos_Ici {x : ℝ} (h : x ≠ -1) :
has_deriv_within_at arccos (-(1 / sqrt (1 - x ^ 2))) (Ici x) x :=
(has_deriv_within_at_arcsin_Ici h).const_sub _
lemma has_deriv_within_at_arccos_Iic {x : ℝ} (h : x ≠ 1) :
has_deriv_within_at arccos (-(1 / sqrt (1 - x ^ 2))) (Iic x) x :=
(has_deriv_within_at_arcsin_Iic h).const_sub _
lemma differentiable_within_at_arccos_Ici {x : ℝ} :
differentiable_within_at ℝ arccos (Ici x) x ↔ x ≠ -1 :=
(differentiable_within_at_const_sub_iff _).trans differentiable_within_at_arcsin_Ici
lemma differentiable_within_at_arccos_Iic {x : ℝ} :
differentiable_within_at ℝ arccos (Iic x) x ↔ x ≠ 1 :=
(differentiable_within_at_const_sub_iff _).trans differentiable_within_at_arcsin_Iic
lemma differentiable_at_arccos {x : ℝ} :
differentiable_at ℝ arccos x ↔ x ≠ -1 ∧ x ≠ 1 :=
(differentiable_at_const_sub_iff _).trans differentiable_at_arcsin
@[simp] lemma deriv_arccos : deriv arccos = λ x, -(1 / sqrt (1 - x ^ 2)) :=
funext $ λ x, (deriv_const_sub _).trans $ by simp only [deriv_arcsin]
lemma differentiable_on_arccos : differentiable_on ℝ arccos {-1, 1}ᶜ :=
differentiable_on_arcsin.const_sub _
lemma times_cont_diff_on_arccos {n : with_top ℕ} :
times_cont_diff_on ℝ n arccos {-1, 1}ᶜ :=
times_cont_diff_on_const.sub times_cont_diff_on_arcsin
lemma times_cont_diff_at_arccos_iff {x : ℝ} {n : with_top ℕ} :
times_cont_diff_at ℝ n arccos x ↔ n = 0 ∨ (x ≠ -1 ∧ x ≠ 1) :=
by refine iff.trans ⟨λ h, _, λ h, _⟩ times_cont_diff_at_arcsin_iff;
simpa [arccos] using (@times_cont_diff_at_const _ _ _ _ _ _ _ _ _ _ (π / 2)).sub h
lemma measurable_arccos : measurable arccos := continuous_arccos.measurable
@[simp] lemma tan_pi_div_four : tan (π / 4) = 1 :=
begin
rw [tan_eq_sin_div_cos, cos_pi_div_four, sin_pi_div_four],
have h : (sqrt 2) / 2 > 0 := by cancel_denoms,
exact div_self (ne_of_gt h),
end
@[simp] lemma tan_pi_div_two : tan (π / 2) = 0 := by simp [tan_eq_sin_div_cos]
lemma tan_pos_of_pos_of_lt_pi_div_two {x : ℝ} (h0x : 0 < x) (hxp : x < π / 2) : 0 < tan x :=
by rw tan_eq_sin_div_cos; exact div_pos (sin_pos_of_pos_of_lt_pi h0x (by linarith))
(cos_pos_of_mem_Ioo ⟨by linarith, hxp⟩)
lemma tan_nonneg_of_nonneg_of_le_pi_div_two {x : ℝ} (h0x : 0 ≤ x) (hxp : x ≤ π / 2) : 0 ≤ tan x :=
match lt_or_eq_of_le h0x, lt_or_eq_of_le hxp with
| or.inl hx0, or.inl hxp := le_of_lt (tan_pos_of_pos_of_lt_pi_div_two hx0 hxp)
| or.inl hx0, or.inr hxp := by simp [hxp, tan_eq_sin_div_cos]
| or.inr hx0, _ := by simp [hx0.symm]
end
lemma tan_neg_of_neg_of_pi_div_two_lt {x : ℝ} (hx0 : x < 0) (hpx : -(π / 2) < x) : tan x < 0 :=
neg_pos.1 (tan_neg x ▸ tan_pos_of_pos_of_lt_pi_div_two (by linarith) (by linarith [pi_pos]))
lemma tan_nonpos_of_nonpos_of_neg_pi_div_two_le {x : ℝ} (hx0 : x ≤ 0) (hpx : -(π / 2) ≤ x) :
tan x ≤ 0 :=
neg_nonneg.1 (tan_neg x ▸ tan_nonneg_of_nonneg_of_le_pi_div_two (by linarith) (by linarith))
lemma tan_lt_tan_of_nonneg_of_lt_pi_div_two {x y : ℝ}
(hx₁ : 0 ≤ x) (hy₂ : y < π / 2) (hxy : x < y) :
tan x < tan y :=
begin
rw [tan_eq_sin_div_cos, tan_eq_sin_div_cos],
exact div_lt_div
(sin_lt_sin_of_lt_of_le_pi_div_two (by linarith) (le_of_lt hy₂) hxy)
(cos_le_cos_of_nonneg_of_le_pi hx₁ (by linarith) (le_of_lt hxy))
(sin_nonneg_of_nonneg_of_le_pi (by linarith) (by linarith))
(cos_pos_of_mem_Ioo ⟨by linarith, hy₂⟩)
end
lemma tan_lt_tan_of_lt_of_lt_pi_div_two {x y : ℝ} (hx₁ : -(π / 2) < x)
(hy₂ : y < π / 2) (hxy : x < y) : tan x < tan y :=
match le_total x 0, le_total y 0 with
| or.inl hx0, or.inl hy0 := neg_lt_neg_iff.1 $ by rw [← tan_neg, ← tan_neg]; exact
tan_lt_tan_of_nonneg_of_lt_pi_div_two (neg_nonneg.2 hy0)
(neg_lt.2 hx₁) (neg_lt_neg hxy)
| or.inl hx0, or.inr hy0 := (lt_or_eq_of_le hy0).elim
(λ hy0, calc tan x ≤ 0 : tan_nonpos_of_nonpos_of_neg_pi_div_two_le hx0 (le_of_lt hx₁)
... < tan y : tan_pos_of_pos_of_lt_pi_div_two hy0 hy₂)
(λ hy0, by rw [← hy0, tan_zero]; exact
tan_neg_of_neg_of_pi_div_two_lt (hy0.symm ▸ hxy) hx₁)
| or.inr hx0, or.inl hy0 := by linarith
| or.inr hx0, or.inr hy0 := tan_lt_tan_of_nonneg_of_lt_pi_div_two hx0 hy₂ hxy
end
lemma strict_mono_incr_on_tan : strict_mono_incr_on tan (Ioo (-(π / 2)) (π / 2)) :=
λ x hx y hy, tan_lt_tan_of_lt_of_lt_pi_div_two hx.1 hy.2
lemma inj_on_tan : inj_on tan (Ioo (-(π / 2)) (π / 2)) :=
strict_mono_incr_on_tan.inj_on
lemma tan_inj_of_lt_of_lt_pi_div_two {x y : ℝ} (hx₁ : -(π / 2) < x) (hx₂ : x < π / 2)
(hy₁ : -(π / 2) < y) (hy₂ : y < π / 2) (hxy : tan x = tan y) : x = y :=
inj_on_tan ⟨hx₁, hx₂⟩ ⟨hy₁, hy₂⟩ hxy
end real
namespace complex
open_locale real
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re
then real.arcsin (x.im / x.abs)
else if 0 ≤ x.im
then real.arcsin ((-x).im / x.abs) + π
else real.arcsin ((-x).im / x.abs) - π
lemma measurable_arg : measurable arg :=
have A : measurable (λ x : ℂ, real.arcsin (x.im / x.abs)),
from real.measurable_arcsin.comp (measurable_im.div measurable_norm),
have B : measurable (λ x : ℂ, real.arcsin ((-x).im / x.abs)),
from real.measurable_arcsin.comp ((measurable_im.comp measurable_neg).div measurable_norm),
measurable.ite (is_closed_le continuous_const continuous_re).measurable_set A $
measurable.ite (is_closed_le continuous_const continuous_im).measurable_set
(B.add_const _) (B.sub_const _)
lemma arg_le_pi (x : ℂ) : arg x ≤ π :=
if hx₁ : 0 ≤ x.re
then by rw [arg, if_pos hx₁];
exact le_trans (real.arcsin_le_pi_div_two _) (le_of_lt (half_lt_self real.pi_pos))
else
if hx₂ : 0 ≤ x.im
then by rw [arg, if_neg hx₁, if_pos hx₂, ← le_sub_iff_add_le, sub_self, real.arcsin_nonpos,
neg_im, neg_div, neg_nonpos];
exact div_nonneg hx₂ (abs_nonneg _)
else by rw [arg, if_neg hx₁, if_neg hx₂];
exact sub_le_iff_le_add.2 (le_trans (real.arcsin_le_pi_div_two _)
(by linarith [real.pi_pos]))
lemma neg_pi_lt_arg (x : ℂ) : -π < arg x :=
if hx₁ : 0 ≤ x.re
then by rw [arg, if_pos hx₁];
exact lt_of_lt_of_le (neg_lt_neg (half_lt_self real.pi_pos)) (real.neg_pi_div_two_le_arcsin _)
else
have hx : x ≠ 0, from λ h, by simpa [h, lt_irrefl] using hx₁,
if hx₂ : 0 ≤ x.im
then by rw [arg, if_neg hx₁, if_pos hx₂, ← sub_lt_iff_lt_add];
exact (lt_of_lt_of_le (by linarith [real.pi_pos]) (real.neg_pi_div_two_le_arcsin _))
else by rw [arg, if_neg hx₁, if_neg hx₂, lt_sub_iff_add_lt, neg_add_self, real.arcsin_pos,
neg_im];
exact div_pos (neg_pos.2 (lt_of_not_ge hx₂)) (abs_pos.2 hx)
lemma arg_eq_arg_neg_add_pi_of_im_nonneg_of_re_neg {x : ℂ} (hxr : x.re < 0) (hxi : 0 ≤ x.im) :
arg x = arg (-x) + π :=
have 0 ≤ (-x).re, from le_of_lt $ by simpa [neg_pos],
by rw [arg, arg, if_neg (not_le.2 hxr), if_pos this, if_pos hxi, abs_neg]
lemma arg_eq_arg_neg_sub_pi_of_im_neg_of_re_neg {x : ℂ} (hxr : x.re < 0) (hxi : x.im < 0) :
arg x = arg (-x) - π :=
have 0 ≤ (-x).re, from le_of_lt $ by simpa [neg_pos],
by rw [arg, arg, if_neg (not_le.2 hxr), if_neg (not_le.2 hxi), if_pos this, abs_neg]
@[simp] lemma arg_zero : arg 0 = 0 :=
by simp [arg, le_refl]
@[simp] lemma arg_one : arg 1 = 0 :=
by simp [arg, zero_le_one]
@[simp] lemma arg_neg_one : arg (-1) = π :=
by simp [arg, le_refl, not_le.2 (@zero_lt_one ℝ _ _)]
@[simp] lemma arg_I : arg I = π / 2 :=
by simp [arg, le_refl]
@[simp] lemma arg_neg_I : arg (-I) = -(π / 2) :=
by simp [arg, le_refl]
lemma sin_arg (x : ℂ) : real.sin (arg x) = x.im / x.abs :=
by unfold arg; split_ifs;
simp [sub_eq_add_neg, arg, real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1
(abs_le.1 (abs_im_div_abs_le_one x)).2, real.sin_add, neg_div, real.arcsin_neg,
real.sin_neg]
private lemma cos_arg_of_re_nonneg {x : ℂ} (hx : x ≠ 0) (hxr : 0 ≤ x.re) :
real.cos (arg x) = x.re / x.abs :=
have 0 ≤ 1 - (x.im / abs x) ^ 2,
from sub_nonneg.2 $ by rw [pow_two, ← _root_.abs_mul_self, _root_.abs_mul, ← pow_two];
exact pow_le_one _ (_root_.abs_nonneg _) (abs_im_div_abs_le_one _),
by rw [eq_div_iff_mul_eq (mt abs_eq_zero.1 hx), ← real.mul_self_sqrt (abs_nonneg x),
arg, if_pos hxr, real.cos_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1
(abs_le.1 (abs_im_div_abs_le_one x)).2, ← real.sqrt_mul (abs_nonneg _), ← real.sqrt_mul this,
sub_mul, div_pow, ← pow_two, div_mul_cancel _ (pow_ne_zero 2 (mt abs_eq_zero.1 hx)),
one_mul, pow_two, mul_self_abs, norm_sq_apply, pow_two, add_sub_cancel, real.sqrt_mul_self hxr]
lemma cos_arg {x : ℂ} (hx : x ≠ 0) : real.cos (arg x) = x.re / x.abs :=
if hxr : 0 ≤ x.re then cos_arg_of_re_nonneg hx hxr
else
have 0 ≤ (-x).re, from le_of_lt $ by simpa [neg_pos] using hxr,
if hxi : 0 ≤ x.im
then have 0 ≤ (-x).re, from le_of_lt $ by simpa [neg_pos] using hxr,
by rw [arg_eq_arg_neg_add_pi_of_im_nonneg_of_re_neg (not_le.1 hxr) hxi, real.cos_add_pi,
cos_arg_of_re_nonneg (neg_ne_zero.2 hx) this];
simp [neg_div]
else by rw [arg_eq_arg_neg_sub_pi_of_im_neg_of_re_neg (not_le.1 hxr) (not_le.1 hxi)];
simp [sub_eq_add_neg, real.cos_add, neg_div, cos_arg_of_re_nonneg (neg_ne_zero.2 hx) this]
lemma tan_arg {x : ℂ} : real.tan (arg x) = x.im / x.re :=
begin
by_cases h : x = 0,
{ simp only [h, zero_div, complex.zero_im, complex.arg_zero, real.tan_zero, complex.zero_re] },
rw [real.tan_eq_sin_div_cos, sin_arg, cos_arg h,
div_div_div_cancel_right _ (mt abs_eq_zero.1 h)]
end
lemma arg_cos_add_sin_mul_I {x : ℝ} (hx₁ : -π < x) (hx₂ : x ≤ π) :
arg (cos x + sin x * I) = x :=
if hx₃ : -(π / 2) ≤ x ∧ x ≤ π / 2
then
have hx₄ : 0 ≤ (cos x + sin x * I).re,
by simp; exact real.cos_nonneg_of_mem_Icc hx₃,
by rw [arg, if_pos hx₄];
simp [abs_cos_add_sin_mul_I, sin_of_real_re, real.arcsin_sin hx₃.1 hx₃.2]
else if hx₄ : x < -(π / 2)
then
have hx₅ : ¬0 ≤ (cos x + sin x * I).re :=
suffices ¬ 0 ≤ real.cos x, by simpa,
not_le.2 $ by rw ← real.cos_neg;
apply real.cos_neg_of_pi_div_two_lt_of_lt; linarith,
have hx₆ : ¬0 ≤ (cos ↑x + sin ↑x * I).im :=
suffices real.sin x < 0, by simpa,
by apply real.sin_neg_of_neg_of_neg_pi_lt; linarith,
suffices -π + -real.arcsin (real.sin x) = x,
by rw [arg, if_neg hx₅, if_neg hx₆];
simpa [sub_eq_add_neg, add_comm, abs_cos_add_sin_mul_I, sin_of_real_re],
by rw [← real.arcsin_neg, ← real.sin_add_pi, real.arcsin_sin]; try {simp [add_left_comm]};
linarith
else
have hx₅ : π / 2 < x, by cases not_and_distrib.1 hx₃; linarith,
have hx₆ : ¬0 ≤ (cos x + sin x * I).re :=
suffices ¬0 ≤ real.cos x, by simpa,
not_le.2 $ by apply real.cos_neg_of_pi_div_two_lt_of_lt; linarith,
have hx₇ : 0 ≤ (cos x + sin x * I).im :=
suffices 0 ≤ real.sin x, by simpa,
by apply real.sin_nonneg_of_nonneg_of_le_pi; linarith,
suffices π - real.arcsin (real.sin x) = x,
by rw [arg, if_neg hx₆, if_pos hx₇];
simpa [sub_eq_add_neg, add_comm, abs_cos_add_sin_mul_I, sin_of_real_re],
by rw [← real.sin_pi_sub, real.arcsin_sin]; simp [sub_eq_add_neg]; linarith
lemma arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y :=
have hax : abs x ≠ 0, from (mt abs_eq_zero.1 hx),
have hay : abs y ≠ 0, from (mt abs_eq_zero.1 hy),
⟨λ h,
begin
have hcos := congr_arg real.cos h,
rw [cos_arg hx, cos_arg hy, div_eq_div_iff hax hay] at hcos,
have hsin := congr_arg real.sin h,
rw [sin_arg, sin_arg, div_eq_div_iff hax hay] at hsin,
apply complex.ext,
{ rw [mul_re, ← of_real_div, of_real_re, of_real_im, zero_mul, sub_zero, mul_comm,
← mul_div_assoc, hcos, mul_div_cancel _ hax] },
{ rw [mul_im, ← of_real_div, of_real_re, of_real_im, zero_mul, add_zero,
mul_comm, ← mul_div_assoc, hsin, mul_div_cancel _ hax] }
end,
λ h,
have hre : abs (y / x) * x.re = y.re,
by rw ← of_real_div at h;
simpa [-of_real_div, -is_R_or_C.of_real_div] using congr_arg re h,
have hre' : abs (x / y) * y.re = x.re,
by rw [← hre, abs_div, abs_div, ← mul_assoc, div_mul_div,
mul_comm (abs _), div_self (mul_ne_zero hay hax), one_mul],
have him : abs (y / x) * x.im = y.im,
by rw ← of_real_div at h;
simpa [-of_real_div, -is_R_or_C.of_real_div] using congr_arg im h,
have him' : abs (x / y) * y.im = x.im,
by rw [← him, abs_div, abs_div, ← mul_assoc, div_mul_div,
mul_comm (abs _), div_self (mul_ne_zero hay hax), one_mul],
have hxya : x.im / abs x = y.im / abs y,
by rw [← him, abs_div, mul_comm, ← mul_div_comm, mul_div_cancel_left _ hay],
have hnxya : (-x).im / abs x = (-y).im / abs y,
by rw [neg_im, neg_im, neg_div, neg_div, hxya],
if hxr : 0 ≤ x.re
then
have hyr : 0 ≤ y.re, from hre ▸ mul_nonneg (abs_nonneg _) hxr,
by simp [arg, *] at *
else
have hyr : ¬ 0 ≤ y.re, from λ hyr, hxr $ hre' ▸ mul_nonneg (abs_nonneg _) hyr,
if hxi : 0 ≤ x.im
then
have hyi : 0 ≤ y.im, from him ▸ mul_nonneg (abs_nonneg _) hxi,
by simp [arg, *] at *
else
have hyi : ¬ 0 ≤ y.im, from λ hyi, hxi $ him' ▸ mul_nonneg (abs_nonneg _) hyi,
by simp [arg, *] at *⟩
lemma arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x :=
if hx : x = 0 then by simp [hx]
else (arg_eq_arg_iff (mul_ne_zero (of_real_ne_zero.2 (ne_of_lt hr).symm) hx) hx).2 $
by rw [abs_mul, abs_of_nonneg (le_of_lt hr), ← mul_assoc,
of_real_mul, mul_comm (r : ℂ), ← div_div_eq_div_mul,
div_mul_cancel _ (of_real_ne_zero.2 (ne_of_lt hr).symm),
div_self (of_real_ne_zero.2 (mt abs_eq_zero.1 hx)), one_mul]
lemma ext_abs_arg {x y : ℂ} (h₁ : x.abs = y.abs) (h₂ : x.arg = y.arg) : x = y :=
if hy : y = 0 then by simp * at *
else have hx : x ≠ 0, from λ hx, by simp [*, eq_comm] at *,
by rwa [arg_eq_arg_iff hx hy, h₁, div_self (of_real_ne_zero.2 (mt abs_eq_zero.1 hy)), one_mul]
at h₂
lemma arg_of_real_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 :=
by simp [arg, hx]
lemma arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 :=
begin
by_cases h₀ : z = 0, { simp [h₀, lt_irrefl, real.pi_ne_zero.symm] },
have h₀' : (abs z : ℂ) ≠ 0, by simpa,
rw [← arg_neg_one, arg_eq_arg_iff h₀ (neg_ne_zero.2 one_ne_zero), abs_neg, abs_one,
of_real_one, one_div, ← div_eq_inv_mul, div_eq_iff_mul_eq h₀', neg_one_mul,
ext_iff, neg_im, of_real_im, neg_zero, @eq_comm _ z.im, and.congr_left_iff],
rcases z with ⟨x, y⟩, simp only,
rintro rfl,
simp only [← of_real_def, of_real_eq_zero] at *,
simp [← ne.le_iff_lt h₀, @neg_eq_iff_neg_eq _ _ _ x, @eq_comm _ (-x)]
end
lemma arg_of_real_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
/-- Inverse of the `exp` function. Returns values such that `(log x).im > - π` and `(log x).im ≤ π`.
`log 0 = 0`-/
@[pp_nodot] noncomputable def log (x : ℂ) : ℂ := x.abs.log + arg x * I
lemma measurable_log : measurable log :=
(measurable_of_real.comp $ real.measurable_log.comp measurable_norm).add $
(measurable_of_real.comp measurable_arg).mul_const I
lemma log_re (x : ℂ) : x.log.re = x.abs.log := by simp [log]
lemma log_im (x : ℂ) : x.log.im = x.arg := by simp [log]
lemma exp_log {x : ℂ} (hx : x ≠ 0) : exp (log x) = x :=
by rw [log, exp_add_mul_I, ← of_real_sin, sin_arg, ← of_real_cos, cos_arg hx,
← of_real_exp, real.exp_log (abs_pos.2 hx), mul_add, of_real_div, of_real_div,
mul_div_cancel' _ (of_real_ne_zero.2 (mt abs_eq_zero.1 hx)), ← mul_assoc,
mul_div_cancel' _ (of_real_ne_zero.2 (mt abs_eq_zero.1 hx)), re_add_im]
lemma range_exp : range exp = {x | x ≠ 0} :=
set.ext $ λ x, ⟨by { rintro ⟨x, rfl⟩, exact exp_ne_zero x }, λ hx, ⟨log x, exp_log hx⟩⟩
lemma exp_inj_of_neg_pi_lt_of_le_pi {x y : ℂ} (hx₁ : -π < x.im) (hx₂ : x.im ≤ π)
(hy₁ : - π < y.im) (hy₂ : y.im ≤ π) (hxy : exp x = exp y) : x = y :=
by rw [exp_eq_exp_re_mul_sin_add_cos, exp_eq_exp_re_mul_sin_add_cos y] at hxy;
exact complex.ext
(real.exp_injective $
by simpa [abs_mul, abs_cos_add_sin_mul_I] using congr_arg complex.abs hxy)
(by simpa [(of_real_exp _).symm, - of_real_exp, arg_real_mul _ (real.exp_pos _),
arg_cos_add_sin_mul_I hx₁ hx₂, arg_cos_add_sin_mul_I hy₁ hy₂] using congr_arg arg hxy)
lemma log_exp {x : ℂ} (hx₁ : -π < x.im) (hx₂: x.im ≤ π) : log (exp x) = x :=
exp_inj_of_neg_pi_lt_of_le_pi
(by rw log_im; exact neg_pi_lt_arg _)
(by rw log_im; exact arg_le_pi _)
hx₁ hx₂ (by rw [exp_log (exp_ne_zero _)])
lemma of_real_log {x : ℝ} (hx : 0 ≤ x) : (x.log : ℂ) = log x :=
complex.ext
(by rw [log_re, of_real_re, abs_of_nonneg hx])
(by rw [of_real_im, log_im, arg_of_real_of_nonneg hx])
lemma log_of_real_re (x : ℝ) : (log (x : ℂ)).re = real.log x := by simp [log_re]
@[simp] lemma log_zero : log 0 = 0 := by simp [log]
@[simp] lemma log_one : log 1 = 0 := by simp [log]
lemma log_neg_one : log (-1) = π * I := by simp [log]
lemma log_I : log I = π / 2 * I := by simp [log]
lemma log_neg_I : log (-I) = -(π / 2) * I := by simp [log]
lemma exists_pow_nat_eq (x : ℂ) {n : ℕ} (hn : 0 < n) : ∃ z, z ^ n = x :=
begin
by_cases hx : x = 0,
{ use 0, simp only [hx, zero_pow_eq_zero, hn] },
{ use exp (log x / n),
rw [← exp_nat_mul, mul_div_cancel', exp_log hx],
exact_mod_cast (pos_iff_ne_zero.mp hn) }
end
lemma exists_eq_mul_self (x : ℂ) : ∃ z, x = z * z :=
begin
obtain ⟨z, rfl⟩ := exists_pow_nat_eq x zero_lt_two,
exact ⟨z, pow_two z⟩
end
lemma two_pi_I_ne_zero : (2 * π * I : ℂ) ≠ 0 :=
by norm_num [real.pi_ne_zero, I_ne_zero]
lemma exp_eq_one_iff {x : ℂ} : exp x = 1 ↔ ∃ n : ℤ, x = n * ((2 * π) * I) :=
have real.exp (x.re) * real.cos (x.im) = 1 → real.cos x.im ≠ -1,
from λ h₁ h₂, begin
rw [h₂, mul_neg_eq_neg_mul_symm, mul_one, neg_eq_iff_neg_eq] at h₁,
have := real.exp_pos x.re,
rw ← h₁ at this,
exact absurd this (by norm_num)
end,
calc exp x = 1 ↔ (exp x).re = 1 ∧ (exp x).im = 0 : by simp [complex.ext_iff]
... ↔ real.cos x.im = 1 ∧ real.sin x.im = 0 ∧ x.re = 0 :
begin
rw exp_eq_exp_re_mul_sin_add_cos,
simp [complex.ext_iff, cos_of_real_re, sin_of_real_re, exp_of_real_re,
real.exp_ne_zero],
split; finish [real.sin_eq_zero_iff_cos_eq]
end
... ↔ (∃ n : ℤ, ↑n * (2 * π) = x.im) ∧ (∃ n : ℤ, ↑n * π = x.im) ∧ x.re = 0 :
by rw [real.sin_eq_zero_iff, real.cos_eq_one_iff]
... ↔ ∃ n : ℤ, x = n * ((2 * π) * I) :
⟨λ ⟨⟨n, hn⟩, ⟨m, hm⟩, h⟩, ⟨n, by simp [complex.ext_iff, hn.symm, h]⟩,
λ ⟨n, hn⟩, ⟨⟨n, by simp [hn]⟩, ⟨2 * n, by simp [hn, mul_comm, mul_assoc, mul_left_comm]⟩,
by simp [hn]⟩⟩
lemma exp_eq_exp_iff_exp_sub_eq_one {x y : ℂ} : exp x = exp y ↔ exp (x - y) = 1 :=
by rw [exp_sub, div_eq_one_iff_eq (exp_ne_zero _)]
lemma exp_eq_exp_iff_exists_int {x y : ℂ} : exp x = exp y ↔ ∃ n : ℤ, x = y + n * ((2 * π) * I) :=
by simp only [exp_eq_exp_iff_exp_sub_eq_one, exp_eq_one_iff, sub_eq_iff_eq_add']
/-- `complex.exp` as a `local_homeomorph` with `source = {z | -π < im z < π}` and
`target = {z | 0 < re z} ∪ {z | im z ≠ 0}`. This definition is used to prove that `complex.log`
is complex differentiable at all points but the negative real semi-axis. -/
def exp_local_homeomorph : local_homeomorph ℂ ℂ :=
local_homeomorph.of_continuous_open
{ to_fun := exp,
inv_fun := log,
source := {z : ℂ | z.im ∈ Ioo (- π) π},
target := {z : ℂ | 0 < z.re} ∪ {z : ℂ | z.im ≠ 0},
map_source' :=
begin
rintro ⟨x, y⟩ ⟨h₁ : -π < y, h₂ : y < π⟩,
refine (not_or_of_imp $ λ hz, _).symm,
obtain rfl : y = 0,
{ rw exp_im at hz,
simpa [(real.exp_pos _).ne', real.sin_eq_zero_iff_of_lt_of_lt h₁ h₂] using hz },
rw [mem_set_of_eq, ← of_real_def, exp_of_real_re],
exact real.exp_pos x
end,
map_target' := λ z h,
suffices 0 ≤ z.re ∨ z.im ≠ 0,
by simpa [log, neg_pi_lt_arg, (arg_le_pi _).lt_iff_ne, arg_eq_pi_iff, not_and_distrib],
h.imp (λ h, le_of_lt h) id,
left_inv' := λ x hx, log_exp hx.1 (le_of_lt hx.2),
right_inv' := λ x hx, exp_log $ by { rintro rfl, simpa [lt_irrefl] using hx } }
continuous_exp.continuous_on is_open_map_exp (is_open_Ioo.preimage continuous_im)
lemma has_strict_deriv_at_log {x : ℂ} (h : 0 < x.re ∨ x.im ≠ 0) :
has_strict_deriv_at log x⁻¹ x :=
have h0 : x ≠ 0, by { rintro rfl, simpa [lt_irrefl] using h },
exp_local_homeomorph.has_strict_deriv_at_symm h h0 $
by simpa [exp_log h0] using has_strict_deriv_at_exp (log x)
lemma times_cont_diff_at_log {x : ℂ} (h : 0 < x.re ∨ x.im ≠ 0) {n : with_top ℕ} :
times_cont_diff_at ℂ n log x :=
exp_local_homeomorph.times_cont_diff_at_symm_deriv (exp_ne_zero $ log x) h
(has_deriv_at_exp _) times_cont_diff_exp.times_cont_diff_at
@[simp] lemma cos_pi_div_two : cos (π / 2) = 0 :=
calc cos (π / 2) = real.cos (π / 2) : by rw [of_real_cos]; simp
... = 0 : by simp
@[simp] lemma sin_pi_div_two : sin (π / 2) = 1 :=
calc sin (π / 2) = real.sin (π / 2) : by rw [of_real_sin]; simp
... = 1 : by simp
@[simp] lemma sin_pi : sin π = 0 :=
by rw [← of_real_sin, real.sin_pi]; simp
@[simp] lemma cos_pi : cos π = -1 :=
by rw [← of_real_cos, real.cos_pi]; simp
@[simp] lemma sin_two_pi : sin (2 * π) = 0 :=
by simp [two_mul, sin_add]
@[simp] lemma cos_two_pi : cos (2 * π) = 1 :=
by simp [two_mul, cos_add]
lemma sin_add_pi (x : ℂ) : sin (x + π) = -sin x :=
by simp [sin_add]
lemma sin_add_two_pi (x : ℂ) : sin (x + 2 * π) = sin x :=
by simp [sin_add]
lemma cos_add_two_pi (x : ℂ) : cos (x + 2 * π) = cos x :=
by simp [cos_add]
lemma sin_pi_sub (x : ℂ) : sin (π - x) = sin x :=
by simp [sub_eq_add_neg, sin_add]
lemma cos_add_pi (x : ℂ) : cos (x + π) = -cos x :=
by simp [cos_add]
lemma cos_pi_sub (x : ℂ) : cos (π - x) = -cos x :=
by simp [sub_eq_add_neg, cos_add]
lemma sin_add_pi_div_two (x : ℂ) : sin (x + π / 2) = cos x :=
by simp [sin_add]
lemma sin_sub_pi_div_two (x : ℂ) : sin (x - π / 2) = -cos x :=
by simp [sub_eq_add_neg, sin_add]
lemma sin_pi_div_two_sub (x : ℂ) : sin (π / 2 - x) = cos x :=
by simp [sub_eq_add_neg, sin_add]
lemma cos_add_pi_div_two (x : ℂ) : cos (x + π / 2) = -sin x :=
by simp [cos_add]
lemma cos_sub_pi_div_two (x : ℂ) : cos (x - π / 2) = sin x :=
by simp [sub_eq_add_neg, cos_add]
lemma cos_pi_div_two_sub (x : ℂ) : cos (π / 2 - x) = sin x :=
by rw [← cos_neg, neg_sub, cos_sub_pi_div_two]
lemma sin_nat_mul_pi (n : ℕ) : sin (n * π) = 0 :=
by induction n; simp [add_mul, sin_add, *]
lemma sin_int_mul_pi (n : ℤ) : sin (n * π) = 0 :=
by cases n; simp [add_mul, sin_add, *, sin_nat_mul_pi]
lemma cos_nat_mul_two_pi (n : ℕ) : cos (n * (2 * π)) = 1 :=
by induction n; simp [*, mul_add, cos_add, add_mul, cos_two_pi, sin_two_pi]
lemma cos_int_mul_two_pi (n : ℤ) : cos (n * (2 * π)) = 1 :=
by cases n; simp only [cos_nat_mul_two_pi, int.of_nat_eq_coe,
int.neg_succ_of_nat_coe, int.cast_coe_nat, int.cast_neg,
(neg_mul_eq_neg_mul _ _).symm, cos_neg]
lemma cos_int_mul_two_pi_add_pi (n : ℤ) : cos (n * (2 * π) + π) = -1 :=
by simp [cos_add, sin_add, cos_int_mul_two_pi]
lemma exp_pi_mul_I : exp (π * I) = -1 :=
by rw exp_mul_I; simp
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 :=
begin
have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1,
{ rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero', zero_mul,
add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub],
field_simp only, congr' 3, ring },
rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm],
refine exists_congr (λ x, _),
refine (iff_of_eq $ congr_arg _ _).trans (mul_right_inj' $ mul_ne_zero two_ne_zero' I_ne_zero),
ring,
end
theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 :=
by rw [← not_exists, not_iff_not, cos_eq_zero_iff]
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π :=
begin
rw [← complex.cos_sub_pi_div_two, cos_eq_zero_iff],
split,
{ rintros ⟨k, hk⟩,
use k + 1,
field_simp [eq_add_of_sub_eq hk],
ring },
{ rintros ⟨k, rfl⟩,
use k - 1,
field_simp,
ring }
end
theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π :=
by rw [← not_exists, not_iff_not, sin_eq_zero_iff]
lemma sin_eq_zero_iff_cos_eq {z : ℂ} : sin z = 0 ↔ cos z = 1 ∨ cos z = -1 :=
by rw [← mul_self_eq_one_iff, ← sin_sq_add_cos_sq, pow_two, pow_two, ← sub_eq_iff_eq_add, sub_self];
exact ⟨λ h, by rw [h, mul_zero], eq_zero_of_mul_self_eq_zero ∘ eq.symm⟩
lemma tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 :=
begin
have h := (sin_two_mul θ).symm,
rw mul_assoc at h,
rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul ((1/2):ℂ), mul_one_div,
cancel_factors.cancel_factors_eq_div h two_ne_zero', mul_comm],
simpa only [zero_div, zero_mul, ne.def, not_false_iff] with field_simps using sin_eq_zero_iff,
end
lemma tan_ne_zero_iff {θ : ℂ} : tan θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π / 2 :=
by rw [← not_exists, not_iff_not, tan_eq_zero_iff]
lemma tan_int_mul_pi_div_two (n : ℤ) : tan (n * π/2) = 0 :=
tan_eq_zero_iff.mpr (by use n)
lemma tan_int_mul_pi (n : ℤ) : tan (n * π) = 0 :=
by simp [tan, add_mul, sin_add, sin_int_mul_pi]
lemma cos_eq_cos_iff {x y : ℂ} :
cos x = cos y ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = 2 * k * π - x :=
calc cos x = cos y ↔ cos x - cos y = 0 : sub_eq_zero.symm
... ↔ -2 * sin((x + y)/2) * sin((x - y)/2) = 0 : by rw cos_sub_cos
... ↔ sin((x + y)/2) = 0 ∨ sin((x - y)/2) = 0 : by simp [(by norm_num : (2:ℂ) ≠ 0)]
... ↔ sin((x - y)/2) = 0 ∨ sin((x + y)/2) = 0 : or.comm
... ↔ (∃ k : ℤ, y = 2 * k * π + x) ∨ (∃ k :ℤ, y = 2 * k * π - x) :
begin
apply or_congr;
field_simp [sin_eq_zero_iff, (by norm_num : -(2:ℂ) ≠ 0), eq_sub_iff_add_eq',
sub_eq_iff_eq_add, mul_comm (2:ℂ), mul_right_comm _ (2:ℂ)],
split; { rintros ⟨k, rfl⟩, use -k, simp, },
end
... ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = 2 * k * π - x : exists_or_distrib.symm
lemma sin_eq_sin_iff {x y : ℂ} :
sin x = sin y ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = (2 * k + 1) * π - x :=
begin
simp only [← complex.cos_sub_pi_div_two, cos_eq_cos_iff, sub_eq_iff_eq_add],
refine exists_congr (λ k, or_congr _ _); refine eq.congr rfl _; field_simp; ring
end
lemma tan_add {x y : ℂ}
(h : ((∀ k : ℤ, x ≠ (2 * k + 1) * π / 2) ∧ ∀ l : ℤ, y ≠ (2 * l + 1) * π / 2)
∨ ((∃ k : ℤ, x = (2 * k + 1) * π / 2) ∧ ∃ l : ℤ, y = (2 * l + 1) * π / 2)) :
tan (x + y) = (tan x + tan y) / (1 - tan x * tan y) :=
begin
rcases h with ⟨h1, h2⟩ | ⟨⟨k, rfl⟩, ⟨l, rfl⟩⟩,
{ rw [tan, sin_add, cos_add,
← div_div_div_cancel_right (sin x * cos y + cos x * sin y)
(mul_ne_zero (cos_ne_zero_iff.mpr h1) (cos_ne_zero_iff.mpr h2)),
add_div, sub_div],
simp only [←div_mul_div, ←tan, mul_one, one_mul,
div_self (cos_ne_zero_iff.mpr h1), div_self (cos_ne_zero_iff.mpr h2)] },
{ obtain ⟨t, hx, hy, hxy⟩ := ⟨tan_int_mul_pi_div_two, t (2*k+1), t (2*l+1), t (2*k+1+(2*l+1))⟩,
simp only [int.cast_add, int.cast_bit0, int.cast_mul, int.cast_one, hx, hy] at hx hy hxy,
rw [hx, hy, add_zero, zero_div,
mul_div_assoc, mul_div_assoc, ← add_mul (2*(k:ℂ)+1) (2*l+1) (π/2), ← mul_div_assoc, hxy] },
end
lemma tan_add' {x y : ℂ}
(h : ((∀ k : ℤ, x ≠ (2 * k + 1) * π / 2) ∧ ∀ l : ℤ, y ≠ (2 * l + 1) * π / 2)) :
tan (x + y) = (tan x + tan y) / (1 - tan x * tan y) :=
tan_add (or.inl h)
lemma tan_two_mul {z : ℂ} : tan (2 * z) = 2 * tan z / (1 - tan z ^ 2) :=
begin
by_cases h : ∀ k : ℤ, z ≠ (2 * k + 1) * π / 2,
{ rw [two_mul, two_mul, pow_two, tan_add (or.inl ⟨h, h⟩)] },
{ rw not_forall_not at h,
rw [two_mul, two_mul, pow_two, tan_add (or.inr ⟨h, h⟩)] },
end
lemma tan_add_mul_I {x y : ℂ}
(h : ((∀ k : ℤ, x ≠ (2 * k + 1) * π / 2) ∧ ∀ l : ℤ, y * I ≠ (2 * l + 1) * π / 2)
∨ ((∃ k : ℤ, x = (2 * k + 1) * π / 2) ∧ ∃ l : ℤ, y * I = (2 * l + 1) * π / 2)) :
tan (x + y*I) = (tan x + tanh y * I) / (1 - tan x * tanh y * I) :=
by rw [tan_add h, tan_mul_I, mul_assoc]
lemma tan_eq {z : ℂ}
(h : ((∀ k : ℤ, (z.re:ℂ) ≠ (2 * k + 1) * π / 2) ∧ ∀ l : ℤ, (z.im:ℂ) * I ≠ (2 * l + 1) * π / 2)
∨ ((∃ k : ℤ, (z.re:ℂ) = (2 * k + 1) * π / 2) ∧ ∃ l : ℤ, (z.im:ℂ) * I = (2 * l + 1) * π / 2)) :
tan z = (tan z.re + tanh z.im * I) / (1 - tan z.re * tanh z.im * I) :=
by convert tan_add_mul_I h; exact (re_add_im z).symm
lemma has_strict_deriv_at_tan {x : ℂ} (h : cos x ≠ 0) :
has_strict_deriv_at tan (1 / (cos x)^2) x :=
begin
convert (has_strict_deriv_at_sin x).div (has_strict_deriv_at_cos x) h,
rw ← sin_sq_add_cos_sq x,
ring,
end
lemma has_deriv_at_tan {x : ℂ} (h : cos x ≠ 0) :
has_deriv_at tan (1 / (cos x)^2) x :=
(has_strict_deriv_at_tan h).has_deriv_at
lemma tendsto_abs_tan_of_cos_eq_zero {x : ℂ} (hx : cos x = 0) :
tendsto (λ x, abs (tan x)) (𝓝[{x}ᶜ] x) at_top :=
begin
simp only [tan_eq_sin_div_cos, ← norm_eq_abs, normed_field.norm_div],
have A : sin x ≠ 0 := λ h, by simpa [*, pow_two] using sin_sq_add_cos_sq x,
have B : tendsto cos (𝓝[{x}ᶜ] (x)) (𝓝[{0}ᶜ] 0),
{ refine tendsto_inf.2 ⟨tendsto.mono_left _ inf_le_left, tendsto_principal.2 _⟩,
exacts [continuous_cos.tendsto' x 0 hx,
hx ▸ (has_deriv_at_cos _).eventually_ne (neg_ne_zero.2 A)] },
exact tendsto.mul_at_top (norm_pos_iff.2 A) continuous_sin.continuous_within_at.norm
(tendsto.inv_tendsto_zero $ tendsto_norm_nhds_within_zero.comp B),
end
lemma tendsto_abs_tan_at_top (k : ℤ) :
tendsto (λ x, abs (tan x)) (𝓝[{(2 * k + 1) * π / 2}ᶜ] ((2 * k + 1) * π / 2)) at_top :=
tendsto_abs_tan_of_cos_eq_zero $ cos_eq_zero_iff.2 ⟨k, rfl⟩
@[simp] lemma continuous_at_tan {x : ℂ} : continuous_at tan x ↔ cos x ≠ 0 :=
begin
refine ⟨λ hc h₀, _, λ h, (has_deriv_at_tan h).continuous_at⟩,
exact not_tendsto_nhds_of_tendsto_at_top (tendsto_abs_tan_of_cos_eq_zero h₀) _
(hc.norm.tendsto.mono_left inf_le_left)
end
@[simp] lemma differentiable_at_tan {x : ℂ} : differentiable_at ℂ tan x ↔ cos x ≠ 0:=
⟨λ h, continuous_at_tan.1 h.continuous_at, λ h, (has_deriv_at_tan h).differentiable_at⟩
@[simp] lemma deriv_tan (x : ℂ) : deriv tan x = 1 / (cos x)^2 :=
if h : cos x = 0 then
have ¬differentiable_at ℂ tan x := mt differentiable_at_tan.1 (not_not.2 h),
by simp [deriv_zero_of_not_differentiable_at this, h, pow_two]
else (has_deriv_at_tan h).deriv
lemma continuous_on_tan : continuous_on tan {x | cos x ≠ 0} :=
continuous_on_sin.div continuous_on_cos $ λ x, id
@[continuity]
lemma continuous_tan : continuous (λ x : {x | cos x ≠ 0}, tan x) :=
continuous_on_iff_continuous_restrict.1 continuous_on_tan
@[simp] lemma times_cont_diff_at_tan {x : ℂ} {n : with_top ℕ} :
times_cont_diff_at ℂ n tan x ↔ cos x ≠ 0 :=
⟨λ h, continuous_at_tan.1 h.continuous_at,
times_cont_diff_sin.times_cont_diff_at.div times_cont_diff_cos.times_cont_diff_at⟩
lemma cos_eq_iff_quadratic {z w : ℂ} :
cos z = w ↔ (exp (z * I)) ^ 2 - 2 * w * exp (z * I) + 1 = 0 :=
begin
rw ← sub_eq_zero,
field_simp [cos, exp_neg, exp_ne_zero],
refine eq.congr _ rfl,
ring
end
lemma cos_surjective : function.surjective cos :=
begin
intro x,
obtain ⟨w, w₀, hw⟩ : ∃ w ≠ 0, 1 * w * w + (-2 * x) * w + 1 = 0,
{ rcases exists_quadratic_eq_zero one_ne_zero (exists_eq_mul_self _) with ⟨w, hw⟩,
refine ⟨w, _, hw⟩,
rintro rfl,
simpa only [zero_add, one_ne_zero, mul_zero] using hw },
refine ⟨log w / I, cos_eq_iff_quadratic.2 _⟩,
rw [div_mul_cancel _ I_ne_zero, exp_log w₀],
convert hw,
ring
end
@[simp] lemma range_cos : range cos = set.univ :=
cos_surjective.range_eq
lemma sin_surjective : function.surjective sin :=
begin
intro x,
rcases cos_surjective x with ⟨z, rfl⟩,
exact ⟨z + π / 2, sin_add_pi_div_two z⟩
end
@[simp] lemma range_sin : range sin = set.univ :=
sin_surjective.range_eq
end complex
section log_deriv
open complex
variables {α : Type*}
lemma measurable.carg [measurable_space α] {f : α → ℂ} (h : measurable f) :
measurable (λ x, arg (f x)) :=
measurable_arg.comp h
lemma measurable.clog [measurable_space α] {f : α → ℂ} (h : measurable f) :
measurable (λ x, log (f x)) :=
measurable_log.comp h
lemma filter.tendsto.clog {l : filter α} {f : α → ℂ} {x : ℂ} (h : tendsto f l (𝓝 x))
(hx : 0 < x.re ∨ x.im ≠ 0) :
tendsto (λ t, log (f t)) l (𝓝 $ log x) :=
(has_strict_deriv_at_log hx).continuous_at.tendsto.comp h
variables [topological_space α]
lemma continuous_at.clog {f : α → ℂ} {x : α} (h₁ : continuous_at f x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_at (λ t, log (f t)) x :=
h₁.clog h₂
lemma continuous_within_at.clog {f : α → ℂ} {s : set α} {x : α} (h₁ : continuous_within_at f s x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_within_at (λ t, log (f t)) s x :=
h₁.clog h₂
lemma continuous_on.clog {f : α → ℂ} {s : set α} (h₁ : continuous_on f s)
(h₂ : ∀ x ∈ s, 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_on (λ t, log (f t)) s :=
λ x hx, (h₁ x hx).clog (h₂ x hx)
lemma continuous.clog {f : α → ℂ} (h₁ : continuous f) (h₂ : ∀ x, 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous (λ t, log (f t)) :=
continuous_iff_continuous_at.2 $ λ x, h₁.continuous_at.clog (h₂ x)
variables {E : Type*} [normed_group E] [normed_space ℂ E]
lemma has_strict_fderiv_at.clog {f : E → ℂ} {f' : E →L[ℂ] ℂ} {x : E}
(h₁ : has_strict_fderiv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
has_strict_fderiv_at (λ t, log (f t)) ((f x)⁻¹ • f') x :=
(has_strict_deriv_at_log h₂).comp_has_strict_fderiv_at x h₁
lemma has_strict_deriv_at.clog {f : ℂ → ℂ} {f' x : ℂ} (h₁ : has_strict_deriv_at f f' x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
has_strict_deriv_at (λ t, log (f t)) (f' / f x) x :=
by { rw div_eq_inv_mul, exact (has_strict_deriv_at_log h₂).comp x h₁ }
lemma has_fderiv_at.clog {f : E → ℂ} {f' : E →L[ℂ] ℂ} {x : E}
(h₁ : has_fderiv_at f f' x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
has_fderiv_at (λ t, log (f t)) ((f x)⁻¹ • f') x :=
(has_strict_deriv_at_log h₂).has_deriv_at.comp_has_fderiv_at x h₁
lemma has_deriv_at.clog {f : ℂ → ℂ} {f' x : ℂ} (h₁ : has_deriv_at f f' x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
has_deriv_at (λ t, log (f t)) (f' / f x) x :=
by { rw div_eq_inv_mul, exact (has_strict_deriv_at_log h₂).has_deriv_at.comp x h₁ }
lemma differentiable_at.clog {f : E → ℂ} {x : E} (h₁ : differentiable_at ℂ f x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
differentiable_at ℂ (λ t, log (f t)) x :=
(h₁.has_fderiv_at.clog h₂).differentiable_at
lemma has_fderiv_within_at.clog {f : E → ℂ} {f' : E →L[ℂ] ℂ} {s : set E} {x : E}
(h₁ : has_fderiv_within_at f f' s x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
has_fderiv_within_at (λ t, log (f t)) ((f x)⁻¹ • f') s x :=
(has_strict_deriv_at_log h₂).has_deriv_at.comp_has_fderiv_within_at x h₁
lemma has_deriv_within_at.clog {f : ℂ → ℂ} {f' x : ℂ} {s : set ℂ}
(h₁ : has_deriv_within_at f f' s x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
has_deriv_within_at (λ t, log (f t)) (f' / f x) s x :=
by { rw div_eq_inv_mul,
exact (has_strict_deriv_at_log h₂).has_deriv_at.comp_has_deriv_within_at x h₁ }
lemma differentiable_within_at.clog {f : E → ℂ} {s : set E} {x : E}
(h₁ : differentiable_within_at ℂ f s x) (h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
differentiable_within_at ℂ (λ t, log (f t)) s x :=
(h₁.has_fderiv_within_at.clog h₂).differentiable_within_at
lemma differentiable_on.clog {f : E → ℂ} {s : set E}
(h₁ : differentiable_on ℂ f s) (h₂ : ∀ x ∈ s, 0 < (f x).re ∨ (f x).im ≠ 0) :
differentiable_on ℂ (λ t, log (f t)) s :=
λ x hx, (h₁ x hx).clog (h₂ x hx)
lemma differentiable.clog {f : E → ℂ} (h₁ : differentiable ℂ f)
(h₂ : ∀ x, 0 < (f x).re ∨ (f x).im ≠ 0) :
differentiable ℂ (λ t, log (f t)) :=
λ x, (h₁ x).clog (h₂ x)
end log_deriv
section chebyshev₁
open polynomial complex
/-- The `n`-th Chebyshev polynomial of the first kind evaluates on `cos θ` to the
value `cos (n * θ)`. -/
lemma chebyshev₁_complex_cos (θ : ℂ) :
∀ n, (chebyshev₁ ℂ n).eval (cos θ) = cos (n * θ)
| 0 := by simp only [chebyshev₁_zero, eval_one, nat.cast_zero, zero_mul, cos_zero]
| 1 := by simp only [eval_X, one_mul, chebyshev₁_one, nat.cast_one]
| (n + 2) :=
begin
simp only [eval_X, eval_one, chebyshev₁_add_two, eval_sub, eval_bit0, nat.cast_succ, eval_mul],
rw [chebyshev₁_complex_cos (n + 1), chebyshev₁_complex_cos n],
have aux : sin θ * sin θ = 1 - cos θ * cos θ,
{ rw ← sin_sq_add_cos_sq θ, ring, },
simp only [nat.cast_add, nat.cast_one, add_mul, cos_add, one_mul, sin_add, mul_assoc, aux],
ring,
end
/-- `cos (n * θ)` is equal to the `n`-th Chebyshev polynomial of the first kind evaluated
on `cos θ`. -/
lemma cos_nat_mul (n : ℕ) (θ : ℂ) :
cos (n * θ) = (chebyshev₁ ℂ n).eval (cos θ) :=
(chebyshev₁_complex_cos θ n).symm
end chebyshev₁
section chebyshev₂
open polynomial complex
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n+1) * θ) / sin θ`. -/
lemma chebyshev₂_complex_cos (θ : ℂ) (n : ℕ) :
(chebyshev₂ ℂ n).eval (cos θ) * sin θ = sin ((n+1) * θ) :=
begin
induction n with d hd,
{ simp only [chebyshev₂_zero, nat.cast_zero, eval_one, mul_one, zero_add, one_mul] },
{ rw chebyshev₂_eq_X_mul_chebyshev₂_add_chebyshev₁,
simp only [eval_add, eval_mul, eval_X, chebyshev₁_complex_cos, add_mul, mul_assoc, hd, one_mul],
conv_rhs { rw [sin_add, mul_comm] },
push_cast,
simp only [add_mul, one_mul] }
end
/-- `sin ((n + 1) * θ)` is equal to `sin θ` multiplied with the `n`-th Chebyshev polynomial of the
second kind evaluated on `cos θ`. -/
lemma sin_nat_succ_mul (n : ℕ) (θ : ℂ) :
sin ((n + 1) * θ) = (chebyshev₂ ℂ n).eval (cos θ) * sin θ :=
(chebyshev₂_complex_cos θ n).symm
end chebyshev₂
namespace real
open_locale real
lemma tan_add {x y : ℝ}
(h : ((∀ k : ℤ, x ≠ (2 * k + 1) * π / 2) ∧ ∀ l : ℤ, y ≠ (2 * l + 1) * π / 2)
∨ ((∃ k : ℤ, x = (2 * k + 1) * π / 2) ∧ ∃ l : ℤ, y = (2 * l + 1) * π / 2)) :
tan (x + y) = (tan x + tan y) / (1 - tan x * tan y) :=
by simpa only [← complex.of_real_inj, complex.of_real_sub, complex.of_real_add, complex.of_real_div,
complex.of_real_mul, complex.of_real_tan]
using @complex.tan_add (x:ℂ) (y:ℂ) (by convert h; norm_cast)
lemma tan_add' {x y : ℝ}
(h : ((∀ k : ℤ, x ≠ (2 * k + 1) * π / 2) ∧ ∀ l : ℤ, y ≠ (2 * l + 1) * π / 2)) :
tan (x + y) = (tan x + tan y) / (1 - tan x * tan y) :=
tan_add (or.inl h)
lemma tan_two_mul {x:ℝ} : tan (2 * x) = 2 * tan x / (1 - tan x ^ 2) :=
by simpa only [← complex.of_real_inj, complex.of_real_sub, complex.of_real_div, complex.of_real_pow,
complex.of_real_mul, complex.of_real_tan, complex.of_real_bit0, complex.of_real_one]
using complex.tan_two_mul
theorem cos_eq_zero_iff {θ : ℝ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 :=
by exact_mod_cast @complex.cos_eq_zero_iff θ
theorem cos_ne_zero_iff {θ : ℝ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 :=
by rw [← not_exists, not_iff_not, cos_eq_zero_iff]
lemma tan_ne_zero_iff {θ : ℝ} : tan θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π / 2 :=
by rw [← complex.of_real_ne_zero, complex.of_real_tan, complex.tan_ne_zero_iff]; norm_cast
lemma tan_eq_zero_iff {θ : ℝ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 :=
by rw [← not_iff_not, not_exists, ← ne, tan_ne_zero_iff]
lemma tan_int_mul_pi_div_two (n : ℤ) : tan (n * π/2) = 0 :=
tan_eq_zero_iff.mpr (by use n)
lemma tan_int_mul_pi (n : ℤ) : tan (n * π) = 0 :=
by rw tan_eq_zero_iff; use (2*n); field_simp [mul_comm ((n:ℝ)*(π:ℝ)) 2, ← mul_assoc]
lemma cos_eq_cos_iff {x y : ℝ} :
cos x = cos y ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = 2 * k * π - x :=
by exact_mod_cast @complex.cos_eq_cos_iff x y
lemma sin_eq_sin_iff {x y : ℝ} :
sin x = sin y ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = (2 * k + 1) * π - x :=
by exact_mod_cast @complex.sin_eq_sin_iff x y
lemma has_strict_deriv_at_tan {x : ℝ} (h : cos x ≠ 0) :
has_strict_deriv_at tan (1 / (cos x)^2) x :=
by exact_mod_cast (complex.has_strict_deriv_at_tan (by exact_mod_cast h)).real_of_complex
lemma has_deriv_at_tan {x : ℝ} (h : cos x ≠ 0) :
has_deriv_at tan (1 / (cos x)^2) x :=
by exact_mod_cast (complex.has_deriv_at_tan (by exact_mod_cast h)).real_of_complex
lemma tendsto_abs_tan_of_cos_eq_zero {x : ℝ} (hx : cos x = 0) :
tendsto (λ x, abs (tan x)) (𝓝[{x}ᶜ] x) at_top :=
begin
have hx : complex.cos x = 0, by exact_mod_cast hx,
simp only [← complex.abs_of_real, complex.of_real_tan],
refine (complex.tendsto_abs_tan_of_cos_eq_zero hx).comp _,
refine tendsto.inf complex.continuous_of_real.continuous_at _,
exact tendsto_principal_principal.2 (λ y, mt complex.of_real_inj.1)
end
lemma tendsto_abs_tan_at_top (k : ℤ) :
tendsto (λ x, abs (tan x)) (𝓝[{(2 * k + 1) * π / 2}ᶜ] ((2 * k + 1) * π / 2)) at_top :=
tendsto_abs_tan_of_cos_eq_zero $ cos_eq_zero_iff.2 ⟨k, rfl⟩
lemma continuous_at_tan {x : ℝ} : continuous_at tan x ↔ cos x ≠ 0 :=
begin
refine ⟨λ hc h₀, _, λ h, (has_deriv_at_tan h).continuous_at⟩,
exact not_tendsto_nhds_of_tendsto_at_top (tendsto_abs_tan_of_cos_eq_zero h₀) _
(hc.norm.tendsto.mono_left inf_le_left)
end
lemma differentiable_at_tan {x : ℝ} : differentiable_at ℝ tan x ↔ cos x ≠ 0 :=
⟨λ h, continuous_at_tan.1 h.continuous_at, λ h, (has_deriv_at_tan h).differentiable_at⟩
@[simp] lemma deriv_tan (x : ℝ) : deriv tan x = 1 / (cos x)^2 :=
if h : cos x = 0 then
have ¬differentiable_at ℝ tan x := mt differentiable_at_tan.1 (not_not.2 h),
by simp [deriv_zero_of_not_differentiable_at this, h, pow_two]
else (has_deriv_at_tan h).deriv
@[simp] lemma times_cont_diff_at_tan {n x} : times_cont_diff_at ℝ n tan x ↔ cos x ≠ 0 :=
⟨λ h, continuous_at_tan.1 h.continuous_at,
λ h, (complex.times_cont_diff_at_tan.2 $ by exact_mod_cast h).real_of_complex⟩
lemma continuous_on_tan : continuous_on tan {x | cos x ≠ 0} :=
λ x hx, (continuous_at_tan.2 hx).continuous_within_at
@[continuity]
lemma continuous_tan : continuous (λ x : {x | cos x ≠ 0}, tan x) :=
continuous_on_iff_continuous_restrict.1 continuous_on_tan
lemma has_deriv_at_tan_of_mem_Ioo {x : ℝ} (h : x ∈ Ioo (-(π/2):ℝ) (π/2)) :
has_deriv_at tan (1 / (cos x)^2) x :=
has_deriv_at_tan (cos_pos_of_mem_Ioo h).ne'
lemma differentiable_at_tan_of_mem_Ioo {x : ℝ} (h : x ∈ Ioo (-(π/2):ℝ) (π/2)) :
differentiable_at ℝ tan x :=
(has_deriv_at_tan_of_mem_Ioo h).differentiable_at
lemma continuous_on_tan_Ioo : continuous_on tan (Ioo (-(π/2)) (π/2)) :=
λ x hx, (differentiable_at_tan_of_mem_Ioo hx).continuous_at.continuous_within_at
lemma tendsto_sin_pi_div_two : tendsto sin (𝓝[Iio (π/2)] (π/2)) (𝓝 1) :=
by { convert continuous_sin.continuous_within_at, simp }
lemma tendsto_cos_pi_div_two : tendsto cos (𝓝[Iio (π/2)] (π/2)) (𝓝[Ioi 0] 0) :=
begin
apply tendsto_nhds_within_of_tendsto_nhds_of_eventually_within,
{ convert continuous_cos.continuous_within_at, simp },
{ filter_upwards [Ioo_mem_nhds_within_Iio (right_mem_Ioc.mpr (norm_num.lt_neg_pos
_ _ pi_div_two_pos pi_div_two_pos))] λ x hx, cos_pos_of_mem_Ioo hx },
end
lemma tendsto_tan_pi_div_two : tendsto tan (𝓝[Iio (π/2)] (π/2)) at_top :=
begin
convert (tendsto.inv_tendsto_zero tendsto_cos_pi_div_two).at_top_mul zero_lt_one
tendsto_sin_pi_div_two,
simp only [pi.inv_apply, ← div_eq_inv_mul, ← tan_eq_sin_div_cos]
end
lemma tendsto_sin_neg_pi_div_two : tendsto sin (𝓝[Ioi (-(π/2))] (-(π/2))) (𝓝 (-1)) :=
by { convert continuous_sin.continuous_within_at, simp }
lemma tendsto_cos_neg_pi_div_two : tendsto cos (𝓝[Ioi (-(π/2))] (-(π/2))) (𝓝[Ioi 0] 0) :=
begin
apply tendsto_nhds_within_of_tendsto_nhds_of_eventually_within,
{ convert continuous_cos.continuous_within_at, simp },
{ filter_upwards [Ioo_mem_nhds_within_Ioi (left_mem_Ico.mpr (norm_num.lt_neg_pos
_ _ pi_div_two_pos pi_div_two_pos))] λ x hx, cos_pos_of_mem_Ioo hx },
end
lemma tendsto_tan_neg_pi_div_two : tendsto tan (𝓝[Ioi (-(π/2))] (-(π/2))) at_bot :=
begin
convert (tendsto.inv_tendsto_zero tendsto_cos_neg_pi_div_two).at_top_mul_neg (by norm_num)
tendsto_sin_neg_pi_div_two,
simp only [pi.inv_apply, ← div_eq_inv_mul, ← tan_eq_sin_div_cos]
end
lemma surj_on_tan : surj_on tan (Ioo (-(π / 2)) (π / 2)) univ :=
have _ := neg_lt_self pi_div_two_pos,
continuous_on_tan_Ioo.surj_on_of_tendsto (nonempty_Ioo.2 this)
(by simp [tendsto_tan_neg_pi_div_two, this]) (by simp [tendsto_tan_pi_div_two, this])
lemma tan_surjective : function.surjective tan :=
λ x, surj_on_tan.subset_range trivial
lemma image_tan_Ioo : tan '' (Ioo (-(π / 2)) (π / 2)) = univ :=
univ_subset_iff.1 surj_on_tan
/-- `real.tan` as an `order_iso` between `(-(π / 2), π / 2)` and `ℝ`. -/
def tan_order_iso : Ioo (-(π / 2)) (π / 2) ≃o ℝ :=
(strict_mono_incr_on_tan.order_iso _ _).trans $ (order_iso.set_congr _ _ image_tan_Ioo).trans
order_iso.set.univ
/-- Inverse of the `tan` function, returns values in the range `-π / 2 < arctan x` and
`arctan x < π / 2` -/
@[pp_nodot] noncomputable def arctan (x : ℝ) : ℝ :=
tan_order_iso.symm x
@[simp] lemma tan_arctan (x : ℝ) : tan (arctan x) = x :=
tan_order_iso.apply_symm_apply x
lemma arctan_mem_Ioo (x : ℝ) : arctan x ∈ Ioo (-(π / 2)) (π / 2) :=
subtype.coe_prop _
lemma arctan_tan {x : ℝ} (hx₁ : -(π / 2) < x) (hx₂ : x < π / 2) : arctan (tan x) = x :=
subtype.ext_iff.1 $ tan_order_iso.symm_apply_apply ⟨x, hx₁, hx₂⟩
lemma cos_arctan_pos (x : ℝ) : 0 < cos (arctan x) :=
cos_pos_of_mem_Ioo $ arctan_mem_Ioo x
lemma cos_sq_arctan (x : ℝ) : cos (arctan x) ^ 2 = 1 / (1 + x ^ 2) :=
by rw [one_div, ← inv_one_add_tan_sq (cos_arctan_pos x).ne', tan_arctan]
lemma sin_arctan (x : ℝ) : sin (arctan x) = x / sqrt (1 + x ^ 2) :=
by rw [← tan_div_sqrt_one_add_tan_sq (cos_arctan_pos x), tan_arctan]
lemma cos_arctan (x : ℝ) : cos (arctan x) = 1 / sqrt (1 + x ^ 2) :=
by rw [one_div, ← inv_sqrt_one_add_tan_sq (cos_arctan_pos x), tan_arctan]
lemma arctan_lt_pi_div_two (x : ℝ) : arctan x < π / 2 :=
(arctan_mem_Ioo x).2
lemma neg_pi_div_two_lt_arctan (x : ℝ) : -(π / 2) < arctan x :=
(arctan_mem_Ioo x).1
lemma arctan_eq_arcsin (x : ℝ) : arctan x = arcsin (x / sqrt (1 + x ^ 2)) :=
eq.symm $ arcsin_eq_of_sin_eq (sin_arctan x) (mem_Icc_of_Ioo $ arctan_mem_Ioo x)
lemma arcsin_eq_arctan {x : ℝ} (h : x ∈ Ioo (-(1:ℝ)) 1) :
arcsin x = arctan (x / sqrt (1 - x ^ 2)) :=
begin
rw [arctan_eq_arcsin, div_pow, sqr_sqrt, one_add_div, div_div_eq_div_mul,
← sqrt_mul, mul_div_cancel', sub_add_cancel, sqrt_one, div_one];
nlinarith [h.1, h.2],
end
@[simp] lemma arctan_zero : arctan 0 = 0 :=
by simp [arctan_eq_arcsin]
lemma arctan_eq_of_tan_eq {x y : ℝ} (h : tan x = y) (hx : x ∈ Ioo (-(π / 2)) (π / 2)) :
arctan y = x :=
inj_on_tan (arctan_mem_Ioo _) hx (by rw [tan_arctan, h])
@[simp] lemma arctan_one : arctan 1 = π / 4 :=
arctan_eq_of_tan_eq tan_pi_div_four $ by split; linarith [pi_pos]
@[simp] lemma arctan_neg (x : ℝ) : arctan (-x) = - arctan x :=
by simp [arctan_eq_arcsin, neg_div]
@[continuity]
lemma continuous_arctan : continuous arctan :=
continuous_subtype_coe.comp tan_order_iso.to_homeomorph.continuous_inv_fun
lemma continuous_at_arctan {x : ℝ} : continuous_at arctan x := continuous_arctan.continuous_at
/-- `real.tan` as a `local_homeomorph` between `(-(π / 2), π / 2)` and the whole line. -/
def tan_local_homeomorph : local_homeomorph ℝ ℝ :=
{ to_fun := tan,
inv_fun := arctan,
source := Ioo (-(π / 2)) (π / 2),
target := univ,
map_source' := maps_to_univ _ _,
map_target' := λ y hy, arctan_mem_Ioo y,
left_inv' := λ x hx, arctan_tan hx.1 hx.2,
right_inv' := λ y hy, tan_arctan y,
open_source := is_open_Ioo,
open_target := is_open_univ,
continuous_to_fun := continuous_on_tan_Ioo,
continuous_inv_fun := continuous_arctan.continuous_on }
@[simp] lemma coe_tan_local_homeomorph : ⇑tan_local_homeomorph = tan := rfl
@[simp] lemma coe_tan_local_homeomorph_symm : ⇑tan_local_homeomorph.symm = arctan := rfl
lemma has_strict_deriv_at_arctan (x : ℝ) : has_strict_deriv_at arctan (1 / (1 + x^2)) x :=
have A : cos (arctan x) ≠ 0 := (cos_arctan_pos x).ne',
by simpa [cos_sq_arctan]
using tan_local_homeomorph.has_strict_deriv_at_symm trivial (by simpa) (has_strict_deriv_at_tan A)
lemma has_deriv_at_arctan (x : ℝ) : has_deriv_at arctan (1 / (1 + x^2)) x :=
(has_strict_deriv_at_arctan x).has_deriv_at
lemma differentiable_at_arctan (x : ℝ) : differentiable_at ℝ arctan x :=
(has_deriv_at_arctan x).differentiable_at
lemma differentiable_arctan : differentiable ℝ arctan := differentiable_at_arctan
@[simp] lemma deriv_arctan : deriv arctan = (λ x, 1 / (1 + x^2)) :=
funext $ λ x, (has_deriv_at_arctan x).deriv
lemma times_cont_diff_arctan {n : with_top ℕ} : times_cont_diff ℝ n arctan :=
times_cont_diff_iff_times_cont_diff_at.2 $ λ x,
have cos (arctan x) ≠ 0 := (cos_arctan_pos x).ne',
tan_local_homeomorph.times_cont_diff_at_symm_deriv (by simpa) trivial (has_deriv_at_tan this)
(times_cont_diff_at_tan.2 this)
lemma measurable_arctan : measurable arctan := continuous_arctan.measurable
end real
section
/-!
### Lemmas for derivatives of the composition of `real.arctan` with a differentiable function
In this section we register lemmas for the derivatives of the composition of `real.arctan` with a
differentiable function, for standalone use and use with `simp`. -/
open real
lemma measurable.arctan {α : Type*} [measurable_space α] {f : α → ℝ} (hf : measurable f) :
measurable (λ x, arctan (f x)) :=
measurable_arctan.comp hf
section deriv
variables {f : ℝ → ℝ} {f' x : ℝ} {s : set ℝ}
lemma has_strict_deriv_at.arctan (hf : has_strict_deriv_at f f' x) :
has_strict_deriv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) * f') x :=
(real.has_strict_deriv_at_arctan (f x)).comp x hf
lemma has_deriv_at.arctan (hf : has_deriv_at f f' x) :
has_deriv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) * f') x :=
(real.has_deriv_at_arctan (f x)).comp x hf
lemma has_deriv_within_at.arctan (hf : has_deriv_within_at f f' s x) :
has_deriv_within_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) * f') s x :=
(real.has_deriv_at_arctan (f x)).comp_has_deriv_within_at x hf
lemma deriv_within_arctan (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λ x, arctan (f x)) s x = (1 / (1 + (f x)^2)) * (deriv_within f s x) :=
hf.has_deriv_within_at.arctan.deriv_within hxs
@[simp] lemma deriv_arctan (hc : differentiable_at ℝ f x) :
deriv (λ x, arctan (f x)) x = (1 / (1 + (f x)^2)) * (deriv f x) :=
hc.has_deriv_at.arctan.deriv
end deriv
section fderiv
variables {E : Type*} [normed_group E] [normed_space ℝ E] {f : E → ℝ} {f' : E →L[ℝ] ℝ} {x : E}
{s : set E} {n : with_top ℕ}
lemma has_strict_fderiv_at.arctan (hf : has_strict_fderiv_at f f' x) :
has_strict_fderiv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) • f') x :=
(has_strict_deriv_at_arctan (f x)).comp_has_strict_fderiv_at x hf
lemma has_fderiv_at.arctan (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) • f') x :=
(has_deriv_at_arctan (f x)).comp_has_fderiv_at x hf
lemma has_fderiv_within_at.arctan (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) • f') s x :=
(has_deriv_at_arctan (f x)).comp_has_fderiv_within_at x hf
lemma fderiv_within_arctan (hf : differentiable_within_at ℝ f s x)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λ x, arctan (f x)) s x = (1 / (1 + (f x)^2)) • (fderiv_within ℝ f s x) :=
hf.has_fderiv_within_at.arctan.fderiv_within hxs
@[simp] lemma fderiv_arctan (hc : differentiable_at ℝ f x) :
fderiv ℝ (λ x, arctan (f x)) x = (1 / (1 + (f x)^2)) • (fderiv ℝ f x) :=
hc.has_fderiv_at.arctan.fderiv
lemma differentiable_within_at.arctan (hf : differentiable_within_at ℝ f s x) :
differentiable_within_at ℝ (λ x, real.arctan (f x)) s x :=
hf.has_fderiv_within_at.arctan.differentiable_within_at
@[simp] lemma differentiable_at.arctan (hc : differentiable_at ℝ f x) :
differentiable_at ℝ (λ x, arctan (f x)) x :=
hc.has_fderiv_at.arctan.differentiable_at
lemma differentiable_on.arctan (hc : differentiable_on ℝ f s) :
differentiable_on ℝ (λ x, arctan (f x)) s :=
λ x h, (hc x h).arctan
@[simp] lemma differentiable.arctan (hc : differentiable ℝ f) :
differentiable ℝ (λ x, arctan (f x)) :=
λ x, (hc x).arctan
lemma times_cont_diff_at.arctan (h : times_cont_diff_at ℝ n f x) :
times_cont_diff_at ℝ n (λ x, arctan (f x)) x :=
times_cont_diff_arctan.times_cont_diff_at.comp x h
lemma times_cont_diff.arctan (h : times_cont_diff ℝ n f) :
times_cont_diff ℝ n (λ x, arctan (f x)) :=
times_cont_diff_arctan.comp h
lemma times_cont_diff_within_at.arctan (h : times_cont_diff_within_at ℝ n f s x) :
times_cont_diff_within_at ℝ n (λ x, arctan (f x)) s x :=
times_cont_diff_arctan.comp_times_cont_diff_within_at h
lemma times_cont_diff_on.arctan (h : times_cont_diff_on ℝ n f s) :
times_cont_diff_on ℝ n (λ x, arctan (f x)) s :=
times_cont_diff_arctan.comp_times_cont_diff_on h
end fderiv
end
|
a1d84554bb0c079629270dc53f4f2495afbbd02a
|
ce6917c5bacabee346655160b74a307b4a5ab620
|
/src/ch4/ex0209.lean
|
2afd8939aac4387ee307dead0b2e8d9aaacbc808
|
[] |
no_license
|
Ailrun/Theorem_Proving_in_Lean
|
ae6a23f3c54d62d401314d6a771e8ff8b4132db2
|
2eb1b5caf93c6a5a555c79e9097cf2ba5a66cf68
|
refs/heads/master
| 1,609,838,270,467
| 1,586,846,743,000
| 1,586,846,743,000
| 240,967,761
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 798
|
lean
|
variables a b c d : ℤ
example : a + 0 = a := add_zero a
example : 0 + a = a := zero_add a
example : a * 1 = a := mul_one a
example : 1 * a = a := one_mul a
example : -a + a = 0 := neg_add_self a
example : a + -a = 0 := add_neg_self a
example : a - a = 0 := sub_self a
example : a + b = b + a := add_comm a b
example : a + b + c = a + (b + c) := add_assoc a b c
example : a * b = b * a := mul_comm a b
example : a * b * c = a * (b * c) := mul_assoc a b c
example : a * (b + c) = a * b + a * c := mul_add a b c
example : a * (b + c) = a * b + a * c := left_distrib a b c
example : (a + b) * c = a * c + b * c := add_mul a b c
example : (a + b) * c = a * c + b * c := right_distrib a b c
example : a * (b - c) = a * b - a * c := mul_sub a b c
example : (a - b) * c = a * c - b * c := sub_mul a b c
|
5ae05f245818616fbbd830a2f896be8aaa7cffc3
|
d0f9af2b0ace5ce352570d61b09019c8ef4a3b96
|
/hw9/hw9_key.lean
|
c804d85f50fda7031958f7366f205c807d8f3dd9
|
[] |
no_license
|
jngo13/Discrete-Mathematics
|
8671540ef2da7c75915d32332dd20c02f001474e
|
bf674a866e61f60e6e6d128df85fa73819091787
|
refs/heads/master
| 1,675,615,657,924
| 1,609,142,011,000
| 1,609,142,011,000
| 267,190,341
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,477
|
lean
|
/-
HOMEWORK #9
There is no need to import our previous definitions.
For this homework you will just use Lean's built-in
notations and definitions.
-/
/-
Prove the following. Note that you can read each of
the propositions to be proved as either a logical
statement or as simply a function definition. Use
what you already know about the latter to arrive
at a proof, and then understand the proof as one
that shows that the logical statement is true.
-/
theorem t1 {P Q : Prop} (p2q : P → Q) (p : P) : Q :=
p2q p
theorem t2 {P Q R : Prop} (p2q : P → Q) (q2r : Q → R): P → R :=
λ (p : P), q2r (p2q p)
/-
Use "example" to state and prove the preceding two
theorems but using "cases" style notation rather
than C-style. Remember, "example" is a way to state
a proposition/type and give an example of a value.
Here's an example of the use of "example". Give
your answers following this example.
-/
-- example
example : ℕ := 5
-- Your two answers here
-- HINT: use ∀ {P Q : Prop}, ... for the first one
example : ∀ {P Q : Prop}, (P → Q) → P → Q
| P Q p2q p := p2q p
example : ∀ {P Q R : Prop}, (P → Q) → (Q → R) → (P → R)
| P Q R p2q q2r := λ (p : P), q2r (p2q p)
-- HINT: YOU JUST PROVED THAT → is *transitive* !!!
/-
Now give English-language versions of your two proofs.
-/
/-
1. Suppose P and Q are arbitrary propositions and that
we know that P → Q and also P are true. To show that
Q is true, it suffices to apply → elimination rule of
natural deduction: apply the assumed proof of P → Q
to the assumed proof of P to obtain a proof of Q. QED.
-/
/-
2. Suppose P and Q are arbitrary propositions and that
we know that P → Q and also Q → R are true. To show
that P → R in this context, suppose P is true. Apply
P → Q to deduce the truth of Q, then apply Q → R to
deduce the truth of R. QED.
-/
/-
Prove the following using case analysis on one
of the arguments (i.e., use match...with...end
at a key point in your proof). Use "cases" style
notation.
-/
theorem t3 : ∀ (P : Prop), false → P
| P f := false.elim f
/-
Prove false → true by applying t3 to a proposition.
You have to figure out which one.
-/
theorem t4 : false → true := t3 true
/-
Define t5 to be the same as t3 but with P taken as
an implicit argument.
-/
theorem t5 : ∀ {P : Prop}, false → P
| P f := false.elim f
/-
Define t6 to be a proof of false → true by
applying t5 to the right argument(s).
-/
theorem t6 : false → true := t5
/-
That is almost magic. In English, t3 proves
that false implies *any* proposition, so just
*apply* t3 to *true* in particular, but use t5
instead of t3.
What you see here is really important: Once
we've proved a general theorem (a ∀ proposition)
we can *apply the proof* to any *particular* case
to yield a proof for that specific case. This is
the elimination rule for ∀. It is also known as
universal instantiation (UI).
-/
/-
Next we see the idea that test cases are really
just equality propositions to be proved. Here,
for example, is a definition of the factorial
function.
-/
def fac : ℕ → ℕ
| 0 := 1
| (n' + 1) := (n' + 1) * fac n'
/-
Use "example" to write test cases for the
first ten natural number arguments to this
function.
-/
example : fac 0 = 1 := eq.refl 1
example : fac 1 = 1 := eq.refl _ -- Inferred
example : fac 2 = 2 := rfl -- Shorthand
example : fac 3 = 6 := rfl
example : fac 4 = 24 := rfl
example : fac 5 = 125 := rfl
#check @rfl -- infers type and value
-- The rest of your answers here
/-
Insight: A test case is an equality proposition.
It is proved by "running" the program under test
to reduce the application of the function to input
arguments to produce an output that is then asserted
to be equal to an expected output.
In many cases, all we have to do is to simplify
the expressions on each side of the eq to see if
they reduce to exactly the same value. If so, we
can *apply* eq.refl (a universal generalization!)
to that value. Using rfl we can avoid even having
to type that value in cases where Lean can infer
it.
-/
/-
The next problem requires thave you give a proof of
a bi-implication, a proposition whose connective is
↔. To prove a bi-implication requires that one prove
an implication in each direction.
Here you are asked to prove P ∧ Q ↔ Q ∧ P. What this
formula asserts is that ∧ is commutative. To construct
a proof of this proposition you will have to apply
iff.intro to two smaller proofs, one of P → Q and
and of Q → P.
Start by "assuming" that P and Q are arbitary but
specific propositions (∀ introduction), then apply
iff.intro to two "stubbed out" arguments (underscores).
We suggest that you put the underscores in parentheses
on different lines. Then recursively fill in each of
these stubs with the required types of proofs. Study
the context that Lean shows you in its Messages panel
to see what you have to work with at each point in
your proof constructions.
-/
theorem t7 : ∀ {P Q : Prop}, P ∧ Q ↔ Q ∧ P :=
λ P Q,
iff.intro
(λ pq, and.intro pq.right pq.left)
(λ qp, and.intro qp.right qp.left)
/-
In English, when asked to prove P ↔ Q, one says, "it
will suffice to show P → Q and then to show Q → P." One
then goes on to give a proof of each implication. It
then follows from iff.intro that a proof of P ↔ Q can
be constructed, proving the bi-implication.
-/
/-
The trick here is to do case analysis on porq
(use match ... with ... end) and to show that
a proof of R can be constructed *in either case*.
-/
theorem t8 {P Q R : Prop} (p2r : P → R) (q2r : Q → R) (porq : P ∨ Q) : R :=
match porq with
| or.inl p := p2r p
| or.inr q := q2r q
end
/-
We suggest that you use "let ... in" to give
names to intermediate results that you then combine
in a final expression to finish the proof.
-/
theorem t9 : ∀ (P Q: Prop), (P → Q) → ¬ (P ∧ ¬ Q) :=
λ P Q p2q pandnotq,
let p := pandnotq.left in
let q := p2q p in
let notq := pandnotq.right in
false.elim (notq q)
theorem neg_elim' : ∀ (P : Prop), ¬ ¬ P → P :=
λ P,
λ nnp,
_ -- STUCK!!
theorem neg_elim : ∀ (P : Prop), (P ∨ ¬ P) → (¬ ¬ P → P):=
λ P,
λ h,
λ nnp,
match h with
| or.inl p := p
| or.inr np := false.elim (nnp np) -- false elimination
end
-- nnp : (¬ P) → false
-- np : ¬ P
-- nnp np = false!
-- Let's use H to mean There is a sub-exponential time algorithm for Boolean sat.
-- ¬ H means that there's not one.
-- H ∨ ¬H
-- make Lean into a classical logic
-- axiom em : ∀ (P : Prop), P ∨ ¬ P
#check classical.em
theorem t10 : ∀ (P : Prop), P ∨ ¬ P :=
classical.em
#check @or.inl
#check @or.inr
theorem t11 : ∀ (P Q : Prop), ¬ (P ∨ Q) ↔ ¬ P ∧ ¬ Q :=
λ P Q,
iff.intro
(λ not_porq,
match (classical.em P) with
| or.inl p := false.elim (not_porq (or.inl p))
| or.inr np := match (classical.em Q) with
| or.inl q := false.elim (not_porq (or.inr q))
| or.inr nq := and.intro np nq
end
end
)
-- ANSWER
(λ notpandnotq,
λ porq,
match porq with
| or.inl p := false.elim (notpandnotq.left p)
| or.inr q := false.elim (notpandnotq.right q)
end
)
theorem t12 : ∀ (P Q : Prop), ¬ (P ∧ Q) ↔ ¬ P ∨ ¬ Q :=
λ P Q,
iff.intro
(λ not_pandq,
match (classical.em P) with
| or.inl p := match (classical.em Q) with
| or.inl q := false.elim (not_pandq (and.intro p q))
| or.inr nq := or.inr nq
end
| or.inr np := or.inl np
end
)
(λ b,
λ c,
match b with
|or.inl np := np c.1
|or.inr nq := nq c.2
end
)
/-
For the following exercises, we assume that there is
a type called Person and a binary relation, Likes, on
pairs of people.
-/
axiom Person : Type
axiom Likes : Person → Person → Prop
/-
Prove the following
-/
theorem t13 :
(∃ (p : Person), ∀ (q : Person), Likes q p) →
(∀ (p : Person), ∃ (q : Person), Likes p q) :=
λ h,
match h with
| exists.intro p pf :=
λ q,
(exists.intro p (pf q))
end
|
90736f9eac52b8b80b894f7bc3ed23dc5a7602cb
|
ce6917c5bacabee346655160b74a307b4a5ab620
|
/src/ch4/ex0301.lean
|
c4387da43020bc28d01832b066bab27c7bbe5c04
|
[] |
no_license
|
Ailrun/Theorem_Proving_in_Lean
|
ae6a23f3c54d62d401314d6a771e8ff8b4132db2
|
2eb1b5caf93c6a5a555c79e9097cf2ba5a66cf68
|
refs/heads/master
| 1,609,838,270,467
| 1,586,846,743,000
| 1,586,846,743,000
| 240,967,761
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 287
|
lean
|
variables (a b c d e : ℕ)
variable h1 : a = b
variable h2 : b = c + 1
variable h3 : c = d
variable h4 : e = 1 + d
theorem T : a = e :=
calc
a = b : h1
... = c + 1 : h2
... = d + 1 : congr_arg _ h3
... = 1 + d : add_comm _ _
... = e : h4.symm
|
834a763221bb2da2444e50b89c37dbc82d266bd4
|
b70031c8e2c5337b91d7e70f1e0c5f528f7b0e77
|
/src/topology/maps.lean
|
d51889ed3e5727b6aad72a55987dc5250b64aff6
|
[
"Apache-2.0"
] |
permissive
|
molodiuc/mathlib
|
cae2ba3ef1601c1f42ca0b625c79b061b63fef5b
|
98ebe5a6739fbe254f9ee9d401882d4388f91035
|
refs/heads/master
| 1,674,237,127,059
| 1,606,353,533,000
| 1,606,353,533,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 16,018
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
-/
import topology.order
/-!
# Specific classes of maps between topological spaces
This file introduces the following properties of a map `f : X → Y` between topological spaces:
* `is_open_map f` means the image of an open set under `f` is open.
* `is_closed_map f` means the image of a closed set under `f` is closed.
(Open and closed maps need not be continuous.)
* `inducing f` means the topology on `X` is the one induced via `f` from the topology on `Y`.
These behave like embeddings except they need not be injective. Instead, points of `X` which
are identified by `f` are also indistinguishable in the topology on `X`.
* `embedding f` means `f` is inducing and also injective. Equivalently, `f` identifies `X` with
a subspace of `Y`.
* `open_embedding f` means `f` is an embedding with open image, so it identifies `X` with an
open subspace of `Y`. Equivalently, `f` is an embedding and an open map.
* `closed_embedding f` similarly means `f` is an embedding with closed image, so it identifies
`X` with a closed subspace of `Y`. Equivalently, `f` is an embedding and a closed map.
* `quotient_map f` is the dual condition to `embedding f`: `f` is surjective and the topology
on `Y` is the one coinduced via `f` from the topology on `X`. Equivalently, `f` identifies
`Y` with a quotient of `X`. Quotient maps are also sometimes known as identification maps.
## References
* <https://en.wikipedia.org/wiki/Open_and_closed_maps>
* <https://en.wikipedia.org/wiki/Embedding#General_topology>
* <https://en.wikipedia.org/wiki/Quotient_space_(topology)#Quotient_map>
## Tags
open map, closed map, embedding, quotient map, identification map
-/
open set filter
open_locale topological_space filter
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
section inducing
structure inducing [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop :=
(induced : tα = tβ.induced f)
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
lemma inducing_id : inducing (@id α) :=
⟨induced_id.symm⟩
protected lemma inducing.comp {g : β → γ} {f : α → β} (hg : inducing g) (hf : inducing f) :
inducing (g ∘ f) :=
⟨by rw [hf.induced, hg.induced, induced_compose]⟩
lemma inducing_of_inducing_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g)
(hgf : inducing (g ∘ f)) : inducing f :=
⟨le_antisymm
(by rwa ← continuous_iff_le_induced)
(by { rw [hgf.induced, ← continuous_iff_le_induced], apply hg.comp continuous_induced_dom })⟩
lemma inducing_open {f : α → β} {s : set α}
(hf : inducing f) (h : is_open (range f)) (hs : is_open s) : is_open (f '' s) :=
let ⟨t, ht, h_eq⟩ := by rw [hf.induced] at hs; exact hs in
have is_open (t ∩ range f), from is_open_inter ht h,
h_eq ▸ by rwa [image_preimage_eq_inter_range]
lemma inducing_is_closed {f : α → β} {s : set α}
(hf : inducing f) (h : is_closed (range f)) (hs : is_closed s) : is_closed (f '' s) :=
let ⟨t, ht, h_eq⟩ := by rw [hf.induced, is_closed_induced_iff] at hs; exact hs in
have is_closed (t ∩ range f), from is_closed_inter ht h,
h_eq.symm ▸ by rwa [image_preimage_eq_inter_range]
lemma inducing.nhds_eq_comap {f : α → β} (hf : inducing f) :
∀ (a : α), 𝓝 a = comap f (𝓝 $ f a) :=
(induced_iff_nhds_eq f).1 hf.induced
lemma inducing.map_nhds_eq {f : α → β} (hf : inducing f) (a : α) (h : range f ∈ 𝓝 (f a)) :
(𝓝 a).map f = 𝓝 (f a) :=
hf.induced.symm ▸ map_nhds_induced_eq h
lemma inducing.tendsto_nhds_iff {ι : Type*}
{f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : inducing g) :
tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) :=
by rw [tendsto, tendsto, hg.induced, nhds_induced, ← map_le_iff_le_comap, filter.map_map]
lemma inducing.continuous_iff {f : α → β} {g : β → γ} (hg : inducing g) :
continuous f ↔ continuous (g ∘ f) :=
by simp [continuous_iff_continuous_at, continuous_at, inducing.tendsto_nhds_iff hg]
lemma inducing.continuous {f : α → β} (hf : inducing f) : continuous f :=
hf.continuous_iff.mp continuous_id
end inducing
section embedding
/-- A function between topological spaces is an embedding if it is injective,
and for all `s : set α`, `s` is open iff it is the preimage of an open set. -/
structure embedding [tα : topological_space α] [tβ : topological_space β] (f : α → β)
extends inducing f : Prop :=
(inj : function.injective f)
variables [topological_space α] [topological_space β] [topological_space γ]
lemma embedding.mk' (f : α → β) (inj : function.injective f)
(induced : ∀a, comap f (𝓝 (f a)) = 𝓝 a) : embedding f :=
⟨⟨(induced_iff_nhds_eq f).2 (λ a, (induced a).symm)⟩, inj⟩
lemma embedding_id : embedding (@id α) :=
⟨inducing_id, assume a₁ a₂ h, h⟩
lemma embedding.comp {g : β → γ} {f : α → β} (hg : embedding g) (hf : embedding f) :
embedding (g ∘ f) :=
{ inj:= assume a₁ a₂ h, hf.inj $ hg.inj h,
..hg.to_inducing.comp hf.to_inducing }
lemma embedding_of_embedding_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g)
(hgf : embedding (g ∘ f)) : embedding f :=
{ induced := (inducing_of_inducing_compose hf hg hgf.to_inducing).induced,
inj := assume a₁ a₂ h, hgf.inj $ by simp [h, (∘)] }
lemma embedding_open {f : α → β} {s : set α}
(hf : embedding f) (h : is_open (range f)) (hs : is_open s) : is_open (f '' s) :=
inducing_open hf.1 h hs
lemma embedding_is_closed {f : α → β} {s : set α}
(hf : embedding f) (h : is_closed (range f)) (hs : is_closed s) : is_closed (f '' s) :=
inducing_is_closed hf.1 h hs
lemma embedding.map_nhds_eq {f : α → β}
(hf : embedding f) (a : α) (h : range f ∈ 𝓝 (f a)) : (𝓝 a).map f = 𝓝 (f a) :=
inducing.map_nhds_eq hf.1 a h
lemma embedding.tendsto_nhds_iff {ι : Type*}
{f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : embedding g) :
tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) :=
by rw [tendsto, tendsto, hg.induced, nhds_induced, ← map_le_iff_le_comap, filter.map_map]
lemma embedding.continuous_iff {f : α → β} {g : β → γ} (hg : embedding g) :
continuous f ↔ continuous (g ∘ f) :=
inducing.continuous_iff hg.1
lemma embedding.continuous {f : α → β} (hf : embedding f) : continuous f :=
inducing.continuous hf.1
lemma embedding.closure_eq_preimage_closure_image {e : α → β} (he : embedding e) (s : set α) :
closure s = e ⁻¹' closure (e '' s) :=
by { ext x, rw [set.mem_preimage, ← closure_induced he.inj, he.induced] }
end embedding
/-- A function between topological spaces is a quotient map if it is surjective,
and for all `s : set β`, `s` is open iff its preimage is an open set. -/
def quotient_map {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β]
(f : α → β) : Prop :=
function.surjective f ∧ tβ = tα.coinduced f
namespace quotient_map
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
protected lemma id : quotient_map (@id α) :=
⟨assume a, ⟨a, rfl⟩, coinduced_id.symm⟩
protected lemma comp {g : β → γ} {f : α → β} (hg : quotient_map g) (hf : quotient_map f) :
quotient_map (g ∘ f) :=
⟨hg.left.comp hf.left, by rw [hg.right, hf.right, coinduced_compose]⟩
protected lemma of_quotient_map_compose {f : α → β} {g : β → γ}
(hf : continuous f) (hg : continuous g)
(hgf : quotient_map (g ∘ f)) : quotient_map g :=
⟨assume b, let ⟨a, h⟩ := hgf.left b in ⟨f a, h⟩,
le_antisymm
(by rw [hgf.right, ← continuous_iff_coinduced_le];
apply continuous_coinduced_rng.comp hf)
(by rwa ← continuous_iff_coinduced_le)⟩
protected lemma continuous_iff {f : α → β} {g : β → γ} (hf : quotient_map f) :
continuous g ↔ continuous (g ∘ f) :=
by rw [continuous_iff_coinduced_le, continuous_iff_coinduced_le, hf.right, coinduced_compose]
protected lemma continuous {f : α → β} (hf : quotient_map f) : continuous f :=
hf.continuous_iff.mp continuous_id
end quotient_map
/-- A map `f : α → β` is said to be an *open map*, if the image of any open `U : set α`
is open in `β`. -/
def is_open_map [topological_space α] [topological_space β] (f : α → β) :=
∀ U : set α, is_open U → is_open (f '' U)
namespace is_open_map
variables [topological_space α] [topological_space β] [topological_space γ]
open function
protected lemma id : is_open_map (@id α) := assume s hs, by rwa [image_id]
protected lemma comp
{g : β → γ} {f : α → β} (hg : is_open_map g) (hf : is_open_map f) : is_open_map (g ∘ f) :=
by intros s hs; rw [image_comp]; exact hg _ (hf _ hs)
lemma is_open_range {f : α → β} (hf : is_open_map f) : is_open (range f) :=
by { rw ← image_univ, exact hf _ is_open_univ }
lemma image_mem_nhds {f : α → β} (hf : is_open_map f) {x : α} {s : set α} (hx : s ∈ 𝓝 x) :
f '' s ∈ 𝓝 (f x) :=
let ⟨t, hts, ht, hxt⟩ := mem_nhds_sets_iff.1 hx in
mem_sets_of_superset (mem_nhds_sets (hf t ht) (mem_image_of_mem _ hxt)) (image_subset _ hts)
lemma nhds_le {f : α → β} (hf : is_open_map f) (a : α) : 𝓝 (f a) ≤ (𝓝 a).map f :=
le_map $ λ s, hf.image_mem_nhds
lemma of_inverse {f : α → β} {f' : β → α}
(h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') :
is_open_map f :=
begin
assume s hs,
have : f' ⁻¹' s = f '' s, by ext x; simp [mem_image_iff_of_inverse r_inv l_inv],
rw ← this,
exact hs.preimage h
end
lemma to_quotient_map {f : α → β}
(open_map : is_open_map f) (cont : continuous f) (surj : function.surjective f) :
quotient_map f :=
⟨ surj,
begin
ext s,
show is_open s ↔ is_open (f ⁻¹' s),
split,
{ exact continuous_def.1 cont s },
{ assume h,
rw ← @image_preimage_eq _ _ _ s surj,
exact open_map _ h }
end⟩
end is_open_map
lemma is_open_map_iff_nhds_le [topological_space α] [topological_space β] {f : α → β} :
is_open_map f ↔ ∀(a:α), 𝓝 (f a) ≤ (𝓝 a).map f :=
begin
refine ⟨λ hf, hf.nhds_le, λ h s hs, is_open_iff_mem_nhds.2 _⟩,
rintros b ⟨a, ha, rfl⟩,
exact h _ (filter.image_mem_map $ mem_nhds_sets hs ha)
end
section is_closed_map
variables [topological_space α] [topological_space β]
def is_closed_map (f : α → β) := ∀ U : set α, is_closed U → is_closed (f '' U)
end is_closed_map
namespace is_closed_map
variables [topological_space α] [topological_space β] [topological_space γ]
open function
protected lemma id : is_closed_map (@id α) := assume s hs, by rwa image_id
protected lemma comp {g : β → γ} {f : α → β} (hg : is_closed_map g) (hf : is_closed_map f) :
is_closed_map (g ∘ f) :=
by { intros s hs, rw image_comp, exact hg _ (hf _ hs) }
lemma of_inverse {f : α → β} {f' : β → α}
(h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') :
is_closed_map f :=
assume s hs,
have f' ⁻¹' s = f '' s, by ext x; simp [mem_image_iff_of_inverse r_inv l_inv],
this ▸ continuous_iff_is_closed.mp h s hs
lemma of_nonempty {f : α → β} (h : ∀ s, is_closed s → s.nonempty → is_closed (f '' s)) :
is_closed_map f :=
begin
intros s hs, cases eq_empty_or_nonempty s with h2s h2s,
{ simp_rw [h2s, image_empty, is_closed_empty] },
{ exact h s hs h2s }
end
end is_closed_map
section open_embedding
variables [topological_space α] [topological_space β] [topological_space γ]
/-- An open embedding is an embedding with open image. -/
structure open_embedding (f : α → β) extends embedding f : Prop :=
(open_range : is_open $ range f)
lemma open_embedding.open_iff_image_open {f : α → β} (hf : open_embedding f)
{s : set α} : is_open s ↔ is_open (f '' s) :=
⟨embedding_open hf.to_embedding hf.open_range,
λ h, begin
convert ← h.preimage hf.to_embedding.continuous,
apply preimage_image_eq _ hf.inj
end⟩
lemma open_embedding.is_open_map {f : α → β} (hf : open_embedding f) : is_open_map f :=
λ s, hf.open_iff_image_open.mp
lemma open_embedding.continuous {f : α → β} (hf : open_embedding f) : continuous f :=
hf.to_embedding.continuous
lemma open_embedding.open_iff_preimage_open {f : α → β} (hf : open_embedding f)
{s : set β} (hs : s ⊆ range f) : is_open s ↔ is_open (f ⁻¹' s) :=
begin
convert ←hf.open_iff_image_open.symm,
rwa [image_preimage_eq_inter_range, inter_eq_self_of_subset_left]
end
lemma open_embedding_of_embedding_open {f : α → β} (h₁ : embedding f)
(h₂ : is_open_map f) : open_embedding f :=
⟨h₁, by convert h₂ univ is_open_univ; simp⟩
lemma open_embedding_of_continuous_injective_open {f : α → β} (h₁ : continuous f)
(h₂ : function.injective f) (h₃ : is_open_map f) : open_embedding f :=
begin
refine open_embedding_of_embedding_open ⟨⟨_⟩, h₂⟩ h₃,
apply le_antisymm (continuous_iff_le_induced.mp h₁) _,
intro s,
change is_open _ ≤ is_open _,
rw is_open_induced_iff,
refine λ hs, ⟨f '' s, h₃ s hs, _⟩,
rw preimage_image_eq _ h₂
end
lemma open_embedding_id : open_embedding (@id α) :=
⟨embedding_id, by convert is_open_univ; apply range_id⟩
lemma open_embedding.comp {g : β → γ} {f : α → β}
(hg : open_embedding g) (hf : open_embedding f) : open_embedding (g ∘ f) :=
⟨hg.1.comp hf.1, show is_open (range (g ∘ f)),
by rw [range_comp, ←hg.open_iff_image_open]; exact hf.2⟩
end open_embedding
section closed_embedding
variables [topological_space α] [topological_space β] [topological_space γ]
/-- A closed embedding is an embedding with closed image. -/
structure closed_embedding (f : α → β) extends embedding f : Prop :=
(closed_range : is_closed $ range f)
variables {f : α → β}
lemma closed_embedding.continuous (hf : closed_embedding f) : continuous f :=
hf.to_embedding.continuous
lemma closed_embedding.closed_iff_image_closed (hf : closed_embedding f)
{s : set α} : is_closed s ↔ is_closed (f '' s) :=
⟨embedding_is_closed hf.to_embedding hf.closed_range,
λ h, begin
convert ←continuous_iff_is_closed.mp hf.continuous _ h,
apply preimage_image_eq _ hf.inj
end⟩
lemma closed_embedding.is_closed_map (hf : closed_embedding f) : is_closed_map f :=
λ s, hf.closed_iff_image_closed.mp
lemma closed_embedding.closed_iff_preimage_closed (hf : closed_embedding f)
{s : set β} (hs : s ⊆ range f) : is_closed s ↔ is_closed (f ⁻¹' s) :=
begin
convert ←hf.closed_iff_image_closed.symm,
rwa [image_preimage_eq_inter_range, inter_eq_self_of_subset_left]
end
lemma closed_embedding_of_embedding_closed (h₁ : embedding f)
(h₂ : is_closed_map f) : closed_embedding f :=
⟨h₁, by convert h₂ univ is_closed_univ; simp⟩
lemma closed_embedding_of_continuous_injective_closed (h₁ : continuous f)
(h₂ : function.injective f) (h₃ : is_closed_map f) : closed_embedding f :=
begin
refine closed_embedding_of_embedding_closed ⟨⟨_⟩, h₂⟩ h₃,
apply le_antisymm (continuous_iff_le_induced.mp h₁) _,
intro s',
change is_open _ ≤ is_open _,
rw [←is_closed_compl_iff, ←is_closed_compl_iff],
generalize : s'ᶜ = s,
rw is_closed_induced_iff,
refine λ hs, ⟨f '' s, h₃ s hs, _⟩,
rw preimage_image_eq _ h₂
end
lemma closed_embedding_id : closed_embedding (@id α) :=
⟨embedding_id, by convert is_closed_univ; apply range_id⟩
lemma closed_embedding.comp {g : β → γ} {f : α → β}
(hg : closed_embedding g) (hf : closed_embedding f) : closed_embedding (g ∘ f) :=
⟨hg.to_embedding.comp hf.to_embedding, show is_closed (range (g ∘ f)),
by rw [range_comp, ←hg.closed_iff_image_closed]; exact hf.closed_range⟩
end closed_embedding
|
7318a537a0d801dd8f899de38913ead4d9e896a3
|
137c667471a40116a7afd7261f030b30180468c2
|
/src/ring_theory/fractional_ideal.lean
|
3640b1dea4d7661ba7e15342fcd896964230883b
|
[
"Apache-2.0"
] |
permissive
|
bragadeesh153/mathlib
|
46bf814cfb1eecb34b5d1549b9117dc60f657792
|
b577bb2cd1f96eb47031878256856020b76f73cd
|
refs/heads/master
| 1,687,435,188,334
| 1,626,384,207,000
| 1,626,384,207,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 40,528
|
lean
|
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen, Filippo A. E. Nuccio
-/
import ring_theory.localization
import ring_theory.noetherian
import ring_theory.principal_ideal_domain
import tactic.field_simp
/-!
# Fractional ideals
This file defines fractional ideals of an integral domain and proves basic facts about them.
## Main definitions
Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the
natural ring hom from `R` to `P`.
* `is_fractional` defines which `R`-submodules of `P` are fractional ideals
* `fractional_ideal S P` is the type of fractional ideals in `P`
* `has_coe (ideal R) (fractional_ideal S P)` instance
* `comm_semiring (fractional_ideal S P)` instance:
the typical ideal operations generalized to fractional ideals
* `lattice (fractional_ideal S P)` instance
* `map` is the pushforward of a fractional ideal along an algebra morphism
Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions).
* `fractional_ideal R⁰ K` is the type of fractional ideals in the field of fractions
* `has_div (fractional_ideal R⁰ K)` instance:
the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined)
## Main statements
* `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone
* `prod_one_self_div_eq` states that `1 / I` is the inverse of `I` if one exists
* `is_noetherian` states that very fractional ideal of a noetherian integral domain is noetherian
## Implementation notes
Fractional ideals are considered equal when they contain the same elements,
independent of the denominator `a : R` such that `a I ⊆ R`.
Thus, we define `fractional_ideal` to be the subtype of the predicate `is_fractional`,
instead of having `fractional_ideal` be a structure of which `a` is a field.
Most definitions in this file specialize operations from submodules to fractional ideals,
proving that the result of this operation is fractional if the input is fractional.
Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`,
in order to re-use their respective proof terms.
We can still use `simp` to show `I.1 + J.1 = (I + J).1` and `⊥.1 = 0.1`.
Many results in fact do not need that `P` is a localization, only that `P` is an
`R`-algebra. We omit the `is_localization` parameter whenever this is practical.
Similarly, we don't assume that the localization is a field until we need it to
define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`,
making the localization a field.
## References
* https://en.wikipedia.org/wiki/Fractional_ideal
## Tags
fractional ideal, fractional ideals, invertible ideal
-/
open is_localization
local notation R`⁰`:9000 := non_zero_divisors R
namespace ring
section defs
variables {R : Type*} [comm_ring R] {S : submonoid R} {P : Type*} [comm_ring P]
variables [algebra R P]
variables (S)
/-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/
def is_fractional (I : submodule R P) :=
∃ a ∈ S, ∀ b ∈ I, is_integer R (a • b)
variables (S P)
/-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`.
More precisely, let `P` be a localization of `R` at some submonoid `S`,
then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`,
such that there is a nonzero `a : R` with `a I ⊆ R`.
-/
def fractional_ideal :=
{I : submodule R P // is_fractional S I}
end defs
namespace fractional_ideal
open set
open submodule
variables {R : Type*} [comm_ring R] {S : submonoid R} {P : Type*} [comm_ring P]
variables [algebra R P] [loc : is_localization S P]
instance : has_coe (fractional_ideal S P) (submodule R P) := ⟨λ I, I.val⟩
@[simp] lemma val_eq_coe (I : fractional_ideal S P) : I.val = I := rfl
@[simp, norm_cast] lemma coe_mk (I : submodule R P) (hI : is_fractional S I) :
(subtype.mk I hI : submodule R P) = I := rfl
instance : has_mem P (fractional_ideal S P) := ⟨λ x I, x ∈ (I : submodule R P)⟩
/-- Fractional ideals are equal if their submodules are equal.
Combined with `submodule.ext` this gives that fractional ideals are equal if
they have the same elements.
-/
lemma coe_injective {I J : fractional_ideal S P} : (I : submodule R P) = J → I = J :=
subtype.ext_iff_val.mpr
lemma ext_iff {I J : fractional_ideal S P} : (∀ x, (x ∈ I ↔ x ∈ J)) ↔ I = J :=
⟨λ h, coe_injective (submodule.ext h), λ h x, h ▸ iff.rfl⟩
@[ext] lemma ext {I J : fractional_ideal S P} : (∀ x, (x ∈ I ↔ x ∈ J)) → I = J :=
ext_iff.mp
lemma fractional_of_subset_one (I : submodule R P)
(h : I ≤ (submodule.span R {1})) :
is_fractional S I :=
begin
use [1, S.one_mem],
intros b hb,
rw one_smul,
rw ←submodule.one_eq_span at h,
obtain ⟨b', b'_mem, rfl⟩ := h hb,
exact set.mem_range_self b',
end
lemma is_fractional_of_le {I : submodule R P} {J : fractional_ideal S P}
(hIJ : I ≤ J) : is_fractional S I :=
begin
obtain ⟨a, a_mem, ha⟩ := J.2,
use [a, a_mem],
intros b b_mem,
exact ha b (hIJ b_mem)
end
instance coe_to_fractional_ideal : has_coe (ideal R) (fractional_ideal S P) :=
⟨λ I, ⟨coe_submodule P I, fractional_of_subset_one _ $ λ x ⟨y, hy, h⟩,
submodule.mem_span_singleton.2 ⟨y, by rw ← h; exact (algebra.algebra_map_eq_smul_one y).symm⟩⟩⟩
@[simp, norm_cast] lemma coe_coe_ideal (I : ideal R) :
((I : fractional_ideal S P) : submodule R P) = coe_submodule P I := rfl
variables (S)
@[simp] lemma mem_coe_ideal {x : P} {I : ideal R} :
x ∈ (I : fractional_ideal S P) ↔ ∃ (x' ∈ I), algebra_map R P x' = x :=
⟨ λ ⟨x', hx', hx⟩, ⟨x', hx', hx⟩,
λ ⟨x', hx', hx⟩, ⟨x', hx', hx⟩ ⟩
instance : has_zero (fractional_ideal S P) := ⟨(0 : ideal R)⟩
@[simp] lemma mem_zero_iff {x : P} : x ∈ (0 : fractional_ideal S P) ↔ x = 0 :=
⟨ (λ ⟨x', x'_mem_zero, x'_eq_x⟩,
have x'_eq_zero : x' = 0 := x'_mem_zero,
by simp [x'_eq_x.symm, x'_eq_zero]),
(λ hx, ⟨0, rfl, by simp [hx]⟩) ⟩
variables {S}
@[simp, norm_cast] lemma coe_zero : ↑(0 : fractional_ideal S P) = (⊥ : submodule R P) :=
submodule.ext $ λ _, mem_zero_iff S
@[simp, norm_cast] lemma coe_to_fractional_ideal_bot : ((⊥ : ideal R) : fractional_ideal S P) = 0 :=
rfl
variables (P)
include loc
@[simp] lemma exists_mem_to_map_eq {x : R} {I : ideal R} (h : S ≤ non_zero_divisors R) :
(∃ x', x' ∈ I ∧ algebra_map R P x' = algebra_map R P x) ↔ x ∈ I :=
⟨λ ⟨x', hx', eq⟩, is_localization.injective _ h eq ▸ hx', λ h, ⟨x, h, rfl⟩⟩
variables {P}
lemma coe_to_fractional_ideal_injective (h : S ≤ non_zero_divisors R) :
function.injective (coe : ideal R → fractional_ideal S P) :=
λ I J heq, have
∀ (x : R), algebra_map R P x ∈ (I : fractional_ideal S P) ↔
algebra_map R P x ∈ (J : fractional_ideal S P) :=
λ x, heq ▸ iff.rfl,
ideal.ext (by simpa only [mem_coe_ideal, exists_prop, exists_mem_to_map_eq P h] using this)
lemma coe_to_fractional_ideal_eq_zero {I : ideal R} (hS : S ≤ non_zero_divisors R) :
(I : fractional_ideal S P) = 0 ↔ I = (⊥ : ideal R) :=
⟨λ h, coe_to_fractional_ideal_injective hS h,
λ h, by rw [h, coe_to_fractional_ideal_bot]⟩
lemma coe_to_fractional_ideal_ne_zero {I : ideal R} (hS : S ≤ non_zero_divisors R) :
(I : fractional_ideal S P) ≠ 0 ↔ I ≠ (⊥ : ideal R) :=
not_iff_not.mpr (coe_to_fractional_ideal_eq_zero hS)
omit loc
lemma coe_to_submodule_eq_bot {I : fractional_ideal S P} :
(I : submodule R P) = ⊥ ↔ I = 0 :=
⟨λ h, coe_injective (by simp [h]),
λ h, by simp [h] ⟩
lemma coe_to_submodule_ne_bot {I : fractional_ideal S P} :
↑I ≠ (⊥ : submodule R P) ↔ I ≠ 0 :=
not_iff_not.mpr coe_to_submodule_eq_bot
instance : inhabited (fractional_ideal S P) := ⟨0⟩
instance : has_one (fractional_ideal S P) :=
⟨(1 : ideal R)⟩
variables (S)
lemma mem_one_iff {x : P} : x ∈ (1 : fractional_ideal S P) ↔ ∃ x' : R, algebra_map R P x' = x :=
iff.intro (λ ⟨x', _, h⟩, ⟨x', h⟩) (λ ⟨x', h⟩, ⟨x', ⟨x', rfl⟩, h⟩)
lemma coe_mem_one (x : R) : algebra_map R P x ∈ (1 : fractional_ideal S P) :=
(mem_one_iff S).mpr ⟨x, rfl⟩
lemma one_mem_one : (1 : P) ∈ (1 : fractional_ideal S P) :=
(mem_one_iff S).mpr ⟨1, ring_hom.map_one _⟩
variables {S}
/-- `(1 : fractional_ideal S P)` is defined as the R-submodule `f(R) ≤ P`.
However, this is not definitionally equal to `1 : submodule R P`,
which is proved in the actual `simp` lemma `coe_one`. -/
lemma coe_one_eq_coe_submodule_one :
↑(1 : fractional_ideal S P) = coe_submodule P (1 : ideal R) :=
rfl
@[simp, norm_cast] lemma coe_one :
(↑(1 : fractional_ideal S P) : submodule R P) = 1 :=
by rw [coe_one_eq_coe_submodule_one, ideal.one_eq_top, coe_submodule_top]
section lattice
/-!
### `lattice` section
Defines the order on fractional ideals as inclusion of their underlying sets,
and ports the lattice structure on submodules to fractional ideals.
-/
instance : partial_order (fractional_ideal S P) :=
{ le := λ I J, I.1 ≤ J.1,
le_refl := λ I, le_refl I.1,
le_antisymm := λ ⟨I, hI⟩ ⟨J, hJ⟩ hIJ hJI, by { congr, exact le_antisymm hIJ hJI },
le_trans := λ _ _ _ hIJ hJK, le_trans hIJ hJK }
lemma le_iff_mem {I J : fractional_ideal S P} : I ≤ J ↔ (∀ x ∈ I, x ∈ J) :=
iff.rfl
@[simp] lemma coe_le_coe {I J : fractional_ideal S P} :
(I : submodule R P) ≤ (J : submodule R P) ↔ I ≤ J :=
iff.rfl
lemma zero_le (I : fractional_ideal S P) : 0 ≤ I :=
begin
intros x hx,
convert submodule.zero_mem _,
simpa using hx
end
instance order_bot : order_bot (fractional_ideal S P) :=
{ bot := 0,
bot_le := zero_le,
..fractional_ideal.partial_order }
@[simp] lemma bot_eq_zero : (⊥ : fractional_ideal S P) = 0 :=
rfl
@[simp] lemma le_zero_iff {I : fractional_ideal S P} : I ≤ 0 ↔ I = 0 :=
le_bot_iff
lemma eq_zero_iff {I : fractional_ideal S P} : I = 0 ↔ (∀ x ∈ I, x = (0 : P)) :=
⟨ (λ h x hx, by simpa [h, mem_zero_iff] using hx),
(λ h, le_bot_iff.mp (λ x hx, (mem_zero_iff S).mpr (h x hx))) ⟩
lemma fractional_sup (I J : fractional_ideal S P) : is_fractional S (I.1 ⊔ J.1) :=
begin
rcases I.2 with ⟨aI, haI, hI⟩,
rcases J.2 with ⟨aJ, haJ, hJ⟩,
use aI * aJ,
use S.mul_mem haI haJ,
intros b hb,
rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩,
rw smul_add,
apply is_integer_add,
{ rw [mul_smul, smul_comm],
exact is_integer_smul (hI bI hbI), },
{ rw mul_smul,
exact is_integer_smul (hJ bJ hbJ) }
end
lemma fractional_inf (I J : fractional_ideal S P) : is_fractional S (I.1 ⊓ J.1) :=
begin
rcases I.2 with ⟨aI, haI, hI⟩,
use aI,
use haI,
intros b hb,
rcases mem_inf.mp hb with ⟨hbI, hbJ⟩,
exact hI b hbI
end
instance lattice : lattice (fractional_ideal S P) :=
{ inf := λ I J, ⟨I.1 ⊓ J.1, fractional_inf I J⟩,
sup := λ I J, ⟨I.1 ⊔ J.1, fractional_sup I J⟩,
inf_le_left := λ I J, show I.1 ⊓ J.1 ≤ I.1, from inf_le_left,
inf_le_right := λ I J, show I.1 ⊓ J.1 ≤ J.1, from inf_le_right,
le_inf := λ I J K hIJ hIK, show I.1 ≤ (J.1 ⊓ K.1), from le_inf hIJ hIK,
le_sup_left := λ I J, show I.1 ≤ I.1 ⊔ J.1, from le_sup_left,
le_sup_right := λ I J, show J.1 ≤ I.1 ⊔ J.1, from le_sup_right,
sup_le := λ I J K hIK hJK, show (I.1 ⊔ J.1) ≤ K.1, from sup_le hIK hJK,
..fractional_ideal.partial_order }
instance : semilattice_sup_bot (fractional_ideal S P) :=
{ ..fractional_ideal.order_bot, ..fractional_ideal.lattice }
end lattice
section semiring
instance : has_add (fractional_ideal S P) := ⟨(⊔)⟩
@[simp]
lemma sup_eq_add (I J : fractional_ideal S P) : I ⊔ J = I + J := rfl
@[simp, norm_cast]
lemma coe_add (I J : fractional_ideal S P) : (↑(I + J) : submodule R P) = I + J := rfl
lemma fractional_mul (I J : fractional_ideal S P) : is_fractional S (I.1 * J.1) :=
begin
rcases I with ⟨I, aI, haI, hI⟩,
rcases J with ⟨J, aJ, haJ, hJ⟩,
use aI * aJ,
use S.mul_mem haI haJ,
intros b hb,
apply submodule.mul_induction_on hb,
{ intros m hm n hn,
obtain ⟨n', hn'⟩ := hJ n hn,
rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← algebra.smul_def],
apply hI,
exact submodule.smul_mem _ _ hm },
{ rw smul_zero,
exact ⟨0, ring_hom.map_zero _⟩ },
{ intros x y hx hy,
rw smul_add,
apply is_integer_add hx hy },
{ intros r x hx,
rw smul_comm,
exact is_integer_smul hx },
end
/-- `fractional_ideal.mul` is the product of two fractional ideals,
used to define the `has_mul` instance.
This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`.
Elaborated terms involving `fractional_ideal` tend to grow quite large,
so by making definitions irreducible, we hope to avoid deep unfolds.
-/
@[irreducible]
def mul (I J : fractional_ideal S P) : fractional_ideal S P :=
⟨I.1 * J.1, fractional_mul I J⟩
local attribute [semireducible] mul
instance : has_mul (fractional_ideal S P) := ⟨λ I J, mul I J⟩
@[simp] lemma mul_eq_mul (I J : fractional_ideal S P) : mul I J = I * J := rfl
@[simp, norm_cast]
lemma coe_mul (I J : fractional_ideal S P) : (↑(I * J) : submodule R P) = I * J := rfl
lemma mul_left_mono (I : fractional_ideal S P) : monotone ((*) I) :=
λ J J' h, mul_le.mpr (λ x hx y hy, mul_mem_mul hx (h hy))
lemma mul_right_mono (I : fractional_ideal S P) : monotone (λ J, J * I) :=
λ J J' h, mul_le.mpr (λ x hx y hy, mul_mem_mul (h hx) hy)
lemma mul_mem_mul {I J : fractional_ideal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) :
i * j ∈ I * J := submodule.mul_mem_mul hi hj
lemma mul_le {I J K : fractional_ideal S P} :
I * J ≤ K ↔ (∀ (i ∈ I) (j ∈ J), i * j ∈ K) :=
submodule.mul_le
@[elab_as_eliminator] protected theorem mul_induction_on
{I J : fractional_ideal S P}
{C : P → Prop} {r : P} (hr : r ∈ I * J)
(hm : ∀ (i ∈ I) (j ∈ J), C (i * j))
(h0 : C 0) (ha : ∀ x y, C x → C y → C (x + y))
(hs : ∀ (r : R) x, C x → C (r • x)) : C r :=
submodule.mul_induction_on hr hm h0 ha hs
instance comm_semiring : comm_semiring (fractional_ideal S P) :=
{ add_assoc := λ I J K, sup_assoc,
add_comm := λ I J, sup_comm,
add_zero := λ I, sup_bot_eq,
zero_add := λ I, bot_sup_eq,
mul_assoc := λ I J K, coe_injective (submodule.mul_assoc _ _ _),
mul_comm := λ I J, coe_injective (submodule.mul_comm _ _),
mul_one := λ I, begin
ext,
split; intro h,
{ apply mul_le.mpr _ h,
rintros x hx y ⟨y', y'_mem_R, rfl⟩,
convert submodule.smul_mem _ y' hx,
rw [mul_comm, eq_comm],
exact algebra.smul_def y' x },
{ have : x * 1 ∈ (I * 1) := mul_mem_mul h (one_mem_one _),
rwa [mul_one] at this }
end,
one_mul := λ I, begin
ext,
split; intro h,
{ apply mul_le.mpr _ h,
rintros x ⟨x', x'_mem_R, rfl⟩ y hy,
convert submodule.smul_mem _ x' hy,
rw eq_comm,
exact algebra.smul_def x' y },
{ have : 1 * x ∈ (1 * I) := mul_mem_mul (one_mem_one _) h,
rwa one_mul at this }
end,
mul_zero := λ I, eq_zero_iff.mpr (λ x hx, submodule.mul_induction_on hx
(λ x hx y hy, by simp [(mem_zero_iff S).mp hy])
rfl
(λ x y hx hy, by simp [hx, hy])
(λ r x hx, by simp [hx])),
zero_mul := λ I, eq_zero_iff.mpr (λ x hx, submodule.mul_induction_on hx
(λ x hx y hy, by simp [(mem_zero_iff S).mp hx])
rfl
(λ x y hx hy, by simp [hx, hy])
(λ r x hx, by simp [hx])),
left_distrib := λ I J K, coe_injective (mul_add _ _ _),
right_distrib := λ I J K, coe_injective (add_mul _ _ _),
..fractional_ideal.has_zero S,
..fractional_ideal.has_add,
..fractional_ideal.has_one,
..fractional_ideal.has_mul }
section order
lemma add_le_add_left {I J : fractional_ideal S P} (hIJ : I ≤ J) (J' : fractional_ideal S P) :
J' + I ≤ J' + J :=
sup_le_sup_left hIJ J'
lemma mul_le_mul_left {I J : fractional_ideal S P} (hIJ : I ≤ J) (J' : fractional_ideal S P) :
J' * I ≤ J' * J :=
mul_le.mpr (λ k hk j hj, mul_mem_mul hk (hIJ hj))
lemma le_self_mul_self {I : fractional_ideal S P} (hI: 1 ≤ I) : I ≤ I * I :=
begin
convert mul_left_mono I hI,
exact (mul_one I).symm
end
lemma mul_self_le_self {I : fractional_ideal S P} (hI: I ≤ 1) : I * I ≤ I :=
begin
convert mul_left_mono I hI,
exact (mul_one I).symm
end
lemma coe_ideal_le_one {I : ideal R} : (I : fractional_ideal S P) ≤ 1 :=
λ x hx, let ⟨y, _, hy⟩ := (fractional_ideal.mem_coe_ideal S).mp hx
in (fractional_ideal.mem_one_iff S).mpr ⟨y, hy⟩
lemma le_one_iff_exists_coe_ideal {J : fractional_ideal S P} :
J ≤ (1 : fractional_ideal S P) ↔ ∃ (I : ideal R), ↑I = J :=
begin
split,
{ intro hJ,
refine ⟨⟨{x : R | algebra_map R P x ∈ J}, _, _, _⟩, _⟩,
{ rw [mem_set_of_eq, ring_hom.map_zero],
exact J.val.zero_mem },
{ intros a b ha hb,
rw [mem_set_of_eq, ring_hom.map_add],
exact J.val.add_mem ha hb },
{ intros c x hx,
rw [smul_eq_mul, mem_set_of_eq, ring_hom.map_mul, ← algebra.smul_def],
exact J.val.smul_mem c hx },
{ ext x,
split,
{ rintros ⟨y, hy, eq_y⟩,
rwa ← eq_y },
{ intro hx,
obtain ⟨y, eq_x⟩ := (fractional_ideal.mem_one_iff S).mp (hJ hx),
rw ← eq_x at *,
exact ⟨y, hx, rfl⟩ } } },
{ rintro ⟨I, hI⟩,
rw ← hI,
apply coe_ideal_le_one },
end
end order
variables {P' : Type*} [comm_ring P'] [algebra R P'] [loc' : is_localization S P']
variables {P'' : Type*} [comm_ring P''] [algebra R P''] [loc'' : is_localization S P'']
lemma fractional_map (g : P →ₐ[R] P') (I : fractional_ideal S P) :
is_fractional S (submodule.map g.to_linear_map I.1) :=
begin
rcases I with ⟨I, a, a_nonzero, hI⟩,
use [a, a_nonzero],
intros b hb,
obtain ⟨b', b'_mem, hb'⟩ := submodule.mem_map.mp hb,
obtain ⟨x, hx⟩ := hI b' b'_mem,
use x,
erw [←g.commutes, hx, g.map_smul, hb']
end
/-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/
def map (g : P →ₐ[R] P') :
fractional_ideal S P → fractional_ideal S P' :=
λ I, ⟨submodule.map g.to_linear_map I.1, fractional_map g I⟩
@[simp, norm_cast] lemma coe_map (g : P →ₐ[R] P') (I : fractional_ideal S P) :
↑(map g I) = submodule.map g.to_linear_map I := rfl
@[simp] lemma mem_map {I : fractional_ideal S P} {g : P →ₐ[R] P'}
{y : P'} : y ∈ I.map g ↔ ∃ x, x ∈ I ∧ g x = y :=
submodule.mem_map
variables (I J : fractional_ideal S P) (g : P →ₐ[R] P')
@[simp] lemma map_id : I.map (alg_hom.id _ _) = I :=
coe_injective (submodule.map_id I.1)
@[simp] lemma map_comp (g' : P' →ₐ[R] P'') :
I.map (g'.comp g) = (I.map g).map g' :=
coe_injective (submodule.map_comp g.to_linear_map g'.to_linear_map I.1)
@[simp, norm_cast] lemma map_coe_ideal (I : ideal R) :
(I : fractional_ideal S P).map g = I :=
begin
ext x,
simp only [mem_coe_ideal],
split,
{ rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩,
exact ⟨y, hy, (g.commutes y).symm⟩ },
{ rintro ⟨y, hy, rfl⟩,
exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ },
end
@[simp] lemma map_one :
(1 : fractional_ideal S P).map g = 1 :=
map_coe_ideal g 1
@[simp] lemma map_zero :
(0 : fractional_ideal S P).map g = 0 :=
map_coe_ideal g 0
@[simp] lemma map_add : (I + J).map g = I.map g + J.map g :=
coe_injective (submodule.map_sup _ _ _)
@[simp] lemma map_mul : (I * J).map g = I.map g * J.map g :=
coe_injective (submodule.map_mul _ _ _)
@[simp] lemma map_map_symm (g : P ≃ₐ[R] P') :
(I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I :=
by rw [←map_comp, g.symm_comp, map_id]
@[simp] lemma map_symm_map (I : fractional_ideal S P') (g : P ≃ₐ[R] P') :
(I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I :=
by rw [←map_comp, g.comp_symm, map_id]
/-- If `g` is an equivalence, `map g` is an isomorphism -/
def map_equiv (g : P ≃ₐ[R] P') :
fractional_ideal S P ≃+* fractional_ideal S P' :=
{ to_fun := map g,
inv_fun := map g.symm,
map_add' := λ I J, map_add I J _,
map_mul' := λ I J, map_mul I J _,
left_inv := λ I, by { rw [←map_comp, alg_equiv.symm_comp, map_id] },
right_inv := λ I, by { rw [←map_comp, alg_equiv.comp_symm, map_id] } }
@[simp] lemma coe_fun_map_equiv (g : P ≃ₐ[R] P') :
(map_equiv g : fractional_ideal S P → fractional_ideal S P') = map g :=
rfl
@[simp] lemma map_equiv_apply (g : P ≃ₐ[R] P') (I : fractional_ideal S P) :
map_equiv g I = map ↑g I := rfl
@[simp] lemma map_equiv_symm (g : P ≃ₐ[R] P') :
((map_equiv g).symm : fractional_ideal S P' ≃+* _) = map_equiv g.symm := rfl
@[simp] lemma map_equiv_refl :
map_equiv alg_equiv.refl = ring_equiv.refl (fractional_ideal S P) :=
ring_equiv.ext (λ x, by simp)
lemma is_fractional_span_iff {s : set P} :
is_fractional S (span R s) ↔ ∃ a ∈ S, ∀ (b : P), b ∈ s → is_integer R (a • b) :=
⟨λ ⟨a, a_mem, h⟩, ⟨a, a_mem, λ b hb, h b (subset_span hb)⟩,
λ ⟨a, a_mem, h⟩, ⟨a, a_mem, λ b hb, span_induction hb
h
(by { rw smul_zero, exact is_integer_zero })
(λ x y hx hy, by { rw smul_add, exact is_integer_add hx hy })
(λ s x hx, by { rw smul_comm, exact is_integer_smul hx })⟩⟩
include loc
lemma is_fractional_of_fg {I : submodule R P} (hI : I.fg) :
is_fractional S I :=
begin
rcases hI with ⟨I, rfl⟩,
rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩,
rw is_fractional_span_iff,
exact ⟨s, hs1, hs⟩,
end
variables (S P P')
include loc'
/-- `canonical_equiv f f'` is the canonical equivalence between the fractional
ideals in `P` and in `P'` -/
@[irreducible]
noncomputable def canonical_equiv :
fractional_ideal S P ≃+* fractional_ideal S P' :=
map_equiv
{ commutes' := λ r, ring_equiv_of_ring_equiv_eq _ _,
..ring_equiv_of_ring_equiv P P' (ring_equiv.refl R)
(show S.map _ = S, by rw [ring_equiv.to_monoid_hom_refl, submonoid.map_id]) }
@[simp] lemma mem_canonical_equiv_apply {I : fractional_ideal S P} {x : P'} :
x ∈ canonical_equiv S P P' I ↔
∃ y ∈ I, is_localization.map P' (ring_hom.id R)
(λ y (hy : y ∈ S), show ring_hom.id R y ∈ S, from hy) (y : P) = x :=
begin
rw [canonical_equiv, map_equiv_apply, mem_map],
exact ⟨λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩, λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩⟩
end
@[simp] lemma canonical_equiv_symm :
(canonical_equiv S P P').symm = canonical_equiv S P' P :=
ring_equiv.ext $ λ I, fractional_ideal.ext_iff.mp $ λ x,
by { erw [mem_canonical_equiv_apply, canonical_equiv, map_equiv_symm, map_equiv, mem_map],
exact ⟨λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩, λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩⟩ }
@[simp] lemma canonical_equiv_flip (I) :
canonical_equiv S P P' (canonical_equiv S P' P I) = I :=
by rw [←canonical_equiv_symm, ring_equiv.symm_apply_apply]
end semiring
section is_fraction_ring
/-!
### `is_fraction_ring` section
This section concerns fractional ideals in the field of fractions,
i.e. the type `fractional_ideal R⁰ K` where `is_fraction_ring R K`.
-/
variables {K K' : Type*} [field K] [field K']
variables [algebra R K] [is_fraction_ring R K] [algebra R K'] [is_fraction_ring R K']
variables {I J : fractional_ideal R⁰ K} (h : K →ₐ[R] K')
/-- Nonzero fractional ideals contain a nonzero integer. -/
lemma exists_ne_zero_mem_is_integer [nontrivial R] (hI : I ≠ 0) :
∃ x ≠ (0 : R), algebra_map R K x ∈ I :=
begin
obtain ⟨y, y_mem, y_not_mem⟩ := set_like.exists_of_lt (bot_lt_iff_ne_bot.mpr hI),
have y_ne_zero : y ≠ 0 := by simpa using y_not_mem,
obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y,
refine ⟨x, _, _⟩,
{ rw [ne.def, ← @is_fraction_ring.to_map_eq_zero_iff R _ K, hx, algebra.smul_def],
exact mul_ne_zero (is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors z.2) y_ne_zero },
{ rw hx,
exact smul_mem _ _ y_mem }
end
lemma map_ne_zero [nontrivial R] (hI : I ≠ 0) : I.map h ≠ 0 :=
begin
obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_is_integer hI,
contrapose! x_ne_zero with map_eq_zero,
refine is_fraction_ring.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)),
exact ⟨algebra_map R K x, hx, h.commutes x⟩,
end
@[simp] lemma map_eq_zero_iff [nontrivial R] : I.map h = 0 ↔ I = 0 :=
⟨imp_of_not_imp_not _ _ (map_ne_zero _),
λ hI, hI.symm ▸ map_zero h⟩
end is_fraction_ring
section quotient
/-!
### `quotient` section
This section defines the ideal quotient of fractional ideals.
In this section we need that each non-zero `y : R` has an inverse in
the localization, i.e. that the localization is a field. We satisfy this
assumption by taking `S = non_zero_divisors R`, `R`'s localization at which
is a field because `R` is a domain.
-/
open_locale classical
variables {R₁ : Type*} [integral_domain R₁] {K : Type*} [field K]
variables [algebra R₁ K] [frac : is_fraction_ring R₁ K]
instance : nontrivial (fractional_ideal R₁⁰ K) :=
⟨⟨0, 1, λ h,
have this : (1 : K) ∈ (0 : fractional_ideal R₁⁰ K) :=
by { rw ← (algebra_map R₁ K).map_one, simpa only [h] using coe_mem_one R₁⁰ 1 },
one_ne_zero ((mem_zero_iff _).mp this)⟩⟩
include frac
lemma fractional_div_of_nonzero {I J : fractional_ideal R₁⁰ K} (h : J ≠ 0) :
is_fractional R₁⁰ (I.1 / J.1) :=
begin
rcases I with ⟨I, aI, haI, hI⟩,
rcases J with ⟨J, aJ, haJ, hJ⟩,
obtain ⟨y, mem_J, not_mem_zero⟩ := set_like.exists_of_lt (bot_lt_iff_ne_bot.mpr h),
obtain ⟨y', hy'⟩ := hJ y mem_J,
use (aI * y'),
split,
{ apply (non_zero_divisors R₁).mul_mem haI (mem_non_zero_divisors_iff_ne_zero.mpr _),
intro y'_eq_zero,
have : algebra_map R₁ K aJ * y = 0,
{ rw [← algebra.smul_def, ←hy', y'_eq_zero, ring_hom.map_zero] },
have y_zero := (mul_eq_zero.mp this).resolve_left
(mt ((algebra_map R₁ K).injective_iff.1 (is_fraction_ring.injective _ _) _)
(mem_non_zero_divisors_iff_ne_zero.mp haJ)),
exact not_mem_zero ((mem_zero_iff R₁⁰).mpr y_zero) },
intros b hb,
convert hI _ (hb _ (submodule.smul_mem _ aJ mem_J)) using 1,
rw [← hy', mul_comm b, ← algebra.smul_def, mul_smul]
end
noncomputable instance fractional_ideal_has_div :
has_div (fractional_ideal R₁⁰ K) :=
⟨ λ I J, if h : J = 0 then 0 else ⟨I.1 / J.1, fractional_div_of_nonzero h⟩ ⟩
variables {I J : fractional_ideal R₁⁰ K} [ J ≠ 0 ]
@[simp] lemma div_zero {I : fractional_ideal R₁⁰ K} :
I / 0 = 0 :=
dif_pos rfl
lemma div_nonzero {I J : fractional_ideal R₁⁰ K} (h : J ≠ 0) :
(I / J) = ⟨I.1 / J.1, fractional_div_of_nonzero h⟩ :=
dif_neg h
@[simp] lemma coe_div {I J : fractional_ideal R₁⁰ K} (hJ : J ≠ 0) :
(↑(I / J) : submodule R₁ K) = ↑I / (↑J : submodule R₁ K) :=
begin
unfold has_div.div,
simp only [dif_neg hJ, coe_mk, val_eq_coe],
end
lemma mem_div_iff_of_nonzero {I J : fractional_ideal R₁⁰ K} (h : J ≠ 0) {x} :
x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I :=
by { rw div_nonzero h, exact submodule.mem_div_iff_forall_mul_mem }
lemma mul_one_div_le_one {I : fractional_ideal R₁⁰ K} : I * (1 / I) ≤ 1 :=
begin
by_cases hI : I = 0,
{ rw [hI, div_zero, mul_zero],
exact zero_le 1 },
{ rw [← coe_le_coe, coe_mul, coe_div hI, coe_one],
apply submodule.mul_one_div_le_one },
end
lemma le_self_mul_one_div {I : fractional_ideal R₁⁰ K} (hI : I ≤ (1 : fractional_ideal R₁⁰ K)) :
I ≤ I * (1 / I) :=
begin
by_cases hI_nz : I = 0,
{ rw [hI_nz, div_zero, mul_zero], exact zero_le 0 },
{ rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one],
rw [← coe_le_coe, coe_one] at hI,
exact submodule.le_self_mul_one_div hI },
end
lemma le_div_iff_of_nonzero {I J J' : fractional_ideal R₁⁰ K} (hJ' : J' ≠ 0) :
I ≤ J / J' ↔ ∀ (x ∈ I) (y ∈ J'), x * y ∈ J :=
⟨ λ h x hx, (mem_div_iff_of_nonzero hJ').mp (h hx),
λ h x hx, (mem_div_iff_of_nonzero hJ').mpr (h x hx) ⟩
lemma le_div_iff_mul_le {I J J' : fractional_ideal R₁⁰ K} (hJ' : J' ≠ 0) :
I ≤ J / J' ↔ I * J' ≤ J :=
begin
rw div_nonzero hJ',
convert submodule.le_div_iff_mul_le using 1,
rw [val_eq_coe, val_eq_coe, ←coe_mul],
refl,
end
@[simp] lemma div_one {I : fractional_ideal R₁⁰ K} : I / 1 = I :=
begin
rw [div_nonzero (@one_ne_zero (fractional_ideal R₁⁰ K) _ _)],
ext,
split; intro h,
{ simpa using mem_div_iff_forall_mul_mem.mp h 1
((algebra_map R₁ K).map_one ▸ coe_mem_one R₁⁰ 1) },
{ apply mem_div_iff_forall_mul_mem.mpr,
rintros y ⟨y', _, rfl⟩,
rw mul_comm,
convert submodule.smul_mem _ y' h,
exact (algebra.smul_def _ _).symm }
end
omit frac
lemma ne_zero_of_mul_eq_one (I J : fractional_ideal R₁⁰ K) (h : I * J = 1) : I ≠ 0 :=
λ hI, @zero_ne_one (fractional_ideal R₁⁰ K) _ _ (by { convert h, simp [hI], })
include frac
theorem eq_one_div_of_mul_eq_one (I J : fractional_ideal R₁⁰ K) (h : I * J = 1) :
J = 1 / I :=
begin
have hI : I ≠ 0 := ne_zero_of_mul_eq_one I J h,
suffices h' : I * (1 / I) = 1,
{ exact (congr_arg units.inv $
@units.ext _ _ (units.mk_of_mul_eq_one _ _ h) (units.mk_of_mul_eq_one _ _ h') rfl) },
apply le_antisymm,
{ apply mul_le.mpr _,
intros x hx y hy,
rw mul_comm,
exact (mem_div_iff_of_nonzero hI).mp hy x hx },
rw ← h,
apply mul_left_mono I,
apply (le_div_iff_of_nonzero hI).mpr _,
intros y hy x hx,
rw mul_comm,
exact mul_mem_mul hx hy,
end
theorem mul_div_self_cancel_iff {I : fractional_ideal R₁⁰ K} :
I * (1 / I) = 1 ↔ ∃ J, I * J = 1 :=
⟨λ h, ⟨(1 / I), h⟩, λ ⟨J, hJ⟩, by rwa [← eq_one_div_of_mul_eq_one I J hJ]⟩
variables {K' : Type*} [field K'] [algebra R₁ K'] [is_fraction_ring R₁ K']
@[simp] lemma map_div (I J : fractional_ideal R₁⁰ K) (h : K ≃ₐ[R₁] K') :
(I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h :=
begin
by_cases H : J = 0,
{ rw [H, div_zero, map_zero, div_zero] },
{ apply coe_injective,
simp [div_nonzero H, div_nonzero (map_ne_zero _ H), submodule.map_div] }
end
@[simp] lemma map_one_div (I : fractional_ideal R₁⁰ K) (h : K ≃ₐ[R₁] K') :
(1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h :=
by rw [map_div, map_one]
end quotient
section principal_ideal_ring
variables {R₁ : Type*} [integral_domain R₁] {K : Type*} [field K]
variables [algebra R₁ K] [is_fraction_ring R₁ K]
open_locale classical
open submodule submodule.is_principal
include loc
lemma is_fractional_span_singleton (x : P) : is_fractional S (span R {x} : submodule R P) :=
let ⟨a, ha⟩ := exists_integer_multiple S x in
is_fractional_span_iff.mpr ⟨a, a.2, λ x' hx', (set.mem_singleton_iff.mp hx').symm ▸ ha⟩
variables (S)
/-- `span_singleton x` is the fractional ideal generated by `x` if `0 ∉ S` -/
@[irreducible]
def span_singleton (x : P) : fractional_ideal S P :=
⟨span R {x}, is_fractional_span_singleton x⟩
local attribute [semireducible] span_singleton
@[simp] lemma coe_span_singleton (x : P) :
(span_singleton S x : submodule R P) = span R {x} := rfl
@[simp] lemma mem_span_singleton {x y : P} :
x ∈ span_singleton S y ↔ ∃ (z : R), z • y = x :=
submodule.mem_span_singleton
lemma mem_span_singleton_self (x : P) :
x ∈ span_singleton S x :=
(mem_span_singleton S).mpr ⟨1, one_smul _ _⟩
variables {S}
lemma eq_span_singleton_of_principal (I : fractional_ideal S P)
[is_principal (I : submodule R P)] :
I = span_singleton S (generator (I : submodule R P)) :=
coe_injective (span_singleton_generator I.1).symm
lemma is_principal_iff (I : fractional_ideal S P) :
is_principal (I : submodule R P) ↔ ∃ x, I = span_singleton S x :=
⟨λ h, ⟨@generator _ _ _ _ _ I.1 h, @eq_span_singleton_of_principal _ _ _ _ _ _ _ I h⟩,
λ ⟨x, hx⟩, { principal := ⟨x, trans (congr_arg _ hx) (coe_span_singleton _ x)⟩ } ⟩
@[simp] lemma span_singleton_zero : span_singleton S (0 : P) = 0 :=
by { ext, simp [submodule.mem_span_singleton, eq_comm] }
lemma span_singleton_eq_zero_iff {y : P} : span_singleton S y = 0 ↔ y = 0 :=
⟨λ h, span_eq_bot.mp (by simpa using congr_arg subtype.val h : span R {y} = ⊥) y (mem_singleton y),
λ h, by simp [h] ⟩
lemma span_singleton_ne_zero_iff {y : P} : span_singleton S y ≠ 0 ↔ y ≠ 0 :=
not_congr span_singleton_eq_zero_iff
@[simp] lemma span_singleton_one : span_singleton S (1 : P) = 1 :=
begin
ext,
refine (mem_span_singleton S).trans ((exists_congr _).trans (mem_one_iff S).symm),
intro x',
rw [algebra.smul_def, mul_one]
end
@[simp]
lemma span_singleton_mul_span_singleton (x y : P) :
span_singleton S x * span_singleton S y = span_singleton S (x * y) :=
begin
apply coe_injective,
simp_rw [coe_mul, coe_span_singleton, span_mul_span, singleton.is_mul_hom.map_mul]
end
@[simp]
lemma coe_ideal_span_singleton (x : R) :
(↑(span R {x} : ideal R) : fractional_ideal S P) = span_singleton S (algebra_map R P x) :=
begin
ext y,
refine (mem_coe_ideal S).trans (iff.trans _ (mem_span_singleton S).symm),
split,
{ rintros ⟨y', hy', rfl⟩,
obtain ⟨x', rfl⟩ := submodule.mem_span_singleton.mp hy',
use x',
rw [smul_eq_mul, ring_hom.map_mul, algebra.smul_def] },
{ rintros ⟨y', rfl⟩,
refine ⟨y' * x, submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩,
rw [ring_hom.map_mul, algebra.smul_def] }
end
@[simp]
lemma canonical_equiv_span_singleton {P'} [comm_ring P'] [algebra R P'] [is_localization S P']
(x : P) :
canonical_equiv S P P' (span_singleton S x) =
span_singleton S (is_localization.map P' (ring_hom.id R)
(λ y (hy : y ∈ S), show ring_hom.id R y ∈ S, from hy) x) :=
begin
apply ext_iff.mp,
intro y,
split; intro h,
{ rw mem_span_singleton,
obtain ⟨x', hx', rfl⟩ := (mem_canonical_equiv_apply _ _ _).mp h,
obtain ⟨z, rfl⟩ := (mem_span_singleton _).mp hx',
use z,
rw is_localization.map_smul,
refl },
{ rw mem_canonical_equiv_apply,
obtain ⟨z, rfl⟩ := (mem_span_singleton _).mp h,
use z • x,
use (mem_span_singleton _).mpr ⟨z, rfl⟩,
simp [is_localization.map_smul] }
end
lemma mem_singleton_mul {x y : P} {I : fractional_ideal S P} :
y ∈ span_singleton S x * I ↔ ∃ y' ∈ I, y = x * y' :=
begin
split,
{ intro h,
apply fractional_ideal.mul_induction_on h,
{ intros x' hx' y' hy',
obtain ⟨a, ha⟩ := (mem_span_singleton S).mp hx',
use [a • y', I.1.smul_mem a hy'],
rw [←ha, algebra.mul_smul_comm, algebra.smul_mul_assoc] },
{ exact ⟨0, I.1.zero_mem, (mul_zero x).symm⟩ },
{ rintros _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩,
exact ⟨y + y', I.1.add_mem hy hy', (mul_add _ _ _).symm⟩ },
{ rintros r _ ⟨y', hy', rfl⟩,
exact ⟨r • y', I.1.smul_mem r hy', (algebra.mul_smul_comm _ _ _).symm ⟩ } },
{ rintros ⟨y', hy', rfl⟩,
exact mul_mem_mul ((mem_span_singleton S).mpr ⟨1, one_smul _ _⟩) hy' }
end
omit loc
lemma one_div_span_singleton (x : K) :
1 / span_singleton R₁⁰ x = span_singleton R₁⁰ (x⁻¹) :=
if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one _ _ (by simp [h])).symm
@[simp] lemma div_span_singleton (J : fractional_ideal R₁⁰ K) (d : K) :
J / span_singleton R₁⁰ d = span_singleton R₁⁰ (d⁻¹) * J :=
begin
rw ← one_div_span_singleton,
by_cases hd : d = 0,
{ simp only [hd, span_singleton_zero, div_zero, zero_mul] },
have h_spand : span_singleton R₁⁰ d ≠ 0 := mt span_singleton_eq_zero_iff.mp hd,
apply le_antisymm,
{ intros x hx,
rw [val_eq_coe, coe_div h_spand, submodule.mem_div_iff_forall_mul_mem] at hx,
specialize hx d (mem_span_singleton_self R₁⁰ d),
have h_xd : x = d⁻¹ * (x * d), { field_simp },
rw [val_eq_coe, coe_mul, one_div_span_singleton, h_xd],
exact submodule.mul_mem_mul (mem_span_singleton_self R₁⁰ _) hx },
{ rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_span_singleton,
span_singleton_mul_span_singleton, inv_mul_cancel hd, span_singleton_one, mul_one],
exact le_refl J },
end
lemma exists_eq_span_singleton_mul (I : fractional_ideal R₁⁰ K) :
∃ (a : R₁) (aI : ideal R₁), a ≠ 0 ∧ I = span_singleton R₁⁰ (algebra_map R₁ K a)⁻¹ * aI :=
begin
obtain ⟨a_inv, nonzero, ha⟩ := I.2,
have nonzero := mem_non_zero_divisors_iff_ne_zero.mp nonzero,
have map_a_nonzero : algebra_map R₁ K a_inv ≠ 0 :=
mt is_fraction_ring.to_map_eq_zero_iff.mp nonzero,
refine ⟨a_inv,
(span_singleton R₁⁰ (algebra_map R₁ K a_inv) * I).1.comap (algebra.linear_map R₁ K),
nonzero,
ext (λ x, iff.trans ⟨_, _⟩ mem_singleton_mul.symm)⟩,
{ intro hx,
obtain ⟨x', hx'⟩ := ha x hx,
rw algebra.smul_def at hx',
refine ⟨algebra_map R₁ K x', (mem_coe_ideal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩,
{ exact ⟨x, hx, hx'⟩ },
{ rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] } },
{ rintros ⟨y, hy, rfl⟩,
obtain ⟨x', hx', rfl⟩ := (mem_coe_ideal _).mp hy,
obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx',
rw algebra.linear_map_apply at hx',
rwa [hx', ←mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] }
end
instance is_principal {R} [integral_domain R] [is_principal_ideal_ring R]
[algebra R K] [is_fraction_ring R K]
(I : fractional_ideal R⁰ K) : (I : submodule R K).is_principal :=
begin
obtain ⟨a, aI, -, ha⟩ := exists_eq_span_singleton_mul I,
use (algebra_map R K a)⁻¹ * algebra_map R K (generator aI),
suffices : I = span_singleton R⁰ ((algebra_map R K a)⁻¹ * algebra_map R K (generator aI)),
{ exact congr_arg subtype.val this },
conv_lhs { rw [ha, ←span_singleton_generator aI] },
rw [coe_ideal_span_singleton (generator aI), span_singleton_mul_span_singleton]
end
end principal_ideal_ring
variables {R₁ : Type*} [integral_domain R₁]
variables {K : Type*} [field K] [algebra R₁ K] [frac : is_fraction_ring R₁ K]
local attribute [instance] classical.prop_decidable
lemma is_noetherian_zero : is_noetherian R₁ (0 : fractional_ideal R₁⁰ K) :=
is_noetherian_submodule.mpr (λ I (hI : I ≤ (0 : fractional_ideal R₁⁰ K)),
by { rw coe_zero at hI, rw le_bot_iff.mp hI, exact fg_bot })
lemma is_noetherian_iff {I : fractional_ideal R₁⁰ K} :
is_noetherian R₁ I ↔ ∀ J ≤ I, (J : submodule R₁ K).fg :=
is_noetherian_submodule.trans ⟨λ h J hJ, h _ hJ, λ h J hJ, h ⟨J, is_fractional_of_le hJ⟩ hJ⟩
lemma is_noetherian_coe_to_fractional_ideal [_root_.is_noetherian_ring R₁] (I : ideal R₁) :
is_noetherian R₁ (I : fractional_ideal R₁⁰ K) :=
begin
rw is_noetherian_iff,
intros J hJ,
obtain ⟨J, rfl⟩ := le_one_iff_exists_coe_ideal.mp (le_trans hJ coe_ideal_le_one),
exact fg_map (is_noetherian.noetherian J),
end
include frac
lemma is_noetherian_span_singleton_inv_to_map_mul (x : R₁) {I : fractional_ideal R₁⁰ K}
(hI : is_noetherian R₁ I) :
is_noetherian R₁ (span_singleton R₁⁰ (algebra_map R₁ K x)⁻¹ * I : fractional_ideal R₁⁰ K) :=
begin
by_cases hx : x = 0,
{ rw [hx, ring_hom.map_zero, _root_.inv_zero, span_singleton_zero, zero_mul],
exact is_noetherian_zero },
have h_gx : algebra_map R₁ K x ≠ 0,
from mt ((algebra_map R₁ K).injective_iff.mp (is_fraction_ring.injective _ _) x) hx,
have h_spanx : span_singleton R₁⁰ (algebra_map R₁ K x) ≠ 0,
from span_singleton_ne_zero_iff.mpr h_gx,
rw is_noetherian_iff at ⊢ hI,
intros J hJ,
rw [← div_span_singleton, le_div_iff_mul_le h_spanx] at hJ,
obtain ⟨s, hs⟩ := hI _ hJ,
use s * {(algebra_map R₁ K x)⁻¹},
rw [finset.coe_mul, finset.coe_singleton, ← span_mul_span, hs, ← coe_span_singleton R₁⁰,
← coe_mul, mul_assoc, span_singleton_mul_span_singleton, mul_inv_cancel h_gx,
span_singleton_one, mul_one],
end
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/
theorem is_noetherian [_root_.is_noetherian_ring R₁] (I : fractional_ideal R₁⁰ K) :
is_noetherian R₁ I :=
begin
obtain ⟨d, J, h_nzd, rfl⟩ := exists_eq_span_singleton_mul I,
apply is_noetherian_span_singleton_inv_to_map_mul,
apply is_noetherian_coe_to_fractional_ideal,
end
end fractional_ideal
end ring
|
3b1439cab9305a971f6cb11e9b8a3b30a0db9360
|
f5f7e6fae601a5fe3cac7cc3ed353ed781d62419
|
/src/topology/metric_space/isometry.lean
|
ad98e0555f8e129613c368e5e79392e56eee848a
|
[
"Apache-2.0"
] |
permissive
|
EdAyers/mathlib
|
9ecfb2f14bd6caad748b64c9c131befbff0fb4e0
|
ca5d4c1f16f9c451cf7170b10105d0051db79e1b
|
refs/heads/master
| 1,626,189,395,845
| 1,555,284,396,000
| 1,555,284,396,000
| 144,004,030
| 0
| 0
|
Apache-2.0
| 1,533,727,664,000
| 1,533,727,663,000
| null |
UTF-8
|
Lean
| false
| false
| 13,069
|
lean
|
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Isometries of emetric and metric spaces
Authors: Sébastien Gouëzel
We define isometries, i.e., maps between emetric spaces that preserve
the edistance (on metric spaces, these are exactly the maps that preserve distances),
and prove their basic properties. We also introduce isometric bijections.
-/
import topology.metric_space.basic topology.instances.real
topology.bounded_continuous_function analysis.normed_space.basic topology.opens
noncomputable theory
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
open function set
/-- An isometry (also known as isometric embedding) is a map preserving the edistance
between emetric spaces, or equivalently the distance between metric space. -/
def isometry [emetric_space α] [emetric_space β] (f : α → β) : Prop :=
∀x1 x2 : α, edist (f x1) (f x2) = edist x1 x2
/-- On metric spaces, a map is an isometry if and only if it preserves distances. -/
lemma isometry_emetric_iff_metric [metric_space α] [metric_space β] {f : α → β} :
isometry f ↔ (∀x y, dist (f x) (f y) = dist x y) :=
⟨assume H x y, by simp [dist_edist, H x y],
assume H x y, by simp [edist_dist, H x y]⟩
/-- An isometry preserves edistances. -/
theorem isometry.edist_eq [emetric_space α] [emetric_space β] {f : α → β} {x y : α} (hf : isometry f) :
edist (f x) (f y) = edist x y :=
hf x y
/-- An isometry preserves distances. -/
theorem isometry.dist_eq [metric_space α] [metric_space β] {f : α → β} {x y : α} (hf : isometry f) :
dist (f x) (f y) = dist x y :=
by rw [dist_edist, dist_edist, hf]
section emetric_isometry
variables [emetric_space α] [emetric_space β] [emetric_space γ]
variables {f : α → β} {x y z : α} {s : set α}
/-- An isometry is injective -/
lemma isometry.injective (h : isometry f) : injective f :=
λx y hxy, edist_eq_zero.1 $
calc edist x y = edist (f x) (f y) : (h x y).symm
... = 0 : by rw [hxy]; simp
/-- Any map on a subsingleton is an isometry -/
theorem isometry_subsingleton [subsingleton α] : isometry f :=
λx y, by rw subsingleton.elim x y; simp
/-- The identity is an isometry -/
lemma isometry_id : isometry (id : α → α) :=
λx y, rfl
/-- The composition of isometries is an isometry -/
theorem isometry.comp {g : β → γ} (hf : isometry f) (hg : isometry g) : isometry (g ∘ f) :=
assume x y, calc
edist ((g ∘ f) x) ((g ∘ f) y) = edist (f x) (f y) : hg _ _
... = edist x y : hf _ _
/-- An isometry is an embedding -/
theorem isometry.uniform_embedding (hf : isometry f) : uniform_embedding f :=
begin
refine emetric.uniform_embedding_iff.2 ⟨_, _, _⟩,
{ assume x y hxy,
have : edist (f x) (f y) = 0 := by simp [hxy],
have : edist x y = 0 :=
begin have A := hf x y, rwa this at A, exact eq.symm A end,
by simpa using this },
{ rw emetric.uniform_continuous_iff,
assume ε εpos,
existsi [ε, εpos],
simp [hf.edist_eq] },
{ assume δ δpos,
existsi [δ, δpos],
simp [hf.edist_eq] }
end
/-- An isometry is continuous. -/
lemma isometry.continuous (hf : isometry f) : continuous f :=
hf.uniform_embedding.embedding.continuous
/-- The inverse of an isometry is an isometry. -/
lemma isometry.inv (e : α ≃ β) (h : isometry e.to_fun) : isometry e.inv_fun :=
λx y, by rw [← h, e.right_inv _, e.right_inv _]
/-- Isometries preserve the diameter -/
lemma emetric.isometry.diam_image (hf : isometry f) {s : set α}:
emetric.diam (f '' s) = emetric.diam s :=
begin
refine le_antisymm _ _,
{ apply lattice.Sup_le _,
simp only [and_imp, set.mem_image, set.mem_prod, exists_imp_distrib, prod.exists],
assume b x x' z zs xz z' z's x'z' hb,
rw [← hb, ← xz, ← x'z', hf z z'],
exact emetric.edist_le_diam_of_mem zs z's },
{ apply lattice.Sup_le _,
simp only [and_imp, set.mem_image, set.mem_prod, exists_imp_distrib, prod.exists],
assume b x x' xs x's hb,
rw [← hb, ← hf x x'],
exact emetric.edist_le_diam_of_mem (mem_image_of_mem _ xs) (mem_image_of_mem _ x's) }
end
/-- The injection from a subtype is an isometry -/
lemma isometry_subtype_val {s : set α} : isometry (subtype.val : s → α) :=
λx y, rfl
end emetric_isometry --section
/-- An isometry preserves the diameter in metric spaces -/
lemma metric.isometry.diam_image [metric_space α] [metric_space β]
{f : α → β} {s : set α} (hf : isometry f) : metric.diam (f '' s) = metric.diam s :=
by rw [metric.diam, metric.diam, emetric.isometry.diam_image hf]
/-- α and β are isometric if there is an isometric bijection between them. -/
structure isometric (α : Type*) (β : Type*) [emetric_space α] [emetric_space β]
extends α ≃ β :=
(isometry_to_fun : isometry to_fun)
(isometry_inv_fun : isometry inv_fun)
infix ` ≃ᵢ`:50 := isometric
namespace isometric
variables [emetric_space α] [emetric_space β] [emetric_space γ]
instance : has_coe_to_fun (α ≃ᵢ β) := ⟨λ_, α → β, λe, e.to_equiv⟩
lemma coe_eq_to_equiv (h : α ≃ᵢ β) (a : α) : h a = h.to_equiv a := rfl
protected def to_homeomorph (h : α ≃ᵢ β) : α ≃ₜ β :=
{ continuous_to_fun := (isometry_to_fun h).continuous,
continuous_inv_fun := (isometry_inv_fun h).continuous,
.. h.to_equiv }
lemma coe_eq_to_homeomorph (h : α ≃ᵢ β) (a : α) :
h a = h.to_homeomorph a := rfl
lemma to_homeomorph_to_equiv (h : α ≃ᵢ β) :
h.to_homeomorph.to_equiv = h.to_equiv :=
by ext; refl
protected def refl (α : Type*) [emetric_space α] : α ≃ᵢ α :=
{ isometry_to_fun := isometry_id, isometry_inv_fun := isometry_id, .. equiv.refl α }
protected def trans (h₁ : α ≃ᵢ β) (h₂ : β ≃ᵢ γ) : α ≃ᵢ γ :=
{ isometry_to_fun := h₁.isometry_to_fun.comp h₂.isometry_to_fun,
isometry_inv_fun := h₂.isometry_inv_fun.comp h₁.isometry_inv_fun,
.. equiv.trans h₁.to_equiv h₂.to_equiv }
protected def symm (h : α ≃ᵢ β) : β ≃ᵢ α :=
{ isometry_to_fun := h.isometry_inv_fun,
isometry_inv_fun := h.isometry_to_fun,
.. h.to_equiv.symm }
protected lemma isometry (h : α ≃ᵢ β) : isometry h := h.isometry_to_fun
lemma symm_comp_self (h : α ≃ᵢ β) : ⇑h.symm ∘ ⇑h = id :=
funext $ assume a, h.to_equiv.left_inv a
lemma self_comp_symm (h : α ≃ᵢ β) : ⇑h ∘ ⇑h.symm = id :=
funext $ assume a, h.to_equiv.right_inv a
lemma range_coe (h : α ≃ᵢ β) : range h = univ :=
eq_univ_of_forall $ assume b, ⟨h.symm b, congr_fun h.self_comp_symm b⟩
lemma image_symm (h : α ≃ᵢ β) : image h.symm = preimage h :=
image_eq_preimage_of_inverse h.symm.to_equiv.left_inv h.symm.to_equiv.right_inv
lemma preimage_symm (h : α ≃ᵢ β) : preimage h.symm = image h :=
(image_eq_preimage_of_inverse h.to_equiv.left_inv h.to_equiv.right_inv).symm
end isometric
/-- An isometry induces an isometric isomorphism between the source space and the
range of the isometry. -/
lemma isometry.isometric_on_range [emetric_space α] [emetric_space β] {f : α → β} (h : isometry f) :
α ≃ᵢ range f :=
{ isometry_to_fun := λx y,
begin
change edist ((equiv.set.range f _) x) ((equiv.set.range f _) y) = edist x y,
rw [equiv.set.range_apply f h.injective, equiv.set.range_apply f h.injective],
exact h x y
end,
isometry_inv_fun :=
begin
apply isometry.inv,
assume x y,
change edist ((equiv.set.range f _) x) ((equiv.set.range f _) y) = edist x y,
rw [equiv.set.range_apply f h.injective, equiv.set.range_apply f h.injective],
exact h x y
end,
.. equiv.set.range f h.injective }
lemma isometry.isometric_on_range_apply [emetric_space α] [emetric_space β]
{f : α → β} (h : isometry f) (x : α) : h.isometric_on_range x = ⟨f x, mem_range_self _⟩ :=
begin
dunfold isometry.isometric_on_range,
rw ← equiv.set.range_apply f h.injective x,
refl
end
namespace Kuratowski_embedding
/- In this section, we show that any separable metric space can be embedded isometrically
in ℓ^∞(ℝ) -/
@[reducible] def ℓ_infty_ℝ : Type := bounded_continuous_function ℕ ℝ
open bounded_continuous_function metric topological_space
variables {f g : ℓ_infty_ℝ} {n : ℕ} {C : ℝ} [metric_space α] (x : ℕ → α) (a b : α)
/-- A metric space can be embedded in `l^∞(ℝ)` via the distances to points in
a fixed countable set, if this set is dense. This map is given in the next definition,
without density assumptions. -/
def embedding_of_subset : ℓ_infty_ℝ :=
of_normed_group_discrete (λn, dist a (x n) - dist (x 0) (x n)) (dist a (x 0)) (λ_, abs_dist_sub_le _ _ _)
lemma embedding_of_subset_coe : embedding_of_subset x a n = dist a (x n) - dist (x 0) (x n) := rfl
/-- The embedding map is always a semi-contraction. -/
lemma embedding_of_subset_dist_le (a b : α) :
dist (embedding_of_subset x a) (embedding_of_subset x b) ≤ dist a b :=
begin
refine (dist_le dist_nonneg).2 (λn, _),
have A : dist a (x n) + (dist (x 0) (x n) + (-dist b (x n) + -dist (x 0) (x n)))
= dist a (x n) - dist b (x n), by ring,
simp only [embedding_of_subset_coe, real.dist_eq, A, add_comm, neg_add_rev, _root_.neg_neg,
sub_eq_add_neg, add_left_comm],
exact abs_dist_sub_le _ _ _
end
/-- When the reference set is dense, the embedding map is an isometry on its image. -/
lemma embedding_of_subset_isometry (H : closure (range x) = univ) : isometry (embedding_of_subset x) :=
begin
refine isometry_emetric_iff_metric.2 (λa b, _),
refine le_antisymm (embedding_of_subset_dist_le x a b) (real.le_of_forall_epsilon_le (λe epos, _)),
/- First step: find n with dist a (x n) < e -/
have A : a ∈ closure (range x), by { have B := mem_univ a, rwa [← H] at B },
rcases mem_closure_iff'.1 A (e/2) (half_pos epos) with ⟨d, ⟨drange, hd⟩⟩,
cases drange with n dn,
rw [← dn] at hd,
/- Second step: use the norm control at index n to conclude -/
have C : dist b (x n) - dist a (x n) = embedding_of_subset x b n - embedding_of_subset x a n :=
by { simp [embedding_of_subset_coe], ring },
have := calc
dist a b ≤ dist a (x n) + dist (x n) b : dist_triangle _ _ _
... = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) : by { simp [dist_comm], ring }
... ≤ 2 * dist a (x n) + abs (dist b (x n) - dist a (x n)) :
by apply_rules [add_le_add_left, le_abs_self]
... ≤ 2 * (e/2) + abs (embedding_of_subset x b n - embedding_of_subset x a n) :
begin rw [C], apply_rules [add_le_add, mul_le_mul_of_nonneg_left, le_of_lt hd, le_refl], norm_num end
... ≤ 2 * (e/2) + dist (embedding_of_subset x b) (embedding_of_subset x a) :
begin rw [← coe_diff], apply add_le_add_left, rw [coe_diff, ←real.dist_eq], apply dist_coe_le_dist end
... = dist (embedding_of_subset x b) (embedding_of_subset x a) + e : by ring,
simpa [dist_comm] using this
end
/-- Every separable metric space embeds isometrically in ℓ_infty_ℝ. -/
theorem exists_isometric_embedding (α : Type u) [metric_space α] [separable_space α] :
∃(f : α → ℓ_infty_ℝ), isometry f :=
begin
classical,
by_cases h : (univ : set α) = ∅,
{ use (λ_, 0), assume x, exact (ne_empty_of_mem (mem_univ x) h).elim },
{ /- We construct a map x : ℕ → α with dense image -/
rcases exists_mem_of_ne_empty h with basepoint,
haveI : inhabited α := ⟨basepoint⟩,
have : ∃s:set α, countable s ∧ closure s = univ := separable_space.exists_countable_closure_eq_univ _,
rcases this with ⟨S, ⟨S_countable, S_dense⟩⟩,
rcases countable_iff_exists_surjective.1 S_countable with ⟨x, x_range⟩,
have : closure (range x) = univ :=
univ_subset_iff.1 (by { rw [← S_dense], apply closure_mono, assumption }),
/- Use embedding_of_subset to construct the desired isometry -/
exact ⟨embedding_of_subset x, embedding_of_subset_isometry x this⟩ }
end
/-- The Kuratowski embedding is an isometric embedding of a separable metric space in ℓ^∞(ℝ) -/
def Kuratowski_embedding (α : Type u) [metric_space α] [separable_space α] : α → ℓ_infty_ℝ :=
classical.some (exists_isometric_embedding α)
/-- The Kuratowski embedding is an isometry -/
lemma Kuratowski_embedding_isometry (α : Type u) [metric_space α] [separable_space α] :
isometry (Kuratowski_embedding α) :=
classical.some_spec (exists_isometric_embedding α)
/-- Version of the Kuratowski embedding for nonempty compacts -/
def nonempty_compacts.Kuratowski_embedding (α : Type u) [metric_space α] [compact_space α] [nonempty α] :
nonempty_compacts ℓ_infty_ℝ :=
⟨range (Kuratowski_embedding α),
begin
split,
{ rcases exists_mem_of_nonempty α with ⟨x, hx⟩,
have A : Kuratowski_embedding α x ∈ range (Kuratowski_embedding α) := ⟨x, by simp⟩,
apply ne_empty_of_mem A },
{ rw ← image_univ,
exact compact_image compact_univ (Kuratowski_embedding_isometry α).continuous },
end⟩
end Kuratowski_embedding --namespace
|
d66390aaf688fc38990366cfd08180d5379b4770
|
1fbca480c1574e809ae95a3eda58188ff42a5e41
|
/src/util/meta/tactic/ite.lean
|
82e41d8a58ae4dc9d7620cd82d12f446e9a94fdd
|
[] |
no_license
|
unitb/lean-lib
|
560eea0acf02b1fd4bcaac9986d3d7f1a4290e7e
|
439b80e606b4ebe4909a08b1d77f4f5c0ee3dee9
|
refs/heads/master
| 1,610,706,025,400
| 1,570,144,245,000
| 1,570,144,245,000
| 99,579,229
| 5
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,891
|
lean
|
import util.meta.tactic.basic
import util.data.ordering
namespace interactive
open tactic
meta def loc.get_locations : loc → tactic (list expr)
| loc.wildcard := (::) <$> tactic.target <*> (tactic.local_context >>= mmap infer_type)
| (loc.ns xs) := mmap (λ n, match n with
| none := tactic.target
| some n := tactic.get_local n >>= infer_type
end) xs
end interactive
namespace tactic.interactive
open lean lean.parser interactive
open interactive.types
open tactic
local postfix `?`:9001 := optional
local postfix *:9001 := many
meta def find_ite : expr → ℕ →
option (bool × expr × expr) →
option (bool × expr × expr)
| `(@ite %%c %%d %%α %%l %%r) i none :=
if ¬ c.has_var then some (ff, c, d)
else none
| `(@dite %%c %%d %%α %%l %%r) i none :=
if ¬ c.has_var then some (tt, c, d)
else none
| e i none := none
| _ _ (some e) := (some e)
meta def ite_cases (hyp : parse (tk "with" *> ident_) ?)
(ls : parse location)
: tactic unit :=
do g ← ls.get_locations >>= mmap instantiate_mvars,
match list.foldl (λ r e, expr.fold e r find_ite) none g with
| (some (_,e,d)) :=
do hyp' ← get_unused_name $ option.cases_on hyp `h id,
cases (none,to_pexpr d) [hyp',hyp']
; [ (do hyp' ← get_local hyp',
simp none tt [ simp_arg_type.expr
``(@dif_neg _ (is_false %%hyp') %%hyp')
, simp_arg_type.expr
``(@if_neg _ (is_false %%hyp') %%hyp')]
[] ls
{constructor_eq := ff} )
, do hyp' ← get_local hyp',
simp none tt [ simp_arg_type.expr
``(@dif_pos _ (is_true %%hyp') %%hyp')
, simp_arg_type.expr
``(@if_pos _ (is_true %%hyp') %%hyp')]
[] ls
{constructor_eq := ff} ]
| none := fail "no conditionals found"
end
meta def ordering_cases
(p : parse cases_arg_p)
(pos : parse cur_pos)
(hyp : parse (tk "with" *> ident)?)
: tactic unit :=
do `(cmp %%x %%y) ← to_expr p.2 | fail "expecting expression of shape `cmp _ _`",
h₀ ← p.1 <|> mk_unique_name `this,
let mk_asm : pexpr → tactic unit :=
λ e,
(do h₀ ← get_local h₀,
h₁ ← (hyp : tactic name) <|> mk_unique_name `h,
to_expr ``((%%e).mp %%h₀) >>=
note h₁ none,
interactive.rewrite ⟨[⟨pos,ff,``(%%h₀)⟩],none⟩ loc.wildcard,
when p.1.is_none $ tactic.clear h₀,
return ()),
interactive.cases (some h₀,p.2) []
; [ mk_asm ``(cmp_using_eq_lt %%x %%y)
, mk_asm ``(cmp_eq_eq %%x %%y)
, mk_asm ``(cmp_using_eq_gt %%x %%y) ]
end tactic.interactive
|
5906b87edcfa9cd22afb63b752967e8922f13c16
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/macroTrace.lean
|
f9700da870ce235a94b14f4e9a07dd24e28ba3b2
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 325
|
lean
|
open Lean in
macro "tst" : term => do
Macro.trace[Meta.debug] "macro tst executed"
`(0)
#check tst
set_option trace.Meta.debug true in
#check tst
open Lean in
macro "tstcmd" : command => do
Macro.trace[Meta.debug] "macro cmdtst executed {1+2}"
`(#print "hello")
tstcmd
set_option trace.Meta.debug true in
tstcmd
|
51e167bc86c4bfc53474188887b0fe93d23ade9a
|
4fa118f6209450d4e8d058790e2967337811b2b5
|
/src/for_mathlib/normed_spaces.lean
|
6bafa3f2e2334312d11eab74b64eb0fa60b5feec
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean-perfectoid-spaces
|
16ab697a220ed3669bf76311daa8c466382207f7
|
95a6520ce578b30a80b4c36e36ab2d559a842690
|
refs/heads/master
| 1,639,557,829,139
| 1,638,797,866,000
| 1,638,797,866,000
| 135,769,296
| 96
| 10
|
Apache-2.0
| 1,638,797,866,000
| 1,527,892,754,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 857
|
lean
|
import analysis.normed_space.basic
import analysis.specific_limits
import for_mathlib.topology
open set metric function normed_field
lemma nondiscrete_normed_field.nondiscrete {k : Type*} [nondiscrete_normed_field k] :
¬ discrete_topology k :=
begin
intro h,
replace h := discrete_iff_open_singletons.mp h 0,
rw is_open_iff at h,
rcases h 0 (mem_singleton 0) with ⟨ε, ε_pos, hε⟩,
rcases exists_norm_lt_one k with ⟨x₀, x₀_ne, hx₀⟩,
obtain ⟨n, hn⟩ : ∃ n : ℕ, ∥x₀^n∥ < ε,
{ cases tendsto_at_top.mp (tendsto_pow_at_top_nhds_0_of_lt_1 (le_of_lt x₀_ne) hx₀) ε ε_pos with N hN,
use N,
simpa [norm_pow] using hN N (le_refl _) },
rw ball_0_eq at hε,
specialize hε hn,
rw [mem_singleton_iff, ← norm_eq_zero, norm_pow] at hε,
rw pow_eq_zero hε at x₀_ne,
exact lt_irrefl _ x₀_ne
end
|
c85baf2adc5068947bff5e014fb4be2fb76746e6
|
958488bc7f3c2044206e0358e56d7690b6ae696c
|
/lean/tutorials/tutorial1.lean
|
8c727cdf72b7f0c7d5378a3537d8e377fa8fffe7
|
[] |
no_license
|
possientis/Prog
|
a08eec1c1b121c2fd6c70a8ae89e2fbef952adb4
|
d4b3debc37610a88e0dac3ac5914903604fd1d1f
|
refs/heads/master
| 1,692,263,717,723
| 1,691,757,179,000
| 1,691,757,179,000
| 40,361,602
| 3
| 0
| null | 1,679,896,438,000
| 1,438,953,859,000
|
Coq
|
UTF-8
|
Lean
| false
| false
| 2,522
|
lean
|
import data.real.basic
example : ∀ (a b c : ℝ), (a * b) * c = b * (a * c) :=
begin
intros a b c, rw (mul_comm a b), apply mul_assoc
end
example : ∀ (a b c : ℝ) , (c * b) * a = b * (a * c) :=
begin
intros a b c,
calc
(c * b) * a = (b * c)* a : by rw (mul_comm c b)
... = b *(c * a) : by apply mul_assoc
... = b *(a * c) : by rw (mul_comm c a)
end
example : ∀ (a b c : ℝ), a * (b * c) = b * (a * c) :=
begin
intros a b c,
calc
a * (b * c) = (a * b)* c : by rw mul_assoc
... = (b * a)* c : by rw (mul_comm a b)
... = b *(a * c) : by apply mul_assoc
end
example : ∀ (a b c d : ℝ),
c = d*a + b →
b = a*d →
c = 2*a*d :=
begin
intros a b c d H₁ H₂,
calc
c = d*a + b : H₁
... = d*a + a*d : by rw H₂
... = a*d + a*d : by rw (mul_comm d a)
... = 2*(a*d) : by rw two_mul
... = 2*a*d : by rw mul_assoc
end
example : ∀ (a b c d : ℝ),
c = b*a - d →
d = a*b →
c = 0 :=
begin
intros a b c d H₁ H₂,
calc
c = b*a - d : H₁
... = b*a - a*b : by rw H₂
... = a*b - a*b : by rw mul_comm
... = 0 : by apply sub_self
end
example : ∀ (a b c d : ℝ),
c = d*a + b →
b = a*d →
c = 2*a*d :=
begin
intros a b c d H₁ H₂,
calc
c = d*a + b : H₁
... = d*a + a*d : by rw H₂
... = 2*a*d : by ring
end
example : ∀ (a b c : ℝ), a * (b * c) = b * (a * c) :=
begin
intros a b c, ring
end
example : ∀ (a b : ℝ), (a + b) + a = 2*a + b :=
begin
intros a b, ring
end
example : ∀ (a b : ℝ), (a + b)*(a - b) = a^2 - b^2 :=
begin
intros a b,
calc
(a + b)*(a - b) = (a + b)*a - (a + b)*b : by apply mul_sub
... = a*a + b*a - (a + b)*b : by rw add_mul
... = a*a + b*a - (a*b + b*b) : by rw add_mul
... = a*a + (b*a - (a*b + b*b)) : by rw add_sub
... = a*a + (b*a - a*b - b*b) : by rw sub_sub
... = a*a + (a*b - a*b - b*b) : by rw (mul_comm b a)
... = a*a + (0 - b*b) : by rw sub_self
... = a*a + 0 - b*b : by rw add_sub
... = a*a - b*b : by rw add_zero
... = a^2 - b*b : by rw (pow_two a)
... = a^2 - b^2 : by rw (pow_two b)
end
example : ∀ (a b : ℝ), (a + b)*(a - b) = a^2 - b^2 :=
begin
intros a b, ring
end
|
fa44103a6056e826a1aa5b7123637c60a4914711
|
30b012bb72d640ec30c8fdd4c45fdfa67beb012c
|
/analysis/topology/continuity.lean
|
bfc3ca741e5acdc3866fd752b3282eed16ca72f2
|
[
"Apache-2.0"
] |
permissive
|
kckennylau/mathlib
|
21fb810b701b10d6606d9002a4004f7672262e83
|
47b3477e20ffb5a06588dd3abb01fe0fe3205646
|
refs/heads/master
| 1,634,976,409,281
| 1,542,042,832,000
| 1,542,319,733,000
| 109,560,458
| 0
| 0
|
Apache-2.0
| 1,542,369,208,000
| 1,509,867,494,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 70,792
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot
Continuous functions.
Parts of the formalization is based on the books:
N. Bourbaki: General Topology
I. M. James: Topologies and Uniformities
A major difference is that this formalization is heavily based on the filter library.
-/
import analysis.topology.topological_space
noncomputable theory
open set filter lattice
local attribute [instance] classical.prop_decidable
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
section
variables [topological_space α] [topological_space β] [topological_space γ]
/-- A function between topological spaces is continuous if the preimage
of every open set is open. -/
def continuous (f : α → β) := ∀s, is_open s → is_open (f ⁻¹' s)
lemma continuous_id : continuous (id : α → α) :=
assume s h, h
lemma continuous.comp {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g):
continuous (g ∘ f) :=
assume s h, hf _ (hg s h)
lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) :
tendsto f (nhds x) (nhds (f x)) | s :=
show s ∈ (nhds (f x)).sets → s ∈ (map f (nhds x)).sets,
by simp [nhds_sets]; exact
assume t t_subset t_open fx_in_t,
⟨f ⁻¹' t, preimage_mono t_subset, hf t t_open, fx_in_t⟩
lemma continuous_iff_tendsto {f : α → β} :
continuous f ↔ (∀x, tendsto f (nhds x) (nhds (f x))) :=
⟨continuous.tendsto,
assume hf : ∀x, tendsto f (nhds x) (nhds (f x)),
assume s, assume hs : is_open s,
have ∀a, f a ∈ s → s ∈ (nhds (f a)).sets,
by simp [nhds_sets]; exact assume a ha, ⟨s, subset.refl s, hs, ha⟩,
show is_open (f ⁻¹' s),
by simp [is_open_iff_nhds]; exact assume a ha, hf a (this a ha)⟩
lemma continuous_const {b : β} : continuous (λa:α, b) :=
continuous_iff_tendsto.mpr $ assume a, tendsto_const_nhds
lemma continuous_iff_is_closed {f : α → β} :
continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) :=
⟨assume hf s hs, hf (-s) hs,
assume hf s, by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩
lemma continuous_at_iff_ultrafilter {f : α → β} (x) : tendsto f (nhds x) (nhds (f x)) ↔
∀ g, is_ultrafilter g → g ≤ nhds x → g.map f ≤ nhds (f x) :=
tendsto_iff_ultrafilter f (nhds x) (nhds (f x))
lemma continuous_iff_ultrafilter {f : α → β} :
continuous f ↔ ∀ x g, is_ultrafilter g → g ≤ nhds x → g.map f ≤ nhds (f x) :=
by simp only [continuous_iff_tendsto, continuous_at_iff_ultrafilter]
lemma continuous_if {p : α → Prop} {f g : α → β} {h : ∀a, decidable (p a)}
(hp : ∀a∈frontier {a | p a}, f a = g a) (hf : continuous f) (hg : continuous g) :
continuous (λa, @ite (p a) (h a) β (f a) (g a)) :=
continuous_iff_is_closed.mpr $
assume s hs,
have (λa, ite (p a) (f a) (g a)) ⁻¹' s =
(closure {a | p a} ∩ f ⁻¹' s) ∪ (closure {a | ¬ p a} ∩ g ⁻¹' s),
from set.ext $ assume a,
classical.by_cases
(assume : a ∈ frontier {a | p a},
have hac : a ∈ closure {a | p a}, from this.left,
have hai : a ∈ closure {a | ¬ p a},
from have a ∈ - interior {a | p a}, from this.right, by rwa [←closure_compl] at this,
by by_cases p a; simp [h, hp a this, hac, hai, iff_def] {contextual := tt})
(assume hf : a ∈ - frontier {a | p a},
classical.by_cases
(assume : p a,
have hc : a ∈ closure {a | p a}, from subset_closure this,
have hnc : a ∉ closure {a | ¬ p a},
by show a ∉ closure (- {a | p a}); rw [closure_compl]; simpa [frontier, hc] using hf,
by simp [this, hc, hnc])
(assume : ¬ p a,
have hc : a ∈ closure {a | ¬ p a}, from subset_closure this,
have hnc : a ∉ closure {a | p a},
begin
have hc : a ∈ closure (- {a | p a}), from hc,
simp [closure_compl] at hc,
simpa [frontier, hc] using hf
end,
by simp [this, hc, hnc])),
by rw [this]; exact is_closed_union
(is_closed_inter is_closed_closure $ continuous_iff_is_closed.mp hf s hs)
(is_closed_inter is_closed_closure $ continuous_iff_is_closed.mp hg s hs)
lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) :
f '' closure s ⊆ closure (f '' s) :=
have ∀ (a : α), nhds a ⊓ principal s ≠ ⊥ → nhds (f a) ⊓ principal (f '' s) ≠ ⊥,
from assume a ha,
have h₁ : ¬ map f (nhds a ⊓ principal s) = ⊥,
by rwa[map_eq_bot_iff],
have h₂ : map f (nhds a ⊓ principal s) ≤ nhds (f a) ⊓ principal (f '' s),
from le_inf
(le_trans (map_mono inf_le_left) $ by rw [continuous_iff_tendsto] at h; exact h a)
(le_trans (map_mono inf_le_right) $ by simp; exact subset.refl _),
neq_bot_of_le_neq_bot h₁ h₂,
by simp [image_subset_iff, closure_eq_nhds]; assumption
lemma mem_closure [topological_space α] [topological_space β]
{s : set α} {t : set β} {f : α → β} {a : α}
(hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t :=
subset.trans (image_closure_subset_closure_image hf) (closure_mono $ image_subset_iff.2 ht) $
(mem_image_of_mem f ha)
lemma compact_image {s : set α} {f : α → β} (hs : compact s) (hf : continuous f) : compact (f '' s) :=
compact_of_finite_subcover $ assume c hco hcs,
have hdo : ∀t∈c, is_open (f ⁻¹' t), from assume t' ht, hf _ $ hco _ ht,
have hds : s ⊆ ⋃i∈c, f ⁻¹' i,
by simpa [subset_def, -mem_image] using hcs,
let ⟨d', hcd', hfd', hd'⟩ := compact_elim_finite_subcover_image hs hdo hds in
⟨d', hcd', hfd', by simpa [subset_def, -mem_image, image_subset_iff] using hd'⟩
end
section constructions
local notation `cont` := @continuous _ _
local notation `tspace` := topological_space
open topological_space
variables {f : α → β} {ι : Sort*}
lemma continuous_iff_le_coinduced {t₁ : tspace α} {t₂ : tspace β} :
cont t₁ t₂ f ↔ t₂ ≤ coinduced f t₁ := iff.rfl
lemma continuous_iff_induced_le {t₁ : tspace α} {t₂ : tspace β} :
cont t₁ t₂ f ↔ induced f t₂ ≤ t₁ :=
iff.trans continuous_iff_le_coinduced (gc_induced_coinduced f _ _).symm
theorem continuous_generated_from {t : tspace α} {b : set (set β)}
(h : ∀s∈b, is_open (f ⁻¹' s)) : cont t (generate_from b) f :=
continuous_iff_le_coinduced.2 $ generate_from_le h
lemma continuous_induced_dom {t : tspace β} : cont (induced f t) t f :=
assume s h, ⟨_, h, rfl⟩
lemma continuous_induced_rng {g : γ → α} {t₂ : tspace β} {t₁ : tspace γ}
(h : cont t₁ t₂ (f ∘ g)) : cont t₁ (induced f t₂) g :=
assume s ⟨t, ht, s_eq⟩, s_eq.symm ▸ h t ht
lemma continuous_coinduced_rng {t : tspace α} : cont t (coinduced f t) f :=
assume s h, h
lemma continuous_coinduced_dom {g : β → γ} {t₁ : tspace α} {t₂ : tspace γ}
(h : cont t₁ t₂ (g ∘ f)) : cont (coinduced f t₁) t₂ g :=
assume s hs, h s hs
lemma continuous_le_dom {t₁ t₂ : tspace α} {t₃ : tspace β}
(h₁ : t₁ ≤ t₂) (h₂ : cont t₁ t₃ f) : cont t₂ t₃ f :=
assume s h, h₁ _ (h₂ s h)
lemma continuous_le_rng {t₁ : tspace α} {t₂ t₃ : tspace β}
(h₁ : t₃ ≤ t₂) (h₂ : cont t₁ t₂ f) : cont t₁ t₃ f :=
assume s h, h₂ s (h₁ s h)
lemma continuous_inf_dom {t₁ t₂ : tspace α} {t₃ : tspace β}
(h₁ : cont t₁ t₃ f) (h₂ : cont t₂ t₃ f) : cont (t₁ ⊓ t₂) t₃ f :=
assume s h, ⟨h₁ s h, h₂ s h⟩
lemma continuous_inf_rng_left {t₁ : tspace α} {t₃ t₂ : tspace β} :
cont t₁ t₂ f → cont t₁ (t₂ ⊓ t₃) f :=
continuous_le_rng inf_le_left
lemma continuous_inf_rng_right {t₁ : tspace α} {t₃ t₂ : tspace β} :
cont t₁ t₃ f → cont t₁ (t₂ ⊓ t₃) f :=
continuous_le_rng inf_le_right
lemma continuous_Inf_dom {t₁ : set (tspace α)} {t₂ : tspace β}
(h : ∀t∈t₁, cont t t₂ f) : cont (Inf t₁) t₂ f :=
continuous_iff_induced_le.2 $ le_Inf $ assume t ht, continuous_iff_induced_le.1 $ h t ht
lemma continuous_Inf_rng {t₁ : tspace α} {t₂ : set (tspace β)} {t : tspace β}
(h₁ : t ∈ t₂) (hf : cont t₁ t f) : cont t₁ (Inf t₂) f :=
continuous_iff_le_coinduced.2 $ Inf_le_of_le h₁ $ continuous_iff_le_coinduced.1 hf
lemma continuous_infi_dom {t₁ : ι → tspace α} {t₂ : tspace β}
(h : ∀i, cont (t₁ i) t₂ f) : cont (infi t₁) t₂ f :=
continuous_Inf_dom $ assume t ⟨i, (t_eq : t₁ i = t)⟩, t_eq ▸ h i
lemma continuous_infi_rng {t₁ : tspace α} {t₂ : ι → tspace β} {i : ι}
(h : cont t₁ (t₂ i) f) : cont t₁ (infi t₂) f :=
continuous_Inf_rng ⟨i, rfl⟩ h
lemma continuous_sup_rng {t₁ : tspace α} {t₂ t₃ : tspace β}
(h₁ : cont t₁ t₂ f) (h₂ : cont t₁ t₃ f) : cont t₁ (t₂ ⊔ t₃) f :=
continuous_iff_le_coinduced.2 $ sup_le
(continuous_iff_le_coinduced.1 h₁)
(continuous_iff_le_coinduced.1 h₂)
lemma continuous_sup_dom_left {t₁ t₂ : tspace α} {t₃ : tspace β} :
cont t₁ t₃ f → cont (t₁ ⊔ t₂) t₃ f :=
continuous_le_dom le_sup_left
lemma continuous_sup_dom_right {t₁ t₂ : tspace α} {t₃ : tspace β} :
cont t₂ t₃ f → cont (t₁ ⊔ t₂) t₃ f :=
continuous_le_dom le_sup_right
lemma continuous_Sup_dom {t₁ : set (tspace α)} {t₂ : tspace β} {t : tspace α} (h₁ : t ∈ t₁) :
cont t t₂ f → cont (Sup t₁) t₂ f :=
continuous_le_dom $ le_Sup h₁
lemma continuous_Sup_rng {t₁ : tspace α} {t₂ : set (tspace β)}
(h : ∀t∈t₂, cont t₁ t f) : cont t₁ (Sup t₂) f :=
continuous_iff_le_coinduced.2 $ Sup_le $ assume b hb, continuous_iff_le_coinduced.1 $ h b hb
lemma continuous_supr_dom {t₁ : ι → tspace α} {t₂ : tspace β} {i : ι} :
cont (t₁ i) t₂ f → cont (supr t₁) t₂ f :=
continuous_le_dom $ le_supr _ _
lemma continuous_supr_rng {t₁ : tspace α} {t₂ : ι → tspace β}
(h : ∀i, cont t₁ (t₂ i) f) : cont t₁ (supr t₂) f :=
continuous_iff_le_coinduced.2 $ supr_le $ assume i, continuous_iff_le_coinduced.1 $ h i
lemma continuous_top {t : tspace β} : cont ⊤ t f :=
continuous_iff_induced_le.2 $ le_top
lemma continuous_bot {t : tspace α} : cont t ⊥ f :=
continuous_iff_le_coinduced.2 $ bot_le
end constructions
section induced
open topological_space
variables [t : topological_space β] {f : α → β}
theorem is_open_induced {s : set β} (h : is_open s) : (induced f t).is_open (f ⁻¹' s) :=
⟨s, h, rfl⟩
lemma nhds_induced_eq_comap {a : α} : @nhds α (induced f t) a = comap f (nhds (f a)) :=
le_antisymm
(assume s ⟨s', hs', (h_s : f ⁻¹' s' ⊆ s)⟩,
let ⟨t', hsub, ht', hin⟩ := mem_nhds_sets_iff.1 hs' in
(@nhds α (induced f t) a).sets_of_superset
begin
simp [mem_nhds_sets_iff],
exact ⟨preimage f t', preimage_mono hsub, is_open_induced ht', hin⟩
end
h_s)
(le_infi $ assume s, le_infi $ assume ⟨as, s', is_open_s', s_eq⟩,
begin
simp [comap, mem_nhds_sets_iff, s_eq],
exact ⟨s', ⟨s', subset.refl _, is_open_s', by rwa [s_eq] at as⟩, subset.refl _⟩
end)
lemma map_nhds_induced_eq {a : α} (h : image f univ ∈ (nhds (f a)).sets) :
map f (@nhds α (induced f t) a) = nhds (f a) :=
le_antisymm
(@continuous.tendsto α β (induced f t) _ _ continuous_induced_dom a)
(assume s, assume hs : f ⁻¹' s ∈ (@nhds α (induced f t) a).sets,
let ⟨t', t_subset, is_open_t, a_in_t⟩ := mem_nhds_sets_iff.mp h in
let ⟨s', s'_subset, ⟨s'', is_open_s'', s'_eq⟩, a_in_s'⟩ := (@mem_nhds_sets_iff _ (induced f t) _ _).mp hs in
by subst s'_eq; exact (mem_nhds_sets_iff.mpr $
⟨t' ∩ s'',
assume x ⟨h₁, h₂⟩, match x, h₂, t_subset h₁ with
| x, h₂, ⟨y, _, y_eq⟩ := begin subst y_eq, exact s'_subset h₂ end
end,
is_open_inter is_open_t is_open_s'',
⟨a_in_t, a_in_s'⟩⟩))
lemma closure_induced [t : topological_space β] {f : α → β} {a : α} {s : set α}
(hf : ∀x y, f x = f y → x = y) :
a ∈ @closure α (topological_space.induced f t) s ↔ f a ∈ closure (f '' s) :=
have comap f (nhds (f a) ⊓ principal (f '' s)) ≠ ⊥ ↔ nhds (f a) ⊓ principal (f '' s) ≠ ⊥,
from ⟨assume h₁ h₂, h₁ $ h₂.symm ▸ comap_bot,
assume h,
forall_sets_neq_empty_iff_neq_bot.mp $
assume s₁ ⟨s₂, hs₂, (hs : f ⁻¹' s₂ ⊆ s₁)⟩,
have f '' s ∈ (nhds (f a) ⊓ principal (f '' s)).sets,
from mem_inf_sets_of_right $ by simp [subset.refl],
have s₂ ∩ f '' s ∈ (nhds (f a) ⊓ principal (f '' s)).sets,
from inter_mem_sets hs₂ this,
let ⟨b, hb₁, ⟨a, ha, ha₂⟩⟩ := inhabited_of_mem_sets h this in
ne_empty_of_mem $ hs $ by rwa [←ha₂] at hb₁⟩,
calc a ∈ @closure α (topological_space.induced f t) s
↔ (@nhds α (topological_space.induced f t) a) ⊓ principal s ≠ ⊥ : by rw [closure_eq_nhds]; refl
... ↔ comap f (nhds (f a)) ⊓ principal (f ⁻¹' (f '' s)) ≠ ⊥ : by rw [nhds_induced_eq_comap, preimage_image_eq _ hf]
... ↔ comap f (nhds (f a) ⊓ principal (f '' s)) ≠ ⊥ : by rw [comap_inf, ←comap_principal]
... ↔ _ : by rwa [closure_eq_nhds]
end induced
section embedding
/-- A function between topological spaces is an embedding if it is injective,
and for all `s : set α`, `s` is open iff it is the preimage of an open set. -/
def embedding [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop :=
function.injective f ∧ tα = tβ.induced f
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
lemma embedding_id : embedding (@id α) :=
⟨assume a₁ a₂ h, h, induced_id.symm⟩
lemma embedding_compose {f : α → β} {g : β → γ} (hf : embedding f) (hg : embedding g) :
embedding (g ∘ f) :=
⟨assume a₁ a₂ h, hf.left $ hg.left h, by rw [hf.right, hg.right, induced_compose]⟩
lemma embedding_prod_mk {f : α → β} {g : γ → δ} (hf : embedding f) (hg : embedding g) :
embedding (λx:α×γ, (f x.1, g x.2)) :=
⟨assume ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, by simp; exact assume h₁ h₂, ⟨hf.left h₁, hg.left h₂⟩,
by rw [prod.topological_space, prod.topological_space, hf.right, hg.right,
induced_compose, induced_compose, induced_sup, induced_compose, induced_compose]⟩
lemma embedding_of_embedding_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g)
(hgf : embedding (g ∘ f)) : embedding f :=
⟨assume a₁ a₂ h, hgf.left $ by simp [h, (∘)],
le_antisymm
(by rw [hgf.right, ← continuous_iff_induced_le];
apply continuous_induced_dom.comp hg)
(by rwa ← continuous_iff_induced_le)⟩
lemma embedding_open {f : α → β} {s : set α}
(hf : embedding f) (h : is_open (range f)) (hs : is_open s) : is_open (f '' s) :=
let ⟨t, ht, h_eq⟩ := by rw [hf.right] at hs; exact hs in
have is_open (t ∩ range f), from is_open_inter ht h,
h_eq.symm ▸ by rwa [image_preimage_eq_inter_range]
lemma embedding_is_closed {f : α → β} {s : set α}
(hf : embedding f) (h : is_closed (range f)) (hs : is_closed s) : is_closed (f '' s) :=
let ⟨t, ht, h_eq⟩ := by rw [hf.right, is_closed_induced_iff] at hs; exact hs in
have is_closed (t ∩ range f), from is_closed_inter ht h,
h_eq.symm ▸ by rwa [image_preimage_eq_inter_range]
lemma embedding.map_nhds_eq [topological_space α] [topological_space β] {f : α → β} (hf : embedding f) (a : α)
(h : f '' univ ∈ (nhds (f a)).sets) : (nhds a).map f = nhds (f a) :=
by rw [hf.2]; exact map_nhds_induced_eq h
lemma embedding.tendsto_nhds_iff {ι : Type*}
{f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : embedding g) :
tendsto f a (nhds b) ↔ tendsto (g ∘ f) a (nhds (g b)) :=
by rw [tendsto, tendsto, hg.right, nhds_induced_eq_comap, ← map_le_iff_le_comap, filter.map_map]
lemma embedding.continuous_iff {f : α → β} {g : β → γ} (hg : embedding g) :
continuous f ↔ continuous (g ∘ f) :=
by simp [continuous_iff_tendsto, embedding.tendsto_nhds_iff hg]
lemma embedding.continuous {f : α → β} (hf : embedding f) : continuous f :=
hf.continuous_iff.mp continuous_id
lemma compact_iff_compact_image_of_embedding {s : set α} {f : α → β} (hf : embedding f) :
compact s ↔ compact (f '' s) :=
iff.intro (assume h, compact_image h hf.continuous) $ assume h, begin
rw compact_iff_ultrafilter_le_nhds at ⊢ h,
intros u hu us',
let u' : filter β := map f u,
have : u' ≤ principal (f '' s), begin
rw [map_le_iff_le_comap, comap_principal], convert us',
exact preimage_image_eq _ hf.1
end,
rcases h u' (ultrafilter_map hu) this with ⟨_, ⟨a, ha, ⟨⟩⟩, _⟩,
refine ⟨a, ha, _⟩,
rwa [hf.2, nhds_induced_eq_comap, ←map_le_iff_le_comap]
end
lemma embedding.closure_eq_preimage_closure_image {e : α → β} (he : embedding e) (s : set α) :
closure s = e ⁻¹' closure (e '' s) :=
by ext x; rw [set.mem_preimage_eq, ← closure_induced he.1, he.2]
end embedding
/-- A function between topological spaces is a quotient map if it is surjective,
and for all `s : set β`, `s` is open iff its preimage is an open set. -/
def quotient_map [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop :=
function.surjective f ∧ tβ = tα.coinduced f
namespace quotient_map
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
protected lemma id : quotient_map (@id α) :=
⟨assume a, ⟨a, rfl⟩, coinduced_id.symm⟩
protected lemma comp {f : α → β} {g : β → γ} (hf : quotient_map f) (hg : quotient_map g) :
quotient_map (g ∘ f) :=
⟨function.surjective_comp hg.left hf.left, by rw [hg.right, hf.right, coinduced_compose]⟩
protected lemma of_quotient_map_compose {f : α → β} {g : β → γ}
(hf : continuous f) (hg : continuous g)
(hgf : quotient_map (g ∘ f)) : quotient_map g :=
⟨assume b, let ⟨a, h⟩ := hgf.left b in ⟨f a, h⟩,
le_antisymm
(by rwa ← continuous_iff_le_coinduced)
(by rw [hgf.right, ← continuous_iff_le_coinduced];
apply hf.comp continuous_coinduced_rng)⟩
protected lemma continuous_iff {f : α → β} {g : β → γ} (hf : quotient_map f) :
continuous g ↔ continuous (g ∘ f) :=
by rw [continuous_iff_le_coinduced, continuous_iff_le_coinduced, hf.right, coinduced_compose]
protected lemma continuous {f : α → β} (hf : quotient_map f) : continuous f :=
hf.continuous_iff.mp continuous_id
end quotient_map
section is_open_map
variables [topological_space α] [topological_space β]
def is_open_map (f : α → β) := ∀ U : set α, is_open U → is_open (f '' U)
lemma is_open_map_iff_nhds_le (f : α → β) : is_open_map f ↔ ∀(a:α), nhds (f a) ≤ (nhds a).map f :=
begin
split,
{ assume h a s hs,
rcases mem_nhds_sets_iff.1 hs with ⟨t, hts, ht, hat⟩,
exact filter.mem_sets_of_superset
(mem_nhds_sets (h t ht) (mem_image_of_mem _ hat))
(image_subset_iff.2 hts) },
{ refine assume h s hs, is_open_iff_mem_nhds.2 _,
rintros b ⟨a, ha, rfl⟩,
exact h _ (filter.image_mem_map $ mem_nhds_sets hs ha) }
end
end is_open_map
namespace is_open_map
variables [topological_space α] [topological_space β] [topological_space γ]
open function
protected lemma id : is_open_map (@id α) := assume s hs, by rwa [image_id]
protected lemma comp
{f : α → β} {g : β → γ} (hf : is_open_map f) (hg : is_open_map g) : is_open_map (g ∘ f) :=
by intros s hs; rw [image_comp]; exact hg _ (hf _ hs)
lemma of_inverse {f : α → β} {f' : β → α}
(h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') :
is_open_map f :=
assume s hs,
have f' ⁻¹' s = f '' s, by ext x; simp [mem_image_iff_of_inverse r_inv l_inv],
this ▸ h s hs
lemma to_quotient_map {f : α → β}
(open_map : is_open_map f) (cont : continuous f) (surj : function.surjective f) :
quotient_map f :=
⟨ surj,
begin
ext s,
show is_open s ↔ is_open (f ⁻¹' s),
split,
{ exact cont s },
{ assume h,
rw ← @image_preimage_eq _ _ _ s surj,
exact open_map _ h }
end⟩
end is_open_map
section sierpinski
variables [topological_space α]
@[simp] lemma is_open_singleton_true : is_open ({true} : set Prop) :=
topological_space.generate_open.basic _ (by simp)
lemma continuous_Prop {p : α → Prop} : continuous p ↔ is_open {x | p x} :=
⟨assume h : continuous p,
have is_open (p ⁻¹' {true}),
from h _ is_open_singleton_true,
by simp [preimage, eq_true] at this; assumption,
assume h : is_open {x | p x},
continuous_generated_from $ assume s (hs : s ∈ {{true}}),
by simp at hs; simp [hs, preimage, eq_true, h]⟩
end sierpinski
section prod
open topological_space
variables [topological_space α] [topological_space β] [topological_space γ]
lemma continuous_fst : continuous (@prod.fst α β) :=
continuous_sup_dom_left continuous_induced_dom
lemma continuous_snd : continuous (@prod.snd α β) :=
continuous_sup_dom_right continuous_induced_dom
lemma continuous.prod_mk {f : γ → α} {g : γ → β}
(hf : continuous f) (hg : continuous g) : continuous (λx, prod.mk (f x) (g x)) :=
continuous_sup_rng (continuous_induced_rng hf) (continuous_induced_rng hg)
lemma continuous_swap : continuous (prod.swap : α × β → β × α) :=
continuous.prod_mk continuous_snd continuous_fst
lemma is_open_prod {s : set α} {t : set β} (hs : is_open s) (ht : is_open t) :
is_open (set.prod s t) :=
is_open_inter (continuous_fst s hs) (continuous_snd t ht)
lemma nhds_prod_eq {a : α} {b : β} : nhds (a, b) = filter.prod (nhds a) (nhds b) :=
by rw [filter.prod, prod.topological_space, nhds_sup, nhds_induced_eq_comap, nhds_induced_eq_comap]
instance [topological_space α] [discrete_topology α] [topological_space β] [discrete_topology β] :
discrete_topology (α × β) :=
⟨eq_of_nhds_eq_nhds $ assume ⟨a, b⟩,
by rw [nhds_prod_eq, nhds_discrete α, nhds_discrete β, nhds_top, filter.prod_pure_pure]⟩
lemma prod_mem_nhds_sets {s : set α} {t : set β} {a : α} {b : β}
(ha : s ∈ (nhds a).sets) (hb : t ∈ (nhds b).sets) : set.prod s t ∈ (nhds (a, b)).sets :=
by rw [nhds_prod_eq]; exact prod_mem_prod ha hb
lemma nhds_swap (a : α) (b : β) : nhds (a, b) = (nhds (b, a)).map prod.swap :=
by rw [nhds_prod_eq, filter.prod_comm, nhds_prod_eq]; refl
lemma tendsto_prod_mk_nhds {γ} {a : α} {b : β} {f : filter γ} {ma : γ → α} {mb : γ → β}
(ha : tendsto ma f (nhds a)) (hb : tendsto mb f (nhds b)) :
tendsto (λc, (ma c, mb c)) f (nhds (a, b)) :=
by rw [nhds_prod_eq]; exact filter.tendsto.prod_mk ha hb
lemma prod_generate_from_generate_from_eq {s : set (set α)} {t : set (set β)}
(hs : ⋃₀ s = univ) (ht : ⋃₀ t = univ) :
@prod.topological_space α β (generate_from s) (generate_from t) =
generate_from {g | ∃u∈s, ∃v∈t, g = set.prod u v} :=
let G := generate_from {g | ∃u∈s, ∃v∈t, g = set.prod u v} in
le_antisymm
(sup_le
(induced_le_iff_le_coinduced.mpr $ generate_from_le $ assume u hu,
have (⋃v∈t, set.prod u v) = prod.fst ⁻¹' u,
from calc (⋃v∈t, set.prod u v) = set.prod u univ :
set.ext $ assume ⟨a, b⟩, by rw ← ht; simp [and.left_comm] {contextual:=tt}
... = prod.fst ⁻¹' u : by simp [set.prod, preimage],
show G.is_open (prod.fst ⁻¹' u),
from this ▸ @is_open_Union _ _ G _ $ assume v, @is_open_Union _ _ G _ $ assume hv,
generate_open.basic _ ⟨_, hu, _, hv, rfl⟩)
(induced_le_iff_le_coinduced.mpr $ generate_from_le $ assume v hv,
have (⋃u∈s, set.prod u v) = prod.snd ⁻¹' v,
from calc (⋃u∈s, set.prod u v) = set.prod univ v:
set.ext $ assume ⟨a, b⟩, by rw [←hs]; by_cases b ∈ v; simp [h] {contextual:=tt}
... = prod.snd ⁻¹' v : by simp [set.prod, preimage],
show G.is_open (prod.snd ⁻¹' v),
from this ▸ @is_open_Union _ _ G _ $ assume u, @is_open_Union _ _ G _ $ assume hu,
generate_open.basic _ ⟨_, hu, _, hv, rfl⟩))
(generate_from_le $ assume g ⟨u, hu, v, hv, g_eq⟩, g_eq.symm ▸
@is_open_prod _ _ (generate_from s) (generate_from t) _ _
(generate_open.basic _ hu) (generate_open.basic _ hv))
lemma prod_eq_generate_from [tα : topological_space α] [tβ : topological_space β] :
prod.topological_space =
generate_from {g | ∃(s:set α) (t:set β), is_open s ∧ is_open t ∧ g = set.prod s t} :=
le_antisymm
(sup_le
(assume s ⟨t, ht, s_eq⟩,
have set.prod t univ = s, by simp [s_eq, preimage, set.prod],
this ▸ (generate_open.basic _ ⟨t, univ, ht, is_open_univ, rfl⟩))
(assume s ⟨t, ht, s_eq⟩,
have set.prod univ t = s, by simp [s_eq, preimage, set.prod],
this ▸ (generate_open.basic _ ⟨univ, t, is_open_univ, ht, rfl⟩)))
(generate_from_le $ assume g ⟨s, t, hs, ht, g_eq⟩, g_eq.symm ▸ is_open_prod hs ht)
lemma is_open_prod_iff {s : set (α×β)} : is_open s ↔
(∀a b, (a, b) ∈ s → ∃u v, is_open u ∧ is_open v ∧ a ∈ u ∧ b ∈ v ∧ set.prod u v ⊆ s) :=
begin
rw [is_open_iff_nhds],
simp [nhds_prod_eq, mem_prod_iff],
simp [mem_nhds_sets_iff],
exact forall_congr (assume a, ball_congr $ assume b h,
⟨assume ⟨u', ⟨u, us, uo, au⟩, v', ⟨v, vs, vo, bv⟩, h⟩,
⟨u, uo, v, vo, au, bv, subset.trans (set.prod_mono us vs) h⟩,
assume ⟨u, uo, v, vo, au, bv, h⟩,
⟨u, ⟨u, subset.refl u, uo, au⟩, v, ⟨v, subset.refl v, vo, bv⟩, h⟩⟩)
end
lemma closure_prod_eq {s : set α} {t : set β} :
closure (set.prod s t) = set.prod (closure s) (closure t) :=
set.ext $ assume ⟨a, b⟩,
have filter.prod (nhds a) (nhds b) ⊓ principal (set.prod s t) =
filter.prod (nhds a ⊓ principal s) (nhds b ⊓ principal t),
by rw [←prod_inf_prod, prod_principal_principal],
by simp [closure_eq_nhds, nhds_prod_eq, this]; exact prod_neq_bot
lemma mem_closure2 [topological_space α] [topological_space β] [topological_space γ]
{s : set α} {t : set β} {u : set γ} {f : α → β → γ} {a : α} {b : β}
(hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t)
(hu : ∀a b, a ∈ s → b ∈ t → f a b ∈ u) :
f a b ∈ closure u :=
have (a, b) ∈ closure (set.prod s t), by rw [closure_prod_eq]; from ⟨ha, hb⟩,
show (λp:α×β, f p.1 p.2) (a, b) ∈ closure u, from
mem_closure hf this $ assume ⟨a, b⟩ ⟨ha, hb⟩, hu a b ha hb
lemma is_closed_prod [topological_space α] [topological_space β] {s₁ : set α} {s₂ : set β}
(h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (set.prod s₁ s₂) :=
closure_eq_iff_is_closed.mp $ by simp [h₁, h₂, closure_prod_eq, closure_eq_of_is_closed]
protected lemma is_open_map.prod
[topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
{f : α → β} {g : γ → δ}
(hf : is_open_map f) (hg : is_open_map g) : is_open_map (λ p : α × γ, (f p.1, g p.2)) :=
begin
rw [is_open_map_iff_nhds_le],
rintros ⟨a, b⟩,
rw [nhds_prod_eq, nhds_prod_eq, ← filter.prod_map_map_eq],
exact filter.prod_mono ((is_open_map_iff_nhds_le f).1 hf a) ((is_open_map_iff_nhds_le g).1 hg b)
end
section tube_lemma
def nhds_contain_boxes (s : set α) (t : set β) : Prop :=
∀ (n : set (α × β)) (hn : is_open n) (hp : set.prod s t ⊆ n),
∃ (u : set α) (v : set β), is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ set.prod u v ⊆ n
lemma nhds_contain_boxes.symm {s : set α} {t : set β} :
nhds_contain_boxes s t → nhds_contain_boxes t s :=
assume H n hn hp,
let ⟨u, v, uo, vo, su, tv, p⟩ :=
H (prod.swap ⁻¹' n)
(continuous_swap n hn)
(by rwa [←image_subset_iff, prod.swap, image_swap_prod]) in
⟨v, u, vo, uo, tv, su,
by rwa [←image_subset_iff, prod.swap, image_swap_prod] at p⟩
lemma nhds_contain_boxes.comm {s : set α} {t : set β} :
nhds_contain_boxes s t ↔ nhds_contain_boxes t s :=
iff.intro nhds_contain_boxes.symm nhds_contain_boxes.symm
lemma nhds_contain_boxes_of_singleton {x : α} {y : β} :
nhds_contain_boxes ({x} : set α) ({y} : set β) :=
assume n hn hp,
let ⟨u, v, uo, vo, xu, yv, hp'⟩ :=
is_open_prod_iff.mp hn x y (hp $ by simp) in
⟨u, v, uo, vo, by simpa, by simpa, hp'⟩
lemma nhds_contain_boxes_of_compact {s : set α} (hs : compact s) (t : set β)
(H : ∀ x ∈ s, nhds_contain_boxes ({x} : set α) t) : nhds_contain_boxes s t :=
assume n hn hp,
have ∀x : subtype s, ∃uv : set α × set β,
is_open uv.1 ∧ is_open uv.2 ∧ {↑x} ⊆ uv.1 ∧ t ⊆ uv.2 ∧ set.prod uv.1 uv.2 ⊆ n,
from assume ⟨x, hx⟩,
have set.prod {x} t ⊆ n, from
subset.trans (prod_mono (by simpa) (subset.refl _)) hp,
let ⟨ux,vx,H1⟩ := H x hx n hn this in ⟨⟨ux,vx⟩,H1⟩,
let ⟨uvs, h⟩ := classical.axiom_of_choice this in
have us_cover : s ⊆ ⋃i, (uvs i).1, from
assume x hx, set.subset_Union _ ⟨x,hx⟩ (by simpa using (h ⟨x,hx⟩).2.2.1),
let ⟨s0, _, s0_fin, s0_cover⟩ :=
compact_elim_finite_subcover_image hs (λi _, (h i).1) $
by rw bUnion_univ; exact us_cover in
let u := ⋃(i ∈ s0), (uvs i).1 in
let v := ⋂(i ∈ s0), (uvs i).2 in
have is_open u, from is_open_bUnion (λi _, (h i).1),
have is_open v, from is_open_bInter s0_fin (λi _, (h i).2.1),
have t ⊆ v, from subset_bInter (λi _, (h i).2.2.2.1),
have set.prod u v ⊆ n, from assume ⟨x',y'⟩ ⟨hx',hy'⟩,
have ∃i ∈ s0, x' ∈ (uvs i).1, by simpa using hx',
let ⟨i,is0,hi⟩ := this in
(h i).2.2.2.2 ⟨hi, (bInter_subset_of_mem is0 : v ⊆ (uvs i).2) hy'⟩,
⟨u, v, ‹is_open u›, ‹is_open v›, s0_cover, ‹t ⊆ v›, ‹set.prod u v ⊆ n›⟩
lemma generalized_tube_lemma {s : set α} (hs : compact s) {t : set β} (ht : compact t)
{n : set (α × β)} (hn : is_open n) (hp : set.prod s t ⊆ n) :
∃ (u : set α) (v : set β), is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ set.prod u v ⊆ n :=
have _, from
nhds_contain_boxes_of_compact hs t $ assume x _, nhds_contain_boxes.symm $
nhds_contain_boxes_of_compact ht {x} $ assume y _, nhds_contain_boxes_of_singleton,
this n hn hp
end tube_lemma
lemma is_closed_diagonal [topological_space α] [t2_space α] : is_closed {p:α×α | p.1 = p.2} :=
is_closed_iff_nhds.mpr $ assume ⟨a₁, a₂⟩ h, eq_of_nhds_neq_bot $ assume : nhds a₁ ⊓ nhds a₂ = ⊥, h $
let ⟨t₁, ht₁, t₂, ht₂, (h' : t₁ ∩ t₂ ⊆ ∅)⟩ :=
by rw [←empty_in_sets_eq_bot, mem_inf_sets] at this; exact this in
begin
rw [nhds_prod_eq, ←empty_in_sets_eq_bot],
apply filter.sets_of_superset,
apply inter_mem_inf_sets (prod_mem_prod ht₁ ht₂) (mem_principal_sets.mpr (subset.refl _)),
exact assume ⟨x₁, x₂⟩ ⟨⟨hx₁, hx₂⟩, (heq : x₁ = x₂)⟩,
show false, from @h' x₁ ⟨hx₁, heq.symm ▸ hx₂⟩
end
lemma is_closed_eq [topological_space α] [t2_space α] [topological_space β] {f g : β → α}
(hf : continuous f) (hg : continuous g) : is_closed {x:β | f x = g x} :=
continuous_iff_is_closed.mp (hf.prod_mk hg) _ is_closed_diagonal
lemma diagonal_eq_range_diagonal_map : {p:α×α | p.1 = p.2} = range (λx, (x,x)) :=
ext $ assume p, iff.intro
(assume h, ⟨p.1, prod.ext_iff.2 ⟨rfl, h⟩⟩)
(assume ⟨x, hx⟩, show p.1 = p.2, by rw ←hx)
lemma prod_subset_compl_diagonal_iff_disjoint {s t : set α} :
set.prod s t ⊆ - {p:α×α | p.1 = p.2} ↔ s ∩ t = ∅ :=
by rw [eq_empty_iff_forall_not_mem, subset_compl_comm,
diagonal_eq_range_diagonal_map, range_subset_iff]; simp
lemma compact_compact_separated [t2_space α] {s t : set α}
(hs : compact s) (ht : compact t) (hst : s ∩ t = ∅) :
∃u v : set α, is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ u ∩ v = ∅ :=
by simp only [prod_subset_compl_diagonal_iff_disjoint.symm] at ⊢ hst;
exact generalized_tube_lemma hs ht is_closed_diagonal hst
lemma closed_of_compact [t2_space α] (s : set α) (hs : compact s) : is_closed s :=
is_open_compl_iff.mpr $ is_open_iff_forall_mem_open.mpr $ assume x hx,
let ⟨u, v, uo, vo, su, xv, uv⟩ :=
compact_compact_separated hs (compact_singleton : compact {x})
(by rwa [inter_comm, ←subset_compl_iff_disjoint, singleton_subset_iff]) in
have v ⊆ -s, from
subset_compl_comm.mp (subset.trans su (subset_compl_iff_disjoint.mpr uv)),
⟨v, this, vo, by simpa using xv⟩
/- TODO: more fine grained instances for first_countable_topology, separable_space, t2_space, ... -/
instance [second_countable_topology α] [second_countable_topology β] :
second_countable_topology (α × β) :=
⟨let ⟨a, ha₁, ha₂, ha₃, ha₄, ha₅⟩ := is_open_generated_countable_inter α in
let ⟨b, hb₁, hb₂, hb₃, hb₄, hb₅⟩ := is_open_generated_countable_inter β in
⟨{g | ∃u∈a, ∃v∈b, g = set.prod u v},
have {g | ∃u∈a, ∃v∈b, g = set.prod u v} = (⋃u∈a, ⋃v∈b, {set.prod u v}),
by apply set.ext; simp,
by rw [this]; exact (countable_bUnion ha₁ $ assume u hu, countable_bUnion hb₁ $ by simp),
by rw [ha₅, hb₅, prod_generate_from_generate_from_eq ha₄ hb₄]⟩⟩
end prod
section compact_and_proper_spaces
/--Type class for compact spaces. Separation is sometimes included in the definition, especially
in the French literature, but we do not include it here.-/
class compact_space (α : Type*) [topological_space α] : Prop :=
(compact_univ : compact (univ : set α))
lemma compact_univ [topological_space α] [h : compact_space α] : compact (univ : set α) := h.compact_univ
lemma compact_of_closed [topological_space α] [compact_space α] {s : set α} (h : is_closed s) :
compact s :=
compact_of_is_closed_subset compact_univ h (subset_univ _)
/-- There are various definitions of "locally compact space" in the literature, which agree for
Hausdorff spaces but not in general. This one is the precise condition on X needed for the
evaluation `map C(X, Y) × X → Y` to be continuous for all `Y` when `C(X, Y)` is given the
compact-open topology. -/
class locally_compact_space (α : Type*) [topological_space α] : Prop :=
(local_compact_nhds : ∀ (x : α) (n ∈ (nhds x).sets), ∃ s ∈ (nhds x).sets, s ⊆ n ∧ compact s)
lemma locally_compact_of_compact_nhds [topological_space α] [t2_space α]
(h : ∀ x : α, ∃ s, s ∈ (nhds x).sets ∧ compact s) :
locally_compact_space α :=
⟨assume x n hn,
let ⟨u, un, uo, xu⟩ := mem_nhds_sets_iff.mp hn in
let ⟨k, kx, kc⟩ := h x in
-- K is compact but not necessarily contained in N.
-- K \ U is again compact and doesn't contain x, so
-- we may find open sets V, W separating x from K \ U.
-- Then K \ W is a compact neighborhood of x contained in U.
let ⟨v, w, vo, wo, xv, kuw, vw⟩ :=
compact_compact_separated compact_singleton (compact_diff kc uo)
(by rw [singleton_inter_eq_empty]; exact λ h, h.2 xu) in
have wn : -w ∈ (nhds x).sets, from
mem_nhds_sets_iff.mpr
⟨v, subset_compl_iff_disjoint.mpr vw, vo, singleton_subset_iff.mp xv⟩,
⟨k - w,
filter.inter_mem_sets kx wn,
subset.trans (diff_subset_comm.mp kuw) un,
compact_diff kc wo⟩⟩
instance locally_compact_of_compact [topological_space α] [t2_space α] [compact_space α] :
locally_compact_space α :=
locally_compact_of_compact_nhds (assume x, ⟨univ, mem_nhds_sets is_open_univ trivial, compact_univ⟩)
-- We can't make this an instance because it could cause an instance loop.
lemma normal_of_compact_t2 [topological_space α] [compact_space α] [t2_space α] : normal_space α :=
begin
refine ⟨assume s t hs ht st, _⟩,
simp only [disjoint_iff],
exact compact_compact_separated (compact_of_closed hs) (compact_of_closed ht) st.eq_bot
end
end compact_and_proper_spaces
section sum
variables [topological_space α] [topological_space β] [topological_space γ]
lemma continuous_inl : continuous (@sum.inl α β) :=
continuous_inf_rng_left continuous_coinduced_rng
lemma continuous_inr : continuous (@sum.inr α β) :=
continuous_inf_rng_right continuous_coinduced_rng
lemma continuous_sum_rec {f : α → γ} {g : β → γ}
(hf : continuous f) (hg : continuous g) : @continuous (α ⊕ β) γ _ _ (@sum.rec α β (λ_, γ) f g) :=
continuous_inf_dom hf hg
lemma embedding_inl : embedding (@sum.inl α β) :=
⟨λ _ _, sum.inl.inj_iff.mp,
begin
unfold sum.topological_space,
apply le_antisymm,
{ intros u hu, existsi (sum.inl '' u),
change
(is_open (sum.inl ⁻¹' (@sum.inl α β '' u)) ∧
is_open (sum.inr ⁻¹' (@sum.inl α β '' u))) ∧
u = sum.inl ⁻¹' (sum.inl '' u),
have : sum.inl ⁻¹' (@sum.inl α β '' u) = u :=
preimage_image_eq u (λ _ _, sum.inl.inj_iff.mp), rw this,
have : sum.inr ⁻¹' (@sum.inl α β '' u) = ∅ :=
eq_empty_iff_forall_not_mem.mpr (assume a ⟨b, _, h⟩, sum.inl_ne_inr h), rw this,
exact ⟨⟨hu, is_open_empty⟩, rfl⟩ },
{ rw induced_le_iff_le_coinduced, exact lattice.inf_le_left }
end⟩
lemma embedding_inr : embedding (@sum.inr α β) :=
⟨λ _ _, sum.inr.inj_iff.mp,
begin
unfold sum.topological_space,
apply le_antisymm,
{ intros u hu, existsi (sum.inr '' u),
change
(is_open (sum.inl ⁻¹' (@sum.inr α β '' u)) ∧
is_open (sum.inr ⁻¹' (@sum.inr α β '' u))) ∧
u = sum.inr ⁻¹' (sum.inr '' u),
have : sum.inl ⁻¹' (@sum.inr α β '' u) = ∅ :=
eq_empty_iff_forall_not_mem.mpr (assume b ⟨a, _, h⟩, sum.inr_ne_inl h), rw this,
have : sum.inr ⁻¹' (@sum.inr α β '' u) = u :=
preimage_image_eq u (λ _ _, sum.inr.inj_iff.mp), rw this,
exact ⟨⟨is_open_empty, hu⟩, rfl⟩ },
{ rw induced_le_iff_le_coinduced, exact lattice.inf_le_right }
end⟩
end sum
section subtype
variables [topological_space α] [topological_space β] [topological_space γ] {p : α → Prop}
lemma embedding_graph {f : α → β} (hf : continuous f) : embedding (λx, (x, f x)) :=
embedding_of_embedding_compose (continuous_id.prod_mk hf) continuous_fst embedding_id
lemma embedding_subtype_val : embedding (@subtype.val α p) :=
⟨assume a₁ a₂, subtype.eq, rfl⟩
lemma continuous_subtype_val : continuous (@subtype.val α p) :=
continuous_induced_dom
lemma continuous_subtype_mk {f : β → α}
(hp : ∀x, p (f x)) (h : continuous f) : continuous (λx, (⟨f x, hp x⟩ : subtype p)) :=
continuous_induced_rng h
lemma tendsto_subtype_val [topological_space α] {p : α → Prop} {a : subtype p} :
tendsto subtype.val (nhds a) (nhds a.val) :=
continuous_iff_tendsto.1 continuous_subtype_val _
lemma map_nhds_subtype_val_eq {a : α} (ha : p a) (h : {a | p a} ∈ (nhds a).sets) :
map (@subtype.val α p) (nhds ⟨a, ha⟩) = nhds a :=
map_nhds_induced_eq (by simp [subtype_val_image, h])
lemma nhds_subtype_eq_comap {a : α} {h : p a} :
nhds (⟨a, h⟩ : subtype p) = comap subtype.val (nhds a) :=
nhds_induced_eq_comap
lemma tendsto_subtype_rng [topological_space α] {p : α → Prop} {b : filter β} {f : β → subtype p} :
∀{a:subtype p}, tendsto f b (nhds a) ↔ tendsto (λx, subtype.val (f x)) b (nhds a.val)
| ⟨a, ha⟩ := by rw [nhds_subtype_eq_comap, tendsto_comap_iff]
lemma continuous_subtype_nhds_cover {ι : Sort*} {f : α → β} {c : ι → α → Prop}
(c_cover : ∀x:α, ∃i, {x | c i x} ∈ (nhds x).sets)
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) :
continuous f :=
continuous_iff_tendsto.mpr $ assume x,
let ⟨i, (c_sets : {x | c i x} ∈ (nhds x).sets)⟩ := c_cover x in
let x' : subtype (c i) := ⟨x, mem_of_nhds c_sets⟩ in
calc map f (nhds x) = map f (map subtype.val (nhds x')) :
congr_arg (map f) (map_nhds_subtype_val_eq _ $ c_sets).symm
... = map (λx:subtype (c i), f x.val) (nhds x') : rfl
... ≤ nhds (f x) : continuous_iff_tendsto.mp (f_cont i) x'
lemma continuous_subtype_is_closed_cover {ι : Sort*} {f : α → β} (c : ι → α → Prop)
(h_lf : locally_finite (λi, {x | c i x}))
(h_is_closed : ∀i, is_closed {x | c i x})
(h_cover : ∀x, ∃i, c i x)
(f_cont : ∀i, continuous (λ(x : subtype (c i)), f x.val)) :
continuous f :=
continuous_iff_is_closed.mpr $
assume s hs,
have ∀i, is_closed (@subtype.val α {x | c i x} '' (f ∘ subtype.val ⁻¹' s)),
from assume i,
embedding_is_closed embedding_subtype_val
(by simp [subtype_val_range]; exact h_is_closed i)
(continuous_iff_is_closed.mp (f_cont i) _ hs),
have is_closed (⋃i, @subtype.val α {x | c i x} '' (f ∘ subtype.val ⁻¹' s)),
from is_closed_Union_of_locally_finite
(locally_finite_subset h_lf $ assume i x ⟨⟨x', hx'⟩, _, heq⟩, heq ▸ hx')
this,
have f ⁻¹' s = (⋃i, @subtype.val α {x | c i x} '' (f ∘ subtype.val ⁻¹' s)),
begin
apply set.ext,
have : ∀ (x : α), f x ∈ s ↔ ∃ (i : ι), c i x ∧ f x ∈ s :=
λ x, ⟨λ hx, let ⟨i, hi⟩ := h_cover x in ⟨i, hi, hx⟩,
λ ⟨i, hi, hx⟩, hx⟩,
simp [and.comm, and.left_comm], simpa [(∘)],
end,
by rwa [this]
lemma closure_subtype {x : {a // p a}} {s : set {a // p a}}:
x ∈ closure s ↔ x.val ∈ closure (subtype.val '' s) :=
closure_induced $ assume x y, subtype.eq
lemma compact_iff_compact_in_subtype {s : set {a // p a}} :
compact s ↔ compact (subtype.val '' s) :=
compact_iff_compact_image_of_embedding embedding_subtype_val
lemma compact_iff_compact_univ {s : set α} : compact s ↔ compact (univ : set (subtype s)) :=
by rw [compact_iff_compact_in_subtype, image_univ, subtype_val_range]; refl
end subtype
section quotient
variables [topological_space α] [topological_space β] [topological_space γ]
variables {r : α → α → Prop} {s : setoid α}
lemma quotient_map_quot_mk : quotient_map (@quot.mk α r) :=
⟨quot.exists_rep, rfl⟩
lemma continuous_quot_mk : continuous (@quot.mk α r) :=
continuous_coinduced_rng
lemma continuous_quot_lift {f : α → β} (hr : ∀ a b, r a b → f a = f b)
(h : continuous f) : continuous (quot.lift f hr : quot r → β) :=
continuous_coinduced_dom h
lemma quotient_map_quotient_mk : quotient_map (@quotient.mk α s) :=
quotient_map_quot_mk
lemma continuous_quotient_mk : continuous (@quotient.mk α s) :=
continuous_coinduced_rng
lemma continuous_quotient_lift {f : α → β} (hs : ∀ a b, a ≈ b → f a = f b)
(h : continuous f) : continuous (quotient.lift f hs : quotient s → β) :=
continuous_coinduced_dom h
instance quot.compact_space {r : α → α → Prop} [topological_space α] [compact_space α] :
compact_space (quot r) :=
⟨begin
have : quot.mk r '' univ = univ,
by rw [image_univ, range_iff_surjective]; exact quot.exists_rep,
rw ←this,
exact compact_image compact_univ continuous_quot_mk
end⟩
instance quotient.compact_space {s : setoid α} [topological_space α] [compact_space α] :
compact_space (quotient s) :=
quot.compact_space
end quotient
section pi
variables {ι : Type*} {π : ι → Type*}
open topological_space
lemma continuous_pi [topological_space α] [∀i, topological_space (π i)] {f : α → Πi:ι, π i}
(h : ∀i, continuous (λa, f a i)) : continuous f :=
continuous_supr_rng $ assume i, continuous_induced_rng $ h i
lemma continuous_apply [∀i, topological_space (π i)] (i : ι) :
continuous (λp:Πi, π i, p i) :=
continuous_supr_dom continuous_induced_dom
lemma nhds_pi [t : ∀i, topological_space (π i)] {a : Πi, π i} :
nhds a = (⨅i, comap (λx, x i) (nhds (a i))) :=
calc nhds a = (⨅i, @nhds _ (@topological_space.induced _ _ (λx:Πi, π i, x i) (t i)) a) : nhds_supr
... = (⨅i, comap (λx, x i) (nhds (a i))) : by simp [nhds_induced_eq_comap]
/-- Tychonoff's theorem -/
lemma compact_pi_infinite [∀i, topological_space (π i)] {s : Πi:ι, set (π i)} :
(∀i, compact (s i)) → compact {x : Πi:ι, π i | ∀i, x i ∈ s i} :=
begin
simp [compact_iff_ultrafilter_le_nhds, nhds_pi],
exact assume h f hf hfs,
let p : Πi:ι, filter (π i) := λi, map (λx:Πi:ι, π i, x i) f in
have ∀i:ι, ∃a, a∈s i ∧ p i ≤ nhds a,
from assume i, h i (p i) (ultrafilter_map hf) $
show (λx:Πi:ι, π i, x i) ⁻¹' s i ∈ f.sets,
from mem_sets_of_superset hfs $ assume x (hx : ∀i, x i ∈ s i), hx i,
let ⟨a, ha⟩ := classical.axiom_of_choice this in
⟨a, assume i, (ha i).left, assume i, map_le_iff_le_comap.mp $ (ha i).right⟩
end
lemma is_open_set_pi [∀a, topological_space (π a)] {i : set ι} {s : Πa, set (π a)}
(hi : finite i) (hs : ∀a∈i, is_open (s a)) : is_open (pi i s) :=
by rw [pi_def]; exact (is_open_bInter hi $ assume a ha, continuous_apply a _ $ hs a ha)
lemma pi_eq_generate_from [∀a, topological_space (π a)] :
Pi.topological_space =
generate_from {g | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, is_open (s a)) ∧ g = pi ↑i s} :=
le_antisymm
(supr_le $ assume a s ⟨t, ht, s_eq⟩, generate_open.basic _ $
⟨function.update (λa, univ) a t, {a}, by simpa using ht, by ext f; simp [s_eq, pi]⟩)
(generate_from_le $ assume g ⟨s, i, hi, eq⟩, eq.symm ▸ is_open_set_pi (finset.finite_to_set _) hi)
lemma pi_generate_from_eq {g : Πa, set (set (π a))} :
@Pi.topological_space ι π (λa, generate_from (g a)) =
generate_from {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} :=
let G := {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s} in
begin
rw [pi_eq_generate_from],
refine le_antisymm (generate_from_le _) (generate_from_mono _),
{ rintros s ⟨t, i, hi, rfl⟩,
rw [pi_def],
apply is_open_bInter (finset.finite_to_set _),
assume a ha, show ((generate_from G).coinduced (λf:Πa, π a, f a)).is_open (t a),
refine generate_from_le _ _ (hi a ha),
exact assume s hs, generate_open.basic _ ⟨function.update (λa, univ) a s, {a}, by simp [hs]⟩ },
exact assume s ⟨t, i, ht, eq⟩, ⟨t, i, assume a ha, generate_open.basic _ (ht a ha), eq⟩
end
lemma pi_generate_from_eq_fintype {g : Πa, set (set (π a))} [fintype ι] (hg : ∀a, ⋃₀ g a = univ) :
@Pi.topological_space ι π (λa, generate_from (g a)) =
generate_from {t | ∃(s:Πa, set (π a)), (∀a, s a ∈ g a) ∧ t = pi univ s} :=
let G := {t | ∃(s:Πa, set (π a)), (∀a, s a ∈ g a) ∧ t = pi univ s} in
begin
rw [pi_generate_from_eq],
refine le_antisymm (generate_from_le _) (generate_from_mono _),
{ rintros s ⟨t, i, ht, rfl⟩,
apply is_open_iff_forall_mem_open.2 _,
assume f hf,
choose c hc using show ∀a, ∃s, s ∈ g a ∧ f a ∈ s,
{ assume a, have : f a ∈ ⋃₀ g a, { rw [hg], apply mem_univ }, simpa },
refine ⟨pi univ (λa, if a ∈ i then t a else (c : Πa, set (π a)) a), _, _, _⟩,
{ simp [pi_if] },
{ refine generate_open.basic _ ⟨_, assume a, _, rfl⟩,
by_cases a ∈ i; simp [*, pi] at * },
{ have : f ∈ pi {a | a ∉ i} c, { simp [*, pi] at * },
simpa [pi_if, hf] } },
exact assume s ⟨t, ht, eq⟩, ⟨t, finset.univ, by simp [ht, eq]⟩
end
instance second_countable_topology_fintype
[fintype ι] [t : ∀a, topological_space (π a)] [sc : ∀a, second_countable_topology (π a)] :
second_countable_topology (∀a, π a) :=
have ∀i, ∃b : set (set (π i)), countable b ∧ ∅ ∉ b ∧ is_topological_basis b, from
assume a, @is_open_generated_countable_inter (π a) _ (sc a),
let ⟨g, hg⟩ := classical.axiom_of_choice this in
have t = (λa, generate_from (g a)), from funext $ assume a, (hg a).2.2.2.2,
begin
constructor,
refine ⟨pi univ '' pi univ g, countable_image _ _, _⟩,
{ suffices : countable {f : Πa, set (π a) | ∀a, f a ∈ g a}, { simpa [pi] },
exact countable_pi (assume i, (hg i).1), },
rw [this, pi_generate_from_eq_fintype],
{ congr' 1, ext f, simp [pi, eq_comm] },
exact assume a, (hg a).2.2.2.1
end
end pi
namespace list
variables [topological_space α] [topological_space β]
lemma tendsto_cons' {a : α} {l : list α} :
tendsto (λp:α×list α, list.cons p.1 p.2) ((nhds a).prod (nhds l)) (nhds (a :: l)) :=
by rw [nhds_cons, tendsto, map_prod]; exact le_refl _
lemma tendsto_cons {f : α → β} {g : α → list β}
{a : _root_.filter α} {b : β} {l : list β} (hf : tendsto f a (nhds b)) (hg : tendsto g a (nhds l)):
tendsto (λa, list.cons (f a) (g a)) a (nhds (b :: l)) :=
(tendsto.prod_mk hf hg).comp tendsto_cons'
lemma tendsto_cons_iff [topological_space β]
{f : list α → β} {b : _root_.filter β} {a : α} {l : list α} :
tendsto f (nhds (a :: l)) b ↔ tendsto (λp:α×list α, f (p.1 :: p.2)) ((nhds a).prod (nhds l)) b :=
have nhds (a :: l) = ((nhds a).prod (nhds l)).map (λp:α×list α, (p.1 :: p.2)),
begin
simp only [nhds_cons, prod_eq, (filter.map_def _ _).symm, (filter.seq_eq_filter_seq _ _).symm],
simp [-filter.seq_eq_filter_seq, -filter.map_def, (∘)] with functor_norm,
end,
by rw [this, filter.tendsto_map'_iff]
lemma tendsto_nhds [topological_space β]
{f : list α → β} {r : list α → _root_.filter β}
(h_nil : tendsto f (pure []) (r []))
(h_cons : ∀l a, tendsto f (nhds l) (r l) → tendsto (λp:α×list α, f (p.1 :: p.2)) ((nhds a).prod (nhds l)) (r (a::l))) :
∀l, tendsto f (nhds l) (r l)
| [] := by rwa [nhds_nil]
| (a::l) := by rw [tendsto_cons_iff]; exact h_cons l a (tendsto_nhds l)
lemma tendsto_length [topological_space α] :
∀(l : list α), tendsto list.length (nhds l) (nhds l.length) :=
begin
simp only [nhds_discrete],
refine tendsto_nhds _ _,
{ exact tendsto_pure_pure _ _ },
{ assume l a ih,
dsimp only [list.length],
refine tendsto.comp _ (tendsto_pure_pure (λx, x + 1) _),
refine tendsto.comp tendsto_snd ih }
end
lemma tendsto_insert_nth' {a : α} : ∀{n : ℕ} {l : list α},
tendsto (λp:α×list α, insert_nth n p.1 p.2) ((nhds a).prod (nhds l)) (nhds (insert_nth n a l))
| 0 l := tendsto_cons'
| (n+1) [] :=
suffices tendsto (λa, []) (nhds a) (nhds ([] : list α)),
by simpa [nhds_nil, tendsto, map_prod, -filter.pure_def, (∘), insert_nth],
tendsto_const_nhds
| (n+1) (a'::l) :=
have (nhds a).prod (nhds (a' :: l)) =
((nhds a).prod ((nhds a').prod (nhds l))).map (λp:α×α×list α, (p.1, p.2.1 :: p.2.2)),
begin
simp only [nhds_cons, prod_eq, (filter.map_def _ _).symm, (filter.seq_eq_filter_seq _ _).symm],
simp [-filter.seq_eq_filter_seq, -filter.map_def, (∘)] with functor_norm
end,
begin
rw [this, tendsto_map'_iff],
exact tendsto_cons
(tendsto_snd.comp tendsto_fst)
((tendsto.prod_mk tendsto_fst (tendsto_snd.comp tendsto_snd)).comp (@tendsto_insert_nth' n l))
end
lemma tendsto_insert_nth {n : ℕ} {a : α} {l : list α} {f : β → α} {g : β → list α}
{b : _root_.filter β} (hf : tendsto f b (nhds a)) (hg : tendsto g b (nhds l)) :
tendsto (λb:β, insert_nth n (f b) (g b)) b (nhds (insert_nth n a l)) :=
(tendsto.prod_mk hf hg).comp tendsto_insert_nth'
lemma continuous_insert_nth {n : ℕ} : continuous (λp:α×list α, insert_nth n p.1 p.2) :=
continuous_iff_tendsto.2 $ assume ⟨a, l⟩, by rw [nhds_prod_eq]; exact tendsto_insert_nth'
lemma tendsto_remove_nth : ∀{n : ℕ} {l : list α},
tendsto (λl, remove_nth l n) (nhds l) (nhds (remove_nth l n))
| _ [] := by rw [nhds_nil]; exact tendsto_pure_nhds _ _
| 0 (a::l) := by rw [tendsto_cons_iff]; exact tendsto_snd
| (n+1) (a::l) :=
begin
rw [tendsto_cons_iff],
dsimp [remove_nth],
exact tendsto_cons tendsto_fst (tendsto_snd.comp (@tendsto_remove_nth n l))
end
lemma continuous_remove_nth {n : ℕ} : continuous (λl : list α, remove_nth l n) :=
continuous_iff_tendsto.2 $ assume a, tendsto_remove_nth
end list
namespace vector
open list filter
instance (n : ℕ) [topological_space α] : topological_space (vector α n) :=
by unfold vector; apply_instance
lemma cons_val {n : ℕ} {a : α} : ∀{v : vector α n}, (a :: v).val = a :: v.val
| ⟨l, hl⟩ := rfl
lemma tendsto_cons [topological_space α] {n : ℕ} {a : α} {l : vector α n}:
tendsto (λp:α×vector α n, vector.cons p.1 p.2) ((nhds a).prod (nhds l)) (nhds (a :: l)) :=
by
simp [tendsto_subtype_rng, cons_val];
exact tendsto_cons tendsto_fst (tendsto.comp tendsto_snd tendsto_subtype_val)
lemma tendsto_insert_nth
[topological_space α] {n : ℕ} {i : fin (n+1)} {a:α} :
∀{l:vector α n}, tendsto (λp:α×vector α n, insert_nth p.1 i p.2)
((nhds a).prod (nhds l)) (nhds (insert_nth a i l))
| ⟨l, hl⟩ :=
begin
rw [insert_nth, tendsto_subtype_rng],
simp [insert_nth_val],
exact list.tendsto_insert_nth tendsto_fst (tendsto.comp tendsto_snd tendsto_subtype_val)
end
lemma continuous_insert_nth' [topological_space α] {n : ℕ} {i : fin (n+1)} :
continuous (λp:α×vector α n, insert_nth p.1 i p.2) :=
continuous_iff_tendsto.2 $ assume ⟨a, l⟩, by rw [nhds_prod_eq]; exact tendsto_insert_nth
lemma continuous_insert_nth [topological_space α] [topological_space β] {n : ℕ} {i : fin (n+1)}
{f : β → α} {g : β → vector α n} (hf : continuous f) (hg : continuous g) :
continuous (λb, insert_nth (f b) i (g b)) :=
continuous.comp (continuous.prod_mk hf hg) continuous_insert_nth'
lemma tendsto_remove_nth [topological_space α] {n : ℕ} {i : fin (n+1)} :
∀{l:vector α (n+1)}, tendsto (remove_nth i) (nhds l) (nhds (remove_nth i l))
| ⟨l, hl⟩ :=
begin
rw [remove_nth, tendsto_subtype_rng],
simp [remove_nth_val],
exact tendsto_subtype_val.comp list.tendsto_remove_nth
end
lemma continuous_remove_nth [topological_space α] {n : ℕ} {i : fin (n+1)} :
continuous (remove_nth i : vector α (n+1) → vector α n) :=
continuous_iff_tendsto.2 $ assume ⟨a, l⟩, tendsto_remove_nth
end vector
-- TODO: use embeddings from above!
structure dense_embedding [topological_space α] [topological_space β] (e : α → β) : Prop :=
(dense : ∀x, x ∈ closure (range e))
(inj : function.injective e)
(induced : ∀a, comap e (nhds (e a)) = nhds a)
theorem dense_embedding.mk'
[topological_space α] [topological_space β] (e : α → β)
(c : continuous e)
(dense : ∀x, x ∈ closure (range e))
(inj : function.injective e)
(H : ∀ (a:α) s ∈ (nhds a).sets,
∃t ∈ (nhds (e a)).sets, ∀ b, e b ∈ t → b ∈ s) :
dense_embedding e :=
⟨dense, inj, λ a, le_antisymm
(by simpa [le_def] using H a)
(tendsto_iff_comap.1 $ c.tendsto _)⟩
namespace dense_embedding
variables [topological_space α] [topological_space β]
variables {e : α → β} (de : dense_embedding e)
protected lemma embedding (de : dense_embedding e) : embedding e :=
⟨de.inj, eq_of_nhds_eq_nhds begin intro a, rw [← de.induced a, nhds_induced_eq_comap] end⟩
protected lemma tendsto (de : dense_embedding e) {a : α} : tendsto e (nhds a) (nhds (e a)) :=
by rw [←de.induced a]; exact tendsto_comap
protected lemma continuous (de : dense_embedding e) {a : α} : continuous e :=
continuous_iff_tendsto.2 $ λ a, de.tendsto
lemma inj_iff (de : dense_embedding e) {x y} : e x = e y ↔ x = y := de.inj.eq_iff
lemma closure_range : closure (range e) = univ :=
let h := de.dense in
set.ext $ assume x, ⟨assume _, trivial, assume _, @h x⟩
lemma self_sub_closure_image_preimage_of_open {s : set β} (de : dense_embedding e) :
is_open s → s ⊆ closure (e '' (e ⁻¹' s)) :=
begin
intros s_op b b_in_s,
rw [image_preimage_eq_inter_range, mem_closure_iff],
intros U U_op b_in,
rw ←inter_assoc,
have ne_e : U ∩ s ≠ ∅ := ne_empty_of_mem ⟨b_in, b_in_s⟩,
exact (dense_iff_inter_open.1 de.closure_range) _ (is_open_inter U_op s_op) ne_e
end
lemma closure_image_nhds_of_nhds {s : set α} {a : α} (de : dense_embedding e) :
s ∈ (nhds a).sets → closure (e '' s) ∈ (nhds (e a)).sets :=
begin
rw [← de.induced a, mem_comap_sets],
intro h,
rcases h with ⟨t, t_nhd, sub⟩,
rw mem_nhds_sets_iff at t_nhd,
rcases t_nhd with ⟨U, U_sub, ⟨U_op, e_a_in_U⟩⟩,
have := calc e ⁻¹' U ⊆ e⁻¹' t : preimage_mono U_sub
... ⊆ s : sub,
have := calc U ⊆ closure (e '' (e ⁻¹' U)) : self_sub_closure_image_preimage_of_open de U_op
... ⊆ closure (e '' s) : closure_mono (image_subset e this),
have U_nhd : U ∈ (nhds (e a)).sets := mem_nhds_sets U_op e_a_in_U,
exact (nhds (e a)).sets_of_superset U_nhd this
end
variables [topological_space δ] {f : γ → α} {g : γ → δ} {h : δ → β}
/--
γ -f→ α
g↓ ↓e
δ -h→ β
-/
lemma tendsto_comap_nhds_nhds {d : δ} {a : α} (de : dense_embedding e) (H : tendsto h (nhds d) (nhds (e a)))
(comm : h ∘ g = e ∘ f) : tendsto f (comap g (nhds d)) (nhds a) :=
begin
have lim1 : map g (comap g (nhds d)) ≤ nhds d := map_comap_le,
replace lim1 : map h (map g (comap g (nhds d))) ≤ map h (nhds d) := map_mono lim1,
rw [filter.map_map, comm, ← filter.map_map, map_le_iff_le_comap] at lim1,
have lim2 : comap e (map h (nhds d)) ≤ comap e (nhds (e a)) := comap_mono H,
rw de.induced at lim2,
exact le_trans lim1 lim2,
end
protected lemma nhds_inf_neq_bot (de : dense_embedding e) {b : β} : nhds b ⊓ principal (range e) ≠ ⊥ :=
begin
have h := de.dense,
simp [closure_eq_nhds] at h,
exact h _
end
lemma comap_nhds_neq_bot (de : dense_embedding e) {b : β} : comap e (nhds b) ≠ ⊥ :=
forall_sets_neq_empty_iff_neq_bot.mp $
assume s ⟨t, ht, (hs : e ⁻¹' t ⊆ s)⟩,
have t ∩ range e ∈ (nhds b ⊓ principal (range e)).sets,
from inter_mem_inf_sets ht (subset.refl _),
let ⟨_, ⟨hx₁, y, rfl⟩⟩ := inhabited_of_mem_sets de.nhds_inf_neq_bot this in
subset_ne_empty hs $ ne_empty_of_mem hx₁
variables [topological_space γ]
/-- If `e : α → β` is a dense embedding, then any function `α → γ` extends to a function `β → γ`.
It only extends the parts of `β` which are not mapped by `e`, everything else equal to `f (e a)`.
This allows us to gain equality even if `γ` is not T2. -/
def extend (de : dense_embedding e) (f : α → γ) (b : β) : γ :=
have nonempty γ, from
let ⟨_, ⟨_, a, _⟩⟩ := exists_mem_of_ne_empty (mem_closure_iff.1 (de.dense b) _ is_open_univ trivial) in
⟨f a⟩,
if hb : b ∈ range e
then f (classical.some hb)
else @lim _ (classical.inhabited_of_nonempty this) _ (map f (comap e (nhds b)))
lemma extend_e_eq {f : α → γ} (a : α) : de.extend f (e a) = f a :=
have e a ∈ range e := ⟨a, rfl⟩,
begin
simp [extend, this],
congr,
refine classical.some_spec2 (λx, x = a) _,
exact assume a h, de.inj h
end
lemma extend_eq [t2_space γ] {b : β} {c : γ} {f : α → γ} (hf : map f (comap e (nhds b)) ≤ nhds c) :
de.extend f b = c :=
begin
by_cases hb : b ∈ range e,
{ rcases hb with ⟨a, rfl⟩,
rw [extend_e_eq],
have f_a_c : tendsto f (pure a) (nhds c),
{ rw [de.induced] at hf,
refine le_trans (map_mono _) hf,
exact pure_le_nhds a },
have f_a_fa : tendsto f (pure a) (nhds (f a)),
{ rw [tendsto, filter.map_pure], exact pure_le_nhds _ },
exact tendsto_nhds_unique pure_neq_bot f_a_fa f_a_c },
{ simp [extend, hb],
exact @lim_eq _ (id _) _ _ _ _ (by simp; exact comap_nhds_neq_bot de) hf }
end
lemma tendsto_extend [regular_space γ] {b : β} {f : α → γ} (de : dense_embedding e)
(hf : {b | ∃c, tendsto f (comap e $ nhds b) (nhds c)} ∈ (nhds b).sets) :
tendsto (de.extend f) (nhds b) (nhds (de.extend f b)) :=
let φ := {b | tendsto f (comap e $ nhds b) (nhds $ de.extend f b)} in
have hφ : φ ∈ (nhds b).sets,
from (nhds b).sets_of_superset hf $ assume b ⟨c, hc⟩,
show tendsto f (comap e (nhds b)) (nhds (de.extend f b)), from (de.extend_eq hc).symm ▸ hc,
assume s hs,
let ⟨s'', hs''₁, hs''₂, hs''₃⟩ := nhds_is_closed hs in
let ⟨s', hs'₁, (hs'₂ : e ⁻¹' s' ⊆ f ⁻¹' s'')⟩ := mem_of_nhds hφ hs''₁ in
let ⟨t, (ht₁ : t ⊆ φ ∩ s'), ht₂, ht₃⟩ := mem_nhds_sets_iff.mp $ inter_mem_sets hφ hs'₁ in
have h₁ : closure (f '' (e ⁻¹' s')) ⊆ s'',
by rw [closure_subset_iff_subset_of_is_closed hs''₃, image_subset_iff]; exact hs'₂,
have h₂ : t ⊆ de.extend f ⁻¹' closure (f '' (e ⁻¹' t)), from
assume b' hb',
have nhds b' ≤ principal t, by simp; exact mem_nhds_sets ht₂ hb',
have map f (comap e (nhds b')) ≤ nhds (de.extend f b') ⊓ principal (f '' (e ⁻¹' t)),
from calc _ ≤ map f (comap e (nhds b' ⊓ principal t)) : map_mono $ comap_mono $ le_inf (le_refl _) this
... ≤ map f (comap e (nhds b')) ⊓ map f (comap e (principal t)) :
le_inf (map_mono $ comap_mono $ inf_le_left) (map_mono $ comap_mono $ inf_le_right)
... ≤ map f (comap e (nhds b')) ⊓ principal (f '' (e ⁻¹' t)) : by simp [le_refl]
... ≤ _ : inf_le_inf ((ht₁ hb').left) (le_refl _),
show de.extend f b' ∈ closure (f '' (e ⁻¹' t)),
begin
rw [closure_eq_nhds],
apply neq_bot_of_le_neq_bot _ this,
simp,
exact de.comap_nhds_neq_bot
end,
(nhds b).sets_of_superset
(show t ∈ (nhds b).sets, from mem_nhds_sets ht₂ ht₃)
(calc t ⊆ de.extend f ⁻¹' closure (f '' (e ⁻¹' t)) : h₂
... ⊆ de.extend f ⁻¹' closure (f '' (e ⁻¹' s')) :
preimage_mono $ closure_mono $ image_subset f $ preimage_mono $ subset.trans ht₁ $ inter_subset_right _ _
... ⊆ de.extend f ⁻¹' s'' : preimage_mono h₁
... ⊆ de.extend f ⁻¹' s : preimage_mono hs''₂)
lemma continuous_extend [regular_space γ] {f : α → γ} (de : dense_embedding e)
(hf : ∀b, ∃c, tendsto f (comap e (nhds b)) (nhds c)) : continuous (de.extend f) :=
continuous_iff_tendsto.mpr $ assume b, de.tendsto_extend $ univ_mem_sets' hf
end dense_embedding
namespace dense_embedding
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
/-- The product of two dense embeddings is a dense embedding -/
protected def prod {e₁ : α → β} {e₂ : γ → δ} (de₁ : dense_embedding e₁) (de₂ : dense_embedding e₂) :
dense_embedding (λ(p : α × γ), (e₁ p.1, e₂ p.2)) :=
{ dense_embedding .
dense :=
have closure (range (λ(p : α × γ), (e₁ p.1, e₂ p.2))) =
set.prod (closure (range e₁)) (closure (range e₂)),
by rw [←closure_prod_eq, prod_range_range_eq],
assume ⟨b, d⟩, begin rw [this], simp, constructor, apply de₁.dense, apply de₂.dense end,
inj := assume ⟨x₁, x₂⟩ ⟨y₁, y₂⟩,
by simp; exact assume h₁ h₂, ⟨de₁.inj h₁, de₂.inj h₂⟩,
induced := assume ⟨a, b⟩,
by rw [nhds_prod_eq, nhds_prod_eq, ←prod_comap_comap_eq, de₁.induced, de₂.induced] }
def subtype_emb (p : α → Prop) {e : α → β} (de : dense_embedding e) (x : {x // p x}) :
{x // x ∈ closure (e '' {x | p x})} :=
⟨e x.1, subset_closure $ mem_image_of_mem e x.2⟩
protected def subtype (p : α → Prop) {e : α → β} (de : dense_embedding e) :
dense_embedding (de.subtype_emb p) :=
{ dense_embedding .
dense := assume ⟨x, hx⟩, closure_subtype.mpr $
have (λ (x : {x // p x}), e (x.val)) = e ∘ subtype.val, from rfl,
begin
rw ← image_univ,
simp [(image_comp _ _ _).symm, (∘), subtype_emb, -image_univ],
rw [this, image_comp, subtype_val_image],
simp,
assumption
end,
inj := assume ⟨x, hx⟩ ⟨y, hy⟩ h, subtype.eq $ de.inj $ @@congr_arg subtype.val h,
induced := assume ⟨x, hx⟩,
by simp [subtype_emb, nhds_subtype_eq_comap, comap_comap_comp, (∘), (de.induced x).symm] }
end dense_embedding
lemma is_closed_property [topological_space α] [topological_space β] {e : α → β} {p : β → Prop}
(he : closure (range e) = univ) (hp : is_closed {x | p x}) (h : ∀a, p (e a)) :
∀b, p b :=
have univ ⊆ {b | p b},
from calc univ = closure (range e) : he.symm
... ⊆ closure {b | p b} : closure_mono $ range_subset_iff.mpr h
... = _ : closure_eq_of_is_closed hp,
assume b, this trivial
lemma is_closed_property2 [topological_space α] [topological_space β] {e : α → β} {p : β → β → Prop}
(he : dense_embedding e) (hp : is_closed {q:β×β | p q.1 q.2}) (h : ∀a₁ a₂, p (e a₁) (e a₂)) :
∀b₁ b₂, p b₁ b₂ :=
have ∀q:β×β, p q.1 q.2,
from is_closed_property (he.prod he).closure_range hp $ assume a, h _ _,
assume b₁ b₂, this ⟨b₁, b₂⟩
lemma is_closed_property3 [topological_space α] [topological_space β] {e : α → β} {p : β → β → β → Prop}
(he : dense_embedding e) (hp : is_closed {q:β×β×β | p q.1 q.2.1 q.2.2}) (h : ∀a₁ a₂ a₃, p (e a₁) (e a₂) (e a₃)) :
∀b₁ b₂ b₃, p b₁ b₂ b₃ :=
have ∀q:β×β×β, p q.1 q.2.1 q.2.2,
from is_closed_property (he.prod $ he.prod he).closure_range hp $ assume ⟨a₁, a₂, a₃⟩, h _ _ _,
assume b₁ b₂ b₃, this ⟨b₁, b₂, b₃⟩
lemma mem_closure_of_continuous [topological_space α] [topological_space β]
{f : α → β} {a : α} {s : set α} {t : set β}
(hf : continuous f) (ha : a ∈ closure s) (h : ∀a∈s, f a ∈ closure t) :
f a ∈ closure t :=
calc f a ∈ f '' closure s : mem_image_of_mem _ ha
... ⊆ closure (f '' s) : image_closure_subset_closure_image hf
... ⊆ closure (closure t) : closure_mono $ image_subset_iff.mpr $ h
... ⊆ closure t : begin rw [closure_eq_of_is_closed], exact subset.refl _, exact is_closed_closure end
lemma mem_closure_of_continuous2 [topological_space α] [topological_space β] [topological_space γ]
{f : α → β → γ} {a : α} {b : β} {s : set α} {t : set β} {u : set γ}
(hf : continuous (λp:α×β, f p.1 p.2)) (ha : a ∈ closure s) (hb : b ∈ closure t)
(h : ∀a∈s, ∀b∈t, f a b ∈ closure u) :
f a b ∈ closure u :=
have (a,b) ∈ closure (set.prod s t),
by simp [closure_prod_eq, ha, hb],
show f (a, b).1 (a, b).2 ∈ closure u,
from @mem_closure_of_continuous (α×β) _ _ _ (λp:α×β, f p.1 p.2) (a,b) _ u hf this $
assume ⟨p₁, p₂⟩ ⟨h₁, h₂⟩, h p₁ h₁ p₂ h₂
/-- α and β are homeomorph, also called topological isomoph -/
structure homeomorph (α : Type*) (β : Type*) [topological_space α] [topological_space β]
extends α ≃ β :=
(continuous_to_fun : continuous to_fun)
(continuous_inv_fun : continuous inv_fun)
infix ` ≃ₜ `:50 := homeomorph
namespace homeomorph
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
instance : has_coe_to_fun (α ≃ₜ β) := ⟨λ_, α → β, λe, e.to_equiv⟩
lemma coe_eq_to_equiv (h : α ≃ₜ β) (a : α) : h a = h.to_equiv a := rfl
protected def refl (α : Type*) [topological_space α] : α ≃ₜ α :=
{ continuous_to_fun := continuous_id, continuous_inv_fun := continuous_id, .. equiv.refl α }
protected def trans (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) : α ≃ₜ γ :=
{ continuous_to_fun := h₁.continuous_to_fun.comp h₂.continuous_to_fun,
continuous_inv_fun := h₂.continuous_inv_fun.comp h₁.continuous_inv_fun,
.. equiv.trans h₁.to_equiv h₂.to_equiv }
protected def symm (h : α ≃ₜ β) : β ≃ₜ α :=
{ continuous_to_fun := h.continuous_inv_fun,
continuous_inv_fun := h.continuous_to_fun,
.. h.to_equiv.symm }
protected def continuous (h : α ≃ₜ β) : continuous h := h.continuous_to_fun
lemma symm_comp_self (h : α ≃ₜ β) : ⇑h.symm ∘ ⇑h = id :=
funext $ assume a, h.to_equiv.left_inv a
lemma self_comp_symm (h : α ≃ₜ β) : ⇑h ∘ ⇑h.symm = id :=
funext $ assume a, h.to_equiv.right_inv a
lemma range_coe (h : α ≃ₜ β) : range h = univ :=
eq_univ_of_forall $ assume b, ⟨h.symm b, congr_fun h.self_comp_symm b⟩
lemma image_symm (h : α ≃ₜ β) : image h.symm = preimage h :=
image_eq_preimage_of_inverse h.symm.to_equiv.left_inv h.symm.to_equiv.right_inv
lemma preimage_symm (h : α ≃ₜ β) : preimage h.symm = image h :=
(image_eq_preimage_of_inverse h.to_equiv.left_inv h.to_equiv.right_inv).symm
lemma induced_eq
{α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) :
tβ.induced h = tα :=
le_antisymm
(induced_le_iff_le_coinduced.2 h.continuous)
(calc tα = (tα.induced h.symm).induced h : by rw [induced_compose, symm_comp_self, induced_id]
... ≤ tβ.induced h : induced_mono $ (induced_le_iff_le_coinduced.2 h.symm.continuous))
lemma coinduced_eq
{α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) :
tα.coinduced h = tβ :=
le_antisymm
(calc tα.coinduced h ≤ (tβ.coinduced h.symm).coinduced h : coinduced_mono h.symm.continuous
... = tβ : by rw [coinduced_compose, self_comp_symm, coinduced_id])
h.continuous
protected lemma embedding (h : α ≃ₜ β) : embedding h :=
⟨h.to_equiv.bijective.1, h.induced_eq.symm⟩
protected lemma dense_embedding (h : α ≃ₜ β) : dense_embedding h :=
{ dense := assume a, by rw [h.range_coe, closure_univ]; trivial,
inj := h.to_equiv.bijective.1,
induced := assume a, by rw [← nhds_induced_eq_comap, h.induced_eq] }
protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h :=
begin
assume s,
rw ← h.preimage_symm,
exact h.symm.continuous s
end
protected lemma quotient_map (h : α ≃ₜ β) : quotient_map h :=
⟨h.to_equiv.bijective.2, h.coinduced_eq.symm⟩
def prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : (α × γ) ≃ₜ (β × δ) :=
{ continuous_to_fun :=
continuous.prod_mk (continuous_fst.comp h₁.continuous) (continuous_snd.comp h₂.continuous),
continuous_inv_fun :=
continuous.prod_mk (continuous_fst.comp h₁.symm.continuous) (continuous_snd.comp h₂.symm.continuous),
.. h₁.to_equiv.prod_congr h₂.to_equiv }
section
variables (α β γ)
def prod_comm : (α × β) ≃ₜ (β × α) :=
{ continuous_to_fun := continuous.prod_mk continuous_snd continuous_fst,
continuous_inv_fun := continuous.prod_mk continuous_snd continuous_fst,
.. equiv.prod_comm α β }
def prod_assoc : ((α × β) × γ) ≃ₜ (α × (β × γ)) :=
{ continuous_to_fun :=
continuous.prod_mk (continuous_fst.comp continuous_fst)
(continuous.prod_mk (continuous_fst.comp continuous_snd) continuous_snd),
continuous_inv_fun := continuous.prod_mk
(continuous.prod_mk continuous_fst (continuous_snd.comp continuous_fst))
(continuous_snd.comp continuous_snd),
.. equiv.prod_assoc α β γ }
end
end homeomorph
|
a3e0986f81615a77a272aa516a824e60a689e275
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/category_theory/limits/types.lean
|
9a065cc4167ed8f5f0d8576a5b6c15350e3583c8
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 14,271
|
lean
|
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Reid Barton
-/
import category_theory.limits.shapes.images
import category_theory.filtered
import tactic.equiv_rw
universes u
open category_theory
open category_theory.limits
namespace category_theory.limits.types
variables {J : Type u} [small_category J]
/--
(internal implementation) the limit cone of a functor,
implemented as flat sections of a pi type
-/
def limit_cone (F : J ⥤ Type u) : cone F :=
{ X := F.sections,
π := { app := λ j u, u.val j } }
local attribute [elab_simple] congr_fun
/-- (internal implementation) the fact that the proposed limit cone is the limit -/
def limit_cone_is_limit (F : J ⥤ Type u) : is_limit (limit_cone F) :=
{ lift := λ s v, ⟨λ j, s.π.app j v, λ j j' f, congr_fun (cone.w s f) _⟩,
uniq' := by { intros, ext x j, exact congr_fun (w j) x } }
/--
The category of types has all limits.
See https://stacks.math.columbia.edu/tag/002U.
-/
instance : has_limits (Type u) :=
{ has_limits_of_shape := λ J 𝒥, by exactI
{ has_limit := λ F, has_limit.mk
{ cone := limit_cone F, is_limit := limit_cone_is_limit F } } }
/--
The equivalence between a limiting cone of `F` in `Type u` and the "concrete" definition as the
sections of `F`.
-/
def is_limit_equiv_sections {F : J ⥤ Type u} {c : cone F} (t : is_limit c) :
c.X ≃ F.sections :=
(is_limit.cone_point_unique_up_to_iso t (limit_cone_is_limit F)).to_equiv
@[simp]
lemma is_limit_equiv_sections_apply {F : J ⥤ Type u} {c : cone F} (t : is_limit c) (j : J) (x : c.X) :
(((is_limit_equiv_sections t) x) : Π j, F.obj j) j = c.π.app j x :=
rfl
@[simp]
lemma is_limit_equiv_sections_symm_apply {F : J ⥤ Type u} {c : cone F} (t : is_limit c) (x : F.sections) (j : J) :
c.π.app j ((is_limit_equiv_sections t).symm x) = (x : Π j, F.obj j) j :=
begin
equiv_rw (is_limit_equiv_sections t).symm at x,
simp,
end
/--
The equivalence between the abstract limit of `F` in `Type u`
and the "concrete" definition as the sections of `F`.
-/
noncomputable
def limit_equiv_sections (F : J ⥤ Type u) : (limit F : Type u) ≃ F.sections :=
is_limit_equiv_sections (limit.is_limit _)
@[simp]
lemma limit_equiv_sections_apply (F : J ⥤ Type u) (x : limit F) (j : J) :
(((limit_equiv_sections F) x) : Π j, F.obj j) j = limit.π F j x :=
rfl
@[simp]
lemma limit_equiv_sections_symm_apply (F : J ⥤ Type u) (x : F.sections) (j : J) :
limit.π F j ((limit_equiv_sections F).symm x) = (x : Π j, F.obj j) j :=
is_limit_equiv_sections_symm_apply _ _ _
/--
Construct a term of `limit F : Type u` from a family of terms `x : Π j, F.obj j`
which are "coherent": `∀ (j j') (f : j ⟶ j'), F.map f (x j) = x j'`.
-/
@[ext]
noncomputable
def limit.mk (F : J ⥤ Type u) (x : Π j, F.obj j) (h : ∀ (j j') (f : j ⟶ j'), F.map f (x j) = x j') :
(limit F : Type u) :=
(limit_equiv_sections F).symm ⟨x, h⟩
@[simp]
lemma limit.π_mk (F : J ⥤ Type u) (x : Π j, F.obj j) (h : ∀ (j j') (f : j ⟶ j'), F.map f (x j) = x j') (j) :
limit.π F j (limit.mk F x h) = x j :=
by { dsimp [limit.mk], simp, }
-- PROJECT: prove this for concrete categories where the forgetful functor preserves limits
@[ext]
lemma limit_ext (F : J ⥤ Type u) (x y : limit F) (w : ∀ j, limit.π F j x = limit.π F j y) :
x = y :=
begin
apply (limit_equiv_sections F).injective,
ext j,
simp [w j],
end
-- TODO: are there other limits lemmas that should have `_apply` versions?
-- Can we generate these like with `@[reassoc]`?
-- PROJECT: prove these for any concrete category where the forgetful functor preserves limits?
@[simp] lemma limit_w_apply {F : J ⥤ Type u} {j j' : J} {x : limit F} (f : j ⟶ j') :
F.map f (limit.π F j x) = limit.π F j' x :=
congr_fun (limit.w F f) x
@[simp]
lemma lift_π_apply (F : J ⥤ Type u) (s : cone F) (j : J) (x : s.X) :
limit.π F j (limit.lift F s x) = s.π.app j x :=
congr_fun (limit.lift_π s j) x
@[simp]
lemma map_π_apply {F G : J ⥤ Type u} (α : F ⟶ G) (j : J) (x) :
limit.π G j (lim.map α x) = α.app j (limit.π F j x) :=
congr_fun (limit.map_π α j) x
/--
A quotient type implementing the colimit of a functor `F : J ⥤ Type u`,
as pairs `⟨j, x⟩` where `x : F.obj j`, modulo the equivalence relation generated by
`⟨j, x⟩ ~ ⟨j', x'⟩` whenever there is a morphism `f : j ⟶ j'` so `F.map f x = x'`.
-/
@[nolint has_inhabited_instance]
def quot (F : J ⥤ Type u) : Type u :=
@quot (Σ j, F.obj j) (λ p p', ∃ f : p.1 ⟶ p'.1, p'.2 = F.map f p.2)
/--
(internal implementation) the colimit cocone of a functor,
implemented as a quotient of a sigma type
-/
def colimit_cocone (F : J ⥤ Type u) : cocone F :=
{ X := quot F,
ι :=
{ app := λ j x, quot.mk _ ⟨j, x⟩,
naturality' := λ j j' f, funext $ λ x, eq.symm (quot.sound ⟨f, rfl⟩) } }
local attribute [elab_with_expected_type] quot.lift
/-- (internal implementation) the fact that the proposed colimit cocone is the colimit -/
def colimit_cocone_is_colimit (F : J ⥤ Type u) : is_colimit (colimit_cocone F) :=
{ desc := λ s, quot.lift (λ (p : Σ j, F.obj j), s.ι.app p.1 p.2)
(assume ⟨j, x⟩ ⟨j', x'⟩ ⟨f, hf⟩, by rw hf; exact (congr_fun (cocone.w s f) x).symm) }
/--
The category of types has all colimits.
See https://stacks.math.columbia.edu/tag/002U.
-/
instance : has_colimits (Type u) :=
{ has_colimits_of_shape := λ J 𝒥, by exactI
{ has_colimit := λ F, has_colimit.mk
{ cocone := colimit_cocone F, is_colimit := colimit_cocone_is_colimit F } } }
/--
The equivalence between the abstract colimit of `F` in `Type u`
and the "concrete" definition as a quotient.
-/
noncomputable
def colimit_equiv_quot (F : J ⥤ Type u) : (colimit F : Type u) ≃ quot F :=
(is_colimit.cocone_point_unique_up_to_iso (colimit.is_colimit F) (colimit_cocone_is_colimit F)).to_equiv
@[simp]
lemma colimit_equiv_quot_symm_apply (F : J ⥤ Type u) (j : J) (x : F.obj j) :
(colimit_equiv_quot F).symm (quot.mk _ ⟨j, x⟩) = colimit.ι F j x :=
rfl
@[simp] lemma colimit_w_apply {F : J ⥤ Type u} {j j' : J} {x : F.obj j} (f : j ⟶ j') :
colimit.ι F j' (F.map f x) = colimit.ι F j x :=
congr_fun (colimit.w F f) x
@[simp]
lemma ι_desc_apply (F : J ⥤ Type u) (s : cocone F) (j : J) (x : F.obj j) :
colimit.desc F s (colimit.ι F j x) = s.ι.app j x :=
congr_fun (colimit.ι_desc s j) x
@[simp]
lemma ι_map_apply {F G : J ⥤ Type u} (α : F ⟶ G) (j : J) (x) :
colim.map α (colimit.ι F j x) = colimit.ι G j (α.app j x) :=
congr_fun (colimit.ι_map α j) x
lemma colimit_sound
{F : J ⥤ Type u} {j j' : J} {x : F.obj j} {x' : F.obj j'} (f : j ⟶ j') (w : F.map f x = x') :
colimit.ι F j x = colimit.ι F j' x' :=
begin
rw [←w],
simp,
end
lemma colimit_sound'
{F : J ⥤ Type u} {j j' : J} {x : F.obj j} {x' : F.obj j'} {j'' : J} (f : j ⟶ j'') (f' : j' ⟶ j'')
(w : F.map f x = F.map f' x') :
colimit.ι F j x = colimit.ι F j' x' :=
begin
rw [←colimit.w _ f, ←colimit.w _ f'],
rw [types_comp_apply, types_comp_apply, w],
end
lemma jointly_surjective (F : J ⥤ Type u) {t : cocone F} (h : is_colimit t)
(x : t.X) : ∃ j y, t.ι.app j y = x :=
begin
suffices : (λ (x : t.X), ulift.up (∃ j y, t.ι.app j y = x)) = (λ _, ulift.up true),
{ have := congr_fun this x,
have H := congr_arg ulift.down this,
dsimp at H,
rwa eq_true at H },
refine h.hom_ext _,
intro j, ext y,
erw iff_true,
exact ⟨j, y, rfl⟩
end
/-- A variant of `jointly_surjective` for `x : colimit F`. -/
lemma jointly_surjective' {F : J ⥤ Type u}
(x : colimit F) : ∃ j y, colimit.ι F j y = x :=
jointly_surjective F (colimit.is_colimit _) x
namespace filtered_colimit
/- For filtered colimits of types, we can give an explicit description
of the equivalence relation generated by the relation used to form
the colimit. -/
variables (F : J ⥤ Type u)
/--
An alternative relation on `Σ j, F.obj j`,
which generates the same equivalence relation as we use to define the colimit in `Type` above,
but that is more convenient when working with filtered colimits.
Elements in `F.obj j` and `F.obj j'` are equivalent if there is some `k : J` to the right
where their images are equal.
-/
protected def r (x y : Σ j, F.obj j) : Prop :=
∃ k (f : x.1 ⟶ k) (g : y.1 ⟶ k), F.map f x.2 = F.map g y.2
protected lemma r_ge (x y : Σ j, F.obj j) :
(∃ f : x.1 ⟶ y.1, y.2 = F.map f x.2) → filtered_colimit.r F x y :=
λ ⟨f, hf⟩, ⟨y.1, f, 𝟙 y.1, by simp [hf]⟩
variables (t : cocone F)
local attribute [elab_simple] nat_trans.app
/-- Recognizing filtered colimits of types. -/
noncomputable def is_colimit_of (hsurj : ∀ (x : t.X), ∃ i xi, x = t.ι.app i xi)
(hinj : ∀ i j xi xj, t.ι.app i xi = t.ι.app j xj →
∃ k (f : i ⟶ k) (g : j ⟶ k), F.map f xi = F.map g xj) : is_colimit t :=
-- Strategy: Prove that the map from "the" colimit of F (defined above) to t.X
-- is a bijection.
begin
apply is_colimit.of_iso_colimit (colimit.is_colimit F),
refine cocones.ext (equiv.to_iso (equiv.of_bijective _ _)) _,
{ exact colimit.desc F t },
{ split,
{ show function.injective _,
intros a b h,
rcases jointly_surjective F (colimit.is_colimit F) a with ⟨i, xi, rfl⟩,
rcases jointly_surjective F (colimit.is_colimit F) b with ⟨j, xj, rfl⟩,
change (colimit.ι F i ≫ colimit.desc F t) xi = (colimit.ι F j ≫ colimit.desc F t) xj at h,
rw [colimit.ι_desc, colimit.ι_desc] at h,
rcases hinj i j xi xj h with ⟨k, f, g, h'⟩,
change colimit.ι F i xi = colimit.ι F j xj,
rw [←colimit.w F f, ←colimit.w F g],
change colimit.ι F k (F.map f xi) = colimit.ι F k (F.map g xj),
rw h' },
{ show function.surjective _,
intro x,
rcases hsurj x with ⟨i, xi, rfl⟩,
use colimit.ι F i xi,
simp } },
{ intro j, apply colimit.ι_desc }
end
variables [is_filtered_or_empty J]
protected lemma r_equiv : equivalence (filtered_colimit.r F) :=
⟨λ x, ⟨x.1, 𝟙 x.1, 𝟙 x.1, rfl⟩,
λ x y ⟨k, f, g, h⟩, ⟨k, g, f, h.symm⟩,
λ x y z ⟨k, f, g, h⟩ ⟨k', f', g', h'⟩,
let ⟨l, fl, gl, _⟩ := is_filtered_or_empty.cocone_objs k k',
⟨m, n, hn⟩ := is_filtered_or_empty.cocone_maps (g ≫ fl) (f' ≫ gl) in
⟨m, f ≫ fl ≫ n, g' ≫ gl ≫ n, calc
F.map (f ≫ fl ≫ n) x.2
= F.map (fl ≫ n) (F.map f x.2) : by simp
... = F.map (fl ≫ n) (F.map g y.2) : by rw h
... = F.map ((g ≫ fl) ≫ n) y.2 : by simp
... = F.map ((f' ≫ gl) ≫ n) y.2 : by rw hn
... = F.map (gl ≫ n) (F.map f' y.2) : by simp
... = F.map (gl ≫ n) (F.map g' z.2) : by rw h'
... = F.map (g' ≫ gl ≫ n) z.2 : by simp⟩⟩
protected lemma r_eq :
filtered_colimit.r F = eqv_gen (λ x y, ∃ f : x.1 ⟶ y.1, y.2 = F.map f x.2) :=
begin
apply le_antisymm,
{ rintros ⟨i, x⟩ ⟨j, y⟩ ⟨k, f, g, h⟩,
exact eqv_gen.trans _ ⟨k, F.map f x⟩ _ (eqv_gen.rel _ _ ⟨f, rfl⟩)
(eqv_gen.symm _ _ (eqv_gen.rel _ _ ⟨g, h⟩)) },
{ intros x y,
convert relation.eqv_gen_mono (filtered_colimit.r_ge F),
apply propext,
symmetry,
exact relation.eqv_gen_iff_of_equivalence (filtered_colimit.r_equiv F) }
end
lemma colimit_eq_iff_aux {i j : J} {xi : F.obj i} {xj : F.obj j} :
(colimit_cocone F).ι.app i xi = (colimit_cocone F).ι.app j xj ↔
∃ k (f : i ⟶ k) (g : j ⟶ k), F.map f xi = F.map g xj :=
begin
change quot.mk _ _ = quot.mk _ _ ↔ _,
rw [quot.eq, ←filtered_colimit.r_eq],
refl
end
variables {t} (ht : is_colimit t)
lemma is_colimit_eq_iff {i j : J} {xi : F.obj i} {xj : F.obj j} :
t.ι.app i xi = t.ι.app j xj ↔ ∃ k (f : i ⟶ k) (g : j ⟶ k), F.map f xi = F.map g xj :=
let t' := colimit_cocone F,
e : t' ≅ t := is_colimit.unique_up_to_iso (colimit_cocone_is_colimit F) ht,
e' : t'.X ≅ t.X := (cocones.forget _).map_iso e in
begin
refine iff.trans _ (colimit_eq_iff_aux F),
convert equiv.apply_eq_iff_eq e'.to_equiv _ _; rw ←e.hom.w; refl
end
lemma colimit_eq_iff {i j : J} {xi : F.obj i} {xj : F.obj j} :
colimit.ι F i xi = colimit.ι F j xj ↔ ∃ k (f : i ⟶ k) (g : j ⟶ k), F.map f xi = F.map g xj :=
is_colimit_eq_iff _ (colimit.is_colimit F)
end filtered_colimit
variables {α β : Type u} (f : α ⟶ β)
section -- implementation of `has_image`
/-- the image of a morphism in Type is just `set.range f` -/
def image : Type u := set.range f
instance [inhabited α] : inhabited (image f) :=
{ default := ⟨f (default α), ⟨_, rfl⟩⟩ }
/-- the inclusion of `image f` into the target -/
def image.ι : image f ⟶ β := subtype.val
instance : mono (image.ι f) :=
(mono_iff_injective _).2 subtype.val_injective
variables {f}
/-- the universal property for the image factorisation -/
noncomputable def image.lift (F' : mono_factorisation f) : image f ⟶ F'.I :=
(λ x, F'.e (classical.indefinite_description _ x.2).1 : image f → F'.I)
lemma image.lift_fac (F' : mono_factorisation f) : image.lift F' ≫ F'.m = image.ι f :=
begin
ext x,
change (F'.e ≫ F'.m) _ = _,
rw [F'.fac, (classical.indefinite_description _ x.2).2],
refl,
end
end
/-- the factorisation of any morphism in Type through a mono. -/
def mono_factorisation : mono_factorisation f :=
{ I := image f,
m := image.ι f,
e := set.range_factorization f }
/-- the facorisation through a mono has the universal property of the image. -/
noncomputable def is_image : is_image (mono_factorisation f) :=
{ lift := image.lift,
lift_fac' := image.lift_fac }
instance : has_image f :=
has_image.mk ⟨_, is_image f⟩
instance : has_images (Type u) :=
{ has_image := by apply_instance }
instance : has_image_maps (Type u) :=
{ has_image_map := λ f g st, has_image_map.transport st (mono_factorisation f.hom) (is_image g.hom)
(λ x, ⟨st.right x.1, ⟨st.left (classical.some x.2),
begin
have p := st.w,
replace p := congr_fun p (classical.some x.2),
simp only [functor.id_map, types_comp_apply, subtype.val_eq_coe] at p,
erw [p, classical.some_spec x.2],
end⟩⟩) rfl }
end category_theory.limits.types
|
3cb834525a09ccf2b7e5af102a8d18424e039081
|
f618aea02cb4104ad34ecf3b9713065cc0d06103
|
/src/data/set/basic.lean
|
4999187e7c9fdc6429d9b9bf32dadb92258f4061
|
[
"Apache-2.0"
] |
permissive
|
joehendrix/mathlib
|
84b6603f6be88a7e4d62f5b1b0cbb523bb82b9a5
|
c15eab34ad754f9ecd738525cb8b5a870e834ddc
|
refs/heads/master
| 1,589,606,591,630
| 1,555,946,393,000
| 1,555,946,393,000
| 182,813,854
| 0
| 0
| null | 1,555,946,309,000
| 1,555,946,308,000
| null |
UTF-8
|
Lean
| false
| false
| 52,586
|
lean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Leonardo de Moura
-/
import tactic.ext tactic.finish data.subtype tactic.interactive
open function
/- set coercion to a type -/
namespace set
instance {α : Type*} : has_coe_to_sort (set α) := ⟨_, λ s, {x // x ∈ s}⟩
end set
section set_coe
universe u
variables {α : Type u}
theorem set.set_coe_eq_subtype (s : set α) :
coe_sort.{(u+1) (u+2)} s = {x // x ∈ s} := rfl
@[simp] theorem set_coe.forall {s : set α} {p : s → Prop} :
(∀ x : s, p x) ↔ (∀ x (h : x ∈ s), p ⟨x, h⟩) :=
subtype.forall
@[simp] theorem set_coe.exists {s : set α} {p : s → Prop} :
(∃ x : s, p x) ↔ (∃ x (h : x ∈ s), p ⟨x, h⟩) :=
subtype.exists
@[simp] theorem set_coe_cast : ∀ {s t : set α} (H' : s = t) (H : @eq (Type u) s t) (x : s),
cast H x = ⟨x.1, H' ▸ x.2⟩
| s _ rfl _ ⟨x, h⟩ := rfl
theorem set_coe.ext {s : set α} {a b : s} : (↑a : α) = ↑b → a = b :=
subtype.eq
theorem set_coe.ext_iff {s : set α} {a b : s} : (↑a : α) = ↑b ↔ a = b :=
iff.intro set_coe.ext (assume h, h ▸ rfl)
end set_coe
lemma subtype.mem {α : Type*} {s : set α} (p : s) : (p : α) ∈ s := p.property
namespace set
universes u v w x
variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} {a : α} {s t : set α}
instance : inhabited (set α) := ⟨∅⟩
@[extensionality]
theorem ext {a b : set α} (h : ∀ x, x ∈ a ↔ x ∈ b) : a = b :=
funext (assume x, propext (h x))
theorem ext_iff (s t : set α) : s = t ↔ ∀ x, x ∈ s ↔ x ∈ t :=
⟨λ h x, by rw h, ext⟩
@[trans] theorem mem_of_mem_of_subset {α : Type u} {x : α} {s t : set α} (hx : x ∈ s) (h : s ⊆ t) : x ∈ t :=
h hx
/- mem and set_of -/
@[simp] theorem mem_set_of_eq {a : α} {p : α → Prop} : a ∈ {a | p a} = p a := rfl
@[simp] theorem nmem_set_of_eq {a : α} {P : α → Prop} : a ∉ {a : α | P a} = ¬ P a := rfl
@[simp] theorem set_of_mem_eq {s : set α} : {x | x ∈ s} = s := rfl
theorem mem_def {a : α} {s : set α} : a ∈ s ↔ s a := iff.rfl
instance decidable_mem (s : set α) [H : decidable_pred s] : ∀ a, decidable (a ∈ s) := H
instance decidable_set_of (p : α → Prop) [H : decidable_pred p] : decidable_pred {a | p a} := H
@[simp] theorem set_of_subset_set_of {p q : α → Prop} : {a | p a} ⊆ {a | q a} ↔ (∀a, p a → q a) := iff.rfl
@[simp] lemma sep_set_of {α} {p q : α → Prop} : {a ∈ {a | p a } | q a} = {a | p a ∧ q a} :=
rfl
@[simp] lemma set_of_mem {α} {s : set α} : {a | a ∈ s} = s := rfl
/- subset -/
-- TODO(Jeremy): write a tactic to unfold specific instances of generic notation?
theorem subset_def {s t : set α} : (s ⊆ t) = ∀ x, x ∈ s → x ∈ t := rfl
@[refl] theorem subset.refl (a : set α) : a ⊆ a := assume x, id
@[trans] theorem subset.trans {a b c : set α} (ab : a ⊆ b) (bc : b ⊆ c) : a ⊆ c :=
assume x h, bc (ab h)
@[trans] theorem mem_of_eq_of_mem {α : Type u} {x y : α} {s : set α} (hx : x = y) (h : y ∈ s) : x ∈ s :=
hx.symm ▸ h
theorem subset.antisymm {a b : set α} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
theorem subset.antisymm_iff {a b : set α} : a = b ↔ a ⊆ b ∧ b ⊆ a :=
⟨λ e, e ▸ ⟨subset.refl _, subset.refl _⟩,
λ ⟨h₁, h₂⟩, subset.antisymm h₁ h₂⟩
-- an alterantive name
theorem eq_of_subset_of_subset {a b : set α} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
subset.antisymm h₁ h₂
theorem mem_of_subset_of_mem {s₁ s₂ : set α} {a : α} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
assume h₁ h₂, h₁ h₂
theorem not_subset : (¬ s ⊆ t) ↔ ∃a, a ∈ s ∧ a ∉ t :=
by simp [subset_def, classical.not_forall]
/- strict subset -/
/-- `s ⊂ t` means that `s` is a strict subset of `t`, that is, `s ⊆ t` but `s ≠ t`. -/
def strict_subset (s t : set α) := s ⊆ t ∧ s ≠ t
instance : has_ssubset (set α) := ⟨strict_subset⟩
theorem ssubset_def : (s ⊂ t) = (s ⊆ t ∧ s ≠ t) := rfl
lemma exists_of_ssubset {α : Type u} {s t : set α} (h : s ⊂ t) : (∃x∈t, x ∉ s) :=
classical.by_contradiction $ assume hn,
have t ⊆ s, from assume a hat, classical.by_contradiction $ assume has, hn ⟨a, hat, has⟩,
h.2 $ subset.antisymm h.1 this
lemma ssubset_iff_subset_not_subset {s t : set α} : s ⊂ t ↔ s ⊆ t ∧ ¬ t ⊆ s :=
by split; simp [set.ssubset_def, ne.def, set.subset.antisymm_iff] {contextual := tt}
theorem not_mem_empty (x : α) : ¬ (x ∈ (∅ : set α)) :=
assume h : x ∈ ∅, h
@[simp] theorem not_not_mem [decidable (a ∈ s)] : ¬ (a ∉ s) ↔ a ∈ s :=
not_not
/- empty set -/
theorem empty_def : (∅ : set α) = {x | false} := rfl
@[simp] theorem mem_empty_eq (x : α) : x ∈ (∅ : set α) = false := rfl
@[simp] theorem set_of_false : {a : α | false} = ∅ := rfl
theorem eq_empty_iff_forall_not_mem {s : set α} : s = ∅ ↔ ∀ x, x ∉ s :=
by simp [ext_iff]
theorem ne_empty_of_mem {s : set α} {x : α} (h : x ∈ s) : s ≠ ∅ :=
by { intro hs, rw hs at h, apply not_mem_empty _ h }
@[simp] theorem empty_subset (s : set α) : ∅ ⊆ s :=
assume x, assume h, false.elim h
theorem subset_empty_iff {s : set α} : s ⊆ ∅ ↔ s = ∅ :=
by simp [subset.antisymm_iff]
theorem eq_empty_of_subset_empty {s : set α} : s ⊆ ∅ → s = ∅ :=
subset_empty_iff.1
theorem ne_empty_iff_exists_mem {s : set α} : s ≠ ∅ ↔ ∃ x, x ∈ s :=
by haveI := classical.prop_decidable;
simp [eq_empty_iff_forall_not_mem]
theorem exists_mem_of_ne_empty {s : set α} : s ≠ ∅ → ∃ x, x ∈ s :=
ne_empty_iff_exists_mem.1
theorem coe_nonempty_iff_ne_empty {s : set α} : nonempty s ↔ s ≠ ∅ :=
nonempty_subtype.trans ne_empty_iff_exists_mem.symm
-- TODO: remove when simplifier stops rewriting `a ≠ b` to `¬ a = b`
theorem not_eq_empty_iff_exists {s : set α} : ¬ (s = ∅) ↔ ∃ x, x ∈ s :=
ne_empty_iff_exists_mem
theorem subset_eq_empty {s t : set α} (h : t ⊆ s) (e : s = ∅) : t = ∅ :=
subset_empty_iff.1 $ e ▸ h
theorem subset_ne_empty {s t : set α} (h : t ⊆ s) : t ≠ ∅ → s ≠ ∅ :=
mt (subset_eq_empty h)
theorem ball_empty_iff {p : α → Prop} :
(∀ x ∈ (∅ : set α), p x) ↔ true :=
by simp [iff_def]
/- universal set -/
theorem univ_def : @univ α = {x | true} := rfl
@[simp] theorem mem_univ (x : α) : x ∈ @univ α := trivial
theorem empty_ne_univ [h : inhabited α] : (∅ : set α) ≠ univ :=
by simp [ext_iff]
@[simp] theorem subset_univ (s : set α) : s ⊆ univ := λ x H, trivial
theorem univ_subset_iff {s : set α} : univ ⊆ s ↔ s = univ :=
by simp [subset.antisymm_iff]
theorem eq_univ_of_univ_subset {s : set α} : univ ⊆ s → s = univ :=
univ_subset_iff.1
theorem eq_univ_iff_forall {s : set α} : s = univ ↔ ∀ x, x ∈ s :=
by simp [ext_iff]
theorem eq_univ_of_forall {s : set α} : (∀ x, x ∈ s) → s = univ := eq_univ_iff_forall.2
@[simp] lemma univ_eq_empty_iff {α : Type*} : (univ : set α) = ∅ ↔ ¬ nonempty α :=
eq_empty_iff_forall_not_mem.trans ⟨λ H ⟨x⟩, H x trivial, λ H x _, H ⟨x⟩⟩
lemma nonempty_iff_univ_ne_empty {α : Type*} : nonempty α ↔ (univ : set α) ≠ ∅ :=
by classical; exact iff_not_comm.1 univ_eq_empty_iff
lemma exists_mem_of_nonempty (α) : ∀ [nonempty α], ∃x:α, x ∈ (univ : set α)
| ⟨x⟩ := ⟨x, trivial⟩
@[simp] lemma univ_ne_empty {α} [h : nonempty α] : (univ : set α) ≠ ∅ :=
λ e, univ_eq_empty_iff.1 e h
instance univ_decidable : decidable_pred (@set.univ α) :=
λ x, is_true trivial
/- union -/
theorem union_def {s₁ s₂ : set α} : s₁ ∪ s₂ = {a | a ∈ s₁ ∨ a ∈ s₂} := rfl
theorem mem_union_left {x : α} {a : set α} (b : set α) : x ∈ a → x ∈ a ∪ b := or.inl
theorem mem_union_right {x : α} {b : set α} (a : set α) : x ∈ b → x ∈ a ∪ b := or.inr
theorem mem_or_mem_of_mem_union {x : α} {a b : set α} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H
theorem mem_union.elim {x : α} {a b : set α} {P : Prop}
(H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P :=
or.elim H₁ H₂ H₃
theorem mem_union (x : α) (a b : set α) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := iff.rfl
@[simp] theorem mem_union_eq (x : α) (a b : set α) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl
@[simp] theorem union_self (a : set α) : a ∪ a = a :=
ext (assume x, or_self _)
@[simp] theorem union_empty (a : set α) : a ∪ ∅ = a :=
ext (assume x, or_false _)
@[simp] theorem empty_union (a : set α) : ∅ ∪ a = a :=
ext (assume x, false_or _)
theorem union_comm (a b : set α) : a ∪ b = b ∪ a :=
ext (assume x, or.comm)
theorem union_assoc (a b c : set α) : (a ∪ b) ∪ c = a ∪ (b ∪ c) :=
ext (assume x, or.assoc)
instance union_is_assoc : is_associative (set α) (∪) :=
⟨union_assoc⟩
instance union_is_comm : is_commutative (set α) (∪) :=
⟨union_comm⟩
theorem union_left_comm (s₁ s₂ s₃ : set α) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) :=
by finish
theorem union_right_comm (s₁ s₂ s₃ : set α) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ :=
by finish
theorem union_eq_self_of_subset_left {s t : set α} (h : s ⊆ t) : s ∪ t = t :=
by finish [subset_def, ext_iff, iff_def]
theorem union_eq_self_of_subset_right {s t : set α} (h : t ⊆ s) : s ∪ t = s :=
by finish [subset_def, ext_iff, iff_def]
@[simp] theorem subset_union_left (s t : set α) : s ⊆ s ∪ t := λ x, or.inl
@[simp] theorem subset_union_right (s t : set α) : t ⊆ s ∪ t := λ x, or.inr
theorem union_subset {s t r : set α} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r :=
by finish [subset_def, union_def]
@[simp] theorem union_subset_iff {s t u : set α} : s ∪ t ⊆ u ↔ s ⊆ u ∧ t ⊆ u :=
by finish [iff_def, subset_def]
theorem union_subset_union {s₁ s₂ t₁ t₂ : set α} (h₁ : s₁ ⊆ s₂) (h₂ : t₁ ⊆ t₂) : s₁ ∪ t₁ ⊆ s₂ ∪ t₂ :=
by finish [subset_def]
theorem union_subset_union_left {s₁ s₂ : set α} (t) (h : s₁ ⊆ s₂) : s₁ ∪ t ⊆ s₂ ∪ t :=
union_subset_union h (by refl)
theorem union_subset_union_right (s) {t₁ t₂ : set α} (h : t₁ ⊆ t₂) : s ∪ t₁ ⊆ s ∪ t₂ :=
union_subset_union (by refl) h
lemma subset_union_of_subset_left {s t : set α} (h : s ⊆ t) (u : set α) : s ⊆ t ∪ u :=
subset.trans h (subset_union_left t u)
lemma subset_union_of_subset_right {s u : set α} (h : s ⊆ u) (t : set α) : s ⊆ t ∪ u :=
subset.trans h (subset_union_right t u)
@[simp] theorem union_empty_iff {s t : set α} : s ∪ t = ∅ ↔ s = ∅ ∧ t = ∅ :=
⟨by finish [ext_iff], by finish [ext_iff]⟩
/- intersection -/
theorem inter_def {s₁ s₂ : set α} : s₁ ∩ s₂ = {a | a ∈ s₁ ∧ a ∈ s₂} := rfl
theorem mem_inter_iff (x : α) (a b : set α) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := iff.rfl
@[simp] theorem mem_inter_eq (x : α) (a b : set α) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem mem_inter {x : α} {a b : set α} (ha : x ∈ a) (hb : x ∈ b) : x ∈ a ∩ b :=
⟨ha, hb⟩
theorem mem_of_mem_inter_left {x : α} {a b : set α} (h : x ∈ a ∩ b) : x ∈ a :=
h.left
theorem mem_of_mem_inter_right {x : α} {a b : set α} (h : x ∈ a ∩ b) : x ∈ b :=
h.right
@[simp] theorem inter_self (a : set α) : a ∩ a = a :=
ext (assume x, and_self _)
@[simp] theorem inter_empty (a : set α) : a ∩ ∅ = ∅ :=
ext (assume x, and_false _)
@[simp] theorem empty_inter (a : set α) : ∅ ∩ a = ∅ :=
ext (assume x, false_and _)
theorem inter_comm (a b : set α) : a ∩ b = b ∩ a :=
ext (assume x, and.comm)
theorem inter_assoc (a b c : set α) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
ext (assume x, and.assoc)
instance inter_is_assoc : is_associative (set α) (∩) :=
⟨inter_assoc⟩
instance inter_is_comm : is_commutative (set α) (∩) :=
⟨inter_comm⟩
theorem inter_left_comm (s₁ s₂ s₃ : set α) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
by finish
theorem inter_right_comm (s₁ s₂ s₃ : set α) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
by finish
@[simp] theorem inter_subset_left (s t : set α) : s ∩ t ⊆ s := λ x H, and.left H
@[simp] theorem inter_subset_right (s t : set α) : s ∩ t ⊆ t := λ x H, and.right H
theorem subset_inter {s t r : set α} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t :=
by finish [subset_def, inter_def]
@[simp] theorem subset_inter_iff {s t r : set α} : r ⊆ s ∩ t ↔ r ⊆ s ∧ r ⊆ t :=
⟨λ h, ⟨subset.trans h (inter_subset_left _ _), subset.trans h (inter_subset_right _ _)⟩,
λ ⟨h₁, h₂⟩, subset_inter h₁ h₂⟩
@[simp] theorem inter_univ (a : set α) : a ∩ univ = a :=
ext (assume x, and_true _)
@[simp] theorem univ_inter (a : set α) : univ ∩ a = a :=
ext (assume x, true_and _)
theorem inter_subset_inter_left {s t : set α} (u : set α) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
by finish [subset_def]
theorem inter_subset_inter_right {s t : set α} (u : set α) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t :=
by finish [subset_def]
theorem inter_subset_inter {s₁ s₂ t₁ t₂ : set α} (h₁ : s₁ ⊆ t₁) (h₂ : s₂ ⊆ t₂) : s₁ ∩ s₂ ⊆ t₁ ∩ t₂ :=
by finish [subset_def]
theorem inter_eq_self_of_subset_left {s t : set α} (h : s ⊆ t) : s ∩ t = s :=
by finish [subset_def, ext_iff, iff_def]
theorem inter_eq_self_of_subset_right {s t : set α} (h : t ⊆ s) : s ∩ t = t :=
by finish [subset_def, ext_iff, iff_def]
theorem union_inter_cancel_left {s t : set α} : (s ∪ t) ∩ s = s :=
by finish [ext_iff, iff_def]
theorem union_inter_cancel_right {s t : set α} : (s ∪ t) ∩ t = t :=
by finish [ext_iff, iff_def]
-- TODO(Mario): remove?
theorem nonempty_of_inter_nonempty_right {s t : set α} (h : s ∩ t ≠ ∅) : t ≠ ∅ :=
by finish [ext_iff, iff_def]
theorem nonempty_of_inter_nonempty_left {s t : set α} (h : s ∩ t ≠ ∅) : s ≠ ∅ :=
by finish [ext_iff, iff_def]
/- distributivity laws -/
theorem inter_distrib_left (s t u : set α) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) :=
ext (assume x, and_or_distrib_left)
theorem inter_distrib_right (s t u : set α) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) :=
ext (assume x, or_and_distrib_right)
theorem union_distrib_left (s t u : set α) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) :=
ext (assume x, or_and_distrib_left)
theorem union_distrib_right (s t u : set α) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) :=
ext (assume x, and_or_distrib_right)
/- insert -/
theorem insert_def (x : α) (s : set α) : insert x s = { y | y = x ∨ y ∈ s } := rfl
@[simp] theorem insert_of_has_insert (x : α) (s : set α) : has_insert.insert x s = insert x s := rfl
@[simp] theorem subset_insert (x : α) (s : set α) : s ⊆ insert x s :=
assume y ys, or.inr ys
theorem mem_insert (x : α) (s : set α) : x ∈ insert x s :=
or.inl rfl
theorem mem_insert_of_mem {x : α} {s : set α} (y : α) : x ∈ s → x ∈ insert y s := or.inr
theorem eq_or_mem_of_mem_insert {x a : α} {s : set α} : x ∈ insert a s → x = a ∨ x ∈ s := id
theorem mem_of_mem_insert_of_ne {x a : α} {s : set α} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
by finish [insert_def]
@[simp] theorem mem_insert_iff {x a : α} {s : set α} : x ∈ insert a s ↔ (x = a ∨ x ∈ s) := iff.rfl
@[simp] theorem insert_eq_of_mem {a : α} {s : set α} (h : a ∈ s) : insert a s = s :=
by finish [ext_iff, iff_def]
theorem insert_subset : insert a s ⊆ t ↔ (a ∈ t ∧ s ⊆ t) :=
by simp [subset_def, or_imp_distrib, forall_and_distrib]
theorem insert_subset_insert (h : s ⊆ t) : insert a s ⊆ insert a t :=
assume a', or.imp_right (@h a')
theorem ssubset_insert {s : set α} {a : α} (h : a ∉ s) : s ⊂ insert a s :=
by finish [ssubset_def, ext_iff]
theorem insert_comm (a b : α) (s : set α) : insert a (insert b s) = insert b (insert a s) :=
ext $ by simp [or.left_comm]
theorem insert_union : insert a s ∪ t = insert a (s ∪ t) :=
ext $ assume a, by simp [or.comm, or.left_comm]
@[simp] theorem union_insert : s ∪ insert a t = insert a (s ∪ t) :=
ext $ assume a, by simp [or.comm, or.left_comm]
-- TODO(Jeremy): make this automatic
theorem insert_ne_empty (a : α) (s : set α) : insert a s ≠ ∅ :=
by safe [ext_iff, iff_def]; have h' := a_1 a; finish
-- useful in proofs by induction
theorem forall_of_forall_insert {P : α → Prop} {a : α} {s : set α} (h : ∀ x, x ∈ insert a s → P x) :
∀ x, x ∈ s → P x :=
by finish
theorem forall_insert_of_forall {P : α → Prop} {a : α} {s : set α} (h : ∀ x, x ∈ s → P x) (ha : P a) :
∀ x, x ∈ insert a s → P x :=
by finish
theorem ball_insert_iff {P : α → Prop} {a : α} {s : set α} :
(∀ x ∈ insert a s, P x) ↔ P a ∧ (∀x ∈ s, P x) :=
by finish [iff_def]
/- singletons -/
theorem singleton_def (a : α) : ({a} : set α) = insert a ∅ := rfl
@[simp] theorem mem_singleton_iff {a b : α} : a ∈ ({b} : set α) ↔ a = b :=
by finish [singleton_def]
lemma set_of_eq_eq_singleton {a : α} : {n | n = a} = {a} := set.ext $ λ n, (set.mem_singleton_iff).symm
-- TODO: again, annotation needed
@[simp] theorem mem_singleton (a : α) : a ∈ ({a} : set α) := by finish
theorem eq_of_mem_singleton {x y : α} (h : x ∈ ({y} : set α)) : x = y :=
by finish
@[simp] theorem singleton_eq_singleton_iff {x y : α} : {x} = ({y} : set α) ↔ x = y :=
by finish [ext_iff, iff_def]
theorem mem_singleton_of_eq {x y : α} (H : x = y) : x ∈ ({y} : set α) :=
by finish
theorem insert_eq (x : α) (s : set α) : insert x s = ({x} : set α) ∪ s :=
by finish [ext_iff, or_comm]
@[simp] theorem pair_eq_singleton (a : α) : ({a, a} : set α) = {a} :=
by finish
@[simp] theorem singleton_ne_empty (a : α) : ({a} : set α) ≠ ∅ := insert_ne_empty _ _
@[simp] theorem singleton_subset_iff {a : α} {s : set α} : {a} ⊆ s ↔ a ∈ s :=
⟨λh, h (by simp), λh b e, by simp at e; simp [*]⟩
theorem set_compr_eq_eq_singleton {a : α} : {b | b = a} = {a} :=
ext $ by simp
@[simp] theorem union_singleton : s ∪ {a} = insert a s :=
by simp [singleton_def]
@[simp] theorem singleton_union : {a} ∪ s = insert a s :=
by rw [union_comm, union_singleton]
theorem singleton_inter_eq_empty : {a} ∩ s = ∅ ↔ a ∉ s :=
by simp [eq_empty_iff_forall_not_mem]
theorem inter_singleton_eq_empty : s ∩ {a} = ∅ ↔ a ∉ s :=
by rw [inter_comm, singleton_inter_eq_empty]
lemma nmem_singleton_empty {s : set α} : s ∉ ({∅} : set (set α)) ↔ nonempty s :=
by simp [coe_nonempty_iff_ne_empty]
/- separation -/
theorem mem_sep {s : set α} {p : α → Prop} {x : α} (xs : x ∈ s) (px : p x) : x ∈ {x ∈ s | p x} :=
⟨xs, px⟩
@[simp] theorem mem_sep_eq {s : set α} {p : α → Prop} {x : α} : x ∈ {x ∈ s | p x} = (x ∈ s ∧ p x) := rfl
theorem mem_sep_iff {s : set α} {p : α → Prop} {x : α} : x ∈ {x ∈ s | p x} ↔ x ∈ s ∧ p x :=
iff.rfl
theorem eq_sep_of_subset {s t : set α} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
by finish [ext_iff, iff_def, subset_def]
theorem sep_subset (s : set α) (p : α → Prop) : {x ∈ s | p x} ⊆ s :=
assume x, and.left
theorem forall_not_of_sep_empty {s : set α} {p : α → Prop} (h : {x ∈ s | p x} = ∅) :
∀ x ∈ s, ¬ p x :=
by finish [ext_iff]
@[simp] lemma sep_univ {α} {p : α → Prop} : {a ∈ (univ : set α) | p a} = {a | p a} :=
set.ext $ by simp
/- complement -/
theorem mem_compl {s : set α} {x : α} (h : x ∉ s) : x ∈ -s := h
lemma compl_set_of {α} (p : α → Prop) : - {a | p a} = { a | ¬ p a } := rfl
theorem not_mem_of_mem_compl {s : set α} {x : α} (h : x ∈ -s) : x ∉ s := h
@[simp] theorem mem_compl_eq (s : set α) (x : α) : x ∈ -s = (x ∉ s) := rfl
theorem mem_compl_iff (s : set α) (x : α) : x ∈ -s ↔ x ∉ s := iff.rfl
@[simp] theorem inter_compl_self (s : set α) : s ∩ -s = ∅ :=
by finish [ext_iff]
@[simp] theorem compl_inter_self (s : set α) : -s ∩ s = ∅ :=
by finish [ext_iff]
@[simp] theorem compl_empty : -(∅ : set α) = univ :=
by finish [ext_iff]
@[simp] theorem compl_union (s t : set α) : -(s ∪ t) = -s ∩ -t :=
by finish [ext_iff]
@[simp] theorem compl_compl (s : set α) : -(-s) = s :=
by finish [ext_iff]
-- ditto
theorem compl_inter (s t : set α) : -(s ∩ t) = -s ∪ -t :=
by finish [ext_iff]
@[simp] theorem compl_univ : -(univ : set α) = ∅ :=
by finish [ext_iff]
lemma compl_empty_iff {s : set α} : -s = ∅ ↔ s = univ :=
by { split, intro h, rw [←compl_compl s, h, compl_empty], intro h, rw [h, compl_univ] }
lemma compl_univ_iff {s : set α} : -s = univ ↔ s = ∅ :=
by rw [←compl_empty_iff, compl_compl]
lemma nonempty_compl {s : set α} : nonempty (-s : set α) ↔ s ≠ univ :=
by { symmetry, rw [coe_nonempty_iff_ne_empty], apply not_congr,
split, intro h, rw [h, compl_univ],
intro h, rw [←compl_compl s, h, compl_empty] }
theorem union_eq_compl_compl_inter_compl (s t : set α) : s ∪ t = -(-s ∩ -t) :=
by simp [compl_inter, compl_compl]
theorem inter_eq_compl_compl_union_compl (s t : set α) : s ∩ t = -(-s ∪ -t) :=
by simp [compl_compl]
@[simp] theorem union_compl_self (s : set α) : s ∪ -s = univ :=
by finish [ext_iff]
@[simp] theorem compl_union_self (s : set α) : -s ∪ s = univ :=
by finish [ext_iff]
theorem compl_comp_compl : compl ∘ compl = @id (set α) :=
funext compl_compl
theorem compl_subset_comm {s t : set α} : -s ⊆ t ↔ -t ⊆ s :=
by haveI := classical.prop_decidable; exact
forall_congr (λ a, not_imp_comm)
lemma compl_subset_compl {s t : set α} : -s ⊆ -t ↔ t ⊆ s :=
by rw [compl_subset_comm, compl_compl]
theorem compl_subset_iff_union {s t : set α} : -s ⊆ t ↔ s ∪ t = univ :=
iff.symm $ eq_univ_iff_forall.trans $ forall_congr $ λ a,
by haveI := classical.prop_decidable; exact or_iff_not_imp_left
theorem subset_compl_comm {s t : set α} : s ⊆ -t ↔ t ⊆ -s :=
forall_congr $ λ a, imp_not_comm
theorem subset_compl_iff_disjoint {s t : set α} : s ⊆ -t ↔ s ∩ t = ∅ :=
iff.trans (forall_congr $ λ a, and_imp.symm) subset_empty_iff
theorem inter_subset (a b c : set α) : a ∩ b ⊆ c ↔ a ⊆ -b ∪ c :=
begin
haveI := classical.prop_decidable,
split,
{ intros h x xa, by_cases h' : x ∈ b, simp [h ⟨xa, h'⟩], simp [h'] },
intros h x, rintro ⟨xa, xb⟩, cases h xa, contradiction, assumption
end
/- set difference -/
theorem diff_eq (s t : set α) : s \ t = s ∩ -t := rfl
@[simp] theorem mem_diff {s t : set α} (x : α) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := iff.rfl
theorem mem_diff_of_mem {s t : set α} {x : α} (h1 : x ∈ s) (h2 : x ∉ t) : x ∈ s \ t :=
⟨h1, h2⟩
theorem mem_of_mem_diff {s t : set α} {x : α} (h : x ∈ s \ t) : x ∈ s :=
h.left
theorem not_mem_of_mem_diff {s t : set α} {x : α} (h : x ∈ s \ t) : x ∉ t :=
h.right
theorem union_diff_cancel {s t : set α} (h : s ⊆ t) : s ∪ (t \ s) = t :=
by finish [ext_iff, iff_def, subset_def]
theorem union_diff_cancel_left {s t : set α} (h : s ∩ t ⊆ ∅) : (s ∪ t) \ s = t :=
by finish [ext_iff, iff_def, subset_def]
theorem union_diff_cancel_right {s t : set α} (h : s ∩ t ⊆ ∅) : (s ∪ t) \ t = s :=
by finish [ext_iff, iff_def, subset_def]
theorem union_diff_left {s t : set α} : (s ∪ t) \ s = t \ s :=
by finish [ext_iff, iff_def]
theorem union_diff_right {s t : set α} : (s ∪ t) \ t = s \ t :=
by finish [ext_iff, iff_def]
theorem union_diff_distrib {s t u : set α} : (s ∪ t) \ u = s \ u ∪ t \ u :=
inter_distrib_right _ _ _
theorem inter_diff_assoc (a b c : set α) : (a ∩ b) \ c = a ∩ (b \ c) :=
inter_assoc _ _ _
theorem inter_diff_self (a b : set α) : a ∩ (b \ a) = ∅ :=
by finish [ext_iff]
theorem inter_union_diff (s t : set α) : (s ∩ t) ∪ (s \ t) = s :=
by finish [ext_iff, iff_def]
theorem diff_subset (s t : set α) : s \ t ⊆ s :=
by finish [subset_def]
theorem diff_subset_diff {s₁ s₂ t₁ t₂ : set α} : s₁ ⊆ s₂ → t₂ ⊆ t₁ → s₁ \ t₁ ⊆ s₂ \ t₂ :=
by finish [subset_def]
theorem diff_subset_diff_left {s₁ s₂ t : set α} (h : s₁ ⊆ s₂) : s₁ \ t ⊆ s₂ \ t :=
diff_subset_diff h (by refl)
theorem diff_subset_diff_right {s t u : set α} (h : t ⊆ u) : s \ u ⊆ s \ t :=
diff_subset_diff (subset.refl s) h
theorem compl_eq_univ_diff (s : set α) : -s = univ \ s :=
by finish [ext_iff]
@[simp] lemma empty_diff {α : Type*} (s : set α) : (∅ \ s : set α) = ∅ :=
eq_empty_of_subset_empty $ assume x ⟨hx, _⟩, hx
theorem diff_eq_empty {s t : set α} : s \ t = ∅ ↔ s ⊆ t :=
⟨assume h x hx, classical.by_contradiction $ assume : x ∉ t, show x ∈ (∅ : set α), from h ▸ ⟨hx, this⟩,
assume h, eq_empty_of_subset_empty $ assume x ⟨hx, hnx⟩, hnx $ h hx⟩
@[simp] theorem diff_empty {s : set α} : s \ ∅ = s :=
ext $ assume x, ⟨assume ⟨hx, _⟩, hx, assume h, ⟨h, not_false⟩⟩
theorem diff_diff {u : set α} : s \ t \ u = s \ (t ∪ u) :=
ext $ by simp [not_or_distrib, and.comm, and.left_comm]
lemma diff_subset_iff {s t u : set α} : s \ t ⊆ u ↔ s ⊆ t ∪ u :=
⟨assume h x xs, classical.by_cases or.inl (assume nxt, or.inr (h ⟨xs, nxt⟩)),
assume h x ⟨xs, nxt⟩, or.resolve_left (h xs) nxt⟩
lemma subset_insert_diff (s t : set α) : s ⊆ (s \ t) ∪ t :=
by rw [union_comm, ←diff_subset_iff]
@[simp] lemma diff_singleton_subset_iff {x : α} {s t : set α} : s \ {x} ⊆ t ↔ s ⊆ insert x t :=
by { rw [←union_singleton, union_comm], apply diff_subset_iff }
lemma subset_insert_diff_singleton (x : α) (s : set α) : s ⊆ insert x (s \ {x}) :=
by rw [←diff_singleton_subset_iff]
lemma diff_subset_comm {s t u : set α} : s \ t ⊆ u ↔ s \ u ⊆ t :=
by rw [diff_subset_iff, diff_subset_iff, union_comm]
@[simp] theorem insert_diff (h : a ∈ t) : insert a s \ t = s \ t :=
ext $ by intro; constructor; simp [or_imp_distrib, h] {contextual := tt}
theorem union_diff_self {s t : set α} : s ∪ (t \ s) = s ∪ t :=
by finish [ext_iff, iff_def]
theorem diff_union_self {s t : set α} : (s \ t) ∪ t = s ∪ t :=
by rw [union_comm, union_diff_self, union_comm]
theorem diff_inter_self {a b : set α} : (b \ a) ∩ a = ∅ :=
ext $ by simp [iff_def] {contextual:=tt}
theorem diff_eq_self {s t : set α} : s \ t = s ↔ t ∩ s ⊆ ∅ :=
by finish [ext_iff, iff_def, subset_def]
@[simp] theorem diff_singleton_eq_self {a : α} {s : set α} (h : a ∉ s) : s \ {a} = s :=
diff_eq_self.2 $ by simp [singleton_inter_eq_empty.2 h]
@[simp] theorem insert_diff_singleton {a : α} {s : set α} :
insert a (s \ {a}) = insert a s :=
by simp [insert_eq, union_diff_self, -union_singleton, -singleton_union]
@[simp] lemma diff_self {s : set α} : s \ s = ∅ := ext $ by simp
lemma mem_diff_singleton {s s' : set α} {t : set (set α)} : s ∈ t \ {s'} ↔ (s ∈ t ∧ s ≠ s') :=
by simp
lemma mem_diff_singleton_empty {s : set α} {t : set (set α)} :
s ∈ t \ {∅} ↔ (s ∈ t ∧ nonempty s) :=
by simp [coe_nonempty_iff_ne_empty]
/- powerset -/
theorem mem_powerset {x s : set α} (h : x ⊆ s) : x ∈ powerset s := h
theorem subset_of_mem_powerset {x s : set α} (h : x ∈ powerset s) : x ⊆ s := h
theorem mem_powerset_iff (x s : set α) : x ∈ powerset s ↔ x ⊆ s := iff.rfl
/- inverse image -/
/-- The preimage of `s : set β` by `f : α → β`, written `f ⁻¹' s`,
is the set of `x : α` such that `f x ∈ s`. -/
def preimage {α : Type u} {β : Type v} (f : α → β) (s : set β) : set α := {x | f x ∈ s}
infix ` ⁻¹' `:80 := preimage
section preimage
variables {f : α → β} {g : β → γ}
@[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl
@[simp] theorem mem_preimage_eq {s : set β} {a : α} : (a ∈ f ⁻¹' s) = (f a ∈ s) := rfl
theorem preimage_mono {s t : set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t :=
assume x hx, h hx
@[simp] theorem preimage_univ : f ⁻¹' univ = univ := rfl
@[simp] theorem preimage_inter {s t : set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl
@[simp] theorem preimage_union {s t : set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl
@[simp] theorem preimage_compl {s : set β} : f ⁻¹' (- s) = - (f ⁻¹' s) := rfl
@[simp] theorem preimage_diff (f : α → β) (s t : set β) :
f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl
@[simp] theorem preimage_set_of_eq {p : α → Prop} {f : β → α} : f ⁻¹' {a | p a} = {a | p (f a)} :=
rfl
theorem preimage_id {s : set α} : id ⁻¹' s = s := rfl
theorem preimage_comp {s : set γ} : (g ∘ f) ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl
theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : set (subtype p)} {t : set α} :
s = subtype.val ⁻¹' t ↔ (∀x (h : p x), (⟨x, h⟩ : subtype p) ∈ s ↔ x ∈ t) :=
⟨assume s_eq x h, by rw [s_eq]; simp,
assume h, ext $ assume ⟨x, hx⟩, by simp [h]⟩
end preimage
/- function image -/
section image
infix ` '' `:80 := image
/-- Two functions `f₁ f₂ : α → β` are equal on `s`
if `f₁ x = f₂ x` for all `x ∈ a`. -/
@[reducible] def eq_on (f1 f2 : α → β) (a : set α) : Prop :=
∀ x ∈ a, f1 x = f2 x
-- TODO(Jeremy): use bounded exists in image
theorem mem_image_iff_bex {f : α → β} {s : set α} {y : β} :
y ∈ f '' s ↔ ∃ x (_ : x ∈ s), f x = y := bex_def.symm
theorem mem_image_eq (f : α → β) (s : set α) (y: β) : y ∈ f '' s = ∃ x, x ∈ s ∧ f x = y := rfl
@[simp] theorem mem_image (f : α → β) (s : set α) (y : β) : y ∈ f '' s ↔ ∃ x, x ∈ s ∧ f x = y := iff.rfl
theorem mem_image_of_mem (f : α → β) {x : α} {a : set α} (h : x ∈ a) : f x ∈ f '' a :=
⟨_, h, rfl⟩
theorem mem_image_of_injective {f : α → β} {a : α} {s : set α} (hf : injective f) :
f a ∈ f '' s ↔ a ∈ s :=
iff.intro
(assume ⟨b, hb, eq⟩, (hf eq) ▸ hb)
(assume h, mem_image_of_mem _ h)
theorem ball_image_of_ball {f : α → β} {s : set α} {p : β → Prop}
(h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y :=
by finish [mem_image_eq]
@[simp] theorem ball_image_iff {f : α → β} {s : set α} {p : β → Prop} :
(∀ y ∈ f '' s, p y) ↔ (∀ x ∈ s, p (f x)) :=
iff.intro
(assume h a ha, h _ $ mem_image_of_mem _ ha)
(assume h b ⟨a, ha, eq⟩, eq ▸ h a ha)
theorem mono_image {f : α → β} {s t : set α} (h : s ⊆ t) : f '' s ⊆ f '' t :=
assume x ⟨y, hy, y_eq⟩, y_eq ▸ mem_image_of_mem _ $ h hy
theorem mem_image_elim {f : α → β} {s : set α} {C : β → Prop} (h : ∀ (x : α), x ∈ s → C (f x)) :
∀{y : β}, y ∈ f '' s → C y
| ._ ⟨a, a_in, rfl⟩ := h a a_in
theorem mem_image_elim_on {f : α → β} {s : set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s)
(h : ∀ (x : α), x ∈ s → C (f x)) : C y :=
mem_image_elim h h_y
@[congr] lemma image_congr {f g : α → β} {s : set α}
(h : ∀a∈s, f a = g a) : f '' s = g '' s :=
by safe [ext_iff, iff_def]
/- A common special case of `image_congr` -/
lemma image_congr' {f g : α → β} {s : set α} (h : ∀ (x : α), f x = g x) : f '' s = g '' s :=
image_congr (λx _, h x)
theorem image_eq_image_of_eq_on {f₁ f₂ : α → β} {s : set α} (heq : eq_on f₁ f₂ s) :
f₁ '' s = f₂ '' s :=
image_congr heq
theorem image_comp (f : β → γ) (g : α → β) (a : set α) : (f ∘ g) '' a = f '' (g '' a) :=
subset.antisymm
(ball_image_of_ball $ assume a ha, mem_image_of_mem _ $ mem_image_of_mem _ ha)
(ball_image_of_ball $ ball_image_of_ball $ assume a ha, mem_image_of_mem _ ha)
/- Proof is removed as it uses generated names
TODO(Jeremy): make automatic,
begin
safe [ext_iff, iff_def, mem_image, (∘)],
have h' := h_2 (g a_2),
finish
end -/
/-- A variant of `image_comp`, useful for rewriting -/
lemma image_image (g : β → γ) (f : α → β) (s : set α) : g '' (f '' s) = (λ x, g (f x)) '' s :=
(image_comp g f s).symm
theorem image_subset {a b : set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b :=
by finish [subset_def, mem_image_eq]
theorem image_union (f : α → β) (s t : set α) :
f '' (s ∪ t) = f '' s ∪ f '' t :=
by finish [ext_iff, iff_def, mem_image_eq]
@[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := ext $ by simp
theorem image_inter_on {f : α → β} {s t : set α} (h : ∀x∈t, ∀y∈s, f x = f y → x = y) :
f '' s ∩ f '' t = f '' (s ∩ t) :=
subset.antisymm
(assume b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩,
have a₂ = a₁, from h _ ha₂ _ ha₁ (by simp *),
⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩)
(subset_inter (mono_image $ inter_subset_left _ _) (mono_image $ inter_subset_right _ _))
theorem image_inter {f : α → β} {s t : set α} (H : injective f) :
f '' s ∩ f '' t = f '' (s ∩ t) :=
image_inter_on (assume x _ y _ h, H h)
theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : surjective f) : f '' univ = univ :=
eq_univ_of_forall $ by simp [image]; exact H
@[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} :=
ext $ λ x, by simp [image]; rw eq_comm
@[simp] lemma image_eq_empty {α β} {f : α → β} {s : set α} : f '' s = ∅ ↔ s = ∅ :=
by simp only [eq_empty_iff_forall_not_mem]; exact
⟨λ H a ha, H _ ⟨_, ha, rfl⟩, λ H b ⟨_, ha, _⟩, H _ ha⟩
lemma inter_singleton_ne_empty {α : Type*} {s : set α} {a : α} : s ∩ {a} ≠ ∅ ↔ a ∈ s :=
by finish [set.inter_singleton_eq_empty]
theorem fix_set_compl (t : set α) : compl t = - t := rfl
-- TODO(Jeremy): there is an issue with - t unfolding to compl t
theorem mem_compl_image (t : set α) (S : set (set α)) :
t ∈ compl '' S ↔ -t ∈ S :=
begin
suffices : ∀ x, -x = t ↔ -t = x, {simp [fix_set_compl, this]},
intro x, split; { intro e, subst e, simp }
end
@[simp] theorem image_id (s : set α) : id '' s = s := ext $ by simp
/-- A variant of `image_id` -/
@[simp] lemma image_id' (s : set α) : (λx, x) '' s = s := image_id s
theorem compl_compl_image (S : set (set α)) :
compl '' (compl '' S) = S :=
by rw [← image_comp, compl_comp_compl, image_id]
theorem image_insert_eq {f : α → β} {a : α} {s : set α} :
f '' (insert a s) = insert (f a) (f '' s) :=
ext $ by simp [and_or_distrib_left, exists_or_distrib, eq_comm, or_comm, and_comm]
theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α}
(I : left_inverse g f) (s : set α) : f '' s ⊆ g ⁻¹' s :=
λ b ⟨a, h, e⟩, e ▸ ((I a).symm ▸ h : g (f a) ∈ s)
theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α}
(I : left_inverse g f) (s : set β) : f ⁻¹' s ⊆ g '' s :=
λ b h, ⟨f b, h, I b⟩
theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α}
(h₁ : left_inverse g f) (h₂ : right_inverse g f) :
image f = preimage g :=
funext $ λ s, subset.antisymm
(image_subset_preimage_of_inverse h₁ s)
(preimage_subset_image_of_inverse h₂ s)
theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : set α}
(h₁ : left_inverse g f) (h₂ : right_inverse g f) :
b ∈ f '' s ↔ g b ∈ s :=
by rw image_eq_preimage_of_inverse h₁ h₂; refl
theorem image_compl_subset {f : α → β} {s : set α} (H : injective f) : f '' -s ⊆ -(f '' s) :=
subset_compl_iff_disjoint.2 $ by simp [image_inter H]
theorem subset_image_compl {f : α → β} {s : set α} (H : surjective f) : -(f '' s) ⊆ f '' -s :=
compl_subset_iff_union.2 $
by rw ← image_union; simp [image_univ_of_surjective H]
theorem image_compl_eq {f : α → β} {s : set α} (H : bijective f) : f '' -s = -(f '' s) :=
subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2)
lemma nonempty_image (f : α → β) {s : set α} : nonempty s → nonempty (f '' s)
| ⟨⟨x, hx⟩⟩ := ⟨⟨f x, mem_image_of_mem f hx⟩⟩
/- image and preimage are a Galois connection -/
theorem image_subset_iff {s : set α} {t : set β} {f : α → β} :
f '' s ⊆ t ↔ s ⊆ f ⁻¹' t :=
ball_image_iff
theorem image_preimage_subset (f : α → β) (s : set β) :
f '' (f ⁻¹' s) ⊆ s :=
image_subset_iff.2 (subset.refl _)
theorem subset_preimage_image (f : α → β) (s : set α) :
s ⊆ f ⁻¹' (f '' s) :=
λ x, mem_image_of_mem f
theorem preimage_image_eq {f : α → β} (s : set α) (h : injective f) : f ⁻¹' (f '' s) = s :=
subset.antisymm
(λ x ⟨y, hy, e⟩, h e ▸ hy)
(subset_preimage_image f s)
theorem image_preimage_eq {f : α → β} {s : set β} (h : surjective f) : f '' (f ⁻¹' s) = s :=
subset.antisymm
(image_preimage_subset f s)
(λ x hx, let ⟨y, e⟩ := h x in ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩)
lemma preimage_eq_preimage {f : β → α} (hf : surjective f) : f ⁻¹' s = preimage f t ↔ s = t :=
iff.intro
(assume eq, by rw [← @image_preimage_eq β α f s hf, ← @image_preimage_eq β α f t hf, eq])
(assume eq, eq ▸ rfl)
lemma surjective_preimage {f : β → α} (hf : surjective f) : injective (preimage f) :=
assume s t, (preimage_eq_preimage hf).1
theorem compl_image : image (@compl α) = preimage compl :=
image_eq_preimage_of_inverse compl_compl compl_compl
theorem compl_image_set_of {α : Type u} {p : set α → Prop} :
compl '' {x | p x} = {x | p (- x)} :=
congr_fun compl_image p
theorem inter_preimage_subset (s : set α) (t : set β) (f : α → β) :
s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) :=
λ x h, ⟨mem_image_of_mem _ h.left, h.right⟩
theorem union_preimage_subset (s : set α) (t : set β) (f : α → β) :
s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) :=
λ x h, or.elim h (λ l, or.inl $ mem_image_of_mem _ l) (λ r, or.inr r)
theorem subset_image_union (f : α → β) (s : set α) (t : set β) :
f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t :=
image_subset_iff.2 (union_preimage_subset _ _ _)
lemma preimage_subset_iff {A : set α} {B : set β} {f : α → β} :
f⁻¹' B ⊆ A ↔ (∀ a : α, f a ∈ B → a ∈ A) := iff.rfl
lemma image_eq_image {f : α → β} (hf : injective f) : f '' s = f '' t ↔ s = t :=
iff.symm $ iff.intro (assume eq, eq ▸ rfl) $ assume eq,
by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq]
lemma image_subset_image_iff {f : α → β} (hf : injective f) : f '' s ⊆ f '' t ↔ s ⊆ t :=
begin
refine (iff.symm $ iff.intro (image_subset f) $ assume h, _),
rw [← preimage_image_eq s hf, ← preimage_image_eq t hf],
exact preimage_mono h
end
lemma injective_image {f : α → β} (hf : injective f) : injective (('') f) :=
assume s t, (image_eq_image hf).1
lemma prod_quotient_preimage_eq_image [s : setoid α] (g : quotient s → β) {h : α → β}
(Hh : h = g ∘ quotient.mk) (r : set (β × β)) :
{x : quotient s × quotient s | (g x.1, g x.2) ∈ r} =
(λ a : α × α, (⟦a.1⟧, ⟦a.2⟧)) '' ((λ a : α × α, (h a.1, h a.2)) ⁻¹' r) :=
Hh.symm ▸ set.ext (λ ⟨a₁, a₂⟩, ⟨quotient.induction_on₂ a₁ a₂
(λ a₁ a₂ h, ⟨(a₁, a₂), h, rfl⟩),
λ ⟨⟨b₁, b₂⟩, h₁, h₂⟩, show (g a₁, g a₂) ∈ r, from
have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := prod.ext_iff.1 h₂,
h₃.1 ▸ h₃.2 ▸ h₁⟩)
def image_factorization (f : α → β) (s : set α) : s → f '' s :=
λ p, ⟨f p.1, mem_image_of_mem f p.2⟩
lemma image_factorization_eq {f : α → β} {s : set α} :
subtype.val ∘ image_factorization f s = f ∘ subtype.val :=
funext $ λ p, rfl
lemma surjective_onto_image {f : α → β} {s : set α} :
surjective (image_factorization f s) :=
λ ⟨_, ⟨a, ha, rfl⟩⟩, ⟨⟨a, ha⟩, rfl⟩
end image
theorem univ_eq_true_false : univ = ({true, false} : set Prop) :=
eq.symm $ eq_univ_of_forall $ classical.cases (by simp) (by simp)
section range
variables {f : ι → α}
open function
/-- Range of a function.
This function is more flexible than `f '' univ`, as the image requires that the domain is in Type
and not an arbitrary Sort. -/
def range (f : ι → α) : set α := {x | ∃y, f y = x}
@[simp] theorem mem_range {x : α} : x ∈ range f ↔ ∃ y, f y = x := iff.rfl
theorem mem_range_self (i : ι) : f i ∈ range f := ⟨i, rfl⟩
theorem forall_range_iff {p : α → Prop} : (∀ a ∈ range f, p a) ↔ (∀ i, p (f i)) :=
⟨assume h i, h (f i) (mem_range_self _), assume h a ⟨i, (hi : f i = a)⟩, hi ▸ h i⟩
theorem exists_range_iff {p : α → Prop} : (∃ a ∈ range f, p a) ↔ (∃ i, p (f i)) :=
⟨assume ⟨a, ⟨i, eq⟩, h⟩, ⟨i, eq.symm ▸ h⟩, assume ⟨i, h⟩, ⟨f i, mem_range_self _, h⟩⟩
theorem range_iff_surjective : range f = univ ↔ surjective f :=
eq_univ_iff_forall
@[simp] theorem range_id : range (@id α) = univ := range_iff_surjective.2 surjective_id
@[simp] theorem image_univ {ι : Type*} {f : ι → β} : f '' univ = range f :=
ext $ by simp [image, range]
theorem image_subset_range {ι : Type*} (f : ι → β) (s : set ι) : f '' s ⊆ range f :=
by rw ← image_univ; exact image_subset _ (subset_univ _)
theorem range_comp {g : α → β} : range (g ∘ f) = g '' range f :=
subset.antisymm
(forall_range_iff.mpr $ assume i, mem_image_of_mem g (mem_range_self _))
(ball_image_iff.mpr $ forall_range_iff.mpr mem_range_self)
theorem range_subset_iff {ι : Type*} {f : ι → β} {s : set β} : range f ⊆ s ↔ ∀ y, f y ∈ s :=
forall_range_iff
lemma nonempty_of_nonempty_range {α : Type*} {β : Type*} {f : α → β} (H : ¬range f = ∅) : nonempty α :=
begin
cases exists_mem_of_ne_empty H with x h,
cases mem_range.1 h with y _,
exact ⟨y⟩
end
@[simp] lemma range_eq_empty {α : Type u} {β : Type v} {f : α → β} : range f = ∅ ↔ ¬ nonempty α :=
by rw ← set.image_univ; simp [-set.image_univ]
theorem image_preimage_eq_inter_range {f : α → β} {t : set β} :
f '' (f ⁻¹' t) = t ∩ range f :=
ext $ assume x, ⟨assume ⟨x, hx, heq⟩, heq ▸ ⟨hx, mem_range_self _⟩,
assume ⟨hx, ⟨y, h_eq⟩⟩, h_eq ▸ mem_image_of_mem f $
show y ∈ f ⁻¹' t, by simp [preimage, h_eq, hx]⟩
lemma image_preimage_eq_of_subset {f : α → β} {s : set β} (hs : s ⊆ range f) :
f '' (f ⁻¹' s) = s :=
by rw [image_preimage_eq_inter_range, inter_eq_self_of_subset_left hs]
lemma preimage_subset_preimage_iff {s t : set α} {f : β → α} (hs : s ⊆ range f) :
f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t :=
begin
split,
{ intros h x hx, rcases hs hx with ⟨y, rfl⟩, exact h hx },
intros h x, apply h
end
lemma preimage_eq_preimage' {s t : set α} {f : β → α} (hs : s ⊆ range f) (ht : t ⊆ range f) :
f ⁻¹' s = f ⁻¹' t ↔ s = t :=
begin
split,
{ intro h, apply subset.antisymm, rw [←preimage_subset_preimage_iff hs, h],
rw [←preimage_subset_preimage_iff ht, h] },
rintro rfl, refl
end
theorem preimage_inter_range {f : α → β} {s : set β} : f ⁻¹' (s ∩ range f) = f ⁻¹' s :=
set.ext $ λ x, and_iff_left ⟨x, rfl⟩
theorem preimage_image_preimage {f : α → β} {s : set β} :
f ⁻¹' (f '' (f ⁻¹' s)) = f ⁻¹' s :=
by rw [image_preimage_eq_inter_range, preimage_inter_range]
@[simp] theorem quot_mk_range_eq [setoid α] : range (λx : α, ⟦x⟧) = univ :=
range_iff_surjective.2 quot.exists_rep
lemma range_const_subset {c : β} : range (λx:α, c) ⊆ {c} :=
range_subset_iff.2 $ λ x, or.inl rfl
@[simp] lemma range_const [h : nonempty α] {c : β} : range (λx:α, c) = {c} :=
begin
refine subset.antisymm range_const_subset (λy hy, _),
rw set.mem_singleton_iff.1 hy,
rcases exists_mem_of_nonempty α with ⟨x, _⟩,
exact mem_range_self x
end
def range_factorization (f : ι → β) : ι → range f :=
λ i, ⟨f i, mem_range_self i⟩
lemma range_factorization_eq {f : ι → β} :
subtype.val ∘ range_factorization f = f :=
funext $ λ i, rfl
lemma surjective_onto_range : surjective (range_factorization f) :=
λ ⟨_, ⟨i, rfl⟩⟩, ⟨i, rfl⟩
lemma image_eq_range (f : α → β) (s : set α) : f '' s = range (λ(x : s), f x.1) :=
by { ext, split, rintro ⟨x, h1, h2⟩, exact ⟨⟨x, h1⟩, h2⟩, rintro ⟨⟨x, h1⟩, h2⟩, exact ⟨x, h1, h2⟩ }
end range
/-- The set `s` is pairwise `r` if `r x y` for all *distinct* `x y ∈ s`. -/
def pairwise_on (s : set α) (r : α → α → Prop) := ∀ x ∈ s, ∀ y ∈ s, x ≠ y → r x y
theorem pairwise_on.mono {s t : set α} {r}
(h : t ⊆ s) (hp : pairwise_on s r) : pairwise_on t r :=
λ x xt y yt, hp x (h xt) y (h yt)
theorem pairwise_on.mono' {s : set α} {r r' : α → α → Prop}
(H : ∀ a b, r a b → r' a b) (hp : pairwise_on s r) : pairwise_on s r' :=
λ x xs y ys h, H _ _ (hp x xs y ys h)
end set
open set
/- image and preimage on subtypes -/
namespace subtype
variable {α : Type*}
lemma val_image {p : α → Prop} {s : set (subtype p)} :
subtype.val '' s = {x | ∃h : p x, (⟨x, h⟩ : subtype p) ∈ s} :=
set.ext $ assume a,
⟨assume ⟨⟨a', ha'⟩, in_s, h_eq⟩, h_eq ▸ ⟨ha', in_s⟩,
assume ⟨ha, in_s⟩, ⟨⟨a, ha⟩, in_s, rfl⟩⟩
@[simp] lemma val_range {p : α → Prop} :
set.range (@subtype.val _ p) = {x | p x} :=
by rw ← set.image_univ; simp [-set.image_univ, val_image]
@[simp] lemma range_val (s : set α) : range (subtype.val : s → α) = s :=
val_range
theorem val_image_subset (s : set α) (t : set (subtype s)) : t.image val ⊆ s :=
λ x ⟨y, yt, yvaleq⟩, by rw ←yvaleq; exact y.property
theorem val_image_univ (s : set α) : @val _ s '' set.univ = s :=
set.eq_of_subset_of_subset (val_image_subset _ _) (λ x xs, ⟨⟨x, xs⟩, ⟨set.mem_univ _, rfl⟩⟩)
theorem image_preimage_val (s t : set α) :
(@subtype.val _ s) '' ((@subtype.val _ s) ⁻¹' t) = t ∩ s :=
begin
ext x, simp, split,
{ rintros ⟨y, ys, yt, yx⟩, rw ←yx, exact ⟨yt, ys⟩ },
rintros ⟨xt, xs⟩, exact ⟨x, xs, xt, rfl⟩
end
theorem preimage_val_eq_preimage_val_iff (s t u : set α) :
((@subtype.val _ s) ⁻¹' t = (@subtype.val _ s) ⁻¹' u) ↔ (t ∩ s = u ∩ s) :=
begin
rw [←image_preimage_val, ←image_preimage_val],
split, { intro h, rw h },
intro h, exact set.injective_image (val_injective) h
end
lemma exists_set_subtype {t : set α} (p : set α → Prop) :
(∃(s : set t), p (subtype.val '' s)) ↔ ∃(s : set α), s ⊆ t ∧ p s :=
begin
split,
{ rintro ⟨s, hs⟩, refine ⟨subtype.val '' s, _, hs⟩,
convert image_subset_range _ _, rw [range_val] },
rintro ⟨s, hs₁, hs₂⟩, refine ⟨subtype.val ⁻¹' s, _⟩,
rw [image_preimage_eq_of_subset], exact hs₂, rw [range_val], exact hs₁
end
end subtype
namespace set
section range
variable {α : Type*}
@[simp] lemma subtype.val_range {p : α → Prop} :
range (@subtype.val _ p) = {x | p x} :=
by rw ← image_univ; simp [-image_univ, subtype.val_image]
@[simp] lemma range_coe_subtype (s : set α): range (coe : s → α) = s :=
subtype.val_range
end range
section prod
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
variables {s s₁ s₂ : set α} {t t₁ t₂ : set β}
/-- The cartesian product `prod s t` is the set of `(a, b)`
such that `a ∈ s` and `b ∈ t`. -/
protected def prod (s : set α) (t : set β) : set (α × β) :=
{p | p.1 ∈ s ∧ p.2 ∈ t}
lemma prod_eq (s : set α) (t : set β) : set.prod s t = prod.fst ⁻¹' s ∩ prod.snd ⁻¹' t := rfl
theorem mem_prod_eq {p : α × β} : p ∈ set.prod s t = (p.1 ∈ s ∧ p.2 ∈ t) := rfl
@[simp] theorem mem_prod {p : α × β} : p ∈ set.prod s t ↔ p.1 ∈ s ∧ p.2 ∈ t := iff.rfl
lemma mk_mem_prod {a : α} {b : β} (a_in : a ∈ s) (b_in : b ∈ t) : (a, b) ∈ set.prod s t := ⟨a_in, b_in⟩
@[simp] theorem prod_empty {s : set α} : set.prod s ∅ = (∅ : set (α × β)) :=
ext $ by simp [set.prod]
@[simp] theorem empty_prod {t : set β} : set.prod ∅ t = (∅ : set (α × β)) :=
ext $ by simp [set.prod]
theorem insert_prod {a : α} {s : set α} {t : set β} :
set.prod (insert a s) t = (prod.mk a '' t) ∪ set.prod s t :=
ext begin simp [set.prod, image, iff_def, or_imp_distrib] {contextual := tt}; cc end
theorem prod_insert {b : β} {s : set α} {t : set β} :
set.prod s (insert b t) = ((λa, (a, b)) '' s) ∪ set.prod s t :=
ext begin simp [set.prod, image, iff_def, or_imp_distrib] {contextual := tt}; cc end
theorem prod_preimage_eq {f : γ → α} {g : δ → β} :
set.prod (preimage f s) (preimage g t) = preimage (λp, (f p.1, g p.2)) (set.prod s t) := rfl
theorem prod_mono {s₁ s₂ : set α} {t₁ t₂ : set β} (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) :
set.prod s₁ t₁ ⊆ set.prod s₂ t₂ :=
assume x ⟨h₁, h₂⟩, ⟨hs h₁, ht h₂⟩
theorem prod_inter_prod : set.prod s₁ t₁ ∩ set.prod s₂ t₂ = set.prod (s₁ ∩ s₂) (t₁ ∩ t₂) :=
subset.antisymm
(assume ⟨a, b⟩ ⟨⟨ha₁, hb₁⟩, ⟨ha₂, hb₂⟩⟩, ⟨⟨ha₁, ha₂⟩, ⟨hb₁, hb₂⟩⟩)
(subset_inter
(prod_mono (inter_subset_left _ _) (inter_subset_left _ _))
(prod_mono (inter_subset_right _ _) (inter_subset_right _ _)))
theorem image_swap_prod : (λp:β×α, (p.2, p.1)) '' set.prod t s = set.prod s t :=
ext $ assume ⟨a, b⟩, by simp [mem_image_eq, set.prod, and_comm]; exact
⟨ assume ⟨b', a', ⟨h_a, h_b⟩, h⟩, by subst a'; subst b'; assumption,
assume h, ⟨b, a, ⟨rfl, rfl⟩, h⟩⟩
theorem image_swap_eq_preimage_swap : image (@prod.swap α β) = preimage prod.swap :=
image_eq_preimage_of_inverse prod.swap_left_inverse prod.swap_right_inverse
theorem prod_image_image_eq {m₁ : α → γ} {m₂ : β → δ} :
set.prod (image m₁ s) (image m₂ t) = image (λp:α×β, (m₁ p.1, m₂ p.2)) (set.prod s t) :=
ext $ by simp [-exists_and_distrib_right, exists_and_distrib_right.symm, and.left_comm, and.assoc, and.comm]
theorem prod_range_range_eq {α β γ δ} {m₁ : α → γ} {m₂ : β → δ} :
set.prod (range m₁) (range m₂) = range (λp:α×β, (m₁ p.1, m₂ p.2)) :=
ext $ by simp [range]
@[simp] theorem prod_singleton_singleton {a : α} {b : β} :
set.prod {a} {b} = ({(a, b)} : set (α×β)) :=
ext $ by simp [set.prod]
theorem prod_neq_empty_iff {s : set α} {t : set β} :
set.prod s t ≠ ∅ ↔ (s ≠ ∅ ∧ t ≠ ∅) :=
by simp [not_eq_empty_iff_exists]
theorem prod_eq_empty_iff {s : set α} {t : set β} :
set.prod s t = ∅ ↔ (s = ∅ ∨ t = ∅) :=
suffices (¬ set.prod s t ≠ ∅) ↔ (¬ s ≠ ∅ ∨ ¬ t ≠ ∅), by simpa only [(≠), classical.not_not],
by classical; rw [prod_neq_empty_iff, not_and_distrib]
@[simp] theorem prod_mk_mem_set_prod_eq {a : α} {b : β} {s : set α} {t : set β} :
(a, b) ∈ set.prod s t = (a ∈ s ∧ b ∈ t) := rfl
@[simp] theorem univ_prod_univ : set.prod (@univ α) (@univ β) = univ :=
ext $ assume ⟨a, b⟩, by simp
lemma prod_sub_preimage_iff {W : set γ} {f : α × β → γ} :
set.prod s t ⊆ f ⁻¹' W ↔ ∀ a b, a ∈ s → b ∈ t → f (a, b) ∈ W :=
by simp [subset_def]
end prod
section pi
variables {α : Type*} {π : α → Type*}
def pi (i : set α) (s : Πa, set (π a)) : set (Πa, π a) := { f | ∀a∈i, f a ∈ s a }
@[simp] lemma pi_empty_index (s : Πa, set (π a)) : pi ∅ s = univ := by ext; simp [pi]
@[simp] lemma pi_insert_index (a : α) (i : set α) (s : Πa, set (π a)) :
pi (insert a i) s = ((λf, f a) ⁻¹' s a) ∩ pi i s :=
by ext; simp [pi, or_imp_distrib, forall_and_distrib]
@[simp] lemma pi_singleton_index (a : α) (s : Πa, set (π a)) :
pi {a} s = ((λf:(Πa, π a), f a) ⁻¹' s a) :=
by ext; simp [pi]
lemma pi_if {p : α → Prop} [h : decidable_pred p] (i : set α) (s t : Πa, set (π a)) :
pi i (λa, if p a then s a else t a) = pi {a ∈ i | p a} s ∩ pi {a ∈ i | ¬ p a} t :=
begin
ext f,
split,
{ assume h, split; { rintros a ⟨hai, hpa⟩, simpa [*] using h a } },
{ rintros ⟨hs, ht⟩ a hai,
by_cases p a; simp [*, pi] at * }
end
end pi
section inclusion
variable {α : Type*}
/-- `inclusion` is the "identity" function between two subsets `s` and `t`, where `s ⊆ t` -/
def inclusion {s t : set α} (h : s ⊆ t) : s → t :=
λ x : s, (⟨x, h x.2⟩ : t)
@[simp] lemma inclusion_self {s : set α} (x : s) :
inclusion (set.subset.refl _) x = x := by cases x; refl
@[simp] lemma inclusion_inclusion {s t u : set α} (hst : s ⊆ t) (htu : t ⊆ u)
(x : s) : inclusion htu (inclusion hst x) = inclusion (set.subset.trans hst htu) x :=
by cases x; refl
lemma inclusion_injective {s t : set α} (h : s ⊆ t) :
function.injective (inclusion h)
| ⟨_, _⟩ ⟨_, _⟩ := subtype.ext.2 ∘ subtype.ext.1
end inclusion
end set
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.