blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
925138137b926a4ce918488e82b186c19f3c59ba
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/data/polynomial/eval.lean
79a3efc053c6d194bfd046b90d0b50561111b5a6
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
26,596
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker -/ import data.polynomial.induction import data.polynomial.degree.definitions import deprecated.ring /-! # Theory of univariate polynomials The main defs here are `eval₂`, `eval`, and `map`. We give several lemmas about their interaction with each other and with module operations. -/ noncomputable theory open finset add_monoid_algebra open_locale big_operators namespace polynomial universes u v w y variables {R : Type u} {S : Type v} {T : Type w} {ι : Type y} {a b : R} {m n : ℕ} section semiring variables [semiring R] {p q r : polynomial R} section variables [semiring S] variables (f : R →+* S) (x : S) /-- Evaluate a polynomial `p` given a ring hom `f` from the scalar ring to the target and a value `x` for the variable in the target -/ def eval₂ (p : polynomial R) : S := p.sum (λ e a, f a * x ^ e) lemma eval₂_eq_sum {f : R →+* S} {x : S} : p.eval₂ f x = p.sum (λ e a, f a * x ^ e) := rfl lemma eval₂_congr {R S : Type*} [semiring R] [semiring S] {f g : R →+* S} {s t : S} {φ ψ : polynomial R} : f = g → s = t → φ = ψ → eval₂ f s φ = eval₂ g t ψ := by rintro rfl rfl rfl; refl @[simp] lemma eval₂_at_zero : p.eval₂ f 0 = f (coeff p 0) := by simp only [eval₂_eq_sum, zero_pow_eq, mul_ite, mul_zero, mul_one, sum, not_not, mem_support_iff, sum_ite_eq', ite_eq_left_iff, ring_hom.map_zero, implies_true_iff, eq_self_iff_true] {contextual := tt} @[simp] lemma eval₂_zero : (0 : polynomial R).eval₂ f x = 0 := by simp [eval₂_eq_sum] @[simp] lemma eval₂_C : (C a).eval₂ f x = f a := by simp [eval₂_eq_sum] @[simp] lemma eval₂_X : X.eval₂ f x = x := by simp [eval₂_eq_sum] @[simp] lemma eval₂_monomial {n : ℕ} {r : R} : (monomial n r).eval₂ f x = (f r) * x^n := by simp [eval₂_eq_sum] @[simp] lemma eval₂_X_pow {n : ℕ} : (X^n).eval₂ f x = x^n := begin rw X_pow_eq_monomial, convert eval₂_monomial f x, simp, end @[simp] lemma eval₂_add : (p + q).eval₂ f x = p.eval₂ f x + q.eval₂ f x := by { apply sum_add_index; simp [add_mul] } @[simp] lemma eval₂_one : (1 : polynomial R).eval₂ f x = 1 := by rw [← C_1, eval₂_C, f.map_one] @[simp] lemma eval₂_bit0 : (bit0 p).eval₂ f x = bit0 (p.eval₂ f x) := by rw [bit0, eval₂_add, bit0] @[simp] lemma eval₂_bit1 : (bit1 p).eval₂ f x = bit1 (p.eval₂ f x) := by rw [bit1, eval₂_add, eval₂_bit0, eval₂_one, bit1] @[simp] lemma eval₂_smul (g : R →+* S) (p : polynomial R) (x : S) {s : R} : eval₂ g x (s • p) = g s * eval₂ g x p := begin have A : p.nat_degree < p.nat_degree.succ := nat.lt_succ_self _, have B : (s • p).nat_degree < p.nat_degree.succ := (nat_degree_smul_le _ _).trans_lt A, rw [eval₂_eq_sum, eval₂_eq_sum, sum_over_range' _ _ _ A, sum_over_range' _ _ _ B]; simp [mul_sum, mul_assoc], end @[simp] lemma eval₂_C_X : eval₂ C X p = p := polynomial.induction_on' p (λ p q hp hq, by simp [hp, hq]) (λ n x, by rw [eval₂_monomial, monomial_eq_smul_X, C_mul']) instance eval₂.is_add_monoid_hom : is_add_monoid_hom (eval₂ f x) := { map_zero := eval₂_zero _ _, map_add := λ _ _, eval₂_add _ _ } @[simp] lemma eval₂_nat_cast (n : ℕ) : (n : polynomial R).eval₂ f x = n := begin induction n with n ih, { simp only [eval₂_zero, nat.cast_zero] }, { rw [n.cast_succ, eval₂_add, ih, eval₂_one, n.cast_succ] } end variables [semiring T] lemma eval₂_sum (p : polynomial T) (g : ℕ → T → polynomial R) (x : S) : (p.sum g).eval₂ f x = p.sum (λ n a, (g n a).eval₂ f x) := begin let T : polynomial R →+ S := { to_fun := eval₂ f x, map_zero' := eval₂_zero _ _, map_add' := λ p q, eval₂_add _ _ }, have A : ∀ y, eval₂ f x y = T y := λ y, rfl, simp only [A], rw [sum, T.map_sum, sum] end lemma eval₂_finset_sum (s : finset ι) (g : ι → polynomial R) (x : S) : (∑ i in s, g i).eval₂ f x = ∑ i in s, (g i).eval₂ f x := begin classical, induction s using finset.induction with p hp s hs, simp, rw [sum_insert, eval₂_add, hs, sum_insert]; assumption, end lemma eval₂_to_finsupp_eq_lift_nc {f : R →+* S} {x : S} {p : add_monoid_algebra R ℕ} : eval₂ f x (⟨p⟩ : polynomial R) = lift_nc ↑f (powers_hom S x) p := by { simp only [eval₂_eq_sum, sum, sum_to_finsupp, support, coeff], refl } lemma eval₂_mul_noncomm (hf : ∀ k, commute (f $ q.coeff k) x) : eval₂ f x (p * q) = eval₂ f x p * eval₂ f x q := begin rcases p, rcases q, simp only [coeff] at hf, simp only [mul_to_finsupp, eval₂_to_finsupp_eq_lift_nc], exact lift_nc_mul _ _ p q (λ k n hn, (hf k).pow_right n) end @[simp] lemma eval₂_mul_X : eval₂ f x (p * X) = eval₂ f x p * x := begin refine trans (eval₂_mul_noncomm _ _ $ λ k, _) (by rw eval₂_X), rcases em (k = 1) with (rfl|hk), { simp }, { simp [coeff_X_of_ne_one hk] } end @[simp] lemma eval₂_X_mul : eval₂ f x (X * p) = eval₂ f x p * x := by rw [X_mul, eval₂_mul_X] lemma eval₂_mul_C' (h : commute (f a) x) : eval₂ f x (p * C a) = eval₂ f x p * f a := begin rw [eval₂_mul_noncomm, eval₂_C], intro k, by_cases hk : k = 0, { simp only [hk, h, coeff_C_zero, coeff_C_ne_zero] }, { simp only [coeff_C_ne_zero hk, ring_hom.map_zero, commute.zero_left] } end lemma eval₂_list_prod_noncomm (ps : list (polynomial R)) (hf : ∀ (p ∈ ps) k, commute (f $ coeff p k) x) : eval₂ f x ps.prod = (ps.map (polynomial.eval₂ f x)).prod := begin induction ps using list.reverse_rec_on with ps p ihp, { simp }, { simp only [list.forall_mem_append, list.forall_mem_singleton] at hf, simp [eval₂_mul_noncomm _ _ hf.2, ihp hf.1] } end /-- `eval₂` as a `ring_hom` for noncommutative rings -/ def eval₂_ring_hom' (f : R →+* S) (x : S) (hf : ∀ a, commute (f a) x) : polynomial R →+* S := { to_fun := eval₂ f x, map_add' := λ _ _, eval₂_add _ _, map_zero' := eval₂_zero _ _, map_mul' := λ p q, eval₂_mul_noncomm f x (λ k, hf $ coeff q k), map_one' := eval₂_one _ _ } end /-! We next prove that eval₂ is multiplicative as long as target ring is commutative (even if the source ring is not). -/ section eval₂ variables [comm_semiring S] variables (f : R →+* S) (x : S) @[simp] lemma eval₂_mul : (p * q).eval₂ f x = p.eval₂ f x * q.eval₂ f x := eval₂_mul_noncomm _ _ $ λ k, commute.all _ _ lemma eval₂_mul_eq_zero_of_left (q : polynomial R) (hp : p.eval₂ f x = 0) : (p * q).eval₂ f x = 0 := begin rw eval₂_mul f x, exact mul_eq_zero_of_left hp (q.eval₂ f x) end lemma eval₂_mul_eq_zero_of_right (p : polynomial R) (hq : q.eval₂ f x = 0) : (p * q).eval₂ f x = 0 := begin rw eval₂_mul f x, exact mul_eq_zero_of_right (p.eval₂ f x) hq end instance eval₂.is_semiring_hom : is_semiring_hom (eval₂ f x) := ⟨eval₂_zero _ _, eval₂_one _ _, λ _ _, eval₂_add _ _, λ _ _, eval₂_mul _ _⟩ /-- `eval₂` as a `ring_hom` -/ def eval₂_ring_hom (f : R →+* S) (x) : polynomial R →+* S := ring_hom.of (eval₂ f x) @[simp] lemma coe_eval₂_ring_hom (f : R →+* S) (x) : ⇑(eval₂_ring_hom f x) = eval₂ f x := rfl lemma eval₂_pow (n : ℕ) : (p ^ n).eval₂ f x = p.eval₂ f x ^ n := (eval₂_ring_hom _ _).map_pow _ _ lemma eval₂_eq_sum_range : p.eval₂ f x = ∑ i in finset.range (p.nat_degree + 1), f (p.coeff i) * x^i := trans (congr_arg _ p.as_sum_range) (trans (eval₂_finset_sum f _ _ x) (congr_arg _ (by simp))) lemma eval₂_eq_sum_range' (f : R →+* S) {p : polynomial R} {n : ℕ} (hn : p.nat_degree < n) (x : S) : eval₂ f x p = ∑ i in finset.range n, f (p.coeff i) * x ^ i := begin rw [eval₂_eq_sum, p.sum_over_range' _ _ hn], intro i, rw [f.map_zero, zero_mul] end end eval₂ section eval variables {x : R} /-- `eval x p` is the evaluation of the polynomial `p` at `x` -/ def eval : R → polynomial R → R := eval₂ (ring_hom.id _) lemma eval_eq_sum : p.eval x = p.sum (λ e a, a * x ^ e) := rfl lemma eval_eq_finset_sum (p : polynomial R) (x : R) : p.eval x = ∑ i in range (p.nat_degree + 1), p.coeff i * x ^ i := by { rw [eval_eq_sum, sum_over_range], simp } lemma eval_eq_finset_sum' (P : polynomial R) : (λ x, eval x P) = (λ x, ∑ i in range (P.nat_degree + 1), P.coeff i * x ^ i) := begin ext, exact P.eval_eq_finset_sum x end @[simp] lemma eval₂_at_apply {S : Type*} [semiring S] (f : R →+* S) (r : R) : p.eval₂ f (f r) = f (p.eval r) := begin rw [eval₂_eq_sum, eval_eq_sum, sum, sum, f.map_sum], simp only [f.map_mul, f.map_pow], end @[simp] lemma eval₂_at_one {S : Type*} [semiring S] (f : R →+* S) : p.eval₂ f 1 = f (p.eval 1) := begin convert eval₂_at_apply f 1, simp, end @[simp] lemma eval₂_at_nat_cast {S : Type*} [semiring S] (f : R →+* S) (n : ℕ) : p.eval₂ f n = f (p.eval n) := begin convert eval₂_at_apply f n, simp, end @[simp] lemma eval_C : (C a).eval x = a := eval₂_C _ _ @[simp] lemma eval_nat_cast {n : ℕ} : (n : polynomial R).eval x = n := by simp only [←C_eq_nat_cast, eval_C] @[simp] lemma eval_X : X.eval x = x := eval₂_X _ _ @[simp] lemma eval_monomial {n a} : (monomial n a).eval x = a * x^n := eval₂_monomial _ _ @[simp] lemma eval_zero : (0 : polynomial R).eval x = 0 := eval₂_zero _ _ @[simp] lemma eval_add : (p + q).eval x = p.eval x + q.eval x := eval₂_add _ _ @[simp] lemma eval_one : (1 : polynomial R).eval x = 1 := eval₂_one _ _ @[simp] lemma eval_bit0 : (bit0 p).eval x = bit0 (p.eval x) := eval₂_bit0 _ _ @[simp] lemma eval_bit1 : (bit1 p).eval x = bit1 (p.eval x) := eval₂_bit1 _ _ @[simp] lemma eval_smul (p : polynomial R) (x : R) {s : R} : (s • p).eval x = s * p.eval x := eval₂_smul (ring_hom.id _) _ _ @[simp] lemma eval_C_mul : (C a * p).eval x = a * p.eval x := begin apply polynomial.induction_on' p, { intros p q ph qh, simp only [mul_add, eval_add, ph, qh], }, { intros n b, simp [mul_assoc], } end @[simp] lemma eval_nat_cast_mul {n : ℕ} : ((n : polynomial R) * p).eval x = n * p.eval x := by rw [←C_eq_nat_cast, eval_C_mul] @[simp] lemma eval_mul_X : (p * X).eval x = p.eval x * x := begin apply polynomial.induction_on' p, { intros p q ph qh, simp only [add_mul, eval_add, ph, qh], }, { intros n a, simp only [←monomial_one_one_eq_X, monomial_mul_monomial, eval_monomial, mul_one, pow_succ', mul_assoc], } end @[simp] lemma eval_mul_X_pow {k : ℕ} : (p * X^k).eval x = p.eval x * x^k := begin induction k with k ih, { simp, }, { simp [pow_succ', ←mul_assoc, ih], } end lemma eval_sum (p : polynomial R) (f : ℕ → R → polynomial R) (x : R) : (p.sum f).eval x = p.sum (λ n a, (f n a).eval x) := eval₂_sum _ _ _ _ lemma eval_finset_sum (s : finset ι) (g : ι → polynomial R) (x : R) : (∑ i in s, g i).eval x = ∑ i in s, (g i).eval x := eval₂_finset_sum _ _ _ _ /-- `is_root p x` implies `x` is a root of `p`. The evaluation of `p` at `x` is zero -/ def is_root (p : polynomial R) (a : R) : Prop := p.eval a = 0 instance [decidable_eq R] : decidable (is_root p a) := by unfold is_root; apply_instance @[simp] lemma is_root.def : is_root p a ↔ p.eval a = 0 := iff.rfl lemma coeff_zero_eq_eval_zero (p : polynomial R) : coeff p 0 = p.eval 0 := calc coeff p 0 = coeff p 0 * 0 ^ 0 : by simp ... = p.eval 0 : eq.symm $ finset.sum_eq_single _ (λ b _ hb, by simp [zero_pow (nat.pos_of_ne_zero hb)]) (by simp) lemma zero_is_root_of_coeff_zero_eq_zero {p : polynomial R} (hp : p.coeff 0 = 0) : is_root p 0 := by rwa coeff_zero_eq_eval_zero at hp end eval section comp /-- The composition of polynomials as a polynomial. -/ def comp (p q : polynomial R) : polynomial R := p.eval₂ C q lemma comp_eq_sum_left : p.comp q = p.sum (λ e a, C a * q ^ e) := rfl @[simp] lemma comp_X : p.comp X = p := begin simp only [comp, eval₂, ← monomial_eq_C_mul_X], exact sum_monomial_eq _, end @[simp] lemma X_comp : X.comp p = p := eval₂_X _ _ @[simp] lemma comp_C : p.comp (C a) = C (p.eval a) := begin dsimp [comp, eval₂, eval, sum], rw [← p.support.sum_hom (@C R _)], apply finset.sum_congr rfl; simp end @[simp] lemma C_comp : (C a).comp p = C a := eval₂_C _ _ @[simp] lemma nat_cast_comp {n : ℕ} : (n : polynomial R).comp p = n := by rw [←C_eq_nat_cast, C_comp] @[simp] lemma comp_zero : p.comp (0 : polynomial R) = C (p.eval 0) := by rw [← C_0, comp_C] @[simp] lemma zero_comp : comp (0 : polynomial R) p = 0 := by rw [← C_0, C_comp] @[simp] lemma comp_one : p.comp 1 = C (p.eval 1) := by rw [← C_1, comp_C] @[simp] lemma one_comp : comp (1 : polynomial R) p = 1 := by rw [← C_1, C_comp] @[simp] lemma add_comp : (p + q).comp r = p.comp r + q.comp r := eval₂_add _ _ @[simp] lemma monomial_comp (n : ℕ) : (monomial n a).comp p = C a * p^n := eval₂_monomial _ _ @[simp] lemma mul_X_comp : (p * X).comp r = p.comp r * r := begin apply polynomial.induction_on' p, { intros p q hp hq, simp [hp, hq, add_mul], }, { intros n b, simp [pow_succ', mul_assoc], } end @[simp] lemma X_pow_comp {k : ℕ} : (X^k).comp p = p^k := begin induction k with k ih, { simp, }, { simp [pow_succ', mul_X_comp, ih], }, end @[simp] lemma mul_X_pow_comp {k : ℕ} : (p * X^k).comp r = p.comp r * r^k := begin induction k with k ih, { simp, }, { simp [ih, pow_succ', ←mul_assoc, mul_X_comp], }, end @[simp] lemma C_mul_comp : (C a * p).comp r = C a * p.comp r := begin apply polynomial.induction_on' p, { intros p q hp hq, simp [hp, hq, mul_add], }, { intros n b, simp [mul_assoc], } end @[simp] lemma nat_cast_mul_comp {n : ℕ} : ((n : polynomial R) * p).comp r = n * p.comp r := by rw [←C_eq_nat_cast, C_mul_comp, C_eq_nat_cast] @[simp] lemma mul_comp {R : Type*} [comm_semiring R] (p q r : polynomial R) : (p * q).comp r = p.comp r * q.comp r := eval₂_mul _ _ lemma prod_comp {R : Type*} [comm_semiring R] (s : multiset (polynomial R)) (p : polynomial R) : s.prod.comp p = (s.map (λ q : polynomial R, q.comp p)).prod := (s.prod_hom (monoid_hom.mk (λ q : polynomial R, q.comp p) one_comp (λ q r, mul_comp q r p))).symm @[simp] lemma pow_comp {R : Type*} [comm_semiring R] (p q : polynomial R) (n : ℕ) : (p^n).comp q = (p.comp q)^n := ((monoid_hom.mk (λ r : polynomial R, r.comp q)) one_comp (λ r s, mul_comp r s q)).map_pow p n @[simp] lemma bit0_comp : comp (bit0 p : polynomial R) q = bit0 (p.comp q) := by simp only [bit0, add_comp] @[simp] lemma bit1_comp : comp (bit1 p : polynomial R) q = bit1 (p.comp q) := by simp only [bit1, add_comp, bit0_comp, one_comp] lemma comp_assoc {R : Type*} [comm_semiring R] (φ ψ χ : polynomial R) : (φ.comp ψ).comp χ = φ.comp (ψ.comp χ) := begin apply polynomial.induction_on φ; { intros, simp only [add_comp, mul_comp, C_comp, X_comp, pow_succ', ← mul_assoc, *] at * } end end comp section map variables [semiring S] variables (f : R →+* S) /-- `map f p` maps a polynomial `p` across a ring hom `f` -/ def map : polynomial R → polynomial S := eval₂ (C.comp f) X instance is_semiring_hom_C_f : is_semiring_hom (C ∘ f) := is_semiring_hom.comp _ _ @[simp] lemma map_C : (C a).map f = C (f a) := eval₂_C _ _ @[simp] lemma map_X : X.map f = X := eval₂_X _ _ @[simp] lemma map_monomial {n a} : (monomial n a).map f = monomial n (f a) := begin dsimp only [map], rw [eval₂_monomial, monomial_eq_C_mul_X], refl, end @[simp] lemma map_zero : (0 : polynomial R).map f = 0 := eval₂_zero _ _ @[simp] lemma map_add : (p + q).map f = p.map f + q.map f := eval₂_add _ _ @[simp] lemma map_one : (1 : polynomial R).map f = 1 := eval₂_one _ _ @[simp] lemma map_mul : (p * q).map f = p.map f * q.map f := by { rw [map, eval₂_mul_noncomm], exact λ k, (commute_X _).symm } @[simp] lemma map_smul (r : R) : (r • p).map f = f r • p.map f := by rw [map, eval₂_smul, ring_hom.comp_apply, C_mul'] /-- `polynomial.map` as a `ring_hom` -/ def map_ring_hom (f : R →+* S) : polynomial R →+* polynomial S := { to_fun := polynomial.map f, map_add' := λ _ _, map_add f, map_zero' := map_zero f, map_mul' := λ _ _, map_mul f, map_one' := map_one f } @[simp] lemma coe_map_ring_hom (f : R →+* S) : ⇑(map_ring_hom f) = map f := rfl @[simp] theorem map_nat_cast (n : ℕ) : (n : polynomial R).map f = n := (map_ring_hom f).map_nat_cast n @[simp] lemma coeff_map (n : ℕ) : coeff (p.map f) n = f (coeff p n) := begin rw [map, eval₂, coeff_sum, sum], conv_rhs { rw [← sum_C_mul_X_eq p, coeff_sum, sum, ← p.support.sum_hom f], }, refine finset.sum_congr rfl (λ x hx, _), simp [function.comp, coeff_C_mul_X, f.map_mul], split_ifs; simp [is_semiring_hom.map_zero f], end lemma map_map [semiring T] (g : S →+* T) (p : polynomial R) : (p.map f).map g = p.map (g.comp f) := ext (by simp [coeff_map]) @[simp] lemma map_id : p.map (ring_hom.id _) = p := by simp [polynomial.ext_iff, coeff_map] lemma eval₂_eq_eval_map {x : S} : p.eval₂ f x = (p.map f).eval x := begin apply polynomial.induction_on' p, { intros p q hp hq, simp [hp, hq], }, { intros n r, simp, } end lemma map_injective (hf : function.injective f) : function.injective (map f) := λ p q h, ext $ λ m, hf $ by rw [← coeff_map f, ← coeff_map f, h] lemma map_surjective (hf : function.surjective f) : function.surjective (map f) := λ p, polynomial.induction_on' p (λ p q hp hq, let ⟨p', hp'⟩ := hp, ⟨q', hq'⟩ := hq in ⟨p' + q', by rw [map_add f, hp', hq']⟩) (λ n s, let ⟨r, hr⟩ := hf s in ⟨monomial n r, by rw [map_monomial f, hr]⟩) lemma degree_map_le (p : polynomial R) : degree (p.map f) ≤ degree p := begin apply (degree_le_iff_coeff_zero _ _).2 (λ m hm, _), rw degree_lt_iff_coeff_zero at hm, simp [hm m (le_refl _)], end lemma nat_degree_map_le (p : polynomial R) : nat_degree (p.map f) ≤ nat_degree p := nat_degree_le_nat_degree (degree_map_le f p) variables {f} lemma map_monic_eq_zero_iff (hp : p.monic) : p.map f = 0 ↔ ∀ x, f x = 0 := ⟨ λ hfp x, calc f x = f x * f p.leading_coeff : by simp [hp] ... = f x * (p.map f).coeff p.nat_degree : by { congr, apply (coeff_map _ _).symm } ... = 0 : by simp [hfp], λ h, ext (λ n, by simp [h]) ⟩ lemma map_monic_ne_zero (hp : p.monic) [nontrivial S] : p.map f ≠ 0 := λ h, f.map_one_ne_zero ((map_monic_eq_zero_iff hp).mp h _) variables (f) open is_semiring_hom instance map.is_semiring_hom : is_semiring_hom (map f) := (map_ring_hom f).is_semiring_hom @[simp] lemma map_ring_hom_id : map_ring_hom (ring_hom.id R) = ring_hom.id (polynomial R) := ring_hom.ext $ λ x, map_id @[simp] lemma map_ring_hom_comp [semiring T] (f : S →+* T) (g : R →+* S) : (map_ring_hom f).comp (map_ring_hom g) = map_ring_hom (f.comp g) := ring_hom.ext $ map_map g f lemma map_list_prod (L : list (polynomial R)) : L.prod.map f = (L.map $ map f).prod := eq.symm $ list.prod_hom _ (monoid_hom.of (map f)) @[simp] lemma map_pow (n : ℕ) : (p ^ n).map f = p.map f ^ n := is_monoid_hom.map_pow (map f) _ _ lemma mem_map_range {p : polynomial S} : p ∈ set.range (map f) ↔ ∀ n, p.coeff n ∈ (set.range f) := begin split, { rintro ⟨p, rfl⟩ n, rw coeff_map, exact set.mem_range_self _ }, { intro h, rw p.as_sum_range_C_mul_X_pow, apply is_add_submonoid.finset_sum_mem, intros i hi, rcases h i with ⟨c, hc⟩, use [C c * X^i], rw [map_mul, map_C, hc, map_pow, map_X] } end lemma eval₂_map [semiring T] (g : S →+* T) (x : T) : (p.map f).eval₂ g x = p.eval₂ (g.comp f) x := begin have A : nat_degree (p.map f) < p.nat_degree.succ := (nat_degree_map_le _ _).trans_lt (nat.lt_succ_self _), conv_lhs { rw [eval₂_eq_sum], }, rw [sum_over_range' _ _ _ A], { simp [coeff_map, eval₂_eq_sum, sum_over_range] }, { simp } end lemma eval_map (x : S) : (p.map f).eval x = p.eval₂ f x := eval₂_map f (ring_hom.id _) x lemma map_sum {ι : Type*} (g : ι → polynomial R) (s : finset ι) : (∑ i in s, g i).map f = ∑ i in s, (g i).map f := eq.symm $ sum_hom _ _ lemma map_comp (p q : polynomial R) : map f (p.comp q) = (map f p).comp (map f q) := polynomial.induction_on p (by simp) (by simp {contextual := tt}) (by simp [pow_succ', ← mul_assoc, polynomial.comp] {contextual := tt}) @[simp] lemma eval_zero_map (f : R →+* S) (p : polynomial R) : (p.map f).eval 0 = f (p.eval 0) := by simp [←coeff_zero_eq_eval_zero] @[simp] lemma eval_one_map (f : R →+* S) (p : polynomial R) : (p.map f).eval 1 = f (p.eval 1) := begin apply polynomial.induction_on' p, { intros p q hp hq, simp [hp, hq], }, { intros n r, simp, } end @[simp] lemma eval_nat_cast_map (f : R →+* S) (p : polynomial R) (n : ℕ) : (p.map f).eval n = f (p.eval n) := begin apply polynomial.induction_on' p, { intros p q hp hq, simp [hp, hq], }, { intros n r, simp, } end @[simp] lemma eval_int_cast_map {R S : Type*} [ring R] [ring S] (f : R →+* S) (p : polynomial R) (i : ℤ) : (p.map f).eval i = f (p.eval i) := begin apply polynomial.induction_on' p, { intros p q hp hq, simp [hp, hq], }, { intros n r, simp, } end end map /-! After having set up the basic theory of `eval₂`, `eval`, `comp`, and `map`, we make `eval₂` irreducible. Perhaps we can make the others irreducible too? -/ attribute [irreducible] polynomial.eval₂ section hom_eval₂ -- TODO: Here we need commutativity in both `S` and `T`? variables [comm_semiring S] [comm_semiring T] variables (f : R →+* S) (g : S →+* T) (p) lemma hom_eval₂ (x : S) : g (p.eval₂ f x) = p.eval₂ (g.comp f) (g x) := begin apply polynomial.induction_on p; clear p, { intros a, rw [eval₂_C, eval₂_C], refl, }, { intros p q hp hq, simp only [hp, hq, eval₂_add, g.map_add] }, { intros n a ih, simp only [eval₂_mul, eval₂_C, eval₂_X_pow, g.map_mul, g.map_pow], refl, } end end hom_eval₂ end semiring section comm_semiring section eval variables [comm_semiring R] {p q : polynomial R} {x : R} lemma eval₂_comp [comm_semiring S] (f : R →+* S) {x : S} : eval₂ f x (p.comp q) = eval₂ f (eval₂ f x q) p := by rw [comp, p.as_sum_range]; simp [eval₂_finset_sum, eval₂_pow] @[simp] lemma eval_mul : (p * q).eval x = p.eval x * q.eval x := eval₂_mul _ _ instance eval.is_semiring_hom : is_semiring_hom (eval x) := eval₂.is_semiring_hom _ _ @[simp] lemma eval_pow (n : ℕ) : (p ^ n).eval x = p.eval x ^ n := eval₂_pow _ _ _ @[simp] lemma eval_comp : (p.comp q).eval x = p.eval (q.eval x) := begin apply polynomial.induction_on' p, { intros r s hr hs, simp [add_comp, hr, hs], }, { intros n a, simp, } end instance comp.is_semiring_hom : is_semiring_hom (λ q : polynomial R, q.comp p) := by unfold comp; apply_instance lemma eval₂_hom [comm_semiring S] (f : R →+* S) (x : R) : p.eval₂ f (f x) = f (p.eval x) := (ring_hom.comp_id f) ▸ (hom_eval₂ p (ring_hom.id R) f x).symm lemma root_mul_left_of_is_root (p : polynomial R) {q : polynomial R} : is_root q a → is_root (p * q) a := λ H, by rw [is_root, eval_mul, is_root.def.1 H, mul_zero] lemma root_mul_right_of_is_root {p : polynomial R} (q : polynomial R) : is_root p a → is_root (p * q) a := λ H, by rw [is_root, eval_mul, is_root.def.1 H, zero_mul] /-- Polynomial evaluation commutes with finset.prod -/ lemma eval_prod {ι : Type*} (s : finset ι) (p : ι → polynomial R) (x : R) : eval x (∏ j in s, p j) = ∏ j in s, eval x (p j) := begin classical, apply finset.induction_on s, { simp only [finset.prod_empty, eval_one] }, { intros j s hj hpj, have h0 : ∏ i in insert j s, eval x (p i) = (eval x (p j)) * ∏ i in s, eval x (p i), { apply finset.prod_insert hj }, rw [h0, ← hpj, finset.prod_insert hj, eval_mul] }, end end eval section map variables [comm_semiring R] [comm_semiring S] (f : R →+* S) lemma map_multiset_prod (m : multiset (polynomial R)) : m.prod.map f = (m.map $ map f).prod := eq.symm $ multiset.prod_hom _ (monoid_hom.of (map f)) lemma map_prod {ι : Type*} (g : ι → polynomial R) (s : finset ι) : (∏ i in s, g i).map f = ∏ i in s, (g i).map f := eq.symm $ prod_hom _ _ lemma support_map_subset (p : polynomial R) : (map f p).support ⊆ p.support := begin intros x, simp only [mem_support_iff], contrapose!, change p.coeff x = 0 → (map f p).coeff x = 0, rw coeff_map, intro hx, rw hx, exact ring_hom.map_zero f, end end map end comm_semiring section ring variables [ring R] {p q r : polynomial R} lemma C_neg : C (-a) = -C a := ring_hom.map_neg C a lemma C_sub : C (a - b) = C a - C b := ring_hom.map_sub C a b instance map.is_ring_hom {S} [ring S] (f : R →+* S) : is_ring_hom (map f) := by apply is_ring_hom.of_semiring @[simp] lemma map_sub {S} [ring S] (f : R →+* S) : (p - q).map f = p.map f - q.map f := is_ring_hom.map_sub _ @[simp] lemma map_neg {S} [ring S] (f : R →+* S) : (-p).map f = -(p.map f) := is_ring_hom.map_neg _ @[simp] lemma map_int_cast {S} [ring S] (f : R →+* S) (n : ℤ) : map f ↑n = ↑n := (ring_hom.of (map f)).map_int_cast n @[simp] lemma eval_int_cast {n : ℤ} {x : R} : (n : polynomial R).eval x = n := by simp only [←C_eq_int_cast, eval_C] @[simp] lemma eval₂_neg {S} [ring S] (f : R →+* S) {x : S} : (-p).eval₂ f x = -p.eval₂ f x := by rw [eq_neg_iff_add_eq_zero, ←eval₂_add, add_left_neg, eval₂_zero] @[simp] lemma eval₂_sub {S} [ring S] (f : R →+* S) {x : S} : (p - q).eval₂ f x = p.eval₂ f x - q.eval₂ f x := by rw [sub_eq_add_neg, eval₂_add, eval₂_neg, sub_eq_add_neg] @[simp] lemma eval_neg (p : polynomial R) (x : R) : (-p).eval x = -p.eval x := eval₂_neg _ @[simp] lemma eval_sub (p q : polynomial R) (x : R) : (p - q).eval x = p.eval x - q.eval x := eval₂_sub _ lemma root_X_sub_C : is_root (X - C a) b ↔ a = b := by rw [is_root.def, eval_sub, eval_X, eval_C, sub_eq_zero, eq_comm] @[simp] lemma neg_comp : (-p).comp q = -p.comp q := eval₂_neg _ @[simp] lemma sub_comp : (p - q).comp r = p.comp r - q.comp r := eval₂_sub _ @[simp] lemma cast_int_comp (i : ℤ) : comp (i : polynomial R) p = i := by cases i; simp end ring section comm_ring variables [comm_ring R] {p q : polynomial R} instance eval₂.is_ring_hom {S} [comm_ring S] (f : R →+* S) {x : S} : is_ring_hom (eval₂ f x) := by apply is_ring_hom.of_semiring instance eval.is_ring_hom {x : R} : is_ring_hom (eval x) := eval₂.is_ring_hom _ end comm_ring end polynomial
f5e33160cce4db2e035064ab3f9749913691119d
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
/src/category_theory/monoidal/types.lean
3b60782d14527d9d61d946e9bd5619fde1629b06
[ "Apache-2.0" ]
permissive
dupuisf/mathlib
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
refs/heads/master
1,669,494,854,016
1,595,692,409,000
1,595,692,409,000
272,046,630
0
0
Apache-2.0
1,592,066,143,000
1,592,066,142,000
null
UTF-8
Lean
false
false
675
lean
/- Copyright (c) 2018 Michael Jendrusch. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Jendrusch, Scott Morrison -/ import category_theory.monoidal.of_has_finite_products import category_theory.limits.shapes.finite_products import category_theory.limits.types open category_theory open category_theory.limits open tactic universes u v namespace category_theory.monoidal local attribute [instance] monoidal_of_has_finite_products instance types : monoidal_category.{u} (Type u) := by apply_instance -- TODO Once we add braided/symmetric categories, include the braiding/symmetry. end category_theory.monoidal
5b3490b985a846e6be8b7d252982888cd5c8e5a6
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/data/pnat/basic.lean
ff291fae61c6b7f115a9ccf03869976c360d807d
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
15,499
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Neil Strickland -/ import data.nat.basic /-! # The positive natural numbers This file defines the type `ℕ+` or `pnat`, the subtype of natural numbers that are positive. -/ /-- `ℕ+` is the type of positive natural numbers. It is defined as a subtype, and the VM representation of `ℕ+` is the same as `ℕ` because the proof is not stored. -/ def pnat := {n : ℕ // 0 < n} notation `ℕ+` := pnat instance coe_pnat_nat : has_coe ℕ+ ℕ := ⟨subtype.val⟩ instance : has_repr ℕ+ := ⟨λ n, repr n.1⟩ /-- Predecessor of a `ℕ+`, as a `ℕ`. -/ def pnat.nat_pred (i : ℕ+) : ℕ := i - 1 @[simp] lemma pnat.one_add_nat_pred (n : ℕ+) : 1 + n.nat_pred = n := by rw [pnat.nat_pred, add_tsub_cancel_iff_le.mpr $ show 1 ≤ (n : ℕ), from n.2] @[simp] lemma pnat.nat_pred_add_one (n : ℕ+) : n.nat_pred + 1 = n := (add_comm _ _).trans n.one_add_nat_pred @[simp] lemma pnat.nat_pred_eq_pred {n : ℕ} (h : 0 < n) : pnat.nat_pred (⟨n, h⟩ : ℕ+) = n.pred := rfl namespace nat /-- Convert a natural number to a positive natural number. The positivity assumption is inferred by `dec_trivial`. -/ def to_pnat (n : ℕ) (h : 0 < n . tactic.exact_dec_trivial) : ℕ+ := ⟨n, h⟩ /-- Write a successor as an element of `ℕ+`. -/ def succ_pnat (n : ℕ) : ℕ+ := ⟨succ n, succ_pos n⟩ @[simp] theorem succ_pnat_coe (n : ℕ) : (succ_pnat n : ℕ) = succ n := rfl theorem succ_pnat_inj {n m : ℕ} : succ_pnat n = succ_pnat m → n = m := λ h, by { let h' := congr_arg (coe : ℕ+ → ℕ) h, exact nat.succ.inj h' } /-- Convert a natural number to a pnat. `n+1` is mapped to itself, and `0` becomes `1`. -/ def to_pnat' (n : ℕ) : ℕ+ := succ_pnat (pred n) @[simp] theorem to_pnat'_coe : ∀ (n : ℕ), ((to_pnat' n) : ℕ) = ite (0 < n) n 1 | 0 := rfl | (m + 1) := by {rw [if_pos (succ_pos m)], refl} end nat namespace pnat open nat /-- We now define a long list of structures on ℕ+ induced by similar structures on ℕ. Most of these behave in a completely obvious way, but there are a few things to be said about subtraction, division and powers. -/ instance : decidable_eq ℕ+ := λ (a b : ℕ+), by apply_instance instance : linear_order ℕ+ := subtype.linear_order _ @[simp] lemma mk_le_mk (n k : ℕ) (hn : 0 < n) (hk : 0 < k) : (⟨n, hn⟩ : ℕ+) ≤ ⟨k, hk⟩ ↔ n ≤ k := iff.rfl @[simp] lemma mk_lt_mk (n k : ℕ) (hn : 0 < n) (hk : 0 < k) : (⟨n, hn⟩ : ℕ+) < ⟨k, hk⟩ ↔ n < k := iff.rfl @[simp, norm_cast] lemma coe_le_coe (n k : ℕ+) : (n : ℕ) ≤ k ↔ n ≤ k := iff.rfl @[simp, norm_cast] lemma coe_lt_coe (n k : ℕ+) : (n : ℕ) < k ↔ n < k := iff.rfl @[simp] theorem pos (n : ℕ+) : 0 < (n : ℕ) := n.2 -- see note [fact non_instances] lemma fact_pos (n : ℕ+) : fact (0 < ↑n) := ⟨n.pos⟩ theorem eq {m n : ℕ+} : (m : ℕ) = n → m = n := subtype.eq @[simp] lemma coe_inj {m n : ℕ+} : (m : ℕ) = n ↔ m = n := set_coe.ext_iff lemma coe_injective : function.injective (coe : ℕ+ → ℕ) := subtype.coe_injective @[simp] theorem mk_coe (n h) : ((⟨n, h⟩ : ℕ+) : ℕ) = n := rfl instance : has_add ℕ+ := ⟨λ a b, ⟨(a + b : ℕ), add_pos a.pos b.pos⟩⟩ instance : add_comm_semigroup ℕ+ := coe_injective.add_comm_semigroup coe (λ _ _, rfl) @[simp] theorem add_coe (m n : ℕ+) : ((m + n : ℕ+) : ℕ) = m + n := rfl /-- `pnat.coe` promoted to an `add_hom`, that is, a morphism which preserves addition. -/ def coe_add_hom : add_hom ℕ+ ℕ := { to_fun := coe, map_add' := add_coe } instance : add_left_cancel_semigroup ℕ+ := coe_injective.add_left_cancel_semigroup coe (λ _ _, rfl) instance : add_right_cancel_semigroup ℕ+ := coe_injective.add_right_cancel_semigroup coe (λ _ _, rfl) @[simp] theorem ne_zero (n : ℕ+) : (n : ℕ) ≠ 0 := n.2.ne' theorem to_pnat'_coe {n : ℕ} : 0 < n → (n.to_pnat' : ℕ) = n := succ_pred_eq_of_pos @[simp] theorem coe_to_pnat' (n : ℕ+) : (n : ℕ).to_pnat' = n := eq (to_pnat'_coe n.pos) instance : has_mul ℕ+ := ⟨λ m n, ⟨m.1 * n.1, mul_pos m.2 n.2⟩⟩ instance : has_one ℕ+ := ⟨succ_pnat 0⟩ instance : comm_monoid ℕ+ := coe_injective.comm_monoid coe rfl (λ _ _, rfl) theorem lt_add_one_iff : ∀ {a b : ℕ+}, a < b + 1 ↔ a ≤ b := λ a b, nat.lt_add_one_iff theorem add_one_le_iff : ∀ {a b : ℕ+}, a + 1 ≤ b ↔ a < b := λ a b, nat.add_one_le_iff @[simp] lemma one_le (n : ℕ+) : (1 : ℕ+) ≤ n := n.2 instance : order_bot ℕ+ := { bot := 1, bot_le := λ a, a.property } @[simp] lemma bot_eq_one : (⊥ : ℕ+) = 1 := rfl instance : inhabited ℕ+ := ⟨1⟩ -- Some lemmas that rewrite `pnat.mk n h`, for `n` an explicit numeral, into explicit numerals. @[simp] lemma mk_one {h} : (⟨1, h⟩ : ℕ+) = (1 : ℕ+) := rfl @[simp] lemma mk_bit0 (n) {h} : (⟨bit0 n, h⟩ : ℕ+) = (bit0 ⟨n, pos_of_bit0_pos h⟩ : ℕ+) := rfl @[simp] lemma mk_bit1 (n) {h} {k} : (⟨bit1 n, h⟩ : ℕ+) = (bit1 ⟨n, k⟩ : ℕ+) := rfl -- Some lemmas that rewrite inequalities between explicit numerals in `ℕ+` -- into the corresponding inequalities in `ℕ`. -- TODO: perhaps this should not be attempted by `simp`, -- and instead we should expect `norm_num` to take care of these directly? -- TODO: these lemmas are perhaps incomplete: -- * 1 is not represented as a bit0 or bit1 -- * strict inequalities? @[simp] lemma bit0_le_bit0 (n m : ℕ+) : (bit0 n) ≤ (bit0 m) ↔ (bit0 (n : ℕ)) ≤ (bit0 (m : ℕ)) := iff.rfl @[simp] lemma bit0_le_bit1 (n m : ℕ+) : (bit0 n) ≤ (bit1 m) ↔ (bit0 (n : ℕ)) ≤ (bit1 (m : ℕ)) := iff.rfl @[simp] lemma bit1_le_bit0 (n m : ℕ+) : (bit1 n) ≤ (bit0 m) ↔ (bit1 (n : ℕ)) ≤ (bit0 (m : ℕ)) := iff.rfl @[simp] lemma bit1_le_bit1 (n m : ℕ+) : (bit1 n) ≤ (bit1 m) ↔ (bit1 (n : ℕ)) ≤ (bit1 (m : ℕ)) := iff.rfl @[simp] theorem one_coe : ((1 : ℕ+) : ℕ) = 1 := rfl @[simp] theorem mul_coe (m n : ℕ+) : ((m * n : ℕ+) : ℕ) = m * n := rfl /-- `pnat.coe` promoted to a `monoid_hom`. -/ def coe_monoid_hom : ℕ+ →* ℕ := { to_fun := coe, map_one' := one_coe, map_mul' := mul_coe } @[simp] lemma coe_coe_monoid_hom : (coe_monoid_hom : ℕ+ → ℕ) = coe := rfl @[simp] lemma coe_eq_one_iff {m : ℕ+} : (m : ℕ) = 1 ↔ m = 1 := by { split; intro h; try { apply pnat.eq}; rw h; simp } @[simp] lemma coe_bit0 (a : ℕ+) : ((bit0 a : ℕ+) : ℕ) = bit0 (a : ℕ) := rfl @[simp] lemma coe_bit1 (a : ℕ+) : ((bit1 a : ℕ+) : ℕ) = bit1 (a : ℕ) := rfl @[simp] theorem pow_coe (m : ℕ+) (n : ℕ) : ((m ^ n : ℕ+) : ℕ) = (m : ℕ) ^ n := by induction n with n ih; [refl, rw [pow_succ', pow_succ, mul_coe, mul_comm, ih]] instance : ordered_cancel_comm_monoid ℕ+ := { mul_le_mul_left := by { intros, apply nat.mul_le_mul_left, assumption }, le_of_mul_le_mul_left := by { intros a b c h, apply nat.le_of_mul_le_mul_left h a.property, }, mul_left_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, exact eq ((nat.mul_right_inj a.pos).mp h)}, .. pnat.comm_monoid, .. pnat.linear_order } instance : distrib ℕ+ := coe_injective.distrib coe (λ _ _, rfl) (λ _ _, rfl) /-- Subtraction a - b is defined in the obvious way when a > b, and by a - b = 1 if a ≤ b. -/ instance : has_sub ℕ+ := ⟨λ a b, to_pnat' (a - b : ℕ)⟩ theorem sub_coe (a b : ℕ+) : ((a - b : ℕ+) : ℕ) = ite (b < a) (a - b : ℕ) 1 := begin change ((to_pnat' ((a : ℕ) - (b : ℕ)) : ℕ)) = ite ((a : ℕ) > (b : ℕ)) ((a : ℕ) - (b : ℕ)) 1, split_ifs with h, { exact to_pnat'_coe (tsub_pos_of_lt h) }, { rw [tsub_eq_zero_iff_le.mpr (le_of_not_gt h)], refl } end theorem add_sub_of_lt {a b : ℕ+} : a < b → a + (b - a) = b := λ h, eq $ by { rw [add_coe, sub_coe, if_pos h], exact add_tsub_cancel_of_le h.le } instance : has_well_founded ℕ+ := ⟨(<), measure_wf coe⟩ /-- Strong induction on `ℕ+`. -/ def strong_induction_on {p : ℕ+ → Sort*} : ∀ (n : ℕ+) (h : ∀ k, (∀ m, m < k → p m) → p k), p n | n := λ IH, IH _ (λ a h, strong_induction_on a IH) using_well_founded { dec_tac := `[assumption] } /-- If `n : ℕ+` is different from `1`, then it is the successor of some `k : ℕ+`. -/ lemma exists_eq_succ_of_ne_one : ∀ {n : ℕ+} (h1 : n ≠ 1), ∃ (k : ℕ+), n = k + 1 | ⟨1, _⟩ h1 := false.elim $ h1 rfl | ⟨n+2, _⟩ _ := ⟨⟨n+1, by simp⟩, rfl⟩ /-- Strong induction on `ℕ+`, with `n = 1` treated separately. -/ def case_strong_induction_on {p : ℕ+ → Sort*} (a : ℕ+) (hz : p 1) (hi : ∀ n, (∀ m, m ≤ n → p m) → p (n + 1)) : p a := begin apply strong_induction_on a, rintro ⟨k, kprop⟩ hk, cases k with k, { exact (lt_irrefl 0 kprop).elim }, cases k with k, { exact hz }, exact hi ⟨k.succ, nat.succ_pos _⟩ (λ m hm, hk _ (lt_succ_iff.2 hm)), end /-- An induction principle for `ℕ+`: it takes values in `Sort*`, so it applies also to Types, not only to `Prop`. -/ @[elab_as_eliminator] def rec_on (n : ℕ+) {p : ℕ+ → Sort*} (p1 : p 1) (hp : ∀ n, p n → p (n + 1)) : p n := begin rcases n with ⟨n, h⟩, induction n with n IH, { exact absurd h dec_trivial }, { cases n with n, { exact p1 }, { exact hp _ (IH n.succ_pos) } } end @[simp] theorem rec_on_one {p} (p1 hp) : @pnat.rec_on 1 p p1 hp = p1 := rfl @[simp] theorem rec_on_succ (n : ℕ+) {p : ℕ+ → Sort*} (p1 hp) : @pnat.rec_on (n + 1) p p1 hp = hp n (@pnat.rec_on n p p1 hp) := by { cases n with n h, cases n; [exact absurd h dec_trivial, refl] } /-- We define `m % k` and `m / k` in the same way as for `ℕ` except that when `m = n * k` we take `m % k = k` and `m / k = n - 1`. This ensures that `m % k` is always positive and `m = (m % k) + k * (m / k)` in all cases. Later we define a function `div_exact` which gives the usual `m / k` in the case where `k` divides `m`. -/ def mod_div_aux : ℕ+ → ℕ → ℕ → ℕ+ × ℕ | k 0 q := ⟨k, q.pred⟩ | k (r + 1) q := ⟨⟨r + 1, nat.succ_pos r⟩, q⟩ lemma mod_div_aux_spec : ∀ (k : ℕ+) (r q : ℕ) (h : ¬ (r = 0 ∧ q = 0)), (((mod_div_aux k r q).1 : ℕ) + k * (mod_div_aux k r q).2 = (r + k * q)) | k 0 0 h := (h ⟨rfl, rfl⟩).elim | k 0 (q + 1) h := by { change (k : ℕ) + (k : ℕ) * (q + 1).pred = 0 + (k : ℕ) * (q + 1), rw [nat.pred_succ, nat.mul_succ, zero_add, add_comm]} | k (r + 1) q h := rfl /-- `mod_div m k = (m % k, m / k)`. We define `m % k` and `m / k` in the same way as for `ℕ` except that when `m = n * k` we take `m % k = k` and `m / k = n - 1`. This ensures that `m % k` is always positive and `m = (m % k) + k * (m / k)` in all cases. Later we define a function `div_exact` which gives the usual `m / k` in the case where `k` divides `m`. -/ def mod_div (m k : ℕ+) : ℕ+ × ℕ := mod_div_aux k ((m : ℕ) % (k : ℕ)) ((m : ℕ) / (k : ℕ)) /-- We define `m % k` in the same way as for `ℕ` except that when `m = n * k` we take `m % k = k` This ensures that `m % k` is always positive. -/ def mod (m k : ℕ+) : ℕ+ := (mod_div m k).1 /-- We define `m / k` in the same way as for `ℕ` except that when `m = n * k` we take `m / k = n - 1`. This ensures that `m = (m % k) + k * (m / k)` in all cases. Later we define a function `div_exact` which gives the usual `m / k` in the case where `k` divides `m`. -/ def div (m k : ℕ+) : ℕ := (mod_div m k).2 theorem mod_add_div (m k : ℕ+) : ((mod m k) + k * (div m k) : ℕ) = m := begin let h₀ := nat.mod_add_div (m : ℕ) (k : ℕ), have : ¬ ((m : ℕ) % (k : ℕ) = 0 ∧ (m : ℕ) / (k : ℕ) = 0), by { rintro ⟨hr, hq⟩, rw [hr, hq, mul_zero, zero_add] at h₀, exact (m.ne_zero h₀.symm).elim }, have := mod_div_aux_spec k ((m : ℕ) % (k : ℕ)) ((m : ℕ) / (k : ℕ)) this, exact (this.trans h₀), end theorem div_add_mod (m k : ℕ+) : (k * (div m k) + mod m k : ℕ) = m := (add_comm _ _).trans (mod_add_div _ _) lemma mod_add_div' (m k : ℕ+) : ((mod m k) + (div m k) * k : ℕ) = m := by { rw mul_comm, exact mod_add_div _ _ } lemma div_add_mod' (m k : ℕ+) : ((div m k) * k + mod m k : ℕ) = m := by { rw mul_comm, exact div_add_mod _ _ } theorem mod_coe (m k : ℕ+) : ((mod m k) : ℕ) = ite ((m : ℕ) % (k : ℕ) = 0) (k : ℕ) ((m : ℕ) % (k : ℕ)) := begin dsimp [mod, mod_div], cases (m : ℕ) % (k : ℕ), { rw [if_pos rfl], refl }, { rw [if_neg n.succ_ne_zero], refl } end theorem div_coe (m k : ℕ+) : ((div m k) : ℕ) = ite ((m : ℕ) % (k : ℕ) = 0) ((m : ℕ) / (k : ℕ)).pred ((m : ℕ) / (k : ℕ)) := begin dsimp [div, mod_div], cases (m : ℕ) % (k : ℕ), { rw [if_pos rfl], refl }, { rw [if_neg n.succ_ne_zero], refl } end theorem mod_le (m k : ℕ+) : mod m k ≤ m ∧ mod m k ≤ k := begin change ((mod m k) : ℕ) ≤ (m : ℕ) ∧ ((mod m k) : ℕ) ≤ (k : ℕ), rw [mod_coe], split_ifs, { have hm : (m : ℕ) > 0 := m.pos, rw [← nat.mod_add_div (m : ℕ) (k : ℕ), h, zero_add] at hm ⊢, by_cases h' : ((m : ℕ) / (k : ℕ)) = 0, { rw [h', mul_zero] at hm, exact (lt_irrefl _ hm).elim}, { let h' := nat.mul_le_mul_left (k : ℕ) (nat.succ_le_of_lt (nat.pos_of_ne_zero h')), rw [mul_one] at h', exact ⟨h', le_refl (k : ℕ)⟩ } }, { exact ⟨nat.mod_le (m : ℕ) (k : ℕ), (nat.mod_lt (m : ℕ) k.pos).le⟩ } end theorem dvd_iff {k m : ℕ+} : k ∣ m ↔ (k : ℕ) ∣ (m : ℕ) := begin split; intro h, rcases h with ⟨_, rfl⟩, apply dvd_mul_right, rcases h with ⟨a, h⟩, cases a, { contrapose h, apply ne_zero, }, use a.succ, apply nat.succ_pos, rw [← coe_inj, h, mul_coe, mk_coe], end theorem dvd_iff' {k m : ℕ+} : k ∣ m ↔ mod m k = k := begin rw dvd_iff, rw [nat.dvd_iff_mod_eq_zero], split, { intro h, apply eq, rw [mod_coe, if_pos h] }, { intro h, by_cases h' : (m : ℕ) % (k : ℕ) = 0, { exact h'}, { replace h : ((mod m k) : ℕ) = (k : ℕ) := congr_arg _ h, rw [mod_coe, if_neg h'] at h, exact ((nat.mod_lt (m : ℕ) k.pos).ne h).elim } } end lemma le_of_dvd {m n : ℕ+} : m ∣ n → m ≤ n := by { rw dvd_iff', intro h, rw ← h, apply (mod_le n m).left } /-- If `h : k | m`, then `k * (div_exact m k) = m`. Note that this is not equal to `m / k`. -/ def div_exact (m k : ℕ+) : ℕ+ := ⟨(div m k).succ, nat.succ_pos _⟩ theorem mul_div_exact {m k : ℕ+} (h : k ∣ m) : k * (div_exact m k) = m := begin apply eq, rw [mul_coe], change (k : ℕ) * (div m k).succ = m, rw [← div_add_mod m k, dvd_iff'.mp h, nat.mul_succ] end theorem dvd_antisymm {m n : ℕ+} : m ∣ n → n ∣ m → m = n := λ hmn hnm, (le_of_dvd hmn).antisymm (le_of_dvd hnm) theorem dvd_one_iff (n : ℕ+) : n ∣ 1 ↔ n = 1 := ⟨λ h, dvd_antisymm h (one_dvd n), λ h, h.symm ▸ (dvd_refl 1)⟩ lemma pos_of_div_pos {n : ℕ+} {a : ℕ} (h : a ∣ n) : 0 < a := begin apply pos_iff_ne_zero.2, intro hzero, rw hzero at h, exact pnat.ne_zero n (eq_zero_of_zero_dvd h) end end pnat section can_lift instance nat.can_lift_pnat : can_lift ℕ ℕ+ := ⟨coe, λ n, 0 < n, λ n hn, ⟨nat.to_pnat' n, pnat.to_pnat'_coe hn⟩⟩ instance int.can_lift_pnat : can_lift ℤ ℕ+ := ⟨coe, λ n, 0 < n, λ n hn, ⟨nat.to_pnat' (int.nat_abs n), by rw [coe_coe, nat.to_pnat'_coe, if_pos (int.nat_abs_pos_of_ne_zero hn.ne'), int.nat_abs_of_nonneg hn.le]⟩⟩ end can_lift
3b503881ed1047abbc15c2860b4485e108359e66
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/data/equiv/basic.lean
211dc09bf4a90da79f95b2f5acda117d1e82d019
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
89,231
lean
/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Mario Carneiro -/ import data.fun_like.equiv import data.option.basic import data.prod import data.quot import data.sigma.basic import data.sum.basic import data.subtype import logic.function.conjugate import logic.unique import tactic.norm_cast import tactic.simps /-! # Equivalence between types In this file we define two types: * `equiv α β` a.k.a. `α ≃ β`: a bijective map `α → β` bundled with its inverse map; we use this (and not equality!) to express that various `Type`s or `Sort`s are equivalent. * `equiv.perm α`: the group of permutations `α ≃ α`. More lemmas about `equiv.perm` can be found in `group_theory/perm`. Then we define * canonical isomorphisms between various types: e.g., - `equiv.refl α` is the identity map interpreted as `α ≃ α`; - `equiv.sum_equiv_sigma_bool` is the canonical equivalence between the sum of two types `α ⊕ β` and the sigma-type `Σ b : bool, cond b α β`; - `equiv.prod_sum_distrib : α × (β ⊕ γ) ≃ (α × β) ⊕ (α × γ)` shows that type product and type sum satisfy the distributive law up to a canonical equivalence; * operations on equivalences: e.g., - `equiv.symm e : β ≃ α` is the inverse of `e : α ≃ β`; - `equiv.trans e₁ e₂ : α ≃ γ` is the composition of `e₁ : α ≃ β` and `e₂ : β ≃ γ` (note the order of the arguments!); - `equiv.prod_congr ea eb : α₁ × β₁ ≃ α₂ × β₂`: combine two equivalences `ea : α₁ ≃ α₂` and `eb : β₁ ≃ β₂` using `prod.map`. * definitions that transfer some instances along an equivalence. By convention, we transfer instances from right to left. - `equiv.inhabited` takes `e : α ≃ β` and `[inhabited β]` and returns `inhabited α`; - `equiv.unique` takes `e : α ≃ β` and `[unique β]` and returns `unique α`; - `equiv.decidable_eq` takes `e : α ≃ β` and `[decidable_eq β]` and returns `decidable_eq α`. More definitions of this kind can be found in other files. E.g., `data/equiv/transfer_instance` does it for many algebraic type classes like `group`, `module`, etc. ## Tags equivalence, congruence, bijective map -/ open function universes u v w z variables {α : Sort u} {β : Sort v} {γ : Sort w} /-- `α ≃ β` is the type of functions from `α → β` with a two-sided inverse. -/ @[nolint has_inhabited_instance] structure equiv (α : Sort*) (β : Sort*) := (to_fun : α → β) (inv_fun : β → α) (left_inv : left_inverse inv_fun to_fun) (right_inv : right_inverse inv_fun to_fun) infix ` ≃ `:25 := equiv /-- Convert an involutive function `f` to an equivalence with `to_fun = inv_fun = f`. -/ def function.involutive.to_equiv (f : α → α) (h : involutive f) : α ≃ α := ⟨f, f, h.left_inverse, h.right_inverse⟩ namespace equiv /-- `perm α` is the type of bijections from `α` to itself. -/ @[reducible] def perm (α : Sort*) := equiv α α instance : equiv_like (α ≃ β) α β := { coe := to_fun, inv := inv_fun, left_inv := left_inv, right_inv := right_inv, coe_injective' := λ e₁ e₂ h₁ h₂, by { cases e₁, cases e₂, congr' } } instance : has_coe_to_fun (α ≃ β) (λ _, α → β) := ⟨to_fun⟩ @[simp] theorem coe_fn_mk (f : α → β) (g l r) : (equiv.mk f g l r : α → β) = f := rfl /-- The map `coe_fn : (r ≃ s) → (r → s)` is injective. -/ theorem coe_fn_injective : @function.injective (α ≃ β) (α → β) coe_fn := fun_like.coe_injective protected lemma coe_inj {e₁ e₂ : α ≃ β} : (e₁ : α → β) = e₂ ↔ e₁ = e₂ := fun_like.coe_fn_eq @[ext] lemma ext {f g : equiv α β} (H : ∀ x, f x = g x) : f = g := fun_like.ext f g H protected lemma congr_arg {f : equiv α β} {x x' : α} : x = x' → f x = f x' := fun_like.congr_arg f protected lemma congr_fun {f g : equiv α β} (h : f = g) (x : α) : f x = g x := fun_like.congr_fun h x lemma ext_iff {f g : equiv α β} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff @[ext] lemma perm.ext {σ τ : equiv.perm α} (H : ∀ x, σ x = τ x) : σ = τ := equiv.ext H protected lemma perm.congr_arg {f : equiv.perm α} {x x' : α} : x = x' → f x = f x' := equiv.congr_arg protected lemma perm.congr_fun {f g : equiv.perm α} (h : f = g) (x : α) : f x = g x := equiv.congr_fun h x lemma perm.ext_iff {σ τ : equiv.perm α} : σ = τ ↔ ∀ x, σ x = τ x := ext_iff /-- Any type is equivalent to itself. -/ @[refl] protected def refl (α : Sort*) : α ≃ α := ⟨id, id, λ x, rfl, λ x, rfl⟩ instance inhabited' : inhabited (α ≃ α) := ⟨equiv.refl α⟩ /-- Inverse of an equivalence `e : α ≃ β`. -/ @[symm] protected def symm (e : α ≃ β) : β ≃ α := ⟨e.inv_fun, e.to_fun, e.right_inv, e.left_inv⟩ /-- See Note [custom simps projection] -/ def simps.symm_apply (e : α ≃ β) : β → α := e.symm initialize_simps_projections equiv (to_fun → apply, inv_fun → symm_apply) -- Generate the `simps` projections for previously defined equivs. attribute [simps] function.involutive.to_equiv /-- Composition of equivalences `e₁ : α ≃ β` and `e₂ : β ≃ γ`. -/ @[trans] protected def trans (e₁ : α ≃ β) (e₂ : β ≃ γ) : α ≃ γ := ⟨e₂ ∘ e₁, e₁.symm ∘ e₂.symm, e₂.left_inv.comp e₁.left_inv, e₂.right_inv.comp e₁.right_inv⟩ @[simp] lemma to_fun_as_coe (e : α ≃ β) : e.to_fun = e := rfl @[simp] lemma inv_fun_as_coe (e : α ≃ β) : e.inv_fun = e.symm := rfl protected theorem injective (e : α ≃ β) : injective e := equiv_like.injective e protected theorem surjective (e : α ≃ β) : surjective e := equiv_like.surjective e protected theorem bijective (e : α ≃ β) : bijective e := equiv_like.bijective e protected theorem subsingleton (e : α ≃ β) [subsingleton β] : subsingleton α := e.injective.subsingleton protected theorem subsingleton.symm (e : α ≃ β) [subsingleton α] : subsingleton β := e.symm.injective.subsingleton lemma subsingleton_congr (e : α ≃ β) : subsingleton α ↔ subsingleton β := ⟨λ h, by exactI e.symm.subsingleton, λ h, by exactI e.subsingleton⟩ instance equiv_subsingleton_cod [subsingleton β] : subsingleton (α ≃ β) := ⟨λ f g, equiv.ext $ λ x, subsingleton.elim _ _⟩ instance equiv_subsingleton_dom [subsingleton α] : subsingleton (α ≃ β) := ⟨λ f g, equiv.ext $ λ x, @subsingleton.elim _ (equiv.subsingleton.symm f) _ _⟩ instance perm_unique [subsingleton α] : unique (perm α) := unique_of_subsingleton (equiv.refl α) lemma perm.subsingleton_eq_refl [subsingleton α] (e : perm α) : e = equiv.refl α := subsingleton.elim _ _ /-- Transfer `decidable_eq` across an equivalence. -/ protected def decidable_eq (e : α ≃ β) [decidable_eq β] : decidable_eq α := e.injective.decidable_eq lemma nonempty_congr (e : α ≃ β) : nonempty α ↔ nonempty β := nonempty.congr e e.symm protected lemma nonempty (e : α ≃ β) [nonempty β] : nonempty α := e.nonempty_congr.mpr ‹_› /-- If `α ≃ β` and `β` is inhabited, then so is `α`. -/ protected def inhabited [inhabited β] (e : α ≃ β) : inhabited α := ⟨e.symm default⟩ /-- If `α ≃ β` and `β` is a singleton type, then so is `α`. -/ protected def unique [unique β] (e : α ≃ β) : unique α := e.symm.surjective.unique /-- Equivalence between equal types. -/ protected def cast {α β : Sort*} (h : α = β) : α ≃ β := ⟨cast h, cast h.symm, λ x, by { cases h, refl }, λ x, by { cases h, refl }⟩ @[simp] theorem coe_fn_symm_mk (f : α → β) (g l r) : ((equiv.mk f g l r).symm : β → α) = g := rfl @[simp] theorem coe_refl : ⇑(equiv.refl α) = id := rfl @[simp] theorem perm.coe_subsingleton {α : Type*} [subsingleton α] (e : perm α) : ⇑(e) = id := by rw [perm.subsingleton_eq_refl e, coe_refl] theorem refl_apply (x : α) : equiv.refl α x = x := rfl @[simp] theorem coe_trans (f : α ≃ β) (g : β ≃ γ) : ⇑(f.trans g) = g ∘ f := rfl theorem trans_apply (f : α ≃ β) (g : β ≃ γ) (a : α) : (f.trans g) a = g (f a) := rfl @[simp] theorem apply_symm_apply (e : α ≃ β) (x : β) : e (e.symm x) = x := e.right_inv x @[simp] theorem symm_apply_apply (e : α ≃ β) (x : α) : e.symm (e x) = x := e.left_inv x @[simp] theorem symm_comp_self (e : α ≃ β) : e.symm ∘ e = id := funext e.symm_apply_apply @[simp] theorem self_comp_symm (e : α ≃ β) : e ∘ e.symm = id := funext e.apply_symm_apply @[simp] lemma symm_trans_apply (f : α ≃ β) (g : β ≃ γ) (a : γ) : (f.trans g).symm a = f.symm (g.symm a) := rfl -- The `simp` attribute is needed to make this a `dsimp` lemma. -- `simp` will always rewrite with `equiv.symm_symm` before this has a chance to fire. @[simp, nolint simp_nf] theorem symm_symm_apply (f : α ≃ β) (b : α) : f.symm.symm b = f b := rfl theorem apply_eq_iff_eq (f : α ≃ β) {x y : α} : f x = f y ↔ x = y := equiv_like.apply_eq_iff_eq f theorem apply_eq_iff_eq_symm_apply {α β : Sort*} (f : α ≃ β) {x : α} {y : β} : f x = y ↔ x = f.symm y := begin conv_lhs { rw ←apply_symm_apply f y, }, rw apply_eq_iff_eq, end @[simp] theorem cast_apply {α β} (h : α = β) (x : α) : equiv.cast h x = cast h x := rfl @[simp] theorem cast_symm {α β} (h : α = β) : (equiv.cast h).symm = equiv.cast h.symm := rfl @[simp] theorem cast_refl {α} (h : α = α := rfl) : equiv.cast h = equiv.refl α := rfl @[simp] theorem cast_trans {α β γ} (h : α = β) (h2 : β = γ) : (equiv.cast h).trans (equiv.cast h2) = equiv.cast (h.trans h2) := ext $ λ x, by { substs h h2, refl } lemma cast_eq_iff_heq {α β} (h : α = β) {a : α} {b : β} : equiv.cast h a = b ↔ a == b := by { subst h, simp } lemma symm_apply_eq {α β} (e : α ≃ β) {x y} : e.symm x = y ↔ x = e y := ⟨λ H, by simp [H.symm], λ H, by simp [H]⟩ lemma eq_symm_apply {α β} (e : α ≃ β) {x y} : y = e.symm x ↔ e y = x := (eq_comm.trans e.symm_apply_eq).trans eq_comm @[simp] theorem symm_symm (e : α ≃ β) : e.symm.symm = e := by { cases e, refl } @[simp] theorem trans_refl (e : α ≃ β) : e.trans (equiv.refl β) = e := by { cases e, refl } @[simp] theorem refl_symm : (equiv.refl α).symm = equiv.refl α := rfl @[simp] theorem refl_trans (e : α ≃ β) : (equiv.refl α).trans e = e := by { cases e, refl } @[simp] theorem symm_trans_self (e : α ≃ β) : e.symm.trans e = equiv.refl β := ext (by simp) @[simp] theorem self_trans_symm (e : α ≃ β) : e.trans e.symm = equiv.refl α := ext (by simp) lemma trans_assoc {δ} (ab : α ≃ β) (bc : β ≃ γ) (cd : γ ≃ δ) : (ab.trans bc).trans cd = ab.trans (bc.trans cd) := equiv.ext $ assume a, rfl theorem left_inverse_symm (f : equiv α β) : left_inverse f.symm f := f.left_inv theorem right_inverse_symm (f : equiv α β) : function.right_inverse f.symm f := f.right_inv lemma injective_comp (e : α ≃ β) (f : β → γ) : injective (f ∘ e) ↔ injective f := equiv_like.injective_comp e f lemma comp_injective (f : α → β) (e : β ≃ γ) : injective (e ∘ f) ↔ injective f := equiv_like.comp_injective f e lemma surjective_comp (e : α ≃ β) (f : β → γ) : surjective (f ∘ e) ↔ surjective f := equiv_like.surjective_comp e f lemma comp_surjective (f : α → β) (e : β ≃ γ) : surjective (e ∘ f) ↔ surjective f := equiv_like.comp_surjective f e lemma bijective_comp (e : α ≃ β) (f : β → γ) : bijective (f ∘ e) ↔ bijective f := equiv_like.bijective_comp e f lemma comp_bijective (f : α → β) (e : β ≃ γ) : bijective (e ∘ f) ↔ bijective f := equiv_like.comp_bijective f e /-- If `α` is equivalent to `β` and `γ` is equivalent to `δ`, then the type of equivalences `α ≃ γ` is equivalent to the type of equivalences `β ≃ δ`. -/ def equiv_congr {δ} (ab : α ≃ β) (cd : γ ≃ δ) : (α ≃ γ) ≃ (β ≃ δ) := ⟨ λac, (ab.symm.trans ac).trans cd, λbd, ab.trans $ bd.trans $ cd.symm, assume ac, by { ext x, simp }, assume ac, by { ext x, simp } ⟩ @[simp] lemma equiv_congr_refl {α β} : (equiv.refl α).equiv_congr (equiv.refl β) = equiv.refl (α ≃ β) := by { ext, refl } @[simp] lemma equiv_congr_symm {δ} (ab : α ≃ β) (cd : γ ≃ δ) : (ab.equiv_congr cd).symm = ab.symm.equiv_congr cd.symm := by { ext, refl } @[simp] lemma equiv_congr_trans {δ ε ζ} (ab : α ≃ β) (de : δ ≃ ε) (bc : β ≃ γ) (ef : ε ≃ ζ) : (ab.equiv_congr de).trans (bc.equiv_congr ef) = (ab.trans bc).equiv_congr (de.trans ef) := by { ext, refl } @[simp] lemma equiv_congr_refl_left {α β γ} (bg : β ≃ γ) (e : α ≃ β) : (equiv.refl α).equiv_congr bg e = e.trans bg := rfl @[simp] lemma equiv_congr_refl_right {α β} (ab e : α ≃ β) : ab.equiv_congr (equiv.refl β) e = ab.symm.trans e := rfl @[simp] lemma equiv_congr_apply_apply {δ} (ab : α ≃ β) (cd : γ ≃ δ) (e : α ≃ γ) (x) : ab.equiv_congr cd e x = cd (e (ab.symm x)) := rfl section perm_congr variables {α' β' : Type*} (e : α' ≃ β') /-- If `α` is equivalent to `β`, then `perm α` is equivalent to `perm β`. -/ def perm_congr : perm α' ≃ perm β' := equiv_congr e e lemma perm_congr_def (p : equiv.perm α') : e.perm_congr p = (e.symm.trans p).trans e := rfl @[simp] lemma perm_congr_refl : e.perm_congr (equiv.refl _) = equiv.refl _ := by simp [perm_congr_def] @[simp] lemma perm_congr_symm : e.perm_congr.symm = e.symm.perm_congr := rfl @[simp] lemma perm_congr_apply (p : equiv.perm α') (x) : e.perm_congr p x = e (p (e.symm x)) := rfl lemma perm_congr_symm_apply (p : equiv.perm β') (x) : e.perm_congr.symm p x = e.symm (p (e x)) := rfl lemma perm_congr_trans (p p' : equiv.perm α') : (e.perm_congr p).trans (e.perm_congr p') = e.perm_congr (p.trans p') := by { ext, simp } end perm_congr /-- If `α` is an empty type, then it is equivalent to the `empty` type. -/ def equiv_empty (α : Sort u) [is_empty α] : α ≃ empty := ⟨is_empty_elim, λ e, e.rec _, is_empty_elim, λ e, e.rec _⟩ /-- `α` is equivalent to an empty type iff `α` is empty. -/ def equiv_empty_equiv (α : Sort u) : (α ≃ empty) ≃ is_empty α := ⟨λ e, function.is_empty e, @equiv_empty α, λ e, ext $ λ x, (e x).elim, λ p, rfl⟩ /-- `false` is equivalent to `empty`. -/ def false_equiv_empty : false ≃ empty := equiv_empty _ /-- If `α` is an empty type, then it is equivalent to the `pempty` type in any universe. -/ def {u' v'} equiv_pempty (α : Sort v') [is_empty α] : α ≃ pempty.{u'} := ⟨is_empty_elim, λ e, e.rec _, is_empty_elim, λ e, e.rec _⟩ /-- `false` is equivalent to `pempty`. -/ def false_equiv_pempty : false ≃ pempty := equiv_pempty _ /-- `empty` is equivalent to `pempty`. -/ def empty_equiv_pempty : empty ≃ pempty := equiv_pempty _ /-- `pempty` types from any two universes are equivalent. -/ def pempty_equiv_pempty : pempty.{v} ≃ pempty.{w} := equiv_pempty _ /-- The `Sort` of proofs of a true proposition is equivalent to `punit`. -/ def prop_equiv_punit {p : Prop} (h : p) : p ≃ punit := ⟨λ x, (), λ x, h, λ _, rfl, λ ⟨⟩, rfl⟩ /-- The `Sort` of proofs of a false proposition is equivalent to `pempty`. -/ def prop_equiv_pempty {p : Prop} (h : ¬p) : p ≃ pempty := ⟨λ x, absurd x h, λ x, by cases x, λ x, absurd x h, λ x, by cases x⟩ /-- `true` is equivalent to `punit`. -/ def true_equiv_punit : true ≃ punit := prop_equiv_punit trivial /-- `ulift α` is equivalent to `α`. -/ @[simps apply symm_apply {fully_applied := ff}] protected def ulift {α : Type v} : ulift.{u} α ≃ α := ⟨ulift.down, ulift.up, ulift.up_down, λ a, rfl⟩ /-- `plift α` is equivalent to `α`. -/ @[simps apply symm_apply {fully_applied := ff}] protected def plift : plift α ≃ α := ⟨plift.down, plift.up, plift.up_down, plift.down_up⟩ /-- `pprod α β` is equivalent to `α × β` -/ @[simps apply symm_apply] def pprod_equiv_prod {α β : Type*} : pprod α β ≃ α × β := { to_fun := λ x, (x.1, x.2), inv_fun := λ x, ⟨x.1, x.2⟩, left_inv := λ ⟨x, y⟩, rfl, right_inv := λ ⟨x, y⟩, rfl } /-- equivalence of propositions is the same as iff -/ def of_iff {P Q : Prop} (h : P ↔ Q) : P ≃ Q := { to_fun := h.mp, inv_fun := h.mpr, left_inv := λ x, rfl, right_inv := λ y, rfl } /-- If `α₁` is equivalent to `α₂` and `β₁` is equivalent to `β₂`, then the type of maps `α₁ → β₁` is equivalent to the type of maps `α₂ → β₂`. -/ @[congr, simps apply] def arrow_congr {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : (α₁ → β₁) ≃ (α₂ → β₂) := { to_fun := λ f, e₂ ∘ f ∘ e₁.symm, inv_fun := λ f, e₂.symm ∘ f ∘ e₁, left_inv := λ f, funext $ λ x, by simp, right_inv := λ f, funext $ λ x, by simp } lemma arrow_congr_comp {α₁ β₁ γ₁ α₂ β₂ γ₂ : Sort*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) (ec : γ₁ ≃ γ₂) (f : α₁ → β₁) (g : β₁ → γ₁) : arrow_congr ea ec (g ∘ f) = (arrow_congr eb ec g) ∘ (arrow_congr ea eb f) := by { ext, simp only [comp, arrow_congr_apply, eb.symm_apply_apply] } @[simp] lemma arrow_congr_refl {α β : Sort*} : arrow_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α → β) := rfl @[simp] lemma arrow_congr_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Sort*} (e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) : arrow_congr (e₁.trans e₂) (e₁'.trans e₂') = (arrow_congr e₁ e₁').trans (arrow_congr e₂ e₂') := rfl @[simp] lemma arrow_congr_symm {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : (arrow_congr e₁ e₂).symm = arrow_congr e₁.symm e₂.symm := rfl /-- A version of `equiv.arrow_congr` in `Type`, rather than `Sort`. The `equiv_rw` tactic is not able to use the default `Sort` level `equiv.arrow_congr`, because Lean's universe rules will not unify `?l_1` with `imax (1 ?m_1)`. -/ @[congr, simps apply] def arrow_congr' {α₁ β₁ α₂ β₂ : Type*} (hα : α₁ ≃ α₂) (hβ : β₁ ≃ β₂) : (α₁ → β₁) ≃ (α₂ → β₂) := equiv.arrow_congr hα hβ @[simp] lemma arrow_congr'_refl {α β : Type*} : arrow_congr' (equiv.refl α) (equiv.refl β) = equiv.refl (α → β) := rfl @[simp] lemma arrow_congr'_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Type*} (e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) : arrow_congr' (e₁.trans e₂) (e₁'.trans e₂') = (arrow_congr' e₁ e₁').trans (arrow_congr' e₂ e₂') := rfl @[simp] lemma arrow_congr'_symm {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : (arrow_congr' e₁ e₂).symm = arrow_congr' e₁.symm e₂.symm := rfl /-- Conjugate a map `f : α → α` by an equivalence `α ≃ β`. -/ @[simps apply] def conj (e : α ≃ β) : (α → α) ≃ (β → β) := arrow_congr e e @[simp] lemma conj_refl : conj (equiv.refl α) = equiv.refl (α → α) := rfl @[simp] lemma conj_symm (e : α ≃ β) : e.conj.symm = e.symm.conj := rfl @[simp] lemma conj_trans (e₁ : α ≃ β) (e₂ : β ≃ γ) : (e₁.trans e₂).conj = e₁.conj.trans e₂.conj := rfl -- This should not be a simp lemma as long as `(∘)` is reducible: -- when `(∘)` is reducible, Lean can unify `f₁ ∘ f₂` with any `g` using -- `f₁ := g` and `f₂ := λ x, x`. This causes nontermination. lemma conj_comp (e : α ≃ β) (f₁ f₂ : α → α) : e.conj (f₁ ∘ f₂) = (e.conj f₁) ∘ (e.conj f₂) := by apply arrow_congr_comp section binary_op variables {α₁ β₁ : Type*} (e : α₁ ≃ β₁) (f : α₁ → α₁ → α₁) lemma semiconj_conj (f : α₁ → α₁) : semiconj e f (e.conj f) := λ x, by simp lemma semiconj₂_conj : semiconj₂ e f (e.arrow_congr e.conj f) := λ x y, by simp instance [is_associative α₁ f] : is_associative β₁ (e.arrow_congr (e.arrow_congr e) f) := (e.semiconj₂_conj f).is_associative_right e.surjective instance [is_idempotent α₁ f] : is_idempotent β₁ (e.arrow_congr (e.arrow_congr e) f) := (e.semiconj₂_conj f).is_idempotent_right e.surjective instance [is_left_cancel α₁ f] : is_left_cancel β₁ (e.arrow_congr (e.arrow_congr e) f) := ⟨e.surjective.forall₃.2 $ λ x y z, by simpa using @is_left_cancel.left_cancel _ f _ x y z⟩ instance [is_right_cancel α₁ f] : is_right_cancel β₁ (e.arrow_congr (e.arrow_congr e) f) := ⟨e.surjective.forall₃.2 $ λ x y z, by simpa using @is_right_cancel.right_cancel _ f _ x y z⟩ end binary_op /-- `punit` sorts in any two universes are equivalent. -/ def punit_equiv_punit : punit.{v} ≃ punit.{w} := ⟨λ _, punit.star, λ _, punit.star, λ u, by { cases u, refl }, λ u, by { cases u, reflexivity }⟩ section /-- The sort of maps to `punit.{v}` is equivalent to `punit.{w}`. -/ def arrow_punit_equiv_punit (α : Sort*) : (α → punit.{v}) ≃ punit.{w} := ⟨λ f, punit.star, λ u f, punit.star, λ f, by { funext x, cases f x, refl }, λ u, by { cases u, reflexivity }⟩ /-- If `α` has a unique term, then the type of function `α → β` is equivalent to `β`. -/ @[simps { fully_applied := ff }] def fun_unique (α β) [unique α] : (α → β) ≃ β := { to_fun := eval default, inv_fun := const α, left_inv := λ f, funext $ λ a, congr_arg f $ subsingleton.elim _ _, right_inv := λ b, rfl } /-- The sort of maps from `punit` is equivalent to the codomain. -/ def punit_arrow_equiv (α : Sort*) : (punit.{u} → α) ≃ α := fun_unique _ _ /-- The sort of maps from `true` is equivalent to the codomain. -/ def true_arrow_equiv (α : Sort*) : (true → α) ≃ α := fun_unique _ _ /-- The sort of maps from a type that `is_empty` is equivalent to `punit`. -/ def arrow_punit_of_is_empty (α β : Sort*) [is_empty α] : (α → β) ≃ punit.{u} := ⟨λ f, punit.star, λ u, is_empty_elim, λ f, funext is_empty_elim, λ u, by { cases u, refl }⟩ /-- The sort of maps from `empty` is equivalent to `punit`. -/ def empty_arrow_equiv_punit (α : Sort*) : (empty → α) ≃ punit.{u} := arrow_punit_of_is_empty _ _ /-- The sort of maps from `pempty` is equivalent to `punit`. -/ def pempty_arrow_equiv_punit (α : Sort*) : (pempty → α) ≃ punit.{u} := arrow_punit_of_is_empty _ _ /-- The sort of maps from `false` is equivalent to `punit`. -/ def false_arrow_equiv_punit (α : Sort*) : (false → α) ≃ punit.{u} := arrow_punit_of_is_empty _ _ end /-- Product of two equivalences. If `α₁ ≃ α₂` and `β₁ ≃ β₂`, then `α₁ × β₁ ≃ α₂ × β₂`. -/ @[congr, simps apply] def prod_congr {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : α₁ × β₁ ≃ α₂ × β₂ := ⟨prod.map e₁ e₂, prod.map e₁.symm e₂.symm, λ ⟨a, b⟩, by simp, λ ⟨a, b⟩, by simp⟩ @[simp] theorem prod_congr_symm {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : (prod_congr e₁ e₂).symm = prod_congr e₁.symm e₂.symm := rfl /-- Type product is commutative up to an equivalence: `α × β ≃ β × α`. -/ @[simps apply] def prod_comm (α β : Type*) : α × β ≃ β × α := ⟨prod.swap, prod.swap, λ⟨a, b⟩, rfl, λ⟨a, b⟩, rfl⟩ @[simp] lemma prod_comm_symm (α β) : (prod_comm α β).symm = prod_comm β α := rfl /-- Type product is associative up to an equivalence. -/ @[simps] def prod_assoc (α β γ : Sort*) : (α × β) × γ ≃ α × (β × γ) := ⟨λ p, (p.1.1, p.1.2, p.2), λp, ((p.1, p.2.1), p.2.2), λ ⟨⟨a, b⟩, c⟩, rfl, λ ⟨a, ⟨b, c⟩⟩, rfl⟩ /-- Functions on `α × β` are equivalent to functions `α → β → γ`. -/ @[simps {fully_applied := ff}] def curry (α β γ : Type*) : (α × β → γ) ≃ (α → β → γ) := { to_fun := curry, inv_fun := uncurry, left_inv := uncurry_curry, right_inv := curry_uncurry } section /-- `punit` is a right identity for type product up to an equivalence. -/ @[simps] def prod_punit (α : Type*) : α × punit.{u+1} ≃ α := ⟨λ p, p.1, λ a, (a, punit.star), λ ⟨_, punit.star⟩, rfl, λ a, rfl⟩ /-- `punit` is a left identity for type product up to an equivalence. -/ @[simps] def punit_prod (α : Type*) : punit.{u+1} × α ≃ α := calc punit × α ≃ α × punit : prod_comm _ _ ... ≃ α : prod_punit _ /-- `empty` type is a right absorbing element for type product up to an equivalence. -/ def prod_empty (α : Type*) : α × empty ≃ empty := equiv_empty _ /-- `empty` type is a left absorbing element for type product up to an equivalence. -/ def empty_prod (α : Type*) : empty × α ≃ empty := equiv_empty _ /-- `pempty` type is a right absorbing element for type product up to an equivalence. -/ def prod_pempty (α : Type*) : α × pempty ≃ pempty := equiv_pempty _ /-- `pempty` type is a left absorbing element for type product up to an equivalence. -/ def pempty_prod (α : Type*) : pempty × α ≃ pempty := equiv_pempty _ end section open sum /-- `psum` is equivalent to `sum`. -/ def psum_equiv_sum (α β : Type*) : psum α β ≃ α ⊕ β := ⟨λ s, psum.cases_on s inl inr, λ s, sum.cases_on s psum.inl psum.inr, λ s, by cases s; refl, λ s, by cases s; refl⟩ /-- If `α ≃ α'` and `β ≃ β'`, then `α ⊕ β ≃ α' ⊕ β'`. -/ @[simps apply] def sum_congr {α₁ β₁ α₂ β₂ : Type*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) : α₁ ⊕ β₁ ≃ α₂ ⊕ β₂ := ⟨sum.map ea eb, sum.map ea.symm eb.symm, λ x, by simp, λ x, by simp⟩ @[simp] lemma sum_congr_trans {α₁ α₂ β₁ β₂ γ₁ γ₂ : Sort*} (e : α₁ ≃ β₁) (f : α₂ ≃ β₂) (g : β₁ ≃ γ₁) (h : β₂ ≃ γ₂) : (equiv.sum_congr e f).trans (equiv.sum_congr g h) = (equiv.sum_congr (e.trans g) (f.trans h)) := by { ext i, cases i; refl } @[simp] lemma sum_congr_symm {α β γ δ : Sort*} (e : α ≃ β) (f : γ ≃ δ) : (equiv.sum_congr e f).symm = (equiv.sum_congr (e.symm) (f.symm)) := rfl @[simp] lemma sum_congr_refl {α β : Sort*} : equiv.sum_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α ⊕ β) := by { ext i, cases i; refl } namespace perm /-- Combine a permutation of `α` and of `β` into a permutation of `α ⊕ β`. -/ @[reducible] def sum_congr {α β : Type*} (ea : equiv.perm α) (eb : equiv.perm β) : equiv.perm (α ⊕ β) := equiv.sum_congr ea eb @[simp] lemma sum_congr_apply {α β : Type*} (ea : equiv.perm α) (eb : equiv.perm β) (x : α ⊕ β) : sum_congr ea eb x = sum.map ⇑ea ⇑eb x := equiv.sum_congr_apply ea eb x @[simp] lemma sum_congr_trans {α β : Sort*} (e : equiv.perm α) (f : equiv.perm β) (g : equiv.perm α) (h : equiv.perm β) : (sum_congr e f).trans (sum_congr g h) = sum_congr (e.trans g) (f.trans h) := equiv.sum_congr_trans e f g h @[simp] lemma sum_congr_symm {α β : Sort*} (e : equiv.perm α) (f : equiv.perm β) : (sum_congr e f).symm = sum_congr (e.symm) (f.symm) := equiv.sum_congr_symm e f @[simp] lemma sum_congr_refl {α β : Sort*} : sum_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α ⊕ β) := equiv.sum_congr_refl end perm /-- `bool` is equivalent the sum of two `punit`s. -/ def bool_equiv_punit_sum_punit : bool ≃ punit.{u+1} ⊕ punit.{v+1} := ⟨λ b, cond b (inr punit.star) (inl punit.star), λ s, sum.rec_on s (λ_, ff) (λ_, tt), λ b, by cases b; refl, λ s, by rcases s with ⟨⟨⟩⟩ | ⟨⟨⟩⟩; refl⟩ /-- `Prop` is noncomputably equivalent to `bool`. -/ noncomputable def Prop_equiv_bool : Prop ≃ bool := ⟨λ p, @to_bool p (classical.prop_decidable _), λ b, b, λ p, by simp, λ b, by simp⟩ /-- Sum of types is commutative up to an equivalence. -/ @[simps apply] def sum_comm (α β : Type*) : α ⊕ β ≃ β ⊕ α := ⟨sum.swap, sum.swap, sum.swap_swap, sum.swap_swap⟩ @[simp] lemma sum_comm_symm (α β) : (sum_comm α β).symm = sum_comm β α := rfl /-- Sum of types is associative up to an equivalence. -/ def sum_assoc (α β γ : Type*) : (α ⊕ β) ⊕ γ ≃ α ⊕ (β ⊕ γ) := ⟨sum.elim (sum.elim sum.inl (sum.inr ∘ sum.inl)) (sum.inr ∘ sum.inr), sum.elim (sum.inl ∘ sum.inl) $ sum.elim (sum.inl ∘ sum.inr) sum.inr, by rintros (⟨_ | _⟩ | _); refl, by rintros (_ | ⟨_ | _⟩); refl⟩ @[simp] lemma sum_assoc_apply_inl_inl {α β γ} (a) : sum_assoc α β γ (inl (inl a)) = inl a := rfl @[simp] lemma sum_assoc_apply_inl_inr {α β γ} (b) : sum_assoc α β γ (inl (inr b)) = inr (inl b) := rfl @[simp] lemma sum_assoc_apply_inr {α β γ} (c) : sum_assoc α β γ (inr c) = inr (inr c) := rfl @[simp] lemma sum_assoc_symm_apply_inl {α β γ} (a) : (sum_assoc α β γ).symm (inl a) = inl (inl a) := rfl @[simp] lemma sum_assoc_symm_apply_inr_inl {α β γ} (b) : (sum_assoc α β γ).symm (inr (inl b)) = inl (inr b) := rfl @[simp] lemma sum_assoc_symm_apply_inr_inr {α β γ} (c) : (sum_assoc α β γ).symm (inr (inr c)) = inr c := rfl /-- Sum with `empty` is equivalent to the original type. -/ @[simps symm_apply] def sum_empty (α β : Type*) [is_empty β] : α ⊕ β ≃ α := ⟨sum.elim id is_empty_elim, inl, λ s, by { rcases s with _ | x, refl, exact is_empty_elim x }, λ a, rfl⟩ @[simp] lemma sum_empty_apply_inl {α β : Type*} [is_empty β] (a : α) : sum_empty α β (sum.inl a) = a := rfl /-- The sum of `empty` with any `Sort*` is equivalent to the right summand. -/ @[simps symm_apply] def empty_sum (α β : Type*) [is_empty α] : α ⊕ β ≃ β := (sum_comm _ _).trans $ sum_empty _ _ @[simp] lemma empty_sum_apply_inr {α β : Type*} [is_empty α] (b : β) : empty_sum α β (sum.inr b) = b := rfl /-- `option α` is equivalent to `α ⊕ punit` -/ def option_equiv_sum_punit (α : Type*) : option α ≃ α ⊕ punit.{u+1} := ⟨λ o, match o with none := inr punit.star | some a := inl a end, λ s, match s with inr _ := none | inl a := some a end, λ o, by cases o; refl, λ s, by rcases s with _ | ⟨⟨⟩⟩; refl⟩ @[simp] lemma option_equiv_sum_punit_none {α} : option_equiv_sum_punit α none = sum.inr punit.star := rfl @[simp] lemma option_equiv_sum_punit_some {α} (a) : option_equiv_sum_punit α (some a) = sum.inl a := rfl @[simp] lemma option_equiv_sum_punit_coe {α} (a : α) : option_equiv_sum_punit α a = sum.inl a := rfl @[simp] lemma option_equiv_sum_punit_symm_inl {α} (a) : (option_equiv_sum_punit α).symm (sum.inl a) = a := rfl @[simp] lemma option_equiv_sum_punit_symm_inr {α} (a) : (option_equiv_sum_punit α).symm (sum.inr a) = none := rfl /-- The set of `x : option α` such that `is_some x` is equivalent to `α`. -/ @[simps] def option_is_some_equiv (α : Type*) : {x : option α // x.is_some} ≃ α := { to_fun := λ o, option.get o.2, inv_fun := λ x, ⟨some x, dec_trivial⟩, left_inv := λ o, subtype.eq $ option.some_get _, right_inv := λ x, option.get_some _ _ } /-- The product over `option α` of `β a` is the binary product of the product over `α` of `β (some α)` and `β none` -/ @[simps] def pi_option_equiv_prod {α : Type*} {β : option α → Type*} : (Π a : option α, β a) ≃ (β none × Π a : α, β (some a)) := { to_fun := λ f, (f none, λ a, f (some a)), inv_fun := λ x a, option.cases_on a x.fst x.snd, left_inv := λ f, funext $ λ a, by cases a; refl, right_inv := λ x, by simp } /-- `α ⊕ β` is equivalent to a `sigma`-type over `bool`. Note that this definition assumes `α` and `β` to be types from the same universe, so it cannot by used directly to transfer theorems about sigma types to theorems about sum types. In many cases one can use `ulift` to work around this difficulty. -/ def sum_equiv_sigma_bool (α β : Type u) : α ⊕ β ≃ (Σ b: bool, cond b α β) := ⟨λ s, s.elim (λ x, ⟨tt, x⟩) (λ x, ⟨ff, x⟩), λ s, match s with ⟨tt, a⟩ := inl a | ⟨ff, b⟩ := inr b end, λ s, by cases s; refl, λ s, by rcases s with ⟨_|_, _⟩; refl⟩ /-- `sigma_preimage_equiv f` for `f : α → β` is the natural equivalence between the type of all fibres of `f` and the total space `α`. -/ @[simps] def sigma_preimage_equiv {α β : Type*} (f : α → β) : (Σ y : β, {x // f x = y}) ≃ α := ⟨λ x, ↑x.2, λ x, ⟨f x, x, rfl⟩, λ ⟨y, x, rfl⟩, rfl, λ x, rfl⟩ end section sum_compl /-- For any predicate `p` on `α`, the sum of the two subtypes `{a // p a}` and its complement `{a // ¬ p a}` is naturally equivalent to `α`. See `subtype_or_equiv` for sum types over subtypes `{x // p x}` and `{x // q x}` that are not necessarily `is_compl p q`. -/ def sum_compl {α : Type*} (p : α → Prop) [decidable_pred p] : {a // p a} ⊕ {a // ¬ p a} ≃ α := { to_fun := sum.elim coe coe, inv_fun := λ a, if h : p a then sum.inl ⟨a, h⟩ else sum.inr ⟨a, h⟩, left_inv := by { rintros (⟨x,hx⟩|⟨x,hx⟩); dsimp; [rw dif_pos, rw dif_neg], }, right_inv := λ a, by { dsimp, split_ifs; refl } } @[simp] lemma sum_compl_apply_inl {α : Type*} (p : α → Prop) [decidable_pred p] (x : {a // p a}) : sum_compl p (sum.inl x) = x := rfl @[simp] lemma sum_compl_apply_inr {α : Type*} (p : α → Prop) [decidable_pred p] (x : {a // ¬ p a}) : sum_compl p (sum.inr x) = x := rfl @[simp] lemma sum_compl_apply_symm_of_pos {α : Type*} (p : α → Prop) [decidable_pred p] (a : α) (h : p a) : (sum_compl p).symm a = sum.inl ⟨a, h⟩ := dif_pos h @[simp] lemma sum_compl_apply_symm_of_neg {α : Type*} (p : α → Prop) [decidable_pred p] (a : α) (h : ¬ p a) : (sum_compl p).symm a = sum.inr ⟨a, h⟩ := dif_neg h /-- Combines an `equiv` between two subtypes with an `equiv` between their complements to form a permutation. -/ def subtype_congr {α : Type*} {p q : α → Prop} [decidable_pred p] [decidable_pred q] (e : {x // p x} ≃ {x // q x}) (f : {x // ¬p x} ≃ {x // ¬q x}) : perm α := (sum_compl p).symm.trans ((sum_congr e f).trans (sum_compl q)) open equiv variables {ε : Type*} {p : ε → Prop} [decidable_pred p] variables (ep ep' : perm {a // p a}) (en en' : perm {a // ¬ p a}) /-- Combining permutations on `ε` that permute only inside or outside the subtype split induced by `p : ε → Prop` constructs a permutation on `ε`. -/ def perm.subtype_congr : equiv.perm ε := perm_congr (sum_compl p) (sum_congr ep en) lemma perm.subtype_congr.apply (a : ε) : ep.subtype_congr en a = if h : p a then ep ⟨a, h⟩ else en ⟨a, h⟩ := by { by_cases h : p a; simp [perm.subtype_congr, h] } @[simp] lemma perm.subtype_congr.left_apply {a : ε} (h : p a) : ep.subtype_congr en a = ep ⟨a, h⟩ := by simp [perm.subtype_congr.apply, h] @[simp] lemma perm.subtype_congr.left_apply_subtype (a : {a // p a}) : ep.subtype_congr en a = ep a := by { convert perm.subtype_congr.left_apply _ _ a.property, simp } @[simp] lemma perm.subtype_congr.right_apply {a : ε} (h : ¬ p a) : ep.subtype_congr en a = en ⟨a, h⟩ := by simp [perm.subtype_congr.apply, h] @[simp] lemma perm.subtype_congr.right_apply_subtype (a : {a // ¬ p a}) : ep.subtype_congr en a = en a := by { convert perm.subtype_congr.right_apply _ _ a.property, simp } @[simp] lemma perm.subtype_congr.refl : perm.subtype_congr (equiv.refl {a // p a}) (equiv.refl {a // ¬ p a}) = equiv.refl ε := by { ext x, by_cases h : p x; simp [h] } @[simp] lemma perm.subtype_congr.symm : (ep.subtype_congr en).symm = perm.subtype_congr ep.symm en.symm := begin ext x, by_cases h : p x, { have : p (ep.symm ⟨x, h⟩) := subtype.property _, simp [perm.subtype_congr.apply, h, symm_apply_eq, this] }, { have : ¬ p (en.symm ⟨x, h⟩) := subtype.property (en.symm _), simp [perm.subtype_congr.apply, h, symm_apply_eq, this] } end @[simp] lemma perm.subtype_congr.trans : (ep.subtype_congr en).trans (ep'.subtype_congr en') = perm.subtype_congr (ep.trans ep') (en.trans en') := begin ext x, by_cases h : p x, { have : p (ep ⟨x, h⟩) := subtype.property _, simp [perm.subtype_congr.apply, h, this] }, { have : ¬ p (en ⟨x, h⟩) := subtype.property (en _), simp [perm.subtype_congr.apply, h, symm_apply_eq, this] } end end sum_compl section subtype_preimage variables (p : α → Prop) [decidable_pred p] (x₀ : {a // p a} → β) /-- For a fixed function `x₀ : {a // p a} → β` defined on a subtype of `α`, the subtype of functions `x : α → β` that agree with `x₀` on the subtype `{a // p a}` is naturally equivalent to the type of functions `{a // ¬ p a} → β`. -/ @[simps] def subtype_preimage : {x : α → β // x ∘ coe = x₀} ≃ ({a // ¬ p a} → β) := { to_fun := λ (x : {x : α → β // x ∘ coe = x₀}) a, (x : α → β) a, inv_fun := λ x, ⟨λ a, if h : p a then x₀ ⟨a, h⟩ else x ⟨a, h⟩, funext $ λ ⟨a, h⟩, dif_pos h⟩, left_inv := λ ⟨x, hx⟩, subtype.val_injective $ funext $ λ a, (by { dsimp, split_ifs; [ rw ← hx, skip ]; refl }), right_inv := λ x, funext $ λ ⟨a, h⟩, show dite (p a) _ _ = _, by { dsimp, rw [dif_neg h] } } lemma subtype_preimage_symm_apply_coe_pos (x : {a // ¬ p a} → β) (a : α) (h : p a) : ((subtype_preimage p x₀).symm x : α → β) a = x₀ ⟨a, h⟩ := dif_pos h lemma subtype_preimage_symm_apply_coe_neg (x : {a // ¬ p a} → β) (a : α) (h : ¬ p a) : ((subtype_preimage p x₀).symm x : α → β) a = x ⟨a, h⟩ := dif_neg h end subtype_preimage section /-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Π a, β₁ a` and `Π a, β₂ a`. -/ def Pi_congr_right {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : (Π a, β₁ a) ≃ (Π a, β₂ a) := ⟨λ H a, F a (H a), λ H a, (F a).symm (H a), λ H, funext $ by simp, λ H, funext $ by simp⟩ /-- Dependent `curry` equivalence: the type of dependent functions on `Σ i, β i` is equivalent to the type of dependent functions of two arguments (i.e., functions to the space of functions). This is `sigma.curry` and `sigma.uncurry` together as an equiv. -/ def Pi_curry {α} {β : α → Sort*} (γ : Π a, β a → Sort*) : (Π x : Σ i, β i, γ x.1 x.2) ≃ (Π a b, γ a b) := { to_fun := sigma.curry, inv_fun := sigma.uncurry, left_inv := sigma.uncurry_curry, right_inv := sigma.curry_uncurry } end section /-- A `psigma`-type is equivalent to the corresponding `sigma`-type. -/ @[simps apply symm_apply] def psigma_equiv_sigma {α} (β : α → Type*) : (Σ' i, β i) ≃ Σ i, β i := ⟨λ a, ⟨a.1, a.2⟩, λ a, ⟨a.1, a.2⟩, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩ /-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Σ' a, β₁ a` and `Σ' a, β₂ a`. -/ @[simps apply] def psigma_congr_right {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : (Σ' a, β₁ a) ≃ Σ' a, β₂ a := ⟨λ a, ⟨a.1, F a.1 a.2⟩, λ a, ⟨a.1, (F a.1).symm a.2⟩, λ ⟨a, b⟩, congr_arg (psigma.mk a) $ symm_apply_apply (F a) b, λ ⟨a, b⟩, congr_arg (psigma.mk a) $ apply_symm_apply (F a) b⟩ @[simp] lemma psigma_congr_right_trans {α} {β₁ β₂ β₃ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) (G : Π a, β₂ a ≃ β₃ a) : (psigma_congr_right F).trans (psigma_congr_right G) = psigma_congr_right (λ a, (F a).trans (G a)) := by { ext1 x, cases x, refl } @[simp] lemma psigma_congr_right_symm {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : (psigma_congr_right F).symm = psigma_congr_right (λ a, (F a).symm) := by { ext1 x, cases x, refl } @[simp] lemma psigma_congr_right_refl {α} {β : α → Sort*} : (psigma_congr_right (λ a, equiv.refl (β a))) = equiv.refl (Σ' a, β a) := by { ext1 x, cases x, refl } /-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Σ a, β₁ a` and `Σ a, β₂ a`. -/ @[simps apply] def sigma_congr_right {α} {β₁ β₂ : α → Type*} (F : Π a, β₁ a ≃ β₂ a) : (Σ a, β₁ a) ≃ Σ a, β₂ a := ⟨λ a, ⟨a.1, F a.1 a.2⟩, λ a, ⟨a.1, (F a.1).symm a.2⟩, λ ⟨a, b⟩, congr_arg (sigma.mk a) $ symm_apply_apply (F a) b, λ ⟨a, b⟩, congr_arg (sigma.mk a) $ apply_symm_apply (F a) b⟩ @[simp] lemma sigma_congr_right_trans {α} {β₁ β₂ β₃ : α → Type*} (F : Π a, β₁ a ≃ β₂ a) (G : Π a, β₂ a ≃ β₃ a) : (sigma_congr_right F).trans (sigma_congr_right G) = sigma_congr_right (λ a, (F a).trans (G a)) := by { ext1 x, cases x, refl } @[simp] lemma sigma_congr_right_symm {α} {β₁ β₂ : α → Type*} (F : Π a, β₁ a ≃ β₂ a) : (sigma_congr_right F).symm = sigma_congr_right (λ a, (F a).symm) := by { ext1 x, cases x, refl } @[simp] lemma sigma_congr_right_refl {α} {β : α → Type*} : (sigma_congr_right (λ a, equiv.refl (β a))) = equiv.refl (Σ a, β a) := by { ext1 x, cases x, refl } /-- A `psigma` with `Prop` fibers is equivalent to the subtype. -/ def psigma_equiv_subtype {α : Type v} (P : α → Prop) : (Σ' i, P i) ≃ subtype P := { to_fun := λ x, ⟨x.1, x.2⟩, inv_fun := λ x, ⟨x.1, x.2⟩, left_inv := λ x, by { cases x, refl, }, right_inv := λ x, by { cases x, refl, }, } /-- A `sigma` with `plift` fibers is equivalent to the subtype. -/ def sigma_plift_equiv_subtype {α : Type v} (P : α → Prop) : (Σ i, plift (P i)) ≃ subtype P := ((psigma_equiv_sigma _).symm.trans (psigma_congr_right (λ a, equiv.plift))).trans (psigma_equiv_subtype P) /-- A `sigma` with `λ i, ulift (plift (P i))` fibers is equivalent to `{ x // P x }`. Variant of `sigma_plift_equiv_subtype`. -/ def sigma_ulift_plift_equiv_subtype {α : Type v} (P : α → Prop) : (Σ i, ulift (plift (P i))) ≃ subtype P := (sigma_congr_right (λ a, equiv.ulift)).trans (sigma_plift_equiv_subtype P) namespace perm /-- A family of permutations `Π a, perm (β a)` generates a permuation `perm (Σ a, β₁ a)`. -/ @[reducible] def sigma_congr_right {α} {β : α → Sort*} (F : Π a, perm (β a)) : perm (Σ a, β a) := equiv.sigma_congr_right F @[simp] lemma sigma_congr_right_trans {α} {β : α → Sort*} (F : Π a, perm (β a)) (G : Π a, perm (β a)) : (sigma_congr_right F).trans (sigma_congr_right G) = sigma_congr_right (λ a, (F a).trans (G a)) := equiv.sigma_congr_right_trans F G @[simp] lemma sigma_congr_right_symm {α} {β : α → Sort*} (F : Π a, perm (β a)) : (sigma_congr_right F).symm = sigma_congr_right (λ a, (F a).symm) := equiv.sigma_congr_right_symm F @[simp] lemma sigma_congr_right_refl {α} {β : α → Sort*} : (sigma_congr_right (λ a, equiv.refl (β a))) = equiv.refl (Σ a, β a) := equiv.sigma_congr_right_refl end perm /-- An equivalence `f : α₁ ≃ α₂` generates an equivalence between `Σ a, β (f a)` and `Σ a, β a`. -/ @[simps apply] def sigma_congr_left {α₁ α₂} {β : α₂ → Sort*} (e : α₁ ≃ α₂) : (Σ a:α₁, β (e a)) ≃ (Σ a:α₂, β a) := ⟨λ a, ⟨e a.1, a.2⟩, λ a, ⟨e.symm a.1, @@eq.rec β a.2 (e.right_inv a.1).symm⟩, λ ⟨a, b⟩, match e.symm (e a), e.left_inv a : ∀ a' (h : a' = a), @sigma.mk _ (β ∘ e) _ (@@eq.rec β b (congr_arg e h.symm)) = ⟨a, b⟩ with | _, rfl := rfl end, λ ⟨a, b⟩, match e (e.symm a), _ : ∀ a' (h : a' = a), sigma.mk a' (@@eq.rec β b h.symm) = ⟨a, b⟩ with | _, rfl := rfl end⟩ /-- Transporting a sigma type through an equivalence of the base -/ def sigma_congr_left' {α₁ α₂} {β : α₁ → Sort*} (f : α₁ ≃ α₂) : (Σ a:α₁, β a) ≃ (Σ a:α₂, β (f.symm a)) := (sigma_congr_left f.symm).symm /-- Transporting a sigma type through an equivalence of the base and a family of equivalences of matching fibers -/ def sigma_congr {α₁ α₂} {β₁ : α₁ → Sort*} {β₂ : α₂ → Sort*} (f : α₁ ≃ α₂) (F : ∀ a, β₁ a ≃ β₂ (f a)) : sigma β₁ ≃ sigma β₂ := (sigma_congr_right F).trans (sigma_congr_left f) /-- `sigma` type with a constant fiber is equivalent to the product. -/ @[simps apply symm_apply] def sigma_equiv_prod (α β : Type*) : (Σ_:α, β) ≃ α × β := ⟨λ a, ⟨a.1, a.2⟩, λ a, ⟨a.1, a.2⟩, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩ /-- If each fiber of a `sigma` type is equivalent to a fixed type, then the sigma type is equivalent to the product. -/ def sigma_equiv_prod_of_equiv {α β} {β₁ : α → Sort*} (F : Π a, β₁ a ≃ β) : sigma β₁ ≃ α × β := (sigma_congr_right F).trans (sigma_equiv_prod α β) /-- Dependent product of types is associative up to an equivalence. -/ def sigma_assoc {α : Type*} {β : α → Type*} (γ : Π (a : α), β a → Type*) : (Σ (ab : Σ (a : α), β a), γ ab.1 ab.2) ≃ Σ (a : α), (Σ (b : β a), γ a b) := { to_fun := λ x, ⟨x.1.1, ⟨x.1.2, x.2⟩⟩, inv_fun := λ x, ⟨⟨x.1, x.2.1⟩, x.2.2⟩, left_inv := λ ⟨⟨a, b⟩, c⟩, rfl, right_inv := λ ⟨a, ⟨b, c⟩⟩, rfl } end section prod_congr variables {α₁ β₁ β₂ : Type*} (e : α₁ → β₁ ≃ β₂) /-- A family of equivalences `Π (a : α₁), β₁ ≃ β₂` generates an equivalence between `β₁ × α₁` and `β₂ × α₁`. -/ def prod_congr_left : β₁ × α₁ ≃ β₂ × α₁ := { to_fun := λ ab, ⟨e ab.2 ab.1, ab.2⟩, inv_fun := λ ab, ⟨(e ab.2).symm ab.1, ab.2⟩, left_inv := by { rintros ⟨a, b⟩, simp }, right_inv := by { rintros ⟨a, b⟩, simp } } @[simp] lemma prod_congr_left_apply (b : β₁) (a : α₁) : prod_congr_left e (b, a) = (e a b, a) := rfl lemma prod_congr_refl_right (e : β₁ ≃ β₂) : prod_congr e (equiv.refl α₁) = prod_congr_left (λ _, e) := by { ext ⟨a, b⟩ : 1, simp } /-- A family of equivalences `Π (a : α₁), β₁ ≃ β₂` generates an equivalence between `α₁ × β₁` and `α₁ × β₂`. -/ def prod_congr_right : α₁ × β₁ ≃ α₁ × β₂ := { to_fun := λ ab, ⟨ab.1, e ab.1 ab.2⟩, inv_fun := λ ab, ⟨ab.1, (e ab.1).symm ab.2⟩, left_inv := by { rintros ⟨a, b⟩, simp }, right_inv := by { rintros ⟨a, b⟩, simp } } @[simp] lemma prod_congr_right_apply (a : α₁) (b : β₁) : prod_congr_right e (a, b) = (a, e a b) := rfl lemma prod_congr_refl_left (e : β₁ ≃ β₂) : prod_congr (equiv.refl α₁) e = prod_congr_right (λ _, e) := by { ext ⟨a, b⟩ : 1, simp } @[simp] lemma prod_congr_left_trans_prod_comm : (prod_congr_left e).trans (prod_comm _ _) = (prod_comm _ _).trans (prod_congr_right e) := by { ext ⟨a, b⟩ : 1, simp } @[simp] lemma prod_congr_right_trans_prod_comm : (prod_congr_right e).trans (prod_comm _ _) = (prod_comm _ _).trans (prod_congr_left e) := by { ext ⟨a, b⟩ : 1, simp } lemma sigma_congr_right_sigma_equiv_prod : (sigma_congr_right e).trans (sigma_equiv_prod α₁ β₂) = (sigma_equiv_prod α₁ β₁).trans (prod_congr_right e) := by { ext ⟨a, b⟩ : 1, simp } lemma sigma_equiv_prod_sigma_congr_right : (sigma_equiv_prod α₁ β₁).symm.trans (sigma_congr_right e) = (prod_congr_right e).trans (sigma_equiv_prod α₁ β₂).symm := by { ext ⟨a, b⟩ : 1, simp } /-- A variation on `equiv.prod_congr` where the equivalence in the second component can depend on the first component. A typical example is a shear mapping, explaining the name of this declaration. -/ @[simps {fully_applied := ff}] def prod_shear {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : α₁ → β₁ ≃ β₂) : α₁ × β₁ ≃ α₂ × β₂ := { to_fun := λ x : α₁ × β₁, (e₁ x.1, e₂ x.1 x.2), inv_fun := λ y : α₂ × β₂, (e₁.symm y.1, (e₂ $ e₁.symm y.1).symm y.2), left_inv := by { rintro ⟨x₁, y₁⟩, simp only [symm_apply_apply] }, right_inv := by { rintro ⟨x₁, y₁⟩, simp only [apply_symm_apply] } } end prod_congr namespace perm variables {α₁ β₁ β₂ : Type*} [decidable_eq α₁] (a : α₁) (e : perm β₁) /-- `prod_extend_right a e` extends `e : perm β` to `perm (α × β)` by sending `(a, b)` to `(a, e b)` and keeping the other `(a', b)` fixed. -/ def prod_extend_right : perm (α₁ × β₁) := { to_fun := λ ab, if ab.fst = a then (a, e ab.snd) else ab, inv_fun := λ ab, if ab.fst = a then (a, e.symm ab.snd) else ab, left_inv := by { rintros ⟨k', x⟩, dsimp only, split_ifs with h; simp [h] }, right_inv := by { rintros ⟨k', x⟩, dsimp only, split_ifs with h; simp [h] } } @[simp] lemma prod_extend_right_apply_eq (b : β₁) : prod_extend_right a e (a, b) = (a, e b) := if_pos rfl lemma prod_extend_right_apply_ne {a a' : α₁} (h : a' ≠ a) (b : β₁) : prod_extend_right a e (a', b) = (a', b) := if_neg h lemma eq_of_prod_extend_right_ne {e : perm β₁} {a a' : α₁} {b : β₁} (h : prod_extend_right a e (a', b) ≠ (a', b)) : a' = a := by { contrapose! h, exact prod_extend_right_apply_ne _ h _ } @[simp] lemma fst_prod_extend_right (ab : α₁ × β₁) : (prod_extend_right a e ab).fst = ab.fst := begin rw [prod_extend_right, coe_fn_mk], split_ifs with h, { rw h }, { refl } end end perm section /-- The type of functions to a product `α × β` is equivalent to the type of pairs of functions `γ → α` and `γ → β`. -/ def arrow_prod_equiv_prod_arrow (α β γ : Type*) : (γ → α × β) ≃ (γ → α) × (γ → β) := ⟨λ f, (λ c, (f c).1, λ c, (f c).2), λ p c, (p.1 c, p.2 c), λ f, funext $ λ c, prod.mk.eta, λ p, by { cases p, refl }⟩ open sum /-- The type of functions on a sum type `α ⊕ β` is equivalent to the type of pairs of functions on `α` and on `β`. -/ def sum_arrow_equiv_prod_arrow (α β γ : Type*) : ((α ⊕ β) → γ) ≃ (α → γ) × (β → γ) := ⟨λ f, (f ∘ inl, f ∘ inr), λ p, sum.elim p.1 p.2, λ f, by { ext ⟨⟩; refl }, λ p, by { cases p, refl }⟩ @[simp] lemma sum_arrow_equiv_prod_arrow_apply_fst {α β γ} (f : (α ⊕ β) → γ) (a : α) : (sum_arrow_equiv_prod_arrow α β γ f).1 a = f (inl a) := rfl @[simp] lemma sum_arrow_equiv_prod_arrow_apply_snd {α β γ} (f : (α ⊕ β) → γ) (b : β) : (sum_arrow_equiv_prod_arrow α β γ f).2 b = f (inr b) := rfl @[simp] lemma sum_arrow_equiv_prod_arrow_symm_apply_inl {α β γ} (f : α → γ) (g : β → γ) (a : α) : ((sum_arrow_equiv_prod_arrow α β γ).symm (f, g)) (inl a) = f a := rfl @[simp] lemma sum_arrow_equiv_prod_arrow_symm_apply_inr {α β γ} (f : α → γ) (g : β → γ) (b : β) : ((sum_arrow_equiv_prod_arrow α β γ).symm (f, g)) (inr b) = g b := rfl /-- Type product is right distributive with respect to type sum up to an equivalence. -/ def sum_prod_distrib (α β γ : Sort*) : (α ⊕ β) × γ ≃ (α × γ) ⊕ (β × γ) := ⟨λ p, match p with (inl a, c) := inl (a, c) | (inr b, c) := inr (b, c) end, λ s, match s with inl q := (inl q.1, q.2) | inr q := (inr q.1, q.2) end, λ p, by rcases p with ⟨_ | _, _⟩; refl, λ s, by rcases s with ⟨_, _⟩ | ⟨_, _⟩; refl⟩ @[simp] theorem sum_prod_distrib_apply_left {α β γ} (a : α) (c : γ) : sum_prod_distrib α β γ (sum.inl a, c) = sum.inl (a, c) := rfl @[simp] theorem sum_prod_distrib_apply_right {α β γ} (b : β) (c : γ) : sum_prod_distrib α β γ (sum.inr b, c) = sum.inr (b, c) := rfl /-- Type product is left distributive with respect to type sum up to an equivalence. -/ def prod_sum_distrib (α β γ : Sort*) : α × (β ⊕ γ) ≃ (α × β) ⊕ (α × γ) := calc α × (β ⊕ γ) ≃ (β ⊕ γ) × α : prod_comm _ _ ... ≃ (β × α) ⊕ (γ × α) : sum_prod_distrib _ _ _ ... ≃ (α × β) ⊕ (α × γ) : sum_congr (prod_comm _ _) (prod_comm _ _) @[simp] theorem prod_sum_distrib_apply_left {α β γ} (a : α) (b : β) : prod_sum_distrib α β γ (a, sum.inl b) = sum.inl (a, b) := rfl @[simp] theorem prod_sum_distrib_apply_right {α β γ} (a : α) (c : γ) : prod_sum_distrib α β γ (a, sum.inr c) = sum.inr (a, c) := rfl /-- The product of an indexed sum of types (formally, a `sigma`-type `Σ i, α i`) by a type `β` is equivalent to the sum of products `Σ i, (α i × β)`. -/ def sigma_prod_distrib {ι : Type*} (α : ι → Type*) (β : Type*) : ((Σ i, α i) × β) ≃ (Σ i, (α i × β)) := ⟨λ p, ⟨p.1.1, (p.1.2, p.2)⟩, λ p, (⟨p.1, p.2.1⟩, p.2.2), λ p, by { rcases p with ⟨⟨_, _⟩, _⟩, refl }, λ p, by { rcases p with ⟨_, ⟨_, _⟩⟩, refl }⟩ /-- The product `bool × α` is equivalent to `α ⊕ α`. -/ def bool_prod_equiv_sum (α : Type u) : bool × α ≃ α ⊕ α := calc bool × α ≃ (unit ⊕ unit) × α : prod_congr bool_equiv_punit_sum_punit (equiv.refl _) ... ≃ (unit × α) ⊕ (unit × α) : sum_prod_distrib _ _ _ ... ≃ α ⊕ α : sum_congr (punit_prod _) (punit_prod _) /-- The function type `bool → α` is equivalent to `α × α`. -/ @[simps] def bool_arrow_equiv_prod (α : Type u) : (bool → α) ≃ α × α := { to_fun := λ f, (f tt, f ff), inv_fun := λ p b, cond b p.1 p.2, left_inv := λ f, funext $ bool.forall_bool.2 ⟨rfl, rfl⟩, right_inv := λ ⟨x, y⟩, rfl } end section open sum nat /-- The set of natural numbers is equivalent to `ℕ ⊕ punit`. -/ def nat_equiv_nat_sum_punit : ℕ ≃ ℕ ⊕ punit.{u+1} := ⟨λ n, match n with zero := inr punit.star | succ a := inl a end, λ s, match s with inl n := succ n | inr punit.star := zero end, λ n, begin cases n, repeat { refl } end, λ s, begin cases s with a u, { refl }, {cases u, { refl }} end⟩ /-- `ℕ ⊕ punit` is equivalent to `ℕ`. -/ def nat_sum_punit_equiv_nat : ℕ ⊕ punit.{u+1} ≃ ℕ := nat_equiv_nat_sum_punit.symm /-- The type of integer numbers is equivalent to `ℕ ⊕ ℕ`. -/ def int_equiv_nat_sum_nat : ℤ ≃ ℕ ⊕ ℕ := by refine ⟨_, _, _, _⟩; intro z; {cases z; [left, right]; assumption} <|> {cases z; refl} end /-- An equivalence between `α` and `β` generates an equivalence between `list α` and `list β`. -/ def list_equiv_of_equiv {α β : Type*} (e : α ≃ β) : list α ≃ list β := { to_fun := list.map e, inv_fun := list.map e.symm, left_inv := λ l, by rw [list.map_map, e.symm_comp_self, list.map_id], right_inv := λ l, by rw [list.map_map, e.self_comp_symm, list.map_id] } /-- `fin n` is equivalent to `{m // m < n}`. -/ def fin_equiv_subtype (n : ℕ) : fin n ≃ {m // m < n} := ⟨λ x, ⟨x.1, x.2⟩, λ x, ⟨x.1, x.2⟩, λ ⟨a, b⟩, rfl,λ ⟨a, b⟩, rfl⟩ /-- If `α` is equivalent to `β`, then `unique α` is equivalent to `unique β`. -/ def unique_congr (e : α ≃ β) : unique α ≃ unique β := { to_fun := λ h, @equiv.unique _ _ h e.symm, inv_fun := λ h, @equiv.unique _ _ h e, left_inv := λ _, subsingleton.elim _ _, right_inv := λ _, subsingleton.elim _ _ } /-- If `α` is equivalent to `β`, then `is_empty α` is equivalent to `is_empty β`. -/ lemma is_empty_congr (e : α ≃ β) : is_empty α ↔ is_empty β := ⟨λ h, @function.is_empty _ _ h e.symm, λ h, @function.is_empty _ _ h e⟩ protected lemma is_empty (e : α ≃ β) [is_empty β] : is_empty α := e.is_empty_congr.mpr ‹_› section open subtype /-- If `α` is equivalent to `β` and the predicates `p : α → Prop` and `q : β → Prop` are equivalent at corresponding points, then `{a // p a}` is equivalent to `{b // q b}`. For the statement where `α = β`, that is, `e : perm α`, see `perm.subtype_perm`. -/ def subtype_equiv {p : α → Prop} {q : β → Prop} (e : α ≃ β) (h : ∀ a, p a ↔ q (e a)) : {a : α // p a} ≃ {b : β // q b} := ⟨λ x, ⟨e x, (h _).1 x.2⟩, λ y, ⟨e.symm y, (h _).2 (by { simp, exact y.2 })⟩, λ ⟨x, h⟩, subtype.ext_val $ by simp, λ ⟨y, h⟩, subtype.ext_val $ by simp⟩ @[simp] lemma subtype_equiv_refl {p : α → Prop} (h : ∀ a, p a ↔ p (equiv.refl _ a) := λ a, iff.rfl) : (equiv.refl α).subtype_equiv h = equiv.refl {a : α // p a} := by { ext, refl } @[simp] lemma subtype_equiv_symm {p : α → Prop} {q : β → Prop} (e : α ≃ β) (h : ∀ (a : α), p a ↔ q (e a)) : (e.subtype_equiv h).symm = e.symm.subtype_equiv (λ a, by { convert (h $ e.symm a).symm, exact (e.apply_symm_apply a).symm }) := rfl @[simp] lemma subtype_equiv_trans {p : α → Prop} {q : β → Prop} {r : γ → Prop} (e : α ≃ β) (f : β ≃ γ) (h : ∀ (a : α), p a ↔ q (e a)) (h' : ∀ (b : β), q b ↔ r (f b)): (e.subtype_equiv h).trans (f.subtype_equiv h') = (e.trans f).subtype_equiv (λ a, (h a).trans (h' $ e a)) := rfl @[simp] lemma subtype_equiv_apply {p : α → Prop} {q : β → Prop} (e : α ≃ β) (h : ∀ (a : α), p a ↔ q (e a)) (x : {x // p x}) : e.subtype_equiv h x = ⟨e x, (h _).1 x.2⟩ := rfl /-- If two predicates `p` and `q` are pointwise equivalent, then `{x // p x}` is equivalent to `{x // q x}`. -/ @[simps] def subtype_equiv_right {p q : α → Prop} (e : ∀x, p x ↔ q x) : {x // p x} ≃ {x // q x} := subtype_equiv (equiv.refl _) e /-- If `α ≃ β`, then for any predicate `p : β → Prop` the subtype `{a // p (e a)}` is equivalent to the subtype `{b // p b}`. -/ def subtype_equiv_of_subtype {p : β → Prop} (e : α ≃ β) : {a : α // p (e a)} ≃ {b : β // p b} := subtype_equiv e $ by simp /-- If `α ≃ β`, then for any predicate `p : α → Prop` the subtype `{a // p a}` is equivalent to the subtype `{b // p (e.symm b)}`. This version is used by `equiv_rw`. -/ def subtype_equiv_of_subtype' {p : α → Prop} (e : α ≃ β) : {a : α // p a} ≃ {b : β // p (e.symm b)} := e.symm.subtype_equiv_of_subtype.symm /-- If two predicates are equal, then the corresponding subtypes are equivalent. -/ def subtype_equiv_prop {α : Type*} {p q : α → Prop} (h : p = q) : subtype p ≃ subtype q := subtype_equiv (equiv.refl α) (assume a, h ▸ iff.rfl) /-- A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates. This version allows the “inner” predicate to depend on `h : p a`. -/ def subtype_subtype_equiv_subtype_exists {α : Type u} (p : α → Prop) (q : subtype p → Prop) : subtype q ≃ {a : α // ∃h:p a, q ⟨a, h⟩ } := ⟨λ⟨⟨a, ha⟩, ha'⟩, ⟨a, ha, ha'⟩, λ⟨a, ha⟩, ⟨⟨a, ha.cases_on $ assume h _, h⟩, by { cases ha, exact ha_h }⟩, assume ⟨⟨a, ha⟩, h⟩, rfl, assume ⟨a, h₁, h₂⟩, rfl⟩ @[simp] lemma subtype_subtype_equiv_subtype_exists_apply {α : Type u} (p : α → Prop) (q : subtype p → Prop) (a) : (subtype_subtype_equiv_subtype_exists p q a : α) = a := by { cases a, cases a_val, refl } /-- A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates. -/ def subtype_subtype_equiv_subtype_inter {α : Type u} (p q : α → Prop) : {x : subtype p // q x.1} ≃ subtype (λ x, p x ∧ q x) := (subtype_subtype_equiv_subtype_exists p _).trans $ subtype_equiv_right $ λ x, exists_prop @[simp] lemma subtype_subtype_equiv_subtype_inter_apply {α : Type u} (p q : α → Prop) (a) : (subtype_subtype_equiv_subtype_inter p q a : α) = a := by { cases a, cases a_val, refl } /-- If the outer subtype has more restrictive predicate than the inner one, then we can drop the latter. -/ def subtype_subtype_equiv_subtype {α : Type u} {p q : α → Prop} (h : ∀ {x}, q x → p x) : {x : subtype p // q x.1} ≃ subtype q := (subtype_subtype_equiv_subtype_inter p _).trans $ subtype_equiv_right $ assume x, ⟨and.right, λ h₁, ⟨h h₁, h₁⟩⟩ @[simp] lemma subtype_subtype_equiv_subtype_apply {α : Type u} {p q : α → Prop} (h : ∀ x, q x → p x) (a : {x : subtype p // q x.1}) : (subtype_subtype_equiv_subtype h a : α) = a := by { cases a, cases a_val, refl } /-- If a proposition holds for all elements, then the subtype is equivalent to the original type. -/ @[simps apply symm_apply] def subtype_univ_equiv {α : Type u} {p : α → Prop} (h : ∀ x, p x) : subtype p ≃ α := ⟨λ x, x, λ x, ⟨x, h x⟩, λ x, subtype.eq rfl, λ x, rfl⟩ /-- A subtype of a sigma-type is a sigma-type over a subtype. -/ def subtype_sigma_equiv {α : Type u} (p : α → Type v) (q : α → Prop) : { y : sigma p // q y.1 } ≃ Σ(x : subtype q), p x.1 := ⟨λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩, λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩, λ ⟨⟨x, h⟩, y⟩, rfl, λ ⟨⟨x, y⟩, h⟩, rfl⟩ /-- A sigma type over a subtype is equivalent to the sigma set over the original type, if the fiber is empty outside of the subset -/ def sigma_subtype_equiv_of_subset {α : Type u} (p : α → Type v) (q : α → Prop) (h : ∀ x, p x → q x) : (Σ x : subtype q, p x) ≃ Σ x : α, p x := (subtype_sigma_equiv p q).symm.trans $ subtype_univ_equiv $ λ x, h x.1 x.2 /-- If a predicate `p : β → Prop` is true on the range of a map `f : α → β`, then `Σ y : {y // p y}, {x // f x = y}` is equivalent to `α`. -/ def sigma_subtype_preimage_equiv {α : Type u} {β : Type v} (f : α → β) (p : β → Prop) (h : ∀ x, p (f x)) : (Σ y : subtype p, {x : α // f x = y}) ≃ α := calc _ ≃ Σ y : β, {x : α // f x = y} : sigma_subtype_equiv_of_subset _ p (λ y ⟨x, h'⟩, h' ▸ h x) ... ≃ α : sigma_preimage_equiv f /-- If for each `x` we have `p x ↔ q (f x)`, then `Σ y : {y // q y}, f ⁻¹' {y}` is equivalent to `{x // p x}`. -/ def sigma_subtype_preimage_equiv_subtype {α : Type u} {β : Type v} (f : α → β) {p : α → Prop} {q : β → Prop} (h : ∀ x, p x ↔ q (f x)) : (Σ y : subtype q, {x : α // f x = y}) ≃ subtype p := calc (Σ y : subtype q, {x : α // f x = y}) ≃ Σ y : subtype q, {x : subtype p // subtype.mk (f x) ((h x).1 x.2) = y} : begin apply sigma_congr_right, assume y, symmetry, refine (subtype_subtype_equiv_subtype_exists _ _).trans (subtype_equiv_right _), assume x, exact ⟨λ ⟨hp, h'⟩, congr_arg subtype.val h', λ h', ⟨(h x).2 (h'.symm ▸ y.2), subtype.eq h'⟩⟩ end ... ≃ subtype p : sigma_preimage_equiv (λ x : subtype p, (⟨f x, (h x).1 x.property⟩ : subtype q)) /-- A sigma type over an `option` is equivalent to the sigma set over the original type, if the fiber is empty at none. -/ def sigma_option_equiv_of_some {α : Type u} (p : option α → Type v) (h : p none → false) : (Σ x : option α, p x) ≃ (Σ x : α, p (some x)) := begin have h' : ∀ x, p x → x.is_some, { intro x, cases x, { intro n, exfalso, exact h n }, { intro s, exact rfl } }, exact (sigma_subtype_equiv_of_subset _ _ h').symm.trans (sigma_congr_left' (option_is_some_equiv α)), end /-- The `pi`-type `Π i, π i` is equivalent to the type of sections `f : ι → Σ i, π i` of the `sigma` type such that for all `i` we have `(f i).fst = i`. -/ def pi_equiv_subtype_sigma (ι : Type*) (π : ι → Type*) : (Π i, π i) ≃ {f : ι → Σ i, π i // ∀ i, (f i).1 = i } := ⟨ λf, ⟨λi, ⟨i, f i⟩, assume i, rfl⟩, λf i, begin rw ← f.2 i, exact (f.1 i).2 end, assume f, funext $ assume i, rfl, assume ⟨f, hf⟩, subtype.eq $ funext $ assume i, sigma.eq (hf i).symm $ eq_of_heq $ rec_heq_of_heq _ $ rec_heq_of_heq _ $ heq.refl _⟩ /-- The set of functions `f : Π a, β a` such that for all `a` we have `p a (f a)` is equivalent to the set of functions `Π a, {b : β a // p a b}`. -/ def subtype_pi_equiv_pi {α : Sort u} {β : α → Sort v} {p : Πa, β a → Prop} : {f : Πa, β a // ∀a, p a (f a) } ≃ Πa, { b : β a // p a b } := ⟨λf a, ⟨f.1 a, f.2 a⟩, λf, ⟨λa, (f a).1, λa, (f a).2⟩, by { rintro ⟨f, h⟩, refl }, by { rintro f, funext a, exact subtype.ext_val rfl }⟩ /-- A subtype of a product defined by componentwise conditions is equivalent to a product of subtypes. -/ def subtype_prod_equiv_prod {α : Type u} {β : Type v} {p : α → Prop} {q : β → Prop} : {c : α × β // p c.1 ∧ q c.2} ≃ ({a // p a} × {b // q b}) := ⟨λ x, ⟨⟨x.1.1, x.2.1⟩, ⟨x.1.2, x.2.2⟩⟩, λ x, ⟨⟨x.1.1, x.2.1⟩, ⟨x.1.2, x.2.2⟩⟩, λ ⟨⟨_, _⟩, ⟨_, _⟩⟩, rfl, λ ⟨⟨_, _⟩, ⟨_, _⟩⟩, rfl⟩ /-- A subtype of a `prod` is equivalent to a sigma type whose fibers are subtypes. -/ def subtype_prod_equiv_sigma_subtype {α β : Type*} (p : α → β → Prop) : {x : α × β // p x.1 x.2} ≃ Σ a, {b : β // p a b} := { to_fun := λ x, ⟨x.1.1, x.1.2, x.prop⟩, inv_fun := λ x, ⟨⟨x.1, x.2⟩, x.2.prop⟩, left_inv := λ x, by ext; refl, right_inv := λ ⟨a, b, pab⟩, rfl } /-- The type `Π (i : α), β i` can be split as a product by separating the indices in `α` depending on whether they satisfy a predicate `p` or not. -/ @[simps] def pi_equiv_pi_subtype_prod {α : Type*} (p : α → Prop) (β : α → Type*) [decidable_pred p] : (Π (i : α), β i) ≃ (Π (i : {x // p x}), β i) × (Π (i : {x // ¬ p x}), β i) := { to_fun := λ f, (λ x, f x, λ x, f x), inv_fun := λ f x, if h : p x then f.1 ⟨x, h⟩ else f.2 ⟨x, h⟩, right_inv := begin rintros ⟨f, g⟩, ext1; { ext y, rcases y, simp only [y_property, dif_pos, dif_neg, not_false_iff, subtype.coe_mk], refl }, end, left_inv := λ f, begin ext x, by_cases h : p x; { simp only [h, dif_neg, dif_pos, not_false_iff], refl }, end } end section subtype_equiv_codomain variables {X : Type*} {Y : Type*} [decidable_eq X] {x : X} /-- The type of all functions `X → Y` with prescribed values for all `x' ≠ x` is equivalent to the codomain `Y`. -/ def subtype_equiv_codomain (f : {x' // x' ≠ x} → Y) : {g : X → Y // g ∘ coe = f} ≃ Y := (subtype_preimage _ f).trans $ @fun_unique {x' // ¬ x' ≠ x} _ $ show unique {x' // ¬ x' ≠ x}, from @equiv.unique _ _ (show unique {x' // x' = x}, from { default := ⟨x, rfl⟩, uniq := λ ⟨x', h⟩, subtype.val_injective h }) (subtype_equiv_right $ λ a, not_not) @[simp] lemma coe_subtype_equiv_codomain (f : {x' // x' ≠ x} → Y) : (subtype_equiv_codomain f : {g : X → Y // g ∘ coe = f} → Y) = λ g, (g : X → Y) x := rfl @[simp] lemma subtype_equiv_codomain_apply (f : {x' // x' ≠ x} → Y) (g : {g : X → Y // g ∘ coe = f}) : subtype_equiv_codomain f g = (g : X → Y) x := rfl lemma coe_subtype_equiv_codomain_symm (f : {x' // x' ≠ x} → Y) : ((subtype_equiv_codomain f).symm : Y → {g : X → Y // g ∘ coe = f}) = λ y, ⟨λ x', if h : x' ≠ x then f ⟨x', h⟩ else y, by { funext x', dsimp, erw [dif_pos x'.2, subtype.coe_eta] }⟩ := rfl @[simp] lemma subtype_equiv_codomain_symm_apply (f : {x' // x' ≠ x} → Y) (y : Y) (x' : X) : ((subtype_equiv_codomain f).symm y : X → Y) x' = if h : x' ≠ x then f ⟨x', h⟩ else y := rfl @[simp] lemma subtype_equiv_codomain_symm_apply_eq (f : {x' // x' ≠ x} → Y) (y : Y) : ((subtype_equiv_codomain f).symm y : X → Y) x = y := dif_neg (not_not.mpr rfl) lemma subtype_equiv_codomain_symm_apply_ne (f : {x' // x' ≠ x} → Y) (y : Y) (x' : X) (h : x' ≠ x) : ((subtype_equiv_codomain f).symm y : X → Y) x' = f ⟨x', h⟩ := dif_pos h end subtype_equiv_codomain /-- If `f` is a bijective function, then its domain is equivalent to its codomain. -/ @[simps apply] noncomputable def of_bijective {α β} (f : α → β) (hf : bijective f) : α ≃ β := { to_fun := f, inv_fun := function.surj_inv hf.surjective, left_inv := function.left_inverse_surj_inv hf, right_inv := function.right_inverse_surj_inv _} lemma of_bijective_apply_symm_apply {α β} (f : α → β) (hf : bijective f) (x : β) : f ((of_bijective f hf).symm x) = x := (of_bijective f hf).apply_symm_apply x @[simp] lemma of_bijective_symm_apply_apply {α β} (f : α → β) (hf : bijective f) (x : α) : (of_bijective f hf).symm (f x) = x := (of_bijective f hf).symm_apply_apply x section variables {α' β' : Type*} (e : perm α') {p : β' → Prop} [decidable_pred p] (f : α' ≃ subtype p) /-- Extend the domain of `e : equiv.perm α` to one that is over `β` via `f : α → subtype p`, where `p : β → Prop`, permuting only the `b : β` that satisfy `p b`. This can be used to extend the domain across a function `f : α → β`, keeping everything outside of `set.range f` fixed. For this use-case `equiv` given by `f` can be constructed by `equiv.of_left_inverse'` or `equiv.of_left_inverse` when there is a known inverse, or `equiv.of_injective` in the general case.`. -/ def perm.extend_domain : perm β' := (perm_congr f e).subtype_congr (equiv.refl _) @[simp] lemma perm.extend_domain_apply_image (a : α') : e.extend_domain f (f a) = f (e a) := by simp [perm.extend_domain] lemma perm.extend_domain_apply_subtype {b : β'} (h : p b) : e.extend_domain f b = f (e (f.symm ⟨b, h⟩)) := by simp [perm.extend_domain, h] lemma perm.extend_domain_apply_not_subtype {b : β'} (h : ¬ p b) : e.extend_domain f b = b := by simp [perm.extend_domain, h] @[simp] lemma perm.extend_domain_refl : perm.extend_domain (equiv.refl _) f = equiv.refl _ := by simp [perm.extend_domain] @[simp] lemma perm.extend_domain_symm : (e.extend_domain f).symm = perm.extend_domain e.symm f := rfl lemma perm.extend_domain_trans (e e' : perm α') : (e.extend_domain f).trans (e'.extend_domain f) = perm.extend_domain (e.trans e') f := by simp [perm.extend_domain, perm_congr_trans] end /-- Subtype of the quotient is equivalent to the quotient of the subtype. Let `α` be a setoid with equivalence relation `~`. Let `p₂` be a predicate on the quotient type `α/~`, and `p₁` be the lift of this predicate to `α`: `p₁ a ↔ p₂ ⟦a⟧`. Let `~₂` be the restriction of `~` to `{x // p₁ x}`. Then `{x // p₂ x}` is equivalent to the quotient of `{x // p₁ x}` by `~₂`. -/ def subtype_quotient_equiv_quotient_subtype (p₁ : α → Prop) [s₁ : setoid α] [s₂ : setoid (subtype p₁)] (p₂ : quotient s₁ → Prop) (hp₂ : ∀ a, p₁ a ↔ p₂ ⟦a⟧) (h : ∀ x y : subtype p₁, @setoid.r _ s₂ x y ↔ (x : α) ≈ y) : {x // p₂ x} ≃ quotient s₂ := { to_fun := λ a, quotient.hrec_on a.1 (λ a h, ⟦⟨a, (hp₂ _).2 h⟩⟧) (λ a b hab, hfunext (by rw quotient.sound hab) (λ h₁ h₂ _, heq_of_eq (quotient.sound ((h _ _).2 hab)))) a.2, inv_fun := λ a, quotient.lift_on a (λ a, (⟨⟦a.1⟧, (hp₂ _).1 a.2⟩ : {x // p₂ x})) (λ a b hab, subtype.ext_val (quotient.sound ((h _ _).1 hab))), left_inv := λ ⟨a, ha⟩, quotient.induction_on a (λ a ha, rfl) ha, right_inv := λ a, quotient.induction_on a (λ ⟨a, ha⟩, rfl) } @[simp] lemma subtype_quotient_equiv_quotient_subtype_mk (p₁ : α → Prop) [s₁ : setoid α] [s₂ : setoid (subtype p₁)] (p₂ : quotient s₁ → Prop) (hp₂ : ∀ a, p₁ a ↔ p₂ ⟦a⟧) (h : ∀ x y : subtype p₁, @setoid.r _ s₂ x y ↔ (x : α) ≈ y) (x hx) : subtype_quotient_equiv_quotient_subtype p₁ p₂ hp₂ h ⟨⟦x⟧, hx⟩ = ⟦⟨x, (hp₂ _).2 hx⟩⟧ := rfl @[simp] lemma subtype_quotient_equiv_quotient_subtype_symm_mk (p₁ : α → Prop) [s₁ : setoid α] [s₂ : setoid (subtype p₁)] (p₂ : quotient s₁ → Prop) (hp₂ : ∀ a, p₁ a ↔ p₂ ⟦a⟧) (h : ∀ x y : subtype p₁, @setoid.r _ s₂ x y ↔ (x : α) ≈ y) (x) : (subtype_quotient_equiv_quotient_subtype p₁ p₂ hp₂ h).symm ⟦x⟧ = ⟨⟦x⟧, (hp₂ _).1 x.prop⟩ := rfl section swap variable [decidable_eq α] /-- A helper function for `equiv.swap`. -/ def swap_core (a b r : α) : α := if r = a then b else if r = b then a else r theorem swap_core_self (r a : α) : swap_core a a r = r := by { unfold swap_core, split_ifs; cc } theorem swap_core_swap_core (r a b : α) : swap_core a b (swap_core a b r) = r := by { unfold swap_core, split_ifs; cc } theorem swap_core_comm (r a b : α) : swap_core a b r = swap_core b a r := by { unfold swap_core, split_ifs; cc } /-- `swap a b` is the permutation that swaps `a` and `b` and leaves other values as is. -/ def swap (a b : α) : perm α := ⟨swap_core a b, swap_core a b, λr, swap_core_swap_core r a b, λr, swap_core_swap_core r a b⟩ @[simp] theorem swap_self (a : α) : swap a a = equiv.refl _ := ext $ λ r, swap_core_self r a theorem swap_comm (a b : α) : swap a b = swap b a := ext $ λ r, swap_core_comm r _ _ theorem swap_apply_def (a b x : α) : swap a b x = if x = a then b else if x = b then a else x := rfl @[simp] theorem swap_apply_left (a b : α) : swap a b a = b := if_pos rfl @[simp] theorem swap_apply_right (a b : α) : swap a b b = a := by { by_cases h : b = a; simp [swap_apply_def, h], } theorem swap_apply_of_ne_of_ne {a b x : α} : x ≠ a → x ≠ b → swap a b x = x := by simp [swap_apply_def] {contextual := tt} @[simp] theorem swap_swap (a b : α) : (swap a b).trans (swap a b) = equiv.refl _ := ext $ λ x, swap_core_swap_core _ _ _ @[simp] lemma symm_swap (a b : α) : (swap a b).symm = swap a b := rfl @[simp] lemma swap_eq_refl_iff {x y : α} : swap x y = equiv.refl _ ↔ x = y := begin refine ⟨λ h, (equiv.refl _).injective _, λ h, h ▸ (swap_self _)⟩, rw [←h, swap_apply_left, h, refl_apply] end theorem swap_comp_apply {a b x : α} (π : perm α) : π.trans (swap a b) x = if π x = a then b else if π x = b then a else π x := by { cases π, refl } lemma swap_eq_update (i j : α) : (equiv.swap i j : α → α) = update (update id j i) i j := funext $ λ x, by rw [update_apply _ i j, update_apply _ j i, equiv.swap_apply_def, id.def] lemma comp_swap_eq_update (i j : α) (f : α → β) : f ∘ equiv.swap i j = update (update f j (f i)) i (f j) := by rw [swap_eq_update, comp_update, comp_update, comp.right_id] @[simp] lemma symm_trans_swap_trans [decidable_eq β] (a b : α) (e : α ≃ β) : (e.symm.trans (swap a b)).trans e = swap (e a) (e b) := equiv.ext (λ x, begin have : ∀ a, e.symm x = a ↔ x = e a := λ a, by { rw @eq_comm _ (e.symm x), split; intros; simp * at * }, simp [swap_apply_def, this], split_ifs; simp end) @[simp] lemma trans_swap_trans_symm [decidable_eq β] (a b : β) (e : α ≃ β) : (e.trans (swap a b)).trans e.symm = swap (e.symm a) (e.symm b) := symm_trans_swap_trans a b e.symm @[simp] lemma swap_apply_self (i j a : α) : swap i j (swap i j a) = a := by rw [← equiv.trans_apply, equiv.swap_swap, equiv.refl_apply] /-- A function is invariant to a swap if it is equal at both elements -/ lemma apply_swap_eq_self {v : α → β} {i j : α} (hv : v i = v j) (k : α) : v (swap i j k) = v k := begin by_cases hi : k = i, { rw [hi, swap_apply_left, hv] }, by_cases hj : k = j, { rw [hj, swap_apply_right, hv] }, rw swap_apply_of_ne_of_ne hi hj, end lemma swap_apply_eq_iff {x y z w : α} : swap x y z = w ↔ z = swap x y w := by rw [apply_eq_iff_eq_symm_apply, symm_swap] lemma swap_apply_ne_self_iff {a b x : α} : swap a b x ≠ x ↔ a ≠ b ∧ (x = a ∨ x = b) := begin by_cases hab : a = b, { simp [hab] }, by_cases hax : x = a, { simp [hax, eq_comm] }, by_cases hbx : x = b, { simp [hbx] }, simp [hab, hax, hbx, swap_apply_of_ne_of_ne] end namespace perm @[simp] lemma sum_congr_swap_refl {α β : Sort*} [decidable_eq α] [decidable_eq β] (i j : α) : equiv.perm.sum_congr (equiv.swap i j) (equiv.refl β) = equiv.swap (sum.inl i) (sum.inl j) := begin ext x, cases x, { simp [sum.map, swap_apply_def], split_ifs; refl}, { simp [sum.map, swap_apply_of_ne_of_ne] }, end @[simp] lemma sum_congr_refl_swap {α β : Sort*} [decidable_eq α] [decidable_eq β] (i j : β) : equiv.perm.sum_congr (equiv.refl α) (equiv.swap i j) = equiv.swap (sum.inr i) (sum.inr j) := begin ext x, cases x, { simp [sum.map, swap_apply_of_ne_of_ne] }, { simp [sum.map, swap_apply_def], split_ifs; refl}, end end perm /-- Augment an equivalence with a prescribed mapping `f a = b` -/ def set_value (f : α ≃ β) (a : α) (b : β) : α ≃ β := (swap a (f.symm b)).trans f @[simp] theorem set_value_eq (f : α ≃ β) (a : α) (b : β) : set_value f a b a = b := by { dsimp [set_value], simp [swap_apply_left] } end swap end equiv lemma plift.eq_up_iff_down_eq {x : plift α} {y : α} : x = plift.up y ↔ x.down = y := equiv.plift.eq_symm_apply lemma function.injective.map_swap {α β : Type*} [decidable_eq α] [decidable_eq β] {f : α → β} (hf : function.injective f) (x y z : α) : f (equiv.swap x y z) = equiv.swap (f x) (f y) (f z) := begin conv_rhs { rw equiv.swap_apply_def }, split_ifs with h₁ h₂, { rw [hf h₁, equiv.swap_apply_left] }, { rw [hf h₂, equiv.swap_apply_right] }, { rw [equiv.swap_apply_of_ne_of_ne (mt (congr_arg f) h₁) (mt (congr_arg f) h₂)] } end namespace equiv protected lemma exists_unique_congr {p : α → Prop} {q : β → Prop} (f : α ≃ β) (h : ∀{x}, p x ↔ q (f x)) : (∃! x, p x) ↔ ∃! y, q y := begin split, { rintro ⟨a, ha₁, ha₂⟩, exact ⟨f a, h.1 ha₁, λ b hb, f.symm_apply_eq.1 (ha₂ (f.symm b) (h.2 (by simpa using hb)))⟩ }, { rintro ⟨b, hb₁, hb₂⟩, exact ⟨f.symm b, h.2 (by simpa using hb₁), λ y hy, (eq_symm_apply f).2 (hb₂ _ (h.1 hy))⟩ } end protected lemma exists_unique_congr_left' {p : α → Prop} (f : α ≃ β) : (∃! x, p x) ↔ (∃! y, p (f.symm y)) := equiv.exists_unique_congr f (λx, by simp) protected lemma exists_unique_congr_left {p : β → Prop} (f : α ≃ β) : (∃! x, p (f x)) ↔ (∃! y, p y) := (equiv.exists_unique_congr_left' f.symm).symm protected lemma forall_congr {p : α → Prop} {q : β → Prop} (f : α ≃ β) (h : ∀{x}, p x ↔ q (f x)) : (∀x, p x) ↔ (∀y, q y) := begin split; intros h₂ x, { rw [←f.right_inv x], apply h.mp, apply h₂ }, apply h.mpr, apply h₂ end protected lemma forall_congr' {p : α → Prop} {q : β → Prop} (f : α ≃ β) (h : ∀{x}, p (f.symm x) ↔ q x) : (∀x, p x) ↔ (∀y, q y) := (equiv.forall_congr f.symm (λ x, h.symm)).symm -- We next build some higher arity versions of `equiv.forall_congr`. -- Although they appear to just be repeated applications of `equiv.forall_congr`, -- unification of metavariables works better with these versions. -- In particular, they are necessary in `equiv_rw`. -- (Stopping at ternary functions seems reasonable: at least in 1-categorical mathematics, -- it's rare to have axioms involving more than 3 elements at once.) universes ua1 ua2 ub1 ub2 ug1 ug2 variables {α₁ : Sort ua1} {α₂ : Sort ua2} {β₁ : Sort ub1} {β₂ : Sort ub2} {γ₁ : Sort ug1} {γ₂ : Sort ug2} protected lemma forall₂_congr {p : α₁ → β₁ → Prop} {q : α₂ → β₂ → Prop} (eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (h : ∀{x y}, p x y ↔ q (eα x) (eβ y)) : (∀x y, p x y) ↔ (∀x y, q x y) := begin apply equiv.forall_congr, intros, apply equiv.forall_congr, intros, apply h, end protected lemma forall₂_congr' {p : α₁ → β₁ → Prop} {q : α₂ → β₂ → Prop} (eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (h : ∀{x y}, p (eα.symm x) (eβ.symm y) ↔ q x y) : (∀x y, p x y) ↔ (∀x y, q x y) := (equiv.forall₂_congr eα.symm eβ.symm (λ x y, h.symm)).symm protected lemma forall₃_congr {p : α₁ → β₁ → γ₁ → Prop} {q : α₂ → β₂ → γ₂ → Prop} (eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (eγ : γ₁ ≃ γ₂) (h : ∀{x y z}, p x y z ↔ q (eα x) (eβ y) (eγ z)) : (∀x y z, p x y z) ↔ (∀x y z, q x y z) := begin apply equiv.forall₂_congr, intros, apply equiv.forall_congr, intros, apply h, end protected lemma forall₃_congr' {p : α₁ → β₁ → γ₁ → Prop} {q : α₂ → β₂ → γ₂ → Prop} (eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (eγ : γ₁ ≃ γ₂) (h : ∀{x y z}, p (eα.symm x) (eβ.symm y) (eγ.symm z) ↔ q x y z) : (∀x y z, p x y z) ↔ (∀x y z, q x y z) := (equiv.forall₃_congr eα.symm eβ.symm eγ.symm (λ x y z, h.symm)).symm protected lemma forall_congr_left' {p : α → Prop} (f : α ≃ β) : (∀x, p x) ↔ (∀y, p (f.symm y)) := equiv.forall_congr f (λx, by simp) protected lemma forall_congr_left {p : β → Prop} (f : α ≃ β) : (∀x, p (f x)) ↔ (∀y, p y) := (equiv.forall_congr_left' f.symm).symm protected lemma exists_congr_left {α β} (f : α ≃ β) {p : α → Prop} : (∃ a, p a) ↔ (∃ b, p (f.symm b)) := ⟨λ ⟨a, h⟩, ⟨f a, by simpa using h⟩, λ ⟨b, h⟩, ⟨_, h⟩⟩ section variables (P : α → Sort w) (e : α ≃ β) /-- Transport dependent functions through an equivalence of the base space. -/ @[simps] def Pi_congr_left' : (Π a, P a) ≃ (Π b, P (e.symm b)) := { to_fun := λ f x, f (e.symm x), inv_fun := λ f x, begin rw [← e.symm_apply_apply x], exact f (e x) end, left_inv := λ f, funext $ λ x, eq_of_heq ((eq_rec_heq _ _).trans (by { dsimp, rw e.symm_apply_apply })), right_inv := λ f, funext $ λ x, eq_of_heq ((eq_rec_heq _ _).trans (by { rw e.apply_symm_apply })) } end section variables (P : β → Sort w) (e : α ≃ β) /-- Transporting dependent functions through an equivalence of the base, expressed as a "simplification". -/ def Pi_congr_left : (Π a, P (e a)) ≃ (Π b, P b) := (Pi_congr_left' P e.symm).symm end section variables {W : α → Sort w} {Z : β → Sort z} (h₁ : α ≃ β) (h₂ : Π a : α, (W a ≃ Z (h₁ a))) /-- Transport dependent functions through an equivalence of the base spaces and a family of equivalences of the matching fibers. -/ def Pi_congr : (Π a, W a) ≃ (Π b, Z b) := (equiv.Pi_congr_right h₂).trans (equiv.Pi_congr_left _ h₁) @[simp] lemma coe_Pi_congr_symm : ((h₁.Pi_congr h₂).symm : (Π b, Z b) → (Π a, W a)) = λ f a, (h₂ a).symm (f (h₁ a)) := rfl lemma Pi_congr_symm_apply (f : Π b, Z b) : (h₁.Pi_congr h₂).symm f = λ a, (h₂ a).symm (f (h₁ a)) := rfl @[simp] lemma Pi_congr_apply_apply (f : Π a, W a) (a : α) : h₁.Pi_congr h₂ f (h₁ a) = h₂ a (f a) := begin change cast _ ((h₂ (h₁.symm (h₁ a))) (f (h₁.symm (h₁ a)))) = (h₂ a) (f a), generalize_proofs hZa, revert hZa, rw h₁.symm_apply_apply a, simp, end end section variables {W : α → Sort w} {Z : β → Sort z} (h₁ : α ≃ β) (h₂ : Π b : β, (W (h₁.symm b) ≃ Z b)) /-- Transport dependent functions through an equivalence of the base spaces and a family of equivalences of the matching fibres. -/ def Pi_congr' : (Π a, W a) ≃ (Π b, Z b) := (Pi_congr h₁.symm (λ b, (h₂ b).symm)).symm @[simp] lemma coe_Pi_congr' : (h₁.Pi_congr' h₂ : (Π a, W a) → (Π b, Z b)) = λ f b, h₂ b $ f $ h₁.symm b := rfl lemma Pi_congr'_apply (f : Π a, W a) : h₁.Pi_congr' h₂ f = λ b, h₂ b $ f $ h₁.symm b := rfl @[simp] lemma Pi_congr'_symm_apply_symm_apply (f : Π b, Z b) (b : β) : (h₁.Pi_congr' h₂).symm f (h₁.symm b) = (h₂ b).symm (f b) := begin change cast _ ((h₂ (h₁ (h₁.symm b))).symm (f (h₁ (h₁.symm b)))) = (h₂ b).symm (f b), generalize_proofs hWb, revert hWb, generalize hb : h₁ (h₁.symm b) = b', rw h₁.apply_symm_apply b at hb, subst hb, simp, end end end equiv lemma function.injective.swap_apply [decidable_eq α] [decidable_eq β] {f : α → β} (hf : function.injective f) (x y z : α) : equiv.swap (f x) (f y) (f z) = f (equiv.swap x y z) := begin by_cases hx : z = x, by simp [hx], by_cases hy : z = y, by simp [hy], rw [equiv.swap_apply_of_ne_of_ne hx hy, equiv.swap_apply_of_ne_of_ne (hf.ne hx) (hf.ne hy)] end lemma function.injective.swap_comp [decidable_eq α] [decidable_eq β] {f : α → β} (hf : function.injective f) (x y : α) : equiv.swap (f x) (f y) ∘ f = f ∘ equiv.swap x y := funext $ λ z, hf.swap_apply _ _ _ /-- If both `α` and `β` are singletons, then `α ≃ β`. -/ def equiv_of_unique_of_unique [unique α] [unique β] : α ≃ β := { to_fun := λ _, default, inv_fun := λ _, default, left_inv := λ _, subsingleton.elim _ _, right_inv := λ _, subsingleton.elim _ _ } /-- If `α` is a singleton, then it is equivalent to any `punit`. -/ def equiv_punit_of_unique [unique α] : α ≃ punit.{v} := equiv_of_unique_of_unique /-- If `α` is a subsingleton, then it is equivalent to `α × α`. -/ def subsingleton_prod_self_equiv {α : Type*} [subsingleton α] : α × α ≃ α := { to_fun := λ p, p.1, inv_fun := λ a, (a, a), left_inv := λ p, subsingleton.elim _ _, right_inv := λ p, subsingleton.elim _ _, } /-- To give an equivalence between two subsingleton types, it is sufficient to give any two functions between them. -/ def equiv_of_subsingleton_of_subsingleton [subsingleton α] [subsingleton β] (f : α → β) (g : β → α) : α ≃ β := { to_fun := f, inv_fun := g, left_inv := λ _, subsingleton.elim _ _, right_inv := λ _, subsingleton.elim _ _ } /-- A nonempty subsingleton type is (noncomputably) equivalent to `punit`. -/ noncomputable def equiv.punit_of_nonempty_of_subsingleton {α : Sort*} [h : nonempty α] [subsingleton α] : α ≃ punit.{v} := equiv_of_subsingleton_of_subsingleton (λ _, punit.star) (λ _, h.some) /-- `unique (unique α)` is equivalent to `unique α`. -/ def unique_unique_equiv : unique (unique α) ≃ unique α := equiv_of_subsingleton_of_subsingleton (λ h, h.default) (λ h, { default := h, uniq := λ _, subsingleton.elim _ _ }) namespace quot /-- An equivalence `e : α ≃ β` generates an equivalence between quotient spaces, if `ra a₁ a₂ ↔ rb (e a₁) (e a₂). -/ protected def congr {ra : α → α → Prop} {rb : β → β → Prop} (e : α ≃ β) (eq : ∀a₁ a₂, ra a₁ a₂ ↔ rb (e a₁) (e a₂)) : quot ra ≃ quot rb := { to_fun := quot.map e (assume a₁ a₂, (eq a₁ a₂).1), inv_fun := quot.map e.symm (assume b₁ b₂ h, (eq (e.symm b₁) (e.symm b₂)).2 ((e.apply_symm_apply b₁).symm ▸ (e.apply_symm_apply b₂).symm ▸ h)), left_inv := by { rintros ⟨a⟩, dunfold quot.map, simp only [equiv.symm_apply_apply] }, right_inv := by { rintros ⟨a⟩, dunfold quot.map, simp only [equiv.apply_symm_apply] } } @[simp] lemma congr_mk {ra : α → α → Prop} {rb : β → β → Prop} (e : α ≃ β) (eq : ∀ (a₁ a₂ : α), ra a₁ a₂ ↔ rb (e a₁) (e a₂)) (a : α) : quot.congr e eq (quot.mk ra a) = quot.mk rb (e a) := rfl /-- Quotients are congruent on equivalences under equality of their relation. An alternative is just to use rewriting with `eq`, but then computational proofs get stuck. -/ protected def congr_right {r r' : α → α → Prop} (eq : ∀a₁ a₂, r a₁ a₂ ↔ r' a₁ a₂) : quot r ≃ quot r' := quot.congr (equiv.refl α) eq /-- An equivalence `e : α ≃ β` generates an equivalence between the quotient space of `α` by a relation `ra` and the quotient space of `β` by the image of this relation under `e`. -/ protected def congr_left {r : α → α → Prop} (e : α ≃ β) : quot r ≃ quot (λ b b', r (e.symm b) (e.symm b')) := @quot.congr α β r (λ b b', r (e.symm b) (e.symm b')) e (λ a₁ a₂, by simp only [e.symm_apply_apply]) end quot namespace quotient /-- An equivalence `e : α ≃ β` generates an equivalence between quotient spaces, if `ra a₁ a₂ ↔ rb (e a₁) (e a₂). -/ protected def congr {ra : setoid α} {rb : setoid β} (e : α ≃ β) (eq : ∀a₁ a₂, @setoid.r α ra a₁ a₂ ↔ @setoid.r β rb (e a₁) (e a₂)) : quotient ra ≃ quotient rb := quot.congr e eq @[simp] lemma congr_mk {ra : setoid α} {rb : setoid β} (e : α ≃ β) (eq : ∀ (a₁ a₂ : α), setoid.r a₁ a₂ ↔ setoid.r (e a₁) (e a₂)) (a : α): quotient.congr e eq (quotient.mk a) = quotient.mk (e a) := rfl /-- Quotients are congruent on equivalences under equality of their relation. An alternative is just to use rewriting with `eq`, but then computational proofs get stuck. -/ protected def congr_right {r r' : setoid α} (eq : ∀a₁ a₂, @setoid.r α r a₁ a₂ ↔ @setoid.r α r' a₁ a₂) : quotient r ≃ quotient r' := quot.congr_right eq end quotient namespace function lemma update_comp_equiv {α β α' : Sort*} [decidable_eq α'] [decidable_eq α] (f : α → β) (g : α' ≃ α) (a : α) (v : β) : update f a v ∘ g = update (f ∘ g) (g.symm a) v := by rw [← update_comp_eq_of_injective _ g.injective, g.apply_symm_apply] lemma update_apply_equiv_apply {α β α' : Sort*} [decidable_eq α'] [decidable_eq α] (f : α → β) (g : α' ≃ α) (a : α) (v : β) (a' : α') : update f a v (g a') = update (f ∘ g) (g.symm a) v a' := congr_fun (update_comp_equiv f g a v) a' lemma Pi_congr_left'_update [decidable_eq α] [decidable_eq β] (P : α → Sort*) (e : α ≃ β) (f : Π a, P a) (b : β) (x : P (e.symm b)) : e.Pi_congr_left' P (update f (e.symm b) x) = update (e.Pi_congr_left' P f) b x := begin ext b', rcases eq_or_ne b' b with rfl | h, { simp, }, { simp [h], }, end lemma Pi_congr_left'_symm_update [decidable_eq α] [decidable_eq β] (P : α → Sort*) (e : α ≃ β) (f : Π b, P (e.symm b)) (b : β) (x : P (e.symm b)) : (e.Pi_congr_left' P).symm (update f b x) = update ((e.Pi_congr_left' P).symm f) (e.symm b) x := by simp [(e.Pi_congr_left' P).symm_apply_eq, Pi_congr_left'_update] end function
a534deb422ad6af571bcf772b440c9c069b2f8cc
a76f677b87d42a9470ba3a0a78cfddd3063118e6
/src/congruence/perpendicular.lean
4dd13793b487905c2a7644b74379dd65db0e1d88
[]
no_license
Ja1941/hilberts-axioms
50219c732ad5fa167408432e8c8baae259777a40
5b653a92e448b77da41c9893066b641bc4e6b316
refs/heads/master
1,693,238,884,856
1,635,702,120,000
1,635,702,120,000
385,546,384
9
1
null
null
null
null
UTF-8
Lean
false
false
6,664
lean
/- Copyright (c) 2021 Tianchen Zhao. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Tianchen Zhao -/ import congruence.ang_lt /-! # Right angles and perpendicularity This file defines right angles using `supplementary` and how two lines are perpendicular, proves that all right angles are congruent ## Main definitions * `is_right_ang` defines a right angle. * `perpendicular` means two lines intersects at 90°. ## References * See [Geometry: Euclid and Beyond] -/ open incidence_geometry incidence_order_geometry hilbert_plane variables [C : hilbert_plane] include C /--An ang is a right ang if it is congruent to its supplementary ang. -/ def is_right_ang (α : ang) : Prop := ang_proper α ∧ ∀ β : ang, supplementary α β → (α ≅ₐ β) lemma supplementary_exist {α : ang} (haob : ang_proper α) : ∃ β : ang, supplementary α β := begin rcases ang_three_pt α with ⟨a, b, h⟩, rw h, rw [h, ang_proper_iff_noncol] at haob, set o := α.vertex, have hob := (noncol_neq haob).2.2, cases between_extend hob.symm with c hboc, have hoc := (between_neq hboc).2.2, use (∠ a o c), rw three_pt_ang_supplementary, split, exact hboc, split, exact haob, exact noncol132 (col_noncol (col12 (between_col hboc)) (noncol123 haob) hoc), end lemma right_ang_congr {α β : ang} : (α ≅ₐ β) → is_right_ang α → ang_proper β → is_right_ang β := begin intros hαβ hα hβ, split, exact hβ, intros β' hββ', cases supplementary_exist hα.1 with α' hαα', exact ang_congr_trans (ang_congr_trans (ang_congr_symm hαβ) (hα.2 α' hαα')) (supplementary_congr hαα' hββ' hαβ), end lemma three_pt_ang_is_right_ang {a o b c : pts} (hboc : between b o c) : is_right_ang (∠ a o b) ↔ ((∠ a o b) ≅ₐ (∠ a o c)) ∧ ang_proper (∠ a o b) := begin unfold is_right_ang, split; intro h, split, apply h.2, rw three_pt_ang_supplementary, have haob := ang_proper_iff_noncol.1 h.1, split, exact hboc, split, exact haob, exact noncol132 (col_noncol (col12 (between_col hboc)) (noncol12 (noncol13 haob)) (between_neq hboc).2.2), exact h.1, split, exact h.2, intros β hβ, rcases hβ.1 with ⟨o', a', b', c', haoba'ob', ha'oc', hb'oc'⟩, have haob := ang_proper_iff_noncol.1 h.2, have haoc := noncol132 (col_noncol (col12 (between_col hboc)) (noncol12 (noncol13 haob)) (between_neq hboc).2.2), have hoo' := ((three_pt_ang_eq_iff haob).1 haoba'ob').1, rw ←hoo' at *, cases ((three_pt_ang_eq_iff haob).1 haoba'ob').2 with H H, rw ha'oc', have : (∠ a o c) = (∠ a' o c'), rw three_pt_ang_eq_iff haoc, simp, left, split, exact H.1, apply diff_side_pt_cancel (between_diff_side_pt.1 hboc), rw between_diff_side_pt at hb'oc', exact diff_side_pt_symm (diff_same_side_pt hb'oc' (same_side_pt_symm H.2)), rw ←this, exact h.1, rw ha'oc', apply ang_congr_trans h.1, rw ang_symm, refine vertical_ang_congr _ _ _, exact noncol13 haoc, rw between_diff_side_pt, rw between_diff_side_pt at hboc, exact diff_same_side_pt hboc H.2, rw between_diff_side_pt, rw between_diff_side_pt at hb'oc', exact diff_side_pt_symm (diff_same_side_pt hb'oc' (same_side_pt_symm H.1)) end lemma right_supplementary_right {α β : ang} (hα : is_right_ang α) (hαβ : supplementary α β) : is_right_ang β := begin apply right_ang_congr, apply hα.2, exact hαβ, exact hα, exact hαβ.2.2 end lemma all_right_ang_congr {α β : ang} (hα : is_right_ang α) (hβ : is_right_ang β) : α ≅ₐ β := begin have wlog : ∀ α β : ang, is_right_ang α → is_right_ang β → (α <ₐ β) → false, intros x y hx hy hxy, rcases ang_three_pt y with ⟨a, b, haob⟩, set o := y.vertex, rw haob at hxy, rw haob at hy, have hbo := (noncol_neq (ang_proper_iff_noncol.1 hy.1)).2.2.symm, rw [ang_symm, three_pt_ang_lt] at hxy, rcases hxy with ⟨p, hpin, hp⟩, have hboa := ang_proper_iff_noncol.1 (inside_ang_proper hpin), rw inside_three_pt_ang at hpin, cases between_extend hbo with c hboc, have hco := (between_neq hboc).2.2.symm, rw three_pt_ang_is_right_ang hboc at hy, have h₁ : supplementary (∠ p o b) (∠ p o c), rw three_pt_ang_supplementary, split, exact hboc, have : noncol p o b, intro hpob, exact (same_side_line_notin hpin.1).2 (col_in23 hpob hbo.symm), split, exact this, exact noncol132 (col_noncol (col12 (between_col hboc)) (noncol123 this) hco.symm), have h₂ : supplementary (∠ a o b) (∠ a o c), rw three_pt_ang_supplementary, split, exact hboc, split, exact noncol13 hboa, exact noncol132 ((col_noncol (col12 (between_col hboc)) (noncol12 hboa)) hco.symm), have hf₁ : ((∠ p o c) <ₐ (∠ a o c)), have hbop : noncol b o p, intro hbop, rw line_symm at hpin, exact (same_side_line_notin hpin.1).2 (col_in12 hbop hbo), replace hbop := right_ang_congr (ang_congr_symm hp) hx (ang_proper_iff_noncol.2 hbop), rw ang_symm at hbop, have : ((∠ p o b) <ₐ (∠ a o b)), rw [ang_symm, ang_symm a o b, three_pt_ang_lt], exact ⟨p, inside_three_pt_ang.2 hpin, ang_congr_refl _⟩, replace h₁ := hbop.2 _ h₁, replace h₂ := hy.1, apply (ang_lt_congr h₁).1, apply (ang_lt_congr h₂).2, rw ang_proper_iff_noncol, exact noncol132 (col_noncol (col12 (between_col hboc)) (noncol12 hboa) hco.symm), exact this, have hf₂ : ((∠ a o c) <ₐ (∠ p o c)), rw [ang_symm, ang_symm p o c, three_pt_ang_lt], use a, split, rw ang_symm, exact inside_ang_trans' hboc (by {rw ang_symm, exact inside_three_pt_ang.2 hpin}), exact ang_congr_refl _, exact (ang_tri h₁.2.2 h₂.2.2).2.2.1 ⟨hf₁, hf₂⟩, rcases (ang_tri hα.1 hβ.1).1 with h | h | h, exfalso, exact wlog α β hα hβ h, exact h, exfalso, exact wlog β α hβ hα h end /--Two lines are perpendicular if they form a right ang. -/ def perpendicular (l₁ l₂ : set pts) : Prop := (∃ (a b c : pts), a ∈ l₁ ∧ b ∈ l₂ ∧ c ∈ l₁ ∩ l₂ ∧ is_right_ang (∠ a c b)) ∧ l₁ ∈ lines ∧ l₂ ∈ lines lemma perpendicular_symm (l₁ l₂ : set pts) : perpendicular l₁ l₂ → perpendicular l₂ l₁ := begin rintros ⟨⟨a, b, c, hal₁, hbl₂, hcl, hr⟩, hl⟩, rw ang_symm at hr, rw set.inter_comm at hcl, rw and_comm at hl, use [b, a, c], exact ⟨hbl₂, hal₁, hcl, hr⟩, exact hl end localized "notation a `⊥` b := perpendicular a b" in perp_notation
cfbeeb19cf10a795d2b9699520453cc91b0b7399
0f5090f82d527e0df5bf3adac9f9e2e1d81d71e2
/src/apurva/algebraically_closed.lean
ffb96fe136dec86764b896b4ba7a45cfe3721a16
[]
no_license
apurvanakade/mc2020-lean-projects
36eb42c4baccc37183635c36f8e1b3afa4ec1230
02466225aa629ab1232043bcc0a053a099fdb939
refs/heads/master
1,688,791,717,534
1,597,874,092,000
1,597,874,092,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
646
lean
import tactic import algebra.field import analysis.complex.polynomial import data.multiset.basic import field_theory.splitting_field noncomputable theory open_locale classical open complex polynomial universes u variables {k : Type u} [field k] class algebraically_closed (k : Type u) extends field k := (exists_root (f : polynomial k) (hf : 0 < degree f) : ∃ z : k, is_root f z) -- need a better name lemma linear_factor_poly [algebraically_closed k] {f : polynomial ℂ} (hge0 : 0 < f.degree) : splits (ring_hom.id ℂ) f := begin sorry, end instance : algebraically_closed ℂ := sorry #check splits #check ring_hom.id ℂ
88e4ddeaa2f8ef3428df72ee95ae1f3a6ef37751
94e33a31faa76775069b071adea97e86e218a8ee
/src/algebra/big_operators/basic.lean
1b65746cbb1ed2cc5d1c3f1163a410d4a93b4303
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
74,610
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import algebra.group.pi import algebra.hom.equiv import algebra.ring.opposite import data.finset.fold import data.fintype.basic import data.set.pairwise /-! # Big operators In this file we define products and sums indexed by finite sets (specifically, `finset`). ## Notation We introduce the following notation, localized in `big_operators`. To enable the notation, use `open_locale big_operators`. Let `s` be a `finset α`, and `f : α → β` a function. * `∏ x in s, f x` is notation for `finset.prod s f` (assuming `β` is a `comm_monoid`) * `∑ x in s, f x` is notation for `finset.sum s f` (assuming `β` is an `add_comm_monoid`) * `∏ x, f x` is notation for `finset.prod finset.univ f` (assuming `α` is a `fintype` and `β` is a `comm_monoid`) * `∑ x, f x` is notation for `finset.sum finset.univ f` (assuming `α` is a `fintype` and `β` is an `add_comm_monoid`) ## Implementation Notes The first arguments in all definitions and lemmas is the codomain of the function of the big operator. This is necessary for the heuristic in `@[to_additive]`. See the documentation of `to_additive.attr` for more information. -/ universes u v w variables {β : Type u} {α : Type v} {γ : Type w} open fin namespace finset /-- `∏ x in s, f x` is the product of `f x` as `x` ranges over the elements of the finite set `s`. -/ @[to_additive "`∑ x in s, f x` is the sum of `f x` as `x` ranges over the elements of the finite set `s`."] protected def prod [comm_monoid β] (s : finset α) (f : α → β) : β := (s.1.map f).prod @[simp, to_additive] lemma prod_mk [comm_monoid β] (s : multiset α) (hs : s.nodup) (f : α → β) : (⟨s, hs⟩ : finset α).prod f = (s.map f).prod := rfl end finset /-- There is no established mathematical convention for the operator precedence of big operators like `∏` and `∑`. We will have to make a choice. Online discussions, such as https://math.stackexchange.com/q/185538/30839 seem to suggest that `∏` and `∑` should have the same precedence, and that this should be somewhere between `*` and `+`. The latter have precedence levels `70` and `65` respectively, and we therefore choose the level `67`. In practice, this means that parentheses should be placed as follows: ```lean ∑ k in K, (a k + b k) = ∑ k in K, a k + ∑ k in K, b k → ∏ k in K, a k * b k = (∏ k in K, a k) * (∏ k in K, b k) ``` (Example taken from page 490 of Knuth's *Concrete Mathematics*.) -/ library_note "operator precedence of big operators" localized "notation `∑` binders `, ` r:(scoped:67 f, finset.sum finset.univ f) := r" in big_operators localized "notation `∏` binders `, ` r:(scoped:67 f, finset.prod finset.univ f) := r" in big_operators localized "notation `∑` binders ` in ` s `, ` r:(scoped:67 f, finset.sum s f) := r" in big_operators localized "notation `∏` binders ` in ` s `, ` r:(scoped:67 f, finset.prod s f) := r" in big_operators open_locale big_operators namespace finset variables {s s₁ s₂ : finset α} {a : α} {f g : α → β} @[to_additive] lemma prod_eq_multiset_prod [comm_monoid β] (s : finset α) (f : α → β) : ∏ x in s, f x = (s.1.map f).prod := rfl @[to_additive] theorem prod_eq_fold [comm_monoid β] (s : finset α) (f : α → β) : ∏ x in s, f x = s.fold (*) 1 f := rfl @[simp] lemma sum_multiset_singleton (s : finset α) : s.sum (λ x, {x}) = s.val := by simp only [sum_eq_multiset_sum, multiset.sum_map_singleton] end finset @[to_additive] lemma map_prod [comm_monoid β] [comm_monoid γ] {G : Type*} [monoid_hom_class G β γ] (g : G) (f : α → β) (s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) := by simp only [finset.prod_eq_multiset_prod, map_multiset_prod, multiset.map_map] section deprecated /-- Deprecated: use `_root_.map_prod` instead. -/ @[to_additive "Deprecated: use `_root_.map_sum` instead."] protected lemma monoid_hom.map_prod [comm_monoid β] [comm_monoid γ] (g : β →* γ) (f : α → β) (s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) := map_prod g f s /-- Deprecated: use `_root_.map_prod` instead. -/ @[to_additive "Deprecated: use `_root_.map_sum` instead."] protected lemma mul_equiv.map_prod [comm_monoid β] [comm_monoid γ] (g : β ≃* γ) (f : α → β) (s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) := map_prod g f s /-- Deprecated: use `_root_.map_list_prod` instead. -/ protected lemma ring_hom.map_list_prod [semiring β] [semiring γ] (f : β →+* γ) (l : list β) : f l.prod = (l.map f).prod := map_list_prod f l /-- Deprecated: use `_root_.map_list_sum` instead. -/ protected lemma ring_hom.map_list_sum [non_assoc_semiring β] [non_assoc_semiring γ] (f : β →+* γ) (l : list β) : f l.sum = (l.map f).sum := map_list_sum f l /-- A morphism into the opposite ring acts on the product by acting on the reversed elements. Deprecated: use `_root_.unop_map_list_prod` instead. -/ protected lemma ring_hom.unop_map_list_prod [semiring β] [semiring γ] (f : β →+* γᵐᵒᵖ) (l : list β) : mul_opposite.unop (f l.prod) = (l.map (mul_opposite.unop ∘ f)).reverse.prod := unop_map_list_prod f l /-- Deprecated: use `_root_.map_multiset_prod` instead. -/ protected lemma ring_hom.map_multiset_prod [comm_semiring β] [comm_semiring γ] (f : β →+* γ) (s : multiset β) : f s.prod = (s.map f).prod := map_multiset_prod f s /-- Deprecated: use `_root_.map_multiset_sum` instead. -/ protected lemma ring_hom.map_multiset_sum [non_assoc_semiring β] [non_assoc_semiring γ] (f : β →+* γ) (s : multiset β) : f s.sum = (s.map f).sum := map_multiset_sum f s /-- Deprecated: use `_root_.map_prod` instead. -/ protected lemma ring_hom.map_prod [comm_semiring β] [comm_semiring γ] (g : β →+* γ) (f : α → β) (s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) := map_prod g f s /-- Deprecated: use `_root_.map_sum` instead. -/ protected lemma ring_hom.map_sum [non_assoc_semiring β] [non_assoc_semiring γ] (g : β →+* γ) (f : α → β) (s : finset α) : g (∑ x in s, f x) = ∑ x in s, g (f x) := map_sum g f s end deprecated @[to_additive] lemma monoid_hom.coe_finset_prod [mul_one_class β] [comm_monoid γ] (f : α → β →* γ) (s : finset α) : ⇑(∏ x in s, f x) = ∏ x in s, f x := (monoid_hom.coe_fn β γ).map_prod _ _ -- See also `finset.prod_apply`, with the same conclusion -- but with the weaker hypothesis `f : α → β → γ`. @[simp, to_additive] lemma monoid_hom.finset_prod_apply [mul_one_class β] [comm_monoid γ] (f : α → β →* γ) (s : finset α) (b : β) : (∏ x in s, f x) b = ∏ x in s, f x b := (monoid_hom.eval b).map_prod _ _ variables {s s₁ s₂ : finset α} {a : α} {f g : α → β} namespace finset section comm_monoid variables [comm_monoid β] @[simp, to_additive] lemma prod_empty : ∏ x in ∅, f x = 1 := rfl @[to_additive] lemma prod_of_empty [is_empty α] : ∏ i, f i = 1 := by rw [univ_eq_empty, prod_empty] @[simp, to_additive] lemma prod_cons (h : a ∉ s) : (∏ x in (cons a s h), f x) = f a * ∏ x in s, f x := fold_cons h @[simp, to_additive] lemma prod_insert [decidable_eq α] : a ∉ s → (∏ x in (insert a s), f x) = f a * ∏ x in s, f x := fold_insert /-- The product of `f` over `insert a s` is the same as the product over `s`, as long as `a` is in `s` or `f a = 1`. -/ @[simp, to_additive "The sum of `f` over `insert a s` is the same as the sum over `s`, as long as `a` is in `s` or `f a = 0`."] lemma prod_insert_of_eq_one_if_not_mem [decidable_eq α] (h : a ∉ s → f a = 1) : ∏ x in insert a s, f x = ∏ x in s, f x := begin by_cases hm : a ∈ s, { simp_rw insert_eq_of_mem hm }, { rw [prod_insert hm, h hm, one_mul] }, end /-- The product of `f` over `insert a s` is the same as the product over `s`, as long as `f a = 1`. -/ @[simp, to_additive "The sum of `f` over `insert a s` is the same as the sum over `s`, as long as `f a = 0`."] lemma prod_insert_one [decidable_eq α] (h : f a = 1) : ∏ x in insert a s, f x = ∏ x in s, f x := prod_insert_of_eq_one_if_not_mem (λ _, h) @[simp, to_additive] lemma prod_singleton : (∏ x in (singleton a), f x) = f a := eq.trans fold_singleton $ mul_one _ @[to_additive] lemma prod_pair [decidable_eq α] {a b : α} (h : a ≠ b) : (∏ x in ({a, b} : finset α), f x) = f a * f b := by rw [prod_insert (not_mem_singleton.2 h), prod_singleton] @[simp, priority 1100, to_additive] lemma prod_const_one : (∏ x in s, (1 : β)) = 1 := by simp only [finset.prod, multiset.map_const, multiset.prod_repeat, one_pow] @[simp, to_additive] lemma prod_image [decidable_eq α] {s : finset γ} {g : γ → α} : (∀ x ∈ s, ∀ y ∈ s, g x = g y → x = y) → (∏ x in (s.image g), f x) = ∏ x in s, f (g x) := fold_image @[simp, to_additive] lemma prod_map (s : finset α) (e : α ↪ γ) (f : γ → β) : (∏ x in (s.map e), f x) = ∏ x in s, f (e x) := by rw [finset.prod, finset.map_val, multiset.map_map]; refl @[congr, to_additive] lemma prod_congr (h : s₁ = s₂) : (∀ x ∈ s₂, f x = g x) → s₁.prod f = s₂.prod g := by rw [h]; exact fold_congr attribute [congr] finset.sum_congr @[to_additive] lemma prod_disj_union (h) : ∏ x in s₁.disj_union s₂ h, f x = (∏ x in s₁, f x) * ∏ x in s₂, f x := by { refine eq.trans _ (fold_disj_union h), rw one_mul, refl } @[to_additive] lemma prod_union_inter [decidable_eq α] : (∏ x in (s₁ ∪ s₂), f x) * (∏ x in (s₁ ∩ s₂), f x) = (∏ x in s₁, f x) * (∏ x in s₂, f x) := fold_union_inter @[to_additive] lemma prod_union [decidable_eq α] (h : disjoint s₁ s₂) : (∏ x in (s₁ ∪ s₂), f x) = (∏ x in s₁, f x) * (∏ x in s₂, f x) := by rw [←prod_union_inter, (disjoint_iff_inter_eq_empty.mp h)]; exact (mul_one _).symm @[to_additive] lemma prod_filter_mul_prod_filter_not (s : finset α) (p : α → Prop) [decidable_pred p] [decidable_pred (λ x, ¬p x)] (f : α → β) : (∏ x in s.filter p, f x) * (∏ x in s.filter (λ x, ¬p x), f x) = ∏ x in s, f x := begin haveI := classical.dec_eq α, rw [← prod_union (filter_inter_filter_neg_eq p s).le, filter_union_filter_neg_eq] end section to_list @[simp, to_additive] lemma prod_to_list (s : finset α) (f : α → β) : (s.to_list.map f).prod = s.prod f := by rw [finset.prod, ← multiset.coe_prod, ← multiset.coe_map, finset.coe_to_list] end to_list @[to_additive] lemma _root_.equiv.perm.prod_comp (σ : equiv.perm α) (s : finset α) (f : α → β) (hs : {a | σ a ≠ a} ⊆ s) : (∏ x in s, f (σ x)) = ∏ x in s, f x := by { convert (prod_map _ σ.to_embedding _).symm, exact (map_perm hs).symm } @[to_additive] lemma _root_.equiv.perm.prod_comp' (σ : equiv.perm α) (s : finset α) (f : α → α → β) (hs : {a | σ a ≠ a} ⊆ s) : (∏ x in s, f (σ x) x) = ∏ x in s, f x (σ.symm x) := by { convert σ.prod_comp s (λ x, f x (σ.symm x)) hs, ext, rw equiv.symm_apply_apply } end comm_monoid end finset section open finset variables [fintype α] [decidable_eq α] [comm_monoid β] @[to_additive] lemma is_compl.prod_mul_prod {s t : finset α} (h : is_compl s t) (f : α → β) : (∏ i in s, f i) * (∏ i in t, f i) = ∏ i, f i := (finset.prod_union h.disjoint).symm.trans $ by rw [← finset.sup_eq_union, h.sup_eq_top]; refl end namespace finset section comm_monoid variables [comm_monoid β] /-- Multiplying the products of a function over `s` and over `sᶜ` gives the whole product. For a version expressed with subtypes, see `fintype.prod_subtype_mul_prod_subtype`. -/ @[to_additive "Adding the sums of a function over `s` and over `sᶜ` gives the whole sum. For a version expressed with subtypes, see `fintype.sum_subtype_add_sum_subtype`. "] lemma prod_mul_prod_compl [fintype α] [decidable_eq α] (s : finset α) (f : α → β) : (∏ i in s, f i) * (∏ i in sᶜ, f i) = ∏ i, f i := is_compl.prod_mul_prod is_compl_compl f @[to_additive] lemma prod_compl_mul_prod [fintype α] [decidable_eq α] (s : finset α) (f : α → β) : (∏ i in sᶜ, f i) * (∏ i in s, f i) = ∏ i, f i := (@is_compl_compl _ s _).symm.prod_mul_prod f @[to_additive] lemma prod_sdiff [decidable_eq α] (h : s₁ ⊆ s₂) : (∏ x in (s₂ \ s₁), f x) * (∏ x in s₁, f x) = (∏ x in s₂, f x) := by rw [←prod_union sdiff_disjoint, sdiff_union_of_subset h] @[simp, to_additive] lemma prod_sum_elim [decidable_eq (α ⊕ γ)] (s : finset α) (t : finset γ) (f : α → β) (g : γ → β) : ∏ x in s.map function.embedding.inl ∪ t.map function.embedding.inr, sum.elim f g x = (∏ x in s, f x) * (∏ x in t, g x) := begin rw [prod_union, prod_map, prod_map], { simp only [sum.elim_inl, function.embedding.inl_apply, function.embedding.inr_apply, sum.elim_inr] }, { simp only [disjoint_left, finset.mem_map, finset.mem_map], rintros _ ⟨i, hi, rfl⟩ ⟨j, hj, H⟩, cases H } end @[simp, to_additive] lemma prod_on_sum [fintype α] [fintype γ] (f : α ⊕ γ → β) : ∏ (x : α ⊕ γ), f x = (∏ (x : α), f (sum.inl x)) * (∏ (x : γ), f (sum.inr x)) := begin haveI := classical.dec_eq (α ⊕ γ), convert prod_sum_elim univ univ (λ x, f (sum.inl x)) (λ x, f (sum.inr x)), { ext a, split, { intro x, cases a, { simp only [mem_union, mem_map, mem_univ, function.embedding.inl_apply, or_false, exists_true_left, exists_apply_eq_apply, function.embedding.inr_apply, exists_false], }, { simp only [mem_union, mem_map, mem_univ, function.embedding.inl_apply, false_or, exists_true_left, exists_false, function.embedding.inr_apply, exists_apply_eq_apply], }, }, { simp only [mem_univ, implies_true_iff], }, }, { simp only [sum.elim_comp_inl_inr], }, end @[to_additive] lemma prod_bUnion [decidable_eq α] {s : finset γ} {t : γ → finset α} (hs : set.pairwise_disjoint ↑s t) : (∏ x in (s.bUnion t), f x) = ∏ x in s, ∏ i in t x, f i := begin haveI := classical.dec_eq γ, induction s using finset.induction_on with x s hxs ih hd, { simp_rw [bUnion_empty, prod_empty] }, { simp_rw [coe_insert, set.pairwise_disjoint_insert, mem_coe] at hs, have : disjoint (t x) (finset.bUnion s t), { exact (disjoint_bUnion_right _ _ _).mpr (λ y hy, hs.2 y hy $ λ H, hxs $ H.substr hy) }, rw [bUnion_insert, prod_insert hxs, prod_union this, ih hs.1] } end /-- Product over a sigma type equals the product of fiberwise products. For rewriting in the reverse direction, use `finset.prod_sigma'`. -/ @[to_additive "Sum over a sigma type equals the sum of fiberwise sums. For rewriting in the reverse direction, use `finset.sum_sigma'`"] lemma prod_sigma {σ : α → Type*} (s : finset α) (t : Π a, finset (σ a)) (f : sigma σ → β) : (∏ x in s.sigma t, f x) = ∏ a in s, ∏ s in (t a), f ⟨a, s⟩ := by classical; calc (∏ x in s.sigma t, f x) = ∏ x in s.bUnion (λ a, (t a).map (function.embedding.sigma_mk a)), f x : by rw sigma_eq_bUnion ... = ∏ a in s, ∏ x in (t a).map (function.embedding.sigma_mk a), f x : prod_bUnion $ assume a₁ ha a₂ ha₂ h x hx, by { simp only [inf_eq_inter, mem_inter, mem_map, function.embedding.sigma_mk_apply] at hx, rcases hx with ⟨⟨y, hy, rfl⟩, ⟨z, hz, hz'⟩⟩, cc } ... = ∏ a in s, ∏ s in t a, f ⟨a, s⟩ : prod_congr rfl $ λ _ _, prod_map _ _ _ @[to_additive] lemma prod_sigma' {σ : α → Type*} (s : finset α) (t : Π a, finset (σ a)) (f : Π a, σ a → β) : (∏ a in s, ∏ s in (t a), f a s) = ∏ x in s.sigma t, f x.1 x.2 := eq.symm $ prod_sigma s t (λ x, f x.1 x.2) /-- Reorder a product. The difference with `prod_bij'` is that the bijection is specified as a surjective injection, rather than by an inverse function. -/ @[to_additive " Reorder a sum. The difference with `sum_bij'` is that the bijection is specified as a surjective injection, rather than by an inverse function. "] lemma prod_bij {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π a ∈ s, γ) (hi : ∀ a ha, i a ha ∈ t) (h : ∀ a ha, f a = g (i a ha)) (i_inj : ∀ a₁ a₂ ha₁ ha₂, i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂) (i_surj : ∀ b ∈ t, ∃ a ha, b = i a ha) : (∏ x in s, f x) = (∏ x in t, g x) := congr_arg multiset.prod (multiset.map_eq_map_of_bij_of_nodup f g s.2 t.2 i hi h i_inj i_surj) /-- Reorder a product. The difference with `prod_bij` is that the bijection is specified with an inverse, rather than as a surjective injection. -/ @[to_additive " Reorder a sum. The difference with `sum_bij` is that the bijection is specified with an inverse, rather than as a surjective injection. "] lemma prod_bij' {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π a ∈ s, γ) (hi : ∀ a ha, i a ha ∈ t) (h : ∀ a ha, f a = g (i a ha)) (j : Π a ∈ t, α) (hj : ∀ a ha, j a ha ∈ s) (left_inv : ∀ a ha, j (i a ha) (hi a ha) = a) (right_inv : ∀ a ha, i (j a ha) (hj a ha) = a) : (∏ x in s, f x) = (∏ x in t, g x) := begin refine prod_bij i hi h _ _, {intros a1 a2 h1 h2 eq, rw [←left_inv a1 h1, ←left_inv a2 h2], cc,}, {intros b hb, use j b hb, use hj b hb, exact (right_inv b hb).symm,}, end @[to_additive] lemma prod_finset_product (r : finset (γ × α)) (s : finset γ) (t : γ → finset α) (h : ∀ p : γ × α, p ∈ r ↔ p.1 ∈ s ∧ p.2 ∈ t p.1) {f : γ × α → β} : ∏ p in r, f p = ∏ c in s, ∏ a in t c, f (c, a) := begin refine eq.trans _ (prod_sigma s t (λ p, f (p.1, p.2))), exact prod_bij' (λ p hp, ⟨p.1, p.2⟩) (λ p, mem_sigma.mpr ∘ (h p).mp) (λ p hp, congr_arg f prod.mk.eta.symm) (λ p hp, (p.1, p.2)) (λ p, (h (p.1, p.2)).mpr ∘ mem_sigma.mp) (λ p hp, prod.mk.eta) (λ p hp, p.eta), end @[to_additive] lemma prod_finset_product' (r : finset (γ × α)) (s : finset γ) (t : γ → finset α) (h : ∀ p : γ × α, p ∈ r ↔ p.1 ∈ s ∧ p.2 ∈ t p.1) {f : γ → α → β} : ∏ p in r, f p.1 p.2 = ∏ c in s, ∏ a in t c, f c a := prod_finset_product r s t h @[to_additive] lemma prod_finset_product_right (r : finset (α × γ)) (s : finset γ) (t : γ → finset α) (h : ∀ p : α × γ, p ∈ r ↔ p.2 ∈ s ∧ p.1 ∈ t p.2) {f : α × γ → β} : ∏ p in r, f p = ∏ c in s, ∏ a in t c, f (a, c) := begin refine eq.trans _ (prod_sigma s t (λ p, f (p.2, p.1))), exact prod_bij' (λ p hp, ⟨p.2, p.1⟩) (λ p, mem_sigma.mpr ∘ (h p).mp) (λ p hp, congr_arg f prod.mk.eta.symm) (λ p hp, (p.2, p.1)) (λ p, (h (p.2, p.1)).mpr ∘ mem_sigma.mp) (λ p hp, prod.mk.eta) (λ p hp, p.eta), end @[to_additive] lemma prod_finset_product_right' (r : finset (α × γ)) (s : finset γ) (t : γ → finset α) (h : ∀ p : α × γ, p ∈ r ↔ p.2 ∈ s ∧ p.1 ∈ t p.2) {f : α → γ → β} : ∏ p in r, f p.1 p.2 = ∏ c in s, ∏ a in t c, f a c := prod_finset_product_right r s t h @[to_additive] lemma prod_fiberwise_of_maps_to [decidable_eq γ] {s : finset α} {t : finset γ} {g : α → γ} (h : ∀ x ∈ s, g x ∈ t) (f : α → β) : (∏ y in t, ∏ x in s.filter (λ x, g x = y), f x) = ∏ x in s, f x := begin letI := classical.dec_eq α, rw [← bUnion_filter_eq_of_maps_to h] {occs := occurrences.pos [2]}, refine (prod_bUnion $ λ x' hx y' hy hne, _).symm, rw [function.on_fun, disjoint_filter], rintros x hx rfl, exact hne end @[to_additive] lemma prod_image' [decidable_eq α] {s : finset γ} {g : γ → α} (h : γ → β) (eq : ∀ c ∈ s, f (g c) = ∏ x in s.filter (λ c', g c' = g c), h x) : (∏ x in s.image g, f x) = ∏ x in s, h x := calc (∏ x in s.image g, f x) = ∏ x in s.image g, ∏ x in s.filter (λ c', g c' = x), h x : prod_congr rfl $ λ x hx, let ⟨c, hcs, hc⟩ := mem_image.1 hx in hc ▸ (eq c hcs) ... = ∏ x in s, h x : prod_fiberwise_of_maps_to (λ x, mem_image_of_mem g) _ @[to_additive] lemma prod_mul_distrib : ∏ x in s, (f x * g x) = (∏ x in s, f x) * (∏ x in s, g x) := eq.trans (by rw one_mul; refl) fold_op_distrib @[to_additive] lemma prod_product {s : finset γ} {t : finset α} {f : γ×α → β} : (∏ x in s.product t, f x) = ∏ x in s, ∏ y in t, f (x, y) := prod_finset_product (s.product t) s (λ a, t) (λ p, mem_product) /-- An uncurried version of `finset.prod_product`. -/ @[to_additive "An uncurried version of `finset.sum_product`"] lemma prod_product' {s : finset γ} {t : finset α} {f : γ → α → β} : (∏ x in s.product t, f x.1 x.2) = ∏ x in s, ∏ y in t, f x y := prod_product @[to_additive] lemma prod_product_right {s : finset γ} {t : finset α} {f : γ×α → β} : (∏ x in s.product t, f x) = ∏ y in t, ∏ x in s, f (x, y) := prod_finset_product_right (s.product t) t (λ a, s) (λ p, mem_product.trans and.comm) /-- An uncurried version of `finset.prod_product_right`. -/ @[to_additive "An uncurried version of `finset.prod_product_right`"] lemma prod_product_right' {s : finset γ} {t : finset α} {f : γ → α → β} : (∏ x in s.product t, f x.1 x.2) = ∏ y in t, ∏ x in s, f x y := prod_product_right /-- Generalization of `finset.prod_comm` to the case when the inner `finset`s depend on the outer variable. -/ @[to_additive "Generalization of `finset.sum_comm` to the case when the inner `finset`s depend on the outer variable."] lemma prod_comm' {s : finset γ} {t : γ → finset α} {t' : finset α} {s' : α → finset γ} (h : ∀ x y, x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t') {f : γ → α → β} : (∏ x in s, ∏ y in t x, f x y) = (∏ y in t', ∏ x in s' y, f x y) := begin classical, have : ∀ z : γ × α, z ∈ s.bUnion (λ x, (t x).map $ function.embedding.sectr x _) ↔ z.1 ∈ s ∧ z.2 ∈ t z.1, { rintro ⟨x, y⟩, simp }, exact (prod_finset_product' _ _ _ this).symm.trans (prod_finset_product_right' _ _ _ $ λ ⟨x, y⟩, (this _).trans ((h x y).trans and.comm)) end @[to_additive] lemma prod_comm {s : finset γ} {t : finset α} {f : γ → α → β} : (∏ x in s, ∏ y in t, f x y) = (∏ y in t, ∏ x in s, f x y) := prod_comm' $ λ _ _, iff.rfl @[to_additive] lemma prod_hom_rel [comm_monoid γ] {r : β → γ → Prop} {f : α → β} {g : α → γ} {s : finset α} (h₁ : r 1 1) (h₂ : ∀ a b c, r b c → r (f a * b) (g a * c)) : r (∏ x in s, f x) (∏ x in s, g x) := by { delta finset.prod, apply multiset.prod_hom_rel; assumption } @[to_additive] lemma prod_eq_one {f : α → β} {s : finset α} (h : ∀ x ∈ s, f x = 1) : (∏ x in s, f x) = 1 := calc (∏ x in s, f x) = ∏ x in s, 1 : finset.prod_congr rfl h ... = 1 : finset.prod_const_one @[to_additive] lemma prod_subset_one_on_sdiff [decidable_eq α] (h : s₁ ⊆ s₂) (hg : ∀ x ∈ (s₂ \ s₁), g x = 1) (hfg : ∀ x ∈ s₁, f x = g x) : ∏ i in s₁, f i = ∏ i in s₂, g i := begin rw [← prod_sdiff h, prod_eq_one hg, one_mul], exact prod_congr rfl hfg end @[to_additive] lemma prod_subset (h : s₁ ⊆ s₂) (hf : ∀ x ∈ s₂, x ∉ s₁ → f x = 1) : (∏ x in s₁, f x) = ∏ x in s₂, f x := by haveI := classical.dec_eq α; exact prod_subset_one_on_sdiff h (by simpa) (λ _ _, rfl) @[to_additive] lemma prod_filter_of_ne {p : α → Prop} [decidable_pred p] (hp : ∀ x ∈ s, f x ≠ 1 → p x) : (∏ x in (s.filter p), f x) = (∏ x in s, f x) := prod_subset (filter_subset _ _) $ λ x, by { classical, rw [not_imp_comm, mem_filter], exact λ h₁ h₂, ⟨h₁, hp _ h₁ h₂⟩ } -- If we use `[decidable_eq β]` here, some rewrites fail because they find a wrong `decidable` -- instance first; `{∀ x, decidable (f x ≠ 1)}` doesn't work with `rw ← prod_filter_ne_one` @[to_additive] lemma prod_filter_ne_one [∀ x, decidable (f x ≠ 1)] : (∏ x in (s.filter $ λ x, f x ≠ 1), f x) = (∏ x in s, f x) := prod_filter_of_ne $ λ _ _, id @[to_additive] lemma prod_filter (p : α → Prop) [decidable_pred p] (f : α → β) : (∏ a in s.filter p, f a) = (∏ a in s, if p a then f a else 1) := calc (∏ a in s.filter p, f a) = ∏ a in s.filter p, if p a then f a else 1 : prod_congr rfl (assume a h, by rw [if_pos (mem_filter.1 h).2]) ... = ∏ a in s, if p a then f a else 1 : begin refine prod_subset (filter_subset _ s) (assume x hs h, _), rw [mem_filter, not_and] at h, exact if_neg (h hs) end @[to_additive] lemma prod_eq_single_of_mem {s : finset α} {f : α → β} (a : α) (h : a ∈ s) (h₀ : ∀ b ∈ s, b ≠ a → f b = 1) : (∏ x in s, f x) = f a := begin haveI := classical.dec_eq α, calc (∏ x in s, f x) = ∏ x in {a}, f x : begin refine (prod_subset _ _).symm, { intros _ H, rwa mem_singleton.1 H }, { simpa only [mem_singleton] } end ... = f a : prod_singleton end @[to_additive] lemma prod_eq_single {s : finset α} {f : α → β} (a : α) (h₀ : ∀ b ∈ s, b ≠ a → f b = 1) (h₁ : a ∉ s → f a = 1) : (∏ x in s, f x) = f a := by haveI := classical.dec_eq α; from classical.by_cases (assume : a ∈ s, prod_eq_single_of_mem a this h₀) (assume : a ∉ s, (prod_congr rfl $ λ b hb, h₀ b hb $ by rintro rfl; cc).trans $ prod_const_one.trans (h₁ this).symm) @[to_additive] lemma prod_eq_mul_of_mem {s : finset α} {f : α → β} (a b : α) (ha : a ∈ s) (hb : b ∈ s) (hn : a ≠ b) (h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1) : (∏ x in s, f x) = (f a) * (f b) := begin haveI := classical.dec_eq α; let s' := ({a, b} : finset α), have hu : s' ⊆ s, { refine insert_subset.mpr _, apply and.intro ha, apply singleton_subset_iff.mpr hb }, have hf : ∀ c ∈ s, c ∉ s' → f c = 1, { intros c hc hcs, apply h₀ c hc, apply not_or_distrib.mp, intro hab, apply hcs, apply mem_insert.mpr, rw mem_singleton, exact hab }, rw ←prod_subset hu hf, exact finset.prod_pair hn end @[to_additive] lemma prod_eq_mul {s : finset α} {f : α → β} (a b : α) (hn : a ≠ b) (h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1) (ha : a ∉ s → f a = 1) (hb : b ∉ s → f b = 1) : (∏ x in s, f x) = (f a) * (f b) := begin haveI := classical.dec_eq α; by_cases h₁ : a ∈ s; by_cases h₂ : b ∈ s, { exact prod_eq_mul_of_mem a b h₁ h₂ hn h₀ }, { rw [hb h₂, mul_one], apply prod_eq_single_of_mem a h₁, exact λ c hc hca, h₀ c hc ⟨hca, ne_of_mem_of_not_mem hc h₂⟩ }, { rw [ha h₁, one_mul], apply prod_eq_single_of_mem b h₂, exact λ c hc hcb, h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, hcb⟩ }, { rw [ha h₁, hb h₂, mul_one], exact trans (prod_congr rfl (λ c hc, h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, ne_of_mem_of_not_mem hc h₂⟩)) prod_const_one } end @[to_additive] lemma prod_attach {f : α → β} : (∏ x in s.attach, f x) = (∏ x in s, f x) := by haveI := classical.dec_eq α; exact calc (∏ x in s.attach, f x.val) = (∏ x in (s.attach).image subtype.val, f x) : by rw [prod_image]; exact assume x _ y _, subtype.eq ... = _ : by rw [attach_image_val] /-- A product over `s.subtype p` equals one over `s.filter p`. -/ @[simp, to_additive "A sum over `s.subtype p` equals one over `s.filter p`."] lemma prod_subtype_eq_prod_filter (f : α → β) {p : α → Prop} [decidable_pred p] : ∏ x in s.subtype p, f x = ∏ x in s.filter p, f x := begin conv_lhs { erw ←prod_map (s.subtype p) (function.embedding.subtype _) f }, exact prod_congr (subtype_map _) (λ x hx, rfl) end /-- If all elements of a `finset` satisfy the predicate `p`, a product over `s.subtype p` equals that product over `s`. -/ @[to_additive "If all elements of a `finset` satisfy the predicate `p`, a sum over `s.subtype p` equals that sum over `s`."] lemma prod_subtype_of_mem (f : α → β) {p : α → Prop} [decidable_pred p] (h : ∀ x ∈ s, p x) : ∏ x in s.subtype p, f x = ∏ x in s, f x := by simp_rw [prod_subtype_eq_prod_filter, filter_true_of_mem h] /-- A product of a function over a `finset` in a subtype equals a product in the main type of a function that agrees with the first function on that `finset`. -/ @[to_additive "A sum of a function over a `finset` in a subtype equals a sum in the main type of a function that agrees with the first function on that `finset`."] lemma prod_subtype_map_embedding {p : α → Prop} {s : finset {x // p x}} {f : {x // p x} → β} {g : α → β} (h : ∀ x : {x // p x}, x ∈ s → g x = f x) : ∏ x in s.map (function.embedding.subtype _), g x = ∏ x in s, f x := begin rw finset.prod_map, exact finset.prod_congr rfl h end variables (f s) @[to_additive] lemma prod_coe_sort_eq_attach (f : s → β) : ∏ (i : s), f i = ∏ i in s.attach, f i := rfl @[to_additive] lemma prod_coe_sort : ∏ (i : s), f i = ∏ i in s, f i := prod_attach @[to_additive] lemma prod_finset_coe (f : α → β) (s : finset α) : ∏ (i : (s : set α)), f i = ∏ i in s, f i := prod_coe_sort s f variables {f s} @[to_additive] lemma prod_subtype {p : α → Prop} {F : fintype (subtype p)} (s : finset α) (h : ∀ x, x ∈ s ↔ p x) (f : α → β) : ∏ a in s, f a = ∏ a : subtype p, f a := have (∈ s) = p, from set.ext h, by { substI p, rw ← prod_coe_sort, congr } /-- The product of a function `g` defined only on a set `s` is equal to the product of a function `f` defined everywhere, as long as `f` and `g` agree on `s`, and `f = 1` off `s`. -/ @[to_additive "The sum of a function `g` defined only on a set `s` is equal to the sum of a function `f` defined everywhere, as long as `f` and `g` agree on `s`, and `f = 0` off `s`."] lemma prod_congr_set {α : Type*} [comm_monoid α] {β : Type*} [fintype β] (s : set β) [decidable_pred (∈s)] (f : β → α) (g : s → α) (w : ∀ (x : β) (h : x ∈ s), f x = g ⟨x, h⟩) (w' : ∀ (x : β), x ∉ s → f x = 1) : finset.univ.prod f = finset.univ.prod g := begin rw ←@finset.prod_subset _ _ s.to_finset finset.univ f _ (by simp), { rw finset.prod_subtype, { apply finset.prod_congr rfl, exact λ ⟨x, h⟩ _, w x h, }, { simp, }, }, { rintro x _ h, exact w' x (by simpa using h), }, end @[to_additive] lemma prod_apply_dite {s : finset α} {p : α → Prop} {hp : decidable_pred p} [decidable_pred (λ x, ¬ p x)] (f : Π (x : α), p x → γ) (g : Π (x : α), ¬p x → γ) (h : γ → β) : (∏ x in s, h (if hx : p x then f x hx else g x hx)) = (∏ x in (s.filter p).attach, h (f x.1 (mem_filter.mp x.2).2)) * (∏ x in (s.filter (λ x, ¬ p x)).attach, h (g x.1 (mem_filter.mp x.2).2)) := calc ∏ x in s, h (if hx : p x then f x hx else g x hx) = (∏ x in s.filter p, h (if hx : p x then f x hx else g x hx)) * (∏ x in s.filter (λ x, ¬ p x), h (if hx : p x then f x hx else g x hx)) : (prod_filter_mul_prod_filter_not s p _).symm ... = (∏ x in (s.filter p).attach, h (if hx : p x.1 then f x.1 hx else g x.1 hx)) * (∏ x in (s.filter (λ x, ¬ p x)).attach, h (if hx : p x.1 then f x.1 hx else g x.1 hx)) : congr_arg2 _ prod_attach.symm prod_attach.symm ... = (∏ x in (s.filter p).attach, h (f x.1 (mem_filter.mp x.2).2)) * (∏ x in (s.filter (λ x, ¬ p x)).attach, h (g x.1 (mem_filter.mp x.2).2)) : congr_arg2 _ (prod_congr rfl (λ x hx, congr_arg h (dif_pos (mem_filter.mp x.2).2))) (prod_congr rfl (λ x hx, congr_arg h (dif_neg (mem_filter.mp x.2).2))) @[to_additive] lemma prod_apply_ite {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (h : γ → β) : (∏ x in s, h (if p x then f x else g x)) = (∏ x in s.filter p, h (f x)) * (∏ x in s.filter (λ x, ¬ p x), h (g x)) := trans (prod_apply_dite _ _ _) (congr_arg2 _ (@prod_attach _ _ _ _ (h ∘ f)) (@prod_attach _ _ _ _ (h ∘ g))) @[to_additive] lemma prod_dite {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) : (∏ x in s, if hx : p x then f x hx else g x hx) = (∏ x in (s.filter p).attach, f x.1 (mem_filter.mp x.2).2) * (∏ x in (s.filter (λ x, ¬ p x)).attach, g x.1 (mem_filter.mp x.2).2) := by simp [prod_apply_dite _ _ (λ x, x)] @[to_additive] lemma prod_ite {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → β) : (∏ x in s, if p x then f x else g x) = (∏ x in s.filter p, f x) * (∏ x in s.filter (λ x, ¬ p x), g x) := by simp [prod_apply_ite _ _ (λ x, x)] @[to_additive] lemma prod_ite_of_false {p : α → Prop} {hp : decidable_pred p} (f g : α → β) (h : ∀ x ∈ s, ¬p x) : (∏ x in s, if p x then f x else g x) = (∏ x in s, g x) := by { rw prod_ite, simp [filter_false_of_mem h, filter_true_of_mem h] } @[to_additive] lemma prod_ite_of_true {p : α → Prop} {hp : decidable_pred p} (f g : α → β) (h : ∀ x ∈ s, p x) : (∏ x in s, if p x then f x else g x) = (∏ x in s, f x) := by { simp_rw ←(ite_not (p _)), apply prod_ite_of_false, simpa } @[to_additive] lemma prod_apply_ite_of_false {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (k : γ → β) (h : ∀ x ∈ s, ¬p x) : (∏ x in s, k (if p x then f x else g x)) = (∏ x in s, k (g x)) := by { simp_rw apply_ite k, exact prod_ite_of_false _ _ h } @[to_additive] lemma prod_apply_ite_of_true {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (k : γ → β) (h : ∀ x ∈ s, p x) : (∏ x in s, k (if p x then f x else g x)) = (∏ x in s, k (f x)) := by { simp_rw apply_ite k, exact prod_ite_of_true _ _ h } @[to_additive] lemma prod_extend_by_one [decidable_eq α] (s : finset α) (f : α → β) : ∏ i in s, (if i ∈ s then f i else 1) = ∏ i in s, f i := prod_congr rfl $ λ i hi, if_pos hi @[simp, to_additive] lemma prod_dite_eq [decidable_eq α] (s : finset α) (a : α) (b : Π x : α, a = x → β) : (∏ x in s, (if h : a = x then b x h else 1)) = ite (a ∈ s) (b a rfl) 1 := begin split_ifs with h, { rw [finset.prod_eq_single a, dif_pos rfl], { intros, rw dif_neg, cc }, { cc } }, { rw finset.prod_eq_one, intros, rw dif_neg, intro, cc } end @[simp, to_additive] lemma prod_dite_eq' [decidable_eq α] (s : finset α) (a : α) (b : Π x : α, x = a → β) : (∏ x in s, (if h : x = a then b x h else 1)) = ite (a ∈ s) (b a rfl) 1 := begin split_ifs with h, { rw [finset.prod_eq_single a, dif_pos rfl], { intros, rw dif_neg, cc }, { cc } }, { rw finset.prod_eq_one, intros, rw dif_neg, intro, cc } end @[simp, to_additive] lemma prod_ite_eq [decidable_eq α] (s : finset α) (a : α) (b : α → β) : (∏ x in s, (ite (a = x) (b x) 1)) = ite (a ∈ s) (b a) 1 := prod_dite_eq s a (λ x _, b x) /-- A product taken over a conditional whose condition is an equality test on the index and whose alternative is `1` has value either the term at that index or `1`. The difference with `finset.prod_ite_eq` is that the arguments to `eq` are swapped. -/ @[simp, to_additive "A sum taken over a conditional whose condition is an equality test on the index and whose alternative is `0` has value either the term at that index or `0`. The difference with `finset.sum_ite_eq` is that the arguments to `eq` are swapped."] lemma prod_ite_eq' [decidable_eq α] (s : finset α) (a : α) (b : α → β) : (∏ x in s, (ite (x = a) (b x) 1)) = ite (a ∈ s) (b a) 1 := prod_dite_eq' s a (λ x _, b x) @[to_additive] lemma prod_ite_index (p : Prop) [decidable p] (s t : finset α) (f : α → β) : (∏ x in if p then s else t, f x) = if p then ∏ x in s, f x else ∏ x in t, f x := apply_ite (λ s, ∏ x in s, f x) _ _ _ @[simp, to_additive] lemma prod_ite_irrel (p : Prop) [decidable p] (s : finset α) (f g : α → β) : (∏ x in s, if p then f x else g x) = if p then ∏ x in s, f x else ∏ x in s, g x := by { split_ifs with h; refl } @[simp, to_additive] lemma prod_dite_irrel (p : Prop) [decidable p] (s : finset α) (f : p → α → β) (g : ¬p → α → β) : (∏ x in s, if h : p then f h x else g h x) = if h : p then ∏ x in s, f h x else ∏ x in s, g h x := by { split_ifs with h; refl } @[simp] lemma sum_pi_single' {ι M : Type*} [decidable_eq ι] [add_comm_monoid M] (i : ι) (x : M) (s : finset ι) : ∑ j in s, pi.single i x j = if i ∈ s then x else 0 := sum_dite_eq' _ _ _ @[simp] lemma sum_pi_single {ι : Type*} {M : ι → Type*} [decidable_eq ι] [Π i, add_comm_monoid (M i)] (i : ι) (f : Π i, M i) (s : finset ι) : ∑ j in s, pi.single j (f j) i = if i ∈ s then f i else 0 := sum_dite_eq _ _ _ @[to_additive] lemma prod_bij_ne_one {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π a ∈ s, f a ≠ 1 → γ) (hi : ∀ a h₁ h₂, i a h₁ h₂ ∈ t) (i_inj : ∀ a₁ a₂ h₁₁ h₁₂ h₂₁ h₂₂, i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂) (i_surj : ∀ b ∈ t, g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂) (h : ∀ a h₁ h₂, f a = g (i a h₁ h₂)) : (∏ x in s, f x) = (∏ x in t, g x) := by classical; exact calc (∏ x in s, f x) = ∏ x in (s.filter $ λ x, f x ≠ 1), f x : prod_filter_ne_one.symm ... = ∏ x in (t.filter $ λ x, g x ≠ 1), g x : prod_bij (assume a ha, i a (mem_filter.mp ha).1 (mem_filter.mp ha).2) (assume a ha, (mem_filter.mp ha).elim $ λ h₁ h₂, mem_filter.mpr ⟨hi a h₁ h₂, λ hg, h₂ (hg ▸ h a h₁ h₂)⟩) (assume a ha, (mem_filter.mp ha).elim $ h a) (assume a₁ a₂ ha₁ ha₂, (mem_filter.mp ha₁).elim $ λ ha₁₁ ha₁₂, (mem_filter.mp ha₂).elim $ λ ha₂₁ ha₂₂, i_inj a₁ a₂ _ _ _ _) (assume b hb, (mem_filter.mp hb).elim $ λ h₁ h₂, let ⟨a, ha₁, ha₂, eq⟩ := i_surj b h₁ h₂ in ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩) ... = (∏ x in t, g x) : prod_filter_ne_one @[to_additive] lemma prod_dite_of_false {p : α → Prop} {hp : decidable_pred p} (h : ∀ x ∈ s, ¬ p x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) : (∏ x in s, if hx : p x then f x hx else g x hx) = ∏ (x : s), g x.val (h x.val x.property) := prod_bij (λ x hx, ⟨x,hx⟩) (λ x hx, by simp) (λ a ha, by { dsimp, rw dif_neg }) (λ a₁ a₂ h₁ h₂ hh, congr_arg coe hh) (λ b hb, ⟨b.1, b.2, by simp⟩) @[to_additive] lemma prod_dite_of_true {p : α → Prop} {hp : decidable_pred p} (h : ∀ x ∈ s, p x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) : (∏ x in s, if hx : p x then f x hx else g x hx) = ∏ (x : s), f x.val (h x.val x.property) := prod_bij (λ x hx, ⟨x,hx⟩) (λ x hx, by simp) (λ a ha, by { dsimp, rw dif_pos }) (λ a₁ a₂ h₁ h₂ hh, congr_arg coe hh) (λ b hb, ⟨b.1, b.2, by simp⟩) @[to_additive] lemma nonempty_of_prod_ne_one (h : (∏ x in s, f x) ≠ 1) : s.nonempty := s.eq_empty_or_nonempty.elim (λ H, false.elim $ h $ H.symm ▸ prod_empty) id @[to_additive] lemma exists_ne_one_of_prod_ne_one (h : (∏ x in s, f x) ≠ 1) : ∃ a ∈ s, f a ≠ 1 := begin classical, rw ← prod_filter_ne_one at h, rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩, exact ⟨x, (mem_filter.1 hx).1, (mem_filter.1 hx).2⟩ end @[to_additive] lemma prod_range_succ_comm (f : ℕ → β) (n : ℕ) : ∏ x in range (n + 1), f x = f n * ∏ x in range n, f x := by rw [range_succ, prod_insert not_mem_range_self] @[to_additive] lemma prod_range_succ (f : ℕ → β) (n : ℕ) : ∏ x in range (n + 1), f x = (∏ x in range n, f x) * f n := by simp only [mul_comm, prod_range_succ_comm] @[to_additive] lemma prod_range_succ' (f : ℕ → β) : ∀ n : ℕ, (∏ k in range (n + 1), f k) = (∏ k in range n, f (k+1)) * f 0 | 0 := prod_range_succ _ _ | (n + 1) := by rw [prod_range_succ _ n, mul_right_comm, ← prod_range_succ', prod_range_succ] @[to_additive] lemma eventually_constant_prod {u : ℕ → β} {N : ℕ} (hu : ∀ n ≥ N, u n = 1) {n : ℕ} (hn : N ≤ n) : ∏ k in range (n + 1), u k = ∏ k in range (N + 1), u k := begin obtain ⟨m, rfl : n = N + m⟩ := le_iff_exists_add.mp hn, clear hn, induction m with m hm, { simp }, erw [prod_range_succ, hm], simp [hu] end @[to_additive] lemma prod_range_add (f : ℕ → β) (n m : ℕ) : ∏ x in range (n + m), f x = (∏ x in range n, f x) * (∏ x in range m, f (n + x)) := begin induction m with m hm, { simp }, { rw [nat.add_succ, prod_range_succ, hm, prod_range_succ, mul_assoc], }, end @[to_additive] lemma prod_range_add_div_prod_range {α : Type*} [comm_group α] (f : ℕ → α) (n m : ℕ) : (∏ k in range (n + m), f k) / (∏ k in range n, f k) = ∏ k in finset.range m, f (n + k) := div_eq_of_eq_mul' (prod_range_add f n m) @[to_additive] lemma prod_range_zero (f : ℕ → β) : ∏ k in range 0, f k = 1 := by rw [range_zero, prod_empty] @[to_additive sum_range_one] lemma prod_range_one (f : ℕ → β) : ∏ k in range 1, f k = f 0 := by { rw [range_one], apply @prod_singleton β ℕ 0 f } open list @[to_additive] lemma prod_list_map_count [decidable_eq α] (l : list α) {M : Type*} [comm_monoid M] (f : α → M) : (l.map f).prod = ∏ m in l.to_finset, (f m) ^ (l.count m) := begin induction l with a s IH, { simp only [map_nil, prod_nil, count_nil, pow_zero, prod_const_one] }, simp only [list.map, list.prod_cons, to_finset_cons, IH], by_cases has : a ∈ s.to_finset, { rw [insert_eq_of_mem has, ← insert_erase has, prod_insert (not_mem_erase _ _), prod_insert (not_mem_erase _ _), ← mul_assoc, count_cons_self, pow_succ], congr' 1, refine prod_congr rfl (λ x hx, _), rw [count_cons_of_ne (ne_of_mem_erase hx)] }, rw [prod_insert has, count_cons_self, count_eq_zero_of_not_mem (mt mem_to_finset.2 has), pow_one], congr' 1, refine prod_congr rfl (λ x hx, _), rw count_cons_of_ne, rintro rfl, exact has hx, end @[to_additive] lemma prod_list_count [decidable_eq α] [comm_monoid α] (s : list α) : s.prod = ∏ m in s.to_finset, m ^ (s.count m) := by simpa using prod_list_map_count s id @[to_additive] lemma prod_list_count_of_subset [decidable_eq α] [comm_monoid α] (m : list α) (s : finset α) (hs : m.to_finset ⊆ s) : m.prod = ∏ i in s, i ^ (m.count i) := begin rw prod_list_count, refine prod_subset hs (λ x _ hx, _), rw [mem_to_finset] at hx, rw [count_eq_zero_of_not_mem hx, pow_zero], end open multiset @[to_additive] lemma prod_multiset_map_count [decidable_eq α] (s : multiset α) {M : Type*} [comm_monoid M] (f : α → M) : (s.map f).prod = ∏ m in s.to_finset, (f m) ^ (s.count m) := by { refine quot.induction_on s (λ l, _), simpa [prod_list_map_count l f] } @[to_additive] lemma prod_multiset_count [decidable_eq α] [comm_monoid α] (s : multiset α) : s.prod = ∏ m in s.to_finset, m ^ (s.count m) := by { convert prod_multiset_map_count s id, rw multiset.map_id } @[to_additive] lemma prod_multiset_count_of_subset [decidable_eq α] [comm_monoid α] (m : multiset α) (s : finset α) (hs : m.to_finset ⊆ s) : m.prod = ∏ i in s, i ^ (m.count i) := begin revert hs, refine quot.induction_on m (λ l, _), simp only [quot_mk_to_coe'', coe_prod, coe_count], apply prod_list_count_of_subset l s end @[to_additive] lemma prod_mem_multiset [decidable_eq α] (m : multiset α) (f : {x // x ∈ m} → β) (g : α → β) (hfg : ∀ x, f x = g x) : ∏ (x : {x // x ∈ m}), f x = ∏ x in m.to_finset, g x := prod_bij (λ x _, x.1) (λ x _, multiset.mem_to_finset.mpr x.2) (λ _ _, hfg _) (λ _ _ _ _ h, by { ext, assumption }) (λ y hy, ⟨⟨y, multiset.mem_to_finset.mp hy⟩, finset.mem_univ _, rfl⟩) /-- To prove a property of a product, it suffices to prove that the property is multiplicative and holds on factors. -/ @[to_additive "To prove a property of a sum, it suffices to prove that the property is additive and holds on summands."] lemma prod_induction {M : Type*} [comm_monoid M] (f : α → M) (p : M → Prop) (p_mul : ∀ a b, p a → p b → p (a * b)) (p_one : p 1) (p_s : ∀ x ∈ s, p $ f x) : p $ ∏ x in s, f x := multiset.prod_induction _ _ p_mul p_one (multiset.forall_mem_map_iff.mpr p_s) /-- To prove a property of a product, it suffices to prove that the property is multiplicative and holds on factors. -/ @[to_additive "To prove a property of a sum, it suffices to prove that the property is additive and holds on summands."] lemma prod_induction_nonempty {M : Type*} [comm_monoid M] (f : α → M) (p : M → Prop) (p_mul : ∀ a b, p a → p b → p (a * b)) (hs_nonempty : s.nonempty) (p_s : ∀ x ∈ s, p $ f x) : p $ ∏ x in s, f x := multiset.prod_induction_nonempty p p_mul (by simp [nonempty_iff_ne_empty.mp hs_nonempty]) (multiset.forall_mem_map_iff.mpr p_s) /-- For any product along `{0, ..., n-1}` of a commutative-monoid-valued function, we can verify that it's equal to a different function just by checking ratios of adjacent terms. This is a multiplicative discrete analogue of the fundamental theorem of calculus. -/ lemma prod_range_induction {M : Type*} [comm_monoid M] (f s : ℕ → M) (h0 : s 0 = 1) (h : ∀ n, s (n + 1) = s n * f n) (n : ℕ) : ∏ k in finset.range n, f k = s n := begin induction n with k hk, { simp only [h0, finset.prod_range_zero] }, { simp only [hk, finset.prod_range_succ, h, mul_comm] } end /-- For any sum along `{0, ..., n-1}` of a commutative-monoid-valued function, we can verify that it's equal to a different function just by checking differences of adjacent terms. This is a discrete analogue of the fundamental theorem of calculus. -/ lemma sum_range_induction {M : Type*} [add_comm_monoid M] (f s : ℕ → M) (h0 : s 0 = 0) (h : ∀ n, s (n + 1) = s n + f n) (n : ℕ) : ∑ k in finset.range n, f k = s n := @prod_range_induction (multiplicative M) _ f s h0 h n /-- A telescoping sum along `{0, ..., n - 1}` of an additive commutative group valued function reduces to the difference of the last and first terms.-/ lemma sum_range_sub {G : Type*} [add_comm_group G] (f : ℕ → G) (n : ℕ) : ∑ i in range n, (f (i+1) - f i) = f n - f 0 := by { apply sum_range_induction; simp } lemma sum_range_sub' {G : Type*} [add_comm_group G] (f : ℕ → G) (n : ℕ) : ∑ i in range n, (f i - f (i+1)) = f 0 - f n := by { apply sum_range_induction; simp } /-- A telescoping product along `{0, ..., n - 1}` of a commutative group valued function reduces to the ratio of the last and first factors. -/ @[to_additive] lemma prod_range_div {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) : ∏ i in range n, (f (i+1) * (f i)⁻¹) = f n * (f 0)⁻¹ := by simpa only [← div_eq_mul_inv] using @sum_range_sub (additive M) _ f n @[to_additive] lemma prod_range_div' {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) : ∏ i in range n, (f i * (f (i+1))⁻¹) = f 0 * (f n)⁻¹ := by simpa only [← div_eq_mul_inv] using @sum_range_sub' (additive M) _ f n /-- A telescoping sum along `{0, ..., n-1}` of an `ℕ`-valued function reduces to the difference of the last and first terms when the function we are summing is monotone. -/ lemma sum_range_sub_of_monotone [canonically_ordered_add_monoid α] [has_sub α] [has_ordered_sub α] [contravariant_class α α (+) (≤)] {f : ℕ → α} (h : monotone f) (n : ℕ) : ∑ i in range n, (f (i+1) - f i) = f n - f 0 := begin refine sum_range_induction _ _ (tsub_self _) (λ n, _) _, have h₁ : f n ≤ f (n+1) := h (nat.le_succ _), have h₂ : f 0 ≤ f n := h (nat.zero_le _), rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁], end @[simp, to_additive] lemma prod_const (b : β) : (∏ x in s, b) = b ^ s.card := by haveI := classical.dec_eq α; exact finset.induction_on s (by simp) (λ a s has ih, by rw [prod_insert has, card_insert_of_not_mem has, pow_succ, ih]) @[to_additive] lemma pow_eq_prod_const (b : β) : ∀ n, b ^ n = ∏ k in range n, b := by simp @[to_additive] lemma prod_pow (s : finset α) (n : ℕ) (f : α → β) : ∏ x in s, f x ^ n = (∏ x in s, f x) ^ n := by haveI := classical.dec_eq α; exact finset.induction_on s (by simp) (by simp [mul_pow] {contextual := tt}) @[to_additive] lemma prod_flip {n : ℕ} (f : ℕ → β) : ∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k := begin induction n with n ih, { rw [prod_range_one, prod_range_one] }, { rw [prod_range_succ', prod_range_succ _ (nat.succ n)], simp [← ih] } end @[to_additive] lemma prod_involution {s : finset α} {f : α → β} : ∀ (g : Π a ∈ s, α) (h : ∀ a ha, f a * f (g a ha) = 1) (g_ne : ∀ a ha, f a ≠ 1 → g a ha ≠ a) (g_mem : ∀ a ha, g a ha ∈ s) (g_inv : ∀ a ha, g (g a ha) (g_mem a ha) = a), (∏ x in s, f x) = 1 := by haveI := classical.dec_eq α; haveI := classical.dec_eq β; exact finset.strong_induction_on s (λ s ih g h g_ne g_mem g_inv, s.eq_empty_or_nonempty.elim (λ hs, hs.symm ▸ rfl) (λ ⟨x, hx⟩, have hmem : ∀ y ∈ (s.erase x).erase (g x hx), y ∈ s, from λ y hy, (mem_of_mem_erase (mem_of_mem_erase hy)), have g_inj : ∀ {x hx y hy}, g x hx = g y hy → x = y, from λ x hx y hy h, by rw [← g_inv x hx, ← g_inv y hy]; simp [h], have ih': ∏ y in erase (erase s x) (g x hx), f y = (1 : β) := ih ((s.erase x).erase (g x hx)) ⟨subset.trans (erase_subset _ _) (erase_subset _ _), λ h, not_mem_erase (g x hx) (s.erase x) (h (g_mem x hx))⟩ (λ y hy, g y (hmem y hy)) (λ y hy, h y (hmem y hy)) (λ y hy, g_ne y (hmem y hy)) (λ y hy, mem_erase.2 ⟨λ (h : g y _ = g x hx), by simpa [g_inj h] using hy, mem_erase.2 ⟨λ (h : g y _ = x), have y = g x hx, from g_inv y (hmem y hy) ▸ by simp [h], by simpa [this] using hy, g_mem y (hmem y hy)⟩⟩) (λ y hy, g_inv y (hmem y hy)), if hx1 : f x = 1 then ih' ▸ eq.symm (prod_subset hmem (λ y hy hy₁, have y = x ∨ y = g x hx, by simpa [hy, not_and_distrib, or_comm] using hy₁, this.elim (λ hy, hy.symm ▸ hx1) (λ hy, h x hx ▸ hy ▸ hx1.symm ▸ (one_mul _).symm))) else by rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ← insert_erase (mem_erase.2 ⟨g_ne x hx hx1, g_mem x hx⟩), prod_insert (not_mem_erase _ _), ih', mul_one, h x hx])) /-- The product of the composition of functions `f` and `g`, is the product over `b ∈ s.image g` of `f b` to the power of the cardinality of the fibre of `b`. See also `finset.prod_image`. -/ @[to_additive "The sum of the composition of functions `f` and `g`, is the sum over `b ∈ s.image g` of `f b` times of the cardinality of the fibre of `b`. See also `finset.sum_image`."] lemma prod_comp [decidable_eq γ] (f : γ → β) (g : α → γ) : ∏ a in s, f (g a) = ∏ b in s.image g, f b ^ (s.filter (λ a, g a = b)).card := calc ∏ a in s, f (g a) = ∏ x in (s.image g).sigma (λ b : γ, s.filter (λ a, g a = b)), f (g x.2) : prod_bij (λ a ha, ⟨g a, a⟩) (by simp; tauto) (λ _ _, rfl) (by simp) -- `(by finish)` closes this (by { rintro ⟨b_fst, b_snd⟩ H, simp only [mem_image, exists_prop, mem_filter, mem_sigma] at H, tauto }) ... = ∏ b in s.image g, ∏ a in s.filter (λ a, g a = b), f (g a) : prod_sigma _ _ _ ... = ∏ b in s.image g, ∏ a in s.filter (λ a, g a = b), f b : prod_congr rfl (λ b hb, prod_congr rfl (by simp {contextual := tt})) ... = ∏ b in s.image g, f b ^ (s.filter (λ a, g a = b)).card : prod_congr rfl (λ _ _, prod_const _) @[to_additive] lemma prod_piecewise [decidable_eq α] (s t : finset α) (f g : α → β) : (∏ x in s, (t.piecewise f g) x) = (∏ x in s ∩ t, f x) * (∏ x in s \ t, g x) := by { rw [piecewise, prod_ite, filter_mem_eq_inter, ← sdiff_eq_filter], } @[to_additive] lemma prod_inter_mul_prod_diff [decidable_eq α] (s t : finset α) (f : α → β) : (∏ x in s ∩ t, f x) * (∏ x in s \ t, f x) = (∏ x in s, f x) := by { convert (s.prod_piecewise t f f).symm, simp [finset.piecewise] } @[to_additive] lemma prod_eq_mul_prod_diff_singleton [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s) (f : α → β) : ∏ x in s, f x = f i * ∏ x in s \ {i}, f x := by { convert (s.prod_inter_mul_prod_diff {i} f).symm, simp [h] } @[to_additive] lemma prod_eq_prod_diff_singleton_mul [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s) (f : α → β) : ∏ x in s, f x = (∏ x in s \ {i}, f x) * f i := by { rw [prod_eq_mul_prod_diff_singleton h, mul_comm] } @[to_additive] lemma _root_.fintype.prod_eq_mul_prod_compl [decidable_eq α] [fintype α] (a : α) (f : α → β) : ∏ i, f i = (f a) * ∏ i in {a}ᶜ, f i := prod_eq_mul_prod_diff_singleton (mem_univ a) f @[to_additive] lemma _root_.fintype.prod_eq_prod_compl_mul [decidable_eq α] [fintype α] (a : α) (f : α → β) : ∏ i, f i = (∏ i in {a}ᶜ, f i) * f a := prod_eq_prod_diff_singleton_mul (mem_univ a) f lemma dvd_prod_of_mem (f : α → β) {a : α} {s : finset α} (ha : a ∈ s) : f a ∣ ∏ i in s, f i := begin classical, rw finset.prod_eq_mul_prod_diff_singleton ha, exact dvd_mul_right _ _, end /-- A product can be partitioned into a product of products, each equivalent under a setoid. -/ @[to_additive "A sum can be partitioned into a sum of sums, each equivalent under a setoid."] lemma prod_partition (R : setoid α) [decidable_rel R.r] : (∏ x in s, f x) = ∏ xbar in s.image quotient.mk, ∏ y in s.filter (λ y, ⟦y⟧ = xbar), f y := begin refine (finset.prod_image' f (λ x hx, _)).symm, refl, end /-- If we can partition a product into subsets that cancel out, then the whole product cancels. -/ @[to_additive "If we can partition a sum into subsets that cancel out, then the whole sum cancels."] lemma prod_cancels_of_partition_cancels (R : setoid α) [decidable_rel R.r] (h : ∀ x ∈ s, (∏ a in s.filter (λ y, y ≈ x), f a) = 1) : (∏ x in s, f x) = 1 := begin rw [prod_partition R, ←finset.prod_eq_one], intros xbar xbar_in_s, obtain ⟨x, x_in_s, xbar_eq_x⟩ := mem_image.mp xbar_in_s, rw [←xbar_eq_x, filter_congr (λ y _, @quotient.eq _ R y x)], apply h x x_in_s, end @[to_additive] lemma prod_update_of_not_mem [decidable_eq α] {s : finset α} {i : α} (h : i ∉ s) (f : α → β) (b : β) : (∏ x in s, function.update f i b x) = (∏ x in s, f x) := begin apply prod_congr rfl (λ j hj, _), have : j ≠ i, by { assume eq, rw eq at hj, exact h hj }, simp [this] end @[to_additive] lemma prod_update_of_mem [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s) (f : α → β) (b : β) : (∏ x in s, function.update f i b x) = b * (∏ x in s \ (singleton i), f x) := by { rw [update_eq_piecewise, prod_piecewise], simp [h] } /-- If a product of a `finset` of size at most 1 has a given value, so do the terms in that product. -/ @[to_additive eq_of_card_le_one_of_sum_eq "If a sum of a `finset` of size at most 1 has a given value, so do the terms in that sum."] lemma eq_of_card_le_one_of_prod_eq {s : finset α} (hc : s.card ≤ 1) {f : α → β} {b : β} (h : ∏ x in s, f x = b) : ∀ x ∈ s, f x = b := begin intros x hx, by_cases hc0 : s.card = 0, { exact false.elim (card_ne_zero_of_mem hx hc0) }, { have h1 : s.card = 1 := le_antisymm hc (nat.one_le_of_lt (nat.pos_of_ne_zero hc0)), rw card_eq_one at h1, cases h1 with x2 hx2, rw [hx2, mem_singleton] at hx, simp_rw hx2 at h, rw hx, rw prod_singleton at h, exact h } end /-- Taking a product over `s : finset α` is the same as multiplying the value on a single element `f a` by the product of `s.erase a`. -/ @[to_additive "Taking a sum over `s : finset α` is the same as adding the value on a single element `f a` to the sum over `s.erase a`."] lemma mul_prod_erase [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a ∈ s) : f a * (∏ x in s.erase a, f x) = ∏ x in s, f x := by rw [← prod_insert (not_mem_erase a s), insert_erase h] /-- A variant of `finset.mul_prod_erase` with the multiplication swapped. -/ @[to_additive "A variant of `finset.add_sum_erase` with the addition swapped."] lemma prod_erase_mul [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a ∈ s) : (∏ x in s.erase a, f x) * f a = ∏ x in s, f x := by rw [mul_comm, mul_prod_erase s f h] /-- If a function applied at a point is 1, a product is unchanged by removing that point, if present, from a `finset`. -/ @[to_additive "If a function applied at a point is 0, a sum is unchanged by removing that point, if present, from a `finset`."] lemma prod_erase [decidable_eq α] (s : finset α) {f : α → β} {a : α} (h : f a = 1) : ∏ x in s.erase a, f x = ∏ x in s, f x := begin rw ←sdiff_singleton_eq_erase, refine prod_subset (sdiff_subset _ _) (λ x hx hnx, _), rw sdiff_singleton_eq_erase at hnx, rwa eq_of_mem_of_not_mem_erase hx hnx end lemma sum_erase_lt_of_pos {γ : Type*} [decidable_eq α] [ordered_add_comm_monoid γ] [covariant_class γ γ (+) (<)] {s : finset α} {d : α} (hd : d ∈ s) {f : α → γ} (hdf : 0 < f d) : ∑ (m : α) in s.erase d, f m < ∑ (m : α) in s, f m := begin nth_rewrite_rhs 0 ←finset.insert_erase hd, rw finset.sum_insert (finset.not_mem_erase d s), exact lt_add_of_pos_left _ hdf, end /-- If a product is 1 and the function is 1 except possibly at one point, it is 1 everywhere on the `finset`. -/ @[to_additive "If a sum is 0 and the function is 0 except possibly at one point, it is 0 everywhere on the `finset`."] lemma eq_one_of_prod_eq_one {s : finset α} {f : α → β} {a : α} (hp : ∏ x in s, f x = 1) (h1 : ∀ x ∈ s, x ≠ a → f x = 1) : ∀ x ∈ s, f x = 1 := begin intros x hx, classical, by_cases h : x = a, { rw h, rw h at hx, rw [←prod_subset (singleton_subset_iff.2 hx) (λ t ht ha, h1 t ht (not_mem_singleton.1 ha)), prod_singleton] at hp, exact hp }, { exact h1 x hx h } end lemma prod_pow_boole [decidable_eq α] (s : finset α) (f : α → β) (a : α) : (∏ x in s, (f x)^(ite (a = x) 1 0)) = ite (a ∈ s) (f a) 1 := by simp lemma prod_dvd_prod_of_dvd {S : finset α} (g1 g2 : α → β) (h : ∀ a ∈ S, g1 a ∣ g2 a) : S.prod g1 ∣ S.prod g2 := begin classical, apply finset.induction_on' S, { simp }, intros a T haS _ haT IH, repeat {rw finset.prod_insert haT}, exact mul_dvd_mul (h a haS) IH, end lemma prod_dvd_prod_of_subset {ι M : Type*} [comm_monoid M] (s t : finset ι) (f : ι → M) (h : s ⊆ t) : ∏ i in s, f i ∣ ∏ i in t, f i := multiset.prod_dvd_prod_of_le $ multiset.map_le_map $ by simpa end comm_monoid /-- If `f = g = h` everywhere but at `i`, where `f i = g i + h i`, then the product of `f` over `s` is the sum of the products of `g` and `h`. -/ lemma prod_add_prod_eq [comm_semiring β] {s : finset α} {i : α} {f g h : α → β} (hi : i ∈ s) (h1 : g i + h i = f i) (h2 : ∀ j ∈ s, j ≠ i → g j = f j) (h3 : ∀ j ∈ s, j ≠ i → h j = f j) : ∏ i in s, g i + ∏ i in s, h i = ∏ i in s, f i := by { classical, simp_rw [prod_eq_mul_prod_diff_singleton hi, ← h1, right_distrib], congr' 2; apply prod_congr rfl; simpa } lemma card_eq_sum_ones (s : finset α) : s.card = ∑ _ in s, 1 := by simp lemma sum_const_nat {m : ℕ} {f : α → ℕ} (h₁ : ∀ x ∈ s, f x = m) : (∑ x in s, f x) = card s * m := begin rw [← nat.nsmul_eq_mul, ← sum_const], apply sum_congr rfl h₁ end @[simp] lemma sum_boole {s : finset α} {p : α → Prop} [non_assoc_semiring β] {hp : decidable_pred p} : (∑ x in s, if p x then (1 : β) else (0 : β)) = (s.filter p).card := by simp [sum_ite] lemma eq_sum_range_sub [add_comm_group β] (f : ℕ → β) (n : ℕ) : f n = f 0 + ∑ i in range n, (f (i+1) - f i) := by rw [finset.sum_range_sub, add_sub_cancel'_right] lemma eq_sum_range_sub' [add_comm_group β] (f : ℕ → β) (n : ℕ) : f n = ∑ i in range (n + 1), if i = 0 then f 0 else f i - f (i - 1) := begin conv_lhs { rw [finset.eq_sum_range_sub f] }, simp [finset.sum_range_succ', add_comm] end lemma _root_.commute.sum_right [non_unital_non_assoc_semiring β] (s : finset α) (f : α → β) (b : β) (h : ∀ i ∈ s, commute b (f i)) : commute b (∑ i in s, f i) := commute.multiset_sum_right _ _ $ λ b hb, begin obtain ⟨i, hi, rfl⟩ := multiset.mem_map.mp hb, exact h _ hi end lemma _root_.commute.sum_left [non_unital_non_assoc_semiring β] (s : finset α) (f : α → β) (b : β) (h : ∀ i ∈ s, commute (f i) b) : commute (∑ i in s, f i) b := (commute.sum_right _ _ _ $ λ i hi, (h _ hi).symm).symm section opposite open mul_opposite /-- Moving to the opposite additive commutative monoid commutes with summing. -/ @[simp] lemma op_sum [add_comm_monoid β] {s : finset α} (f : α → β) : op (∑ x in s, f x) = ∑ x in s, op (f x) := (op_add_equiv : β ≃+ βᵐᵒᵖ).map_sum _ _ @[simp] lemma unop_sum [add_comm_monoid β] {s : finset α} (f : α → βᵐᵒᵖ) : unop (∑ x in s, f x) = ∑ x in s, unop (f x) := (op_add_equiv : β ≃+ βᵐᵒᵖ).symm.map_sum _ _ end opposite section division_comm_monoid variables [division_comm_monoid β] @[simp, to_additive] lemma prod_inv_distrib : (∏ x in s, (f x)⁻¹) = (∏ x in s, f x)⁻¹ := multiset.prod_map_inv @[simp, to_additive] lemma prod_div_distrib : (∏ x in s, f x / g x) = (∏ x in s, f x) / ∏ x in s, g x := multiset.prod_map_div @[to_additive] lemma prod_zpow (f : α → β) (s : finset α) (n : ℤ) : ∏ a in s, (f a) ^ n = (∏ a in s, f a) ^ n := multiset.prod_map_zpow end division_comm_monoid section comm_group variables [comm_group β] [decidable_eq α] @[simp, to_additive] lemma prod_sdiff_eq_div (h : s₁ ⊆ s₂) : (∏ x in (s₂ \ s₁), f x) = (∏ x in s₂, f x) / (∏ x in s₁, f x) := by rw [eq_div_iff_mul_eq', prod_sdiff h] @[to_additive] lemma prod_sdiff_div_prod_sdiff : (∏ x in s₂ \ s₁, f x) / (∏ x in s₁ \ s₂, f x) = (∏ x in s₂, f x) / (∏ x in s₁, f x) := by simp [← finset.prod_sdiff (@inf_le_left _ _ s₁ s₂), ← finset.prod_sdiff (@inf_le_right _ _ s₁ s₂)] @[simp, to_additive] lemma prod_erase_eq_div {a : α} (h : a ∈ s) : (∏ x in s.erase a, f x) = (∏ x in s, f x) / f a := by rw [eq_div_iff_mul_eq', prod_erase_mul _ _ h] end comm_group @[simp] theorem card_sigma {σ : α → Type*} (s : finset α) (t : Π a, finset (σ a)) : card (s.sigma t) = ∑ a in s, card (t a) := multiset.card_sigma _ _ lemma card_bUnion [decidable_eq β] {s : finset α} {t : α → finset β} (h : ∀ x ∈ s, ∀ y ∈ s, x ≠ y → disjoint (t x) (t y)) : (s.bUnion t).card = ∑ u in s, card (t u) := calc (s.bUnion t).card = ∑ i in s.bUnion t, 1 : by simp ... = ∑ a in s, ∑ i in t a, 1 : finset.sum_bUnion h ... = ∑ u in s, card (t u) : by simp lemma card_bUnion_le [decidable_eq β] {s : finset α} {t : α → finset β} : (s.bUnion t).card ≤ ∑ a in s, (t a).card := by haveI := classical.dec_eq α; exact finset.induction_on s (by simp) (λ a s has ih, calc ((insert a s).bUnion t).card ≤ (t a).card + (s.bUnion t).card : by rw bUnion_insert; exact finset.card_union_le _ _ ... ≤ ∑ a in insert a s, card (t a) : by rw sum_insert has; exact add_le_add_left ih _) theorem card_eq_sum_card_fiberwise [decidable_eq β] {f : α → β} {s : finset α} {t : finset β} (H : ∀ x ∈ s, f x ∈ t) : s.card = ∑ a in t, (s.filter (λ x, f x = a)).card := by simp only [card_eq_sum_ones, sum_fiberwise_of_maps_to H] theorem card_eq_sum_card_image [decidable_eq β] (f : α → β) (s : finset α) : s.card = ∑ a in s.image f, (s.filter (λ x, f x = a)).card := card_eq_sum_card_fiberwise (λ _, mem_image_of_mem _) lemma mem_sum {f : α → multiset β} (s : finset α) (b : β) : b ∈ ∑ x in s, f x ↔ ∃ a ∈ s, b ∈ f a := begin classical, refine s.induction_on (by simp) _, { intros a t hi ih, simp [sum_insert hi, ih, or_and_distrib_right, exists_or_distrib] } end section prod_eq_zero variables [comm_monoid_with_zero β] lemma prod_eq_zero (ha : a ∈ s) (h : f a = 0) : (∏ x in s, f x) = 0 := by { haveI := classical.dec_eq α, rw [←prod_erase_mul _ _ ha, h, mul_zero] } lemma prod_boole {s : finset α} {p : α → Prop} [decidable_pred p] : ∏ i in s, ite (p i) (1 : β) (0 : β) = ite (∀ i ∈ s, p i) 1 0 := begin split_ifs, { apply prod_eq_one, intros i hi, rw if_pos (h i hi) }, { push_neg at h, rcases h with ⟨i, hi, hq⟩, apply prod_eq_zero hi, rw [if_neg hq] }, end variables [nontrivial β] [no_zero_divisors β] lemma prod_eq_zero_iff : (∏ x in s, f x) = 0 ↔ (∃ a ∈ s, f a = 0) := begin classical, apply finset.induction_on s, exact ⟨not.elim one_ne_zero, λ ⟨_, H, _⟩, H.elim⟩, assume a s ha ih, rw [prod_insert ha, mul_eq_zero, bex_def, exists_mem_insert, ih, ← bex_def] end theorem prod_ne_zero_iff : (∏ x in s, f x) ≠ 0 ↔ (∀ a ∈ s, f a ≠ 0) := by { rw [ne, prod_eq_zero_iff], push_neg } end prod_eq_zero @[to_additive] lemma prod_unique_nonempty {α β : Type*} [comm_monoid β] [unique α] (s : finset α) (f : α → β) (h : s.nonempty) : (∏ x in s, f x) = f default := begin obtain ⟨a, ha⟩ := h, have : s = {a}, { ext b, simpa [subsingleton.elim a b] using ha }, rw [this, finset.prod_singleton, subsingleton.elim a default] end end finset namespace fintype open finset /-- `fintype.prod_bijective` is a variant of `finset.prod_bij` that accepts `function.bijective`. See `function.bijective.prod_comp` for a version without `h`. -/ @[to_additive "`fintype.sum_equiv` is a variant of `finset.sum_bij` that accepts `function.bijective`. See `function.bijective.sum_comp` for a version without `h`. "] lemma prod_bijective {α β M : Type*} [fintype α] [fintype β] [comm_monoid M] (e : α → β) (he : function.bijective e) (f : α → M) (g : β → M) (h : ∀ x, f x = g (e x)) : ∏ x : α, f x = ∏ x : β, g x := prod_bij (λ x _, e x) (λ x _, mem_univ (e x)) (λ x _, h x) (λ x x' _ _ h, he.injective h) (λ y _, (he.surjective y).imp $ λ a h, ⟨mem_univ _, h.symm⟩) /-- `fintype.prod_equiv` is a specialization of `finset.prod_bij` that automatically fills in most arguments. See `equiv.prod_comp` for a version without `h`. -/ @[to_additive "`fintype.sum_equiv` is a specialization of `finset.sum_bij` that automatically fills in most arguments. See `equiv.sum_comp` for a version without `h`. "] lemma prod_equiv {α β M : Type*} [fintype α] [fintype β] [comm_monoid M] (e : α ≃ β) (f : α → M) (g : β → M) (h : ∀ x, f x = g (e x)) : ∏ x : α, f x = ∏ x : β, g x := prod_bijective e e.bijective f g h variables {f s} @[to_additive] lemma prod_unique {α β : Type*} [comm_monoid β] [unique α] (f : α → β) : (∏ x : α, f x) = f default := by rw [univ_unique, prod_singleton] @[to_additive] lemma prod_empty {α β : Type*} [comm_monoid β] [is_empty α] (f : α → β) : (∏ x : α, f x) = 1 := by rw [eq_empty_of_is_empty (univ : finset α), finset.prod_empty] @[to_additive] lemma prod_subsingleton {α β : Type*} [comm_monoid β] [subsingleton α] (f : α → β) (a : α) : (∏ x : α, f x) = f a := begin haveI : unique α := unique_of_subsingleton a, convert prod_unique f end @[to_additive] lemma prod_subtype_mul_prod_subtype {α β : Type*} [fintype α] [comm_monoid β] (p : α → Prop) (f : α → β) [decidable_pred p] : (∏ (i : {x // p x}), f i) * (∏ i : {x // ¬ p x}, f i) = ∏ i, f i := begin classical, let s := {x | p x}.to_finset, rw [← finset.prod_subtype s, ← finset.prod_subtype sᶜ], { exact finset.prod_mul_prod_compl _ _ }, { simp }, { simp } end end fintype namespace list @[to_additive] lemma prod_to_finset {M : Type*} [decidable_eq α] [comm_monoid M] (f : α → M) : ∀ {l : list α} (hl : l.nodup), l.to_finset.prod f = (l.map f).prod | [] _ := by simp | (a :: l) hl := let ⟨not_mem, hl⟩ := list.nodup_cons.mp hl in by simp [finset.prod_insert (mt list.mem_to_finset.mp not_mem), prod_to_finset hl] end list namespace multiset variables [decidable_eq α] @[simp] lemma to_finset_sum_count_eq (s : multiset α) : (∑ a in s.to_finset, s.count a) = s.card := multiset.induction_on s rfl (assume a s ih, calc (∑ x in to_finset (a ::ₘ s), count x (a ::ₘ s)) = ∑ x in to_finset (a ::ₘ s), ((if x = a then 1 else 0) + count x s) : finset.sum_congr rfl $ λ _ _, by split_ifs; [simp only [h, count_cons_self, nat.one_add], simp only [count_cons_of_ne h, zero_add]] ... = card (a ::ₘ s) : begin by_cases a ∈ s.to_finset, { have : ∑ x in s.to_finset, ite (x = a) 1 0 = ∑ x in {a}, ite (x = a) 1 0, { rw [finset.sum_ite_eq', if_pos h, finset.sum_singleton, if_pos rfl], }, rw [to_finset_cons, finset.insert_eq_of_mem h, finset.sum_add_distrib, ih, this, finset.sum_singleton, if_pos rfl, add_comm, card_cons] }, { have ha : a ∉ s, by rwa mem_to_finset at h, have : ∑ x in to_finset s, ite (x = a) 1 0 = ∑ x in to_finset s, 0, from finset.sum_congr rfl (λ x hx, if_neg $ by rintro rfl; cc), rw [to_finset_cons, finset.sum_insert h, if_pos rfl, finset.sum_add_distrib, this, finset.sum_const_zero, ih, count_eq_zero_of_not_mem ha, zero_add, add_comm, card_cons] } end) lemma count_sum' {s : finset β} {a : α} {f : β → multiset α} : count a (∑ x in s, f x) = ∑ x in s, count a (f x) := by { dunfold finset.sum, rw count_sum } @[simp] lemma to_finset_sum_count_nsmul_eq (s : multiset α) : (∑ a in s.to_finset, s.count a • {a}) = s := begin apply ext', intro b, rw count_sum', have h : count b s = count b (count b s • {b}), { rw [count_nsmul, count_singleton_self, mul_one] }, rw h, clear h, apply finset.sum_eq_single b, { intros c h hcb, rw count_nsmul, convert mul_zero (count c s), apply count_eq_zero.mpr, exact finset.not_mem_singleton.mpr (ne.symm hcb) }, { intro hb, rw [count_eq_zero_of_not_mem (mt mem_to_finset.2 hb), count_nsmul, zero_mul]} end theorem exists_smul_of_dvd_count (s : multiset α) {k : ℕ} (h : ∀ (a : α), a ∈ s → k ∣ multiset.count a s) : ∃ (u : multiset α), s = k • u := begin use ∑ a in s.to_finset, (s.count a / k) • {a}, have h₂ : ∑ (x : α) in s.to_finset, k • (count x s / k) • ({x} : multiset α) = ∑ (x : α) in s.to_finset, count x s • {x}, { apply finset.sum_congr rfl, intros x hx, rw [← mul_nsmul, nat.mul_div_cancel' (h x (mem_to_finset.mp hx))] }, rw [← finset.sum_nsmul, h₂, to_finset_sum_count_nsmul_eq] end lemma to_finset_prod_dvd_prod [comm_monoid α] (S : multiset α) : S.to_finset.prod id ∣ S.prod := begin rw finset.prod_eq_multiset_prod, refine multiset.prod_dvd_prod_of_le _, simp [multiset.dedup_le S], end @[to_additive] lemma prod_sum {α : Type*} {ι : Type*} [comm_monoid α] (f : ι → multiset α) (s : finset ι) : (∑ x in s, f x).prod = ∏ x in s, (f x).prod := begin classical, induction s using finset.induction_on with a t hat ih, { rw [finset.sum_empty, finset.prod_empty, multiset.prod_zero] }, { rw [finset.sum_insert hat, finset.prod_insert hat, multiset.prod_add, ih] } end end multiset namespace nat @[simp, norm_cast] lemma cast_list_sum [add_monoid_with_one β] (s : list ℕ) : (↑(s.sum) : β) = (s.map coe).sum := map_list_sum (cast_add_monoid_hom β) _ @[simp, norm_cast] lemma cast_list_prod [semiring β] (s : list ℕ) : (↑(s.prod) : β) = (s.map coe).prod := map_list_prod (cast_ring_hom β) _ @[simp, norm_cast] lemma cast_multiset_sum [add_comm_monoid_with_one β] (s : multiset ℕ) : (↑(s.sum) : β) = (s.map coe).sum := map_multiset_sum (cast_add_monoid_hom β) _ @[simp, norm_cast] lemma cast_multiset_prod [comm_semiring β] (s : multiset ℕ) : (↑(s.prod) : β) = (s.map coe).prod := map_multiset_prod (cast_ring_hom β) _ @[simp, norm_cast] lemma cast_sum [add_comm_monoid_with_one β] (s : finset α) (f : α → ℕ) : ↑(∑ x in s, f x : ℕ) = (∑ x in s, (f x : β)) := map_sum (cast_add_monoid_hom β) _ _ @[simp, norm_cast] lemma cast_prod [comm_semiring β] (f : α → ℕ) (s : finset α) : (↑∏ i in s, f i : β) = ∏ i in s, f i := map_prod (cast_ring_hom β) _ _ end nat namespace int @[simp, norm_cast] lemma cast_list_sum [add_group_with_one β] (s : list ℤ) : (↑(s.sum) : β) = (s.map coe).sum := map_list_sum (cast_add_hom β) _ @[simp, norm_cast] lemma cast_list_prod [ring β] (s : list ℤ) : (↑(s.prod) : β) = (s.map coe).prod := map_list_prod (cast_ring_hom β) _ @[simp, norm_cast] lemma cast_multiset_sum [add_comm_group_with_one β] (s : multiset ℤ) : (↑(s.sum) : β) = (s.map coe).sum := map_multiset_sum (cast_add_hom β) _ @[simp, norm_cast] lemma cast_multiset_prod {R : Type*} [comm_ring R] (s : multiset ℤ) : (↑(s.prod) : R) = (s.map coe).prod := map_multiset_prod (cast_ring_hom R) _ @[simp, norm_cast] lemma cast_sum [add_comm_group_with_one β] (s : finset α) (f : α → ℤ) : ↑(∑ x in s, f x : ℤ) = (∑ x in s, (f x : β)) := map_sum (cast_add_hom β) _ _ @[simp, norm_cast] lemma cast_prod {R : Type*} [comm_ring R] (f : α → ℤ) (s : finset α) : (↑∏ i in s, f i : R) = ∏ i in s, f i := (int.cast_ring_hom R).map_prod _ _ end int @[simp, norm_cast] lemma units.coe_prod {M : Type*} [comm_monoid M] (f : α → Mˣ) (s : finset α) : (↑∏ i in s, f i : M) = ∏ i in s, f i := (units.coe_hom M).map_prod _ _ lemma units.mk0_prod [comm_group_with_zero β] (s : finset α) (f : α → β) (h) : units.mk0 (∏ b in s, f b) h = ∏ b in s.attach, units.mk0 (f b) (λ hh, h (finset.prod_eq_zero b.2 hh)) := by { classical, induction s using finset.induction_on; simp* } lemma nat_abs_sum_le {ι : Type*} (s : finset ι) (f : ι → ℤ) : (∑ i in s, f i).nat_abs ≤ ∑ i in s, (f i).nat_abs := begin classical, apply finset.induction_on s, { simp only [finset.sum_empty, int.nat_abs_zero] }, { intros i s his IH, simp only [his, finset.sum_insert, not_false_iff], exact (int.nat_abs_add_le _ _).trans (add_le_add le_rfl IH) } end
c546ad147ef6e12b58b13333588401491376274f
da2388aff16df48b4a928b575bcec678b8e7f2cf
/src/equivalent.lean
dadc75e70436e7dd0f15dda6194c308f7cff1e07
[]
no_license
ADedecker/series
1d0d282d4333c7599f07cc705a35cf5edfb87a3b
12fbcdd16b3cdeda4476165a4645fcccc0fb3234
refs/heads/master
1,674,828,739,868
1,607,618,619,000
1,607,618,619,000
304,379,894
0
0
null
null
null
null
UTF-8
Lean
false
false
1,378
lean
import analysis.calculus.deriv import data.polynomial.erase_lead import asymptotics2 import analysis.asymptotic_equivalent import topology.algebra.ordered import algebra.group.pi open_locale asymptotics open filter namespace asymptotics section variables {α β : Type*} {u v w : α → β} [normed_group β] {l : filter α} lemma is_equivalent.add_is_o (huv : u ~[l] v) (hwv : is_o w v l) : (w + u) ~[l] v := begin rw is_equivalent at *, convert hwv.add huv, ext, simp [add_sub], end lemma is_o.is_equivalent (huv : is_o (u - v) v l) : u ~[l] v := huv lemma is_equivalent.neg (huv : u ~[l] v) : (λ x, - u x) ~[l] (λ x, - v x) := begin rw is_equivalent, convert huv.is_o.neg_left.neg_right, ext, simp, end end section normed_linear_ordered_field variables {α β : Type*} [normed_linear_ordered_field β] {u v : α → β} {l : filter α} #check tendsto_neg_at_top_at_bot lemma is_equivalent.tendsto_at_bot [order_topology β] (huv : u ~[l] v) (hu : tendsto u l at_bot) : tendsto v l at_bot := begin convert tendsto_neg_at_top_at_bot.comp (huv.neg.tendsto_at_top $ tendsto_neg_at_bot_at_top.comp hu), ext, simp end lemma is_equivalent.tendsto_at_bot_iff [order_topology β] (huv : u ~[l] v) : tendsto u l at_bot ↔ tendsto v l at_bot := ⟨huv.tendsto_at_bot, huv.symm.tendsto_at_bot⟩ end normed_linear_ordered_field end asymptotics
63b571618aaa5d988b8ab48bcf48b2bd6fc2cf0b
4727251e0cd73359b15b664c3170e5d754078599
/src/measure_theory/measure/null_measurable.lean
f64dcb5ca470d7eaf2ddd37aa991700b1b21049f
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
19,221
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov -/ import measure_theory.measure.ae_disjoint /-! # Null measurable sets and complete measures ## Main definitions ### Null measurable sets and functions A set `s : set α` is called *null measurable* (`measure_theory.null_measurable_set`) if it satisfies any of the following equivalent conditions: * there exists a measurable set `t` such that `s =ᵐ[μ] t` (this is used as a definition); * `measure_theory.to_measurable μ s =ᵐ[μ] s`; * there exists a measurable subset `t ⊆ s` such that `t =ᵐ[μ] s` (in this case the latter equality means that `μ (s \ t) = 0`); * `s` can be represented as a union of a measurable set and a set of measure zero; * `s` can be represented as a difference of a measurable set and a set of measure zero. Null measurable sets form a σ-algebra that is registered as a `measurable_space` instance on `measure_theory.null_measurable_space α μ`. We also say that `f : α → β` is `measure_theory.null_measurable` if the preimage of a measurable set is a null measurable set. In other words, `f : α → β` is null measurable if it is measurable as a function `measure_theory.null_measurable_space α μ → β`. ### Complete measures We say that a measure `μ` is complete w.r.t. the `measurable_space α` σ-algebra (or the σ-algebra is complete w.r.t measure `μ`) if every set of measure zero is measurable. In this case all null measurable sets and functions are measurable. For each measure `μ`, we define `measure_theory.measure.completion μ` to be the same measure interpreted as a measure on `measure_theory.null_measurable_space α μ` and prove that this is a complete measure. ## Implementation notes We define `measure_theory.null_measurable_set` as `@measurable_set (null_measurable_space α μ) _` so that theorems about `measurable_set`s like `measurable_set.union` can be applied to `null_measurable_set`s. However, these lemmas output terms of the same form `@measurable_set (null_measurable_space α μ) _ _`. While this is definitionally equal to the expected output `null_measurable_set s μ`, it looks different and may be misleading. So we copy all standard lemmas about measurable sets to the `measure_theory.null_measurable_set` namespace and fix the output type. ## Tags measurable, measure, null measurable, completion -/ open filter set encodable variables {ι α β γ : Type*} namespace measure_theory /-- A type tag for `α` with `measurable_set` given by `null_measurable_set`. -/ @[nolint unused_arguments] def null_measurable_space (α : Type*) [measurable_space α] (μ : measure α . volume_tac) : Type* := α section variables {m0 : measurable_space α} {μ : measure α} {s t : set α} instance [h : inhabited α] : inhabited (null_measurable_space α μ) := h instance [h : subsingleton α] : subsingleton (null_measurable_space α μ) := h instance : measurable_space (null_measurable_space α μ) := { measurable_set' := λ s, ∃ t, measurable_set t ∧ s =ᵐ[μ] t, measurable_set_empty := ⟨∅, measurable_set.empty, ae_eq_refl _⟩, measurable_set_compl := λ s ⟨t, htm, hts⟩, ⟨tᶜ, htm.compl, hts.compl⟩, measurable_set_Union := λ s hs, by { choose t htm hts using hs, exact ⟨⋃ i, t i, measurable_set.Union htm, eventually_eq.countable_Union hts⟩ } } /-- A set is called `null_measurable_set` if it can be approximated by a measurable set up to a set of null measure. -/ def null_measurable_set [measurable_space α] (s : set α) (μ : measure α . volume_tac) : Prop := @measurable_set (null_measurable_space α μ) _ s @[simp] lemma _root_.measurable_set.null_measurable_set (h : measurable_set s) : null_measurable_set s μ := ⟨s, h, ae_eq_refl _⟩ @[simp] lemma null_measurable_set_empty : null_measurable_set ∅ μ := measurable_set.empty @[simp] lemma null_measurable_set_univ : null_measurable_set univ μ := measurable_set.univ namespace null_measurable_set lemma of_null (h : μ s = 0) : null_measurable_set s μ := ⟨∅, measurable_set.empty, ae_eq_empty.2 h⟩ lemma compl (h : null_measurable_set s μ) : null_measurable_set sᶜ μ := h.compl lemma of_compl (h : null_measurable_set sᶜ μ) : null_measurable_set s μ := h.of_compl @[simp] lemma compl_iff : null_measurable_set sᶜ μ ↔ null_measurable_set s μ := measurable_set.compl_iff @[nontriviality] lemma of_subsingleton [subsingleton α] : null_measurable_set s μ := subsingleton.measurable_set protected lemma congr (hs : null_measurable_set s μ) (h : s =ᵐ[μ] t) : null_measurable_set t μ := let ⟨s', hm, hs'⟩ := hs in ⟨s', hm, h.symm.trans hs'⟩ protected lemma Union [encodable ι] {s : ι → set α} (h : ∀ i, null_measurable_set (s i) μ) : null_measurable_set (⋃ i, s i) μ := measurable_set.Union h protected lemma bUnion_decode₂ [encodable ι] ⦃f : ι → set α⦄ (h : ∀ i, null_measurable_set (f i) μ) (n : ℕ) : null_measurable_set (⋃ b ∈ encodable.decode₂ ι n, f b) μ := measurable_set.bUnion_decode₂ h n protected lemma bUnion {f : ι → set α} {s : set ι} (hs : countable s) (h : ∀ b ∈ s, null_measurable_set (f b) μ) : null_measurable_set (⋃ b ∈ s, f b) μ := measurable_set.bUnion hs h protected lemma sUnion {s : set (set α)} (hs : countable s) (h : ∀ t ∈ s, null_measurable_set t μ) : null_measurable_set (⋃₀ s) μ := by { rw sUnion_eq_bUnion, exact measurable_set.bUnion hs h } lemma Union_Prop {p : Prop} {f : p → set α} (hf : ∀ i, null_measurable_set (f i) μ) : null_measurable_set (⋃ i, f i) μ := measurable_set.Union_Prop hf lemma Union_fintype [fintype ι] {f : ι → set α} (h : ∀ b, null_measurable_set (f b) μ) : null_measurable_set (⋃ b, f b) μ := measurable_set.Union_fintype h protected lemma Inter [encodable ι] {f : ι → set α} (h : ∀ i, null_measurable_set (f i) μ) : null_measurable_set (⋂ i, f i) μ := measurable_set.Inter h protected lemma bInter {f : β → set α} {s : set β} (hs : countable s) (h : ∀ b ∈ s, null_measurable_set (f b) μ) : null_measurable_set (⋂ b ∈ s, f b) μ := measurable_set.bInter hs h protected lemma sInter {s : set (set α)} (hs : countable s) (h : ∀ t ∈ s, null_measurable_set t μ) : null_measurable_set (⋂₀ s) μ := measurable_set.sInter hs h lemma Inter_Prop {p : Prop} {f : p → set α} (hf : ∀ b, null_measurable_set (f b) μ) : null_measurable_set (⋂ b, f b) μ := measurable_set.Inter_Prop hf lemma Inter_fintype [fintype ι] {f : ι → set α} (h : ∀ b, null_measurable_set (f b) μ) : null_measurable_set (⋂ b, f b) μ := measurable_set.Inter_fintype h @[simp] protected lemma union (hs : null_measurable_set s μ) (ht : null_measurable_set t μ) : null_measurable_set (s ∪ t) μ := hs.union ht protected lemma union_null (hs : null_measurable_set s μ) (ht : μ t = 0) : null_measurable_set (s ∪ t) μ := hs.union (of_null ht) @[simp] protected lemma inter (hs : null_measurable_set s μ) (ht : null_measurable_set t μ) : null_measurable_set (s ∩ t) μ := hs.inter ht @[simp] protected lemma diff (hs : null_measurable_set s μ) (ht : null_measurable_set t μ) : null_measurable_set (s \ t) μ := hs.diff ht @[simp] protected lemma disjointed {f : ℕ → set α} (h : ∀ i, null_measurable_set (f i) μ) (n) : null_measurable_set (disjointed f n) μ := measurable_set.disjointed h n @[simp] protected lemma const (p : Prop) : null_measurable_set {a : α | p} μ := measurable_set.const p instance [measurable_singleton_class α] : measurable_singleton_class (null_measurable_space α μ) := ⟨λ x, (@measurable_set_singleton α _ _ x).null_measurable_set⟩ protected lemma insert [measurable_singleton_class (null_measurable_space α μ)] (hs : null_measurable_set s μ) (a : α) : null_measurable_set (insert a s) μ := hs.insert a lemma exists_measurable_superset_ae_eq (h : null_measurable_set s μ) : ∃ t ⊇ s, measurable_set t ∧ t =ᵐ[μ] s := begin rcases h with ⟨t, htm, hst⟩, refine ⟨t ∪ to_measurable μ (s \ t), _, htm.union (measurable_set_to_measurable _ _), _⟩, { exact diff_subset_iff.1 (subset_to_measurable _ _) }, { have : to_measurable μ (s \ t) =ᵐ[μ] (∅ : set α), by simp [ae_le_set.1 hst.le], simpa only [union_empty] using hst.symm.union this } end lemma to_measurable_ae_eq (h : null_measurable_set s μ) : to_measurable μ s =ᵐ[μ] s := begin rw [to_measurable, dif_pos], exact h.exists_measurable_superset_ae_eq.some_spec.snd.2 end lemma compl_to_measurable_compl_ae_eq (h : null_measurable_set s μ) : (to_measurable μ sᶜ)ᶜ =ᵐ[μ] s := by simpa only [compl_compl] using h.compl.to_measurable_ae_eq.compl lemma exists_measurable_subset_ae_eq (h : null_measurable_set s μ) : ∃ t ⊆ s, measurable_set t ∧ t =ᵐ[μ] s := ⟨(to_measurable μ sᶜ)ᶜ, compl_subset_comm.2 $ subset_to_measurable _ _, (measurable_set_to_measurable _ _).compl, h.compl_to_measurable_compl_ae_eq⟩ end null_measurable_set /-- If `sᵢ` is a countable family of (null) measurable pairwise `μ`-a.e. disjoint sets, then there exists a subordinate family `tᵢ ⊆ sᵢ` of measurable pairwise disjoint sets such that `tᵢ =ᵐ[μ] sᵢ`. -/ lemma exists_subordinate_pairwise_disjoint [encodable ι] {s : ι → set α} (h : ∀ i, null_measurable_set (s i) μ) (hd : pairwise (ae_disjoint μ on s)) : ∃ t : ι → set α, (∀ i, t i ⊆ s i) ∧ (∀ i, s i =ᵐ[μ] t i) ∧ (∀ i, measurable_set (t i)) ∧ pairwise (disjoint on t) := begin choose t ht_sub htm ht_eq using λ i, (h i).exists_measurable_subset_ae_eq, rcases exists_null_pairwise_disjoint_diff hd with ⟨u, hum, hu₀, hud⟩, exact ⟨λ i, t i \ u i, λ i, (diff_subset _ _).trans (ht_sub _), λ i, (ht_eq _).symm.trans (diff_null_ae_eq_self (hu₀ i)).symm, λ i, (htm i).diff (hum i), hud.mono $ λ i j h, h.mono (diff_subset_diff_left (ht_sub i)) (diff_subset_diff_left (ht_sub j))⟩ end lemma measure_Union {m0 : measurable_space α} {μ : measure α} [encodable ι] {f : ι → set α} (hn : pairwise (disjoint on f)) (h : ∀ i, measurable_set (f i)) : μ (⋃ i, f i) = ∑' i, μ (f i) := begin rw [measure_eq_extend (measurable_set.Union h), extend_Union measurable_set.empty _ measurable_set.Union _ hn h], { simp [measure_eq_extend, h] }, { exact μ.empty }, { exact μ.m_Union } end lemma measure_Union₀ [encodable ι] {f : ι → set α} (hd : pairwise (ae_disjoint μ on f)) (h : ∀ i, null_measurable_set (f i) μ) : μ (⋃ i, f i) = ∑' i, μ (f i) := begin rcases exists_subordinate_pairwise_disjoint h hd with ⟨t, ht_sub, ht_eq, htm, htd⟩, calc μ (⋃ i, f i) = μ (⋃ i, t i) : measure_congr (eventually_eq.countable_Union ht_eq) ... = ∑' i, μ (t i) : measure_Union htd htm ... = ∑' i, μ (f i) : tsum_congr (λ i, measure_congr (ht_eq _).symm) end lemma measure_union₀_aux (hs : null_measurable_set s μ) (ht : null_measurable_set t μ) (hd : ae_disjoint μ s t) : μ (s ∪ t) = μ s + μ t := begin rw [union_eq_Union, measure_Union₀, tsum_fintype, fintype.sum_bool, cond, cond], exacts [(pairwise_on_bool ae_disjoint.symmetric).2 hd, λ b, bool.cases_on b ht hs] end /-- A null measurable set `t` is Carathéodory measurable: for any `s`, we have `μ (s ∩ t) + μ (s \ t) = μ s`. -/ lemma measure_inter_add_diff₀ (s : set α) (ht : null_measurable_set t μ) : μ (s ∩ t) + μ (s \ t) = μ s := begin refine le_antisymm _ _, { rcases exists_measurable_superset μ s with ⟨s', hsub, hs'm, hs'⟩, replace hs'm : null_measurable_set s' μ := hs'm.null_measurable_set, calc μ (s ∩ t) + μ (s \ t) ≤ μ (s' ∩ t) + μ (s' \ t) : add_le_add (measure_mono $ inter_subset_inter_left _ hsub) (measure_mono $ diff_subset_diff_left hsub) ... = μ (s' ∩ t ∪ s' \ t) : (measure_union₀_aux (hs'm.inter ht) (hs'm.diff ht) $ (@disjoint_inf_sdiff _ s' t _).ae_disjoint).symm ... = μ s' : congr_arg μ (inter_union_diff _ _) ... = μ s : hs' }, { calc μ s = μ (s ∩ t ∪ s \ t) : by rw inter_union_diff ... ≤ μ (s ∩ t) + μ (s \ t) : measure_union_le _ _ } end lemma measure_union_add_inter₀ (s : set α) (ht : null_measurable_set t μ) : μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by rw [← measure_inter_add_diff₀ (s ∪ t) ht, union_inter_cancel_right, union_diff_right, ← measure_inter_add_diff₀ s ht, add_comm, ← add_assoc, add_right_comm] lemma measure_union_add_inter₀' (hs : null_measurable_set s μ) (t : set α) : μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by rw [union_comm, inter_comm, measure_union_add_inter₀ t hs, add_comm] lemma measure_union₀ (ht : null_measurable_set t μ) (hd : ae_disjoint μ s t) : μ (s ∪ t) = μ s + μ t := by rw [← measure_union_add_inter₀ s ht, hd.eq, add_zero] lemma measure_union₀' (hs : null_measurable_set s μ) (hd : ae_disjoint μ s t) : μ (s ∪ t) = μ s + μ t := by rw [union_comm, measure_union₀ hs hd.symm, add_comm] section measurable_singleton_class variable [measurable_singleton_class (null_measurable_space α μ)] lemma null_measurable_set_singleton (x : α) : null_measurable_set {x} μ := measurable_set_singleton x @[simp] lemma null_measurable_set_insert {a : α} {s : set α} : null_measurable_set (insert a s) μ ↔ null_measurable_set s μ := measurable_set_insert lemma null_measurable_set_eq {a : α} : null_measurable_set {x | x = a} μ := null_measurable_set_singleton a protected lemma _root_.set.finite.null_measurable_set (hs : finite s) : null_measurable_set s μ := finite.measurable_set hs protected lemma _root_.finset.null_measurable_set (s : finset α) : null_measurable_set ↑s μ := finset.measurable_set s end measurable_singleton_class lemma _root_.set.finite.null_measurable_set_bUnion {f : ι → set α} {s : set ι} (hs : finite s) (h : ∀ b ∈ s, null_measurable_set (f b) μ) : null_measurable_set (⋃ b ∈ s, f b) μ := finite.measurable_set_bUnion hs h lemma _root_.finset.null_measurable_set_bUnion {f : ι → set α} (s : finset ι) (h : ∀ b ∈ s, null_measurable_set (f b) μ) : null_measurable_set (⋃ b ∈ s, f b) μ := finset.measurable_set_bUnion s h lemma _root_.set.finite.null_measurable_set_sUnion {s : set (set α)} (hs : finite s) (h : ∀ t ∈ s, null_measurable_set t μ) : null_measurable_set (⋃₀ s) μ := finite.measurable_set_sUnion hs h lemma _root_.set.finite.null_measurable_set_bInter {f : ι → set α} {s : set ι} (hs : finite s) (h : ∀ b ∈ s, null_measurable_set (f b) μ) : null_measurable_set (⋂ b ∈ s, f b) μ := finite.measurable_set_bInter hs h lemma _root_.finset.null_measurable_set_bInter {f : ι → set α} (s : finset ι) (h : ∀ b ∈ s, null_measurable_set (f b) μ) : null_measurable_set (⋂ b ∈ s, f b) μ := s.finite_to_set.null_measurable_set_bInter h lemma _root_.set.finite.null_measurable_set_sInter {s : set (set α)} (hs : finite s) (h : ∀ t ∈ s, null_measurable_set t μ) : null_measurable_set (⋂₀ s) μ := null_measurable_set.sInter hs.countable h lemma null_measurable_set_to_measurable : null_measurable_set (to_measurable μ s) μ := (measurable_set_to_measurable _ _).null_measurable_set end section null_measurable variables [measurable_space α] [measurable_space β] [measurable_space γ] {f : α → β} {μ : measure α} /-- A function `f : α → β` is null measurable if the preimage of a measurable set is a null measurable set. -/ def null_measurable (f : α → β) (μ : measure α . volume_tac) : Prop := ∀ ⦃s : set β⦄, measurable_set s → null_measurable_set (f ⁻¹' s) μ protected lemma _root_.measurable.null_measurable (h : measurable f) : null_measurable f μ := λ s hs, (h hs).null_measurable_set protected lemma null_measurable.measurable' (h : null_measurable f μ) : @measurable (null_measurable_space α μ) β _ _ f := h lemma measurable.comp_null_measurable {g : β → γ} (hg : measurable g) (hf : null_measurable f μ) : null_measurable (g ∘ f) μ := hg.comp hf lemma null_measurable.congr {g : α → β} (hf : null_measurable f μ) (hg : f =ᵐ[μ] g) : null_measurable g μ := λ s hs, (hf hs).congr $ eventually_eq_set.2 $ hg.mono $ λ x hx, by rw [mem_preimage, mem_preimage, hx] end null_measurable section is_complete /-- A measure is complete if every null set is also measurable. A null set is a subset of a measurable set with measure `0`. Since every measure is defined as a special case of an outer measure, we can more simply state that a set `s` is null if `μ s = 0`. -/ class measure.is_complete {_ : measurable_space α} (μ : measure α) : Prop := (out' : ∀ s, μ s = 0 → measurable_set s) variables {m0 : measurable_space α} {μ : measure α} {s t : set α} theorem measure.is_complete_iff : μ.is_complete ↔ ∀ s, μ s = 0 → measurable_set s := ⟨λ h, h.1, λ h, ⟨h⟩⟩ theorem measure.is_complete.out (h : μ.is_complete) : ∀ s, μ s = 0 → measurable_set s := h.1 theorem measurable_set_of_null [μ.is_complete] (hs : μ s = 0) : measurable_set s := measure_theory.measure.is_complete.out' s hs theorem null_measurable_set.measurable_of_complete (hs : null_measurable_set s μ) [μ.is_complete] : measurable_set s := diff_diff_cancel_left (subset_to_measurable μ s) ▸ (measurable_set_to_measurable _ _).diff (measurable_set_of_null (ae_le_set.1 hs.to_measurable_ae_eq.le)) theorem null_measurable.measurable_of_complete [μ.is_complete] {m1 : measurable_space β} {f : α → β} (hf : null_measurable f μ) : measurable f := λ s hs, (hf hs).measurable_of_complete lemma _root_.measurable.congr_ae {α β} [measurable_space α] [measurable_space β] {μ : measure α} [hμ : μ.is_complete] {f g : α → β} (hf : measurable f) (hfg : f =ᵐ[μ] g) : measurable g := (hf.null_measurable.congr hfg).measurable_of_complete namespace measure /-- Given a measure we can complete it to a (complete) measure on all null measurable sets. -/ def completion {_ : measurable_space α} (μ : measure α) : @measure_theory.measure (null_measurable_space α μ) _ := { to_outer_measure := μ.to_outer_measure, m_Union := λ s hs hd, measure_Union₀ (hd.mono $ λ i j h, h.ae_disjoint) hs, trimmed := begin refine le_antisymm (λ s, _) (outer_measure.le_trim _), rw outer_measure.trim_eq_infi, simp only [to_outer_measure_apply], refine (infi₂_mono _).trans_eq (measure_eq_infi _).symm, exact λ t ht, infi_mono' (λ h, ⟨h.null_measurable_set, le_rfl⟩) end } instance completion.is_complete {m : measurable_space α} (μ : measure α) : μ.completion.is_complete := ⟨λ z hz, null_measurable_set.of_null hz⟩ @[simp] lemma coe_completion {_ : measurable_space α} (μ : measure α) : ⇑μ.completion = μ := rfl lemma completion_apply {_ : measurable_space α} (μ : measure α) (s : set α) : μ.completion s = μ s := rfl end measure end is_complete end measure_theory
31bd2933892be904e735cd05181b7764d52dcca0
957a80ea22c5abb4f4670b250d55534d9db99108
/library/init/data/sigma/lex.lean
7daa175c84699b9e4bc0902329954a2b6f236b0e
[ "Apache-2.0" ]
permissive
GaloisInc/lean
aa1e64d604051e602fcf4610061314b9a37ab8cd
f1ec117a24459b59c6ff9e56a1d09d9e9e60a6c0
refs/heads/master
1,592,202,909,807
1,504,624,387,000
1,504,624,387,000
75,319,626
2
1
Apache-2.0
1,539,290,164,000
1,480,616,104,000
C++
UTF-8
Lean
false
false
5,715
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import init.data.sigma.basic init.meta universes u v namespace psigma section variables {α : Sort u} {β : α → Sort v} variable (r : α → α → Prop) variable (s : ∀ a, β a → β a → Prop) -- Lexicographical order based on r and s inductive lex : psigma β → psigma β → Prop | left : ∀ {a₁ : α} (b₁ : β a₁) {a₂ : α} (b₂ : β a₂), r a₁ a₂ → lex ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ | right : ∀ (a : α) {b₁ b₂ : β a}, s a b₁ b₂ → lex ⟨a, b₁⟩ ⟨a, b₂⟩ end section open well_founded tactic parameters {α : Sort u} {β : α → Sort v} parameters {r : α → α → Prop} {s : Π a : α, β a → β a → Prop} local infix `≺`:50 := lex r s def lex_accessible {a} (aca : acc r a) (acb : ∀ a, well_founded (s a)) : ∀ (b : β a), acc (lex r s) ⟨a, b⟩ := acc.rec_on aca (λ xa aca (iha : ∀ y, r y xa → ∀ b : β y, acc (lex r s) ⟨y, b⟩), λ b : β xa, acc.rec_on (well_founded.apply (acb xa) b) (λ xb acb (ihb : ∀ (y : β xa), s xa y xb → acc (lex r s) ⟨xa, y⟩), acc.intro ⟨xa, xb⟩ (λ p (lt : p ≺ ⟨xa, xb⟩), have aux : xa = xa → xb == xb → acc (lex r s) p, from @psigma.lex.rec_on α β r s (λ p₁ p₂, p₂.1 = xa → p₂.2 == xb → acc (lex r s) p₁) p ⟨xa, xb⟩ lt (λ (a₁ : α) (b₁ : β a₁) (a₂ : α) (b₂ : β a₂) (h : r a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ == xb), begin subst eq₂, exact iha a₁ h b₁ end) (λ (a : α) (b₁ b₂ : β a) (h : s a b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ == xb), begin subst eq₂, have new_eq₃ := eq_of_heq eq₃, subst new_eq₃, exact ihb b₁ h end), aux rfl (heq.refl xb)))) -- The lexicographical order of well founded relations is well-founded def lex_wf (ha : well_founded r) (hb : ∀ x, well_founded (s x)) : well_founded (lex r s) := well_founded.intro $ λ ⟨a, b⟩, lex_accessible (well_founded.apply ha a) hb b end section parameters {α : Sort u} {β : Sort v} def lex_ndep (r : α → α → Prop) (s : β → β → Prop) := lex r (λ a : α, s) def lex_ndep_wf {r : α → α → Prop} {s : β → β → Prop} (ha : well_founded r) (hb : well_founded s) : well_founded (lex_ndep r s) := well_founded.intro $ λ ⟨a, b⟩, lex_accessible (well_founded.apply ha a) (λ x, hb) b end section variables {α : Sort u} {β : Sort v} variable (r : α → α → Prop) variable (s : β → β → Prop) -- Reverse lexicographical order based on r and s inductive rev_lex : @psigma α (λ a, β) → @psigma α (λ a, β) → Prop | left : ∀ {a₁ a₂ : α} (b : β), r a₁ a₂ → rev_lex ⟨a₁, b⟩ ⟨a₂, b⟩ | right : ∀ (a₁ : α) {b₁ : β} (a₂ : α) {b₂ : β}, s b₁ b₂ → rev_lex ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ end section open well_founded tactic parameters {α : Sort u} {β : Sort v} parameters {r : α → α → Prop} {s : β → β → Prop} local infix `≺`:50 := rev_lex r s def rev_lex_accessible {b} (acb : acc s b) (aca : ∀ a, acc r a): ∀ a, acc (rev_lex r s) ⟨a, b⟩ := acc.rec_on acb (λ xb acb (ihb : ∀ y, s y xb → ∀ a, acc (rev_lex r s) ⟨a, y⟩), λ a, acc.rec_on (aca a) (λ xa aca (iha : ∀ y, r y xa → acc (rev_lex r s) (mk y xb)), acc.intro ⟨xa, xb⟩ (λ p (lt : p ≺ ⟨xa, xb⟩), have aux : xa = xa → xb = xb → acc (rev_lex r s) p, from @rev_lex.rec_on α β r s (λ p₁ p₂, fst p₂ = xa → snd p₂ = xb → acc (rev_lex r s) p₁) p ⟨xa, xb⟩ lt (λ a₁ a₂ b (h : r a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b = xb), show acc (rev_lex r s) ⟨a₁, b⟩, from have r₁ : r a₁ xa, from eq.rec_on eq₂ h, have aux : acc (rev_lex r s) ⟨a₁, xb⟩, from iha a₁ r₁, eq.rec_on (eq.symm eq₃) aux) (λ a₁ b₁ a₂ b₂ (h : s b₁ b₂) (eq₂ : a₂ = xa) (eq₃ : b₂ = xb), show acc (rev_lex r s) (mk a₁ b₁), from have s₁ : s b₁ xb, from eq.rec_on eq₃ h, ihb b₁ s₁ a₁), aux rfl rfl))) def rev_lex_wf (ha : well_founded r) (hb : well_founded s) : well_founded (rev_lex r s) := well_founded.intro $ λ ⟨a, b⟩, rev_lex_accessible (apply hb b) (well_founded.apply ha) a end section def skip_left (α : Type u) {β : Type v} (s : β → β → Prop) : @psigma α (λ a, β) → @psigma α (λ a, β) → Prop := rev_lex empty_relation s def skip_left_wf (α : Type u) {β : Type v} {s : β → β → Prop} (hb : well_founded s) : well_founded (skip_left α s) := rev_lex_wf empty_wf hb def mk_skip_left {α : Type u} {β : Type v} {b₁ b₂ : β} {s : β → β → Prop} (a₁ a₂ : α) (h : s b₁ b₂) : skip_left α s ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ := rev_lex.right _ _ _ h end instance has_well_founded {α : Type u} {β : α → Type v} [s₁ : has_well_founded α] [s₂ : ∀ a, has_well_founded (β a)] : has_well_founded (psigma β) := {r := lex s₁.r (λ a, (s₂ a).r), wf := lex_wf s₁.wf (λ a, (s₂ a).wf)} end psigma
53b6222b8e099455d9f7655d285513f8f66e5c18
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/ring_theory/witt_vector/init_tail.lean
2be11f7e6b5d19ff19bba4160107d86e35cb7725
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
7,174
lean
/- Copyright (c) 2020 Johan Commelin, Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Robert Y. Lewis -/ import ring_theory.witt_vector.basic import ring_theory.witt_vector.is_poly /-! # `init` and `tail` > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. Given a Witt vector `x`, we are sometimes interested in its components before and after an index `n`. This file defines those operations, proves that `init` is polynomial, and shows how that polynomial interacts with `mv_polynomial.bind₁`. ## Main declarations * `witt_vector.init n x`: the first `n` coefficients of `x`, as a Witt vector. All coefficients at indices ≥ `n` are 0. * `witt_vector.tail n x`: the complementary part to `init`. All coefficients at indices < `n` are 0, otherwise they are the same as in `x`. * `witt_vector.coeff_add_of_disjoint`: if `x` and `y` are Witt vectors such that for every `n` the `n`-th coefficient of `x` or of `y` is `0`, then the coefficients of `x + y` are just `x.coeff n + y.coeff n`. ## References * [Hazewinkel, *Witt Vectors*][Haze09] * [Commelin and Lewis, *Formalizing the Ring of Witt Vectors*][CL21] -/ variables {p : ℕ} [hp : fact p.prime] (n : ℕ) {R : Type*} [comm_ring R] local notation `𝕎` := witt_vector p -- type as `\bbW` namespace tactic namespace interactive setup_tactic_parser /-- `init_ring` is an auxiliary tactic that discharges goals factoring `init` over ring operations. -/ meta def init_ring (assert : parse (tk "using" *> parser.pexpr)?) : tactic unit := do `[rw ext_iff, intros i, simp only [init, select, coeff_mk], split_ifs with hi; try {refl}], match assert with | none := skip | some e := do `[simp only [add_coeff, mul_coeff, neg_coeff, sub_coeff, nsmul_coeff, zsmul_coeff, pow_coeff], apply eval₂_hom_congr' (ring_hom.ext_int _ _) _ rfl, rintro ⟨b, k⟩ h -], tactic.replace `h ```(%%e p _ h), `[simp only [finset.mem_range, finset.mem_product, true_and, finset.mem_univ] at h, have hk : k < n, by linarith, fin_cases b; simp only [function.uncurry, matrix.cons_val_zero, matrix.head_cons, coeff_mk, matrix.cons_val_one, coeff_mk, hk, if_true]] end end interactive end tactic namespace witt_vector open mv_polynomial open_locale classical noncomputable theory section /-- `witt_vector.select P x`, for a predicate `P : ℕ → Prop` is the Witt vector whose `n`-th coefficient is `x.coeff n` if `P n` is true, and `0` otherwise. -/ def select (P : ℕ → Prop) (x : 𝕎 R) : 𝕎 R := mk p (λ n, if P n then x.coeff n else 0) section select variables (P : ℕ → Prop) /-- The polynomial that witnesses that `witt_vector.select` is a polynomial function. `select_poly n` is `X n` if `P n` holds, and `0` otherwise. -/ def select_poly (n : ℕ) : mv_polynomial ℕ ℤ := if P n then X n else 0 lemma coeff_select (x : 𝕎 R) (n : ℕ) : (select P x).coeff n = aeval x.coeff (select_poly P n) := begin dsimp [select, select_poly], split_ifs with hi, { rw aeval_X }, { rw alg_hom.map_zero } end @[is_poly] lemma select_is_poly (P : ℕ → Prop) : is_poly p (λ R _Rcr x, by exactI select P x) := begin use (select_poly P), rintro R _Rcr x, funext i, apply coeff_select end include hp lemma select_add_select_not : ∀ (x : 𝕎 R), select P x + select (λ i, ¬ P i) x = x := begin ghost_calc _, intro n, simp only [ring_hom.map_add], suffices : (bind₁ (select_poly P)) (witt_polynomial p ℤ n) + (bind₁ (select_poly (λ i, ¬P i))) (witt_polynomial p ℤ n) = witt_polynomial p ℤ n, { apply_fun (aeval x.coeff) at this, simpa only [alg_hom.map_add, aeval_bind₁, ← coeff_select] }, simp only [witt_polynomial_eq_sum_C_mul_X_pow, select_poly, alg_hom.map_sum, alg_hom.map_pow, alg_hom.map_mul, bind₁_X_right, bind₁_C_right, ← finset.sum_add_distrib, ← mul_add], apply finset.sum_congr rfl, refine λ m hm, mul_eq_mul_left_iff.mpr (or.inl _), rw [ite_pow, ite_pow, zero_pow (pow_pos hp.out.pos _)], by_cases Pm : P m, { rw [if_pos Pm, if_neg _, add_zero], exact not_not.mpr Pm }, { rwa [if_neg Pm, if_pos, zero_add] } end lemma coeff_add_of_disjoint (x y : 𝕎 R) (h : ∀ n, x.coeff n = 0 ∨ y.coeff n = 0) : (x + y).coeff n = x.coeff n + y.coeff n := begin let P : ℕ → Prop := λ n, y.coeff n = 0, haveI : decidable_pred P := classical.dec_pred P, set z := mk p (λ n, if P n then x.coeff n else y.coeff n) with hz, have hx : select P z = x, { ext1 n, rw [select, coeff_mk, coeff_mk], split_ifs with hn, { refl }, { rw (h n).resolve_right hn } }, have hy : select (λ i, ¬ P i) z = y, { ext1 n, rw [select, coeff_mk, coeff_mk], split_ifs with hn, { exact hn.symm }, { refl } }, calc (x + y).coeff n = z.coeff n : by rw [← hx, ← hy, select_add_select_not P z] ... = x.coeff n + y.coeff n : _, dsimp [z], split_ifs with hn, { dsimp [P] at hn, rw [hn, add_zero] }, { rw [(h n).resolve_right hn, zero_add] } end end select /-- `witt_vector.init n x` is the Witt vector of which the first `n` coefficients are those from `x` and all other coefficients are `0`. See `witt_vector.tail` for the complementary part. -/ def init (n : ℕ) : 𝕎 R → 𝕎 R := select (λ i, i < n) /-- `witt_vector.tail n x` is the Witt vector of which the first `n` coefficients are `0` and all other coefficients are those from `x`. See `witt_vector.init` for the complementary part. -/ def tail (n : ℕ) : 𝕎 R → 𝕎 R := select (λ i, n ≤ i) include hp @[simp] lemma init_add_tail (x : 𝕎 R) (n : ℕ) : init n x + tail n x = x := by simp only [init, tail, ← not_lt, select_add_select_not] end @[simp] lemma init_init (x : 𝕎 R) (n : ℕ) : init n (init n x) = init n x := by init_ring include hp lemma init_add (x y : 𝕎 R) (n : ℕ) : init n (x + y) = init n (init n x + init n y) := by init_ring using witt_add_vars lemma init_mul (x y : 𝕎 R) (n : ℕ) : init n (x * y) = init n (init n x * init n y) := by init_ring using witt_mul_vars lemma init_neg (x : 𝕎 R) (n : ℕ) : init n (-x) = init n (-init n x) := by init_ring using witt_neg_vars lemma init_sub (x y : 𝕎 R) (n : ℕ) : init n (x - y) = init n (init n x - init n y) := by init_ring using witt_sub_vars lemma init_nsmul (m : ℕ) (x : 𝕎 R) (n : ℕ) : init n (m • x) = init n (m • init n x) := by init_ring using (λ p [fact (nat.prime p)] n, by exactI witt_nsmul_vars p m n) lemma init_zsmul (m : ℤ) (x : 𝕎 R) (n : ℕ) : init n (m • x) = init n (m • init n x) := by init_ring using (λ p [fact (nat.prime p)] n, by exactI witt_zsmul_vars p m n) lemma init_pow (m : ℕ) (x : 𝕎 R) (n : ℕ) : init n (x ^ m) = init n (init n x ^ m) := by init_ring using (λ p [fact (nat.prime p)] n, by exactI witt_pow_vars p m n) section variables (p) omit hp /-- `witt_vector.init n x` is polynomial in the coefficients of `x`. -/ lemma init_is_poly (n : ℕ) : is_poly p (λ R _Rcr, by exactI init n) := select_is_poly (λ i, i < n) end end witt_vector
d7e95d34f05379145e0b38d59b9c8c0d1c9c7bfc
19cc34575500ee2e3d4586c15544632aa07a8e66
/src/data/finset/pi.lean
cc1a37eb506d84d3967812ecc3a603cdbe2a77f1
[ "Apache-2.0" ]
permissive
LibertasSpZ/mathlib
b9fcd46625eb940611adb5e719a4b554138dade6
33f7870a49d7cc06d2f3036e22543e6ec5046e68
refs/heads/master
1,672,066,539,347
1,602,429,158,000
1,602,429,158,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,471
lean
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl -/ import data.finset.basic import data.multiset.pi /-! # The cartesian product of finsets -/ namespace finset open multiset /-! ### pi -/ section pi variables {α : Type*} /-- The empty dependent product function, defined on the empty set. The assumption `a ∈ ∅` is never satisfied. -/ def pi.empty (β : α → Sort*) (a : α) (h : a ∈ (∅ : finset α)) : β a := multiset.pi.empty β a h variables {δ : α → Type*} [decidable_eq α] /-- Given a finset `s` of `α` and for all `a : α` a finset `t a` of `δ a`, then one can define the finset `s.pi t` of all functions defined on elements of `s` taking values in `t a` for `a ∈ s`. Note that the elements of `s.pi t` are only partially defined, on `s`. -/ def pi (s : finset α) (t : Πa, finset (δ a)) : finset (Πa∈s, δ a) := ⟨s.1.pi (λ a, (t a).1), nodup_pi s.2 (λ a _, (t a).2)⟩ @[simp] lemma pi_val (s : finset α) (t : Πa, finset (δ a)) : (s.pi t).1 = s.1.pi (λ a, (t a).1) := rfl @[simp] lemma mem_pi {s : finset α} {t : Πa, finset (δ a)} {f : Πa∈s, δ a} : f ∈ s.pi t ↔ (∀a (h : a ∈ s), f a h ∈ t a) := mem_pi _ _ _ /-- Given a function `f` defined on a finset `s`, define a new function on the finset `s ∪ {a}`, equal to `f` on `s` and sending `a` to a given value `b`. This function is denoted `s.pi.cons a b f`. If `a` already belongs to `s`, the new function takes the value `b` at `a` anyway. -/ def pi.cons (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (a' : α) (h : a' ∈ insert a s) : δ a' := multiset.pi.cons s.1 a b f _ (multiset.mem_cons.2 $ mem_insert.symm.2 h) @[simp] lemma pi.cons_same (s : finset α) (a : α) (b : δ a) (f : Πa, a ∈ s → δ a) (h : a ∈ insert a s) : pi.cons s a b f a h = b := multiset.pi.cons_same _ lemma pi.cons_ne {s : finset α} {a a' : α} {b : δ a} {f : Πa, a ∈ s → δ a} {h : a' ∈ insert a s} (ha : a ≠ a') : pi.cons s a b f a' h = f a' ((mem_insert.1 h).resolve_left ha.symm) := multiset.pi.cons_ne _ _ lemma pi_cons_injective {a : α} {b : δ a} {s : finset α} (hs : a ∉ s) : function.injective (pi.cons s a b) := assume e₁ e₂ eq, @multiset.pi_cons_injective α _ δ a b s.1 hs _ _ $ funext $ assume e, funext $ assume h, have pi.cons s a b e₁ e (by simpa only [multiset.mem_cons, mem_insert] using h) = pi.cons s a b e₂ e (by simpa only [multiset.mem_cons, mem_insert] using h), { rw [eq] }, this @[simp] lemma pi_empty {t : Πa:α, finset (δ a)} : pi (∅ : finset α) t = singleton (pi.empty δ) := rfl @[simp] lemma pi_insert [∀a, decidable_eq (δ a)] {s : finset α} {t : Πa:α, finset (δ a)} {a : α} (ha : a ∉ s) : pi (insert a s) t = (t a).bind (λb, (pi s t).image (pi.cons s a b)) := begin apply eq_of_veq, rw ← multiset.erase_dup_eq_self.2 (pi (insert a s) t).2, refine (λ s' (h : s' = a :: s.1), (_ : erase_dup (multiset.pi s' (λ a, (t a).1)) = erase_dup ((t a).1.bind $ λ b, erase_dup $ (multiset.pi s.1 (λ (a : α), (t a).val)).map $ λ f a' h', multiset.pi.cons s.1 a b f a' (h ▸ h')))) _ (insert_val_of_not_mem ha), subst s', rw pi_cons, congr, funext b, rw multiset.erase_dup_eq_self.2, exact multiset.nodup_map (multiset.pi_cons_injective ha) (pi s t).2, end lemma pi_singletons {β : Type*} (s : finset α) (f : α → β) : s.pi (λ a, ({f a} : finset β)) = {λ a _, f a} := begin rw eq_singleton_iff_unique_mem, split, { simp }, intros a ha, ext i hi, rw [mem_pi] at ha, simpa using ha i hi, end lemma pi_const_singleton {β : Type*} (s : finset α) (i : β) : s.pi (λ _, ({i} : finset β)) = {λ _ _, i} := pi_singletons s (λ _, i) lemma pi_subset {s : finset α} (t₁ t₂ : Πa, finset (δ a)) (h : ∀ a ∈ s, t₁ a ⊆ t₂ a) : s.pi t₁ ⊆ s.pi t₂ := λ g hg, mem_pi.2 $ λ a ha, h a ha (mem_pi.mp hg a ha) lemma pi_disjoint_of_disjoint {δ : α → Type*} [∀a, decidable_eq (δ a)] {s : finset α} [decidable_eq (Πa∈s, δ a)] (t₁ t₂ : Πa, finset (δ a)) {a : α} (ha : a ∈ s) (h : disjoint (t₁ a) (t₂ a)) : disjoint (s.pi t₁) (s.pi t₂) := disjoint_iff_ne.2 $ λ f₁ hf₁ f₂ hf₂ eq₁₂, disjoint_iff_ne.1 h (f₁ a ha) (mem_pi.mp hf₁ a ha) (f₂ a ha) (mem_pi.mp hf₂ a ha) $ congr_fun (congr_fun eq₁₂ a) ha end pi end finset
471b33581ffd4d08c09e53aab512b2f46653ad34
36c7a18fd72e5b57229bd8ba36493daf536a19ce
/tests/lean/run/blast18.lean
935ad4e89e05066f60602207cfe478ce21267ea6
[ "Apache-2.0" ]
permissive
YHVHvx/lean
732bf0fb7a298cd7fe0f15d82f8e248c11db49e9
038369533e0136dd395dc252084d3c1853accbf2
refs/heads/master
1,610,701,080,210
1,449,128,595,000
1,449,128,595,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
578
lean
-- Backward chaining with tagged rules constants {P Q R S T U : Prop} (Hpq : P → Q) (Hqr : Q → R) (Hrs : R → S) (Hst : S → T) constants (Huq : U → Q) (Hur : U → R) (Hus : U → S) (Hut : U → T) attribute Hpq [backward] attribute Hqr [backward] attribute Hrs [backward] attribute Hst [backward] attribute Huq [backward] attribute Hur [backward] attribute Hus [backward] attribute Hut [backward] definition lemma1 (p : P) : Q := by blast definition lemma2 (p : P) : R := by blast definition lemma3 (p : P) : S := by blast definition lemma4 (p : P) : T := by blast
dc665b0915646a6b62537a70c71853936ca66b6e
4727251e0cd73359b15b664c3170e5d754078599
/src/category_theory/preadditive/yoneda.lean
ee5bcc9ac3c17522c485033e90faeb34c9e78aeb
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
5,269
lean
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import category_theory.preadditive.opposite import algebra.category.Module.basic import algebra.category.Group.preadditive /-! # The Yoneda embedding for preadditive categories The Yoneda embedding for preadditive categories sends an object `Y` to the presheaf sending an object `X` to the group of morphisms `X ⟶ Y`. At each point, we get an additional `End Y`-module structure. We also show that this presheaf is additive and that it is compatible with the normal Yoneda embedding in the expected way and deduce that the preadditive Yoneda embedding is fully faithful. ## TODO * The Yoneda embedding is additive itself -/ universes v u open category_theory.preadditive opposite namespace category_theory variables {C : Type u} [category.{v} C] [preadditive C] /-- The Yoneda embedding for preadditive categories sends an object `Y` to the presheaf sending an object `X` to the `End Y`-module of morphisms `X ⟶ Y`. -/ @[simps] def preadditive_yoneda_obj (Y : C) : Cᵒᵖ ⥤ Module.{v} (End Y) := { obj := λ X, Module.of _ (X.unop ⟶ Y), map := λ X X' f, { to_fun := λ g, f.unop ≫ g, map_add' := λ g g', comp_add _ _ _ _ _ _, map_smul' := λ r g, eq.symm $ category.assoc _ _ _ } } /-- The Yoneda embedding for preadditive categories sends an object `Y` to the presheaf sending an object `X` to the group of morphisms `X ⟶ Y`. At each point, we get an additional `End Y`-module structure, see `preadditive_yoneda_obj`. -/ @[simps] def preadditive_yoneda : C ⥤ (Cᵒᵖ ⥤ AddCommGroup.{v}) := { obj := λ Y, preadditive_yoneda_obj Y ⋙ forget₂ _ _, map := λ Y Y' f, { app := λ X, { to_fun := λ g, g ≫ f, map_zero' := limits.zero_comp, map_add' := λ g g', add_comp _ _ _ _ _ _ }, naturality' := λ X X' g, AddCommGroup.ext _ _ _ _ $ λ x, category.assoc _ _ _ }, map_id' := λ X, by { ext, simp }, map_comp' := λ X Y Z f g, by { ext, simp } } /-- The Yoneda embedding for preadditive categories sends an object `X` to the copresheaf sending an object `Y` to the `End X`-module of morphisms `X ⟶ Y`. -/ @[simps] def preadditive_coyoneda_obj (X : Cᵒᵖ) : C ⥤ Module.{v} (End X) := { obj := λ Y, Module.of _ (unop X ⟶ Y), map := λ Y Y' f, { to_fun := λ g, g ≫ f, map_add' := λ g g', add_comp _ _ _ _ _ _, map_smul' := λ r g, category.assoc _ _ _ } } /-- The Yoneda embedding for preadditive categories sends an object `X` to the copresheaf sending an object `Y` to the group of morphisms `X ⟶ Y`. At each point, we get an additional `End X`-module structure, see `preadditive_coyoneda_obj`. -/ @[simps] def preadditive_coyoneda : Cᵒᵖ ⥤ (C ⥤ AddCommGroup.{v}) := { obj := λ X, preadditive_coyoneda_obj X ⋙ forget₂ _ _, map := λ X X' f, { app := λ Y, { to_fun := λ g, f.unop ≫ g, map_zero' := limits.comp_zero, map_add' := λ g g', comp_add _ _ _ _ _ _ }, naturality' := λ Y Y' g, AddCommGroup.ext _ _ _ _ $ λ x, eq.symm $ category.assoc _ _ _ }, map_id' := λ X, by { ext, simp }, map_comp' := λ X Y Z f g, by { ext, simp } } instance additive_yoneda_obj (X : C) : functor.additive (preadditive_yoneda_obj X) := {} instance additive_yoneda_obj' (X : C) : functor.additive (preadditive_yoneda.obj X) := {} instance additive_coyoneda_obj (X : Cᵒᵖ) : functor.additive (preadditive_coyoneda_obj X) := {} instance additive_coyoneda_obj' (X : Cᵒᵖ) : functor.additive (preadditive_coyoneda.obj X) := {} /-- Composing the preadditive yoneda embedding with the forgetful functor yields the regular Yoneda embedding. -/ @[simp] lemma whiskering_preadditive_yoneda : preadditive_yoneda ⋙ (whiskering_right Cᵒᵖ AddCommGroup (Type v)).obj (forget AddCommGroup) = yoneda := rfl /-- Composing the preadditive yoneda embedding with the forgetful functor yields the regular Yoneda embedding. -/ @[simp] lemma whiskering_preadditive_coyoneda : preadditive_coyoneda ⋙ (whiskering_right C AddCommGroup (Type v)).obj (forget AddCommGroup) = coyoneda := rfl instance preadditive_yoneda_full : full (preadditive_yoneda : C ⥤ Cᵒᵖ ⥤ AddCommGroup) := let yoneda_full : full (preadditive_yoneda ⋙ (whiskering_right Cᵒᵖ AddCommGroup (Type v)).obj (forget AddCommGroup)) := yoneda.yoneda_full in by exactI full.of_comp_faithful preadditive_yoneda ((whiskering_right Cᵒᵖ AddCommGroup (Type v)).obj (forget AddCommGroup)) instance preadditive_coyoneda_full : full (preadditive_coyoneda : Cᵒᵖ ⥤ C ⥤ AddCommGroup) := let coyoneda_full : full (preadditive_coyoneda ⋙ (whiskering_right C AddCommGroup (Type v)).obj (forget AddCommGroup)) := coyoneda.coyoneda_full in by exactI full.of_comp_faithful preadditive_coyoneda ((whiskering_right C AddCommGroup (Type v)).obj (forget AddCommGroup)) instance preadditive_yoneda_faithful : faithful (preadditive_yoneda : C ⥤ Cᵒᵖ ⥤ AddCommGroup) := faithful.of_comp_eq whiskering_preadditive_yoneda instance preadditive_coyoneda_faithful : faithful (preadditive_coyoneda : Cᵒᵖ ⥤ C ⥤ AddCommGroup) := faithful.of_comp_eq whiskering_preadditive_coyoneda end category_theory
94dabd8a8a6925c0176383e58dabddcd39481134
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
/src/Lean/Meta/Check.lean
2a303760c78ff61338dc3c346695e9210986066c
[ "Apache-2.0" ]
permissive
WojciechKarpiel/lean4
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
f6e1314fa08293dea66a329e05b6c196a0189163
refs/heads/master
1,686,633,402,214
1,625,821,189,000
1,625,821,258,000
384,640,886
0
0
Apache-2.0
1,625,903,617,000
1,625,903,026,000
null
UTF-8
Lean
false
false
6,663
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Meta.InferType import Lean.Meta.LevelDefEq /- This is not the Kernel type checker, but an auxiliary method for checking whether terms produced by tactics and `isDefEq` are type correct. -/ namespace Lean.Meta private def ensureType (e : Expr) : MetaM Unit := do discard <| getLevel e def throwLetTypeMismatchMessage {α} (fvarId : FVarId) : MetaM α := do let lctx ← getLCtx match lctx.find? fvarId with | some (LocalDecl.ldecl _ _ n t v _) => do let vType ← inferType v throwError "invalid let declaration, term{indentExpr v}\nhas type{indentExpr vType}\nbut is expected to have type{indentExpr t}" | _ => unreachable! private def checkConstant (constName : Name) (us : List Level) : MetaM Unit := do let cinfo ← getConstInfo constName unless us.length == cinfo.levelParams.length do throwIncorrectNumberOfLevels constName us private def getFunctionDomain (f : Expr) : MetaM (Expr × BinderInfo) := do let fType ← inferType f let fType ← whnfD fType match fType with | Expr.forallE _ d _ c => return (d, c.binderInfo) | _ => throwFunctionExpected f /- Given to expressions `a` and `b`, this method tries to annotate terms with `pp.explicit := true` to expose "implicit" differences. For example, suppose `a` and `b` are of the form ```lean @HashMap Nat Nat eqInst hasInst1 @HashMap Nat Nat eqInst hasInst2 ``` By default, the pretty printer formats both of them as `HashMap Nat Nat`. So, counterintuitive error messages such as ```lean error: application type mismatch HashMap.insert m argument m has type HashMap Nat Nat but is expected to have type HashMap Nat Nat ``` would be produced. By adding `pp.explicit := true`, we can generate the more informative error ```lean error: application type mismatch HashMap.insert m argument m has type @HashMap Nat Nat eqInst hasInst1 but is expected to have type @HashMap Nat Nat eqInst hasInst2 ``` Remark: this method implements a simple heuristic, we should extend it as we find other counterintuitive error messages. -/ partial def addPPExplicitToExposeDiff (a b : Expr) : MetaM (Expr × Expr) := do if (← getOptions).getBool `pp.all false || (← getOptions).getBool `pp.explicit false then return (a, b) else visit a b where visit (a b : Expr) : MetaM (Expr × Expr) := do try if !a.isApp || !b.isApp then return (a, b) else if a.getAppNumArgs != b.getAppNumArgs then return (a, b) else if not (← isDefEq a.getAppFn b.getAppFn) then return (a, b) else let fType ← inferType a.getAppFn forallBoundedTelescope fType a.getAppNumArgs fun xs _ => do let mut as := a.getAppArgs let mut bs := b.getAppArgs if (← hasExplicitDiff xs as bs) then return (a, b) else for i in [:as.size] do let (ai, bi) ← visit as[i] bs[i] as := as.set! i ai bs := bs.set! i bi let a := mkAppN a.getAppFn as let b := mkAppN b.getAppFn bs return (a.setAppPPExplicit, b.setAppPPExplicit) catch _ => return (a, b) hasExplicitDiff (xs as bs : Array Expr) : MetaM Bool := do for i in [:xs.size] do let localDecl ← getLocalDecl xs[i].fvarId! if localDecl.binderInfo.isExplicit then if not (← isDefEq as[i] bs[i]) then return true return false /- Return error message "has type{givenType}\nbut is expected to have type{expectedType}" -/ def mkHasTypeButIsExpectedMsg (givenType expectedType : Expr) : MetaM MessageData := do try let givenTypeType ← inferType givenType let expectedTypeType ← inferType expectedType let (givenType, expectedType) ← addPPExplicitToExposeDiff givenType expectedType let (givenTypeType, expectedTypeType) ← addPPExplicitToExposeDiff givenTypeType expectedTypeType m!"has type{indentD m!"{givenType} : {givenTypeType}"}\nbut is expected to have type{indentD m!"{expectedType} : {expectedTypeType}"}" catch _ => let (givenType, expectedType) ← addPPExplicitToExposeDiff givenType expectedType m!"has type{indentExpr givenType}\nbut is expected to have type{indentExpr expectedType}" def throwAppTypeMismatch {α} (f a : Expr) (extraMsg : MessageData := Format.nil) : MetaM α := do let (expectedType, binfo) ← getFunctionDomain f let mut e := mkApp f a unless binfo.isExplicit do e := e.setAppPPExplicit let aType ← inferType a throwError "application type mismatch{indentExpr e}\nargument{indentExpr a}\n{← mkHasTypeButIsExpectedMsg aType expectedType}" def checkApp (f a : Expr) : MetaM Unit := do let fType ← inferType f let fType ← whnf fType match fType with | Expr.forallE _ d _ _ => let aType ← inferType a unless (← isDefEq d aType) do throwAppTypeMismatch f a | _ => throwFunctionExpected (mkApp f a) private partial def checkAux : Expr → MetaM Unit | e@(Expr.forallE ..) => checkForall e | e@(Expr.lam ..) => checkLambdaLet e | e@(Expr.letE ..) => checkLambdaLet e | Expr.const c lvls _ => checkConstant c lvls | Expr.app f a _ => do checkAux f; checkAux a; checkApp f a | Expr.mdata _ e _ => checkAux e | Expr.proj _ _ e _ => checkAux e | _ => pure () where checkLambdaLet (e : Expr) : MetaM Unit := lambdaLetTelescope e fun xs b => do xs.forM fun x => do let xDecl ← getFVarLocalDecl x; match xDecl with | LocalDecl.cdecl (type := t) .. => ensureType t checkAux t | LocalDecl.ldecl (type := t) (value := v) .. => ensureType t checkAux t let vType ← inferType v unless (← isDefEq t vType) do throwLetTypeMismatchMessage x.fvarId! checkAux v checkAux b checkForall (e : Expr) : MetaM Unit := forallTelescope e fun xs b => do xs.forM fun x => do let xDecl ← getFVarLocalDecl x ensureType xDecl.type checkAux xDecl.type ensureType b checkAux b def check (e : Expr) : MetaM Unit := traceCtx `Meta.check do withTransparency TransparencyMode.all $ checkAux e def isTypeCorrect (e : Expr) : MetaM Bool := do try check e pure true catch ex => trace[Meta.typeError] ex.toMessageData pure false builtin_initialize registerTraceClass `Meta.check registerTraceClass `Meta.typeError end Lean.Meta
1284668879f59bafe25ade8ccd97c877bc7dc2ca
d406927ab5617694ec9ea7001f101b7c9e3d9702
/archive/imo/imo2008_q4.lean
b82ea5691640db1bb01c32c18419b300058db018
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
4,593
lean
/- Copyright (c) 2021 Manuel Candales. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Manuel Candales -/ import data.real.basic import data.real.sqrt import data.real.nnreal import tactic.linear_combination /-! # IMO 2008 Q4 Find all functions `f : (0,∞) → (0,∞)` (so, `f` is a function from the positive real numbers to the positive real numbers) such that ``` (f(w)^2 + f(x)^2)/(f(y^2) + f(z^2)) = (w^2 + x^2)/(y^2 + z^2) ``` for all positive real numbers `w`, `x`, `y`, `z`, satisfying `wx = yz`. # Solution The desired theorem is that either `f = λ x, x` or `f = λ x, 1/x` -/ open real lemma abs_eq_one_of_pow_eq_one (x : ℝ) (n : ℕ) (hn : n ≠ 0) (h : x ^ n = 1) : |x| = 1 := by rw [← pow_left_inj (abs_nonneg x) zero_le_one (pos_iff_ne_zero.2 hn), one_pow, pow_abs, h, abs_one] theorem imo2008_q4 (f : ℝ → ℝ) (H₁ : ∀ x > 0, f(x) > 0) : (∀ w x y z : ℝ, 0 < w → 0 < x → 0 < y → 0 < z → w * x = y * z → (f(w) ^ 2 + f(x) ^ 2) / (f(y ^ 2) + f(z ^ 2)) = (w ^ 2 + x ^ 2) / (y ^ 2 + z ^ 2)) ↔ ((∀ x > 0, f(x) = x) ∨ (∀ x > 0, f(x) = 1 / x)) := begin split, swap, -- proof that f(x) = x and f(x) = 1/x satisfy the condition { rintros (h | h), { intros w x y z hw hx hy hz hprod, rw [h w hw, h x hx, h (y ^ 2) (pow_pos hy 2), h (z ^ 2) (pow_pos hz 2)] }, { intros w x y z hw hx hy hz hprod, rw [h w hw, h x hx, h (y ^ 2) (pow_pos hy 2), h (z ^ 2) (pow_pos hz 2)], have hy2z2 : y ^ 2 + z ^ 2 ≠ 0 := ne_of_gt (add_pos (pow_pos hy 2) (pow_pos hz 2)), have hz2y2 : z ^ 2 + y ^ 2 ≠ 0 := ne_of_gt (add_pos (pow_pos hz 2) (pow_pos hy 2)), have hp2 : w ^ 2 * x ^ 2 = y ^ 2 * z ^ 2, { linear_combination (w * x + y * z)*hprod }, field_simp [ne_of_gt hw, ne_of_gt hx, ne_of_gt hy, ne_of_gt hz, hy2z2, hz2y2, hp2], ring } }, -- proof that the only solutions are f(x) = x or f(x) = 1/x intro H₂, have h₀ : f(1) ≠ 0, { specialize H₁ 1 zero_lt_one, exact ne_of_gt H₁ }, have h₁ : f(1) = 1, { specialize H₂ 1 1 1 1 zero_lt_one zero_lt_one zero_lt_one zero_lt_one rfl, norm_num [← two_mul] at H₂, rw mul_div_mul_left (f(1) ^ 2) (f 1) two_ne_zero at H₂, rwa ← (div_eq_iff h₀).mpr (sq (f 1)) }, have h₂ : ∀ x > 0, (f(x) - x) * (f(x) - 1 / x) = 0, { intros x hx, have h1xss : 1 * x = (sqrt x) * (sqrt x), { rw [one_mul, mul_self_sqrt (le_of_lt hx)] }, specialize H₂ 1 x (sqrt x) (sqrt x) zero_lt_one hx (sqrt_pos.mpr hx) (sqrt_pos.mpr hx) h1xss, rw [h₁, one_pow 2, sq_sqrt (le_of_lt hx), ← two_mul (f(x)), ← two_mul x] at H₂, have hx_ne_0 : x ≠ 0 := ne_of_gt hx, have hfx_ne_0 : f(x) ≠ 0, { specialize H₁ x hx, exact ne_of_gt H₁ }, field_simp at H₂ ⊢, linear_combination 1/2 * H₂ }, have h₃ : ∀ x > 0, f(x) = x ∨ f(x) = 1 / x, { simpa [sub_eq_zero] using h₂ }, by_contra' h, rcases h with ⟨⟨b, hb, hfb₁⟩, ⟨a, ha, hfa₁⟩⟩, obtain hfa₂ := or.resolve_right (h₃ a ha) hfa₁, -- f(a) ≠ 1/a, f(a) = a obtain hfb₂ := or.resolve_left (h₃ b hb) hfb₁, -- f(b) ≠ b, f(b) = 1/b have hab : a * b > 0 := mul_pos ha hb, have habss : a * b = sqrt(a * b) * sqrt(a * b) := (mul_self_sqrt (le_of_lt hab)).symm, specialize H₂ a b (sqrt (a * b)) (sqrt (a * b)) ha hb (sqrt_pos.mpr hab) (sqrt_pos.mpr hab) habss, rw [sq_sqrt (le_of_lt hab), ← two_mul (f(a * b)), ← two_mul (a * b)] at H₂, rw [hfa₂, hfb₂] at H₂, have h2ab_ne_0 : 2 * (a * b) ≠ 0 := mul_ne_zero two_ne_zero (ne_of_gt hab), specialize h₃ (a * b) hab, cases h₃ with hab₁ hab₂, -- f(ab) = ab → b^4 = 1 → b = 1 → f(b) = b → false { field_simp [hab₁] at H₂, field_simp [ne_of_gt hb] at H₂, have hb₁ : b ^ 4 = 1 := by linear_combination -H₂, obtain hb₂ := abs_eq_one_of_pow_eq_one b 4 (show 4 ≠ 0, by norm_num) hb₁, rw abs_of_pos hb at hb₂, rw hb₂ at hfb₁, exact hfb₁ h₁ }, -- f(ab) = 1/ab → a^4 = 1 → a = 1 → f(a) = 1/a → false { have hb_ne_0 : b ≠ 0 := ne_of_gt hb, field_simp [hab₂] at H₂, have H₃ : 2 * b ^ 4 * (a ^ 4 - 1) = 0 := by linear_combination (H₂), have h2b4_ne_0 : 2 * (b ^ 4) ≠ 0 := mul_ne_zero two_ne_zero (pow_ne_zero 4 hb_ne_0), have ha₁ : a ^ 4 = 1, { simpa [sub_eq_zero, h2b4_ne_0] using H₃ }, obtain ha₂ := abs_eq_one_of_pow_eq_one a 4 (show 4 ≠ 0, by norm_num) ha₁, rw abs_of_pos ha at ha₂, rw ha₂ at hfa₁, norm_num at hfa₁ }, end
c357f1b41648bcfc203e069cbf4abe39b3003e92
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/diamond6.lean
50ebd663f3ca438282899f5f5aebbdcd5d6f7ea2
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
828
lean
set_option structureDiamondWarning false class Foo (α : Type) extends Add α where zero : α class FooComm (α : Type) extends Foo α where comm (a b : α) : a + b = b + a class FooAssoc (α : Type) extends Foo α, Mul α where add_assoc (a b c : α) : (a + b) + c = a + (b + c) mul_assoc (a b c : α) : (a * b) * c = a * (b * c) class FooAC (α : Type) extends FooComm α, FooAssoc α where mul_comm (a b : α) : a * b = b * a set_option pp.all true #check FooAC.mk #print FooAC.toFooAssoc class FooAssoc' (α : Type) extends FooAssoc α where one : α class FooAC' (α : Type) extends FooComm α, FooAssoc' α where mul_comm (a b : α) : a * b = b * a #check FooAC'.mk #print FooAC'.toFooAssoc' def f [FooAssoc α] (a : α) : α := a * a def g [FooAC' α] (a : α) : α := f (a + FooAssoc'.one)
7a4ed96d29bca3b7e759b99c7ef4c4cc6aa9c191
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/congrTactic.lean
07e90a52ba0e0332f9df607bdcbc206b0093ed8c
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
1,013
lean
example (h : a = b) : Nat.succ (a + 1) = Nat.succ (b + 1) := by congr example (h : a = b) : Nat.succ (a + 1) = Nat.succ (b + 1) := by congr 1 show a + 1 = b + 1 rw [h] def f (p : Prop) (a : Nat) (h : a > 0) [Decidable p] : Nat := if p then a - 1 else a + 1 example (h : a = b) : f True (a + 1) (by simp_arith) = f (0 = 0) (b + 1) (by simp_arith) := by congr decide example (h : a = b) : f True (a + 1) (by simp_arith) = f (0 = 0) (b + 1) (by simp_arith) := by congr 1 · decide · show a + 1 = b + 1 rw [h] example (h₁ : α = β) (h₂ : α = γ) (a : α) : HEq (cast h₁ a) (cast h₂ a) := by congr · subst h₁ h₂; rfl · subst h₁ h₂; apply heq_of_eq; rfl example (f : Nat → Nat) (g : Nat → Nat) : f (g (x + y)) = f (g (y + x)) := by congr 2 rw [Nat.add_comm] example (p q r : Prop) (h : q = r) : (p → q) = (p → r) := by congr example (p q r s : Prop) (h₁ : q = r) (h₂ : r = s) : (p → q) = (p → s) := by congr rw [h₁, h₂]
dc57e22ba6069d835b28352a14e64b39e7f8ee4f
8b9f17008684d796c8022dab552e42f0cb6fb347
/library/algebra/ordered_field.lean
56085f47840a0daf6bddd08e8e774097bba7a8dc
[ "Apache-2.0" ]
permissive
chubbymaggie/lean
0d06ae25f9dd396306fb02190e89422ea94afd7b
d2c7b5c31928c98f545b16420d37842c43b4ae9a
refs/heads/master
1,611,313,622,901
1,430,266,839,000
1,430,267,083,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
14,301
lean
/- Copyright (c) 2014 Robert Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.ordered_field Authors: Robert Lewis -/ import algebra.ordered_ring algebra.field open eq eq.ops namespace algebra structure linear_ordered_field [class] (A : Type) extends linear_ordered_ring A, field A section linear_ordered_field variable {A : Type} variables [s : linear_ordered_field A] {a b c d : A} include s -- helpers for following theorem mul_zero_lt_mul_inv_of_pos (H : 0 < a) : a * 0 < a * (1 / a) := calc a * 0 = 0 : mul_zero ... < 1 : zero_lt_one ... = a * a⁻¹ : mul_inv_cancel (ne.symm (ne_of_lt H)) ... = a * (1 / a) : inv_eq_one_div theorem mul_zero_lt_mul_inv_of_neg (H : a < 0) : a * 0 < a * (1 / a) := calc a * 0 = 0 : mul_zero ... < 1 : zero_lt_one ... = a * a⁻¹ : mul_inv_cancel (ne_of_lt H) ... = a * (1 / a) : inv_eq_one_div theorem div_pos_of_pos (H : 0 < a) : 0 < 1 / a := lt_of_mul_lt_mul_left (mul_zero_lt_mul_inv_of_pos H) (le_of_lt H) theorem div_neg_of_neg (H : a < 0) : 1 / a < 0 := gt_of_mul_lt_mul_neg_left (mul_zero_lt_mul_inv_of_neg H) (le_of_lt H) theorem le_mul_of_ge_one_right (Hb : b ≥ 0) (H : a ≥ 1) : b ≤ b * a := mul_one _ ▸ (mul_le_mul_of_nonneg_left H Hb) theorem lt_mul_of_gt_one_right (Hb : b > 0) (H : a > 1) : b < b * a := mul_one _ ▸ (mul_lt_mul_of_pos_left H Hb) theorem one_le_div_iff_le (Hb : b > 0) : 1 ≤ a / b ↔ b ≤ a := have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb), iff.intro (assume H : 1 ≤ a / b, calc b = b : refl ... ≤ b * (a / b) : le_mul_of_ge_one_right (le_of_lt Hb) H ... = a : mul_div_cancel' Hb') (assume H : b ≤ a, have Hbinv : 1 / b > 0, from div_pos_of_pos Hb, calc 1 = b * (1 / b) : mul_one_div_cancel Hb' ... ≤ a * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt Hbinv) ... = a / b : div_eq_mul_one_div) theorem le_of_one_le_div (Hb : b > 0) (H : 1 ≤ a / b) : b ≤ a := (iff.mp (one_le_div_iff_le Hb)) H theorem one_le_div_of_le (Hb : b > 0) (H : b ≤ a) : 1 ≤ a / b := (iff.mp' (one_le_div_iff_le Hb)) H theorem one_lt_div_iff_lt (Hb : b > 0) : 1 < a / b ↔ b < a := have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb), iff.intro (assume H : 1 < a / b, calc b = b : refl ... < b * (a / b) : lt_mul_of_gt_one_right Hb H ... = a : mul_div_cancel' Hb') (assume H : b < a, have Hbinv : 1 / b > 0, from div_pos_of_pos Hb, calc 1 = b * (1 / b) : mul_one_div_cancel Hb' ... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv ... = a / b : div_eq_mul_one_div) theorem lt_of_one_lt_div (Hb : b > 0) (H : 1 < a / b) : b < a := (iff.mp (one_lt_div_iff_lt Hb)) H theorem one_lt_div_of_lt (Hb : b > 0) (H : b < a) : 1 < a / b := (iff.mp' (one_lt_div_iff_lt Hb)) H theorem exists_lt : ∃ x, x < a := have H : a - 1 < a, from add_lt_of_le_of_neg (le.refl _) zero_gt_neg_one, exists.intro _ H theorem exists_gt : ∃ x, x > a := have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one, exists.intro _ H -- the following theorems amount to four iffs, for <, ≤, ≥, >. theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b := div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_le_mul_of_nonneg_right H (le_of_lt Hc) theorem le_div_of_mul_le (Hc : 0 < c) (H : a * c ≤ b) : a ≤ b / c := calc a = a * c * (1 / c) : mul_mul_div (ne.symm (ne_of_lt Hc)) ... ≤ b * (1 / c) : mul_le_mul_of_nonneg_right H (le_of_lt (div_pos_of_pos Hc)) ... = b / c : div_eq_mul_one_div theorem mul_lt_of_lt_div (Hc : 0 < c) (H : a < b / c) : a * c < b := div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_lt_mul_of_pos_right H Hc theorem lt_div_of_mul_lt (Hc : 0 < c) (H : a * c < b) : a < b / c := calc a = a * c * (1 / c) : mul_mul_div (ne.symm (ne_of_lt Hc)) ... < b * (1 / c) : mul_lt_mul_of_pos_right H (div_pos_of_pos Hc) ... = b / c : div_eq_mul_one_div theorem mul_le_of_ge_div_neg (Hc : c < 0) (H : a ≥ b / c) : a * c ≤ b := div_mul_cancel (ne_of_lt Hc) ▸ mul_le_mul_of_nonpos_right H (le_of_lt Hc) theorem ge_div_of_mul_le_neg (Hc : c < 0) (H : a * c ≤ b) : a ≥ b / c := calc a = a * c * (1 / c) : mul_mul_div (ne_of_lt Hc) ... ≥ b * (1 / c) : mul_le_mul_of_nonpos_right H (le_of_lt (div_neg_of_neg Hc)) ... = b / c : div_eq_mul_one_div theorem mul_lt_of_gt_div_neg (Hc : c < 0) (H : a > b / c) : a * c < b := div_mul_cancel (ne_of_lt Hc) ▸ mul_lt_mul_of_neg_right H Hc theorem gt_div_of_mul_gt_neg (Hc : c < 0) (H : a * c < b) : a > b / c := calc a = a * c * (1 / c) : mul_mul_div (ne_of_lt Hc) ... > b * (1 / c) : mul_lt_mul_of_neg_right H (div_neg_of_neg Hc) ... = b / c : div_eq_mul_one_div -- following these in the isabelle file, there are 8 biconditionals for the above with - signs -- skipping for now theorem mul_sub_mul_div_mul_neg (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c < b / d) : (a * d - b * c) / (c * d) < 0 := have H1 : a / c - b / d < 0, from calc a / c - b / d < b / d - b / d : sub_lt_sub_right H ... = 0 : sub_self, calc 0 > a / c - b / d : H1 ... = (a * d - c * b) / (c * d) : div_sub_div Hc Hd ... = (a * d - b * c) / (c * d) : mul.comm theorem mul_sub_mul_div_mul_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c ≤ b / d) : (a * d - b * c) / (c * d) ≤ 0 := have H1 : a / c - b / d ≤ 0, from calc a / c - b / d ≤ b / d - b / d : sub_le_sub_right H ... = 0 : sub_self, calc 0 ≥ a / c - b / d : H1 ... = (a * d - c * b) / (c * d) : div_sub_div Hc Hd ... = (a * d - b * c) / (c * d) : mul.comm theorem div_lt_div_of_mul_sub_mul_div_neg (Hc : c ≠ 0) (Hd : d ≠ 0) (H : (a * d - b * c) / (c * d) < 0) : a / c < b / d := have H1 : (a * d - c * b) / (c * d) < 0, from !mul.comm ▸ H, have H2 : a / c - b / d < 0, from (div_sub_div Hc Hd)⁻¹ ▸ H1, have H3 [visible] : a / c - b / d + b / d < 0 + b / d, from add_lt_add_right H2 _, begin rewrite [zero_add at H3, neg_add_cancel_right at H3], exact H3 end theorem div_le_div_of_mul_sub_mul_div_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0) (H : (a * d - b * c) / (c * d) ≤ 0) : a / c ≤ b / d := have H1 : (a * d - c * b) / (c * d) ≤ 0, from !mul.comm ▸ H, have H2 : a / c - b / d ≤ 0, from (div_sub_div Hc Hd)⁻¹ ▸ H1, have H3 [visible] : a / c - b / d + b / d ≤ 0 + b / d, from add_le_add_right H2 _, begin rewrite [zero_add at H3, neg_add_cancel_right at H3], exact H3 end theorem pos_div_of_pos_of_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a / b := begin rewrite div_eq_mul_one_div, apply mul_pos, exact Ha, apply div_pos_of_pos, exact Hb end theorem nonneg_div_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 ≤ a / b := begin rewrite div_eq_mul_one_div, apply mul_nonneg, exact Ha, apply le_of_lt, apply div_pos_of_pos, exact Hb end theorem neg_div_of_neg_of_pos (Ha : a < 0) (Hb : 0 < b) : a / b < 0:= begin rewrite div_eq_mul_one_div, apply mul_neg_of_neg_of_pos, exact Ha, apply div_pos_of_pos, exact Hb end theorem nonpos_div_of_nonpos_of_pos (Ha : a ≤ 0) (Hb : 0 < b) : a / b ≤ 0 := begin rewrite div_eq_mul_one_div, apply mul_nonpos_of_nonpos_of_nonneg, exact Ha, apply le_of_lt, apply div_pos_of_pos, exact Hb end theorem neg_div_of_pos_of_neg (Ha : 0 < a) (Hb : b < 0) : a / b < 0 := begin rewrite div_eq_mul_one_div, apply mul_neg_of_pos_of_neg, exact Ha, apply div_neg_of_neg, exact Hb end theorem nonpos_div_of_nonneg_of_neg (Ha : 0 ≤ a) (Hb : b < 0) : a / b ≤ 0 := begin rewrite div_eq_mul_one_div, apply mul_nonpos_of_nonneg_of_nonpos, exact Ha, apply le_of_lt, apply div_neg_of_neg, exact Hb end theorem pos_div_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a / b := begin rewrite div_eq_mul_one_div, apply mul_pos_of_neg_of_neg, exact Ha, apply div_neg_of_neg, exact Hb end theorem nonneg_div_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : 0 ≤ a / b := begin rewrite div_eq_mul_one_div, apply mul_nonneg_of_nonpos_of_nonpos, exact Ha, apply le_of_lt, apply div_neg_of_neg, exact Hb end theorem div_lt_div_of_lt_of_pos (H : a < b) (Hc : 0 < c) : a / c < b / c := div_eq_mul_one_div⁻¹ ▸ div_eq_mul_one_div⁻¹ ▸ mul_lt_mul_of_pos_right H (div_pos_of_pos Hc) theorem div_lt_div_of_lt_of_neg (H : b < a) (Hc : c < 0) : a / c < b / c := div_eq_mul_one_div⁻¹ ▸ div_eq_mul_one_div⁻¹ ▸ mul_lt_mul_of_neg_right H (div_neg_of_neg Hc) end linear_ordered_field structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A, decidable_linear_ordered_comm_ring A := (inv_zero : inv zero = zero) section discrete_linear_ordered_field variable {A : Type} variables [s : discrete_linear_ordered_field A] {a b c : A} include s theorem dec_eq_of_dec_lt : ∀ x y : A, decidable (x = y) := take x y, decidable.by_cases (assume H : x < y, decidable.inr (ne_of_lt H)) (assume H : ¬ x < y, decidable.by_cases (assume H' : y < x, decidable.inr (ne.symm (ne_of_lt H'))) (assume H' : ¬ y < x, decidable.inl (le.antisymm (le_of_not_lt H') (le_of_not_lt H)))) definition discrete_linear_ordered_field.to_discrete_field [instance] [reducible] [coercion] [s : discrete_linear_ordered_field A] : discrete_field A := ⦃ discrete_field, s, has_decidable_eq := dec_eq_of_dec_lt⦄ theorem pos_of_div_pos (H : 0 < 1 / a) : 0 < a := have H1 : 0 < 1 / (1 / a), from div_pos_of_pos H, have H2 : 1 / a ≠ 0, from (assume H3 : 1 / a = 0, have H4 : 1 / (1 / a) = 0, from H3⁻¹ ▸ div_zero, absurd H4 (ne.symm (ne_of_lt H1))), (div_div (ne_zero_of_one_div_ne_zero H2)) ▸ H1 theorem neg_of_div_neg (H : 1 / a < 0) : a < 0 := have H1 : 0 < - (1 / a), from neg_pos_of_neg H, have Ha : a ≠ 0, from ne_zero_of_one_div_ne_zero (ne_of_lt H), have H2 : 0 < 1 / (-a), from (one_div_neg_eq_neg_one_div Ha)⁻¹ ▸ H1, have H3 : 0 < -a, from pos_of_div_pos H2, neg_of_neg_pos H3 -- why is mul_le_mul under ordered_ring namespace? theorem le_of_div_le (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a := have Hb : 0 < b, from pos_of_div_pos (calc 0 < 1 / a : div_pos_of_pos H ... ≤ 1 / b : Hl), have H' : 1 ≤ a / b, from (calc 1 = a / a : div_self (ne.symm (ne_of_lt H)) ... = a * (1 / a) : div_eq_mul_one_div ... ≤ a * (1 / b) : ordered_ring.mul_le_mul_of_nonneg_left Hl (le_of_lt H) ... = a / b : div_eq_mul_one_div ), le_of_one_le_div Hb H' theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a := have Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc 1 / a ≤ 1 / b : Hl ... < 0 : div_neg_of_neg H)), have H' : -b > 0, from neg_pos_of_neg H, have Hl' : - (1 / b) ≤ - (1 / a), from neg_le_neg Hl, have Hl'' : 1 / - b ≤ 1 / - a, from calc 1 / -b = - (1 / b) : one_div_neg_eq_neg_one_div (ne_of_lt H) ... ≤ - (1 / a) : Hl' ... = 1 / -a : one_div_neg_eq_neg_one_div Ha, le_of_neg_le_neg (le_of_div_le H' Hl'') theorem lt_of_div_lt (H : 0 < a) (Hl : 1 / a < 1 / b) : b < a := have Hb : 0 < b, from pos_of_div_pos (calc 0 < 1 / a : div_pos_of_pos H ... < 1 / b : Hl), have H : 1 < a / b, from (calc 1 = a / a : div_self (ne.symm (ne_of_lt H)) ... = a * (1 / a) : div_eq_mul_one_div ... < a * (1 / b) : mul_lt_mul_of_pos_left Hl H ... = a / b : div_eq_mul_one_div), lt_of_one_lt_div Hb H theorem lt_of_div_lt_neg (H : b < 0) (Hl : 1 / a < 1 / b) : b < a := have H1 : b ≤ a, from le_of_div_le_neg H (le_of_lt Hl), have Hn : b ≠ a, from (assume Hn' : b = a, have Hl' : 1 / a = 1 / b, from Hn' ▸ refl _, absurd Hl' (ne_of_lt Hl)), lt_of_le_of_ne H1 Hn theorem div_lt_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a := lt_of_not_le (assume H', absurd H (not_lt_of_le (le_of_div_le Ha H'))) theorem div_le_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a := le_of_not_lt (assume H', absurd H (not_le_of_lt (lt_of_div_lt Ha H'))) theorem div_lt_div_of_lt_neg (Hb : b < 0) (H : a < b) : 1 / b < 1 / a := lt_of_not_le (assume H', absurd H (not_lt_of_le (le_of_div_le_neg Hb H'))) theorem div_le_div_of_le_neg (Hb : b < 0) (H : a ≤ b) : 1 / b ≤ 1 / a := le_of_not_lt (assume H', absurd H (not_le_of_lt (lt_of_div_lt_neg Hb H'))) theorem one_lt_div (H1 : 0 < a) (H2 : a < 1) : 1 < 1 / a := one_div_one ▸ div_lt_div_of_lt H1 H2 theorem one_le_div (H1 : 0 < a) (H2 : a ≤ 1) : 1 ≤ 1 / a := one_div_one ▸ div_le_div_of_le H1 H2 theorem neg_one_lt_div_neg (H1 : a < 0) (H2 : -1 < a) : 1 / a < -1 := one_div_neg_one_eq_neg_one ▸ div_lt_div_of_lt_neg H1 H2 theorem neg_one_le_div_neg (H1 : a < 0) (H2 : -1 ≤ a) : 1 / a ≤ -1 := one_div_neg_one_eq_neg_one ▸ div_le_div_of_le_neg H1 H2 theorem div_lt_div_of_pos_of_lt_of_pos (Hb : 0 < b) (H : b < a) (Hc : 0 < c) : c / a < c / b := begin apply (iff.mp (sub_neg_iff_lt _ _)), rewrite [div_eq_mul_one_div, {c / b}div_eq_mul_one_div], rewrite -mul_sub_left_distrib, apply mul_neg_of_pos_of_neg, exact Hc, apply (iff.mp' (sub_neg_iff_lt _ _)), apply div_lt_div_of_lt, exact Hb, exact H end end discrete_linear_ordered_field end algebra
55ce5d25a00d803cfb0aeab157d6cde8314865fc
aa3f8992ef7806974bc1ffd468baa0c79f4d6643
/tests/lean/t7.lean
3eb8ebc18e38017319193056e5aa94b85c0dc637
[ "Apache-2.0" ]
permissive
codyroux/lean
7f8dff750722c5382bdd0a9a9275dc4bb2c58dd3
0cca265db19f7296531e339192e9b9bae4a31f8b
refs/heads/master
1,610,909,964,159
1,407,084,399,000
1,416,857,075,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
621
lean
definition Prop : Type.{1} := Type.{0} constant and : Prop → Prop → Prop context parameter {A : Type} -- Mark A as implicit parameter parameter R : A → A → Prop parameter B : Type definition id (a : A) : A := a private definition refl : Prop := ∀ (a : A), R a a definition symm : Prop := ∀ (a b : A), R a b → R b a definition trans : Prop := ∀ (a b c : A), R a b → R b c → R a c definition equivalence : Prop := and (and refl symm) trans end check id.{2} check trans.{1} check symm.{1} check equivalence.{1} (* local env = get_env() print(env:find("equivalence"):value()) *)
bc4f40ccc13d32059c6a66c8e2e7f4f067ca9162
c76cc4eaee3c806716844e49b5175747d1aa170a
/src/problems_sheet_five.lean
2116df1497de0f5fc246613f88ff707ee5d96ad3
[]
no_license
ImperialCollegeLondon/M40002
0fb55848adbb0d8bc4a65ca5d7ed6edd18764c28
a499db70323bd5ccae954c680ec9afbf15ffacca
refs/heads/master
1,674,878,059,748
1,607,624,828,000
1,607,624,828,000
309,696,750
3
0
null
null
null
null
UTF-8
Lean
false
false
785
lean
import tactic import data.real.basic import data.pnat.basic local notation `|` x `|` := abs x def is_limit (a : ℕ → ℝ) (l : ℝ) : Prop := ∀ ε > 0, ∃ N, ∀ n ≥ N, | a n - l | < ε def tends_to_plus_infinity (a : ℕ → ℝ) : Prop := ∀ B, ∃ N, ∀ n ≥ N, B < a n def is_convergent (a : ℕ → ℝ) : Prop := ∃ l : ℝ, is_limit a l namespace sheet_five theorem Q1a (x : ℝ) (hx : 0 < x) (n : ℕ) : (1 : ℝ) + n * x ≤ (1 + x)^n := begin sorry end theorem Q1b (x : ℝ) (hx : 0 < x) : is_limit (λ n, (1 + x) ^ (-(n : ℤ))) 0 := begin sorry end theorem Q1c (r : ℝ) (hr : r ∈ set.Ioo (0 : ℝ) 1) : is_limit (λ n, r ^ n) 0 := begin sorry end theorem Q1d (r : ℝ) (hr : 1 < r) : tends_to_plus_infinity (λ n, r ^ n) := begin sorry end
ac39b3f02603b860fedc1ee857b8d3c5c82b4824
8e6cad62ec62c6c348e5faaa3c3f2079012bdd69
/src/analysis/convex/integral.lean
e3a5f71a2bd1f5d076420d0006ab59a03c918cd5
[ "Apache-2.0" ]
permissive
benjamindavidson/mathlib
8cc81c865aa8e7cf4462245f58d35ae9a56b150d
fad44b9f670670d87c8e25ff9cdf63af87ad731e
refs/heads/master
1,679,545,578,362
1,615,343,014,000
1,615,343,014,000
312,926,983
0
0
Apache-2.0
1,615,360,301,000
1,605,399,418,000
Lean
UTF-8
Lean
false
false
7,685
lean
/- Copyright (c) 2020 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Yury G. Kudryashov -/ import analysis.convex.basic import measure_theory.set_integral /-! # Jensen's inequality for integrals In this file we prove four theorems: * `convex.smul_integral_mem`: if `μ` is a non-zero finite measure on `α`, `s` is a convex closed set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `s`: `(μ univ).to_real⁻¹ • ∫ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. * `convex.integral_mem`: if `μ` is a probability measure on `α`, `s` is a convex closed set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the expected value of `f` belongs to `s`: `∫ x, f x ∂μ ∈ s`. See also `convex.sum_mem` for a finite sum version of this lemma. * `convex_on.map_smul_integral_le`: Jensen's inequality: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the value of `g` at the average value of `f` is less than or equal to the average value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex.map_center_mass_le` for a finite sum version of this lemma. * `convex_on.map_integral_le`: Jensen's inequality: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a probability measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the value of `g` at the expected value of `f` is less than or equal to the expected value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex.map_sum_le` for a finite sum version of this lemma. ## Tags convex, integral, center mass, Jensen's inequality -/ open measure_theory set filter open_locale topological_space big_operators variables {α E : Type*} [measurable_space α] {μ : measure α} [normed_group E] [normed_space ℝ E] [complete_space E] [topological_space.second_countable_topology E] [measurable_space E] [borel_space E] private lemma convex.smul_integral_mem_of_measurable [finite_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s) (hμ : μ ≠ 0) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hfm : measurable f) : (μ univ).to_real⁻¹ • ∫ x, f x ∂μ ∈ s := begin rcases eq_empty_or_nonempty s with rfl|⟨y₀, h₀⟩, { refine (hμ _).elim, simpa using hfs }, rw ← hsc.closure_eq at hfs, have hc : integrable (λ _, y₀) μ := integrable_const _, set F : ℕ → simple_func α E := simple_func.approx_on f hfm s y₀ h₀, have : tendsto (λ n, (F n).integral μ) at_top (𝓝 $ ∫ x, f x ∂μ), { simp only [simple_func.integral_eq_integral _ (simple_func.integrable_approx_on hfm hfi h₀ hc _)], exact tendsto_integral_of_L1 _ hfi (eventually_of_forall $ simple_func.integrable_approx_on hfm hfi h₀ hc) (simple_func.tendsto_approx_on_L1_edist hfm h₀ hfs (hfi.sub hc).2) }, refine hsc.mem_of_tendsto (tendsto_const_nhds.smul this) (eventually_of_forall $ λ n, _), have : ∑ y in (F n).range, (μ ((F n) ⁻¹' {y})).to_real = (μ univ).to_real, by rw [← (F n).sum_range_measure_preimage_singleton, @ennreal.to_real_sum _ _ (λ y, μ ((F n) ⁻¹' {y})) (λ _ _, (measure_lt_top _ _))], rw [← this, simple_func.integral], refine hs.center_mass_mem (λ _ _, ennreal.to_real_nonneg) _ _, { rw [this, ennreal.to_real_pos_iff, pos_iff_ne_zero, ne.def, measure.measure_univ_eq_zero], exact ⟨hμ, measure_ne_top _ _⟩ }, { simp only [simple_func.mem_range], rintros _ ⟨x, rfl⟩, exact simple_func.approx_on_mem hfm h₀ n x } end /-- If `μ` is a non-zero finite measure on `α`, `s` is a convex closed set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `s`: `(μ univ).to_real⁻¹ • ∫ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. -/ lemma convex.smul_integral_mem [finite_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s) (hμ : μ ≠ 0) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : (μ univ).to_real⁻¹ • ∫ x, f x ∂μ ∈ s := begin have : ∀ᵐ (x : α) ∂μ, hfi.ae_measurable.mk f x ∈ s, { filter_upwards [hfs, hfi.ae_measurable.ae_eq_mk], assume a ha h, rwa ← h }, convert convex.smul_integral_mem_of_measurable hs hsc hμ this (hfi.congr hfi.ae_measurable.ae_eq_mk) (hfi.ae_measurable.measurable_mk) using 2, apply integral_congr_ae, exact hfi.ae_measurable.ae_eq_mk end /-- If `μ` is a probability measure on `α`, `s` is a convex closed set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the expected value of `f` belongs to `s`: `∫ x, f x ∂μ ∈ s`. See also `convex.sum_mem` for a finite sum version of this lemma. -/ lemma convex.integral_mem [probability_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s) {f : α → E} (hf : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : ∫ x, f x ∂μ ∈ s := by simpa [measure_univ] using hs.smul_integral_mem hsc (probability_measure.ne_zero μ) hf hfi /-- Jensen's inequality: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the value of `g` at the average value of `f` is less than or equal to the average value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex.map_center_mass_le` for a finite sum version of this lemma. -/ lemma convex_on.map_smul_integral_le [finite_measure μ] {s : set E} {g : E → ℝ} (hg : convex_on s g) (hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : g ((μ univ).to_real⁻¹ • ∫ x, f x ∂μ) ≤ (μ univ).to_real⁻¹ • ∫ x, g (f x) ∂μ := begin set t := {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2}, have ht_conv : convex t := hg.convex_epigraph, have ht_closed : is_closed t := (hsc.preimage continuous_fst).is_closed_le (hgc.comp continuous_on_fst (subset.refl _)) continuous_on_snd, have ht_mem : ∀ᵐ x ∂μ, (f x, g (f x)) ∈ t := hfs.mono (λ x hx, ⟨hx, le_rfl⟩), simpa [integral_pair hfi hgi] using (ht_conv.smul_integral_mem ht_closed hμ ht_mem (hfi.prod_mk hgi)).2 end /-- Jensen's inequality: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a probability measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the value of `g` at the expected value of `f` is less than or equal to the expected value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex.map_sum_le` for a finite sum version of this lemma. -/ lemma convex_on.map_integral_le [probability_measure μ] {s : set E} {g : E → ℝ} (hg : convex_on s g) (hgc : continuous_on g s) (hsc : is_closed s) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : g (∫ x, f x ∂μ) ≤ ∫ x, g (f x) ∂μ := by simpa [measure_univ] using hg.map_smul_integral_le hgc hsc (probability_measure.ne_zero μ) hfs hfi hgi
eebaaf13afefba24439ae3b002358116ab3e49ed
ea4aee6b11f86433e69bb5e50d0259e056d0ae61
/src/tidy/propositional_goals.lean
4d6733b14ff335583b9fbbb9e220da8b92b46ff1
[]
no_license
timjb/lean-tidy
e18feff0b7f0aad08c614fb4d34aaf527bf21e20
e767e259bf76c69edfd4ab8af1b76e6f1ed67f48
refs/heads/master
1,624,861,693,182
1,504,411,006,000
1,504,411,006,000
103,740,824
0
0
null
1,505,553,968,000
1,505,553,968,000
null
UTF-8
Lean
false
false
1,152
lean
-- Copyright (c) 2017 Scott Morrison. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Scott Morrison open tactic private meta def propositional_goals_core { α : Type } (tac : tactic α) : list expr → list expr → (list (option α)) → bool → tactic (list (option α)) | [] ac results progress := guard progress >> set_goals ac >> pure results | (g :: gs) ac results progress := do t ← infer_type g, p ← is_prop t, if p then do { set_goals [g], succeeded ← try_core tac, new_gs ← get_goals, propositional_goals_core gs (ac ++ new_gs) (succeeded :: results ) (succeeded.is_some || progress) } else do { propositional_goals_core gs (ac ++ [ g ]) (none :: results) progress } /-- Apply the given tactic to any propositional goal where it succeeds. The tactic succeeds only if tac succeeds for at least one goal. -/ meta def propositional_goals { α : Type } ( t : tactic α ) : tactic (list (option α)) := do gs ← get_goals, results ← propositional_goals_core t gs [] [] ff, pure results.reverse
a35e898d5b85aa96bb39add890f89ecc7b4553f2
5a5e1bb8063d7934afac91f30aa17c715821040b
/lean3SOS/src/lib/psd_float.lean
5a215bff379d6d1159b4e84941f23e913a3353f0
[]
no_license
ramonfmir/leanSOS
1883392d73710db5c6e291a2abd03a6c5b44a42b
14b50713dc887f6d408b7b2bce1f8af5bb619958
refs/heads/main
1,683,348,826,105
1,622,056,982,000
1,622,056,982,000
341,232,766
1
0
null
null
null
null
UTF-8
Lean
false
false
12,290
lean
import data.rat.order import to_mathlib.matrix float.basic float.div lib.psd -- We have A ∈ 𝒮(𝔽)ⁿˣⁿ. open matrix float open_locale matrix big_operators variables (n : nat) (hn : 0 < n) (A : matrix (fin n) (fin n) float) (h : symmetric A) theorem psd_of_ldlt (L : matrix (fin n) (fin n) float) (hL : symmetric L) (D : fin n → float) (hD : 0 ≤ D) (hij : ∀ i j, i ≠ j → (Lᵀ ⬝ diagonal D ⬝ L) i j = A i j) (hii : ∀ i, 0 ≤ (A - (Lᵀ ⬝ diagonal D ⬝ L)) i i) : pos_semidef A := begin have hLDLTpsd := pos_semidef_of_LDLT_decomposition (Lᵀ ⬝ diagonal D ⬝ L) (symmetric_LDLT L hL D) ⟨L, D, ⟨rfl, hD⟩⟩, have hDnn : (0 : fin n → float) ≤ (λ i, (A - Lᵀ ⬝ diagonal D ⬝ L) i i), { rw pi.le_def, intros i, exact hii i, }, have hdA : (A - Lᵀ ⬝ diagonal D ⬝ L) = diagonal (λ i, (A - Lᵀ ⬝ diagonal D ⬝ L) i i), { ext i j, by_cases (i = j), { rw h, simp [diagonal], }, { have hijij := (hij i j h).symm, rw ←sub_eq_zero at hijij, rw [diagonal_apply_ne h, ←hijij], simp, }, }, have hdAsymm : symmetric (A - Lᵀ ⬝ diagonal D ⬝ L), { rw hdA, exact symmetric_diagonal _, }, have hdApsd : pos_semidef (A - Lᵀ ⬝ diagonal D ⬝ L), { rw hdA, exact pos_semidef_nonneg_diagonal hDnn, }, have hA : A = Lᵀ ⬝ diagonal D ⬝ L + (A - Lᵀ ⬝ diagonal D ⬝ L), { simp, }, rw hA, exact pos_semidef_sum hLDLTpsd hdApsd, end -- PLAN: -- 1. Define diagonally dominant. -- 2. Prove that diagonally dominant + nonnegative entries implies psd. -- 3. This will show that dA' = A' - LᵀDL is psd where A' = A - cI. -- 4. Now we have on the one hand that A' = LᵀDT + dA' is psd by sum of psds. -- 5. Similarly, A = A' + cI is psd by sum of psds. So last theorem not needed? -- Lift eval to vectors and matrices. def eval_vec (x : fin n → float) : fin n → ℚ := λ i, eval (x i) def eval_mat (M : matrix (fin n) (fin n) float) : matrix (fin n) (fin n) ℚ := λ i j, eval (M i j) -- Norms. def rat_norm (x : fin n → ℚ) : ℚ := ∑ i, abs (x i) lemma rat_norm_nonneg (x : fin n → ℚ) : 0 ≤ rat_norm n x := begin apply finset.sum_nonneg, intros i hi, exact abs_nonneg (x i), end def rat_normalised (x : fin n → ℚ) : fin n → ℚ := λ i, (x i) / (rat_norm n x) lemma eval_vec_eq_zero_iff (x : fin n → float) : eval_vec n x = 0 ↔ x = 0 := begin sorry, end lemma rat_norm_eq_zero_iff (x : fin n → ℚ) : rat_norm n x = 0 ↔ x = 0 := begin sorry, end lemma abs_nonneg_finsum (x : fin n → ℚ) (h : ∀ i, 0 ≤ x i) : abs (∑ i, x i) = ∑ i, x i := begin apply finset.sum_induction x (λ r, abs r = r), { intros a b ha hb, have hab : abs (a + b) = abs a + abs b, { rw abs_add_eq_add_abs_iff, left, split, { exact abs_eq_self.1 ha, }, { exact abs_eq_self.1 hb, }, }, rw hab, congr, exact ha, exact hb, }, { exact abs_zero, }, { intros i hi, exact abs_eq_self.2 (h i), } end lemma abs_rat_norm (x : fin n → ℚ) : abs (rat_norm n x) = rat_norm n x := begin apply abs_nonneg_finsum, intros i, exact abs_nonneg (x i), end -- TODO: Move (rat/order) lemma rat.abs_div (p q : rat) : abs (p / q) = abs p / abs q := begin by_cases hpz : p = 0, { rw hpz, simp, }, by_cases hqz : q = 0, { rw hqz, simp, }, have hpc : 0 < p ∨ 0 > p, { cases le_or_lt p 0, { right, exact lt_of_le_of_ne h hpz, }, { left, exact h, }, }, have hqc : 0 < q ∨ 0 > q, { cases le_or_lt q 0, { right, exact lt_of_le_of_ne h hqz, }, { left, exact h, }, }, cases hpc with hp hp; cases hqc with hq hq, { rw [abs_of_pos hp, abs_of_pos hq, abs_of_pos (div_pos hp hq)], }, { rw [abs_of_pos hp, abs_of_neg hq, abs_of_neg (div_neg_of_pos_of_neg hp hq), div_neg], }, { rw [abs_of_neg hp, abs_of_pos hq, abs_of_neg (div_neg_of_neg_of_pos hp hq), neg_div], }, { rw [abs_of_neg hp, abs_of_neg hq, abs_of_pos (div_pos_of_neg_of_neg hp hq), neg_div_neg_eq], }, end lemma normalised_norm_one (x : fin n → ℚ) (hx : x ≠ 0) : rat_norm n (rat_normalised n x) = 1 := begin unfold rat_norm, unfold rat_normalised, have hsum : ∑ i, abs ((x i) / rat_norm n x) = ∑ i, abs (x i) / abs (rat_norm n x), { congr, ext i, rw rat.abs_div, }, --have hex := (not_iff_not_of_iff (eval_vec_eq_zero_iff n x)).mpr hx, have hrex := (not_iff_not_of_iff (rat_norm_eq_zero_iff n x)).mpr hx, rw [hsum, ←finset.sum_div, abs_rat_norm, div_eq_one_iff_eq hrex], simp [rat_norm, eval_vec], end -- PSD stuff. -- First show that if eval M is psd then M is psd. lemma dot_product_eval (v w : fin n → float) : dot_product (eval_vec n v) (eval_vec n w) = eval (dot_product v w) := begin sorry, end lemma mul_vec_eval (M : matrix (fin n) (fin n) float) (v : fin n → float) : (eval_mat n M).mul_vec (eval_vec n v) = eval_vec n (M.mul_vec v) := begin sorry, end lemma pos_semidef_of_eval (M : matrix (fin n) (fin n) float) (h : pos_semidef (eval_mat n M)) : pos_semidef M := begin intros v, have hv := h (eval_vec n v), rw [mul_vec_eval, dot_product_eval] at hv, show eval _ ≤ _, rw [float.eval_zero], exact hv, end lemma float_pos_semidef_eval (M : matrix (fin n) (fin n) float) (h : pos_semidef M) : ∀ (v : fin n → float), 0 ≤ dot_product (eval_vec n v) ((eval_mat n M).mul_vec (eval_vec n v)) := begin intros v, rw [mul_vec_eval, dot_product_eval, ←eval_zero], exact (h v), end def pos_semidef_unit (M : matrix (fin n) (fin n) float) : Prop := ∀ (v : fin n → ℚ), rat_norm n v = 1 → 0 ≤ dot_product v ((eval_mat n M).mul_vec v) lemma pos_semidef_of_unit (M : matrix (fin n) (fin n) float) (h : pos_semidef_unit n M) : pos_semidef M := begin suffices hsuff : pos_semidef (eval_mat n M), { exact pos_semidef_of_eval n M hsuff, }, intros v, by_cases hvz : v = 0, { rw [hvz, dot_product_comm, dot_product_zero], }, have hv := h (rat_normalised n v) (normalised_norm_one n v hvz), have hveq : dot_product (rat_normalised n v) ((eval_mat n M).mul_vec (rat_normalised n v)) = (dot_product v ((eval_mat n M).mul_vec v)) / (rat_norm n v) ^ 2, { simp only [dot_product], rw [finset.sum_div], congr, ext i, simp only [rat_normalised, mul_vec, dot_product], have hsum : ∑ j, eval_mat n M i j * (v j / rat_norm n v) = (∑ j, eval_mat n M i j * v j) / rat_norm n v, { rw [finset.sum_div], congr, ext j, rw [mul_div_assoc], }, rw hsum, rw [div_mul_div, pow_two], }, rw hveq at hv, clear hveq, have hrvz := (not_iff_not_of_iff (rat_norm_eq_zero_iff n v)).mpr hvz, have hrvpos := lt_of_le_of_ne (rat_norm_nonneg n v) (ne_comm.1 hrvz), have hrv2pos := mul_pos hrvpos hrvpos, rw [pow_two, le_div_iff hrv2pos, zero_mul] at hv, exact hv, end -- TODO: Move lemma finset_sum_neg {γ R : Type*} [fintype γ] [linear_ordered_ring R] {x : γ → R} (h : ∑ i, x i < 0) : ∃ i, x i < 0 := begin by_contra hc, suffices hsuff : 0 ≤ ∑ i, x i, { exact (not_le_of_lt h) hsuff, }, apply finset.sum_nonneg, intros i hi, rw not_exists at hc, replace hc := hc i, exact le_of_not_lt hc, end #check ite_mul lemma symmetric_decomp (B : matrix (fin n) (fin n) ℚ) (hB : symmetric B) (v : fin n → ℚ) : dot_product v (B.mul_vec v) -- vᵀ * B * v = ∑ i ∑ j, B i j * vi * vj = ∑ i, (B i i) * (v i) ^ 2 + 2 * ∑ i, ∑ j, (if i < j then (B i j) else 0) * (v i) * (v j) := begin simp only [mul_vec, dot_product], have h1 : ∑ i, ∑ j, (if i < j then (B i j) else 0) * (v i) * (v j) = ∑ j, ∑ i, (if j < i then (B i j) else 0) * (v i) * (v j), { congr, ext i, congr, ext j, split_ifs, { rw hB i j, ring, }, { ring, } }, have h2 : ∑ i, ∑ j, (if i < j then (B i j) else 0) * (v i) * (v j) = ∑ i, ∑ j, (if j < i then (B i j) else 0) * (v i) * (v j), { rw h1, rw finset.sum_comm, }, have h3 : 2 * ∑ i, ∑ j, (if i < j then (B i j) else 0) * (v i) * (v j) = (∑ i, ∑ j, (if i < j then (B i j) else 0) * (v i) * (v j)) + (∑ i, ∑ j, (if j < i then (B i j) else 0) * (v i) * (v j)), { rw two_mul, congr' 1, }, have h4 : (∑ i, ∑ j, (if i < j then (B i j) else 0) * (v i) * (v j)) + (∑ i, ∑ j, (if j < i then (B i j) else 0) * (v i) * (v j)) = ∑ i, ∑ j, (if i ≠ j then (B i j) else 0) * (v i) * (v j), { simp only [←finset.sum_add_distrib], congr, ext i, congr, ext j, by_cases hij : i < j, { rw if_pos hij, rw if_pos (ne_of_lt hij), rw if_neg (not_lt.2 $ le_of_lt hij), ring, }, { replace hij := lt_or_eq_of_le (le_of_not_lt hij), cases hij, { rw if_pos hij, rw if_pos (ne_comm.1 $ ne_of_lt hij), rw if_neg (not_lt.2 $ le_of_lt hij), ring, }, { rw if_neg (not_not.2 hij.symm), rw if_neg (not_lt_iff_eq_or_lt.2 $ or.inl hij), rw if_neg (not_lt_iff_eq_or_lt.2 $ or.inl hij.symm), ring, }, }, }, have h5 : ∑ i, (B i i) * (v i)^2 = ∑ i, ∑ j, (if i = j then (B i j) else 0) * (v i) * (v j), { congr, ext i, simp only [ite_mul, zero_mul], rw finset.sum_ite_eq, rw if_pos (finset.mem_univ i), rw pow_two, ring, }, rw [h3, h4, h5], simp only [←finset.sum_add_distrib], congr, ext i, rw finset.mul_sum, congr, ext j, by_cases hij : i = j, { rw if_pos hij, rw if_neg (not_not.2 hij), ring, }, { rw if_pos hij, rw if_neg hij, ring, }, end -- Idea : https://math.stackexchange.com/questions/87528/a-practical-way-to-check-if-a-matrix-is-positive-definite lemma psd_of_nonneg_diagdom (B : matrix (fin n) (fin n) ℚ) (hB : symmetric B) (hnonneg : ∀ i j, 0 ≤ B i j) (hdiagdom : ∀ i, (∑ j, if i ≠ j then B i j else 0) ≤ B i i) : pos_semidef B := begin intros v, let R : fin n → ℚ := λ i, B i i - ∑ j, if i ≠ j then B i j else 0, let D : ℚ := ∑ i, (R i) * (v i) ^ 2, let O : ℚ := ∑ i, ∑ j, (if i < j then B i j else 0) * (v i + v j) ^ 2, have hO : O = ∑ i, ∑ j, (if i < j then B i j else 0) * (v i) ^ 2 + 2 * ∑ i, ∑ j, (if i < j then B i j else 0) * (v i) * (v j) + ∑ i, ∑ j, (if i < j then B i j else 0) * (v j) ^ 2, { simp only [finset.mul_sum, ←finset.sum_add_distrib, O], congr, ext i, congr, ext j, by_cases hij : i < j, { simp only [if_pos hij, pow_two], ring, }, { simp only [if_neg hij], ring, }, }, have h1 : (∑ i, ∑ j, (if i < j then B i j else 0) * (v j) ^ 2) = ∑ i, ∑ j, (if j < i then B i j else 0) * (v i) ^ 2, { rw finset.sum_comm, congr, ext i, congr, ext j, split_ifs, { rw (hB i j), }, { refl, }, }, have h2 : (∑ i, ∑ j, (if i < j then B i j else 0) * (v i) ^ 2) + ∑ i, ∑ j, (if i < j then B i j else 0) * (v j) ^ 2 = ∑ i, ∑ j, (if i ≠ j then B i j else 0) * (v i) ^ 2, { rw h1, simp only [←finset.sum_add_distrib], congr, ext i, congr, ext j, by_cases hij : i < j, { rw if_pos hij, rw if_pos (ne_of_lt hij), rw if_neg (not_lt.2 $ le_of_lt hij), ring, }, { replace hij := lt_or_eq_of_le (le_of_not_lt hij), cases hij, { rw if_pos hij, rw if_pos (ne_comm.1 $ ne_of_lt hij), rw if_neg (not_lt.2 $ le_of_lt hij), ring, }, { rw if_neg (not_not.2 hij.symm), rw if_neg (not_lt_iff_eq_or_lt.2 $ or.inl hij), rw if_neg (not_lt_iff_eq_or_lt.2 $ or.inl hij.symm), ring, }, }, }, have hO' : O = (∑ i, ∑ j, (if i ≠ j then B i j else 0) * (v i) ^ 2) + 2 * ∑ i, ∑ j, (if i < j then B i j else 0) * (v i) * (v j), { rw hO, rw add_assoc, rw add_comm ((2 : ℚ) * _), rw ←add_assoc, rw h2, }, have h3 : D + (∑ i, ∑ j, (if i ≠ j then B i j else 0) * (v i) ^ 2) = ∑ i, (B i i) * (v i) ^ 2, { simp only [D, R, ←finset.sum_add_distrib], congr, ext i, simp only [sub_mul, finset.sum_mul], ring, }, have heq : dot_product v (B.mul_vec v) = D + O, { rw hO', rw ←add_assoc, rw h3, rw symmetric_decomp n B hB v, }, have hDnonneg : 0 ≤ D, { simp only [D], apply finset.sum_nonneg, intros i hi, apply mul_nonneg, { simp only [R], rw sub_nonneg, exact hdiagdom i, }, { exact pow_two_nonneg (v i), }, }, have hOnonneg : 0 ≤ O, { simp only [O], apply finset.sum_nonneg, intros i hi, apply finset.sum_nonneg, intros j hj, split_ifs, { exact mul_nonneg (hnonneg i j) (pow_two_nonneg _), }, { simp, }, }, rw heq, exact add_nonneg hDnonneg hOnonneg, end -- With unit vectors.
d5784d9ab1188aefd5f2a6f463b3236fb5f5baf2
19a24126e4b7677703434d80717041622a5f1d61
/Type_Theory_and_Functional_Programming.lean
3e772fbd23c89fc4a43ad0691ad1312bc2427180
[]
no_license
JoseBalado/lean-notes
f5ff8d4c99ba8c1f79d7894ba0f130fa4eb09695
0b579f83988cc844ac1ff0592d885061959a852e
refs/heads/master
1,587,743,561,316
1,567,181,955,000
1,567,181,955,000
172,086,145
0
0
null
null
null
null
UTF-8
Lean
false
false
7,907
lean
-- Prove ¬(p ∨ q) ↔ ¬p ∧ ¬q example (p q : Prop) : ¬(p ∨ q) ↔ ¬p ∧ ¬q := ⟨λ h, ⟨λ hp, h (or.inl hp), λ hq, h (or.inr hq)⟩, λ hn h, or.elim h hn.1 hn.2⟩ -- Page 83 -- Prove (A ∧ B) → (B ∧ A) example (A B : Prop) : (A ∧ B) → (B ∧ A) := λ ⟨A, B⟩, ⟨B, A⟩ example (A B : Prop) : (A ∧ B) → (B ∧ A) := λ p : A ∧ B, ⟨and.right p, and.left p⟩ example (A B : Prop) : (A ∧ B) → (B ∧ A) := λ p, and.intro (and.right p) (and.left p) -- Prove (((A ∨ B) → C) ∧ A) → C example (A B C : Prop) : (((A ∨ B) → C) ∧ A) → C := λ qr, (and.left qr) (or.inl (and.right qr)) -- Prove (((A ∨ B) → C) ∧ A) → C, second example, closer to Thompson book example (A B C : Prop) : (((A ∨ B) → C) ∧ A) → C := λ ⟨q, r⟩, q (or.inl r) -- Page 90 -- 4.1. Show that conjunction is associative by deriving a proof of the formula -- (A ∧ B) ∧ C → A ∧ (B ∧ C) example (A B C : Prop) : (A ∧ B) ∧ C → A ∧ (B ∧ C) := λ p, ⟨and.left (and.left p), ⟨and.right (and.left p), and.right p⟩⟩ example (A B C : Prop) : (A ∧ B) ∧ C → A ∧ (B ∧ C) := λ p, ⟨and.left (and.left p), and.right (and.left p), and.right p⟩ example (A B C : Prop) : (A ∧ B) ∧ C → A ∧ (B ∧ C) := λ p, and.intro (and.left (and.left p)) (and.intro (and.right (and.left p)) (and.right p)) -- 4.2. A) Show that the formula (¬A ∨ B) → (A → B) is valid by exhibiting a proof object for it. example (A B : Prop) : (¬A ∨ B) → (A → B) := λ p, or.elim p (λ na, λ a, absurd a na) (λ b, λ a, b) example (A B : Prop) : (¬A ∨ B) → (A → B) := assume hnab : ¬A ∨ B, or.elim hnab (assume hna : ¬A, assume ha : A, show B, from absurd ha hna) (assume hb : B, assume ha : A, show B, from hb) example (A B : Prop) : (¬A ∨ B) → (A → B) := assume hnab : ¬A ∨ B, or.elim hnab (assume hna : ¬A, assume ha : A, show B, from false.elim (hna ha)) (assume hb : B, assume ha : A, show B, from hb) -- 4.2 B) Do you expect the converse, (A → B) → (¬A ∨ B), to be provable? -- 4.3. A) Show that from the assumption x : (A ∨ ¬A) that you can derive a -- proof object for the formula (¬¬A → A). example (A : Prop) : (A ∨ ¬A) → (¬¬A → A) := λ hana, or.elim hana (λ ha, λ hna, ha) (λ hna, λ hnna, absurd hna hnna) example (A : Prop) : (A ∨ ¬A) → (¬¬A → A) := assume hana : (A ∨ ¬A), or.elim hana (assume ha : A, assume hna : ¬¬A, show A, from ha) (assume hna : ¬A, assume hnna : ¬¬A, show A, from false.elim (hnna hna)) -- 4.3 B) Show that you can find a proof -- object for the converse, (A → ¬¬A) without this assumption. example (A : Prop): (A → ¬¬A) := assume ha : A, assume hna : ¬A, show false, from hna ha example (A : Prop): (A → ¬¬A) := assume ha : A, assume hna : ¬A, absurd ha hna -- 4.4. Show that from the assumptions x : ((A ∧ B) → C) and y : A you -- can derive a proof of B → C. example (A B C : Prop) : ((A ∧ B) → C) ∧ A → (B → C) := λ x, λ y, x.left (and.intro x.right y) example (A B C : Prop) : ((A ∧ B) → C) ∧ A → (B → C) := assume habc, assume hb, show C, from habc.left (and.intro habc.right hb) -- 4.5. Given a function of type A → (B → C) how would you define a -- function of type (A ∧ B) → C from it? How would you do the reverse? -- A) example (A B C : Prop) : (A → (B → C)) → ((A ∧ B) → C) := assume habc, assume hab, show C, from (habc (and.left hab)) (and.right hab) example (A B C : Prop) : (A → (B → C)) → ((A ∧ B) → C) := λ abc, λ ab, show C, from (abc ab.left) ab.right -- B) How would you do the reverse? example (A B C : Prop) : ((A ∧ B) → C) → (A → (B → C)) := assume habc, assume ha, assume hb, show C, from habc (and.intro ha hb) example (A B C : Prop) : ((A ∧ B) → C) → (A → (B → C)) := λ habc, λ ha, λ hb, habc (and.intro ha hb) -- 4.6. Show that from objects x : A and y : (B ∨ C) you can derive an object -- of type (A ∧ B) ∨ (A ∧ C). example (A B C : Prop) : (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)) := assume habc, show (A ∧ B) ∨ (A ∧ C), from (or.elim (and.right habc) (assume hb, or.inl (and.intro (and.left habc) hb)) (assume hc, or.inr (and.intro (and.left habc) hc))) example (A B C : Prop) : (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)) := λ habc, (or.elim (and.right habc) (λ hb, or.inl (and.intro (and.left habc) hb)) (λ hc, or.inr (and.intro (and.left habc) hc))) -- 4.7. Show how to define a function of type -- (A ∧ B) → (C ∧ D) -- from functions f : A → C and g : B → D. example (A B C D : Prop): (A ∧ B) → (C ∧ D) := λ x: (A ∧ B), and.intro (sorry) (sorry) example (A B C D : Prop): (A ∧ B) → (A → C) → (B → D) → (C ∧ D) := λ x: (A ∧ B), λ f : (A → C), λ g: (B → D), and.intro (f x.left)(g x.right) -- 4.8. Show that the following formulas are valid, by giving a proof object -- for each of them. -- A) A → ¬¬A example (A : Prop): A → ¬¬A := assume ha, show ¬¬A, from (assume hna, show false, from false.elim (hna ha)) example (A : Prop): A → ¬¬A := λ ha, λ hna, false.elim (hna ha) -- B) (B ∨ C) → ¬(¬B ∧ ¬C) example (B C : Prop): (B ∨ C) → ¬(¬B ∧ ¬C) := assume hbc : B ∨ C, assume hnbnc : ¬B ∧ ¬C, or.elim hbc (assume hb : B, show false, from false.elim ((and.left hnbnc) hb)) (assume hc : C, show false, from false.elim ((and.right hnbnc) hc)) example (B C : Prop): (B ∨ C) → ¬(¬B ∧ ¬C) := λ hbc : B ∨ C, λ hnbnc : ¬B ∧ ¬C, or.elim hbc (λ hb : B, false.elim ((and.left hnbnc) hb)) (λ hc : C, false.elim ((and.right hnbnc) hc)) -- C) (A → B) → ((A → C) → (A → (B ∧ C))) example (A B C : Prop): (A → B) → ((A → C) → (A → (B ∧ C))) := assume hab : A → B, assume hac : A → C, assume ha : A, show B ∧ C, from and.intro (hab ha) (hac ha) example (A B C : Prop): (A → B) → ((A → C) → (A → (B ∧ C))) := λ hab : A → B, λ hac : A → C, λ ha : A, and.intro (hab ha) (hac ha) -- 4.9. Show that the following formulas are equivalent -- (A ∧ B) → C A → (B → C) example (A B C : Prop): (A ∧ B) → C ↔ A → (B → C) := iff.intro (assume habc, show A → B → C, from assume ha, assume hb, show C, from habc (and.intro ha hb)) (assume habc, show A ∧ B → C, from assume hab, have ha : A, from and.left hab, have hb : B, from and.right hab, show C, from (habc ha) hb) example (A B C : Prop): (A ∧ B) → C ↔ A → (B → C) := ⟨ λ habc, λ ha, λ hb, habc (and.intro ha hb) , λ habc, λ hab, habc (and.left hab) (and.right hab) ⟩ -- 4.10. Show that the de Morgan formula -- (¬A ∨ ¬B) → ¬(A ∧ B) -- is valid by giving an object of type -- ((A → C) ∨ (B → C)) → ((A ∧ B) → C) example (A B C : Prop): ((A → C) ∨ (B → C)) → ((A ∧ B) → C) := assume hacbc, show (A ∧ B) → C, from assume hab, show C, from or.elim hacbc (assume hac, show C, from hac (and.left hab)) (assume hbc, show C, from hbc (and.right hab)) example (A B C : Prop): ((A → C) ∨ (B → C)) → ((A ∧ B) → C) := λ hacbc, λ hab, or.elim hacbc (λ hac, hac (and.left hab)) (λ hbc, hbc (and.right hab)) -- 4.12. Give a derivation of a proof object of the formula -- (∃x : X).¬P → ¬(∀x : X).P variables (α : Type) (p q : α → Prop) example (h : ∃ x, ¬p x) : ¬∀ x, p x := (assume h1 : ∀ x, p x, have h2 : ∀ x, ¬ p x, from assume x, assume h3 : p x, have h4 : ∃ x, p x, from ⟨x, h3⟩, show false, from h1 h4, show false, from h h2) example (h : ∃ x, ¬p x) : ¬∀ x, p x := (assume h1 : ∀ x, p x, assume y : α, have h2 : p y, from h1 y, show false, from sorry) example (h : ∃ x, ¬p x) : ¬p α := assume y : α, show false, from (sorry)
737db74f6ab98dd6a140052d2fdfc33e9e9ee5d6
9b9a16fa2cb737daee6b2785474678b6fa91d6d4
/src/topology/instances/ennreal.lean
cc89d799241d7ef044d902da286022db546587ca
[ "Apache-2.0" ]
permissive
johoelzl/mathlib
253f46daa30b644d011e8e119025b01ad69735c4
592e3c7a2dfbd5826919b4605559d35d4d75938f
refs/heads/master
1,625,657,216,488
1,551,374,946,000
1,551,374,946,000
98,915,829
0
0
Apache-2.0
1,522,917,267,000
1,501,524,499,000
Lean
UTF-8
Lean
false
false
28,680
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Extended non-negative reals -/ import topology.instances.nnreal data.real.ennreal noncomputable theory open classical set lattice filter metric local attribute [instance] prop_decidable variables {α : Type*} {β : Type*} {γ : Type*} local notation `∞` := ennreal.infinity namespace ennreal variables {a b c d : ennreal} {r p q : nnreal} section topological_space open topological_space /-- Topology on `ennreal`. Note: this is different from the `emetric_space` topology. The `emetric_space` topology has `is_open {⊤}`, while this topology doesn't have singleton elements. -/ instance : topological_space ennreal := topological_space.generate_from {s | ∃a, s = {b | a < b} ∨ s = {b | b < a}} instance : orderable_topology ennreal := ⟨rfl⟩ instance : t2_space ennreal := by apply_instance instance : second_countable_topology ennreal := ⟨⟨⋃q ≥ (0:ℚ), {{a : ennreal | a < nnreal.of_real q}, {a : ennreal | ↑(nnreal.of_real q) < a}}, countable_bUnion (countable_encodable _) $ assume a ha, countable_insert (countable_singleton _), le_antisymm (generate_from_le $ λ s h, begin rcases h with ⟨a, hs | hs⟩; [ rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ a < nnreal.of_real q}, {b | ↑(nnreal.of_real q) < b}, from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn a b, and_assoc]), rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ ↑(nnreal.of_real q) < a}, {b | b < ↑(nnreal.of_real q)}, from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn b a, and_comm, and_assoc])]; { apply is_open_Union, intro q, apply is_open_Union, intro hq, exact generate_open.basic _ (mem_bUnion hq.1 $ by simp) } end) (generate_from_le $ by simp [or_imp_distrib, is_open_lt', is_open_gt'] {contextual := tt})⟩⟩ lemma embedding_coe : embedding (coe : nnreal → ennreal) := and.intro (assume a b, coe_eq_coe.1) $ begin refine le_antisymm _ _, { rw [orderable_topology.topology_eq_generate_intervals nnreal], refine generate_from_le (assume s ha, _), rcases ha with ⟨a, rfl | rfl⟩, exact ⟨{b : ennreal | ↑a < b}, @is_open_lt' ennreal ennreal.topological_space _ _ _, by simp⟩, exact ⟨{b : ennreal | b < ↑a}, @is_open_gt' ennreal ennreal.topological_space _ _ _, by simp⟩, }, { rw [orderable_topology.topology_eq_generate_intervals ennreal, induced_le_iff_le_coinduced], refine generate_from_le (assume s ha, _), rcases ha with ⟨a, rfl | rfl⟩, show is_open {b : nnreal | a < ↑b}, { cases a; simp [none_eq_top, some_eq_coe, is_open_lt'] }, show is_open {b : nnreal | ↑b < a}, { cases a; simp [none_eq_top, some_eq_coe, is_open_gt', is_open_const] } } end lemma is_open_ne_top : is_open {a : ennreal | a ≠ ⊤} := is_open_neg (is_closed_eq continuous_id continuous_const) lemma coe_range_mem_nhds : range (coe : nnreal → ennreal) ∈ (nhds (r : ennreal)).sets := have {a : ennreal | a ≠ ⊤} = range (coe : nnreal → ennreal), from set.ext $ assume a, by cases a; simp [none_eq_top, some_eq_coe], this ▸ mem_nhds_sets is_open_ne_top coe_ne_top lemma tendsto_coe {f : filter α} {m : α → nnreal} {a : nnreal} : tendsto (λa, (m a : ennreal)) f (nhds ↑a) ↔ tendsto m f (nhds a) := embedding_coe.tendsto_nhds_iff.symm lemma continuous_coe {α} [topological_space α] {f : α → nnreal} : continuous (λa, (f a : ennreal)) ↔ continuous f := embedding_coe.continuous_iff.symm lemma nhds_coe {r : nnreal} : nhds (r : ennreal) = (nhds r).map coe := by rw [embedding_coe.2, map_nhds_induced_eq coe_range_mem_nhds] lemma nhds_coe_coe {r p : nnreal} : nhds ((r : ennreal), (p : ennreal)) = (nhds (r, p)).map (λp:nnreal×nnreal, (p.1, p.2)) := begin rw [(embedding_prod_mk embedding_coe embedding_coe).map_nhds_eq], rw [← prod_range_range_eq], exact prod_mem_nhds_sets coe_range_mem_nhds coe_range_mem_nhds end lemma continuous_of_real : continuous ennreal.of_real := continuous.comp nnreal.continuous_of_real (continuous_coe.2 continuous_id) lemma tendsto_of_real {f : filter α} {m : α → ℝ} {a : ℝ} (h : tendsto m f (nhds a)) : tendsto (λa, ennreal.of_real (m a)) f (nhds (ennreal.of_real a)) := tendsto.comp h (continuous.tendsto continuous_of_real _) lemma tendsto_to_nnreal {a : ennreal} : a ≠ ⊤ → tendsto (ennreal.to_nnreal) (nhds a) (nhds a.to_nnreal) := begin cases a; simp [some_eq_coe, none_eq_top, nhds_coe, tendsto_map'_iff, (∘)], exact tendsto_id end lemma tendsto_nhds_top {m : α → ennreal} {f : filter α} (h : ∀n:ℕ, {a | ↑n < m a} ∈ f.sets) : tendsto m f (nhds ⊤) := tendsto_nhds_generate_from $ assume s hs, match s, hs with | _, ⟨none, or.inl rfl⟩, hr := (lt_irrefl ⊤ hr).elim | _, ⟨some r, or.inl rfl⟩, hr := let ⟨n, hrn⟩ := exists_nat_gt r in mem_sets_of_superset (h n) $ assume a hnma, show ↑r < m a, from lt_trans (show (r : ennreal) < n, from (coe_nat n) ▸ coe_lt_coe.2 hrn) hnma | _, ⟨a, or.inr rfl⟩, hr := (not_top_lt $ show ⊤ < a, from hr).elim end lemma tendsto_coe_nnreal_nhds_top {α} {l : filter α} {f : α → nnreal} (h : tendsto f l at_top) : tendsto (λa, (f a : ennreal)) l (nhds (⊤:ennreal)) := tendsto_nhds_top $ assume n, have {a : α | ↑(n+1) ≤ f a} ∈ l.sets := h $ mem_at_top _, mem_sets_of_superset this $ assume a (ha : ↑(n+1) ≤ f a), begin rw [← coe_nat], dsimp, exact coe_lt_coe.2 (lt_of_lt_of_le (nat.cast_lt.2 (nat.lt_succ_self _)) ha) end instance : topological_add_monoid ennreal := ⟨ continuous_iff_continuous_at.2 $ have hl : ∀a:ennreal, tendsto (λ (p : ennreal × ennreal), p.fst + p.snd) (nhds (⊤, a)) (nhds ⊤), from assume a, tendsto_nhds_top $ assume n, have set.prod {a | ↑n < a } univ ∈ (nhds ((⊤:ennreal), a)).sets, from prod_mem_nhds_sets (lt_mem_nhds $ coe_nat n ▸ coe_lt_top) univ_mem_sets, begin filter_upwards [this] assume ⟨a₁, a₂⟩ ⟨h₁, h₂⟩, lt_of_lt_of_le h₁ (le_add_right $ le_refl _) end, begin rintro ⟨a₁, a₂⟩, cases a₁, { simp [continuous_at, none_eq_top, hl a₂], }, cases a₂, { simp [continuous_at, none_eq_top, some_eq_coe, nhds_swap (a₁ : ennreal) ⊤, tendsto_map'_iff, (∘), hl ↑a₁] }, simp [continuous_at, some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (∘)], simp only [coe_add.symm, tendsto_coe, tendsto_add'] end ⟩ protected lemma tendsto_mul' (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λp:ennreal×ennreal, p.1 * p.2) (nhds (a, b)) (nhds (a * b)) := have ht : ∀b:ennreal, b ≠ 0 → tendsto (λp:ennreal×ennreal, p.1 * p.2) (nhds ((⊤:ennreal), b)) (nhds ⊤), begin refine assume b hb, tendsto_nhds_top $ assume n, _, rcases dense (zero_lt_iff_ne_zero.2 hb) with ⟨ε', hε', hεb'⟩, rcases ennreal.lt_iff_exists_coe.1 hεb' with ⟨ε, rfl, h⟩, rcases exists_nat_gt (↑n / ε) with ⟨m, hm⟩, have hε : ε > 0, from coe_lt_coe.1 hε', refine mem_sets_of_superset (prod_mem_nhds_sets (lt_mem_nhds $ @coe_lt_top m) (lt_mem_nhds $ h)) _, rintros ⟨a₁, a₂⟩ ⟨h₁, h₂⟩, dsimp at h₁ h₂ ⊢, calc (n:ennreal) = ↑(((n:nnreal) / ε) * ε) : begin simp [nnreal.div_def], rw [mul_assoc, ← coe_mul, nnreal.inv_mul_cancel, coe_one, ← coe_nat, mul_one], exact zero_lt_iff_ne_zero.1 hε end ... < (↑m * ε : nnreal) : coe_lt_coe.2 $ mul_lt_mul hm (le_refl _) hε (nat.cast_nonneg _) ... ≤ a₁ * a₂ : by rw [coe_mul]; exact canonically_ordered_semiring.mul_le_mul (le_of_lt h₁) (le_of_lt h₂) end, begin cases a, {simp [none_eq_top] at hb, simp [none_eq_top, ht b hb, top_mul, hb] }, cases b, { simp [none_eq_top] at ha, have ha' : a ≠ 0, from mt coe_eq_coe.2 ha, simp [*, nhds_swap (a : ennreal) ⊤, none_eq_top, some_eq_coe, top_mul, tendsto_map'_iff, (∘), mul_comm] }, simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (∘)], simp only [coe_mul.symm, tendsto_coe, tendsto_mul'] end protected lemma tendsto_mul {f : filter α} {ma : α → ennreal} {mb : α → ennreal} {a b : ennreal} (hma : tendsto ma f (nhds a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : tendsto mb f (nhds b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λa, ma a * mb a) f (nhds (a * b)) := show tendsto ((λp:ennreal×ennreal, p.1 * p.2) ∘ (λa, (ma a, mb a))) f (nhds (a * b)), from tendsto.comp (tendsto_prod_mk_nhds hma hmb) (ennreal.tendsto_mul' ha hb) protected lemma tendsto_mul_right {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (nhds b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λb, a * m b) f (nhds (a * b)) := by_cases (assume : a = 0, by simp [this, tendsto_const_nhds]) (assume ha : a ≠ 0, ennreal.tendsto_mul tendsto_const_nhds (or.inl ha) hm hb) lemma Sup_add {s : set ennreal} (hs : s ≠ ∅) : Sup s + a = ⨆b∈s, b + a := have Sup ((λb, b + a) '' s) = Sup s + a, from is_lub_iff_Sup_eq.mp $ is_lub_of_is_lub_of_tendsto (assume x _ y _ h, add_le_add' h (le_refl _)) is_lub_Sup hs (tendsto_add (tendsto_id' inf_le_left) tendsto_const_nhds), by simp [Sup_image, -add_comm] at this; exact this.symm lemma supr_add {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : supr s + a = ⨆b, s b + a := let ⟨x⟩ := h in calc supr s + a = Sup (range s) + a : by simp [Sup_range] ... = (⨆b∈range s, b + a) : Sup_add $ ne_empty_iff_exists_mem.mpr ⟨s x, x, rfl⟩ ... = _ : by simp [supr_range, -mem_range] lemma add_supr {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : a + supr s = ⨆b, a + s b := by rw [add_comm, supr_add]; simp lemma supr_add_supr {ι : Sort*} {f g : ι → ennreal} (h : ∀i j, ∃k, f i + g j ≤ f k + g k) : supr f + supr g = (⨆ a, f a + g a) := begin by_cases hι : nonempty ι, { letI := hι, refine le_antisymm _ (supr_le $ λ a, add_le_add' (le_supr _ _) (le_supr _ _)), simpa [add_supr, supr_add] using λ i j:ι, show f i + g j ≤ ⨆ a, f a + g a, from let ⟨k, hk⟩ := h i j in le_supr_of_le k hk }, { have : ∀f:ι → ennreal, (⨆i, f i) = 0 := assume f, bot_unique (supr_le $ assume i, (hι ⟨i⟩).elim), rw [this, this, this, zero_add] } end lemma supr_add_supr_of_monotone {ι : Sort*} [semilattice_sup ι] {f g : ι → ennreal} (hf : monotone f) (hg : monotone g) : supr f + supr g = (⨆ a, f a + g a) := supr_add_supr $ assume i j, ⟨i ⊔ j, add_le_add' (hf $ le_sup_left) (hg $ le_sup_right)⟩ lemma finset_sum_supr_nat {α} {ι} [semilattice_sup ι] {s : finset α} {f : α → ι → ennreal} (hf : ∀a, monotone (f a)) : s.sum (λa, supr (f a)) = (⨆ n, s.sum (λa, f a n)) := begin refine finset.induction_on s _ _, { simp, exact (bot_unique $ supr_le $ assume i, le_refl ⊥).symm }, { assume a s has ih, simp only [finset.sum_insert has], rw [ih, supr_add_supr_of_monotone (hf a)], assume i j h, exact (finset.sum_le_sum' $ assume a ha, hf a h) } end lemma mul_Sup {s : set ennreal} {a : ennreal} : a * Sup s = ⨆i∈s, a * i := begin by_cases hs : ∀x∈s, x = (0:ennreal), { have h₁ : Sup s = 0 := (bot_unique $ Sup_le $ assume a ha, (hs a ha).symm ▸ le_refl 0), have h₂ : (⨆i ∈ s, a * i) = 0 := (bot_unique $ supr_le $ assume a, supr_le $ assume ha, by simp [hs a ha]), rw [h₁, h₂, mul_zero] }, { simp only [not_forall] at hs, rcases hs with ⟨x, hx, hx0⟩, have s₀ : s ≠ ∅ := not_eq_empty_iff_exists.2 ⟨x, hx⟩, have s₁ : Sup s ≠ 0 := zero_lt_iff_ne_zero.1 (lt_of_lt_of_le (zero_lt_iff_ne_zero.2 hx0) (le_Sup hx)), have : Sup ((λb, a * b) '' s) = a * Sup s := is_lub_iff_Sup_eq.mp (is_lub_of_is_lub_of_tendsto (assume x _ y _ h, canonically_ordered_semiring.mul_le_mul (le_refl _) h) is_lub_Sup s₀ (ennreal.tendsto_mul_right (tendsto_id' inf_le_left) (or.inl s₁))), rw [this.symm, Sup_image] } end lemma mul_supr {ι : Sort*} {f : ι → ennreal} {a : ennreal} : a * supr f = ⨆i, a * f i := by rw [← Sup_range, mul_Sup, supr_range] lemma supr_mul {ι : Sort*} {f : ι → ennreal} {a : ennreal} : supr f * a = ⨆i, f i * a := by rw [mul_comm, mul_supr]; congr; funext; rw [mul_comm] protected lemma tendsto_coe_sub : ∀{b:ennreal}, tendsto (λb:ennreal, ↑r - b) (nhds b) (nhds (↑r - b)) := begin refine (forall_ennreal.2 $ and.intro (assume a, _) _), { simp [@nhds_coe a, tendsto_map'_iff, (∘), tendsto_coe, coe_sub.symm], exact nnreal.tendsto_sub tendsto_const_nhds tendsto_id }, simp, exact (tendsto_cong tendsto_const_nhds $ mem_sets_of_superset (lt_mem_nhds $ @coe_lt_top r) $ by simp [le_of_lt] {contextual := tt}) end lemma sub_supr {ι : Sort*} [hι : nonempty ι] {b : ι → ennreal} (hr : a < ⊤) : a - (⨆i, b i) = (⨅i, a - b i) := let ⟨i⟩ := hι in let ⟨r, eq, _⟩ := lt_iff_exists_coe.mp hr in have Inf ((λb, ↑r - b) '' range b) = ↑r - (⨆i, b i), from is_glb_iff_Inf_eq.mp $ is_glb_of_is_lub_of_tendsto (assume x _ y _, sub_le_sub (le_refl _)) is_lub_supr (ne_empty_of_mem ⟨i, rfl⟩) (tendsto.comp (tendsto_id' inf_le_left) ennreal.tendsto_coe_sub), by rw [eq, ←this]; simp [Inf_image, infi_range, -mem_range]; exact le_refl _ end topological_space section tsum variables {f g : α → ennreal} protected lemma is_sum_coe {f : α → nnreal} {r : nnreal} : is_sum (λa, (f a : ennreal)) ↑r ↔ is_sum f r := have (λs:finset α, s.sum (coe ∘ f)) = (coe : nnreal → ennreal) ∘ (λs:finset α, s.sum f), from funext $ assume s, ennreal.coe_finset_sum.symm, by unfold is_sum; rw [this, tendsto_coe] protected lemma tsum_coe_eq {f : α → nnreal} (h : is_sum f r) : (∑a, (f a : ennreal)) = r := tsum_eq_is_sum $ ennreal.is_sum_coe.2 $ h protected lemma tsum_coe {f : α → nnreal} : has_sum f → (∑a, (f a : ennreal)) = ↑(tsum f) | ⟨r, hr⟩ := by rw [tsum_eq_is_sum hr, ennreal.tsum_coe_eq hr] protected lemma is_sum : is_sum f (⨆s:finset α, s.sum f) := tendsto_orderable.2 ⟨assume a' ha', let ⟨s, hs⟩ := lt_supr_iff.mp ha' in mem_at_top_sets.mpr ⟨s, assume t ht, lt_of_lt_of_le hs $ finset.sum_le_sum_of_subset ht⟩, assume a' ha', univ_mem_sets' $ assume s, have s.sum f ≤ ⨆(s : finset α), s.sum f, from le_supr (λ(s : finset α), s.sum f) s, lt_of_le_of_lt this ha'⟩ @[simp] protected lemma has_sum : has_sum f := ⟨_, ennreal.is_sum⟩ protected lemma tsum_eq_supr_sum : (∑a, f a) = (⨆s:finset α, s.sum f) := tsum_eq_is_sum ennreal.is_sum protected lemma tsum_sigma {β : α → Type*} (f : Πa, β a → ennreal) : (∑p:Σa, β a, f p.1 p.2) = (∑a b, f a b) := tsum_sigma (assume b, ennreal.has_sum) ennreal.has_sum protected lemma tsum_prod {f : α → β → ennreal} : (∑p:α×β, f p.1 p.2) = (∑a, ∑b, f a b) := let j : α × β → (Σa:α, β) := λp, sigma.mk p.1 p.2 in let i : (Σa:α, β) → α × β := λp, (p.1, p.2) in let f' : (Σa:α, β) → ennreal := λp, f p.1 p.2 in calc (∑p:α×β, f' (j p)) = (∑p:Σa:α, β, f p.1 p.2) : tsum_eq_tsum_of_iso j i (assume ⟨a, b⟩, rfl) (assume ⟨a, b⟩, rfl) ... = (∑a, ∑b, f a b) : ennreal.tsum_sigma f protected lemma tsum_comm {f : α → β → ennreal} : (∑a, ∑b, f a b) = (∑b, ∑a, f a b) := let f' : α×β → ennreal := λp, f p.1 p.2 in calc (∑a, ∑b, f a b) = (∑p:α×β, f' p) : ennreal.tsum_prod.symm ... = (∑p:β×α, f' (prod.swap p)) : (tsum_eq_tsum_of_iso prod.swap (@prod.swap α β) (assume ⟨a, b⟩, rfl) (assume ⟨a, b⟩, rfl)).symm ... = (∑b, ∑a, f' (prod.swap (b, a))) : @ennreal.tsum_prod β α (λb a, f' (prod.swap (b, a))) protected lemma tsum_add : (∑a, f a + g a) = (∑a, f a) + (∑a, g a) := tsum_add ennreal.has_sum ennreal.has_sum protected lemma tsum_le_tsum (h : ∀a, f a ≤ g a) : (∑a, f a) ≤ (∑a, g a) := tsum_le_tsum h ennreal.has_sum ennreal.has_sum protected lemma tsum_eq_supr_nat {f : ℕ → ennreal} : (∑i:ℕ, f i) = (⨆i:ℕ, (finset.range i).sum f) := calc _ = (⨆s:finset ℕ, s.sum f) : ennreal.tsum_eq_supr_sum ... = (⨆i:ℕ, (finset.range i).sum f) : le_antisymm (supr_le_supr2 $ assume s, let ⟨n, hn⟩ := finset.exists_nat_subset_range s in ⟨n, finset.sum_le_sum_of_subset hn⟩) (supr_le_supr2 $ assume i, ⟨finset.range i, le_refl _⟩) protected lemma le_tsum (a : α) : f a ≤ (∑a, f a) := calc f a = ({a} : finset α).sum f : by simp ... ≤ (⨆s:finset α, s.sum f) : le_supr (λs:finset α, s.sum f) _ ... = (∑a, f a) : by rw [ennreal.tsum_eq_supr_sum] protected lemma mul_tsum : (∑i, a * f i) = a * (∑i, f i) := if h : ∀i, f i = 0 then by simp [h] else let ⟨i, (hi : f i ≠ 0)⟩ := classical.not_forall.mp h in have sum_ne_0 : (∑i, f i) ≠ 0, from ne_of_gt $ calc 0 < f i : lt_of_le_of_ne (zero_le _) hi.symm ... ≤ (∑i, f i) : ennreal.le_tsum _, have tendsto (λs:finset α, s.sum ((*) a ∘ f)) at_top (nhds (a * (∑i, f i))), by rw [← show (*) a ∘ (λs:finset α, s.sum f) = λs, s.sum ((*) a ∘ f), from funext $ λ s, finset.mul_sum]; exact ennreal.tendsto_mul_right (is_sum_tsum ennreal.has_sum) (or.inl sum_ne_0), tsum_eq_is_sum this protected lemma tsum_mul : (∑i, f i * a) = (∑i, f i) * a := by simp [mul_comm, ennreal.mul_tsum] @[simp] lemma tsum_supr_eq {α : Type*} (a : α) {f : α → ennreal} : (∑b:α, ⨆ (h : a = b), f b) = f a := le_antisymm (by rw [ennreal.tsum_eq_supr_sum]; exact supr_le (assume s, calc s.sum (λb, ⨆ (h : a = b), f b) ≤ (finset.singleton a).sum (λb, ⨆ (h : a = b), f b) : finset.sum_le_sum_of_ne_zero $ assume b _ hb, suffices a = b, by simpa using this.symm, classical.by_contradiction $ assume h, by simpa [h] using hb ... = f a : by simp)) (calc f a ≤ (⨆ (h : a = a), f a) : le_supr (λh:a=a, f a) rfl ... ≤ (∑b:α, ⨆ (h : a = b), f b) : ennreal.le_tsum _) lemma is_sum_iff_tendsto_nat {f : ℕ → ennreal} (r : ennreal) : is_sum f r ↔ tendsto (λn:ℕ, (finset.range n).sum f) at_top (nhds r) := begin refine ⟨tendsto_sum_nat_of_is_sum, assume h, _⟩, rw [← supr_eq_of_tendsto _ h, ← ennreal.tsum_eq_supr_nat], { exact is_sum_tsum ennreal.has_sum }, { exact assume s t hst, finset.sum_le_sum_of_subset (finset.range_subset.2 hst) } end end tsum end ennreal namespace nnreal lemma exists_le_is_sum_of_le {f g : β → nnreal} {r : nnreal} (hgf : ∀b, g b ≤ f b) (hfr : is_sum f r) : ∃p≤r, is_sum g p := have (∑b, (g b : ennreal)) ≤ r, begin refine is_sum_le (assume b, _) (is_sum_tsum ennreal.has_sum) (ennreal.is_sum_coe.2 hfr), exact ennreal.coe_le_coe.2 (hgf _) end, let ⟨p, eq, hpr⟩ := ennreal.le_coe_iff.1 this in ⟨p, hpr, ennreal.is_sum_coe.1 $ eq ▸ is_sum_tsum ennreal.has_sum⟩ lemma has_sum_of_le {f g : β → nnreal} (hgf : ∀b, g b ≤ f b) : has_sum f → has_sum g | ⟨r, hfr⟩ := let ⟨p, _, hp⟩ := exists_le_is_sum_of_le hgf hfr in has_sum_spec hp lemma is_sum_iff_tendsto_nat {f : ℕ → nnreal} (r : nnreal) : is_sum f r ↔ tendsto (λn:ℕ, (finset.range n).sum f) at_top (nhds r) := begin rw [← ennreal.is_sum_coe, ennreal.is_sum_iff_tendsto_nat], simp only [ennreal.coe_finset_sum.symm], exact ennreal.tendsto_coe end end nnreal lemma has_sum_of_nonneg_of_le {f g : β → ℝ} (hg : ∀b, 0 ≤ g b) (hgf : ∀b, g b ≤ f b) (hf : has_sum f) : has_sum g := let f' (b : β) : nnreal := ⟨f b, le_trans (hg b) (hgf b)⟩ in let g' (b : β) : nnreal := ⟨g b, hg b⟩ in have has_sum f', from nnreal.has_sum_coe.1 hf, have has_sum g', from nnreal.has_sum_of_le (assume b, (@nnreal.coe_le (g' b) (f' b)).2 $ hgf b) this, show has_sum (λb, g' b : β → ℝ), from nnreal.has_sum_coe.2 this lemma is_sum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀i, 0 ≤ f i) (r : ℝ) : is_sum f r ↔ tendsto (λn:ℕ, (finset.range n).sum f) at_top (nhds r) := ⟨tendsto_sum_nat_of_is_sum, assume hfr, have 0 ≤ r := ge_of_tendsto at_top_ne_bot hfr $ univ_mem_sets' $ assume i, show 0 ≤ (finset.range i).sum f, from finset.zero_le_sum $ assume i _, hf i, let f' (n : ℕ) : nnreal := ⟨f n, hf n⟩, r' : nnreal := ⟨r, this⟩ in have f_eq : f = (λi:ℕ, (f' i : ℝ)) := rfl, have r_eq : r = r' := rfl, begin rw [f_eq, r_eq, nnreal.is_sum_coe, nnreal.is_sum_iff_tendsto_nat, ← nnreal.tendsto_coe], simp only [nnreal.sum_coe], exact hfr end⟩ lemma infi_real_pos_eq_infi_nnreal_pos {α : Type*} [complete_lattice α] {f : ℝ → α} : (⨅(n:ℝ) (h : n > 0), f n) = (⨅(n:nnreal) (h : n > 0), f n) := le_antisymm (le_infi $ assume n, le_infi $ assume hn, infi_le_of_le n $ infi_le _ (nnreal.coe_pos.2 hn)) (le_infi $ assume r, le_infi $ assume hr, infi_le_of_le ⟨r, le_of_lt hr⟩ $ infi_le _ hr) section variables [emetric_space β] open lattice ennreal filter emetric /-- In an emetric ball, the distance between points is everywhere finite -/ lemma edist_ne_top_of_mem_ball {a : β} {r : ennreal} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ := lt_top_iff_ne_top.1 $ calc edist x y ≤ edist a x + edist a y : edist_triangle_left x.1 y.1 a ... < r + r : by rw [edist_comm a x, edist_comm a y]; exact add_lt_add x.2 y.2 ... ≤ ⊤ : le_top /-- Each ball in an extended metric space gives us a metric space, as the edist is everywhere finite. -/ def metric_space_emetric_ball (a : β) (r : ennreal) : metric_space (ball a r) := emetric_space.to_metric_space edist_ne_top_of_mem_ball local attribute [instance] metric_space_emetric_ball lemma nhds_eq_nhds_emetric_ball (a x : β) (r : ennreal) (h : x ∈ ball a r) : nhds x = map (coe : ball a r → β) (nhds ⟨x, h⟩) := (map_nhds_subtype_val_eq _ $ mem_nhds_sets emetric.is_open_ball h).symm end section variable [emetric_space α] open emetric /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the most efficient. -/ lemma emetric.cauchy_seq_iff_le_tendsto_0 [inhabited β] [semilattice_sup β] {s : β → α} : cauchy_seq s ↔ (∃ (b: β → ennreal), (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ (tendsto b at_top (nhds 0))) := ⟨begin assume hs, rw emetric.cauchy_seq_iff at hs, /- `s` is Cauchy sequence. The sequence `b` will be constructed by taking the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/ let b := λN, Sup ((λ(p : β × β), edist (s p.1) (s p.2))''{p | p.1 ≥ N ∧ p.2 ≥ N}), --Prove that it bounds the distances of points in the Cauchy sequence have C : ∀ n m N, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N, { refine λm n N hm hn, le_Sup _, use (prod.mk m n), simp only [and_true, eq_self_iff_true, set.mem_set_of_eq], exact ⟨hm, hn⟩ }, --Prove that it tends to `0`, by using the Cauchy property of `s` have D : tendsto b at_top (nhds 0), { refine tendsto_orderable.2 ⟨λa ha, absurd ha (ennreal.not_lt_zero), λε εpos, _⟩, rcases dense εpos with ⟨δ, δpos, δlt⟩, rcases hs δ δpos with ⟨N, hN⟩, refine filter.mem_at_top_sets.2 ⟨N, λn hn, _⟩, have : b n ≤ δ := Sup_le begin simp only [and_imp, set.mem_image, set.mem_set_of_eq, exists_imp_distrib, prod.exists], intros d p q hp hq hd, rw ← hd, exact le_of_lt (hN q p (le_trans hn hq) (le_trans hn hp)) end, simpa using lt_of_le_of_lt this δlt }, -- Conclude exact ⟨b, ⟨C, D⟩⟩ end, begin rintros ⟨b, ⟨b_bound, b_lim⟩⟩, /-b : ℕ → ℝ, b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N, b_lim : tendsto b at_top (nhds 0)-/ refine emetric.cauchy_seq_iff.2 (λε εpos, _), have : {n | b n < ε} ∈ at_top.sets := (tendsto_orderable.1 b_lim ).2 _ εpos, rcases filter.mem_at_top_sets.1 this with ⟨N, hN⟩, exact ⟨N, λm n hm hn, calc edist (s n) (s m) ≤ b N : b_bound n m N hn hm ... < ε : (hN _ (le_refl N)) ⟩ end⟩ lemma continuous_of_le_add_edist {f : α → ennreal} (C : ennreal) (hC : C ≠ ⊤) (h : ∀x y, f x ≤ f y + C * edist x y) : continuous f := begin refine continuous_iff_continuous_at.2 (λx, tendsto_orderable.2 ⟨_, _⟩), show ∀e, e < f x → {y : α | e < f y} ∈ (nhds x).sets, { assume e he, let ε := min (f x - e) 1, have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]), have : 0 < ε := by simp [ε, hC, he, ennreal.zero_lt_one], have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, ennreal.mul_eq_zero]), have I : C * (C⁻¹ * (ε/2)) < ε, { by_cases C_zero : C = 0, { simp [C_zero, ‹0 < ε›] }, { calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc] ... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC] ... < ε : ennreal.half_lt_self (bot_lt_iff_ne_bot.1 ‹0 < ε›) (lt_top_iff_ne_top.1 ‹ε < ⊤›) }}, have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | e < f y}, { rintros y hy, by_cases htop : f y = ⊤, { simp [htop, lt_top_iff_ne_top, ne_top_of_lt he] }, { simp at hy, have : e + ε < f y + ε := calc e + ε ≤ e + (f x - e) : add_le_add_left' (min_le_left _ _) ... = f x : by simp [le_of_lt he] ... ≤ f y + C * edist x y : h x y ... = f y + C * edist y x : by simp [edist_comm] ... ≤ f y + C * (C⁻¹ * (ε/2)) : add_le_add_left' $ canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy) ... < f y + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I, show e < f y, from (ennreal.add_lt_add_iff_right ‹ε < ⊤›).1 this }}, apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this }, show ∀e, f x < e → {y : α | f y < e} ∈ (nhds x).sets, { assume e he, let ε := min (e - f x) 1, have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]), have : 0 < ε := by simp [ε, he, ennreal.zero_lt_one], have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, ennreal.mul_eq_zero]), have I : C * (C⁻¹ * (ε/2)) < ε, { by_cases C_zero : C = 0, simp [C_zero, ‹0 < ε›], calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc] ... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC] ... < ε : ennreal.half_lt_self (bot_lt_iff_ne_bot.1 ‹0 < ε›) (lt_top_iff_ne_top.1 ‹ε < ⊤›) }, have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | f y < e}, { rintros y hy, have htop : f x ≠ ⊤ := ne_top_of_lt he, show f y < e, from calc f y ≤ f x + C * edist y x : h y x ... ≤ f x + C * (C⁻¹ * (ε/2)) : add_le_add_left' $ canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy) ... < f x + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I ... ≤ f x + (e - f x) : add_le_add_left' (min_le_left _ _) ... = e : by simp [le_of_lt he] }, apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this }, end theorem continuous_edist' : continuous (λp:α×α, edist p.1 p.2) := begin apply continuous_of_le_add_edist 2 (by simp), rintros ⟨x, y⟩ ⟨x', y'⟩, calc edist x y ≤ edist x x' + edist x' y' + edist y' y : edist_triangle4 _ _ _ _ ... = edist x' y' + (edist x x' + edist y y') : by simp [add_comm, edist_comm] ... ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) : add_le_add_left' (add_le_add' (by simp [edist, le_refl]) (by simp [edist, le_refl])) ... = edist x' y' + 2 * edist (x, y) (x', y') : by rw [← mul_two, mul_comm] end theorem continuous_edist [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : continuous (λb, edist (f b) (g b)) := (hf.prod_mk hg).comp continuous_edist' theorem tendsto_edist {f g : β → α} {x : filter β} {a b : α} (hf : tendsto f x (nhds a)) (hg : tendsto g x (nhds b)) : tendsto (λx, edist (f x) (g x)) x (nhds (edist a b)) := have tendsto (λp:α×α, edist p.1 p.2) (nhds (a, b)) (nhds (edist a b)), from continuous_iff_continuous_at.mp continuous_edist' (a, b), (hf.prod_mk hg).comp (by rw [nhds_prod_eq] at this; exact this) end --section
5929f9f9376c0720ed56524508e6c6545b889914
e151e9053bfd6d71740066474fc500a087837323
/src/hott/algebra/order.lean
0841efd9279634d3622c38e008c3aab52549d2e2
[ "Apache-2.0" ]
permissive
daniel-carranza/hott3
15bac2d90589dbb952ef15e74b2837722491963d
913811e8a1371d3a5751d7d32ff9dec8aa6815d9
refs/heads/master
1,610,091,349,670
1,596,222,336,000
1,596,222,336,000
241,957,822
0
0
Apache-2.0
1,582,222,839,000
1,582,222,838,000
null
UTF-8
Lean
false
false
19,004
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Weak orders "≤", strict orders "<", and structures that include both. -/ import .binary universes u v w hott_theory set_option old_structure_cmd true namespace hott open algebra variable {A : Type _} /- weak orders -/ class has_le (α : Type u) := (le : α → α → Type u) class has_lt (α : Type u) := (lt : α → α → Type u) @[reducible] def ge {α : Type u} [has_le α] (a b : α) : Type u := has_le.le b a @[reducible] def gt {α : Type u} [has_lt α] (a b : α) : Type u := has_lt.lt b a hott_theory_cmd "local infix [parsing_only] ` <= ` := hott.has_le.le" hott_theory_cmd "local infix ` ≤ ` := hott.has_le.le" hott_theory_cmd "local infix ` < ` := hott.has_lt.lt" hott_theory_cmd "local infix [parsing_only] ` >= ` := hott.ge" hott_theory_cmd "local infix ` ≥ ` := hott.ge" hott_theory_cmd "local infix ` > ` := hott.gt" namespace algebra @[hott, class] structure weak_order (A : Type _) extends has_le A := (le_refl : Πa, le a a) (le_trans : Πa b c, le a b → le b c → le a c) (le_antisymm : Πa b, le a b → le b a → a = b) section variable [s : weak_order A] include s @[hott, refl] def le.rfl {a : A} : a ≤ a := weak_order.le_refl _ @[hott] def le.refl (a : A) : a ≤ a := weak_order.le_refl _ @[hott] def le_of_eq {a b : A} (H : a = b) : a ≤ b := transport (λx, a ≤ x) H (le.refl a) @[hott] def ge_of_eq {a b : A} (H : a = b) : a ≥ b := le_of_eq H⁻¹ @[hott, trans] def le.trans {a b c : A} : a ≤ b → b ≤ c → a ≤ c := weak_order.le_trans _ _ _ @[hott, trans] def le.trans_eq {a b c : A} (H1 : a ≤ b) (H2 : b = c) : a ≤ c := le.trans H1 (le_of_eq H2) @[hott, trans] def le.eq_trans {a b c : A} (H1 : a = b) (H2 : b ≤ c) : a ≤ c := le.trans (le_of_eq H1) H2 @[hott, trans] def ge.trans {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1 @[hott, trans] def ge.trans_eq {a b c : A} (H1 : a ≥ b) (H2 : b = c) : a ≥ c := le.eq_trans H2⁻¹ H1 @[hott, trans] def ge.eq_trans {a b c : A} (H1 : a = b) (H2 : b ≥ c) : a ≥ c := le.trans_eq H2 H1⁻¹ @[hott] def le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := weak_order.le_antisymm _ _ -- Alternate syntax. (Abbreviations do not migrate well.) @[hott] def eq_of_le_of_ge {a b : A} : a ≤ b → b ≤ a → a = b := le.antisymm end @[hott, class] structure linear_weak_order (A : Type _) extends weak_order A := (le_total : Πa b, le a b ⊎ le b a) section variables [linear_weak_order A] @[hott] def le.total (a b : A) : a ≤ b ⊎ b ≤ a := linear_weak_order.le_total _ _ @[hott] theorem le_of_not_ge {a b : A} (H : ¬ a ≥ b) : a ≤ b := sum.resolve_left (le.total _ _) H @[hott] def le_by_cases (a b : A) {P : Type _} (H1 : a ≤ b → P) (H2 : b ≤ a → P) : P := begin cases (le.total a b) with H H, { exact H1 H}, { exact H2 H} end end /- strict orders -/ @[hott, class] structure strict_order (A : Type _) extends has_lt A := (lt_irrefl : Πa, ¬ lt a a) (lt_trans : Πa b c, lt a b → lt b c → lt a c) section variable [s : strict_order A] include s @[hott] def lt.irrefl (a : A) : ¬ a < a := strict_order.lt_irrefl _ @[hott] def not_lt_self (a : A) : ¬ a < a := lt.irrefl _ -- alternate syntax @[hott] theorem lt_self_iff_empty (a : A) : a < a ↔ empty := iff_empty_intro (lt.irrefl a) @[hott, trans] def lt.trans {a b c : A} : a < b → b < c → a < c := strict_order.lt_trans _ _ _ @[hott, trans] def lt.trans_eq {a b c : A} (H1 : a < b) (H2 : b = c) : a < c := by hinduction H2; exact H1 @[hott, trans] def lt.eq_trans {a b c : A} (H1 : a = b) (H2 : b < c) : a < c := by hinduction H1; exact H2 @[hott, trans] def gt.trans {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1 @[hott, trans] def gt.trans_eq {a b c : A} (H1 : a > b) (H2 : b = c) : a > c := by hinduction H2; exact H1 @[hott, trans] def gt.eq_trans {a b c : A} (H1 : a = b) (H2 : b > c) : a > c := by hinduction H1; exact H2 @[hott] def ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b := assume eq_ab : a = b, show empty, from lt.irrefl b (eq_ab ▸ lt_ab) @[hott] theorem ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b := ne.symm (ne_of_lt gt_ab) @[hott] theorem lt.asymm {a b : A} (H : a < b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt.trans H H1) @[hott] theorem not_lt_of_gt {a b : A} (H : a > b) : ¬ a < b := lt.asymm H -- alternate syntax end /- well-founded orders -/ @[hott, class] structure wf_strict_order (A : Type _) extends strict_order A := (wf_rec : ΠP : A → Type _, (Πx, (Πy, lt y x → P y) → P x) → Πx, P x) @[hott] def wf.rec_on {A : Type _} [s : wf_strict_order A] {P : A → Type _} (x : A) (H : Πx, (Πy, wf_strict_order.lt y x → P y) → P x) : P x := wf_strict_order.wf_rec P H x /- structures with a weak and a strict order -/ @[hott, class] structure order_pair (A : Type _) extends weak_order A, has_lt A := (le_of_lt : Π a b, lt a b → le a b) (lt_of_lt_of_le : Π a b c, lt a b → le b c → lt a c) (lt_of_le_of_lt : Π a b c, le a b → lt b c → lt a c) (lt_irrefl : Π a, ¬ lt a a) section variable [s : order_pair A] variables {a b c : A} include s @[hott] def le_of_lt : a < b → a ≤ b := order_pair.le_of_lt _ _ @[hott, trans] def lt_of_lt_of_le : a < b → b ≤ c → a < c := order_pair.lt_of_lt_of_le _ _ _ @[hott, trans] def lt_of_le_of_lt : a ≤ b → b < c → a < c := order_pair.lt_of_le_of_lt _ _ _ @[hott] private def lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a := order_pair.lt_irrefl _ @[hott] private def lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c := lt_of_lt_of_le lt_ab (le_of_lt lt_bc) @[hott, instance] def order_pair.to_strict_order : strict_order A := { lt_irrefl := lt_irrefl s, lt_trans := lt_trans s, ..s } @[hott, trans] def gt_of_gt_of_ge (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1 @[hott, trans] def gt_of_ge_of_gt (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1 @[hott] def not_le_of_gt (H : a > b) : ¬ a ≤ b := assume H1 : a ≤ b, lt.irrefl _ (lt_of_lt_of_le H H1) @[hott] theorem not_lt_of_ge (H : a ≥ b) : ¬ a < b := assume H1 : a < b, lt.irrefl _ (lt_of_le_of_lt H H1) end @[hott, class] structure strong_order_pair (A : Type _) extends weak_order A, has_lt A := (le_iff_lt_sum_eq : Πa b, le a b ↔ lt a b ⊎ a = b) (lt_irrefl : Π a, ¬ lt a a) @[hott] def le_iff_lt_sum_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ⊎ a = b := strong_order_pair.le_iff_lt_sum_eq _ _ @[hott] def lt_sum_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ⊎ a = b := iff.mp le_iff_lt_sum_eq le_ab @[hott] def le_of_lt_sum_eq [s : strong_order_pair A] {a b : A} (lt_sum_eq : a < b ⊎ a = b) : a ≤ b := iff.mpr le_iff_lt_sum_eq lt_sum_eq @[hott] private def lt_irrefl' [s : strong_order_pair A] (a : A) : ¬ a < a := strong_order_pair.lt_irrefl _ @[hott] private def le_of_lt' [s : strong_order_pair A] (a b : A) : a < b → a ≤ b := λHlt, le_of_lt_sum_eq (sum.inl Hlt) @[hott] private def lt_iff_le_prod_ne [s : strong_order_pair A] {a b : A} : a < b ↔ (a ≤ b × a ≠ b) := iff.intro (λHlt, pair (le_of_lt_sum_eq (sum.inl Hlt)) (λHab, absurd (Hab ▸ Hlt) (lt_irrefl' _))) (λHand, have Hor : a < b ⊎ a = b, from lt_sum_eq_of_le Hand.fst, sum.resolve_right Hor Hand.snd) @[hott] theorem lt_of_le_of_ne [s : strong_order_pair A] {a b : A} : a ≤ b → a ≠ b → a < b := λH1 H2, iff.mpr lt_iff_le_prod_ne (pair H1 H2) @[hott] private def ne_of_lt' [s : strong_order_pair A] {a b : A} (H : a < b) : a ≠ b := ((iff.mp (@lt_iff_le_prod_ne _ _ _ _)) H).snd @[hott] private def lt_of_lt_of_le' [s : strong_order_pair A] (a b c : A) : a < b → b ≤ c → a < c := assume lt_ab : a < b, assume le_bc : b ≤ c, have le_ac : a ≤ c, from le.trans (le_of_lt' _ _ lt_ab) le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisymm (le_of_lt' _ _ lt_ab) le_ba, show empty, from ne_of_lt' lt_ab eq_ab, show a < c, from iff.mpr (lt_iff_le_prod_ne) (pair le_ac ne_ac) @[hott] def lt_of_le_of_lt' [s : strong_order_pair A] (a b c : A) : a ≤ b → b < c → a < c := assume le_ab : a ≤ b, assume lt_bc : b < c, have le_ac : a ≤ c, from le.trans le_ab (le_of_lt' _ _ lt_bc), have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_cb : c ≤ b, from eq_ac ▸ le_ab, have eq_bc : b = c, from le.antisymm (le_of_lt' _ _ lt_bc) le_cb, show empty, from ne_of_lt' lt_bc eq_bc, show a < c, from iff.mpr (lt_iff_le_prod_ne) (pair le_ac ne_ac) @[hott, instance] def strong_order_pair.to_order_pair [s : strong_order_pair A] : order_pair A := { lt_irrefl := lt_irrefl', le_of_lt := le_of_lt', lt_of_le_of_lt := lt_of_le_of_lt', lt_of_lt_of_le := lt_of_lt_of_le', ..s } /- linear orders -/ @[hott, class] structure linear_order_pair (A : Type _) extends order_pair A, linear_weak_order A @[hott, class] structure linear_strong_order_pair (A : Type _) extends strong_order_pair A, linear_weak_order A @[hott, instance] def linear_strong_order_pair.to_linear_order_pair [s : linear_strong_order_pair A] : linear_order_pair A := { ..s, ..strong_order_pair.to_order_pair } section variable [s : linear_strong_order_pair A] variables (a b c : A) include s @[hott] def lt.trichotomy : a < b ⊎ a = b ⊎ b < a := sum.elim (le.total a b) (assume H : a ≤ b, sum.elim (iff.mp le_iff_lt_sum_eq H) sum.inl (assume H1, sum.inr (sum.inl H1))) (assume H : b ≤ a, sum.elim (iff.mp le_iff_lt_sum_eq H) (assume H1, sum.inr (sum.inr H1)) (assume H1, sum.inr (sum.inl (H1⁻¹)))) @[hott] def lt.by_cases {a b : A} {P : Type _} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := sum.elim (lt.trichotomy _ _) (assume H, H1 H) (assume H, sum.elim H (assume H', H2 H') (assume H', H3 H')) @[hott] def lt_ge_by_cases {a b : A} {P : Type _} (H1 : a < b → P) (H2 : a ≥ b → P) : P := lt.by_cases H1 (λH, H2 (le_of_eq H⁻¹)) (λH, H2 (le_of_lt H)) @[hott] def le_of_not_gt {a b : A} (H : ¬ a > b) : a ≤ b := lt.by_cases (assume H', absurd H' H) (assume H', le_of_eq H'⁻¹) (assume H', le_of_lt H') @[hott] theorem lt_of_not_ge {a b : A} (H : ¬ a ≥ b) : a < b := lt.by_cases (assume H', absurd begin exact le_of_lt H' end H) (assume H', absurd (le_of_eq H') H) (assume H', H') @[hott] theorem lt_sum_ge : a < b ⊎ a ≥ b := lt.by_cases (assume H1 : a < b, sum.inl H1) (assume H1 : a = b, sum.inr (le_of_eq H1⁻¹)) (assume H1 : a > b, sum.inr (le_of_lt H1)) @[hott] theorem le_sum_gt : a ≤ b ⊎ a > b := sum.swap (lt_sum_ge b a) @[hott] theorem lt_sum_gt_of_ne {a b : A} (H : a ≠ b) : a < b ⊎ a > b := lt.by_cases (assume H1, sum.inl H1) (assume H1, absurd H1 H) (assume H1, sum.inr H1) end open decidable @[hott, class] structure decidable_linear_order (A : Type _) extends linear_strong_order_pair A := (decidable_lt : decidable_rel lt) section variable [s : decidable_linear_order A] variables {a b c d : A} include s open hott.decidable @[hott, instance] def decidable_lt : decidable (a < b) := @decidable_linear_order.decidable_lt _ _ _ _ @[hott, instance] def decidable_le : decidable (a ≤ b) := by_cases (assume H : a < b, inl (le_of_lt H)) (assume H : ¬ a < b, have H1 : b ≤ a, from le_of_not_gt H, by_cases (assume H2 : b < a, inr (not_le_of_gt H2)) (assume H2 : ¬ b < a, inl (le_of_not_gt H2))) @[hott, instance] def has_decidable_eq : decidable (a = b) := by_cases (assume H : a ≤ b, by_cases (assume H1 : b ≤ a, inl (le.antisymm H H1)) (assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (le_of_eq H2⁻¹)))) (assume H : ¬ a ≤ b, (inr (assume H1 : a = b, H (le_of_eq H1)))) @[hott] theorem eq_sum_lt_of_not_lt {a b : A} (H : ¬ a < b) : a = b ⊎ b < a := if Heq :: a = b then sum.inl Heq else sum.inr (lt_of_not_ge (λ Hge, H (lt_of_le_of_ne Hge Heq))) @[hott] theorem eq_sum_lt_of_le {a b : A} (H : a ≤ b) : a = b ⊎ a < b := begin hinduction eq_sum_lt_of_not_lt (not_lt_of_ge H) with x1 H' H', exact sum.inl H'⁻¹, exact sum.inr H' end @[hott] def lt.cases {B : Type _} (a b : A) (t_lt t_eq t_gt : B) : B := if' a = b then t_eq else (if' a < b then t_lt else t_gt) @[hott] theorem lt.cases_of_eq {B : Type _} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) : lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H @[hott] theorem lt.cases_of_lt {B : Type _} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) : lt.cases a b t_lt t_eq t_gt = t_lt := if_neg (ne_of_lt H) ⬝ if_pos H @[hott] theorem lt.cases_of_gt {B : Type _} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) : lt.cases a b t_lt t_eq t_gt = t_gt := if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H) @[hott] def min (a b : A) : A := if' a ≤ b then a else b @[hott] def max (a b : A) : A := if' a ≤ b then b else a /- these show min and max form a lattice -/ @[hott] theorem min_le_left (a b : A) : min a b ≤ a := hott.decidable.by_cases (assume H : a ≤ b, by dsimp [min]; rwr [if_pos H]) (assume H : ¬ a ≤ b, by dsimp [min]; rwr [if_neg H]; apply le_of_lt (lt_of_not_ge H)) @[hott] theorem min_le_right (a b : A) : min a b ≤ b := hott.decidable.by_cases (assume H : a ≤ b, by dsimp [min]; rwr [if_pos H]; apply H) (assume H : ¬ a ≤ b, by dsimp [min]; rwr [if_neg H]) @[hott] theorem le_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) : c ≤ min a b := hott.decidable.by_cases (assume H : a ≤ b, by dsimp [min]; rwr [if_pos H]; apply H₁) (assume H : ¬ a ≤ b, by dsimp [min]; rwr [if_neg H]; apply H₂) @[hott] theorem le_max_left (a b : A) : a ≤ max a b := hott.decidable.by_cases (assume H : a ≤ b, by dsimp [max]; rwr [if_pos H]; apply H) (assume H : ¬ a ≤ b, by dsimp [max]; rwr [if_neg H]) @[hott] theorem le_max_right (a b : A) : b ≤ max a b := hott.decidable.by_cases (assume H : a ≤ b, by dsimp [max]; rwr [if_pos H]) (assume H : ¬ a ≤ b, by dsimp [max]; rwr [if_neg H]; apply le_of_lt (lt_of_not_ge H)) @[hott] theorem max_le {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) : max a b ≤ c := hott.decidable.by_cases (assume H : a ≤ b, by dsimp [max]; rwr [if_pos H]; apply H₂) (assume H : ¬ a ≤ b, by dsimp [max]; rwr [if_neg H]; apply H₁) @[hott] theorem le_max_left_iff_unit (a b : A) : a ≤ max a b ↔ unit := iff_unit_intro (le_max_left a b) @[hott] theorem le_max_right_iff_unit (a b : A) : b ≤ max a b ↔ unit := iff_unit_intro (le_max_right a b) /- these are also proved for lattices, but with inf and sup in place of min and max -/ @[hott] theorem eq_min {a b c : A} (H₁ : c ≤ a) (H₂ : c ≤ b) (H₃ : Π{d}, d ≤ a → d ≤ b → d ≤ c) : c = min a b := le.antisymm (le_min H₁ H₂) (H₃ (min_le_left _ _) (min_le_right _ _)) @[hott] theorem min.comm (a b : A) : min a b = min b a := eq_min (min_le_right _ _) (min_le_left _ _) (λ c H₁ H₂, le_min H₂ H₁) @[hott] theorem min.assoc (a b c : A) : min (min a b) c = min a (min b c) := begin apply eq_min, { apply le.trans, apply min_le_left, apply min_le_left }, { apply le_min, apply le.trans, apply min_le_left, apply min_le_right, apply min_le_right }, { intros d H₁ H₂, apply le_min, apply le_min H₁, apply le.trans H₂, apply min_le_left, apply le.trans H₂, apply min_le_right } end @[hott] theorem min.left_comm (a b c : A) : min a (min b c) = min b (min a c) := binary.left_comm (@min.comm A s) (@min.assoc A s) a b c @[hott] theorem min.right_comm (a b c : A) : min (min a b) c = min (min a c) b := binary.right_comm (@min.comm A s) (@min.assoc A s) a b c @[hott] theorem min_self (a : A) : min a a = a := by apply inverse; apply eq_min (le.refl a) le.rfl; intros; assumption @[hott] theorem min_eq_left {a b : A} (H : a ≤ b) : min a b = a := by apply inverse; apply eq_min le.rfl H; intros; assumption @[hott] theorem min_eq_right {a b : A} (H : b ≤ a) : min a b = b := by rwr min.comm; exact min_eq_left H @[hott] theorem eq_max {a b c : A} (H₁ : a ≤ c) (H₂ : b ≤ c) (H₃ : Π{d}, a ≤ d → b ≤ d → c ≤ d) : c = max a b := le.antisymm (H₃ (le_max_left _ _) (le_max_right _ _)) (max_le H₁ H₂) @[hott] theorem max.comm (a b : A) : max a b = max b a := eq_max (le_max_right _ _) (le_max_left _ _) (λ c H₁ H₂, max_le H₂ H₁) @[hott] theorem max.assoc (a b c : A) : max (max a b) c = max a (max b c) := begin apply eq_max, { apply le.trans, apply le_max_left a b, apply le_max_left }, { apply max_le, apply le.trans, apply le_max_right a b, apply le_max_left, apply le_max_right }, { intros d H₁ H₂, apply max_le, apply max_le H₁, apply le.trans (le_max_left _ _) H₂, apply le.trans (le_max_right _ _) H₂} end @[hott] theorem max.left_comm (a b c : A) : max a (max b c) = max b (max a c) := binary.left_comm (@max.comm A s) (@max.assoc A s) a b c @[hott] theorem max.right_comm (a b c : A) : max (max a b) c = max (max a c) b := binary.right_comm (@max.comm A s) (@max.assoc A s) a b c @[hott] theorem max_self (a : A) : max a a = a := by apply inverse; apply eq_max (le.refl a) le.rfl; intros; assumption @[hott] theorem max_eq_left {a b : A} (H : b ≤ a) : max a b = a := by apply inverse; apply eq_max le.rfl H; intros; assumption @[hott] theorem max_eq_right {a b : A} (H : a ≤ b) : max a b = b := by rwr max.comm; exact max_eq_left H /- these rely on lt_of_lt -/ @[hott] theorem min_eq_left_of_lt {a b : A} (H : a < b) : min a b = a := min_eq_left (le_of_lt H) @[hott] theorem min_eq_right_of_lt {a b : A} (H : b < a) : min a b = b := min_eq_right (le_of_lt H) @[hott] theorem max_eq_left_of_lt {a b : A} (H : b < a) : max a b = a := max_eq_left (le_of_lt H) @[hott] theorem max_eq_right_of_lt {a b : A} (H : a < b) : max a b = b := max_eq_right (le_of_lt H) /- these use the fact that it is a linear ordering -/ @[hott] theorem lt_min {a b c : A} (H₁ : a < b) (H₂ : a < c) : a < min b c := sum.elim (le_sum_gt _ _) (assume H : b ≤ c, by rwr (min_eq_left H); apply H₁) (assume H : b > c, by rwr (min_eq_right_of_lt H); apply H₂) @[hott] theorem max_lt {a b c : A} (H₁ : a < c) (H₂ : b < c) : max a b < c := sum.elim (le_sum_gt _ _) (assume H : a ≤ b, by rwr (max_eq_right H); apply H₂) (assume H : a > b, by rwr (max_eq_left_of_lt H); apply H₁) end end algebra end hott
4695aaa6882df5caa2d24de3f0406f736cf7ff1e
c777c32c8e484e195053731103c5e52af26a25d1
/src/algebraic_geometry/morphisms/open_immersion.lean
62465fea56bb8b5f4b0fd77fa0d1199fa6132dd1
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
3,790
lean
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import topology.local_at_target import algebraic_geometry.morphisms.basic /-! # Open immersions A morphism is an open immersions if the underlying map of spaces is an open embedding `f : X ⟶ U ⊆ Y`, and the sheaf map `Y(V) ⟶ f _* X(V)` is an iso for each `V ⊆ U`. Most of the theories are developed in `algebraic_geometry/open_immersion`, and we provide the remaining theorems analogous to other lemmas in `algebraic_geometry/morphisms/*`. -/ noncomputable theory open category_theory category_theory.limits opposite topological_space universe u namespace algebraic_geometry variables {X Y Z : Scheme.{u}} (f : X ⟶ Y) (g : Y ⟶ Z) lemma is_open_immersion_iff_stalk {f : X ⟶ Y} : is_open_immersion f ↔ open_embedding f.1.base ∧ ∀ x, is_iso (PresheafedSpace.stalk_map f.1 x) := begin split, { intro h, exactI ⟨h.1, infer_instance⟩ }, { rintro ⟨h₁, h₂⟩, exactI is_open_immersion.of_stalk_iso f h₁ } end lemma is_open_immersion_stable_under_composition : morphism_property.stable_under_composition @is_open_immersion := begin introsI X Y Z f g h₁ h₂, apply_instance end lemma is_open_immersion_respects_iso : morphism_property.respects_iso @is_open_immersion := begin apply is_open_immersion_stable_under_composition.respects_iso, intros _ _ _, apply_instance end lemma is_open_immersion_is_local_at_target : property_is_local_at_target @is_open_immersion := begin constructor, { exact is_open_immersion_respects_iso }, { introsI, apply_instance }, { intros X Y f 𝒰 H, rw is_open_immersion_iff_stalk, split, { apply (open_embedding_iff_open_embedding_of_supr_eq_top 𝒰.supr_opens_range f.1.base.2).mpr, intro i, have := ((is_open_immersion_respects_iso.arrow_iso_iff (morphism_restrict_opens_range f (𝒰.map i))).mpr (H i)).1, rwa [arrow.mk_hom, morphism_restrict_val_base] at this }, { intro x, have := arrow.iso_w (morphism_restrict_stalk_map f ((𝒰.map $ 𝒰.f $ f.1 x).opens_range) ⟨x, 𝒰.covers _⟩), dsimp only [arrow.mk_hom] at this, rw this, haveI : is_open_immersion (f ∣_ (𝒰.map $ 𝒰.f $ f.1 x).opens_range) := (is_open_immersion_respects_iso.arrow_iso_iff (morphism_restrict_opens_range f (𝒰.map _))).mpr (H _), apply_instance } } end lemma is_open_immersion.open_cover_tfae {X Y : Scheme.{u}} (f : X ⟶ Y) : tfae [is_open_immersion f, ∃ (𝒰 : Scheme.open_cover.{u} Y), ∀ (i : 𝒰.J), is_open_immersion (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i), ∀ (𝒰 : Scheme.open_cover.{u} Y) (i : 𝒰.J), is_open_immersion (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i), ∀ (U : opens Y.carrier), is_open_immersion (f ∣_ U), ∀ {U : Scheme} (g : U ⟶ Y) [is_open_immersion g], is_open_immersion (pullback.snd : pullback f g ⟶ _), ∃ {ι : Type u} (U : ι → opens Y.carrier) (hU : supr U = ⊤), ∀ i, is_open_immersion (f ∣_ (U i))] := is_open_immersion_is_local_at_target.open_cover_tfae f lemma is_open_immersion.open_cover_iff {X Y : Scheme.{u}} (𝒰 : Scheme.open_cover.{u} Y) (f : X ⟶ Y) : is_open_immersion f ↔ ∀ i, is_open_immersion (pullback.snd : pullback f (𝒰.map i) ⟶ _) := is_open_immersion_is_local_at_target.open_cover_iff f 𝒰 lemma is_open_immersion_stable_under_base_change : morphism_property.stable_under_base_change @is_open_immersion := morphism_property.stable_under_base_change.mk is_open_immersion_respects_iso $ by { introsI X Y Z f g H, apply_instance } end algebraic_geometry
99893cbf9c97e1a14cfa9b5d40afb9e6b7536a62
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/html_cmd.lean
138ce797c6ea2b056d80a80c05069cc5562e05e9
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
184
lean
open widget variables {α:Type} meta def Hello : component string α := component.pure (λ s, ["hello, ", s, ", good day!"]) #html (Hello "lean") -- renders "hello, lean, good day!"
754ebf3380dd407f296b9475b6e5512f9891dd99
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/category_theory/preadditive/projective.lean
eed19d811b4596a049b3122fcf0e35d3298ffd70
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
6,487
lean
/- Copyright (c) 2020 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel, Scott Morrison -/ import algebra.homology.exact import category_theory.types import category_theory.limits.shapes.biproducts /-! # Projective objects and categories with enough projectives An object `P` is called projective if every morphism out of `P` factors through every epimorphism. A category `C` has enough projectives if every object admits an epimorphism from some projective object. `projective.over X` picks an arbitrary such projective object, and `projective.π X : projective.over X ⟶ X` is the corresponding epimorphism. Given a morphism `f : X ⟶ Y`, `projective.left f` is a projective object over `kernel f`, and `projective.d f : projective.left f ⟶ X` is the morphism `π (kernel f) ≫ kernel.ι f`. -/ noncomputable theory open category_theory open category_theory.limits universes v u namespace category_theory variables {C : Type u} [category.{v} C] /-- An object `P` is called projective if every morphism out of `P` factors through every epimorphism. -/ class projective (P : C) : Prop := (factors : ∀ {E X : C} (f : P ⟶ X) (e : E ⟶ X) [epi e], ∃ f', f' ≫ e = f) section /-- A projective presentation of an object `X` consists of an epimorphism `f : P ⟶ X` from some projective object `P`. -/ @[nolint has_inhabited_instance] structure projective_presentation (X : C) := (P : C) (projective : projective P . tactic.apply_instance) (f : P ⟶ X) (epi : epi f . tactic.apply_instance) variables (C) /-- A category "has enough projectives" if for every object `X` there is a projective object `P` and an epimorphism `P ↠ X`. -/ class enough_projectives : Prop := (presentation : ∀ (X : C), nonempty (projective_presentation X)) end namespace projective /-- An arbitrarily chosen factorisation of a morphism out of a projective object through an epimorphism. -/ def factor_thru {P X E : C} [projective P] (f : P ⟶ X) (e : E ⟶ X) [epi e] : P ⟶ E := (projective.factors f e).some @[simp] lemma factor_thru_comp {P X E : C} [projective P] (f : P ⟶ X) (e : E ⟶ X) [epi e] : factor_thru f e ≫ e = f := (projective.factors f e).some_spec section open_locale zero_object instance zero_projective [has_zero_object C] [has_zero_morphisms C] : projective (0 : C) := { factors := λ E X f e epi, by { use 0, ext, }} end lemma of_iso {P Q : C} (i : P ≅ Q) (hP : projective P) : projective Q := begin fsplit, introsI E X f e e_epi, obtain ⟨f', hf'⟩ := projective.factors (i.hom ≫ f) e, exact ⟨i.inv ≫ f', by simp [hf']⟩ end lemma iso_iff {P Q : C} (i : P ≅ Q) : projective P ↔ projective Q := ⟨of_iso i, of_iso i.symm⟩ /-- The axiom of choice says that every type is a projective object in `Type`. -/ instance (X : Type u) : projective X := { factors := λ E X' f e epi, ⟨λ x, ((epi_iff_surjective _).mp epi (f x)).some, by { ext x, exact ((epi_iff_surjective _).mp epi (f x)).some_spec, }⟩ } instance Type.enough_projectives : enough_projectives (Type u) := { presentation := λ X, ⟨{ P := X, f := 𝟙 X, }⟩, } instance {P Q : C} [has_binary_coproduct P Q] [projective P] [projective Q] : projective (P ⨿ Q) := { factors := λ E X' f e epi, by exactI ⟨coprod.desc (factor_thru (coprod.inl ≫ f) e) (factor_thru (coprod.inr ≫ f) e), by tidy⟩, } instance {β : Type v} (g : β → C) [has_coproduct g] [∀ b, projective (g b)] : projective (∐ g) := { factors := λ E X' f e epi, by exactI ⟨sigma.desc (λ b, factor_thru (sigma.ι g b ≫ f) e), by tidy⟩, } instance {P Q : C} [has_zero_morphisms C] [has_binary_biproduct P Q] [projective P] [projective Q] : projective (P ⊞ Q) := { factors := λ E X' f e epi, by exactI ⟨biprod.desc (factor_thru (biprod.inl ≫ f) e) (factor_thru (biprod.inr ≫ f) e), by tidy⟩, } instance {β : Type v} [decidable_eq β] (g : β → C) [has_zero_morphisms C] [has_biproduct g] [∀ b, projective (g b)] : projective (⨁ g) := { factors := λ E X' f e epi, by exactI ⟨biproduct.desc (λ b, factor_thru (biproduct.ι g b ≫ f) e), by tidy⟩, } section enough_projectives variables [enough_projectives C] /-- `projective.over X` provides an arbitrarily chosen projective object equipped with an epimorphism `projective.π : projective.over X ⟶ X`. -/ def over (X : C) : C := (enough_projectives.presentation X).some.P instance projective_over (X : C) : projective (over X) := (enough_projectives.presentation X).some.projective /-- The epimorphism `projective.π : projective.over X ⟶ X` from the arbitrarily chosen projective object over `X`. -/ def π (X : C) : over X ⟶ X := (enough_projectives.presentation X).some.f instance π_epi (X : C) : epi (π X) := (enough_projectives.presentation X).some.epi section variables [has_zero_morphisms C] {X Y : C} (f : X ⟶ Y) [has_kernel f] /-- When `C` has enough projectives, the object `projective.syzygies f` is an arbitrarily chosen projective object over `kernel f`. -/ @[derive projective] def syzygies : C := over (kernel f) /-- When `C` has enough projectives, `projective.d f : projective.syzygies f ⟶ X` is the composition `π (kernel f) ≫ kernel.ι f`. (When `C` is abelian, we have `exact (projective.d f) f`.) -/ abbreviation d : syzygies f ⟶ X := π (kernel f) ≫ kernel.ι f end end enough_projectives end projective open projective section variables [has_zero_morphisms C] [has_equalizers C] [has_images C] /-- Given a projective object `P` mapping via `h` into the middle object `R` of a pair of exact morphisms `f : Q ⟶ R` and `g : R ⟶ S`, such that `h ≫ g = 0`, there is a lift of `h` to `Q`. -/ def exact.lift {P Q R S : C} [projective P] (h : P ⟶ R) (f : Q ⟶ R) (g : R ⟶ S) [exact f g] (w : h ≫ g = 0) : P ⟶ Q := factor_thru (factor_thru (factor_thru_kernel_subobject g h w) (image_to_kernel f g (by simp))) (factor_thru_image_subobject f) @[simp] lemma exact.lift_comp {P Q R S : C} [projective P] (h : P ⟶ R) (f : Q ⟶ R) (g : R ⟶ S) [exact f g] (w : h ≫ g = 0) : exact.lift h f g w ≫ f = h := begin simp [exact.lift], conv_lhs { congr, skip, rw ← image_subobject_arrow_comp f, }, rw [←category.assoc, factor_thru_comp, ←image_to_kernel_arrow, ←category.assoc, category_theory.projective.factor_thru_comp, factor_thru_kernel_subobject_comp_arrow], end end end category_theory
306f229f5b5d45d983f8b856aae456f8f9fa08c5
9dc8cecdf3c4634764a18254e94d43da07142918
/src/topology/bases.lean
de9eec02d31e63b1373d519b58667032ef830e55
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
38,825
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import topology.constructions import topology.continuous_on /-! # Bases of topologies. Countability axioms. A topological basis on a topological space `t` is a collection of sets, such that all open sets can be generated as unions of these sets, without the need to take finite intersections of them. This file introduces a framework for dealing with these collections, and also what more we can say under certain countability conditions on bases, which are referred to as first- and second-countable. We also briefly cover the theory of separable spaces, which are those with a countable, dense subset. If a space is second-countable, and also has a countably generated uniformity filter (for example, if `t` is a metric space), it will automatically be separable (and indeed, these conditions are equivalent in this case). ## Main definitions * `is_topological_basis s`: The topological space `t` has basis `s`. * `separable_space α`: The topological space `t` has a countable, dense subset. * `is_separable s`: The set `s` is contained in the closure of a countable set. * `first_countable_topology α`: A topology in which `𝓝 x` is countably generated for every `x`. * `second_countable_topology α`: A topology which has a topological basis which is countable. ## Main results * `first_countable_topology.tendsto_subseq`: In a first-countable space, cluster points are limits of subsequences. * `second_countable_topology.is_open_Union_countable`: In a second-countable space, the union of arbitrarily-many open sets is equal to a sub-union of only countably many of these sets. * `second_countable_topology.countable_cover_nhds`: Consider `f : α → set α` with the property that `f x ∈ 𝓝 x` for all `x`. Then there is some countable set `s` whose image covers the space. ## Implementation Notes For our applications we are interested that there exists a countable basis, but we do not need the concrete basis itself. This allows us to declare these type classes as `Prop` to use them as mixins. ### TODO: More fine grained instances for `first_countable_topology`, `separable_space`, `t2_space`, and more (see the comment below `subtype.second_countable_topology`.) -/ open set filter function open_locale topological_space filter noncomputable theory namespace topological_space universe u variables {α : Type u} [t : topological_space α] include t /-- A topological basis is one that satisfies the necessary conditions so that it suffices to take unions of the basis sets to get a topology (without taking finite intersections as well). -/ structure is_topological_basis (s : set (set α)) : Prop := (exists_subset_inter : ∀t₁∈s, ∀t₂∈s, ∀ x ∈ t₁ ∩ t₂, ∃ t₃∈s, x ∈ t₃ ∧ t₃ ⊆ t₁ ∩ t₂) (sUnion_eq : (⋃₀ s) = univ) (eq_generate_from : t = generate_from s) /-- If a family of sets `s` generates the topology, then nonempty intersections of finite subcollections of `s` form a topological basis. -/ lemma is_topological_basis_of_subbasis {s : set (set α)} (hs : t = generate_from s) : is_topological_basis ((λ f, ⋂₀ f) '' {f : set (set α) | f.finite ∧ f ⊆ s ∧ (⋂₀ f).nonempty}) := begin refine ⟨_, _, _⟩, { rintro _ ⟨t₁, ⟨hft₁, ht₁b, ht₁⟩, rfl⟩ _ ⟨t₂, ⟨hft₂, ht₂b, ht₂⟩, rfl⟩ x h, have : ⋂₀ (t₁ ∪ t₂) = ⋂₀ t₁ ∩ ⋂₀ t₂ := sInter_union t₁ t₂, exact ⟨_, ⟨t₁ ∪ t₂, ⟨hft₁.union hft₂, union_subset ht₁b ht₂b, this.symm ▸ ⟨x, h⟩⟩, this⟩, h, subset.rfl⟩ }, { rw [sUnion_image, Union₂_eq_univ_iff], intro x, have : x ∈ ⋂₀ ∅, { rw sInter_empty, exact mem_univ x }, exact ⟨∅, ⟨finite_empty, empty_subset _, x, this⟩, this⟩ }, { rw hs, apply le_antisymm; apply le_generate_from, { rintro _ ⟨t, ⟨hft, htb, ht⟩, rfl⟩, exact @is_open_sInter _ (generate_from s) _ hft (λ s hs, generate_open.basic _ $ htb hs) }, { intros t ht, rcases t.eq_empty_or_nonempty with rfl|hne, { apply @is_open_empty _ _ }, rw ← sInter_singleton t at hne ⊢, exact generate_open.basic _ ⟨{t}, ⟨finite_singleton t, singleton_subset_iff.2 ht, hne⟩, rfl⟩ } } end /-- If a family of open sets `s` is such that every open neighbourhood contains some member of `s`, then `s` is a topological basis. -/ lemma is_topological_basis_of_open_of_nhds {s : set (set α)} (h_open : ∀ u ∈ s, is_open u) (h_nhds : ∀(a:α) (u : set α), a ∈ u → is_open u → ∃v ∈ s, a ∈ v ∧ v ⊆ u) : is_topological_basis s := begin refine ⟨λ t₁ ht₁ t₂ ht₂ x hx, h_nhds _ _ hx (is_open.inter (h_open _ ht₁) (h_open _ ht₂)), _, _⟩, { refine sUnion_eq_univ_iff.2 (λ a, _), rcases h_nhds a univ trivial is_open_univ with ⟨u, h₁, h₂, -⟩, exact ⟨u, h₁, h₂⟩ }, { refine (le_generate_from h_open).antisymm (λ u hu, _), refine (@is_open_iff_nhds α (generate_from s) u).mpr (λ a ha, _), rcases h_nhds a u ha hu with ⟨v, hvs, hav, hvu⟩, rw nhds_generate_from, exact infi₂_le_of_le v ⟨hav, hvs⟩ (le_principal_iff.2 hvu) } end /-- A set `s` is in the neighbourhood of `a` iff there is some basis set `t`, which contains `a` and is itself contained in `s`. -/ lemma is_topological_basis.mem_nhds_iff {a : α} {s : set α} {b : set (set α)} (hb : is_topological_basis b) : s ∈ 𝓝 a ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s := begin change s ∈ (𝓝 a).sets ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s, rw [hb.eq_generate_from, nhds_generate_from, binfi_sets_eq], { simp [and_assoc, and.left_comm] }, { exact assume s ⟨hs₁, hs₂⟩ t ⟨ht₁, ht₂⟩, have a ∈ s ∩ t, from ⟨hs₁, ht₁⟩, let ⟨u, hu₁, hu₂, hu₃⟩ := hb.1 _ hs₂ _ ht₂ _ this in ⟨u, ⟨hu₂, hu₁⟩, le_principal_iff.2 (subset.trans hu₃ (inter_subset_left _ _)), le_principal_iff.2 (subset.trans hu₃ (inter_subset_right _ _))⟩ }, { rcases eq_univ_iff_forall.1 hb.sUnion_eq a with ⟨i, h1, h2⟩, exact ⟨i, h2, h1⟩ } end lemma is_topological_basis.is_open_iff {s : set α} {b : set (set α)} (hb : is_topological_basis b) : is_open s ↔ ∀ a ∈ s, ∃ t ∈ b, a ∈ t ∧ t ⊆ s := by simp [is_open_iff_mem_nhds, hb.mem_nhds_iff] lemma is_topological_basis.nhds_has_basis {b : set (set α)} (hb : is_topological_basis b) {a : α} : (𝓝 a).has_basis (λ t : set α, t ∈ b ∧ a ∈ t) (λ t, t) := ⟨λ s, hb.mem_nhds_iff.trans $ by simp only [exists_prop, and_assoc]⟩ protected lemma is_topological_basis.is_open {s : set α} {b : set (set α)} (hb : is_topological_basis b) (hs : s ∈ b) : is_open s := by { rw hb.eq_generate_from, exact generate_open.basic s hs } protected lemma is_topological_basis.mem_nhds {a : α} {s : set α} {b : set (set α)} (hb : is_topological_basis b) (hs : s ∈ b) (ha : a ∈ s) : s ∈ 𝓝 a := (hb.is_open hs).mem_nhds ha lemma is_topological_basis.exists_subset_of_mem_open {b : set (set α)} (hb : is_topological_basis b) {a:α} {u : set α} (au : a ∈ u) (ou : is_open u) : ∃v ∈ b, a ∈ v ∧ v ⊆ u := hb.mem_nhds_iff.1 $ is_open.mem_nhds ou au /-- Any open set is the union of the basis sets contained in it. -/ lemma is_topological_basis.open_eq_sUnion' {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : u = ⋃₀ {s ∈ B | s ⊆ u} := ext $ λ a, ⟨λ ha, let ⟨b, hb, ab, bu⟩ := hB.exists_subset_of_mem_open ha ou in ⟨b, ⟨hb, bu⟩, ab⟩, λ ⟨b, ⟨hb, bu⟩, ab⟩, bu ab⟩ lemma is_topological_basis.open_eq_sUnion {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : ∃ S ⊆ B, u = ⋃₀ S := ⟨{s ∈ B | s ⊆ u}, λ s h, h.1, hB.open_eq_sUnion' ou⟩ lemma is_topological_basis.open_eq_Union {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : ∃ (β : Type u) (f : β → set α), u = (⋃ i, f i) ∧ ∀ i, f i ∈ B := ⟨↥{s ∈ B | s ⊆ u}, coe, by { rw ← sUnion_eq_Union, apply hB.open_eq_sUnion' ou }, λ s, and.left s.2⟩ /-- A point `a` is in the closure of `s` iff all basis sets containing `a` intersect `s`. -/ lemma is_topological_basis.mem_closure_iff {b : set (set α)} (hb : is_topological_basis b) {s : set α} {a : α} : a ∈ closure s ↔ ∀ o ∈ b, a ∈ o → (o ∩ s).nonempty := (mem_closure_iff_nhds_basis' hb.nhds_has_basis).trans $ by simp only [and_imp] /-- A set is dense iff it has non-trivial intersection with all basis sets. -/ lemma is_topological_basis.dense_iff {b : set (set α)} (hb : is_topological_basis b) {s : set α} : dense s ↔ ∀ o ∈ b, set.nonempty o → (o ∩ s).nonempty := begin simp only [dense, hb.mem_closure_iff], exact ⟨λ h o hb ⟨a, ha⟩, h a o hb ha, λ h a o hb ha, h o hb ⟨a, ha⟩⟩ end lemma is_topological_basis.is_open_map_iff {β} [topological_space β] {B : set (set α)} (hB : is_topological_basis B) {f : α → β} : is_open_map f ↔ ∀ s ∈ B, is_open (f '' s) := begin refine ⟨λ H o ho, H _ (hB.is_open ho), λ hf o ho, _⟩, rw [hB.open_eq_sUnion' ho, sUnion_eq_Union, image_Union], exact is_open_Union (λ s, hf s s.2.1) end lemma is_topological_basis.exists_nonempty_subset {B : set (set α)} (hb : is_topological_basis B) {u : set α} (hu : u.nonempty) (ou : is_open u) : ∃ v ∈ B, set.nonempty v ∧ v ⊆ u := begin cases hu with x hx, rw [hb.open_eq_sUnion' ou, mem_sUnion] at hx, rcases hx with ⟨v, hv, hxv⟩, exact ⟨v, hv.1, ⟨x, hxv⟩, hv.2⟩ end lemma is_topological_basis_opens : is_topological_basis { U : set α | is_open U } := is_topological_basis_of_open_of_nhds (by tauto) (by tauto) protected lemma is_topological_basis.prod {β} [topological_space β] {B₁ : set (set α)} {B₂ : set (set β)} (h₁ : is_topological_basis B₁) (h₂ : is_topological_basis B₂) : is_topological_basis (image2 (×ˢ) B₁ B₂) := begin refine is_topological_basis_of_open_of_nhds _ _, { rintro _ ⟨u₁, u₂, hu₁, hu₂, rfl⟩, exact (h₁.is_open hu₁).prod (h₂.is_open hu₂) }, { rintro ⟨a, b⟩ u hu uo, rcases (h₁.nhds_has_basis.prod_nhds h₂.nhds_has_basis).mem_iff.1 (is_open.mem_nhds uo hu) with ⟨⟨s, t⟩, ⟨⟨hs, ha⟩, ht, hb⟩, hu⟩, exact ⟨s ×ˢ t, mem_image2_of_mem hs ht, ⟨ha, hb⟩, hu⟩ } end protected lemma is_topological_basis.inducing {β} [topological_space β] {f : α → β} {T : set (set β)} (hf : inducing f) (h : is_topological_basis T) : is_topological_basis (image (preimage f) T) := begin refine is_topological_basis_of_open_of_nhds _ _, { rintros _ ⟨V, hV, rfl⟩, rwa hf.is_open_iff, refine ⟨V, h.is_open hV, rfl⟩ }, { intros a U ha hU, rw hf.is_open_iff at hU, obtain ⟨V, hV, rfl⟩ := hU, obtain ⟨S, hS, rfl⟩ := h.open_eq_sUnion hV, obtain ⟨W, hW, ha⟩ := ha, refine ⟨f ⁻¹' W, ⟨_, hS hW, rfl⟩, ha, set.preimage_mono $ set.subset_sUnion_of_mem hW⟩ } end lemma is_topological_basis_of_cover {ι} {U : ι → set α} (Uo : ∀ i, is_open (U i)) (Uc : (⋃ i, U i) = univ) {b : Π i, set (set (U i))} (hb : ∀ i, is_topological_basis (b i)) : is_topological_basis (⋃ i : ι, image (coe : U i → α) '' (b i)) := begin refine is_topological_basis_of_open_of_nhds (λ u hu, _) _, { simp only [mem_Union, mem_image] at hu, rcases hu with ⟨i, s, sb, rfl⟩, exact (Uo i).is_open_map_subtype_coe _ ((hb i).is_open sb) }, { intros a u ha uo, rcases Union_eq_univ_iff.1 Uc a with ⟨i, hi⟩, lift a to ↥(U i) using hi, rcases (hb i).exists_subset_of_mem_open (by exact ha) (uo.preimage continuous_subtype_coe) with ⟨v, hvb, hav, hvu⟩, exact ⟨coe '' v, mem_Union.2 ⟨i, mem_image_of_mem _ hvb⟩, mem_image_of_mem _ hav, image_subset_iff.2 hvu⟩ } end protected lemma is_topological_basis.continuous {β : Type*} [topological_space β] {B : set (set β)} (hB : is_topological_basis B) (f : α → β) (hf : ∀ s ∈ B, is_open (f ⁻¹' s)) : continuous f := begin rw hB.eq_generate_from, exact continuous_generated_from hf end variables (α) /-- A separable space is one with a countable dense subset, available through `topological_space.exists_countable_dense`. If `α` is also known to be nonempty, then `topological_space.dense_seq` provides a sequence `ℕ → α` with dense range, see `topological_space.dense_range_dense_seq`. If `α` is a uniform space with countably generated uniformity filter (e.g., an `emetric_space`), then this condition is equivalent to `topological_space.second_countable_topology α`. In this case the latter should be used as a typeclass argument in theorems because Lean can automatically deduce `separable_space` from `second_countable_topology` but it can't deduce `second_countable_topology` and `emetric_space`. -/ class separable_space : Prop := (exists_countable_dense : ∃s:set α, s.countable ∧ dense s) lemma exists_countable_dense [separable_space α] : ∃ s : set α, s.countable ∧ dense s := separable_space.exists_countable_dense /-- A nonempty separable space admits a sequence with dense range. Instead of running `cases` on the conclusion of this lemma, you might want to use `topological_space.dense_seq` and `topological_space.dense_range_dense_seq`. If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/ lemma exists_dense_seq [separable_space α] [nonempty α] : ∃ u : ℕ → α, dense_range u := begin obtain ⟨s : set α, hs, s_dense⟩ := exists_countable_dense α, cases set.countable_iff_exists_subset_range.mp hs with u hu, exact ⟨u, s_dense.mono hu⟩, end /-- A dense sequence in a non-empty separable topological space. If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/ def dense_seq [separable_space α] [nonempty α] : ℕ → α := classical.some (exists_dense_seq α) /-- The sequence `dense_seq α` has dense range. -/ @[simp] lemma dense_range_dense_seq [separable_space α] [nonempty α] : dense_range (dense_seq α) := classical.some_spec (exists_dense_seq α) variable {α} @[priority 100] instance countable.to_separable_space [countable α] : separable_space α := { exists_countable_dense := ⟨set.univ, set.countable_univ, dense_univ⟩ } lemma separable_space_of_dense_range {ι : Type*} [countable ι] (u : ι → α) (hu : dense_range u) : separable_space α := ⟨⟨range u, countable_range u, hu⟩⟩ /-- In a separable space, a family of nonempty disjoint open sets is countable. -/ lemma _root_.set.pairwise_disjoint.countable_of_is_open [separable_space α] {ι : Type*} {s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s) (ha : ∀ i ∈ a, is_open (s i)) (h'a : ∀ i ∈ a, (s i).nonempty) : a.countable := begin rcases exists_countable_dense α with ⟨u, ⟨u_encodable⟩, u_dense⟩, have : ∀ i : a, ∃ y, y ∈ s i ∩ u := λ i, dense_iff_inter_open.1 u_dense (s i) (ha i i.2) (h'a i i.2), choose f hfs hfu using this, lift f to a → u using hfu, have f_inj : injective f, { refine injective_iff_pairwise_ne.mpr ((h.subtype _ _).mono $ λ i j hij hfij, hij ⟨hfs i, _⟩), simp only [congr_arg coe hfij, hfs j] }, exact ⟨@encodable.of_inj _ _ u_encodable f f_inj⟩ end /-- In a separable space, a family of disjoint sets with nonempty interiors is countable. -/ lemma _root_.set.pairwise_disjoint.countable_of_nonempty_interior [separable_space α] {ι : Type*} {s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s) (ha : ∀ i ∈ a, (interior (s i)).nonempty) : a.countable := (h.mono $ λ i, interior_subset).countable_of_is_open (λ i hi, is_open_interior) ha /-- A set `s` in a topological space is separable if it is contained in the closure of a countable set `c`. Beware that this definition does not require that `c` is contained in `s` (to express the latter, use `separable_space s` or `is_separable (univ : set s))`. In metric spaces, the two definitions are equivalent, see `topological_space.is_separable.separable_space`. -/ def is_separable (s : set α) := ∃ c : set α, c.countable ∧ s ⊆ closure c lemma is_separable.mono {s u : set α} (hs : is_separable s) (hu : u ⊆ s) : is_separable u := begin rcases hs with ⟨c, c_count, hs⟩, exact ⟨c, c_count, hu.trans hs⟩ end lemma is_separable.union {s u : set α} (hs : is_separable s) (hu : is_separable u) : is_separable (s ∪ u) := begin rcases hs with ⟨cs, cs_count, hcs⟩, rcases hu with ⟨cu, cu_count, hcu⟩, refine ⟨cs ∪ cu, cs_count.union cu_count, _⟩, exact union_subset (hcs.trans (closure_mono (subset_union_left _ _))) (hcu.trans (closure_mono (subset_union_right _ _))) end lemma is_separable.closure {s : set α} (hs : is_separable s) : is_separable (closure s) := begin rcases hs with ⟨c, c_count, hs⟩, exact ⟨c, c_count, by simpa using closure_mono hs⟩, end lemma is_separable_Union {ι : Type*} [countable ι] {s : ι → set α} (hs : ∀ i, is_separable (s i)) : is_separable (⋃ i, s i) := begin choose c hc h'c using hs, refine ⟨⋃ i, c i, countable_Union hc, Union_subset_iff.2 (λ i, _)⟩, exact (h'c i).trans (closure_mono (subset_Union _ i)) end lemma _root_.set.countable.is_separable {s : set α} (hs : s.countable) : is_separable s := ⟨s, hs, subset_closure⟩ lemma _root_.set.finite.is_separable {s : set α} (hs : s.finite) : is_separable s := hs.countable.is_separable lemma is_separable_univ_iff : is_separable (univ : set α) ↔ separable_space α := begin split, { rintros ⟨c, c_count, hc⟩, refine ⟨⟨c, c_count, by rwa [dense_iff_closure_eq, ← univ_subset_iff]⟩⟩ }, { introsI h, rcases exists_countable_dense α with ⟨c, c_count, hc⟩, exact ⟨c, c_count, by rwa [univ_subset_iff, ← dense_iff_closure_eq]⟩ } end lemma is_separable_of_separable_space [h : separable_space α] (s : set α) : is_separable s := is_separable.mono (is_separable_univ_iff.2 h) (subset_univ _) lemma is_separable.image {β : Type*} [topological_space β] {s : set α} (hs : is_separable s) {f : α → β} (hf : continuous f) : is_separable (f '' s) := begin rcases hs with ⟨c, c_count, hc⟩, refine ⟨f '' c, c_count.image _, _⟩, rw image_subset_iff, exact hc.trans (closure_subset_preimage_closure_image hf) end lemma is_separable_of_separable_space_subtype (s : set α) [separable_space s] : is_separable s := begin have : is_separable ((coe : s → α) '' (univ : set s)) := (is_separable_of_separable_space _).image continuous_subtype_coe, simpa only [image_univ, subtype.range_coe_subtype], end end topological_space open topological_space lemma is_topological_basis_pi {ι : Type*} {X : ι → Type*} [∀ i, topological_space (X i)] {T : Π i, set (set (X i))} (cond : ∀ i, is_topological_basis (T i)) : is_topological_basis {S : set (Π i, X i) | ∃ (U : Π i, set (X i)) (F : finset ι), (∀ i, i ∈ F → (U i) ∈ T i) ∧ S = (F : set ι).pi U } := begin refine is_topological_basis_of_open_of_nhds _ _, { rintro _ ⟨U, F, h1, rfl⟩, apply is_open_set_pi F.finite_to_set, intros i hi, exact (cond i).is_open (h1 i hi) }, { intros a U ha hU, obtain ⟨I, t, hta, htU⟩ : ∃ (I : finset ι) (t : Π (i : ι), set (X i)), (∀ i, t i ∈ 𝓝 (a i)) ∧ set.pi ↑I t ⊆ U, { rw [← filter.mem_pi', ← nhds_pi], exact hU.mem_nhds ha }, have : ∀ i, ∃ V ∈ T i, a i ∈ V ∧ V ⊆ t i := λ i, (cond i).mem_nhds_iff.1 (hta i), choose V hVT haV hVt, exact ⟨_, ⟨V, I, λ i hi, hVT i, rfl⟩, λ i hi, haV i, (pi_mono $ λ i hi, hVt i).trans htU⟩ }, end lemma is_topological_basis_infi {β : Type*} {ι : Type*} {X : ι → Type*} [t : ∀ i, topological_space (X i)] {T : Π i, set (set (X i))} (cond : ∀ i, is_topological_basis (T i)) (f : Π i, β → X i) : @is_topological_basis β (⨅ i, induced (f i) (t i)) { S | ∃ (U : Π i, set (X i)) (F : finset ι), (∀ i, i ∈ F → U i ∈ T i) ∧ S = ⋂ i (hi : i ∈ F), (f i) ⁻¹' (U i) } := begin convert (is_topological_basis_pi cond).inducing (inducing_infi_to_pi _), ext V, split, { rintros ⟨U, F, h1, h2⟩, have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F), (λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp }, refine ⟨(F : set ι).pi U, ⟨U, F, h1, rfl⟩, _⟩, rw [this, h2, set.preimage_Inter], congr' 1, ext1, rw set.preimage_Inter, refl }, { rintros ⟨U, ⟨U, F, h1, rfl⟩, h⟩, refine ⟨U, F, h1, _⟩, have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F), (λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp }, rw [← h, this, set.preimage_Inter], congr' 1, ext1, rw set.preimage_Inter, refl } end lemma is_topological_basis_singletons (α : Type*) [topological_space α] [discrete_topology α] : is_topological_basis {s | ∃ (x : α), (s : set α) = {x}} := is_topological_basis_of_open_of_nhds (λ u hu, is_open_discrete _) $ λ x u hx u_open, ⟨{x}, ⟨x, rfl⟩, mem_singleton x, singleton_subset_iff.2 hx⟩ /-- If `α` is a separable space and `f : α → β` is a continuous map with dense range, then `β` is a separable space as well. E.g., the completion of a separable uniform space is separable. -/ protected lemma dense_range.separable_space {α β : Type*} [topological_space α] [separable_space α] [topological_space β] {f : α → β} (h : dense_range f) (h' : continuous f) : separable_space β := let ⟨s, s_cnt, s_dense⟩ := exists_countable_dense α in ⟨⟨f '' s, countable.image s_cnt f, h.dense_image h' s_dense⟩⟩ lemma dense.exists_countable_dense_subset {α : Type*} [topological_space α] {s : set α} [separable_space s] (hs : dense s) : ∃ t ⊆ s, t.countable ∧ dense t := let ⟨t, htc, htd⟩ := exists_countable_dense s in ⟨coe '' t, image_subset_iff.2 $ λ x _, mem_preimage.2 $ subtype.coe_prop _, htc.image coe, hs.dense_range_coe.dense_image continuous_subtype_val htd⟩ /-- Let `s` be a dense set in a topological space `α` with partial order structure. If `s` is a separable space (e.g., if `α` has a second countable topology), then there exists a countable dense subset `t ⊆ s` such that `t` contains bottom/top element of `α` when they exist and belong to `s`. For a dense subset containing neither bot nor top elements, see `dense.exists_countable_dense_subset_no_bot_top`. -/ lemma dense.exists_countable_dense_subset_bot_top {α : Type*} [topological_space α] [partial_order α] {s : set α} [separable_space s] (hs : dense s) : ∃ t ⊆ s, t.countable ∧ dense t ∧ (∀ x, is_bot x → x ∈ s → x ∈ t) ∧ (∀ x, is_top x → x ∈ s → x ∈ t) := begin rcases hs.exists_countable_dense_subset with ⟨t, hts, htc, htd⟩, refine ⟨(t ∪ ({x | is_bot x} ∪ {x | is_top x})) ∩ s, _, _, _, _, _⟩, exacts [inter_subset_right _ _, (htc.union ((countable_is_bot α).union (countable_is_top α))).mono (inter_subset_left _ _), htd.mono (subset_inter (subset_union_left _ _) hts), λ x hx hxs, ⟨or.inr $ or.inl hx, hxs⟩, λ x hx hxs, ⟨or.inr $ or.inr hx, hxs⟩] end instance separable_space_univ {α : Type*} [topological_space α] [separable_space α] : separable_space (univ : set α) := (equiv.set.univ α).symm.surjective.dense_range.separable_space (continuous_id.subtype_mk _) /-- If `α` is a separable topological space with a partial order, then there exists a countable dense set `s : set α` that contains those of both bottom and top elements of `α` that actually exist. For a dense set containing neither bot nor top elements, see `exists_countable_dense_no_bot_top`. -/ lemma exists_countable_dense_bot_top (α : Type*) [topological_space α] [separable_space α] [partial_order α] : ∃ s : set α, s.countable ∧ dense s ∧ (∀ x, is_bot x → x ∈ s) ∧ (∀ x, is_top x → x ∈ s) := by simpa using dense_univ.exists_countable_dense_subset_bot_top namespace topological_space universe u variables (α : Type u) [t : topological_space α] include t /-- A first-countable space is one in which every point has a countable neighborhood basis. -/ class first_countable_topology : Prop := (nhds_generated_countable : ∀a:α, (𝓝 a).is_countably_generated) attribute [instance] first_countable_topology.nhds_generated_countable namespace first_countable_topology variable {α} /-- In a first-countable space, a cluster point `x` of a sequence is the limit of some subsequence. -/ lemma tendsto_subseq [first_countable_topology α] {u : ℕ → α} {x : α} (hx : map_cluster_pt x at_top u) : ∃ (ψ : ℕ → ℕ), (strict_mono ψ) ∧ (tendsto (u ∘ ψ) at_top (𝓝 x)) := subseq_tendsto_of_ne_bot hx end first_countable_topology variables {α} instance {β} [topological_space β] [first_countable_topology α] [first_countable_topology β] : first_countable_topology (α × β) := ⟨λ ⟨x, y⟩, by { rw nhds_prod_eq, apply_instance }⟩ section pi omit t instance {ι : Type*} {π : ι → Type*} [countable ι] [Π i, topological_space (π i)] [∀ i, first_countable_topology (π i)] : first_countable_topology (Π i, π i) := ⟨λ f, by { rw nhds_pi, apply_instance }⟩ end pi instance is_countably_generated_nhds_within (x : α) [is_countably_generated (𝓝 x)] (s : set α) : is_countably_generated (𝓝[s] x) := inf.is_countably_generated _ _ variable (α) /-- A second-countable space is one with a countable basis. -/ class second_countable_topology : Prop := (is_open_generated_countable [] : ∃ b : set (set α), b.countable ∧ t = topological_space.generate_from b) variable {α} protected lemma is_topological_basis.second_countable_topology {b : set (set α)} (hb : is_topological_basis b) (hc : b.countable) : second_countable_topology α := ⟨⟨b, hc, hb.eq_generate_from⟩⟩ variable (α) lemma exists_countable_basis [second_countable_topology α] : ∃b:set (set α), b.countable ∧ ∅ ∉ b ∧ is_topological_basis b := let ⟨b, hb₁, hb₂⟩ := second_countable_topology.is_open_generated_countable α in let b' := (λs, ⋂₀ s) '' {s:set (set α) | s.finite ∧ s ⊆ b ∧ (⋂₀ s).nonempty} in ⟨b', ((countable_set_of_finite_subset hb₁).mono (by { simp only [← and_assoc], apply inter_subset_left })).image _, assume ⟨s, ⟨_, _, hn⟩, hp⟩, absurd hn (not_nonempty_iff_eq_empty.2 hp), is_topological_basis_of_subbasis hb₂⟩ /-- A countable topological basis of `α`. -/ def countable_basis [second_countable_topology α] : set (set α) := (exists_countable_basis α).some lemma countable_countable_basis [second_countable_topology α] : (countable_basis α).countable := (exists_countable_basis α).some_spec.1 instance encodable_countable_basis [second_countable_topology α] : encodable (countable_basis α) := (countable_countable_basis α).to_encodable lemma empty_nmem_countable_basis [second_countable_topology α] : ∅ ∉ countable_basis α := (exists_countable_basis α).some_spec.2.1 lemma is_basis_countable_basis [second_countable_topology α] : is_topological_basis (countable_basis α) := (exists_countable_basis α).some_spec.2.2 lemma eq_generate_from_countable_basis [second_countable_topology α] : ‹topological_space α› = generate_from (countable_basis α) := (is_basis_countable_basis α).eq_generate_from variable {α} lemma is_open_of_mem_countable_basis [second_countable_topology α] {s : set α} (hs : s ∈ countable_basis α) : is_open s := (is_basis_countable_basis α).is_open hs lemma nonempty_of_mem_countable_basis [second_countable_topology α] {s : set α} (hs : s ∈ countable_basis α) : s.nonempty := ne_empty_iff_nonempty.1 $ ne_of_mem_of_not_mem hs $ empty_nmem_countable_basis α variable (α) @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_first_countable_topology [second_countable_topology α] : first_countable_topology α := ⟨λ x, has_countable_basis.is_countably_generated $ ⟨(is_basis_countable_basis α).nhds_has_basis, (countable_countable_basis α).mono $ inter_subset_left _ _⟩⟩ /-- If `β` is a second-countable space, then its induced topology via `f` on `α` is also second-countable. -/ lemma second_countable_topology_induced (β) [t : topological_space β] [second_countable_topology β] (f : α → β) : @second_countable_topology α (t.induced f) := begin rcases second_countable_topology.is_open_generated_countable β with ⟨b, hb, eq⟩, refine { is_open_generated_countable := ⟨preimage f '' b, hb.image _, _⟩ }, rw [eq, induced_generate_from_eq] end instance subtype.second_countable_topology (s : set α) [second_countable_topology α] : second_countable_topology s := second_countable_topology_induced s α coe /- TODO: more fine grained instances for first_countable_topology, separable_space, t2_space, ... -/ instance {β : Type*} [topological_space β] [second_countable_topology α] [second_countable_topology β] : second_countable_topology (α × β) := ((is_basis_countable_basis α).prod (is_basis_countable_basis β)).second_countable_topology $ (countable_countable_basis α).image2 (countable_countable_basis β) _ instance {ι : Type*} {π : ι → Type*} [countable ι] [t : ∀a, topological_space (π a)] [∀a, second_countable_topology (π a)] : second_countable_topology (∀a, π a) := begin have : t = (λa, generate_from (countable_basis (π a))), from funext (assume a, (is_basis_countable_basis (π a)).eq_generate_from), rw [this, pi_generate_from_eq], constructor, refine ⟨_, _, rfl⟩, have : set.countable {T : set (Π i, π i) | ∃ (I : finset ι) (s : Π i : I, set (π i)), (∀ i, s i ∈ countable_basis (π i)) ∧ T = {f | ∀ i : I, f i ∈ s i}}, { simp only [set_of_exists, ← exists_prop], refine countable_Union (λ I, countable.bUnion _ (λ _ _, countable_singleton _)), change set.countable {s : Π i : I, set (π i) | ∀ i, s i ∈ countable_basis (π i)}, exact countable_pi (λ i, countable_countable_basis _) }, convert this using 1, ext1 T, split, { rintro ⟨s, I, hs, rfl⟩, refine ⟨I, λ i, s i, λ i, hs i i.2, _⟩, simp only [set.pi, set_coe.forall'], refl }, { rintro ⟨I, s, hs, rfl⟩, rcases @subtype.surjective_restrict ι (λ i, set (π i)) _ (λ i, i ∈ I) s with ⟨s, rfl⟩, exact ⟨s, I, λ i hi, hs ⟨i, hi⟩, set.ext $ λ f, subtype.forall⟩ } end @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_separable_space [second_countable_topology α] : separable_space α := begin choose p hp using λ s : countable_basis α, nonempty_of_mem_countable_basis s.2, exact ⟨⟨range p, countable_range _, (is_basis_countable_basis α).dense_iff.2 $ λ o ho _, ⟨p ⟨o, ho⟩, hp _, mem_range_self _⟩⟩⟩ end variables {α} /-- A countable open cover induces a second-countable topology if all open covers are themselves second countable. -/ lemma second_countable_topology_of_countable_cover {ι} [encodable ι] {U : ι → set α} [∀ i, second_countable_topology (U i)] (Uo : ∀ i, is_open (U i)) (hc : (⋃ i, U i) = univ) : second_countable_topology α := begin have : is_topological_basis (⋃ i, image (coe : U i → α) '' (countable_basis (U i))), from is_topological_basis_of_cover Uo hc (λ i, is_basis_countable_basis (U i)), exact this.second_countable_topology (countable_Union $ λ i, (countable_countable_basis _).image _) end /-- In a second-countable space, an open set, given as a union of open sets, is equal to the union of countably many of those sets. -/ lemma is_open_Union_countable [second_countable_topology α] {ι} (s : ι → set α) (H : ∀ i, is_open (s i)) : ∃ T : set ι, T.countable ∧ (⋃ i ∈ T, s i) = ⋃ i, s i := begin let B := {b ∈ countable_basis α | ∃ i, b ⊆ s i}, choose f hf using λ b : B, b.2.2, haveI : encodable B := ((countable_countable_basis α).mono (sep_subset _ _)).to_encodable, refine ⟨_, countable_range f, (Union₂_subset_Union _ _).antisymm (sUnion_subset _)⟩, rintro _ ⟨i, rfl⟩ x xs, rcases (is_basis_countable_basis α).exists_subset_of_mem_open xs (H _) with ⟨b, hb, xb, bs⟩, exact ⟨_, ⟨_, rfl⟩, _, ⟨⟨⟨_, hb, _, bs⟩, rfl⟩, rfl⟩, hf _ (by exact xb)⟩ end lemma is_open_sUnion_countable [second_countable_topology α] (S : set (set α)) (H : ∀ s ∈ S, is_open s) : ∃ T : set (set α), T.countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S := let ⟨T, cT, hT⟩ := is_open_Union_countable (λ s:S, s.1) (λ s, H s.1 s.2) in ⟨subtype.val '' T, cT.image _, image_subset_iff.2 $ λ ⟨x, xs⟩ xt, xs, by rwa [sUnion_image, sUnion_eq_Union]⟩ /-- In a topological space with second countable topology, if `f` is a function that sends each point `x` to a neighborhood of `x`, then for some countable set `s`, the neighborhoods `f x`, `x ∈ s`, cover the whole space. -/ lemma countable_cover_nhds [second_countable_topology α] {f : α → set α} (hf : ∀ x, f x ∈ 𝓝 x) : ∃ s : set α, s.countable ∧ (⋃ x ∈ s, f x) = univ := begin rcases is_open_Union_countable (λ x, interior (f x)) (λ x, is_open_interior) with ⟨s, hsc, hsU⟩, suffices : (⋃ x ∈ s, interior (f x)) = univ, from ⟨s, hsc, flip eq_univ_of_subset this $ Union₂_mono $ λ _ _, interior_subset⟩, simp only [hsU, eq_univ_iff_forall, mem_Union], exact λ x, ⟨x, mem_interior_iff_mem_nhds.2 (hf x)⟩ end lemma countable_cover_nhds_within [second_countable_topology α] {f : α → set α} {s : set α} (hf : ∀ x ∈ s, f x ∈ 𝓝[s] x) : ∃ t ⊆ s, t.countable ∧ s ⊆ (⋃ x ∈ t, f x) := begin have : ∀ x : s, coe ⁻¹' (f x) ∈ 𝓝 x, from λ x, preimage_coe_mem_nhds_subtype.2 (hf x x.2), rcases countable_cover_nhds this with ⟨t, htc, htU⟩, refine ⟨coe '' t, subtype.coe_image_subset _ _, htc.image _, λ x hx, _⟩, simp only [bUnion_image, eq_univ_iff_forall, ← preimage_Union, mem_preimage] at htU ⊢, exact htU ⟨x, hx⟩ end section sigma variables {ι : Type*} {E : ι → Type*} [∀ i, topological_space (E i)] omit t /-- In a disjoint union space `Σ i, E i`, one can form a topological basis by taking the union of topological bases on each of the parts of the space. -/ lemma is_topological_basis.sigma {s : Π (i : ι), set (set (E i))} (hs : ∀ i, is_topological_basis (s i)) : is_topological_basis (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (s i)) := begin apply is_topological_basis_of_open_of_nhds, { assume u hu, obtain ⟨i, t, ts, rfl⟩ : ∃ (i : ι) (t : set (E i)), t ∈ s i ∧ sigma.mk i '' t = u, by simpa only [mem_Union, mem_image] using hu, exact is_open_map_sigma_mk _ ((hs i).is_open ts) }, { rintros ⟨i, x⟩ u hxu u_open, have hx : x ∈ sigma.mk i ⁻¹' u := hxu, obtain ⟨v, vs, xv, hv⟩ : ∃ (v : set (E i)) (H : v ∈ s i), x ∈ v ∧ v ⊆ sigma.mk i ⁻¹' u := (hs i).exists_subset_of_mem_open hx (is_open_sigma_iff.1 u_open i), exact ⟨(sigma.mk i) '' v, mem_Union.2 ⟨i, mem_image_of_mem _ vs⟩, mem_image_of_mem _ xv, image_subset_iff.2 hv⟩ } end /-- A countable disjoint union of second countable spaces is second countable. -/ instance [countable ι] [∀ i, second_countable_topology (E i)] : second_countable_topology (Σ i, E i) := begin let b := (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (countable_basis (E i))), have A : is_topological_basis b := is_topological_basis.sigma (λ i, is_basis_countable_basis _), have B : b.countable := countable_Union (λ i, countable.image (countable_countable_basis _) _), exact A.second_countable_topology B, end end sigma section sum omit t variables {β : Type*} [topological_space α] [topological_space β] /-- In a sum space `α ⊕ β`, one can form a topological basis by taking the union of topological bases on each of the two components. -/ lemma is_topological_basis.sum {s : set (set α)} (hs : is_topological_basis s) {t : set (set β)} (ht : is_topological_basis t) : is_topological_basis (((λ u, sum.inl '' u) '' s) ∪ ((λ u, sum.inr '' u) '' t)) := begin apply is_topological_basis_of_open_of_nhds, { assume u hu, cases hu, { rcases hu with ⟨w, hw, rfl⟩, exact open_embedding_inl.is_open_map w (hs.is_open hw) }, { rcases hu with ⟨w, hw, rfl⟩, exact open_embedding_inr.is_open_map w (ht.is_open hw) } }, { rintros x u hxu u_open, cases x, { have h'x : x ∈ sum.inl ⁻¹' u := hxu, obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set α) (H : v ∈ s), x ∈ v ∧ v ⊆ sum.inl ⁻¹' u := hs.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).1, exact ⟨sum.inl '' v, mem_union_left _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv, image_subset_iff.2 vu⟩ }, { have h'x : x ∈ sum.inr ⁻¹' u := hxu, obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set β) (H : v ∈ t), x ∈ v ∧ v ⊆ sum.inr ⁻¹' u := ht.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).2, exact ⟨sum.inr '' v, mem_union_right _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv, image_subset_iff.2 vu⟩ } } end /-- A sum type of two second countable spaces is second countable. -/ instance [second_countable_topology α] [second_countable_topology β] : second_countable_topology (α ⊕ β) := begin let b := (λ u, sum.inl '' u) '' (countable_basis α) ∪ (λ u, sum.inr '' u) '' (countable_basis β), have A : is_topological_basis b := (is_basis_countable_basis α).sum (is_basis_countable_basis β), have B : b.countable := (countable.image (countable_countable_basis _) _).union (countable.image (countable_countable_basis _) _), exact A.second_countable_topology B, end end sum end topological_space open topological_space variables {α β : Type*} [topological_space α] [topological_space β] {f : α → β} protected lemma inducing.second_countable_topology [second_countable_topology β] (hf : inducing f) : second_countable_topology α := by { rw hf.1, exact second_countable_topology_induced α β f } protected lemma embedding.second_countable_topology [second_countable_topology β] (hf : embedding f) : second_countable_topology α := hf.1.second_countable_topology
9481bb751533fa4808eac8ccefa7a1cb4fc284f9
d1a52c3f208fa42c41df8278c3d280f075eb020c
/stage0/src/Lean/Elab/StructInst.lean
8630cad04bb88b2826ea12cb49157d6ecf0255a1
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
37,941
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Util.FindExpr import Lean.Parser.Term import Lean.Meta.Structure import Lean.Elab.App import Lean.Elab.Binders namespace Lean.Elab.Term.StructInst open Std (HashMap) open Meta /-- Structure instances are of the form: "{" >> optional (atomic (sepBy1 termParser ", " >> " with ")) >> manyIndent (group ((structInstFieldAbbrev <|> structInstField) >> optional ", ")) >> optEllipsis >> optional (" : " >> termParser) >> " }" -/ @[builtinMacro Lean.Parser.Term.structInst] def expandStructInstExpectedType : Macro := fun stx => let expectedArg := stx[4] if expectedArg.isNone then Macro.throwUnsupported else let expected := expectedArg[1] let stxNew := stx.setArg 4 mkNullNode `(($stxNew : $expected)) /-- Expand field abbreviations. Example: `{ x, y := 0 }` expands to `{ x := x, y := 0 }` -/ @[builtinMacro Lean.Parser.Term.structInst] def expandStructInstFieldAbbrev : Macro := fun stx => do if stx[2].getArgs.any fun arg => arg[0].getKind == ``Lean.Parser.Term.structInstFieldAbbrev then let fieldsNew ← stx[2].getArgs.mapM fun stx => do let field := stx[0] if field.getKind == ``Lean.Parser.Term.structInstFieldAbbrev then let id := field[0] let fieldNew ← `(Lean.Parser.Term.structInstField| $id:ident := $id:ident) return stx.setArg 0 fieldNew else return stx return stx.setArg 2 (mkNullNode fieldsNew) else Macro.throwUnsupported /-- If `stx` is of the form `{ s₁, ..., sₙ with ... }` and `sᵢ` is not a local variable, expand into `let src := sᵢ; { ..., src, ... with ... }`. Note that this one is not a `Macro` because we need to access the local context. -/ private def expandNonAtomicExplicitSources (stx : Syntax) : TermElabM (Option Syntax) := do let sourcesOpt := stx[1] if sourcesOpt.isNone then pure none else let sources := sourcesOpt[0] if sources.isMissing then throwAbortTerm let sources := sources.getSepArgs if (← sources.allM fun source => return (← isLocalIdent? source).isSome) then return none if sources.any (·.isMissing) then throwAbortTerm go sources.toList #[] where go (sources : List Syntax) (sourcesNew : Array Syntax) : TermElabM Syntax := do match sources with | [] => let sources := Syntax.mkSep sourcesNew (mkAtomFrom stx ", ") return stx.setArg 1 (stx[1].setArg 0 sources) | source :: sources => if (← isLocalIdent? source).isSome then go sources (sourcesNew.push source) else withFreshMacroScope do let sourceNew ← `(src) let r ← go sources (sourcesNew.push sourceNew) `(let src := $source; $r) structure ExplicitSourceInfo where stx : Syntax structName : Name deriving Inhabited inductive Source where | none -- structure instance source has not been provieded | implicit (stx : Syntax) -- `..` | explicit (sources : Array ExplicitSourceInfo) -- `s₁ ... sₙ with` deriving Inhabited def Source.isNone : Source → Bool | Source.none => true | _ => false /-- `optional (atomic (sepBy1 termParser ", " >> " with ")` -/ private def mkSourcesWithSyntax (sources : Array Syntax) : Syntax := let ref := sources[0] let stx := Syntax.mkSep sources (mkAtomFrom ref ", ") mkNullNode #[stx, mkAtomFrom ref "with "] private def getStructSource (structStx : Syntax) : TermElabM Source := withRef structStx do let explicitSource := structStx[1] let implicitSource := structStx[3] if explicitSource.isNone && implicitSource[0].isNone then return Source.none else if explicitSource.isNone then return Source.implicit implicitSource else if implicitSource[0].isNone then let sources ← explicitSource[0].getSepArgs.mapM fun stx => do let some src ← isLocalIdent? stx | unreachable! let srcType ← whnf (← inferType src) tryPostponeIfMVar srcType let structName ← getStructureName srcType return { stx, structName } return Source.explicit sources else throwError "invalid structure instance `with` and `..` cannot be used together" /-- We say a `{ ... }` notation is a `modifyOp` if it contains only one ``` def structInstArrayRef := leading_parser "[" >> termParser >>"]" ``` -/ private def isModifyOp? (stx : Syntax) : TermElabM (Option Syntax) := do let s? ← stx[2].getArgs.foldlM (init := none) fun s? p => /- p is of the form `(group ((structInstFieldAbbrev <|> structInstField) >> optional ", "))` -/ let arg := p[0] if arg.getKind == ``Lean.Parser.Term.structInstField then /- Remark: the syntax for `structInstField` is ``` def structInstLVal := leading_parser (ident <|> numLit <|> structInstArrayRef) >> many (group ("." >> (ident <|> numLit)) <|> structInstArrayRef) def structInstField := leading_parser structInstLVal >> " := " >> termParser ``` -/ let lval := arg[0] let k := lval[0].getKind if k == ``Lean.Parser.Term.structInstArrayRef then match s? with | none => pure (some arg) | some s => if s.getKind == ``Lean.Parser.Term.structInstArrayRef then throwErrorAt arg "invalid \{...} notation, at most one `[..]` at a given level" else throwErrorAt arg "invalid \{...} notation, can't mix field and `[..]` at a given level" else match s? with | none => pure (some arg) | some s => if s.getKind == ``Lean.Parser.Term.structInstArrayRef then throwErrorAt arg "invalid \{...} notation, can't mix field and `[..]` at a given level" else pure s? else pure s? match s? with | none => pure none | some s => if s[0][0].getKind == ``Lean.Parser.Term.structInstArrayRef then pure s? else pure none private def elabModifyOp (stx modifyOp : Syntax) (sources : Array ExplicitSourceInfo) (expectedType? : Option Expr) : TermElabM Expr := do if sources.size > 1 then throwError "invalid \{...} notation, multiple sources and array update is not supported." let cont (val : Syntax) : TermElabM Expr := do let lval := modifyOp[0][0] let idx := lval[1] let self := sources[0].stx let stxNew ← `($(self).modifyOp (idx := $idx) (fun s => $val)) trace[Elab.struct.modifyOp] "{stx}\n===>\n{stxNew}" withMacroExpansion stx stxNew <| elabTerm stxNew expectedType? let rest := modifyOp[0][1] if rest.isNone then cont modifyOp[2] else let s ← `(s) let valFirst := rest[0] let valFirst := if valFirst.getKind == ``Lean.Parser.Term.structInstArrayRef then valFirst else valFirst[1] let restArgs := rest.getArgs let valRest := mkNullNode restArgs[1:restArgs.size] let valField := modifyOp.setArg 0 <| mkNode ``Parser.Term.structInstLVal #[valFirst, valRest] let valSource := mkSourcesWithSyntax #[s] let val := stx.setArg 1 valSource let val := val.setArg 2 <| mkNullNode #[mkNullNode #[valField, mkNullNode]] trace[Elab.struct.modifyOp] "{stx}\nval: {val}" cont val /-- Get structure name. This method triest to postpone execution if the expected type is not available. If the expected type is available and it is a structure, then we use it. Otherwise, we use the type of the first source. -/ private def getStructName (stx : Syntax) (expectedType? : Option Expr) (sourceView : Source) : TermElabM Name := do tryPostponeIfNoneOrMVar expectedType? let useSource : Unit → TermElabM Name := fun _ => do match sourceView, expectedType? with | Source.explicit sources, _ => if sources.size > 1 then throwErrorAt sources[1].stx "invalid \{...} notation, expected type is not known, using the type of the first source, extra sources are not needed" return sources[0].structName | _, some expectedType => throwUnexpectedExpectedType expectedType | _, none => throwUnknownExpectedType match expectedType? with | none => useSource () | some expectedType => let expectedType ← whnf expectedType match expectedType.getAppFn with | Expr.const constName _ _ => unless isStructure (← getEnv) constName do throwError "invalid \{...} notation, structure type expected{indentExpr expectedType}" return constName | _ => useSource () where throwUnknownExpectedType := throwError "invalid \{...} notation, expected type is not known" throwUnexpectedExpectedType type (kind := "expected") := do let type ← instantiateMVars type if type.getAppFn.isMVar then throwUnknownExpectedType else throwError "invalid \{...} notation, {kind} type is not of the form (C ...){indentExpr type}" inductive FieldLHS where | fieldName (ref : Syntax) (name : Name) | fieldIndex (ref : Syntax) (idx : Nat) | modifyOp (ref : Syntax) (index : Syntax) deriving Inhabited instance : ToFormat FieldLHS := ⟨fun lhs => match lhs with | FieldLHS.fieldName _ n => format n | FieldLHS.fieldIndex _ i => format i | FieldLHS.modifyOp _ i => "[" ++ i.prettyPrint ++ "]"⟩ inductive FieldVal (σ : Type) where | term (stx : Syntax) : FieldVal σ | nested (s : σ) : FieldVal σ | default : FieldVal σ -- mark that field must be synthesized using default value deriving Inhabited structure Field (σ : Type) where ref : Syntax lhs : List FieldLHS val : FieldVal σ expr? : Option Expr := none deriving Inhabited def Field.isSimple {σ} : Field σ → Bool | { lhs := [_], .. } => true | _ => false inductive Struct where | mk (ref : Syntax) (structName : Name) (fields : List (Field Struct)) (source : Source) deriving Inhabited abbrev Fields := List (Field Struct) def Struct.ref : Struct → Syntax | ⟨ref, _, _, _⟩ => ref def Struct.structName : Struct → Name | ⟨_, structName, _, _⟩ => structName def Struct.fields : Struct → Fields | ⟨_, _, fields, _⟩ => fields def Struct.source : Struct → Source | ⟨_, _, _, s⟩ => s /-- `true` iff all fields of the given structure are marked as `default` -/ partial def Struct.allDefault (s : Struct) : Bool := s.fields.all fun { val := val, .. } => match val with | FieldVal.term _ => false | FieldVal.default => true | FieldVal.nested s => allDefault s def formatField (formatStruct : Struct → Format) (field : Field Struct) : Format := Format.joinSep field.lhs " . " ++ " := " ++ match field.val with | FieldVal.term v => v.prettyPrint | FieldVal.nested s => formatStruct s | FieldVal.default => "<default>" partial def formatStruct : Struct → Format | ⟨_, structName, fields, source⟩ => let fieldsFmt := Format.joinSep (fields.map (formatField formatStruct)) ", " match source with | Source.none => "{" ++ fieldsFmt ++ "}" | Source.implicit _ => "{" ++ fieldsFmt ++ " .. }" | Source.explicit sources => "{" ++ format (sources.map (·.stx)) ++ " with " ++ fieldsFmt ++ "}" instance : ToFormat Struct := ⟨formatStruct⟩ instance : ToString Struct := ⟨toString ∘ format⟩ instance : ToFormat (Field Struct) := ⟨formatField formatStruct⟩ instance : ToString (Field Struct) := ⟨toString ∘ format⟩ /- Recall that `structInstField` elements have the form ``` def structInstField := leading_parser structInstLVal >> " := " >> termParser def structInstLVal := leading_parser (ident <|> numLit <|> structInstArrayRef) >> many (("." >> (ident <|> numLit)) <|> structInstArrayRef) def structInstArrayRef := leading_parser "[" >> termParser >>"]" ``` -/ -- Remark: this code relies on the fact that `expandStruct` only transforms `fieldLHS.fieldName` def FieldLHS.toSyntax (first : Bool) : FieldLHS → Syntax | FieldLHS.modifyOp stx _ => stx | FieldLHS.fieldName stx name => if first then mkIdentFrom stx name else mkGroupNode #[mkAtomFrom stx ".", mkIdentFrom stx name] | FieldLHS.fieldIndex stx _ => if first then stx else mkGroupNode #[mkAtomFrom stx ".", stx] def FieldVal.toSyntax : FieldVal Struct → Syntax | FieldVal.term stx => stx | _ => unreachable! def Field.toSyntax : Field Struct → Syntax | field => let stx := field.ref let stx := stx.setArg 2 field.val.toSyntax match field.lhs with | first::rest => stx.setArg 0 <| mkNullNode #[first.toSyntax true, mkNullNode <| rest.toArray.map (FieldLHS.toSyntax false) ] | _ => unreachable! private def toFieldLHS (stx : Syntax) : MacroM FieldLHS := if stx.getKind == ``Lean.Parser.Term.structInstArrayRef then return FieldLHS.modifyOp stx stx[1] else -- Note that the representation of the first field is different. let stx := if stx.getKind == groupKind then stx[1] else stx if stx.isIdent then return FieldLHS.fieldName stx stx.getId.eraseMacroScopes else match stx.isFieldIdx? with | some idx => return FieldLHS.fieldIndex stx idx | none => Macro.throwError "unexpected structure syntax" private def mkStructView (stx : Syntax) (structName : Name) (source : Source) : MacroM Struct := do /- Recall that `stx` is of the form ``` leading_parser "{" >> optional (atomic (sepBy1 termParser ", " >> " with ")) >> manyIndent (group ((structInstFieldAbbrev <|> structInstField) >> optional ", ")) >> optional ".." >> optional (" : " >> termParser) >> " }" ``` This method assumes that `structInstFieldAbbrev` had already been expanded. -/ let fields ← stx[2].getArgs.toList.mapM fun stx => do let fieldStx := stx[0] let val := fieldStx[2] let first ← toFieldLHS fieldStx[0][0] let rest ← fieldStx[0][1].getArgs.toList.mapM toFieldLHS return { ref := fieldStx, lhs := first :: rest, val := FieldVal.term val : Field Struct } return ⟨stx, structName, fields, source⟩ def Struct.modifyFieldsM {m : Type → Type} [Monad m] (s : Struct) (f : Fields → m Fields) : m Struct := match s with | ⟨ref, structName, fields, source⟩ => return ⟨ref, structName, (← f fields), source⟩ def Struct.modifyFields (s : Struct) (f : Fields → Fields) : Struct := Id.run <| s.modifyFieldsM f def Struct.setFields (s : Struct) (fields : Fields) : Struct := s.modifyFields fun _ => fields private def expandCompositeFields (s : Struct) : Struct := s.modifyFields fun fields => fields.map fun field => match field with | { lhs := FieldLHS.fieldName ref (Name.str Name.anonymous _ _) :: rest, .. } => field | { lhs := FieldLHS.fieldName ref n@(Name.str _ _ _) :: rest, .. } => let newEntries := n.components.map <| FieldLHS.fieldName ref { field with lhs := newEntries ++ rest } | _ => field private def expandNumLitFields (s : Struct) : TermElabM Struct := s.modifyFieldsM fun fields => do let env ← getEnv let fieldNames := getStructureFields env s.structName fields.mapM fun field => match field with | { lhs := FieldLHS.fieldIndex ref idx :: rest, .. } => if idx == 0 then throwErrorAt ref "invalid field index, index must be greater than 0" else if idx > fieldNames.size then throwErrorAt ref "invalid field index, structure has only #{fieldNames.size} fields" else pure { field with lhs := FieldLHS.fieldName ref fieldNames[idx - 1] :: rest } | _ => pure field /- For example, consider the following structures: ``` structure A where x : Nat structure B extends A where y : Nat structure C extends B where z : Bool ``` This method expands parent structure fields using the path to the parent structure. For example, ``` { x := 0, y := 0, z := true : C } ``` is expanded into ``` { toB.toA.x := 0, toB.y := 0, z := true : C } ``` -/ private def expandParentFields (s : Struct) : TermElabM Struct := do let env ← getEnv s.modifyFieldsM fun fields => fields.mapM fun field => match field with | { lhs := FieldLHS.fieldName ref fieldName :: rest, .. } => match findField? env s.structName fieldName with | none => throwErrorAt ref "'{fieldName}' is not a field of structure '{s.structName}'" | some baseStructName => if baseStructName == s.structName then pure field else match getPathToBaseStructure? env baseStructName s.structName with | some path => do let path := path.map fun funName => match funName with | Name.str _ s _ => FieldLHS.fieldName ref (Name.mkSimple s) | _ => unreachable! pure { field with lhs := path ++ field.lhs } | _ => throwErrorAt ref "failed to access field '{fieldName}' in parent structure" | _ => pure field private abbrev FieldMap := HashMap Name Fields private def mkFieldMap (fields : Fields) : TermElabM FieldMap := fields.foldlM (init := {}) fun fieldMap field => match field.lhs with | FieldLHS.fieldName _ fieldName :: rest => match fieldMap.find? fieldName with | some (prevField::restFields) => if field.isSimple || prevField.isSimple then throwErrorAt field.ref "field '{fieldName}' has already beed specified" else return fieldMap.insert fieldName (field::prevField::restFields) | _ => return fieldMap.insert fieldName [field] | _ => unreachable! private def isSimpleField? : Fields → Option (Field Struct) | [field] => if field.isSimple then some field else none | _ => none private def getFieldIdx (structName : Name) (fieldNames : Array Name) (fieldName : Name) : TermElabM Nat := do match fieldNames.findIdx? fun n => n == fieldName with | some idx => pure idx | none => throwError "field '{fieldName}' is not a valid field of '{structName}'" def mkProjStx? (s : Syntax) (structName : Name) (fieldName : Name) : TermElabM (Option Syntax) := do if (← findField? (← getEnv) structName fieldName).isNone then return none return some $ mkNode ``Lean.Parser.Term.proj #[s, mkAtomFrom s ".", mkIdentFrom s fieldName] def findField? (fields : Fields) (fieldName : Name) : Option (Field Struct) := fields.find? fun field => match field.lhs with | [FieldLHS.fieldName _ n] => n == fieldName | _ => false mutual private partial def groupFields (s : Struct) : TermElabM Struct := do let env ← getEnv let fieldNames := getStructureFields env s.structName withRef s.ref do s.modifyFieldsM fun fields => do let fieldMap ← mkFieldMap fields fieldMap.toList.mapM fun ⟨fieldName, fields⟩ => do match isSimpleField? fields with | some field => pure field | none => let substructFields := fields.map fun field => { field with lhs := field.lhs.tail! } let field := fields.head! match Lean.isSubobjectField? env s.structName fieldName with | some substructName => let substruct := Struct.mk s.ref substructName substructFields s.source let substruct ← expandStruct substruct pure { field with lhs := [field.lhs.head!], val := FieldVal.nested substruct } | none => do let updateSource (structStx : Syntax) : TermElabM Syntax := do match s.source with | Source.none => return (structStx.setArg 1 mkNullNode).setArg 3 mkNullNode | Source.implicit stx => return (structStx.setArg 1 mkNullNode).setArg 3 stx | Source.explicit sources => let sourcesNew ← sources.filterMapM fun source => mkProjStx? source.stx source.structName fieldName if sourcesNew.isEmpty then return (structStx.setArg 1 mkNullNode).setArg 3 mkNullNode else return (structStx.setArg 1 (mkSourcesWithSyntax sourcesNew)).setArg 3 mkNullNode let valStx := s.ref -- construct substructure syntax using s.ref as template let valStx := valStx.setArg 4 mkNullNode -- erase optional expected type let args := substructFields.toArray.map fun field => mkNullNode #[field.toSyntax, mkNullNode] let valStx := valStx.setArg 2 (mkNullNode args) let valStx ← updateSource valStx pure { field with lhs := [field.lhs.head!], val := FieldVal.term valStx } private partial def addMissingFields (s : Struct) : TermElabM Struct := do let env ← getEnv let fieldNames := getStructureFields env s.structName let ref := s.ref withRef ref do let fields ← fieldNames.foldlM (init := []) fun fields fieldName => do match findField? s.fields fieldName with | some field => return field::fields | none => let addField (val : FieldVal Struct) : TermElabM Fields := do return { ref := s.ref, lhs := [FieldLHS.fieldName s.ref fieldName], val := val } :: fields match Lean.isSubobjectField? env s.structName fieldName with | some substructName => do let addSubstruct : TermElabM Fields := do let substruct := Struct.mk s.ref substructName [] s.source let substruct ← expandStruct substruct addField (FieldVal.nested substruct) match s.source with | Source.none => addSubstruct | Source.implicit _ => addSubstruct | Source.explicit sources => -- If one of the sources has the subobject field, use it if let some val ← sources.findSomeM? fun source => mkProjStx? source.stx source.structName fieldName then addField (FieldVal.term val) else addSubstruct | none => match s.source with | Source.none => addField FieldVal.default | Source.implicit _ => addField (FieldVal.term (mkHole s.ref)) | Source.explicit sources => if let some val ← sources.findSomeM? fun source => mkProjStx? source.stx source.structName fieldName then addField (FieldVal.term val) else addField FieldVal.default return s.setFields fields.reverse private partial def expandStruct (s : Struct) : TermElabM Struct := do let s := expandCompositeFields s let s ← expandNumLitFields s let s ← expandParentFields s let s ← groupFields s addMissingFields s end structure CtorHeaderResult where ctorFn : Expr ctorFnType : Expr instMVars : Array MVarId := #[] private def mkCtorHeaderAux : Nat → Expr → Expr → Array MVarId → TermElabM CtorHeaderResult | 0, type, ctorFn, instMVars => pure { ctorFn := ctorFn, ctorFnType := type, instMVars := instMVars } | n+1, type, ctorFn, instMVars => do let type ← whnfForall type match type with | Expr.forallE _ d b c => match c.binderInfo with | BinderInfo.instImplicit => let a ← mkFreshExprMVar d MetavarKind.synthetic mkCtorHeaderAux n (b.instantiate1 a) (mkApp ctorFn a) (instMVars.push a.mvarId!) | _ => let a ← mkFreshExprMVar d mkCtorHeaderAux n (b.instantiate1 a) (mkApp ctorFn a) instMVars | _ => throwError "unexpected constructor type" private partial def getForallBody : Nat → Expr → Option Expr | i+1, Expr.forallE _ _ b _ => getForallBody i b | i+1, _ => none | 0, type => type private def propagateExpectedType (type : Expr) (numFields : Nat) (expectedType? : Option Expr) : TermElabM Unit := match expectedType? with | none => pure () | some expectedType => do match getForallBody numFields type with | none => pure () | some typeBody => unless typeBody.hasLooseBVars do discard <| isDefEq expectedType typeBody private def mkCtorHeader (ctorVal : ConstructorVal) (expectedType? : Option Expr) : TermElabM CtorHeaderResult := do let us ← mkFreshLevelMVars ctorVal.levelParams.length let val := Lean.mkConst ctorVal.name us let type := (ConstantInfo.ctorInfo ctorVal).instantiateTypeLevelParams us let r ← mkCtorHeaderAux ctorVal.numParams type val #[] propagateExpectedType r.ctorFnType ctorVal.numFields expectedType? synthesizeAppInstMVars r.instMVars r.ctorFn pure r def markDefaultMissing (e : Expr) : Expr := mkAnnotation `structInstDefault e def defaultMissing? (e : Expr) : Option Expr := annotation? `structInstDefault e def throwFailedToElabField {α} (fieldName : Name) (structName : Name) (msgData : MessageData) : TermElabM α := throwError "failed to elaborate field '{fieldName}' of '{structName}, {msgData}" def trySynthStructInstance? (s : Struct) (expectedType : Expr) : TermElabM (Option Expr) := do if !s.allDefault then pure none else try synthInstance? expectedType catch _ => pure none private partial def elabStruct (s : Struct) (expectedType? : Option Expr) : TermElabM (Expr × Struct) := withRef s.ref do let env ← getEnv let ctorVal := getStructureCtor env s.structName let { ctorFn := ctorFn, ctorFnType := ctorFnType, .. } ← mkCtorHeader ctorVal expectedType? let (e, _, fields) ← s.fields.foldlM (init := (ctorFn, ctorFnType, [])) fun (e, type, fields) field => match field.lhs with | [FieldLHS.fieldName ref fieldName] => do let type ← whnfForall type trace[Elab.struct] "elabStruct {field}, {type}" match type with | Expr.forallE _ d b _ => let cont (val : Expr) (field : Field Struct) : TermElabM (Expr × Expr × Fields) := do pushInfoTree <| InfoTree.node (children := {}) <| Info.ofFieldInfo { projName := s.structName.append fieldName, fieldName, lctx := (← getLCtx), val, stx := ref } let e := mkApp e val let type := b.instantiate1 val let field := { field with expr? := some val } pure (e, type, field::fields) match field.val with | FieldVal.term stx => cont (← elabTermEnsuringType stx d) field | FieldVal.nested s => do -- if all fields of `s` are marked as `default`, then try to synthesize instance match (← trySynthStructInstance? s d) with | some val => cont val { field with val := FieldVal.term (mkHole field.ref) } | none => do let (val, sNew) ← elabStruct s (some d); let val ← ensureHasType d val; cont val { field with val := FieldVal.nested sNew } | FieldVal.default => do match d.getAutoParamTactic? with | some (Expr.const tacticDecl ..) => match evalSyntaxConstant env (← getOptions) tacticDecl with | Except.error err => throwError err | Except.ok tacticSyntax => let stx ← `(by $tacticSyntax) cont (← elabTermEnsuringType stx (d.getArg! 0)) field | _ => let val ← withRef field.ref <| mkFreshExprMVar (some d) cont (markDefaultMissing val) field | _ => withRef field.ref <| throwFailedToElabField fieldName s.structName m!"unexpected constructor type{indentExpr type}" | _ => throwErrorAt field.ref "unexpected unexpanded structure field" pure (e, s.setFields fields.reverse) namespace DefaultFields structure Context where -- We must search for default values overriden in derived structures structs : Array Struct := #[] allStructNames : Array Name := #[] /-- Consider the following example: ``` structure A where x : Nat := 1 structure B extends A where y : Nat := x + 1 x := y + 1 structure C extends B where z : Nat := 2*y x := z + 3 ``` And we are trying to elaborate a structure instance for `C`. There are default values for `x` at `A`, `B`, and `C`. We say the default value at `C` has distance 0, the one at `B` distance 1, and the one at `A` distance 2. The field `maxDistance` specifies the maximum distance considered in a round of Default field computation. Remark: since `C` does not set a default value of `y`, the default value at `B` is at distance 0. The fixpoint for setting default values works in the following way. - Keep computing default values using `maxDistance == 0`. - We increase `maxDistance` whenever we failed to compute a new default value in a round. - If `maxDistance > 0`, then we interrupt a round as soon as we compute some default value. We use depth-first search. - We sign an error if no progress is made when `maxDistance` == structure hierarchy depth (2 in the example above). -/ maxDistance : Nat := 0 structure State where progress : Bool := false partial def collectStructNames (struct : Struct) (names : Array Name) : Array Name := let names := names.push struct.structName struct.fields.foldl (init := names) fun names field => match field.val with | FieldVal.nested struct => collectStructNames struct names | _ => names partial def getHierarchyDepth (struct : Struct) : Nat := struct.fields.foldl (init := 0) fun max field => match field.val with | FieldVal.nested struct => Nat.max max (getHierarchyDepth struct + 1) | _ => max partial def findDefaultMissing? (mctx : MetavarContext) (struct : Struct) : Option (Field Struct) := struct.fields.findSome? fun field => match field.val with | FieldVal.nested struct => findDefaultMissing? mctx struct | _ => match field.expr? with | none => unreachable! | some expr => match defaultMissing? expr with | some (Expr.mvar mvarId _) => if mctx.isExprAssigned mvarId then none else some field | _ => none def getFieldName (field : Field Struct) : Name := match field.lhs with | [FieldLHS.fieldName _ fieldName] => fieldName | _ => unreachable! abbrev M := ReaderT Context (StateRefT State TermElabM) def isRoundDone : M Bool := do return (← get).progress && (← read).maxDistance > 0 def getFieldValue? (struct : Struct) (fieldName : Name) : Option Expr := struct.fields.findSome? fun field => if getFieldName field == fieldName then field.expr? else none partial def mkDefaultValueAux? (struct : Struct) : Expr → TermElabM (Option Expr) | Expr.lam n d b c => withRef struct.ref do if c.binderInfo.isExplicit then let fieldName := n match getFieldValue? struct fieldName with | none => pure none | some val => let valType ← inferType val if (← isDefEq valType d) then mkDefaultValueAux? struct (b.instantiate1 val) else pure none else let arg ← mkFreshExprMVar d mkDefaultValueAux? struct (b.instantiate1 arg) | e => if e.isAppOfArity ``id 2 then pure (some e.appArg!) else pure (some e) def mkDefaultValue? (struct : Struct) (cinfo : ConstantInfo) : TermElabM (Option Expr) := withRef struct.ref do let us ← mkFreshLevelMVarsFor cinfo mkDefaultValueAux? struct (cinfo.instantiateValueLevelParams us) /-- Reduce default value. It performs beta reduction and projections of the given structures. -/ partial def reduce (structNames : Array Name) (e : Expr) : MetaM Expr := do -- trace[Elab.struct] "reduce {e}" match e with | Expr.lam .. => lambdaLetTelescope e fun xs b => do mkLambdaFVars xs (← reduce structNames b) | Expr.forallE .. => forallTelescope e fun xs b => do mkForallFVars xs (← reduce structNames b) | Expr.letE .. => lambdaLetTelescope e fun xs b => do mkLetFVars xs (← reduce structNames b) | Expr.proj _ i b _ => do match (← Meta.project? b i) with | some r => reduce structNames r | none => return e.updateProj! (← reduce structNames b) | Expr.app f .. => do match (← reduceProjOf? e structNames.contains) with | some r => reduce structNames r | none => let f := f.getAppFn let f' ← reduce structNames f if f'.isLambda then let revArgs := e.getAppRevArgs reduce structNames (f'.betaRev revArgs) else let args ← e.getAppArgs.mapM (reduce structNames) return (mkAppN f' args) | Expr.mdata _ b _ => do let b ← reduce structNames b if (defaultMissing? e).isSome && !b.isMVar then return b else return e.updateMData! b | Expr.mvar mvarId _ => do match (← getExprMVarAssignment? mvarId) with | some val => if val.isMVar then pure val else reduce structNames val | none => return e | e => return e partial def tryToSynthesizeDefault (structs : Array Struct) (allStructNames : Array Name) (maxDistance : Nat) (fieldName : Name) (mvarId : MVarId) : TermElabM Bool := let rec loop (i : Nat) (dist : Nat) := do if dist > maxDistance then pure false else if h : i < structs.size then do let struct := structs.get ⟨i, h⟩ match getDefaultFnForField? (← getEnv) struct.structName fieldName with | some defFn => let cinfo ← getConstInfo defFn let mctx ← getMCtx let val? ← mkDefaultValue? struct cinfo match val? with | none => do setMCtx mctx; loop (i+1) (dist+1) | some val => do let val ← reduce allStructNames val match val.find? fun e => (defaultMissing? e).isSome with | some _ => setMCtx mctx; loop (i+1) (dist+1) | none => let mvarDecl ← getMVarDecl mvarId let val ← ensureHasType mvarDecl.type val assignExprMVar mvarId val pure true | _ => loop (i+1) dist else pure false loop 0 0 partial def step (struct : Struct) : M Unit := unless (← isRoundDone) do withReader (fun ctx => { ctx with structs := ctx.structs.push struct }) do for field in struct.fields do match field.val with | FieldVal.nested struct => step struct | _ => match field.expr? with | none => unreachable! | some expr => match defaultMissing? expr with | some (Expr.mvar mvarId _) => unless (← isExprMVarAssigned mvarId) do let ctx ← read if (← withRef field.ref <| tryToSynthesizeDefault ctx.structs ctx.allStructNames ctx.maxDistance (getFieldName field) mvarId) then modify fun s => { s with progress := true } | _ => pure () partial def propagateLoop (hierarchyDepth : Nat) (d : Nat) (struct : Struct) : M Unit := do match findDefaultMissing? (← getMCtx) struct with | none => pure () -- Done | some field => trace[Elab.struct] "propagate [{d}] [field := {field}]: {struct}" if d > hierarchyDepth then throwErrorAt field.ref "field '{getFieldName field}' is missing" else withReader (fun ctx => { ctx with maxDistance := d }) do modify fun s => { s with progress := false } step struct if (← get).progress then do propagateLoop hierarchyDepth 0 struct else propagateLoop hierarchyDepth (d+1) struct def propagate (struct : Struct) : TermElabM Unit := let hierarchyDepth := getHierarchyDepth struct let structNames := collectStructNames struct #[] (propagateLoop hierarchyDepth 0 struct { allStructNames := structNames }).run' {} end DefaultFields private def elabStructInstAux (stx : Syntax) (expectedType? : Option Expr) (source : Source) : TermElabM Expr := do let structName ← getStructName stx expectedType? source let struct ← liftMacroM <| mkStructView stx structName source let struct ← expandStruct struct trace[Elab.struct] "{struct}" /- We try to synthesize pending problems with `withSynthesize` combinator before trying to use default values. This is important in examples such as ``` structure MyStruct where {α : Type u} {β : Type v} a : α b : β #check { a := 10, b := true : MyStruct } ``` were the `α` will remain "unknown" until the default instance for `OfNat` is used to ensure that `10` is a `Nat`. TODO: investigate whether this design decision may have unintended side effects or produce confusing behavior. -/ let (r, struct) ← withSynthesize (mayPostpone := true) <| elabStruct struct expectedType? trace[Elab.struct] "before propagate {r}" DefaultFields.propagate struct return r /-- Structure instance. `{ x := e, ... }` assigns `e` to field `x`, which may be inherited. If `e` is itself a variable called `x`, it can be elided: `fun y => { x := 1, y }`. A *structure update* of an existing value can be given via `with`: `{ point with x := 1 }`. The structure type can be specified if not inferable: `{ x := 1, y := 2 : Point }`. -/ @[builtinTermElab structInst] def elabStructInst : TermElab := fun stx expectedType? => do match (← expandNonAtomicExplicitSources stx) with | some stxNew => withMacroExpansion stx stxNew <| elabTerm stxNew expectedType? | none => let sourceView ← getStructSource stx match (← isModifyOp? stx), sourceView with | some modifyOp, Source.explicit sources => elabModifyOp stx modifyOp sources expectedType? | some _, _ => throwError "invalid \{...} notation, explicit source is required when using '[<index>] := <value>'" | _, _ => elabStructInstAux stx expectedType? sourceView builtin_initialize registerTraceClass `Elab.struct end Lean.Elab.Term.StructInst
a49af7809caf59e955a66e1927a9e325b1669726
2cf781335f4a6706b7452ab07ce323201e2e101f
/lean/list/lemmas.lean
6f2cb0c78297b4a89b08b0346afc6b3ceccb7cac
[ "Apache-2.0" ]
permissive
simonjwinwood/reopt-vcg
697cdd5e68366b5aa3298845eebc34fc97ccfbe2
6aca24e759bff4f2230bb58270bac6746c13665e
refs/heads/master
1,586,353,878,347
1,549,667,148,000
1,549,667,148,000
159,409,828
0
0
null
1,543,358,444,000
1,543,358,444,000
null
UTF-8
Lean
false
false
1,493
lean
/- Copyright (c) 2018 Galois. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Additional lemmas for lists. This is a work-in-progress, and contains additions to other theories. -/ import tactic.find import ..tactic open nat section reverse universes u lemma reverse_core_step {α : Type u} (x : α) (xs : list α) (ys : list α) : list.reverse_core (x::ys) xs = list.reverse_core ys [] ++ x::xs := begin induction ys with y ys ih generalizing x xs, case list.nil { simp [list.reverse_core], }, case list.cons { rw [ih], simp [list.reverse_core], rw [←ih], simp [list.reverse_core], }, end lemma reverse_length_nil {α : Type u} (xs : list α) : list.length (list.reverse_core xs list.nil) = list.length xs := begin induction xs with x xs ih, case list.nil { simp [list.reverse_core], }, case list.cons { simp [reverse_core_step], rw ih, }, end @[simp] lemma length_reverse {α : Type u} {x : list α} : list.length (list.reverse x) = list.length x := begin simp [list.reverse], apply reverse_length_nil, end lemma reverse_step (α : Type u) (x : α) (ys : list α) : list.reverse (x :: ys) = list.reverse ys ++ [x] := begin induction ys with y ys ih, case list.nil { simp [list.reverse, list.reverse_core] }, case list.cons { simp [list.reverse], rw reverse_core_step, }, end end reverse
1f1bfdc803dc138ba315e33c30ff0d9ffd858db1
46125763b4dbf50619e8846a1371029346f4c3db
/src/field_theory/splitting_field.lean
ab2558f2fad5a92b4e80020a7fe841445fa5b51e
[ "Apache-2.0" ]
permissive
thjread/mathlib
a9d97612cedc2c3101060737233df15abcdb9eb1
7cffe2520a5518bba19227a107078d83fa725ddc
refs/heads/master
1,615,637,696,376
1,583,953,063,000
1,583,953,063,000
246,680,271
0
0
Apache-2.0
1,583,960,875,000
1,583,960,875,000
null
UTF-8
Lean
false
false
7,771
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes Definition of splitting fields, and definition of homomorphism into any field that splits -/ import ring_theory.unique_factorization_domain import data.polynomial ring_theory.principal_ideal_domain algebra.euclidean_domain local attribute [instance, priority 100000] is_ring_hom.id universes u v w variables {α : Type u} {β : Type v} {γ : Type w} namespace polynomial noncomputable theory open_locale classical variables [field α] [field β] [field γ] open polynomial section splits variables (i : α → β) [is_ring_hom i] /-- a polynomial `splits` iff it is zero or all of its irreducible factors have `degree` 1 -/ def splits (f : polynomial α) : Prop := f = 0 ∨ ∀ {g : polynomial β}, irreducible g → g ∣ f.map i → degree g = 1 @[simp] lemma splits_zero : splits i (0 : polynomial α) := or.inl rfl @[simp] lemma splits_C (a : α) : splits i (C a) := if ha : a = 0 then ha.symm ▸ (@C_0 α _).symm ▸ splits_zero i else have hia : i a ≠ 0, from mt ((is_add_group_hom.injective_iff i).1 (is_ring_hom.injective i) _) ha, or.inr $ λ g hg ⟨p, hp⟩, absurd hg.1 (classical.not_not.2 (is_unit_iff_degree_eq_zero.2 $ by have := congr_arg degree hp; simp [degree_C hia, @eq_comm (with_bot ℕ) 0, nat.with_bot.add_eq_zero_iff] at this; clear _fun_match; tautology)) lemma splits_of_degree_eq_one {f : polynomial α} (hf : degree f = 1) : splits i f := or.inr $ λ g hg ⟨p, hp⟩, by have := congr_arg degree hp; simp [nat.with_bot.add_eq_one_iff, hf, @eq_comm (with_bot ℕ) 1, mt is_unit_iff_degree_eq_zero.2 hg.1] at this; clear _fun_match; tauto lemma splits_of_degree_le_one {f : polynomial α} (hf : degree f ≤ 1) : splits i f := begin cases h : degree f with n, { rw [degree_eq_bot.1 h]; exact splits_zero i }, { cases n with n, { rw [eq_C_of_degree_le_zero (trans_rel_right (≤) h (le_refl _))]; exact splits_C _ _ }, { have hn : n = 0, { rw h at hf, cases n, { refl }, { exact absurd hf dec_trivial } }, exact splits_of_degree_eq_one _ (by rw [h, hn]; refl) } } end lemma splits_mul {f g : polynomial α} (hf : splits i f) (hg : splits i g) : splits i (f * g) := if h : f * g = 0 then by simp [h] else or.inr $ λ p hp hpf, ((principal_ideal_domain.irreducible_iff_prime.1 hp).2.2 _ _ (show p ∣ map i f * map i g, by convert hpf; rw polynomial.map_mul)).elim (hf.resolve_left (λ hf, by simpa [hf] using h) hp) (hg.resolve_left (λ hg, by simpa [hg] using h) hp) lemma splits_of_splits_mul {f g : polynomial α} (hfg : f * g ≠ 0) (h : splits i (f * g)) : splits i f ∧ splits i g := ⟨or.inr $ λ g hgi hg, or.resolve_left h hfg hgi (by rw map_mul; exact dvd.trans hg (dvd_mul_right _ _)), or.inr $ λ g hgi hg, or.resolve_left h hfg hgi (by rw map_mul; exact dvd.trans hg (dvd_mul_left _ _))⟩ lemma splits_map_iff (j : β → γ) [is_ring_hom j] {f : polynomial α} : splits j (f.map i) ↔ splits (λ x, j (i x)) f := by simp [splits, polynomial.map_map] lemma exists_root_of_splits {f : polynomial α} (hs : splits i f) (hf0 : degree f ≠ 0) : ∃ x, eval₂ i x f = 0 := if hf0 : f = 0 then ⟨37, by simp [hf0]⟩ else let ⟨g, hg⟩ := is_noetherian_ring.exists_irreducible_factor (show ¬ is_unit (f.map i), from mt is_unit_iff_degree_eq_zero.1 (by rwa degree_map)) (by rw [ne.def, map_eq_zero]; exact hf0) in let ⟨x, hx⟩ := exists_root_of_degree_eq_one (hs.resolve_left hf0 hg.1 hg.2) in let ⟨i, hi⟩ := hg.2 in ⟨x, by rw [← eval_map, hi, eval_mul, show _ = _, from hx, zero_mul]⟩ lemma exists_multiset_of_splits {f : polynomial α} : splits i f → ∃ (s : multiset β), f.map i = C (i f.leading_coeff) * (s.map (λ a : β, (X : polynomial β) - C a)).prod := suffices splits id (f.map i) → ∃ s : multiset β, f.map i = (C (f.map i).leading_coeff) * (s.map (λ a : β, (X : polynomial β) - C a)).prod, by rwa [splits_map_iff, leading_coeff_map i] at this, is_noetherian_ring.irreducible_induction_on (f.map i) (λ _, ⟨{37}, by simp [is_ring_hom.map_zero i]⟩) (λ u hu _, ⟨0, by conv_lhs { rw eq_C_of_degree_eq_zero (is_unit_iff_degree_eq_zero.1 hu) }; simp [leading_coeff, nat_degree_eq_of_degree_eq_some (is_unit_iff_degree_eq_zero.1 hu)]⟩) (λ f p hf0 hp ih hfs, have hpf0 : p * f ≠ 0, from mul_ne_zero hp.ne_zero hf0, let ⟨s, hs⟩ := ih (splits_of_splits_mul _ hpf0 hfs).2 in ⟨-(p * norm_unit p).coeff 0 :: s, have hp1 : degree p = 1, from hfs.resolve_left hpf0 hp (by simp), begin rw [multiset.map_cons, multiset.prod_cons, leading_coeff_mul, C_mul, mul_assoc, mul_left_comm (C f.leading_coeff), ← hs, ← mul_assoc, domain.mul_right_inj hf0], conv_lhs {rw eq_X_add_C_of_degree_eq_one hp1}, simp only [mul_add, coe_norm_unit hp.ne_zero, mul_comm p, coeff_neg, C_neg, sub_eq_add_neg, neg_neg, coeff_C_mul, (mul_assoc _ _ _).symm, C_mul.symm, mul_inv_cancel (show p.leading_coeff ≠ 0, from mt leading_coeff_eq_zero.1 hp.ne_zero), one_mul], end⟩) section UFD local attribute [instance, priority 10] principal_ideal_domain.to_unique_factorization_domain local infix ` ~ᵤ ` : 50 := associated open unique_factorization_domain associates lemma splits_of_exists_multiset {f : polynomial α} {s : multiset β} (hs : f.map i = C (i f.leading_coeff) * (s.map (λ a : β, (X : polynomial β) - C a)).prod) : splits i f := if hf0 : f = 0 then or.inl hf0 else or.inr $ λ p hp hdp, have ht : multiset.rel associated (factors (f.map i)) (s.map (λ a : β, (X : polynomial β) - C a)) := unique (λ p hp, irreducible_factors (mt (map_eq_zero i).1 hf0) _ hp) (λ p, by simp [@eq_comm _ _ p, -sub_eq_add_neg, irreducible_of_degree_eq_one (degree_X_sub_C _)] {contextual := tt}) (associated.symm $ calc _ ~ᵤ f.map i : ⟨(units.map' C : units β →* units (polynomial β)) (units.mk0 (f.map i).leading_coeff (mt leading_coeff_eq_zero.1 (mt (map_eq_zero i).1 hf0))), by conv_rhs {rw [hs, ← leading_coeff_map i, mul_comm]}; refl⟩ ... ~ᵤ _ : associated.symm (unique_factorization_domain.factors_prod (by simpa using hf0))), let ⟨q, hq, hpq⟩ := exists_mem_factors_of_dvd (by simpa) hp hdp in let ⟨q', hq', hqq'⟩ := multiset.exists_mem_of_rel_of_mem ht hq in let ⟨a, ha⟩ := multiset.mem_map.1 hq' in by rw [← degree_X_sub_C a, ha.2]; exact degree_eq_degree_of_associated (hpq.trans hqq') lemma splits_of_splits_id {f : polynomial α} : splits id f → splits i f := unique_factorization_domain.induction_on_prime f (λ _, splits_zero _) (λ _ hu _, splits_of_degree_le_one _ ((is_unit_iff_degree_eq_zero.1 hu).symm ▸ dec_trivial)) (λ a p ha0 hp ih hfi, splits_mul _ (splits_of_degree_eq_one _ ((splits_of_splits_mul _ (mul_ne_zero hp.1 ha0) hfi).1.resolve_left hp.1 (irreducible_of_prime hp) (by rw map_id))) (ih (splits_of_splits_mul _ (mul_ne_zero hp.1 ha0) hfi).2)) end UFD lemma splits_iff_exists_multiset {f : polynomial α} : splits i f ↔ ∃ (s : multiset β), f.map i = C (i f.leading_coeff) * (s.map (λ a : β, (X : polynomial β) - C a)).prod := ⟨exists_multiset_of_splits i, λ ⟨s, hs⟩, splits_of_exists_multiset i hs⟩ lemma splits_comp_of_splits (j : β → γ) [is_ring_hom j] {f : polynomial α} (h : splits i f) : splits (λ x, j (i x)) f := begin change i with (λ x, id (i x)) at h, rw [← splits_map_iff], rw [← splits_map_iff i id] at h, exact splits_of_splits_id _ h end end splits end polynomial
3125ff7f11f1c43c59b81475ed5d867531fcb12d
e00ea76a720126cf9f6d732ad6216b5b824d20a7
/src/topology/algebra/ordered.lean
71ab346d975642f8878f2d21ce902253f2bff08d
[ "Apache-2.0" ]
permissive
vaibhavkarve/mathlib
a574aaf68c0a431a47fa82ce0637f0f769826bfe
17f8340912468f49bdc30acdb9a9fa02eeb0473a
refs/heads/master
1,621,263,802,637
1,585,399,588,000
1,585,399,588,000
250,833,447
0
0
Apache-2.0
1,585,410,341,000
1,585,410,341,000
null
UTF-8
Lean
false
false
78,145
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov -/ import tactic.tfae import order.liminf_limsup import data.set.intervals import topology.algebra.group import topology.constructions /-! # Theory of topology on ordered spaces ## Main definitions The order topology on an ordered space is the topology generated by all open intervals (or equivalently by those of the form `(-∞, a)` and `(b, +∞)`). We define it as `preorder.topology α`. However, we do *not* register it as an instance (as many existing ordered types already have topologies, which would be equal but not definitionally equal to `preorder.topology α`). Instead, we introduce a class `order_topology α`(which is a `Prop`, also known as a mixin) saying that on the type `α` having already a topological space structure and a preorder structure, the topological structure is equal to the order topology. We also introduce another (mixin) class `order_closed_topology α` saying that the set of points `(x, y)` with `x ≤ y` is closed in the product space. This is automatically satisfied on a linear order with the order topology. We prove many basic properties of such topologies. ## Main statements This file contains the proofs of the following facts. For exact requirements (`order_closed_topology` vs `order_topology`, `preorder` vs `partial_order` vs `linear_order` etc) see their statements. ### Open / closed sets * `is_open_lt` : if `f` and `g` are continuous functions, then `{x | f x < g x}` is open; * `is_open_Iio`, `is_open_Ioi`, `is_open_Ioo` : open intervals are open; * `is_closed_le` : if `f` and `g` are continuous functions, then `{x | f x ≤ g x}` is closed; * `is_closed_Iic`, `is_closed_Ici`, `is_closed_Icc` : closed intervals are closed; * `frontier_le_subset_eq`, `frontier_lt_subset_eq` : frontiers of both `{x | f x ≤ g x}` and `{x | f x < g x}` are included by `{x | f x = g x}`; * `exists_Ioc_subset_of_mem_nhds`, `exists_Ico_subset_of_mem_nhds` : if `x < y`, then any neighborhood of `x` includes an interval `[x, z)` for some `z ∈ (x, y]`, and any neighborhood of `y` includes an interval `(z, y]` for some `z ∈ [x, y)`. ### Convergence and inequalities * `le_of_tendsto_of_tendsto` : if `f` converges to `a`, `g` converges to `b`, and eventually `f x ≤ g x`, then `a ≤ b` * `le_of_tendsto`, `ge_of_tendsto` : if `f` converges to `a` and eventually `f x ≤ b` (resp., `b ≤ f x`), then `a ≤ b` (resp., `b ≤ a); ### Min, max, `Sup` and `Inf` * `continuous.min`, `continuous.max`: pointwise `min`/`max` of two continuous functions is continuous. * `tendsto.min`, `tendsto.max` : if `f` tends to `a` and `g` tends to `b`, then their pointwise `min`/`max` tend to `min a b` and `max a b`, respectively. * `tendsto_of_tendsto_of_tendsto_of_le_of_le` : theorem known as squeeze theorem, sandwich theorem, theorem of Carabinieri, and two policemen (and a drunk) theorem; if `g` and `h` both converge to `a`, and eventually `g x ≤ f x ≤ h x`, then `f` converges to `a`. ### Connected sets and Intermediate Value Theorem * `is_connected_I??` : all intervals `I??` are connected, * `is_connected.intermediate_value`, `intermediate_value_univ` : Intermediate Value Theorem for connected sets and connected spaces, respectively; * `intermediate_value_Icc`, `intermediate_value_Icc'`: Intermediate Value Theorem for functions on closed intervals. ### Miscellaneous facts * `compact.exists_forall_le`, `compact.exists_forall_ge` : extreme value theorem, a continuous function on a compact set takes its minimum and maximum values. * `is_closed.Icc_subset_of_forall_mem_nhds_within` : “Continuous induction” principle; if `s ∩ [a, b]` is closed, `a ∈ s`, and for each `x ∈ [a, b) ∩ s` some of its right neighborhoods is included `s`, then `[a, b] ⊆ s`. * `is_closed.Icc_subset_of_forall_exists_gt`, `is_closed.mem_of_ge_of_forall_exists_gt` : two other versions of the “continuous induction” principle. ## Implementation We do _not_ register the order topology as an instance on a preorder (or even on a linear order). Indeed, on many such spaces, a topology has already been constructed in a different way (think of the discrete spaces `ℕ` or `ℤ`, or `ℝ` that could inherit a topology as the completion of `ℚ`), and is in general not defeq to the one generated by the intervals. We make it available as a definition `preorder.topology α` though, that can be registered as an instance when necessary, or for specific types. -/ open classical set filter topological_space open_locale topological_space classical universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- A topology on a set which is both a topological space and a preorder is _order-closed_ if the set of points `(x, y)` with `x ≤ y` is closed in the product space. We introduce this as a mixin. This property is satisfied for the order topology on a linear order, but it can be satisfied more generally, and suffices to derive many interesting properties relating order and topology. -/ class order_closed_topology (α : Type*) [topological_space α] [preorder α] : Prop := (is_closed_le' : is_closed (λp:α×α, p.1 ≤ p.2)) instance : Π [topological_space α], topological_space (order_dual α) := id section order_closed_topology section preorder variables [topological_space α] [preorder α] [t : order_closed_topology α] include t lemma is_closed_le [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : is_closed {b | f b ≤ g b} := continuous_iff_is_closed.mp (hf.prod_mk hg) _ t.is_closed_le' lemma is_closed_le' (a : α) : is_closed {b | b ≤ a} := is_closed_le continuous_id continuous_const lemma is_closed_Iic {a : α} : is_closed (Iic a) := is_closed_le' a lemma is_closed_ge' (a : α) : is_closed {b | a ≤ b} := is_closed_le continuous_const continuous_id lemma is_closed_Ici {a : α} : is_closed (Ici a) := is_closed_ge' a instance : order_closed_topology (order_dual α) := ⟨continuous_swap _ (@order_closed_topology.is_closed_le' α _ _ _)⟩ lemma is_closed_Icc {a b : α} : is_closed (Icc a b) := is_closed_inter is_closed_Ici is_closed_Iic lemma le_of_tendsto_of_tendsto {f g : β → α} {b : filter β} {a₁ a₂ : α} (hb : b ≠ ⊥) (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) (h : ∀ᶠ x in b, f x ≤ g x) : a₁ ≤ a₂ := have tendsto (λb, (f b, g b)) b (𝓝 (a₁, a₂)), by rw [nhds_prod_eq]; exact hf.prod_mk hg, show (a₁, a₂) ∈ {p:α×α | p.1 ≤ p.2}, from mem_of_closed_of_tendsto hb this t.is_closed_le' h lemma le_of_tendsto {f : β → α} {a b : α} {x : filter β} (nt : x ≠ ⊥) (lim : tendsto f x (𝓝 a)) (h : f ⁻¹' {c | c ≤ b} ∈ x) : a ≤ b := le_of_tendsto_of_tendsto nt lim tendsto_const_nhds h lemma ge_of_tendsto {f : β → α} {a b : α} {x : filter β} (nt : x ≠ ⊥) (lim : tendsto f x (𝓝 a)) (h : f ⁻¹' {c | b ≤ c} ∈ x) : b ≤ a := le_of_tendsto_of_tendsto nt tendsto_const_nhds lim h @[simp] lemma closure_le_eq [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : closure {b | f b ≤ g b} = {b | f b ≤ g b} := closure_eq_iff_is_closed.mpr $ is_closed_le hf hg lemma closure_lt_subset_le [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : closure {b | f b < g b} ⊆ {b | f b ≤ g b} := by { rw [←closure_le_eq hf hg], exact closure_mono (λ b, le_of_lt) } lemma continuous_within_at.closure_le [topological_space β] {f g : β → α} {s : set β} {x : β} (hx : x ∈ closure s) (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) (h : ∀ y ∈ s, f y ≤ g y) : f x ≤ g x := begin show (f x, g x) ∈ {p : α × α | p.1 ≤ p.2}, suffices : (f x, g x) ∈ closure {p : α × α | p.1 ≤ p.2}, by rwa ← closure_eq_iff_is_closed.2 (order_closed_topology.is_closed_le' α), exact (continuous_within_at.prod hf hg).mem_closure hx h end end preorder section partial_order variables [topological_space α] [partial_order α] [t : order_closed_topology α] include t private lemma is_closed_eq : is_closed {p : α × α | p.1 = p.2} := by simp [le_antisymm_iff]; exact is_closed_inter t.is_closed_le' (is_closed_le continuous_snd continuous_fst) @[priority 90] -- see Note [lower instance priority] instance order_closed_topology.to_t2_space : t2_space α := { t2 := have is_open {p : α × α | p.1 ≠ p.2}, from is_closed_eq, assume a b h, let ⟨u, v, hu, hv, ha, hb, h⟩ := is_open_prod_iff.mp this a b h in ⟨u, v, hu, hv, ha, hb, set.eq_empty_iff_forall_not_mem.2 $ assume a ⟨h₁, h₂⟩, have a ≠ a, from @h (a, a) ⟨h₁, h₂⟩, this rfl⟩ } end partial_order section linear_order variables [topological_space α] [linear_order α] [order_closed_topology α] lemma is_open_lt [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : is_open {b | f b < g b} := by simp [lt_iff_not_ge, -not_le]; exact is_closed_le hg hf variables {a b : α} lemma is_open_Iio : is_open (Iio a) := is_open_lt continuous_id continuous_const lemma is_open_Ioi : is_open (Ioi a) := is_open_lt continuous_const continuous_id lemma is_open_Ioo : is_open (Ioo a b) := is_open_inter is_open_Ioi is_open_Iio @[simp] lemma interior_Ioi : interior (Ioi a) = Ioi a := interior_eq_of_open is_open_Ioi @[simp] lemma interior_Iio : interior (Iio a) = Iio a := interior_eq_of_open is_open_Iio @[simp] lemma interior_Ioo : interior (Ioo a b) = Ioo a b := interior_eq_of_open is_open_Ioo lemma is_preconnected.forall_Icc_subset {s : set α} (hs : is_preconnected s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) : Icc a b ⊆ s := begin assume x hx, obtain ⟨y, hy, hy'⟩ : (s ∩ ((Iic x) ∩ (Ici x))).nonempty, from is_preconnected_closed_iff.1 hs (Iic x) (Ici x) is_closed_Iic is_closed_Ici (λ y _, le_total y x) ⟨a, ha, hx.1⟩ ⟨b, hb, hx.2⟩, exact le_antisymm hy'.1 hy'.2 ▸ hy end /-- Intermediate Value Theorem for continuous functions on connected sets. -/ lemma is_preconnected.intermediate_value {γ : Type*} [topological_space γ] {s : set γ} (hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f : γ → α} (hf : continuous_on f s) : Icc (f a) (f b) ⊆ f '' s := (hs.image f hf).forall_Icc_subset (mem_image_of_mem f ha) (mem_image_of_mem f hb) /-- Intermediate Value Theorem for continuous functions on connected spaces. -/ lemma intermediate_value_univ {γ : Type*} [topological_space γ] [H : preconnected_space γ] (a b : γ) {f : γ → α} (hf : continuous f) : Icc (f a) (f b) ⊆ range f := @image_univ _ _ f ▸ H.is_preconnected_univ.intermediate_value trivial trivial hf.continuous_on end linear_order section decidable_linear_order variables [topological_space α] [decidable_linear_order α] [order_closed_topology α] {f g : β → α} section variables [topological_space β] (hf : continuous f) (hg : continuous g) include hf hg lemma frontier_le_subset_eq : frontier {b | f b ≤ g b} ⊆ {b | f b = g b} := begin rw [frontier_eq_closure_inter_closure, closure_le_eq hf hg], rintros b ⟨hb₁, hb₂⟩, refine le_antisymm hb₁ (closure_lt_subset_le hg hf _), convert hb₂ using 2, simp only [not_le.symm], refl end lemma frontier_lt_subset_eq : frontier {b | f b < g b} ⊆ {b | f b = g b} := by rw ← frontier_compl; convert frontier_le_subset_eq hg hf; simp [ext_iff, eq_comm] lemma continuous.max : continuous (λb, max (f b) (g b)) := have ∀b∈frontier {b | f b ≤ g b}, g b = f b, from assume b hb, (frontier_le_subset_eq hf hg hb).symm, continuous_if this hg hf lemma continuous.min : continuous (λb, min (f b) (g b)) := have ∀b∈frontier {b | f b ≤ g b}, f b = g b, from assume b hb, frontier_le_subset_eq hf hg hb, continuous_if this hf hg end lemma tendsto.max {b : filter β} {a₁ a₂ : α} (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) : tendsto (λb, max (f b) (g b)) b (𝓝 (max a₁ a₂)) := show tendsto ((λp:α×α, max p.1 p.2) ∘ (λb, (f b, g b))) b (𝓝 (max a₁ a₂)), from tendsto.comp begin rw [←nhds_prod_eq], from continuous_iff_continuous_at.mp (continuous_fst.max continuous_snd) _ end (hf.prod_mk hg) lemma tendsto.min {b : filter β} {a₁ a₂ : α} (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) : tendsto (λb, min (f b) (g b)) b (𝓝 (min a₁ a₂)) := show tendsto ((λp:α×α, min p.1 p.2) ∘ (λb, (f b, g b))) b (𝓝 (min a₁ a₂)), from tendsto.comp begin rw [←nhds_prod_eq], from continuous_iff_continuous_at.mp (continuous_fst.min continuous_snd) _ end (hf.prod_mk hg) end decidable_linear_order end order_closed_topology /-- The order topology on an ordered type is the topology generated by open intervals. We register it on a preorder, but it is mostly interesting in linear orders, where it is also order-closed. We define it as a mixin. If you want to introduce the order topology on a preorder, use `preorder.topology`. -/ class order_topology (α : Type*) [t : topological_space α] [preorder α] : Prop := (topology_eq_generate_intervals : t = generate_from {s | ∃a, s = Ioi a ∨ s = Iio a}) /-- (Order) topology on a partial order `α` generated by the subbase of open intervals `(a, ∞) = { x ∣ a < x }, (-∞ , b) = {x ∣ x < b}` for all `a, b` in `α`. We do not register it as an instance as many ordered sets are already endowed with the same topology, most often in a non-defeq way though. Register as a local instance when necessary. -/ def preorder.topology (α : Type*) [preorder α] : topological_space α := generate_from {s : set α | ∃ (a : α), s = {b : α | a < b} ∨ s = {b : α | b < a}} section order_topology instance {α : Type*} [topological_space α] [partial_order α] [order_topology α] : order_topology (order_dual α) := ⟨by convert @order_topology.topology_eq_generate_intervals α _ _ _; conv in (_ ∨ _) { rw or.comm }; refl⟩ section partial_order variables [topological_space α] [partial_order α] [t : order_topology α] include t lemma is_open_iff_generate_intervals {s : set α} : is_open s ↔ generate_open {s | ∃a, s = Ioi a ∨ s = Iio a} s := by rw [t.topology_eq_generate_intervals]; refl lemma is_open_lt' (a : α) : is_open {b:α | a < b} := by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inl rfl⟩ lemma is_open_gt' (a : α) : is_open {b:α | b < a} := by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inr rfl⟩ lemma lt_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 b, a < x := mem_nhds_sets (is_open_lt' _) h lemma le_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 b, a ≤ x := (𝓝 b).sets_of_superset (lt_mem_nhds h) $ assume b hb, le_of_lt hb lemma gt_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 a, x < b := mem_nhds_sets (is_open_gt' _) h lemma ge_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 a, x ≤ b := (𝓝 a).sets_of_superset (gt_mem_nhds h) $ assume b hb, le_of_lt hb lemma nhds_eq_order (a : α) : 𝓝 a = (⨅b ∈ Iio a, principal (Ioi b)) ⊓ (⨅b ∈ Ioi a, principal (Iio b)) := by rw [t.topology_eq_generate_intervals, nhds_generate_from]; from le_antisymm (le_inf (le_infi $ assume b, le_infi $ assume hb, infi_le_of_le {c : α | b < c} $ infi_le _ ⟨hb, b, or.inl rfl⟩) (le_infi $ assume b, le_infi $ assume hb, infi_le_of_le {c : α | c < b} $ infi_le _ ⟨hb, b, or.inr rfl⟩)) (le_infi $ assume s, le_infi $ assume ⟨ha, b, hs⟩, match s, ha, hs with | _, h, (or.inl rfl) := inf_le_left_of_le $ infi_le_of_le b $ infi_le _ h | _, h, (or.inr rfl) := inf_le_right_of_le $ infi_le_of_le b $ infi_le _ h end) @[nolint ge_or_gt] -- see Note [nolint_ge] lemma tendsto_order {f : β → α} {a : α} {x : filter β} : tendsto f x (𝓝 a) ↔ (∀ a' < a, ∀ᶠ b in x, a' < f b) ∧ (∀ a' > a, ∀ᶠ b in x, f b < a') := by simp [nhds_eq_order a, tendsto_inf, tendsto_infi, tendsto_principal] /-- Also known as squeeze or sandwich theorem. This version assumes that inequalities hold eventually for the filter. -/ lemma tendsto_of_tendsto_of_tendsto_of_le_of_le' {f g h : β → α} {b : filter β} {a : α} (hg : tendsto g b (𝓝 a)) (hh : tendsto h b (𝓝 a)) (hgf : ∀ᶠ b in b, g b ≤ f b) (hfh : ∀ᶠ b in b, f b ≤ h b) : tendsto f b (𝓝 a) := tendsto_order.2 ⟨assume a' h', have ∀ᶠ b in b, a' < g b, from (tendsto_order.1 hg).left a' h', by filter_upwards [this, hgf] assume a, lt_of_lt_of_le, assume a' h', have ∀ᶠ b in b, h b < a', from (tendsto_order.1 hh).right a' h', by filter_upwards [this, hfh] assume a h₁ h₂, lt_of_le_of_lt h₂ h₁⟩ /-- Also known as squeeze or sandwich theorem. This version assumes that inequalities hold everywhere. -/ lemma tendsto_of_tendsto_of_tendsto_of_le_of_le {f g h : β → α} {b : filter β} {a : α} (hg : tendsto g b (𝓝 a)) (hh : tendsto h b (𝓝 a)) (hgf : g ≤ f) (hfh : f ≤ h) : tendsto f b (𝓝 a) := tendsto_of_tendsto_of_tendsto_of_le_of_le' hg hh (eventually_of_forall _ hgf) (eventually_of_forall _ hfh) lemma nhds_order_unbounded {a : α} (hu : ∃u, a < u) (hl : ∃l, l < a) : 𝓝 a = (⨅l (h₂ : l < a) u (h₂ : a < u), principal (Ioo l u)) := let ⟨u, hu⟩ := hu, ⟨l, hl⟩ := hl in calc 𝓝 a = (⨅b<a, principal {c | b < c}) ⊓ (⨅b>a, principal {c | c < b}) : nhds_eq_order a ... = (⨅b<a, principal {c | b < c} ⊓ (⨅b>a, principal {c | c < b})) : binfi_inf hl ... = (⨅l<a, (⨅u>a, principal {c | c < u} ⊓ principal {c | l < c})) : begin congr, funext x, congr, funext hx, rw [inf_comm], apply binfi_inf hu end ... = _ : by simp [inter_comm]; refl lemma tendsto_order_unbounded {f : β → α} {a : α} {x : filter β} (hu : ∃u, a < u) (hl : ∃l, l < a) (h : ∀l u, l < a → a < u → ∀ᶠ b in x, l < f b ∧ f b < u) : tendsto f x (𝓝 a) := by rw [nhds_order_unbounded hu hl]; from (tendsto_infi.2 $ assume l, tendsto_infi.2 $ assume hl, tendsto_infi.2 $ assume u, tendsto_infi.2 $ assume hu, tendsto_principal.2 $ h l u hl hu) end partial_order @[nolint ge_or_gt] -- see Note [nolint_ge] theorem induced_order_topology' {α : Type u} {β : Type v} [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β] (f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y) (H₁ : ∀ {a x}, x < f a → ∃ b < a, x ≤ f b) (H₂ : ∀ {a x}, f a < x → ∃ b > a, f b ≤ x) : @order_topology _ (induced f ta) _ := begin letI := induced f ta, refine ⟨eq_of_nhds_eq_nhds (λ a, _)⟩, rw [nhds_induced, nhds_generate_from, nhds_eq_order (f a)], apply le_antisymm, { refine le_infi (λ s, le_infi $ λ hs, le_principal_iff.2 _), rcases hs with ⟨ab, b, rfl|rfl⟩, { exact mem_comap_sets.2 ⟨{x | f b < x}, mem_inf_sets_of_left $ mem_infi_sets _ $ mem_infi_sets (hf.2 ab) $ mem_principal_self _, λ x, hf.1⟩ }, { exact mem_comap_sets.2 ⟨{x | x < f b}, mem_inf_sets_of_right $ mem_infi_sets _ $ mem_infi_sets (hf.2 ab) $ mem_principal_self _, λ x, hf.1⟩ } }, { rw [← map_le_iff_le_comap], refine le_inf _ _; refine le_infi (λ x, le_infi $ λ h, le_principal_iff.2 _); simp, { rcases H₁ h with ⟨b, ab, xb⟩, refine mem_infi_sets _ (mem_infi_sets ⟨ab, b, or.inl rfl⟩ (mem_principal_sets.2 _)), exact λ c hc, lt_of_le_of_lt xb (hf.2 hc) }, { rcases H₂ h with ⟨b, ab, xb⟩, refine mem_infi_sets _ (mem_infi_sets ⟨ab, b, or.inr rfl⟩ (mem_principal_sets.2 _)), exact λ c hc, lt_of_lt_of_le (hf.2 hc) xb } }, end theorem induced_order_topology {α : Type u} {β : Type v} [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β] (f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y) (H : ∀ {x y}, x < y → ∃ a, x < f a ∧ f a < y) : @order_topology _ (induced f ta) _ := induced_order_topology' f @hf (λ a x xa, let ⟨b, xb, ba⟩ := H xa in ⟨b, hf.1 ba, le_of_lt xb⟩) (λ a x ax, let ⟨b, ab, bx⟩ := H ax in ⟨b, hf.1 ab, le_of_lt bx⟩) lemma nhds_top_order [topological_space α] [order_top α] [order_topology α] : 𝓝 (⊤:α) = (⨅l (h₂ : l < ⊤), principal (Ioi l)) := by simp [nhds_eq_order (⊤:α)] lemma nhds_bot_order [topological_space α] [order_bot α] [order_topology α] : 𝓝 (⊥:α) = (⨅l (h₂ : ⊥ < l), principal (Iio l)) := by simp [nhds_eq_order (⊥:α)] section linear_order variables [topological_space α] [linear_order α] [order_topology α] lemma exists_Ioc_subset_of_mem_nhds' {a : α} {s : set α} (hs : s ∈ 𝓝 a) {l : α} (hl : l < a) : ∃ l' ∈ Ico l a, Ioc l' a ⊆ s := begin rw [nhds_eq_order a] at hs, rcases hs with ⟨t₁, ht₁, t₂, ht₂, hts⟩, -- First we show that `t₂` includes `(-∞, a]`, so it suffices to show `(l', ∞) ⊆ t₁` suffices : ∃ l' ∈ Ico l a, Ioi l' ⊆ t₁, { have A : principal (Iic a) ≤ ⨅ b ∈ Ioi a, principal (Iio b), from (le_infi $ λ b, le_infi $ λ hb, principal_mono.2 $ Iic_subset_Iio.2 hb), have B : t₁ ∩ Iic a ⊆ s, from subset.trans (inter_subset_inter_right _ (A ht₂)) hts, from this.imp (λ l', Exists.imp $ λ hl' hl x hx, B ⟨hl hx.1, hx.2⟩) }, clear hts ht₂ t₂, -- Now we find `l` such that `(l', ∞) ⊆ t₁` letI := classical.DLO α, rw [mem_binfi] at ht₁, { rcases ht₁ with ⟨b, hb, hb'⟩, exact ⟨max b l, ⟨le_max_right _ _, max_lt hb hl⟩, λ x hx, hb' $ Ioi_subset_Ioi (le_max_left _ _) hx⟩ }, { intros b hb b' hb', simp only [mem_Iio] at hb hb', use [max b b', max_lt hb hb'], simp [le_refl] }, exact ⟨l, hl⟩ end lemma exists_Ico_subset_of_mem_nhds' {a : α} {s : set α} (hs : s ∈ 𝓝 a) {u : α} (hu : a < u) : ∃ u' ∈ Ioc a u, Ico a u' ⊆ s := begin convert @exists_Ioc_subset_of_mem_nhds' (order_dual α) _ _ _ _ _ hs _ hu, ext, rw [dual_Ico, dual_Ioc] end lemma exists_Ioc_subset_of_mem_nhds {a : α} {s : set α} (hs : s ∈ 𝓝 a) (h : ∃ l, l < a) : ∃ l < a, Ioc l a ⊆ s := let ⟨l', hl'⟩ := h in let ⟨l, hl⟩ := exists_Ioc_subset_of_mem_nhds' hs hl' in ⟨l, hl.fst.2, hl.snd⟩ lemma exists_Ico_subset_of_mem_nhds {a : α} {s : set α} (hs : s ∈ 𝓝 a) (h : ∃ u, a < u) : ∃ u (_ : a < u), Ico a u ⊆ s := let ⟨l', hl'⟩ := h in let ⟨l, hl⟩ := exists_Ico_subset_of_mem_nhds' hs hl' in ⟨l, hl.fst.1, hl.snd⟩ lemma mem_nhds_unbounded {a : α} {s : set α} (hu : ∃u, a < u) (hl : ∃l, l < a) : s ∈ 𝓝 a ↔ (∃l u, l < a ∧ a < u ∧ ∀b, l < b → b < u → b ∈ s) := let ⟨l, hl'⟩ := hl, ⟨u, hu'⟩ := hu in have 𝓝 a = (⨅p : {l // l < a} × {u // a < u}, principal (Ioo p.1.val p.2.val)), by simp [nhds_order_unbounded hu hl, infi_subtype, infi_prod], iff.intro (assume hs, by rw [this] at hs; from infi_sets_induct hs ⟨l, u, hl', hu', by simp⟩ begin intro p, rcases p with ⟨⟨l, hl⟩, ⟨u, hu⟩⟩, simp [set.subset_def], intros s₁ s₂ hs₁ l' hl' u' hu' hs₂, letI := classical.DLO α, refine ⟨max l l', _, min u u', _⟩; simp [*, lt_min_iff, max_lt_iff] {contextual := tt} end (assume s₁ s₂ h ⟨l, u, h₁, h₂, h₃⟩, ⟨l, u, h₁, h₂, assume b hu hl, h $ h₃ _ hu hl⟩)) (assume ⟨l, u, hl, hu, h⟩, by rw [this]; exact mem_infi_sets ⟨⟨l, hl⟩, ⟨u, hu⟩⟩ (assume b ⟨h₁, h₂⟩, h b h₁ h₂)) lemma order_separated {a₁ a₂ : α} (h : a₁ < a₂) : ∃u v : set α, is_open u ∧ is_open v ∧ a₁ ∈ u ∧ a₂ ∈ v ∧ (∀b₁∈u, ∀b₂∈v, b₁ < b₂) := match dense_or_discrete a₁ a₂ with | or.inl ⟨a, ha₁, ha₂⟩ := ⟨{a' | a' < a}, {a' | a < a'}, is_open_gt' a, is_open_lt' a, ha₁, ha₂, assume b₁ h₁ b₂ h₂, lt_trans h₁ h₂⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a | a < a₂}, {a | a₁ < a}, is_open_gt' a₂, is_open_lt' a₁, h, h, assume b₁ hb₁ b₂ hb₂, calc b₁ ≤ a₁ : h₂ _ hb₁ ... < a₂ : h ... ≤ b₂ : h₁ _ hb₂⟩ end @[priority 100] -- see Note [lower instance priority] instance order_topology.to_order_closed_topology : order_closed_topology α := { is_closed_le' := is_open_prod_iff.mpr $ assume a₁ a₂ (h : ¬ a₁ ≤ a₂), have h : a₂ < a₁, from lt_of_not_ge h, let ⟨u, v, hu, hv, ha₁, ha₂, h⟩ := order_separated h in ⟨v, u, hv, hu, ha₂, ha₁, assume ⟨b₁, b₂⟩ ⟨h₁, h₂⟩, not_le_of_gt $ h b₂ h₂ b₁ h₁⟩ } lemma order_topology.t2_space : t2_space α := by apply_instance @[priority 100] -- see Note [lower instance priority] instance order_topology.regular_space : regular_space α := { regular := assume s a hs ha, have hs' : -s ∈ 𝓝 a, from mem_nhds_sets hs ha, have ∃t:set α, is_open t ∧ (∀l∈ s, l < a → l ∈ t) ∧ 𝓝 a ⊓ principal t = ⊥, from by_cases (assume h : ∃l, l < a, let ⟨l, hl, h⟩ := exists_Ioc_subset_of_mem_nhds hs' h in match dense_or_discrete l a with | or.inl ⟨b, hb₁, hb₂⟩ := ⟨{a | a < b}, is_open_gt' _, assume c hcs hca, show c < b, from lt_of_not_ge $ assume hbc, h ⟨lt_of_lt_of_le hb₁ hbc, le_of_lt hca⟩ hcs, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_lt' _) hb₂) $ assume x (hx : b < x), show ¬ x < b, from not_lt.2 $ le_of_lt hx⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a' | a' < a}, is_open_gt' _, assume b hbs hba, hba, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_lt' _) hl) $ assume x (hx : l < x), show ¬ x < a, from not_lt.2 $ h₁ _ hx⟩ end) (assume : ¬ ∃l, l < a, ⟨∅, is_open_empty, assume l _ hl, (this ⟨l, hl⟩).elim, by rw [principal_empty, inf_bot_eq]⟩), let ⟨t₁, ht₁o, ht₁s, ht₁a⟩ := this in have ∃t:set α, is_open t ∧ (∀u∈ s, u>a → u ∈ t) ∧ 𝓝 a ⊓ principal t = ⊥, from by_cases (assume h : ∃u, u > a, let ⟨u, hu, h⟩ := exists_Ico_subset_of_mem_nhds hs' h in match dense_or_discrete a u with | or.inl ⟨b, hb₁, hb₂⟩ := ⟨{a | b < a}, is_open_lt' _, assume c hcs hca, show c > b, from lt_of_not_ge $ assume hbc, h ⟨le_of_lt hca, lt_of_le_of_lt hbc hb₂⟩ hcs, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_gt' _) hb₁) $ assume x (hx : b > x), show ¬ x > b, from not_lt.2 $ le_of_lt hx⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a' | a' > a}, is_open_lt' _, assume b hbs hba, hba, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_gt' _) hu) $ assume x (hx : u > x), show ¬ x > a, from not_lt.2 $ h₂ _ hx⟩ end) (assume : ¬ ∃u, u > a, ⟨∅, is_open_empty, assume l _ hl, (this ⟨l, hl⟩).elim, by rw [principal_empty, inf_bot_eq]⟩), let ⟨t₂, ht₂o, ht₂s, ht₂a⟩ := this in ⟨t₁ ∪ t₂, is_open_union ht₁o ht₂o, assume x hx, have x ≠ a, from assume eq, ha $ eq ▸ hx, (ne_iff_lt_or_gt.mp this).imp (ht₁s _ hx) (ht₂s _ hx), by rw [←sup_principal, inf_sup_left, ht₁a, ht₂a, bot_sup_eq]⟩, ..order_topology.t2_space } /-- A set is a neighborhood of `a` if and only if it contains an interval `(l, u)` containing `a`, provided `a` is neither a bottom element nor a top element. -/ lemma mem_nhds_iff_exists_Ioo_subset' {a l' u' : α} {s : set α} (hl' : l' < a) (hu' : a < u') : s ∈ 𝓝 a ↔ ∃l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s := begin split, { assume h, rcases exists_Ico_subset_of_mem_nhds' h hu' with ⟨u, au, hu⟩, rcases exists_Ioc_subset_of_mem_nhds' h hl' with ⟨l, la, hl⟩, refine ⟨l, u, ⟨la.2, au.1⟩, λx hx, _⟩, cases le_total a x with hax hax, { exact hu ⟨hax, hx.2⟩ }, { exact hl ⟨hx.1, hax⟩ } }, { rintros ⟨l, u, ha, h⟩, apply mem_sets_of_superset (mem_nhds_sets is_open_Ioo ha) h } end /-- A set is a neighborhood of `a` if and only if it contains an interval `(l, u)` containing `a`. -/ lemma mem_nhds_iff_exists_Ioo_subset [no_top_order α] [no_bot_order α] {a : α} {s : set α} : s ∈ 𝓝 a ↔ ∃l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s := let ⟨l', hl'⟩ := no_bot a in let ⟨u', hu'⟩ := no_top a in mem_nhds_iff_exists_Ioo_subset' hl' hu' /-! ### Neighborhoods to the left and to the right Limits to the left and to the right of real functions are defined in terms of neighborhoods to the left and to the right, either open or closed, i.e., members of `nhds_within a (Ioi a)` and `nhds_wihin a (Ici a)` on the right, and similarly on the left. Such neighborhoods can be characterized as the sets containing suitable intervals to the right or to the left of `a`. We give now these characterizations. -/ -- NB: If you extend the list, append to the end please to avoid breaking the API /-- The following statements are equivalent: 0. `s` is a neighborhood of `a` within `(a, +∞)` 1. `s` is a neighborhood of `a` within `(a, b]` 2. `s` is a neighborhood of `a` within `(a, b)` 3. `s` includes `(a, u)` for some `u ∈ (a, b]` 4. `s` includes `(a, u)` for some `u > a` -/ lemma tfae_mem_nhds_within_Ioi {a b : α} (hab : a < b) (s : set α) : tfae [s ∈ nhds_within a (Ioi a), -- 0 : `s` is a neighborhood of `a` within `(a, +∞)` s ∈ nhds_within a (Ioc a b), -- 1 : `s` is a neighborhood of `a` within `(a, b]` s ∈ nhds_within a (Ioo a b), -- 2 : `s` is a neighborhood of `a` within `(a, b)` ∃ u ∈ Ioc a b, Ioo a u ⊆ s, -- 3 : `s` includes `(a, u)` for some `u ∈ (a, b]` ∃ u ∈ Ioi a, Ioo a u ⊆ s] := -- 4 : `s` includes `(a, u)` for some `u > a` begin tfae_have : 1 → 2, from λ h, nhds_within_mono _ Ioc_subset_Ioi_self h, tfae_have : 2 → 3, from λ h, nhds_within_mono _ Ioo_subset_Ioc_self h, tfae_have : 4 → 5, from λ ⟨u, umem, hu⟩, ⟨u, umem.1, hu⟩, tfae_have : 5 → 1, { rintros ⟨u, hau, hu⟩, exact mem_nhds_within.2 ⟨Iio u, is_open_Iio, hau, by rwa [inter_comm, Ioi_inter_Iio]⟩ }, tfae_have : 3 → 4, { assume h, rcases mem_nhds_within_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩, rcases exists_Ico_subset_of_mem_nhds' va hab with ⟨u, au, hu⟩, refine ⟨u, au, λx hx, _⟩, refine hv ⟨hu ⟨le_of_lt hx.1, hx.2⟩, _⟩, exact Ioo_subset_Ioo_right au.2 hx }, tfae_finish end @[simp] lemma nhds_within_Ioc_eq_nhds_within_Ioi {a b : α} (h : a < b) : nhds_within a (Ioc a b) = nhds_within a (Ioi a) := filter.ext $ λ s, (tfae_mem_nhds_within_Ioi h s).out 1 0 @[simp] lemma nhds_within_Ioo_eq_nhds_within_Ioi {a b : α} (hu : a < b) : nhds_within a (Ioo a b) = nhds_within a (Ioi a) := filter.ext $ λ s, (tfae_mem_nhds_within_Ioi hu s).out 2 0 lemma mem_nhds_within_Ioi_iff_exists_mem_Ioc_Ioo_subset {a u' : α} {s : set α} (hu' : a < u') : s ∈ nhds_within a (Ioi a) ↔ ∃u ∈ Ioc a u', Ioo a u ⊆ s := (tfae_mem_nhds_within_Ioi hu' s).out 0 3 /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u)` with `a < u < u'`, provided `a` is not a top element. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioo_subset' {a u' : α} {s : set α} (hu' : a < u') : s ∈ nhds_within a (Ioi a) ↔ ∃u ∈ Ioi a, Ioo a u ⊆ s := (tfae_mem_nhds_within_Ioi hu' s).out 0 4 /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u)` with `a < u`. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioo_subset [no_top_order α] {a : α} {s : set α} : s ∈ nhds_within a (Ioi a) ↔ ∃u ∈ Ioi a, Ioo a u ⊆ s := let ⟨u', hu'⟩ := no_top a in mem_nhds_within_Ioi_iff_exists_Ioo_subset' hu' /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u]` with `a < u`. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioc_subset [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ nhds_within a (Ioi a) ↔ ∃u ∈ Ioi a, Ioc a u ⊆ s := begin rw mem_nhds_within_Ioi_iff_exists_Ioo_subset, split, { rintros ⟨u, au, as⟩, rcases dense au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ioo_subset_Ioc_self as⟩ } end lemma Ioo_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ioo a c ∈ nhds_within b (Ioi b) := (mem_nhds_within_Ioi_iff_exists_Ioo_subset' H.2).2 ⟨c, H.2, Ioo_subset_Ioo_left H.1⟩ lemma Ioc_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ioc a c ∈ nhds_within b (Ioi b) := mem_sets_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Ioc_self lemma Ico_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ico a c ∈ nhds_within b (Ioi b) := mem_sets_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Ico_self lemma Icc_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Icc a c ∈ nhds_within b (Ioi b) := mem_sets_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Icc_self /-- The following statements are equivalent: 0. `s` is a neighborhood of `b` within `(-∞, b)` 1. `s` is a neighborhood of `b` within `[a, b)` 2. `s` is a neighborhood of `b` within `(a, b)` 3. `s` includes `(l, b)` for some `l ∈ [a, b)` 4. `s` includes `(l, b)` for some `l < b` -/ lemma tfae_mem_nhds_within_Iio {a b : α} (h : a < b) (s : set α) : tfae [s ∈ nhds_within b (Iio b), -- 0 : `s` is a neighborhood of `b` within `(-∞, b)` s ∈ nhds_within b (Ico a b), -- 1 : `s` is a neighborhood of `b` within `[a, b)` s ∈ nhds_within b (Ioo a b), -- 2 : `s` is a neighborhood of `b` within `(a, b)` ∃ l ∈ Ico a b, Ioo l b ⊆ s, -- 3 : `s` includes `(l, b)` for some `l ∈ [a, b)` ∃ l ∈ Iio b, Ioo l b ⊆ s] := -- 4 : `s` includes `(l, b)` for some `l < b` begin have := @tfae_mem_nhds_within_Ioi (order_dual α) _ _ _ _ _ h s, -- If we call `convert` here, it generates wrong equations, so we need to simplify first simp only [exists_prop] at this ⊢, rw [dual_Ioi, dual_Ioc, dual_Ioo] at this, convert this; ext l; rw [dual_Ioo] end @[simp] lemma nhds_within_Ico_eq_nhds_within_Iio {a b : α} (h : a < b) : nhds_within b (Ico a b) = nhds_within b (Iio b) := filter.ext $ λ s, (tfae_mem_nhds_within_Iio h s).out 1 0 @[simp] lemma nhds_within_Ioo_eq_nhds_within_Iio {a b : α} (h : a < b) : nhds_within b (Ioo a b) = nhds_within b (Iio b) := filter.ext $ λ s, (tfae_mem_nhds_within_Iio h s).out 2 0 lemma mem_nhds_within_Iio_iff_exists_mem_Ico_Ioo_subset {a l' : α} {s : set α} (hl' : l' < a) : s ∈ nhds_within a (Iio a) ↔ ∃l ∈ Ico l' a, Ioo l a ⊆ s := (tfae_mem_nhds_within_Iio hl' s).out 0 3 /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `(l, a)` with `l < a`, provided `a` is not a bottom element. -/ lemma mem_nhds_within_Iio_iff_exists_Ioo_subset' {a l' : α} {s : set α} (hl' : l' < a) : s ∈ nhds_within a (Iio a) ↔ ∃l ∈ Iio a, Ioo l a ⊆ s := (tfae_mem_nhds_within_Iio hl' s).out 0 4 /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `(l, a)` with `l < a`. -/ lemma mem_nhds_within_Iio_iff_exists_Ioo_subset [no_bot_order α] {a : α} {s : set α} : s ∈ nhds_within a (Iio a) ↔ ∃l ∈ Iio a, Ioo l a ⊆ s := let ⟨l', hl'⟩ := no_bot a in mem_nhds_within_Iio_iff_exists_Ioo_subset' hl' /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `[l, a)` with `l < a`. -/ lemma mem_nhds_within_Iio_iff_exists_Ico_subset [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ nhds_within a (Iio a) ↔ ∃l ∈ Iio a, Ico l a ⊆ s := begin convert @mem_nhds_within_Ioi_iff_exists_Ioc_subset (order_dual α) _ _ _ _ _ _ _, simp only [dual_Ioc], refl end lemma Ioo_mem_nhds_within_Iio {a b c : α} (h : b ∈ Ioc a c) : Ioo a c ∈ nhds_within b (Iio b) := (mem_nhds_within_Iio_iff_exists_Ioo_subset' h.1).2 ⟨a, h.1, Ioo_subset_Ioo_right h.2⟩ lemma Ioc_mem_nhds_within_Iio {a b c : α} (h : b ∈ Ioc a c) : Ioc a c ∈ nhds_within b (Iio b) := mem_sets_of_superset (Ioo_mem_nhds_within_Iio h) Ioo_subset_Ioc_self lemma Ico_mem_nhds_within_Iio {a b c : α} (h : b ∈ Ioc a c) : Ico a c ∈ nhds_within b (Iio b) := mem_sets_of_superset (Ioo_mem_nhds_within_Iio h) Ioo_subset_Ico_self lemma Icc_mem_nhds_within_Iio {a b c : α} (h : b ∈ Ioc a c) : Icc a c ∈ nhds_within b (Iio b) := mem_sets_of_superset (Ioo_mem_nhds_within_Iio h) Ioo_subset_Icc_self /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u)` with `a < u`, provided `a` is not a top element. -/ lemma mem_nhds_within_Ici_iff_exists_Ico_subset' {a u' : α} {s : set α} (hu' : a < u') : s ∈ nhds_within a (Ici a) ↔ ∃u, a < u ∧ Ico a u ⊆ s := begin split, { assume h, rcases mem_nhds_within_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩, rcases exists_Ico_subset_of_mem_nhds va ⟨u', hu'⟩ with ⟨u, au, hu⟩, refine ⟨u, au, λx hx, _⟩, refine hv ⟨_, hx.1⟩, exact hu hx }, { rintros ⟨u, au, hu⟩, rw mem_nhds_within_iff_exists_mem_nhds_inter, refine ⟨Iio u, mem_nhds_sets is_open_Iio au, _⟩, rwa [inter_comm, Ici_inter_Iio] } end /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u)` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Ico_subset [no_top_order α] {a : α} {s : set α} : s ∈ nhds_within a (Ici a) ↔ ∃u, a < u ∧ Ico a u ⊆ s := let ⟨u', hu'⟩ := no_top a in mem_nhds_within_Ici_iff_exists_Ico_subset' hu' /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u]` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Icc_subset [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ nhds_within a (Ici a) ↔ ∃u, a < u ∧ Icc a u ⊆ s := begin rw mem_nhds_within_Ici_iff_exists_Ico_subset, split, { rintros ⟨u, au, as⟩, rcases dense au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ico_subset_Icc_self as⟩ } end /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `(l, a]` with `l < a`, provided `a` is not a bottom element. -/ lemma mem_nhds_within_Iic_iff_exists_Ioc_subset' {a l' : α} {s : set α} (hl' : l' < a) : s ∈ nhds_within a (Iic a) ↔ ∃l, l < a ∧ Ioc l a ⊆ s := begin split, { assume h, rcases mem_nhds_within_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩, rcases exists_Ioc_subset_of_mem_nhds va ⟨l', hl'⟩ with ⟨l, la, hl⟩, refine ⟨l, la, λx hx, _⟩, refine hv ⟨_, hx.2⟩, exact hl hx }, { rintros ⟨l, la, ha⟩, rw mem_nhds_within_iff_exists_mem_nhds_inter, refine ⟨Ioi l, mem_nhds_sets is_open_Ioi la, _⟩, rwa [Ioi_inter_Iic] } end /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `(l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Ioc_subset [no_bot_order α] {a : α} {s : set α} : s ∈ nhds_within a (Iic a) ↔ ∃l, l < a ∧ Ioc l a ⊆ s := let ⟨l', hl'⟩ := no_bot a in mem_nhds_within_Iic_iff_exists_Ioc_subset' hl' /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `[l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Icc_subset [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ nhds_within a (Iic a) ↔ ∃l, l < a ∧ Icc l a ⊆ s := begin rw mem_nhds_within_Iic_iff_exists_Ioc_subset, split, { rintros ⟨l, la, as⟩, rcases dense la with ⟨v, hv⟩, refine ⟨v, hv.2, λx hx, as ⟨lt_of_lt_of_le hv.1 hx.1, hx.2⟩⟩, }, { rintros ⟨l, la, as⟩, exact ⟨l, la, subset.trans Ioc_subset_Icc_self as⟩ } end end linear_order lemma preimage_neg [add_group α] : preimage (has_neg.neg : α → α) = image (has_neg.neg : α → α) := (image_eq_preimage_of_inverse neg_neg neg_neg).symm lemma filter.map_neg [add_group α] : map (has_neg.neg : α → α) = comap (has_neg.neg : α → α) := funext $ assume f, map_eq_comap_of_inverse (funext neg_neg) (funext neg_neg) section topological_add_group variables [topological_space α] [ordered_comm_group α] [topological_add_group α] lemma neg_preimage_closure {s : set α} : (λr:α, -r) ⁻¹' closure s = closure ((λr:α, -r) '' s) := have (λr:α, -r) ∘ (λr:α, -r) = id, from funext neg_neg, by rw [preimage_neg]; exact (subset.antisymm (image_closure_subset_closure_image continuous_neg) $ calc closure ((λ (r : α), -r) '' s) = (λr, -r) '' ((λr, -r) '' closure ((λ (r : α), -r) '' s)) : by rw [←image_comp, this, image_id] ... ⊆ (λr, -r) '' closure ((λr, -r) '' ((λ (r : α), -r) '' s)) : monotone_image $ image_closure_subset_closure_image continuous_neg ... = _ : by rw [←image_comp, this, image_id]) end topological_add_group section order_topology variables [topological_space α] [topological_space β] [linear_order α] [linear_order β] [order_topology α] [order_topology β] lemma nhds_principal_ne_bot_of_is_lub {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : 𝓝 a ⊓ principal s ≠ ⊥ := let ⟨a', ha'⟩ := hs in forall_sets_nonempty_iff_ne_bot.mp $ assume t ht, let ⟨t₁, ht₁, t₂, ht₂, ht⟩ := mem_inf_sets.mp ht in by_cases (assume h : a = a', have a ∈ t₁, from mem_of_nhds ht₁, have a ∈ t₂, from ht₂ $ by rwa [h], ⟨a, ht ⟨‹a ∈ t₁›, ‹a ∈ t₂›⟩⟩) (assume : a ≠ a', have a' < a, from lt_of_le_of_ne (ha.left ‹a' ∈ s›) this.symm, let ⟨l, hl, hlt₁⟩ := exists_Ioc_subset_of_mem_nhds ht₁ ⟨a', this⟩ in have ∃a'∈s, l < a', from classical.by_contradiction $ assume : ¬ ∃a'∈s, l < a', have ∀a'∈s, a' ≤ l, from assume a ha, not_lt.1 $ assume ha', this ⟨a, ha, ha'⟩, have ¬ l < a, from not_lt.2 $ ha.right this, this ‹l < a›, let ⟨a', ha', ha'l⟩ := this in have a' ∈ t₁, from hlt₁ ⟨‹l < a'›, ha.left ha'⟩, ⟨a', ht ⟨‹a' ∈ t₁›, ht₂ ‹a' ∈ s›⟩⟩) lemma nhds_principal_ne_bot_of_is_glb : ∀ {a : α} {s : set α}, is_glb s a → s.nonempty → 𝓝 a ⊓ principal s ≠ ⊥ := @nhds_principal_ne_bot_of_is_lub (order_dual α) _ _ _ lemma is_lub_of_mem_nhds {s : set α} {a : α} {f : filter α} (hsa : a ∈ upper_bounds s) (hsf : s ∈ f) (hfa : f ⊓ 𝓝 a ≠ ⊥) : is_lub s a := ⟨hsa, assume b hb, not_lt.1 $ assume hba, have s ∩ {a | b < a} ∈ f ⊓ 𝓝 a, from inter_mem_inf_sets hsf (mem_nhds_sets (is_open_lt' _) hba), let ⟨x, ⟨hxs, hxb⟩⟩ := nonempty_of_mem_sets hfa this in have b < b, from lt_of_lt_of_le hxb $ hb hxs, lt_irrefl b this⟩ lemma is_glb_of_mem_nhds : ∀ {s : set α} {a : α} {f : filter α}, a ∈ lower_bounds s → s ∈ f → f ⊓ 𝓝 a ≠ ⊥ → is_glb s a := @is_lub_of_mem_nhds (order_dual α) _ _ _ lemma is_lub_of_is_lub_of_tendsto {f : α → β} {s : set α} {a : α} {b : β} (hf : ∀x∈s, ∀y∈s, x ≤ y → f x ≤ f y) (ha : is_lub s a) (hs : s.nonempty) (hb : tendsto f (𝓝 a ⊓ principal s) (𝓝 b)) : is_lub (f '' s) b := have hnbot : (𝓝 a ⊓ principal s) ≠ ⊥, from nhds_principal_ne_bot_of_is_lub ha hs, have ∀a'∈s, ¬ b < f a', from assume a' ha' h, have ∀ᶠ x in 𝓝 b, x < f a', from mem_nhds_sets (is_open_gt' _) h, let ⟨t₁, ht₁, t₂, ht₂, hs⟩ := mem_inf_sets.mp (hb this) in by_cases (assume h : a = a', have a ∈ t₁ ∩ t₂, from ⟨mem_of_nhds ht₁, ht₂ $ by rwa [h]⟩, have f a < f a', from hs this, lt_irrefl (f a') $ by rwa [h] at this) (assume h : a ≠ a', have a' < a, from lt_of_le_of_ne (ha.left ha') h.symm, have {x | a' < x} ∈ 𝓝 a, from mem_nhds_sets (is_open_lt' _) this, have {x | a' < x} ∩ t₁ ∈ 𝓝 a, from inter_mem_sets this ht₁, have ({x | a' < x} ∩ t₁) ∩ s ∈ 𝓝 a ⊓ principal s, from inter_mem_inf_sets this (subset.refl s), let ⟨x, ⟨hx₁, hx₂⟩, hx₃⟩ := nonempty_of_mem_sets hnbot this in have hxa' : f x < f a', from hs ⟨hx₂, ht₂ hx₃⟩, have ha'x : f a' ≤ f x, from hf _ ha' _ hx₃ $ le_of_lt hx₁, lt_irrefl _ (lt_of_le_of_lt ha'x hxa')), and.intro (assume b' ⟨a', ha', h_eq⟩, h_eq ▸ not_lt.1 $ this _ ha') (assume b' hb', le_of_tendsto hnbot hb $ mem_inf_sets_of_right $ assume x hx, hb' $ mem_image_of_mem _ hx) lemma is_glb_of_is_glb_of_tendsto {f : α → β} {s : set α} {a : α} {b : β} (hf : ∀x∈s, ∀y∈s, x ≤ y → f x ≤ f y) : is_glb s a → s.nonempty → tendsto f (𝓝 a ⊓ principal s) (𝓝 b) → is_glb (f '' s) b := @is_lub_of_is_lub_of_tendsto (order_dual α) (order_dual β) _ _ _ _ _ _ f s a b (λ x hx y hy, hf y hy x hx) lemma is_glb_of_is_lub_of_tendsto : ∀ {f : α → β} {s : set α} {a : α} {b : β}, (∀x∈s, ∀y∈s, x ≤ y → f y ≤ f x) → is_lub s a → s.nonempty → tendsto f (𝓝 a ⊓ principal s) (𝓝 b) → is_glb (f '' s) b := @is_lub_of_is_lub_of_tendsto α (order_dual β) _ _ _ _ _ _ lemma is_lub_of_is_glb_of_tendsto : ∀ {f : α → β} {s : set α} {a : α} {b : β}, (∀x∈s, ∀y∈s, x ≤ y → f y ≤ f x) → is_glb s a → s.nonempty → tendsto f (𝓝 a ⊓ principal s) (𝓝 b) → is_lub (f '' s) b := @is_glb_of_is_glb_of_tendsto α (order_dual β) _ _ _ _ _ _ lemma mem_closure_of_is_lub {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : a ∈ closure s := by rw closure_eq_nhds; exact nhds_principal_ne_bot_of_is_lub ha hs lemma mem_of_is_lub_of_is_closed {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) (sc : is_closed s) : a ∈ s := by rw ←closure_eq_of_is_closed sc; exact mem_closure_of_is_lub ha hs lemma mem_closure_of_is_glb {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) : a ∈ closure s := by rw closure_eq_nhds; exact nhds_principal_ne_bot_of_is_glb ha hs lemma mem_of_is_glb_of_is_closed {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) (sc : is_closed s) : a ∈ s := by rw ←closure_eq_of_is_closed sc; exact mem_closure_of_is_glb ha hs /-- A compact set is bounded below -/ lemma bdd_below_of_compact {α : Type u} [topological_space α] [linear_order α] [order_closed_topology α] [nonempty α] {s : set α} (hs : compact s) : bdd_below s := begin by_contra H, letI := classical.DLO α, rcases hs.elim_finite_subcover_image (λ x (_ : x ∈ s), @is_open_Ioi _ _ _ _ x) _ with ⟨t, st, ft, ht⟩, { refine H ((bdd_below_finite ft).imp $ λ C hC y hy, _), rcases mem_bUnion_iff.1 (ht hy) with ⟨x, hx, xy⟩, exact le_trans (hC hx) (le_of_lt xy) }, { refine λ x hx, mem_bUnion_iff.2 (not_imp_comm.1 _ H), exact λ h, ⟨x, λ y hy, le_of_not_lt (h.imp $ λ ys, ⟨_, hy, ys⟩)⟩ } end /-- A compact set is bounded above -/ lemma bdd_above_of_compact {α : Type u} [topological_space α] [linear_order α] [order_topology α] : Π [nonempty α] {s : set α}, compact s → bdd_above s := @bdd_below_of_compact (order_dual α) _ _ _ end order_topology section linear_order variables [topological_space α] [linear_order α] [order_topology α] [densely_ordered α] /-- The closure of the interval `(a, +∞)` is the closed interval `[a, +∞)`, unless `a` is a top element. -/ lemma closure_Ioi' {a b : α} (hab : a < b) : closure (Ioi a) = Ici a := begin apply subset.antisymm, { exact closure_minimal Ioi_subset_Ici_self is_closed_Ici }, { assume x hx, by_cases h : x = a, { rw h, exact mem_closure_of_is_glb is_glb_Ioi ⟨_, hab⟩ }, { exact subset_closure (lt_of_le_of_ne hx (ne.symm h)) } } end /-- The closure of the interval `(a, +∞)` is the closed interval `[a, +∞)`. -/ lemma closure_Ioi (a : α) [no_top_order α] : closure (Ioi a) = Ici a := let ⟨b, hb⟩ := no_top a in closure_Ioi' hb /-- The closure of the interval `(-∞, a)` is the closed interval `(-∞, a]`, unless `a` is a bottom element. -/ lemma closure_Iio' {a b : α} (hab : b < a) : closure (Iio a) = Iic a := begin apply subset.antisymm, { exact closure_minimal Iio_subset_Iic_self is_closed_Iic }, { assume x hx, by_cases h : x = a, { rw h, exact mem_closure_of_is_lub is_lub_Iio ⟨_, hab⟩ }, { apply subset_closure, by simpa [h] using lt_or_eq_of_le hx } } end /-- The closure of the interval `(-∞, a)` is the interval `(-∞, a]`. -/ lemma closure_Iio (a : α) [no_bot_order α] : closure (Iio a) = Iic a := let ⟨b, hb⟩ := no_bot a in closure_Iio' hb /-- The closure of the open interval `(a, b)` is the closed interval `[a, b]`. -/ lemma closure_Ioo {a b : α} (hab : a < b) : closure (Ioo a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ioo_subset_Icc_self is_closed_Icc }, { have hab' : (Ioo a b).nonempty, from nonempty_Ioo.2 hab, assume x hx, by_cases h : x = a, { rw h, exact mem_closure_of_is_glb (is_glb_Ioo hab) hab' }, by_cases h' : x = b, { rw h', refine mem_closure_of_is_lub (is_lub_Ioo hab) hab' }, exact subset_closure ⟨lt_of_le_of_ne hx.1 (ne.symm h), by simpa [h'] using lt_or_eq_of_le hx.2⟩ } end /-- The closure of the interval `(a, b]` is the closed interval `[a, b]`. -/ lemma closure_Ioc {a b : α} (hab : a < b) : closure (Ioc a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ioc_subset_Icc_self is_closed_Icc }, { apply subset.trans _ (closure_mono Ioo_subset_Ioc_self), rw closure_Ioo hab } end /-- The closure of the interval `[a, b)` is the closed interval `[a, b]`. -/ lemma closure_Ico {a b : α} (hab : a < b) : closure (Ico a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ico_subset_Icc_self is_closed_Icc }, { apply subset.trans _ (closure_mono Ioo_subset_Ico_self), rw closure_Ioo hab } end @[simp] lemma interior_Ici [no_bot_order α] {a : α} : interior (Ici a) = Ioi a := by rw [← compl_Iio, interior_compl, closure_Iio, compl_Iic] @[simp] lemma interior_Iic [no_top_order α] {a : α} : interior (Iic a) = Iio a := by rw [← compl_Ioi, interior_compl, closure_Ioi, compl_Ici] @[simp] lemma interior_Icc [no_bot_order α] [no_top_order α] {a b : α}: interior (Icc a b) = Ioo a b := by rw [← Ici_inter_Iic, interior_inter, interior_Ici, interior_Iic, Ioi_inter_Iio] @[simp] lemma interior_Ico [no_bot_order α] {a b : α} : interior (Ico a b) = Ioo a b := by rw [← Ici_inter_Iio, interior_inter, interior_Ici, interior_Iio, Ioi_inter_Iio] @[simp] lemma interior_Ioc [no_top_order α] {a b : α} : interior (Ioc a b) = Ioo a b := by rw [← Ioi_inter_Iic, interior_inter, interior_Ioi, interior_Iic, Ioi_inter_Iio] lemma nhds_within_Ioi_ne_bot' {a b c : α} (H₁ : a < c) (H₂ : a ≤ b) : nhds_within b (Ioi a) ≠ ⊥ := mem_closure_iff_nhds_within_ne_bot.1 $ by { rw [closure_Ioi' H₁], exact H₂ } lemma nhds_within_Ioi_ne_bot [no_top_order α] {a b : α} (H : a ≤ b) : nhds_within b (Ioi a) ≠ ⊥ := let ⟨c, hc⟩ := no_top a in nhds_within_Ioi_ne_bot' hc H lemma nhds_within_Ioi_self_ne_bot' {a b : α} (H : a < b) : nhds_within a (Ioi a) ≠ ⊥ := nhds_within_Ioi_ne_bot' H (le_refl a) lemma nhds_within_Ioi_self_ne_bot [no_top_order α] (a : α) : nhds_within a (Ioi a) ≠ ⊥ := nhds_within_Ioi_ne_bot (le_refl a) lemma nhds_within_Iio_ne_bot' {a b c : α} (H₁ : a < c) (H₂ : b ≤ c) : nhds_within b (Iio c) ≠ ⊥ := mem_closure_iff_nhds_within_ne_bot.1 $ by { rw [closure_Iio' H₁], exact H₂ } lemma nhds_within_Iio_ne_bot [no_bot_order α] {a b : α} (H : a ≤ b) : nhds_within a (Iio b) ≠ ⊥ := let ⟨c, hc⟩ := no_bot b in nhds_within_Iio_ne_bot' hc H lemma nhds_within_Iio_self_ne_bot' {a b : α} (H : a < b) : nhds_within b (Iio b) ≠ ⊥ := nhds_within_Iio_ne_bot' H (le_refl b) lemma nhds_within_Iio_self_ne_bot [no_bot_order α] (a : α) : nhds_within a (Iio a) ≠ ⊥ := nhds_within_Iio_ne_bot (le_refl a) end linear_order section complete_linear_order variables [complete_linear_order α] [topological_space α] [order_topology α] [complete_linear_order β] [topological_space β] [order_topology β] [nonempty γ] lemma Sup_mem_closure {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) : Sup s ∈ closure s := mem_closure_of_is_lub (is_lub_Sup _) hs lemma Inf_mem_closure {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) : Inf s ∈ closure s := mem_closure_of_is_glb (is_glb_Inf _) hs lemma Sup_mem_of_is_closed {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) : Sup s ∈ s := mem_of_is_lub_of_is_closed (is_lub_Sup _) hs hc lemma Inf_mem_of_is_closed {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) : Inf s ∈ s := mem_of_is_glb_of_is_closed (is_glb_Inf _) hs hc /-- A continuous monotone function sends supremum to supremum for nonempty sets. -/ lemma Sup_of_continuous' {f : α → β} (Mf : continuous f) (Cf : monotone f) {s : set α} (hs : s.nonempty) : f (Sup s) = Sup (f '' s) := --This is a particular case of the more general is_lub_of_is_lub_of_tendsto (is_lub_of_is_lub_of_tendsto (λ x hx y hy xy, Cf xy) (is_lub_Sup _) hs $ tendsto_le_left inf_le_left (Mf.tendsto _)).Sup_eq.symm /-- A continuous monotone function sending bot to bot sends supremum to supremum. -/ lemma Sup_of_continuous {f : α → β} (Mf : continuous f) (Cf : monotone f) (fbot : f ⊥ = ⊥) {s : set α} : f (Sup s) = Sup (f '' s) := begin cases s.eq_empty_or_nonempty with h h, { simp [h, fbot] }, { exact Sup_of_continuous' Mf Cf h } end /-- A continuous monotone function sends indexed supremum to indexed supremum. -/ lemma supr_of_continuous' {ι : Sort*} [nonempty ι] {f : α → β} {g : ι → α} (Mf : continuous f) (Cf : monotone f) : f (supr g) = supr (f ∘ g) := by rw [supr, Sup_of_continuous' Mf Cf (range_nonempty g), ← range_comp, supr] /-- A continuous monotone function sends indexed supremum to indexed supremum. -/ lemma supr_of_continuous {ι : Sort*} {f : α → β} {g : ι → α} (Mf : continuous f) (Cf : monotone f) (fbot : f ⊥ = ⊥) : f (supr g) = supr (f ∘ g) := by rw [supr, Sup_of_continuous Mf Cf fbot, ← range_comp, supr] /-- A continuous monotone function sends infimum to infimum for nonempty sets. -/ lemma Inf_of_continuous' {f : α → β} (Mf : continuous f) (Cf : monotone f) {s : set α} (hs : s.nonempty) : f (Inf s) = Inf (f '' s) := (is_glb_of_is_glb_of_tendsto (λ x hx y hy xy, Cf xy) (is_glb_Inf _) hs $ tendsto_le_left inf_le_left (Mf.tendsto _)).Inf_eq.symm /-- A continuous monotone function sending top to top sends infimum to infimum. -/ lemma Inf_of_continuous {f : α → β} (Mf : continuous f) (Cf : monotone f) (ftop : f ⊤ = ⊤) {s : set α} : f (Inf s) = Inf (f '' s) := begin cases s.eq_empty_or_nonempty with h h, { simpa [h] }, { exact Inf_of_continuous' Mf Cf h } end /-- A continuous monotone function sends indexed infimum to indexed infimum. -/ lemma infi_of_continuous' {ι : Sort*} [nonempty ι] {f : α → β} {g : ι → α} (Mf : continuous f) (Cf : monotone f) : f (infi g) = infi (f ∘ g) := by rw [infi, Inf_of_continuous' Mf Cf (range_nonempty g), ← range_comp, infi] /-- A continuous monotone function sends indexed infimum to indexed infimum. -/ lemma infi_of_continuous {ι : Sort*} {f : α → β} {g : ι → α} (Mf : continuous f) (Cf : monotone f) (ftop : f ⊤ = ⊤) : f (infi g) = infi (f ∘ g) := by rw [infi, Inf_of_continuous Mf Cf ftop, ← range_comp, infi] end complete_linear_order section conditionally_complete_linear_order variables [conditionally_complete_linear_order α] [topological_space α] [order_topology α] [conditionally_complete_linear_order β] [topological_space β] [order_topology β] [nonempty γ] lemma cSup_mem_closure {α : Type u} [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (B : bdd_above s) : Sup s ∈ closure s := mem_closure_of_is_lub (is_lub_cSup hs B) hs lemma cInf_mem_closure {α : Type u} [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (B : bdd_below s) : Inf s ∈ closure s := mem_closure_of_is_glb (is_glb_cInf hs B) hs lemma cSup_mem_of_is_closed {α : Type u} [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) (B : bdd_above s) : Sup s ∈ s := mem_of_is_lub_of_is_closed (is_lub_cSup hs B) hs hc lemma cInf_mem_of_is_closed {α : Type u} [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) (B : bdd_below s) : Inf s ∈ s := mem_of_is_glb_of_is_closed (is_glb_cInf hs B) hs hc /-- A continuous monotone function sends supremum to supremum in conditionally complete lattices, under a boundedness assumption. -/ lemma cSup_of_cSup_of_monotone_of_continuous {f : α → β} (Mf : continuous f) (Cf : monotone f) {s : set α} (ne : s.nonempty) (H : bdd_above s) : f (Sup s) = Sup (f '' s) := begin refine ((is_lub_cSup (ne.image f) (Cf.map_bdd_above H)).unique _).symm, refine is_lub_of_is_lub_of_tendsto (λx hx y hy xy, Cf xy) (is_lub_cSup ne H) ne _, exact tendsto_le_left inf_le_left (Mf.tendsto _) end /-- A continuous monotone function sends indexed supremum to indexed supremum in conditionally complete lattices, under a boundedness assumption. -/ lemma csupr_of_csupr_of_monotone_of_continuous {f : α → β} {g : γ → α} (Mf : continuous f) (Cf : monotone f) (H : bdd_above (range g)) : f (supr g) = supr (f ∘ g) := by rw [supr, cSup_of_cSup_of_monotone_of_continuous Mf Cf (range_nonempty _) H, ← range_comp, supr] /-- A continuous monotone function sends infimum to infimum in conditionally complete lattices, under a boundedness assumption. -/ lemma cInf_of_cInf_of_monotone_of_continuous {f : α → β} (Mf : continuous f) (Cf : monotone f) {s : set α} (ne : s.nonempty) (H : bdd_below s) : f (Inf s) = Inf (f '' s) := begin refine ((is_glb_cInf (ne.image _) (Cf.map_bdd_below H)).unique _).symm, refine is_glb_of_is_glb_of_tendsto (λx hx y hy xy, Cf xy) (is_glb_cInf ne H) ne _, exact tendsto_le_left inf_le_left (Mf.tendsto _) end /-- A continuous monotone function sends indexed infimum to indexed infimum in conditionally complete lattices, under a boundedness assumption. -/ lemma cinfi_of_cinfi_of_monotone_of_continuous {f : α → β} {g : γ → α} (Mf : continuous f) (Cf : monotone f) (H : bdd_below (range g)) : f (infi g) = infi (f ∘ g) := by rw [infi, cInf_of_cInf_of_monotone_of_continuous Mf Cf (range_nonempty _) H, ← range_comp, infi] /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and the set `s ∩ [a, b)` has no maximal point, then `b ∈ s`. -/ lemma is_closed.mem_of_ge_of_forall_exists_gt {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hab : a ≤ b) (hgt : ∀ x ∈ s ∩ Ico a b, (s ∩ Ioc x b).nonempty) : b ∈ s := begin let S := s ∩ Icc a b, replace ha : a ∈ S, from ⟨ha, left_mem_Icc.2 hab⟩, have Sbd : bdd_above S, from ⟨b, λ z hz, hz.2.2⟩, let c := Sup (s ∩ Icc a b), have c_mem : c ∈ S, from cSup_mem_of_is_closed ⟨_, ha⟩ hs Sbd, have c_le : c ≤ b, from cSup_le ⟨_, ha⟩ (λ x hx, hx.2.2), cases eq_or_lt_of_le c_le with hc hc, from hc ▸ c_mem.1, exfalso, rcases hgt c ⟨c_mem.1, c_mem.2.1, hc⟩ with ⟨x, xs, cx, xb⟩, exact not_lt_of_le (le_cSup Sbd ⟨xs, le_trans (le_cSup Sbd ha) (le_of_lt cx), xb⟩) cx end /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and for any `a ≤ x < y ≤ b`, `x ∈ s`, the set `s ∩ (x, y]` is not empty, then `[a, b] ⊆ s`. -/ lemma is_closed.Icc_subset_of_forall_exists_gt {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hgt : ∀ x ∈ s ∩ Ico a b, ∀ y ∈ Ioi x, (s ∩ Ioc x y).nonempty) : Icc a b ⊆ s := begin assume y hy, have : is_closed (s ∩ Icc a y), { suffices : s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y, { rw this, exact is_closed_inter hs is_closed_Icc }, rw [inter_assoc], congr, exact (inter_eq_self_of_subset_right $ Icc_subset_Icc_right hy.2).symm }, exact is_closed.mem_of_ge_of_forall_exists_gt this ha hy.1 (λ x hx, hgt x ⟨hx.1, Ico_subset_Ico_right hy.2 hx.2⟩ y hx.2.2) end section densely_ordered variables [densely_ordered α] {a b : α} /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and for any `x ∈ s ∩ [a, b)` the set `s` includes some open neighborhood of `x` within `(x, +∞)`, then `[a, b] ⊆ s`. -/ lemma is_closed.Icc_subset_of_forall_mem_nhds_within {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hgt : ∀ x ∈ s ∩ Ico a b, s ∈ nhds_within x (Ioi x)) : Icc a b ⊆ s := begin apply hs.Icc_subset_of_forall_exists_gt ha, rintros x ⟨hxs, hxab⟩ y hyxb, have : s ∩ Ioc x y ∈ nhds_within x (Ioi x), from inter_mem_sets (hgt x ⟨hxs, hxab⟩) (Ioc_mem_nhds_within_Ioi ⟨le_refl _, hyxb⟩), exact nonempty_of_mem_sets (nhds_within_Ioi_self_ne_bot' hxab.2) this end /-- A closed interval is preconnected. -/ lemma is_connected_Icc : is_preconnected (Icc a b) := is_preconnected_closed_iff.2 begin rintros s t hs ht hab ⟨x, hx⟩ ⟨y, hy⟩, wlog hxy : x ≤ y := le_total x y using [x y s t, y x t s], have xyab : Icc x y ⊆ Icc a b := Icc_subset_Icc hx.1.1 hy.1.2, by_contradiction hst, suffices : Icc x y ⊆ s, from hst ⟨y, xyab $ right_mem_Icc.2 hxy, this $ right_mem_Icc.2 hxy, hy.2⟩, apply (is_closed_inter hs is_closed_Icc).Icc_subset_of_forall_mem_nhds_within hx.2, rintros z ⟨zs, hz⟩, have zt : z ∈ -t, from λ zt, hst ⟨z, xyab $ Ico_subset_Icc_self hz, zs, zt⟩, have : -t ∩ Ioc z y ∈ nhds_within z (Ioi z), { rw [← nhds_within_Ioc_eq_nhds_within_Ioi hz.2], exact mem_nhds_within.2 ⟨-t, ht, zt, subset.refl _⟩}, apply mem_sets_of_superset this, have : Ioc z y ⊆ s ∪ t, from λ w hw, hab (xyab ⟨le_trans hz.1 (le_of_lt hw.1), hw.2⟩), exact λ w ⟨wt, wzy⟩, (this wzy).elim id (λ h, (wt h).elim) end lemma is_preconnected_iff_forall_Icc_subset {s : set α} : is_preconnected s ↔ ∀ x y ∈ s, x ≤ y → Icc x y ⊆ s := ⟨λ h x y hx hy hxy, h.forall_Icc_subset hx hy, λ h, is_preconnected_of_forall_pair $ λ x y hx hy, ⟨Icc (min x y) (max x y), h (min x y) (max x y) ((min_choice x y).elim (λ h', by rwa h') (λ h', by rwa h')) ((max_choice x y).elim (λ h', by rwa h') (λ h', by rwa h')) min_le_max, ⟨min_le_left x y, le_max_left x y⟩, ⟨min_le_right x y, le_max_right x y⟩, is_connected_Icc⟩⟩ lemma is_preconnected_Ici : is_preconnected (Ici a) := is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, (Icc_subset_Ici_iff hxy).2 hx lemma is_preconnected_Iic : is_preconnected (Iic a) := is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, (Icc_subset_Iic_iff hxy).2 hy lemma is_preconnected_Iio : is_preconnected (Iio a) := is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, (Icc_subset_Iio_iff hxy).2 hy lemma is_preconnected_Ioi : is_preconnected (Ioi a) := is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, (Icc_subset_Ioi_iff hxy).2 hx lemma is_connected_Ioo : is_preconnected (Ioo a b) := is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, (Icc_subset_Ioo_iff hxy).2 ⟨hx.1, hy.2⟩ lemma is_preconnected_Ioc : is_preconnected (Ioc a b) := is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, (Icc_subset_Ioc_iff hxy).2 ⟨hx.1, hy.2⟩ lemma is_preconnected_Ico : is_preconnected (Ico a b) := is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, (Icc_subset_Ico_iff hxy).2 ⟨hx.1, hy.2⟩ @[priority 100] instance ordered_connected_space : preconnected_space α := ⟨is_preconnected_iff_forall_Icc_subset.2 $ λ x y hx hy hxy, subset_univ _⟩ /--Intermediate Value Theorem for continuous functions on closed intervals, case `f a ≤ t ≤ f b`.-/ lemma intermediate_value_Icc {a b : α} (hab : a ≤ b) {f : α → β} (hf : continuous_on f (Icc a b)) : Icc (f a) (f b) ⊆ f '' (Icc a b) := is_connected_Icc.intermediate_value (left_mem_Icc.2 hab) (right_mem_Icc.2 hab) hf /--Intermediate Value Theorem for continuous functions on closed intervals, case `f a ≥ t ≥ f b`.-/ lemma intermediate_value_Icc' {a b : α} (hab : a ≤ b) {f : α → β} (hf : continuous_on f (Icc a b)) : Icc (f b) (f a) ⊆ f '' (Icc a b) := is_connected_Icc.intermediate_value (right_mem_Icc.2 hab) (left_mem_Icc.2 hab) hf end densely_ordered /-- The extreme value theorem: a continuous function realizes its minimum on a compact set -/ lemma compact.exists_forall_le {α : Type u} [topological_space α] {s : set α} (hs : compact s) (ne_s : s.nonempty) {f : α → β} (hf : continuous_on f s) : ∃x∈s, ∀y∈s, f x ≤ f y := begin have C : compact (f '' s) := hs.image_of_continuous_on hf, haveI := has_Inf_to_nonempty β, have B : bdd_below (f '' s) := bdd_below_of_compact C, have : Inf (f '' s) ∈ f '' s := cInf_mem_of_is_closed (ne_s.image _) (closed_of_compact _ C) B, rcases (mem_image _ _ _).1 this with ⟨x, xs, hx⟩, exact ⟨x, xs, λ y hy, hx.symm ▸ cInf_le B ⟨_, hy, rfl⟩⟩ end /-- The extreme value theorem: a continuous function realizes its maximum on a compact set -/ lemma compact.exists_forall_ge {α : Type u} [topological_space α]: ∀ {s : set α}, compact s → s.nonempty → ∀ {f : α → β}, continuous_on f s → ∃x∈s, ∀y∈s, f y ≤ f x := @compact.exists_forall_le (order_dual β) _ _ _ _ _ end conditionally_complete_linear_order section liminf_limsup section order_closed_topology variables [semilattice_sup α] [topological_space α] [order_topology α] lemma is_bounded_le_nhds (a : α) : (𝓝 a).is_bounded (≤) := match forall_le_or_exists_lt_sup a with | or.inl h := ⟨a, eventually_of_forall _ h⟩ | or.inr ⟨b, hb⟩ := ⟨b, ge_mem_nhds hb⟩ end lemma is_bounded_under_le_of_tendsto {f : filter β} {u : β → α} {a : α} (h : tendsto u f (𝓝 a)) : f.is_bounded_under (≤) u := is_bounded_of_le h (is_bounded_le_nhds a) @[nolint ge_or_gt] -- see Note [nolint_ge] lemma is_cobounded_ge_nhds (a : α) : (𝓝 a).is_cobounded (≥) := is_cobounded_of_is_bounded nhds_ne_bot (is_bounded_le_nhds a) @[nolint ge_or_gt] -- see Note [nolint_ge] lemma is_cobounded_under_ge_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥) (h : tendsto u f (𝓝 a)) : f.is_cobounded_under (≥) u := is_cobounded_of_is_bounded (map_ne_bot hf) (is_bounded_under_le_of_tendsto h) end order_closed_topology section order_closed_topology variables [semilattice_inf α] [topological_space α] [order_topology α] @[nolint ge_or_gt] -- see Note [nolint_ge] lemma is_bounded_ge_nhds (a : α) : (𝓝 a).is_bounded (≥) := match forall_le_or_exists_lt_inf a with | or.inl h := ⟨a, eventually_of_forall _ h⟩ | or.inr ⟨b, hb⟩ := ⟨b, le_mem_nhds hb⟩ end @[nolint ge_or_gt] -- see Note [nolint_ge] lemma is_bounded_under_ge_of_tendsto {f : filter β} {u : β → α} {a : α} (h : tendsto u f (𝓝 a)) : f.is_bounded_under (≥) u := is_bounded_of_le h (is_bounded_ge_nhds a) lemma is_cobounded_le_nhds (a : α) : (𝓝 a).is_cobounded (≤) := is_cobounded_of_is_bounded nhds_ne_bot (is_bounded_ge_nhds a) lemma is_cobounded_under_le_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥) (h : tendsto u f (𝓝 a)) : f.is_cobounded_under (≤) u := is_cobounded_of_is_bounded (map_ne_bot hf) (is_bounded_under_ge_of_tendsto h) end order_closed_topology section conditionally_complete_linear_order variables [conditionally_complete_linear_order α] theorem lt_mem_sets_of_Limsup_lt {f : filter α} {b} (h : f.is_bounded (≤)) (l : f.Limsup < b) : ∀ᶠ a in f, a < b := let ⟨c, (h : ∀ᶠ a in f, a ≤ c), hcb⟩ := exists_lt_of_cInf_lt h l in mem_sets_of_superset h $ assume a hac, lt_of_le_of_lt hac hcb @[nolint ge_or_gt] -- see Note [nolint_ge] theorem gt_mem_sets_of_Liminf_gt : ∀ {f : filter α} {b}, f.is_bounded (≥) → f.Liminf > b → ∀ᶠ a in f, a > b := @lt_mem_sets_of_Limsup_lt (order_dual α) _ variables [topological_space α] [order_topology α] /-- If the liminf and the limsup of a filter coincide, then this filter converges to their common value, at least if the filter is eventually bounded above and below. -/ @[nolint ge_or_gt] -- see Note [nolint_ge] theorem le_nhds_of_Limsup_eq_Liminf {f : filter α} {a : α} (hl : f.is_bounded (≤)) (hg : f.is_bounded (≥)) (hs : f.Limsup = a) (hi : f.Liminf = a) : f ≤ 𝓝 a := tendsto_order.2 $ and.intro (assume b hb, gt_mem_sets_of_Liminf_gt hg $ hi.symm ▸ hb) (assume b hb, lt_mem_sets_of_Limsup_lt hl $ hs.symm ▸ hb) theorem Limsup_nhds (a : α) : Limsup (𝓝 a) = a := cInf_intro (is_bounded_le_nhds a) (assume a' (h : {n : α | n ≤ a'} ∈ 𝓝 a), show a ≤ a', from @mem_of_nhds α _ a _ h) (assume b (hba : a < b), show ∃c (h : {n : α | n ≤ c} ∈ 𝓝 a), c < b, from match dense_or_discrete a b with | or.inl ⟨c, hac, hcb⟩ := ⟨c, ge_mem_nhds hac, hcb⟩ | or.inr ⟨_, h⟩ := ⟨a, (𝓝 a).sets_of_superset (gt_mem_nhds hba) h, hba⟩ end) theorem Liminf_nhds : ∀ (a : α), Liminf (𝓝 a) = a := @Limsup_nhds (order_dual α) _ _ _ /-- If a filter is converging, its limsup coincides with its limit. -/ theorem Liminf_eq_of_le_nhds {f : filter α} {a : α} (hf : f ≠ ⊥) (h : f ≤ 𝓝 a) : f.Liminf = a := have hb_ge : is_bounded (≥) f, from is_bounded_of_le h (is_bounded_ge_nhds a), have hb_le : is_bounded (≤) f, from is_bounded_of_le h (is_bounded_le_nhds a), le_antisymm (calc f.Liminf ≤ f.Limsup : Liminf_le_Limsup hf hb_le hb_ge ... ≤ (𝓝 a).Limsup : Limsup_le_Limsup_of_le h (is_cobounded_of_is_bounded hf hb_ge) (is_bounded_le_nhds a) ... = a : Limsup_nhds a) (calc a = (𝓝 a).Liminf : (Liminf_nhds a).symm ... ≤ f.Liminf : Liminf_le_Liminf_of_le h (is_bounded_ge_nhds a) (is_cobounded_of_is_bounded hf hb_le)) /-- If a filter is converging, its liminf coincides with its limit. -/ theorem Limsup_eq_of_le_nhds : ∀ {f : filter α} {a : α}, f ≠ ⊥ → f ≤ 𝓝 a → f.Limsup = a := @Liminf_eq_of_le_nhds (order_dual α) _ _ _ end conditionally_complete_linear_order section complete_linear_order variables [complete_linear_order α] [topological_space α] [order_topology α] -- In complete_linear_order, the above theorems take a simpler form /-- If the liminf and the limsup of a function coincide, then the limit of the function exists and has the same value -/ theorem tendsto_of_liminf_eq_limsup {f : filter β} {u : β → α} {a : α} (h : liminf f u = a ∧ limsup f u = a) : tendsto u f (𝓝 a) := le_nhds_of_Limsup_eq_Liminf is_bounded_le_of_top is_bounded_ge_of_bot h.2 h.1 /-- If a function has a limit, then its limsup coincides with its limit-/ theorem limsup_eq_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥) (h : tendsto u f (𝓝 a)) : limsup f u = a := Limsup_eq_of_le_nhds (map_ne_bot hf) h /-- If a function has a limit, then its liminf coincides with its limit-/ theorem liminf_eq_of_tendsto {f : filter β} {u : β → α} {a : α} (hf : f ≠ ⊥) (h : tendsto u f (𝓝 a)) : liminf f u = a := Liminf_eq_of_le_nhds (map_ne_bot hf) h end complete_linear_order end liminf_limsup end order_topology @[nolint ge_or_gt] -- see Note [nolint_ge] lemma order_topology_of_nhds_abs {α : Type*} [decidable_linear_ordered_comm_group α] [topological_space α] (h_nhds : ∀a:α, 𝓝 a = (⨅r>0, principal {b | abs (a - b) < r})) : order_topology α := order_topology.mk $ eq_of_nhds_eq_nhds $ assume a:α, le_antisymm_iff.mpr begin simp [infi_and, topological_space.nhds_generate_from, h_nhds, le_infi_iff, -le_principal_iff, and_comm], refine ⟨λ s ha b hs, _, λ r hr, _⟩, { rcases hs with rfl | rfl, { refine infi_le_of_le (a - b) (infi_le_of_le (lt_sub_left_of_add_lt $ by simpa using ha) $ principal_mono.mpr $ assume c (hc : abs (a - c) < a - b), _), have : a - c < a - b := lt_of_le_of_lt (le_abs_self _) hc, exact lt_of_neg_lt_neg (lt_of_add_lt_add_left this) }, { refine infi_le_of_le (b - a) (infi_le_of_le (lt_sub_left_of_add_lt $ by simpa using ha) $ principal_mono.mpr $ assume c (hc : abs (a - c) < b - a), _), have : abs (c - a) < b - a, {rw abs_sub; simpa using hc}, have : c - a < b - a := lt_of_le_of_lt (le_abs_self _) this, exact lt_of_add_lt_add_right this } }, { have h : {b | abs (a - b) < r} = {b | a - r < b} ∩ {b | b < a + r}, from set.ext (assume b, by simp [abs_lt, sub_lt, lt_sub_iff_add_lt, sub_lt_iff_lt_add']; cc), rw [h, ← inf_principal], apply le_inf _ _, { exact infi_le_of_le {b : α | a - r < b} (infi_le_of_le (sub_lt_self a hr) $ infi_le_of_le (a - r) $ infi_le _ (or.inl rfl)) }, { exact infi_le_of_le {b : α | b < a + r} (infi_le_of_le (lt_add_of_pos_right _ hr) $ infi_le_of_le (a + r) $ infi_le _ (or.inr rfl)) } } end lemma tendsto_at_top_supr_nat [topological_space α] [complete_linear_order α] [order_topology α] (f : ℕ → α) (hf : monotone f) : tendsto f at_top (𝓝 (⨆i, f i)) := tendsto_order.2 $ and.intro (assume a ha, let ⟨n, hn⟩ := lt_supr_iff.1 ha in mem_at_top_sets.2 ⟨n, assume i hi, lt_of_lt_of_le hn (hf hi)⟩) (assume a ha, univ_mem_sets' (assume n, lt_of_le_of_lt (le_supr _ n) ha)) lemma tendsto_at_top_infi_nat [topological_space α] [complete_linear_order α] [order_topology α] (f : ℕ → α) (hf : ∀{n m}, n ≤ m → f m ≤ f n) : tendsto f at_top (𝓝 (⨅i, f i)) := @tendsto_at_top_supr_nat (order_dual α) _ _ _ _ @hf lemma supr_eq_of_tendsto {α} [topological_space α] [complete_linear_order α] [order_topology α] {f : ℕ → α} {a : α} (hf : monotone f) : tendsto f at_top (𝓝 a) → supr f = a := tendsto_nhds_unique at_top_ne_bot (tendsto_at_top_supr_nat f hf) lemma infi_eq_of_tendsto {α} [topological_space α] [complete_linear_order α] [order_topology α] {f : ℕ → α} {a : α} (hf : ∀n m, n ≤ m → f m ≤ f n) : tendsto f at_top (𝓝 a) → infi f = a := tendsto_nhds_unique at_top_ne_bot (tendsto_at_top_infi_nat f hf) lemma tendsto_abs_at_top_at_top [decidable_linear_ordered_comm_group α] : tendsto (abs : α → α) at_top at_top := tendsto_at_top_mono _ (λ n, le_abs_self _) tendsto_id local notation `|` x `|` := abs x @[nolint ge_or_gt] -- see Note [nolint_ge] lemma decidable_linear_ordered_comm_group.tendsto_nhds [decidable_linear_ordered_comm_group α] [topological_space α] [order_topology α] {β : Type*} (f : β → α) (x : filter β) (a : α) : filter.tendsto f x (nhds a) ↔ ∀ ε > (0 : α), ∀ᶠ b in x, |f b - a| < ε := begin rw (show _, from @tendsto_order α), -- does not work without `show` for some reason split, { rintros ⟨hyp_lt_a, hyp_gt_a⟩ ε ε_pos, suffices : {b : β | f b - a < ε ∧ a - f b < ε} ∈ x, by simpa only [abs_sub_lt_iff], have set1 : {b : β | a - f b < ε} ∈ x, { have : {b : β | a - ε < f b} ∈ x, from hyp_lt_a (a - ε) (sub_lt_self a ε_pos), have : ∀ b, a - f b < ε ↔ a - ε < f b, by { intro _, exact sub_lt }, simpa only [this] }, have set2 : {b : β | f b - a < ε} ∈ x, { have : {b : β | a + ε > f b} ∈ x, from hyp_gt_a (a + ε) (lt_add_of_pos_right a ε_pos), have : ∀ b, f b - a < ε ↔ a + ε > f b, by { intro _, exact sub_lt_iff_lt_add' }, simpa only [this] }, exact (x.inter_sets set2 set1) }, { assume hyp_ε_pos, split, { assume a' a'_lt_a, let ε := a - a', have : {b : β | |f b - a| < ε} ∈ x, from hyp_ε_pos ε (sub_pos.elim_right a'_lt_a), have : {b : β | f b - a < ε ∧ a - f b < ε} ∈ x, by simpa only [abs_sub_lt_iff] using this, have : {b : β | a - f b < ε} ∈ x, from x.sets_of_superset this (set.inter_subset_right _ _), have : ∀ b, a' < f b ↔ a - f b < ε, by {intro b, rw [sub_lt, sub_sub_self] }, simpa only [this] }, { assume a' a'_gt_a, let ε := a' - a, have : {b : β | |f b - a| < ε} ∈ x, from hyp_ε_pos ε (sub_pos.elim_right a'_gt_a), have : {b : β | f b - a < ε ∧ a - f b < ε} ∈ x, by simpa only [abs_sub_lt_iff] using this, have : {b : β | f b - a < ε} ∈ x, from x.sets_of_superset this (set.inter_subset_left _ _), have : ∀ b, f b < a' ↔ f b - a < ε, by { intro b, simp [lt_sub_iff_add_lt] }, simpa only [this] }} end
46a7a307e8f558d52fa47d82f8939ec3f3f01b0a
1437b3495ef9020d5413178aa33c0a625f15f15f
/data/complex/exponential.lean
389c159db635dbd8ab1308a6bf802f3835971862
[ "Apache-2.0" ]
permissive
jean002/mathlib
c66bbb2d9fdc9c03ae07f869acac7ddbfce67a30
dc6c38a765799c99c4d9c8d5207d9e6c9e0e2cfd
refs/heads/master
1,587,027,806,375
1,547,306,358,000
1,547,306,358,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
46,777
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import algebra.archimedean import data.nat.choose data.complex.basic import tactic.linarith local attribute [instance, priority 0] classical.prop_decidable local notation `abs'` := _root_.abs open is_absolute_value section open real is_absolute_value finset lemma geo_sum_eq {α : Type*} [field α] {x : α} : ∀ (n : ℕ) (hx1 : x ≠ 1), (range n).sum (λ m, x ^ m) = (1 - x ^ n) / (1 - x) | 0 hx1 := by simp | (n+1) hx1 := have 1 - x ≠ 0 := mt sub_eq_zero_iff_eq.1 hx1.symm, by rw [sum_range_succ, ← mul_div_cancel (x ^ n) this, geo_sum_eq n hx1, ← add_div, _root_.pow_succ]; simp [mul_add, add_mul, mul_comm] lemma geo_sum_inv_eq {α : Type*} [discrete_field α] {x : α} (n : ℕ) (hx1 : x ≠ 1) (hx0 : x ≠ 0) : (range n).sum (λ m, x⁻¹ ^ m) = (x - x * x⁻¹ ^ n) / (x - 1) := have hx1' : x⁻¹ ≠ 1, from λ h, by rw [← @inv_inv' _ _ x, h] at hx1; simpa using hx1, have h1x' : 1 - x⁻¹ ≠ 0, from sub_ne_zero.2 hx1'.symm, have h1x : x - 1 ≠ 0, from sub_ne_zero.2 hx1, by rw [geo_sum_eq _ hx1', div_eq_div_iff h1x' h1x]; simp [mul_add, add_mul, mul_inv_cancel hx0, mul_comm x, mul_left_comm x, mul_assoc, inv_mul_cancel hx0] lemma forall_ge_le_of_forall_le_succ {α : Type*} [preorder α] (f : ℕ → α) {m : ℕ} (h : ∀ n ≥ m, f n.succ ≤ f n) : ∀ {l}, ∀ k ≥ m, k ≤ l → f l ≤ f k := begin assume l k hkm hkl, generalize hp : l - k = p, have : l = k + p := add_comm p k ▸ (nat.sub_eq_iff_eq_add hkl).1 hp, subst this, clear hkl hp, induction p with p ih, { simp }, { exact le_trans (h _ (le_trans hkm (nat.le_add_right _ _))) ih } end variables {α : Type*} {β : Type*} [ring β] [discrete_linear_ordered_field α] [archimedean α] {abv : β → α} [is_absolute_value abv] lemma is_cau_of_decreasing_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥ m, abs (f n) ≤ a) (hnm : ∀ n ≥ m, f n.succ ≤ f n) : is_cau_seq abs f := λ ε ε0, let ⟨k, hk⟩ := archimedean.arch a ε0 in have h : ∃ l, ∀ n ≥ m, a - add_monoid.smul l ε < f n := ⟨k + k + 1, λ n hnm, lt_of_lt_of_le (show a - add_monoid.smul (k + (k + 1)) ε < -abs (f n), from lt_neg.1 $ lt_of_le_of_lt (ham n hnm) (begin rw [neg_sub, lt_sub_iff_add_lt, add_monoid.add_smul], exact add_lt_add_of_le_of_lt hk (lt_of_le_of_lt hk (lt_add_of_pos_left _ ε0)), end)) (neg_le.2 $ (abs_neg (f n)) ▸ le_abs_self _)⟩, let l := nat.find h in have hl : ∀ (n : ℕ), n ≥ m → f n > a - add_monoid.smul l ε := nat.find_spec h, have hl0 : l ≠ 0 := λ hl0, not_lt_of_ge (ham m (le_refl _)) (lt_of_lt_of_le (by have := hl m (le_refl m); simpa [hl0] using this) (le_abs_self (f m))), begin cases classical.not_forall.1 (nat.find_min h (nat.pred_lt hl0)) with i hi, rw [not_imp, not_lt] at hi, existsi i, assume j hj, have hfij : f j ≤ f i := forall_ge_le_of_forall_le_succ f hnm _ hi.1 hj, rw [abs_of_nonpos (sub_nonpos.2 hfij), neg_sub, sub_lt_iff_lt_add'], exact calc f i ≤ a - add_monoid.smul (nat.pred l) ε : hi.2 ... = a - add_monoid.smul l ε + ε : by conv {to_rhs, rw [← nat.succ_pred_eq_of_pos (nat.pos_of_ne_zero hl0), succ_smul', sub_add, add_sub_cancel] } ... < f j + ε : add_lt_add_right (hl j (le_trans hi.1 hj)) _ end lemma is_cau_of_mono_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥ m, abs (f n) ≤ a) (hnm : ∀ n ≥ m, f n ≤ f n.succ) : is_cau_seq abs f := begin refine @eq.rec_on (ℕ → α) _ (is_cau_seq abs) _ _ (-⟨_, @is_cau_of_decreasing_bounded _ _ _ (λ n, -f n) a m (by simpa) (by simpa)⟩ : cau_seq α abs).2, ext, exact neg_neg _ end lemma is_cau_series_of_abv_le_cau {f : ℕ → β} {g : ℕ → α} (n : ℕ) : (∀ m, n ≤ m → abv (f m) ≤ g m) → is_cau_seq abs (λ n, (range n).sum g) → is_cau_seq abv (λ n, (range n).sum f) := begin assume hm hg ε ε0, cases hg (ε / 2) (div_pos ε0 (by norm_num)) with i hi, existsi max n i, assume j ji, have hi₁ := hi j (le_trans (le_max_right n i) ji), have hi₂ := hi (max n i) (le_max_right n i), have sub_le := abs_sub_le ((range j).sum g) ((range i).sum g) ((range (max n i)).sum g), have := add_lt_add hi₁ hi₂, rw [abs_sub ((range (max n i)).sum g), add_halves ε] at this, refine lt_of_le_of_lt (le_trans (le_trans _ (le_abs_self _)) sub_le) this, generalize hk : j - max n i = k, clear this hi₂ hi₁ hi ε0 ε hg sub_le, rw nat.sub_eq_iff_eq_add ji at hk, rw hk, clear hk ji j, induction k with k' hi, { simp [abv_zero abv] }, { dsimp at *, rw [nat.succ_add, sum_range_succ, sum_range_succ, add_assoc, add_assoc], refine le_trans (abv_add _ _ _) _, exact add_le_add (hm _ (le_add_of_nonneg_of_le (nat.zero_le _) (le_max_left _ _))) hi }, end lemma is_cau_series_of_abv_cau {f : ℕ → β} : is_cau_seq abs (λ m, (range m).sum (λ n, abv (f n))) → is_cau_seq abv (λ m, (range m).sum f) := is_cau_series_of_abv_le_cau 0 (λ n h, le_refl _) lemma is_cau_geo_series {β : Type*} [field β] {abv : β → α} [is_absolute_value abv] (x : β) (hx1 : abv x < 1) : is_cau_seq abv (λ n, (range n).sum (λ m, x ^ m)) := have hx1' : abv x ≠ 1 := λ h, by simpa [h, lt_irrefl] using hx1, is_cau_series_of_abv_cau begin simp only [abv_pow abv, geo_sum_eq _ hx1'] {eta := ff}, refine @is_cau_of_mono_bounded _ _ _ _ ((1 : α) / (1 - abv x)) 0 _ _, { assume n hn, rw abs_of_nonneg , refine div_le_div_of_le_of_pos (sub_le_self _ (abv_pow abv x n ▸ abv_nonneg _ _)) (sub_pos.2 hx1), refine div_nonneg (sub_nonneg.2 _) (sub_pos.2 hx1), clear hn, induction n with n ih, { simp }, { rw [_root_.pow_succ, ← one_mul (1 : α)], refine mul_le_mul (le_of_lt hx1) ih (abv_pow abv x n ▸ abv_nonneg _ _) (by norm_num) } }, { assume n hn, refine div_le_div_of_le_of_pos (sub_le_sub_left _ _) (sub_pos.2 hx1), rw [← one_mul (_ ^ n), _root_.pow_succ], exact mul_le_mul_of_nonneg_right (le_of_lt hx1) (pow_nonneg (abv_nonneg _ _) _) } end lemma is_cau_geo_series_const (a : α) {x : α} (hx1 : abs x < 1) : is_cau_seq abs (λ m, (range m).sum (λ n, a * x ^ n)) := have is_cau_seq abs (λ m, a * (range m).sum (λ n, x ^ n)) := (cau_seq.const abs a * ⟨_, is_cau_geo_series x hx1⟩).2, by simpa only [mul_sum] lemma series_ratio_test {f : ℕ → β} (n : ℕ) (r : α) (hr0 : 0 ≤ r) (hr1 : r < 1) (h : ∀ m, n ≤ m → abv (f m.succ) ≤ r * abv (f m)) : is_cau_seq abv (λ m, (range m).sum f) := have har1 : abs r < 1, by rwa abs_of_nonneg hr0, begin refine is_cau_series_of_abv_le_cau n.succ _ (is_cau_geo_series_const (abv (f n.succ) * r⁻¹ ^ n.succ) har1), assume m hmn, cases classical.em (r = 0) with r_zero r_ne_zero, { have m_pos := lt_of_lt_of_le (nat.succ_pos n) hmn, have := h m.pred (nat.le_of_succ_le_succ (by rwa [nat.succ_pred_eq_of_pos m_pos])), simpa [r_zero, nat.succ_pred_eq_of_pos m_pos, pow_succ] }, generalize hk : m - n.succ = k, have r_pos : 0 < r := lt_of_le_of_ne hr0 (ne.symm r_ne_zero), replace hk : m = k + n.succ := (nat.sub_eq_iff_eq_add hmn).1 hk, induction k with k ih generalizing m n, { rw [hk, zero_add, mul_right_comm, ← pow_inv _ _ r_ne_zero, ← div_eq_mul_inv, mul_div_cancel], exact (ne_of_lt (pow_pos r_pos _)).symm }, { have kn : k + n.succ ≥ n.succ, by rw ← zero_add n.succ; exact add_le_add (zero_le _) (by simp), rw [hk, nat.succ_add, pow_succ' r, ← mul_assoc], exact le_trans (by rw mul_comm; exact h _ (nat.le_of_succ_le kn)) (mul_le_mul_of_nonneg_right (ih (k + n.succ) n h kn rfl) hr0) } end lemma sum_range_diag_flip {α : Type*} [add_comm_monoid α] (n : ℕ) (f : ℕ → ℕ → α) : (range n).sum (λ m, (range (m + 1)).sum (λ k, f k (m - k))) = (range n).sum (λ m, (range (n - m)).sum (f m)) := have h₁ : ((range n).sigma (range ∘ nat.succ)).sum (λ (a : Σ m, ℕ), f (a.2) (a.1 - a.2)) = (range n).sum (λ m, (range (m + 1)).sum (λ k, f k (m - k))) := sum_sigma, have h₂ : ((range n).sigma (λ m, range (n - m))).sum (λ a : Σ (m : ℕ), ℕ, f (a.1) (a.2)) = (range n).sum (λ m, sum (range (n - m)) (f m)) := sum_sigma, h₁ ▸ h₂ ▸ sum_bij (λ a _, ⟨a.2, a.1 - a.2⟩) (λ a ha, have h₁ : a.1 < n := mem_range.1 (mem_sigma.1 ha).1, have h₂ : a.2 < nat.succ a.1 := mem_range.1 (mem_sigma.1 ha).2, mem_sigma.2 ⟨mem_range.2 (lt_of_lt_of_le h₂ h₁), mem_range.2 ((nat.sub_lt_sub_right_iff (nat.le_of_lt_succ h₂)).2 h₁)⟩) (λ _ _, rfl) (λ ⟨a₁, a₂⟩ ⟨b₁, b₂⟩ ha hb h, have ha : a₁ < n ∧ a₂ ≤ a₁ := ⟨mem_range.1 (mem_sigma.1 ha).1, nat.le_of_lt_succ (mem_range.1 (mem_sigma.1 ha).2)⟩, have hb : b₁ < n ∧ b₂ ≤ b₁ := ⟨mem_range.1 (mem_sigma.1 hb).1, nat.le_of_lt_succ (mem_range.1 (mem_sigma.1 hb).2)⟩, have h : a₂ = b₂ ∧ _ := sigma.mk.inj h, have h' : a₁ = b₁ - b₂ + a₂ := (nat.sub_eq_iff_eq_add ha.2).1 (eq_of_heq h.2), sigma.mk.inj_iff.2 ⟨nat.sub_add_cancel hb.2 ▸ h'.symm ▸ h.1 ▸ rfl, (heq_of_eq h.1)⟩) (λ ⟨a₁, a₂⟩ ha, have ha : a₁ < n ∧ a₂ < n - a₁ := ⟨mem_range.1 (mem_sigma.1 ha).1, (mem_range.1 (mem_sigma.1 ha).2)⟩, ⟨⟨a₂ + a₁, a₁⟩, ⟨mem_sigma.2 ⟨mem_range.2 (nat.lt_sub_right_iff_add_lt.1 ha.2), mem_range.2 (nat.lt_succ_of_le (nat.le_add_left _ _))⟩, sigma.mk.inj_iff.2 ⟨rfl, heq_of_eq (nat.add_sub_cancel _ _).symm⟩⟩⟩) lemma abv_sum_le_sum_abv {γ : Type*} (f : γ → β) (s : finset γ) : abv (s.sum f) ≤ s.sum (abv ∘ f) := by haveI := classical.dec_eq γ; exact finset.induction_on s (by simp [abv_zero abv]) (λ a s has ih, by rw [sum_insert has, sum_insert has]; exact le_trans (abv_add abv _ _) (add_le_add_left ih _)) lemma sum_range_sub_sum_range {α : Type*} [add_comm_group α] {f : ℕ → α} {n m : ℕ} (hnm : n ≤ m) : (range m).sum f - (range n).sum f = ((range m).filter (λ k, n ≤ k)).sum f := begin rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _ (range m)), sub_eq_iff_eq_add, ← eq_sub_iff_add_eq, add_sub_cancel'], refine finset.sum_congr (finset.ext.2 $ λ a, ⟨λ h, by simp at *; finish, λ h, have ham : a < m := lt_of_lt_of_le (mem_range.1 h) hnm, by simp * at *⟩) (λ _ _, rfl), end lemma cauchy_product {a b : ℕ → β} (ha : is_cau_seq abs (λ m, (range m).sum (λ n, abv (a n)))) (hb : is_cau_seq abv (λ m, (range m).sum b)) (ε : α) (ε0 : 0 < ε) : ∃ i : ℕ, ∀ j ≥ i, abv ((range j).sum a * (range j).sum b - (range j).sum (λ n, (range (n + 1)).sum (λ m, a m * b (n - m)))) < ε := let ⟨Q, hQ⟩ := cau_seq.bounded ⟨_, hb⟩ in let ⟨P, hP⟩ := cau_seq.bounded ⟨_, ha⟩ in have hP0 : 0 < P, from lt_of_le_of_lt (abs_nonneg _) (hP 0), have hPε0 : 0 < ε / (2 * P), from div_pos ε0 (mul_pos (show (2 : α) > 0, from by norm_num) hP0), let ⟨N, hN⟩ := cau_seq.cauchy₂ ⟨_, hb⟩ hPε0 in have hQε0 : 0 < ε / (4 * Q), from div_pos ε0 (mul_pos (show (0 : α) < 4, by norm_num) (lt_of_le_of_lt (abv_nonneg _ _) (hQ 0))), let ⟨M, hM⟩ := cau_seq.cauchy₂ ⟨_, ha⟩ hQε0 in ⟨2 * (max N M + 1), λ K hK, have h₁ : sum (range K) (λ m, (range (m + 1)).sum (λ k, a k * b (m - k))) = sum (range K) (λ m, sum (range (K - m)) (λ n, a m * b n)), by simpa using sum_range_diag_flip K (λ m n, a m * b n), have h₂ : (λ i, (range (K - i)).sum (λ k, a i * b k)) = (λ i, a i * (range (K - i)).sum b), by simp [finset.mul_sum], have h₃ : (range K).sum (λ i, a i * (range (K - i)).sum b) = (range K).sum (λ i, a i * ((range (K - i)).sum b - (range K).sum b)) + (range K).sum (λ i, a i * (range K).sum b), by rw ← sum_add_distrib; simp [(mul_add _ _ _).symm], have two_mul_two : (4 : α) = 2 * 2, by norm_num, have hQ0 : Q ≠ 0, from λ h, by simpa [h, lt_irrefl] using hQε0, have h2Q0 : 2 * Q ≠ 0, from mul_ne_zero two_ne_zero hQ0, have hε : ε / (2 * P) * P + ε / (4 * Q) * (2 * Q) = ε, by rw [← div_div_eq_div_mul, div_mul_cancel _ (ne.symm (ne_of_lt hP0)), two_mul_two, mul_assoc, ← div_div_eq_div_mul, div_mul_cancel _ h2Q0, add_halves], have hNMK : max N M + 1 < K, from lt_of_lt_of_le (by rw two_mul; exact lt_add_of_pos_left _ (nat.succ_pos _)) hK, have hKN : N < K, from calc N ≤ max N M : le_max_left _ _ ... < max N M + 1 : nat.lt_succ_self _ ... < K : hNMK, have hsumlesum : (range (max N M + 1)).sum (λ i, abv (a i) * abv ((range (K - i)).sum b - (range K).sum b)) ≤ (range (max N M + 1)).sum (λ i, abv (a i) * (ε / (2 * P))), from sum_le_sum (λ m hmJ, mul_le_mul_of_nonneg_left (le_of_lt (hN (K - m) K (nat.le_sub_left_of_add_le (le_trans (by rw two_mul; exact add_le_add (le_of_lt (mem_range.1 hmJ)) (le_trans (le_max_left _ _) (le_of_lt (lt_add_one _)))) hK)) (le_of_lt hKN))) (abv_nonneg abv _)), have hsumltP : sum (range (max N M + 1)) (λ n, abv (a n)) < P := calc sum (range (max N M + 1)) (λ n, abv (a n)) = abs (sum (range (max N M + 1)) (λ n, abv (a n))) : eq.symm (abs_of_nonneg (zero_le_sum (λ x h, abv_nonneg abv (a x)))) ... < P : hP (max N M + 1), begin rw [h₁, h₂, h₃, sum_mul, ← sub_sub, sub_right_comm, sub_self, zero_sub, abv_neg abv], refine lt_of_le_of_lt (abv_sum_le_sum_abv _ _) _, suffices : (range (max N M + 1)).sum (λ (i : ℕ), abv (a i) * abv ((range (K - i)).sum b - (range K).sum b)) + ((range K).sum (λ (i : ℕ), abv (a i) * abv ((range (K - i)).sum b - (range K).sum b)) -(range (max N M + 1)).sum (λ (i : ℕ), abv (a i) * abv ((range (K - i)).sum b - (range K).sum b))) < ε / (2 * P) * P + ε / (4 * Q) * (2 * Q), { rw hε at this, simpa [abv_mul abv] }, refine add_lt_add (lt_of_le_of_lt hsumlesum (by rw [← sum_mul, mul_comm]; exact (mul_lt_mul_left hPε0).mpr hsumltP)) _, rw sum_range_sub_sum_range (le_of_lt hNMK), exact calc sum ((range K).filter (λ k, max N M + 1 ≤ k)) (λ i, abv (a i) * abv (sum (range (K - i)) b - sum (range K) b)) ≤ sum ((range K).filter (λ k, max N M + 1 ≤ k)) (λ i, abv (a i) * (2 * Q)) : sum_le_sum (λ n hn, begin refine mul_le_mul_of_nonneg_left _ (abv_nonneg _ _), rw sub_eq_add_neg, refine le_trans (abv_add _ _ _) _, rw [two_mul, abv_neg abv], exact add_le_add (le_of_lt (hQ _)) (le_of_lt (hQ _)), end) ... < ε / (4 * Q) * (2 * Q) : by rw [← sum_mul, ← sum_range_sub_sum_range (le_of_lt hNMK)]; refine (mul_lt_mul_right $ by rw two_mul; exact add_pos (lt_of_le_of_lt (abv_nonneg _ _) (hQ 0)) (lt_of_le_of_lt (abv_nonneg _ _) (hQ 0))).2 (lt_of_le_of_lt (le_abs_self _) (hM _ _ (le_trans (nat.le_succ_of_le (le_max_right _ _)) (le_of_lt hNMK)) (nat.le_succ_of_le (le_max_right _ _)))) end⟩ end open finset open cau_seq namespace complex lemma is_cau_abs_exp (z : ℂ) : is_cau_seq _root_.abs (λ n, (range n).sum (λ m, abs (z ^ m / nat.fact m))) := let ⟨n, hn⟩ := exists_nat_gt (abs z) in have hn0 : (0 : ℝ) < n, from lt_of_le_of_lt (abs_nonneg _) hn, series_ratio_test n (complex.abs z / n) (div_nonneg_of_nonneg_of_pos (complex.abs_nonneg _) hn0) (by rwa [div_lt_iff hn0, one_mul]) (λ m hm, by rw [abs_abs, abs_abs, nat.fact_succ, pow_succ, mul_comm m.succ, nat.cast_mul, ← div_div_eq_div_mul, mul_div_assoc, mul_div_right_comm, abs_mul, abs_div, abs_cast_nat]; exact mul_le_mul_of_nonneg_right (div_le_div_of_le_left (abs_nonneg _) (nat.cast_pos.2 (nat.succ_pos _)) hn0 (nat.cast_le.2 (le_trans hm (nat.le_succ _)))) (abs_nonneg _)) noncomputable theory lemma is_cau_exp (z : ℂ) : is_cau_seq abs (λ n, (range n).sum (λ m, z ^ m / nat.fact m)) := is_cau_series_of_abv_cau (is_cau_abs_exp z) def exp' (z : ℂ) : cau_seq ℂ complex.abs := ⟨λ n, (range n).sum (λ m, z ^ m / nat.fact m), is_cau_exp z⟩ def exp (z : ℂ) : ℂ := lim (exp' z) def sin (z : ℂ) : ℂ := ((exp (-z * I) - exp (z * I)) * I) / 2 def cos (z : ℂ) : ℂ := (exp (z * I) + exp (-z * I)) / 2 def tan (z : ℂ) : ℂ := sin z / cos z def sinh (z : ℂ) : ℂ := (exp z - exp (-z)) / 2 def cosh (z : ℂ) : ℂ := (exp z + exp (-z)) / 2 def tanh (z : ℂ) : ℂ := sinh z / cosh z end complex namespace real open complex def exp (x : ℝ) : ℝ := (exp x).re def sin (x : ℝ) : ℝ := (sin x).re def cos (x : ℝ) : ℝ := (cos x).re def tan (x : ℝ) : ℝ := (tan x).re def sinh (x : ℝ) : ℝ := (sinh x).re def cosh (x : ℝ) : ℝ := (cosh x).re def tanh (x : ℝ) : ℝ := (tanh x).re end real namespace complex variables (x y : ℂ) @[simp] lemma exp_zero : exp 0 = 1 := lim_eq_of_equiv_const $ λ ε ε0, ⟨1, λ j hj, begin convert ε0, cases j, { exact absurd hj (not_le_of_gt zero_lt_one) }, { dsimp [exp'], induction j with j ih, { dsimp [exp']; simp }, { rw ← ih dec_trivial, simp only [sum_range_succ, pow_succ], simp } } end⟩ lemma exp_add : exp (x + y) = exp x * exp y := show lim (⟨_, is_cau_exp (x + y)⟩ : cau_seq ℂ abs) = lim (show cau_seq ℂ abs, from ⟨_, is_cau_exp x⟩) * lim (show cau_seq ℂ abs, from ⟨_, is_cau_exp y⟩), from have hj : ∀ j : ℕ, (range j).sum (λ m, (x + y) ^ m / m.fact) = (range j).sum (λ i, (range (i + 1)).sum (λ k, x ^ k / k.fact * (y ^ (i - k) / (i - k).fact))), from assume j, finset.sum_congr rfl (λ m hm, begin rw [add_pow, div_eq_mul_inv, sum_mul], refine finset.sum_congr rfl (λ i hi, _), have h₁ : (choose m i : ℂ) ≠ 0 := nat.cast_ne_zero.2 (nat.pos_iff_ne_zero.1 (choose_pos (nat.le_of_lt_succ (mem_range.1 hi)))), have h₂ := choose_mul_fact_mul_fact (nat.le_of_lt_succ $ finset.mem_range.1 hi), rw [← h₂, nat.cast_mul, nat.cast_mul, mul_inv', mul_inv'], simp only [mul_left_comm (choose m i : ℂ), mul_assoc, mul_left_comm (choose m i : ℂ)⁻¹, mul_comm (choose m i : ℂ)], rw inv_mul_cancel h₁, simp [div_eq_mul_inv, mul_comm, mul_assoc, mul_left_comm] end), by rw lim_mul_lim; exact eq.symm (lim_eq_lim_of_equiv (by dsimp; simp only [hj]; exact cauchy_product (is_cau_abs_exp x) (is_cau_exp y))) lemma exp_ne_zero : exp x ≠ 0 := λ h, @zero_ne_one ℂ _ $ by rw [← exp_zero, ← add_neg_self x, exp_add, h]; simp lemma exp_neg : exp (-x) = (exp x)⁻¹ := by rw [← domain.mul_left_inj (exp_ne_zero x), ← exp_add]; simp [mul_inv_cancel (exp_ne_zero x)] lemma exp_sub : exp (x - y) = exp x / exp y := by simp [exp_add, exp_neg, div_eq_mul_inv] @[simp] lemma exp_conj : exp (conj x) = conj (exp x) := begin dsimp [exp], rw [← lim_conj], refine congr_arg lim (cau_seq.ext (λ _, _)), dsimp [exp', function.comp, cau_seq_conj], rw ← sum_hom conj, refine sum_congr rfl (λ n hn, _), rw [conj_div, conj_pow, ← of_real_nat_cast, conj_of_real] end @[simp] lemma exp_of_real_im (x : ℝ) : (exp x).im = 0 := let ⟨r, hr⟩ := (eq_conj_iff_real (exp x)).1 (by rw [← exp_conj, conj_of_real]) in by rw [hr, of_real_im] lemma exp_of_real_re (x : ℝ) : (exp x).re = real.exp x := rfl @[simp] lemma of_real_exp_of_real_re (x : ℝ) : ((exp x).re : ℂ) = exp x := complex.ext (by simp) (by simp) @[simp] lemma of_real_exp (x : ℝ) : (real.exp x : ℂ) = exp x := complex.ext (by simp [real.exp]) (by simp [real.exp]) @[simp] lemma sin_zero : sin 0 = 0 := by simp [sin] @[simp] lemma sin_neg : sin (-x) = -sin x := by simp [sin, exp_neg, (neg_div _ _).symm, add_mul] lemma sin_add : sin (x + y) = sin x * cos y + cos x * sin y := begin rw [← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _), ← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _)], simp only [mul_add, add_mul, exp_add, div_mul_div, div_add_div_same, mul_assoc, (div_div_eq_div_mul _ _ _).symm, mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _), sin, cos], simp [mul_add, add_mul, exp_add], ring end @[simp] lemma cos_zero : cos 0 = 1 := by simp [cos] @[simp] lemma cos_neg : cos (-x) = cos x := by simp [cos, exp_neg] lemma cos_add : cos (x + y) = cos x * cos y - sin x * sin y := begin rw [← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _), ← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _)], simp only [mul_add, add_mul, mul_sub, sub_mul, exp_add, div_mul_div, div_add_div_same, mul_assoc, (div_div_eq_div_mul _ _ _).symm, mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _), sin, cos], apply complex.ext; simp [mul_add, add_mul, exp_add]; ring end lemma sin_sub : sin (x - y) = sin x * cos y - cos x * sin y := by simp [sin_add, sin_neg, cos_neg] lemma cos_sub : cos (x - y) = cos x * cos y + sin x * sin y := by simp [cos_add, sin_neg, cos_neg] lemma sin_conj : sin (conj x) = conj (sin x) := begin rw [sin, ← conj_neg_I, ← conj_mul, ← conj_neg, ← conj_mul, exp_conj, exp_conj, ← conj_sub, sin, conj_div, conj_two, ← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _), mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _), mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _)], apply complex.ext; simp [sin, neg_add], end @[simp] lemma sin_of_real_im (x : ℝ) : (sin x).im = 0 := let ⟨r, hr⟩ := (eq_conj_iff_real (sin x)).1 (by rw [← sin_conj, conj_of_real]) in by rw [hr, of_real_im] lemma sin_of_real_re (x : ℝ) : (sin x).re = real.sin x := rfl @[simp] lemma of_real_sin_of_real_re (x : ℝ) : ((sin x).re : ℂ) = sin x := by apply complex.ext; simp @[simp] lemma of_real_sin (x : ℝ) : (real.sin x : ℂ) = sin x := by simp [real.sin] lemma cos_conj : cos (conj x) = conj (cos x) := begin rw [cos, ← conj_neg_I, ← conj_mul, ← conj_neg, ← conj_mul, exp_conj, exp_conj, cos, conj_div, conj_two, ← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _), mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _), mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _)], apply complex.ext; simp end @[simp] lemma cos_of_real_im (x : ℝ) : (cos x).im = 0 := let ⟨r, hr⟩ := (eq_conj_iff_real (cos x)).1 (by rw [← cos_conj, conj_of_real]) in by rw [hr, of_real_im] lemma cos_of_real_re (x : ℝ) : (cos x).re = real.cos x := rfl @[simp] lemma of_real_cos_of_real_re (x : ℝ) : ((cos x).re : ℂ) = cos x := by apply complex.ext; simp @[simp] lemma of_real_cos (x : ℝ) : (real.cos x : ℂ) = cos x := by simp [real.cos, -cos_of_real_re] @[simp] lemma tan_zero : tan 0 = 0 := by simp [tan] lemma tan_eq_sin_div_cos : tan x = sin x / cos x := rfl @[simp] lemma tan_neg : tan (-x) = -tan x := by simp [tan, neg_div] lemma tan_conj : tan (conj x) = conj (tan x) := by rw [tan, sin_conj, cos_conj, ← conj_div, tan] @[simp] lemma tan_of_real_im (x : ℝ) : (tan x).im = 0 := let ⟨r, hr⟩ := (eq_conj_iff_real (tan x)).1 (by rw [← tan_conj, conj_of_real]) in by rw [hr, of_real_im] lemma tan_of_real_re (x : ℝ) : (tan x).re = real.tan x := rfl @[simp] lemma of_real_tan_of_real_re (x : ℝ) : ((tan x).re : ℂ) = tan x := by apply complex.ext; simp @[simp] lemma of_real_tan (x : ℝ) : (real.tan x : ℂ) = tan x := by simp [real.tan, -tan_of_real_re] lemma sin_pow_two_add_cos_pow_two : sin x ^ 2 + cos x ^ 2 = 1 := begin simp only [pow_two, mul_sub, sub_mul, mul_add, add_mul, div_eq_mul_inv, neg_mul_eq_neg_mul_symm, exp_neg, mul_comm (exp _), mul_left_comm (exp _), mul_assoc, mul_left_comm (exp _)⁻¹, inv_mul_cancel (exp_ne_zero _), mul_inv', mul_one, one_mul, sin, cos], apply complex.ext; simp [norm_sq]; ring end lemma cos_two_mul : cos (2 * x) = 2 * cos x ^ 2 - 1 := by rw [two_mul, cos_add, ← pow_two, ← pow_two, eq_sub_iff_add_eq.2 (sin_pow_two_add_cos_pow_two x)]; simp [two_mul] lemma sin_two_mul : sin (2 * x) = 2 * sin x * cos x := by rw [two_mul, sin_add, two_mul, add_mul, mul_comm] lemma exp_mul_I : exp (x * I) = cos x + sin x * I := by rw [cos, sin, mul_comm (_ / 2) I, ← mul_div_assoc, mul_left_comm I, I_mul_I, ← add_div]; simp lemma exp_add_mul_I : exp (x + y * I) = exp x * (cos y + sin y * I) := by rw [exp_add, exp_mul_I] lemma exp_eq_exp_re_mul_sin_add_cos : exp x = exp x.re * (cos x.im + sin x.im * I) := by rw [← exp_add_mul_I, re_add_im] @[simp] lemma sinh_zero : sinh 0 = 0 := by simp [sinh] @[simp] lemma sinh_neg : sinh (-x) = -sinh x := by simp [sinh, exp_neg, (neg_div _ _).symm, add_mul] lemma sinh_add : sinh (x + y) = sinh x * cosh y + cosh x * sinh y := begin rw [← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _), ← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _)], simp only [mul_add, add_mul, exp_add, div_mul_div, div_add_div_same, mul_assoc, (div_div_eq_div_mul _ _ _).symm, mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _), sinh, cosh], simp [mul_add, add_mul, exp_add], ring end @[simp] lemma cosh_zero : cosh 0 = 1 := by simp [cosh] @[simp] lemma cosh_neg : cosh (-x) = cosh x := by simp [cosh, exp_neg] lemma cosh_add : cosh (x + y) = cosh x * cosh y + sinh x * sinh y := begin rw [← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _), ← domain.mul_left_inj (@two_ne_zero' ℂ _ _ _)], simp only [mul_add, add_mul, mul_sub, sub_mul, exp_add, div_mul_div, div_add_div_same, mul_assoc, (div_div_eq_div_mul _ _ _).symm, mul_div_cancel' _ (@two_ne_zero' ℂ _ _ _), sinh, cosh], apply complex.ext; simp [mul_add, add_mul, exp_add]; ring end lemma sinh_sub : sinh (x - y) = sinh x * cosh y - cosh x * sinh y := by simp [sinh_add, sinh_neg, cosh_neg] lemma cosh_sub : cosh (x - y) = cosh x * cosh y - sinh x * sinh y := by simp [cosh_add, sinh_neg, cosh_neg] lemma sinh_conj : sinh (conj x) = conj (sinh x) := by rw [sinh, ← conj_neg, exp_conj, exp_conj, ← conj_sub, sinh, conj_div, conj_two] @[simp] lemma sinh_of_real_im (x : ℝ) : (sinh x).im = 0 := let ⟨r, hr⟩ := (eq_conj_iff_real (sinh x)).1 (by rw [← sinh_conj, conj_of_real]) in by rw [hr, of_real_im] lemma sinh_of_real_re (x : ℝ) : (sinh x).re = real.sinh x := rfl @[simp] lemma of_real_sinh_of_real_re (x : ℝ) : ((sinh x).re : ℂ) = sinh x := by apply complex.ext; simp @[simp] lemma of_real_sinh (x : ℝ) : (real.sinh x : ℂ) = sinh x := by simp [real.sinh] lemma cosh_conj : cosh (conj x) = conj (cosh x) := by rw [cosh, ← conj_neg, exp_conj, exp_conj, ← conj_add, cosh, conj_div, conj_two] @[simp] lemma cosh_of_real_im (x : ℝ) : (cosh x).im = 0 := let ⟨r, hr⟩ := (eq_conj_iff_real (cosh x)).1 (by rw [← cosh_conj, conj_of_real]) in by rw [hr, of_real_im] lemma cosh_of_real_re (x : ℝ) : (cosh x).re = real.cosh x := rfl @[simp] lemma of_real_cosh_of_real_re (x : ℝ) : ((cosh x).re : ℂ) = cosh x := by apply complex.ext; simp @[simp] lemma of_real_cosh (x : ℝ) : (real.cosh x : ℂ) = cosh x := by simp [real.cosh] lemma tanh_eq_sinh_div_cosh : tanh x = sinh x / cosh x := rfl @[simp] lemma tanh_zero : tanh 0 = 0 := by simp [tanh] @[simp] lemma tanh_neg : tanh (-x) = -tanh x := by simp [tanh, neg_div] lemma tanh_conj : tanh (conj x) = conj (tanh x) := by rw [tanh, sinh_conj, cosh_conj, ← conj_div, tanh] @[simp] lemma tanh_of_real_im (x : ℝ) : (tanh x).im = 0 := let ⟨r, hr⟩ := (eq_conj_iff_real (tanh x)).1 (by rw [← tanh_conj, conj_of_real]) in by rw [hr, of_real_im] lemma tanh_of_real_re (x : ℝ) : (tanh x).re = real.tanh x := rfl @[simp] lemma of_real_tanh_of_real_re (x : ℝ) : ((tanh x).re : ℂ) = tanh x := by apply complex.ext; simp @[simp] lemma of_real_tanh (x : ℝ) : (real.tanh x : ℂ) = tanh x := by simp [real.tanh] end complex namespace real open complex variables (x y : ℝ) @[simp] lemma exp_zero : exp 0 = 1 := by simp [real.exp] lemma exp_add : exp (x + y) = exp x * exp y := by simp [exp_add, exp] lemma exp_ne_zero : exp x ≠ 0 := λ h, exp_ne_zero x $ by rw [exp, ← of_real_inj] at h; simp * at * lemma exp_neg : exp (-x) = (exp x)⁻¹ := by rw [← of_real_inj, exp, of_real_exp_of_real_re, of_real_neg, exp_neg, of_real_inv, of_real_exp] lemma exp_sub : exp (x - y) = exp x / exp y := by simp [exp_add, exp_neg, div_eq_mul_inv] @[simp] lemma sin_zero : sin 0 = 0 := by simp [sin] @[simp] lemma sin_neg : sin (-x) = -sin x := by simp [sin, exp_neg, (neg_div _ _).symm, add_mul] lemma sin_add : sin (x + y) = sin x * cos y + cos x * sin y := by rw [← of_real_inj]; simp [sin, sin_add] @[simp] lemma cos_zero : cos 0 = 1 := by simp [cos] @[simp] lemma cos_neg : cos (-x) = cos x := by simp [cos, exp_neg] lemma cos_add : cos (x + y) = cos x * cos y - sin x * sin y := by rw ← of_real_inj; simp [cos, cos_add] lemma sin_sub : sin (x - y) = sin x * cos y - cos x * sin y := by simp [sin_add, sin_neg, cos_neg] lemma cos_sub : cos (x - y) = cos x * cos y + sin x * sin y := by simp [cos_add, sin_neg, cos_neg] lemma tan_eq_sin_div_cos : tan x = sin x / cos x := if h : complex.cos x = 0 then by simp [sin, cos, tan, *, complex.tan, div_eq_mul_inv] at * else by rw [sin, cos, tan, complex.tan, ← of_real_inj, div_eq_mul_inv, mul_re]; simp [norm_sq, (div_div_eq_div_mul _ _ _).symm, div_self h]; refl @[simp] lemma tan_zero : tan 0 = 0 := by simp [tan] @[simp] lemma tan_neg : tan (-x) = -tan x := by simp [tan, neg_div] lemma sin_pow_two_add_cos_pow_two : sin x ^ 2 + cos x ^ 2 = 1 := by rw ← of_real_inj; simpa [sin, of_real_pow] using sin_pow_two_add_cos_pow_two x lemma abs_sin_le_one : abs' (sin x) ≤ 1 := not_lt.1 $ λ h, lt_irrefl (1 * 1 : ℝ) (calc 1 * 1 < abs' (sin x) * abs' (sin x) : mul_lt_mul h (le_of_lt h) zero_lt_one (le_trans zero_le_one (le_of_lt h)) ... = sin x ^ 2 : by rw [← _root_.abs_mul, abs_mul_self, pow_two] ... ≤ sin x ^ 2 + cos x ^ 2 : le_add_of_nonneg_right (pow_two_nonneg _) ... = 1 * 1 : by rw [sin_pow_two_add_cos_pow_two, one_mul]) lemma abs_cos_le_one : abs' (cos x) ≤ 1 := not_lt.1 $ λ h, lt_irrefl (1 * 1 : ℝ) (calc 1 * 1 < abs' (cos x) * abs' (cos x) : mul_lt_mul h (le_of_lt h) zero_lt_one (le_trans zero_le_one (le_of_lt h)) ... = cos x ^ 2 : by rw [← _root_.abs_mul, abs_mul_self, pow_two] ... ≤ sin x ^ 2 + cos x ^ 2 : le_add_of_nonneg_left (pow_two_nonneg _) ... = 1 * 1 : by rw [sin_pow_two_add_cos_pow_two, one_mul]) lemma sin_le_one : sin x ≤ 1 := (abs_le.1 (abs_sin_le_one _)).2 lemma cos_le_one : cos x ≤ 1 := (abs_le.1 (abs_cos_le_one _)).2 lemma neg_one_le_sin : -1 ≤ sin x := (abs_le.1 (abs_sin_le_one _)).1 lemma neg_one_le_cos : -1 ≤ cos x := (abs_le.1 (abs_cos_le_one _)).1 lemma sin_pow_two_le_one : sin x ^ 2 ≤ 1 := by rw [pow_two, ← abs_mul_self, _root_.abs_mul]; exact mul_le_one (abs_sin_le_one _) (abs_nonneg _) (abs_sin_le_one _) lemma cos_pow_two_le_one : cos x ^ 2 ≤ 1 := by rw [pow_two, ← abs_mul_self, _root_.abs_mul]; exact mul_le_one (abs_cos_le_one _) (abs_nonneg _) (abs_cos_le_one _) lemma cos_two_mul : cos (2 * x) = 2 * cos x ^ 2 - 1 := by rw ← of_real_inj; simp [cos_two_mul, cos, pow_two] lemma sin_two_mul : sin (2 * x) = 2 * sin x * cos x := by rw ← of_real_inj; simp [sin_two_mul, sin, pow_two] @[simp] lemma sinh_zero : sinh 0 = 0 := by simp [sinh] @[simp] lemma sinh_neg : sinh (-x) = -sinh x := by simp [sinh, exp_neg, (neg_div _ _).symm, add_mul] lemma sinh_add : sinh (x + y) = sinh x * cosh y + cosh x * sinh y := by rw ← of_real_inj; simp [sinh, sinh_add] @[simp] lemma cosh_zero : cosh 0 = 1 := by simp [cosh] @[simp] lemma cosh_neg : cosh (-x) = cosh x := by simp [cosh, exp_neg] lemma cosh_add : cosh (x + y) = cosh x * cosh y + sinh x * sinh y := by rw ← of_real_inj; simp [cosh, cosh_add] lemma sinh_sub : sinh (x - y) = sinh x * cosh y - cosh x * sinh y := by simp [sinh_add, sinh_neg, cosh_neg] lemma cosh_sub : cosh (x - y) = cosh x * cosh y - sinh x * sinh y := by simp [cosh_add, sinh_neg, cosh_neg] lemma tanh_eq_sinh_div_cosh : tanh x = sinh x / cosh x := if h : complex.cosh x = 0 then by simp [sinh, cosh, tanh, *, complex.tanh, div_eq_mul_inv] at * else by rw [sinh, cosh, tanh, complex.tanh, ← of_real_inj, div_eq_mul_inv, mul_re]; simp [norm_sq, (div_div_eq_div_mul _ _ _).symm, div_self h]; refl @[simp] lemma tanh_zero : tanh 0 = 0 := by simp [tanh] @[simp] lemma tanh_neg : tanh (-x) = -tanh x := by simp [tanh, neg_div] open is_absolute_value /- TODO make this private and prove ∀ x -/ lemma add_one_le_exp_of_nonneg {x : ℝ} (hx : 0 ≤ x) : x + 1 ≤ exp x := calc x + 1 ≤ lim (⟨(λ n : ℕ, ((exp' x) n).re), is_cau_seq_re (exp' x)⟩ : cau_seq ℝ abs') : le_lim (cau_seq.le_of_exists ⟨2, λ j hj, show x + (1 : ℝ) ≤ ((range j).sum (λ m, (x ^ m / m.fact : ℂ))).re, from have h₁ : (((λ m : ℕ, (x ^ m / m.fact : ℂ)) ∘ nat.succ) 0).re = x, by simp, have h₂ : ((x : ℂ) ^ 0 / nat.fact 0).re = 1, by simp, begin rw [← nat.sub_add_cancel hj, sum_range_succ', sum_range_succ', add_re, add_re, h₁, h₂, add_assoc, ← @sum_hom _ _ _ _ _ _ _ complex.re (is_add_group_hom.to_is_add_monoid_hom _)], refine le_add_of_nonneg_of_le (zero_le_sum (λ m hm, _)) (le_refl _), dsimp [-nat.fact_succ], rw [← of_real_pow, ← of_real_nat_cast, ← of_real_div, of_real_re], exact div_nonneg (pow_nonneg hx _) (nat.cast_pos.2 (nat.fact_pos _)), end⟩) ... = exp x : by rw [exp, complex.exp, ← cau_seq_re, lim_re] lemma one_le_exp {x : ℝ} (hx : 0 ≤ x) : 1 ≤ exp x := by linarith using [add_one_le_exp_of_nonneg hx] lemma exp_pos (x : ℝ) : 0 < exp x := (le_total 0 x).elim (lt_of_lt_of_le zero_lt_one ∘ one_le_exp) (λ h, by rw [← neg_neg x, real.exp_neg]; exact inv_pos (lt_of_lt_of_le zero_lt_one (one_le_exp (neg_nonneg.2 h)))) @[simp] lemma abs_exp (x : ℝ) : abs' (exp x) = exp x := abs_of_nonneg (le_of_lt (exp_pos _)) lemma exp_le_exp {x y : ℝ} (h : x ≤ y) : exp x ≤ exp y := by rw [← sub_add_cancel y x, real.exp_add]; exact (le_mul_iff_one_le_left (exp_pos _)).2 (one_le_exp (sub_nonneg.2 h)) lemma exp_lt_exp {x y : ℝ} (h : x < y) : exp x < exp y := by rw [← sub_add_cancel y x, real.exp_add]; exact (lt_mul_iff_one_lt_left (exp_pos _)).2 (lt_of_lt_of_le (by linarith) (add_one_le_exp_of_nonneg (by linarith))) lemma exp_injective : function.injective exp := λ x y h, begin rcases lt_trichotomy x y with h₁ | h₁ | h₁, { exact absurd h (ne_of_lt (exp_lt_exp h₁)) }, { exact h₁ }, { exact absurd h (ne.symm (ne_of_lt (exp_lt_exp h₁))) } end end real namespace complex lemma sum_div_fact_le {α : Type*} [discrete_linear_ordered_field α] (n j : ℕ) (hn : 0 < n) : (sum (filter (λ k, n ≤ k) (range j)) (λ m : ℕ, (1 / m.fact : α))) ≤ n.succ * (n.fact * n)⁻¹ := calc (filter (λ k, n ≤ k) (range j)).sum (λ m : ℕ, (1 / m.fact : α)) = (range (j - n)).sum (λ m, 1 / (m + n).fact) : sum_bij (λ m _, m - n) (λ m hm, mem_range.2 $ (nat.sub_lt_sub_right_iff (by simp at hm; tauto)).2 (by simp at hm; tauto)) (λ m hm, by rw nat.sub_add_cancel; simp at *; tauto) (λ a₁ a₂ ha₁ ha₂ h, by rwa [nat.sub_eq_iff_eq_add, ← nat.sub_add_comm, eq_comm, nat.sub_eq_iff_eq_add, add_right_inj, eq_comm] at h; simp at *; tauto) (λ b hb, ⟨b + n, mem_filter.2 ⟨mem_range.2 $ nat.add_lt_of_lt_sub_right (mem_range.1 hb), nat.le_add_left _ _⟩, by rw nat.add_sub_cancel⟩) ... ≤ (range (j - n)).sum (λ m, (nat.fact n * n.succ ^ m)⁻¹) : begin refine sum_le_sum (assume m n, _), rw [one_div_eq_inv, inv_le_inv], { rw [← nat.cast_pow, ← nat.cast_mul, nat.cast_le, add_comm], exact nat.fact_mul_pow_le_fact }, { exact nat.cast_pos.2 (nat.fact_pos _) }, { exact mul_pos (nat.cast_pos.2 (nat.fact_pos _)) (pow_pos (nat.cast_pos.2 (nat.succ_pos _)) _) }, end ... = (nat.fact n)⁻¹ * (range (j - n)).sum (λ m, n.succ⁻¹ ^ m) : by simp [mul_inv', mul_sum.symm, sum_mul.symm, -nat.fact_succ, mul_comm, inv_pow'] ... = (n.succ - n.succ * n.succ⁻¹ ^ (j - n)) / (n.fact * n) : have h₁ : (n.succ : α) ≠ 1, from @nat.cast_one α _ _ ▸ mt nat.cast_inj.1 (mt nat.succ_inj (nat.pos_iff_ne_zero.1 hn)), have h₂ : (n.succ : α) ≠ 0, from nat.cast_ne_zero.2 (nat.succ_ne_zero _), have h₃ : (n.fact * n : α) ≠ 0, from mul_ne_zero (nat.cast_ne_zero.2 (nat.pos_iff_ne_zero.1 (nat.fact_pos _))) (nat.cast_ne_zero.2 (nat.pos_iff_ne_zero.1 hn)), have h₄ : (n.succ - 1 : α) * (n.fact : ℕ) ≠ 0, from mul_ne_zero (sub_ne_zero.2 h₁) (nat.cast_ne_zero.2 (nat.pos_iff_ne_zero.1 (nat.fact_pos _))), by rw [geo_sum_inv_eq _ h₁ h₂, mul_comm, ← div_eq_mul_inv, div_div_eq_div_mul, div_eq_div_iff h₄ h₃]; simp [mul_add, add_mul, mul_comm, mul_assoc, mul_left_comm] ... ≤ n.succ / (n.fact * n) : begin refine (div_le_div_right (mul_pos _ _)).2 _, exact nat.cast_pos.2 (nat.fact_pos _), exact nat.cast_pos.2 hn, exact sub_le_self _ (mul_nonneg (nat.cast_nonneg _) (pow_nonneg (inv_nonneg.2 (nat.cast_nonneg _)) _)) end lemma exp_bound {x : ℂ} (hx : abs x ≤ 1) {n : ℕ} (hn : 0 < n) : abs (exp x - (range n).sum (λ m, x ^ m / m.fact)) ≤ abs x ^ n * (n.succ * (n.fact * n)⁻¹) := begin rw [← lim_const ((range n).sum _), exp, sub_eq_add_neg, ← lim_neg, lim_add, ← lim_abs], refine lim_le (cau_seq.le_of_exists ⟨n, λ j hj, _⟩), show abs ((range j).sum (λ m, x ^ m / m.fact) - (range n).sum (λ m, x ^ m / m.fact)) ≤ abs x ^ n * (n.succ * (n.fact * n)⁻¹), rw sum_range_sub_sum_range hj, exact calc abs (((range j).filter (λ k, n ≤ k)).sum (λ m : ℕ, (x ^ m / m.fact : ℂ))) = abs (((range j).filter (λ k, n ≤ k)).sum (λ m : ℕ, (x ^ n * (x ^ (m - n) / m.fact) : ℂ))) : congr_arg abs (sum_congr rfl (λ m hm, by rw [← mul_div_assoc, ← pow_add, nat.add_sub_cancel']; simp at hm; tauto)) ... ≤ sum (filter (λ k, n ≤ k) (range j)) (λ m, abs (x ^ n * (_ / m.fact))) : abv_sum_le_sum_abv _ _ ... ≤ sum (filter (λ k, n ≤ k) (range j)) (λ m, abs x ^ n * (1 / m.fact)) : begin refine sum_le_sum (λ m hm, _), rw [abs_mul, abv_pow abs, abs_div, abs_cast_nat], refine mul_le_mul_of_nonneg_left ((div_le_div_right _).2 _) _, exact nat.cast_pos.2 (nat.fact_pos _), rw abv_pow abs, exact (pow_le_one _ (abs_nonneg _) hx), exact pow_nonneg (abs_nonneg _) _ end ... = abs x ^ n * (((range j).filter (λ k, n ≤ k)).sum (λ m : ℕ, (1 / m.fact : ℝ))) : by simp [abs_mul, abv_pow abs, abs_div, mul_sum.symm] ... ≤ abs x ^ n * (n.succ * (n.fact * n)⁻¹) : mul_le_mul_of_nonneg_left (sum_div_fact_le _ _ hn) (pow_nonneg (abs_nonneg _) _) end lemma abs_exp_sub_one_le {x : ℂ} (hx : abs x ≤ 1) : abs (exp x - 1) ≤ 2 * abs x := calc abs (exp x - 1) = abs (exp x - (range 1).sum (λ m, x ^ m / m.fact)) : by simp [sum_range_succ] ... ≤ abs x ^ 1 * ((nat.succ 1) * (nat.fact 1 * (1 : ℕ))⁻¹) : exp_bound hx dec_trivial ... = 2 * abs x : by simp [two_mul, mul_two, mul_add, mul_comm] end complex namespace real open complex finset lemma cos_bound {x : ℝ} (hx : abs' x ≤ 1) : abs' (cos x - (1 - x ^ 2 / 2)) ≤ abs' x ^ 4 * (5 / 96) := calc abs' (cos x - (1 - x ^ 2 / 2)) = abs (complex.cos x - (1 - x ^ 2 / 2)) : by rw ← abs_of_real; simp [of_real_bit0, of_real_one, of_real_inv] ... = abs ((complex.exp (x * I) + complex.exp (-x * I) - (2 - x ^ 2)) / 2) : by simp [complex.cos, sub_div, add_div, neg_div, div_self (@two_ne_zero' ℂ _ _ _)] ... = abs (((complex.exp (x * I) - (range 4).sum (λ m, (x * I) ^ m / m.fact)) + ((complex.exp (-x * I) - (range 4).sum (λ m, (-x * I) ^ m / m.fact)))) / 2) : congr_arg abs (congr_arg (λ x : ℂ, x / 2) begin simp only [sum_range_succ], simp [pow_succ], apply complex.ext; simp [div_eq_mul_inv, norm_sq]; ring end) ... ≤ abs ((complex.exp (x * I) - (range 4).sum (λ m, (x * I) ^ m / m.fact)) / 2) + abs ((complex.exp (-x * I) - (range 4).sum (λ m, (-x * I) ^ m / m.fact)) / 2) : by rw add_div; exact abs_add _ _ ... = (abs ((complex.exp (x * I) - (range 4).sum (λ m, (x * I) ^ m / m.fact))) / 2 + abs ((complex.exp (-x * I) - (range 4).sum (λ m, (-x * I) ^ m / m.fact))) / 2) : by simp [complex.abs_div] ... ≤ ((complex.abs (x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2 + (complex.abs (-x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2) : add_le_add ((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial)) ((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial)) ... ≤ abs' x ^ 4 * (5 / 96) : by norm_num; simp [mul_assoc, mul_comm, mul_left_comm, mul_div_assoc] lemma sin_bound {x : ℝ} (hx : abs' x ≤ 1) : abs' (sin x - (x - x ^ 3 / 6)) ≤ abs' x ^ 4 * (5 / 96) := calc abs' (sin x - (x - x ^ 3 / 6)) = abs (complex.sin x - (x - x ^ 3 / 6)) : by rw ← abs_of_real; simp [of_real_bit0, of_real_one, of_real_inv] ... = abs (((complex.exp (-x * I) - complex.exp (x * I)) * I - (2 * x - x ^ 3 / 3)) / 2) : by simp [complex.sin, sub_div, add_div, neg_div, mul_div_cancel_left _ (@two_ne_zero' ℂ _ _ _), div_div_eq_div_mul, show (3 : ℂ) * 2 = 6, by norm_num] ... = abs ((((complex.exp (-x * I) - (range 4).sum (λ m, (-x * I) ^ m / m.fact)) - (complex.exp (x * I) - (range 4).sum (λ m, (x * I) ^ m / m.fact))) * I) / 2) : congr_arg abs (congr_arg (λ x : ℂ, x / 2) begin simp only [sum_range_succ], simp [pow_succ], apply complex.ext; simp [div_eq_mul_inv, norm_sq]; ring end) ... ≤ abs ((complex.exp (-x * I) - (range 4).sum (λ m, (-x * I) ^ m / m.fact)) * I / 2) + abs (-((complex.exp (x * I) - (range 4).sum (λ m, (x * I) ^ m / m.fact)) * I) / 2) : by rw [sub_mul, sub_eq_add_neg, add_div]; exact abs_add _ _ ... = (abs ((complex.exp (x * I) - (range 4).sum (λ m, (x * I) ^ m / m.fact))) / 2 + abs ((complex.exp (-x * I) - (range 4).sum (λ m, (-x * I) ^ m / m.fact))) / 2) : by simp [complex.abs_div, complex.abs_mul] ... ≤ ((complex.abs (x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2 + (complex.abs (-x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2) : add_le_add ((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial)) ((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial)) ... ≤ abs' x ^ 4 * (5 / 96) : by norm_num; simp [mul_assoc, mul_comm, mul_left_comm, mul_div_assoc] lemma cos_pos_of_le_one {x : ℝ} (hx : abs' x ≤ 1) : 0 < cos x := calc 0 < (1 - x ^ 2 / 2) - abs' x ^ 4 * (5 / 96) : sub_pos.2 $ lt_sub_iff_add_lt.2 (calc abs' x ^ 4 * (5 / 96) + x ^ 2 / 2 ≤ 1 * (5 / 96) + 1 / 2 : add_le_add (mul_le_mul_of_nonneg_right (pow_le_one _ (abs_nonneg _) hx) (by norm_num)) ((div_le_div_right (by norm_num)).2 (by rw [pow_two, ← abs_mul_self, _root_.abs_mul]; exact mul_le_one hx (abs_nonneg _) hx)) ... < 1 : by norm_num) ... ≤ cos x : sub_le.1 (abs_sub_le_iff.1 (cos_bound hx)).2 lemma sin_pos_of_pos_of_le_one {x : ℝ} (hx0 : 0 < x) (hx : x ≤ 1) : 0 < sin x := calc 0 < x - x ^ 3 / 6 - abs' x ^ 4 * (5 / 96) : sub_pos.2 $ lt_sub_iff_add_lt.2 (calc abs' x ^ 4 * (5 / 96) + x ^ 3 / 6 ≤ x * (5 / 96) + x / 6 : add_le_add (mul_le_mul_of_nonneg_right (calc abs' x ^ 4 ≤ abs' x ^ 1 : pow_le_pow_of_le_one (abs_nonneg _) (by rwa _root_.abs_of_nonneg (le_of_lt hx0)) dec_trivial ... = x : by simp [_root_.abs_of_nonneg (le_of_lt (hx0))]) (by norm_num)) ((div_le_div_right (by norm_num)).2 (calc x ^ 3 ≤ x ^ 1 : pow_le_pow_of_le_one (le_of_lt hx0) hx dec_trivial ... = x : pow_one _)) ... < x : by linarith) ... ≤ sin x : sub_le.1 (abs_sub_le_iff.1 (sin_bound (by rwa [_root_.abs_of_nonneg (le_of_lt hx0)]))).2 lemma sin_pos_of_pos_of_le_two {x : ℝ} (hx0 : 0 < x) (hx : x ≤ 2) : 0 < sin x := have x / 2 ≤ 1, from div_le_of_le_mul (by norm_num) (by simpa), calc 0 < 2 * sin (x / 2) * cos (x / 2) : mul_pos (mul_pos (by norm_num) (sin_pos_of_pos_of_le_one (half_pos hx0) this)) (cos_pos_of_le_one (by rwa [_root_.abs_of_nonneg (le_of_lt (half_pos hx0))])) ... = sin x : by rw [← sin_two_mul, two_mul, add_halves] lemma cos_one_le : cos 1 ≤ 2 / 3 := calc cos 1 ≤ abs' (1 : ℝ) ^ 4 * (5 / 96) + (1 - 1 ^ 2 / 2) : sub_le_iff_le_add.1 (abs_sub_le_iff.1 (cos_bound (by simp))).1 ... ≤ 2 / 3 : by norm_num lemma cos_one_pos : 0 < cos 1 := cos_pos_of_le_one (by simp) lemma cos_two_neg : cos 2 < 0 := calc cos 2 = cos (2 * 1) : congr_arg cos (mul_one _).symm ... = _ : real.cos_two_mul 1 ... ≤ 2 * (2 / 3) ^ 2 - 1 : sub_le_sub_right (mul_le_mul_of_nonneg_left (by rw [pow_two, pow_two]; exact mul_self_le_mul_self (le_of_lt cos_one_pos) cos_one_le) (by norm_num)) _ ... < 0 : by norm_num end real namespace complex lemma abs_cos_add_sin_mul_I (x : ℝ) : abs (cos x + sin x * I) = 1 := have _ := real.sin_pow_two_add_cos_pow_two x, by simp [abs, norm_sq, pow_two, *, sin_of_real_re, cos_of_real_re, mul_re] at * lemma abs_exp_eq_iff_re_eq {x y : ℂ} : abs (exp x) = abs (exp y) ↔ x.re = y.re := by rw [exp_eq_exp_re_mul_sin_add_cos, exp_eq_exp_re_mul_sin_add_cos y, abs_mul, abs_mul, abs_cos_add_sin_mul_I, abs_cos_add_sin_mul_I, ← of_real_exp, ← of_real_exp, abs_of_nonneg (le_of_lt (real.exp_pos _)), abs_of_nonneg (le_of_lt (real.exp_pos _)), mul_one, mul_one]; exact ⟨λ h, real.exp_injective h, congr_arg _⟩ @[simp] lemma abs_exp_of_real (x : ℝ) : abs (exp x) = real.exp x := by rw [← of_real_exp]; exact abs_of_nonneg (le_of_lt (real.exp_pos _)) end complex
bf038f03922ded7e815321e7b67d21a053849182
4fa161becb8ce7378a709f5992a594764699e268
/src/data/pnat/factors.lean
32fd431cf819734d424603101204c364674266b7
[ "Apache-2.0" ]
permissive
laughinggas/mathlib
e4aa4565ae34e46e834434284cb26bd9d67bc373
86dcd5cda7a5017c8b3c8876c89a510a19d49aad
refs/heads/master
1,669,496,232,688
1,592,831,995,000
1,592,831,995,000
274,155,979
0
0
Apache-2.0
1,592,835,190,000
1,592,835,189,000
null
UTF-8
Lean
false
false
13,933
lean
/- Copyright (c) 2019 Neil Strickland. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Neil Strickland -/ import data.pnat.basic import data.multiset import data.int.gcd import algebra.group /-- The type of multisets of prime numbers. Unique factorization gives an equivalence between this set and ℕ+, as we will formalize below. -/ def prime_multiset := multiset nat.primes namespace prime_multiset instance : inhabited prime_multiset := by unfold prime_multiset; apply_instance instance : has_repr prime_multiset := by { dsimp [prime_multiset], apply_instance } instance : canonically_ordered_add_monoid prime_multiset := by { dsimp [prime_multiset], apply_instance } instance : distrib_lattice prime_multiset := by { dsimp [prime_multiset], apply_instance } instance : semilattice_sup_bot prime_multiset := by { dsimp [prime_multiset], apply_instance } instance : has_sub prime_multiset := by { dsimp [prime_multiset], apply_instance } theorem add_sub_of_le {u v : prime_multiset} : u ≤ v → u + (v - u) = v := multiset.add_sub_of_le /-- The multiset consisting of a single prime -/ def of_prime (p : nat.primes) : prime_multiset := (p :: 0) theorem card_of_prime (p : nat.primes) : multiset.card (of_prime p) = 1 := rfl /-- We can forget the primality property and regard a multiset of primes as just a multiset of positive integers, or a multiset of natural numbers. In the opposite direction, if we have a multiset of positive integers or natural numbers, together with a proof that all the elements are prime, then we can regard it as a multiset of primes. The next block of results records obvious properties of these coercions. -/ def to_nat_multiset : prime_multiset → multiset ℕ := λ v, v.map (λ p, (p : ℕ)) instance coe_nat : has_coe prime_multiset (multiset ℕ) := ⟨to_nat_multiset⟩ instance coe_nat_hom : is_add_monoid_hom (coe : prime_multiset → multiset ℕ) := by { unfold_coes, dsimp [to_nat_multiset], apply_instance } theorem coe_nat_injective : function.injective (coe : prime_multiset → multiset ℕ) := multiset.map_injective nat.primes.coe_nat_inj theorem coe_nat_of_prime (p : nat.primes) : ((of_prime p) : multiset ℕ) = (p : ℕ) :: 0 := rfl theorem coe_nat_prime (v : prime_multiset) (p : ℕ) (h : p ∈ (v : multiset ℕ)) : p.prime := by { rcases multiset.mem_map.mp h with ⟨⟨p', hp'⟩, ⟨h_mem, h_eq⟩⟩, exact h_eq ▸ hp' } def to_pnat_multiset : prime_multiset → multiset ℕ+ := λ v, v.map (λ p, (p : ℕ+)) instance coe_pnat : has_coe prime_multiset (multiset ℕ+) := ⟨to_pnat_multiset⟩ instance coe_pnat_hom : is_add_monoid_hom (coe : prime_multiset → multiset ℕ+) := by { unfold_coes, dsimp [to_pnat_multiset], apply_instance } theorem coe_pnat_injective : function.injective (coe : prime_multiset → multiset ℕ+) := multiset.map_injective nat.primes.coe_pnat_inj theorem coe_pnat_of_prime (p : nat.primes) : ((of_prime p) : multiset ℕ+) = (p : ℕ+) :: 0 := rfl theorem coe_pnat_prime (v : prime_multiset) (p : ℕ+) (h : p ∈ (v : multiset ℕ+)) : p.prime := by { rcases multiset.mem_map.mp h with ⟨⟨p', hp'⟩, ⟨h_mem, h_eq⟩⟩, exact h_eq ▸ hp' } instance coe_multiset_pnat_nat : has_coe (multiset ℕ+) (multiset ℕ) := ⟨λ v, v.map (λ n, (n : ℕ))⟩ theorem coe_pnat_nat (v : prime_multiset) : ((v : (multiset ℕ+)) : (multiset ℕ)) = (v : multiset ℕ) := by { change (v.map (coe : nat.primes → ℕ+)).map subtype.val = v.map subtype.val, rw [multiset.map_map], congr } def prod (v : prime_multiset) : ℕ+ := (v : multiset pnat).prod theorem coe_prod (v : prime_multiset) : (v.prod : ℕ) = (v : multiset ℕ).prod := begin let h : (v.prod : ℕ) = ((v.map coe).map coe).prod := (v.to_pnat_multiset.prod_hom coe).symm, rw [multiset.map_map] at h, have : (coe : ℕ+ → ℕ) ∘ (coe : nat.primes → ℕ+) = coe := funext (λ p, rfl), rw[this] at h, exact h, end theorem prod_of_prime (p : nat.primes) : (of_prime p).prod = (p : ℕ+) := by { change multiset.prod ((p : ℕ+) :: 0) = (p : ℕ+), rw [multiset.prod_cons, multiset.prod_zero, mul_one] } def of_nat_multiset (v : multiset ℕ) (h : ∀ (p : ℕ), p ∈ v → p.prime) : prime_multiset := @multiset.pmap ℕ nat.primes nat.prime (λ p hp, ⟨p, hp⟩) v h theorem to_of_nat_multiset (v : multiset ℕ) (h) : ((of_nat_multiset v h) : multiset ℕ) = v := begin unfold_coes, dsimp [of_nat_multiset, to_nat_multiset], have : (λ (p : ℕ) (h : p.prime), ((⟨p, h⟩ : nat.primes) : ℕ)) = (λ p h, id p) := by {funext p h, refl}, rw [multiset.map_pmap, this, multiset.pmap_eq_map, multiset.map_id] end theorem prod_of_nat_multiset (v : multiset ℕ) (h) : ((of_nat_multiset v h).prod : ℕ) = (v.prod : ℕ) := by rw[coe_prod, to_of_nat_multiset] def of_pnat_multiset (v : multiset ℕ+) (h : ∀ (p : ℕ+), p ∈ v → p.prime) : prime_multiset := @multiset.pmap ℕ+ nat.primes pnat.prime (λ p hp, ⟨(p : ℕ), hp⟩) v h theorem to_of_pnat_multiset (v : multiset ℕ+) (h) : ((of_pnat_multiset v h) : multiset ℕ+) = v := begin unfold_coes, dsimp[of_pnat_multiset, to_pnat_multiset], have : (λ (p : ℕ+) (h : p.prime), ((coe : nat.primes → ℕ+) ⟨p, h⟩)) = (λ p h, id p) := by {funext p h, apply subtype.eq, refl}, rw[multiset.map_pmap, this, multiset.pmap_eq_map, multiset.map_id] end theorem prod_of_pnat_multiset (v : multiset ℕ+) (h) : ((of_pnat_multiset v h).prod : ℕ+) = v.prod := by { dsimp [prod], rw [to_of_pnat_multiset] } /-- Lists can be coerced to multisets; here we have some results about how this interacts with our constructions on multisets. -/ def of_nat_list (l : list ℕ) (h : ∀ (p : ℕ), p ∈ l → p.prime) : prime_multiset := of_nat_multiset (l : multiset ℕ) h theorem prod_of_nat_list (l : list ℕ) (h) : ((of_nat_list l h).prod : ℕ) = l.prod := by { have := prod_of_nat_multiset (l : multiset ℕ) h, rw [multiset.coe_prod] at this, exact this } def of_pnat_list (l : list ℕ+) (h : ∀ (p : ℕ+), p ∈ l → p.prime) : prime_multiset := of_pnat_multiset (l : multiset ℕ+) h theorem prod_of_pnat_list (l : list ℕ+) (h) : (of_pnat_list l h).prod = l.prod := by { have := prod_of_pnat_multiset (l : multiset ℕ+) h, rw [multiset.coe_prod] at this, exact this } /-- The product map gives a homomorphism from the additive monoid of multisets to the multiplicative monoid ℕ+. -/ theorem prod_zero : (0 : prime_multiset).prod = 1 := by { dsimp [prod], exact multiset.prod_zero } theorem prod_add (u v : prime_multiset) : (u + v).prod = u.prod * v.prod := by { dsimp [prod], rw [is_add_monoid_hom.map_add (coe : prime_multiset → multiset ℕ+)], rw [multiset.prod_add] } theorem prod_smul (d : ℕ) (u : prime_multiset) : (d •ℕ u).prod = u.prod ^ d := by { induction d with d ih, refl, rw [succ_nsmul, prod_add, ih, nat.succ_eq_add_one, pow_succ, mul_comm] } end prime_multiset namespace pnat /-- The prime factors of n, regarded as a multiset -/ def factor_multiset (n : ℕ+) : prime_multiset := prime_multiset.of_nat_list (nat.factors n) (@nat.mem_factors n) /-- The product of the factors is the original number -/ theorem prod_factor_multiset (n : ℕ+) : (factor_multiset n).prod = n := eq $ by { dsimp [factor_multiset], rw [prime_multiset.prod_of_nat_list], exact nat.prod_factors n.pos } theorem coe_nat_factor_multiset (n : ℕ+) : ((factor_multiset n) : (multiset ℕ)) = ((nat.factors n) : multiset ℕ) := prime_multiset.to_of_nat_multiset (nat.factors n) (@nat.mem_factors n) end pnat namespace prime_multiset /-- If we start with a multiset of primes, take the product and then factor it, we get back the original multiset. -/ theorem factor_multiset_prod (v : prime_multiset) : v.prod.factor_multiset = v := begin apply prime_multiset.coe_nat_injective, rw [v.prod.coe_nat_factor_multiset, prime_multiset.coe_prod], rcases v with l, unfold_coes, dsimp [prime_multiset.to_nat_multiset], rw [multiset.coe_prod], let l' := l.map (coe : nat.primes → ℕ), have : ∀ (p : ℕ), p ∈ l' → p.prime := λ p hp, by {rcases list.mem_map.mp hp with ⟨⟨p', hp'⟩, ⟨h_mem, h_eq⟩⟩, exact h_eq ▸ hp'}, exact multiset.coe_eq_coe.mpr (@nat.factors_unique _ l' rfl this).symm, end end prime_multiset namespace pnat /-- Positive integers biject with multisets of primes. -/ def factor_multiset_equiv : ℕ+ ≃ prime_multiset := { to_fun := factor_multiset, inv_fun := prime_multiset.prod, left_inv := prod_factor_multiset, right_inv := prime_multiset.factor_multiset_prod } /-- Factoring gives a homomorphism from the multiplicative monoid ℕ+ to the additive monoid of multisets. -/ theorem factor_multiset_one : factor_multiset 1 = 0 := rfl theorem factor_multiset_mul (n m : ℕ+) : factor_multiset (n * m) = (factor_multiset n) + (factor_multiset m) := begin let u := factor_multiset n, let v := factor_multiset m, have : n = u.prod := (prod_factor_multiset n).symm, rw[this], have : m = v.prod := (prod_factor_multiset m).symm, rw[this], rw[← prime_multiset.prod_add], repeat {rw[prime_multiset.factor_multiset_prod]}, end theorem factor_multiset_pow (n : ℕ+) (m : ℕ) : factor_multiset (n ^ m) = m •ℕ (factor_multiset n) := begin let u := factor_multiset n, have : n = u.prod := (prod_factor_multiset n).symm, rw[this, ← prime_multiset.prod_smul], repeat {rw[prime_multiset.factor_multiset_prod]}, end /-- Factoring a prime gives the corresponding one-element multiset. -/ theorem factor_multiset_of_prime (p : nat.primes) : (p : ℕ+).factor_multiset = prime_multiset.of_prime p := begin apply factor_multiset_equiv.symm.injective, change (p : ℕ+).factor_multiset.prod = (prime_multiset.of_prime p).prod, rw[(p : ℕ+).prod_factor_multiset, prime_multiset.prod_of_prime], end /-- We now have four different results that all encode the idea that inequality of multisets corresponds to divisibility of positive integers. -/ theorem factor_multiset_le_iff {m n : ℕ+} : factor_multiset m ≤ factor_multiset n ↔ m ∣ n := begin split, { intro h, rw [← prod_factor_multiset m, ← prod_factor_multiset m], apply dvd_intro (n.factor_multiset - m.factor_multiset).prod, rw [← prime_multiset.prod_add, prime_multiset.factor_multiset_prod, prime_multiset.add_sub_of_le h, prod_factor_multiset] }, { intro h, rw [← mul_div_exact h, factor_multiset_mul], exact le_add_right (le_refl _) } end theorem factor_multiset_le_iff' {m : ℕ+} {v : prime_multiset}: factor_multiset m ≤ v ↔ m ∣ v.prod := by { let h := @factor_multiset_le_iff m v.prod, rw [v.factor_multiset_prod] at h, exact h } end pnat namespace prime_multiset theorem prod_dvd_iff {u v : prime_multiset} : u.prod ∣ v.prod ↔ u ≤ v := by { let h := @pnat.factor_multiset_le_iff' u.prod v, rw [u.factor_multiset_prod] at h, exact h.symm } theorem prod_dvd_iff' {u : prime_multiset} {n : ℕ+} : u.prod ∣ n ↔ u ≤ n.factor_multiset := by { let h := @prod_dvd_iff u n.factor_multiset, rw [n.prod_factor_multiset] at h, exact h } end prime_multiset namespace pnat /-- The gcd and lcm operations on positive integers correspond to the inf and sup operations on multisets. -/ theorem factor_multiset_gcd (m n : ℕ+) : factor_multiset (gcd m n) = (factor_multiset m) ⊓ (factor_multiset n) := begin apply le_antisymm, { apply le_inf_iff.mpr; split; apply factor_multiset_le_iff.mpr, exact gcd_dvd_left m n, exact gcd_dvd_right m n}, { rw[← prime_multiset.prod_dvd_iff, prod_factor_multiset], apply dvd_gcd; rw[prime_multiset.prod_dvd_iff'], exact inf_le_left, exact inf_le_right} end theorem factor_multiset_lcm (m n : ℕ+) : factor_multiset (lcm m n) = (factor_multiset m) ⊔ (factor_multiset n) := begin apply le_antisymm, { rw[← prime_multiset.prod_dvd_iff, prod_factor_multiset], apply lcm_dvd; rw[← factor_multiset_le_iff'], exact le_sup_left, exact le_sup_right}, { apply sup_le_iff.mpr; split; apply factor_multiset_le_iff.mpr, exact dvd_lcm_left m n, exact dvd_lcm_right m n }, end /-- The number of occurrences of p in the factor multiset of m is the same as the p-adic valuation of m. -/ theorem count_factor_multiset (m : ℕ+) (p : nat.primes) (k : ℕ) : (p : ℕ+) ^ k ∣ m ↔ k ≤ m.factor_multiset.count p := begin intros, rw [multiset.le_count_iff_repeat_le], rw [← factor_multiset_le_iff, factor_multiset_pow, factor_multiset_of_prime], congr' 2, apply multiset.eq_repeat.mpr, split, { rw [multiset.card_smul, prime_multiset.card_of_prime, mul_one] }, { have : ∀ (m : ℕ), m •ℕ (p::0) = multiset.repeat p m := λ m, by {induction m with m ih, { refl }, rw [succ_nsmul, multiset.repeat_succ, ih], rw[multiset.cons_add, zero_add] }, intros q h, rw [prime_multiset.of_prime, this k] at h, exact multiset.eq_of_mem_repeat h } end end pnat namespace prime_multiset theorem prod_inf (u v : prime_multiset) : (u ⊓ v).prod = pnat.gcd u.prod v.prod := begin let n := u.prod, let m := v.prod, change (u ⊓ v).prod = pnat.gcd n m, have : u = n.factor_multiset := u.factor_multiset_prod.symm, rw [this], have : v = m.factor_multiset := v.factor_multiset_prod.symm, rw [this], rw [← pnat.factor_multiset_gcd n m, pnat.prod_factor_multiset] end theorem prod_sup (u v : prime_multiset) : (u ⊔ v).prod = pnat.lcm u.prod v.prod := begin let n := u.prod, let m := v.prod, change (u ⊔ v).prod = pnat.lcm n m, have : u = n.factor_multiset := u.factor_multiset_prod.symm, rw [this], have : v = m.factor_multiset := v.factor_multiset_prod.symm, rw [this], rw[← pnat.factor_multiset_lcm n m, pnat.prod_factor_multiset] end end prime_multiset
e855c9f4de0be073e7a5dfba4d2a1137d2f736cd
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/tactic/rename_var_auto.lean
db4f18db38d75b3008f1c98acdcc5cb205758724
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
1,429
lean
/- Copyright (c) 2019 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.tactic.interactive import Mathlib.PostPort namespace Mathlib /-! # Rename bound variable tactic This files defines a tactic `rename_var` whose main purpose is to teach renaming of bound variables. * `rename_var old new` renames all bound variables named `old` to `new` in the goal. * `rename_var old new at h` does the same in hypothesis `h`. ```lean example (P : ℕ → ℕ → Prop) (h : ∀ n, ∃ m, P n m) : ∀ l, ∃ m, P l m := begin rename_var n q at h, -- h is now ∀ (q : ℕ), ∃ (m : ℕ), P q m, rename_var m n, -- goal is now ∀ (l : ℕ), ∃ (n : ℕ), P k n, exact h -- Lean does not care about those bound variable names end ``` ## Tags teaching, tactic -/ /-- Rename bound variable `old` to `new` in an `expr`-/ namespace tactic /-- Rename bound variable `old` to `new` in goal -/ /-- Rename bound variable `old` to `new` in assumption `h` -/ end tactic namespace tactic.interactive /-- `rename_var old new` renames all bound variables named `old` to `new` in the goal. `rename_var old new at h` does the same in hypothesis `h`. -/ end tactic.interactive /-- `rename_var old new` renames all bound variables named `old` to `new` in the goal. end Mathlib
10381abef690be4e089961e79a0a9606c5b2e752
a45212b1526d532e6e83c44ddca6a05795113ddc
/src/data/polynomial.lean
5ad76466ddba244397b2bada1fd1886e5443175c
[ "Apache-2.0" ]
permissive
fpvandoorn/mathlib
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
refs/heads/master
1,624,791,089,608
1,556,715,231,000
1,556,715,231,000
165,722,980
5
0
Apache-2.0
1,552,657,455,000
1,547,494,646,000
Lean
UTF-8
Lean
false
false
96,955
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Johannes Hölzl, Jens Wagemaker Theory of univariate polynomials, represented as `ℕ →₀ α`, where α is a commutative semiring. -/ import data.finsupp algebra.gcd_domain ring_theory.euclidean_domain tactic.ring ring_theory.multiplicity /-- `polynomial α` is the type of univariate polynomials over `α`. Polynomials should be seen as (semi-)rings with the additional constructor `X`. The embedding from α is called `C`. -/ def polynomial (α : Type*) [comm_semiring α] := ℕ →₀ α open finsupp finset lattice namespace polynomial universes u v variables {α : Type u} {β : Type v} {a b : α} {m n : ℕ} section comm_semiring variables [comm_semiring α] [decidable_eq α] {p q r : polynomial α} instance : has_zero (polynomial α) := finsupp.has_zero instance : has_one (polynomial α) := finsupp.has_one instance : has_add (polynomial α) := finsupp.has_add instance : has_mul (polynomial α) := finsupp.has_mul instance : comm_semiring (polynomial α) := finsupp.to_comm_semiring instance : decidable_eq (polynomial α) := finsupp.decidable_eq def polynomial.has_coe_to_fun : has_coe_to_fun (polynomial α) := finsupp.has_coe_to_fun local attribute [instance] finsupp.to_comm_semiring polynomial.has_coe_to_fun @[simp] lemma support_zero : (0 : polynomial α).support = ∅ := rfl /-- `C a` is the constant polynomial `a`. -/ def C (a : α) : polynomial α := single 0 a /-- `X` is the polynomial variable (aka indeterminant). -/ def X : polynomial α := single 1 1 /-- coeff p n is the coefficient of X^n in p -/ def coeff (p : polynomial α) := p.to_fun @[simp] lemma coeff_mk (s) (f) (h) : coeff (finsupp.mk s f h : polynomial α) = f := rfl instance [has_repr α] : has_repr (polynomial α) := ⟨λ p, if p = 0 then "0" else (p.support.sort (≤)).foldr (λ n a, a ++ (if a = "" then "" else " + ") ++ if n = 0 then "C (" ++ repr (coeff p n) ++ ")" else if n = 1 then if (coeff p n) = 1 then "X" else "C (" ++ repr (coeff p n) ++ ") * X" else if (coeff p n) = 1 then "X ^ " ++ repr n else "C (" ++ repr (coeff p n) ++ ") * X ^ " ++ repr n) ""⟩ theorem ext {p q : polynomial α} : p = q ↔ ∀ n, coeff p n = coeff q n := ⟨λ h n, h ▸ rfl, finsupp.ext⟩ /-- `degree p` is the degree of the polynomial `p`, i.e. the largest `X`-exponent in `p`. `degree p = some n` when `p ≠ 0` and `n` is the highest power of `X` that appears in `p`, otherwise `degree 0 = ⊥`. -/ def degree (p : polynomial α) : with_bot ℕ := p.support.sup some def degree_lt_wf : well_founded (λp q : polynomial α, degree p < degree q) := inv_image.wf degree (with_bot.well_founded_lt nat.lt_wf) instance : has_well_founded (polynomial α) := ⟨_, degree_lt_wf⟩ /-- `nat_degree p` forces `degree p` to ℕ, by defining nat_degree 0 = 0. -/ def nat_degree (p : polynomial α) : ℕ := (degree p).get_or_else 0 lemma single_eq_C_mul_X : ∀{n}, single n a = C a * X^n | 0 := (mul_one _).symm | (n+1) := calc single (n + 1) a = single n a * X : by rw [X, single_mul_single, mul_one] ... = (C a * X^n) * X : by rw [single_eq_C_mul_X] ... = C a * X^(n+1) : by simp only [pow_add, mul_assoc, pow_one] lemma sum_C_mul_X_eq (p : polynomial α) : p.sum (λn a, C a * X^n) = p := eq.trans (sum_congr rfl $ assume n hn, single_eq_C_mul_X.symm) (finsupp.sum_single _) @[elab_as_eliminator] protected lemma induction_on {M : polynomial α → Prop} (p : polynomial α) (h_C : ∀a, M (C a)) (h_add : ∀p q, M p → M q → M (p + q)) (h_monomial : ∀(n : ℕ) (a : α), M (C a * X^n) → M (C a * X^(n+1))) : M p := have ∀{n:ℕ} {a}, M (C a * X^n), begin assume n a, induction n with n ih, { simp only [pow_zero, mul_one, h_C] }, { exact h_monomial _ _ ih } end, finsupp.induction p (suffices M (C 0), by simpa only [C, single_zero], h_C 0) (assume n a p _ _ hp, suffices M (C a * X^n + p), by rwa [single_eq_C_mul_X], h_add _ _ this hp) @[simp] lemma C_0 : C (0 : α) = 0 := single_zero @[simp] lemma C_1 : C (1 : α) = 1 := rfl @[simp] lemma C_mul : C (a * b) = C a * C b := (@single_mul_single _ _ _ _ _ _ 0 0 a b).symm @[simp] lemma C_add : C (a + b) = C a + C b := finsupp.single_add instance C.is_semiring_hom : is_semiring_hom (C : α → polynomial α) := ⟨C_0, C_1, λ _ _, C_add, λ _ _, C_mul⟩ @[simp] lemma C_pow : C (a ^ n) = C a ^ n := is_semiring_hom.map_pow _ _ _ section coeff lemma apply_eq_coeff : p n = coeff p n := rfl @[simp] lemma coeff_zero (n : ℕ) : coeff (0 : polynomial α) n = 0 := rfl @[simp] lemma coeff_one_zero (n : ℕ) : coeff (1 : polynomial α) 0 = 1 := rfl @[simp] lemma coeff_add (p q : polynomial α) (n : ℕ) : coeff (p + q) n = coeff p n + coeff q n := rfl lemma coeff_C : coeff (C a) n = ite (n = 0) a 0 := by simp [coeff, eq_comm, C, single]; congr @[simp] lemma coeff_C_zero : coeff (C a) 0 = a := rfl @[simp] lemma coeff_X_one : coeff (X : polynomial α) 1 = 1 := rfl @[simp] lemma coeff_X_zero : coeff (X : polynomial α) 0 = 0 := rfl lemma coeff_X : coeff (X : polynomial α) n = if 1 = n then 1 else 0 := rfl @[simp] lemma coeff_C_mul_X (x : α) (k n : ℕ) : coeff (C x * X^k : polynomial α) n = if n = k then x else 0 := by rw [← single_eq_C_mul_X]; simp [single, eq_comm, coeff]; congr lemma coeff_sum [comm_semiring β] [decidable_eq β] (n : ℕ) (f : ℕ → α → polynomial β) : coeff (p.sum f) n = p.sum (λ a b, coeff (f a b) n) := finsupp.sum_apply lemma coeff_single : coeff (single n a) m = if n = m then a else 0 := rfl @[simp] lemma coeff_C_mul (p : polynomial α) : coeff (C a * p) n = a * coeff p n := begin conv in (a * _) { rw [← @sum_single _ _ _ _ _ p, coeff_sum] }, rw [mul_def, C, sum_single_index], { simp [coeff_single, finsupp.mul_sum, coeff_sum], apply sum_congr rfl, assume i hi, by_cases i = n; simp [h] }, simp end @[simp] lemma coeff_one (n : ℕ) : coeff (1 : polynomial α) n = if 0 = n then 1 else 0 := rfl @[simp] lemma coeff_X_pow (k n : ℕ) : coeff (X^k : polynomial α) n = if n = k then 1 else 0 := by simpa only [C_1, one_mul] using coeff_C_mul_X (1:α) k n lemma coeff_mul_left (p q : polynomial α) (n : ℕ) : coeff (p * q) n = (range (n+1)).sum (λ k, coeff p k * coeff q (n-k)) := have hite : ∀ a : ℕ × ℕ, ite (a.1 + a.2 = n) (coeff p (a.fst) * coeff q (a.snd)) 0 ≠ 0 → a.1 + a.2 = n, from λ a ha, by_contradiction (λ h, absurd (eq.refl (0 : α)) (by rwa if_neg h at ha)), calc coeff (p * q) n = sum (p.support) (λ a, sum (q.support) (λ b, ite (a + b = n) (coeff p a * coeff q b) 0)) : by simp only [finsupp.mul_def, coeff_sum, coeff_single]; refl ... = (p.support.product q.support).sum (λ v : ℕ × ℕ, ite (v.1 + v.2 = n) (coeff p v.1 * coeff q v.2) 0) : by rw sum_product ... = (range (n+1)).sum (λ k, coeff p k * coeff q (n-k)) : sum_bij_ne_zero (λ a _ _, a.1) (λ a _ ha, mem_range.2 (nat.lt_succ_of_le (hite a ha ▸ le_add_right (le_refl _)))) (λ a₁ a₂ _ h₁ _ h₂ h, prod.ext h ((add_left_inj a₁.1).1 (by rw [hite a₁ h₁, h, hite a₂ h₂]))) (λ a h₁ h₂, ⟨(a, n - a), mem_product.2 ⟨mem_support_iff.2 (ne_zero_of_mul_ne_zero_right h₂), mem_support_iff.2 (ne_zero_of_mul_ne_zero_left h₂)⟩, by simpa [nat.add_sub_cancel' (nat.le_of_lt_succ (mem_range.1 h₁))], rfl⟩) (λ a _ ha, by rw [← hite a ha, if_pos rfl, nat.add_sub_cancel_left]) lemma coeff_mul_right (p q : polynomial α) (n : ℕ) : coeff (p * q) n = (range (n+1)).sum (λ k, coeff p (n-k) * coeff q k) := by rw [mul_comm, coeff_mul_left]; simp only [mul_comm] theorem coeff_mul_X_pow (p : polynomial α) (n d : ℕ) : coeff (p * polynomial.X ^ n) (d + n) = coeff p d := begin rw [coeff_mul_right, sum_eq_single n, coeff_X_pow, if_pos rfl, mul_one, nat.add_sub_cancel], { intros b h1 h2, rw [coeff_X_pow, if_neg h2, mul_zero] }, { exact λ h1, (h1 (mem_range.2 (nat.le_add_left _ _))).elim } end theorem coeff_mul_X (p : polynomial α) (n : ℕ) : coeff (p * X) (n + 1) = coeff p n := by simpa only [pow_one] using coeff_mul_X_pow p 1 n theorem mul_X_pow_eq_zero {p : polynomial α} {n : ℕ} (H : p * X ^ n = 0) : p = 0 := ext.2 $ λ k, (coeff_mul_X_pow p n k).symm.trans $ ext.1 H (k+n) end coeff lemma C_inj : C a = C b ↔ a = b := ⟨λ h, coeff_C_zero.symm.trans (h.symm ▸ coeff_C_zero), congr_arg C⟩ section eval₂ variables [semiring β] variables (f : α → β) (x : β) open is_semiring_hom /-- Evaluate a polynomial `p` given a ring hom `f` from the scalar ring to the target and a value `x` for the variable in the target -/ def eval₂ (p : polynomial α) : β := p.sum (λ e a, f a * x ^ e) variables [is_semiring_hom f] @[simp] lemma eval₂_C : (C a).eval₂ f x = f a := (sum_single_index $ by rw [map_zero f, zero_mul]).trans $ by rw [pow_zero, mul_one] @[simp] lemma eval₂_X : X.eval₂ f x = x := (sum_single_index $ by rw [map_zero f, zero_mul]).trans $ by rw [map_one f, one_mul, pow_one] @[simp] lemma eval₂_zero : (0 : polynomial α).eval₂ f x = 0 := finsupp.sum_zero_index @[simp] lemma eval₂_add : (p + q).eval₂ f x = p.eval₂ f x + q.eval₂ f x := finsupp.sum_add_index (λ _, by rw [map_zero f, zero_mul]) (λ _ _ _, by rw [map_add f, add_mul]) @[simp] lemma eval₂_one : (1 : polynomial α).eval₂ f x = 1 := by rw [← C_1, eval₂_C, map_one f] instance eval₂.is_add_monoid_hom : is_add_monoid_hom (eval₂ f x) := { map_zero := eval₂_zero _ _, map_add := λ _ _, eval₂_add _ _ } end eval₂ section eval₂ variables [comm_semiring β] variables (f : α → β) [is_semiring_hom f] (x : β) open is_semiring_hom @[simp] lemma eval₂_mul : (p * q).eval₂ f x = p.eval₂ f x * q.eval₂ f x := begin dunfold eval₂, rw [mul_def, finsupp.sum_mul _ p], simp only [finsupp.mul_sum _ q], rw [sum_sum_index], { apply sum_congr rfl, assume i hi, dsimp only, rw [sum_sum_index], { apply sum_congr rfl, assume j hj, dsimp only, rw [sum_single_index, map_mul f, pow_add], { simp only [mul_assoc, mul_left_comm] }, { rw [map_zero f, zero_mul] } }, { intro, rw [map_zero f, zero_mul] }, { intros, rw [map_add f, add_mul] } }, { intro, rw [map_zero f, zero_mul] }, { intros, rw [map_add f, add_mul] } end instance eval₂.is_semiring_hom : is_semiring_hom (eval₂ f x) := ⟨eval₂_zero _ _, eval₂_one _ _, λ _ _, eval₂_add _ _, λ _ _, eval₂_mul _ _⟩ lemma eval₂_pow (n : ℕ) : (p ^ n).eval₂ f x = p.eval₂ f x ^ n := map_pow _ _ _ lemma eval₂_sum (p : polynomial α) (g : ℕ → α → polynomial α) (x : β) : (p.sum g).eval₂ f x = p.sum (λ n a, (g n a).eval₂ f x) := finsupp.sum_sum_index (by simp [is_add_monoid_hom.map_zero f]) (by intros; simp [right_distrib, is_add_monoid_hom.map_add f]) end eval₂ section eval variable {x : α} /-- `eval x p` is the evaluation of the polynomial `p` at `x` -/ def eval : α → polynomial α → α := eval₂ id @[simp] lemma eval_C : (C a).eval x = a := eval₂_C _ _ @[simp] lemma eval_X : X.eval x = x := eval₂_X _ _ @[simp] lemma eval_zero : (0 : polynomial α).eval x = 0 := eval₂_zero _ _ @[simp] lemma eval_add : (p + q).eval x = p.eval x + q.eval x := eval₂_add _ _ @[simp] lemma eval_one : (1 : polynomial α).eval x = 1 := eval₂_one _ _ @[simp] lemma eval_mul : (p * q).eval x = p.eval x * q.eval x := eval₂_mul _ _ instance eval.is_semiring_hom : is_semiring_hom (eval x) := eval₂.is_semiring_hom _ _ @[simp] lemma eval_pow (n : ℕ) : (p ^ n).eval x = p.eval x ^ n := eval₂_pow _ _ _ lemma eval_sum (p : polynomial α) (f : ℕ → α → polynomial α) (x : α) : (p.sum f).eval x = p.sum (λ n a, (f n a).eval x) := eval₂_sum _ _ _ _ lemma eval₂_hom [comm_semiring β] (f : α → β) [is_semiring_hom f] (x : α) : p.eval₂ f (f x) = f (p.eval x) := polynomial.induction_on p (by simp) (by simp [is_semiring_hom.map_add f] {contextual := tt}) (by simp [is_semiring_hom.map_mul f, eval_pow, is_semiring_hom.map_pow f, pow_succ', (mul_assoc _ _ _).symm] {contextual := tt}) /-- `is_root p x` implies `x` is a root of `p`. The evaluation of `p` at `x` is zero -/ def is_root (p : polynomial α) (a : α) : Prop := p.eval a = 0 instance : decidable (is_root p a) := by unfold is_root; apply_instance @[simp] lemma is_root.def : is_root p a ↔ p.eval a = 0 := iff.rfl lemma root_mul_left_of_is_root (p : polynomial α) {q : polynomial α} : is_root q a → is_root (p * q) a := λ H, by rw [is_root, eval_mul, is_root.def.1 H, mul_zero] lemma root_mul_right_of_is_root {p : polynomial α} (q : polynomial α) : is_root p a → is_root (p * q) a := λ H, by rw [is_root, eval_mul, is_root.def.1 H, zero_mul] lemma coeff_zero_eq_eval_zero (p : polynomial α) : coeff p 0 = p.eval 0 := calc coeff p 0 = coeff p 0 * 0 ^ 0 : by simp ... = p.eval 0 : eq.symm $ finset.sum_eq_single _ (λ b _ hb, by simp [zero_pow (nat.pos_of_ne_zero hb)]) (by simp) end eval section comp def comp (p q : polynomial α) : polynomial α := p.eval₂ C q lemma eval₂_comp [comm_semiring β] (f : α → β) [is_semiring_hom f] {x : β} : (p.comp q).eval₂ f x = p.eval₂ f (q.eval₂ f x) := show (p.sum (λ e a, C a * q ^ e)).eval₂ f x = p.eval₂ f (eval₂ f x q), by simp only [eval₂_mul, eval₂_C, eval₂_pow, eval₂_sum]; refl lemma eval_comp : (p.comp q).eval a = p.eval (q.eval a) := eval₂_comp _ @[simp] lemma comp_X : p.comp X = p := begin refine polynomial.ext.2 (λ n, _), rw [comp, eval₂], conv in (C _ * _) { rw ← single_eq_C_mul_X }, rw finsupp.sum_single end @[simp] lemma X_comp : X.comp p = p := eval₂_X _ _ @[simp] lemma comp_C : p.comp (C a) = C (p.eval a) := begin dsimp [comp, eval₂, eval, finsupp.sum], rw [← sum_hom (@C α _ _)], apply finset.sum_congr rfl; simp end @[simp] lemma C_comp : (C a).comp p = C a := eval₂_C _ _ @[simp] lemma comp_zero : p.comp (0 : polynomial α) = C (p.eval 0) := by rw [← C_0, comp_C] @[simp] lemma zero_comp : comp (0 : polynomial α) p = 0 := by rw [← C_0, C_comp] @[simp] lemma comp_one : p.comp 1 = C (p.eval 1) := by rw [← C_1, comp_C] @[simp] lemma one_comp : comp (1 : polynomial α) p = 1 := by rw [← C_1, C_comp] instance : is_semiring_hom (λ q : polynomial α, q.comp p) := by unfold comp; apply_instance @[simp] lemma add_comp : (p + q).comp r = p.comp r + q.comp r := eval₂_add _ _ @[simp] lemma mul_comp : (p * q).comp r = p.comp r * q.comp r := eval₂_mul _ _ end comp section map variables [comm_semiring β] [decidable_eq β] variables (f : α → β) /-- `map f p` maps a polynomial `p` across a ring hom `f` -/ def map : polynomial α → polynomial β := eval₂ (C ∘ f) X variables [is_semiring_hom f] @[simp] lemma map_C : (C a).map f = C (f a) := eval₂_C _ _ @[simp] lemma map_X : X.map f = X := eval₂_X _ _ @[simp] lemma map_zero : (0 : polynomial α).map f = 0 := eval₂_zero _ _ @[simp] lemma map_add : (p + q).map f = p.map f + q.map f := eval₂_add _ _ @[simp] lemma map_one : (1 : polynomial α).map f = 1 := eval₂_one _ _ @[simp] lemma map_mul : (p * q).map f = p.map f * q.map f := eval₂_mul _ _ instance map.is_semiring_hom : is_semiring_hom (map f) := eval₂.is_semiring_hom _ _ lemma map_pow (n : ℕ) : (p ^ n).map f = p.map f ^ n := eval₂_pow _ _ _ lemma coeff_map (n : ℕ) : coeff (p.map f) n = f (coeff p n) := begin rw [map, eval₂, coeff_sum], conv_rhs { rw [← sum_C_mul_X_eq p, coeff_sum, finsupp.sum, ← finset.sum_hom f], }, refine finset.sum_congr rfl (λ x hx, _), simp [function.comp, coeff_C_mul_X, is_semiring_hom.map_mul f], split_ifs; simp [is_semiring_hom.map_zero f], end lemma map_map {γ : Type*} [comm_semiring γ] [decidable_eq γ] (g : β → γ) [is_semiring_hom g] (p : polynomial α) : (p.map f).map g = p.map (λ x, g (f x)) := polynomial.ext.2 (by simp [coeff_map]) lemma eval₂_map {γ : Type*} [comm_semiring γ] (g : β → γ) [is_semiring_hom g] (x : γ) : (p.map f).eval₂ g x = p.eval₂ (λ y, g (f y)) x := polynomial.induction_on p (by simp) (by simp [is_semiring_hom.map_add f] {contextual := tt}) (by simp [is_semiring_hom.map_mul f, is_semiring_hom.map_pow f, pow_succ', (mul_assoc _ _ _).symm] {contextual := tt}) lemma eval_map (x : β) : (p.map f).eval x = p.eval₂ f x := eval₂_map _ _ _ @[simp] lemma map_id : p.map id = p := by simp [id, polynomial.ext, coeff_map] end map /-- `leading_coeff p` gives the coefficient of the highest power of `X` in `p`-/ def leading_coeff (p : polynomial α) : α := coeff p (nat_degree p) /-- a polynomial is `monic` if its leading coefficient is 1 -/ def monic (p : polynomial α) := leading_coeff p = (1 : α) lemma monic.def : monic p ↔ leading_coeff p = 1 := iff.rfl instance monic.decidable : decidable (monic p) := by unfold monic; apply_instance @[simp] lemma degree_zero : degree (0 : polynomial α) = ⊥ := rfl @[simp] lemma nat_degree_zero : nat_degree (0 : polynomial α) = 0 := rfl @[simp] lemma degree_C (ha : a ≠ 0) : degree (C a) = (0 : with_bot ℕ) := show sup (ite (a = 0) ∅ {0}) some = 0, by rw if_neg ha; refl lemma degree_C_le : degree (C a) ≤ (0 : with_bot ℕ) := by by_cases h : a = 0; [rw [h, C_0], rw [degree_C h]]; [exact bot_le, exact le_refl _] lemma degree_one_le : degree (1 : polynomial α) ≤ (0 : with_bot ℕ) := by rw [← C_1]; exact degree_C_le lemma degree_eq_bot : degree p = ⊥ ↔ p = 0 := ⟨λ h, by rw [degree, ← max_eq_sup_with_bot] at h; exact support_eq_empty.1 (max_eq_none.1 h), λ h, h.symm ▸ rfl⟩ lemma degree_eq_nat_degree (hp : p ≠ 0) : degree p = (nat_degree p : with_bot ℕ) := let ⟨n, hn⟩ := classical.not_forall.1 (mt option.eq_none_iff_forall_not_mem.2 (mt degree_eq_bot.1 hp)) in have hn : degree p = some n := not_not.1 hn, by rw [nat_degree, hn]; refl lemma nat_degree_eq_of_degree_eq_some {p : polynomial α} {n : ℕ} (h : degree p = n) : nat_degree p = n := have hp0 : p ≠ 0, from λ hp0, by rw hp0 at h; exact option.no_confusion h, option.some_inj.1 $ show (nat_degree p : with_bot ℕ) = n, by rwa [← degree_eq_nat_degree hp0] @[simp] lemma degree_le_nat_degree : degree p ≤ nat_degree p := begin by_cases hp : p = 0, { rw hp, exact bot_le }, rw [degree_eq_nat_degree hp], exact le_refl _ end lemma nat_degree_eq_of_degree_eq [comm_semiring β] [decidable_eq β] {q : polynomial β} (h : degree p = degree q) : nat_degree p = nat_degree q := by unfold nat_degree; rw h lemma le_degree_of_ne_zero (h : coeff p n ≠ 0) : (n : with_bot ℕ) ≤ degree p := show @has_le.le (with_bot ℕ) _ (some n : with_bot ℕ) (p.support.sup some : with_bot ℕ), from finset.le_sup (finsupp.mem_support_iff.2 h) lemma le_nat_degree_of_ne_zero (h : coeff p n ≠ 0) : n ≤ nat_degree p := begin rw [← with_bot.coe_le_coe, ← degree_eq_nat_degree], exact le_degree_of_ne_zero h, { assume h, subst h, exact h rfl } end lemma degree_le_degree (h : coeff q (nat_degree p) ≠ 0) : degree p ≤ degree q := begin by_cases hp : p = 0, { rw hp, exact bot_le }, { rw degree_eq_nat_degree hp, exact le_degree_of_ne_zero h } end @[simp] lemma nat_degree_C (a : α) : nat_degree (C a) = 0 := begin by_cases ha : a = 0, { have : C a = 0, { rw [ha, C_0] }, rw [nat_degree, degree_eq_bot.2 this], refl }, { rw [nat_degree, degree_C ha], refl } end @[simp] lemma nat_degree_one : nat_degree (1 : polynomial α) = 0 := nat_degree_C 1 @[simp] lemma degree_monomial (n : ℕ) (ha : a ≠ 0) : degree (C a * X ^ n) = n := by rw [← single_eq_C_mul_X, degree, support_single_ne_zero ha]; refl lemma degree_monomial_le (n : ℕ) (a : α) : degree (C a * X ^ n) ≤ n := if h : a = 0 then by rw [h, C_0, zero_mul]; exact bot_le else le_of_eq (degree_monomial n h) lemma coeff_eq_zero_of_degree_lt (h : degree p < n) : coeff p n = 0 := not_not.1 (mt le_degree_of_ne_zero (not_le_of_gt h)) lemma coeff_nat_degree_eq_zero_of_degree_lt (h : degree p < degree q) : coeff p (nat_degree q) = 0 := coeff_eq_zero_of_degree_lt (lt_of_lt_of_le h degree_le_nat_degree) lemma ne_zero_of_degree_gt {n : with_bot ℕ} (h : n < degree p) : p ≠ 0 := mt degree_eq_bot.2 (ne.symm (ne_of_lt (lt_of_le_of_lt bot_le h))) lemma eq_C_of_degree_le_zero (h : degree p ≤ 0) : p = C (coeff p 0) := begin refine polynomial.ext.2 (λ n, _), cases n, { refl }, { have : degree p < ↑(nat.succ n) := lt_of_le_of_lt h (with_bot.some_lt_some.2 (nat.succ_pos _)), rw [coeff_C, if_neg (nat.succ_ne_zero _), coeff_eq_zero_of_degree_lt this] } end lemma eq_C_of_degree_eq_zero (h : degree p = 0) : p = C (coeff p 0) := eq_C_of_degree_le_zero (h ▸ le_refl _) lemma degree_le_zero_iff : degree p ≤ 0 ↔ p = C (coeff p 0) := ⟨eq_C_of_degree_le_zero, λ h, h.symm ▸ degree_C_le⟩ lemma degree_add_le (p q : polynomial α) : degree (p + q) ≤ max (degree p) (degree q) := calc degree (p + q) = ((p + q).support).sup some : rfl ... ≤ (p.support ∪ q.support).sup some : sup_mono support_add ... = p.support.sup some ⊔ q.support.sup some : sup_union ... = _ : with_bot.sup_eq_max _ _ @[simp] lemma leading_coeff_zero : leading_coeff (0 : polynomial α) = 0 := rfl @[simp] lemma leading_coeff_eq_zero : leading_coeff p = 0 ↔ p = 0 := ⟨λ h, by_contradiction $ λ hp, mt mem_support_iff.1 (not_not.2 h) (mem_of_max (degree_eq_nat_degree hp)), λ h, h.symm ▸ leading_coeff_zero⟩ lemma leading_coeff_eq_zero_iff_deg_eq_bot : leading_coeff p = 0 ↔ degree p = ⊥ := by rw [leading_coeff_eq_zero, degree_eq_bot] lemma degree_add_eq_of_degree_lt (h : degree p < degree q) : degree (p + q) = degree q := le_antisymm (max_eq_right_of_lt h ▸ degree_add_le _ _) $ degree_le_degree $ begin rw [coeff_add, coeff_nat_degree_eq_zero_of_degree_lt h, zero_add], exact mt leading_coeff_eq_zero.1 (ne_zero_of_degree_gt h) end lemma degree_add_eq_of_leading_coeff_add_ne_zero (h : leading_coeff p + leading_coeff q ≠ 0) : degree (p + q) = max p.degree q.degree := le_antisymm (degree_add_le _ _) $ match lt_trichotomy (degree p) (degree q) with | or.inl hlt := by rw [degree_add_eq_of_degree_lt hlt, max_eq_right_of_lt hlt]; exact le_refl _ | or.inr (or.inl heq) := le_of_not_gt $ assume hlt : max (degree p) (degree q) > degree (p + q), h $ show leading_coeff p + leading_coeff q = 0, begin rw [heq, max_self] at hlt, rw [leading_coeff, leading_coeff, nat_degree_eq_of_degree_eq heq, ← coeff_add], exact coeff_nat_degree_eq_zero_of_degree_lt hlt end | or.inr (or.inr hlt) := by rw [add_comm, degree_add_eq_of_degree_lt hlt, max_eq_left_of_lt hlt]; exact le_refl _ end lemma degree_erase_le (p : polynomial α) (n : ℕ) : degree (p.erase n) ≤ degree p := sup_mono (erase_subset _ _) lemma degree_erase_lt (hp : p ≠ 0) : degree (p.erase (nat_degree p)) < degree p := lt_of_le_of_ne (degree_erase_le _ _) $ (degree_eq_nat_degree hp).symm ▸ λ h, not_mem_erase _ _ (mem_of_max h) lemma degree_sum_le [decidable_eq β] (s : finset β) (f : β → polynomial α) : degree (s.sum f) ≤ s.sup (λ b, degree (f b)) := finset.induction_on s (by simp only [sum_empty, sup_empty, degree_zero, le_refl]) $ assume a s has ih, calc degree (sum (insert a s) f) ≤ max (degree (f a)) (degree (s.sum f)) : by rw sum_insert has; exact degree_add_le _ _ ... ≤ _ : by rw [sup_insert, with_bot.sup_eq_max]; exact max_le_max (le_refl _) ih lemma degree_mul_le (p q : polynomial α) : degree (p * q) ≤ degree p + degree q := calc degree (p * q) ≤ (p.support).sup (λi, degree (sum q (λj a, C (coeff p i * a) * X ^ (i + j)))) : by simp only [single_eq_C_mul_X.symm]; exact degree_sum_le _ _ ... ≤ p.support.sup (λi, q.support.sup (λj, degree (C (coeff p i * coeff q j) * X ^ (i + j)))) : finset.sup_mono_fun (assume i hi, degree_sum_le _ _) ... ≤ degree p + degree q : begin refine finset.sup_le (λ a ha, finset.sup_le (λ b hb, le_trans (degree_monomial_le _ _) _)), rw [with_bot.coe_add], rw mem_support_iff at ha hb, exact add_le_add' (le_degree_of_ne_zero ha) (le_degree_of_ne_zero hb) end lemma degree_pow_le (p : polynomial α) : ∀ n, degree (p ^ n) ≤ add_monoid.smul n (degree p) | 0 := by rw [pow_zero, add_monoid.zero_smul]; exact degree_one_le | (n+1) := calc degree (p ^ (n + 1)) ≤ degree p + degree (p ^ n) : by rw pow_succ; exact degree_mul_le _ _ ... ≤ _ : by rw succ_smul; exact add_le_add' (le_refl _) (degree_pow_le _) @[simp] lemma leading_coeff_monomial (a : α) (n : ℕ) : leading_coeff (C a * X ^ n) = a := begin by_cases ha : a = 0, { simp only [ha, C_0, zero_mul, leading_coeff_zero] }, { rw [leading_coeff, nat_degree, degree_monomial _ ha, ← single_eq_C_mul_X], exact @finsupp.single_eq_same _ _ _ _ _ n a } end @[simp] lemma leading_coeff_C (a : α) : leading_coeff (C a) = a := suffices leading_coeff (C a * X^0) = a, by rwa [pow_zero, mul_one] at this, leading_coeff_monomial a 0 @[simp] lemma leading_coeff_X : leading_coeff (X : polynomial α) = 1 := suffices leading_coeff (C (1:α) * X^1) = 1, by rwa [C_1, pow_one, one_mul] at this, leading_coeff_monomial 1 1 @[simp] lemma monic_X : monic (X : polynomial α) := leading_coeff_X @[simp] lemma leading_coeff_one : leading_coeff (1 : polynomial α) = 1 := suffices leading_coeff (C (1:α) * X^0) = 1, by rwa [C_1, pow_zero, mul_one] at this, leading_coeff_monomial 1 0 @[simp] lemma monic_one : monic (1 : polynomial α) := leading_coeff_C _ lemma leading_coeff_add_of_degree_lt (h : degree p < degree q) : leading_coeff (p + q) = leading_coeff q := have coeff p (nat_degree q) = 0, from coeff_nat_degree_eq_zero_of_degree_lt h, by simp only [leading_coeff, nat_degree_eq_of_degree_eq (degree_add_eq_of_degree_lt h), this, coeff_add, zero_add] lemma leading_coeff_add_of_degree_eq (h : degree p = degree q) (hlc : leading_coeff p + leading_coeff q ≠ 0) : leading_coeff (p + q) = leading_coeff p + leading_coeff q := have nat_degree (p + q) = nat_degree p, by apply nat_degree_eq_of_degree_eq; rw [degree_add_eq_of_leading_coeff_add_ne_zero hlc, h, max_self], by simp only [leading_coeff, this, nat_degree_eq_of_degree_eq h, coeff_add] @[simp] lemma coeff_mul_degree_add_degree (p q : polynomial α) : coeff (p * q) (nat_degree p + nat_degree q) = leading_coeff p * leading_coeff q := calc coeff (p * q) (nat_degree p + nat_degree q) = (range (nat_degree p + nat_degree q + 1)).sum (λ k, coeff p k * coeff q (nat_degree p + nat_degree q - k)) : coeff_mul_left _ _ _ ... = coeff p (nat_degree p) * coeff q (nat_degree p + nat_degree q - nat_degree p) : finset.sum_eq_single _ (λ n hn₁ hn₂, (le_total n (nat_degree p)).elim (λ h, have degree q < (nat_degree p + nat_degree q - n : ℕ), from lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 (nat.lt_sub_left_iff_add_lt.2 (add_lt_add_right (lt_of_le_of_ne h hn₂) _))), by simp [coeff_eq_zero_of_degree_lt this]) (λ h, have degree p < n, from lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 (lt_of_le_of_ne h hn₂.symm)), by simp [coeff_eq_zero_of_degree_lt this])) (λ h, false.elim (h (mem_range.2 (lt_of_le_of_lt (nat.le_add_right _ _) (nat.lt_succ_self _))))) ... = _ : by simp [leading_coeff, nat.add_sub_cancel_left] lemma degree_mul_eq' (h : leading_coeff p * leading_coeff q ≠ 0) : degree (p * q) = degree p + degree q := have hp : p ≠ 0 := by refine mt _ h; exact λ hp, by rw [hp, leading_coeff_zero, zero_mul], have hq : q ≠ 0 := by refine mt _ h; exact λ hq, by rw [hq, leading_coeff_zero, mul_zero], le_antisymm (degree_mul_le _ _) begin rw [degree_eq_nat_degree hp, degree_eq_nat_degree hq], refine le_degree_of_ne_zero _, rwa coeff_mul_degree_add_degree end lemma nat_degree_mul_eq' (h : leading_coeff p * leading_coeff q ≠ 0) : nat_degree (p * q) = nat_degree p + nat_degree q := have hp : p ≠ 0 := mt leading_coeff_eq_zero.2 (λ h₁, h $ by rw [h₁, zero_mul]), have hq : q ≠ 0 := mt leading_coeff_eq_zero.2 (λ h₁, h $ by rw [h₁, mul_zero]), have hpq : p * q ≠ 0 := λ hpq, by rw [← coeff_mul_degree_add_degree, hpq, coeff_zero] at h; exact h rfl, option.some_inj.1 (show (nat_degree (p * q) : with_bot ℕ) = nat_degree p + nat_degree q, by rw [← degree_eq_nat_degree hpq, degree_mul_eq' h, degree_eq_nat_degree hp, degree_eq_nat_degree hq]) lemma leading_coeff_mul' (h : leading_coeff p * leading_coeff q ≠ 0) : leading_coeff (p * q) = leading_coeff p * leading_coeff q := begin unfold leading_coeff, rw [nat_degree_mul_eq' h, coeff_mul_degree_add_degree], refl end lemma leading_coeff_pow' : leading_coeff p ^ n ≠ 0 → leading_coeff (p ^ n) = leading_coeff p ^ n := nat.rec_on n (by simp) $ λ n ih h, have h₁ : leading_coeff p ^ n ≠ 0 := λ h₁, h $ by rw [pow_succ, h₁, mul_zero], have h₂ : leading_coeff p * leading_coeff (p ^ n) ≠ 0 := by rwa [pow_succ, ← ih h₁] at h, by rw [pow_succ, pow_succ, leading_coeff_mul' h₂, ih h₁] lemma degree_pow_eq' : ∀ {n}, leading_coeff p ^ n ≠ 0 → degree (p ^ n) = add_monoid.smul n (degree p) | 0 := λ h, by rw [pow_zero, ← C_1] at *; rw [degree_C h, add_monoid.zero_smul] | (n+1) := λ h, have h₁ : leading_coeff p ^ n ≠ 0 := λ h₁, h $ by rw [pow_succ, h₁, mul_zero], have h₂ : leading_coeff p * leading_coeff (p ^ n) ≠ 0 := by rwa [pow_succ, ← leading_coeff_pow' h₁] at h, by rw [pow_succ, degree_mul_eq' h₂, succ_smul, degree_pow_eq' h₁] lemma nat_degree_pow_eq' {n : ℕ} (h : leading_coeff p ^ n ≠ 0) : nat_degree (p ^ n) = n * nat_degree p := if hp0 : p = 0 then if hn0 : n = 0 then by simp * else by rw [hp0, zero_pow (nat.pos_of_ne_zero hn0)]; simp else have hpn : p ^ n ≠ 0, from λ hpn0, have h1 : _ := h, by rw [← leading_coeff_pow' h1, hpn0, leading_coeff_zero] at h; exact h rfl, option.some_inj.1 $ show (nat_degree (p ^ n) : with_bot ℕ) = (n * nat_degree p : ℕ), by rw [← degree_eq_nat_degree hpn, degree_pow_eq' h, degree_eq_nat_degree hp0, ← with_bot.coe_smul]; simp @[simp] lemma leading_coeff_X_pow : ∀ n : ℕ, leading_coeff ((X : polynomial α) ^ n) = 1 | 0 := by simp | (n+1) := if h10 : (1 : α) = 0 then by rw [pow_succ, ← one_mul X, ← C_1, h10]; simp else have h : leading_coeff (X : polynomial α) * leading_coeff (X ^ n) ≠ 0, by rw [leading_coeff_X, leading_coeff_X_pow n, one_mul]; exact h10, by rw [pow_succ, leading_coeff_mul' h, leading_coeff_X, leading_coeff_X_pow, one_mul] lemma nat_degree_comp_le : nat_degree (p.comp q) ≤ nat_degree p * nat_degree q := if h0 : p.comp q = 0 then by rw [h0, nat_degree_zero]; exact nat.zero_le _ else with_bot.coe_le_coe.1 $ calc ↑(nat_degree (p.comp q)) = degree (p.comp q) : (degree_eq_nat_degree h0).symm ... ≤ _ : degree_sum_le _ _ ... ≤ _ : sup_le (λ n hn, calc degree (C (coeff p n) * q ^ n) ≤ degree (C (coeff p n)) + degree (q ^ n) : degree_mul_le _ _ ... ≤ nat_degree (C (coeff p n)) + add_monoid.smul n (degree q) : add_le_add' degree_le_nat_degree (degree_pow_le _ _) ... ≤ nat_degree (C (coeff p n)) + add_monoid.smul n (nat_degree q) : add_le_add_left' (add_monoid.smul_le_smul_of_le_right (@degree_le_nat_degree _ _ _ q) n) ... = (n * nat_degree q : ℕ) : by rw [nat_degree_C, with_bot.coe_zero, zero_add, ← with_bot.coe_smul, add_monoid.smul_eq_mul]; simp ... ≤ (nat_degree p * nat_degree q : ℕ) : with_bot.coe_le_coe.2 $ mul_le_mul_of_nonneg_right (le_nat_degree_of_ne_zero (finsupp.mem_support_iff.1 hn)) (nat.zero_le _)) lemma degree_map_le [comm_semiring β] [decidable_eq β] (f : α → β) [is_semiring_hom f] : degree (p.map f) ≤ degree p := if h : p.map f = 0 then by simp [h] else begin rw [degree_eq_nat_degree h], refine le_degree_of_ne_zero (mt (congr_arg f) _), rw [← coeff_map f, is_semiring_hom.map_zero f], exact mt leading_coeff_eq_zero.1 h end lemma subsingleton_of_monic_zero (h : monic (0 : polynomial α)) : (∀ p q : polynomial α, p = q) ∧ (∀ a b : α, a = b) := by rw [monic.def, leading_coeff_zero] at h; exact ⟨λ p q, by rw [← mul_one p, ← mul_one q, ← C_1, ← h, C_0, mul_zero, mul_zero], λ a b, by rw [← mul_one a, ← mul_one b, ← h, mul_zero, mul_zero]⟩ lemma degree_map_eq_of_leading_coeff_ne_zero [comm_semiring β] [decidable_eq β] (f : α → β) [is_semiring_hom f] (hf : f (leading_coeff p) ≠ 0) : degree (p.map f) = degree p := le_antisymm (degree_map_le f) $ have hp0 : p ≠ 0, from λ hp0, by simpa [hp0, is_semiring_hom.map_zero f] using hf, begin rw [degree_eq_nat_degree hp0], refine le_degree_of_ne_zero _, rw [coeff_map], exact hf end lemma degree_map_eq_of_injective [comm_semiring β] [decidable_eq β] (f : α → β) [is_semiring_hom f] (hf : function.injective f) : degree (p.map f) = degree p := if h : p = 0 then by simp [h] else degree_map_eq_of_leading_coeff_ne_zero _ (by rw [← is_semiring_hom.map_zero f]; exact mt hf.eq_iff.1 (mt leading_coeff_eq_zero.1 h)) lemma monic_map [comm_semiring β] [decidable_eq β] (f : α → β) [is_semiring_hom f] (hp : monic p) : monic (p.map f) := if h : (0 : β) = 1 then by haveI := subsingleton_of_zero_eq_one β h; exact subsingleton.elim _ _ else have f (leading_coeff p) ≠ 0, by rwa [show _ = _, from hp, is_semiring_hom.map_one f, ne.def, eq_comm], by erw [monic, leading_coeff, nat_degree_eq_of_degree_eq (degree_map_eq_of_leading_coeff_ne_zero f this), coeff_map, ← leading_coeff, show _ = _, from hp, is_semiring_hom.map_one f] lemma zero_le_degree_iff {p : polynomial α} : 0 ≤ degree p ↔ p ≠ 0 := by rw [ne.def, ← degree_eq_bot]; cases degree p; exact dec_trivial @[simp] lemma coeff_mul_X_zero (p : polynomial α) : coeff (p * X) 0 = 0 := by rw [coeff_mul_left, sum_range_succ]; simp instance [subsingleton α] : subsingleton (polynomial α) := ⟨λ _ _, polynomial.ext.2 (λ _, subsingleton.elim _ _)⟩ lemma ne_zero_of_monic_of_zero_ne_one (hp : monic p) (h : (0 : α) ≠ 1) : p ≠ 0 := mt (congr_arg leading_coeff) $ by rw [monic.def.1 hp, leading_coeff_zero]; cc lemma eq_X_add_C_of_degree_le_one (h : degree p ≤ 1) : p = C (p.coeff 1) * X + C (p.coeff 0) := polynomial.ext.2 (λ n, nat.cases_on n (by simp) (λ n, nat.cases_on n (by simp [coeff_C]) (λ m, have degree p < m.succ.succ, from lt_of_le_of_lt h dec_trivial, by simp [coeff_eq_zero_of_degree_lt this, coeff_C, nat.succ_ne_zero, coeff_X, nat.succ_inj', @eq_comm ℕ 0]))) lemma eq_X_add_C_of_degree_eq_one (h : degree p = 1) : p = C (p.leading_coeff) * X + C (p.coeff 0) := (eq_X_add_C_of_degree_le_one (show degree p ≤ 1, from h ▸ le_refl _)).trans (by simp [leading_coeff, nat_degree_eq_of_degree_eq_some h]) theorem degree_C_mul_X_pow_le (r : α) (n : ℕ) : degree (C r * X^n) ≤ n := begin rw [← single_eq_C_mul_X], refine finset.sup_le (λ b hb, _), rw list.eq_of_mem_singleton (finsupp.support_single_subset hb), exact le_refl _ end theorem degree_X_pow_le (n : ℕ) : degree (X^n : polynomial α) ≤ n := by simpa only [C_1, one_mul] using degree_C_mul_X_pow_le (1:α) n theorem degree_X_le : degree (X : polynomial α) ≤ 1 := by simpa only [C_1, one_mul, pow_one] using degree_C_mul_X_pow_le (1:α) 1 lemma degree_map' [comm_semiring β] [decidable_eq β] (p : polynomial α) {f : α → β} [is_semiring_hom f] (hf : function.injective f) : degree (p.map f) = degree p := degree_map_eq_of_injective _ hf lemma nat_degree_map' [comm_semiring β] [decidable_eq β] (p : polynomial α) {f : α → β} [is_semiring_hom f] (hf : function.injective f) : nat_degree (p.map f) = nat_degree p := nat_degree_eq_of_degree_eq (degree_map' _ hf) theorem monic_of_degree_le (n : ℕ) (H1 : degree p ≤ n) (H2 : coeff p n = 1) : monic p := decidable.by_cases (assume H : degree p < n, @subsingleton.elim _ (subsingleton_of_zero_eq_one α $ H2 ▸ (coeff_eq_zero_of_degree_lt H).symm) _ _) (assume H : ¬degree p < n, by rwa [monic, leading_coeff, nat_degree, (lt_or_eq_of_le H1).resolve_left H]) theorem monic_X_pow_add {n : ℕ} (H : degree p ≤ n) : monic (X ^ (n+1) + p) := have H1 : degree p < n+1, from lt_of_le_of_lt H (with_bot.coe_lt_coe.2 (nat.lt_succ_self n)), monic_of_degree_le (n+1) (le_trans (degree_add_le _ _) (max_le (degree_X_pow_le _) (le_of_lt H1))) (by rw [coeff_add, coeff_X_pow, if_pos rfl, coeff_eq_zero_of_degree_lt H1, add_zero]) theorem monic_X_add_C (x : α) : monic (X + C x) := pow_one (X : polynomial α) ▸ monic_X_pow_add degree_C_le theorem degree_le_iff_coeff_zero (f : polynomial α) (n : with_bot ℕ) : degree f ≤ n ↔ ∀ m : ℕ, n < m → coeff f m = 0 := ⟨λ (H : finset.sup (f.support) some ≤ n) m (Hm : n < (m : with_bot ℕ)), decidable.of_not_not $ λ H4, have H1 : m ∉ f.support, from λ H2, not_lt_of_ge ((finset.sup_le_iff.1 H) m H2 : ((m : with_bot ℕ) ≤ n)) Hm, H1 $ (finsupp.mem_support_to_fun f m).2 H4, λ H, finset.sup_le $ λ b Hb, decidable.of_not_not $ λ Hn, (finsupp.mem_support_to_fun f b).1 Hb $ H b $ lt_of_not_ge Hn⟩ theorem nat_degree_le_of_degree_le {p : polynomial α} {n : ℕ} (H : degree p ≤ n) : nat_degree p ≤ n := show option.get_or_else (degree p) 0 ≤ n, from match degree p, H with | none, H := zero_le _ | (some d), H := with_bot.coe_le_coe.1 H end theorem leading_coeff_mul_X_pow {p : polynomial α} {n : ℕ} : leading_coeff (p * X ^ n) = leading_coeff p := decidable.by_cases (assume H : leading_coeff p = 0, by rw [H, leading_coeff_eq_zero.1 H, zero_mul, leading_coeff_zero]) (assume H : leading_coeff p ≠ 0, by rw [leading_coeff_mul', leading_coeff_X_pow, mul_one]; rwa [leading_coeff_X_pow, mul_one]) lemma monic_mul (hp : monic p) (hq : monic q) : monic (p * q) := if h0 : (0 : α) = 1 then by haveI := subsingleton_of_zero_eq_one _ h0; exact subsingleton.elim _ _ else have leading_coeff p * leading_coeff q ≠ 0, by simp [monic.def.1 hp, monic.def.1 hq, ne.symm h0], by rw [monic.def, leading_coeff_mul' this, monic.def.1 hp, monic.def.1 hq, one_mul] lemma monic_pow (hp : monic p) : ∀ (n : ℕ), monic (p ^ n) | 0 := monic_one | (n+1) := monic_mul hp (monic_pow n) lemma multiplicity_finite_of_degree_pos_of_monic (hp : (0 : with_bot ℕ) < degree p) (hmp : monic p) (hq : q ≠ 0) : multiplicity.finite p q := have zn0 : (0 : α) ≠ 1, from λ h, by haveI := subsingleton_of_zero_eq_one _ h; exact hq (subsingleton.elim _ _), ⟨nat_degree q, λ ⟨r, hr⟩, have hp0 : p ≠ 0, from λ hp0, by simp [hp0] at hp; contradiction, have hr0 : r ≠ 0, from λ hr0, by simp * at *, have hpn1 : leading_coeff p ^ (nat_degree q + 1) = 1, by simp [show _ = _, from hmp], have hpn0' : leading_coeff p ^ (nat_degree q + 1) ≠ 0, from hpn1.symm ▸ zn0.symm, have hpnr0 : leading_coeff (p ^ (nat_degree q + 1)) * leading_coeff r ≠ 0, by simp only [leading_coeff_pow' hpn0', leading_coeff_eq_zero, hpn1, one_pow, one_mul, ne.def, hr0]; simp, have hpn0 : p ^ (nat_degree q + 1) ≠ 0, from mt leading_coeff_eq_zero.2 $ by rw [leading_coeff_pow' hpn0', show _ = _, from hmp, one_pow]; exact zn0.symm, have hnp : 0 < nat_degree p, by rw [← with_bot.coe_lt_coe, ← degree_eq_nat_degree hp0]; exact hp, begin have := congr_arg nat_degree hr, rw [nat_degree_mul_eq' hpnr0, nat_degree_pow_eq' hpn0', add_mul, add_assoc] at this, exact ne_of_lt (lt_add_of_le_of_pos (le_mul_of_ge_one_right' (nat.zero_le _) hnp) (add_pos_of_pos_of_nonneg (by rwa one_mul) (nat.zero_le _))) this end⟩ end comm_semiring section nonzero_comm_semiring variables [nonzero_comm_semiring α] [decidable_eq α] {p q : polynomial α} instance : nonzero_comm_semiring (polynomial α) := { zero_ne_one := λ (h : (0 : polynomial α) = 1), @zero_ne_one α _ $ calc (0 : α) = eval 0 0 : eval_zero.symm ... = eval 0 1 : congr_arg _ h ... = 1 : eval_C, ..polynomial.comm_semiring } @[simp] lemma degree_one : degree (1 : polynomial α) = (0 : with_bot ℕ) := degree_C (show (1 : α) ≠ 0, from zero_ne_one.symm) @[simp] lemma degree_X : degree (X : polynomial α) = 1 := begin unfold X degree single finsupp.support, rw if_neg (zero_ne_one).symm, refl end lemma X_ne_zero : (X : polynomial α) ≠ 0 := mt (congr_arg (λ p, coeff p 1)) (by simp) @[simp] lemma degree_X_pow : ∀ (n : ℕ), degree ((X : polynomial α) ^ n) = n | 0 := by simp only [pow_zero, degree_one]; refl | (n+1) := have h : leading_coeff (X : polynomial α) * leading_coeff (X ^ n) ≠ 0, by rw [leading_coeff_X, leading_coeff_X_pow n, one_mul]; exact zero_ne_one.symm, by rw [pow_succ, degree_mul_eq' h, degree_X, degree_X_pow, add_comm]; refl @[simp] lemma not_monic_zero : ¬monic (0 : polynomial α) := by simpa only [monic, leading_coeff_zero] using zero_ne_one lemma ne_zero_of_monic (h : monic p) : p ≠ 0 := λ h₁, @not_monic_zero α _ _ (h₁ ▸ h) end nonzero_comm_semiring section comm_semiring variables [comm_semiring α] [decidable_eq α] {p q : polynomial α} /-- `dix_X p` return a polynomial `q` such that `q * X + C (p.coeff 0) = p`. It can be used in a semiring where the usual division algorithm is not possible -/ def div_X (p : polynomial α) : polynomial α := { to_fun := λ n, p.coeff (n + 1), support := ⟨(p.support.filter (> 0)).1.map (λ n, n - 1), multiset.nodup_map_on begin simp only [finset.mem_def.symm, finset.mem_erase, finset.mem_filter], assume x hx y hy hxy, rwa [← @add_right_cancel_iff _ _ 1, nat.sub_add_cancel hx.2, nat.sub_add_cancel hy.2] at hxy end (p.support.filter (> 0)).2⟩, mem_support_to_fun := λ n, suffices (∃ (a : ℕ), (¬coeff p a = 0 ∧ a > 0) ∧ a - 1 = n) ↔ ¬coeff p (n + 1) = 0, by simpa [finset.mem_def.symm, apply_eq_coeff], ⟨λ ⟨a, ha⟩, by rw [← ha.2, nat.sub_add_cancel ha.1.2]; exact ha.1.1, λ h, ⟨n + 1, ⟨h, nat.succ_pos _⟩, nat.succ_sub_one _⟩⟩ } lemma div_X_mul_X_add (p : polynomial α) : div_X p * X + C (p.coeff 0) = p := polynomial.ext.2 $ λ n, nat.cases_on n (by simp) (by simp [coeff_C, nat.succ_ne_zero, coeff_mul_X, div_X]) @[simp] lemma div_X_C (a : α) : div_X (C a) = 0 := polynomial.ext.2 $ λ n, by cases n; simp [div_X, coeff_C]; simp [coeff] lemma div_X_eq_zero_iff : div_X p = 0 ↔ p = C (p.coeff 0) := ⟨λ h, by simpa [eq_comm, h] using div_X_mul_X_add p, λ h, by rw [h, div_X_C]⟩ lemma div_X_add : div_X (p + q) = div_X p + div_X q := polynomial.ext.2 $ by simp [div_X] def nonzero_comm_semiring.of_polynomial_ne (h : p ≠ q) : nonzero_comm_semiring α := { zero_ne_one := λ h01 : 0 = 1, h $ by rw [← mul_one p, ← mul_one q, ← C_1, ← h01, C_0, mul_zero, mul_zero], ..show comm_semiring α, by apply_instance } lemma degree_lt_degree_mul_X (hp : p ≠ 0) : p.degree < (p * X).degree := by letI := nonzero_comm_semiring.of_polynomial_ne hp; exact have leading_coeff p * leading_coeff X ≠ 0, by simpa, by erw [degree_mul_eq' this, degree_eq_nat_degree hp, degree_X, ← with_bot.coe_one, ← with_bot.coe_add, with_bot.coe_lt_coe]; exact nat.lt_succ_self _ lemma degree_div_X_lt (hp0 : p ≠ 0) : (div_X p).degree < p.degree := by letI := nonzero_comm_semiring.of_polynomial_ne hp0; exact calc (div_X p).degree < (div_X p * X + C (p.coeff 0)).degree : if h : degree p ≤ 0 then begin have h' : C (p.coeff 0) ≠ 0, by rwa [← eq_C_of_degree_le_zero h], rw [eq_C_of_degree_le_zero h, div_X_C, degree_zero, zero_mul, zero_add], exact lt_of_le_of_ne lattice.bot_le (ne.symm (mt degree_eq_bot.1 $ by simp [h'])), end else have hXp0 : div_X p ≠ 0, by simpa [div_X_eq_zero_iff, -not_le, degree_le_zero_iff] using h, have leading_coeff (div_X p) * leading_coeff X ≠ 0, by simpa, have degree (C (p.coeff 0)) < degree (div_X p * X), from calc degree (C (p.coeff 0)) ≤ 0 : degree_C_le ... < 1 : dec_trivial ... = degree (X : polynomial α) : degree_X.symm ... ≤ degree (div_X p * X) : by rw [← zero_add (degree X), degree_mul_eq' this]; exact add_le_add' (by rw [zero_le_degree_iff, ne.def, div_X_eq_zero_iff]; exact λ h0, h (h0.symm ▸ degree_C_le)) (le_refl _), by rw [add_comm, degree_add_eq_of_degree_lt this]; exact degree_lt_degree_mul_X hXp0 ... = p.degree : by rw div_X_mul_X_add @[elab_as_eliminator] def rec_on_horner {M : polynomial α → Sort*} : Π (p : polynomial α), M 0 → (Π p a, coeff p 0 = 0 → a ≠ 0 → M p → M (p + C a)) → (Π p, p ≠ 0 → M p → M (p * X)) → M p | p := λ M0 MC MX, if hp : p = 0 then eq.rec_on hp.symm M0 else have wf : degree (div_X p) < degree p, from degree_div_X_lt hp, by rw [← div_X_mul_X_add p] at *; exact if hcp0 : coeff p 0 = 0 then by rw [hcp0, C_0, add_zero]; exact MX _ (λ h : div_X p = 0, by simpa [h, hcp0] using hp) (rec_on_horner _ M0 MC MX) else MC _ _ (coeff_mul_X_zero _) hcp0 (if hpX0 : div_X p = 0 then show M (div_X p * X), by rw [hpX0, zero_mul]; exact M0 else MX (div_X p) hpX0 (rec_on_horner _ M0 MC MX)) using_well_founded {dec_tac := tactic.assumption} @[elab_as_eliminator] lemma degree_pos_induction_on {P : polynomial α → Prop} (p : polynomial α) (h0 : 0 < degree p) (hC : ∀ {a}, a ≠ 0 → P (C a * X)) (hX : ∀ {p}, 0 < degree p → P p → P (p * X)) (hadd : ∀ {p} {a}, 0 < degree p → P p → P (p + C a)) : P p := rec_on_horner p (λ h, by rw degree_zero at h; exact absurd h dec_trivial) (λ p a _ _ ih h0, have 0 < degree p, from lt_of_not_ge (λ h, (not_lt_of_ge degree_C_le) $ by rwa [eq_C_of_degree_le_zero h, ← C_add] at h0), hadd this (ih this)) (λ p _ ih h0', if h0 : 0 < degree p then hX h0 (ih h0) else by rw [eq_C_of_degree_le_zero (le_of_not_gt h0)] at *; exact hC (λ h : coeff p 0 = 0, by simpa [h, not_lt.2 (@lattice.bot_le ( ℕ) _ _)] using h0')) h0 end comm_semiring section comm_ring variables [comm_ring α] [decidable_eq α] {p q : polynomial α} instance : comm_ring (polynomial α) := finsupp.to_comm_ring instance : has_scalar α (polynomial α) := finsupp.to_has_scalar -- TODO if this becomes a semimodule then the below lemma could be proved for semimodules instance : module α (polynomial α) := finsupp.to_module ℕ α -- TODO -- this is OK for semimodules @[simp] lemma coeff_smul (p : polynomial α) (r : α) (n : ℕ) : coeff (r • p) n = r * coeff p n := finsupp.smul_apply -- TODO -- this is OK for semimodules lemma C_mul' (a : α) (f : polynomial α) : C a * f = a • f := ext.2 $ λ n, coeff_C_mul f variable (α) def lcoeff (n : ℕ) : polynomial α →ₗ α := { to_fun := λ f, coeff f n, add := λ f g, coeff_add f g n, smul := λ r p, coeff_smul p r n } variable {α} @[simp] lemma lcoeff_apply (n : ℕ) (f : polynomial α) : lcoeff α n f = coeff f n := rfl instance C.is_ring_hom : is_ring_hom (@C α _ _) := by apply is_ring_hom.of_semiring @[simp] lemma C_neg : C (-a) = -C a := is_ring_hom.map_neg C @[simp] lemma C_sub : C (a - b) = C a - C b := is_ring_hom.map_sub C instance eval₂.is_ring_hom {β} [comm_ring β] (f : α → β) [is_ring_hom f] {x : β} : is_ring_hom (eval₂ f x) := by apply is_ring_hom.of_semiring instance eval.is_ring_hom {x : α} : is_ring_hom (eval x) := eval₂.is_ring_hom _ instance map.is_ring_hom {β} [comm_ring β] [decidable_eq β] (f : α → β) [is_ring_hom f] : is_ring_hom (map f) := eval₂.is_ring_hom (C ∘ f) @[simp] lemma map_sub {β} [comm_ring β] [decidable_eq β] (f : α → β) [is_ring_hom f] : (p - q).map f = p.map f - q.map f := is_ring_hom.map_sub _ @[simp] lemma map_neg {β} [comm_ring β] [decidable_eq β] (f : α → β) [is_ring_hom f] : (-p).map f = -(p.map f) := is_ring_hom.map_neg _ @[simp] lemma degree_neg (p : polynomial α) : degree (-p) = degree p := by unfold degree; rw support_neg @[simp] lemma coeff_neg (p : polynomial α) (n : ℕ) : coeff (-p) n = -coeff p n := rfl @[simp] lemma coeff_sub (p q : polynomial α) (n : ℕ) : coeff (p - q) n = coeff p n - coeff q n := rfl @[simp] lemma eval₂_neg {β} [comm_ring β] (f : α → β) [is_ring_hom f] {x : β} : (-p).eval₂ f x = -p.eval₂ f x := is_ring_hom.map_neg _ @[simp] lemma eval₂_sub {β} [comm_ring β] (f : α → β) [is_ring_hom f] {x : β} : (p - q).eval₂ f x = p.eval₂ f x - q.eval₂ f x := is_ring_hom.map_sub _ @[simp] lemma eval_neg (p : polynomial α) (x : α) : (-p).eval x = -p.eval x := is_ring_hom.map_neg _ @[simp] lemma eval_sub (p q : polynomial α) (x : α) : (p - q).eval x = p.eval x - q.eval x := is_ring_hom.map_sub _ lemma degree_sub_lt (hd : degree p = degree q) (hp0 : p ≠ 0) (hlc : leading_coeff p = leading_coeff q) : degree (p - q) < degree p := have hp : single (nat_degree p) (leading_coeff p) + p.erase (nat_degree p) = p := finsupp.single_add_erase, have hq : single (nat_degree q) (leading_coeff q) + q.erase (nat_degree q) = q := finsupp.single_add_erase, have hd' : nat_degree p = nat_degree q := by unfold nat_degree; rw hd, have hq0 : q ≠ 0 := mt degree_eq_bot.2 (hd ▸ mt degree_eq_bot.1 hp0), calc degree (p - q) = degree (erase (nat_degree q) p + -erase (nat_degree q) q) : by conv {to_lhs, rw [← hp, ← hq, hlc, hd', add_sub_add_left_eq_sub, sub_eq_add_neg]} ... ≤ max (degree (erase (nat_degree q) p)) (degree (erase (nat_degree q) q)) : degree_neg (erase (nat_degree q) q) ▸ degree_add_le _ _ ... < degree p : max_lt_iff.2 ⟨hd' ▸ degree_erase_lt hp0, hd.symm ▸ degree_erase_lt hq0⟩ lemma ne_zero_of_ne_zero_of_monic (hp : p ≠ 0) (hq : monic q) : q ≠ 0 | h := begin rw [h, monic.def, leading_coeff_zero] at hq, rw [← mul_one p, ← C_1, ← hq, C_0, mul_zero] at hp, exact hp rfl end lemma div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : monic q) : degree (p - C (leading_coeff p) * X ^ (nat_degree p - nat_degree q) * q) < degree p := have hp : leading_coeff p ≠ 0 := mt leading_coeff_eq_zero.1 h.2, have hpq : leading_coeff (C (leading_coeff p) * X ^ (nat_degree p - nat_degree q)) * leading_coeff q ≠ 0, by rwa [leading_coeff_monomial, monic.def.1 hq, mul_one], if h0 : p - C (leading_coeff p) * X ^ (nat_degree p - nat_degree q) * q = 0 then h0.symm ▸ (lt_of_not_ge $ mt le_bot_iff.1 (mt degree_eq_bot.1 h.2)) else have hq0 : q ≠ 0 := ne_zero_of_ne_zero_of_monic h.2 hq, have hlt : nat_degree q ≤ nat_degree p := with_bot.coe_le_coe.1 (by rw [← degree_eq_nat_degree h.2, ← degree_eq_nat_degree hq0]; exact h.1), degree_sub_lt (by rw [degree_mul_eq' hpq, degree_monomial _ hp, degree_eq_nat_degree h.2, degree_eq_nat_degree hq0, ← with_bot.coe_add, nat.sub_add_cancel hlt]) h.2 (by rw [leading_coeff_mul' hpq, leading_coeff_monomial, monic.def.1 hq, mul_one]) def div_mod_by_monic_aux : Π (p : polynomial α) {q : polynomial α}, monic q → polynomial α × polynomial α | p := λ q hq, if h : degree q ≤ degree p ∧ p ≠ 0 then let z := C (leading_coeff p) * X^(nat_degree p - nat_degree q) in have wf : _ := div_wf_lemma h hq, let dm := div_mod_by_monic_aux (p - z * q) hq in ⟨z + dm.1, dm.2⟩ else ⟨0, p⟩ using_well_founded {dec_tac := tactic.assumption} /-- `div_by_monic` gives the quotient of `p` by a monic polynomial `q`. -/ def div_by_monic (p q : polynomial α) : polynomial α := if hq : monic q then (div_mod_by_monic_aux p hq).1 else 0 /-- `mod_by_monic` gives the remainder of `p` by a monic polynomial `q`. -/ def mod_by_monic (p q : polynomial α) : polynomial α := if hq : monic q then (div_mod_by_monic_aux p hq).2 else p infixl ` /ₘ ` : 70 := div_by_monic infixl ` %ₘ ` : 70 := mod_by_monic lemma degree_mod_by_monic_lt : ∀ (p : polynomial α) {q : polynomial α} (hq : monic q) (hq0 : q ≠ 0), degree (p %ₘ q) < degree q | p := λ q hq hq0, if h : degree q ≤ degree p ∧ p ≠ 0 then have wf : _ := div_wf_lemma ⟨h.1, h.2⟩ hq, have degree ((p - C (leading_coeff p) * X ^ (nat_degree p - nat_degree q) * q) %ₘ q) < degree q := degree_mod_by_monic_lt (p - C (leading_coeff p) * X ^ (nat_degree p - nat_degree q) * q) hq hq0, begin unfold mod_by_monic at this ⊢, unfold div_mod_by_monic_aux, rw dif_pos hq at this ⊢, rw if_pos h, exact this end else or.cases_on (not_and_distrib.1 h) begin unfold mod_by_monic div_mod_by_monic_aux, rw [dif_pos hq, if_neg h], exact lt_of_not_ge, end begin assume hp, unfold mod_by_monic div_mod_by_monic_aux, rw [dif_pos hq, if_neg h, not_not.1 hp], exact lt_of_le_of_ne bot_le (ne.symm (mt degree_eq_bot.1 hq0)), end using_well_founded {dec_tac := tactic.assumption} lemma mod_by_monic_eq_sub_mul_div : ∀ (p : polynomial α) {q : polynomial α} (hq : monic q), p %ₘ q = p - q * (p /ₘ q) | p := λ q hq, if h : degree q ≤ degree p ∧ p ≠ 0 then have wf : _ := div_wf_lemma h hq, have ih : _ := mod_by_monic_eq_sub_mul_div (p - C (leading_coeff p) * X ^ (nat_degree p - nat_degree q) * q) hq, begin unfold mod_by_monic div_by_monic div_mod_by_monic_aux, rw [dif_pos hq, if_pos h], rw [mod_by_monic, dif_pos hq] at ih, refine ih.trans _, unfold div_by_monic, rw [dif_pos hq, dif_pos hq, if_pos h, mul_add, sub_add_eq_sub_sub, mul_comm] end else begin unfold mod_by_monic div_by_monic div_mod_by_monic_aux, rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, mul_zero, sub_zero] end using_well_founded {dec_tac := tactic.assumption} lemma mod_by_monic_add_div (p : polynomial α) {q : polynomial α} (hq : monic q) : p %ₘ q + q * (p /ₘ q) = p := eq_sub_iff_add_eq.1 (mod_by_monic_eq_sub_mul_div p hq) @[simp] lemma zero_mod_by_monic (p : polynomial α) : 0 %ₘ p = 0 := begin unfold mod_by_monic div_mod_by_monic_aux, by_cases hp : monic p, { rw [dif_pos hp, if_neg (mt and.right (not_not_intro rfl))] }, { rw [dif_neg hp] } end @[simp] lemma zero_div_by_monic (p : polynomial α) : 0 /ₘ p = 0 := begin unfold div_by_monic div_mod_by_monic_aux, by_cases hp : monic p, { rw [dif_pos hp, if_neg (mt and.right (not_not_intro rfl))] }, { rw [dif_neg hp] } end @[simp] lemma mod_by_monic_zero (p : polynomial α) : p %ₘ 0 = p := if h : monic (0 : polynomial α) then (subsingleton_of_monic_zero h).1 _ _ else by unfold mod_by_monic div_mod_by_monic_aux; rw dif_neg h @[simp] lemma div_by_monic_zero (p : polynomial α) : p /ₘ 0 = 0 := if h : monic (0 : polynomial α) then (subsingleton_of_monic_zero h).1 _ _ else by unfold div_by_monic div_mod_by_monic_aux; rw dif_neg h lemma div_by_monic_eq_of_not_monic (p : polynomial α) (hq : ¬monic q) : p /ₘ q = 0 := dif_neg hq lemma mod_by_monic_eq_of_not_monic (p : polynomial α) (hq : ¬monic q) : p %ₘ q = p := dif_neg hq lemma mod_by_monic_eq_self_iff (hq : monic q) (hq0 : q ≠ 0) : p %ₘ q = p ↔ degree p < degree q := ⟨λ h, h ▸ degree_mod_by_monic_lt _ hq hq0, λ h, have ¬ degree q ≤ degree p := not_le_of_gt h, by unfold mod_by_monic div_mod_by_monic_aux; rw [dif_pos hq, if_neg (mt and.left this)]⟩ lemma div_by_monic_eq_zero_iff (hq : monic q) (hq0 : q ≠ 0) : p /ₘ q = 0 ↔ degree p < degree q := ⟨λ h, by have := mod_by_monic_add_div p hq; rwa [h, mul_zero, add_zero, mod_by_monic_eq_self_iff hq hq0] at this, λ h, have ¬ degree q ≤ degree p := not_le_of_gt h, by unfold div_by_monic div_mod_by_monic_aux; rw [dif_pos hq, if_neg (mt and.left this)]⟩ lemma degree_add_div_by_monic (hq : monic q) (h : degree q ≤ degree p) : degree q + degree (p /ₘ q) = degree p := if hq0 : q = 0 then have ∀ (p : polynomial α), p = 0, from λ p, (@subsingleton_of_monic_zero α _ _ (hq0 ▸ hq)).1 _ _, by rw [this (p /ₘ q), this p, this q]; refl else have hdiv0 : p /ₘ q ≠ 0 := by rwa [(≠), div_by_monic_eq_zero_iff hq hq0, not_lt], have hlc : leading_coeff q * leading_coeff (p /ₘ q) ≠ 0 := by rwa [monic.def.1 hq, one_mul, (≠), leading_coeff_eq_zero], have hmod : degree (p %ₘ q) < degree (q * (p /ₘ q)) := calc degree (p %ₘ q) < degree q : degree_mod_by_monic_lt _ hq hq0 ... ≤ _ : by rw [degree_mul_eq' hlc, degree_eq_nat_degree hq0, degree_eq_nat_degree hdiv0, ← with_bot.coe_add, with_bot.coe_le_coe]; exact nat.le_add_right _ _, calc degree q + degree (p /ₘ q) = degree (q * (p /ₘ q)) : eq.symm (degree_mul_eq' hlc) ... = degree (p %ₘ q + q * (p /ₘ q)) : (degree_add_eq_of_degree_lt hmod).symm ... = _ : congr_arg _ (mod_by_monic_add_div _ hq) lemma degree_div_by_monic_le (p q : polynomial α) : degree (p /ₘ q) ≤ degree p := if hp0 : p = 0 then by simp only [hp0, zero_div_by_monic, le_refl] else if hq : monic q then have hq0 : q ≠ 0 := ne_zero_of_ne_zero_of_monic hp0 hq, if h : degree q ≤ degree p then by rw [← degree_add_div_by_monic hq h, degree_eq_nat_degree hq0, degree_eq_nat_degree (mt (div_by_monic_eq_zero_iff hq hq0).1 (not_lt.2 h))]; exact with_bot.coe_le_coe.2 (nat.le_add_left _ _) else by unfold div_by_monic div_mod_by_monic_aux; simp only [dif_pos hq, h, false_and, if_false, degree_zero, bot_le] else (div_by_monic_eq_of_not_monic p hq).symm ▸ bot_le lemma degree_div_by_monic_lt (p : polynomial α) {q : polynomial α} (hq : monic q) (hp0 : p ≠ 0) (h0q : 0 < degree q) : degree (p /ₘ q) < degree p := have hq0 : q ≠ 0 := ne_zero_of_ne_zero_of_monic hp0 hq, if hpq : degree p < degree q then begin rw [(div_by_monic_eq_zero_iff hq hq0).2 hpq, degree_eq_nat_degree hp0], exact with_bot.bot_lt_some _ end else begin rw [← degree_add_div_by_monic hq (not_lt.1 hpq), degree_eq_nat_degree hq0, degree_eq_nat_degree (mt (div_by_monic_eq_zero_iff hq hq0).1 hpq)], exact with_bot.coe_lt_coe.2 (nat.lt_add_of_pos_left (with_bot.coe_lt_coe.1 $ (degree_eq_nat_degree hq0) ▸ h0q)) end lemma div_mod_by_monic_unique {f g} (q r : polynomial α) (hg : monic g) (h : r + g * q = f ∧ degree r < degree g) : f /ₘ g = q ∧ f %ₘ g = r := if hg0 : g = 0 then by split; exact (subsingleton_of_monic_zero (hg0 ▸ hg : monic (0 : polynomial α))).1 _ _ else have h₁ : r - f %ₘ g = -g * (q - f /ₘ g), from eq_of_sub_eq_zero (by rw [← sub_eq_zero_of_eq (h.1.trans (mod_by_monic_add_div f hg).symm)]; simp [mul_add, mul_comm]), have h₂ : degree (r - f %ₘ g) = degree (g * (q - f /ₘ g)), by simp [h₁], have h₄ : degree (r - f %ₘ g) < degree g, from calc degree (r - f %ₘ g) ≤ max (degree r) (degree (-(f %ₘ g))) : degree_add_le _ _ ... < degree g : max_lt_iff.2 ⟨h.2, by rw degree_neg; exact degree_mod_by_monic_lt _ hg hg0⟩, have h₅ : q - (f /ₘ g) = 0, from by_contradiction (λ hqf, not_le_of_gt h₄ $ calc degree g ≤ degree g + degree (q - f /ₘ g) : by erw [degree_eq_nat_degree hg0, degree_eq_nat_degree hqf, with_bot.coe_le_coe]; exact nat.le_add_right _ _ ... = degree (r - f %ₘ g) : by rw [h₂, degree_mul_eq']; simpa [monic.def.1 hg]), ⟨eq.symm $ eq_of_sub_eq_zero h₅, eq.symm $ eq_of_sub_eq_zero $ by simpa [h₅] using h₁⟩ lemma map_mod_div_by_monic [comm_ring β] [decidable_eq β] (f : α → β) [is_semiring_hom f] (hq : monic q) : (p /ₘ q).map f = p.map f /ₘ q.map f ∧ (p %ₘ q).map f = p.map f %ₘ q.map f := if h01 : (0 : β) = 1 then by haveI := subsingleton_of_zero_eq_one β h01; exact ⟨subsingleton.elim _ _, subsingleton.elim _ _⟩ else have h01α : (0 : α) ≠ 1, from mt (congr_arg f) (by rwa [is_semiring_hom.map_one f, is_semiring_hom.map_zero f]), have map f p /ₘ map f q = map f (p /ₘ q) ∧ map f p %ₘ map f q = map f (p %ₘ q), from (div_mod_by_monic_unique ((p /ₘ q).map f) _ (monic_map f hq) ⟨eq.symm $ by rw [← map_mul, ← map_add, mod_by_monic_add_div _ hq], calc _ ≤ degree (p %ₘ q) : degree_map_le _ ... < degree q : degree_mod_by_monic_lt _ hq $ (ne_zero_of_monic_of_zero_ne_one hq h01α) ... = _ : eq.symm $ degree_map_eq_of_leading_coeff_ne_zero _ (by rw [monic.def.1 hq, is_semiring_hom.map_one f]; exact ne.symm h01)⟩), ⟨this.1.symm, this.2.symm⟩ lemma map_div_by_monic [comm_ring β] [decidable_eq β] (f : α → β) [is_semiring_hom f] (hq : monic q) : (p /ₘ q).map f = p.map f /ₘ q.map f := (map_mod_div_by_monic f hq).1 lemma map_mod_by_monic [comm_ring β] [decidable_eq β] (f : α → β) [is_semiring_hom f] (hq : monic q) : (p %ₘ q).map f = p.map f %ₘ q.map f := (map_mod_div_by_monic f hq).2 lemma dvd_iff_mod_by_monic_eq_zero (hq : monic q) : p %ₘ q = 0 ↔ q ∣ p := ⟨λ h, by rw [← mod_by_monic_add_div p hq, h, zero_add]; exact dvd_mul_right _ _, λ h, if hq0 : q = 0 then by rw hq0 at hq; exact (subsingleton_of_monic_zero hq).1 _ _ else let ⟨r, hr⟩ := exists_eq_mul_right_of_dvd h in by_contradiction (λ hpq0, have hmod : p %ₘ q = q * (r - p /ₘ q) := by rw [mod_by_monic_eq_sub_mul_div _ hq, mul_sub, ← hr], have degree (q * (r - p /ₘ q)) < degree q := hmod ▸ degree_mod_by_monic_lt _ hq hq0, have hrpq0 : leading_coeff (r - p /ₘ q) ≠ 0 := λ h, hpq0 $ leading_coeff_eq_zero.1 (by rw [hmod, leading_coeff_eq_zero.1 h, mul_zero, leading_coeff_zero]), have hlc : leading_coeff q * leading_coeff (r - p /ₘ q) ≠ 0 := by rwa [monic.def.1 hq, one_mul], by rw [degree_mul_eq' hlc, degree_eq_nat_degree hq0, degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this; exact not_lt_of_ge (nat.le_add_right _ _) (with_bot.some_lt_some.1 this))⟩ @[simp] lemma mod_by_monic_one (p : polynomial α) : p %ₘ 1 = 0 := (dvd_iff_mod_by_monic_eq_zero monic_one).2 (one_dvd _) @[simp] lemma div_by_monic_one (p : polynomial α) : p /ₘ 1 = p := by conv_rhs { rw [← mod_by_monic_add_div p monic_one] }; simp lemma degree_pos_of_root (hp : p ≠ 0) (h : is_root p a) : 0 < degree p := lt_of_not_ge $ λ hlt, begin have := eq_C_of_degree_le_zero hlt, rw [is_root, this, eval_C] at h, exact hp (finsupp.ext (λ n, show coeff p n = 0, from nat.cases_on n h (λ _, coeff_eq_zero_of_degree_lt (lt_of_le_of_lt hlt (with_bot.coe_lt_coe.2 (nat.succ_pos _)))))), end theorem monic_X_sub_C (x : α) : monic (X - C x) := by simpa only [C_neg] using monic_X_add_C (-x) theorem monic_X_pow_sub {n : ℕ} (H : degree p ≤ n) : monic (X ^ (n+1) - p) := monic_X_pow_add ((degree_neg p).symm ▸ H) theorem degree_mod_by_monic_le (p : polynomial α) {q : polynomial α} (hq : monic q) : degree (p %ₘ q) ≤ degree q := decidable.by_cases (assume H : q = 0, by rw [monic, H, leading_coeff_zero] at hq; have : (0:polynomial α) = 1 := (by rw [← C_0, ← C_1, hq]); rw [eq_zero_of_zero_eq_one _ this (p %ₘ q), eq_zero_of_zero_eq_one _ this q]; exact le_refl _) (assume H : q ≠ 0, le_of_lt $ degree_mod_by_monic_lt _ hq H) lemma root_X_sub_C : is_root (X - C a) b ↔ a = b := by rw [is_root.def, eval_sub, eval_X, eval_C, sub_eq_zero_iff_eq, eq_comm] def nonzero_comm_ring.of_polynomial_ne (h : p ≠ q) : nonzero_comm_ring α := { zero := 0, one := 1, zero_ne_one := λ h01, h $ by rw [← one_mul p, ← one_mul q, ← C_1, ← h01, C_0, zero_mul, zero_mul], ..show comm_ring α, by apply_instance } end comm_ring section nonzero_comm_ring variables [nonzero_comm_ring α] [decidable_eq α] {p q : polynomial α} instance : nonzero_comm_ring (polynomial α) := { ..polynomial.nonzero_comm_semiring, ..polynomial.comm_ring } @[simp] lemma degree_X_sub_C (a : α) : degree (X - C a) = 1 := begin rw [sub_eq_add_neg, add_comm, ← @degree_X α], by_cases ha : a = 0, { simp only [ha, C_0, neg_zero, zero_add] }, exact degree_add_eq_of_degree_lt (by rw [degree_X, degree_neg, degree_C ha]; exact dec_trivial) end lemma degree_X_pow_sub_C {n : ℕ} (hn : 0 < n) (a : α) : degree ((X : polynomial α) ^ n - C a) = n := have degree (-C a) < degree ((X : polynomial α) ^ n), from calc degree (-C a) ≤ 0 : by rw degree_neg; exact degree_C_le ... < degree ((X : polynomial α) ^ n) : by rwa [degree_X_pow]; exact with_bot.coe_lt_coe.2 hn, by rw [sub_eq_add_neg, add_comm, degree_add_eq_of_degree_lt this, degree_X_pow] lemma X_pow_sub_C_ne_zero {n : ℕ} (hn : 0 < n) (a : α) : (X : polynomial α) ^ n - C a ≠ 0 := mt degree_eq_bot.2 (show degree ((X : polynomial α) ^ n - C a) ≠ ⊥, by rw degree_X_pow_sub_C hn; exact dec_trivial) end nonzero_comm_ring section comm_ring variables [comm_ring α] [decidable_eq α] {p q : polynomial α} @[simp] lemma mod_by_monic_X_sub_C_eq_C_eval (p : polynomial α) (a : α) : p %ₘ (X - C a) = C (p.eval a) := if h0 : (0 : α) = 1 then by letI := subsingleton_of_zero_eq_one α h0; exact subsingleton.elim _ _ else by letI : nonzero_comm_ring α := nonzero_comm_ring.of_ne h0; exact have h : (p %ₘ (X - C a)).eval a = p.eval a := by rw [mod_by_monic_eq_sub_mul_div _ (monic_X_sub_C a), eval_sub, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul, sub_zero], have degree (p %ₘ (X - C a)) < 1 := degree_X_sub_C a ▸ degree_mod_by_monic_lt p (monic_X_sub_C a) ((degree_X_sub_C a).symm ▸ ne_zero_of_monic (monic_X_sub_C _)), have degree (p %ₘ (X - C a)) ≤ 0 := begin cases (degree (p %ₘ (X - C a))), { exact bot_le }, { exact with_bot.some_le_some.2 (nat.le_of_lt_succ (with_bot.some_lt_some.1 this)) } end, begin rw [eq_C_of_degree_le_zero this, eval_C] at h, rw [eq_C_of_degree_le_zero this, h] end lemma mul_div_by_monic_eq_iff_is_root : (X - C a) * (p /ₘ (X - C a)) = p ↔ is_root p a := ⟨λ h, by rw [← h, is_root.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul], λ h : p.eval a = 0, by conv {to_rhs, rw ← mod_by_monic_add_div p (monic_X_sub_C a)}; rw [mod_by_monic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩ lemma dvd_iff_is_root : (X - C a) ∣ p ↔ is_root p a := ⟨λ h, by rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval, ← C_0, C_inj] at h, λ h, ⟨(p /ₘ (X - C a)), by rw mul_div_by_monic_eq_iff_is_root.2 h⟩⟩ lemma mod_by_monic_X (p : polynomial α) : p %ₘ X = C (p.eval 0) := by rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero] section multiplicity def decidable_dvd_monic (p : polynomial α) (hq : monic q): decidable (q ∣ p) := decidable_of_iff (p %ₘ q = 0) (dvd_iff_mod_by_monic_eq_zero hq) local attribute [instance, priority 0] classical.dec lemma multiplicity_X_sub_C_finite (a : α) (h0 : p ≠ 0) : multiplicity.finite (X - C a) p := multiplicity_finite_of_degree_pos_of_monic (have (0 : α) ≠ 1, from (λ h, by haveI := subsingleton_of_zero_eq_one _ h; exact h0 (subsingleton.elim _ _)), by letI : nonzero_comm_ring α := { zero_ne_one := this, ..show comm_ring α, by apply_instance }; rw degree_X_sub_C; exact dec_trivial) (monic_X_sub_C _) h0 def root_multiplicity (a : α) (p : polynomial α) : ℕ := if h0 : p = 0 then 0 else let I : decidable_pred (λ n : ℕ, ¬(X - C a) ^ (n + 1) ∣ p) := λ n, @not.decidable _ (decidable_dvd_monic p (monic_pow (monic_X_sub_C a) (n + 1))) in by exactI nat.find (multiplicity_X_sub_C_finite a h0) lemma root_multiplicity_eq_multiplicity (p : polynomial α) (a : α) : root_multiplicity a p = if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_X_sub_C_finite a h0) := by simp [multiplicity, root_multiplicity, roption.dom]; congr; funext; congr lemma pow_root_multiplicity_dvd (p : polynomial α) (a : α) : (X - C a) ^ root_multiplicity a p ∣ p := if h : p = 0 then by simp [h] else by rw [root_multiplicity_eq_multiplicity, dif_neg h]; exact multiplicity.pow_multiplicity_dvd _ lemma div_by_monic_mul_pow_root_multiplicity_eq (p : polynomial α) (a : α) : p /ₘ ((X - C a) ^ root_multiplicity a p) * (X - C a) ^ root_multiplicity a p = p := have monic ((X - C a) ^ root_multiplicity a p), from monic_pow (monic_X_sub_C _) _, by conv_rhs { rw [← mod_by_monic_add_div p this, (dvd_iff_mod_by_monic_eq_zero this).2 (pow_root_multiplicity_dvd _ _)] }; simp [mul_comm] lemma eval_div_by_monic_pow_root_multiplicity_ne_zero {p : polynomial α} (a : α) (hp : p ≠ 0) : (p /ₘ ((X - C a) ^ root_multiplicity a p)).eval a ≠ 0 := begin letI : nonzero_comm_ring α := nonzero_comm_ring.of_polynomial_ne hp, rw [ne.def, ← is_root.def, ← dvd_iff_is_root], rintros ⟨q, hq⟩, have := div_by_monic_mul_pow_root_multiplicity_eq p a, rw [mul_comm, hq, ← mul_assoc, ← pow_succ', root_multiplicity_eq_multiplicity, dif_neg hp] at this, exact multiplicity.is_greatest' (multiplicity_finite_of_degree_pos_of_monic (show (0 : with_bot ℕ) < degree (X - C a), by rw degree_X_sub_C; exact dec_trivial) _ hp) (nat.lt_succ_self _) (dvd_of_mul_right_eq _ this) end end multiplicity end comm_ring section integral_domain variables [integral_domain α] [decidable_eq α] {p q : polynomial α} @[simp] lemma degree_mul_eq : degree (p * q) = degree p + degree q := if hp0 : p = 0 then by simp only [hp0, degree_zero, zero_mul, with_bot.bot_add] else if hq0 : q = 0 then by simp only [hq0, degree_zero, mul_zero, with_bot.add_bot] else degree_mul_eq' $ mul_ne_zero (mt leading_coeff_eq_zero.1 hp0) (mt leading_coeff_eq_zero.1 hq0) @[simp] lemma degree_pow_eq (p : polynomial α) (n : ℕ) : degree (p ^ n) = add_monoid.smul n (degree p) := by induction n; [simp only [pow_zero, degree_one, add_monoid.zero_smul], simp only [*, pow_succ, succ_smul, degree_mul_eq]] @[simp] lemma leading_coeff_mul (p q : polynomial α) : leading_coeff (p * q) = leading_coeff p * leading_coeff q := begin by_cases hp : p = 0, { simp only [hp, zero_mul, leading_coeff_zero] }, { by_cases hq : q = 0, { simp only [hq, mul_zero, leading_coeff_zero] }, { rw [leading_coeff_mul'], exact mul_ne_zero (mt leading_coeff_eq_zero.1 hp) (mt leading_coeff_eq_zero.1 hq) } } end @[simp] lemma leading_coeff_pow (p : polynomial α) (n : ℕ) : leading_coeff (p ^ n) = leading_coeff p ^ n := by induction n; [simp only [pow_zero, leading_coeff_one], simp only [*, pow_succ, leading_coeff_mul]] instance : integral_domain (polynomial α) := { eq_zero_or_eq_zero_of_mul_eq_zero := λ a b h, begin have : leading_coeff 0 = leading_coeff a * leading_coeff b := h ▸ leading_coeff_mul a b, rw [leading_coeff_zero, eq_comm] at this, rw [← leading_coeff_eq_zero, ← leading_coeff_eq_zero], exact eq_zero_or_eq_zero_of_mul_eq_zero this end, ..polynomial.nonzero_comm_ring } lemma nat_degree_mul_eq (hp : p ≠ 0) (hq : q ≠ 0) : nat_degree (p * q) = nat_degree p + nat_degree q := by rw [← with_bot.coe_eq_coe, ← degree_eq_nat_degree (mul_ne_zero hp hq), with_bot.coe_add, ← degree_eq_nat_degree hp, ← degree_eq_nat_degree hq, degree_mul_eq] @[simp] lemma nat_degree_pow_eq (p : polynomial α) (n : ℕ) : nat_degree (p ^ n) = n * nat_degree p := if hp0 : p = 0 then if hn0 : n = 0 then by simp [hp0, hn0] else by rw [hp0, zero_pow (nat.pos_of_ne_zero hn0)]; simp else nat_degree_pow_eq' (by rw [← leading_coeff_pow, ne.def, leading_coeff_eq_zero]; exact pow_ne_zero _ hp0) lemma root_or_root_of_root_mul (h : is_root (p * q) a) : is_root p a ∨ is_root q a := by rw [is_root, eval_mul] at h; exact eq_zero_or_eq_zero_of_mul_eq_zero h lemma degree_le_mul_left (p : polynomial α) (hq : q ≠ 0) : degree p ≤ degree (p * q) := if hp : p = 0 then by simp only [hp, zero_mul, le_refl] else by rw [degree_mul_eq, degree_eq_nat_degree hp, degree_eq_nat_degree hq]; exact with_bot.coe_le_coe.2 (nat.le_add_right _ _) lemma exists_finset_roots : ∀ {p : polynomial α} (hp : p ≠ 0), ∃ s : finset α, (s.card : with_bot ℕ) ≤ degree p ∧ ∀ x, x ∈ s ↔ is_root p x | p := λ hp, by haveI := classical.prop_decidable (∃ x, is_root p x); exact if h : ∃ x, is_root p x then let ⟨x, hx⟩ := h in have hpd : 0 < degree p := degree_pos_of_root hp hx, have hd0 : p /ₘ (X - C x) ≠ 0 := λ h, by rw [← mul_div_by_monic_eq_iff_is_root.2 hx, h, mul_zero] at hp; exact hp rfl, have wf : degree (p /ₘ _) < degree p := degree_div_by_monic_lt _ (monic_X_sub_C x) hp ((degree_X_sub_C x).symm ▸ dec_trivial), let ⟨t, htd, htr⟩ := @exists_finset_roots (p /ₘ (X - C x)) hd0 in have hdeg : degree (X - C x) ≤ degree p := begin rw [degree_X_sub_C, degree_eq_nat_degree hp], rw degree_eq_nat_degree hp at hpd, exact with_bot.coe_le_coe.2 (with_bot.coe_lt_coe.1 hpd) end, have hdiv0 : p /ₘ (X - C x) ≠ 0 := mt (div_by_monic_eq_zero_iff (monic_X_sub_C x) (ne_zero_of_monic (monic_X_sub_C x))).1 $ not_lt.2 hdeg, ⟨insert x t, calc (card (insert x t) : with_bot ℕ) ≤ card t + 1 : with_bot.coe_le_coe.2 $ finset.card_insert_le _ _ ... ≤ degree p : by rw [← degree_add_div_by_monic (monic_X_sub_C x) hdeg, degree_X_sub_C, add_comm]; exact add_le_add' (le_refl (1 : with_bot ℕ)) htd, begin assume y, rw [mem_insert, htr, eq_comm, ← root_X_sub_C], conv {to_rhs, rw ← mul_div_by_monic_eq_iff_is_root.2 hx}, exact ⟨λ h, or.cases_on h (root_mul_right_of_is_root _) (root_mul_left_of_is_root _), root_or_root_of_root_mul⟩ end⟩ else ⟨∅, (degree_eq_nat_degree hp).symm ▸ with_bot.coe_le_coe.2 (nat.zero_le _), by simpa only [not_mem_empty, false_iff, not_exists] using h⟩ using_well_founded {dec_tac := tactic.assumption} /-- `roots p` noncomputably gives a finset containing all the roots of `p` -/ noncomputable def roots (p : polynomial α) : finset α := if h : p = 0 then ∅ else classical.some (exists_finset_roots h) lemma card_roots (hp0 : p ≠ 0) : ((roots p).card : with_bot ℕ) ≤ degree p := begin unfold roots, rw dif_neg hp0, exact (classical.some_spec (exists_finset_roots hp0)).1 end @[simp] lemma mem_roots (hp : p ≠ 0) : a ∈ p.roots ↔ is_root p a := by unfold roots; rw dif_neg hp; exact (classical.some_spec (exists_finset_roots hp)).2 _ lemma card_roots_X_pow_sub_C {n : ℕ} (hn : 0 < n) (a : α) : (roots ((X : polynomial α) ^ n - C a)).card ≤ n := with_bot.coe_le_coe.1 $ calc ((roots ((X : polynomial α) ^ n - C a)).card : with_bot ℕ) ≤ degree ((X : polynomial α) ^ n - C a) : card_roots (X_pow_sub_C_ne_zero hn a) ... = n : degree_X_pow_sub_C hn a /-- `nth_roots n a` noncomputably returns the solutions to `x ^ n = a`-/ noncomputable def nth_roots {α : Type*} [integral_domain α] (n : ℕ) (a : α) : finset α := by letI := classical.prop_decidable; exact roots ((X : polynomial α) ^ n - C a) @[simp] lemma mem_nth_roots {α : Type*} [integral_domain α] {n : ℕ} (hn : 0 < n) {a x : α} : x ∈ nth_roots n a ↔ x ^ n = a := by letI := classical.prop_decidable; rw [nth_roots, mem_roots (X_pow_sub_C_ne_zero hn a), is_root.def, eval_sub, eval_C, eval_pow, eval_X, sub_eq_zero_iff_eq] lemma card_nth_roots {α : Type*} [integral_domain α] (n : ℕ) (a : α) : (nth_roots n a).card ≤ n := by letI := classical.prop_decidable; exact if hn : n = 0 then if h : (X : polynomial α) ^ n - C a = 0 then by simp only [nat.zero_le, nth_roots, roots, h, dif_pos rfl, card_empty] else with_bot.coe_le_coe.1 (le_trans (card_roots h) (by rw [hn, pow_zero, ← @C_1 α _ _, ← is_ring_hom.map_sub (@C α _ _)]; exact degree_C_le)) else by rw [← with_bot.coe_le_coe, ← degree_X_pow_sub_C (nat.pos_of_ne_zero hn) a]; exact card_roots (X_pow_sub_C_ne_zero (nat.pos_of_ne_zero hn) a) lemma coeff_comp_degree_mul_degree (hqd0 : nat_degree q ≠ 0) : coeff (p.comp q) (nat_degree p * nat_degree q) = leading_coeff p * leading_coeff q ^ nat_degree p := if hp0 : p = 0 then by simp [hp0] else calc coeff (p.comp q) (nat_degree p * nat_degree q) = p.sum (λ n a, coeff (C a * q ^ n) (nat_degree p * nat_degree q)) : by rw [comp, eval₂, coeff_sum] ... = coeff (C (leading_coeff p) * q ^ nat_degree p) (nat_degree p * nat_degree q) : finset.sum_eq_single _ begin assume b hbs hbp, have hq0 : q ≠ 0, from λ hq0, hqd0 (by rw [hq0, nat_degree_zero]), have : coeff p b ≠ 0, rwa [← apply_eq_coeff, ← finsupp.mem_support_iff], dsimp [apply_eq_coeff], refine coeff_eq_zero_of_degree_lt _, rw [degree_mul_eq, degree_C this, degree_pow_eq, zero_add, degree_eq_nat_degree hq0, ← with_bot.coe_smul, add_monoid.smul_eq_mul, with_bot.coe_lt_coe, nat.cast_id], exact (mul_lt_mul_right (nat.pos_of_ne_zero hqd0)).2 (lt_of_le_of_ne (with_bot.coe_le_coe.1 (by rw ← degree_eq_nat_degree hp0; exact le_sup hbs)) hbp) end (by rw [finsupp.mem_support_iff, apply_eq_coeff, ← leading_coeff, ne.def, leading_coeff_eq_zero, classical.not_not]; simp {contextual := tt}) ... = _ : have coeff (q ^ nat_degree p) (nat_degree p * nat_degree q) = leading_coeff (q ^ nat_degree p), by rw [leading_coeff, nat_degree_pow_eq], by rw [coeff_C_mul, this, leading_coeff_pow] lemma nat_degree_comp : nat_degree (p.comp q) = nat_degree p * nat_degree q := le_antisymm nat_degree_comp_le (if hp0 : p = 0 then by rw [hp0, zero_comp, nat_degree_zero, zero_mul] else if hqd0 : nat_degree q = 0 then have degree q ≤ 0, by rw [← with_bot.coe_zero, ← hqd0]; exact degree_le_nat_degree, by rw [eq_C_of_degree_le_zero this]; simp else le_nat_degree_of_ne_zero $ have hq0 : q ≠ 0, from λ hq0, hqd0 $ by rw [hq0, nat_degree_zero], calc coeff (p.comp q) (nat_degree p * nat_degree q) = leading_coeff p * leading_coeff q ^ nat_degree p : coeff_comp_degree_mul_degree hqd0 ... ≠ 0 : mul_ne_zero (mt leading_coeff_eq_zero.1 hp0) (pow_ne_zero _ (mt leading_coeff_eq_zero.1 hq0))) lemma leading_coeff_comp (hq : nat_degree q ≠ 0): leading_coeff (p.comp q) = leading_coeff p * leading_coeff q ^ nat_degree p := by rw [← coeff_comp_degree_mul_degree hq, ← nat_degree_comp]; refl lemma degree_eq_zero_of_is_unit (h : is_unit p) : degree p = 0 := let ⟨q, hq⟩ := is_unit_iff_dvd_one.1 h in have hp0 : p ≠ 0, from λ hp0, by simpa [hp0] using hq, have hq0 : q ≠ 0, from λ hp0, by simpa [hp0] using hq, have nat_degree (1 : polynomial α) = nat_degree (p * q), from congr_arg _ hq, by rw [nat_degree_one, nat_degree_mul_eq hp0 hq0, eq_comm, add_eq_zero_iff, ← with_bot.coe_eq_coe, ← degree_eq_nat_degree hp0] at this; exact this.1 @[simp] lemma degree_coe_units (u : units (polynomial α)) : degree (u : polynomial α) = 0 := degree_eq_zero_of_is_unit ⟨u, rfl⟩ @[simp] lemma nat_degree_coe_units (u : units (polynomial α)) : nat_degree (u : polynomial α) = 0 := nat_degree_eq_of_degree_eq_some (degree_coe_units u) lemma coeff_coe_units_zero_ne_zero (u : units (polynomial α)) : coeff (u : polynomial α) 0 ≠ 0 := begin conv in (0) {rw [← nat_degree_coe_units u]}, rw [← leading_coeff, ne.def, leading_coeff_eq_zero], exact units.coe_ne_zero _ end lemma degree_eq_degree_of_associated (h : associated p q) : degree p = degree q := let ⟨u, hu⟩ := h in by simp [hu.symm] end integral_domain section field variables [discrete_field α] {p q : polynomial α} instance : vector_space α (polynomial α) := { ..finsupp.to_module ℕ α } lemma is_unit_iff_degree_eq_zero : is_unit p ↔ degree p = 0 := ⟨degree_eq_zero_of_is_unit, λ h, have degree p ≤ 0, by simp [*, le_refl], have hc : coeff p 0 ≠ 0, from λ hc, by rw [eq_C_of_degree_le_zero this, hc] at h; simpa using h, is_unit_iff_dvd_one.2 ⟨C (coeff p 0)⁻¹, begin conv in p { rw eq_C_of_degree_le_zero this }, rw [← C_mul, _root_.mul_inv_cancel hc, C_1] end⟩⟩ lemma degree_pos_of_ne_zero_of_nonunit (hp0 : p ≠ 0) (hp : ¬is_unit p) : 0 < degree p := lt_of_not_ge (λ h, by rw [eq_C_of_degree_le_zero h] at hp0 hp; exact hp ⟨units.map C (units.mk0 (coeff p 0) (mt C_inj.2 (by simpa using hp0))), rfl⟩) lemma irreducible_of_degree_eq_one (hp1 : degree p = 1) : irreducible p := ⟨mt is_unit_iff_dvd_one.1 (λ ⟨q, hq⟩, absurd (congr_arg degree hq) (λ h, have degree q = 0, by rw [degree_one, degree_mul_eq, hp1, eq_comm, nat.with_bot.add_eq_zero_iff] at h; exact h.2, by simp [degree_mul_eq, this, degree_one, hp1] at h; exact absurd h dec_trivial)), λ q r hpqr, begin have := congr_arg degree hpqr, rw [hp1, degree_mul_eq, eq_comm, nat.with_bot.add_eq_one_iff] at this, rw [is_unit_iff_degree_eq_zero, is_unit_iff_degree_eq_zero]; tautology end⟩ lemma monic_mul_leading_coeff_inv (h : p ≠ 0) : monic (p * C (leading_coeff p)⁻¹) := by rw [monic, leading_coeff_mul, leading_coeff_C, mul_inv_cancel (show leading_coeff p ≠ 0, from mt leading_coeff_eq_zero.1 h)] lemma degree_mul_leading_coeff_inv (p : polynomial α) (h : q ≠ 0) : degree (p * C (leading_coeff q)⁻¹) = degree p := have h₁ : (leading_coeff q)⁻¹ ≠ 0 := inv_ne_zero (mt leading_coeff_eq_zero.1 h), by rw [degree_mul_eq, degree_C h₁, add_zero] def div (p q : polynomial α) := C (leading_coeff q)⁻¹ * (p /ₘ (q * C (leading_coeff q)⁻¹)) def mod (p q : polynomial α) := p %ₘ (q * C (leading_coeff q)⁻¹) private lemma quotient_mul_add_remainder_eq_aux (p q : polynomial α) : q * div p q + mod p q = p := if h : q = 0 then by simp only [h, zero_mul, mod, mod_by_monic_zero, zero_add] else begin conv {to_rhs, rw ← mod_by_monic_add_div p (monic_mul_leading_coeff_inv h)}, rw [div, mod, add_comm, mul_assoc] end private lemma remainder_lt_aux (p : polynomial α) (hq : q ≠ 0) : degree (mod p q) < degree q := by rw ← degree_mul_leading_coeff_inv q hq; exact degree_mod_by_monic_lt p (monic_mul_leading_coeff_inv hq) (mul_ne_zero hq (mt leading_coeff_eq_zero.2 (by rw leading_coeff_C; exact inv_ne_zero (mt leading_coeff_eq_zero.1 hq)))) instance : has_div (polynomial α) := ⟨div⟩ instance : has_mod (polynomial α) := ⟨mod⟩ lemma div_def : p / q = C (leading_coeff q)⁻¹ * (p /ₘ (q * C (leading_coeff q)⁻¹)) := rfl lemma mod_def : p % q = p %ₘ (q * C (leading_coeff q)⁻¹) := rfl lemma mod_by_monic_eq_mod (p : polynomial α) (hq : monic q) : p %ₘ q = p % q := show p %ₘ q = p %ₘ (q * C (leading_coeff q)⁻¹), by simp only [monic.def.1 hq, inv_one, mul_one, C_1] lemma div_by_monic_eq_div (p : polynomial α) (hq : monic q) : p /ₘ q = p / q := show p /ₘ q = C (leading_coeff q)⁻¹ * (p /ₘ (q * C (leading_coeff q)⁻¹)), by simp only [monic.def.1 hq, inv_one, C_1, one_mul, mul_one] lemma mod_X_sub_C_eq_C_eval (p : polynomial α) (a : α) : p % (X - C a) = C (p.eval a) := mod_by_monic_eq_mod p (monic_X_sub_C a) ▸ mod_by_monic_X_sub_C_eq_C_eval _ _ lemma mul_div_eq_iff_is_root : (X - C a) * (p / (X - C a)) = p ↔ is_root p a := div_by_monic_eq_div p (monic_X_sub_C a) ▸ mul_div_by_monic_eq_iff_is_root instance : euclidean_domain (polynomial α) := { quotient := (/), quotient_zero := by simp [div_def], remainder := (%), r := _, r_well_founded := degree_lt_wf, quotient_mul_add_remainder_eq := quotient_mul_add_remainder_eq_aux, remainder_lt := λ p q hq, remainder_lt_aux _ hq, mul_left_not_lt := λ p q hq, not_lt_of_ge (degree_le_mul_left _ hq) } lemma mod_eq_self_iff (hq0 : q ≠ 0) : p % q = p ↔ degree p < degree q := ⟨λ h, h ▸ euclidean_domain.mod_lt _ hq0, λ h, have ¬degree (q * C (leading_coeff q)⁻¹) ≤ degree p := not_le_of_gt $ by rwa degree_mul_leading_coeff_inv q hq0, begin rw [mod_def, mod_by_monic, dif_pos (monic_mul_leading_coeff_inv hq0)], unfold div_mod_by_monic_aux, simp only [this, false_and, if_false] end⟩ lemma div_eq_zero_iff (hq0 : q ≠ 0) : p / q = 0 ↔ degree p < degree q := ⟨λ h, by have := euclidean_domain.div_add_mod p q; rwa [h, mul_zero, zero_add, mod_eq_self_iff hq0] at this, λ h, have hlt : degree p < degree (q * C (leading_coeff q)⁻¹), by rwa degree_mul_leading_coeff_inv q hq0, have hm : monic (q * C (leading_coeff q)⁻¹) := monic_mul_leading_coeff_inv hq0, by rw [div_def, (div_by_monic_eq_zero_iff hm (ne_zero_of_monic hm)).2 hlt, mul_zero]⟩ lemma degree_add_div (hq0 : q ≠ 0) (hpq : degree q ≤ degree p) : degree q + degree (p / q) = degree p := have degree (p % q) < degree (q * (p / q)) := calc degree (p % q) < degree q : euclidean_domain.mod_lt _ hq0 ... ≤ _ : degree_le_mul_left _ (mt (div_eq_zero_iff hq0).1 (not_lt_of_ge hpq)), by conv {to_rhs, rw [← euclidean_domain.div_add_mod p q, add_comm, degree_add_eq_of_degree_lt this, degree_mul_eq]} lemma degree_div_le (p q : polynomial α) : degree (p / q) ≤ degree p := if hq : q = 0 then by simp [hq] else by rw [div_def, mul_comm, degree_mul_leading_coeff_inv _ hq]; exact degree_div_by_monic_le _ _ lemma degree_div_lt (hp : p ≠ 0) (hq : 0 < degree q) : degree (p / q) < degree p := have hq0 : q ≠ 0, from λ hq0, by simpa [hq0] using hq, by rw [div_def, mul_comm, degree_mul_leading_coeff_inv _ hq0]; exact degree_div_by_monic_lt _ (monic_mul_leading_coeff_inv hq0) hp (by rw degree_mul_leading_coeff_inv _ hq0; exact hq) @[simp] lemma degree_map [discrete_field β] (p : polynomial α) (f : α → β) [is_field_hom f] : degree (p.map f) = degree p := degree_map_eq_of_injective _ (is_field_hom.injective f) @[simp] lemma nat_degree_map [discrete_field β] (f : α → β) [is_field_hom f] : nat_degree (p.map f) = nat_degree p := nat_degree_eq_of_degree_eq (degree_map _ f) @[simp] lemma leading_coeff_map [discrete_field β] (f : α → β) [is_field_hom f] : leading_coeff (p.map f) = f (leading_coeff p) := by simp [leading_coeff, coeff_map f] lemma map_div [discrete_field β] (f : α → β) [is_field_hom f] : (p / q).map f = p.map f / q.map f := if hq0 : q = 0 then by simp [hq0] else by rw [div_def, div_def, map_mul, map_div_by_monic f (monic_mul_leading_coeff_inv hq0)]; simp [is_field_hom.map_inv f, leading_coeff, coeff_map f] lemma map_mod [discrete_field β] (f : α → β) [is_field_hom f] : (p % q).map f = p.map f % q.map f := if hq0 : q = 0 then by simp [hq0] else by rw [mod_def, mod_def, leading_coeff_map f, ← is_field_hom.map_inv f, ← map_C f, ← map_mul f, map_mod_by_monic f (monic_mul_leading_coeff_inv hq0)] @[simp] lemma map_eq_zero [discrete_field β] (f : α → β) [is_field_hom f] : p.map f = 0 ↔ p = 0 := by simp [polynomial.ext, is_field_hom.map_eq_zero f, coeff_map] lemma exists_root_of_degree_eq_one (h : degree p = 1) : ∃ x, is_root p x := ⟨-(p.coeff 0 / p.coeff 1), have p.coeff 1 ≠ 0, by rw ← nat_degree_eq_of_degree_eq_some h; exact mt leading_coeff_eq_zero.1 (λ h0, by simpa [h0] using h), by conv in p { rw [eq_X_add_C_of_degree_le_one (show degree p ≤ 1, by rw h; exact le_refl _)] }; simp [is_root, mul_div_cancel' _ this]⟩ lemma coeff_inv_units (u : units (polynomial α)) (n : ℕ) : ((↑u : polynomial α).coeff n)⁻¹ = ((↑u⁻¹ : polynomial α).coeff n) := begin rw [eq_C_of_degree_eq_zero (degree_coe_units u), eq_C_of_degree_eq_zero (degree_coe_units u⁻¹), coeff_C, coeff_C, inv_eq_one_div], split_ifs, { rw [div_eq_iff_mul_eq (coeff_coe_units_zero_ne_zero u), coeff_zero_eq_eval_zero, coeff_zero_eq_eval_zero, ← eval_mul, ← units.coe_mul, inv_mul_self]; simp }, { simp } end instance : normalization_domain (polynomial α) := { norm_unit := λ p, if hp0 : p = 0 then 1 else ⟨C p.leading_coeff⁻¹, C p.leading_coeff, by rw [← C_mul, inv_mul_cancel, C_1]; exact mt leading_coeff_eq_zero.1 hp0, by rw [← C_mul, mul_inv_cancel, C_1]; exact mt leading_coeff_eq_zero.1 hp0,⟩, norm_unit_zero := dif_pos rfl, norm_unit_mul := λ p q hp0 hq0, begin rw [dif_neg hp0, dif_neg hq0, dif_neg (mul_ne_zero hp0 hq0)], apply units.ext, show C (leading_coeff (p * q))⁻¹ = C (leading_coeff p)⁻¹ * C (leading_coeff q)⁻¹, rw [leading_coeff_mul, mul_inv', C_mul, mul_comm] end, norm_unit_coe_units := λ u, have hu : degree ↑u⁻¹ = 0, from degree_eq_zero_of_is_unit ⟨u⁻¹, rfl⟩, begin apply units.ext, rw [dif_neg (units.coe_ne_zero u)], conv_rhs {rw eq_C_of_degree_eq_zero hu}, refine C_inj.2 _, rw [← nat_degree_eq_of_degree_eq_some hu, leading_coeff, coeff_inv_units], simp end, ..polynomial.integral_domain } lemma monic_normalize (hp0 : p ≠ 0) : monic (normalize p) := show leading_coeff (p * ↑(dite _ _ _)) = 1, by rw dif_neg hp0; exact monic_mul_leading_coeff_inv hp0 lemma coe_norm_unit (hp : p ≠ 0) : (norm_unit p : polynomial α) = C p.leading_coeff⁻¹ := show ↑(dite _ _ _) = C p.leading_coeff⁻¹, by rw dif_neg hp; refl end field section derivative variables [comm_semiring α] [decidable_eq α] /-- `derivative p` formal derivative of the polynomial `p` -/ def derivative (p : polynomial α) : polynomial α := p.sum (λn a, C (a * n) * X^(n - 1)) lemma coeff_derivative (p : polynomial α) (n : ℕ) : coeff (derivative p) n = coeff p (n + 1) * (n + 1) := begin rw [derivative], simp only [coeff_X_pow, coeff_sum, coeff_C_mul], rw [finsupp.sum, finset.sum_eq_single (n + 1), apply_eq_coeff], { rw [if_pos (nat.add_sub_cancel _ _).symm, mul_one, nat.cast_add, nat.cast_one] }, { assume b, cases b, { intros, rw [nat.cast_zero, mul_zero, zero_mul] }, { intros _ H, rw [nat.succ_sub_one b, if_neg (mt (congr_arg nat.succ) H.symm), mul_zero] } }, { intro H, rw [not_mem_support_iff.1 H, zero_mul, zero_mul] } end @[simp] lemma derivative_zero : derivative (0 : polynomial α) = 0 := finsupp.sum_zero_index lemma derivative_monomial (a : α) (n : ℕ) : derivative (C a * X ^ n) = C (a * n) * X^(n - 1) := by rw [← single_eq_C_mul_X, ← single_eq_C_mul_X, derivative, sum_single_index, single_eq_C_mul_X]; simp only [zero_mul, C_0]; refl @[simp] lemma derivative_C {a : α} : derivative (C a) = 0 := suffices derivative (C a * X^0) = C (a * 0:α) * X ^ 0, by simpa only [mul_one, zero_mul, C_0, mul_zero, pow_zero], derivative_monomial a 0 @[simp] lemma derivative_X : derivative (X : polynomial α) = 1 := suffices derivative (C (1:α) * X^1) = C (1 * (1:ℕ)) * X ^ 0, by simpa only [mul_one, one_mul, C_1, pow_one, nat.cast_one, pow_zero], derivative_monomial 1 1 @[simp] lemma derivative_one : derivative (1 : polynomial α) = 0 := derivative_C @[simp] lemma derivative_add {f g : polynomial α} : derivative (f + g) = derivative f + derivative g := by refine finsupp.sum_add_index _ _; intros; simp only [add_mul, zero_mul, C_0, C_add, C_mul] instance : is_add_monoid_hom (derivative : polynomial α → polynomial α) := { map_add := λ _ _, derivative_add, map_zero := derivative_zero } @[simp] lemma derivative_sum {s : finset β} {f : β → polynomial α} : derivative (s.sum f) = s.sum (λb, derivative (f b)) := (finset.sum_hom derivative).symm @[simp] lemma derivative_mul {f g : polynomial α} : derivative (f * g) = derivative f * g + f * derivative g := calc derivative (f * g) = f.sum (λn a, g.sum (λm b, C ((a * b) * (n + m : ℕ)) * X^((n + m) - 1))) : begin transitivity, exact derivative_sum, transitivity, { apply finset.sum_congr rfl, assume x hx, exact derivative_sum }, apply finset.sum_congr rfl, assume n hn, apply finset.sum_congr rfl, assume m hm, transitivity, { apply congr_arg, exact single_eq_C_mul_X }, exact derivative_monomial _ _ end ... = f.sum (λn a, g.sum (λm b, (C (a * n) * X^(n - 1)) * (C b * X^m) + (C a * X^n) * (C (b * m) * X^(m - 1)))) : sum_congr rfl $ assume n hn, sum_congr rfl $ assume m hm, by simp only [nat.cast_add, mul_add, add_mul, C_add, C_mul]; cases n; simp only [nat.succ_sub_succ, pow_zero]; cases m; simp only [nat.cast_zero, C_0, nat.succ_sub_succ, zero_mul, mul_zero, nat.sub_zero, pow_zero, pow_add, one_mul, pow_succ, mul_comm, mul_left_comm] ... = derivative f * g + f * derivative g : begin conv { to_rhs, congr, { rw [← sum_C_mul_X_eq g] }, { rw [← sum_C_mul_X_eq f] } }, unfold derivative finsupp.sum, simp only [sum_add_distrib, finset.mul_sum, finset.sum_mul] end lemma derivative_eval (p : polynomial α) (x : α) : p.derivative.eval x = p.sum (λ n a, (a * n)*x^(n-1)) := by simp [derivative, eval_sum, eval_pow] end derivative section domain variables [integral_domain α] [decidable_eq α] lemma mem_support_derivative [char_zero α] (p : polynomial α) (n : ℕ) : n ∈ (derivative p).support ↔ n + 1 ∈ p.support := suffices (¬(coeff p (n + 1) = 0 ∨ ((n + 1:ℕ) : α) = 0)) ↔ coeff p (n + 1) ≠ 0, by simpa only [coeff_derivative, apply_eq_coeff, mem_support_iff, ne.def, mul_eq_zero], by rw [nat.cast_eq_zero]; simp only [nat.succ_ne_zero, or_false] @[simp] lemma degree_derivative_eq [char_zero α] (p : polynomial α) (hp : 0 < nat_degree p) : degree (derivative p) = (nat_degree p - 1 : ℕ) := le_antisymm (le_trans (degree_sum_le _ _) $ sup_le $ assume n hn, have n ≤ nat_degree p, begin rw [← with_bot.coe_le_coe, ← degree_eq_nat_degree], { refine le_degree_of_ne_zero _, simpa only [mem_support_iff] using hn }, { assume h, simpa only [h, support_zero] using hn } end, le_trans (degree_monomial_le _ _) $ with_bot.coe_le_coe.2 $ nat.sub_le_sub_right this _) begin refine le_sup _, rw [mem_support_derivative, nat.sub_add_cancel, mem_support_iff], { show ¬ leading_coeff p = 0, rw [leading_coeff_eq_zero], assume h, rw [h, nat_degree_zero] at hp, exact lt_irrefl 0 (lt_of_le_of_lt (zero_le _) hp), }, exact hp end end domain section identities /- @TODO: pow_add_expansion and pow_sub_pow_factor are not specific to polynomials. These belong somewhere else. But not in group_power because they depend on tactic.ring Maybe use data.nat.choose to prove it. -/ def pow_add_expansion {α : Type*} [comm_semiring α] (x y : α) : ∀ (n : ℕ), {k // (x + y)^n = x^n + n*x^(n-1)*y + k * y^2} | 0 := ⟨0, by simp⟩ | 1 := ⟨0, by simp⟩ | (n+2) := begin cases pow_add_expansion (n+1) with z hz, rw [_root_.pow_succ, hz], existsi (x*z + (n+1)*x^n+z*y), simp [_root_.pow_succ], ring -- expensive! end variables [comm_ring α] [decidable_eq α] private def poly_binom_aux1 (x y : α) (e : ℕ) (a : α) : {k : α // a * (x + y)^e = a * (x^e + e*x^(e-1)*y + k*y^2)} := begin existsi (pow_add_expansion x y e).val, congr, apply (pow_add_expansion _ _ _).property end private lemma poly_binom_aux2 (f : polynomial α) (x y : α) : f.eval (x + y) = f.sum (λ e a, a * (x^e + e*x^(e-1)*y + (poly_binom_aux1 x y e a).val*y^2)) := begin unfold eval eval₂, congr, ext, apply (poly_binom_aux1 x y _ _).property end private lemma poly_binom_aux3 (f : polynomial α) (x y : α) : f.eval (x + y) = f.sum (λ e a, a * x^e) + f.sum (λ e a, (a * e * x^(e-1)) * y) + f.sum (λ e a, (a *(poly_binom_aux1 x y e a).val)*y^2) := by rw poly_binom_aux2; simp [left_distrib, finsupp.sum_add, mul_assoc] def binom_expansion (f : polynomial α) (x y : α) : {k : α // f.eval (x + y) = f.eval x + (f.derivative.eval x) * y + k * y^2} := begin existsi f.sum (λ e a, a *((poly_binom_aux1 x y e a).val)), rw poly_binom_aux3, congr, { rw derivative_eval, symmetry, apply finsupp.sum_mul }, { symmetry, apply finsupp.sum_mul } end def pow_sub_pow_factor (x y : α) : Π {i : ℕ},{z : α // x^i - y^i = z*(x - y)} | 0 := ⟨0, by simp⟩ --sorry --false.elim $ not_lt_of_ge h zero_lt_one | 1 := ⟨1, by simp⟩ | (k+2) := begin cases pow_sub_pow_factor with z hz, existsi z*x + y^(k+1), rw [_root_.pow_succ x, _root_.pow_succ y, ←sub_add_sub_cancel (x*x^(k+1)) (x*y^(k+1)), ←mul_sub x, hz], simp only [_root_.pow_succ], ring end def eval_sub_factor (f : polynomial α) (x y : α) : {z : α // f.eval x - f.eval y = z*(x - y)} := begin existsi f.sum (λ a b, b * (pow_sub_pow_factor x y).val), unfold eval eval₂, rw [←finsupp.sum_sub], have : finsupp.sum f (λ (a : ℕ) (b : α), b * (pow_sub_pow_factor x y).val) * (x - y) = finsupp.sum f (λ (a : ℕ) (b : α), b * (pow_sub_pow_factor x y).val * (x - y)), { apply finsupp.sum_mul }, rw this, congr, ext e a, rw [mul_assoc, ←(pow_sub_pow_factor x y).property], simp [left_distrib] end end identities end polynomial
aedbf05f529198369da3be60504f8cdd4a155111
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/constProp.lean
67ecfb8e57c8d9b0f1cef5b200f1c0eb47e7ec0e
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
20,539
lean
abbrev Var := String inductive Val where | int (i : Int) | bool (b : Bool) deriving DecidableEq, Repr instance : Coe Bool Val where coe b := .bool b instance : Coe Int Val where coe i := .int i instance : OfNat Val n where ofNat := .int n #check (true : Val) #check (0 : Val) inductive BinOp where | eq | and | lt | add | sub deriving Repr inductive UnaryOp where | not deriving Repr inductive Expr where | val (v : Val) | var (x : Var) | bin (lhs : Expr) (op : BinOp) (rhs : Expr) | una (op : UnaryOp) (arg : Expr) deriving Repr instance : Coe Val Expr where coe v := .val v instance : Coe Var Expr where coe x := .var x instance : OfNat Expr n where ofNat := .val n @[simp] def BinOp.eval : BinOp → Val → Val → Option Val | .eq, v₁, v₂ => some (.bool (v₁ = v₂)) | .and, .bool b₁, .bool b₂ => some (.bool (b₁ && b₂)) | .lt, .int i₁, .int i₂ => some (.bool (i₁ < i₂)) | .add, .int i₁, .int i₂ => some (.int (i₁ + i₂)) | .sub, .int i₁, .int i₂ => some (.int (i₁ - i₂)) | _, _, _ => none @[simp] def UnaryOp.eval : UnaryOp → Val → Option Val | .not, .bool b => some (.bool !b) | _, _ => none inductive Stmt where | skip | assign (x : Var) (e : Expr) | seq (s₁ s₂ : Stmt) | ite (c : Expr) (e t : Stmt) | while (c : Expr) (b : Stmt) deriving Repr infix:150 " ::= " => Stmt.assign infixr:130 ";; " => Stmt.seq syntax "`[Expr|" term "]" : term macro_rules | `(`[Expr|true]) => `((true : Expr)) | `(`[Expr|false]) => `((false : Expr)) | `(`[Expr|$n:num]) => `(($n : Expr)) | `(`[Expr|$x:ident]) => `(($(Lean.quote x.getId.toString) : Expr)) | `(`[Expr|$x = $y]) => `(Expr.bin `[Expr|$x] BinOp.eq `[Expr|$y]) | `(`[Expr|$x && $y]) => `(Expr.bin `[Expr|$x] BinOp.and `[Expr|$y]) | `(`[Expr|$x < $y]) => `(Expr.bin `[Expr|$x] BinOp.lt `[Expr|$y]) | `(`[Expr|$x + $y]) => `(Expr.bin `[Expr|$x] BinOp.add `[Expr|$y]) | `(`[Expr|$x - $y]) => `(Expr.bin `[Expr|$x] BinOp.sub `[Expr|$y]) | `(`[Expr|!$x]) => `(Expr.una UnaryOp.not `[Expr|$x]) | `(`[Expr|($x)]) => `(`[Expr|$x]) declare_syntax_cat stmt syntax ident " := " term ";": stmt syntax "if " "(" term ")" " {\n" stmt* "\n}" (" else " "{\n" stmt* "\n}")? : stmt syntax "while " "(" term ")" "{\n" stmt* "\n}" : stmt syntax "`[Stmt|" stmt* "]" : term macro_rules | `(`[Stmt| ]) => `(Stmt.skip) | `(`[Stmt| $x:ident := $e:term;]) => `(Stmt.assign $(Lean.quote x.getId.toString) `[Expr| $e:term]) | `(`[Stmt| if ($c) { $ts* } else { $es* }]) => `(Stmt.ite `[Expr| $c] `[Stmt| $ts*] `[Stmt| $es*]) | `(`[Stmt| if ($c) { $ts* }]) => `(Stmt.ite `[Expr| $c] `[Stmt| $ts*] Stmt.skip) | `(`[Stmt| while ($c) { $b* }]) => `(Stmt.while `[Expr|$c] `[Stmt|$b*]) | `(`[Stmt| $s $ss*]) => `(Stmt.seq `[Stmt|$s] `[Stmt|$ss*]) def example1 := `[Stmt| x := 8; y := 10; if (x < y) { x := x + 1; } else { y := y + 3; } ] #reduce example1 def example2 := `[Stmt| x := 8; if (x < y) { x := x + 1; } else { y := y + 3; x := 9; } y := x;] #eval example2 abbrev State := List (Var × Val) @[simp] def State.update (σ : State) (x : Var) (v : Val) : State := match σ with | [] => [(x, v)] | (y, w)::σ => if x = y then (x, v)::σ else (y, w) :: update σ x v @[simp] def State.find? (σ : State) (x : Var) : Option Val := match σ with | [] => none | (y, v) :: σ => if x = y then some v else find? σ x def State.get (σ : State) (x : Var) : Val := σ.find? x |>.getD (.int 0) @[simp] def State.erase (σ : State) (x : Var) : State := match σ with | [] => [] | (y, v) :: σ => if x = y then erase σ x else (y, v) :: erase σ x @[simp] theorem State.find?_update_self (σ : State) (x : Var) (v : Val) : (σ.update x v).find? x = some v := by match σ with -- TODO: automate this proof | [] => simp | (y, w) :: s => simp split <;> simp [*] apply find?_update_self @[simp] theorem State.find?_update (σ : State) (v : Val) (h : x ≠ z) : (σ.update x v).find? z = σ.find? z := by match σ with -- TODO: automate this proof | [] => simp [h.symm] | (y, w) :: σ => simp split <;> simp [*] next hc => split <;> simp_all next => split next => rfl next => exact find?_update σ v h -- TODO: remove after we add better automation @[simp] theorem State.find?_update' (σ : State) (v : Val) (h : z ≠ x) : (σ.update x v).find? z = σ.find? z := State.find?_update σ v h.symm theorem State.get_of_find? {σ : State} (h : σ.find? x = some v) : σ.get x = v := by simp [State.get, h, Option.getD] @[simp] theorem State.find?_erase_self (σ : State) (x : Var) : (σ.erase x).find? x = none := by match σ with | [] => simp | (y, w) :: σ => simp split <;> simp [*] next => exact find?_erase_self σ y next => exact find?_erase_self σ x @[simp] theorem State.find?_erase (σ : State) (h : x ≠ z) : (σ.erase x).find? z = σ.find? z := by match σ with | [] => simp | (y, w) :: σ => simp split <;> simp [*] next hxy => rw [hxy] at h; simp [h.symm]; exact find?_erase σ h next => split next => rfl next => exact find?_erase σ h -- TODO: remove after we add better automation @[simp] theorem State.find?_erase' (σ : State) (h : z ≠ x) : (σ.erase x).find? z = σ.find? z := State.find?_erase σ h.symm syntax ident " ↦ " term : term macro_rules | `($id:ident ↦ $v:term) => `(($(Lean.quote id.getId.toString), $v:term)) example : State.get [x ↦ .int 10, y ↦ .int 20] "x" = .int 10 := rfl example : State.get [x ↦ 10, y ↦ 20] "x" = 10 := rfl example : State.get [x ↦ 10, y ↦ true] "y" = true := rfl @[simp] def Expr.eval (σ : State) : Expr → Option Val | val v => some v | var x => σ.get x | bin lhs op rhs => match lhs.eval σ, rhs.eval σ with | some v₁, some v₂ => op.eval v₁ v₂ -- BinOp.eval : BinOp → Val → Val → Option Val | _, _ => none | una op arg => match arg.eval σ with | some v => op.eval v | _ => none @[simp] def evalTrue (c : Expr) (σ : State) : Prop := c.eval σ = some (Val.bool true) @[simp] def evalFalse (c : Expr) (σ : State) : Prop := c.eval σ = some (Val.bool false) section set_option hygiene false -- HACK: allow forward reference in notation local notation:60 "(" σ ", " s ")" " ⇓ " σ':60 => Bigstep σ s σ' inductive Bigstep : State → Stmt → State → Prop where | skip : (σ, .skip) ⇓ σ | assign : e.eval σ = some v → (σ, x ::= e) ⇓ σ.update x v | seq : (σ₁, s₁) ⇓ σ₂ → (σ₂, s₂) ⇓ σ₃ → (σ₁, s₁ ;; s₂) ⇓ σ₃ | ifTrue : evalTrue c σ₁ → (σ₁, t) ⇓ σ₂ → (σ₁, .ite c t e) ⇓ σ₂ | ifFalse : evalFalse c σ₁ → (σ₁, e) ⇓ σ₂ → (σ₁, .ite c t e) ⇓ σ₂ | whileTrue : evalTrue c σ₁ → (σ₁, b) ⇓ σ₂ → (σ₂, .while c b) ⇓ σ₃ → (σ₁, .while c b) ⇓ σ₃ | whileFalse : evalFalse c σ → (σ, .while c b) ⇓ σ end notation:60 "(" σ ", " s ")" " ⇓ " σ':60 => Bigstep σ s σ' /- This proof can be automated using forward reasoning. -/ theorem Bigstem.det (h₁ : (σ, s) ⇓ σ₁) (h₂ : (σ, s) ⇓ σ₂) : σ₁ = σ₂ := by induction h₁ generalizing σ₂ <;> cases h₂ <;> try simp_all -- The rest of this proof should be automatic with congruence closure and a bit of forward reasoning case seq ih₁ ih₂ _ h₁ h₂ => simp [ih₁ h₁] at ih₂ simp [ih₂ h₂] case ifTrue ih h => simp [ih h] case ifFalse ih h => simp [ih h] case whileTrue ih₁ ih₂ h₁ h₂ => simp [ih₁ h₁] at ih₂ simp [ih₂ h₂] abbrev EvalM := ExceptT String (StateM State) def evalExpr (e : Expr) : EvalM Val := do match e.eval (← get) with | some v => return v | none => throw "failed to evaluate" @[simp] def Stmt.eval (stmt : Stmt) (fuel : Nat := 100) : EvalM Unit := do match fuel with | 0 => throw "out of fuel" | fuel+1 => match stmt with | skip => return () | assign x e => let v ← evalExpr e; modify fun s => s.update x v | seq s₁ s₂ => s₁.eval fuel; s₂.eval fuel | ite c e t => match (← evalExpr c) with | .bool true => e.eval fuel | .bool false => t.eval fuel | _ => throw "Boolean expected" | .while c b => match (← evalExpr c) with | .bool true => b.eval fuel; stmt.eval fuel | .bool false => return () | _ => throw "Boolean expected" #eval `[Stmt| x := 3; y := 5; x := x + y;].eval |>.run {} #eval `[Stmt| x := 0; while (true) { x := x + 1; }].eval |>.run {} instance : Repr State where reprPrec a n := match a, n with | [], _ => "[]" | as, _ => let fs := as.map fun | (x, .int v) => f!"{x} ↦ {v}" | (x, .bool v) => f!"{x} ↦ {v}" Std.Format.bracket "[" (Std.Format.joinSep fs ("," ++ Std.Format.line)) "]" #eval `[Stmt| x := 3; y := 5; x := x + y; ].eval |>.run {} @[simp] def BinOp.simplify : BinOp → Expr → Expr → Expr | .eq, .val v₁, .val v₂ => .val (.bool (v₁ = v₂)) | .and, .val (.bool a), .val (.bool b) => .val (.bool (a && b)) | .lt, .val (.int a), .val (.int b) => .val (.bool (a < b)) | .add, .val (.int a), .val (.int b) => .val (.int (a + b)) | .sub, .val (.int a), .val (.int b) => .val (.int (a - b)) | op, a, b => .bin a op b @[simp] def UnaryOp.simplify : UnaryOp → Expr → Expr | .not, .val (.bool b) => .val (.bool !b) | op, a => .una op a @[simp] def Expr.simplify : Expr → Expr | bin lhs op rhs => op.simplify lhs.simplify rhs.simplify | una op arg => op.simplify arg.simplify | e => e @[simp] theorem Expr.eval_simplify (e : Expr) : e.simplify.eval σ = e.eval σ := by induction e with simp | bin lhs op rhs ih_lhs ih_rhs => simp [← ih_lhs, ← ih_rhs] split <;> simp [*] | una op arg ih_arg => simp [← ih_arg] split <;> simp [*] @[simp] def Stmt.simplify : Stmt → Stmt | skip => skip | assign x e => assign x e.simplify | seq s₁ s₂ => seq s₁.simplify s₂.simplify | ite c e t => match c.simplify with | .val (.bool true) => e.simplify | .val (.bool false) => t.simplify | c' => ite c' e.simplify t.simplify | .while c b => match c.simplify with | .val (.bool false) => skip | c' => .while c' b.simplify def example3 := `[Stmt| if (1 < 2 + 3) { x := 3 + 1; y := y + x; } else { y := y + 3; } ] #eval example3.simplify theorem Stmt.simplify_correct (h : (σ, s) ⇓ σ') : (σ, s.simplify) ⇓ σ' := by induction h with simp_all | skip => exact Bigstep.skip | seq h₁ h₂ ih₁ ih₂ => exact Bigstep.seq ih₁ ih₂ | assign => apply Bigstep.assign; simp [*] | whileTrue heq h₁ h₂ ih₁ ih₂ => rw [← Expr.eval_simplify] at heq split next h => rw [h] at heq; simp at heq next hnp => simp [hnp] at ih₂; apply Bigstep.whileTrue heq ih₁ ih₂ | whileFalse heq => split next => exact Bigstep.skip next => apply Bigstep.whileFalse; simp [heq] | ifFalse heq h ih => rw [← Expr.eval_simplify] at heq split <;> simp_all rw [← Expr.eval_simplify] at heq apply Bigstep.ifFalse heq ih | ifTrue heq h ih => rw [← Expr.eval_simplify] at heq split <;> simp_all rw [← Expr.eval_simplify] at heq apply Bigstep.ifTrue heq ih @[simp] def Expr.constProp (e : Expr) (σ : State) : Expr := match e with | val v => v | var x => match σ.find? x with | some v => val v | none => var x | bin lhs op rhs => bin (lhs.constProp σ) op (rhs.constProp σ) | una op arg => una op (arg.constProp σ) @[simp] theorem Expr.constProp_nil (e : Expr) : e.constProp [] = e := by induction e <;> simp [*] def State.length_erase_le (σ : State) (x : Var) : (σ.erase x).length ≤ σ.length := by match σ with | [] => simp | (y, v) :: σ => by_cases hxy : x = y <;> simp [hxy] next => exact Nat.le_trans (length_erase_le σ y) (by simp_arith) next => simp_arith [length_erase_le σ x] def State.length_erase_lt (σ : State) (x : Var) : (σ.erase x).length < σ.length.succ := Nat.lt_of_le_of_lt (length_erase_le ..) (by simp_arith) @[simp] def State.join (σ₁ σ₂ : State) : State := match σ₁ with | [] => [] | (x, v) :: σ₁ => let σ₁' := erase σ₁ x -- Must remove duplicates. Alternative design: carry invariant that input state at constProp has no duplicates have : (erase σ₁ x).length < σ₁.length.succ := length_erase_lt .. match σ₂.find? x with | some w => if v = w then (x, v) :: join σ₁' σ₂ else join σ₁' σ₂ | none => join σ₁' σ₂ termination_by _ σ₁ _ => σ₁.length local notation "⊥" => [] @[simp] def Stmt.constProp (s : Stmt) (σ : State) : Stmt × State := match s with | skip => (skip, σ) | assign x e => match (e.constProp σ).simplify with | (.val v) => (assign x (.val v), σ.update x v) | e' => (assign x e', σ.erase x) | seq s₁ s₂ => match s₁.constProp σ with | (s₁', σ₁) => match s₂.constProp σ₁ with | (s₂', σ₂) => (seq s₁' s₂', σ₂) | ite c s₁ s₂ => match s₁.constProp σ, s₂.constProp σ with | (s₁', σ₁), (s₂', σ₂) => (ite (c.constProp σ) s₁' s₂', σ₁.join σ₂) | .while c b => (.while (c.constProp ⊥) (b.constProp ⊥).1, ⊥) def State.le (σ₁ σ₂ : State) : Prop := ∀ ⦃x : Var⦄ ⦃v : Val⦄, σ₁.find? x = some v → σ₂.find? x = some v infix:50 " ≼ " => State.le theorem State.le_refl (σ : State) : σ ≼ σ := fun _ _ h => h theorem State.le_trans : σ₁ ≼ σ₂ → σ₂ ≼ σ₃ → σ₁ ≼ σ₃ := fun h₁ h₂ x v h => h₂ (h₁ h) theorem State.bot_le (σ : State) : ⊥ ≼ σ := fun _ _ h => by contradiction theorem State.erase_le_cons (h : σ' ≼ σ) : σ'.erase x ≼ ((x, v) :: σ) := by intro y w hf' by_cases hyx : y = x <;> simp [*] at hf' |- exact h hf' theorem State.cons_le_cons (h : σ' ≼ σ) : (x, v) :: σ' ≼ (x, v) :: σ := by intro y w hf' by_cases hyx : y = x <;> simp [*] at hf' |- next => assumption next => exact h hf' theorem State.cons_le_of_eq (h₁ : σ' ≼ σ) (h₂ : σ.find? x = some v) : (x, v) :: σ' ≼ σ := by intro y w hf' by_cases hyx : y = x <;> simp [*] at hf' |- next => assumption next => exact h₁ hf' theorem State.erase_le (σ : State) : σ.erase x ≼ σ := by match σ with | [] => simp; apply le_refl | (y, v) :: σ => simp split <;> try simp [*] next => apply erase_le_cons; apply le_refl next => apply cons_le_cons; apply erase_le theorem State.join_le_left (σ₁ σ₂ : State) : σ₁.join σ₂ ≼ σ₁ := by match σ₁ with | [] => simp; apply le_refl | (x, v) :: σ₁ => simp have : (erase σ₁ x).length < σ₁.length.succ := length_erase_lt .. have ih := join_le_left (State.erase σ₁ x) σ₂ split next y w h => split next => apply cons_le_cons; apply le_trans ih (erase_le _) next => apply le_trans ih (erase_le_cons (le_refl _)) next h => apply le_trans ih (erase_le_cons (le_refl _)) termination_by _ σ₁ _ => σ₁.length theorem State.join_le_left_of (h : σ₁ ≼ σ₂) (σ₃ : State) : σ₁.join σ₃ ≼ σ₂ := le_trans (join_le_left σ₁ σ₃) h theorem State.join_le_right (σ₁ σ₂ : State) : σ₁.join σ₂ ≼ σ₂ := by match σ₁ with | [] => simp; apply bot_le | (x, v) :: σ₁ => simp have : (erase σ₁ x).length < σ₁.length.succ := length_erase_lt .. have ih := join_le_right (erase σ₁ x) σ₂ split next y w h => split <;> simp [*] next => apply cons_le_of_eq ih h next h => assumption termination_by _ σ₁ _ => σ₁.length theorem State.join_le_right_of (h : σ₁ ≼ σ₂) (σ₃ : State) : σ₃.join σ₁ ≼ σ₂ := le_trans (join_le_right σ₃ σ₁) h theorem State.eq_bot (h : σ ≼ ⊥) : σ = ⊥ := by match σ with | [] => simp | (y, v) :: σ => have : State.find? ((y, v) :: σ) y = some v := by simp have := h this contradiction theorem State.erase_le_of_le_cons (h : σ' ≼ (x, v) :: σ) : σ'.erase x ≼ σ := by intro y w hf' by_cases hxy : x = y <;> simp [*] at hf' have hf := h hf' simp [hxy, Ne.symm hxy] at hf assumption theorem State.erase_le_update (h : σ' ≼ σ) : σ'.erase x ≼ σ.update x v := by intro y w hf' by_cases hxy : x = y <;> simp [*] at hf' |- exact h hf' theorem State.update_le_update (h : σ' ≼ σ) : σ'.update x v ≼ σ.update x v := by intro y w hf induction σ generalizing σ' hf with | nil => rw [eq_bot h] at hf; assumption | cons zw' σ ih => have (z, w') := zw'; simp have : σ'.erase z ≼ σ := erase_le_of_le_cons h have ih := ih this revert ih hf split <;> simp [*] <;> by_cases hyz : y = z <;> simp (config := { contextual := true }) [*] next => intro he' have he := h he' simp [*] at he assumption next => by_cases hxy : x = y <;> simp [*] next => intros; assumption next => intro he' ih exact ih he' theorem Expr.eval_constProp_of_sub (e : Expr) (h : σ' ≼ σ) : (e.constProp σ').eval σ = e.eval σ := by induction e with simp [*] | var x => split <;> simp next he => rw [State.get_of_find? (h he)] theorem Expr.eval_constProp_of_eq_of_sub {e : Expr} (h₁ : e.eval σ = v) (h₂ : σ' ≼ σ) : (e.constProp σ').eval σ = v := by have := eval_constProp_of_sub e h₂ simp [h₁] at this assumption theorem Stmt.constProp_sub (h₁ : (σ₁, s) ⇓ σ₂) (h₂ : σ₁' ≼ σ₁) : (s.constProp σ₁').2 ≼ σ₂ := by induction h₁ generalizing σ₁' with simp | skip => assumption | assign heq => split <;> simp next h => have heq' := Expr.eval_constProp_of_eq_of_sub heq h₂ rw [← Expr.eval_simplify, h] at heq' simp at heq' rw [heq'] apply State.update_le_update h₂ next h _ _ => exact State.erase_le_update h₂ | whileTrue heq h₃ h₄ ih₃ ih₄ => have ih₃ := ih₃ h₂ have ih₄ := ih₄ ih₃ simp [heq] at ih₄ exact ih₄ | whileFalse heq => apply State.bot_le | ifTrue heq h ih => have ih := ih h₂ apply State.join_le_left_of ih | ifFalse heq h ih => have ih := ih h₂ apply State.join_le_right_of ih | seq h₃ h₄ ih₃ ih₄ => exact ih₄ (ih₃ h₂) theorem Stmt.constProp_correct (h₁ : (σ₁, s) ⇓ σ₂) (h₂ : σ₁' ≼ σ₁) : (σ₁, (s.constProp σ₁').1) ⇓ σ₂ := by induction h₁ generalizing σ₁' with simp_all | skip => exact Bigstep.skip | assign heq => split <;> simp next h => have heq' := Expr.eval_constProp_of_eq_of_sub heq h₂ rw [← Expr.eval_simplify, h] at heq' simp at heq' apply Bigstep.assign; simp [*] next => have heq' := Expr.eval_constProp_of_eq_of_sub heq h₂ rw [← Expr.eval_simplify] at heq' apply Bigstep.assign heq' | seq h₁ h₂ ih₁ ih₂ => apply Bigstep.seq (ih₁ h₂) (ih₂ (constProp_sub h₁ h₂)) | whileTrue heq h₁ h₂ ih₁ ih₂ => have ih₁ := ih₁ (State.bot_le _) have ih₂ := ih₂ (State.bot_le _) exact Bigstep.whileTrue heq ih₁ ih₂ | whileFalse heq => exact Bigstep.whileFalse heq | ifTrue heq h ih => exact Bigstep.ifTrue (Expr.eval_constProp_of_eq_of_sub heq h₂) (ih h₂) | ifFalse heq h ih => exact Bigstep.ifFalse (Expr.eval_constProp_of_eq_of_sub heq h₂) (ih h₂) def Stmt.constPropagation (s : Stmt) : Stmt := (s.constProp ⊥).1 theorem Stmt.constPropagation_correct (h : (σ, s) ⇓ σ') : (σ, s.constPropagation) ⇓ σ' := constProp_correct h (State.bot_le _) def example4 := `[Stmt| x := 2; if (x < 3) { x := x + 1; y := y + x; } else { y := y + 3; } ] #eval example4.constPropagation.simplify #exit -- TODO: add simp theorems for monadic code theorem Stmt.eval_correct {s : Stmt} (h : (s.eval fuel).run σ = (.ok unit, σ')) : (σ, s) ⇓ σ' := by induction fuel generalizing s σ σ' with simp at h | zero => injection h; contradiction | succ fuel ih => split at h next => injection h with _ h; rw [h]; exact Bigstep.skip next => done
94c071e55bc24db1a47f224619578d9ce289f899
94e33a31faa76775069b071adea97e86e218a8ee
/src/order/complete_lattice.lean
0dfaaca61b75701cd15e64d079e33969e1d17226
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
55,059
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import data.bool.set import data.nat.basic import order.bounds /-! # Theory of complete lattices ## Main definitions * `Sup` and `Inf` are the supremum and the infimum of a set; * `supr (f : ι → α)` and `infi (f : ι → α)` are indexed supremum and infimum of a function, defined as `Sup` and `Inf` of the range of this function; * `class complete_lattice`: a bounded lattice such that `Sup s` is always the least upper boundary of `s` and `Inf s` is always the greatest lower boundary of `s`; * `class complete_linear_order`: a linear ordered complete lattice. ## Naming conventions In lemma names, * `Sup` is called `Sup` * `Inf` is called `Inf` * `⨆ i, s i` is called `supr` * `⨅ i, s i` is called `infi` * `⨆ i j, s i j` is called `supr₂`. This is a `supr` inside a `supr`. * `⨅ i j, s i j` is called `infi₂`. This is an `infi` inside an `infi`. * `⨆ i ∈ s, t i` is called `bsupr` for "bounded `supr`". This is the special case of `supr₂` where `j : i ∈ s`. * `⨅ i ∈ s, t i` is called `binfi` for "bounded `infi`". This is the special case of `infi₂` where `j : i ∈ s`. ## Notation * `⨆ i, f i` : `supr f`, the supremum of the range of `f`; * `⨅ i, f i` : `infi f`, the infimum of the range of `f`. -/ set_option old_structure_cmd true open set function variables {α β β₂ γ : Type*} {ι ι' : Sort*} {κ : ι → Sort*} {κ' : ι' → Sort*} /-- class for the `Sup` operator -/ class has_Sup (α : Type*) := (Sup : set α → α) /-- class for the `Inf` operator -/ class has_Inf (α : Type*) := (Inf : set α → α) export has_Sup (Sup) has_Inf (Inf) /-- Supremum of a set -/ add_decl_doc has_Sup.Sup /-- Infimum of a set -/ add_decl_doc has_Inf.Inf /-- Indexed supremum -/ def supr [has_Sup α] {ι} (s : ι → α) : α := Sup (range s) /-- Indexed infimum -/ def infi [has_Inf α] {ι} (s : ι → α) : α := Inf (range s) @[priority 50] instance has_Inf_to_nonempty (α) [has_Inf α] : nonempty α := ⟨Inf ∅⟩ @[priority 50] instance has_Sup_to_nonempty (α) [has_Sup α] : nonempty α := ⟨Sup ∅⟩ notation `⨆` binders `, ` r:(scoped f, supr f) := r notation `⨅` binders `, ` r:(scoped f, infi f) := r instance (α) [has_Inf α] : has_Sup αᵒᵈ := ⟨(Inf : set α → α)⟩ instance (α) [has_Sup α] : has_Inf αᵒᵈ := ⟨(Sup : set α → α)⟩ /-- Note that we rarely use `complete_semilattice_Sup` (in fact, any such object is always a `complete_lattice`, so it's usually best to start there). Nevertheless it is sometimes a useful intermediate step in constructions. -/ @[ancestor partial_order has_Sup] class complete_semilattice_Sup (α : Type*) extends partial_order α, has_Sup α := (le_Sup : ∀ s, ∀ a ∈ s, a ≤ Sup s) (Sup_le : ∀ s a, (∀ b ∈ s, b ≤ a) → Sup s ≤ a) section variables [complete_semilattice_Sup α] {s t : set α} {a b : α} @[ematch] theorem le_Sup : a ∈ s → a ≤ Sup s := complete_semilattice_Sup.le_Sup s a theorem Sup_le : (∀ b ∈ s, b ≤ a) → Sup s ≤ a := complete_semilattice_Sup.Sup_le s a lemma is_lub_Sup (s : set α) : is_lub s (Sup s) := ⟨λ x, le_Sup, λ x, Sup_le⟩ lemma is_lub.Sup_eq (h : is_lub s a) : Sup s = a := (is_lub_Sup s).unique h theorem le_Sup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ Sup s := le_trans h (le_Sup hb) theorem Sup_le_Sup (h : s ⊆ t) : Sup s ≤ Sup t := (is_lub_Sup s).mono (is_lub_Sup t) h @[simp] theorem Sup_le_iff : Sup s ≤ a ↔ ∀ b ∈ s, b ≤ a := is_lub_le_iff (is_lub_Sup s) lemma le_Sup_iff : a ≤ Sup s ↔ ∀ b ∈ upper_bounds s, a ≤ b := ⟨λ h b hb, le_trans h (Sup_le hb), λ hb, hb _ (λ x, le_Sup)⟩ lemma le_supr_iff {s : ι → α} : a ≤ supr s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by simp [supr, le_Sup_iff, upper_bounds] theorem Sup_le_Sup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : Sup s ≤ Sup t := le_Sup_iff.2 $ λ b hb, Sup_le $ λ a ha, let ⟨c, hct, hac⟩ := h a ha in hac.trans (hb hct) -- We will generalize this to conditionally complete lattices in `cSup_singleton`. theorem Sup_singleton {a : α} : Sup {a} = a := is_lub_singleton.Sup_eq end /-- Note that we rarely use `complete_semilattice_Inf` (in fact, any such object is always a `complete_lattice`, so it's usually best to start there). Nevertheless it is sometimes a useful intermediate step in constructions. -/ @[ancestor partial_order has_Inf] class complete_semilattice_Inf (α : Type*) extends partial_order α, has_Inf α := (Inf_le : ∀ s, ∀ a ∈ s, Inf s ≤ a) (le_Inf : ∀ s a, (∀ b ∈ s, a ≤ b) → a ≤ Inf s) section variables [complete_semilattice_Inf α] {s t : set α} {a b : α} @[ematch] theorem Inf_le : a ∈ s → Inf s ≤ a := complete_semilattice_Inf.Inf_le s a theorem le_Inf : (∀ b ∈ s, a ≤ b) → a ≤ Inf s := complete_semilattice_Inf.le_Inf s a lemma is_glb_Inf (s : set α) : is_glb s (Inf s) := ⟨λ a, Inf_le, λ a, le_Inf⟩ lemma is_glb.Inf_eq (h : is_glb s a) : Inf s = a := (is_glb_Inf s).unique h theorem Inf_le_of_le (hb : b ∈ s) (h : b ≤ a) : Inf s ≤ a := le_trans (Inf_le hb) h theorem Inf_le_Inf (h : s ⊆ t) : Inf t ≤ Inf s := (is_glb_Inf s).mono (is_glb_Inf t) h @[simp] theorem le_Inf_iff : a ≤ Inf s ↔ ∀ b ∈ s, a ≤ b := le_is_glb_iff (is_glb_Inf s) lemma Inf_le_iff : Inf s ≤ a ↔ ∀ b ∈ lower_bounds s, b ≤ a := ⟨λ h b hb, le_trans (le_Inf hb) h, λ hb, hb _ (λ x, Inf_le)⟩ lemma infi_le_iff {s : ι → α} : infi s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by simp [infi, Inf_le_iff, lower_bounds] theorem Inf_le_Inf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : Inf t ≤ Inf s := le_of_forall_le begin simp only [le_Inf_iff], introv h₀ h₁, rcases h _ h₁ with ⟨y, hy, hy'⟩, solve_by_elim [le_trans _ hy'] end -- We will generalize this to conditionally complete lattices in `cInf_singleton`. theorem Inf_singleton {a : α} : Inf {a} = a := is_glb_singleton.Inf_eq end /-- A complete lattice is a bounded lattice which has suprema and infima for every subset. -/ @[protect_proj, ancestor lattice complete_semilattice_Sup complete_semilattice_Inf has_top has_bot] class complete_lattice (α : Type*) extends lattice α, complete_semilattice_Sup α, complete_semilattice_Inf α, has_top α, has_bot α := (le_top : ∀ x : α, x ≤ ⊤) (bot_le : ∀ x : α, ⊥ ≤ x) @[priority 100] -- see Note [lower instance priority] instance complete_lattice.to_bounded_order [h : complete_lattice α] : bounded_order α := { ..h } /-- Create a `complete_lattice` from a `partial_order` and `Inf` function that returns the greatest lower bound of a set. Usually this constructor provides poor definitional equalities. If other fields are known explicitly, they should be provided; for example, if `inf` is known explicitly, construct the `complete_lattice` instance as ``` instance : complete_lattice my_T := { inf := better_inf, le_inf := ..., inf_le_right := ..., inf_le_left := ... -- don't care to fix sup, Sup, bot, top ..complete_lattice_of_Inf my_T _ } ``` -/ def complete_lattice_of_Inf (α : Type*) [H1 : partial_order α] [H2 : has_Inf α] (is_glb_Inf : ∀ s : set α, is_glb s (Inf s)) : complete_lattice α := { bot := Inf univ, bot_le := λ x, (is_glb_Inf univ).1 trivial, top := Inf ∅, le_top := λ a, (is_glb_Inf ∅).2 $ by simp, sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x}, inf := λ a b, Inf {a, b}, le_inf := λ a b c hab hac, by { apply (is_glb_Inf _).2, simp [*] }, inf_le_right := λ a b, (is_glb_Inf _).1 $ mem_insert_of_mem _ $ mem_singleton _, inf_le_left := λ a b, (is_glb_Inf _).1 $ mem_insert _ _, sup_le := λ a b c hac hbc, (is_glb_Inf _).1 $ by simp [*], le_sup_left := λ a b, (is_glb_Inf _).2 $ λ x, and.left, le_sup_right := λ a b, (is_glb_Inf _).2 $ λ x, and.right, le_Inf := λ s a ha, (is_glb_Inf s).2 ha, Inf_le := λ s a ha, (is_glb_Inf s).1 ha, Sup := λ s, Inf (upper_bounds s), le_Sup := λ s a ha, (is_glb_Inf (upper_bounds s)).2 $ λ b hb, hb ha, Sup_le := λ s a ha, (is_glb_Inf (upper_bounds s)).1 ha, .. H1, .. H2 } /-- Any `complete_semilattice_Inf` is in fact a `complete_lattice`. Note that this construction has bad definitional properties: see the doc-string on `complete_lattice_of_Inf`. -/ def complete_lattice_of_complete_semilattice_Inf (α : Type*) [complete_semilattice_Inf α] : complete_lattice α := complete_lattice_of_Inf α (λ s, is_glb_Inf s) /-- Create a `complete_lattice` from a `partial_order` and `Sup` function that returns the least upper bound of a set. Usually this constructor provides poor definitional equalities. If other fields are known explicitly, they should be provided; for example, if `inf` is known explicitly, construct the `complete_lattice` instance as ``` instance : complete_lattice my_T := { inf := better_inf, le_inf := ..., inf_le_right := ..., inf_le_left := ... -- don't care to fix sup, Inf, bot, top ..complete_lattice_of_Sup my_T _ } ``` -/ def complete_lattice_of_Sup (α : Type*) [H1 : partial_order α] [H2 : has_Sup α] (is_lub_Sup : ∀ s : set α, is_lub s (Sup s)) : complete_lattice α := { top := Sup univ, le_top := λ x, (is_lub_Sup univ).1 trivial, bot := Sup ∅, bot_le := λ x, (is_lub_Sup ∅).2 $ by simp, sup := λ a b, Sup {a, b}, sup_le := λ a b c hac hbc, (is_lub_Sup _).2 (by simp [*]), le_sup_left := λ a b, (is_lub_Sup _).1 $ mem_insert _ _, le_sup_right := λ a b, (is_lub_Sup _).1 $ mem_insert_of_mem _ $ mem_singleton _, inf := λ a b, Sup {x | x ≤ a ∧ x ≤ b}, le_inf := λ a b c hab hac, (is_lub_Sup _).1 $ by simp [*], inf_le_left := λ a b, (is_lub_Sup _).2 (λ x, and.left), inf_le_right := λ a b, (is_lub_Sup _).2 (λ x, and.right), Inf := λ s, Sup (lower_bounds s), Sup_le := λ s a ha, (is_lub_Sup s).2 ha, le_Sup := λ s a ha, (is_lub_Sup s).1 ha, Inf_le := λ s a ha, (is_lub_Sup (lower_bounds s)).2 (λ b hb, hb ha), le_Inf := λ s a ha, (is_lub_Sup (lower_bounds s)).1 ha, .. H1, .. H2 } /-- Any `complete_semilattice_Sup` is in fact a `complete_lattice`. Note that this construction has bad definitional properties: see the doc-string on `complete_lattice_of_Sup`. -/ def complete_lattice_of_complete_semilattice_Sup (α : Type*) [complete_semilattice_Sup α] : complete_lattice α := complete_lattice_of_Sup α (λ s, is_lub_Sup s) /-- A complete linear order is a linear order whose lattice structure is complete. -/ class complete_linear_order (α : Type*) extends complete_lattice α, linear_order α renaming max → sup min → inf namespace order_dual variable (α) instance [complete_lattice α] : complete_lattice αᵒᵈ := { le_Sup := @complete_lattice.Inf_le α _, Sup_le := @complete_lattice.le_Inf α _, Inf_le := @complete_lattice.le_Sup α _, le_Inf := @complete_lattice.Sup_le α _, .. order_dual.lattice α, ..order_dual.has_Sup α, ..order_dual.has_Inf α, .. order_dual.bounded_order α } instance [complete_linear_order α] : complete_linear_order αᵒᵈ := { .. order_dual.complete_lattice α, .. order_dual.linear_order α } end order_dual section variables [complete_lattice α] {s t : set α} {a b : α} theorem Inf_le_Sup (hs : s.nonempty) : Inf s ≤ Sup s := is_glb_le_is_lub (is_glb_Inf s) (is_lub_Sup s) hs theorem Sup_union {s t : set α} : Sup (s ∪ t) = Sup s ⊔ Sup t := ((is_lub_Sup s).union (is_lub_Sup t)).Sup_eq theorem Inf_union {s t : set α} : Inf (s ∪ t) = Inf s ⊓ Inf t := ((is_glb_Inf s).union (is_glb_Inf t)).Inf_eq theorem Sup_inter_le {s t : set α} : Sup (s ∩ t) ≤ Sup s ⊓ Sup t := Sup_le $ λ b hb, le_inf (le_Sup hb.1) (le_Sup hb.2) theorem le_Inf_inter {s t : set α} : Inf s ⊔ Inf t ≤ Inf (s ∩ t) := @Sup_inter_le αᵒᵈ _ _ _ @[simp] theorem Sup_empty : Sup ∅ = (⊥ : α) := (@is_lub_empty α _ _).Sup_eq @[simp] theorem Inf_empty : Inf ∅ = (⊤ : α) := (@is_glb_empty α _ _).Inf_eq @[simp] theorem Sup_univ : Sup univ = (⊤ : α) := (@is_lub_univ α _ _).Sup_eq @[simp] theorem Inf_univ : Inf univ = (⊥ : α) := (@is_glb_univ α _ _).Inf_eq -- TODO(Jeremy): get this automatically @[simp] theorem Sup_insert {a : α} {s : set α} : Sup (insert a s) = a ⊔ Sup s := ((is_lub_Sup s).insert a).Sup_eq @[simp] theorem Inf_insert {a : α} {s : set α} : Inf (insert a s) = a ⊓ Inf s := ((is_glb_Inf s).insert a).Inf_eq theorem Sup_le_Sup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : Sup s ≤ Sup t := le_trans (Sup_le_Sup h) (le_of_eq (trans Sup_insert bot_sup_eq)) theorem Inf_le_Inf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : Inf t ≤ Inf s := le_trans (le_of_eq (trans top_inf_eq.symm Inf_insert.symm)) (Inf_le_Inf h) @[simp] theorem Sup_diff_singleton_bot (s : set α) : Sup (s \ {⊥}) = Sup s := (Sup_le_Sup (diff_subset _ _)).antisymm $ Sup_le_Sup_of_subset_insert_bot $ subset_insert_diff_singleton _ _ @[simp] theorem Inf_diff_singleton_top (s : set α) : Inf (s \ {⊤}) = Inf s := @Sup_diff_singleton_bot αᵒᵈ _ s theorem Sup_pair {a b : α} : Sup {a, b} = a ⊔ b := (@is_lub_pair α _ a b).Sup_eq theorem Inf_pair {a b : α} : Inf {a, b} = a ⊓ b := (@is_glb_pair α _ a b).Inf_eq @[simp] lemma Sup_eq_bot : Sup s = ⊥ ↔ ∀ a ∈ s, a = ⊥ := ⟨λ h a ha, bot_unique $ h ▸ le_Sup ha, λ h, bot_unique $ Sup_le $ λ a ha, le_bot_iff.2 $ h a ha⟩ @[simp] lemma Inf_eq_top : Inf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ := @Sup_eq_bot αᵒᵈ _ _ lemma eq_singleton_bot_of_Sup_eq_bot_of_nonempty {s : set α} (h_sup : Sup s = ⊥) (hne : s.nonempty) : s = {⊥} := by { rw set.eq_singleton_iff_nonempty_unique_mem, rw Sup_eq_bot at h_sup, exact ⟨hne, h_sup⟩, } lemma eq_singleton_top_of_Inf_eq_top_of_nonempty : Inf s = ⊤ → s.nonempty → s = {⊤} := @eq_singleton_bot_of_Sup_eq_bot_of_nonempty αᵒᵈ _ _ /--Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b` is larger than all elements of `s`, and that this is not the case of any `w < b`. See `cSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete lattices. -/ theorem Sup_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b) (h₂ : ∀ w, w < b → ∃ a ∈ s, w < a) : Sup s = b := (Sup_le h₁).eq_of_not_lt $ λ h, let ⟨a, ha, ha'⟩ := h₂ _ h in ((le_Sup ha).trans_lt ha').false /--Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b` is smaller than all elements of `s`, and that this is not the case of any `w > b`. See `cInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete lattices. -/ theorem Inf_eq_of_forall_ge_of_forall_gt_exists_lt : (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → Inf s = b := @Sup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ end section complete_linear_order variables [complete_linear_order α] {s t : set α} {a b : α} lemma lt_Sup_iff : b < Sup s ↔ ∃ a ∈ s, b < a := lt_is_lub_iff $ is_lub_Sup s lemma Inf_lt_iff : Inf s < b ↔ ∃ a ∈ s, a < b := is_glb_lt_iff $ is_glb_Inf s lemma Sup_eq_top : Sup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a := ⟨λ h b hb, lt_Sup_iff.1 $ hb.trans_eq h.symm, λ h, top_unique $ le_of_not_gt $ λ h', let ⟨a, ha, h⟩ := h _ h' in (h.trans_le $ le_Sup ha).false⟩ lemma Inf_eq_bot : Inf s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b := @Sup_eq_top αᵒᵈ _ _ lemma lt_supr_iff {f : ι → α} : a < supr f ↔ ∃ i, a < f i := lt_Sup_iff.trans exists_range_iff lemma infi_lt_iff {f : ι → α} : infi f < a ↔ ∃ i, f i < a := Inf_lt_iff.trans exists_range_iff end complete_linear_order /- ### supr & infi -/ section has_Sup variables [has_Sup α] {f g : ι → α} lemma Sup_range : Sup (range f) = supr f := rfl lemma Sup_eq_supr' (s : set α) : Sup s = ⨆ a : s, a := by rw [supr, subtype.range_coe] lemma supr_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i := congr_arg _ $ funext h lemma function.surjective.supr_comp {f : ι → ι'} (hf : surjective f) (g : ι' → α) : (⨆ x, g (f x)) = ⨆ y, g y := by simp only [supr, hf.range_comp] protected lemma function.surjective.supr_congr {g : ι' → α} (h : ι → ι') (h1 : surjective h) (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y := by { convert h1.supr_comp g, exact (funext h2).symm } @[congr] lemma supr_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : supr f₁ = supr f₂ := by { obtain rfl := propext pq, congr' with x, apply f } lemma supr_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by rw [supr, supr, ← image_eq_range, ← range_comp] lemma Sup_image' {s : set β} {f : β → α} : Sup (f '' s) = ⨆ a : s, f a := by rw [supr, image_eq_range] end has_Sup section has_Inf variables [has_Inf α] {f g : ι → α} lemma Inf_range : Inf (range f) = infi f := rfl lemma Inf_eq_infi' (s : set α) : Inf s = ⨅ a : s, a := @Sup_eq_supr' αᵒᵈ _ _ lemma infi_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i := congr_arg _ $ funext h lemma function.surjective.infi_comp {f : ι → ι'} (hf : surjective f) (g : ι' → α) : (⨅ x, g (f x)) = ⨅ y, g y := @function.surjective.supr_comp αᵒᵈ _ _ _ f hf g lemma function.surjective.infi_congr {g : ι' → α} (h : ι → ι') (h1 : surjective h) (h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y := @function.surjective.supr_congr αᵒᵈ _ _ _ _ _ h h1 h2 @[congr]lemma infi_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q) (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : infi f₁ = infi f₂ := @supr_congr_Prop αᵒᵈ _ p q f₁ f₂ pq f lemma infi_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) := @supr_range' αᵒᵈ _ _ _ _ _ lemma Inf_image' {s : set β} {f : β → α} : Inf (f '' s) = ⨅ a : s, f a := @Sup_image' αᵒᵈ _ _ _ _ end has_Inf section variables [complete_lattice α] {f g s t : ι → α} {a b : α} -- TODO: this declaration gives error when starting smt state --@[ematch] lemma le_supr (f : ι → α) (i : ι) : f i ≤ supr f := le_Sup ⟨i, rfl⟩ lemma infi_le (f : ι → α) (i : ι) : infi f ≤ f i := Inf_le ⟨i, rfl⟩ @[ematch] lemma le_supr' (f : ι → α) (i : ι) : (: f i ≤ supr f :) := le_Sup ⟨i, rfl⟩ @[ematch] lemma infi_le' (f : ι → α) (i : ι) : (: infi f ≤ f i :) := Inf_le ⟨i, rfl⟩ /- TODO: this version would be more powerful, but, alas, the pattern matcher doesn't accept it. @[ematch] lemma le_supr' (f : ι → α) (i : ι) : (: f i :) ≤ (: supr f :) := le_Sup ⟨i, rfl⟩ -/ lemma is_lub_supr : is_lub (range f) (⨆ j, f j) := is_lub_Sup _ lemma is_glb_infi : is_glb (range f) (⨅ j, f j) := is_glb_Inf _ lemma is_lub.supr_eq (h : is_lub (range f) a) : (⨆ j, f j) = a := h.Sup_eq lemma is_glb.infi_eq (h : is_glb (range f) a) : (⨅ j, f j) = a := h.Inf_eq lemma le_supr_of_le (i : ι) (h : a ≤ f i) : a ≤ supr f := h.trans $ le_supr _ i lemma infi_le_of_le (i : ι) (h : f i ≤ a) : infi f ≤ a := (infi_le _ i).trans h lemma le_supr₂ {f : Π i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ i j, f i j := le_supr_of_le i $ le_supr (f i) j lemma infi₂_le {f : Π i, κ i → α} (i : ι) (j : κ i) : (⨅ i j, f i j) ≤ f i j := infi_le_of_le i $ infi_le (f i) j lemma le_supr₂_of_le {f : Π i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) : a ≤ ⨆ i j, f i j := h.trans $ le_supr₂ i j lemma infi₂_le_of_le {f : Π i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) : (⨅ i j, f i j) ≤ a := (infi₂_le i j).trans h lemma supr_le (h : ∀ i, f i ≤ a) : supr f ≤ a := Sup_le $ λ b ⟨i, eq⟩, eq ▸ h i lemma le_infi (h : ∀ i, a ≤ f i) : a ≤ infi f := le_Inf $ λ b ⟨i, eq⟩, eq ▸ h i lemma supr₂_le {f : Π i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ i j, f i j) ≤ a := supr_le $ λ i, supr_le $ h i lemma le_infi₂ {f : Π i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ i j, f i j := le_infi $ λ i, le_infi $ h i lemma supr₂_le_supr (κ : ι → Sort*) (f : ι → α) : (⨆ i (j : κ i), f i) ≤ ⨆ i, f i := supr₂_le $ λ i j, le_supr f i lemma infi_le_infi₂ (κ : ι → Sort*) (f : ι → α) : (⨅ i, f i) ≤ ⨅ i (j : κ i), f i := le_infi₂ $ λ i j, infi_le f i lemma supr_mono (h : ∀ i, f i ≤ g i) : supr f ≤ supr g := supr_le $ λ i, le_supr_of_le i $ h i lemma infi_mono (h : ∀ i, f i ≤ g i) : infi f ≤ infi g := le_infi $ λ i, infi_le_of_le i $ h i lemma supr₂_mono {f g : Π i, κ i → α} (h : ∀ i j, f i j ≤ g i j) : (⨆ i j, f i j) ≤ ⨆ i j, g i j := supr_mono $ λ i, supr_mono $ h i lemma infi₂_mono {f g : Π i, κ i → α} (h : ∀ i j, f i j ≤ g i j) : (⨅ i j, f i j) ≤ ⨅ i j, g i j := infi_mono $ λ i, infi_mono $ h i lemma supr_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : supr f ≤ supr g := supr_le $ λ i, exists.elim (h i) le_supr_of_le lemma infi_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : infi f ≤ infi g := le_infi $ λ i', exists.elim (h i') infi_le_of_le lemma supr₂_mono' {f : Π i, κ i → α} {g : Π i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') : (⨆ i j, f i j) ≤ ⨆ i j, g i j := supr₂_le $ λ i j, let ⟨i', j', h⟩ := h i j in le_supr₂_of_le i' j' h lemma infi₂_mono' {f : Π i, κ i → α} {g : Π i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) : (⨅ i j, f i j) ≤ ⨅ i j, g i j := le_infi₂ $ λ i j, let ⟨i', j', h⟩ := h i j in infi₂_le_of_le i' j' h lemma supr_const_mono (h : ι → ι') : (⨆ i : ι, a) ≤ ⨆ j : ι', a := supr_le $ le_supr _ ∘ h lemma infi_const_mono (h : ι' → ι) : (⨅ i : ι, a) ≤ ⨅ j : ι', a := le_infi $ infi_le _ ∘ h lemma supr_infi_le_infi_supr (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ (⨅ j, ⨆ i, f i j) := supr_le $ λ i, infi_mono $ λ j, le_supr _ i lemma bsupr_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) : (⨆ i (h : p i), f i) ≤ ⨆ i (h : q i), f i := supr_mono $ λ i, supr_const_mono (hpq i) lemma binfi_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) : (⨅ i (h : q i), f i) ≤ ⨅ i (h : p i), f i := infi_mono $ λ i, infi_const_mono (hpq i) @[simp] lemma supr_le_iff : supr f ≤ a ↔ ∀ i, f i ≤ a := (is_lub_le_iff is_lub_supr).trans forall_range_iff @[simp] lemma le_infi_iff : a ≤ infi f ↔ ∀ i, a ≤ f i := (le_is_glb_iff is_glb_infi).trans forall_range_iff @[simp] lemma supr₂_le_iff {f : Π i, κ i → α} : (⨆ i j, f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by simp_rw supr_le_iff @[simp] lemma le_infi₂_iff {f : Π i, κ i → α} : a ≤ (⨅ i j, f i j) ↔ ∀ i j, a ≤ f i j := by simp_rw le_infi_iff lemma supr_lt_iff : supr f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b := ⟨λ h, ⟨supr f, h, le_supr f⟩, λ ⟨b, h, hb⟩, (supr_le hb).trans_lt h⟩ lemma lt_infi_iff : a < infi f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i := ⟨λ h, ⟨infi f, h, infi_le f⟩, λ ⟨b, h, hb⟩, h.trans_le $ le_infi hb⟩ lemma Sup_eq_supr {s : set α} : Sup s = ⨆ a ∈ s, a := le_antisymm (Sup_le le_supr₂) (supr₂_le $ λ b, le_Sup) lemma Inf_eq_infi {s : set α} : Inf s = ⨅ a ∈ s, a := @Sup_eq_supr αᵒᵈ _ _ lemma monotone.le_map_supr [complete_lattice β] {f : α → β} (hf : monotone f) : (⨆ i, f (s i)) ≤ f (supr s) := supr_le $ λ i, hf $ le_supr _ _ lemma antitone.le_map_infi [complete_lattice β] {f : α → β} (hf : antitone f) : (⨆ i, f (s i)) ≤ f (infi s) := hf.dual_left.le_map_supr lemma monotone.le_map_supr₂ [complete_lattice β] {f : α → β} (hf : monotone f) (s : Π i, κ i → α) : (⨆ i j, f (s i j)) ≤ f (⨆ i j, s i j) := supr₂_le $ λ i j, hf $ le_supr₂ _ _ lemma antitone.le_map_infi₂ [complete_lattice β] {f : α → β} (hf : antitone f) (s : Π i, κ i → α) : (⨆ i j, f (s i j)) ≤ f (⨅ i j, s i j) := hf.dual_left.le_map_supr₂ _ lemma monotone.le_map_Sup [complete_lattice β] {s : set α} {f : α → β} (hf : monotone f) : (⨆ a ∈ s, f a) ≤ f (Sup s) := by rw [Sup_eq_supr]; exact hf.le_map_supr₂ _ lemma antitone.le_map_Inf [complete_lattice β] {s : set α} {f : α → β} (hf : antitone f) : (⨆ a ∈ s, f a) ≤ f (Inf s) := hf.dual_left.le_map_Sup lemma order_iso.map_supr [complete_lattice β] (f : α ≃o β) (x : ι → α) : f (⨆ i, x i) = ⨆ i, f (x i) := eq_of_forall_ge_iff $ f.surjective.forall.2 $ λ x, by simp only [f.le_iff_le, supr_le_iff] lemma order_iso.map_infi [complete_lattice β] (f : α ≃o β) (x : ι → α) : f (⨅ i, x i) = ⨅ i, f (x i) := order_iso.map_supr f.dual _ lemma order_iso.map_Sup [complete_lattice β] (f : α ≃o β) (s : set α) : f (Sup s) = ⨆ a ∈ s, f a := by simp only [Sup_eq_supr, order_iso.map_supr] lemma order_iso.map_Inf [complete_lattice β] (f : α ≃o β) (s : set α) : f (Inf s) = ⨅ a ∈ s, f a := order_iso.map_Sup f.dual _ lemma supr_comp_le {ι' : Sort*} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y := supr_mono' $ λ x, ⟨_, le_rfl⟩ lemma le_infi_comp {ι' : Sort*} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) := infi_mono' $ λ x, ⟨_, le_rfl⟩ lemma monotone.supr_comp_eq [preorder β] {f : β → α} (hf : monotone f) {s : ι → β} (hs : ∀ x, ∃ i, x ≤ s i) : (⨆ x, f (s x)) = ⨆ y, f y := le_antisymm (supr_comp_le _ _) (supr_mono' $ λ x, (hs x).imp $ λ i hi, hf hi) lemma monotone.infi_comp_eq [preorder β] {f : β → α} (hf : monotone f) {s : ι → β} (hs : ∀ x, ∃ i, s i ≤ x) : (⨅ x, f (s x)) = ⨅ y, f y := le_antisymm (infi_mono' $ λ x, (hs x).imp $ λ i hi, hf hi) (le_infi_comp _ _) lemma antitone.map_supr_le [complete_lattice β] {f : α → β} (hf : antitone f) : f (supr s) ≤ ⨅ i, f (s i) := le_infi $ λ i, hf $ le_supr _ _ lemma monotone.map_infi_le [complete_lattice β] {f : α → β} (hf : monotone f) : f (infi s) ≤ (⨅ i, f (s i)) := hf.dual_left.map_supr_le lemma antitone.map_supr₂_le [complete_lattice β] {f : α → β} (hf : antitone f) (s : Π i, κ i → α) : f (⨆ i j, s i j) ≤ ⨅ i j, f (s i j) := hf.dual.le_map_infi₂ _ lemma monotone.map_infi₂_le [complete_lattice β] {f : α → β} (hf : monotone f) (s : Π i, κ i → α) : f (⨅ i j, s i j) ≤ ⨅ i j, f (s i j) := hf.dual.le_map_supr₂ _ lemma antitone.map_Sup_le [complete_lattice β] {s : set α} {f : α → β} (hf : antitone f) : f (Sup s) ≤ ⨅ a ∈ s, f a := by { rw Sup_eq_supr, exact hf.map_supr₂_le _ } lemma monotone.map_Inf_le [complete_lattice β] {s : set α} {f : α → β} (hf : monotone f) : f (Inf s) ≤ ⨅ a ∈ s, f a := hf.dual_left.map_Sup_le lemma supr_const_le : (⨆ i : ι, a) ≤ a := supr_le $ λ _, le_rfl lemma le_infi_const : a ≤ ⨅ i : ι, a := le_infi $ λ _, le_rfl /- We generalize this to conditionally complete lattices in `csupr_const` and `cinfi_const`. -/ theorem supr_const [nonempty ι] : (⨆ b : ι, a) = a := by rw [supr, range_const, Sup_singleton] theorem infi_const [nonempty ι] : (⨅ b : ι, a) = a := @supr_const αᵒᵈ _ _ a _ @[simp] lemma supr_bot : (⨆ i : ι, ⊥ : α) = ⊥ := bot_unique supr_const_le @[simp] lemma infi_top : (⨅ i : ι, ⊤ : α) = ⊤ := top_unique le_infi_const @[simp] lemma supr_eq_bot : supr s = ⊥ ↔ ∀ i, s i = ⊥ := Sup_eq_bot.trans forall_range_iff @[simp] lemma infi_eq_top : infi s = ⊤ ↔ ∀ i, s i = ⊤ := Inf_eq_top.trans forall_range_iff @[simp] lemma supr₂_eq_bot {f : Π i, κ i → α} : (⨆ i j, f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by simp_rw supr_eq_bot @[simp] lemma infi₂_eq_top {f : Π i, κ i → α} : (⨅ i j, f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by simp_rw infi_eq_top @[simp] lemma supr_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp := le_antisymm (supr_le $ λ h, le_rfl) (le_supr _ _) @[simp] lemma infi_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp := le_antisymm (infi_le _ _) (le_infi $ λ h, le_rfl) @[simp] lemma supr_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨆ h : p, f h) = ⊥ := le_antisymm (supr_le $ λ h, (hp h).elim) bot_le @[simp] lemma infi_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨅ h : p, f h) = ⊤ := le_antisymm le_top $ le_infi $ λ h, (hp h).elim /--Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b` is larger than `f i` for all `i`, and that this is not the case of any `w<b`. See `csupr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete lattices. -/ theorem supr_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b) (h₂ : ∀ w, w < b → (∃ i, w < f i)) : (⨆ (i : ι), f i) = b := Sup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) (λ w hw, exists_range_iff.mpr $ h₂ w hw) /--Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b` is smaller than `f i` for all `i`, and that this is not the case of any `w>b`. See `cinfi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete lattices. -/ theorem infi_eq_of_forall_ge_of_forall_gt_exists_lt : (∀ i, b ≤ f i) → (∀ w, b < w → ∃ i, f i < w) → (⨅ i, f i) = b := @supr_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ lemma supr_eq_dif {p : Prop} [decidable p] (a : p → α) : (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases p; simp [h] lemma supr_eq_if {p : Prop} [decidable p] (a : α) : (⨆ h : p, a) = if p then a else ⊥ := supr_eq_dif (λ _, a) lemma infi_eq_dif {p : Prop} [decidable p] (a : p → α) : (⨅ h : p, a h) = if h : p then a h else ⊤ := @supr_eq_dif αᵒᵈ _ _ _ _ lemma infi_eq_if {p : Prop} [decidable p] (a : α) : (⨅ h : p, a) = if p then a else ⊤ := infi_eq_dif (λ _, a) lemma supr_comm {f : ι → ι' → α} : (⨆ i j, f i j) = ⨆ j i, f i j := le_antisymm (supr_le $ λ i, supr_mono $ λ j, le_supr _ i) (supr_le $ λ j, supr_mono $ λ i, le_supr _ _) lemma infi_comm {f : ι → ι' → α} : (⨅ i j, f i j) = ⨅ j i, f i j := @supr_comm αᵒᵈ _ _ _ _ lemma supr₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*} (f : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → α) : (⨆ i₁ j₁ i₂ j₂, f i₁ j₁ i₂ j₂) = ⨆ i₂ j₂ i₁ j₁, f i₁ j₁ i₂ j₂ := by simp only [@supr_comm _ (κ₁ _), @supr_comm _ ι₁] lemma infi₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*} (f : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → α) : (⨅ i₁ j₁ i₂ j₂, f i₁ j₁ i₂ j₂) = ⨅ i₂ j₂ i₁ j₁, f i₁ j₁ i₂ j₂ := by simp only [@infi_comm _ (κ₁ _), @infi_comm _ ι₁] /- TODO: this is strange. In the proof below, we get exactly the desired among the equalities, but close does not get it. begin apply @le_antisymm, simp, intros, begin [smt] ematch, ematch, ematch, trace_state, have := le_refl (f i_1 i), trace_state, close end end -/ @[simp] theorem supr_supr_eq_left {b : β} {f : Π x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl := (@le_supr₂ _ _ _ _ f b rfl).antisymm' (supr_le $ λ c, supr_le $ by { rintro rfl, refl }) @[simp] theorem infi_infi_eq_left {b : β} {f : Π x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl := @supr_supr_eq_left αᵒᵈ _ _ _ _ @[simp] theorem supr_supr_eq_right {b : β} {f : Π x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl := (le_supr₂ b rfl).antisymm' (supr₂_le $ λ c, by { rintro rfl, refl }) @[simp] theorem infi_infi_eq_right {b : β} {f : Π x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl := @supr_supr_eq_right αᵒᵈ _ _ _ _ attribute [ematch] le_refl theorem supr_subtype {p : ι → Prop} {f : subtype p → α} : supr f = (⨆ i (h : p i), f ⟨i, h⟩) := le_antisymm (supr_le $ λ ⟨i, h⟩, le_supr₂ i h) (supr₂_le $ λ i h, le_supr _ _) theorem infi_subtype : ∀ {p : ι → Prop} {f : subtype p → α}, infi f = (⨅ i (h : p i), f ⟨i, h⟩) := @supr_subtype αᵒᵈ _ _ lemma supr_subtype' {p : ι → Prop} {f : Π i, p i → α} : (⨆ i h, f i h) = ⨆ x : subtype p, f x x.property := (@supr_subtype _ _ _ p (λ x, f x.val x.property)).symm lemma infi_subtype' {p : ι → Prop} {f : ∀ i, p i → α} : (⨅ i (h : p i), f i h) = (⨅ x : subtype p, f x x.property) := (@infi_subtype _ _ _ p (λ x, f x.val x.property)).symm lemma supr_subtype'' {ι} (s : set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (H : t ∈ s), f t := supr_subtype lemma infi_subtype'' {ι} (s : set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (H : t ∈ s), f t := infi_subtype theorem supr_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ (⨆ x, g x) := le_antisymm (supr_le $ λ i, sup_le_sup (le_supr _ _) $ le_supr _ _) (sup_le (supr_mono $ λ i, le_sup_left) $ supr_mono $ λ i, le_sup_right) theorem infi_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ (⨅ x, g x) := @supr_sup_eq αᵒᵈ _ _ _ _ /- TODO: here is another example where more flexible pattern matching might help. begin apply @le_antisymm, safe, pose h := f a ⊓ g a, begin [smt] ematch, ematch end end -/ lemma supr_sup [nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = ⨆ x, f x ⊔ a := by rw [supr_sup_eq, supr_const] lemma infi_inf [nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by rw [infi_inf_eq, infi_const] lemma sup_supr [nonempty ι] {f : ι → α} {a : α} : a ⊔ (⨆ x, f x) = ⨆ x, a ⊔ f x := by rw [supr_sup_eq, supr_const] lemma inf_infi [nonempty ι] {f : ι → α} {a : α} : a ⊓ (⨅ x, f x) = ⨅ x, a ⊓ f x := by rw [infi_inf_eq, infi_const] lemma binfi_inf {p : ι → Prop} {f : Π i (hi : p i), α} {a : α} (h : ∃ i, p i) : (⨅ i (h : p i), f i h) ⊓ a = ⨅ i (h : p i), f i h ⊓ a := by haveI : nonempty {i // p i} := (let ⟨i, hi⟩ := h in ⟨⟨i, hi⟩⟩); rw [infi_subtype', infi_subtype', infi_inf] lemma inf_binfi {p : ι → Prop} {f : Π i (hi : p i), α} {a : α} (h : ∃ i, p i) : a ⊓ (⨅ i (h : p i), f i h) = ⨅ i (h : p i), a ⊓ f i h := by simpa only [inf_comm] using binfi_inf h /-! ### `supr` and `infi` under `Prop` -/ @[simp] theorem supr_false {s : false → α} : supr s = ⊥ := le_antisymm (supr_le $ λ i, false.elim i) bot_le @[simp] theorem infi_false {s : false → α} : infi s = ⊤ := le_antisymm le_top (le_infi $ λ i, false.elim i) lemma supr_true {s : true → α} : supr s = s trivial := supr_pos trivial lemma infi_true {s : true → α} : infi s = s trivial := infi_pos trivial @[simp] lemma supr_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ i h, f ⟨i, h⟩ := le_antisymm (supr_le $ λ ⟨i, h⟩, le_supr₂ i h) (supr₂_le $ λ i h, le_supr _ _) @[simp] lemma infi_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ i h, f ⟨i, h⟩ := @supr_exists αᵒᵈ _ _ _ _ lemma supr_and {p q : Prop} {s : p ∧ q → α} : supr s = ⨆ h₁ h₂, s ⟨h₁, h₂⟩ := le_antisymm (supr_le $ λ ⟨i, h⟩, le_supr₂ i h) (supr₂_le $ λ i h, le_supr _ _) lemma infi_and {p q : Prop} {s : p ∧ q → α} : infi s = ⨅ h₁ h₂, s ⟨h₁, h₂⟩ := @supr_and αᵒᵈ _ _ _ _ /-- The symmetric case of `supr_and`, useful for rewriting into a supremum over a conjunction -/ lemma supr_and' {p q : Prop} {s : p → q → α} : (⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ (h : p ∧ q), s h.1 h.2 := eq.symm supr_and /-- The symmetric case of `infi_and`, useful for rewriting into a infimum over a conjunction -/ lemma infi_and' {p q : Prop} {s : p → q → α} : (⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ (h : p ∧ q), s h.1 h.2 := eq.symm infi_and theorem supr_or {p q : Prop} {s : p ∨ q → α} : (⨆ x, s x) = (⨆ i, s (or.inl i)) ⊔ (⨆ j, s (or.inr j)) := le_antisymm (supr_le $ λ i, match i with | or.inl i := le_sup_of_le_left $ le_supr _ i | or.inr j := le_sup_of_le_right $ le_supr _ j end) (sup_le (supr_comp_le _ _) (supr_comp_le _ _)) theorem infi_or {p q : Prop} {s : p ∨ q → α} : (⨅ x, s x) = (⨅ i, s (or.inl i)) ⊓ (⨅ j, s (or.inr j)) := @supr_or αᵒᵈ _ _ _ _ section variables (p : ι → Prop) [decidable_pred p] lemma supr_dite (f : Π i, p i → α) (g : Π i, ¬p i → α) : (⨆ i, if h : p i then f i h else g i h) = (⨆ i (h : p i), f i h) ⊔ (⨆ i (h : ¬ p i), g i h) := begin rw ←supr_sup_eq, congr' 1 with i, split_ifs with h; simp [h], end lemma infi_dite (f : Π i, p i → α) (g : Π i, ¬p i → α) : (⨅ i, if h : p i then f i h else g i h) = (⨅ i (h : p i), f i h) ⊓ (⨅ i (h : ¬ p i), g i h) := supr_dite p (show Π i, p i → αᵒᵈ, from f) g lemma supr_ite (f g : ι → α) : (⨆ i, if p i then f i else g i) = (⨆ i (h : p i), f i) ⊔ (⨆ i (h : ¬ p i), g i) := supr_dite _ _ _ lemma infi_ite (f g : ι → α) : (⨅ i, if p i then f i else g i) = (⨅ i (h : p i), f i) ⊓ (⨅ i (h : ¬ p i), g i) := infi_dite _ _ _ end lemma supr_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by rw [← supr_subtype'', supr_range'] lemma infi_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) := @supr_range αᵒᵈ _ _ _ theorem Sup_image {s : set β} {f : β → α} : Sup (f '' s) = ⨆ a ∈ s, f a := by rw [← supr_subtype'', Sup_image'] theorem Inf_image {s : set β} {f : β → α} : Inf (f '' s) = ⨅ a ∈ s, f a := @Sup_image αᵒᵈ _ _ _ _ /- ### supr and infi under set constructions -/ theorem supr_emptyset {f : β → α} : (⨆ x ∈ (∅ : set β), f x) = ⊥ := by simp theorem infi_emptyset {f : β → α} : (⨅ x ∈ (∅ : set β), f x) = ⊤ := by simp theorem supr_univ {f : β → α} : (⨆ x ∈ (univ : set β), f x) = ⨆ x, f x := by simp theorem infi_univ {f : β → α} : (⨅ x ∈ (univ : set β), f x) = ⨅ x, f x := by simp theorem supr_union {f : β → α} {s t : set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ (⨆ x ∈ t, f x) := by simp_rw [mem_union, supr_or, supr_sup_eq] theorem infi_union {f : β → α} {s t : set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ (⨅ x ∈ t, f x) := @supr_union αᵒᵈ _ _ _ _ _ lemma supr_split (f : β → α) (p : β → Prop) : (⨆ i, f i) = (⨆ i (h : p i), f i) ⊔ (⨆ i (h : ¬ p i), f i) := by simpa [classical.em] using @supr_union _ _ _ f {i | p i} {i | ¬ p i} lemma infi_split : ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ i (h : p i), f i) ⊓ (⨅ i (h : ¬ p i), f i) := @supr_split αᵒᵈ _ _ lemma supr_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ i (h : i ≠ i₀), f i := by { convert supr_split _ _, simp } lemma infi_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ i (h : i ≠ i₀), f i := @supr_split_single αᵒᵈ _ _ _ _ lemma supr_le_supr_of_subset {f : β → α} {s t : set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x := bsupr_mono lemma infi_le_infi_of_subset {f : β → α} {s t : set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x := binfi_mono theorem supr_insert {f : β → α} {s : set β} {b : β} : (⨆ x ∈ insert b s, f x) = f b ⊔ (⨆ x ∈ s, f x) := eq.trans supr_union $ congr_arg (λ x, x ⊔ (⨆ x ∈ s, f x)) supr_supr_eq_left theorem infi_insert {f : β → α} {s : set β} {b : β} : (⨅ x ∈ insert b s, f x) = f b ⊓ (⨅ x ∈ s, f x) := eq.trans infi_union $ congr_arg (λ x, x ⊓ (⨅ x ∈ s, f x)) infi_infi_eq_left theorem supr_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : set β), f x) = f b := by simp theorem infi_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : set β), f x) = f b := by simp theorem supr_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : set β), f x) = f a ⊔ f b := by rw [supr_insert, supr_singleton] theorem infi_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : set β), f x) = f a ⊓ f b := by rw [infi_insert, infi_singleton] lemma supr_image {γ} {f : β → γ} {g : γ → α} {t : set β} : (⨆ c ∈ f '' t, g c) = (⨆ b ∈ t, g (f b)) := by rw [← Sup_image, ← Sup_image, ← image_comp] lemma infi_image : ∀ {γ} {f : β → γ} {g : γ → α} {t : set β}, (⨅ c ∈ f '' t, g c) = (⨅ b ∈ t, g (f b)) := @supr_image αᵒᵈ _ _ theorem supr_extend_bot {e : ι → β} (he : injective e) (f : ι → α) : (⨆ j, extend e f ⊥ j) = ⨆ i, f i := begin rw supr_split _ (λ j, ∃ i, e i = j), simp [extend_apply he, extend_apply', @supr_comm _ β ι] { contextual := tt } end lemma infi_extend_top {e : ι → β} (he : injective e) (f : ι → α) : (⨅ j, extend e f ⊤ j) = infi f := @supr_extend_bot αᵒᵈ _ _ _ _ he _ /-! ### `supr` and `infi` under `Type` -/ theorem supr_of_empty' {α ι} [has_Sup α] [is_empty ι] (f : ι → α) : supr f = Sup (∅ : set α) := congr_arg Sup (range_eq_empty f) theorem infi_of_empty' {α ι} [has_Inf α] [is_empty ι] (f : ι → α) : infi f = Inf (∅ : set α) := congr_arg Inf (range_eq_empty f) theorem supr_of_empty [is_empty ι] (f : ι → α) : supr f = ⊥ := (supr_of_empty' f).trans Sup_empty theorem infi_of_empty [is_empty ι] (f : ι → α) : infi f = ⊤ := @supr_of_empty αᵒᵈ _ _ _ f lemma supr_bool_eq {f : bool → α} : (⨆b:bool, f b) = f tt ⊔ f ff := by rw [supr, bool.range_eq, Sup_pair, sup_comm] lemma infi_bool_eq {f : bool → α} : (⨅b:bool, f b) = f tt ⊓ f ff := @supr_bool_eq αᵒᵈ _ _ lemma sup_eq_supr (x y : α) : x ⊔ y = ⨆ b : bool, cond b x y := by rw [supr_bool_eq, bool.cond_tt, bool.cond_ff] lemma inf_eq_infi (x y : α) : x ⊓ y = ⨅ b : bool, cond b x y := @sup_eq_supr αᵒᵈ _ _ _ lemma is_glb_binfi {s : set β} {f : β → α} : is_glb (f '' s) (⨅ x ∈ s, f x) := by simpa only [range_comp, subtype.range_coe, infi_subtype'] using @is_glb_infi α s _ (f ∘ coe) lemma is_lub_bsupr {s : set β} {f : β → α} : is_lub (f '' s) (⨆ x ∈ s, f x) := by simpa only [range_comp, subtype.range_coe, supr_subtype'] using @is_lub_supr α s _ (f ∘ coe) theorem supr_sigma {p : β → Type*} {f : sigma p → α} : (⨆ x, f x) = ⨆ i j, f ⟨i, j⟩ := eq_of_forall_ge_iff $ λ c, by simp only [supr_le_iff, sigma.forall] theorem infi_sigma {p : β → Type*} {f : sigma p → α} : (⨅ x, f x) = ⨅ i j, f ⟨i, j⟩ := @supr_sigma αᵒᵈ _ _ _ _ theorem supr_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ i j, f (i, j) := eq_of_forall_ge_iff $ λ c, by simp only [supr_le_iff, prod.forall] theorem infi_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ i j, f (i, j) := @supr_prod αᵒᵈ _ _ _ _ lemma bsupr_prod {f : β × γ → α} {s : set β} {t : set γ} : (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by { simp_rw [supr_prod, mem_prod, supr_and], exact supr_congr (λ _, supr_comm) } lemma binfi_prod {f : β × γ → α} {s : set β} {t : set γ} : (⨅ x ∈ s ×ˢ t, f x) = ⨅ (a ∈ s) (b ∈ t), f (a, b) := @bsupr_prod αᵒᵈ _ _ _ _ _ _ theorem supr_sum {f : β ⊕ γ → α} : (⨆ x, f x) = (⨆ i, f (sum.inl i)) ⊔ (⨆ j, f (sum.inr j)) := eq_of_forall_ge_iff $ λ c, by simp only [sup_le_iff, supr_le_iff, sum.forall] theorem infi_sum {f : β ⊕ γ → α} : (⨅ x, f x) = (⨅ i, f (sum.inl i)) ⊓ (⨅ j, f (sum.inr j)) := @supr_sum αᵒᵈ _ _ _ _ theorem supr_option (f : option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (option.some b) := eq_of_forall_ge_iff $ λ c, by simp only [supr_le_iff, sup_le_iff, option.forall] theorem infi_option (f : option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (option.some b) := @supr_option αᵒᵈ _ _ _ /-- A version of `supr_option` useful for rewriting right-to-left. -/ lemma supr_option_elim (a : α) (f : β → α) : (⨆ o : option β, o.elim a f) = a ⊔ ⨆ b, f b := by simp [supr_option] /-- A version of `infi_option` useful for rewriting right-to-left. -/ lemma infi_option_elim (a : α) (f : β → α) : (⨅ o : option β, o.elim a f) = a ⊓ ⨅ b, f b := @supr_option_elim αᵒᵈ _ _ _ _ /-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be dropped, without changing the result. -/ lemma supr_ne_bot_subtype (f : ι → α) : (⨆ i : {i // f i ≠ ⊥}, f i) = ⨆ i, f i := begin by_cases htriv : ∀ i, f i = ⊥, { simp only [supr_bot, (funext htriv : f = _)] }, refine (supr_comp_le f _).antisymm (supr_mono' $ λ i, _), by_cases hi : f i = ⊥, { rw hi, obtain ⟨i₀, hi₀⟩ := not_forall.mp htriv, exact ⟨⟨i₀, hi₀⟩, bot_le⟩ }, { exact ⟨⟨i, hi⟩, rfl.le⟩ }, end /-- When taking the infimum of `f : ι → α`, the elements of `ι` on which `f` gives `⊤` can be dropped, without changing the result. -/ lemma infi_ne_top_subtype (f : ι → α) : (⨅ i : {i // f i ≠ ⊤}, f i) = ⨅ i, f i := @supr_ne_bot_subtype αᵒᵈ ι _ f lemma Sup_image2 {f : β → γ → α} {s : set β} {t : set γ} : Sup (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b := by rw [←image_prod, Sup_image, bsupr_prod] lemma Inf_image2 {f : β → γ → α} {s : set β} {t : set γ} : Inf (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b := by rw [←image_prod, Inf_image, binfi_prod] /-! ### `supr` and `infi` under `ℕ` -/ lemma supr_ge_eq_supr_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) := begin apply le_antisymm; simp only [supr_le_iff], { exact λ i hi, le_Sup ⟨i - n, by { dsimp only, rw tsub_add_cancel_of_le hi }⟩ }, { exact λ i, le_Sup ⟨i + n, supr_pos (nat.le_add_left _ _)⟩ } end lemma infi_ge_eq_infi_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) := @supr_ge_eq_supr_nat_add αᵒᵈ _ _ _ lemma monotone.supr_nat_add {f : ℕ → α} (hf : monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n := le_antisymm (supr_le $ λ i, le_supr _ (i + k)) $ supr_mono $ λ i, hf $ nat.le_add_right i k lemma antitone.infi_nat_add {f : ℕ → α} (hf : antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n := hf.dual_right.supr_nat_add k @[simp] lemma supr_infi_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i := begin have hf : monotone (λ n, ⨅ i ≥ n, f i) := λ n m h, binfi_mono (λ i, h.trans), rw ←monotone.supr_nat_add hf k, { simp_rw [infi_ge_eq_infi_nat_add, ←nat.add_assoc], }, end @[simp] lemma infi_supr_ge_nat_add : ∀ (f : ℕ → α) (k : ℕ), (⨅ n, ⨆ i ≥ n, f (i + k)) = ⨅ n, ⨆ i ≥ n, f i := @supr_infi_ge_nat_add αᵒᵈ _ lemma sup_supr_nat_succ (u : ℕ → α) : u 0 ⊔ (⨆ i, u (i + 1)) = ⨆ i, u i := begin refine eq_of_forall_ge_iff (λ c, _), simp only [sup_le_iff, supr_le_iff], refine ⟨λ h, _, λ h, ⟨h _, λ i, h _⟩⟩, rintro (_|i), exacts [h.1, h.2 i] end lemma inf_infi_nat_succ (u : ℕ → α) : u 0 ⊓ (⨅ i, u (i + 1)) = ⨅ i, u i := @sup_supr_nat_succ αᵒᵈ _ u end section complete_linear_order variables [complete_linear_order α] lemma supr_eq_top (f : ι → α) : supr f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by simp only [← Sup_range, Sup_eq_top, set.exists_range_iff] lemma infi_eq_bot (f : ι → α) : infi f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by simp only [← Inf_range, Inf_eq_bot, set.exists_range_iff] end complete_linear_order /-! ### Instances -/ instance Prop.complete_lattice : complete_lattice Prop := { Sup := λ s, ∃ a ∈ s, a, le_Sup := λ s a h p, ⟨a, h, p⟩, Sup_le := λ s a h ⟨b, h', p⟩, h b h' p, Inf := λ s, ∀ a, a ∈ s → a, Inf_le := λ s a h p, p a h, le_Inf := λ s a h p b hb, h b hb p, .. Prop.bounded_order, .. Prop.distrib_lattice } noncomputable instance Prop.complete_linear_order : complete_linear_order Prop := { ..Prop.complete_lattice, ..Prop.linear_order } @[simp] lemma Sup_Prop_eq {s : set Prop} : Sup s = ∃ p ∈ s, p := rfl @[simp] lemma Inf_Prop_eq {s : set Prop} : Inf s = ∀ p ∈ s, p := rfl @[simp] lemma supr_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i := le_antisymm (λ ⟨q, ⟨i, (eq : p i = q)⟩, hq⟩, ⟨i, eq.symm ▸ hq⟩) (λ ⟨i, hi⟩, ⟨p i, ⟨i, rfl⟩, hi⟩) @[simp] lemma infi_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i := le_antisymm (λ h i, h _ ⟨i, rfl⟩ ) (λ h p ⟨i, eq⟩, eq ▸ h i) instance pi.has_Sup {α : Type*} {β : α → Type*} [Π i, has_Sup (β i)] : has_Sup (Π i, β i) := ⟨λ s i, ⨆ f : s, (f : Π i, β i) i⟩ instance pi.has_Inf {α : Type*} {β : α → Type*} [Π i, has_Inf (β i)] : has_Inf (Π i, β i) := ⟨λ s i, ⨅ f : s, (f : Π i, β i) i⟩ instance pi.complete_lattice {α : Type*} {β : α → Type*} [∀ i, complete_lattice (β i)] : complete_lattice (Π i, β i) := { Sup := Sup, Inf := Inf, le_Sup := λ s f hf i, le_supr (λ f : s, (f : Π i, β i) i) ⟨f, hf⟩, Inf_le := λ s f hf i, infi_le (λ f : s, (f : Π i, β i) i) ⟨f, hf⟩, Sup_le := λ s f hf i, supr_le $ λ g, hf g g.2 i, le_Inf := λ s f hf i, le_infi $ λ g, hf g g.2 i, .. pi.bounded_order, .. pi.lattice } lemma Sup_apply {α : Type*} {β : α → Type*} [Π i, has_Sup (β i)] {s : set (Π a, β a)} {a : α} : (Sup s) a = ⨆ f : s, (f : Π a, β a) a := rfl lemma Inf_apply {α : Type*} {β : α → Type*} [Π i, has_Inf (β i)] {s : set (Π a, β a)} {a : α} : Inf s a = ⨅ f : s, (f : Π a, β a) a := rfl @[simp] lemma supr_apply {α : Type*} {β : α → Type*} {ι : Sort*} [Π i, has_Sup (β i)] {f : ι → Π a, β a} {a : α} : (⨆ i, f i) a = ⨆ i, f i a := by rw [supr, Sup_apply, supr, supr, ← image_eq_range (λ f : Π i, β i, f a) (range f), ← range_comp] @[simp] lemma infi_apply {α : Type*} {β : α → Type*} {ι : Sort*} [Π i, has_Inf (β i)] {f : ι → Π a, β a} {a : α} : (⨅ i, f i) a = ⨅ i, f i a := @supr_apply α (λ i, (β i)ᵒᵈ) _ _ _ _ lemma unary_relation_Sup_iff {α : Type*} (s : set (α → Prop)) {a : α} : Sup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a := by { unfold Sup, simp [←eq_iff_iff] } lemma unary_relation_Inf_iff {α : Type*} (s : set (α → Prop)) {a : α} : Inf s a ↔ ∀ r : α → Prop, r ∈ s → r a := by { unfold Inf, simp [←eq_iff_iff] } lemma binary_relation_Sup_iff {α β : Type*} (s : set (α → β → Prop)) {a : α} {b : β} : Sup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b := by { unfold Sup, simp [←eq_iff_iff] } lemma binary_relation_Inf_iff {α β : Type*} (s : set (α → β → Prop)) {a : α} {b : β} : Inf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b := by { unfold Inf, simp [←eq_iff_iff] } section complete_lattice variables [preorder α] [complete_lattice β] theorem monotone_Sup_of_monotone {s : set (α → β)} (m_s : ∀ f ∈ s, monotone f) : monotone (Sup s) := λ x y h, supr_mono $ λ f, m_s f f.2 h theorem monotone_Inf_of_monotone {s : set (α → β)} (m_s : ∀ f ∈ s, monotone f) : monotone (Inf s) := λ x y h, infi_mono $ λ f, m_s f f.2 h end complete_lattice namespace prod variables (α β) instance [has_Sup α] [has_Sup β] : has_Sup (α × β) := ⟨λ s, (Sup (prod.fst '' s), Sup (prod.snd '' s))⟩ instance [has_Inf α] [has_Inf β] : has_Inf (α × β) := ⟨λ s, (Inf (prod.fst '' s), Inf (prod.snd '' s))⟩ instance [complete_lattice α] [complete_lattice β] : complete_lattice (α × β) := { le_Sup := λ s p hab, ⟨le_Sup $ mem_image_of_mem _ hab, le_Sup $ mem_image_of_mem _ hab⟩, Sup_le := λ s p h, ⟨ Sup_le $ ball_image_of_ball $ λ p hp, (h p hp).1, Sup_le $ ball_image_of_ball $ λ p hp, (h p hp).2⟩, Inf_le := λ s p hab, ⟨Inf_le $ mem_image_of_mem _ hab, Inf_le $ mem_image_of_mem _ hab⟩, le_Inf := λ s p h, ⟨ le_Inf $ ball_image_of_ball $ λ p hp, (h p hp).1, le_Inf $ ball_image_of_ball $ λ p hp, (h p hp).2⟩, .. prod.lattice α β, .. prod.bounded_order α β, .. prod.has_Sup α β, .. prod.has_Inf α β } end prod section complete_lattice variables [complete_lattice α] {a : α} {s : set α} /-- This is a weaker version of `sup_Inf_eq` -/ lemma sup_Inf_le_infi_sup : a ⊔ Inf s ≤ ⨅ b ∈ s, a ⊔ b := le_infi₂ $ λ i h, sup_le_sup_left (Inf_le h) _ /-- This is a weaker version of `inf_Sup_eq` -/ lemma supr_inf_le_inf_Sup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ Sup s := @sup_Inf_le_infi_sup αᵒᵈ _ _ _ /-- This is a weaker version of `Inf_sup_eq` -/ lemma Inf_sup_le_infi_sup : Inf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a := le_infi₂ $ λ i h, sup_le_sup_right (Inf_le h) _ /-- This is a weaker version of `Sup_inf_eq` -/ lemma supr_inf_le_Sup_inf : (⨆ b ∈ s, b ⊓ a) ≤ Sup s ⊓ a := @Inf_sup_le_infi_sup αᵒᵈ _ _ _ lemma le_supr_inf_supr (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ (⨆ i, g i) := le_inf (supr_mono $ λ i, inf_le_left) (supr_mono $ λ i, inf_le_right) lemma infi_sup_infi_le (f g : ι → α) : (⨅ i, f i) ⊔ (⨅ i, g i) ≤ ⨅ i, f i ⊔ g i := @le_supr_inf_supr αᵒᵈ ι _ f g lemma disjoint_Sup_left {a : set α} {b : α} (d : disjoint (Sup a) b) {i} (hi : i ∈ a) : disjoint i b := (supr₂_le_iff.1 (supr_inf_le_Sup_inf.trans d) i hi : _) lemma disjoint_Sup_right {a : set α} {b : α} (d : disjoint b (Sup a)) {i} (hi : i ∈ a) : disjoint b i := (supr₂_le_iff.mp (supr_inf_le_inf_Sup.trans d) i hi : _) end complete_lattice /-- Pullback a `complete_lattice` along an injection. -/ @[reducible] -- See note [reducible non-instances] protected def function.injective.complete_lattice [has_sup α] [has_inf α] [has_Sup α] [has_Inf α] [has_top α] [has_bot α] [complete_lattice β] (f : α → β) (hf : function.injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (Sup s) = ⨆ a ∈ s, f a) (map_Inf : ∀ s, f (Inf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : complete_lattice α := { Sup := Sup, le_Sup := λ s a h, (le_supr₂ a h).trans (map_Sup _).ge, Sup_le := λ s a h, (map_Sup _).trans_le $ supr₂_le h, Inf := Inf, Inf_le := λ s a h, (map_Inf _).trans_le $ infi₂_le a h, le_Inf := λ s a h, (le_infi₂ h).trans (map_Inf _).ge, -- we cannot use bounded_order.lift here as the `has_le` instance doesn't exist yet top := ⊤, le_top := λ a, (@le_top β _ _ _).trans map_top.ge, bot := ⊥, bot_le := λ a, map_bot.le.trans bot_le, ..hf.lattice f map_sup map_inf }
ec2f3c21fd190efd9e0f26b6638ae871c1c46885
30b012bb72d640ec30c8fdd4c45fdfa67beb012c
/analysis/real.lean
a317762d26eb3ed5a2099fa7eeba6a4bcb9e8671
[ "Apache-2.0" ]
permissive
kckennylau/mathlib
21fb810b701b10d6606d9002a4004f7672262e83
47b3477e20ffb5a06588dd3abb01fe0fe3205646
refs/heads/master
1,634,976,409,281
1,542,042,832,000
1,542,319,733,000
109,560,458
0
0
Apache-2.0
1,542,369,208,000
1,509,867,494,000
Lean
UTF-8
Lean
false
false
17,444
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro The real numbers ℝ. They are constructed as the topological completion of ℚ. With the following steps: (1) prove that ℚ forms a uniform space. (2) subtraction and addition are uniform continuous functions in this space (3) for multiplication and inverse this only holds on bounded subsets (4) ℝ is defined as separated Cauchy filters over ℚ (the separation requires a quotient construction) (5) extend the uniform continuous functions along the completion (6) proof field properties using the principle of extension of identities TODO generalizations: * topological groups & rings * order topologies * Archimedean fields -/ import logic.function analysis.metric_space tactic.linarith noncomputable theory open classical set lattice filter topological_space local attribute [instance] prop_decidable universes u v w variables {α : Type u} {β : Type v} {γ : Type w} instance : metric_space ℚ := metric_space.induced coe rat.cast_injective real.metric_space theorem rat.dist_eq (x y : ℚ) : dist x y = abs (x - y) := rfl instance : metric_space ℤ := begin letI M := metric_space.induced coe int.cast_injective real.metric_space, refine @metric_space.replace_uniformity _ int.uniform_space M (le_antisymm refl_le_uniformity $ λ r ru, mem_uniformity_dist.2 ⟨1, zero_lt_one, λ a b h, mem_principal_sets.1 ru $ dist_le_zero.1 (_ : (abs (a - b) : ℝ) ≤ 0)⟩), simpa using (@int.cast_le ℝ _ _ 0).2 (int.lt_add_one_iff.1 $ (@int.cast_lt ℝ _ (abs (a - b)) 1).1 $ by simpa using h) end theorem uniform_continuous_of_rat : uniform_continuous (coe : ℚ → ℝ) := uniform_continuous_comap theorem uniform_embedding_of_rat : uniform_embedding (coe : ℚ → ℝ) := uniform_embedding_comap rat.cast_injective theorem dense_embedding_of_rat : dense_embedding (coe : ℚ → ℝ) := uniform_embedding_of_rat.dense_embedding $ λ x, mem_closure_iff_nhds.2 $ λ t ht, let ⟨ε,ε0, hε⟩ := mem_nhds_iff_metric.1 ht in let ⟨q, h⟩ := exists_rat_near x ε0 in ne_empty_iff_exists_mem.2 ⟨_, hε (mem_ball'.2 h), q, rfl⟩ theorem embedding_of_rat : embedding (coe : ℚ → ℝ) := dense_embedding_of_rat.embedding theorem continuous_of_rat : continuous (coe : ℚ → ℝ) := uniform_continuous_of_rat.continuous theorem real.uniform_continuous_add : uniform_continuous (λp : ℝ × ℝ, p.1 + p.2) := uniform_continuous_of_metric.2 $ λ ε ε0, let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0 in ⟨δ, δ0, λ a b h, let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ h₁ h₂⟩ -- TODO(Mario): Find a way to use rat_add_continuous_lemma theorem rat.uniform_continuous_add : uniform_continuous (λp : ℚ × ℚ, p.1 + p.2) := uniform_embedding_of_rat.uniform_continuous_iff.2 $ by simp [(∘)]; exact ((uniform_continuous_fst.comp uniform_continuous_of_rat).prod_mk (uniform_continuous_snd.comp uniform_continuous_of_rat)).comp real.uniform_continuous_add theorem real.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℝ _) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨_, ε0, λ a b h, by rw dist_comm at h; simpa [real.dist_eq] using h⟩ theorem rat.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℚ _) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨_, ε0, λ a b h, by rw dist_comm at h; simpa [rat.dist_eq] using h⟩ instance : uniform_add_group ℝ := uniform_add_group.mk' real.uniform_continuous_add real.uniform_continuous_neg instance : uniform_add_group ℚ := uniform_add_group.mk' rat.uniform_continuous_add rat.uniform_continuous_neg instance : topological_add_group ℝ := by apply_instance instance : topological_add_group ℚ := by apply_instance instance : orderable_topology ℚ := induced_orderable_topology _ (λ x y, rat.cast_lt) (@exists_rat_btwn _ _ _) lemma real.is_topological_basis_Ioo_rat : @is_topological_basis ℝ _ (⋃(a b : ℚ) (h : a < b), {Ioo a b}) := is_topological_basis_of_open_of_nhds (by simp [is_open_Ioo] {contextual:=tt}) (assume a v hav hv, let ⟨l, u, hl, hu, h⟩ := (mem_nhds_unbounded (no_top _) (no_bot _)).mp (mem_nhds_sets hv hav), ⟨q, hlq, hqa⟩ := exists_rat_btwn hl, ⟨p, hap, hpu⟩ := exists_rat_btwn hu in ⟨Ioo q p, by simp; exact ⟨q, p, rat.cast_lt.1 $ lt_trans hqa hap, rfl⟩, ⟨hqa, hap⟩, assume a' ⟨hqa', ha'p⟩, h _ (lt_trans hlq hqa') (lt_trans ha'p hpu)⟩) instance : second_countable_topology ℝ := ⟨⟨(⋃(a b : ℚ) (h : a < b), {Ioo a b}), by simp [countable_Union, countable_Union_Prop], real.is_topological_basis_Ioo_rat.2.2⟩⟩ /- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (λp:ℚ, p + r) := _ lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) := _ -/ lemma real.uniform_continuous_inv (s : set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ abs x) : uniform_continuous (λp:s, p.1⁻¹) := uniform_continuous_of_metric.2 $ λ ε ε0, let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0 in ⟨δ, δ0, λ a b h, Hδ (H _ a.2) (H _ b.2) h⟩ lemma real.uniform_continuous_abs : uniform_continuous (abs : ℝ → ℝ) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨ε, ε0, λ a b, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩ lemma real.continuous_abs : continuous (abs : ℝ → ℝ) := real.uniform_continuous_abs.continuous lemma rat.uniform_continuous_abs : uniform_continuous (abs : ℚ → ℚ) := uniform_continuous_of_metric.2 $ λ ε ε0, ⟨ε, ε0, λ a b h, lt_of_le_of_lt (by simpa [rat.dist_eq] using abs_abs_sub_abs_le_abs_sub _ _) h⟩ lemma rat.continuous_abs : continuous (abs : ℚ → ℚ) := rat.uniform_continuous_abs.continuous lemma real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : tendsto (λq, q⁻¹) (nhds r) (nhds r⁻¹) := by rw ← abs_pos_iff at r0; exact tendsto_of_uniform_continuous_subtype (real.uniform_continuous_inv {x | abs r / 2 < abs x} (half_pos r0) (λ x h, le_of_lt h)) (mem_nhds_sets (real.continuous_abs _ $ is_open_lt' (abs r / 2)) (half_lt_self r0)) lemma real.continuous_inv' : continuous (λa:{r:ℝ // r ≠ 0}, a.val⁻¹) := continuous_iff_tendsto.mpr $ assume ⟨r, hr⟩, (continuous_iff_tendsto.mp continuous_subtype_val _).comp (real.tendsto_inv hr) lemma real.continuous_inv [topological_space α] {f : α → ℝ} (h : ∀a, f a ≠ 0) (hf : continuous f) : continuous (λa, (f a)⁻¹) := show continuous ((has_inv.inv ∘ @subtype.val ℝ (λr, r ≠ 0)) ∘ λa, ⟨f a, h a⟩), from (continuous_subtype_mk _ hf).comp real.continuous_inv' lemma real.uniform_continuous_mul_const {x : ℝ} : uniform_continuous ((*) x) := uniform_continuous_of_metric.2 $ λ ε ε0, begin cases no_top (abs x) with y xy, have y0 := lt_of_le_of_lt (abs_nonneg _) xy, refine ⟨_, div_pos ε0 y0, λ a b h, _⟩, rw [real.dist_eq, ← mul_sub, abs_mul, ← mul_div_cancel' ε (ne_of_gt y0)], exact mul_lt_mul' (le_of_lt xy) h (abs_nonneg _) y0 end lemma real.uniform_continuous_mul (s : set (ℝ × ℝ)) {r₁ r₂ : ℝ} (r₁0 : 0 < r₁) (r₂0 : 0 < r₂) (H : ∀ x ∈ s, abs (x : ℝ × ℝ).1 < r₁ ∧ abs x.2 < r₂) : uniform_continuous (λp:s, p.1.1 * p.1.2) := uniform_continuous_of_metric.2 $ λ ε ε0, let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0 r₁0 r₂0 in ⟨δ, δ0, λ a b h, let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩ protected lemma real.continuous_mul : continuous (λp : ℝ × ℝ, p.1 * p.2) := continuous_iff_tendsto.2 $ λ ⟨a₁, a₂⟩, tendsto_of_uniform_continuous_subtype (real.uniform_continuous_mul ({x | abs x < abs a₁ + 1}.prod {x | abs x < abs a₂ + 1}) (lt_of_le_of_lt (abs_nonneg _) (lt_add_one _)) (lt_of_le_of_lt (abs_nonneg _) (lt_add_one _)) (λ x, id)) (mem_nhds_sets (is_open_prod (real.continuous_abs _ $ is_open_gt' (abs a₁ + 1)) (real.continuous_abs _ $ is_open_gt' (abs a₂ + 1))) ⟨lt_add_one (abs a₁), lt_add_one (abs a₂)⟩) instance : topological_ring ℝ := { continuous_mul := real.continuous_mul, ..real.topological_add_group } instance : topological_semiring ℝ := by apply_instance lemma rat.continuous_mul : continuous (λp : ℚ × ℚ, p.1 * p.2) := embedding_of_rat.continuous_iff.2 $ by simp [(∘)]; exact ((continuous_fst.comp continuous_of_rat).prod_mk (continuous_snd.comp continuous_of_rat)).comp real.continuous_mul instance : topological_ring ℚ := { continuous_mul := rat.continuous_mul, ..rat.topological_add_group } theorem real.ball_eq_Ioo (x ε : ℝ) : ball x ε = Ioo (x - ε) (x + ε) := set.ext $ λ y, by rw [mem_ball, real.dist_eq, abs_sub_lt_iff, sub_lt_iff_lt_add', and_comm, sub_lt]; refl theorem real.Ioo_eq_ball (x y : ℝ) : Ioo x y = ball ((x + y) / 2) ((y - x) / 2) := by rw [real.ball_eq_Ioo, ← sub_div, add_comm, ← sub_add, add_sub_cancel', add_self_div_two, ← add_div, add_assoc, add_sub_cancel'_right, add_self_div_two] lemma real.totally_bounded_Ioo (a b : ℝ) : totally_bounded (Ioo a b) := totally_bounded_of_metric.2 $ λ ε ε0, begin rcases exists_nat_gt ((b - a) / ε) with ⟨n, ba⟩, rw [div_lt_iff' ε0, sub_lt_iff_lt_add'] at ba, let s := (λ i:ℕ, a + ε * i) '' {i:ℕ | i < n}, refine ⟨s, finite_image _ ⟨set.fintype_lt_nat _⟩, λ x h, _⟩, rcases h with ⟨ax, xb⟩, let i : ℕ := ⌊(x - a) / ε⌋.to_nat, have : (i : ℤ) = ⌊(x - a) / ε⌋ := int.to_nat_of_nonneg (floor_nonneg.2 $ le_of_lt (div_pos (sub_pos.2 ax) ε0)), simp, refine ⟨_, ⟨i, _, rfl⟩, _⟩, { rw [← int.coe_nat_lt, this], refine int.cast_lt.1 (lt_of_le_of_lt (floor_le _) _), rw [int.cast_coe_nat, div_lt_iff' ε0, sub_lt_iff_lt_add'], exact lt_trans xb ba }, { rw [real.dist_eq, ← int.cast_coe_nat, this, abs_of_nonneg, ← sub_sub, sub_lt_iff_lt_add'], { have := lt_floor_add_one ((x - a) / ε), rwa [div_lt_iff' ε0, mul_add, mul_one] at this }, { have := floor_le ((x - a) / ε), rwa [ge, sub_nonneg, ← le_sub_iff_add_le', ← le_div_iff' ε0] } } end lemma real.totally_bounded_ball (x ε : ℝ) : totally_bounded (ball x ε) := by rw real.ball_eq_Ioo; apply real.totally_bounded_Ioo lemma real.totally_bounded_Ico (a b : ℝ) : totally_bounded (Ico a b) := let ⟨c, ac⟩ := no_bot a in totally_bounded_subset (by exact λ x ⟨h₁, h₂⟩, ⟨lt_of_lt_of_le ac h₁, h₂⟩) (real.totally_bounded_Ioo c b) lemma real.totally_bounded_Icc (a b : ℝ) : totally_bounded (Icc a b) := let ⟨c, bc⟩ := no_top b in totally_bounded_subset (by exact λ x ⟨h₁, h₂⟩, ⟨h₁, lt_of_le_of_lt h₂ bc⟩) (real.totally_bounded_Ico a c) lemma rat.totally_bounded_Icc (a b : ℚ) : totally_bounded (Icc a b) := begin have := totally_bounded_preimage uniform_embedding_of_rat (real.totally_bounded_Icc a b), rwa (set.ext (λ q, _) : Icc _ _ = _), simp end -- TODO(Mario): Generalize to first-countable uniform spaces? instance : complete_space ℝ := ⟨λ f cf, begin let g : ℕ → {ε:ℝ//ε>0} := λ n, ⟨n.to_pnat'⁻¹, inv_pos (nat.cast_pos.2 n.to_pnat'.pos)⟩, choose S hS hS_dist using show ∀n:ℕ, ∃t ∈ f.sets, ∀ x y ∈ t, dist x y < g n, from assume n, let ⟨t, tf, h⟩ := (cauchy_of_metric.1 cf).2 (g n).1 (g n).2 in ⟨t, tf, h⟩, let F : ℕ → set ℝ := λn, ⋂i≤n, S i, have hF : ∀n, F n ∈ f.sets := assume n, Inter_mem_sets (finite_le_nat n) (λ i _, hS i), have hF_dist : ∀n, ∀ x y ∈ F n, dist x y < g n := assume n x y hx hy, have F n ⊆ S n := bInter_subset_of_mem (le_refl n), (hS_dist n) _ _ (this hx) (this hy), choose G hG using assume n:ℕ, inhabited_of_mem_sets cf.1 (hF n), have hg : ∀ ε > 0, ∃ n, ∀ j ≥ n, (g j : ℝ) < ε, { intros ε ε0, cases exists_nat_gt ε⁻¹ with n hn, refine ⟨n, λ j nj, _⟩, have hj := lt_of_lt_of_le hn (nat.cast_le.2 nj), have j0 := lt_trans (inv_pos ε0) hj, have jε := (inv_lt j0 ε0).2 hj, rwa ← pnat.to_pnat'_coe (nat.cast_pos.1 j0) at jε }, let c : cau_seq ℝ abs, { refine ⟨λ n, G n, λ ε ε0, _⟩, cases hg _ ε0 with n hn, refine ⟨n, λ j jn, _⟩, have : F j ⊆ F n := bInter_subset_bInter_left (λ i h, @le_trans _ _ i n j h jn), exact lt_trans (hF_dist n _ _ (this (hG j)) (hG n)) (hn _ $ le_refl _) }, refine ⟨cau_seq.lim c, λ s h, _⟩, rcases mem_nhds_iff_metric.1 h with ⟨ε, ε0, hε⟩, cases exists_forall_ge_and (hg _ $ half_pos ε0) (cau_seq.equiv_lim c _ $ half_pos ε0) with n hn, cases hn _ (le_refl _) with h₁ h₂, refine sets_of_superset _ (hF n) (subset.trans _ $ subset.trans (ball_half_subset (G n) h₂) hε), exact λ x h, lt_trans ((hF_dist n) x (G n) h (hG n)) h₁ end⟩ lemma tendsto_of_nat_at_top_at_top : tendsto (coe : ℕ → ℝ) at_top at_top := tendsto_infi.2 $ assume r, tendsto_principal.2 $ let ⟨n, hn⟩ := exists_nat_gt r in mem_at_top_sets.2 ⟨n, λ m h, le_trans (le_of_lt hn) (nat.cast_le.2 h)⟩ section lemma closure_of_rat_image_lt {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q < x}) = {r | ↑q ≤ r} := subset.antisymm ((closure_subset_iff_subset_of_is_closed (is_closed_ge' _)).2 (image_subset_iff.2 $ λ p h, le_of_lt $ (@rat.cast_lt ℝ _ _ _).2 h)) $ λ x hx, mem_closure_iff_nhds.2 $ λ t ht, let ⟨ε, ε0, hε⟩ := mem_nhds_iff_metric.1 ht in let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0) in ne_empty_iff_exists_mem.2 ⟨_, hε (show abs _ < _, by rwa [abs_of_nonneg (le_of_lt $ sub_pos.2 h₁), sub_lt_iff_lt_add']), p, rat.cast_lt.1 (@lt_of_le_of_lt ℝ _ _ _ _ hx h₁), rfl⟩ /- TODO(Mario): Put these back only if needed later lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} := _ lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) : closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} := _-/ lemma compact_Icc {a b : ℝ} : compact (Icc a b) := compact_of_totally_bounded_is_closed (real.totally_bounded_Icc a b) (is_closed_inter (is_closed_ge' a) (is_closed_le' b)) open real lemma real.intermediate_value {f : ℝ → ℝ} {a b t : ℝ} (hf : ∀ x, a ≤ x → x ≤ b → tendsto f (nhds x) (nhds (f x))) (ha : f a ≤ t) (hb : t ≤ f b) (hab : a ≤ b) : ∃ x : ℝ, a ≤ x ∧ x ≤ b ∧ f x = t := let x := real.Sup {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} in have hx₁ : ∃ y, ∀ g ∈ {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b}, g ≤ y := ⟨b, λ _ h, h.2.2⟩, have hx₂ : ∃ y, y ∈ {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} := ⟨a, ha, le_refl _, hab⟩, have hax : a ≤ x, from le_Sup _ hx₁ ⟨ha, le_refl _, hab⟩, have hxb : x ≤ b, from (Sup_le _ hx₂ hx₁).2 (λ _ h, h.2.2), ⟨x, hax, hxb, eq_of_forall_dist_le $ λ ε ε0, let ⟨δ, hδ0, hδ⟩ := tendsto_nhds_of_metric.1 (hf _ hax hxb) ε ε0 in (le_total t (f x)).elim (λ h, le_of_not_gt $ λ hfε, begin rw [dist_eq, abs_of_nonneg (sub_nonneg.2 h)] at hfε, refine mt (Sup_le {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} hx₂ hx₁).2 (not_le_of_gt (sub_lt_self x (half_pos hδ0))) (λ g hg, le_of_not_gt (λ hgδ, not_lt_of_ge hg.1 (lt_trans (lt_sub.1 hfε) (sub_lt_of_sub_lt (lt_of_le_of_lt (le_abs_self _) _))))), rw abs_sub, exact hδ (abs_sub_lt_iff.2 ⟨lt_of_le_of_lt (sub_nonpos.2 (le_Sup _ hx₁ hg)) hδ0, by simp only [x] at *; linarith⟩) end) (λ h, le_of_not_gt $ λ hfε, begin rw [dist_eq, abs_of_nonpos (sub_nonpos.2 h)] at hfε, exact mt (le_Sup {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b}) (λ h : ∀ k, k ∈ {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} → k ≤ x, not_le_of_gt ((lt_add_iff_pos_left x).2 (half_pos hδ0)) (h _ ⟨le_trans (le_sub_iff_add_le.2 (le_trans (le_abs_self _) (le_of_lt (hδ $ by rw [dist_eq, add_sub_cancel, abs_of_nonneg (le_of_lt (half_pos hδ0))]; exact half_lt_self hδ0)))) (by linarith), le_trans hax (le_of_lt ((lt_add_iff_pos_left _).2 (half_pos hδ0))), le_of_not_gt (λ hδy, not_lt_of_ge hb (lt_of_le_of_lt (show f b ≤ f b - f x - ε + t, by linarith) (add_lt_of_neg_of_le (sub_neg_of_lt (lt_of_le_of_lt (le_abs_self _) (@hδ b (abs_sub_lt_iff.2 ⟨by simp only [x] at *; linarith, by linarith⟩)))) (le_refl _))))⟩)) hx₁ end)⟩ lemma real.intermediate_value' {f : ℝ → ℝ} {a b t : ℝ} (hf : ∀ x, a ≤ x → x ≤ b → tendsto f (nhds x) (nhds (f x))) (ha : t ≤ f a) (hb : f b ≤ t) (hab : a ≤ b) : ∃ x : ℝ, a ≤ x ∧ x ≤ b ∧ f x = t := let ⟨x, hx₁, hx₂, hx₃⟩ := @real.intermediate_value (λ x, - f x) a b (-t) (λ x hax hxb, tendsto_neg (hf x hax hxb)) (neg_le_neg ha) (neg_le_neg hb) hab in ⟨x, hx₁, hx₂, neg_inj hx₃⟩ end
4dd878941aad934f94a7d118829f38de36c19c5d
4fa161becb8ce7378a709f5992a594764699e268
/src/analysis/specific_limits.lean
7abc333e93fedc93738e6a6d6b1e9e40baba91cb
[ "Apache-2.0" ]
permissive
laughinggas/mathlib
e4aa4565ae34e46e834434284cb26bd9d67bc373
86dcd5cda7a5017c8b3c8876c89a510a19d49aad
refs/heads/master
1,669,496,232,688
1,592,831,995,000
1,592,831,995,000
274,155,979
0
0
Apache-2.0
1,592,835,190,000
1,592,835,189,000
null
UTF-8
Lean
false
false
25,502
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl A collection of specific limit computations. -/ import analysis.normed_space.basic import algebra.geom_sum import topology.instances.ennreal import tactic.ring_exp noncomputable theory open_locale classical topological_space open classical function filter finset metric open_locale big_operators variables {α : Type*} {β : Type*} {ι : Type*} lemma tendsto_norm_at_top_at_top : tendsto (norm : ℝ → ℝ) at_top at_top := tendsto_abs_at_top_at_top /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to infinity. The archimedean assumption is convenient to get a statement that works on `ℕ`, `ℤ` and `ℝ`, although not necessary (a version in ordered fields is given in `tendsto_at_top_mul_left'`). -/ lemma tendsto_at_top_mul_left [decidable_linear_ordered_semiring α] [archimedean α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, r * f x) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), obtain ⟨n, hn⟩ : ∃ (n : ℕ), (1 : α) ≤ n • r := archimedean.arch 1 hr, have hn' : 1 ≤ r * n, by rwa nsmul_eq_mul' at hn, filter_upwards [(tendsto_at_top _ _).1 hf (n * max b 0)], assume x hx, calc b ≤ 1 * max b 0 : by { rw [one_mul], exact le_max_left _ _ } ... ≤ (r * n) * max b 0 : mul_le_mul_of_nonneg_right hn' (le_max_right _ _) ... = r * (n * max b 0) : by rw [mul_assoc] ... ≤ r * f x : mul_le_mul_of_nonneg_left hx (le_of_lt hr) end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to infinity. The archimedean assumption is convenient to get a statement that works on `ℕ`, `ℤ` and `ℝ`, although not necessary (a version in ordered fields is given in `tendsto_at_top_mul_right'`). -/ lemma tendsto_at_top_mul_right [decidable_linear_ordered_semiring α] [archimedean α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x * r) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), obtain ⟨n, hn⟩ : ∃ (n : ℕ), (1 : α) ≤ n • r := archimedean.arch 1 hr, have hn' : 1 ≤ (n : α) * r, by rwa nsmul_eq_mul at hn, filter_upwards [(tendsto_at_top _ _).1 hf (max b 0 * n)], assume x hx, calc b ≤ max b 0 * 1 : by { rw [mul_one], exact le_max_left _ _ } ... ≤ max b 0 * (n * r) : mul_le_mul_of_nonneg_left hn' (le_max_right _ _) ... = (max b 0 * n) * r : by rw [mul_assoc] ... ≤ f x * r : mul_le_mul_of_nonneg_right hx (le_of_lt hr) end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to infinity. For a version working in `ℕ` or `ℤ`, use `tendsto_at_top_mul_left` instead. -/ lemma tendsto_at_top_mul_left' [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, r * f x) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), filter_upwards [(tendsto_at_top _ _).1 hf (b/r)], assume x hx, simpa [div_le_iff' hr] using hx end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to infinity. For a version working in `ℕ` or `ℤ`, use `tendsto_at_top_mul_right` instead. -/ lemma tendsto_at_top_mul_right' [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x * r) l at_top := by simpa [mul_comm] using tendsto_at_top_mul_left' hr hf /-- If a function tends to infinity along a filter, then this function divided by a positive constant also tends to infinity. -/ lemma tendsto_at_top_div [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x / r) l at_top := tendsto_at_top_mul_right' (inv_pos.2 hr) hf /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/ lemma tendsto_inv_zero_at_top [discrete_linear_ordered_field α] [topological_space α] [order_topology α] : tendsto (λx:α, x⁻¹) (nhds_within (0 : α) (set.Ioi 0)) at_top := begin apply (tendsto_at_top _ _).2 (λb, _), refine mem_nhds_within_Ioi_iff_exists_Ioo_subset.2 ⟨(max b 1)⁻¹, by simp [zero_lt_one], λx hx, _⟩, calc b ≤ max b 1 : le_max_left _ _ ... ≤ x⁻¹ : begin apply (le_inv _ hx.1).2 (le_of_lt hx.2), exact lt_of_lt_of_le zero_lt_one (le_max_right _ _) end end /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/ lemma tendsto_inv_at_top_zero' [discrete_linear_ordered_field α] [topological_space α] [order_topology α] : tendsto (λr:α, r⁻¹) at_top (nhds_within (0 : α) (set.Ioi 0)) := begin assume s hs, rw mem_nhds_within_Ioi_iff_exists_Ioc_subset at hs, rcases hs with ⟨C, C0, hC⟩, change 0 < C at C0, refine filter.mem_map.2 (mem_sets_of_superset (mem_at_top C⁻¹) (λ x hx, hC _)), have : 0 < x, from lt_of_lt_of_le (inv_pos.2 C0) hx, exact ⟨inv_pos.2 this, (inv_le C0 this).1 hx⟩ end lemma tendsto_inv_at_top_zero [discrete_linear_ordered_field α] [topological_space α] [order_topology α] : tendsto (λr:α, r⁻¹) at_top (𝓝 0) := tendsto_le_right inf_le_left tendsto_inv_at_top_zero' lemma summable_of_absolute_convergence_real {f : ℕ → ℝ} : (∃r, tendsto (λn, (∑ i in range n, abs (f i))) at_top (𝓝 r)) → summable f | ⟨r, hr⟩ := begin refine summable_of_summable_norm ⟨r, (has_sum_iff_tendsto_nat_of_nonneg _ _).2 _⟩, exact assume i, norm_nonneg _, simpa only using hr end lemma tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ)⁻¹) at_top (𝓝 0) := tendsto_inv_at_top_zero.comp (tendsto_coe_nat_real_at_top_iff.2 tendsto_id) lemma tendsto_const_div_at_top_nhds_0_nat (C : ℝ) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) := by simpa only [mul_zero] using tendsto_const_nhds.mul tendsto_inverse_at_top_nhds_0_nat lemma nnreal.tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : nnreal)⁻¹) at_top (𝓝 0) := by { rw ← nnreal.tendsto_coe, convert tendsto_inverse_at_top_nhds_0_nat, simp } lemma nnreal.tendsto_const_div_at_top_nhds_0_nat (C : nnreal) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) := by simpa using tendsto_const_nhds.mul nnreal.tendsto_inverse_at_top_nhds_0_nat lemma tendsto_one_div_add_at_top_nhds_0_nat : tendsto (λ n : ℕ, 1 / ((n : ℝ) + 1)) at_top (𝓝 0) := suffices tendsto (λ n : ℕ, 1 / (↑(n + 1) : ℝ)) at_top (𝓝 0), by simpa, (tendsto_add_at_top_iff_nat 1).2 (tendsto_const_div_at_top_nhds_0_nat 1) /-! ### Powers -/ lemma tendsto_add_one_pow_at_top_at_top_of_pos [linear_ordered_semiring α] [archimedean α] {r : α} (h : 0 < r) : tendsto (λ n:ℕ, (r + 1)^n) at_top at_top := (tendsto_at_top_at_top_of_monotone (λ n m, pow_le_pow (le_add_of_nonneg_left' (le_of_lt h)))).2 $ λ x, (add_one_pow_unbounded_of_pos x h).imp $ λ _, le_of_lt lemma tendsto_pow_at_top_at_top_of_one_lt [linear_ordered_ring α] [archimedean α] {r : α} (h : 1 < r) : tendsto (λn:ℕ, r ^ n) at_top at_top := sub_add_cancel r 1 ▸ tendsto_add_one_pow_at_top_at_top_of_pos (sub_pos.2 h) lemma nat.tendsto_pow_at_top_at_top_of_one_lt {m : ℕ} (h : 1 < m) : tendsto (λn:ℕ, m ^ n) at_top at_top := begin simp only [← nat.pow_eq_pow], exact nat.sub_add_cancel (le_of_lt h) ▸ tendsto_add_one_pow_at_top_at_top_of_pos (nat.sub_pos_of_lt h) end lemma lim_norm_zero' {𝕜 : Type*} [normed_group 𝕜] : tendsto (norm : 𝕜 → ℝ) (nhds_within 0 {x | x ≠ 0}) (nhds_within 0 (set.Ioi 0)) := lim_norm_zero.inf $ tendsto_principal_principal.2 $ λ x hx, norm_pos_iff.2 hx lemma normed_field.tendsto_norm_inverse_nhds_within_0_at_top {𝕜 : Type*} [normed_field 𝕜] : tendsto (λ x:𝕜, ∥x⁻¹∥) (nhds_within 0 {x | x ≠ 0}) at_top := (tendsto_inv_zero_at_top.comp lim_norm_zero').congr $ λ x, (normed_field.norm_inv x).symm lemma tendsto_pow_at_top_nhds_0_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : tendsto (λn:ℕ, r^n) at_top (𝓝 0) := by_cases (assume : r = 0, (tendsto_add_at_top_iff_nat 1).mp $ by simp [pow_succ, this, tendsto_const_nhds]) (assume : r ≠ 0, have tendsto (λn, (r⁻¹ ^ n)⁻¹) at_top (𝓝 0), from tendsto_inv_at_top_zero.comp (tendsto_pow_at_top_at_top_of_one_lt $ one_lt_inv (lt_of_le_of_ne h₁ this.symm) h₂), tendsto.congr' (univ_mem_sets' $ by simp *) this) lemma geom_lt {u : ℕ → ℝ} {k : ℝ} (hk : 0 < k) {n : ℕ} (h : ∀ m ≤ n, k*u m < u (m + 1)) : k^(n + 1) *u 0 < u (n + 1) := begin induction n with n ih, { simpa using h 0 (le_refl _) }, have : (∀ (m : ℕ), m ≤ n → k * u m < u (m + 1)), intros m hm, apply h, exact nat.le_succ_of_le hm, specialize ih this, change k ^ (n + 2) * u 0 < u (n + 2), replace h : k * u (n + 1) < u (n + 2) := h (n+1) (le_refl _), calc k ^ (n + 2) * u 0 = k*(k ^ (n + 1) * u 0) : by ring_exp ... < k*(u (n + 1)) : mul_lt_mul_of_pos_left ih hk ... < u (n + 2) : h, end /-- If a sequence `v` of real numbers satisfies `k*v n < v (n+1)` with `1 < k`, then it goes to +∞. -/ lemma tendsto_at_top_of_geom_lt {v : ℕ → ℝ} {k : ℝ} (h₀ : 0 < v 0) (hk : 1 < k) (hu : ∀ n, k*v n < v (n+1)) : tendsto v at_top at_top := begin apply tendsto_at_top_mono, show ∀ n, k^n*v 0 ≤ v n, { intro n, induction n with n ih, { simp }, calc k ^ (n + 1) * v 0 = k*(k^n*v 0) : by ring_exp ... ≤ k*v n : mul_le_mul_of_nonneg_left ih (by linarith) ... ≤ v (n + 1) : le_of_lt (hu n) }, apply tendsto_at_top_mul_right h₀, exact tendsto_pow_at_top_at_top_of_one_lt hk, end lemma nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : nnreal} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := nnreal.tendsto_coe.1 $ by simp only [nnreal.coe_pow, nnreal.coe_zero, tendsto_pow_at_top_nhds_0_of_lt_1 r.coe_nonneg hr] lemma ennreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : ennreal} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := begin rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, rw [← ennreal.coe_zero], norm_cast at *, apply nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 hr end lemma tendsto_pow_at_top_nhds_0_of_norm_lt_1 {K : Type*} [normed_field K] {ξ : K} (_ : ∥ξ∥ < 1) : tendsto (λ n : ℕ, ξ^n) at_top (𝓝 0) := begin rw [tendsto_iff_norm_tendsto_zero], convert tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg ξ) ‹∥ξ∥ < 1›, ext n, simp end lemma tendsto_pow_at_top_nhds_0_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : tendsto (λn:ℕ, r^n) at_top (𝓝 0) := tendsto_pow_at_top_nhds_0_of_norm_lt_1 h /-! ### Geometric series-/ section geometric lemma has_sum_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := have r ≠ 1, from ne_of_lt h₂, have r + -1 ≠ 0, by rw [←sub_eq_add_neg, ne, sub_eq_iff_eq_add]; simp; assumption, have tendsto (λn, (r ^ n - 1) * (r - 1)⁻¹) at_top (𝓝 ((0 - 1) * (r - 1)⁻¹)), from ((tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂).sub tendsto_const_nhds).mul tendsto_const_nhds, have (λ n, (∑ i in range n, r ^ i)) = (λ n, geom_series r n) := rfl, (has_sum_iff_tendsto_nat_of_nonneg (pow_nonneg h₁) _).mpr $ by simp [neg_inv, geom_sum, div_eq_mul_inv, *] at * lemma summable_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, has_sum_geometric_of_lt_1 h₁ h₂⟩ lemma tsum_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := tsum_eq_has_sum (has_sum_geometric_of_lt_1 h₁ h₂) lemma has_sum_geometric_two : has_sum (λn:ℕ, ((1:ℝ)/2) ^ n) 2 := by convert has_sum_geometric_of_lt_1 _ _; norm_num lemma summable_geometric_two : summable (λn:ℕ, ((1:ℝ)/2) ^ n) := ⟨_, has_sum_geometric_two⟩ lemma tsum_geometric_two : (∑'n:ℕ, ((1:ℝ)/2) ^ n) = 2 := tsum_eq_has_sum has_sum_geometric_two lemma sum_geometric_two_le (n : ℕ) : ∑ (i : ℕ) in range n, (1 / (2 : ℝ)) ^ i ≤ 2 := begin have : ∀ i, 0 ≤ (1 / (2 : ℝ)) ^ i, { intro i, apply pow_nonneg, norm_num }, convert sum_le_tsum (range n) (λ i _, this i) summable_geometric_two, exact tsum_geometric_two.symm end lemma has_sum_geometric_two' (a : ℝ) : has_sum (λn:ℕ, (a / 2) / 2 ^ n) a := begin convert has_sum.mul_left (a / 2) (has_sum_geometric_of_lt_1 (le_of_lt one_half_pos) one_half_lt_one), { funext n, simp, refl, }, { norm_num } end lemma summable_geometric_two' (a : ℝ) : summable (λ n:ℕ, (a / 2) / 2 ^ n) := ⟨a, has_sum_geometric_two' a⟩ lemma tsum_geometric_two' (a : ℝ) : (∑' n:ℕ, (a / 2) / 2^n) = a := tsum_eq_has_sum $ has_sum_geometric_two' a lemma nnreal.has_sum_geometric {r : nnreal} (hr : r < 1) : has_sum (λ n : ℕ, r ^ n) (1 - r)⁻¹ := begin apply nnreal.has_sum_coe.1, push_cast, rw [nnreal.coe_sub (le_of_lt hr)], exact has_sum_geometric_of_lt_1 r.coe_nonneg hr end lemma nnreal.summable_geometric {r : nnreal} (hr : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, nnreal.has_sum_geometric hr⟩ lemma tsum_geometric_nnreal {r : nnreal} (hr : r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := tsum_eq_has_sum (nnreal.has_sum_geometric hr) /-- The series `pow r` converges to `(1-r)⁻¹`. For `r < 1` the RHS is a finite number, and for `1 ≤ r` the RHS equals `∞`. -/ lemma ennreal.tsum_geometric (r : ennreal) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := begin cases lt_or_le r 1 with hr hr, { rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, norm_cast at *, convert ennreal.tsum_coe_eq (nnreal.has_sum_geometric hr), rw [ennreal.coe_inv $ ne_of_gt $ nnreal.sub_pos.2 hr] }, { rw [ennreal.sub_eq_zero_of_le hr, ennreal.inv_zero, ennreal.tsum_eq_supr_nat, supr_eq_top], refine λ a ha, (ennreal.exists_nat_gt (lt_top_iff_ne_top.1 ha)).imp (λ n hn, lt_of_lt_of_le hn _), have : ∀ k:ℕ, 1 ≤ r^k, by simpa using canonically_ordered_semiring.pow_le_pow_of_le_left hr, calc (n:ennreal) = (∑ i in range n, 1) : by rw [sum_const, nsmul_one, card_range] ... ≤ ∑ i in range n, r ^ i : sum_le_sum (λ k _, this k) } end variables {K : Type*} [normed_field K] {ξ : K} lemma has_sum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : has_sum (λn:ℕ, ξ ^ n) (1 - ξ)⁻¹ := begin have xi_ne_one : ξ ≠ 1, by { contrapose! h, simp [h] }, have A : tendsto (λn, (ξ ^ n - 1) * (ξ - 1)⁻¹) at_top (𝓝 ((0 - 1) * (ξ - 1)⁻¹)), from ((tendsto_pow_at_top_nhds_0_of_norm_lt_1 h).sub tendsto_const_nhds).mul tendsto_const_nhds, have B : (λ n, (∑ i in range n, ξ ^ i)) = (λ n, geom_series ξ n) := rfl, rw [has_sum_iff_tendsto_nat_of_summable_norm, B], { simpa [geom_sum, xi_ne_one, neg_inv] using A }, { simp [normed_field.norm_pow, summable_geometric_of_lt_1 (norm_nonneg _) h] } end lemma summable_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : summable (λn:ℕ, ξ ^ n) := ⟨_, has_sum_geometric_of_norm_lt_1 h⟩ lemma tsum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : (∑'n:ℕ, ξ ^ n) = (1 - ξ)⁻¹ := tsum_eq_has_sum (has_sum_geometric_of_norm_lt_1 h) lemma has_sum_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := has_sum_geometric_of_norm_lt_1 h lemma summable_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : summable (λn:ℕ, r ^ n) := summable_geometric_of_norm_lt_1 h lemma tsum_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := tsum_geometric_of_norm_lt_1 h end geometric /-! ### Sequences with geometrically decaying distance in metric spaces In this paragraph, we discuss sequences in metric spaces or emetric spaces for which the distance between two consecutive terms decays geometrically. We show that such sequences are Cauchy sequences, and bound their distances to the limit. We also discuss series with geometrically decaying terms. -/ section edist_le_geometric variables [emetric_space α] (r C : ennreal) (hr : r < 1) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C * r^n) include hr hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, `C ≠ ∞`, `r < 1`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric : cauchy_seq f := begin refine cauchy_seq_of_edist_le_of_tsum_ne_top _ hu _, rw [ennreal.tsum_mul_left, ennreal.tsum_geometric], refine ennreal.mul_ne_top hC (ennreal.inv_ne_top.2 _), exact ne_of_gt (ennreal.zero_lt_sub_iff_lt.2 hr) end omit hr hC /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : edist (f n) a ≤ (C * r^n) / (1 - r) := begin convert edist_le_tsum_of_edist_le_of_tendsto _ hu ha _, simp only [pow_add, ennreal.tsum_mul_left, ennreal.tsum_geometric, ennreal.div_def, mul_assoc] end /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : edist (f 0) a ≤ C / (1 - r) := by simpa only [pow_zero, mul_one] using edist_le_of_edist_le_geometric_of_tendsto r C hu ha 0 end edist_le_geometric section edist_le_geometric_two variables [emetric_space α] (C : ennreal) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C / 2^n) {a : α} (ha : tendsto f at_top (𝓝 a)) include hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric_two : cauchy_seq f := begin simp only [ennreal.div_def, ennreal.inv_pow] at hu, refine cauchy_seq_of_edist_le_geometric 2⁻¹ C _ hC hu, simp [ennreal.one_lt_two] end omit hC include ha /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f n` to the limit of `f` is bounded above by `2 * C * 2^-n`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto (n : ℕ) : edist (f n) a ≤ 2 * C / 2^n := begin simp only [ennreal.div_def, ennreal.inv_pow] at hu, rw [ennreal.div_def, mul_assoc, mul_comm, ennreal.inv_pow], convert edist_le_of_edist_le_geometric_of_tendsto 2⁻¹ C hu ha n, rw [ennreal.one_sub_inv_two, ennreal.inv_inv] end /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f 0` to the limit of `f` is bounded above by `2 * C`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto₀: edist (f 0) a ≤ 2 * C := by simpa only [pow_zero, ennreal.div_def, ennreal.inv_one, mul_one] using edist_le_of_edist_le_geometric_two_of_tendsto C hu ha 0 end edist_le_geometric_two section le_geometric variables [metric_space α] {r C : ℝ} (hr : r < 1) {f : ℕ → α} (hu : ∀n, dist (f n) (f (n+1)) ≤ C * r^n) include hr hu lemma aux_has_sum_of_le_geometric : has_sum (λ n : ℕ, C * r^n) (C / (1 - r)) := begin have h0 : 0 ≤ C, by simpa using le_trans dist_nonneg (hu 0), rcases eq_or_lt_of_le h0 with rfl | Cpos, { simp [has_sum_zero] }, { have rnonneg: r ≥ 0, from nonneg_of_mul_nonneg_left (by simpa only [pow_one] using le_trans dist_nonneg (hu 1)) Cpos, refine has_sum.mul_left C _, by simpa using has_sum_geometric_of_lt_1 rnonneg hr } end variables (r C) /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then `f` is a Cauchy sequence. Note that this lemma does not assume `0 ≤ C` or `0 ≤ r`. -/ lemma cauchy_seq_of_le_geometric : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C / (1 - r) := (tsum_eq_has_sum $ aux_has_sum_of_le_geometric hr hu) ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ ha /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ (C * r^n) / (1 - r) := begin have := aux_has_sum_of_le_geometric hr hu, convert dist_le_tsum_of_dist_le_of_tendsto _ hu ⟨_, this⟩ ha n, simp only [pow_add, mul_left_comm C, mul_div_right_comm], rw [mul_comm], exact (eq.symm $ tsum_eq_has_sum $ this.mul_left _) end omit hr hu variable (hu₂ : ∀ n, dist (f n) (f (n+1)) ≤ (C / 2) / 2^n) /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then `f` is a Cauchy sequence. -/ lemma cauchy_seq_of_le_geometric_two : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu₂ $ ⟨_, has_sum_geometric_two' C⟩ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C`. -/ lemma dist_le_of_le_geometric_two_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C := (tsum_geometric_two' C) ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu₂ (summable_geometric_two' C) ha include hu₂ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f n` to the limit of `f` is bounded above by `C / 2^n`. -/ lemma dist_le_of_le_geometric_two_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ C / 2^n := begin convert dist_le_tsum_of_dist_le_of_tendsto _ hu₂ (summable_geometric_two' C) ha n, simp only [add_comm n, pow_add, (div_div_eq_div_mul _ _ _).symm], symmetry, exact tsum_eq_has_sum (has_sum.mul_right _ $ has_sum_geometric_two' C) end end le_geometric section summable_le_geometric variables [normed_group α] {r C : ℝ} {f : ℕ → α} lemma dist_partial_sum_le_of_le_geometric (hf : ∀n, ∥f n∥ ≤ C * r^n) (n : ℕ) : dist (∑ i in range n, f i) (∑ i in range (n+1), f i) ≤ C * r ^ n := begin rw [sum_range_succ, dist_eq_norm, ← norm_neg], convert hf n, rw [neg_sub, add_sub_cancel] end /-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` form a Cauchy sequence. This lemma does not assume `0 ≤ r` or `0 ≤ C`. -/ lemma cauchy_seq_finset_of_geometric_bound (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) : cauchy_seq (λ s : finset (ℕ), ∑ x in s, f x) := cauchy_seq_finset_of_norm_bounded _ (aux_has_sum_of_le_geometric hr (dist_partial_sum_le_of_le_geometric hf)).summable hf /-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` are within distance `C * r ^ n / (1 - r)` of the sum of the series. This lemma does not assume `0 ≤ r` or `0 ≤ C`. -/ lemma norm_sub_le_of_geometric_bound_of_has_sum (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) {a : α} (ha : has_sum f a) (n : ℕ) : ∥(∑ x in finset.range n, f x) - a∥ ≤ (C * r ^ n) / (1 - r) := begin rw ← dist_eq_norm, apply dist_le_of_le_geometric_of_tendsto r C hr (dist_partial_sum_le_of_le_geometric hf), exact ha.tendsto_sum_nat end end summable_le_geometric /-! ### Positive sequences with small sums on encodable types -/ /-- For any positive `ε`, define on an encodable type a positive sequence with sum less than `ε` -/ def pos_sum_of_encodable {ε : ℝ} (hε : 0 < ε) (ι) [encodable ι] : {ε' : ι → ℝ // (∀ i, 0 < ε' i) ∧ ∃ c, has_sum ε' c ∧ c ≤ ε} := begin let f := λ n, (ε / 2) / 2 ^ n, have hf : has_sum f ε := has_sum_geometric_two' _, have f0 : ∀ n, 0 < f n := λ n, div_pos (half_pos hε) (pow_pos two_pos _), refine ⟨f ∘ encodable.encode, λ i, f0 _, _⟩, rcases hf.summable.summable_comp_of_injective (@encodable.encode_injective ι _) with ⟨c, hg⟩, refine ⟨c, hg, has_sum_le_inj _ (@encodable.encode_injective ι _) _ _ hg hf⟩, { assume i _, exact le_of_lt (f0 _) }, { assume n, exact le_refl _ } end namespace nnreal theorem exists_pos_sum_of_encodable {ε : nnreal} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ ∃c, has_sum ε' c ∧ c < ε := let ⟨a, a0, aε⟩ := dense hε in let ⟨ε', hε', c, hc, hcε⟩ := pos_sum_of_encodable a0 ι in ⟨ λi, ⟨ε' i, le_of_lt $ hε' i⟩, assume i, nnreal.coe_lt_coe.2 $ hε' i, ⟨c, has_sum_le (assume i, le_of_lt $ hε' i) has_sum_zero hc ⟩, nnreal.has_sum_coe.1 hc, lt_of_le_of_lt (nnreal.coe_le_coe.1 hcε) aε ⟩ end nnreal namespace ennreal theorem exists_pos_sum_of_encodable {ε : ennreal} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ (∑' i, (ε' i : ennreal)) < ε := begin rcases dense hε with ⟨r, h0r, hrε⟩, rcases lt_iff_exists_coe.1 hrε with ⟨x, rfl, hx⟩, rcases nnreal.exists_pos_sum_of_encodable (coe_lt_coe.1 h0r) ι with ⟨ε', hp, c, hc, hcr⟩, exact ⟨ε', hp, (ennreal.tsum_coe_eq hc).symm ▸ lt_trans (coe_lt_coe.2 hcr) hrε⟩ end end ennreal
2484d46154a6f19804f4fdf1686b2858c39b9bef
bb31430994044506fa42fd667e2d556327e18dfe
/src/measure_theory/function/lp_space.lean
9c98bf1ea7d94f3b039c2ec8505c38b329d4ce46
[ "Apache-2.0" ]
permissive
sgouezel/mathlib
0cb4e5335a2ba189fa7af96d83a377f83270e503
00638177efd1b2534fc5269363ebf42a7871df9a
refs/heads/master
1,674,527,483,042
1,673,665,568,000
1,673,665,568,000
119,598,202
0
0
null
1,517,348,647,000
1,517,348,646,000
null
UTF-8
Lean
false
false
128,957
lean
/- Copyright (c) 2020 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne, Sébastien Gouëzel -/ import analysis.normed_space.indicator_function import analysis.normed.group.hom import measure_theory.function.ess_sup import measure_theory.function.ae_eq_fun import measure_theory.integral.mean_inequalities import measure_theory.function.strongly_measurable.inner import topology.continuous_function.compact /-! # ℒp space and Lp space This file describes properties of almost everywhere strongly measurable functions with finite seminorm, denoted by `snorm f p μ` and defined for `p:ℝ≥0∞` asmm_group (Lp E p μ) := `0` if `p=0`, `(∫ ‖f a‖^p ∂μ) ^ (1/p)` for `0 < p < ∞` and `ess_sup ‖f‖ μ` for `p=∞`. The Prop-valued `mem_ℒp f p μ` states that a function `f : α → E` has finite seminorm. The space `Lp E p μ` is the subtype of elements of `α →ₘ[μ] E` (see ae_eq_fun) such that `snorm f p μ` is finite. For `1 ≤ p`, `snorm` defines a norm and `Lp` is a complete metric space. ## Main definitions * `snorm' f p μ` : `(∫ ‖f a‖^p ∂μ) ^ (1/p)` for `f : α → F` and `p : ℝ`, where `α` is a measurable space and `F` is a normed group. * `snorm_ess_sup f μ` : seminorm in `ℒ∞`, equal to the essential supremum `ess_sup ‖f‖ μ`. * `snorm f p μ` : for `p : ℝ≥0∞`, seminorm in `ℒp`, equal to `0` for `p=0`, to `snorm' f p μ` for `0 < p < ∞` and to `snorm_ess_sup f μ` for `p = ∞`. * `mem_ℒp f p μ` : property that the function `f` is almost everywhere strongly measurable and has finite `p`-seminorm for the measure `μ` (`snorm f p μ < ∞`) * `Lp E p μ` : elements of `α →ₘ[μ] E` (see ae_eq_fun) such that `snorm f p μ` is finite. Defined as an `add_subgroup` of `α →ₘ[μ] E`. Lipschitz functions vanishing at zero act by composition on `Lp`. We define this action, and prove that it is continuous. In particular, * `continuous_linear_map.comp_Lp` defines the action on `Lp` of a continuous linear map. * `Lp.pos_part` is the positive part of an `Lp` function. * `Lp.neg_part` is the negative part of an `Lp` function. When `α` is a topological space equipped with a finite Borel measure, there is a bounded linear map from the normed space of bounded continuous functions (`α →ᵇ E`) to `Lp E p μ`. We construct this as `bounded_continuous_function.to_Lp`. ## Notations * `α →₁[μ] E` : the type `Lp E 1 μ`. * `α →₂[μ] E` : the type `Lp E 2 μ`. ## Implementation Since `Lp` is defined as an `add_subgroup`, dot notation does not work. Use `Lp.measurable f` to say that the coercion of `f` to a genuine function is measurable, instead of the non-working `f.measurable`. To prove that two `Lp` elements are equal, it suffices to show that their coercions to functions coincide almost everywhere (this is registered as an `ext` rule). This can often be done using `filter_upwards`. For instance, a proof from first principles that `f + (g + h) = (f + g) + h` could read (in the `Lp` namespace) ``` example (f g h : Lp E p μ) : (f + g) + h = f + (g + h) := begin ext1, filter_upwards [coe_fn_add (f + g) h, coe_fn_add f g, coe_fn_add f (g + h), coe_fn_add g h] with _ ha1 ha2 ha3 ha4, simp only [ha1, ha2, ha3, ha4, add_assoc], end ``` The lemma `coe_fn_add` states that the coercion of `f + g` coincides almost everywhere with the sum of the coercions of `f` and `g`. All such lemmas use `coe_fn` in their name, to distinguish the function coercion from the coercion to almost everywhere defined functions. -/ noncomputable theory open topological_space measure_theory filter open_locale nnreal ennreal big_operators topological_space measure_theory variables {α E F G : Type*} {m m0 : measurable_space α} {p : ℝ≥0∞} {q : ℝ} {μ ν : measure α} [normed_add_comm_group E] [normed_add_comm_group F] [normed_add_comm_group G] namespace measure_theory section ℒp /-! ### ℒp seminorm We define the ℒp seminorm, denoted by `snorm f p μ`. For real `p`, it is given by an integral formula (for which we use the notation `snorm' f p μ`), and for `p = ∞` it is the essential supremum (for which we use the notation `snorm_ess_sup f μ`). We also define a predicate `mem_ℒp f p μ`, requesting that a function is almost everywhere measurable and has finite `snorm f p μ`. This paragraph is devoted to the basic properties of these definitions. It is constructed as follows: for a given property, we prove it for `snorm'` and `snorm_ess_sup` when it makes sense, deduce it for `snorm`, and translate it in terms of `mem_ℒp`. -/ section ℒp_space_definition /-- `(∫ ‖f a‖^q ∂μ) ^ (1/q)`, which is a seminorm on the space of measurable functions for which this quantity is finite -/ def snorm' {m : measurable_space α} (f : α → F) (q : ℝ) (μ : measure α) : ℝ≥0∞ := (∫⁻ a, ‖f a‖₊^q ∂μ) ^ (1/q) /-- seminorm for `ℒ∞`, equal to the essential supremum of `‖f‖`. -/ def snorm_ess_sup {m : measurable_space α} (f : α → F) (μ : measure α) := ess_sup (λ x, (‖f x‖₊ : ℝ≥0∞)) μ /-- `ℒp` seminorm, equal to `0` for `p=0`, to `(∫ ‖f a‖^p ∂μ) ^ (1/p)` for `0 < p < ∞` and to `ess_sup ‖f‖ μ` for `p = ∞`. -/ def snorm {m : measurable_space α} (f : α → F) (p : ℝ≥0∞) (μ : measure α) : ℝ≥0∞ := if p = 0 then 0 else (if p = ∞ then snorm_ess_sup f μ else snorm' f (ennreal.to_real p) μ) lemma snorm_eq_snorm' (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) {f : α → F} : snorm f p μ = snorm' f (ennreal.to_real p) μ := by simp [snorm, hp_ne_zero, hp_ne_top] lemma snorm_eq_lintegral_rpow_nnnorm (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) {f : α → F} : snorm f p μ = (∫⁻ x, ‖f x‖₊ ^ p.to_real ∂μ) ^ (1 / p.to_real) := by rw [snorm_eq_snorm' hp_ne_zero hp_ne_top, snorm'] lemma snorm_one_eq_lintegral_nnnorm {f : α → F} : snorm f 1 μ = ∫⁻ x, ‖f x‖₊ ∂μ := by simp_rw [snorm_eq_lintegral_rpow_nnnorm one_ne_zero ennreal.coe_ne_top, ennreal.one_to_real, one_div_one, ennreal.rpow_one] @[simp] lemma snorm_exponent_top {f : α → F} : snorm f ∞ μ = snorm_ess_sup f μ := by simp [snorm] /-- The property that `f:α→E` is ae strongly measurable and `(∫ ‖f a‖^p ∂μ)^(1/p)` is finite if `p < ∞`, or `ess_sup f < ∞` if `p = ∞`. -/ def mem_ℒp {α} {m : measurable_space α} (f : α → E) (p : ℝ≥0∞) (μ : measure α . volume_tac) : Prop := ae_strongly_measurable f μ ∧ snorm f p μ < ∞ lemma mem_ℒp.ae_strongly_measurable {f : α → E} {p : ℝ≥0∞} (h : mem_ℒp f p μ) : ae_strongly_measurable f μ := h.1 lemma lintegral_rpow_nnnorm_eq_rpow_snorm' {f : α → F} (hq0_lt : 0 < q) : ∫⁻ a, ‖f a‖₊ ^ q ∂μ = (snorm' f q μ) ^ q := begin rw [snorm', ←ennreal.rpow_mul, one_div, inv_mul_cancel, ennreal.rpow_one], exact (ne_of_lt hq0_lt).symm, end end ℒp_space_definition section top lemma mem_ℒp.snorm_lt_top {f : α → E} (hfp : mem_ℒp f p μ) : snorm f p μ < ∞ := hfp.2 lemma mem_ℒp.snorm_ne_top {f : α → E} (hfp : mem_ℒp f p μ) : snorm f p μ ≠ ∞ := ne_of_lt (hfp.2) lemma lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top {f : α → F} (hq0_lt : 0 < q) (hfq : snorm' f q μ < ∞) : ∫⁻ a, ‖f a‖₊ ^ q ∂μ < ∞ := begin rw lintegral_rpow_nnnorm_eq_rpow_snorm' hq0_lt, exact ennreal.rpow_lt_top_of_nonneg (le_of_lt hq0_lt) (ne_of_lt hfq), end lemma lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top {f : α → F} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hfp : snorm f p μ < ∞) : ∫⁻ a, ‖f a‖₊ ^ p.to_real ∂μ < ∞ := begin apply lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top, { exact ennreal.to_real_pos hp_ne_zero hp_ne_top }, { simpa [snorm_eq_snorm' hp_ne_zero hp_ne_top] using hfp } end lemma snorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {f : α → F} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) : snorm f p μ < ∞ ↔ ∫⁻ a, ‖f a‖₊ ^ p.to_real ∂μ < ∞ := ⟨lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top hp_ne_zero hp_ne_top, begin intros h, have hp' := ennreal.to_real_pos hp_ne_zero hp_ne_top, have : 0 < 1 / p.to_real := div_pos zero_lt_one hp', simpa [snorm_eq_lintegral_rpow_nnnorm hp_ne_zero hp_ne_top] using ennreal.rpow_lt_top_of_nonneg (le_of_lt this) (ne_of_lt h) end⟩ end top section zero @[simp] lemma snorm'_exponent_zero {f : α → F} : snorm' f 0 μ = 1 := by rw [snorm', div_zero, ennreal.rpow_zero] @[simp] lemma snorm_exponent_zero {f : α → F} : snorm f 0 μ = 0 := by simp [snorm] lemma mem_ℒp_zero_iff_ae_strongly_measurable {f : α → E} : mem_ℒp f 0 μ ↔ ae_strongly_measurable f μ := by simp [mem_ℒp, snorm_exponent_zero] @[simp] lemma snorm'_zero (hp0_lt : 0 < q) : snorm' (0 : α → F) q μ = 0 := by simp [snorm', hp0_lt] @[simp] lemma snorm'_zero' (hq0_ne : q ≠ 0) (hμ : μ ≠ 0) : snorm' (0 : α → F) q μ = 0 := begin cases le_or_lt 0 q with hq0 hq_neg, { exact snorm'_zero (lt_of_le_of_ne hq0 hq0_ne.symm), }, { simp [snorm', ennreal.rpow_eq_zero_iff, hμ, hq_neg], }, end @[simp] lemma snorm_ess_sup_zero : snorm_ess_sup (0 : α → F) μ = 0 := begin simp_rw [snorm_ess_sup, pi.zero_apply, nnnorm_zero, ennreal.coe_zero, ←ennreal.bot_eq_zero], exact ess_sup_const_bot, end @[simp] lemma snorm_zero : snorm (0 : α → F) p μ = 0 := begin by_cases h0 : p = 0, { simp [h0], }, by_cases h_top : p = ∞, { simp only [h_top, snorm_exponent_top, snorm_ess_sup_zero], }, rw ←ne.def at h0, simp [snorm_eq_snorm' h0 h_top, ennreal.to_real_pos h0 h_top], end @[simp] lemma snorm_zero' : snorm (λ x : α, (0 : F)) p μ = 0 := by convert snorm_zero lemma zero_mem_ℒp : mem_ℒp (0 : α → E) p μ := ⟨ae_strongly_measurable_zero, by { rw snorm_zero, exact ennreal.coe_lt_top, } ⟩ lemma zero_mem_ℒp' : mem_ℒp (λ x : α, (0 : E)) p μ := by convert zero_mem_ℒp variables [measurable_space α] lemma snorm'_measure_zero_of_pos {f : α → F} (hq_pos : 0 < q) : snorm' f q (0 : measure α) = 0 := by simp [snorm', hq_pos] lemma snorm'_measure_zero_of_exponent_zero {f : α → F} : snorm' f 0 (0 : measure α) = 1 := by simp [snorm'] lemma snorm'_measure_zero_of_neg {f : α → F} (hq_neg : q < 0) : snorm' f q (0 : measure α) = ∞ := by simp [snorm', hq_neg] @[simp] lemma snorm_ess_sup_measure_zero {f : α → F} : snorm_ess_sup f (0 : measure α) = 0 := by simp [snorm_ess_sup] @[simp] lemma snorm_measure_zero {f : α → F} : snorm f p (0 : measure α) = 0 := begin by_cases h0 : p = 0, { simp [h0], }, by_cases h_top : p = ∞, { simp [h_top], }, rw ←ne.def at h0, simp [snorm_eq_snorm' h0 h_top, snorm', ennreal.to_real_pos h0 h_top], end end zero section const lemma snorm'_const (c : F) (hq_pos : 0 < q) : snorm' (λ x : α , c) q μ = (‖c‖₊ : ℝ≥0∞) * (μ set.univ) ^ (1/q) := begin rw [snorm', lintegral_const, ennreal.mul_rpow_of_nonneg _ _ (by simp [hq_pos.le] : 0 ≤ 1 / q)], congr, rw ←ennreal.rpow_mul, suffices hq_cancel : q * (1/q) = 1, by rw [hq_cancel, ennreal.rpow_one], rw [one_div, mul_inv_cancel (ne_of_lt hq_pos).symm], end lemma snorm'_const' [is_finite_measure μ] (c : F) (hc_ne_zero : c ≠ 0) (hq_ne_zero : q ≠ 0) : snorm' (λ x : α , c) q μ = (‖c‖₊ : ℝ≥0∞) * (μ set.univ) ^ (1/q) := begin rw [snorm', lintegral_const, ennreal.mul_rpow_of_ne_top _ (measure_ne_top μ set.univ)], { congr, rw ←ennreal.rpow_mul, suffices hp_cancel : q * (1/q) = 1, by rw [hp_cancel, ennreal.rpow_one], rw [one_div, mul_inv_cancel hq_ne_zero], }, { rw [ne.def, ennreal.rpow_eq_top_iff, not_or_distrib, not_and_distrib, not_and_distrib], split, { left, rwa [ennreal.coe_eq_zero, nnnorm_eq_zero], }, { exact or.inl ennreal.coe_ne_top, }, }, end lemma snorm_ess_sup_const (c : F) (hμ : μ ≠ 0) : snorm_ess_sup (λ x : α, c) μ = (‖c‖₊ : ℝ≥0∞) := by rw [snorm_ess_sup, ess_sup_const _ hμ] lemma snorm'_const_of_is_probability_measure (c : F) (hq_pos : 0 < q) [is_probability_measure μ] : snorm' (λ x : α , c) q μ = (‖c‖₊ : ℝ≥0∞) := by simp [snorm'_const c hq_pos, measure_univ] lemma snorm_const (c : F) (h0 : p ≠ 0) (hμ : μ ≠ 0) : snorm (λ x : α , c) p μ = (‖c‖₊ : ℝ≥0∞) * (μ set.univ) ^ (1/(ennreal.to_real p)) := begin by_cases h_top : p = ∞, { simp [h_top, snorm_ess_sup_const c hμ], }, simp [snorm_eq_snorm' h0 h_top, snorm'_const, ennreal.to_real_pos h0 h_top], end lemma snorm_const' (c : F) (h0 : p ≠ 0) (h_top: p ≠ ∞) : snorm (λ x : α , c) p μ = (‖c‖₊ : ℝ≥0∞) * (μ set.univ) ^ (1/(ennreal.to_real p)) := begin simp [snorm_eq_snorm' h0 h_top, snorm'_const, ennreal.to_real_pos h0 h_top], end lemma snorm_const_lt_top_iff {p : ℝ≥0∞} {c : F} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) : snorm (λ x : α, c) p μ < ∞ ↔ c = 0 ∨ μ set.univ < ∞ := begin have hp : 0 < p.to_real, from ennreal.to_real_pos hp_ne_zero hp_ne_top, by_cases hμ : μ = 0, { simp only [hμ, measure.coe_zero, pi.zero_apply, or_true, with_top.zero_lt_top, snorm_measure_zero], }, by_cases hc : c = 0, { simp only [hc, true_or, eq_self_iff_true, with_top.zero_lt_top, snorm_zero'], }, rw snorm_const' c hp_ne_zero hp_ne_top, by_cases hμ_top : μ set.univ = ∞, { simp [hc, hμ_top, hp], }, rw ennreal.mul_lt_top_iff, simp only [true_and, one_div, ennreal.rpow_eq_zero_iff, hμ, false_or, or_false, ennreal.coe_lt_top, nnnorm_eq_zero, ennreal.coe_eq_zero, measure_theory.measure.measure_univ_eq_zero, hp, inv_lt_zero, hc, and_false, false_and, _root_.inv_pos, or_self, hμ_top, ne.lt_top hμ_top, iff_true], exact ennreal.rpow_lt_top_of_nonneg (inv_nonneg.mpr hp.le) hμ_top, end lemma mem_ℒp_const (c : E) [is_finite_measure μ] : mem_ℒp (λ a:α, c) p μ := begin refine ⟨ae_strongly_measurable_const, _⟩, by_cases h0 : p = 0, { simp [h0], }, by_cases hμ : μ = 0, { simp [hμ], }, rw snorm_const c h0 hμ, refine ennreal.mul_lt_top ennreal.coe_ne_top _, refine (ennreal.rpow_lt_top_of_nonneg _ (measure_ne_top μ set.univ)).ne, simp, end lemma mem_ℒp_top_const (c : E) : mem_ℒp (λ a:α, c) ∞ μ := begin refine ⟨ae_strongly_measurable_const, _⟩, by_cases h : μ = 0, { simp only [h, snorm_measure_zero, with_top.zero_lt_top] }, { rw snorm_const _ ennreal.top_ne_zero h, simp only [ennreal.top_to_real, div_zero, ennreal.rpow_zero, mul_one, ennreal.coe_lt_top] } end lemma mem_ℒp_const_iff {p : ℝ≥0∞} {c : E} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) : mem_ℒp (λ x : α, c) p μ ↔ c = 0 ∨ μ set.univ < ∞ := begin rw ← snorm_const_lt_top_iff hp_ne_zero hp_ne_top, exact ⟨λ h, h.2, λ h, ⟨ae_strongly_measurable_const, h⟩⟩, end end const lemma snorm'_mono_ae {f : α → F} {g : α → G} (hq : 0 ≤ q) (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ ‖g x‖) : snorm' f q μ ≤ snorm' g q μ := begin rw [snorm'], refine ennreal.rpow_le_rpow _ (one_div_nonneg.2 hq), refine lintegral_mono_ae (h.mono $ λ x hx, _), exact ennreal.rpow_le_rpow (ennreal.coe_le_coe.2 hx) hq end lemma snorm'_congr_norm_ae {f g : α → F} (hfg : ∀ᵐ x ∂μ, ‖f x‖ = ‖g x‖) : snorm' f q μ = snorm' g q μ := begin have : (λ x, (‖f x‖₊ ^ q : ℝ≥0∞)) =ᵐ[μ] (λ x, ‖g x‖₊ ^ q), from hfg.mono (λ x hx, by { simp only [← coe_nnnorm, nnreal.coe_eq] at hx, simp [hx] }), simp only [snorm', lintegral_congr_ae this] end lemma snorm'_congr_ae {f g : α → F} (hfg : f =ᵐ[μ] g) : snorm' f q μ = snorm' g q μ := snorm'_congr_norm_ae (hfg.fun_comp _) lemma snorm_ess_sup_congr_ae {f g : α → F} (hfg : f =ᵐ[μ] g) : snorm_ess_sup f μ = snorm_ess_sup g μ := ess_sup_congr_ae (hfg.fun_comp (coe ∘ nnnorm)) lemma snorm_mono_ae {f : α → F} {g : α → G} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ ‖g x‖) : snorm f p μ ≤ snorm g p μ := begin simp only [snorm], split_ifs, { exact le_rfl }, { refine ess_sup_mono_ae (h.mono $ λ x hx, _), exact_mod_cast hx }, { exact snorm'_mono_ae ennreal.to_real_nonneg h } end lemma snorm_mono_ae_real {f : α → F} {g : α → ℝ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ g x) : snorm f p μ ≤ snorm g p μ := snorm_mono_ae $ h.mono (λ x hx, hx.trans ((le_abs_self _).trans (real.norm_eq_abs _).symm.le)) lemma snorm_mono {f : α → F} {g : α → G} (h : ∀ x, ‖f x‖ ≤ ‖g x‖) : snorm f p μ ≤ snorm g p μ := snorm_mono_ae (eventually_of_forall (λ x, h x)) lemma snorm_mono_real {f : α → F} {g : α → ℝ} (h : ∀ x, ‖f x‖ ≤ g x) : snorm f p μ ≤ snorm g p μ := snorm_mono_ae_real (eventually_of_forall (λ x, h x)) lemma snorm_ess_sup_le_of_ae_bound {f : α → F} {C : ℝ} (hfC : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : snorm_ess_sup f μ ≤ ennreal.of_real C:= begin simp_rw [snorm_ess_sup, ← of_real_norm_eq_coe_nnnorm], refine ess_sup_le_of_ae_le (ennreal.of_real C) (hfC.mono (λ x hx, _)), exact ennreal.of_real_le_of_real hx, end lemma snorm_ess_sup_lt_top_of_ae_bound {f : α → F} {C : ℝ} (hfC : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : snorm_ess_sup f μ < ∞ := (snorm_ess_sup_le_of_ae_bound hfC).trans_lt ennreal.of_real_lt_top lemma snorm_le_of_ae_bound {f : α → F} {C : ℝ} (hfC : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : snorm f p μ ≤ ((μ set.univ) ^ p.to_real⁻¹) * (ennreal.of_real C) := begin by_cases hμ : μ = 0, { simp [hμ] }, haveI : μ.ae.ne_bot := ae_ne_bot.mpr hμ, by_cases hp : p = 0, { simp [hp] }, have hC : 0 ≤ C, from le_trans (norm_nonneg _) hfC.exists.some_spec, have hC' : ‖C‖ = C := by rw [real.norm_eq_abs, abs_eq_self.mpr hC], have : ∀ᵐ x ∂μ, ‖f x‖ ≤ ‖(λ _, C) x‖, from hfC.mono (λ x hx, hx.trans (le_of_eq hC'.symm)), convert snorm_mono_ae this, rw [snorm_const _ hp hμ, mul_comm, ← of_real_norm_eq_coe_nnnorm, hC', one_div] end lemma snorm_congr_norm_ae {f : α → F} {g : α → G} (hfg : ∀ᵐ x ∂μ, ‖f x‖ = ‖g x‖) : snorm f p μ = snorm g p μ := le_antisymm (snorm_mono_ae $ eventually_eq.le hfg) (snorm_mono_ae $ (eventually_eq.symm hfg).le) @[simp] lemma snorm'_norm {f : α → F} : snorm' (λ a, ‖f a‖) q μ = snorm' f q μ := by simp [snorm'] @[simp] lemma snorm_norm (f : α → F) : snorm (λ x, ‖f x‖) p μ = snorm f p μ := snorm_congr_norm_ae $ eventually_of_forall $ λ x, norm_norm _ lemma snorm'_norm_rpow (f : α → F) (p q : ℝ) (hq_pos : 0 < q) : snorm' (λ x, ‖f x‖ ^ q) p μ = (snorm' f (p * q) μ) ^ q := begin simp_rw snorm', rw [← ennreal.rpow_mul, ←one_div_mul_one_div], simp_rw one_div, rw [mul_assoc, inv_mul_cancel hq_pos.ne.symm, mul_one], congr, ext1 x, simp_rw ← of_real_norm_eq_coe_nnnorm, rw [real.norm_eq_abs, abs_eq_self.mpr (real.rpow_nonneg_of_nonneg (norm_nonneg _) _), mul_comm, ← ennreal.of_real_rpow_of_nonneg (norm_nonneg _) hq_pos.le, ennreal.rpow_mul], end lemma snorm_norm_rpow (f : α → F) (hq_pos : 0 < q) : snorm (λ x, ‖f x‖ ^ q) p μ = (snorm f (p * ennreal.of_real q) μ) ^ q := begin by_cases h0 : p = 0, { simp [h0, ennreal.zero_rpow_of_pos hq_pos], }, by_cases hp_top : p = ∞, { simp only [hp_top, snorm_exponent_top, ennreal.top_mul, hq_pos.not_le, ennreal.of_real_eq_zero, if_false, snorm_exponent_top, snorm_ess_sup], have h_rpow : ess_sup (λ (x : α), (‖(‖f x‖ ^ q)‖₊ : ℝ≥0∞)) μ = ess_sup (λ (x : α), (↑‖f x‖₊) ^ q) μ, { congr, ext1 x, nth_rewrite 1 ← nnnorm_norm, rw [ennreal.coe_rpow_of_nonneg _ hq_pos.le, ennreal.coe_eq_coe], ext, push_cast, rw real.norm_rpow_of_nonneg (norm_nonneg _), }, rw h_rpow, have h_rpow_mono := ennreal.strict_mono_rpow_of_pos hq_pos, have h_rpow_surj := (ennreal.rpow_left_bijective hq_pos.ne.symm).2, let iso := h_rpow_mono.order_iso_of_surjective _ h_rpow_surj, exact (iso.ess_sup_apply (λ x, (‖f x‖₊ : ℝ≥0∞)) μ).symm, }, rw [snorm_eq_snorm' h0 hp_top, snorm_eq_snorm' _ _], swap, { refine mul_ne_zero h0 _, rwa [ne.def, ennreal.of_real_eq_zero, not_le], }, swap, { exact ennreal.mul_ne_top hp_top ennreal.of_real_ne_top, }, rw [ennreal.to_real_mul, ennreal.to_real_of_real hq_pos.le], exact snorm'_norm_rpow f p.to_real q hq_pos, end lemma snorm_congr_ae {f g : α → F} (hfg : f =ᵐ[μ] g) : snorm f p μ = snorm g p μ := snorm_congr_norm_ae $ hfg.mono (λ x hx, hx ▸ rfl) lemma mem_ℒp_congr_ae {f g : α → E} (hfg : f =ᵐ[μ] g) : mem_ℒp f p μ ↔ mem_ℒp g p μ := by simp only [mem_ℒp, snorm_congr_ae hfg, ae_strongly_measurable_congr hfg] lemma mem_ℒp.ae_eq {f g : α → E} (hfg : f =ᵐ[μ] g) (hf_Lp : mem_ℒp f p μ) : mem_ℒp g p μ := (mem_ℒp_congr_ae hfg).1 hf_Lp lemma mem_ℒp.of_le {f : α → E} {g : α → F} (hg : mem_ℒp g p μ) (hf : ae_strongly_measurable f μ) (hfg : ∀ᵐ x ∂μ, ‖f x‖ ≤ ‖g x‖) : mem_ℒp f p μ := ⟨hf, (snorm_mono_ae hfg).trans_lt hg.snorm_lt_top⟩ alias mem_ℒp.of_le ← mem_ℒp.mono lemma mem_ℒp.mono' {f : α → E} {g : α → ℝ} (hg : mem_ℒp g p μ) (hf : ae_strongly_measurable f μ) (h : ∀ᵐ a ∂μ, ‖f a‖ ≤ g a) : mem_ℒp f p μ := hg.mono hf $ h.mono $ λ x hx, le_trans hx (le_abs_self _) lemma mem_ℒp.congr_norm {f : α → E} {g : α → F} (hf : mem_ℒp f p μ) (hg : ae_strongly_measurable g μ) (h : ∀ᵐ a ∂μ, ‖f a‖ = ‖g a‖) : mem_ℒp g p μ := hf.mono hg $ eventually_eq.le $ eventually_eq.symm h lemma mem_ℒp_congr_norm {f : α → E} {g : α → F} (hf : ae_strongly_measurable f μ) (hg : ae_strongly_measurable g μ) (h : ∀ᵐ a ∂μ, ‖f a‖ = ‖g a‖) : mem_ℒp f p μ ↔ mem_ℒp g p μ := ⟨λ h2f, h2f.congr_norm hg h, λ h2g, h2g.congr_norm hf $ eventually_eq.symm h⟩ lemma mem_ℒp_top_of_bound {f : α → E} (hf : ae_strongly_measurable f μ) (C : ℝ) (hfC : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : mem_ℒp f ∞ μ := ⟨hf, by { rw snorm_exponent_top, exact snorm_ess_sup_lt_top_of_ae_bound hfC, }⟩ lemma mem_ℒp.of_bound [is_finite_measure μ] {f : α → E} (hf : ae_strongly_measurable f μ) (C : ℝ) (hfC : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : mem_ℒp f p μ := (mem_ℒp_const C).of_le hf (hfC.mono (λ x hx, le_trans hx (le_abs_self _))) @[mono] lemma snorm'_mono_measure (f : α → F) (hμν : ν ≤ μ) (hq : 0 ≤ q) : snorm' f q ν ≤ snorm' f q μ := begin simp_rw snorm', suffices h_integral_mono : (∫⁻ a, (‖f a‖₊ : ℝ≥0∞) ^ q ∂ν) ≤ ∫⁻ a, ‖f a‖₊ ^ q ∂μ, from ennreal.rpow_le_rpow h_integral_mono (by simp [hq]), exact lintegral_mono' hμν le_rfl, end @[mono] lemma snorm_ess_sup_mono_measure (f : α → F) (hμν : ν ≪ μ) : snorm_ess_sup f ν ≤ snorm_ess_sup f μ := by { simp_rw snorm_ess_sup, exact ess_sup_mono_measure hμν, } @[mono] lemma snorm_mono_measure (f : α → F) (hμν : ν ≤ μ) : snorm f p ν ≤ snorm f p μ := begin by_cases hp0 : p = 0, { simp [hp0], }, by_cases hp_top : p = ∞, { simp [hp_top, snorm_ess_sup_mono_measure f (measure.absolutely_continuous_of_le hμν)], }, simp_rw snorm_eq_snorm' hp0 hp_top, exact snorm'_mono_measure f hμν ennreal.to_real_nonneg, end lemma mem_ℒp.mono_measure {f : α → E} (hμν : ν ≤ μ) (hf : mem_ℒp f p μ) : mem_ℒp f p ν := ⟨hf.1.mono_measure hμν, (snorm_mono_measure f hμν).trans_lt hf.2⟩ lemma mem_ℒp.restrict (s : set α) {f : α → E} (hf : mem_ℒp f p μ) : mem_ℒp f p (μ.restrict s) := hf.mono_measure measure.restrict_le_self lemma snorm'_smul_measure {p : ℝ} (hp : 0 ≤ p) {f : α → F} (c : ℝ≥0∞) : snorm' f p (c • μ) = c ^ (1 / p) * snorm' f p μ := by { rw [snorm', lintegral_smul_measure, ennreal.mul_rpow_of_nonneg, snorm'], simp [hp], } lemma snorm_ess_sup_smul_measure {f : α → F} {c : ℝ≥0∞} (hc : c ≠ 0) : snorm_ess_sup f (c • μ) = snorm_ess_sup f μ := by { simp_rw [snorm_ess_sup], exact ess_sup_smul_measure hc, } /-- Use `snorm_smul_measure_of_ne_top` instead. -/ private lemma snorm_smul_measure_of_ne_zero_of_ne_top {p : ℝ≥0∞} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) {f : α → F} (c : ℝ≥0∞) : snorm f p (c • μ) = c ^ (1 / p).to_real • snorm f p μ := begin simp_rw snorm_eq_snorm' hp_ne_zero hp_ne_top, rw snorm'_smul_measure ennreal.to_real_nonneg, congr, simp_rw one_div, rw ennreal.to_real_inv, end lemma snorm_smul_measure_of_ne_zero {p : ℝ≥0∞} {f : α → F} {c : ℝ≥0∞} (hc : c ≠ 0) : snorm f p (c • μ) = c ^ (1 / p).to_real • snorm f p μ := begin by_cases hp0 : p = 0, { simp [hp0], }, by_cases hp_top : p = ∞, { simp [hp_top, snorm_ess_sup_smul_measure hc], }, exact snorm_smul_measure_of_ne_zero_of_ne_top hp0 hp_top c, end lemma snorm_smul_measure_of_ne_top {p : ℝ≥0∞} (hp_ne_top : p ≠ ∞) {f : α → F} (c : ℝ≥0∞) : snorm f p (c • μ) = c ^ (1 / p).to_real • snorm f p μ := begin by_cases hp0 : p = 0, { simp [hp0], }, { exact snorm_smul_measure_of_ne_zero_of_ne_top hp0 hp_ne_top c, }, end lemma snorm_one_smul_measure {f : α → F} (c : ℝ≥0∞) : snorm f 1 (c • μ) = c * snorm f 1 μ := by { rw @snorm_smul_measure_of_ne_top _ _ _ μ _ 1 (@ennreal.coe_ne_top 1) f c, simp, } lemma mem_ℒp.of_measure_le_smul {μ' : measure α} (c : ℝ≥0∞) (hc : c ≠ ∞) (hμ'_le : μ' ≤ c • μ) {f : α → E} (hf : mem_ℒp f p μ) : mem_ℒp f p μ' := begin refine ⟨hf.1.mono' (measure.absolutely_continuous_of_le_smul hμ'_le), _⟩, refine (snorm_mono_measure f hμ'_le).trans_lt _, by_cases hc0 : c = 0, { simp [hc0], }, rw [snorm_smul_measure_of_ne_zero hc0, smul_eq_mul], refine ennreal.mul_lt_top _ hf.2.ne, simp [hc, hc0], end lemma mem_ℒp.smul_measure {f : α → E} {c : ℝ≥0∞} (hf : mem_ℒp f p μ) (hc : c ≠ ∞) : mem_ℒp f p (c • μ) := hf.of_measure_le_smul c hc le_rfl include m lemma snorm_one_add_measure (f : α → F) (μ ν : measure α) : snorm f 1 (μ + ν) = snorm f 1 μ + snorm f 1 ν := by { simp_rw snorm_one_eq_lintegral_nnnorm, rw lintegral_add_measure _ μ ν, } lemma snorm_le_add_measure_right (f : α → F) (μ ν : measure α) {p : ℝ≥0∞} : snorm f p μ ≤ snorm f p (μ + ν) := snorm_mono_measure f $ measure.le_add_right $ le_refl _ lemma snorm_le_add_measure_left (f : α → F) (μ ν : measure α) {p : ℝ≥0∞} : snorm f p ν ≤ snorm f p (μ + ν) := snorm_mono_measure f $ measure.le_add_left $ le_refl _ omit m lemma mem_ℒp.left_of_add_measure {f : α → E} (h : mem_ℒp f p (μ + ν)) : mem_ℒp f p μ := h.mono_measure $ measure.le_add_right $ le_refl _ lemma mem_ℒp.right_of_add_measure {f : α → E} (h : mem_ℒp f p (μ + ν)) : mem_ℒp f p ν := h.mono_measure $ measure.le_add_left $ le_refl _ lemma mem_ℒp.norm {f : α → E} (h : mem_ℒp f p μ) : mem_ℒp (λ x, ‖f x‖) p μ := h.of_le h.ae_strongly_measurable.norm (eventually_of_forall (λ x, by simp)) lemma mem_ℒp_norm_iff {f : α → E} (hf : ae_strongly_measurable f μ) : mem_ℒp (λ x, ‖f x‖) p μ ↔ mem_ℒp f p μ := ⟨λ h, ⟨hf, by { rw ← snorm_norm, exact h.2, }⟩, λ h, h.norm⟩ lemma snorm'_eq_zero_of_ae_zero {f : α → F} (hq0_lt : 0 < q) (hf_zero : f =ᵐ[μ] 0) : snorm' f q μ = 0 := by rw [snorm'_congr_ae hf_zero, snorm'_zero hq0_lt] lemma snorm'_eq_zero_of_ae_zero' (hq0_ne : q ≠ 0) (hμ : μ ≠ 0) {f : α → F} (hf_zero : f =ᵐ[μ] 0) : snorm' f q μ = 0 := by rw [snorm'_congr_ae hf_zero, snorm'_zero' hq0_ne hμ] lemma ae_eq_zero_of_snorm'_eq_zero {f : α → E} (hq0 : 0 ≤ q) (hf : ae_strongly_measurable f μ) (h : snorm' f q μ = 0) : f =ᵐ[μ] 0 := begin rw [snorm', ennreal.rpow_eq_zero_iff] at h, cases h, { rw lintegral_eq_zero_iff' (hf.ennnorm.pow_const q) at h, refine h.left.mono (λ x hx, _), rw [pi.zero_apply, ennreal.rpow_eq_zero_iff] at hx, cases hx, { cases hx with hx _, rwa [←ennreal.coe_zero, ennreal.coe_eq_coe, nnnorm_eq_zero] at hx, }, { exact absurd hx.left ennreal.coe_ne_top, }, }, { exfalso, rw [one_div, inv_lt_zero] at h, exact hq0.not_lt h.right }, end lemma snorm'_eq_zero_iff (hq0_lt : 0 < q) {f : α → E} (hf : ae_strongly_measurable f μ) : snorm' f q μ = 0 ↔ f =ᵐ[μ] 0 := ⟨ae_eq_zero_of_snorm'_eq_zero (le_of_lt hq0_lt) hf, snorm'_eq_zero_of_ae_zero hq0_lt⟩ lemma coe_nnnorm_ae_le_snorm_ess_sup {m : measurable_space α} (f : α → F) (μ : measure α) : ∀ᵐ x ∂μ, (‖f x‖₊ : ℝ≥0∞) ≤ snorm_ess_sup f μ := ennreal.ae_le_ess_sup (λ x, (‖f x‖₊ : ℝ≥0∞)) @[simp] lemma snorm_ess_sup_eq_zero_iff {f : α → F} : snorm_ess_sup f μ = 0 ↔ f =ᵐ[μ] 0 := by simp [eventually_eq, snorm_ess_sup] lemma snorm_eq_zero_iff {f : α → E} (hf : ae_strongly_measurable f μ) (h0 : p ≠ 0) : snorm f p μ = 0 ↔ f =ᵐ[μ] 0 := begin by_cases h_top : p = ∞, { rw [h_top, snorm_exponent_top, snorm_ess_sup_eq_zero_iff], }, rw snorm_eq_snorm' h0 h_top, exact snorm'_eq_zero_iff (ennreal.to_real_pos h0 h_top) hf, end lemma snorm'_add_le {f g : α → E} (hf : ae_strongly_measurable f μ) (hg : ae_strongly_measurable g μ) (hq1 : 1 ≤ q) : snorm' (f + g) q μ ≤ snorm' f q μ + snorm' g q μ := calc (∫⁻ a, ↑‖(f + g) a‖₊ ^ q ∂μ) ^ (1 / q) ≤ (∫⁻ a, (((λ a, (‖f a‖₊ : ℝ≥0∞)) + (λ a, (‖g a‖₊ : ℝ≥0∞))) a) ^ q ∂μ) ^ (1 / q) : begin refine ennreal.rpow_le_rpow _ (by simp [le_trans zero_le_one hq1] : 0 ≤ 1 / q), refine lintegral_mono (λ a, ennreal.rpow_le_rpow _ (le_trans zero_le_one hq1)), simp [←ennreal.coe_add, nnnorm_add_le], end ... ≤ snorm' f q μ + snorm' g q μ : ennreal.lintegral_Lp_add_le hf.ennnorm hg.ennnorm hq1 lemma snorm_ess_sup_add_le {f g : α → F} : snorm_ess_sup (f + g) μ ≤ snorm_ess_sup f μ + snorm_ess_sup g μ := begin refine le_trans (ess_sup_mono_ae (eventually_of_forall (λ x, _))) (ennreal.ess_sup_add_le _ _), simp_rw [pi.add_apply, ←ennreal.coe_add, ennreal.coe_le_coe], exact nnnorm_add_le _ _, end lemma snorm_add_le {f g : α → E} (hf : ae_strongly_measurable f μ) (hg : ae_strongly_measurable g μ) (hp1 : 1 ≤ p) : snorm (f + g) p μ ≤ snorm f p μ + snorm g p μ := begin by_cases hp0 : p = 0, { simp [hp0], }, by_cases hp_top : p = ∞, { simp [hp_top, snorm_ess_sup_add_le], }, have hp1_real : 1 ≤ p.to_real, by rwa [← ennreal.one_to_real, ennreal.to_real_le_to_real ennreal.one_ne_top hp_top], repeat { rw snorm_eq_snorm' hp0 hp_top, }, exact snorm'_add_le hf hg hp1_real, end lemma snorm_sub_le {f g : α → E} (hf : ae_strongly_measurable f μ) (hg : ae_strongly_measurable g μ) (hp1 : 1 ≤ p) : snorm (f - g) p μ ≤ snorm f p μ + snorm g p μ := calc snorm (f - g) p μ = snorm (f + - g) p μ : by rw sub_eq_add_neg -- We cannot use snorm_add_le on f and (-g) because we don't have `ae_measurable (-g) μ`, since -- we don't suppose `[borel_space E]`. ... = snorm (λ x, ‖f x + - g x‖) p μ : (snorm_norm (f + - g)).symm ... ≤ snorm (λ x, ‖f x‖ + ‖- g x‖) p μ : by { refine snorm_mono_real (λ x, _), rw norm_norm, exact norm_add_le _ _, } ... = snorm (λ x, ‖f x‖ + ‖g x‖) p μ : by simp_rw norm_neg ... ≤ snorm (λ x, ‖f x‖) p μ + snorm (λ x, ‖g x‖) p μ : snorm_add_le hf.norm hg.norm hp1 ... = snorm f p μ + snorm g p μ : by rw [← snorm_norm f, ← snorm_norm g] lemma snorm_add_lt_top_of_one_le {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) (hq1 : 1 ≤ p) : snorm (f + g) p μ < ∞ := lt_of_le_of_lt (snorm_add_le hf.1 hg.1 hq1) (ennreal.add_lt_top.mpr ⟨hf.2, hg.2⟩) lemma snorm'_add_lt_top_of_le_one {f g : α → E} (hf : ae_strongly_measurable f μ) (hf_snorm : snorm' f q μ < ∞) (hg_snorm : snorm' g q μ < ∞) (hq_pos : 0 < q) (hq1 : q ≤ 1) : snorm' (f + g) q μ < ∞ := calc (∫⁻ a, ↑‖(f + g) a‖₊ ^ q ∂μ) ^ (1 / q) ≤ (∫⁻ a, (((λ a, (‖f a‖₊ : ℝ≥0∞)) + (λ a, (‖g a‖₊ : ℝ≥0∞))) a) ^ q ∂μ) ^ (1 / q) : begin refine ennreal.rpow_le_rpow _ (by simp [hq_pos.le] : 0 ≤ 1 / q), refine lintegral_mono (λ a, ennreal.rpow_le_rpow _ hq_pos.le), simp [←ennreal.coe_add, nnnorm_add_le], end ... ≤ (∫⁻ a, (‖f a‖₊ : ℝ≥0∞) ^ q + (‖g a‖₊ : ℝ≥0∞) ^ q ∂μ) ^ (1 / q) : begin refine ennreal.rpow_le_rpow (lintegral_mono (λ a, _)) (by simp [hq_pos.le] : 0 ≤ 1 / q), exact ennreal.rpow_add_le_add_rpow _ _ hq_pos.le hq1, end ... < ∞ : begin refine ennreal.rpow_lt_top_of_nonneg (by simp [hq_pos.le] : 0 ≤ 1 / q) _, rw [lintegral_add_left' (hf.ennnorm.pow_const q), ennreal.add_ne_top], exact ⟨(lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top hq_pos hf_snorm).ne, (lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top hq_pos hg_snorm).ne⟩, end lemma snorm_add_lt_top {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : snorm (f + g) p μ < ∞ := begin by_cases h0 : p = 0, { simp [h0], }, rw ←ne.def at h0, cases le_total 1 p with hp1 hp1, { exact snorm_add_lt_top_of_one_le hf hg hp1, }, have hp_top : p ≠ ∞, from (lt_of_le_of_lt hp1 ennreal.coe_lt_top).ne, have hp_pos : 0 < p.to_real, { rw [← ennreal.zero_to_real, @ennreal.to_real_lt_to_real 0 p ennreal.coe_ne_top hp_top], exact ((zero_le p).lt_of_ne h0.symm), }, have hp1_real : p.to_real ≤ 1, { rwa [← ennreal.one_to_real, @ennreal.to_real_le_to_real p 1 hp_top ennreal.coe_ne_top], }, rw snorm_eq_snorm' h0 hp_top, rw [mem_ℒp, snorm_eq_snorm' h0 hp_top] at hf hg, exact snorm'_add_lt_top_of_le_one hf.1 hf.2 hg.2 hp_pos hp1_real, end section map_measure variables {β : Type*} {mβ : measurable_space β} {f : α → β} {g : β → E} include mβ lemma snorm_ess_sup_map_measure (hg : ae_strongly_measurable g (measure.map f μ)) (hf : ae_measurable f μ) : snorm_ess_sup g (measure.map f μ) = snorm_ess_sup (g ∘ f) μ := ess_sup_map_measure hg.ennnorm hf lemma snorm_map_measure (hg : ae_strongly_measurable g (measure.map f μ)) (hf : ae_measurable f μ) : snorm g p (measure.map f μ) = snorm (g ∘ f) p μ := begin by_cases hp_zero : p = 0, { simp only [hp_zero, snorm_exponent_zero], }, by_cases hp_top : p = ∞, { simp_rw [hp_top, snorm_exponent_top], exact snorm_ess_sup_map_measure hg hf, }, simp_rw snorm_eq_lintegral_rpow_nnnorm hp_zero hp_top, rw lintegral_map' (hg.ennnorm.pow_const p.to_real) hf, end lemma mem_ℒp_map_measure_iff (hg : ae_strongly_measurable g (measure.map f μ)) (hf : ae_measurable f μ) : mem_ℒp g p (measure.map f μ) ↔ mem_ℒp (g ∘ f) p μ := by simp [mem_ℒp, snorm_map_measure hg hf, hg.comp_ae_measurable hf, hg] lemma _root_.measurable_embedding.snorm_ess_sup_map_measure {g : β → F} (hf : measurable_embedding f) : snorm_ess_sup g (measure.map f μ) = snorm_ess_sup (g ∘ f) μ := hf.ess_sup_map_measure lemma _root_.measurable_embedding.snorm_map_measure {g : β → F} (hf : measurable_embedding f) : snorm g p (measure.map f μ) = snorm (g ∘ f) p μ := begin by_cases hp_zero : p = 0, { simp only [hp_zero, snorm_exponent_zero], }, by_cases hp : p = ∞, { simp_rw [hp, snorm_exponent_top], exact hf.ess_sup_map_measure, }, { simp_rw snorm_eq_lintegral_rpow_nnnorm hp_zero hp, rw hf.lintegral_map, }, end lemma _root_.measurable_embedding.mem_ℒp_map_measure_iff {g : β → F} (hf : measurable_embedding f) : mem_ℒp g p (measure.map f μ) ↔ mem_ℒp (g ∘ f) p μ := by simp_rw [mem_ℒp, hf.ae_strongly_measurable_map_iff, hf.snorm_map_measure] lemma _root_.measurable_equiv.mem_ℒp_map_measure_iff (f : α ≃ᵐ β) {g : β → F} : mem_ℒp g p (measure.map f μ) ↔ mem_ℒp (g ∘ f) p μ := f.measurable_embedding.mem_ℒp_map_measure_iff omit mβ end map_measure section trim lemma snorm'_trim (hm : m ≤ m0) {f : α → E} (hf : strongly_measurable[m] f) : snorm' f q (ν.trim hm) = snorm' f q ν := begin simp_rw snorm', congr' 1, refine lintegral_trim hm _, refine @measurable.pow_const _ _ _ _ _ _ _ m _ (@measurable.coe_nnreal_ennreal _ m _ _) _, apply @strongly_measurable.measurable, exact (@strongly_measurable.nnnorm α m _ _ _ hf), end lemma limsup_trim (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : measurable[m] f) : (ν.trim hm).ae.limsup f = ν.ae.limsup f := begin simp_rw limsup_eq, suffices h_set_eq : {a : ℝ≥0∞ | ∀ᵐ n ∂(ν.trim hm), f n ≤ a} = {a : ℝ≥0∞ | ∀ᵐ n ∂ν, f n ≤ a}, by rw h_set_eq, ext1 a, suffices h_meas_eq : ν {x | ¬ f x ≤ a} = ν.trim hm {x | ¬ f x ≤ a}, by simp_rw [set.mem_set_of_eq, ae_iff, h_meas_eq], refine (trim_measurable_set_eq hm _).symm, refine @measurable_set.compl _ _ m (@measurable_set_le ℝ≥0∞ _ _ _ _ m _ _ _ _ _ hf _), exact @measurable_const _ _ _ m _, end lemma ess_sup_trim (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : measurable[m] f) : ess_sup f (ν.trim hm) = ess_sup f ν := by { simp_rw ess_sup, exact limsup_trim hm hf, } lemma snorm_ess_sup_trim (hm : m ≤ m0) {f : α → E} (hf : strongly_measurable[m] f) : snorm_ess_sup f (ν.trim hm) = snorm_ess_sup f ν := ess_sup_trim _ (@strongly_measurable.ennnorm _ m _ _ _ hf) lemma snorm_trim (hm : m ≤ m0) {f : α → E} (hf : strongly_measurable[m] f) : snorm f p (ν.trim hm) = snorm f p ν := begin by_cases h0 : p = 0, { simp [h0], }, by_cases h_top : p = ∞, { simpa only [h_top, snorm_exponent_top] using snorm_ess_sup_trim hm hf, }, simpa only [snorm_eq_snorm' h0 h_top] using snorm'_trim hm hf, end lemma snorm_trim_ae (hm : m ≤ m0) {f : α → E} (hf : ae_strongly_measurable f (ν.trim hm)) : snorm f p (ν.trim hm) = snorm f p ν := begin rw [snorm_congr_ae hf.ae_eq_mk, snorm_congr_ae (ae_eq_of_ae_eq_trim hf.ae_eq_mk)], exact snorm_trim hm hf.strongly_measurable_mk, end lemma mem_ℒp_of_mem_ℒp_trim (hm : m ≤ m0) {f : α → E} (hf : mem_ℒp f p (ν.trim hm)) : mem_ℒp f p ν := ⟨ae_strongly_measurable_of_ae_strongly_measurable_trim hm hf.1, (le_of_eq (snorm_trim_ae hm hf.1).symm).trans_lt hf.2⟩ end trim @[simp] lemma snorm'_neg {f : α → F} : snorm' (-f) q μ = snorm' f q μ := by simp [snorm'] @[simp] lemma snorm_neg {f : α → F} : snorm (-f) p μ = snorm f p μ := begin by_cases h0 : p = 0, { simp [h0], }, by_cases h_top : p = ∞, { simp [h_top, snorm_ess_sup], }, simp [snorm_eq_snorm' h0 h_top], end section borel_space -- variable [borel_space E] lemma mem_ℒp.neg {f : α → E} (hf : mem_ℒp f p μ) : mem_ℒp (-f) p μ := ⟨ae_strongly_measurable.neg hf.1, by simp [hf.right]⟩ lemma mem_ℒp_neg_iff {f : α → E} : mem_ℒp (-f) p μ ↔ mem_ℒp f p μ := ⟨λ h, neg_neg f ▸ h.neg, mem_ℒp.neg⟩ lemma snorm'_le_snorm'_mul_rpow_measure_univ {p q : ℝ} (hp0_lt : 0 < p) (hpq : p ≤ q) {f : α → E} (hf : ae_strongly_measurable f μ) : snorm' f p μ ≤ snorm' f q μ * (μ set.univ) ^ (1/p - 1/q) := begin have hq0_lt : 0 < q, from lt_of_lt_of_le hp0_lt hpq, by_cases hpq_eq : p = q, { rw [hpq_eq, sub_self, ennreal.rpow_zero, mul_one], exact le_rfl, }, have hpq : p < q, from lt_of_le_of_ne hpq hpq_eq, let g := λ a : α, (1 : ℝ≥0∞), have h_rw : ∫⁻ a, ↑‖f a‖₊^p ∂ μ = ∫⁻ a, (‖f a‖₊ * (g a))^p ∂ μ, from lintegral_congr (λ a, by simp), repeat {rw snorm'}, rw h_rw, let r := p * q / (q - p), have hpqr : 1/p = 1/q + 1/r, { field_simp [(ne_of_lt hp0_lt).symm, (ne_of_lt hq0_lt).symm], ring, }, calc (∫⁻ (a : α), (↑‖f a‖₊ * g a) ^ p ∂μ) ^ (1/p) ≤ (∫⁻ (a : α), ↑‖f a‖₊ ^ q ∂μ) ^ (1/q) * (∫⁻ (a : α), (g a) ^ r ∂μ) ^ (1/r) : ennreal.lintegral_Lp_mul_le_Lq_mul_Lr hp0_lt hpq hpqr μ hf.ennnorm ae_measurable_const ... = (∫⁻ (a : α), ↑‖f a‖₊ ^ q ∂μ) ^ (1/q) * μ set.univ ^ (1/p - 1/q) : by simp [hpqr], end lemma snorm'_le_snorm_ess_sup_mul_rpow_measure_univ (hq_pos : 0 < q) {f : α → F} : snorm' f q μ ≤ snorm_ess_sup f μ * (μ set.univ) ^ (1/q) := begin have h_le : ∫⁻ (a : α), ↑‖f a‖₊ ^ q ∂μ ≤ ∫⁻ (a : α), (snorm_ess_sup f μ) ^ q ∂μ, { refine lintegral_mono_ae _, have h_nnnorm_le_snorm_ess_sup := coe_nnnorm_ae_le_snorm_ess_sup f μ, refine h_nnnorm_le_snorm_ess_sup.mono (λ x hx, ennreal.rpow_le_rpow hx (le_of_lt hq_pos)), }, rw [snorm', ←ennreal.rpow_one (snorm_ess_sup f μ)], nth_rewrite 1 ←mul_inv_cancel (ne_of_lt hq_pos).symm, rw [ennreal.rpow_mul, one_div, ←ennreal.mul_rpow_of_nonneg _ _ (by simp [hq_pos.le] : 0 ≤ q⁻¹)], refine ennreal.rpow_le_rpow _ (by simp [hq_pos.le]), rwa lintegral_const at h_le, end lemma snorm_le_snorm_mul_rpow_measure_univ {p q : ℝ≥0∞} (hpq : p ≤ q) {f : α → E} (hf : ae_strongly_measurable f μ) : snorm f p μ ≤ snorm f q μ * (μ set.univ) ^ (1/p.to_real - 1/q.to_real) := begin by_cases hp0 : p = 0, { simp [hp0, zero_le], }, rw ← ne.def at hp0, have hp0_lt : 0 < p, from lt_of_le_of_ne (zero_le _) hp0.symm, have hq0_lt : 0 < q, from lt_of_lt_of_le hp0_lt hpq, by_cases hq_top : q = ∞, { simp only [hq_top, div_zero, one_div, ennreal.top_to_real, sub_zero, snorm_exponent_top, inv_zero], by_cases hp_top : p = ∞, { simp only [hp_top, ennreal.rpow_zero, mul_one, ennreal.top_to_real, sub_zero, inv_zero, snorm_exponent_top], exact le_rfl, }, rw snorm_eq_snorm' hp0 hp_top, have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0_lt.ne' hp_top, refine (snorm'_le_snorm_ess_sup_mul_rpow_measure_univ hp_pos).trans (le_of_eq _), congr, exact one_div _, }, have hp_lt_top : p < ∞, from hpq.trans_lt (lt_top_iff_ne_top.mpr hq_top), have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0_lt.ne' hp_lt_top.ne, rw [snorm_eq_snorm' hp0_lt.ne.symm hp_lt_top.ne, snorm_eq_snorm' hq0_lt.ne.symm hq_top], have hpq_real : p.to_real ≤ q.to_real, by rwa ennreal.to_real_le_to_real hp_lt_top.ne hq_top, exact snorm'_le_snorm'_mul_rpow_measure_univ hp_pos hpq_real hf, end lemma snorm'_le_snorm'_of_exponent_le {m : measurable_space α} {p q : ℝ} (hp0_lt : 0 < p) (hpq : p ≤ q) (μ : measure α) [is_probability_measure μ] {f : α → E} (hf : ae_strongly_measurable f μ) : snorm' f p μ ≤ snorm' f q μ := begin have h_le_μ := snorm'_le_snorm'_mul_rpow_measure_univ hp0_lt hpq hf, rwa [measure_univ, ennreal.one_rpow, mul_one] at h_le_μ, end lemma snorm'_le_snorm_ess_sup (hq_pos : 0 < q) {f : α → F} [is_probability_measure μ] : snorm' f q μ ≤ snorm_ess_sup f μ := le_trans (snorm'_le_snorm_ess_sup_mul_rpow_measure_univ hq_pos) (le_of_eq (by simp [measure_univ])) lemma snorm_le_snorm_of_exponent_le {p q : ℝ≥0∞} (hpq : p ≤ q) [is_probability_measure μ] {f : α → E} (hf : ae_strongly_measurable f μ) : snorm f p μ ≤ snorm f q μ := (snorm_le_snorm_mul_rpow_measure_univ hpq hf).trans (le_of_eq (by simp [measure_univ])) lemma snorm'_lt_top_of_snorm'_lt_top_of_exponent_le {p q : ℝ} [is_finite_measure μ] {f : α → E} (hf : ae_strongly_measurable f μ) (hfq_lt_top : snorm' f q μ < ∞) (hp_nonneg : 0 ≤ p) (hpq : p ≤ q) : snorm' f p μ < ∞ := begin cases le_or_lt p 0 with hp_nonpos hp_pos, { rw le_antisymm hp_nonpos hp_nonneg, simp, }, have hq_pos : 0 < q, from lt_of_lt_of_le hp_pos hpq, calc snorm' f p μ ≤ snorm' f q μ * (μ set.univ) ^ (1/p - 1/q) : snorm'_le_snorm'_mul_rpow_measure_univ hp_pos hpq hf ... < ∞ : begin rw ennreal.mul_lt_top_iff, refine or.inl ⟨hfq_lt_top, ennreal.rpow_lt_top_of_nonneg _ (measure_ne_top μ set.univ)⟩, rwa [le_sub_comm, sub_zero, one_div, one_div, inv_le_inv hq_pos hp_pos], end end variables (μ) lemma pow_mul_meas_ge_le_snorm {f : α → E} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf : ae_strongly_measurable f μ) (ε : ℝ≥0∞) : (ε * μ {x | ε ≤ ‖f x‖₊ ^ p.to_real}) ^ (1 / p.to_real) ≤ snorm f p μ := begin rw snorm_eq_lintegral_rpow_nnnorm hp_ne_zero hp_ne_top, exact ennreal.rpow_le_rpow (mul_meas_ge_le_lintegral₀ (hf.ennnorm.pow_const _) ε) (one_div_nonneg.2 ennreal.to_real_nonneg), end lemma mul_meas_ge_le_pow_snorm {f : α → E} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf : ae_strongly_measurable f μ) (ε : ℝ≥0∞) : ε * μ {x | ε ≤ ‖f x‖₊ ^ p.to_real} ≤ snorm f p μ ^ p.to_real := begin have : 1 / p.to_real * p.to_real = 1, { refine one_div_mul_cancel _, rw [ne, ennreal.to_real_eq_zero_iff], exact not_or hp_ne_zero hp_ne_top }, rw [← ennreal.rpow_one (ε * μ {x | ε ≤ ‖f x‖₊ ^ p.to_real}), ← this, ennreal.rpow_mul], exact ennreal.rpow_le_rpow (pow_mul_meas_ge_le_snorm μ hp_ne_zero hp_ne_top hf ε) ennreal.to_real_nonneg, end /-- A version of Markov's inequality using Lp-norms. -/ lemma mul_meas_ge_le_pow_snorm' {f : α → E} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf : ae_strongly_measurable f μ) (ε : ℝ≥0∞) : ε ^ p.to_real * μ {x | ε ≤ ‖f x‖₊} ≤ snorm f p μ ^ p.to_real := begin convert mul_meas_ge_le_pow_snorm μ hp_ne_zero hp_ne_top hf (ε ^ p.to_real), ext x, rw ennreal.rpow_le_rpow_iff (ennreal.to_real_pos hp_ne_zero hp_ne_top), end lemma meas_ge_le_mul_pow_snorm {f : α → E} (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf : ae_strongly_measurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0) : μ {x | ε ≤ ‖f x‖₊} ≤ ε⁻¹ ^ p.to_real * snorm f p μ ^ p.to_real := begin by_cases ε = ∞, { simp [h] }, have hεpow : ε ^ p.to_real ≠ 0 := (ennreal.rpow_pos (pos_iff_ne_zero.2 hε) h).ne.symm, have hεpow' : ε ^ p.to_real ≠ ∞ := (ennreal.rpow_ne_top_of_nonneg ennreal.to_real_nonneg h), rw [ennreal.inv_rpow, ← ennreal.mul_le_mul_left hεpow hεpow', ← mul_assoc, ennreal.mul_inv_cancel hεpow hεpow', one_mul], exact mul_meas_ge_le_pow_snorm' μ hp_ne_zero hp_ne_top hf ε, end variables {μ} lemma mem_ℒp.mem_ℒp_of_exponent_le {p q : ℝ≥0∞} [is_finite_measure μ] {f : α → E} (hfq : mem_ℒp f q μ) (hpq : p ≤ q) : mem_ℒp f p μ := begin cases hfq with hfq_m hfq_lt_top, by_cases hp0 : p = 0, { rwa [hp0, mem_ℒp_zero_iff_ae_strongly_measurable], }, rw ←ne.def at hp0, refine ⟨hfq_m, _⟩, by_cases hp_top : p = ∞, { have hq_top : q = ∞, by rwa [hp_top, top_le_iff] at hpq, rw [hp_top], rwa hq_top at hfq_lt_top, }, have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0 hp_top, by_cases hq_top : q = ∞, { rw snorm_eq_snorm' hp0 hp_top, rw [hq_top, snorm_exponent_top] at hfq_lt_top, refine lt_of_le_of_lt (snorm'_le_snorm_ess_sup_mul_rpow_measure_univ hp_pos) _, refine ennreal.mul_lt_top hfq_lt_top.ne _, exact (ennreal.rpow_lt_top_of_nonneg (by simp [hp_pos.le]) (measure_ne_top μ set.univ)).ne }, have hq0 : q ≠ 0, { by_contra hq_eq_zero, have hp_eq_zero : p = 0, from le_antisymm (by rwa hq_eq_zero at hpq) (zero_le _), rw [hp_eq_zero, ennreal.zero_to_real] at hp_pos, exact (lt_irrefl _) hp_pos, }, have hpq_real : p.to_real ≤ q.to_real, by rwa ennreal.to_real_le_to_real hp_top hq_top, rw snorm_eq_snorm' hp0 hp_top, rw snorm_eq_snorm' hq0 hq_top at hfq_lt_top, exact snorm'_lt_top_of_snorm'_lt_top_of_exponent_le hfq_m hfq_lt_top (le_of_lt hp_pos) hpq_real, end section has_measurable_add -- variable [has_measurable_add₂ E] lemma snorm'_sum_le {ι} {f : ι → α → E} {s : finset ι} (hfs : ∀ i, i ∈ s → ae_strongly_measurable (f i) μ) (hq1 : 1 ≤ q) : snorm' (∑ i in s, f i) q μ ≤ ∑ i in s, snorm' (f i) q μ := finset.le_sum_of_subadditive_on_pred (λ (f : α → E), snorm' f q μ) (λ f, ae_strongly_measurable f μ) (snorm'_zero (zero_lt_one.trans_le hq1)) (λ f g hf hg, snorm'_add_le hf hg hq1) (λ f g hf hg, hf.add hg) _ hfs lemma snorm_sum_le {ι} {f : ι → α → E} {s : finset ι} (hfs : ∀ i, i ∈ s → ae_strongly_measurable (f i) μ) (hp1 : 1 ≤ p) : snorm (∑ i in s, f i) p μ ≤ ∑ i in s, snorm (f i) p μ := finset.le_sum_of_subadditive_on_pred (λ (f : α → E), snorm f p μ) (λ f, ae_strongly_measurable f μ) snorm_zero (λ f g hf hg, snorm_add_le hf hg hp1) (λ f g hf hg, hf.add hg) _ hfs lemma mem_ℒp.add {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : mem_ℒp (f + g) p μ := ⟨ae_strongly_measurable.add hf.1 hg.1, snorm_add_lt_top hf hg⟩ lemma mem_ℒp.sub {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : mem_ℒp (f - g) p μ := by { rw sub_eq_add_neg, exact hf.add hg.neg } lemma mem_ℒp_finset_sum {ι} (s : finset ι) {f : ι → α → E} (hf : ∀ i ∈ s, mem_ℒp (f i) p μ) : mem_ℒp (λ a, ∑ i in s, f i a) p μ := begin haveI : decidable_eq ι := classical.dec_eq _, revert hf, refine finset.induction_on s _ _, { simp only [zero_mem_ℒp', finset.sum_empty, implies_true_iff], }, { intros i s his ih hf, simp only [his, finset.sum_insert, not_false_iff], exact (hf i (s.mem_insert_self i)).add (ih (λ j hj, hf j (finset.mem_insert_of_mem hj))), }, end lemma mem_ℒp_finset_sum' {ι} (s : finset ι) {f : ι → α → E} (hf : ∀ i ∈ s, mem_ℒp (f i) p μ) : mem_ℒp (∑ i in s, f i) p μ := begin convert mem_ℒp_finset_sum s hf, ext x, simp, end end has_measurable_add end borel_space section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 E] [normed_space 𝕜 F] lemma snorm'_const_smul {f : α → F} (c : 𝕜) (hq_pos : 0 < q) : snorm' (c • f) q μ = (‖c‖₊ : ℝ≥0∞) * snorm' f q μ := begin rw snorm', simp_rw [pi.smul_apply, nnnorm_smul, ennreal.coe_mul, ennreal.mul_rpow_of_nonneg _ _ hq_pos.le], suffices h_integral : ∫⁻ a, ↑(‖c‖₊) ^ q * ↑‖f a‖₊ ^ q ∂μ = (‖c‖₊ : ℝ≥0∞)^q * ∫⁻ a, ‖f a‖₊ ^ q ∂μ, { apply_fun (λ x, x ^ (1/q)) at h_integral, rw [h_integral, ennreal.mul_rpow_of_nonneg _ _ (by simp [hq_pos.le] : 0 ≤ 1 / q)], congr, simp_rw [←ennreal.rpow_mul, one_div, mul_inv_cancel hq_pos.ne.symm, ennreal.rpow_one], }, rw lintegral_const_mul', rw ennreal.coe_rpow_of_nonneg _ hq_pos.le, exact ennreal.coe_ne_top, end lemma snorm_ess_sup_const_smul {f : α → F} (c : 𝕜) : snorm_ess_sup (c • f) μ = (‖c‖₊ : ℝ≥0∞) * snorm_ess_sup f μ := by simp_rw [snorm_ess_sup, pi.smul_apply, nnnorm_smul, ennreal.coe_mul, ennreal.ess_sup_const_mul] lemma snorm_const_smul {f : α → F} (c : 𝕜) : snorm (c • f) p μ = (‖c‖₊ : ℝ≥0∞) * snorm f p μ := begin by_cases h0 : p = 0, { simp [h0], }, by_cases h_top : p = ∞, { simp [h_top, snorm_ess_sup_const_smul], }, repeat { rw snorm_eq_snorm' h0 h_top, }, rw ←ne.def at h0, exact snorm'_const_smul c (ennreal.to_real_pos h0 h_top), end lemma mem_ℒp.const_smul {f : α → E} (hf : mem_ℒp f p μ) (c : 𝕜) : mem_ℒp (c • f) p μ := ⟨ae_strongly_measurable.const_smul hf.1 c, (snorm_const_smul c).le.trans_lt (ennreal.mul_lt_top ennreal.coe_ne_top hf.2.ne)⟩ lemma mem_ℒp.const_mul {f : α → 𝕜} (hf : mem_ℒp f p μ) (c : 𝕜) : mem_ℒp (λ x, c * f x) p μ := hf.const_smul c lemma snorm'_smul_le_mul_snorm' {p q r : ℝ} {f : α → E} (hf : ae_strongly_measurable f μ) {φ : α → 𝕜} (hφ : ae_strongly_measurable φ μ) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1/p = 1/q + 1/r) : snorm' (φ • f) p μ ≤ snorm' φ q μ * snorm' f r μ := begin simp_rw [snorm', pi.smul_apply', nnnorm_smul, ennreal.coe_mul], exact ennreal.lintegral_Lp_mul_le_Lq_mul_Lr hp0_lt hpq hpqr μ hφ.ennnorm hf.ennnorm, end lemma snorm_smul_le_snorm_top_mul_snorm (p : ℝ≥0∞) {f : α → E} (hf : ae_strongly_measurable f μ) (φ : α → 𝕜) : snorm (φ • f) p μ ≤ snorm φ ∞ μ * snorm f p μ := begin by_cases hp_top : p = ∞, { simp_rw [hp_top, snorm_exponent_top, snorm_ess_sup, pi.smul_apply', nnnorm_smul, ennreal.coe_mul], exact ennreal.ess_sup_mul_le _ _, }, by_cases hp_zero : p = 0, { simp only [hp_zero, snorm_exponent_zero, mul_zero, le_zero_iff], }, simp_rw [snorm_eq_lintegral_rpow_nnnorm hp_zero hp_top, snorm_exponent_top, snorm_ess_sup], calc (∫⁻ x, ↑‖(φ • f) x‖₊ ^ p.to_real ∂μ) ^ (1 / p.to_real) = (∫⁻ x, ↑‖φ x‖₊ ^ p.to_real * ↑‖f x‖₊ ^ p.to_real ∂μ) ^ (1 / p.to_real) : begin congr, ext1 x, rw [pi.smul_apply', nnnorm_smul, ennreal.coe_mul, ennreal.mul_rpow_of_nonneg _ _ (ennreal.to_real_nonneg)], end ... ≤ (∫⁻ x, (ess_sup (λ x, ↑‖φ x‖₊) μ) ^ p.to_real * ↑‖f x‖₊ ^ p.to_real ∂μ) ^ (1 / p.to_real) : begin refine ennreal.rpow_le_rpow _ _, swap, { rw one_div_nonneg, exact ennreal.to_real_nonneg, }, refine lintegral_mono_ae _, filter_upwards [@ennreal.ae_le_ess_sup _ _ μ (λ x, ↑‖φ x‖₊)] with x hx, refine ennreal.mul_le_mul _ le_rfl, exact ennreal.rpow_le_rpow hx ennreal.to_real_nonneg, end ... = ess_sup (λ x, ↑‖φ x‖₊) μ * (∫⁻ x, ↑‖f x‖₊ ^ p.to_real ∂μ) ^ (1 / p.to_real) : begin rw lintegral_const_mul'', swap, { exact hf.nnnorm.ae_measurable.coe_nnreal_ennreal.pow ae_measurable_const, }, rw ennreal.mul_rpow_of_nonneg, swap, { rw one_div_nonneg, exact ennreal.to_real_nonneg, }, rw [← ennreal.rpow_mul, one_div, mul_inv_cancel, ennreal.rpow_one], rw [ne.def, ennreal.to_real_eq_zero_iff, auto.not_or_eq], exact ⟨hp_zero, hp_top⟩, end end lemma snorm_smul_le_snorm_mul_snorm_top (p : ℝ≥0∞) (f : α → E) {φ : α → 𝕜} (hφ : ae_strongly_measurable φ μ) : snorm (φ • f) p μ ≤ snorm φ p μ * snorm f ∞ μ := begin rw ← snorm_norm, simp_rw [pi.smul_apply', norm_smul], have : (λ x, ‖φ x‖ * ‖f x‖) = (λ x, ‖f x‖) • (λ x, ‖φ x‖), { rw [smul_eq_mul, mul_comm], refl, }, rw this, have h := snorm_smul_le_snorm_top_mul_snorm p hφ.norm (λ x, ‖f x‖), refine h.trans_eq _, simp_rw snorm_norm, rw mul_comm, end /-- Hölder's inequality, as an inequality on the `ℒp` seminorm of a scalar product `φ • f`. -/ lemma snorm_smul_le_mul_snorm {p q r : ℝ≥0∞} {f : α → E} (hf : ae_strongly_measurable f μ) {φ : α → 𝕜} (hφ : ae_strongly_measurable φ μ) (hpqr : 1/p = 1/q + 1/r) : snorm (φ • f) p μ ≤ snorm φ q μ * snorm f r μ := begin by_cases hp_zero : p = 0, { simp [hp_zero], }, have hq_ne_zero : q ≠ 0, { intro hq_zero, simp only [hq_zero, hp_zero, one_div, ennreal.inv_zero, ennreal.top_add, ennreal.inv_eq_top] at hpqr, exact hpqr, }, have hr_ne_zero : r ≠ 0, { intro hr_zero, simp only [hr_zero, hp_zero, one_div, ennreal.inv_zero, ennreal.add_top, ennreal.inv_eq_top] at hpqr, exact hpqr, }, by_cases hq_top : q = ∞, { have hpr : p = r, { simpa only [hq_top, one_div, ennreal.div_top, zero_add, inv_inj] using hpqr, }, rw [← hpr, hq_top], exact snorm_smul_le_snorm_top_mul_snorm p hf φ, }, by_cases hr_top : r = ∞, { have hpq : p = q, { simpa only [hr_top, one_div, ennreal.div_top, add_zero, inv_inj] using hpqr, }, rw [← hpq, hr_top], exact snorm_smul_le_snorm_mul_snorm_top p f hφ, }, have hpq : p < q, { suffices : 1 / q < 1 / p, { rwa [one_div, one_div, ennreal.inv_lt_inv] at this, }, rw hpqr, refine ennreal.lt_add_right _ _, { simp only [hq_ne_zero, one_div, ne.def, ennreal.inv_eq_top, not_false_iff], }, { simp only [hr_top, one_div, ne.def, ennreal.inv_eq_zero, not_false_iff], }, }, rw [snorm_eq_snorm' hp_zero (hpq.trans_le le_top).ne, snorm_eq_snorm' hq_ne_zero hq_top, snorm_eq_snorm' hr_ne_zero hr_top], refine snorm'_smul_le_mul_snorm' hf hφ _ _ _, { exact ennreal.to_real_pos hp_zero (hpq.trans_le le_top).ne, }, { exact ennreal.to_real_strict_mono hq_top hpq, }, rw [← ennreal.one_to_real, ← ennreal.to_real_div, ← ennreal.to_real_div, ← ennreal.to_real_div, hpqr, ennreal.to_real_add], { simp only [hq_ne_zero, one_div, ne.def, ennreal.inv_eq_top, not_false_iff], }, { simp only [hr_ne_zero, one_div, ne.def, ennreal.inv_eq_top, not_false_iff], }, end lemma mem_ℒp.smul {p q r : ℝ≥0∞} {f : α → E} {φ : α → 𝕜} (hf : mem_ℒp f r μ) (hφ : mem_ℒp φ q μ) (hpqr : 1/p = 1/q + 1/r) : mem_ℒp (φ • f) p μ := ⟨hφ.1.smul hf.1, (snorm_smul_le_mul_snorm hf.1 hφ.1 hpqr).trans_lt (ennreal.mul_lt_top hφ.snorm_ne_top hf.snorm_ne_top)⟩ end normed_space section monotonicity lemma snorm_le_mul_snorm_aux_of_nonneg {f : α → F} {g : α → G} {c : ℝ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ c * ‖g x‖) (hc : 0 ≤ c) (p : ℝ≥0∞) : snorm f p μ ≤ (ennreal.of_real c) * snorm g p μ := begin lift c to ℝ≥0 using hc, rw [ennreal.of_real_coe_nnreal, ← c.nnnorm_eq, ← snorm_norm g, ← snorm_const_smul (c : ℝ)], swap, apply_instance, refine snorm_mono_ae _, simpa end lemma snorm_le_mul_snorm_aux_of_neg {f : α → F} {g : α → G} {c : ℝ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ c * ‖g x‖) (hc : c < 0) (p : ℝ≥0∞) : snorm f p μ = 0 ∧ snorm g p μ = 0 := begin suffices : f =ᵐ[μ] 0 ∧ g =ᵐ[μ] 0, by simp [snorm_congr_ae this.1, snorm_congr_ae this.2], refine ⟨h.mono $ λ x hx, _, h.mono $ λ x hx, _⟩, { refine norm_le_zero_iff.1 (hx.trans _), exact mul_nonpos_of_nonpos_of_nonneg hc.le (norm_nonneg _) }, { refine norm_le_zero_iff.1 (nonpos_of_mul_nonneg_right _ hc), exact (norm_nonneg _).trans hx } end lemma snorm_le_mul_snorm_of_ae_le_mul {f : α → F} {g : α → G} {c : ℝ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ c * ‖g x‖) (p : ℝ≥0∞) : snorm f p μ ≤ (ennreal.of_real c) * snorm g p μ := begin cases le_or_lt 0 c with hc hc, { exact snorm_le_mul_snorm_aux_of_nonneg h hc p }, { simp [snorm_le_mul_snorm_aux_of_neg h hc p] } end lemma mem_ℒp.of_le_mul {f : α → E} {g : α → F} {c : ℝ} (hg : mem_ℒp g p μ) (hf : ae_strongly_measurable f μ) (hfg : ∀ᵐ x ∂μ, ‖f x‖ ≤ c * ‖g x‖) : mem_ℒp f p μ := begin simp only [mem_ℒp, hf, true_and], apply lt_of_le_of_lt (snorm_le_mul_snorm_of_ae_le_mul hfg p), simp [lt_top_iff_ne_top, hg.snorm_ne_top], end end monotonicity lemma snorm_indicator_ge_of_bdd_below (hp : p ≠ 0) (hp' : p ≠ ∞) {f : α → F} (C : ℝ≥0) {s : set α} (hs : measurable_set s) (hf : ∀ᵐ x ∂μ, x ∈ s → C ≤ ‖s.indicator f x‖₊) : C • μ s ^ (1 / p.to_real) ≤ snorm (s.indicator f) p μ := begin rw [ennreal.smul_def, smul_eq_mul, snorm_eq_lintegral_rpow_nnnorm hp hp', ennreal.le_rpow_one_div_iff (ennreal.to_real_pos hp hp'), ennreal.mul_rpow_of_nonneg _ _ ennreal.to_real_nonneg, ← ennreal.rpow_mul, one_div_mul_cancel (ennreal.to_real_pos hp hp').ne.symm, ennreal.rpow_one, ← set_lintegral_const, ← lintegral_indicator _ hs], refine lintegral_mono_ae _, filter_upwards [hf] with x hx, rw nnnorm_indicator_eq_indicator_nnnorm, by_cases hxs : x ∈ s, { simp only [set.indicator_of_mem hxs] at ⊢ hx, exact ennreal.rpow_le_rpow (ennreal.coe_le_coe.2 (hx hxs)) ennreal.to_real_nonneg }, { simp [set.indicator_of_not_mem hxs] }, end section is_R_or_C variables {𝕜 : Type*} [is_R_or_C 𝕜] {f : α → 𝕜} lemma mem_ℒp.re (hf : mem_ℒp f p μ) : mem_ℒp (λ x, is_R_or_C.re (f x)) p μ := begin have : ∀ x, ‖is_R_or_C.re (f x)‖ ≤ 1 * ‖f x‖, by { intro x, rw one_mul, exact is_R_or_C.norm_re_le_norm (f x), }, exact hf.of_le_mul hf.1.re (eventually_of_forall this), end lemma mem_ℒp.im (hf : mem_ℒp f p μ) : mem_ℒp (λ x, is_R_or_C.im (f x)) p μ := begin have : ∀ x, ‖is_R_or_C.im (f x)‖ ≤ 1 * ‖f x‖, by { intro x, rw one_mul, exact is_R_or_C.norm_im_le_norm (f x), }, exact hf.of_le_mul hf.1.im (eventually_of_forall this), end end is_R_or_C section inner_product variables {E' 𝕜 : Type*} [is_R_or_C 𝕜] [inner_product_space 𝕜 E'] local notation `⟪`x`, `y`⟫` := @inner 𝕜 E' _ x y lemma mem_ℒp.const_inner (c : E') {f : α → E'} (hf : mem_ℒp f p μ) : mem_ℒp (λ a, ⟪c, f a⟫) p μ := hf.of_le_mul (ae_strongly_measurable.inner ae_strongly_measurable_const hf.1) (eventually_of_forall (λ x, norm_inner_le_norm _ _)) lemma mem_ℒp.inner_const {f : α → E'} (hf : mem_ℒp f p μ) (c : E') : mem_ℒp (λ a, ⟪f a, c⟫) p μ := hf.of_le_mul (ae_strongly_measurable.inner hf.1 ae_strongly_measurable_const) (eventually_of_forall (λ x, by { rw mul_comm, exact norm_inner_le_norm _ _, })) end inner_product section liminf variables [measurable_space E] [opens_measurable_space E] {R : ℝ≥0} lemma ae_bdd_liminf_at_top_rpow_of_snorm_bdd {p : ℝ≥0∞} {f : ℕ → α → E} (hfmeas : ∀ n, measurable (f n)) (hbdd : ∀ n, snorm (f n) p μ ≤ R) : ∀ᵐ x ∂μ, liminf (λ n, (‖f n x‖₊ ^ p.to_real : ℝ≥0∞)) at_top < ∞ := begin by_cases hp0 : p.to_real = 0, { simp only [hp0, ennreal.rpow_zero], refine eventually_of_forall (λ x, _), rw liminf_const (1 : ℝ≥0∞), exacts [ennreal.one_lt_top, at_top_ne_bot] }, have hp : p ≠ 0 := λ h, by simpa [h] using hp0, have hp' : p ≠ ∞ := λ h, by simpa [h] using hp0, refine ae_lt_top (measurable_liminf (λ n, (hfmeas n).nnnorm.coe_nnreal_ennreal.pow_const p.to_real)) (lt_of_le_of_lt (lintegral_liminf_le (λ n, (hfmeas n).nnnorm.coe_nnreal_ennreal.pow_const p.to_real)) (lt_of_le_of_lt _ (ennreal.rpow_lt_top_of_nonneg ennreal.to_real_nonneg ennreal.coe_ne_top : ↑R ^ p.to_real < ∞))).ne, simp_rw snorm_eq_lintegral_rpow_nnnorm hp hp' at hbdd, simp_rw [liminf_eq, eventually_at_top], exact Sup_le (λ b ⟨a, ha⟩, (ha a le_rfl).trans ((ennreal.rpow_one_div_le_iff (ennreal.to_real_pos hp hp')).1 (hbdd _))), end lemma ae_bdd_liminf_at_top_of_snorm_bdd {p : ℝ≥0∞} (hp : p ≠ 0) {f : ℕ → α → E} (hfmeas : ∀ n, measurable (f n)) (hbdd : ∀ n, snorm (f n) p μ ≤ R) : ∀ᵐ x ∂μ, liminf (λ n, (‖f n x‖₊ : ℝ≥0∞)) at_top < ∞ := begin by_cases hp' : p = ∞, { subst hp', simp_rw snorm_exponent_top at hbdd, have : ∀ n, ∀ᵐ x ∂μ, (‖f n x‖₊ : ℝ≥0∞) < R + 1 := λ n, ae_lt_of_ess_sup_lt (lt_of_le_of_lt (hbdd n) $ ennreal.lt_add_right ennreal.coe_ne_top one_ne_zero), rw ← ae_all_iff at this, filter_upwards [this] with x hx using lt_of_le_of_lt (liminf_le_of_frequently_le' $ frequently_of_forall $ λ n, (hx n).le) (ennreal.add_lt_top.2 ⟨ennreal.coe_lt_top, ennreal.one_lt_top⟩) }, filter_upwards [ae_bdd_liminf_at_top_rpow_of_snorm_bdd hfmeas hbdd] with x hx, have hppos : 0 < p.to_real := ennreal.to_real_pos hp hp', have : liminf (λ n, (‖f n x‖₊ ^ p.to_real : ℝ≥0∞)) at_top = (liminf (λ n, (‖f n x‖₊ : ℝ≥0∞)) at_top)^ p.to_real, { change liminf (λ n, ennreal.order_iso_rpow p.to_real hppos (‖f n x‖₊ : ℝ≥0∞)) at_top = ennreal.order_iso_rpow p.to_real hppos (liminf (λ n, (‖f n x‖₊ : ℝ≥0∞)) at_top), refine (order_iso.liminf_apply (ennreal.order_iso_rpow p.to_real _) _ _ _ _).symm; is_bounded_default }, rw this at hx, rw [← ennreal.rpow_one (liminf (λ n, ‖f n x‖₊) at_top), ← mul_inv_cancel hppos.ne.symm, ennreal.rpow_mul], exact ennreal.rpow_lt_top_of_nonneg (inv_nonneg.2 hppos.le) hx.ne, end end liminf end ℒp /-! ### Lp space The space of equivalence classes of measurable functions for which `snorm f p μ < ∞`. -/ @[simp] lemma snorm_ae_eq_fun {α E : Type*} [measurable_space α] {μ : measure α} [normed_add_comm_group E] {p : ℝ≥0∞} {f : α → E} (hf : ae_strongly_measurable f μ) : snorm (ae_eq_fun.mk f hf) p μ = snorm f p μ := snorm_congr_ae (ae_eq_fun.coe_fn_mk _ _) lemma mem_ℒp.snorm_mk_lt_top {α E : Type*} [measurable_space α] {μ : measure α} [normed_add_comm_group E] {p : ℝ≥0∞} {f : α → E} (hfp : mem_ℒp f p μ) : snorm (ae_eq_fun.mk f hfp.1) p μ < ∞ := by simp [hfp.2] /-- Lp space -/ def Lp {α} (E : Type*) {m : measurable_space α} [normed_add_comm_group E] (p : ℝ≥0∞) (μ : measure α . volume_tac) : add_subgroup (α →ₘ[μ] E) := { carrier := {f | snorm f p μ < ∞}, zero_mem' := by simp [snorm_congr_ae ae_eq_fun.coe_fn_zero, snorm_zero], add_mem' := λ f g hf hg, by simp [snorm_congr_ae (ae_eq_fun.coe_fn_add _ _), snorm_add_lt_top ⟨f.ae_strongly_measurable, hf⟩ ⟨g.ae_strongly_measurable, hg⟩], neg_mem' := λ f hf, by rwa [set.mem_set_of_eq, snorm_congr_ae (ae_eq_fun.coe_fn_neg _), snorm_neg] } localized "notation (name := measure_theory.L1) α ` →₁[`:25 μ `] ` E := measure_theory.Lp E 1 μ" in measure_theory localized "notation (name := measure_theory.L2) α ` →₂[`:25 μ `] ` E := measure_theory.Lp E 2 μ" in measure_theory namespace mem_ℒp /-- make an element of Lp from a function verifying `mem_ℒp` -/ def to_Lp (f : α → E) (h_mem_ℒp : mem_ℒp f p μ) : Lp E p μ := ⟨ae_eq_fun.mk f h_mem_ℒp.1, h_mem_ℒp.snorm_mk_lt_top⟩ lemma coe_fn_to_Lp {f : α → E} (hf : mem_ℒp f p μ) : hf.to_Lp f =ᵐ[μ] f := ae_eq_fun.coe_fn_mk _ _ lemma to_Lp_congr {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) (hfg : f =ᵐ[μ] g) : hf.to_Lp f = hg.to_Lp g := by simp [to_Lp, hfg] @[simp] lemma to_Lp_eq_to_Lp_iff {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : hf.to_Lp f = hg.to_Lp g ↔ f =ᵐ[μ] g := by simp [to_Lp] @[simp] lemma to_Lp_zero (h : mem_ℒp (0 : α → E) p μ) : h.to_Lp 0 = 0 := rfl lemma to_Lp_add {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : (hf.add hg).to_Lp (f + g) = hf.to_Lp f + hg.to_Lp g := rfl lemma to_Lp_neg {f : α → E} (hf : mem_ℒp f p μ) : hf.neg.to_Lp (-f) = - hf.to_Lp f := rfl lemma to_Lp_sub {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : (hf.sub hg).to_Lp (f - g) = hf.to_Lp f - hg.to_Lp g := rfl end mem_ℒp namespace Lp instance : has_coe_to_fun (Lp E p μ) (λ _, α → E) := ⟨λ f, ((f : α →ₘ[μ] E) : α → E)⟩ @[ext] lemma ext {f g : Lp E p μ} (h : f =ᵐ[μ] g) : f = g := begin cases f, cases g, simp only [subtype.mk_eq_mk], exact ae_eq_fun.ext h end lemma ext_iff {f g : Lp E p μ} : f = g ↔ f =ᵐ[μ] g := ⟨λ h, by rw h, λ h, ext h⟩ lemma mem_Lp_iff_snorm_lt_top {f : α →ₘ[μ] E} : f ∈ Lp E p μ ↔ snorm f p μ < ∞ := iff.refl _ lemma mem_Lp_iff_mem_ℒp {f : α →ₘ[μ] E} : f ∈ Lp E p μ ↔ mem_ℒp f p μ := by simp [mem_Lp_iff_snorm_lt_top, mem_ℒp, f.strongly_measurable.ae_strongly_measurable] protected lemma antitone [is_finite_measure μ] {p q : ℝ≥0∞} (hpq : p ≤ q) : Lp E q μ ≤ Lp E p μ := λ f hf, (mem_ℒp.mem_ℒp_of_exponent_le ⟨f.ae_strongly_measurable, hf⟩ hpq).2 @[simp] lemma coe_fn_mk {f : α →ₘ[μ] E} (hf : snorm f p μ < ∞) : ((⟨f, hf⟩ : Lp E p μ) : α → E) = f := rfl @[simp] lemma coe_mk {f : α →ₘ[μ] E} (hf : snorm f p μ < ∞) : ((⟨f, hf⟩ : Lp E p μ) : α →ₘ[μ] E) = f := rfl @[simp] lemma to_Lp_coe_fn (f : Lp E p μ) (hf : mem_ℒp f p μ) : hf.to_Lp f = f := by { cases f, simp [mem_ℒp.to_Lp] } lemma snorm_lt_top (f : Lp E p μ) : snorm f p μ < ∞ := f.prop lemma snorm_ne_top (f : Lp E p μ) : snorm f p μ ≠ ∞ := (snorm_lt_top f).ne @[measurability] protected lemma strongly_measurable (f : Lp E p μ) : strongly_measurable f := f.val.strongly_measurable @[measurability] protected lemma ae_strongly_measurable (f : Lp E p μ) : ae_strongly_measurable f μ := f.val.ae_strongly_measurable protected lemma mem_ℒp (f : Lp E p μ) : mem_ℒp f p μ := ⟨Lp.ae_strongly_measurable f, f.prop⟩ variables (E p μ) lemma coe_fn_zero : ⇑(0 : Lp E p μ) =ᵐ[μ] 0 := ae_eq_fun.coe_fn_zero variables {E p μ} lemma coe_fn_neg (f : Lp E p μ) : ⇑(-f) =ᵐ[μ] -f := ae_eq_fun.coe_fn_neg _ lemma coe_fn_add (f g : Lp E p μ) : ⇑(f + g) =ᵐ[μ] f + g := ae_eq_fun.coe_fn_add _ _ lemma coe_fn_sub (f g : Lp E p μ) : ⇑(f - g) =ᵐ[μ] f - g := ae_eq_fun.coe_fn_sub _ _ lemma mem_Lp_const (α) {m : measurable_space α} (μ : measure α) (c : E) [is_finite_measure μ] : @ae_eq_fun.const α _ _ μ _ c ∈ Lp E p μ := (mem_ℒp_const c).snorm_mk_lt_top instance : has_norm (Lp E p μ) := { norm := λ f, ennreal.to_real (snorm f p μ) } instance : has_dist (Lp E p μ) := { dist := λ f g, ‖f - g‖} instance : has_edist (Lp E p μ) := { edist := λ f g, snorm (f - g) p μ } lemma norm_def (f : Lp E p μ) : ‖f‖ = ennreal.to_real (snorm f p μ) := rfl @[simp] lemma norm_to_Lp (f : α → E) (hf : mem_ℒp f p μ) : ‖hf.to_Lp f‖ = ennreal.to_real (snorm f p μ) := by rw [norm_def, snorm_congr_ae (mem_ℒp.coe_fn_to_Lp hf)] lemma dist_def (f g : Lp E p μ) : dist f g = (snorm (f - g) p μ).to_real := begin simp_rw [dist, norm_def], congr' 1, apply snorm_congr_ae (coe_fn_sub _ _), end lemma edist_def (f g : Lp E p μ) : edist f g = snorm (f - g) p μ := rfl @[simp] lemma edist_to_Lp_to_Lp (f g : α → E) (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) : edist (hf.to_Lp f) (hg.to_Lp g) = snorm (f - g) p μ := by { rw edist_def, exact snorm_congr_ae (hf.coe_fn_to_Lp.sub hg.coe_fn_to_Lp) } @[simp] lemma edist_to_Lp_zero (f : α → E) (hf : mem_ℒp f p μ) : edist (hf.to_Lp f) 0 = snorm f p μ := by { convert edist_to_Lp_to_Lp f 0 hf zero_mem_ℒp, simp } @[simp] lemma norm_zero : ‖(0 : Lp E p μ)‖ = 0 := begin change (snorm ⇑(0 : α →ₘ[μ] E) p μ).to_real = 0, simp [snorm_congr_ae ae_eq_fun.coe_fn_zero, snorm_zero] end lemma norm_eq_zero_iff {f : Lp E p μ} (hp : 0 < p) : ‖f‖ = 0 ↔ f = 0 := begin refine ⟨λ hf, _, λ hf, by simp [hf]⟩, rw [norm_def, ennreal.to_real_eq_zero_iff] at hf, cases hf, { rw snorm_eq_zero_iff (Lp.ae_strongly_measurable f) hp.ne.symm at hf, exact subtype.eq (ae_eq_fun.ext (hf.trans ae_eq_fun.coe_fn_zero.symm)), }, { exact absurd hf (snorm_ne_top f), }, end lemma eq_zero_iff_ae_eq_zero {f : Lp E p μ} : f = 0 ↔ f =ᵐ[μ] 0 := begin split, { assume h, rw h, exact ae_eq_fun.coe_fn_const _ _ }, { assume h, ext1, filter_upwards [h, ae_eq_fun.coe_fn_const α (0 : E)] with _ ha h'a, rw ha, exact h'a.symm, }, end @[simp] lemma norm_neg {f : Lp E p μ} : ‖-f‖ = ‖f‖ := by rw [norm_def, norm_def, snorm_congr_ae (coe_fn_neg _), snorm_neg] lemma norm_le_mul_norm_of_ae_le_mul {c : ℝ} {f : Lp E p μ} {g : Lp F p μ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ c * ‖g x‖) : ‖f‖ ≤ c * ‖g‖ := begin by_cases pzero : p = 0, { simp [pzero, norm_def] }, cases le_or_lt 0 c with hc hc, { have := snorm_le_mul_snorm_aux_of_nonneg h hc p, rw [← ennreal.to_real_le_to_real, ennreal.to_real_mul, ennreal.to_real_of_real hc] at this, { exact this }, { exact (Lp.mem_ℒp _).snorm_ne_top }, { simp [(Lp.mem_ℒp _).snorm_ne_top] } }, { have := snorm_le_mul_snorm_aux_of_neg h hc p, simp only [snorm_eq_zero_iff (Lp.ae_strongly_measurable _) pzero, ← eq_zero_iff_ae_eq_zero] at this, simp [this] } end lemma norm_le_norm_of_ae_le {f : Lp E p μ} {g : Lp F p μ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ ‖g x‖) : ‖f‖ ≤ ‖g‖ := begin rw [norm_def, norm_def, ennreal.to_real_le_to_real (snorm_ne_top _) (snorm_ne_top _)], exact snorm_mono_ae h end lemma mem_Lp_of_ae_le_mul {c : ℝ} {f : α →ₘ[μ] E} {g : Lp F p μ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ c * ‖g x‖) : f ∈ Lp E p μ := mem_Lp_iff_mem_ℒp.2 $ mem_ℒp.of_le_mul (Lp.mem_ℒp g) f.ae_strongly_measurable h lemma mem_Lp_of_ae_le {f : α →ₘ[μ] E} {g : Lp F p μ} (h : ∀ᵐ x ∂μ, ‖f x‖ ≤ ‖g x‖) : f ∈ Lp E p μ := mem_Lp_iff_mem_ℒp.2 $ mem_ℒp.of_le (Lp.mem_ℒp g) f.ae_strongly_measurable h lemma mem_Lp_of_ae_bound [is_finite_measure μ] {f : α →ₘ[μ] E} (C : ℝ) (hfC : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : f ∈ Lp E p μ := mem_Lp_iff_mem_ℒp.2 $ mem_ℒp.of_bound f.ae_strongly_measurable _ hfC lemma norm_le_of_ae_bound [is_finite_measure μ] {f : Lp E p μ} {C : ℝ} (hC : 0 ≤ C) (hfC : ∀ᵐ x ∂μ, ‖f x‖ ≤ C) : ‖f‖ ≤ (measure_univ_nnreal μ) ^ (p.to_real)⁻¹ * C := begin by_cases hμ : μ = 0, { by_cases hp : p.to_real⁻¹ = 0, { simpa [hp, hμ, norm_def] using hC }, { simp [hμ, norm_def, real.zero_rpow hp] } }, let A : ℝ≥0 := (measure_univ_nnreal μ) ^ (p.to_real)⁻¹ * ⟨C, hC⟩, suffices : snorm f p μ ≤ A, { exact ennreal.to_real_le_coe_of_le_coe this }, convert snorm_le_of_ae_bound hfC, rw [← coe_measure_univ_nnreal μ, ennreal.coe_rpow_of_ne_zero (measure_univ_nnreal_pos hμ).ne', ennreal.coe_mul], congr, rw max_eq_left hC end instance [hp : fact (1 ≤ p)] : normed_add_comm_group (Lp E p μ) := { edist := edist, edist_dist := λ f g, by rw [edist_def, dist_def, ←snorm_congr_ae (coe_fn_sub _ _), ennreal.of_real_to_real (snorm_ne_top (f - g))], ..add_group_norm.to_normed_add_comm_group { to_fun := (norm : Lp E p μ → ℝ), map_zero' := norm_zero, neg' := by simp, add_le' := λ f g, begin simp only [norm_def], rw ← ennreal.to_real_add (snorm_ne_top f) (snorm_ne_top g), suffices h_snorm : snorm ⇑(f + g) p μ ≤ snorm ⇑f p μ + snorm ⇑g p μ, { rwa ennreal.to_real_le_to_real (snorm_ne_top (f + g)), exact ennreal.add_ne_top.mpr ⟨snorm_ne_top f, snorm_ne_top g⟩, }, rw [snorm_congr_ae (coe_fn_add _ _)], exact snorm_add_le (Lp.ae_strongly_measurable f) (Lp.ae_strongly_measurable g) hp.1, end, eq_zero_of_map_eq_zero' := λ f, (norm_eq_zero_iff $ ennreal.zero_lt_one.trans_le hp.1).1 } } -- check no diamond is created example [fact (1 ≤ p)] : pseudo_emetric_space.to_has_edist = (Lp.has_edist : has_edist (Lp E p μ)) := rfl section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 E] lemma mem_Lp_const_smul (c : 𝕜) (f : Lp E p μ) : c • ↑f ∈ Lp E p μ := begin rw [mem_Lp_iff_snorm_lt_top, snorm_congr_ae (ae_eq_fun.coe_fn_smul _ _), snorm_const_smul, ennreal.mul_lt_top_iff], exact or.inl ⟨ennreal.coe_lt_top, f.prop⟩, end variables (E p μ 𝕜) /-- The `𝕜`-submodule of elements of `α →ₘ[μ] E` whose `Lp` norm is finite. This is `Lp E p μ`, with extra structure. -/ def Lp_submodule : submodule 𝕜 (α →ₘ[μ] E) := { smul_mem' := λ c f hf, by simpa using mem_Lp_const_smul c ⟨f, hf⟩, .. Lp E p μ } variables {E p μ 𝕜} lemma coe_Lp_submodule : (Lp_submodule E p μ 𝕜).to_add_subgroup = Lp E p μ := rfl instance : module 𝕜 (Lp E p μ) := { .. (Lp_submodule E p μ 𝕜).module } lemma coe_fn_smul (c : 𝕜) (f : Lp E p μ) : ⇑(c • f) =ᵐ[μ] c • f := ae_eq_fun.coe_fn_smul _ _ lemma norm_const_smul (c : 𝕜) (f : Lp E p μ) : ‖c • f‖ = ‖c‖ * ‖f‖ := by rw [norm_def, snorm_congr_ae (coe_fn_smul _ _), snorm_const_smul c, ennreal.to_real_mul, ennreal.coe_to_real, coe_nnnorm, norm_def] instance [fact (1 ≤ p)] : normed_space 𝕜 (Lp E p μ) := { norm_smul_le := λ _ _, by simp [norm_const_smul] } end normed_space end Lp namespace mem_ℒp variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 E] lemma to_Lp_const_smul {f : α → E} (c : 𝕜) (hf : mem_ℒp f p μ) : (hf.const_smul c).to_Lp (c • f) = c • hf.to_Lp f := rfl end mem_ℒp /-! ### Indicator of a set as an element of Lᵖ For a set `s` with `(hs : measurable_set s)` and `(hμs : μ s < ∞)`, we build `indicator_const_Lp p hs hμs c`, the element of `Lp` corresponding to `s.indicator (λ x, c)`. -/ section indicator variables {s : set α} {hs : measurable_set s} {c : E} {f : α → E} {hf : ae_strongly_measurable f μ} lemma snorm_ess_sup_indicator_le (s : set α) (f : α → G) : snorm_ess_sup (s.indicator f) μ ≤ snorm_ess_sup f μ := begin refine ess_sup_mono_ae (eventually_of_forall (λ x, _)), rw [ennreal.coe_le_coe, nnnorm_indicator_eq_indicator_nnnorm], exact set.indicator_le_self s _ x, end lemma snorm_ess_sup_indicator_const_le (s : set α) (c : G) : snorm_ess_sup (s.indicator (λ x : α , c)) μ ≤ ‖c‖₊ := begin by_cases hμ0 : μ = 0, { rw [hμ0, snorm_ess_sup_measure_zero], exact ennreal.coe_nonneg }, { exact (snorm_ess_sup_indicator_le s (λ x, c)).trans (snorm_ess_sup_const c hμ0).le, }, end lemma snorm_ess_sup_indicator_const_eq (s : set α) (c : G) (hμs : μ s ≠ 0) : snorm_ess_sup (s.indicator (λ x : α , c)) μ = ‖c‖₊ := begin refine le_antisymm (snorm_ess_sup_indicator_const_le s c) _, by_contra' h, have h' := ae_iff.mp (ae_lt_of_ess_sup_lt h), push_neg at h', refine hμs (measure_mono_null (λ x hx_mem, _) h'), rw [set.mem_set_of_eq, set.indicator_of_mem hx_mem], exact le_rfl, end variables (hs) lemma snorm_indicator_le {E : Type*} [normed_add_comm_group E] (f : α → E) : snorm (s.indicator f) p μ ≤ snorm f p μ := begin refine snorm_mono_ae (eventually_of_forall (λ x, _)), suffices : ‖s.indicator f x‖₊ ≤ ‖f x‖₊, { exact nnreal.coe_mono this }, rw nnnorm_indicator_eq_indicator_nnnorm, exact s.indicator_le_self _ x, end variables {hs} lemma snorm_indicator_const {c : G} (hs : measurable_set s) (hp : p ≠ 0) (hp_top : p ≠ ∞) : snorm (s.indicator (λ x, c)) p μ = ‖c‖₊ * (μ s) ^ (1 / p.to_real) := begin have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp hp_top, rw snorm_eq_lintegral_rpow_nnnorm hp hp_top, simp_rw [nnnorm_indicator_eq_indicator_nnnorm, ennreal.coe_indicator], have h_indicator_pow : (λ a : α, s.indicator (λ (x : α), (‖c‖₊ : ℝ≥0∞)) a ^ p.to_real) = s.indicator (λ (x : α), ↑‖c‖₊ ^ p.to_real), { rw set.comp_indicator_const (‖c‖₊ : ℝ≥0∞) (λ x, x ^ p.to_real) _, simp [hp_pos], }, rw [h_indicator_pow, lintegral_indicator _ hs, set_lintegral_const, ennreal.mul_rpow_of_nonneg], { rw [← ennreal.rpow_mul, mul_one_div_cancel hp_pos.ne.symm, ennreal.rpow_one], }, { simp [hp_pos.le], }, end lemma snorm_indicator_const' {c : G} (hs : measurable_set s) (hμs : μ s ≠ 0) (hp : p ≠ 0) : snorm (s.indicator (λ _, c)) p μ = ‖c‖₊ * (μ s) ^ (1 / p.to_real) := begin by_cases hp_top : p = ∞, { simp [hp_top, snorm_ess_sup_indicator_const_eq s c hμs], }, { exact snorm_indicator_const hs hp hp_top, }, end lemma mem_ℒp.indicator (hs : measurable_set s) (hf : mem_ℒp f p μ) : mem_ℒp (s.indicator f) p μ := ⟨hf.ae_strongly_measurable.indicator hs, lt_of_le_of_lt (snorm_indicator_le f) hf.snorm_lt_top⟩ lemma snorm_ess_sup_indicator_eq_snorm_ess_sup_restrict {f : α → F} (hs : measurable_set s) : snorm_ess_sup (s.indicator f) μ = snorm_ess_sup f (μ.restrict s) := begin simp_rw [snorm_ess_sup, nnnorm_indicator_eq_indicator_nnnorm, ennreal.coe_indicator], by_cases hs_null : μ s = 0, { rw measure.restrict_zero_set hs_null, simp only [ess_sup_measure_zero, ennreal.ess_sup_eq_zero_iff, ennreal.bot_eq_zero], have hs_empty : s =ᵐ[μ] (∅ : set α), by { rw ae_eq_set, simpa using hs_null, }, refine (indicator_ae_eq_of_ae_eq_set hs_empty).trans _, rw set.indicator_empty, refl, }, rw ess_sup_indicator_eq_ess_sup_restrict (eventually_of_forall (λ x, _)) hs hs_null, rw pi.zero_apply, exact zero_le _, end lemma snorm_indicator_eq_snorm_restrict {f : α → F} (hs : measurable_set s) : snorm (s.indicator f) p μ = snorm f p (μ.restrict s) := begin by_cases hp_zero : p = 0, { simp only [hp_zero, snorm_exponent_zero], }, by_cases hp_top : p = ∞, { simp_rw [hp_top, snorm_exponent_top], exact snorm_ess_sup_indicator_eq_snorm_ess_sup_restrict hs, }, simp_rw snorm_eq_lintegral_rpow_nnnorm hp_zero hp_top, suffices : ∫⁻ x, ‖s.indicator f x‖₊ ^ p.to_real ∂μ = ∫⁻ x in s, ‖f x‖₊ ^ p.to_real ∂μ, by rw this, rw ← lintegral_indicator _ hs, congr, simp_rw [nnnorm_indicator_eq_indicator_nnnorm, ennreal.coe_indicator], have h_zero : (λ x, x ^ p.to_real) (0 : ℝ≥0∞) = 0, by simp [ennreal.to_real_pos hp_zero hp_top], exact (set.indicator_comp_of_zero h_zero).symm, end lemma mem_ℒp_indicator_iff_restrict (hs : measurable_set s) : mem_ℒp (s.indicator f) p μ ↔ mem_ℒp f p (μ.restrict s) := by simp [mem_ℒp, ae_strongly_measurable_indicator_iff hs, snorm_indicator_eq_snorm_restrict hs] lemma mem_ℒp_indicator_const (p : ℝ≥0∞) (hs : measurable_set s) (c : E) (hμsc : c = 0 ∨ μ s ≠ ∞) : mem_ℒp (s.indicator (λ _, c)) p μ := begin rw mem_ℒp_indicator_iff_restrict hs, by_cases hp_zero : p = 0, { rw hp_zero, exact mem_ℒp_zero_iff_ae_strongly_measurable.mpr ae_strongly_measurable_const, }, by_cases hp_top : p = ∞, { rw hp_top, exact mem_ℒp_top_of_bound ae_strongly_measurable_const (‖c‖) (eventually_of_forall (λ x, le_rfl)), }, rw [mem_ℒp_const_iff hp_zero hp_top, measure.restrict_apply_univ], cases hμsc, { exact or.inl hμsc, }, { exact or.inr hμsc.lt_top, }, end end indicator section indicator_const_Lp open set function variables {s : set α} {hs : measurable_set s} {hμs : μ s ≠ ∞} {c : E} /-- Indicator of a set as an element of `Lp`. -/ def indicator_const_Lp (p : ℝ≥0∞) (hs : measurable_set s) (hμs : μ s ≠ ∞) (c : E) : Lp E p μ := mem_ℒp.to_Lp (s.indicator (λ _, c)) (mem_ℒp_indicator_const p hs c (or.inr hμs)) lemma indicator_const_Lp_coe_fn : ⇑(indicator_const_Lp p hs hμs c) =ᵐ[μ] s.indicator (λ _, c) := mem_ℒp.coe_fn_to_Lp (mem_ℒp_indicator_const p hs c (or.inr hμs)) lemma indicator_const_Lp_coe_fn_mem : ∀ᵐ (x : α) ∂μ, x ∈ s → indicator_const_Lp p hs hμs c x = c := indicator_const_Lp_coe_fn.mono (λ x hx hxs, hx.trans (set.indicator_of_mem hxs _)) lemma indicator_const_Lp_coe_fn_nmem : ∀ᵐ (x : α) ∂μ, x ∉ s → indicator_const_Lp p hs hμs c x = 0 := indicator_const_Lp_coe_fn.mono (λ x hx hxs, hx.trans (set.indicator_of_not_mem hxs _)) lemma norm_indicator_const_Lp (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) : ‖indicator_const_Lp p hs hμs c‖ = ‖c‖ * (μ s).to_real ^ (1 / p.to_real) := by rw [Lp.norm_def, snorm_congr_ae indicator_const_Lp_coe_fn, snorm_indicator_const hs hp_ne_zero hp_ne_top, ennreal.to_real_mul, ennreal.to_real_rpow, ennreal.coe_to_real, coe_nnnorm] lemma norm_indicator_const_Lp_top (hμs_ne_zero : μ s ≠ 0) : ‖indicator_const_Lp ∞ hs hμs c‖ = ‖c‖ := by rw [Lp.norm_def, snorm_congr_ae indicator_const_Lp_coe_fn, snorm_indicator_const' hs hμs_ne_zero ennreal.top_ne_zero, ennreal.top_to_real, div_zero, ennreal.rpow_zero, mul_one, ennreal.coe_to_real, coe_nnnorm] lemma norm_indicator_const_Lp' (hp_pos : p ≠ 0) (hμs_pos : μ s ≠ 0) : ‖indicator_const_Lp p hs hμs c‖ = ‖c‖ * (μ s).to_real ^ (1 / p.to_real) := begin by_cases hp_top : p = ∞, { rw [hp_top, ennreal.top_to_real, div_zero, real.rpow_zero, mul_one], exact norm_indicator_const_Lp_top hμs_pos, }, { exact norm_indicator_const_Lp hp_pos hp_top, }, end @[simp] lemma indicator_const_empty : indicator_const_Lp p measurable_set.empty (by simp : μ ∅ ≠ ∞) c = 0 := begin rw Lp.eq_zero_iff_ae_eq_zero, convert indicator_const_Lp_coe_fn, simp [set.indicator_empty'], end lemma mem_ℒp_add_of_disjoint {f g : α → E} (h : disjoint (support f) (support g)) (hf : strongly_measurable f) (hg : strongly_measurable g) : mem_ℒp (f + g) p μ ↔ mem_ℒp f p μ ∧ mem_ℒp g p μ := begin borelize E, refine ⟨λ hfg, ⟨_, _⟩, λ h, h.1.add h.2⟩, { rw ← indicator_add_eq_left h, exact hfg.indicator (measurable_set_support hf.measurable) }, { rw ← indicator_add_eq_right h, exact hfg.indicator (measurable_set_support hg.measurable) } end /-- The indicator of a disjoint union of two sets is the sum of the indicators of the sets. -/ lemma indicator_const_Lp_disjoint_union {s t : set α} (hs : measurable_set s) (ht : measurable_set t) (hμs : μ s ≠ ∞) (hμt : μ t ≠ ∞) (hst : s ∩ t = ∅) (c : E) : (indicator_const_Lp p (hs.union ht) ((measure_union_le s t).trans_lt (lt_top_iff_ne_top.mpr (ennreal.add_ne_top.mpr ⟨hμs, hμt⟩))).ne c) = indicator_const_Lp p hs hμs c + indicator_const_Lp p ht hμt c := begin ext1, refine indicator_const_Lp_coe_fn.trans (eventually_eq.trans _ (Lp.coe_fn_add _ _).symm), refine eventually_eq.trans _ (eventually_eq.add indicator_const_Lp_coe_fn.symm indicator_const_Lp_coe_fn.symm), rw set.indicator_union_of_disjoint (set.disjoint_iff_inter_eq_empty.mpr hst) _, end end indicator_const_Lp lemma mem_ℒp.norm_rpow_div {f : α → E} (hf : mem_ℒp f p μ) (q : ℝ≥0∞) : mem_ℒp (λ (x : α), ‖f x‖ ^ q.to_real) (p/q) μ := begin refine ⟨(hf.1.norm.ae_measurable.pow_const q.to_real).ae_strongly_measurable, _⟩, by_cases q_top : q = ∞, { simp [q_top] }, by_cases q_zero : q = 0, { simp [q_zero], by_cases p_zero : p = 0, { simp [p_zero] }, rw ennreal.div_zero p_zero, exact (mem_ℒp_top_const (1 : ℝ)).2 }, rw snorm_norm_rpow _ (ennreal.to_real_pos q_zero q_top), apply ennreal.rpow_lt_top_of_nonneg ennreal.to_real_nonneg, rw [ennreal.of_real_to_real q_top, div_eq_mul_inv, mul_assoc, ennreal.inv_mul_cancel q_zero q_top, mul_one], exact hf.2.ne end lemma mem_ℒp_norm_rpow_iff {q : ℝ≥0∞} {f : α → E} (hf : ae_strongly_measurable f μ) (q_zero : q ≠ 0) (q_top : q ≠ ∞) : mem_ℒp (λ (x : α), ‖f x‖ ^ q.to_real) (p/q) μ ↔ mem_ℒp f p μ := begin refine ⟨λ h, _, λ h, h.norm_rpow_div q⟩, apply (mem_ℒp_norm_iff hf).1, convert h.norm_rpow_div (q⁻¹), { ext x, rw [real.norm_eq_abs, real.abs_rpow_of_nonneg (norm_nonneg _), ← real.rpow_mul (abs_nonneg _), ennreal.to_real_inv, mul_inv_cancel, abs_of_nonneg (norm_nonneg _), real.rpow_one], simp [ennreal.to_real_eq_zero_iff, not_or_distrib, q_zero, q_top] }, { rw [div_eq_mul_inv, inv_inv, div_eq_mul_inv, mul_assoc, ennreal.inv_mul_cancel q_zero q_top, mul_one] } end lemma mem_ℒp.norm_rpow {f : α → E} (hf : mem_ℒp f p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) : mem_ℒp (λ (x : α), ‖f x‖ ^ p.to_real) 1 μ := begin convert hf.norm_rpow_div p, rw [div_eq_mul_inv, ennreal.mul_inv_cancel hp_ne_zero hp_ne_top], end end measure_theory open measure_theory /-! ### Composition on `L^p` We show that Lipschitz functions vanishing at zero act by composition on `L^p`, and specialize this to the composition with continuous linear maps, and to the definition of the positive part of an `L^p` function. -/ section composition variables {g : E → F} {c : ℝ≥0} lemma lipschitz_with.comp_mem_ℒp {α E F} {K} [measurable_space α] {μ : measure α} [normed_add_comm_group E] [normed_add_comm_group F] {f : α → E} {g : E → F} (hg : lipschitz_with K g) (g0 : g 0 = 0) (hL : mem_ℒp f p μ) : mem_ℒp (g ∘ f) p μ := begin have : ∀ᵐ x ∂μ, ‖g (f x)‖ ≤ K * ‖f x‖, { apply filter.eventually_of_forall (λ x, _), rw [← dist_zero_right, ← dist_zero_right, ← g0], apply hg.dist_le_mul }, exact hL.of_le_mul (hg.continuous.comp_ae_strongly_measurable hL.1) this, end lemma measure_theory.mem_ℒp.of_comp_antilipschitz_with {α E F} {K'} [measurable_space α] {μ : measure α} [normed_add_comm_group E] [normed_add_comm_group F] {f : α → E} {g : E → F} (hL : mem_ℒp (g ∘ f) p μ) (hg : uniform_continuous g) (hg' : antilipschitz_with K' g) (g0 : g 0 = 0) : mem_ℒp f p μ := begin have A : ∀ᵐ x ∂μ, ‖f x‖ ≤ K' * ‖g (f x)‖, { apply filter.eventually_of_forall (λ x, _), rw [← dist_zero_right, ← dist_zero_right, ← g0], apply hg'.le_mul_dist }, have B : ae_strongly_measurable f μ := ((hg'.uniform_embedding hg).embedding.ae_strongly_measurable_comp_iff.1 hL.1), exact hL.of_le_mul B A, end namespace lipschitz_with lemma mem_ℒp_comp_iff_of_antilipschitz {α E F} {K K'} [measurable_space α] {μ : measure α} [normed_add_comm_group E] [normed_add_comm_group F] {f : α → E} {g : E → F} (hg : lipschitz_with K g) (hg' : antilipschitz_with K' g) (g0 : g 0 = 0) : mem_ℒp (g ∘ f) p μ ↔ mem_ℒp f p μ := ⟨λ h, h.of_comp_antilipschitz_with hg.uniform_continuous hg' g0, λ h, hg.comp_mem_ℒp g0 h⟩ /-- When `g` is a Lipschitz function sending `0` to `0` and `f` is in `Lp`, then `g ∘ f` is well defined as an element of `Lp`. -/ def comp_Lp (hg : lipschitz_with c g) (g0 : g 0 = 0) (f : Lp E p μ) : Lp F p μ := ⟨ae_eq_fun.comp g hg.continuous (f : α →ₘ[μ] E), begin suffices : ∀ᵐ x ∂μ, ‖ae_eq_fun.comp g hg.continuous (f : α →ₘ[μ] E) x‖ ≤ c * ‖f x‖, { exact Lp.mem_Lp_of_ae_le_mul this }, filter_upwards [ae_eq_fun.coe_fn_comp g hg.continuous (f : α →ₘ[μ] E)] with a ha, simp only [ha], rw [← dist_zero_right, ← dist_zero_right, ← g0], exact hg.dist_le_mul (f a) 0, end⟩ lemma coe_fn_comp_Lp (hg : lipschitz_with c g) (g0 : g 0 = 0) (f : Lp E p μ) : hg.comp_Lp g0 f =ᵐ[μ] g ∘ f := ae_eq_fun.coe_fn_comp _ _ _ @[simp] lemma comp_Lp_zero (hg : lipschitz_with c g) (g0 : g 0 = 0) : hg.comp_Lp g0 (0 : Lp E p μ) = 0 := begin rw Lp.eq_zero_iff_ae_eq_zero, apply (coe_fn_comp_Lp _ _ _).trans, filter_upwards [Lp.coe_fn_zero E p μ] with _ ha, simp [ha, g0], end lemma norm_comp_Lp_sub_le (hg : lipschitz_with c g) (g0 : g 0 = 0) (f f' : Lp E p μ) : ‖hg.comp_Lp g0 f - hg.comp_Lp g0 f'‖ ≤ c * ‖f - f'‖ := begin apply Lp.norm_le_mul_norm_of_ae_le_mul, filter_upwards [hg.coe_fn_comp_Lp g0 f, hg.coe_fn_comp_Lp g0 f', Lp.coe_fn_sub (hg.comp_Lp g0 f) (hg.comp_Lp g0 f'), Lp.coe_fn_sub f f'] with a ha1 ha2 ha3 ha4, simp [ha1, ha2, ha3, ha4, ← dist_eq_norm], exact hg.dist_le_mul (f a) (f' a) end lemma norm_comp_Lp_le (hg : lipschitz_with c g) (g0 : g 0 = 0) (f : Lp E p μ) : ‖hg.comp_Lp g0 f‖ ≤ c * ‖f‖ := by simpa using hg.norm_comp_Lp_sub_le g0 f 0 lemma lipschitz_with_comp_Lp [fact (1 ≤ p)] (hg : lipschitz_with c g) (g0 : g 0 = 0) : lipschitz_with c (hg.comp_Lp g0 : Lp E p μ → Lp F p μ) := lipschitz_with.of_dist_le_mul $ λ f g, by simp [dist_eq_norm, norm_comp_Lp_sub_le] lemma continuous_comp_Lp [fact (1 ≤ p)] (hg : lipschitz_with c g) (g0 : g 0 = 0) : continuous (hg.comp_Lp g0 : Lp E p μ → Lp F p μ) := (lipschitz_with_comp_Lp hg g0).continuous end lipschitz_with namespace continuous_linear_map variables {𝕜 : Type*} [nontrivially_normed_field 𝕜] [normed_space 𝕜 E] [normed_space 𝕜 F] /-- Composing `f : Lp ` with `L : E →L[𝕜] F`. -/ def comp_Lp (L : E →L[𝕜] F) (f : Lp E p μ) : Lp F p μ := L.lipschitz.comp_Lp (map_zero L) f lemma coe_fn_comp_Lp (L : E →L[𝕜] F) (f : Lp E p μ) : ∀ᵐ a ∂μ, (L.comp_Lp f) a = L (f a) := lipschitz_with.coe_fn_comp_Lp _ _ _ lemma coe_fn_comp_Lp' (L : E →L[𝕜] F) (f : Lp E p μ) : L.comp_Lp f =ᵐ[μ] λ a, L (f a) := L.coe_fn_comp_Lp f lemma comp_mem_ℒp (L : E →L[𝕜] F) (f : Lp E p μ) : mem_ℒp (L ∘ f) p μ := (Lp.mem_ℒp (L.comp_Lp f)).ae_eq (L.coe_fn_comp_Lp' f) lemma comp_mem_ℒp' (L : E →L[𝕜] F) {f : α → E} (hf : mem_ℒp f p μ) : mem_ℒp (L ∘ f) p μ := (L.comp_mem_ℒp (hf.to_Lp f)).ae_eq (eventually_eq.fun_comp (hf.coe_fn_to_Lp) _) section is_R_or_C variables {K : Type*} [is_R_or_C K] lemma _root_.measure_theory.mem_ℒp.of_real {f : α → ℝ} (hf : mem_ℒp f p μ) : mem_ℒp (λ x, (f x : K)) p μ := (@is_R_or_C.of_real_clm K _).comp_mem_ℒp' hf lemma _root_.measure_theory.mem_ℒp_re_im_iff {f : α → K} : mem_ℒp (λ x, is_R_or_C.re (f x)) p μ ∧ mem_ℒp (λ x, is_R_or_C.im (f x)) p μ ↔ mem_ℒp f p μ := begin refine ⟨_, λ hf, ⟨hf.re, hf.im⟩⟩, rintro ⟨hre, him⟩, convert hre.of_real.add (him.of_real.const_mul is_R_or_C.I), { ext1 x, rw [pi.add_apply, mul_comm, is_R_or_C.re_add_im] }, all_goals { apply_instance } end end is_R_or_C lemma add_comp_Lp (L L' : E →L[𝕜] F) (f : Lp E p μ) : (L + L').comp_Lp f = L.comp_Lp f + L'.comp_Lp f := begin ext1, refine (coe_fn_comp_Lp' (L + L') f).trans _, refine eventually_eq.trans _ (Lp.coe_fn_add _ _).symm, refine eventually_eq.trans _ (eventually_eq.add (L.coe_fn_comp_Lp' f).symm (L'.coe_fn_comp_Lp' f).symm), refine eventually_of_forall (λ x, _), refl, end lemma smul_comp_Lp {𝕜'} [normed_field 𝕜'] [normed_space 𝕜' F] [smul_comm_class 𝕜 𝕜' F] (c : 𝕜') (L : E →L[𝕜] F) (f : Lp E p μ) : (c • L).comp_Lp f = c • L.comp_Lp f := begin ext1, refine (coe_fn_comp_Lp' (c • L) f).trans _, refine eventually_eq.trans _ (Lp.coe_fn_smul _ _).symm, refine (L.coe_fn_comp_Lp' f).mono (λ x hx, _), rw [pi.smul_apply, hx], refl, end lemma norm_comp_Lp_le (L : E →L[𝕜] F) (f : Lp E p μ) : ‖L.comp_Lp f‖ ≤ ‖L‖ * ‖f‖ := lipschitz_with.norm_comp_Lp_le _ _ _ variables (μ p) /-- Composing `f : Lp E p μ` with `L : E →L[𝕜] F`, seen as a `𝕜`-linear map on `Lp E p μ`. -/ def comp_Lpₗ (L : E →L[𝕜] F) : (Lp E p μ) →ₗ[𝕜] (Lp F p μ) := { to_fun := λ f, L.comp_Lp f, map_add' := begin intros f g, ext1, filter_upwards [Lp.coe_fn_add f g, coe_fn_comp_Lp L (f + g), coe_fn_comp_Lp L f, coe_fn_comp_Lp L g, Lp.coe_fn_add (L.comp_Lp f) (L.comp_Lp g)], assume a ha1 ha2 ha3 ha4 ha5, simp only [ha1, ha2, ha3, ha4, ha5, map_add, pi.add_apply], end, map_smul' := begin intros c f, dsimp, ext1, filter_upwards [Lp.coe_fn_smul c f, coe_fn_comp_Lp L (c • f), Lp.coe_fn_smul c (L.comp_Lp f), coe_fn_comp_Lp L f] with _ ha1 ha2 ha3 ha4, simp only [ha1, ha2, ha3, ha4, smul_hom_class.map_smul, pi.smul_apply], end } /-- Composing `f : Lp E p μ` with `L : E →L[𝕜] F`, seen as a continuous `𝕜`-linear map on `Lp E p μ`. See also the similar * `linear_map.comp_left` for functions, * `continuous_linear_map.comp_left_continuous` for continuous functions, * `continuous_linear_map.comp_left_continuous_bounded` for bounded continuous functions, * `continuous_linear_map.comp_left_continuous_compact` for continuous functions on compact spaces. -/ def comp_LpL [fact (1 ≤ p)] (L : E →L[𝕜] F) : (Lp E p μ) →L[𝕜] (Lp F p μ) := linear_map.mk_continuous (L.comp_Lpₗ p μ) ‖L‖ L.norm_comp_Lp_le variables {μ p} lemma coe_fn_comp_LpL [fact (1 ≤ p)] (L : E →L[𝕜] F) (f : Lp E p μ) : L.comp_LpL p μ f =ᵐ[μ] λ a, L (f a) := L.coe_fn_comp_Lp f lemma add_comp_LpL [fact (1 ≤ p)] (L L' : E →L[𝕜] F) : (L + L').comp_LpL p μ = L.comp_LpL p μ + L'.comp_LpL p μ := by { ext1 f, exact add_comp_Lp L L' f } lemma smul_comp_LpL [fact (1 ≤ p)] (c : 𝕜) (L : E →L[𝕜] F) : (c • L).comp_LpL p μ = c • (L.comp_LpL p μ) := by { ext1 f, exact smul_comp_Lp c L f } /-- TODO: written in an "apply" way because of a missing `has_smul` instance. -/ lemma smul_comp_LpL_apply [fact (1 ≤ p)] {𝕜'} [normed_field 𝕜'] [normed_space 𝕜' F] [smul_comm_class 𝕜 𝕜' F] (c : 𝕜') (L : E →L[𝕜] F) (f : Lp E p μ) : (c • L).comp_LpL p μ f = c • (L.comp_LpL p μ f) := smul_comp_Lp c L f lemma norm_compLpL_le [fact (1 ≤ p)] (L : E →L[𝕜] F) : ‖L.comp_LpL p μ‖ ≤ ‖L‖ := linear_map.mk_continuous_norm_le _ (norm_nonneg _) _ end continuous_linear_map namespace measure_theory lemma indicator_const_Lp_eq_to_span_singleton_comp_Lp {s : set α} [normed_space ℝ F] (hs : measurable_set s) (hμs : μ s ≠ ∞) (x : F) : indicator_const_Lp 2 hs hμs x = (continuous_linear_map.to_span_singleton ℝ x).comp_Lp (indicator_const_Lp 2 hs hμs (1 : ℝ)) := begin ext1, refine indicator_const_Lp_coe_fn.trans _, have h_comp_Lp := (continuous_linear_map.to_span_singleton ℝ x).coe_fn_comp_Lp (indicator_const_Lp 2 hs hμs (1 : ℝ)), rw ← eventually_eq at h_comp_Lp, refine eventually_eq.trans _ h_comp_Lp.symm, refine (@indicator_const_Lp_coe_fn _ _ _ 2 μ _ s hs hμs (1 : ℝ)).mono (λ y hy, _), dsimp only, rw hy, simp_rw [continuous_linear_map.to_span_singleton_apply], by_cases hy_mem : y ∈ s; simp [hy_mem, continuous_linear_map.lsmul_apply], end namespace Lp section pos_part lemma lipschitz_with_pos_part : lipschitz_with 1 (λ (x : ℝ), max x 0) := lipschitz_with.of_dist_le_mul $ λ x y, by simp [real.dist_eq, abs_max_sub_max_le_abs] lemma _root_.measure_theory.mem_ℒp.pos_part {f : α → ℝ} (hf : mem_ℒp f p μ) : mem_ℒp (λ x, max (f x) 0) p μ := lipschitz_with_pos_part.comp_mem_ℒp (max_eq_right le_rfl) hf lemma _root_.measure_theory.mem_ℒp.neg_part {f : α → ℝ} (hf : mem_ℒp f p μ) : mem_ℒp (λ x, max (-f x) 0) p μ := lipschitz_with_pos_part.comp_mem_ℒp (max_eq_right le_rfl) hf.neg /-- Positive part of a function in `L^p`. -/ def pos_part (f : Lp ℝ p μ) : Lp ℝ p μ := lipschitz_with_pos_part.comp_Lp (max_eq_right le_rfl) f /-- Negative part of a function in `L^p`. -/ def neg_part (f : Lp ℝ p μ) : Lp ℝ p μ := pos_part (-f) @[norm_cast] lemma coe_pos_part (f : Lp ℝ p μ) : (pos_part f : α →ₘ[μ] ℝ) = (f : α →ₘ[μ] ℝ).pos_part := rfl lemma coe_fn_pos_part (f : Lp ℝ p μ) : ⇑(pos_part f) =ᵐ[μ] λ a, max (f a) 0 := ae_eq_fun.coe_fn_pos_part _ lemma coe_fn_neg_part_eq_max (f : Lp ℝ p μ) : ∀ᵐ a ∂μ, neg_part f a = max (- f a) 0 := begin rw neg_part, filter_upwards [coe_fn_pos_part (-f), coe_fn_neg f] with _ h₁ h₂, rw [h₁, h₂, pi.neg_apply], end lemma coe_fn_neg_part (f : Lp ℝ p μ) : ∀ᵐ a ∂μ, neg_part f a = - min (f a) 0 := (coe_fn_neg_part_eq_max f).mono $ assume a h, by rw [h, ← max_neg_neg, neg_zero] lemma continuous_pos_part [fact (1 ≤ p)] : continuous (λf : Lp ℝ p μ, pos_part f) := lipschitz_with.continuous_comp_Lp _ _ lemma continuous_neg_part [fact (1 ≤ p)] : continuous (λf : Lp ℝ p μ, neg_part f) := have eq : (λf : Lp ℝ p μ, neg_part f) = (λf : Lp ℝ p μ, pos_part (-f)) := rfl, by { rw eq, exact continuous_pos_part.comp continuous_neg } end pos_part end Lp end measure_theory end composition /-! ## `L^p` is a complete space We show that `L^p` is a complete space for `1 ≤ p`. -/ section complete_space namespace measure_theory namespace Lp lemma snorm'_lim_eq_lintegral_liminf {ι} [nonempty ι] [linear_order ι] {f : ι → α → G} {p : ℝ} (hp_nonneg : 0 ≤ p) {f_lim : α → G} (h_lim : ∀ᵐ (x : α) ∂μ, tendsto (λ n, f n x) at_top (𝓝 (f_lim x))) : snorm' f_lim p μ = (∫⁻ a, at_top.liminf (λ m, (‖f m a‖₊ : ℝ≥0∞)^p) ∂μ) ^ (1/p) := begin suffices h_no_pow : (∫⁻ a, ‖f_lim a‖₊ ^ p ∂μ) = (∫⁻ a, at_top.liminf (λ m, (‖f m a‖₊ : ℝ≥0∞)^p) ∂μ), { rw [snorm', h_no_pow], }, refine lintegral_congr_ae (h_lim.mono (λ a ha, _)), rw tendsto.liminf_eq, simp_rw [ennreal.coe_rpow_of_nonneg _ hp_nonneg, ennreal.tendsto_coe], refine ((nnreal.continuous_rpow_const hp_nonneg).tendsto (‖f_lim a‖₊)).comp _, exact (continuous_nnnorm.tendsto (f_lim a)).comp ha, end lemma snorm'_lim_le_liminf_snorm' {E} [normed_add_comm_group E] {f : ℕ → α → E} {p : ℝ} (hp_pos : 0 < p) (hf : ∀ n, ae_strongly_measurable (f n) μ) {f_lim : α → E} (h_lim : ∀ᵐ (x : α) ∂μ, tendsto (λ n, f n x) at_top (𝓝 (f_lim x))) : snorm' f_lim p μ ≤ at_top.liminf (λ n, snorm' (f n) p μ) := begin rw snorm'_lim_eq_lintegral_liminf hp_pos.le h_lim, rw [←ennreal.le_rpow_one_div_iff (by simp [hp_pos] : 0 < 1 / p), one_div_one_div], refine (lintegral_liminf_le' (λ m, ((hf m).ennnorm.pow_const _))).trans_eq _, have h_pow_liminf : at_top.liminf (λ n, snorm' (f n) p μ) ^ p = at_top.liminf (λ n, (snorm' (f n) p μ) ^ p), { have h_rpow_mono := ennreal.strict_mono_rpow_of_pos hp_pos, have h_rpow_surj := (ennreal.rpow_left_bijective hp_pos.ne.symm).2, refine (h_rpow_mono.order_iso_of_surjective _ h_rpow_surj).liminf_apply _ _ _ _, all_goals { is_bounded_default }, }, rw h_pow_liminf, simp_rw [snorm', ← ennreal.rpow_mul, one_div, inv_mul_cancel hp_pos.ne.symm, ennreal.rpow_one], end lemma snorm_exponent_top_lim_eq_ess_sup_liminf {ι} [nonempty ι] [linear_order ι] {f : ι → α → G} {f_lim : α → G} (h_lim : ∀ᵐ (x : α) ∂μ, tendsto (λ n, f n x) at_top (𝓝 (f_lim x))) : snorm f_lim ∞ μ = ess_sup (λ x, at_top.liminf (λ m, (‖f m x‖₊ : ℝ≥0∞))) μ := begin rw [snorm_exponent_top, snorm_ess_sup], refine ess_sup_congr_ae (h_lim.mono (λ x hx, _)), rw tendsto.liminf_eq, rw ennreal.tendsto_coe, exact (continuous_nnnorm.tendsto (f_lim x)).comp hx, end lemma snorm_exponent_top_lim_le_liminf_snorm_exponent_top {ι} [nonempty ι] [countable ι] [linear_order ι] {f : ι → α → F} {f_lim : α → F} (h_lim : ∀ᵐ (x : α) ∂μ, tendsto (λ n, f n x) at_top (𝓝 (f_lim x))) : snorm f_lim ∞ μ ≤ at_top.liminf (λ n, snorm (f n) ∞ μ) := begin rw snorm_exponent_top_lim_eq_ess_sup_liminf h_lim, simp_rw [snorm_exponent_top, snorm_ess_sup], exact ennreal.ess_sup_liminf_le (λ n, (λ x, (‖f n x‖₊ : ℝ≥0∞))), end lemma snorm_lim_le_liminf_snorm {E} [normed_add_comm_group E] {f : ℕ → α → E} (hf : ∀ n, ae_strongly_measurable (f n) μ) (f_lim : α → E) (h_lim : ∀ᵐ (x : α) ∂μ, tendsto (λ n, f n x) at_top (𝓝 (f_lim x))) : snorm f_lim p μ ≤ at_top.liminf (λ n, snorm (f n) p μ) := begin by_cases hp0 : p = 0, { simp [hp0], }, rw ← ne.def at hp0, by_cases hp_top : p = ∞, { simp_rw [hp_top], exact snorm_exponent_top_lim_le_liminf_snorm_exponent_top h_lim, }, simp_rw snorm_eq_snorm' hp0 hp_top, have hp_pos : 0 < p.to_real, from ennreal.to_real_pos hp0 hp_top, exact snorm'_lim_le_liminf_snorm' hp_pos hf h_lim, end /-! ### `Lp` is complete iff Cauchy sequences of `ℒp` have limits in `ℒp` -/ lemma tendsto_Lp_iff_tendsto_ℒp' {ι} {fi : filter ι} [fact (1 ≤ p)] (f : ι → Lp E p μ) (f_lim : Lp E p μ) : fi.tendsto f (𝓝 f_lim) ↔ fi.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0) := begin rw tendsto_iff_dist_tendsto_zero, simp_rw dist_def, rw [← ennreal.zero_to_real, ennreal.tendsto_to_real_iff (λ n, _) ennreal.zero_ne_top], rw snorm_congr_ae (Lp.coe_fn_sub _ _).symm, exact Lp.snorm_ne_top _, end lemma tendsto_Lp_iff_tendsto_ℒp {ι} {fi : filter ι} [fact (1 ≤ p)] (f : ι → Lp E p μ) (f_lim : α → E) (f_lim_ℒp : mem_ℒp f_lim p μ) : fi.tendsto f (𝓝 (f_lim_ℒp.to_Lp f_lim)) ↔ fi.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0) := begin rw tendsto_Lp_iff_tendsto_ℒp', suffices h_eq : (λ n, snorm (f n - mem_ℒp.to_Lp f_lim f_lim_ℒp) p μ) = (λ n, snorm (f n - f_lim) p μ), by rw h_eq, exact funext (λ n, snorm_congr_ae (eventually_eq.rfl.sub (mem_ℒp.coe_fn_to_Lp f_lim_ℒp))), end lemma tendsto_Lp_iff_tendsto_ℒp'' {ι} {fi : filter ι} [fact (1 ≤ p)] (f : ι → α → E) (f_ℒp : ∀ n, mem_ℒp (f n) p μ) (f_lim : α → E) (f_lim_ℒp : mem_ℒp f_lim p μ) : fi.tendsto (λ n, (f_ℒp n).to_Lp (f n)) (𝓝 (f_lim_ℒp.to_Lp f_lim)) ↔ fi.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0) := begin convert Lp.tendsto_Lp_iff_tendsto_ℒp' _ _, ext1 n, apply snorm_congr_ae, filter_upwards [((f_ℒp n).sub f_lim_ℒp).coe_fn_to_Lp, Lp.coe_fn_sub ((f_ℒp n).to_Lp (f n)) (f_lim_ℒp.to_Lp f_lim)] with _ hx₁ hx₂, rw ← hx₂, exact hx₁.symm, end lemma tendsto_Lp_of_tendsto_ℒp {ι} {fi : filter ι} [hp : fact (1 ≤ p)] {f : ι → Lp E p μ} (f_lim : α → E) (f_lim_ℒp : mem_ℒp f_lim p μ) (h_tendsto : fi.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0)) : fi.tendsto f (𝓝 (f_lim_ℒp.to_Lp f_lim)) := (tendsto_Lp_iff_tendsto_ℒp f f_lim f_lim_ℒp).mpr h_tendsto lemma cauchy_seq_Lp_iff_cauchy_seq_ℒp {ι} [nonempty ι] [semilattice_sup ι] [hp : fact (1 ≤ p)] (f : ι → Lp E p μ) : cauchy_seq f ↔ tendsto (λ (n : ι × ι), snorm (f n.fst - f n.snd) p μ) at_top (𝓝 0) := begin simp_rw [cauchy_seq_iff_tendsto_dist_at_top_0, dist_def], rw [← ennreal.zero_to_real, ennreal.tendsto_to_real_iff (λ n, _) ennreal.zero_ne_top], rw snorm_congr_ae (Lp.coe_fn_sub _ _).symm, exact snorm_ne_top _, end lemma complete_space_Lp_of_cauchy_complete_ℒp [hp : fact (1 ≤ p)] (H : ∀ (f : ℕ → α → E) (hf : ∀ n, mem_ℒp (f n) p μ) (B : ℕ → ℝ≥0∞) (hB : ∑' i, B i < ∞) (h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → snorm (f n - f m) p μ < B N), ∃ (f_lim : α → E) (hf_lim_meas : mem_ℒp f_lim p μ), at_top.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0)) : complete_space (Lp E p μ) := begin let B := λ n : ℕ, ((1:ℝ) / 2) ^ n, have hB_pos : ∀ n, 0 < B n, from λ n, pow_pos (div_pos zero_lt_one zero_lt_two) n, refine metric.complete_of_convergent_controlled_sequences B hB_pos (λ f hf, _), rsuffices ⟨f_lim, hf_lim_meas, h_tendsto⟩ : ∃ (f_lim : α → E) (hf_lim_meas : mem_ℒp f_lim p μ), at_top.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0), { exact ⟨hf_lim_meas.to_Lp f_lim, tendsto_Lp_of_tendsto_ℒp f_lim hf_lim_meas h_tendsto⟩, }, have hB : summable B, from summable_geometric_two, cases hB with M hB, let B1 := λ n, ennreal.of_real (B n), have hB1_has : has_sum B1 (ennreal.of_real M), { have h_tsum_B1 : ∑' i, B1 i = (ennreal.of_real M), { change (∑' (n : ℕ), ennreal.of_real (B n)) = ennreal.of_real M, rw ←hB.tsum_eq, exact (ennreal.of_real_tsum_of_nonneg (λ n, le_of_lt (hB_pos n)) hB.summable).symm, }, have h_sum := (@ennreal.summable _ B1).has_sum, rwa h_tsum_B1 at h_sum, }, have hB1 : ∑' i, B1 i < ∞, by {rw hB1_has.tsum_eq, exact ennreal.of_real_lt_top, }, let f1 : ℕ → α → E := λ n, f n, refine H f1 (λ n, Lp.mem_ℒp (f n)) B1 hB1 (λ N n m hn hm, _), specialize hf N n m hn hm, rw dist_def at hf, simp_rw [f1, B1], rwa ennreal.lt_of_real_iff_to_real_lt, rw snorm_congr_ae (Lp.coe_fn_sub _ _).symm, exact Lp.snorm_ne_top _, end /-! ### Prove that controlled Cauchy sequences of `ℒp` have limits in `ℒp` -/ private lemma snorm'_sum_norm_sub_le_tsum_of_cauchy_snorm' {f : ℕ → α → E} (hf : ∀ n, ae_strongly_measurable (f n) μ) {p : ℝ} (hp1 : 1 ≤ p) {B : ℕ → ℝ≥0∞} (h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → snorm' (f n - f m) p μ < B N) (n : ℕ) : snorm' (λ x, ∑ i in finset.range (n + 1), ‖f (i + 1) x - f i x‖) p μ ≤ ∑' i, B i := begin let f_norm_diff := λ i x, ‖f (i + 1) x - f i x‖, have hgf_norm_diff : ∀ n, (λ x, ∑ i in finset.range (n + 1), ‖f (i + 1) x - f i x‖) = ∑ i in finset.range (n + 1), f_norm_diff i, from λ n, funext (λ x, by simp [f_norm_diff]), rw hgf_norm_diff, refine (snorm'_sum_le (λ i _, ((hf (i+1)).sub (hf i)).norm) hp1).trans _, simp_rw [←pi.sub_apply, snorm'_norm], refine (finset.sum_le_sum _).trans (sum_le_tsum _ (λ m _, zero_le _) ennreal.summable), exact λ m _, (h_cau m (m + 1) m (nat.le_succ m) (le_refl m)).le, end private lemma lintegral_rpow_sum_coe_nnnorm_sub_le_rpow_tsum {f : ℕ → α → E} (hf : ∀ n, ae_strongly_measurable (f n) μ) {p : ℝ} (hp1 : 1 ≤ p) {B : ℕ → ℝ≥0∞} (n : ℕ) (hn : snorm' (λ x, ∑ i in finset.range (n + 1), ‖f (i + 1) x - f i x‖) p μ ≤ ∑' i, B i) : ∫⁻ a, (∑ i in finset.range (n + 1), ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ ≤ (∑' i, B i) ^ p := begin have hp_pos : 0 < p := zero_lt_one.trans_le hp1, rw [←one_div_one_div p, @ennreal.le_rpow_one_div_iff _ _ (1/p) (by simp [hp_pos]), one_div_one_div p], simp_rw snorm' at hn, have h_nnnorm_nonneg : (λ a, (‖∑ i in finset.range (n + 1), ‖f (i + 1) a - f i a‖‖₊ : ℝ≥0∞) ^ p) = λ a, (∑ i in finset.range (n + 1), (‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)) ^ p, { ext1 a, congr, simp_rw ←of_real_norm_eq_coe_nnnorm, rw ←ennreal.of_real_sum_of_nonneg, { rw real.norm_of_nonneg _, exact finset.sum_nonneg (λ x hx, norm_nonneg _), }, { exact λ x hx, norm_nonneg _, }, }, change (∫⁻ a, (λ x, ↑‖∑ i in finset.range (n + 1), ‖f (i+1) x - f i x‖‖₊^p) a ∂μ)^(1/p) ≤ ∑' i, B i at hn, rwa h_nnnorm_nonneg at hn, end private lemma lintegral_rpow_tsum_coe_nnnorm_sub_le_tsum {f : ℕ → α → E} (hf : ∀ n, ae_strongly_measurable (f n) μ) {p : ℝ} (hp1 : 1 ≤ p) {B : ℕ → ℝ≥0∞} (h : ∀ n, ∫⁻ a, (∑ i in finset.range (n + 1), ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ ≤ (∑' i, B i) ^ p) : (∫⁻ a, (∑' i, ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ) ^ (1/p) ≤ ∑' i, B i := begin have hp_pos : 0 < p := zero_lt_one.trans_le hp1, suffices h_pow : ∫⁻ a, (∑' i, ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ ≤ (∑' i, B i) ^ p, by rwa [←ennreal.le_rpow_one_div_iff (by simp [hp_pos] : 0 < 1 / p), one_div_one_div], have h_tsum_1 : ∀ g : ℕ → ℝ≥0∞, ∑' i, g i = at_top.liminf (λ n, ∑ i in finset.range (n + 1), g i), by { intro g, rw [ennreal.tsum_eq_liminf_sum_nat, ← liminf_nat_add _ 1], }, simp_rw h_tsum_1 _, rw ← h_tsum_1, have h_liminf_pow : ∫⁻ a, at_top.liminf (λ n, ∑ i in finset.range (n + 1), (‖f (i + 1) a - f i a‖₊))^p ∂μ = ∫⁻ a, at_top.liminf (λ n, (∑ i in finset.range (n + 1), (‖f (i + 1) a - f i a‖₊))^p) ∂μ, { refine lintegral_congr (λ x, _), have h_rpow_mono := ennreal.strict_mono_rpow_of_pos (zero_lt_one.trans_le hp1), have h_rpow_surj := (ennreal.rpow_left_bijective hp_pos.ne.symm).2, refine (h_rpow_mono.order_iso_of_surjective _ h_rpow_surj).liminf_apply _ _ _ _, all_goals { is_bounded_default }, }, rw h_liminf_pow, refine (lintegral_liminf_le' _).trans _, { exact λ n, (finset.ae_measurable_sum (finset.range (n+1)) (λ i _, ((hf (i+1)).sub (hf i)).ennnorm)).pow_const _, }, { exact liminf_le_of_frequently_le' (frequently_of_forall h), }, end private lemma tsum_nnnorm_sub_ae_lt_top {f : ℕ → α → E} (hf : ∀ n, ae_strongly_measurable (f n) μ) {p : ℝ} (hp1 : 1 ≤ p) {B : ℕ → ℝ≥0∞} (hB : ∑' i, B i ≠ ∞) (h : (∫⁻ a, (∑' i, ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ) ^ (1/p) ≤ ∑' i, B i) : ∀ᵐ x ∂μ, (∑' i, ‖f (i + 1) x - f i x‖₊ : ℝ≥0∞) < ∞ := begin have hp_pos : 0 < p := zero_lt_one.trans_le hp1, have h_integral : ∫⁻ a, (∑' i, ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ < ∞, { have h_tsum_lt_top : (∑' i, B i) ^ p < ∞, from ennreal.rpow_lt_top_of_nonneg hp_pos.le hB, refine lt_of_le_of_lt _ h_tsum_lt_top, rwa [←ennreal.le_rpow_one_div_iff (by simp [hp_pos] : 0 < 1 / p), one_div_one_div] at h, }, have rpow_ae_lt_top : ∀ᵐ x ∂μ, (∑' i, ‖f (i + 1) x - f i x‖₊ : ℝ≥0∞)^p < ∞, { refine ae_lt_top' (ae_measurable.pow_const _ _) h_integral.ne, exact ae_measurable.ennreal_tsum (λ n, ((hf (n+1)).sub (hf n)).ennnorm), }, refine rpow_ae_lt_top.mono (λ x hx, _), rwa [←ennreal.lt_rpow_one_div_iff hp_pos, ennreal.top_rpow_of_pos (by simp [hp_pos] : 0 < 1 / p)] at hx, end lemma ae_tendsto_of_cauchy_snorm' [complete_space E] {f : ℕ → α → E} {p : ℝ} (hf : ∀ n, ae_strongly_measurable (f n) μ) (hp1 : 1 ≤ p) {B : ℕ → ℝ≥0∞} (hB : ∑' i, B i ≠ ∞) (h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → snorm' (f n - f m) p μ < B N) : ∀ᵐ x ∂μ, ∃ l : E, at_top.tendsto (λ n, f n x) (𝓝 l) := begin have h_summable : ∀ᵐ x ∂μ, summable (λ (i : ℕ), f (i + 1) x - f i x), { have h1 : ∀ n, snorm' (λ x, ∑ i in finset.range (n + 1), ‖f (i + 1) x - f i x‖) p μ ≤ ∑' i, B i, from snorm'_sum_norm_sub_le_tsum_of_cauchy_snorm' hf hp1 h_cau, have h2 : ∀ n, ∫⁻ a, (∑ i in finset.range (n + 1), ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ ≤ (∑' i, B i) ^ p, from λ n, lintegral_rpow_sum_coe_nnnorm_sub_le_rpow_tsum hf hp1 n (h1 n), have h3 : (∫⁻ a, (∑' i, ‖f (i + 1) a - f i a‖₊ : ℝ≥0∞)^p ∂μ) ^ (1/p) ≤ ∑' i, B i, from lintegral_rpow_tsum_coe_nnnorm_sub_le_tsum hf hp1 h2, have h4 : ∀ᵐ x ∂μ, (∑' i, ‖f (i + 1) x - f i x‖₊ : ℝ≥0∞) < ∞, from tsum_nnnorm_sub_ae_lt_top hf hp1 hB h3, exact h4.mono (λ x hx, summable_of_summable_nnnorm (ennreal.tsum_coe_ne_top_iff_summable.mp (lt_top_iff_ne_top.mp hx))), }, have h : ∀ᵐ x ∂μ, ∃ l : E, at_top.tendsto (λ n, ∑ i in finset.range n, (f (i + 1) x - f i x)) (𝓝 l), { refine h_summable.mono (λ x hx, _), let hx_sum := hx.has_sum.tendsto_sum_nat, exact ⟨∑' i, (f (i + 1) x - f i x), hx_sum⟩, }, refine h.mono (λ x hx, _), cases hx with l hx, have h_rw_sum : (λ n, ∑ i in finset.range n, (f (i + 1) x - f i x)) = λ n, f n x - f 0 x, { ext1 n, change ∑ (i : ℕ) in finset.range n, ((λ m, f m x) (i + 1) - (λ m, f m x) i) = f n x - f 0 x, rw finset.sum_range_sub, }, rw h_rw_sum at hx, have hf_rw : (λ n, f n x) = λ n, f n x - f 0 x + f 0 x, by { ext1 n, abel, }, rw hf_rw, exact ⟨l + f 0 x, tendsto.add_const _ hx⟩, end lemma ae_tendsto_of_cauchy_snorm [complete_space E] {f : ℕ → α → E} (hf : ∀ n, ae_strongly_measurable (f n) μ) (hp : 1 ≤ p) {B : ℕ → ℝ≥0∞} (hB : ∑' i, B i ≠ ∞) (h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → snorm (f n - f m) p μ < B N) : ∀ᵐ x ∂μ, ∃ l : E, at_top.tendsto (λ n, f n x) (𝓝 l) := begin by_cases hp_top : p = ∞, { simp_rw [hp_top] at *, have h_cau_ae : ∀ᵐ x ∂μ, ∀ N n m, N ≤ n → N ≤ m → (‖(f n - f m) x‖₊ : ℝ≥0∞) < B N, { simp_rw ae_all_iff, exact λ N n m hnN hmN, ae_lt_of_ess_sup_lt (h_cau N n m hnN hmN), }, simp_rw [snorm_exponent_top, snorm_ess_sup] at h_cau, refine h_cau_ae.mono (λ x hx, cauchy_seq_tendsto_of_complete _), refine cauchy_seq_of_le_tendsto_0 (λ n, (B n).to_real) _ _, { intros n m N hnN hmN, specialize hx N n m hnN hmN, rw [dist_eq_norm, ←ennreal.to_real_of_real (norm_nonneg _), ennreal.to_real_le_to_real ennreal.of_real_ne_top (ennreal.ne_top_of_tsum_ne_top hB N)], rw ←of_real_norm_eq_coe_nnnorm at hx, exact hx.le, }, { rw ← ennreal.zero_to_real, exact tendsto.comp (ennreal.tendsto_to_real ennreal.zero_ne_top) (ennreal.tendsto_at_top_zero_of_tsum_ne_top hB), }, }, have hp1 : 1 ≤ p.to_real, { rw [← ennreal.of_real_le_iff_le_to_real hp_top, ennreal.of_real_one], exact hp, }, have h_cau' : ∀ (N n m : ℕ), N ≤ n → N ≤ m → snorm' (f n - f m) (p.to_real) μ < B N, { intros N n m hn hm, specialize h_cau N n m hn hm, rwa snorm_eq_snorm' (ennreal.zero_lt_one.trans_le hp).ne.symm hp_top at h_cau, }, exact ae_tendsto_of_cauchy_snorm' hf hp1 hB h_cau', end lemma cauchy_tendsto_of_tendsto {f : ℕ → α → E} (hf : ∀ n, ae_strongly_measurable (f n) μ) (f_lim : α → E) {B : ℕ → ℝ≥0∞} (hB : ∑' i, B i ≠ ∞) (h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → snorm (f n - f m) p μ < B N) (h_lim : ∀ᵐ (x : α) ∂μ, tendsto (λ n, f n x) at_top (𝓝 (f_lim x))) : at_top.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0) := begin rw ennreal.tendsto_at_top_zero, intros ε hε, have h_B : ∃ (N : ℕ), B N ≤ ε, { suffices h_tendsto_zero : ∃ (N : ℕ), ∀ n : ℕ, N ≤ n → B n ≤ ε, from ⟨h_tendsto_zero.some, h_tendsto_zero.some_spec _ le_rfl⟩, exact (ennreal.tendsto_at_top_zero.mp (ennreal.tendsto_at_top_zero_of_tsum_ne_top hB)) ε hε, }, cases h_B with N h_B, refine ⟨N, λ n hn, _⟩, have h_sub : snorm (f n - f_lim) p μ ≤ at_top.liminf (λ m, snorm (f n - f m) p μ), { refine snorm_lim_le_liminf_snorm (λ m, (hf n).sub (hf m)) (f n - f_lim) _, refine h_lim.mono (λ x hx, _), simp_rw sub_eq_add_neg, exact tendsto.add tendsto_const_nhds (tendsto.neg hx), }, refine h_sub.trans _, refine liminf_le_of_frequently_le' (frequently_at_top.mpr _), refine λ N1, ⟨max N N1, le_max_right _ _, _⟩, exact (h_cau N n (max N N1) hn (le_max_left _ _)).le.trans h_B, end lemma mem_ℒp_of_cauchy_tendsto (hp : 1 ≤ p) {f : ℕ → α → E} (hf : ∀ n, mem_ℒp (f n) p μ) (f_lim : α → E) (h_lim_meas : ae_strongly_measurable f_lim μ) (h_tendsto : at_top.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0)) : mem_ℒp f_lim p μ := begin refine ⟨h_lim_meas, _⟩, rw ennreal.tendsto_at_top_zero at h_tendsto, cases (h_tendsto 1 ennreal.zero_lt_one) with N h_tendsto_1, specialize h_tendsto_1 N (le_refl N), have h_add : f_lim = f_lim - f N + f N, by abel, rw h_add, refine lt_of_le_of_lt (snorm_add_le (h_lim_meas.sub (hf N).1) (hf N).1 hp) _, rw ennreal.add_lt_top, split, { refine lt_of_le_of_lt _ ennreal.one_lt_top, have h_neg : f_lim - f N = -(f N - f_lim), by simp, rwa [h_neg, snorm_neg], }, { exact (hf N).2, }, end lemma cauchy_complete_ℒp [complete_space E] (hp : 1 ≤ p) {f : ℕ → α → E} (hf : ∀ n, mem_ℒp (f n) p μ) {B : ℕ → ℝ≥0∞} (hB : ∑' i, B i ≠ ∞) (h_cau : ∀ (N n m : ℕ), N ≤ n → N ≤ m → snorm (f n - f m) p μ < B N) : ∃ (f_lim : α → E) (hf_lim_meas : mem_ℒp f_lim p μ), at_top.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0) := begin obtain ⟨f_lim, h_f_lim_meas, h_lim⟩ : ∃ (f_lim : α → E) (hf_lim_meas : strongly_measurable f_lim), ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (nhds (f_lim x)), from exists_strongly_measurable_limit_of_tendsto_ae (λ n, (hf n).1) (ae_tendsto_of_cauchy_snorm (λ n, (hf n).1) hp hB h_cau), have h_tendsto' : at_top.tendsto (λ n, snorm (f n - f_lim) p μ) (𝓝 0), from cauchy_tendsto_of_tendsto (λ m, (hf m).1) f_lim hB h_cau h_lim, have h_ℒp_lim : mem_ℒp f_lim p μ, from mem_ℒp_of_cauchy_tendsto hp hf f_lim h_f_lim_meas.ae_strongly_measurable h_tendsto', exact ⟨f_lim, h_ℒp_lim, h_tendsto'⟩, end /-! ### `Lp` is complete for `1 ≤ p` -/ instance [complete_space E] [hp : fact (1 ≤ p)] : complete_space (Lp E p μ) := complete_space_Lp_of_cauchy_complete_ℒp $ λ f hf B hB h_cau, cauchy_complete_ℒp hp.elim hf hB.ne h_cau end Lp end measure_theory end complete_space /-! ### Continuous functions in `Lp` -/ open_locale bounded_continuous_function open bounded_continuous_function section variables [topological_space α] [borel_space α] [second_countable_topology_either α E] variables (E p μ) /-- An additive subgroup of `Lp E p μ`, consisting of the equivalence classes which contain a bounded continuous representative. -/ def measure_theory.Lp.bounded_continuous_function : add_subgroup (Lp E p μ) := add_subgroup.add_subgroup_of ((continuous_map.to_ae_eq_fun_add_hom μ).comp (to_continuous_map_add_hom α E)).range (Lp E p μ) variables {E p μ} /-- By definition, the elements of `Lp.bounded_continuous_function E p μ` are the elements of `Lp E p μ` which contain a bounded continuous representative. -/ lemma measure_theory.Lp.mem_bounded_continuous_function_iff {f : (Lp E p μ)} : f ∈ measure_theory.Lp.bounded_continuous_function E p μ ↔ ∃ f₀ : (α →ᵇ E), f₀.to_continuous_map.to_ae_eq_fun μ = (f : α →ₘ[μ] E) := add_subgroup.mem_add_subgroup_of namespace bounded_continuous_function variables [is_finite_measure μ] /-- A bounded continuous function on a finite-measure space is in `Lp`. -/ lemma mem_Lp (f : α →ᵇ E) : f.to_continuous_map.to_ae_eq_fun μ ∈ Lp E p μ := begin refine Lp.mem_Lp_of_ae_bound (‖f‖) _, filter_upwards [f.to_continuous_map.coe_fn_to_ae_eq_fun μ] with x _, convert f.norm_coe_le_norm x end /-- The `Lp`-norm of a bounded continuous function is at most a constant (depending on the measure of the whole space) times its sup-norm. -/ lemma Lp_norm_le (f : α →ᵇ E) : ‖(⟨f.to_continuous_map.to_ae_eq_fun μ, mem_Lp f⟩ : Lp E p μ)‖ ≤ (measure_univ_nnreal μ) ^ (p.to_real)⁻¹ * ‖f‖ := begin apply Lp.norm_le_of_ae_bound (norm_nonneg f), { refine (f.to_continuous_map.coe_fn_to_ae_eq_fun μ).mono _, intros x hx, convert f.norm_coe_le_norm x }, { apply_instance } end variables (p μ) /-- The normed group homomorphism of considering a bounded continuous function on a finite-measure space as an element of `Lp`. -/ def to_Lp_hom [fact (1 ≤ p)] : normed_add_group_hom (α →ᵇ E) (Lp E p μ) := { bound' := ⟨_, Lp_norm_le⟩, .. add_monoid_hom.cod_restrict ((continuous_map.to_ae_eq_fun_add_hom μ).comp (to_continuous_map_add_hom α E)) (Lp E p μ) mem_Lp } lemma range_to_Lp_hom [fact (1 ≤ p)] : ((to_Lp_hom p μ).range : add_subgroup (Lp E p μ)) = measure_theory.Lp.bounded_continuous_function E p μ := begin symmetry, convert add_monoid_hom.add_subgroup_of_range_eq_of_le ((continuous_map.to_ae_eq_fun_add_hom μ).comp (to_continuous_map_add_hom α E)) (by { rintros - ⟨f, rfl⟩, exact mem_Lp f } : _ ≤ Lp E p μ), end variables (𝕜 : Type*) [fact (1 ≤ p)] /-- The bounded linear map of considering a bounded continuous function on a finite-measure space as an element of `Lp`. -/ def to_Lp [normed_field 𝕜] [normed_space 𝕜 E] : (α →ᵇ E) →L[𝕜] (Lp E p μ) := linear_map.mk_continuous (linear_map.cod_restrict (Lp.Lp_submodule E p μ 𝕜) ((continuous_map.to_ae_eq_fun_linear_map μ).comp (to_continuous_map_linear_map α E 𝕜)) mem_Lp) _ Lp_norm_le lemma coe_fn_to_Lp [normed_field 𝕜] [normed_space 𝕜 E] (f : α →ᵇ E) : to_Lp p μ 𝕜 f =ᵐ[μ] f := ae_eq_fun.coe_fn_mk f _ variables {𝕜} lemma range_to_Lp [normed_field 𝕜] [normed_space 𝕜 E] : ((linear_map.range (to_Lp p μ 𝕜 : (α →ᵇ E) →L[𝕜] Lp E p μ)).to_add_subgroup) = measure_theory.Lp.bounded_continuous_function E p μ := range_to_Lp_hom p μ variables {p} lemma to_Lp_norm_le [nontrivially_normed_field 𝕜] [normed_space 𝕜 E]: ‖(to_Lp p μ 𝕜 : (α →ᵇ E) →L[𝕜] (Lp E p μ))‖ ≤ (measure_univ_nnreal μ) ^ (p.to_real)⁻¹ := linear_map.mk_continuous_norm_le _ ((measure_univ_nnreal μ) ^ (p.to_real)⁻¹).coe_nonneg _ lemma to_Lp_inj {f g : α →ᵇ E} [μ.is_open_pos_measure] [normed_field 𝕜] [normed_space 𝕜 E] : to_Lp p μ 𝕜 f = to_Lp p μ 𝕜 g ↔ f = g := begin refine ⟨λ h, _, by tauto⟩, rw [←fun_like.coe_fn_eq, ←(map_continuous f).ae_eq_iff_eq μ (map_continuous g)], refine (coe_fn_to_Lp p μ 𝕜 f).symm.trans (eventually_eq.trans _ $ coe_fn_to_Lp p μ 𝕜 g), rw h, end lemma to_Lp_injective [μ.is_open_pos_measure] [normed_field 𝕜] [normed_space 𝕜 E] : function.injective ⇑(to_Lp p μ 𝕜 : (α →ᵇ E) →L[𝕜] (Lp E p μ)) := λ f g hfg, (to_Lp_inj μ).mp hfg end bounded_continuous_function namespace continuous_map variables [compact_space α] [is_finite_measure μ] variables (𝕜 : Type*) (p μ) [fact (1 ≤ p)] /-- The bounded linear map of considering a continuous function on a compact finite-measure space `α` as an element of `Lp`. By definition, the norm on `C(α, E)` is the sup-norm, transferred from the space `α →ᵇ E` of bounded continuous functions, so this construction is just a matter of transferring the structure from `bounded_continuous_function.to_Lp` along the isometry. -/ def to_Lp [normed_field 𝕜] [normed_space 𝕜 E] : C(α, E) →L[𝕜] (Lp E p μ) := (bounded_continuous_function.to_Lp p μ 𝕜).comp (linear_isometry_bounded_of_compact α E 𝕜).to_linear_isometry.to_continuous_linear_map variables {𝕜} lemma range_to_Lp [normed_field 𝕜] [normed_space 𝕜 E] : (linear_map.range (to_Lp p μ 𝕜 : C(α, E) →L[𝕜] Lp E p μ)).to_add_subgroup = measure_theory.Lp.bounded_continuous_function E p μ := begin refine set_like.ext' _, have := (linear_isometry_bounded_of_compact α E 𝕜).surjective, convert function.surjective.range_comp this (bounded_continuous_function.to_Lp p μ 𝕜), rw ←bounded_continuous_function.range_to_Lp p μ, refl, end variables {p} lemma coe_fn_to_Lp [normed_field 𝕜] [normed_space 𝕜 E] (f : C(α, E)) : to_Lp p μ 𝕜 f =ᵐ[μ] f := ae_eq_fun.coe_fn_mk f _ lemma to_Lp_def [normed_field 𝕜] [normed_space 𝕜 E] (f : C(α, E)) : to_Lp p μ 𝕜 f = bounded_continuous_function.to_Lp p μ 𝕜 (linear_isometry_bounded_of_compact α E 𝕜 f) := rfl @[simp] lemma to_Lp_comp_to_continuous_map [normed_field 𝕜] [normed_space 𝕜 E] (f : α →ᵇ E) : to_Lp p μ 𝕜 f.to_continuous_map = bounded_continuous_function.to_Lp p μ 𝕜 f := rfl @[simp] lemma coe_to_Lp [normed_field 𝕜] [normed_space 𝕜 E] (f : C(α, E)) : (to_Lp p μ 𝕜 f : α →ₘ[μ] E) = f.to_ae_eq_fun μ := rfl lemma to_Lp_injective [μ.is_open_pos_measure] [normed_field 𝕜] [normed_space 𝕜 E] : function.injective ⇑(to_Lp p μ 𝕜 : C(α, E) →L[𝕜] (Lp E p μ)) := (bounded_continuous_function.to_Lp_injective _).comp (linear_isometry_bounded_of_compact α E 𝕜).injective lemma to_Lp_inj {f g : C(α, E)} [μ.is_open_pos_measure] [normed_field 𝕜] [normed_space 𝕜 E] : to_Lp p μ 𝕜 f = to_Lp p μ 𝕜 g ↔ f = g := (to_Lp_injective μ).eq_iff variables {μ} /-- If a sum of continuous functions `g n` is convergent, and the same sum converges in `Lᵖ` to `h`, then in fact `g n` converges uniformly to `h`. -/ lemma has_sum_of_has_sum_Lp {β : Type*} [μ.is_open_pos_measure] [normed_field 𝕜] [normed_space 𝕜 E] {g : β → C(α, E)} {f : C(α, E)} (hg : summable g) (hg2 : has_sum (to_Lp p μ 𝕜 ∘ g) (to_Lp p μ 𝕜 f)) : has_sum g f := begin convert summable.has_sum hg, exact to_Lp_injective μ (hg2.unique ((to_Lp p μ 𝕜).has_sum $ summable.has_sum hg)), end variables (μ) [nontrivially_normed_field 𝕜] [normed_space 𝕜 E] lemma to_Lp_norm_eq_to_Lp_norm_coe : ‖(to_Lp p μ 𝕜 : C(α, E) →L[𝕜] (Lp E p μ))‖ = ‖(bounded_continuous_function.to_Lp p μ 𝕜 : (α →ᵇ E) →L[𝕜] (Lp E p μ))‖ := continuous_linear_map.op_norm_comp_linear_isometry_equiv _ _ /-- Bound for the operator norm of `continuous_map.to_Lp`. -/ lemma to_Lp_norm_le : ‖(to_Lp p μ 𝕜 : C(α, E) →L[𝕜] (Lp E p μ))‖ ≤ (measure_univ_nnreal μ) ^ (p.to_real)⁻¹ := by { rw to_Lp_norm_eq_to_Lp_norm_coe, exact bounded_continuous_function.to_Lp_norm_le μ } end continuous_map end namespace measure_theory namespace Lp lemma pow_mul_meas_ge_le_norm (f : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (ε : ℝ≥0∞) : (ε * μ {x | ε ≤ ‖f x‖₊ ^ p.to_real}) ^ (1 / p.to_real) ≤ (ennreal.of_real ‖f‖) := (ennreal.of_real_to_real (snorm_ne_top f)).symm ▸ pow_mul_meas_ge_le_snorm μ hp_ne_zero hp_ne_top (Lp.ae_strongly_measurable f) ε lemma mul_meas_ge_le_pow_norm (f : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (ε : ℝ≥0∞) : ε * μ {x | ε ≤ ‖f x‖₊ ^ p.to_real} ≤ (ennreal.of_real ‖f‖) ^ p.to_real := (ennreal.of_real_to_real (snorm_ne_top f)).symm ▸ mul_meas_ge_le_pow_snorm μ hp_ne_zero hp_ne_top (Lp.ae_strongly_measurable f) ε /-- A version of Markov's inequality with elements of Lp. -/ lemma mul_meas_ge_le_pow_norm' (f : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (ε : ℝ≥0∞) : ε ^ p.to_real * μ {x | ε ≤ ‖f x‖₊} ≤ (ennreal.of_real ‖f‖) ^ p.to_real := (ennreal.of_real_to_real (snorm_ne_top f)).symm ▸ mul_meas_ge_le_pow_snorm' μ hp_ne_zero hp_ne_top (Lp.ae_strongly_measurable f) ε lemma meas_ge_le_mul_pow_norm (f : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) {ε : ℝ≥0∞} (hε : ε ≠ 0) : μ {x | ε ≤ ‖f x‖₊} ≤ ε⁻¹ ^ p.to_real * (ennreal.of_real ‖f‖) ^ p.to_real := (ennreal.of_real_to_real (snorm_ne_top f)).symm ▸ meas_ge_le_mul_pow_snorm μ hp_ne_zero hp_ne_top (Lp.ae_strongly_measurable f) hε end Lp end measure_theory
89383e2ee5b195e491c73ca350f02dddae817716
c1a29ca460720df88ab68dc42d9a1a02e029d505
/examples/introduction/unnamed_237.lean
e023dd96f15255302eae936123bbf1280a3f0fdf
[]
no_license
agusakov/mathematics_in_lean
acb5b3d659e4522ae4b4836ea550527f03f6546c
2539562e4d91c858c73dbecb5b282ce1a7d38b6d
refs/heads/master
1,665,963,365,241
1,592,080,022,000
1,592,080,022,000
272,078,062
0
0
null
1,592,078,772,000
1,592,078,772,000
null
UTF-8
Lean
false
false
163
lean
import data.nat.parity tactic open nat -- BEGIN example : ∀ m n, even n → even (m * n) := by rintros m n ⟨k, hk⟩; use m * k; rw [hk, mul_left_comm] -- END
1b62f636afa9211915cf1d8f9d30fb3696a470a3
f3a5af2927397cf346ec0e24312bfff077f00425
/src/game/world8/level1.lean
ad5359ed70c9ce880102e47c2abd12975cc4f944
[ "Apache-2.0" ]
permissive
ImperialCollegeLondon/natural_number_game
05c39e1586408cfb563d1a12e1085a90726ab655
f29b6c2884299fc63fdfc81ae5d7daaa3219f9fd
refs/heads/master
1,688,570,964,990
1,636,908,242,000
1,636,908,242,000
195,403,790
277
84
Apache-2.0
1,694,547,955,000
1,562,328,792,000
Lean
UTF-8
Lean
false
false
1,894
lean
import mynat.definition -- hide import mynat.add -- hide import game.world2.level6 -- hide namespace mynat -- hide /- Axiom : succ_inj {a b : mynat} : succ(a) = succ(b) → a = b -/ /- # Advanced Addition World ## Level 1: `succ_inj`. A function. Peano's original collection of axioms for the natural numbers contained two further assumptions, which have not yet been mentioned in the game: ``` succ_inj {a b : mynat} : succ(a) = succ(b) → a = b zero_ne_succ (a : mynat) : zero ≠ succ(a) ``` The reason they have not been used yet is that they are both implications, that is, of the form $P\implies Q$. This is clear for `succ_inj a b`, which says that for all $a$ and $b$ we have $succ(a)=succ(b)\implies a=b$. For `zero_ne_succ` the trick is that $X\ne Y$ is *defined to mean* $X = Y\implies{\tt false}$. If you have played through Proposition world, you now have the required Lean skills (i.e., you know the required tactics) to work with these implications. Let's finally learn how to use `succ_inj`. You should know a couple of ways to prove the below -- one directly using an `exact`, and one which uses an `apply` first. But either way you'll need to use `succ_inj`. -/ /- Theorem : no-side-bar For all naturals $a$ and $b$, if we assume $succ(a)=succ(b)$, then we can deduce $a=b$. -/ theorem succ_inj' {a b : mynat} (hs : succ(a) = succ(b)) : a = b := begin [nat_num_game] exact succ_inj(hs), end /- ## Important thing. You can rewrite proofs of *equalities*. If `h : A = B` then `rw h` changes `A`s to `B`s. But you *cannot rewrite proofs of implications*. `rw succ_inj` will *never work* because `succ_inj` isn't of the form $A = B$, it's of the form $A\implies B$. This is one of the most common mistakes I see from beginners. $\implies$ and $=$ are *two different things* and you need to be clear about which one you are using. -/ end mynat -- hide
bdf1bf0f4bda0144206f2baf240caf0068036b0a
592ee40978ac7604005a4e0d35bbc4b467389241
/Library/generated/mathscheme-lean/PointedTimesMagma.lean
354ca2ff73c40e5797e9f3dc6fc459289885bc70
[]
no_license
ysharoda/Deriving-Definitions
3e149e6641fae440badd35ac110a0bd705a49ad2
dfecb27572022de3d4aa702cae8db19957523a59
refs/heads/master
1,679,127,857,700
1,615,939,007,000
1,615,939,007,000
229,785,731
4
0
null
null
null
null
UTF-8
Lean
false
false
7,118
lean
import init.data.nat.basic import init.data.fin.basic import data.vector import .Prelude open Staged open nat open fin open vector section PointedTimesMagma structure PointedTimesMagma (A : Type) : Type := (times : (A → (A → A))) (e : A) open PointedTimesMagma structure Sig (AS : Type) : Type := (timesS : (AS → (AS → AS))) (eS : AS) structure Product (A : Type) : Type := (timesP : ((Prod A A) → ((Prod A A) → (Prod A A)))) (eP : (Prod A A)) structure Hom {A1 : Type} {A2 : Type} (Po1 : (PointedTimesMagma A1)) (Po2 : (PointedTimesMagma A2)) : Type := (hom : (A1 → A2)) (pres_times : (∀ {x1 x2 : A1} , (hom ((times Po1) x1 x2)) = ((times Po2) (hom x1) (hom x2)))) (pres_e : (hom (e Po1)) = (e Po2)) structure RelInterp {A1 : Type} {A2 : Type} (Po1 : (PointedTimesMagma A1)) (Po2 : (PointedTimesMagma A2)) : Type 1 := (interp : (A1 → (A2 → Type))) (interp_times : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((times Po1) x1 x2) ((times Po2) y1 y2)))))) (interp_e : (interp (e Po1) (e Po2))) inductive PointedTimesMagmaTerm : Type | timesL : (PointedTimesMagmaTerm → (PointedTimesMagmaTerm → PointedTimesMagmaTerm)) | eL : PointedTimesMagmaTerm open PointedTimesMagmaTerm inductive ClPointedTimesMagmaTerm (A : Type) : Type | sing : (A → ClPointedTimesMagmaTerm) | timesCl : (ClPointedTimesMagmaTerm → (ClPointedTimesMagmaTerm → ClPointedTimesMagmaTerm)) | eCl : ClPointedTimesMagmaTerm open ClPointedTimesMagmaTerm inductive OpPointedTimesMagmaTerm (n : ℕ) : Type | v : ((fin n) → OpPointedTimesMagmaTerm) | timesOL : (OpPointedTimesMagmaTerm → (OpPointedTimesMagmaTerm → OpPointedTimesMagmaTerm)) | eOL : OpPointedTimesMagmaTerm open OpPointedTimesMagmaTerm inductive OpPointedTimesMagmaTerm2 (n : ℕ) (A : Type) : Type | v2 : ((fin n) → OpPointedTimesMagmaTerm2) | sing2 : (A → OpPointedTimesMagmaTerm2) | timesOL2 : (OpPointedTimesMagmaTerm2 → (OpPointedTimesMagmaTerm2 → OpPointedTimesMagmaTerm2)) | eOL2 : OpPointedTimesMagmaTerm2 open OpPointedTimesMagmaTerm2 def simplifyCl {A : Type} : ((ClPointedTimesMagmaTerm A) → (ClPointedTimesMagmaTerm A)) | (timesCl x1 x2) := (timesCl (simplifyCl x1) (simplifyCl x2)) | eCl := eCl | (sing x1) := (sing x1) def simplifyOpB {n : ℕ} : ((OpPointedTimesMagmaTerm n) → (OpPointedTimesMagmaTerm n)) | (timesOL x1 x2) := (timesOL (simplifyOpB x1) (simplifyOpB x2)) | eOL := eOL | (v x1) := (v x1) def simplifyOp {n : ℕ} {A : Type} : ((OpPointedTimesMagmaTerm2 n A) → (OpPointedTimesMagmaTerm2 n A)) | (timesOL2 x1 x2) := (timesOL2 (simplifyOp x1) (simplifyOp x2)) | eOL2 := eOL2 | (v2 x1) := (v2 x1) | (sing2 x1) := (sing2 x1) def evalB {A : Type} : ((PointedTimesMagma A) → (PointedTimesMagmaTerm → A)) | Po (timesL x1 x2) := ((times Po) (evalB Po x1) (evalB Po x2)) | Po eL := (e Po) def evalCl {A : Type} : ((PointedTimesMagma A) → ((ClPointedTimesMagmaTerm A) → A)) | Po (sing x1) := x1 | Po (timesCl x1 x2) := ((times Po) (evalCl Po x1) (evalCl Po x2)) | Po eCl := (e Po) def evalOpB {A : Type} {n : ℕ} : ((PointedTimesMagma A) → ((vector A n) → ((OpPointedTimesMagmaTerm n) → A))) | Po vars (v x1) := (nth vars x1) | Po vars (timesOL x1 x2) := ((times Po) (evalOpB Po vars x1) (evalOpB Po vars x2)) | Po vars eOL := (e Po) def evalOp {A : Type} {n : ℕ} : ((PointedTimesMagma A) → ((vector A n) → ((OpPointedTimesMagmaTerm2 n A) → A))) | Po vars (v2 x1) := (nth vars x1) | Po vars (sing2 x1) := x1 | Po vars (timesOL2 x1 x2) := ((times Po) (evalOp Po vars x1) (evalOp Po vars x2)) | Po vars eOL2 := (e Po) def inductionB {P : (PointedTimesMagmaTerm → Type)} : ((∀ (x1 x2 : PointedTimesMagmaTerm) , ((P x1) → ((P x2) → (P (timesL x1 x2))))) → ((P eL) → (∀ (x : PointedTimesMagmaTerm) , (P x)))) | ptimesl pel (timesL x1 x2) := (ptimesl _ _ (inductionB ptimesl pel x1) (inductionB ptimesl pel x2)) | ptimesl pel eL := pel def inductionCl {A : Type} {P : ((ClPointedTimesMagmaTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 x2 : (ClPointedTimesMagmaTerm A)) , ((P x1) → ((P x2) → (P (timesCl x1 x2))))) → ((P eCl) → (∀ (x : (ClPointedTimesMagmaTerm A)) , (P x))))) | psing ptimescl pecl (sing x1) := (psing x1) | psing ptimescl pecl (timesCl x1 x2) := (ptimescl _ _ (inductionCl psing ptimescl pecl x1) (inductionCl psing ptimescl pecl x2)) | psing ptimescl pecl eCl := pecl def inductionOpB {n : ℕ} {P : ((OpPointedTimesMagmaTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 x2 : (OpPointedTimesMagmaTerm n)) , ((P x1) → ((P x2) → (P (timesOL x1 x2))))) → ((P eOL) → (∀ (x : (OpPointedTimesMagmaTerm n)) , (P x))))) | pv ptimesol peol (v x1) := (pv x1) | pv ptimesol peol (timesOL x1 x2) := (ptimesol _ _ (inductionOpB pv ptimesol peol x1) (inductionOpB pv ptimesol peol x2)) | pv ptimesol peol eOL := peol def inductionOp {n : ℕ} {A : Type} {P : ((OpPointedTimesMagmaTerm2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 x2 : (OpPointedTimesMagmaTerm2 n A)) , ((P x1) → ((P x2) → (P (timesOL2 x1 x2))))) → ((P eOL2) → (∀ (x : (OpPointedTimesMagmaTerm2 n A)) , (P x)))))) | pv2 psing2 ptimesol2 peol2 (v2 x1) := (pv2 x1) | pv2 psing2 ptimesol2 peol2 (sing2 x1) := (psing2 x1) | pv2 psing2 ptimesol2 peol2 (timesOL2 x1 x2) := (ptimesol2 _ _ (inductionOp pv2 psing2 ptimesol2 peol2 x1) (inductionOp pv2 psing2 ptimesol2 peol2 x2)) | pv2 psing2 ptimesol2 peol2 eOL2 := peol2 def stageB : (PointedTimesMagmaTerm → (Staged PointedTimesMagmaTerm)) | (timesL x1 x2) := (stage2 timesL (codeLift2 timesL) (stageB x1) (stageB x2)) | eL := (Now eL) def stageCl {A : Type} : ((ClPointedTimesMagmaTerm A) → (Staged (ClPointedTimesMagmaTerm A))) | (sing x1) := (Now (sing x1)) | (timesCl x1 x2) := (stage2 timesCl (codeLift2 timesCl) (stageCl x1) (stageCl x2)) | eCl := (Now eCl) def stageOpB {n : ℕ} : ((OpPointedTimesMagmaTerm n) → (Staged (OpPointedTimesMagmaTerm n))) | (v x1) := (const (code (v x1))) | (timesOL x1 x2) := (stage2 timesOL (codeLift2 timesOL) (stageOpB x1) (stageOpB x2)) | eOL := (Now eOL) def stageOp {n : ℕ} {A : Type} : ((OpPointedTimesMagmaTerm2 n A) → (Staged (OpPointedTimesMagmaTerm2 n A))) | (sing2 x1) := (Now (sing2 x1)) | (v2 x1) := (const (code (v2 x1))) | (timesOL2 x1 x2) := (stage2 timesOL2 (codeLift2 timesOL2) (stageOp x1) (stageOp x2)) | eOL2 := (Now eOL2) structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type := (timesT : ((Repr A) → ((Repr A) → (Repr A)))) (eT : (Repr A)) end PointedTimesMagma
aee6affb12c071c27f95a05362c03f5993a928a7
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/field_theory/galois_auto.lean
ca225a61ea0950e62fe141b1134f7679e7055797
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
13,219
lean
/- Copyright (c) 2020 Thomas Browning and Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning and Patrick Lutz -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.field_theory.normal import Mathlib.field_theory.primitive_element import Mathlib.field_theory.fixed import Mathlib.ring_theory.power_basis import Mathlib.PostPort universes u_1 u_2 u_3 u_4 namespace Mathlib /-! # Galois Extensions In this file we define Galois extensions as extensions which are both separable and normal. ## Main definitions - `is_galois F E` where `E` is an extension of `F` - `fixed_field H` where `H : subgroup (E ≃ₐ[F] E)` - `fixing_subgroup K` where `K : intermediate_field F E` - `galois_correspondence` where `E/F` is finite dimensional and Galois ## Main results - `fixing_subgroup_of_fixed_field` : If `E/F` is finite dimensional (but not necessarily Galois) then `fixing_subgroup (fixed_field H) = H` - `fixed_field_of_fixing_subgroup`: If `E/F` is finite dimensional and Galois then `fixed_field (fixing_subgroup K) = K` Together, these two result prove the Galois correspondence - `is_galois.tfae` : Equivalent characterizations of a Galois extension of finite degree -/ /-- A field extension E/F is galois if it is both separable and normal -/ def is_galois (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] := is_separable F E ∧ normal F E namespace is_galois protected instance self (F : Type u_1) [field F] : is_galois F F := { left := Mathlib.is_separable_self F, right := Mathlib.normal_self F } protected instance to_is_separable (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] [h : is_galois F E] : is_separable F E := and.left h protected instance to_normal (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] [h : is_galois F E] : normal F E := and.right h theorem integral (F : Type u_1) [field F] {E : Type u_2} [field E] [algebra F E] [is_galois F E] (x : E) : is_integral F x := normal.is_integral F x theorem separable (F : Type u_1) [field F] {E : Type u_2} [field E] [algebra F E] [h : is_galois F E] (x : E) : polynomial.separable (minpoly F x) := and.right (and.left h x) -- TODO(Commelin, Browning): rename this to `splits` theorem normal (F : Type u_1) [field F] {E : Type u_2} [field E] [algebra F E] [is_galois F E] (x : E) : polynomial.splits (algebra_map F E) (minpoly F x) := normal.splits F x protected instance of_fixed_field (E : Type u_2) [field E] (G : Type u_1) [group G] [fintype G] [mul_semiring_action G E] : is_galois (↥(mul_action.fixed_points G E)) E := { left := fixed_points.separable G E, right := fixed_points.normal G E } theorem intermediate_field.adjoin_simple.card_aut_eq_findim (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] [finite_dimensional F E] {α : E} (hα : is_integral F α) (h_sep : polynomial.separable (minpoly F α)) (h_splits : polynomial.splits (algebra_map F ↥(intermediate_field.adjoin F (intermediate_field.insert.insert ∅ α))) (minpoly F α)) : fintype.card (alg_equiv F ↥(intermediate_field.adjoin F (intermediate_field.insert.insert ∅ α)) ↥(intermediate_field.adjoin F (intermediate_field.insert.insert ∅ α))) = finite_dimensional.findim F ↥(intermediate_field.adjoin F (intermediate_field.insert.insert ∅ α)) := sorry theorem card_aut_eq_findim (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] [finite_dimensional F E] [h : is_galois F E] : fintype.card (alg_equiv F E E) = finite_dimensional.findim F E := sorry end is_galois theorem is_galois.tower_top_of_is_galois (F : Type u_1) (K : Type u_2) (E : Type u_3) [field F] [field K] [field E] [algebra F K] [algebra F E] [algebra K E] [is_scalar_tower F K E] [is_galois F E] : is_galois K E := { left := is_separable_tower_top_of_is_separable F K E, right := normal.tower_top_of_normal F K E } protected instance is_galois.tower_top_intermediate_field {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] (K : intermediate_field F E) [h : is_galois F E] : is_galois (↥K) E := is_galois.tower_top_of_is_galois F (↥K) E theorem is_galois_iff_is_galois_bot {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] : is_galois (↥⊥) E ↔ is_galois F E := { mp := fun (h : is_galois (↥⊥) E) => is_galois.tower_top_of_is_galois (↥⊥) F E, mpr := fun (h : is_galois F E) => is_galois.tower_top_intermediate_field ⊥ } theorem is_galois.of_alg_equiv {F : Type u_1} {E : Type u_3} [field F] [field E] {E' : Type u_4} [field E'] [algebra F E'] [algebra F E] [h : is_galois F E] (f : alg_equiv F E E') : is_galois F E' := { left := is_separable.of_alg_hom F E ↑(alg_equiv.symm f), right := normal.of_alg_equiv f } theorem alg_equiv.transfer_galois {F : Type u_1} {E : Type u_3} [field F] [field E] {E' : Type u_4} [field E'] [algebra F E'] [algebra F E] (f : alg_equiv F E E') : is_galois F E ↔ is_galois F E' := { mp := fun (h : is_galois F E) => is_galois.of_alg_equiv f, mpr := fun (h : is_galois F E') => is_galois.of_alg_equiv (alg_equiv.symm f) } theorem is_galois_iff_is_galois_top {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] : is_galois F ↥⊤ ↔ is_galois F E := alg_equiv.transfer_galois intermediate_field.top_equiv protected instance is_galois_bot {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] : is_galois F ↥⊥ := iff.mpr (alg_equiv.transfer_galois intermediate_field.bot_equiv) (is_galois.self F) namespace intermediate_field protected instance subgroup_action {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (H : subgroup (alg_equiv F E E)) : faithful_mul_semiring_action (↥H) E := faithful_mul_semiring_action.mk sorry /-- The intermediate_field fixed by a subgroup -/ def fixed_field {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (H : subgroup (alg_equiv F E E)) : intermediate_field F E := mk (mul_action.fixed_points (↥H) E) sorry sorry sorry sorry sorry sorry sorry theorem findim_fixed_field_eq_card {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (H : subgroup (alg_equiv F E E)) [finite_dimensional F E] : finite_dimensional.findim (↥(fixed_field H)) E = fintype.card ↥H := fixed_points.findim_eq_card (↥H) E /-- The subgroup fixing an intermediate_field -/ def fixing_subgroup {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (K : intermediate_field F E) : subgroup (alg_equiv F E E) := subgroup.mk (fun (ϕ : alg_equiv F E E) => ∀ (x : ↥K), coe_fn ϕ ↑x = ↑x) sorry sorry sorry theorem le_iff_le {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (H : subgroup (alg_equiv F E E)) (K : intermediate_field F E) : K ≤ fixed_field H ↔ H ≤ fixing_subgroup K := sorry /-- The fixing_subgroup of `K : intermediate_field F E` is isomorphic to `E ≃ₐ[K] E` -/ def fixing_subgroup_equiv {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (K : intermediate_field F E) : ↥(fixing_subgroup K) ≃* alg_equiv (↥K) E E := mul_equiv.mk (fun (ϕ : ↥(fixing_subgroup K)) => alg_equiv.of_bijective (alg_hom.mk ⇑ϕ sorry sorry sorry sorry sorry) sorry) (fun (ϕ : alg_equiv (↥K) E E) => { val := alg_equiv.of_bijective (alg_hom.mk ⇑ϕ sorry sorry sorry sorry sorry) sorry, property := sorry }) sorry sorry sorry theorem fixing_subgroup_fixed_field {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (H : subgroup (alg_equiv F E E)) [finite_dimensional F E] : fixing_subgroup (fixed_field H) = H := sorry protected instance fixed_field.algebra {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (K : intermediate_field F E) : algebra ↥K ↥(fixed_field (fixing_subgroup K)) := algebra.mk (ring_hom.mk (fun (x : ↥K) => { val := ↑x, property := sorry }) sorry sorry sorry sorry) sorry sorry protected instance fixed_field.is_scalar_tower {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (K : intermediate_field F E) : is_scalar_tower (↥K) (↥(fixed_field (fixing_subgroup K))) E := is_scalar_tower.mk fun (_x : ↥K) (_x_1 : ↥(fixed_field (fixing_subgroup K))) (_x_2 : E) => mul_assoc (↑_x) (↑_x_1) _x_2 end intermediate_field namespace is_galois theorem fixed_field_fixing_subgroup {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (K : intermediate_field F E) [finite_dimensional F E] [h : is_galois F E] : intermediate_field.fixed_field (intermediate_field.fixing_subgroup K) = K := sorry theorem card_fixing_subgroup_eq_findim {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (K : intermediate_field F E) [finite_dimensional F E] [is_galois F E] : fintype.card ↥(intermediate_field.fixing_subgroup K) = finite_dimensional.findim (↥K) E := sorry /-- The Galois correspondence from intermediate fields to subgroups -/ def intermediate_field_equiv_subgroup {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] [finite_dimensional F E] [is_galois F E] : intermediate_field F E ≃o order_dual (subgroup (alg_equiv F E E)) := rel_iso.mk (equiv.mk intermediate_field.fixing_subgroup intermediate_field.fixed_field sorry sorry) sorry /-- The Galois correspondence as a galois_insertion -/ def galois_insertion_intermediate_field_subgroup {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] [finite_dimensional F E] : galois_insertion (⇑order_dual.to_dual ∘ intermediate_field.fixing_subgroup) (intermediate_field.fixed_field ∘ ⇑order_dual.to_dual) := galois_insertion.mk (fun (K : intermediate_field F E) (_x : function.comp intermediate_field.fixed_field (⇑order_dual.to_dual) (function.comp (⇑order_dual.to_dual) intermediate_field.fixing_subgroup K) ≤ K) => intermediate_field.fixing_subgroup K) sorry sorry sorry /-- The Galois correspondence as a galois_coinsertion -/ def galois_coinsertion_intermediate_field_subgroup {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] [finite_dimensional F E] [is_galois F E] : galois_coinsertion (⇑order_dual.to_dual ∘ intermediate_field.fixing_subgroup) (intermediate_field.fixed_field ∘ ⇑order_dual.to_dual) := galois_coinsertion.mk (fun (H : order_dual (subgroup (alg_equiv F E E))) (_x : H ≤ function.comp (⇑order_dual.to_dual) intermediate_field.fixing_subgroup (function.comp intermediate_field.fixed_field (⇑order_dual.to_dual) H)) => intermediate_field.fixed_field H) sorry sorry sorry end is_galois namespace is_galois theorem is_separable_splitting_field (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] [finite_dimensional F E] [h : is_galois F E] : ∃ (p : polynomial F), polynomial.separable p ∧ polynomial.is_splitting_field F E p := sorry theorem of_fixed_field_eq_bot (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] [finite_dimensional F E] (h : intermediate_field.fixed_field ⊤ = ⊥) : is_galois F E := eq.mpr (id (Eq._oldrec (Eq.refl (is_galois F E)) (Eq.symm (propext is_galois_iff_is_galois_bot)))) (eq.mpr (id (Eq._oldrec (Eq.refl (is_galois (↥⊥) E)) (Eq.symm h))) (is_galois.of_fixed_field E ↥⊤)) theorem of_card_aut_eq_findim (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] [finite_dimensional F E] (h : fintype.card (alg_equiv F E E) = finite_dimensional.findim F E) : is_galois F E := sorry theorem of_separable_splitting_field_aux {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] {p : polynomial F} [hFE : finite_dimensional F E] [sp : polynomial.is_splitting_field F E p] (hp : polynomial.separable p) (K : intermediate_field F E) {x : E} (hx : x ∈ polynomial.roots (polynomial.map (algebra_map F E) p)) : fintype.card (alg_hom F (↥↑(intermediate_field.adjoin (↥K) (intermediate_field.insert.insert ∅ x))) E) = fintype.card (alg_hom F (↥K) E) * finite_dimensional.findim ↥K ↥(intermediate_field.adjoin (↥K) (intermediate_field.insert.insert ∅ x)) := sorry theorem of_separable_splitting_field {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] {p : polynomial F} [sp : polynomial.is_splitting_field F E p] (hp : polynomial.separable p) : is_galois F E := sorry /--Equivalent characterizations of a Galois extension of finite degree-/ theorem tfae {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] [finite_dimensional F E] : tfae [is_galois F E, intermediate_field.fixed_field ⊤ = ⊥, fintype.card (alg_equiv F E E) = finite_dimensional.findim F E, ∃ (p : polynomial F), polynomial.separable p ∧ polynomial.is_splitting_field F E p] := sorry end Mathlib
7889c035abda060b7f4b7707482c0e6ffc5c97c5
076f5040b63237c6dd928c6401329ed5adcb0e44
/answers/hw3_function_terms_lambda.lean
a9eb456c9dcf976fc762deefb6827788df6adf92
[]
no_license
kevinsullivan/uva-cs-dm-f19
0f123689cf6cb078f263950b18382a7086bf30be
09a950752884bd7ade4be33e9e89a2c4b1927167
refs/heads/master
1,594,771,841,541
1,575,853,850,000
1,575,853,850,000
205,433,890
4
9
null
1,571,592,121,000
1,567,188,539,000
Lean
UTF-8
Lean
false
false
7,206
lean
-- You can ignore this line for now, but don't remove it. namespace hw3 /- In this assignment, you will put into practice your new knowledge of terms and definitions in predicate logic by using it to implement a library of Boolean functions. You will also gain practice using different forms of syntax for defining functions. -/ /- To begin, we present one "unary" Boolean function (taking one Boolean argument and returning a Boolean result) and one "binary" function (taking two arguments), using each of three styles of syntax. -/ /- First, here are three implementations of exactly the same unary function, namely negation, in three styles. -/ -- explicitly lambda expression def neg_bool : bool → bool := λ (b : bool), match b with | ff := tt | tt := ff end -- by cases; note absence of := after function type def neg_bool' : bool → bool | ff := tt | tt := ff -- C-style; note return type is now between : and := def neg_bool'' (b : bool) : bool := match b with | ff := tt | tt := ff end /- Second, here are three implementations of exactly the same binary function (Boolean "and"), in the same three styles. -/ -- Note commas in match expression and in each case def and_bool : bool → bool → bool := λ (b1 b2 : bool), --shorthand for two lambdas match b1, b2 with -- matching on two arguments | ff, ff := ff | ff, tt := ff | tt, ff := ff | tt, tt := tt end -- Note absence of := and of commas in each of the cases def and_bool' : bool → bool → bool | ff ff := ff | ff tt := ff | tt ff := ff | tt tt := tt -- should seem straightforward now def and_bool'' (b1 b2 : bool) : bool := match b1, b2 with | ff, ff := ff | ff, tt := ff | tt, ff := ff | tt, tt := tt end /- Your homework is to implement the remaining unary Boolean functions, and several key binary Boolean functions, each one in each of these styles: lambda, by-cases, and C-style. -/ /- 1. Implement the always false unary Boolean function in each of the three styles, lambda, by-cases, and C-style. Call the functions false_bool, false_bool', and false_bool'', in that order. -/ -- Here's the first one, just to get you going. def false_bool : bool → bool := λ (b : bool), ff -- Now false_bool' def false_bool' : bool → bool | ff := ff | tt := ff -- And now false_bool'' def false_bool''(b: bool) : bool := match b with | ff := ff | tt := ff end /- 2. Do the same for the always true unary Boolean function, using true_bool as the function name (with zero, one, and two ' marks to avoid name conflicts. You will use ' in this way for each of the remaining parts of this assignment). -/ def true_bool : bool → bool := λ (b : bool), tt def true_bool' : bool → bool | ff := tt | tt := tt def true_bool'' (b : bool) : bool := match b with | ff := tt | tt := tt end /- 3. Do the same for the unary Boolean identity function, using ident_bool (and ' variants) as the function name. -/ def id_bool : bool → bool := λ (b : bool), b def id_bool' : bool → bool | b := b def id_bool'' (b : bool) : bool := b /- Congrats, you now have a small library of all unary Boolean functions. Now turn to the binary functions. Each will take two Boolean arguments, we can call them b1 and b2, and will return a Boolean result. -/ /- 4. The Boolean "or" function is true if and only if at least one of b1 and b2 is true. Equivalently it is false if and only if both b1 and b2 are false. Implement this function in each of the three styles, using or_bool as the function name. You may use the example of "and_bool" above as a model. While you could just cut and paste, we strongly recommend that you type your answers in full. Learning new syntax is an exercise is "muscle memory", so don't take shortcuts here. Learn the syntax now and it will save you frustration later. -/ def or_bool : bool → bool → bool := λ (b1 b2 : bool), --shorthand for two lambdas match b1, b2 with -- matching on two arguments | ff, ff := ff | ff, tt := tt | tt, ff := tt | tt, tt := tt end def or_bool' : bool → bool → bool | ff ff := ff | ff tt := tt | tt ff := tt | tt tt := tt def or_bool'' (b1 b2 : bool) : bool := match b1, b2 with | ff, ff := ff | ff, tt := tt | tt, ff := tt | tt, tt := tt end /- 5. The Boolean "exclusive or" function is true if and only if exactly one of its arguments is true. Implement this function in each style using xor_bool as the function name. -/ def xor_bool : bool → bool → bool := λ (b1 b2 : bool), --shorthand for two lambdas match b1, b2 with -- matching on two arguments | ff, ff := ff | ff, tt := tt | tt, ff := tt | tt, tt := ff end def xor_bool' : bool → bool → bool | ff ff := ff | ff tt := tt | tt ff := tt | tt tt := ff def xor_bool'' (b1 b2 : bool) : bool := match b1, b2 with | ff, ff := ff | ff, tt := tt | tt, ff := tt | tt, tt := ff end /- 6. The Boolean "implies" function is true if and only if either its first argument is false, or its first argument is true and its second argument is also true. Equivalently it is false if and only if its first argument is true and its second is false. Implement it in each style, calling it implies_bool. -/ def implies_bool : bool → bool → bool := λ (b1 b2 : bool), --shorthand for two lambdas match b1, b2 with -- matching on two arguments | ff, ff := tt | ff, tt := tt | tt, ff := ff | tt, tt := tt end def implies_bool' : bool → bool → bool | ff ff := tt | ff tt := tt | tt ff := ff | tt tt := tt def implies_bool'' (b1 b2 : bool) : bool := match b1, b2 with | ff, ff := tt | ff, tt := tt | tt, ff := ff | tt, tt := tt end /- 7. The Boolean "equivalent-to" function is true if its two arguments are the same, either both true or both false; otherwise it is false. Implement it in the three styles, using equiv_bool as a function name. -/ def equiv_bool : bool → bool → bool := λ (b1 b2 : bool), --shorthand for two lambdas match b1, b2 with -- matching on two arguments | ff, ff := tt | ff, tt := ff | tt, ff := ff | tt, tt := tt end def equiv_bool' : bool → bool → bool | ff ff := tt | ff tt := ff | tt ff := ff | tt tt := tt def equiv_bool'' (b1 b2 : bool) : bool := match b1, b2 with | ff, ff := tt | ff, tt := ff | tt, ff := ff | tt, tt := tt end -- leave the following in place as the last line in this file end hw3
19d6c6b97b6a298adb0fa691090f8c25801871de
b7f22e51856f4989b970961f794f1c435f9b8f78
/library/data/list/set.lean
197c41d94aaecee0acfb83ab78393731bd866e34
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
37,214
lean
/- Copyright (c) 2015 Leonardo de Moura. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Set-like operations on lists -/ import data.list.basic data.list.comb open nat function decidable helper_tactics eq.ops namespace list section erase variable {A : Type} variable [H : decidable_eq A] include H definition erase (a : A) : list A → list A | [] := [] | (b::l) := match H a b with | inl e := l | inr n := b :: erase l end lemma erase_nil (a : A) : erase a [] = [] := rfl lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l := show match H a a with | inl e := l | inr n := a :: erase a l end = l, by rewrite (@decidable_eq_inl_refl A H) lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l := assume h : a ≠ b, show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l, by rewrite (decidable_eq_inr_neg h) lemma length_erase_of_mem {a : A} : ∀ {l}, a ∈ l → length (erase a l) = pred (length l) | [] h := rfl | [x] h := by rewrite [mem_singleton h, erase_cons_head] | (x::y::xs) h := by_cases (suppose a = x, by rewrite [this, erase_cons_head]) (suppose a ≠ x, have ainyxs : a ∈ y::xs, from or_resolve_right h this, by rewrite [erase_cons_tail _ this, *length_cons, length_erase_of_mem ainyxs]) lemma length_erase_of_not_mem {a : A} : ∀ {l}, a ∉ l → length (erase a l) = length l | [] h := rfl | (x::xs) h := have anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h, have aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h, by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem aninxs] lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂ | [] l₂ h := absurd h !not_mem_nil | (x::xs) l₂ h := by_cases (λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head]) (λ anex : a ≠ x, have ainxs : a ∈ xs, from mem_of_ne_of_mem anex h, by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs]) lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂ | [] l₂ h := rfl | (x::xs) l₂ h := by_cases (λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h)) (λ anex : a ≠ x, have nainxs : a ∉ xs, from not_mem_of_not_mem_cons h, by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs]) lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l | [] := λ x xine, xine | (x::xs) := λ y xine, by_cases (λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine)) (λ anex : a ≠ x, have yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine, have subxs : erase a xs ⊆ xs, from erase_sub xs, by_cases (λ yeqx : y = x, by rewrite yeqx; apply mem_cons) (λ ynex : y ≠ x, have yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe, have yinxs : y ∈ xs, from subxs yine, or.inr yinxs)) theorem mem_erase_of_ne_of_mem {a b : A} : ∀ {l : list A}, a ≠ b → a ∈ l → a ∈ erase b l | [] n i := absurd i !not_mem_nil | (c::l) n i := by_cases (λ beqc : b = c, have ainl : a ∈ l, from or.elim (eq_or_mem_of_mem_cons i) (λ aeqc : a = c, absurd aeqc (beqc ▸ n)) (λ ainl : a ∈ l, ainl), by rewrite [beqc, erase_cons_head]; exact ainl) (λ bnec : b ≠ c, by_cases (λ aeqc : a = c, have aux : a ∈ c :: erase b l, by rewrite [aeqc]; exact !mem_cons, by rewrite [erase_cons_tail _ bnec]; exact aux) (λ anec : a ≠ c, have ainl : a ∈ l, from mem_of_ne_of_mem anec i, have ainel : a ∈ erase b l, from mem_erase_of_ne_of_mem n ainl, have aux : a ∈ c :: erase b l, from mem_cons_of_mem _ ainel, by rewrite [erase_cons_tail _ bnec]; exact aux)) -- theorem mem_of_mem_erase {a b : A} : ∀ {l}, a ∈ erase b l → a ∈ l | [] i := absurd i !not_mem_nil | (c::l) i := by_cases (λ beqc : b = c, by rewrite [beqc at i, erase_cons_head at i]; exact (mem_cons_of_mem _ i)) (λ bnec : b ≠ c, have i₁ : a ∈ c :: erase b l, by rewrite [erase_cons_tail _ bnec at i]; exact i, or.elim (eq_or_mem_of_mem_cons i₁) (λ aeqc : a = c, by rewrite [aeqc]; exact !mem_cons) (λ ainel : a ∈ erase b l, have ainl : a ∈ l, from mem_of_mem_erase ainel, mem_cons_of_mem _ ainl)) theorem all_erase_of_all {p : A → Prop} (a : A) : ∀ {l}, all l p → all (erase a l) p | [] h := by rewrite [erase_nil]; exact h | (b::l) h := have h₁ : all l p, from all_of_all_cons h, have h₂ : all (erase a l) p, from all_erase_of_all h₁, have pb : p b, from of_all_cons h, have h₃ : all (b :: erase a l) p, from all_cons_of_all pb h₂, by_cases (λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact h₁) (λ aneb : a ≠ b, by rewrite [erase_cons_tail _ aneb]; exact h₃) end erase /- disjoint -/ section disjoint variable {A : Type} definition disjoint (l₁ l₂ : list A) : Prop := ∀ ⦃a⦄, (a ∈ l₁ → a ∈ l₂ → false) lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ := λ d a, d a lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ := λ d a i₂ i₁, d a i₁ i₂ lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ := λ d a i₂ i₁, d a i₁ i₂ lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ := λ d x xinl₁, disjoint_left d (or.inr xinl₁) lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ := λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d)) lemma disjoint_nil_left (l : list A) : disjoint [] l := λ a ab, absurd ab !not_mem_nil lemma disjoint_nil_right (l : list A) : disjoint l [] := disjoint.comm (disjoint_nil_left l) lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ := λ nainl₂ d x (xinal₁ : x ∈ a::l₁), or.elim (eq_or_mem_of_mem_cons xinal₁) (λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂) (λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁) lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l | [] l₂ l d := disjoint_nil_left l | (x::xs) l₂ l d := have nxinl : x ∉ l, from disjoint_left d !mem_cons, have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d, have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁, disjoint_cons_of_not_mem_of_disjoint nxinl d₂ lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l | [] l₂ l d := d | (x::xs) l₂ l d := have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d, disjoint_of_disjoint_append_left_right d₁ lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ := λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d)) lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ := λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d)) end disjoint /- no duplicates predicate -/ inductive nodup {A : Type} : list A → Prop := | ndnil : nodup [] | ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l) section nodup open nodup variables {A B : Type} theorem nodup_nil : @nodup A [] := ndnil theorem nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) := λ i n, ndcons i n theorem nodup_singleton (a : A) : nodup [a] := nodup_cons !not_mem_nil nodup_nil theorem nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l | a xs (ndcons i n) := n theorem not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l | a xs (ndcons i n) := i theorem not_nodup_cons_of_mem {a : A} {l : list A} : a ∈ l → ¬ nodup (a :: l) := λ ainl d, absurd ainl (not_mem_of_nodup_cons d) theorem not_nodup_cons_of_not_nodup {a : A} {l : list A} : ¬ nodup l → ¬ nodup (a :: l) := λ nd d, absurd (nodup_of_nodup_cons d) nd theorem nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁ | [] l₂ n := nodup_nil | (x::xs) l₂ n := have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n), have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n, have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂, nodup_cons nxinxs ndxs theorem nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂ | [] l₂ n := n | (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n) theorem disjoint_of_nodup_append : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → disjoint l₁ l₂ | [] l₂ d := disjoint_nil_left l₂ | (x::xs) l₂ d := have nodup (x::(xs++l₂)), from d, have x ∉ xs++l₂, from not_mem_of_nodup_cons this, have nxinl₂ : x ∉ l₂, from not_mem_of_not_mem_append_right this, take a, suppose a ∈ x::xs, or.elim (eq_or_mem_of_mem_cons this) (suppose a = x, this⁻¹ ▸ nxinl₂) (suppose ainxs : a ∈ xs, have nodup (x::(xs++l₂)), from d, have nodup (xs++l₂), from nodup_of_nodup_cons this, have disjoint xs l₂, from disjoint_of_nodup_append this, disjoint_left this ainxs) theorem nodup_append_of_nodup_of_nodup_of_disjoint : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → disjoint l₁ l₂ → nodup (l₁++l₂) | [] l₂ d₁ d₂ dsj := by rewrite [append_nil_left]; exact d₂ | (x::xs) l₂ d₁ d₂ dsj := have ndxs : nodup xs, from nodup_of_nodup_cons d₁, have disjoint xs l₂, from disjoint_of_disjoint_cons_left dsj, have ndxsl₂ : nodup (xs++l₂), from nodup_append_of_nodup_of_nodup_of_disjoint ndxs d₂ this, have nxinxs : x ∉ xs, from not_mem_of_nodup_cons d₁, have x ∉ l₂, from disjoint_left dsj !mem_cons, have x ∉ xs++l₂, from not_mem_append nxinxs this, nodup_cons this ndxsl₂ theorem nodup_app_comm {l₁ l₂ : list A} (d : nodup (l₁++l₂)) : nodup (l₂++l₁) := have d₁ : nodup l₁, from nodup_of_nodup_append_left d, have d₂ : nodup l₂, from nodup_of_nodup_append_right d, have dsj : disjoint l₁ l₂, from disjoint_of_nodup_append d, nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₁ (disjoint.comm dsj) theorem nodup_head {a : A} {l₁ l₂ : list A} (d : nodup (l₁++(a::l₂))) : nodup (a::(l₁++l₂)) := have d₁ : nodup (a::(l₂++l₁)), from nodup_app_comm d, have d₂ : nodup (l₂++l₁), from nodup_of_nodup_cons d₁, have d₃ : nodup (l₁++l₂), from nodup_app_comm d₂, have nain : a ∉ l₂++l₁, from not_mem_of_nodup_cons d₁, have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_left nain, have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_right nain, nodup_cons (not_mem_append nain₁ nain₂) d₃ theorem nodup_middle {a : A} {l₁ l₂ : list A} (d : nodup (a::(l₁++l₂))) : nodup (l₁++(a::l₂)) := have d₁ : nodup (l₁++l₂), from nodup_of_nodup_cons d, have nain : a ∉ l₁++l₂, from not_mem_of_nodup_cons d, have disj : disjoint l₁ l₂, from disjoint_of_nodup_append d₁, have d₂ : nodup l₁, from nodup_of_nodup_append_left d₁, have d₃ : nodup l₂, from nodup_of_nodup_append_right d₁, have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_right nain, have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_left nain, have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃, have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)), nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂ theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l) | [] n := begin rewrite [map_nil], apply nodup_nil end | (x::xs) n := have nxinxs : x ∉ xs, from not_mem_of_nodup_cons n, have ndxs : nodup xs, from nodup_of_nodup_cons n, have ndmfxs : nodup (map f xs), from nodup_map ndxs, have nfxinm : f x ∉ map f xs, from λ ab : f x ∈ map f xs, obtain (y : A) (yinxs : y ∈ xs) (fyfx : f y = f x), from exists_of_mem_map ab, have yeqx : y = x, from inj fyfx, by subst y; contradiction, nodup_cons nfxinm ndmfxs theorem nodup_erase_of_nodup [decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l) | [] n := nodup_nil | (b::l) n := by_cases (λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact (nodup_of_nodup_cons n)) (λ aneb : a ≠ b, have nbinl : b ∉ l, from not_mem_of_nodup_cons n, have ndl : nodup l, from nodup_of_nodup_cons n, have ndeal : nodup (erase a l), from nodup_erase_of_nodup ndl, have nbineal : b ∉ erase a l, from λ i, absurd (erase_sub _ _ i) nbinl, have aux : nodup (b :: erase a l), from nodup_cons nbineal ndeal, by rewrite [erase_cons_tail _ aneb]; exact aux) theorem mem_erase_of_nodup [decidable_eq A] (a : A) : ∀ {l}, nodup l → a ∉ erase a l | [] n := !not_mem_nil | (b::l) n := have ndl : nodup l, from nodup_of_nodup_cons n, have naineal : a ∉ erase a l, from mem_erase_of_nodup ndl, have nbinl : b ∉ l, from not_mem_of_nodup_cons n, by_cases (λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact nbinl) (λ aneb : a ≠ b, have aux : a ∉ b :: erase a l, from assume ainbeal : a ∈ b :: erase a l, or.elim (eq_or_mem_of_mem_cons ainbeal) (λ aeqb : a = b, absurd aeqb aneb) (λ aineal : a ∈ erase a l, absurd aineal naineal), by rewrite [erase_cons_tail _ aneb]; exact aux) definition erase_dup [decidable_eq A] : list A → list A | [] := [] | (x :: xs) := if x ∈ xs then erase_dup xs else x :: erase_dup xs theorem erase_dup_nil [decidable_eq A] : erase_dup [] = ([] : list A) theorem erase_dup_cons_of_mem [decidable_eq A] {a : A} {l : list A} : a ∈ l → erase_dup (a::l) = erase_dup l := assume ainl, calc erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl ... = erase_dup l : if_pos ainl theorem erase_dup_cons_of_not_mem [decidable_eq A] {a : A} {l : list A} : a ∉ l → erase_dup (a::l) = a :: erase_dup l := assume nainl, calc erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl ... = a :: erase_dup l : if_neg nainl theorem mem_erase_dup [decidable_eq A] {a : A} : ∀ {l}, a ∈ l → a ∈ erase_dup l | [] h := absurd h !not_mem_nil | (b::l) h := by_cases (λ binl : b ∈ l, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [erase_dup_cons_of_mem binl, -aeqb at binl]; exact (mem_erase_dup binl)) (λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem binl]; exact (mem_erase_dup ainl))) (λ nbinl : b ∉ l, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [erase_dup_cons_of_not_mem nbinl, aeqb]; exact !mem_cons) (λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_not_mem nbinl]; exact (or.inr (mem_erase_dup ainl)))) theorem mem_of_mem_erase_dup [decidable_eq A] {a : A} : ∀ {l}, a ∈ erase_dup l → a ∈ l | [] h := by rewrite [erase_dup_nil at h]; exact h | (b::l) h := by_cases (λ binl : b ∈ l, have h₁ : a ∈ erase_dup l, by rewrite [erase_dup_cons_of_mem binl at h]; exact h, or.inr (mem_of_mem_erase_dup h₁)) (λ nbinl : b ∉ l, have h₁ : a ∈ b :: erase_dup l, by rewrite [erase_dup_cons_of_not_mem nbinl at h]; exact h, or.elim (eq_or_mem_of_mem_cons h₁) (λ aeqb : a = b, by rewrite aeqb; exact !mem_cons) (λ ainel : a ∈ erase_dup l, or.inr (mem_of_mem_erase_dup ainel))) theorem erase_dup_sub [decidable_eq A] (l : list A) : erase_dup l ⊆ l := λ a i, mem_of_mem_erase_dup i theorem sub_erase_dup [decidable_eq A] (l : list A) : l ⊆ erase_dup l := λ a i, mem_erase_dup i theorem nodup_erase_dup [decidable_eq A] : ∀ l : list A, nodup (erase_dup l) | [] := by rewrite erase_dup_nil; exact nodup_nil | (a::l) := by_cases (λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem ainl]; exact (nodup_erase_dup l)) (λ nainl : a ∉ l, have r : nodup (erase_dup l), from nodup_erase_dup l, have nin : a ∉ erase_dup l, from assume ab : a ∈ erase_dup l, absurd (mem_of_mem_erase_dup ab) nainl, by rewrite [erase_dup_cons_of_not_mem nainl]; exact (nodup_cons nin r)) theorem erase_dup_eq_of_nodup [decidable_eq A] : ∀ {l : list A}, nodup l → erase_dup l = l | [] d := rfl | (a::l) d := have nainl : a ∉ l, from not_mem_of_nodup_cons d, have dl : nodup l, from nodup_of_nodup_cons d, by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl] definition decidable_nodup [instance] [decidable_eq A] : ∀ (l : list A), decidable (nodup l) | [] := inl nodup_nil | (a::l) := match decidable_mem a l with | inl p := inr (not_nodup_cons_of_mem p) | inr n := match decidable_nodup l with | inl nd := inl (nodup_cons n nd) | inr d := inr (not_nodup_cons_of_not_nodup d) end end theorem nodup_product : ∀ {l₁ : list A} {l₂ : list B}, nodup l₁ → nodup l₂ → nodup (product l₁ l₂) | [] l₂ n₁ n₂ := nodup_nil | (a::l₁) l₂ n₁ n₂ := have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons n₁, have n₃ : nodup l₁, from nodup_of_nodup_cons n₁, have n₄ : nodup (product l₁ l₂), from nodup_product n₃ n₂, have dgen : ∀ l, nodup l → nodup (map (λ b, (a, b)) l) | [] h := nodup_nil | (x::l) h := have dl : nodup l, from nodup_of_nodup_cons h, have dm : nodup (map (λ b, (a, b)) l), from dgen l dl, have nxin : x ∉ l, from not_mem_of_nodup_cons h, have npin : (a, x) ∉ map (λ b, (a, b)) l, from assume pin, absurd (mem_of_mem_map_pair₁ pin) nxin, nodup_cons npin dm, have dm : nodup (map (λ b, (a, b)) l₂), from dgen l₂ n₂, have dsj : disjoint (map (λ b, (a, b)) l₂) (product l₁ l₂), from λ p, match p with | (a₁, b₁) := λ (i₁ : (a₁, b₁) ∈ map (λ b, (a, b)) l₂) (i₂ : (a₁, b₁) ∈ product l₁ l₂), have a₁inl₁ : a₁ ∈ l₁, from mem_of_mem_product_left i₂, have a₁eqa : a₁ = a, from eq_of_mem_map_pair₁ i₁, absurd (a₁eqa ▸ a₁inl₁) nainl₁ end, nodup_append_of_nodup_of_nodup_of_disjoint dm n₄ dsj theorem nodup_filter (p : A → Prop) [decidable_pred p] : ∀ {l : list A}, nodup l → nodup (filter p l) | [] nd := nodup_nil | (a::l) nd := have nainl : a ∉ l, from not_mem_of_nodup_cons nd, have ndl : nodup l, from nodup_of_nodup_cons nd, have ndf : nodup (filter p l), from nodup_filter ndl, have nainf : a ∉ filter p l, from assume ainf, absurd (mem_of_mem_filter ainf) nainl, by_cases (λ pa : p a, by rewrite [filter_cons_of_pos _ pa]; exact (nodup_cons nainf ndf)) (λ npa : ¬ p a, by rewrite [filter_cons_of_neg _ npa]; exact ndf) lemma dmap_nodup_of_dinj {p : A → Prop} [h : decidable_pred p] {f : Π a, p a → B} (Pdi : dinj p f): ∀ {l : list A}, nodup l → nodup (dmap p f l) | [] := take P, nodup.ndnil | (a::l) := take Pnodup, decidable.rec_on (h a) (λ Pa, begin rewrite [dmap_cons_of_pos Pa], apply nodup_cons, apply (not_mem_dmap_of_dinj_of_not_mem Pdi Pa), exact not_mem_of_nodup_cons Pnodup, exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup) end) (λ nPa, begin rewrite [dmap_cons_of_neg nPa], exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup) end) end nodup /- upto -/ definition upto : nat → list nat | 0 := [] | (n+1) := n :: upto n theorem upto_nil : upto 0 = nil theorem upto_succ (n : nat) : upto (succ n) = n :: upto n theorem length_upto : ∀ n, length (upto n) = n | 0 := rfl | (succ n) := by rewrite [upto_succ, length_cons, length_upto] theorem upto_ne_nil_of_ne_zero {n : ℕ} (H : n ≠ 0) : upto n ≠ nil := suppose upto n = nil, have upto n = upto 0, from upto_nil ▸ this, have n = 0, from calc n = length (upto n) : length_upto ... = length (upto 0) : this ... = 0 : length_upto, H this theorem upto_less : ∀ n, all (upto n) (λ i, i < n) | 0 := trivial | (succ n) := have alln : all (upto n) (λ i, i < n), from upto_less n, all_cons_of_all (lt.base n) (all_implies alln (λ x h, lt.step h)) theorem nodup_upto : ∀ n, nodup (upto n) | 0 := nodup_nil | (n+1) := have d : nodup (upto n), from nodup_upto n, have n : n ∉ upto n, from assume i : n ∈ upto n, absurd (of_mem_of_all i (upto_less n)) (nat.lt_irrefl n), nodup_cons n d theorem lt_of_mem_upto {n i : nat} : i ∈ upto n → i < n := assume i, of_mem_of_all i (upto_less n) theorem mem_upto_succ_of_mem_upto {n i : nat} : i ∈ upto n → i ∈ upto (succ n) := assume i, mem_cons_of_mem _ i theorem mem_upto_of_lt : ∀ {n i : nat}, i < n → i ∈ upto n | 0 i h := absurd h !not_lt_zero | (succ n) i h := begin cases h with m h', { rewrite upto_succ, apply mem_cons}, { exact mem_upto_succ_of_mem_upto (mem_upto_of_lt h')} end lemma upto_step : ∀ {n : nat}, upto (succ n) = (map succ (upto n))++[0] | 0 := rfl | (succ n) := begin rewrite [upto_succ n, map_cons, append_cons, -upto_step] end /- union -/ section union variable {A : Type} variable [H : decidable_eq A] include H definition union : list A → list A → list A | [] l₂ := l₂ | (a::l₁) l₂ := if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ theorem nil_union (l : list A) : union [] l = l theorem union_cons_of_mem {a : A} {l₂} : ∀ (l₁), a ∈ l₂ → union (a::l₁) l₂ = union l₁ l₂ := take l₁, assume ainl₂, calc union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl ... = union l₁ l₂ : if_pos ainl₂ theorem union_cons_of_not_mem {a : A} {l₂} : ∀ (l₁), a ∉ l₂ → union (a::l₁) l₂ = a :: union l₁ l₂ := take l₁, assume nainl₂, calc union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl ... = a :: union l₁ l₂ : if_neg nainl₂ theorem union_nil : ∀ (l : list A), union l [] = l | [] := !nil_union | (a::l) := by rewrite [union_cons_of_not_mem _ !not_mem_nil, union_nil] theorem mem_or_mem_of_mem_union : ∀ {l₁ l₂} {a : A}, a ∈ union l₁ l₂ → a ∈ l₁ ∨ a ∈ l₂ | [] l₂ a ainl₂ := by rewrite nil_union at ainl₂; exact (or.inr (ainl₂)) | (b::l₁) l₂ a ainbl₁l₂ := by_cases (λ binl₂ : b ∈ l₂, have ainl₁l₂ : a ∈ union l₁ l₂, by rewrite [union_cons_of_mem l₁ binl₂ at ainbl₁l₂]; exact ainbl₁l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂) (λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁)) (λ ainl₂, or.inr ainl₂)) (λ nbinl₂ : b ∉ l₂, have ainb_l₁l₂ : a ∈ b :: union l₁ l₂, by rewrite [union_cons_of_not_mem l₁ nbinl₂ at ainbl₁l₂]; exact ainbl₁l₂, or.elim (eq_or_mem_of_mem_cons ainb_l₁l₂) (λ aeqb, by rewrite aeqb; exact (or.inl !mem_cons)) (λ ainl₁l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂) (λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁)) (λ ainl₂, or.inr ainl₂))) theorem mem_union_right {a : A} : ∀ (l₁) {l₂}, a ∈ l₂ → a ∈ union l₁ l₂ | [] l₂ h := by rewrite nil_union; exact h | (b::l₁) l₂ h := by_cases (λ binl₂ : b ∈ l₂, by rewrite [union_cons_of_mem _ binl₂]; exact (mem_union_right _ h)) (λ nbinl₂ : b ∉ l₂, by rewrite [union_cons_of_not_mem _ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_right _ h))) theorem mem_union_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → a ∈ union l₁ l₂ | [] l₂ h := absurd h !not_mem_nil | (b::l₁) l₂ h := by_cases (λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [union_cons_of_mem l₁ binl₂, -aeqb at binl₂]; exact (mem_union_right _ binl₂)) (λ ainl₁ : a ∈ l₁, by rewrite [union_cons_of_mem l₁ binl₂]; exact (mem_union_left _ ainl₁))) (λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [union_cons_of_not_mem l₁ nbinl₂, aeqb]; exact !mem_cons) (λ ainl₁ : a ∈ l₁, by rewrite [union_cons_of_not_mem l₁ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_left _ ainl₁)))) theorem mem_union_cons (a : A) (l₁ : list A) (l₂ : list A) : a ∈ union (a::l₁) l₂ := by_cases (λ ainl₂ : a ∈ l₂, mem_union_right _ ainl₂) (λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact !mem_cons) theorem nodup_union_of_nodup_of_nodup : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → nodup (union l₁ l₂) | [] l₂ n₁ nl₂ := by rewrite nil_union; exact nl₂ | (a::l₁) l₂ nal₁ nl₂ := have nl₁ : nodup l₁, from nodup_of_nodup_cons nal₁, have nl₁l₂ : nodup (union l₁ l₂), from nodup_union_of_nodup_of_nodup nl₁ nl₂, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem l₁ ainl₂]; exact nl₁l₂) (λ nainl₂ : a ∉ l₂, have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons nal₁, have nainl₁l₂ : a ∉ union l₁ l₂, from assume ainl₁l₂ : a ∈ union l₁ l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂) (λ ainl₁, absurd ainl₁ nainl₁) (λ ainl₂, absurd ainl₂ nainl₂), by rewrite [union_cons_of_not_mem l₁ nainl₂]; exact (nodup_cons nainl₁l₂ nl₁l₂)) theorem union_eq_append : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → union l₁ l₂ = append l₁ l₂ | [] l₂ d := rfl | (a::l₁) l₂ d := have nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons, have d₁ : disjoint l₁ l₂, from disjoint_of_disjoint_cons_left d, by rewrite [union_cons_of_not_mem _ nainl₂, append_cons, union_eq_append d₁] theorem all_union {p : A → Prop} : ∀ {l₁ l₂ : list A}, all l₁ p → all l₂ p → all (union l₁ l₂) p | [] l₂ h₁ h₂ := h₂ | (a::l₁) l₂ h₁ h₂ := have h₁' : all l₁ p, from all_of_all_cons h₁, have pa : p a, from of_all_cons h₁, have au : all (union l₁ l₂) p, from all_union h₁' h₂, have au' : all (a :: union l₁ l₂) p, from all_cons_of_all pa au, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂]; exact au) (λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact au') theorem all_of_all_union_left {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₁ p | [] l₂ h := trivial | (a::l₁) l₂ h := have ain : a ∈ union (a::l₁) l₂, from !mem_union_cons, have pa : p a, from of_mem_of_all ain h, by_cases (λ ainl₂ : a ∈ l₂, have al₁l₂ : all (union l₁ l₂) p, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact h, have al₁ : all l₁ p, from all_of_all_union_left al₁l₂, all_cons_of_all pa al₁) (λ nainl₂ : a ∉ l₂, have aal₁l₂ : all (a::union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h, have al₁l₂ : all (union l₁ l₂) p, from all_of_all_cons aal₁l₂, have al₁ : all l₁ p, from all_of_all_union_left al₁l₂, all_cons_of_all pa al₁) theorem all_of_all_union_right {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₂ p | [] l₂ h := by rewrite [nil_union at h]; exact h | (a::l₁) l₂ h := by_cases (λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact (all_of_all_union_right h)) (λ nainl₂ : a ∉ l₂, have h₁ : all (a :: union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h, all_of_all_union_right (all_of_all_cons h₁)) variable {B : Type} theorem foldl_union_of_disjoint (f : B → A → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂) : foldl f b (union l₁ l₂) = foldl f (foldl f b l₁) l₂ := by rewrite [union_eq_append d, foldl_append] theorem foldr_union_of_dijoint (f : A → B → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂) : foldr f b (union l₁ l₂) = foldr f (foldr f b l₂) l₁ := by rewrite [union_eq_append d, foldr_append] end union /- insert -/ section insert variable {A : Type} variable [H : decidable_eq A] include H definition insert (a : A) (l : list A) : list A := if a ∈ l then l else a::l theorem insert_eq_of_mem {a : A} {l : list A} : a ∈ l → insert a l = l := assume ainl, if_pos ainl theorem insert_eq_of_not_mem {a : A} {l : list A} : a ∉ l → insert a l = a::l := assume nainl, if_neg nainl theorem mem_insert (a : A) (l : list A) : a ∈ insert a l := by_cases (λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact ainl) (λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact !mem_cons) theorem mem_insert_of_mem {a : A} (b : A) {l : list A} : a ∈ l → a ∈ insert b l := assume ainl, by_cases (λ binl : b ∈ l, by rewrite [insert_eq_of_mem binl]; exact ainl) (λ nbinl : b ∉ l, by rewrite [insert_eq_of_not_mem nbinl]; exact (mem_cons_of_mem _ ainl)) theorem eq_or_mem_of_mem_insert {x a : A} {l : list A} (H : x ∈ insert a l) : x = a ∨ x ∈ l := decidable.by_cases (assume H3: a ∈ l, or.inr (insert_eq_of_mem H3 ▸ H)) (assume H3: a ∉ l, have H4: x ∈ a :: l, from insert_eq_of_not_mem H3 ▸ H, iff.mp !mem_cons_iff H4) theorem mem_insert_iff (x a : A) (l : list A) : x ∈ insert a l ↔ x = a ∨ x ∈ l := iff.intro (!eq_or_mem_of_mem_insert) (assume H, or.elim H (assume H' : x = a, H'⁻¹ ▸ !mem_insert) (assume H' : x ∈ l, !mem_insert_of_mem H')) theorem nodup_insert (a : A) {l : list A} : nodup l → nodup (insert a l) := assume n, by_cases (λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact n) (λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (nodup_cons nainl n)) theorem length_insert_of_mem {a : A} {l : list A} : a ∈ l → length (insert a l) = length l := assume ainl, by rewrite [insert_eq_of_mem ainl] theorem length_insert_of_not_mem {a : A} {l : list A} : a ∉ l → length (insert a l) = length l + 1 := assume nainl, by rewrite [insert_eq_of_not_mem nainl] theorem all_insert_of_all {p : A → Prop} {a : A} {l} : p a → all l p → all (insert a l) p := assume h₁ h₂, by_cases (λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact h₂) (λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (all_cons_of_all h₁ h₂)) end insert /- inter -/ section inter variable {A : Type} variable [H : decidable_eq A] include H definition inter : list A → list A → list A | [] l₂ := [] | (a::l₁) l₂ := if a ∈ l₂ then a :: inter l₁ l₂ else inter l₁ l₂ theorem inter_nil (l : list A) : inter [] l = [] theorem inter_cons_of_mem {a : A} (l₁ : list A) {l₂} : a ∈ l₂ → inter (a::l₁) l₂ = a :: inter l₁ l₂ := assume i, if_pos i theorem inter_cons_of_not_mem {a : A} (l₁ : list A) {l₂} : a ∉ l₂ → inter (a::l₁) l₂ = inter l₁ l₂ := assume i, if_neg i theorem mem_of_mem_inter_left : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₁ | [] l₂ a i := absurd i !not_mem_nil | (b::l₁) l₂ a i := by_cases (λ binl₂ : b ∈ l₂, have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i, or.elim (eq_or_mem_of_mem_cons aux) (λ aeqb : a = b, by rewrite [aeqb]; exact !mem_cons) (λ aini, mem_cons_of_mem _ (mem_of_mem_inter_left aini))) (λ nbinl₂ : b ∉ l₂, have ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_left i), mem_cons_of_mem _ ainl₁) theorem mem_of_mem_inter_right : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₂ | [] l₂ a i := absurd i !not_mem_nil | (b::l₁) l₂ a i := by_cases (λ binl₂ : b ∈ l₂, have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i, or.elim (eq_or_mem_of_mem_cons aux) (λ aeqb : a = b, by rewrite [aeqb]; exact binl₂) (λ aini : a ∈ inter l₁ l₂, mem_of_mem_inter_right aini)) (λ nbinl₂ : b ∉ l₂, by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_right i)) theorem mem_inter_of_mem_of_mem : ∀ {l₁ l₂} {a : A}, a ∈ l₁ → a ∈ l₂ → a ∈ inter l₁ l₂ | [] l₂ a i₁ i₂ := absurd i₁ !not_mem_nil | (b::l₁) l₂ a i₁ i₂ := by_cases (λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons i₁) (λ aeqb : a = b, by rewrite [inter_cons_of_mem _ binl₂, aeqb]; exact !mem_cons) (λ ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_mem _ binl₂]; apply mem_cons_of_mem; exact (mem_inter_of_mem_of_mem ainl₁ i₂))) (λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons i₁) (λ aeqb : a = b, absurd (aeqb ▸ i₂) nbinl₂) (λ ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_not_mem _ nbinl₂]; exact (mem_inter_of_mem_of_mem ainl₁ i₂))) theorem nodup_inter_of_nodup : ∀ {l₁ : list A} (l₂), nodup l₁ → nodup (inter l₁ l₂) | [] l₂ d := nodup_nil | (a::l₁) l₂ d := have d₁ : nodup l₁, from nodup_of_nodup_cons d, have d₂ : nodup (inter l₁ l₂), from nodup_inter_of_nodup _ d₁, have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons d, have naini : a ∉ inter l₁ l₂, from λ i, absurd (mem_of_mem_inter_left i) nainl₁, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact (nodup_cons naini d₂)) (λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact d₂) theorem inter_eq_nil_of_disjoint : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → inter l₁ l₂ = [] | [] l₂ d := rfl | (a::l₁) l₂ d := have aux_eq : inter l₁ l₂ = [], from inter_eq_nil_of_disjoint (disjoint_of_disjoint_cons_left d), have nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons, by rewrite [inter_cons_of_not_mem _ nainl₂, aux_eq] theorem all_inter_of_all_left {p : A → Prop} : ∀ {l₁} (l₂), all l₁ p → all (inter l₁ l₂) p | [] l₂ h := trivial | (a::l₁) l₂ h := have h₁ : all l₁ p, from all_of_all_cons h, have h₂ : all (inter l₁ l₂) p, from all_inter_of_all_left _ h₁, have pa : p a, from of_all_cons h, have h₃ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₂, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact h₃) (λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₂) theorem all_inter_of_all_right {p : A → Prop} : ∀ (l₁) {l₂}, all l₂ p → all (inter l₁ l₂) p | [] l₂ h := trivial | (a::l₁) l₂ h := have h₁ : all (inter l₁ l₂) p, from all_inter_of_all_right _ h, by_cases (λ ainl₂ : a ∈ l₂, have pa : p a, from of_mem_of_all ainl₂ h, have h₂ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₁, by rewrite [inter_cons_of_mem _ ainl₂]; exact h₂) (λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₁) end inter end list
987de05056cdc88d13f456f625d927b4aa65c1e5
e9ac8fc7b80f2e90e26764c906f915cc016c920f
/colimit/seq_colim.hlean
ed7b510761cbdaafbb31b47ab28ede7109ceba1a
[ "Apache-2.0" ]
permissive
sinhp/Spectral
bb7e02dbfd7213e05e1d5c5e2f156254bbaab8ef
234d9a703c0854b6f8ec1f564e8e6311eea25121
refs/heads/master
1,643,018,677,958
1,562,821,654,000
1,562,821,654,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
37,544
hlean
import hit.colimit .sequence cubical.squareover types.arrow types.equiv cubical.pathover2 open eq nat sigma sigma.ops quotient equiv pi is_trunc is_equiv fiber function trunc namespace seq_colim -- note: this clashes with the abbreviation defined in namespace "colimit" abbreviation ι [constructor] := @inclusion abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n universe variable v variables {A A' A'' : ℕ → Type} (f : seq_diagram A) (f' : seq_diagram A') (f'' : seq_diagram A'') (τ τ₂ : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), τ (f a) = f' (τ a)) (p₂ : Π⦃n⦄ (a : A n), τ₂ (f a) = f' (τ₂ a)) (τ' : Π⦃n⦄, A' n → A'' n) (p' : Π⦃n⦄ (a' : A' n), τ' (f' a') = f'' (τ' a')) {P : Π⦃n⦄, A n → Type.{v}} (g : seq_diagram_over f P) {n : ℕ} {a : A n} definition lrep_glue {n m : ℕ} (H : n ≤ m) (a : A n) : ι f (lrep f H a) = ι f a := begin induction H with m H p, { reflexivity }, { exact glue f (lrep f H a) ⬝ p } end definition colim_back [unfold 4] [H : is_equiseq f] : seq_colim f → A 0 := begin intro x, induction x with k a k a, { exact lrep_back f (zero_le k) a}, rexact ap (lrep_back f (zero_le k)) (left_inv (@f k) a), end section variable {f} local attribute is_equiv_lrep [instance] --[priority 500] definition is_equiv_inclusion0 (H : is_equiseq f) : is_equiv (ι' f 0) := begin fapply adjointify, { exact colim_back f}, { intro x, induction x with k a k a, { refine (lrep_glue f (zero_le k) (lrep_back f (zero_le k) a))⁻¹ ⬝ _, exact ap (ι f) (right_inv (lrep f (zero_le k)) a)}, apply eq_pathover_id_right, refine (ap_compose (ι f) (colim_back f) _) ⬝ph _, refine ap02 _ _ ⬝ph _, rotate 1, { rexact elim_glue f _ _ a }, refine _ ⬝pv ((natural_square (lrep_glue f (zero_le k)) (ap (lrep_back f (zero_le k)) (left_inv (@f k) a)))⁻¹ʰ ⬝h _), { exact (glue f _)⁻¹ ⬝ ap (ι f) (right_inv (lrep f (zero_le (succ k))) (f a)) }, { rewrite [-con.assoc, -con_inv] }, refine !ap_compose⁻¹ ⬝ ap_compose (ι f) _ _ ⬝ph _, refine dconcat (aps (ι' f k) (natural_square (right_inv (lrep f (zero_le k))) (left_inv (@f _) a))) _, apply move_top_of_left, apply move_left_of_bot, refine ap02 _ (whisker_left _ (adj (@f _) a)) ⬝pv _, rewrite [-+ap_con, ap_compose', ap_id], apply natural_square_tr }, { intro a, reflexivity } end definition equiv_of_is_equiseq [constructor] (H : is_equiseq f) : seq_colim f ≃ A 0 := (equiv.mk _ (is_equiv_inclusion0 H))⁻¹ᵉ variable (f) end section definition rep_glue (k : ℕ) (a : A n) : ι f (rep f k a) = ι f a := begin induction k with k IH, { reflexivity}, { exact glue f (rep f k a) ⬝ IH} end /- functorial action and equivalences -/ section functor variables {f f' f''} include p definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' := begin intro x, induction x with n a n a, { exact ι f' (τ a)}, { exact ap (ι f') (p a) ⬝ glue f' (τ a)} end omit p theorem seq_colim_functor_glue {n : ℕ} (a : A n) : ap (seq_colim_functor τ p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (τ a) := !elim_glue definition seq_colim_functor_compose [constructor] (x : seq_colim f) : seq_colim_functor (λn x, τ' (τ x)) (λn, hvconcat (@p n) (@p' n)) x = seq_colim_functor τ' p' (seq_colim_functor τ p x) := begin induction x, reflexivity, apply eq_pathover, apply hdeg_square, refine !seq_colim_functor_glue ⬝ _ ⬝ (ap_compose (seq_colim_functor _ _) _ _)⁻¹, refine _ ⬝ (ap02 _ proof !seq_colim_functor_glue qed ⬝ !ap_con)⁻¹, refine _ ⬝ (proof !ap_compose' ⬝ ap_compose (ι f'') _ _ qed ◾ proof !seq_colim_functor_glue qed)⁻¹, exact whisker_right _ !ap_con ⬝ !con.assoc end variable (f) definition seq_colim_functor_id [constructor] (x : seq_colim f) : seq_colim_functor (λn, id) (λn, homotopy.rfl) x = x := begin induction x, reflexivity, apply eq_pathover, apply hdeg_square, exact !seq_colim_functor_glue ⬝ !idp_con ⬝ !ap_id⁻¹, end variables {f τ τ₂ p p₂} definition seq_colim_functor_homotopy [constructor] (q : τ ~2 τ₂) (r : Π⦃n⦄ (a : A n), square (q (n+1) (f a)) (ap (@f' n) (q n a)) (p a) (p₂ a)) (x : seq_colim f) : seq_colim_functor τ p x = seq_colim_functor τ₂ p₂ x := begin induction x, exact ap (ι f') (q n a), apply eq_pathover, refine !seq_colim_functor_glue ⬝ph _ ⬝hp !seq_colim_functor_glue⁻¹, refine aps (ι f') (r a) ⬝v !ap_compose⁻¹ ⬝pv natural_square_tr (glue f') (q n a), end variables (τ τ₂ p p₂) definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@τ n)] : is_equiv (seq_colim_functor @τ p) := adjointify _ (seq_colim_functor (λn, (@τ _)⁻¹) (λn a, inv_commute' τ f f' p a)) abstract begin intro x, refine !seq_colim_functor_compose⁻¹ ⬝ seq_colim_functor_homotopy _ _ x ⬝ !seq_colim_functor_id, { intro n a, exact right_inv (@τ n) a }, { intro n a, refine whisker_right _ !ap_inv_commute' ⬝ !inv_con_cancel_right ⬝ whisker_left _ !ap_inv ⬝ph _, apply whisker_bl, apply whisker_tl, exact ids } end end abstract begin intro x, refine !seq_colim_functor_compose⁻¹ ⬝ seq_colim_functor_homotopy _ _ x ⬝ !seq_colim_functor_id, { intro n a, exact left_inv (@τ n) a }, { intro n a, esimp [hvconcat], refine whisker_left _ (!inv_commute'_fn ⬝ !con.assoc) ⬝ !con_inv_cancel_left ⬝ph _, apply whisker_bl, apply whisker_tl, exact ids } end end definition seq_colim_equiv [constructor] (τ : Π{n}, A n ≃ A' n) (p : Π⦃n⦄ (a : A n), τ (f a) = f' (τ a)) : seq_colim f ≃ seq_colim f' := equiv.mk _ (is_equiv_seq_colim_functor @τ p) definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type} (v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) : Π(x : seq_colim f), P x := by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue definition is_equiv_seq_colim_rec (P : seq_colim f → Type) : is_equiv (seq_colim_rec_unc : (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) → (Π (aa : seq_colim f), P aa)) := begin fapply adjointify, { intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩}, { intro s, apply eq_of_homotopy, intro x, induction x, { reflexivity}, { apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}}, { intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _), apply eq_of_homotopy2, intros n a, apply rec_glue}, end /- universal property -/ definition equiv_seq_colim_rec (P : seq_colim f → Type) : (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) := equiv.mk _ !is_equiv_seq_colim_rec end functor definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) := begin induction x, { exact ι' (shift_diag f) n (f a)}, { exact glue (shift_diag f) (f a)} end definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f := begin induction x, { exact ι' f (n+1) a}, { exact glue f a} end end definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) := equiv.MK (shift_up f) (shift_down f) abstract begin intro x, induction x, { exact glue _ a }, { apply eq_pathover, rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down, elim_glue], apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹ } end end abstract begin intro x, induction x, { exact glue _ a }, { apply eq_pathover, rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up, elim_glue], apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹ } end end /- todo: define functions back and forth explicitly -/ definition kshift'_equiv (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag' f k) := begin induction k with k IH, { reflexivity }, { exact IH ⬝e shift_equiv (kshift_diag' f k) ⬝e seq_colim_equiv (λn, equiv_ap A (succ_add n k)) (λn a, proof !tr_inv_tr ⬝ !transport_lemma⁻¹ qed) } end definition kshift_equiv_inv (k : ℕ) : seq_colim (kshift_diag f k) ≃ seq_colim f := begin induction k with k IH, { exact seq_colim_equiv (λn, equiv_ap A (nat.zero_add n)) (λn a, !transport_lemma2) }, { exact seq_colim_equiv (λn, equiv_ap A (succ_add k n)) (λn a, transport_lemma2 (succ_add k n) f a) ⬝e (shift_equiv (kshift_diag f k))⁻¹ᵉ ⬝e IH } end definition kshift_equiv [constructor] (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag f k) := (kshift_equiv_inv f k)⁻¹ᵉ -- definition kshift_equiv2 [constructor] (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag f k) := -- begin -- refine equiv_change_fun (kshift_equiv f k) _, -- end variable {f} definition seq_colim_constant_seq [constructor] (X : Type) : seq_colim (constant_seq X) ≃ X := equiv_of_is_equiseq (λn, !is_equiv_id) variable (f) definition is_contr_seq_colim {A : ℕ → Type} (f : seq_diagram A) [Πk, is_contr (A k)] : is_contr (seq_colim f) := begin refine is_contr_is_equiv_closed (ι' f 0) _ _, apply is_equiv_inclusion0, intro n, exact is_equiv_of_is_contr _ _ _ end definition seq_colim_equiv_of_is_equiv [constructor] {n : ℕ} (H : Πk, k ≥ n → is_equiv (@f k)) : seq_colim f ≃ A n := kshift_equiv f n ⬝e equiv_of_is_equiseq (λk, H (n+k) !le_add_right) /- colimits of dependent sequences, sigma's commute with colimits -/ section over variable {f} definition rep_f_equiv_natural {k : ℕ} (p : P (rep f k (f a))) : transporto P (rep_f f (succ k) a) (g p) = g (transporto P (rep_f f k a) p) := (fn_tro_eq_tro_fn2 (rep_f f k a) g p)⁻¹ variable (a) definition over_f_equiv [constructor] : seq_colim (seq_diagram_of_over g (f a)) ≃ seq_colim (shift_diag (seq_diagram_of_over g a)) := seq_colim_equiv (rep_f_equiv f P a) (λk p, rep_f_equiv_natural g p) definition seq_colim_over_equiv : seq_colim (seq_diagram_of_over g (f a)) ≃ seq_colim (seq_diagram_of_over g a) := over_f_equiv g a ⬝e (shift_equiv (seq_diagram_of_over g a))⁻¹ᵉ definition seq_colim_over_equiv_glue {k : ℕ} (x : P (rep f k (f a))) : ap (seq_colim_over_equiv g a) (glue (seq_diagram_of_over g (f a)) x) = ap (ι' (seq_diagram_of_over g a) (k+2)) (rep_f_equiv_natural g x) ⬝ glue (seq_diagram_of_over g a) (rep_f f k a ▸o x) := begin refine ap_compose (shift_down (seq_diagram_of_over g a)) _ _ ⬝ _, exact ap02 _ !elim_glue ⬝ !ap_con ⬝ !ap_compose' ◾ !elim_glue end variable {a} include g definition seq_colim_over [unfold 5] (x : seq_colim f) : Type.{v} := begin refine seq_colim.elim_type f _ _ x, { intro n a, exact seq_colim (seq_diagram_of_over g a)}, { intro n a, exact seq_colim_over_equiv g a } end omit g definition ιo [constructor] (p : P a) : seq_colim_over g (ι f a) := ι' _ 0 p variable {P} theorem seq_colim_over_glue /- r -/ (x : seq_colim_over g (ι f (f a))) : transport (seq_colim_over g) (glue f a) x = shift_down _ (over_f_equiv g a x) := ap10 (elim_type_glue _ _ _ a) x theorem seq_colim_over_glue_inv (x : seq_colim_over g (ι f a)) : transport (seq_colim_over g) (glue f a)⁻¹ x = to_inv (over_f_equiv g a) (shift_up _ x) := ap10 (elim_type_glue_inv _ _ _ a) x definition glue_over (p : P (f a)) : pathover (seq_colim_over g) (ιo g p) (glue f a) (ι' _ 1 p) := pathover_of_tr_eq !seq_colim_over_glue -- we can define a function from the colimit of total spaces to the total space of the colimit. definition glue' (p : P a) : ⟨ι f (f a), ιo g (g p)⟩ = ⟨ι f a, ιo g p⟩ := sigma_eq (glue f a) (glue_over g (g p) ⬝op glue (seq_diagram_of_over g a) p) definition glue_star (k : ℕ) (x : P (rep f k (f a))) : ⟨ι f (f a), ι (seq_diagram_of_over g (f a)) x⟩ = ⟨ι f a, ι (seq_diagram_of_over g a) (to_fun (rep_f_equiv f P a k) x)⟩ :> sigma (seq_colim_over g) := begin apply dpair_eq_dpair (glue f a), apply pathover_of_tr_eq, refine seq_colim_over_glue g (ι (seq_diagram_of_over g (f a)) x) end definition sigma_colim_of_colim_sigma [unfold 5] (a : seq_colim (seq_diagram_sigma g)) : Σ(x : seq_colim f), seq_colim_over g x := begin induction a with n v n v, { induction v with a p, exact ⟨ι f a, ιo g p⟩}, { induction v with a p, exact glue' g p } end definition colim_sigma_triangle [unfold 5] (a : seq_colim (seq_diagram_sigma g)) : (sigma_colim_of_colim_sigma g a).1 = seq_colim_functor (λn, sigma.pr1) (λn, homotopy.rfl) a := begin induction a with n v n v, { induction v with a p, reflexivity }, { induction v with a p, apply eq_pathover, apply hdeg_square, refine ap_compose sigma.pr1 _ _ ⬝ ap02 _ !elim_glue ⬝ _ ⬝ !elim_glue⁻¹, exact !sigma_eq_pr1 ⬝ !idp_con⁻¹ } end -- we now want to show that this function is an equivalence. /- Proof of the induction principle of colim-sigma for sigma-colim. It's a double induction, so we have 4 cases: point-point, point-path, path-point and path-path. The main idea of the proof is that for the path-path case you need to fill a square, but we can define the point-path case as a filler for this square. -/ open sigma /- dictionary: Kristina | Lean VARIABLE NAMES (A, P, k, n, e, w are the same) x : A_n | a : A n a : A_n → A_{n+1} | f : A n → A (n+1) y : P(n, x) | x : P a (maybe other variables) f : P(n, x) → P(n+1, a_n x) | g : P a → P (f a) DEFINITION NAMES κ | glue U | rep_f_equiv : P (n+1+k, rep f k (f x)) ≃ P (n+k+1, rep f (k+1) x) δ | rep_f_equiv_natural F | over_f_equiv g a ⬝e (shift_equiv (λk, P (rep f k a)) (seq_diagram_of_over g a))⁻¹ᵉ g_* | g_star g | sigma_colim_rec_point -/ definition glue_star_eq (k : ℕ) (x : P (rep f k (f a))) : glue_star g k x = dpair_eq_dpair (glue f a) (pathover_tr (glue f a) (ι (seq_diagram_of_over g (f a)) x)) ⬝ ap (dpair (ι f a)) (seq_colim_over_glue g (ι (seq_diagram_of_over g (f a)) x)) := ap (sigma_eq _) !pathover_of_tr_eq_eq_concato ⬝ !sigma_eq_con ⬝ whisker_left _ !ap_dpair⁻¹ definition g_star_step {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Πn (a : A n) (x : P a), E ⟨ι f a, ιo g x⟩) {k : ℕ} (IH : Π{n} {a : A n} (x : P (rep f k a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩) : Σ(gs : Π⦃n : ℕ⦄ {a : A n} (x : P (rep f (k+1) a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩), Π⦃n : ℕ⦄ {a : A n} (x : P (rep f k (f a))), pathover E (IH x) (glue_star g k x) (gs (transporto P (rep_f f k a) x)) := begin fconstructor, { intro n a, refine equiv_rect (rep_f_equiv f P a k) _ _, intro z, refine transport E _ (IH z), exact glue_star g k z }, { intro n a x, exact !pathover_tr ⬝op !equiv_rect_comp⁻¹ } end definition g_star /- g_* -/ {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Πn (a : A n) (x : P a), E ⟨ι f a, ιo g x⟩) {k : ℕ} : Π {n : ℕ} {a : A n} (x : P (rep f k a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩ := begin induction k with k IH: intro n a x, { exact e n a x }, { apply (g_star_step g e @IH).1 } end definition g_star_path_left {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) {k : ℕ} {n : ℕ} {a : A n} (x : P (rep f k (f a))) : pathover E (g_star g e x) (glue_star g k x) (g_star g e (transporto P (rep_f f k a) x)) := by apply (g_star_step g e (@(g_star g e) k)).2 /- this is the bottom of the square we have to fill in the end -/ definition bottom_square {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k (f a))) := move_top_of_right (natural_square (λ b, dpair_eq_dpair (glue f a) (pathover_tr (glue f a) b) ⬝ ap (dpair (ι f a)) (seq_colim_over_glue g b)) (glue (seq_diagram_of_over g (f a)) x) ⬝hp ap_compose (dpair (ι f a)) (to_fun (seq_colim_over_equiv g a)) (glue (seq_diagram_of_over g (f a)) x) ⬝hp (ap02 (dpair (ι f a)) (seq_colim_over_equiv_glue g a x)⁻¹)⁻¹ ⬝hp ap_con (dpair (ι f a)) (ap (λx, shift_down (seq_diagram_of_over g a) (ι (shift_diag (seq_diagram_of_over g a)) x)) (rep_f_equiv_natural g x)) (glue (seq_diagram_of_over g a) (to_fun (rep_f_equiv f P a k) x))) /- this is the composition + filler -/ definition g_star_path_right_step {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k (f a))) (IH : Π(n : ℕ) (a : A n) (x : P (rep f k a)), pathover E (g_star g e (seq_diagram_of_over g a x)) (ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x)) (g_star g e x)) := squareover_fill_r (bottom_square g e w k x) (change_path (glue_star_eq g (succ k) (g x)) (g_star_path_left g e w (g x)) ⬝o pathover_ap E (dpair (ι f a)) (pathover_ap (λ (b : seq_colim (seq_diagram_of_over g a)), E ⟨ι f a, b⟩) (ι (seq_diagram_of_over g a)) (apd (g_star g e) (rep_f_equiv_natural g x)))) (change_path (glue_star_eq g k x) (g_star_path_left g e w x)) (IH (n+1) (f a) x) /- this is just the composition -/ definition g_star_path_right_step1 {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k (f a))) (IH : Π(n : ℕ) (a : A n) (x : P (rep f k a)), pathover E (g_star g e (seq_diagram_of_over g a x)) (ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x)) (g_star g e x)) := (g_star_path_right_step g e w k x IH).1 definition g_star_path_right {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k a)) : pathover E (g_star g e (seq_diagram_of_over g a x)) (ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x)) (g_star g e x) := begin revert n a x, induction k with k IH: intro n a x, { exact abstract begin refine pathover_cancel_left !pathover_tr⁻¹ᵒ (change_path _ (w x)), apply sigma_eq_concato_eq end end }, { revert x, refine equiv_rect (rep_f_equiv f P a k) _ _, intro x, exact g_star_path_right_step1 g e w k x IH } end definition sigma_colim_rec_point [unfold 10] /- g -/ {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) {n : ℕ} {a : A n} (x : seq_colim_over g (ι f a)) : E ⟨ι f a, x⟩ := begin induction x with k x k x, { exact g_star g e x }, { apply pathover_of_pathover_ap E (dpair (ι f a)), exact g_star_path_right g e w k x } end definition sigma_colim_rec {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (v : Σ(x : seq_colim f), seq_colim_over g x) : E v := begin induction v with x y, induction x with n a n a, { exact sigma_colim_rec_point g e w y }, { apply pi_pathover_left, intro x, refine change_path (whisker_left _ !ap_inv ⬝ !con_inv_cancel_right) (_ ⬝o pathover_ap E (dpair _) (apd (sigma_colim_rec_point g e w) !seq_colim_over_glue⁻¹)), /- we can simplify the squareover we need to fill a bit if we apply this rule here -/ -- refine change_path (ap (sigma_eq (glue f a)) !pathover_of_tr_eq_eq_concato ⬝ !sigma_eq_con ⬝ whisker_left _ !ap_dpair⁻¹) _, induction x with k x k x, { exact change_path !glue_star_eq (g_star_path_left g e w x) }, -- { exact g_star_path_left g e w x }, { apply pathover_pathover, esimp, refine _ ⬝hop (ap (pathover_ap E _) (apd_compose2 (sigma_colim_rec_point g e w) _ _) ⬝ pathover_ap_pathover_of_pathover_ap E (dpair (ι f a)) (seq_colim_over_equiv g a) _)⁻¹, apply squareover_change_path_right', refine _ ⬝hop !pathover_ap_change_path⁻¹ ⬝ ap (pathover_ap E _) (apd02 _ !seq_colim_over_equiv_glue⁻¹), apply squareover_change_path_right, refine _ ⬝hop (ap (pathover_ap E _) (!apd_con ⬝ (!apd_ap ◾o idp)) ⬝ !pathover_ap_cono)⁻¹, apply squareover_change_path_right', apply move_right_of_top_over, refine _ ⬝hop (ap (pathover_ap E _) !rec_glue ⬝ to_right_inv !pathover_compose _)⁻¹, refine ap (pathover_ap E _) !rec_glue ⬝ to_right_inv !pathover_compose _ ⬝pho _, refine _ ⬝hop !equiv_rect_comp⁻¹, exact (g_star_path_right_step g e w k x @(g_star_path_right g e w k)).2 }} end /- We now define the map back, and show using this induction principle that the composites are the identity -/ variable {P} definition colim_sigma_of_sigma_colim_constructor [unfold 7] (p : seq_colim_over g (ι f a)) : seq_colim (seq_diagram_sigma g) := begin induction p with k p k p, { exact ι _ ⟨rep f k a, p⟩}, { apply glue} end definition colim_sigma_of_sigma_colim_path1 /- μ -/ {k : ℕ} (p : P (rep f k (f a))) : ι (seq_diagram_sigma g) ⟨rep f k (f a), p⟩ = ι (seq_diagram_sigma g) ⟨rep f (succ k) a, transporto P (rep_f f k a) p⟩ := begin apply apd0111 (λn a p, ι' (seq_diagram_sigma g) n ⟨a, p⟩) (succ_add n k) (rep_f f k a), apply pathover_tro end definition colim_sigma_of_sigma_colim_path2 {k : ℕ} (p : P (rep f k (f a))) : square (colim_sigma_of_sigma_colim_path1 g (g p)) (colim_sigma_of_sigma_colim_path1 g p) (ap (colim_sigma_of_sigma_colim_constructor g) (glue (seq_diagram_of_over g (f a)) p)) (ap (λx, colim_sigma_of_sigma_colim_constructor g (shift_down (seq_diagram_of_over g a) (seq_colim_functor (λk, transporto P (rep_f f k a)) (λk p, rep_f_equiv_natural g p) x))) (glue (seq_diagram_of_over g (f a)) p)) := begin refine !elim_glue ⬝ph _, refine _ ⬝hp (ap_compose' (colim_sigma_of_sigma_colim_constructor g) _ _), refine _ ⬝hp ap02 _ !seq_colim_over_equiv_glue⁻¹, refine _ ⬝hp !ap_con⁻¹, refine _ ⬝hp !ap_compose ◾ !elim_glue⁻¹, refine _ ⬝pv whisker_rt _ (natural_square0111 P (pathover_tro (rep_f f k a) p) g (λn a p, glue (seq_diagram_sigma g) ⟨a, p⟩)), refine _ ⬝ whisker_left _ (ap02 _ !inv_inv⁻¹ ⬝ !ap_inv), symmetry, apply apd0111_precompose end definition colim_sigma_of_sigma_colim [unfold 5] (v : Σ(x : seq_colim f), seq_colim_over g x) : seq_colim (seq_diagram_sigma g) := begin induction v with x p, induction x with n a n a, { exact colim_sigma_of_sigma_colim_constructor g p }, apply arrow_pathover_constant_right, intro x, esimp at x, refine _ ⬝ ap (colim_sigma_of_sigma_colim_constructor g) !seq_colim_over_glue⁻¹, induction x with k p k p, { exact colim_sigma_of_sigma_colim_path1 g p }, apply eq_pathover, apply colim_sigma_of_sigma_colim_path2 end definition colim_sigma_of_sigma_colim_glue' [unfold 5] (p : P a) : ap (colim_sigma_of_sigma_colim g) (glue' g p) = glue (seq_diagram_sigma g) ⟨a, p⟩ := begin refine !ap_dpair_eq_dpair ⬝ _, refine !apd011_eq_apo11_apd ⬝ _, refine ap (λx, apo11_constant_right x _) !rec_glue ⬝ _, refine !apo11_arrow_pathover_constant_right ⬝ _, esimp, refine whisker_right _ !idp_con ⬝ _, rewrite [▸*, tr_eq_of_pathover_concato_eq, ap_con, ↑glue_over, to_right_inv !pathover_equiv_tr_eq, ap_inv, inv_con_cancel_left], apply elim_glue end theorem colim_sigma_of_sigma_colim_of_colim_sigma (a : seq_colim (seq_diagram_sigma g)) : colim_sigma_of_sigma_colim g (sigma_colim_of_colim_sigma g a) = a := begin induction a with n v n v, { induction v with a p, reflexivity }, { induction v with a p, esimp, apply eq_pathover_id_right, apply hdeg_square, refine ap_compose (colim_sigma_of_sigma_colim g) _ _ ⬝ _, refine ap02 _ !elim_glue ⬝ _, exact colim_sigma_of_sigma_colim_glue' g p } end theorem sigma_colim_of_colim_sigma_of_sigma_colim (v : Σ(x : seq_colim f), seq_colim_over g x) : sigma_colim_of_colim_sigma g (colim_sigma_of_sigma_colim g v) = v := begin revert v, refine sigma_colim_rec _ _ _, { intro n a x, reflexivity }, { intro n a x, apply eq_pathover_id_right, apply hdeg_square, refine ap_compose (sigma_colim_of_colim_sigma g) _ _ ⬝ _, refine ap02 _ (colim_sigma_of_sigma_colim_glue' g x) ⬝ _, apply elim_glue } end variable (P) definition sigma_seq_colim_over_equiv [constructor] : (Σ(x : seq_colim f), seq_colim_over g x) ≃ seq_colim (seq_diagram_sigma g) := equiv.MK (colim_sigma_of_sigma_colim g) (sigma_colim_of_colim_sigma g) (colim_sigma_of_sigma_colim_of_colim_sigma g) (sigma_colim_of_colim_sigma_of_sigma_colim g) end over definition seq_colim_id_equiv_seq_colim_id0 (a₀ a₁ : A 0) : seq_colim (id_seq_diagram f 0 a₀ a₁) ≃ seq_colim (id0_seq_diagram f a₀ a₁) := seq_colim_equiv (λn, !lrep_eq_lrep_irrel (nat.zero_add n)) (λn p, !lrep_eq_lrep_irrel_natural) definition kshift_equiv_inv_incl_kshift_diag {n k : ℕ} (x : A (n + k)) : kshift_equiv_inv f n (ι' (kshift_diag f n) k x) = ι f x := begin revert A f k x, induction n with n IH: intro A f k x, { exact apd011 (ι' f) !nat.zero_add⁻¹ !pathover_tr⁻¹ᵒ }, { exact !IH ⬝ apd011 (ι' f) !succ_add⁻¹ !pathover_tr⁻¹ᵒ } end definition incl_kshift_diag {n k : ℕ} (x : A (n + k)) : ι' (kshift_diag f n) k x = kshift_equiv f n (ι f x) := eq_inv_of_eq (kshift_equiv_inv_incl_kshift_diag f x) definition incl_kshift_diag0 {n : ℕ} (x : A n) : ι' (kshift_diag f n) 0 x = kshift_equiv f n (ι f x) := incl_kshift_diag f x definition seq_colim_eq_equiv0' (a₀ a₁ : A 0) : ι f a₀ = ι f a₁ ≃ seq_colim (id_seq_diagram f 0 a₀ a₁) := begin refine total_space_method (ι f a₀) (seq_colim_over (id0_seq_diagram_over f a₀)) _ _ (ι f a₁) ⬝e _, { apply @(is_trunc_equiv_closed_rev _ (sigma_seq_colim_over_equiv _ _)), apply is_contr_seq_colim }, { exact ιo _ idp }, /- In the next equivalence we have to show that seq_colim_over (id0_seq_diagram_over f a₀) (ι f a₁) ≃ seq_colim (id_seq_diagram f 0 a₀ a₁). This looks trivial, because both of them reduce to seq_colim (f^{0 ≤ 0+k}(a₀) = f^{0 ≤ 0+k}(a₁), ap_f). However, not all proofs of these inequalities are definitionally equal. 3 of them are proven by zero_le : 0 ≤ n, but one of them (the RHS of seq_colim_over (id0_seq_diagram_over f a₀) (ι f a₁)) uses le_add_right : n ≤ n+k Alternatively, we could redefine le_add_right so that for n=0, it reduces to `zero_le (0+k)`. -/ { refine seq_colim_equiv (λn, eq_equiv_eq_closed !lrep_irrel idp) _, intro n p, refine whisker_right _ (!lrep_irrel2⁻² ⬝ !ap_inv⁻¹) ⬝ !ap_con⁻¹ } end -- definition seq_colim_eq_equiv0'_natural {a₀ a₁ : A 0} {a₀' a₁' : A' 0} (p₀ : τ a₀ = a₀') -- (p₁ : τ a₁ = a₁') : -- hsquare (seq_colim_eq_equiv0' f a₀ a₁) (seq_colim_eq_equiv0' f' a₀' a₁') -- (pointed.ap1_gen (seq_colim_functor τ p) (ap (ι' f' 0) p₀) (ap (ι' f' 0) p₁)) -- (seq_colim_functor (λn, pointed.ap1_gen (@τ _)) _) := -- _ definition seq_colim_eq_equiv0 (a₀ a₁ : A 0) : ι f a₀ = ι f a₁ ≃ seq_colim (id0_seq_diagram f a₀ a₁) := seq_colim_eq_equiv0' f a₀ a₁ ⬝e seq_colim_id_equiv_seq_colim_id0 f a₀ a₁ definition seq_colim_eq_equiv {n : ℕ} (a₀ a₁ : A n) : ι f a₀ = ι f a₁ ≃ seq_colim (id_seq_diagram f n a₀ a₁) := eq_equiv_fn_eq (kshift_equiv f n) (ι f a₀) (ι f a₁) ⬝e eq_equiv_eq_closed (incl_kshift_diag0 f a₀)⁻¹ (incl_kshift_diag0 f a₁)⁻¹ ⬝e seq_colim_eq_equiv0' (kshift_diag f n) a₀ a₁ ⬝e @seq_colim_equiv _ _ _ (λk, ap (@f _)) (λm, eq_equiv_eq_closed !lrep_kshift_diag !lrep_kshift_diag) (λm p, whisker_right _ (whisker_right _ !ap_inv⁻¹ ⬝ !ap_con⁻¹) ⬝ !ap_con⁻¹) ⬝e seq_colim_equiv (λm, !lrep_eq_lrep_irrel (ap (add n) (nat.zero_add m))) begin intro m q, refine _ ⬝ lrep_eq_lrep_irrel_natural f (le_add_right n m) (ap (add n) (nat.zero_add m)) q, exact ap (λx, lrep_eq_lrep_irrel f _ _ _ _ x _) !is_prop.elim end open algebra theorem is_trunc_seq_colim [instance] (k : ℕ₋₂) [H : Πn, is_trunc k (A n)] : is_trunc k (seq_colim f) := begin revert A f H, induction k with k IH: intro A f H, { apply is_contr_seq_colim }, { apply is_trunc_succ_intro, intro x y, induction x using seq_colim.rec_prop with n a, induction y using seq_colim.rec_prop with m a', apply is_trunc_equiv_closed, exact eq_equiv_eq_closed (lrep_glue _ (le_max_left n m) _) (lrep_glue _ (le_max_right n m) _), apply is_trunc_equiv_closed_rev, apply seq_colim_eq_equiv, apply IH, intro l, apply is_trunc_eq } end definition seq_colim_trunc_of_trunc_seq_colim [unfold 4] (k : ℕ₋₂) (x : trunc k (seq_colim f)) : seq_colim (trunc_diagram k f) := begin induction x with x, exact seq_colim_functor (λn, tr) (λn y, idp) x end definition trunc_seq_colim_of_seq_colim_trunc [unfold 4] (k : ℕ₋₂) (x : seq_colim (trunc_diagram k f)) : trunc k (seq_colim f) := begin induction x with n x n x, { induction x with a, exact tr (ι f a) }, { induction x with a, exact ap tr (glue f a) } end definition trunc_seq_colim_equiv [constructor] (k : ℕ₋₂) : trunc k (seq_colim f) ≃ seq_colim (trunc_diagram k f) := equiv.MK (seq_colim_trunc_of_trunc_seq_colim f k) (trunc_seq_colim_of_seq_colim_trunc f k) abstract begin intro x, induction x with n x n x, { induction x with a, reflexivity }, { induction x with a, apply eq_pathover_id_right, apply hdeg_square, refine ap_compose (seq_colim_trunc_of_trunc_seq_colim f k) _ _ ⬝ ap02 _ !elim_glue ⬝ _, refine !ap_compose' ⬝ !elim_glue ⬝ _, exact !idp_con } end end abstract begin intro x, induction x with x, induction x with n a n a, { reflexivity }, { apply eq_pathover, apply hdeg_square, refine ap_compose (trunc_seq_colim_of_seq_colim_trunc f k) _ _ ⬝ ap02 _ !elim_glue ⬝ _, refine !ap_compose' ⬝ !elim_glue } end end theorem is_conn_seq_colim [instance] (k : ℕ₋₂) [H : Πn, is_conn k (A n)] : is_conn k (seq_colim f) := is_trunc_equiv_closed_rev -2 (trunc_seq_colim_equiv f k) _ /- the colimit of a sequence of fibers is the fiber of the functorial action of the colimit -/ definition domain_seq_colim_functor {A A' : ℕ → Type} {f : seq_diagram A} {f' : seq_diagram A'} (τ : Πn, A' n → A n) (p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) : (Σ(x : seq_colim f), seq_colim_over (seq_diagram_over_fiber τ p) x) ≃ seq_colim f' := begin transitivity seq_colim (seq_diagram_sigma (seq_diagram_over_fiber τ p)), exact sigma_seq_colim_over_equiv _ (seq_diagram_over_fiber τ p), exact seq_colim_equiv (λn, sigma_fiber_equiv (τ n)) (λn x, idp) end definition fiber_seq_colim_functor {A A' : ℕ → Type} {f : seq_diagram A} {f' : seq_diagram A'} (τ : Πn, A' n → A n) (p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) {n : ℕ} (a : A n) : fiber (seq_colim_functor τ p) (ι f a) ≃ seq_colim (seq_diagram_fiber τ p a) := begin refine _ ⬝e fiber_pr1 (seq_colim_over (seq_diagram_over_fiber τ p)) (ι f a), apply fiber_equiv_of_triangle (domain_seq_colim_functor τ p)⁻¹ᵉ, refine _ ⬝hty λx, (colim_sigma_triangle _ _)⁻¹, apply homotopy_inv_of_homotopy_pre (seq_colim_equiv _ _) (seq_colim_functor _ _) (seq_colim_functor _ _), refine (λx, !seq_colim_functor_compose⁻¹) ⬝hty _, refine seq_colim_functor_homotopy _ _, intro n x, exact point_eq x.2, intro n x, induction x with x y, induction y with y q, induction q, apply square_of_eq, refine !idp_con⁻¹ end definition fiber_seq_colim_functor0 {A A' : ℕ → Type} {f : seq_diagram A} {f' : seq_diagram A'} (τ : Πn, A' n → A n) (p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) (a : A 0) : fiber (seq_colim_functor τ p) (ι f a) ≃ seq_colim (seq_diagram_fiber0 τ p a) := fiber_seq_colim_functor τ p a ⬝e seq_colim_equiv (λn, equiv_apd011 (λx y, fiber (τ x) y) (rep_pathover_rep0 f a)) (λn x, sorry) -- maybe use fn_tro_eq_tro_fn2 variables {f f'} definition fiber_inclusion (x : seq_colim f) : fiber (ι' f 0) x ≃ fiber (seq_colim_functor (rep0 f) (λn a, idp)) x := fiber_equiv_of_triangle (seq_colim_constant_seq (A 0))⁻¹ᵉ homotopy.rfl theorem is_trunc_fun_seq_colim_functor (k : ℕ₋₂) (H : Πn, is_trunc_fun k (@τ n)) : is_trunc_fun k (seq_colim_functor τ p) := begin intro x, induction x using seq_colim.rec_prop, exact is_trunc_equiv_closed_rev k (fiber_seq_colim_functor τ p a) _ end open is_conn theorem is_conn_fun_seq_colim_functor (k : ℕ₋₂) (H : Πn, is_conn_fun k (@τ n)) : is_conn_fun k (seq_colim_functor τ p) := begin intro x, induction x using seq_colim.rec_prop, exact is_conn_equiv_closed_rev k (fiber_seq_colim_functor τ p a) _ end variables (f f') theorem is_trunc_fun_inclusion (k : ℕ₋₂) (H : Πn, is_trunc_fun k (@f n)) : is_trunc_fun k (ι' f 0) := begin intro x, apply is_trunc_equiv_closed_rev k (fiber_inclusion x), apply is_trunc_fun_seq_colim_functor, intro n, apply is_trunc_fun_lrep, exact H end theorem is_conn_fun_inclusion (k : ℕ₋₂) (H : Πn, is_conn_fun k (@f n)) : is_conn_fun k (ι' f 0) := begin intro x, apply is_conn_equiv_closed_rev k (fiber_inclusion x), apply is_conn_fun_seq_colim_functor, intro n, apply is_conn_fun_lrep, exact H end /- the sequential colimit of standard finite types is ℕ -/ open fin definition nat_of_seq_colim_fin [unfold 1] (x : seq_colim seq_diagram_fin) : ℕ := begin induction x with n x n x, { exact x }, { reflexivity } end definition seq_colim_fin_of_nat (n : ℕ) : seq_colim seq_diagram_fin := ι' _ (n+1) (fin.mk n (self_lt_succ n)) definition lrep_seq_diagram_fin {n : ℕ} (x : fin n) : lrep seq_diagram_fin (is_lt x) (fin.mk x (self_lt_succ x)) = x := begin induction x with k H, esimp, induction H with n H p, reflexivity, exact ap (@lift_succ _) p end definition lrep_seq_diagram_fin_lift_succ {n : ℕ} (x : fin n) : lrep_seq_diagram_fin (lift_succ x) = ap (@lift_succ _) (lrep_seq_diagram_fin x) := begin induction x with k H, reflexivity end definition seq_colim_fin_equiv [constructor] : seq_colim seq_diagram_fin ≃ ℕ := equiv.MK nat_of_seq_colim_fin seq_colim_fin_of_nat abstract begin intro n, reflexivity end end abstract begin intro x, induction x with n x n x, { esimp, refine (lrep_glue _ (is_lt x) _)⁻¹ ⬝ ap (ι _) (lrep_seq_diagram_fin x), }, { apply eq_pathover_id_right, refine ap_compose seq_colim_fin_of_nat _ _ ⬝ ap02 _ !elim_glue ⬝ph _, esimp, refine (square_of_eq !con_idp)⁻¹ʰ ⬝h _, refine _ ⬝pv natural_square_tr (@glue _ (seq_diagram_fin) n) (lrep_seq_diagram_fin x), refine ap02 _ !lrep_seq_diagram_fin_lift_succ ⬝ !ap_compose⁻¹ } end end /- the sequential colimit of embeddings is an embedding -/ definition seq_colim_eq_equiv0'_inv_refl (a₀ : A 0) : (seq_colim_eq_equiv0' f a₀ a₀)⁻¹ᵉ (ι' (id_seq_diagram f 0 a₀ a₀) 0 proof (refl a₀) qed) = refl (ι f a₀) := begin apply inv_eq_of_eq, reflexivity, end definition is_embedding_ι (H : Πn, is_embedding (@f n)) : is_embedding (ι' f 0) := begin intro x y, fapply is_equiv_of_equiv_of_homotopy, { symmetry, refine seq_colim_eq_equiv0' f x y ⬝e _, apply equiv_of_is_equiseq, intro n, apply H }, { intro p, induction p, apply seq_colim_eq_equiv0'_inv_refl } end -- print axioms sigma_seq_colim_over_equiv -- print axioms seq_colim_eq_equiv -- print axioms fiber_seq_colim_functor -- print axioms is_trunc_seq_colim -- print axioms trunc_seq_colim_equiv -- print axioms is_conn_seq_colim -- print axioms is_trunc_fun_seq_colim_functor -- print axioms is_conn_fun_seq_colim_functor -- print axioms is_trunc_fun_inclusion -- print axioms is_conn_fun_inclusion end seq_colim
6e47c42c6ed2a1380e902b86c5dd5173492d9706
0d2e44896897eda703992595d71a0b19ed30b8a1
/uexp/src/uexp/rules/aggregation.lean
d32b3423b7d2c5a7e6c7de6340ff25d94d43737f
[ "BSD-2-Clause" ]
permissive
wwombat/Cosette
a87312aabefdb53ea8b67c37731bd58c7485afb6
4c5dc6172e24d3546c9818ac1fad06f72fe1c991
refs/heads/master
1,619,479,568,051
1,520,292,502,000
1,520,292,502,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,082
lean
import ..sql import ..tactics import ..u_semiring import ..extra_constants open Expr open Proj open Pred open SQL open tree theorem aggegation_query : forall (Γ : Schema) s (a : relation s) C0 (value : Column C0 s) C1 (label: Column C1 s) (l : const C1), let lbl : Expr (Γ ++ s) C1 := uvariable (right⋅label), val : Expr (Γ ++ s) C0 := uvariable (right⋅value), lbl' : Expr (Γ ++ (leaf C1 ++ leaf datatypes.int)) C1 := uvariable (right⋅left) in (denoteSQL ((SELECT * FROM1 (SELECT (combineGroupByProj (PLAIN lbl) (COUNT val)) FROM1 (table a) GROUP BY (right⋅label)) WHERE equal lbl' (constantExpr l)) : SQL Γ _)) = (denoteSQL ((SELECT * FROM1 (SELECT (combineGroupByProj (PLAIN lbl) (COUNT val)) FROM1 (SELECT * FROM1 (table a) WHERE equal lbl (constantExpr l)) GROUP BY (right⋅label))) : SQL Γ _)) := begin intros, unfold_all_denotations, funext, simp, sorry end
33f654b8fb7a1b692bcd50b3f427e2345887482c
1d265c7dd8cb3d0e1d645a19fd6157a2084c3921
/src/other/n_sq_even_n_even.lean
ce7bec7be48fa8b098cd90b636e818bc816427ad
[ "MIT" ]
permissive
hanzhi713/lean-proofs
de432372f220d302be09b5ca4227f8986567e4fd
4d8356a878645b9ba7cb036f87737f3f1e68ede5
refs/heads/master
1,585,580,245,658
1,553,646,623,000
1,553,646,623,000
151,342,188
0
1
null
null
null
null
UTF-8
Lean
false
false
1,357
lean
import .odd_and_even_nat example : ∀ n:ℕ, even (n * n) ↔ even(n) := begin assume n, split, assume h, apply exists.elim h, assume a h1, apply classical.by_contradiction, assume noteven, have oddn := (not_even_odd n).1 noteven, apply exists.elim oddn, assume b h2, rw h2 at h1, rw add_mul at h1, rw mul_add at h1, rw one_mul at h1, rw mul_one at h1, rw ←mul_assoc at h1, simp at h1, rw (mul_assoc 2 b 2) at h1, rw mul_assoc at h1, rw ←(mul_add 2 b (b * 2 * b)) at h1, rw ←mul_add at h1, rw (mul_comm b 2) at h1, have o : odd (1 + 2 * (b + (b + 2 * b * b))), apply exists.intro ((b + (b + 2 * b * b))), rw add_comm, rw h1 at o, have e : even (2*a) := ⟨a, rfl⟩, have := not_both_even_and_odd (2*a), have : even (2*a) ∧ odd (2*a) := ⟨e, o⟩, contradiction, assume h, apply exists.elim h, assume a h1, rw h1, apply exists.intro (a * (2 * a)), rw mul_assoc, -- QED end #check eq.to_iff
c1811c5af6c6f37b35c7f0a99450b2066276125a
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/analysis/inner_product_space/l2_space.lean
1a07d1c490c3aab0a03c749f77952b3df8534a8c
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
24,373
lean
/- Copyright (c) 2022 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import analysis.inner_product_space.projection import analysis.normed_space.lp_space import analysis.inner_product_space.pi_L2 /-! # Hilbert sum of a family of inner product spaces Given a family `(G : ι → Type*) [Π i, inner_product_space 𝕜 (G i)]` of inner product spaces, this file equips `lp G 2` with an inner product space structure, where `lp G 2` consists of those dependent functions `f : Π i, G i` for which `∑' i, ∥f i∥ ^ 2`, the sum of the norms-squared, is summable. This construction is sometimes called the *Hilbert sum* of the family `G`. By choosing `G` to be `ι → 𝕜`, the Hilbert space `ℓ²(ι, 𝕜)` may be seen as a special case of this construction. We also define a *predicate* `is_hilbert_sum 𝕜 E V`, where `V : Π i, G i →ₗᵢ[𝕜] E`, expressing that `V` is an `orthogonal_family` and that the associated map `lp G 2 →ₗᵢ[𝕜] E` is surjective. ## Main definitions * `orthogonal_family.linear_isometry`: Given a Hilbert space `E`, a family `G` of inner product spaces and a family `V : Π i, G i →ₗᵢ[𝕜] E` of isometric embeddings of the `G i` into `E` with mutually-orthogonal images, there is an induced isometric embedding of the Hilbert sum of `G` into `E`. * `is_hilbert_sum`: Given a Hilbert space `E`, a family `G` of inner product spaces and a family `V : Π i, G i →ₗᵢ[𝕜] E` of isometric embeddings of the `G i` into `E`, `is_hilbert_sum 𝕜 E V` means that `V` is an `orthogonal_family` and that the above linear isometry is surjective. * `is_hilbert_sum.linear_isometry_equiv`: If a Hilbert space `E` is a Hilbert sum of the inner product spaces `G i` with respect to the family `V : Π i, G i →ₗᵢ[𝕜] E`, then the corresponding `orthogonal_family.linear_isometry` can be upgraded to a `linear_isometry_equiv`. * `hilbert_basis`: We define a *Hilbert basis* of a Hilbert space `E` to be a structure whose single field `hilbert_basis.repr` is an isometric isomorphism of `E` with `ℓ²(ι, 𝕜)` (i.e., the Hilbert sum of `ι` copies of `𝕜`). This parallels the definition of `basis`, in `linear_algebra.basis`, as an isomorphism of an `R`-module with `ι →₀ R`. * `hilbert_basis.has_coe_to_fun`: More conventionally a Hilbert basis is thought of as a family `ι → E` of vectors in `E` satisfying certain properties (orthonormality, completeness). We obtain this interpretation of a Hilbert basis `b` by defining `⇑b`, of type `ι → E`, to be the image under `b.repr` of `lp.single 2 i (1:𝕜)`. This parallels the definition `basis.has_coe_to_fun` in `linear_algebra.basis`. * `hilbert_basis.mk`: Make a Hilbert basis of `E` from an orthonormal family `v : ι → E` of vectors in `E` whose span is dense. This parallels the definition `basis.mk` in `linear_algebra.basis`. * `hilbert_basis.mk_of_orthogonal_eq_bot`: Make a Hilbert basis of `E` from an orthonormal family `v : ι → E` of vectors in `E` whose span has trivial orthogonal complement. ## Main results * `lp.inner_product_space`: Construction of the inner product space instance on the Hilbert sum `lp G 2`. Note that from the file `analysis.normed_space.lp_space`, the space `lp G 2` already held a normed space instance (`lp.normed_space`), and if each `G i` is a Hilbert space (i.e., complete), then `lp G 2` was already known to be complete (`lp.complete_space`). So the work here is to define the inner product and show it is compatible. * `orthogonal_family.range_linear_isometry`: Given a family `G` of inner product spaces and a family `V : Π i, G i →ₗᵢ[𝕜] E` of isometric embeddings of the `G i` into `E` with mutually-orthogonal images, the image of the embedding `orthogonal_family.linear_isometry` of the Hilbert sum of `G` into `E` is the closure of the span of the images of the `G i`. * `hilbert_basis.repr_apply_apply`: Given a Hilbert basis `b` of `E`, the entry `b.repr x i` of `x`'s representation in `ℓ²(ι, 𝕜)` is the inner product `⟪b i, x⟫`. * `hilbert_basis.has_sum_repr`: Given a Hilbert basis `b` of `E`, a vector `x` in `E` can be expressed as the "infinite linear combination" `∑' i, b.repr x i • b i` of the basis vectors `b i`, with coefficients given by the entries `b.repr x i` of `x`'s representation in `ℓ²(ι, 𝕜)`. * `exists_hilbert_basis`: A Hilbert space admits a Hilbert basis. ## Keywords Hilbert space, Hilbert sum, l2, Hilbert basis, unitary equivalence, isometric isomorphism -/ open is_R_or_C submodule filter open_locale big_operators nnreal ennreal classical complex_conjugate noncomputable theory variables {ι : Type*} variables {𝕜 : Type*} [is_R_or_C 𝕜] {E : Type*} [inner_product_space 𝕜 E] [cplt : complete_space E] variables {G : ι → Type*} [Π i, inner_product_space 𝕜 (G i)] local notation `⟪`x`, `y`⟫` := @inner 𝕜 _ _ x y notation `ℓ²(` ι `,` 𝕜 `)` := lp (λ i : ι, 𝕜) 2 /-! ### Inner product space structure on `lp G 2` -/ namespace lp lemma summable_inner (f g : lp G 2) : summable (λ i, ⟪f i, g i⟫) := begin -- Apply the Direct Comparison Test, comparing with ∑' i, ∥f i∥ * ∥g i∥ (summable by Hölder) refine summable_of_norm_bounded (λ i, ∥f i∥ * ∥g i∥) (lp.summable_mul _ f g) _, { rw real.is_conjugate_exponent_iff; norm_num }, intros i, -- Then apply Cauchy-Schwarz pointwise exact norm_inner_le_norm _ _, end instance : inner_product_space 𝕜 (lp G 2) := { inner := λ f g, ∑' i, ⟪f i, g i⟫, norm_sq_eq_inner := λ f, begin calc ∥f∥ ^ 2 = ∥f∥ ^ (2:ℝ≥0∞).to_real : by norm_cast ... = ∑' i, ∥f i∥ ^ (2:ℝ≥0∞).to_real : lp.norm_rpow_eq_tsum _ f ... = ∑' i, ∥f i∥ ^ 2 : by norm_cast ... = ∑' i, re ⟪f i, f i⟫ : by simp only [norm_sq_eq_inner] ... = re (∑' i, ⟪f i, f i⟫) : (is_R_or_C.re_clm.map_tsum _).symm ... = _ : by congr, { norm_num }, { exact summable_inner f f }, end, conj_sym := λ f g, begin calc conj _ = conj ∑' i, ⟪g i, f i⟫ : by congr ... = ∑' i, conj ⟪g i, f i⟫ : is_R_or_C.conj_cle.map_tsum ... = ∑' i, ⟪f i, g i⟫ : by simp only [inner_conj_sym] ... = _ : by congr, end, add_left := λ f₁ f₂ g, begin calc _ = ∑' i, ⟪(f₁ + f₂) i, g i⟫ : _ ... = ∑' i, (⟪f₁ i, g i⟫ + ⟪f₂ i, g i⟫) : by simp only [inner_add_left, pi.add_apply, coe_fn_add] ... = (∑' i, ⟪f₁ i, g i⟫) + ∑' i, ⟪f₂ i, g i⟫ : tsum_add _ _ ... = _ : by congr, { congr, }, { exact summable_inner f₁ g }, { exact summable_inner f₂ g } end, smul_left := λ f g c, begin calc _ = ∑' i, ⟪c • f i, g i⟫ : _ ... = ∑' i, conj c * ⟪f i, g i⟫ : by simp only [inner_smul_left] ... = conj c * ∑' i, ⟪f i, g i⟫ : tsum_mul_left ... = _ : _, { simp only [coe_fn_smul, pi.smul_apply] }, { congr }, end, .. lp.normed_space } lemma inner_eq_tsum (f g : lp G 2) : ⟪f, g⟫ = ∑' i, ⟪f i, g i⟫ := rfl lemma has_sum_inner (f g : lp G 2) : has_sum (λ i, ⟪f i, g i⟫) ⟪f, g⟫ := (summable_inner f g).has_sum lemma inner_single_left (i : ι) (a : G i) (f : lp G 2) : ⟪lp.single 2 i a, f⟫ = ⟪a, f i⟫ := begin refine (has_sum_inner (lp.single 2 i a) f).unique _, convert has_sum_ite_eq i ⟪a, f i⟫, ext j, rw lp.single_apply, split_ifs, { subst h }, { simp } end lemma inner_single_right (i : ι) (a : G i) (f : lp G 2) : ⟪f, lp.single 2 i a⟫ = ⟪f i, a⟫ := by simpa [inner_conj_sym] using congr_arg conj (inner_single_left i a f) end lp /-! ### Identification of a general Hilbert space `E` with a Hilbert sum -/ namespace orthogonal_family variables {V : Π i, G i →ₗᵢ[𝕜] E} (hV : orthogonal_family 𝕜 V) include cplt hV protected lemma summable_of_lp (f : lp G 2) : summable (λ i, V i (f i)) := begin rw hV.summable_iff_norm_sq_summable, convert (lp.mem_ℓp f).summable _, { norm_cast }, { norm_num } end /-- A mutually orthogonal family of subspaces of `E` induce a linear isometry from `lp 2` of the subspaces into `E`. -/ protected def linear_isometry : lp G 2 →ₗᵢ[𝕜] E := { to_fun := λ f, ∑' i, V i (f i), map_add' := λ f g, by simp only [tsum_add (hV.summable_of_lp f) (hV.summable_of_lp g), lp.coe_fn_add, pi.add_apply, linear_isometry.map_add], map_smul' := λ c f, by simpa only [linear_isometry.map_smul, pi.smul_apply, lp.coe_fn_smul] using tsum_const_smul (hV.summable_of_lp f), norm_map' := λ f, begin classical, -- needed for lattice instance on `finset ι`, for `filter.at_top_ne_bot` have H : 0 < (2:ℝ≥0∞).to_real := by norm_num, suffices : ∥∑' (i : ι), V i (f i)∥ ^ ((2:ℝ≥0∞).to_real) = ∥f∥ ^ ((2:ℝ≥0∞).to_real), { exact real.rpow_left_inj_on H.ne' (norm_nonneg _) (norm_nonneg _) this }, refine tendsto_nhds_unique _ (lp.has_sum_norm H f), convert (hV.summable_of_lp f).has_sum.norm.rpow_const (or.inr H.le), ext s, exact_mod_cast (hV.norm_sum f s).symm, end } protected lemma linear_isometry_apply (f : lp G 2) : hV.linear_isometry f = ∑' i, V i (f i) := rfl protected lemma has_sum_linear_isometry (f : lp G 2) : has_sum (λ i, V i (f i)) (hV.linear_isometry f) := (hV.summable_of_lp f).has_sum @[simp] protected lemma linear_isometry_apply_single {i : ι} (x : G i) : hV.linear_isometry (lp.single 2 i x) = V i x := begin rw [hV.linear_isometry_apply, ← tsum_ite_eq i (V i x)], congr, ext j, rw [lp.single_apply], split_ifs, { subst h }, { simp } end @[simp] protected lemma linear_isometry_apply_dfinsupp_sum_single (W₀ : Π₀ (i : ι), G i) : hV.linear_isometry (W₀.sum (lp.single 2)) = W₀.sum (λ i, V i) := begin have : hV.linear_isometry (∑ i in W₀.support, lp.single 2 i (W₀ i)) = ∑ i in W₀.support, hV.linear_isometry (lp.single 2 i (W₀ i)), { exact hV.linear_isometry.to_linear_map.map_sum }, simp [dfinsupp.sum, this] {contextual := tt}, end /-- The canonical linear isometry from the `lp 2` of a mutually orthogonal family of subspaces of `E` into E, has range the closure of the span of the subspaces. -/ protected lemma range_linear_isometry [Π i, complete_space (G i)] : hV.linear_isometry.to_linear_map.range = (⨆ i, (V i).to_linear_map.range).topological_closure := begin refine le_antisymm _ _, { rintros x ⟨f, rfl⟩, refine mem_closure_of_tendsto (hV.has_sum_linear_isometry f) (eventually_of_forall _), intros s, rw set_like.mem_coe, refine sum_mem _, intros i hi, refine mem_supr_of_mem i _, exact linear_map.mem_range_self _ (f i) }, { apply topological_closure_minimal, { refine supr_le _, rintros i x ⟨x, rfl⟩, use lp.single 2 i x, exact hV.linear_isometry_apply_single x }, exact hV.linear_isometry.isometry.uniform_inducing.is_complete_range.is_closed } end end orthogonal_family section is_hilbert_sum variables (𝕜 E) (V : Π i, G i →ₗᵢ[𝕜] E) (F : ι → submodule 𝕜 E) include cplt /-- Given a family of Hilbert spaces `G : ι → Type*`, a Hilbert sum of `G` consists of a Hilbert space `E` and an orthogonal family `V : Π i, G i →ₗᵢ[𝕜] E` such that the induced isometry `Φ : lp G 2 → E` is surjective. Keeping in mind that `lp G 2` is "the" external Hilbert sum of `G : ι → Type*`, this is analogous to `direct_sum.is_internal`, except that we don't express it in terms of actual submodules. -/ @[protect_proj] structure is_hilbert_sum : Prop := of_surjective :: (orthogonal_family : orthogonal_family 𝕜 V) (surjective_isometry : function.surjective (orthogonal_family.linear_isometry)) variables {𝕜 E V} /-- If `V : Π i, G i →ₗᵢ[𝕜] E` is an orthogonal family such that the supremum of the ranges of `V i` is dense, then `(E, V)` is a Hilbert sum of `G`. -/ lemma is_hilbert_sum.mk [Π i, complete_space $ G i] (hVortho : orthogonal_family 𝕜 V) (hVtotal : ⊤ ≤ (⨆ i, (V i).to_linear_map.range).topological_closure) : is_hilbert_sum 𝕜 E V := { orthogonal_family := hVortho, surjective_isometry := begin rw [←linear_isometry.coe_to_linear_map], exact linear_map.range_eq_top.mp (eq_top_iff.mpr $ hVtotal.trans_eq hVortho.range_linear_isometry.symm) end } /-- This is `orthogonal_family.is_hilbert_sum` in the case of actual inclusions from subspaces. -/ lemma is_hilbert_sum.mk_internal [Π i, complete_space $ F i] (hFortho : @orthogonal_family 𝕜 E _ _ _ (λ i, F i) _ (λ i, (F i).subtypeₗᵢ)) (hFtotal : ⊤ ≤ (⨆ i, (F i)).topological_closure) : @is_hilbert_sum _ 𝕜 _ E _ _ (λ i, F i) _ (λ i, (F i).subtypeₗᵢ) := is_hilbert_sum.mk hFortho (by simpa [subtypeₗᵢ_to_linear_map, range_subtype] using hFtotal) /-- *A* Hilbert sum `(E, V)` of `G` is canonically isomorphic to *the* Hilbert sum of `G`, i.e `lp G 2`. Note that this goes in the opposite direction from `orthogonal_family.linear_isometry`. -/ noncomputable def is_hilbert_sum.linear_isometry_equiv (hV : is_hilbert_sum 𝕜 E V) : E ≃ₗᵢ[𝕜] lp G 2 := linear_isometry_equiv.symm $ linear_isometry_equiv.of_surjective hV.orthogonal_family.linear_isometry hV.surjective_isometry /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G` and `lp G 2`, a vector `w : lp G 2` is the image of the infinite sum of the associated elements in `E`. -/ protected lemma is_hilbert_sum.linear_isometry_equiv_symm_apply (hV : is_hilbert_sum 𝕜 E V) (w : lp G 2) : hV.linear_isometry_equiv.symm w = ∑' i, V i (w i) := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.linear_isometry_apply] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G` and `lp G 2`, a vector `w : lp G 2` is the image of the infinite sum of the associated elements in `E`, and this sum indeed converges. -/ protected lemma is_hilbert_sum.has_sum_linear_isometry_equiv_symm (hV : is_hilbert_sum 𝕜 E V) (w : lp G 2) : has_sum (λ i, V i (w i)) (hV.linear_isometry_equiv.symm w) := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.has_sum_linear_isometry] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G : ι → Type*` and `lp G 2`, an "elementary basis vector" in `lp G 2` supported at `i : ι` is the image of the associated element in `E`. -/ @[simp] protected lemma is_hilbert_sum.linear_isometry_equiv_symm_apply_single (hV : is_hilbert_sum 𝕜 E V) {i : ι} (x : G i) : hV.linear_isometry_equiv.symm (lp.single 2 i x) = V i x := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.linear_isometry_apply_single] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G : ι → Type*` and `lp G 2`, a finitely-supported vector in `lp G 2` is the image of the associated finite sum of elements of `E`. -/ @[simp] protected lemma is_hilbert_sum.linear_isometry_equiv_symm_apply_dfinsupp_sum_single (hV : is_hilbert_sum 𝕜 E V) (W₀ : Π₀ (i : ι), G i) : hV.linear_isometry_equiv.symm (W₀.sum (lp.single 2)) = (W₀.sum (λ i, V i)) := by simp [is_hilbert_sum.linear_isometry_equiv, orthogonal_family.linear_isometry_apply_dfinsupp_sum_single] /-- In the canonical isometric isomorphism between a Hilbert sum `E` of `G : ι → Type*` and `lp G 2`, a finitely-supported vector in `lp G 2` is the image of the associated finite sum of elements of `E`. -/ @[simp] protected lemma is_hilbert_sum.linear_isometry_equiv_apply_dfinsupp_sum_single (hV : is_hilbert_sum 𝕜 E V) (W₀ : Π₀ (i : ι), G i) : (hV.linear_isometry_equiv (W₀.sum (λ i, V i)) : Π i, G i) = W₀ := begin rw ← hV.linear_isometry_equiv_symm_apply_dfinsupp_sum_single, rw linear_isometry_equiv.apply_symm_apply, ext i, simp [dfinsupp.sum, lp.single_apply] {contextual := tt}, end /-- Given a total orthonormal family `v : ι → E`, `E` is a Hilbert sum of `λ i : ι, 𝕜` relative to the family of linear isometries `λ i, λ k, k • v i`. -/ lemma orthonormal.is_hilbert_sum {v : ι → E} (hv : orthonormal 𝕜 v) (hsp : ⊤ ≤ (span 𝕜 (set.range v)).topological_closure) : @is_hilbert_sum _ 𝕜 _ _ _ _ (λ i : ι, 𝕜) _ (λ i, linear_isometry.to_span_singleton 𝕜 E (hv.1 i)) := is_hilbert_sum.mk hv.orthogonal_family begin convert hsp, simp [← linear_map.span_singleton_eq_range, ← submodule.span_Union], end lemma submodule.is_hilbert_sum_orthogonal (K : submodule 𝕜 E) [hK : complete_space K] : @is_hilbert_sum _ 𝕜 _ E _ _ (λ b, ((cond b K Kᗮ : submodule 𝕜 E) : Type*)) _ (λ b, (cond b K Kᗮ).subtypeₗᵢ) := begin haveI : Π b, complete_space ((cond b K Kᗮ : submodule 𝕜 E) : Type*), { intro b, cases b; exact orthogonal.complete_space K <|> assumption }, refine is_hilbert_sum.mk_internal _ K.orthogonal_family_self _, refine le_trans _ (submodule.submodule_topological_closure _), rw supr_bool_eq, exact submodule.is_compl_orthogonal_of_complete_space.2 end end is_hilbert_sum /-! ### Hilbert bases -/ section variables (ι) (𝕜) (E) /-- A Hilbert basis on `ι` for an inner product space `E` is an identification of `E` with the `lp` space `ℓ²(ι, 𝕜)`. -/ structure hilbert_basis := of_repr :: (repr : E ≃ₗᵢ[𝕜] ℓ²(ι, 𝕜)) end namespace hilbert_basis instance {ι : Type*} : inhabited (hilbert_basis ι 𝕜 ℓ²(ι, 𝕜)) := ⟨of_repr (linear_isometry_equiv.refl 𝕜 _)⟩ /-- `b i` is the `i`th basis vector. -/ instance : has_coe_to_fun (hilbert_basis ι 𝕜 E) (λ _, ι → E) := { coe := λ b i, b.repr.symm (lp.single 2 i (1:𝕜)) } @[simp] protected lemma repr_symm_single (b : hilbert_basis ι 𝕜 E) (i : ι) : b.repr.symm (lp.single 2 i (1:𝕜)) = b i := rfl @[simp] protected lemma repr_self (b : hilbert_basis ι 𝕜 E) (i : ι) : b.repr (b i) = lp.single 2 i (1:𝕜) := by rw [← b.repr_symm_single, linear_isometry_equiv.apply_symm_apply] protected lemma repr_apply_apply (b : hilbert_basis ι 𝕜 E) (v : E) (i : ι) : b.repr v i = ⟪b i, v⟫ := begin rw [← b.repr.inner_map_map (b i) v, b.repr_self, lp.inner_single_left], simp, end @[simp] protected lemma orthonormal (b : hilbert_basis ι 𝕜 E) : orthonormal 𝕜 b := begin rw orthonormal_iff_ite, intros i j, rw [← b.repr.inner_map_map (b i) (b j), b.repr_self, b.repr_self, lp.inner_single_left, lp.single_apply], simp, end protected lemma has_sum_repr_symm (b : hilbert_basis ι 𝕜 E) (f : ℓ²(ι, 𝕜)) : has_sum (λ i, f i • b i) (b.repr.symm f) := begin suffices H : (λ (i : ι), f i • b i) = (λ (b_1 : ι), (b.repr.symm.to_continuous_linear_equiv) ((λ (i : ι), lp.single 2 i (f i)) b_1)), { rw H, have : has_sum (λ (i : ι), lp.single 2 i (f i)) f := lp.has_sum_single ennreal.two_ne_top f, exact (↑(b.repr.symm.to_continuous_linear_equiv) : ℓ²(ι, 𝕜) →L[𝕜] E).has_sum this }, ext i, apply b.repr.injective, have : lp.single 2 i (f i * 1) = f i • lp.single 2 i 1 := lp.single_smul 2 i (1:𝕜) (f i), rw mul_one at this, rw [linear_isometry_equiv.map_smul, b.repr_self, ← this, linear_isometry_equiv.coe_to_continuous_linear_equiv], exact (b.repr.apply_symm_apply (lp.single 2 i (f i))).symm, end protected lemma has_sum_repr (b : hilbert_basis ι 𝕜 E) (x : E) : has_sum (λ i, b.repr x i • b i) x := by simpa using b.has_sum_repr_symm (b.repr x) @[simp] protected lemma dense_span (b : hilbert_basis ι 𝕜 E) : (span 𝕜 (set.range b)).topological_closure = ⊤ := begin classical, rw eq_top_iff, rintros x -, refine mem_closure_of_tendsto (b.has_sum_repr x) (eventually_of_forall _), intros s, simp only [set_like.mem_coe], refine sum_mem _, rintros i -, refine smul_mem _ _ _, exact subset_span ⟨i, rfl⟩ end protected lemma has_sum_inner_mul_inner (b : hilbert_basis ι 𝕜 E) (x y : E) : has_sum (λ i, ⟪x, b i⟫ * ⟪b i, y⟫) ⟪x, y⟫ := begin convert (b.has_sum_repr y).mapL (innerSL x), ext i, rw [innerSL_apply, b.repr_apply_apply, inner_smul_right, mul_comm] end protected lemma summable_inner_mul_inner (b : hilbert_basis ι 𝕜 E) (x y : E) : summable (λ i, ⟪x, b i⟫ * ⟪b i, y⟫) := (b.has_sum_inner_mul_inner x y).summable protected lemma tsum_inner_mul_inner (b : hilbert_basis ι 𝕜 E) (x y : E) : ∑' i, ⟪x, b i⟫ * ⟪b i, y⟫ = ⟪x, y⟫ := (b.has_sum_inner_mul_inner x y).tsum_eq -- Note : this should be `b.repr` composed with an identification of `lp (λ i : ι, 𝕜) p` with -- `pi_Lp p (λ i : ι, 𝕜)` (in this case with `p = 2`), but we don't have this yet (July 2022). /-- A finite Hilbert basis is an orthonormal basis. -/ protected def to_orthonormal_basis [fintype ι] (b : hilbert_basis ι 𝕜 E) : orthonormal_basis ι 𝕜 E := orthonormal_basis.mk b.orthonormal begin refine eq.ge _, have := (span 𝕜 (finset.univ.image b : set E)).closed_of_finite_dimensional, simpa only [finset.coe_image, finset.coe_univ, set.image_univ, hilbert_basis.dense_span] using this.submodule_topological_closure_eq.symm end @[simp] lemma coe_to_orthonormal_basis [fintype ι] (b : hilbert_basis ι 𝕜 E) : (b.to_orthonormal_basis : ι → E) = b := orthonormal_basis.coe_mk _ _ variables {v : ι → E} (hv : orthonormal 𝕜 v) include hv cplt /-- An orthonormal family of vectors whose span is dense in the whole module is a Hilbert basis. -/ protected def mk (hsp : ⊤ ≤ (span 𝕜 (set.range v)).topological_closure) : hilbert_basis ι 𝕜 E := hilbert_basis.of_repr $ (hv.is_hilbert_sum hsp).linear_isometry_equiv lemma _root_.orthonormal.linear_isometry_equiv_symm_apply_single_one (h i) : (hv.is_hilbert_sum h).linear_isometry_equiv.symm (lp.single 2 i 1) = v i := by rw [is_hilbert_sum.linear_isometry_equiv_symm_apply_single, linear_isometry.to_span_singleton_apply, one_smul] @[simp] protected lemma coe_mk (hsp : ⊤ ≤ (span 𝕜 (set.range v)).topological_closure) : ⇑(hilbert_basis.mk hv hsp) = v := funext $ orthonormal.linear_isometry_equiv_symm_apply_single_one hv _ /-- An orthonormal family of vectors whose span has trivial orthogonal complement is a Hilbert basis. -/ protected def mk_of_orthogonal_eq_bot (hsp : (span 𝕜 (set.range v))ᗮ = ⊥) : hilbert_basis ι 𝕜 E := hilbert_basis.mk hv (by rw [← orthogonal_orthogonal_eq_closure, ← eq_top_iff, orthogonal_eq_top_iff, hsp]) @[simp] protected lemma coe_of_orthogonal_eq_bot_mk (hsp : (span 𝕜 (set.range v))ᗮ = ⊥) : ⇑(hilbert_basis.mk_of_orthogonal_eq_bot hv hsp) = v := hilbert_basis.coe_mk hv _ omit hv -- Note : this should be `b.repr` composed with an identification of `lp (λ i : ι, 𝕜) p` with -- `pi_Lp p (λ i : ι, 𝕜)` (in this case with `p = 2`), but we don't have this yet (July 2022). /-- An orthonormal basis is an Hilbert basis. -/ protected def _root_.orthonormal_basis.to_hilbert_basis [fintype ι] (b : orthonormal_basis ι 𝕜 E) : hilbert_basis ι 𝕜 E := hilbert_basis.mk b.orthonormal $ by simpa only [← orthonormal_basis.coe_to_basis, b.to_basis.span_eq, eq_top_iff] using @subset_closure E _ _ @[simp] lemma _root_.orthonormal_basis.coe_to_hilbert_basis [fintype ι] (b : orthonormal_basis ι 𝕜 E) : (b.to_hilbert_basis : ι → E) = b := hilbert_basis.coe_mk _ _ /-- A Hilbert space admits a Hilbert basis extending a given orthonormal subset. -/ lemma _root_.orthonormal.exists_hilbert_basis_extension {s : set E} (hs : orthonormal 𝕜 (coe : s → E)) : ∃ (w : set E) (b : hilbert_basis w 𝕜 E), s ⊆ w ∧ ⇑b = (coe : w → E) := let ⟨w, hws, hw_ortho, hw_max⟩ := exists_maximal_orthonormal hs in ⟨ w, hilbert_basis.mk_of_orthogonal_eq_bot hw_ortho (by simpa [maximal_orthonormal_iff_orthogonal_complement_eq_bot hw_ortho] using hw_max), hws, hilbert_basis.coe_of_orthogonal_eq_bot_mk _ _ ⟩ variables (𝕜 E) /-- A Hilbert space admits a Hilbert basis. -/ lemma _root_.exists_hilbert_basis : ∃ (w : set E) (b : hilbert_basis w 𝕜 E), ⇑b = (coe : w → E) := let ⟨w, hw, hw', hw''⟩ := (orthonormal_empty 𝕜 E).exists_hilbert_basis_extension in ⟨w, hw, hw''⟩ end hilbert_basis
d75d5d797d435b1795b490d3b2ca99f00eda368b
f5f7e6fae601a5fe3cac7cc3ed353ed781d62419
/src/data/set/lattice.lean
13db8711955f7809f0b3682e88d9eff193ddf508
[ "Apache-2.0" ]
permissive
EdAyers/mathlib
9ecfb2f14bd6caad748b64c9c131befbff0fb4e0
ca5d4c1f16f9c451cf7170b10105d0051db79e1b
refs/heads/master
1,626,189,395,845
1,555,284,396,000
1,555,284,396,000
144,004,030
0
0
Apache-2.0
1,533,727,664,000
1,533,727,663,000
null
UTF-8
Lean
false
false
31,469
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -- QUESTION: can make the first argument in ∀ x ∈ a, ... implicit? -/ import logic.basic data.set.basic data.equiv.basic import order.complete_boolean_algebra category.basic import tactic.finish data.sigma.basic order.galois_connection open function tactic set lattice auto universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} namespace set instance lattice_set : complete_lattice (set α) := { lattice.complete_lattice . le := (⊆), le_refl := subset.refl, le_trans := assume a b c, subset.trans, le_antisymm := assume a b, subset.antisymm, lt := λ x y, x ⊆ y ∧ ¬ y ⊆ x, lt_iff_le_not_le := λ x y, iff.refl _, sup := (∪), le_sup_left := subset_union_left, le_sup_right := subset_union_right, sup_le := assume a b c, union_subset, inf := (∩), inf_le_left := inter_subset_left, inf_le_right := inter_subset_right, le_inf := assume a b c, subset_inter, top := {a | true }, le_top := assume s a h, trivial, bot := ∅, bot_le := assume s a, false.elim, Sup := λs, {a | ∃ t ∈ s, a ∈ t }, le_Sup := assume s t t_in a a_in, ⟨t, ⟨t_in, a_in⟩⟩, Sup_le := assume s t h a ⟨t', ⟨t'_in, a_in⟩⟩, h t' t'_in a_in, Inf := λs, {a | ∀ t ∈ s, a ∈ t }, le_Inf := assume s t h a a_in t' t'_in, h t' t'_in a_in, Inf_le := assume s t t_in a h, h _ t_in } instance : distrib_lattice (set α) := { le_sup_inf := λ s t u x, or_and_distrib_left.2, ..set.lattice_set } lemma monotone_image {f : α → β} : monotone (image f) := assume s t, assume h : s ⊆ t, image_subset _ h theorem monotone_inter [preorder β] {f g : β → set α} (hf : monotone f) (hg : monotone g) : monotone (λx, f x ∩ g x) := assume b₁ b₂ h, inter_subset_inter (hf h) (hg h) theorem monotone_union [preorder β] {f g : β → set α} (hf : monotone f) (hg : monotone g) : monotone (λx, f x ∪ g x) := assume b₁ b₂ h, union_subset_union (hf h) (hg h) theorem monotone_set_of [preorder α] {p : α → β → Prop} (hp : ∀b, monotone (λa, p a b)) : monotone (λa, {b | p a b}) := assume a a' h b, hp b h section galois_connection variables {f : α → β} protected lemma image_preimage : galois_connection (image f) (preimage f) := assume a b, image_subset_iff def kern_image (f : α → β) (s : set α) : set β := {y | ∀x, f x = y → x ∈ s} protected lemma preimage_kern_image : galois_connection (preimage f) (kern_image f) := assume a b, ⟨ assume h x hx y hy, have f y ∈ a, from hy.symm ▸ hx, h this, assume h x (hx : f x ∈ a), h hx x rfl⟩ end galois_connection /- union and intersection over a family of sets indexed by a type -/ /-- Indexed union of a family of sets -/ @[reducible] def Union (s : ι → set β) : set β := supr s /-- Indexed intersection of a family of sets -/ @[reducible] def Inter (s : ι → set β) : set β := infi s notation `⋃` binders `, ` r:(scoped f, Union f) := r notation `⋂` binders `, ` r:(scoped f, Inter f) := r @[simp] theorem mem_Union {x : β} {s : ι → set β} : x ∈ Union s ↔ ∃ i, x ∈ s i := ⟨assume ⟨t, ⟨⟨a, (t_eq : s a = t)⟩, (h : x ∈ t)⟩⟩, ⟨a, t_eq.symm ▸ h⟩, assume ⟨a, h⟩, ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ /- alternative proof: dsimp [Union, supr, Sup]; simp -/ -- TODO: more rewrite rules wrt forall / existentials and logical connectives -- TODO: also eliminate ∃i, ... ∧ i = t ∧ ... @[simp] theorem mem_Inter {x : β} {s : ι → set β} : x ∈ Inter s ↔ ∀ i, x ∈ s i := ⟨assume (h : ∀a ∈ {a : set β | ∃i, s i = a}, x ∈ a) a, h (s a) ⟨a, rfl⟩, assume h t ⟨a, (eq : s a = t)⟩, eq ▸ h a⟩ theorem Union_subset {s : ι → set β} {t : set β} (h : ∀ i, s i ⊆ t) : (⋃ i, s i) ⊆ t := -- TODO: should be simpler when sets' order is based on lattices @supr_le (set β) _ set.lattice_set _ _ h theorem Union_subset_iff {α : Sort u} {s : α → set β} {t : set β} : (⋃ i, s i) ⊆ t ↔ (∀ i, s i ⊆ t):= ⟨assume h i, subset.trans (le_supr s _) h, Union_subset⟩ theorem mem_Inter_of_mem {α : Sort u} {x : β} {s : α → set β} : (∀ i, x ∈ s i) → (x ∈ ⋂ i, s i) := assume h t ⟨a, (eq : s a = t)⟩, eq ▸ h a theorem subset_Inter {t : set β} {s : α → set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := -- TODO: should be simpler when sets' order is based on lattices @le_infi (set β) _ set.lattice_set _ _ h theorem subset_Union : ∀ (s : ι → set β) (i : ι), s i ⊆ (⋃ i, s i) := le_supr theorem Inter_subset : ∀ (s : ι → set β) (i : ι), (⋂ i, s i) ⊆ s i := infi_le theorem Union_const [inhabited ι] (s : set β) : (⋃ i:ι, s) = s := ext $ by simp theorem Inter_const [inhabited ι] (s : set β) : (⋂ i:ι, s) = s := ext $ by simp @[simp] -- complete_boolean_algebra theorem compl_Union (s : ι → set β) : - (⋃ i, s i) = (⋂ i, - s i) := ext (by simp) -- classical -- complete_boolean_algebra theorem compl_Inter (s : ι → set β) : -(⋂ i, s i) = (⋃ i, - s i) := ext (λ x, by simp [classical.not_forall]) -- classical -- complete_boolean_algebra theorem Union_eq_comp_Inter_comp (s : ι → set β) : (⋃ i, s i) = - (⋂ i, - s i) := by simp [compl_Inter, compl_compl] -- classical -- complete_boolean_algebra theorem Inter_eq_comp_Union_comp (s : ι → set β) : (⋂ i, s i) = - (⋃ i, -s i) := by simp [compl_compl] theorem inter_Union_left (s : set β) (t : ι → set β) : s ∩ (⋃ i, t i) = ⋃ i, s ∩ t i := ext $ by simp theorem inter_Union_right (s : set β) (t : ι → set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := ext $ by simp theorem Union_union_distrib (s : ι → set β) (t : ι → set β) : (⋃ i, s i ∪ t i) = (⋃ i, s i) ∪ (⋃ i, t i) := ext $ by simp [exists_or_distrib] theorem Inter_inter_distrib (s : ι → set β) (t : ι → set β) : (⋂ i, s i ∩ t i) = (⋂ i, s i) ∩ (⋂ i, t i) := ext $ by simp [forall_and_distrib] theorem union_Union_left [inhabited ι] (s : set β) (t : ι → set β) : s ∪ (⋃ i, t i) = ⋃ i, s ∪ t i := by rw [Union_union_distrib, Union_const] theorem union_Union_right [inhabited ι] (s : set β) (t : ι → set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := by rw [Union_union_distrib, Union_const] theorem inter_Inter_left [inhabited ι] (s : set β) (t : ι → set β) : s ∩ (⋂ i, t i) = ⋂ i, s ∩ t i := by rw [Inter_inter_distrib, Inter_const] theorem inter_Inter_right [inhabited ι] (s : set β) (t : ι → set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := by rw [Inter_inter_distrib, Inter_const] -- classical theorem union_Inter_left (s : set β) (t : ι → set β) : s ∪ (⋂ i, t i) = ⋂ i, s ∪ t i := ext $ assume x, by simp [classical.forall_or_distrib_left] theorem diff_Union_right (s : set β) (t : ι → set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := inter_Union_right _ _ theorem diff_Union_left [inhabited ι] (s : set β) (t : ι → set β) : s \ (⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_Union, inter_Inter_left]; refl theorem diff_Inter_left (s : set β) (t : ι → set β) : s \ (⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_Inter, inter_Union_left]; refl /- bounded unions and intersections -/ theorem mem_bUnion_iff {s : set α} {t : α → set β} {y : β} : y ∈ (⋃ x ∈ s, t x) ↔ ∃ x, x ∈ s ∧ y ∈ t x := by simp theorem mem_bInter_iff {s : set α} {t : α → set β} {y : β} : y ∈ (⋂ x ∈ s, t x) ↔ ∀ x ∈ s, y ∈ t x := by simp theorem mem_bUnion {s : set α} {t : α → set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := by simp; exact ⟨x, ⟨xs, ytx⟩⟩ theorem mem_bInter {s : set α} {t : α → set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := by simp; assumption theorem bUnion_subset {s : set α} {t : set β} {u : α → set β} (h : ∀ x ∈ s, u x ⊆ t) : (⋃ x ∈ s, u x) ⊆ t := show (⨆ x ∈ s, u x) ≤ t, -- TODO: should not be necessary when sets' order is based on lattices from supr_le $ assume x, supr_le (h x) theorem subset_bInter {s : set α} {t : set β} {u : α → set β} (h : ∀ x ∈ s, t ⊆ u x) : t ⊆ (⋂ x ∈ s, u x) := show t ≤ (⨅ x ∈ s, u x), -- TODO: should not be necessary when sets' order is based on lattices from le_infi $ assume x, le_infi (h x) theorem subset_bUnion_of_mem {s : set α} {u : α → set β} {x : α} (xs : x ∈ s) : u x ⊆ (⋃ x ∈ s, u x) := show u x ≤ (⨆ x ∈ s, u x), from le_supr_of_le x $ le_supr _ xs theorem bInter_subset_of_mem {s : set α} {t : α → set β} {x : α} (xs : x ∈ s) : (⋂ x ∈ s, t x) ⊆ t x := show (⨅x ∈ s, t x) ≤ t x, from infi_le_of_le x $ infi_le _ xs theorem bUnion_subset_bUnion_left {s s' : set α} {t : α → set β} (h : s ⊆ s') : (⋃ x ∈ s, t x) ⊆ (⋃ x ∈ s', t x) := bUnion_subset (λ x xs, subset_bUnion_of_mem (h xs)) theorem bInter_subset_bInter_left {s s' : set α} {t : α → set β} (h : s' ⊆ s) : (⋂ x ∈ s, t x) ⊆ (⋂ x ∈ s', t x) := subset_bInter (λ x xs, bInter_subset_of_mem (h xs)) theorem bUnion_subset_bUnion_right {s : set α} {t1 t2 : α → set β} (h : ∀ x ∈ s, t1 x ⊆ t2 x) : (⋃ x ∈ s, t1 x) ⊆ (⋃ x ∈ s, t2 x) := bUnion_subset (λ x xs, subset.trans (h x xs) (subset_bUnion_of_mem xs)) theorem bInter_subset_bInter_right {s : set α} {t1 t2 : α → set β} (h : ∀ x ∈ s, t1 x ⊆ t2 x) : (⋂ x ∈ s, t1 x) ⊆ (⋂ x ∈ s, t2 x) := subset_bInter (λ x xs, subset.trans (bInter_subset_of_mem xs) (h x xs)) theorem bUnion_eq_Union (s : set α) (t : α → set β) : (⋃ x ∈ s, t x) = (⋃ x : s, t x.1) := set.ext $ by simp theorem bInter_eq_Inter (s : set α) (t : α → set β) : (⋂ x ∈ s, t x) = (⋂ x : s, t x.1) := set.ext $ by simp @[simp] theorem bInter_empty (u : α → set β) : (⋂ x ∈ (∅ : set α), u x) = univ := show (⨅x ∈ (∅ : set α), u x) = ⊤, -- simplifier should be able to rewrite x ∈ ∅ to false. from infi_emptyset @[simp] theorem bInter_univ (u : α → set β) : (⋂ x ∈ @univ α, u x) = ⋂ x, u x := infi_univ -- TODO(Jeremy): here is an artifact of the the encoding of bounded intersection: -- without dsimp, the next theorem fails to type check, because there is a lambda -- in a type that needs to be contracted. Using simp [eq_of_mem_singleton xa] also works. @[simp] theorem bInter_singleton (a : α) (s : α → set β) : (⋂ x ∈ ({a} : set α), s x) = s a := show (⨅ x ∈ ({a} : set α), s x) = s a, by simp theorem bInter_union (s t : set α) (u : α → set β) : (⋂ x ∈ s ∪ t, u x) = (⋂ x ∈ s, u x) ∩ (⋂ x ∈ t, u x) := show (⨅ x ∈ s ∪ t, u x) = (⨅ x ∈ s, u x) ⊓ (⨅ x ∈ t, u x), from infi_union -- TODO(Jeremy): simp [insert_eq, bInter_union] doesn't work @[simp] theorem bInter_insert (a : α) (s : set α) (t : α → set β) : (⋂ x ∈ insert a s, t x) = t a ∩ (⋂ x ∈ s, t x) := begin rw insert_eq, simp [bInter_union] end -- TODO(Jeremy): another example of where an annotation is needed theorem bInter_pair (a b : α) (s : α → set β) : (⋂ x ∈ ({a, b} : set α), s x) = s a ∩ s b := by rw insert_of_has_insert; simp [inter_comm] @[simp] theorem bUnion_empty (s : α → set β) : (⋃ x ∈ (∅ : set α), s x) = ∅ := supr_emptyset @[simp] theorem bUnion_univ (s : α → set β) : (⋃ x ∈ @univ α, s x) = ⋃ x, s x := supr_univ @[simp] theorem bUnion_singleton (a : α) (s : α → set β) : (⋃ x ∈ ({a} : set α), s x) = s a := supr_singleton @[simp] theorem bUnion_of_singleton (s : set α) : (⋃ x ∈ s, {x}) = s := ext $ by simp theorem bUnion_union (s t : set α) (u : α → set β) : (⋃ x ∈ s ∪ t, u x) = (⋃ x ∈ s, u x) ∪ (⋃ x ∈ t, u x) := supr_union -- TODO(Jeremy): once again, simp doesn't do it alone. @[simp] theorem bUnion_insert (a : α) (s : set α) (t : α → set β) : (⋃ x ∈ insert a s, t x) = t a ∪ (⋃ x ∈ s, t x) := begin rw [insert_eq], simp [bUnion_union] end theorem bUnion_pair (a b : α) (s : α → set β) : (⋃ x ∈ ({a, b} : set α), s x) = s a ∪ s b := by rw insert_of_has_insert; simp [union_comm] @[simp] -- complete_boolean_algebra theorem compl_bUnion (s : set α) (t : α → set β) : - (⋃ i ∈ s, t i) = (⋂ i ∈ s, - t i) := ext (λ x, by simp) -- classical -- complete_boolean_algebra theorem compl_bInter (s : set α) (t : α → set β) : -(⋂ i ∈ s, t i) = (⋃ i ∈ s, - t i) := ext (λ x, by simp [classical.not_forall]) /-- Intersection of a set of sets. -/ @[reducible] def sInter (S : set (set α)) : set α := Inf S prefix `⋂₀`:110 := sInter theorem mem_sUnion_of_mem {x : α} {t : set α} {S : set (set α)} (hx : x ∈ t) (ht : t ∈ S) : x ∈ ⋃₀ S := ⟨t, ⟨ht, hx⟩⟩ @[simp] theorem mem_sUnion {x : α} {S : set (set α)} : x ∈ ⋃₀ S ↔ ∃t ∈ S, x ∈ t := iff.rfl -- is this theorem really necessary? theorem not_mem_of_not_mem_sUnion {x : α} {t : set α} {S : set (set α)} (hx : x ∉ ⋃₀ S) (ht : t ∈ S) : x ∉ t := λ h, hx ⟨t, ht, h⟩ @[simp] theorem mem_sInter {x : α} {S : set (set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := iff.rfl theorem sInter_subset_of_mem {S : set (set α)} {t : set α} (tS : t ∈ S) : ⋂₀ S ⊆ t := Inf_le tS theorem subset_sUnion_of_mem {S : set (set α)} {t : set α} (tS : t ∈ S) : t ⊆ ⋃₀ S := le_Sup tS theorem sUnion_subset {S : set (set α)} {t : set α} (h : ∀t' ∈ S, t' ⊆ t) : (⋃₀ S) ⊆ t := Sup_le h theorem sUnion_subset_iff {s : set (set α)} {t : set α} : ⋃₀ s ⊆ t ↔ ∀t' ∈ s, t' ⊆ t := ⟨assume h t' ht', subset.trans (subset_sUnion_of_mem ht') h, sUnion_subset⟩ theorem subset_sInter {S : set (set α)} {t : set α} (h : ∀t' ∈ S, t ⊆ t') : t ⊆ (⋂₀ S) := le_Inf h theorem sUnion_subset_sUnion {S T : set (set α)} (h : S ⊆ T) : ⋃₀ S ⊆ ⋃₀ T := sUnion_subset $ λ s hs, subset_sUnion_of_mem (h hs) theorem sInter_subset_sInter {S T : set (set α)} (h : S ⊆ T) : ⋂₀ T ⊆ ⋂₀ S := subset_sInter $ λ s hs, sInter_subset_of_mem (h hs) @[simp] theorem sUnion_empty : ⋃₀ ∅ = (∅ : set α) := Sup_empty @[simp] theorem sInter_empty : ⋂₀ ∅ = (univ : set α) := Inf_empty @[simp] theorem sUnion_singleton (s : set α) : ⋃₀ {s} = s := Sup_singleton @[simp] theorem sInter_singleton (s : set α) : ⋂₀ {s} = s := Inf_singleton theorem sUnion_union (S T : set (set α)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T := Sup_union theorem sInter_union (S T : set (set α)) : ⋂₀ (S ∪ T) = ⋂₀ S ∩ ⋂₀ T := Inf_union @[simp] theorem sUnion_insert (s : set α) (T : set (set α)) : ⋃₀ (insert s T) = s ∪ ⋃₀ T := Sup_insert @[simp] theorem sInter_insert (s : set α) (T : set (set α)) : ⋂₀ (insert s T) = s ∩ ⋂₀ T := Inf_insert theorem sUnion_pair (s t : set α) : ⋃₀ {s, t} = s ∪ t := (sUnion_insert _ _).trans $ by rw [union_comm, sUnion_singleton] theorem sInter_pair (s t : set α) : ⋂₀ {s, t} = s ∩ t := (sInter_insert _ _).trans $ by rw [inter_comm, sInter_singleton] @[simp] theorem sUnion_image (f : α → set β) (s : set α) : ⋃₀ (f '' s) = ⋃ x ∈ s, f x := Sup_image @[simp] theorem sInter_image (f : α → set β) (s : set α) : ⋂₀ (f '' s) = ⋂ x ∈ s, f x := Inf_image @[simp] theorem sUnion_range (f : ι → set β) : ⋃₀ (range f) = ⋃ x, f x := Sup_range @[simp] theorem sInter_range (f : ι → set β) : ⋂₀ (range f) = ⋂ x, f x := Inf_range theorem compl_sUnion (S : set (set α)) : - ⋃₀ S = ⋂₀ (compl '' S) := set.ext $ assume x, ⟨assume : ¬ (∃s∈S, x ∈ s), assume s h, match s, h with ._, ⟨t, hs, rfl⟩ := assume h, this ⟨t, hs, h⟩ end, assume : ∀s, s ∈ compl '' S → x ∈ s, assume ⟨t, tS, xt⟩, this (compl t) (mem_image_of_mem _ tS) xt⟩ -- classical theorem sUnion_eq_compl_sInter_compl (S : set (set α)) : ⋃₀ S = - ⋂₀ (compl '' S) := by rw [←compl_compl (⋃₀ S), compl_sUnion] -- classical theorem compl_sInter (S : set (set α)) : - ⋂₀ S = ⋃₀ (compl '' S) := by rw [sUnion_eq_compl_sInter_compl, compl_compl_image] -- classical theorem sInter_eq_comp_sUnion_compl (S : set (set α)) : ⋂₀ S = -(⋃₀ (compl '' S)) := by rw [←compl_compl (⋂₀ S), compl_sInter] theorem inter_empty_of_inter_sUnion_empty {s t : set α} {S : set (set α)} (hs : t ∈ S) (h : s ∩ ⋃₀ S = ∅) : s ∩ t = ∅ := eq_empty_of_subset_empty $ by rw ← h; exact inter_subset_inter_right _ (subset_sUnion_of_mem hs) theorem Union_eq_sUnion_range (s : α → set β) : (⋃ i, s i) = ⋃₀ (range s) := by rw [← image_univ, sUnion_image]; simp theorem Inter_eq_sInter_range {α I : Type} (s : I → set α) : (⋂ i, s i) = ⋂₀ (range s) := by rw [← image_univ, sInter_image]; simp theorem range_sigma_eq_Union_range {γ : α → Type*} (f : sigma γ → β) : range f = ⋃ a, range (λ b, f ⟨a, b⟩) := set.ext $ by simp theorem Union_eq_range_sigma (s : α → set β) : (⋃ i, s i) = range (λ a : Σ i, s i, a.2) := by simp [set.ext_iff] lemma sUnion_mono {s t : set (set α)} (h : s ⊆ t) : (⋃₀ s) ⊆ (⋃₀ t) := sUnion_subset $ assume t' ht', subset_sUnion_of_mem $ h ht' lemma Union_subset_Union {s t : ι → set α} (h : ∀i, s i ⊆ t i) : (⋃i, s i) ⊆ (⋃i, t i) := @supr_le_supr (set α) ι _ s t h lemma Union_subset_Union2 {ι₂ : Sort*} {s : ι → set α} {t : ι₂ → set α} (h : ∀i, ∃j, s i ⊆ t j) : (⋃i, s i) ⊆ (⋃i, t i) := @supr_le_supr2 (set α) ι ι₂ _ s t h lemma Union_subset_Union_const {ι₂ : Sort x} {s : set α} (h : ι → ι₂) : (⋃ i:ι, s) ⊆ (⋃ j:ι₂, s) := @supr_le_supr_const (set α) ι ι₂ _ s h theorem bUnion_subset_Union (s : set α) (t : α → set β) : (⋃ x ∈ s, t x) ⊆ (⋃ x, t x) := Union_subset_Union $ λ i, Union_subset $ λ h, by refl lemma sUnion_eq_bUnion {s : set (set α)} : (⋃₀ s) = (⋃ (i : set α) (h : i ∈ s), i) := set.ext $ by simp lemma sInter_eq_bInter {s : set (set α)} : (⋂₀ s) = (⋂ (i : set α) (h : i ∈ s), i) := set.ext $ by simp lemma sUnion_eq_Union {s : set (set α)} : (⋃₀ s) = (⋃ (i : s), i.1) := set.ext $ λ x, by simp lemma sInter_eq_Inter {s : set (set α)} : (⋂₀ s) = (⋂ (i : s), i.1) := set.ext $ λ x, by simp lemma union_eq_Union {s₁ s₂ : set α} : s₁ ∪ s₂ = ⋃ b : bool, cond b s₁ s₂ := set.ext $ λ x, by simp [bool.exists_bool, or_comm] lemma inter_eq_Inter {s₁ s₂ : set α} : s₁ ∩ s₂ = ⋂ b : bool, cond b s₁ s₂ := set.ext $ λ x, by simp [bool.forall_bool, and_comm] instance : complete_boolean_algebra (set α) := { neg := compl, sub := (\), inf_neg_eq_bot := assume s, ext $ assume x, ⟨assume ⟨h, nh⟩, nh h, false.elim⟩, sup_neg_eq_top := assume s, ext $ assume x, ⟨assume h, trivial, assume _, classical.em $ x ∈ s⟩, le_sup_inf := distrib_lattice.le_sup_inf, sub_eq := assume x y, rfl, infi_sup_le_sup_Inf := assume s t x, show x ∈ (⋂ b ∈ t, s ∪ b) → x ∈ s ∪ (⋂₀ t), by simp; exact assume h, or.imp_right (assume hn : x ∉ s, assume i hi, or.resolve_left (h i hi) hn) (classical.em $ x ∈ s), inf_Sup_le_supr_inf := assume s t x, show x ∈ s ∩ (⋃₀ t) → x ∈ (⋃ b ∈ t, s ∩ b), by simp [-and_imp, and.left_comm], ..set.lattice_set } lemma sInter_union_sInter {S T : set (set α)} : (⋂₀S) ∪ (⋂₀T) = (⋂p ∈ set.prod S T, (p : (set α) × (set α)).1 ∪ p.2) := Inf_sup_Inf lemma sUnion_inter_sUnion {s t : set (set α)} : (⋃₀s) ∩ (⋃₀t) = (⋃p ∈ set.prod s t, (p : (set α) × (set α )).1 ∩ p.2) := Sup_inf_Sup lemma sInter_bUnion {S : set (set α)} {T : set α → set (set α)} (hT : ∀s∈S, s = ⋂₀ T s) : ⋂₀ (⋃s∈S, T s) = ⋂₀ S := begin ext, simp only [and_imp, exists_prop, set.mem_sInter, set.mem_Union, exists_imp_distrib], split, { assume H s sS, rw [hT s sS, mem_sInter], assume t tTs, apply H t s sS tTs }, { assume H t s sS tTs, have xs : x ∈ s := H s sS, have : s ⊆ t, { have Z := hT s sS, rw sInter_eq_bInter at Z, rw Z, apply bInter_subset_of_mem, exact tTs }, exact this xs } end lemma sUnion_bUnion {S : set (set α)} {T : set α → set (set α)} (hT : ∀s∈S, s = ⋃₀ T s) : ⋃₀ (⋃s∈S, T s) = ⋃₀ S := begin ext, simp only [exists_prop, set.mem_Union, set.mem_set_of_eq], split, { rintros ⟨t, ⟨⟨s, ⟨sS, tTs⟩⟩, xt⟩⟩, refine ⟨s, ⟨sS, _⟩⟩, rw hT s sS, exact subset_sUnion_of_mem tTs xt }, { rintros ⟨s, ⟨sS, xs⟩⟩, rw hT s sS at xs, rcases mem_sUnion.1 xs with ⟨t, tTs, xt⟩, exact ⟨t, ⟨⟨s, ⟨sS, tTs⟩⟩, xt⟩⟩ } end @[simp] theorem sub_eq_diff (s t : set α) : s - t = s \ t := rfl section variables {p : Prop} {μ : p → set α} @[simp] lemma Inter_pos (hp : p) : (⋂h:p, μ h) = μ hp := infi_pos hp @[simp] lemma Inter_neg (hp : ¬ p) : (⋂h:p, μ h) = univ := infi_neg hp @[simp] lemma Union_pos (hp : p) : (⋃h:p, μ h) = μ hp := supr_pos hp @[simp] lemma Union_neg (hp : ¬ p) : (⋃h:p, μ h) = ∅ := supr_neg hp @[simp] lemma Union_empty {ι : Sort*} : (⋃i:ι, ∅:set α) = ∅ := supr_bot @[simp] lemma Inter_univ {ι : Sort*} : (⋂i:ι, univ:set α) = univ := infi_top end section image lemma image_Union {f : α → β} {s : ι → set α} : f '' (⋃ i, s i) = (⋃i, f '' s i) := begin apply set.ext, intro x, simp [image, exists_and_distrib_right.symm, -exists_and_distrib_right], exact exists_swap end lemma univ_subtype {p : α → Prop} : (univ : set (subtype p)) = (⋃x (h : p x), {⟨x, h⟩}) := set.ext $ assume ⟨x, h⟩, by simp [h] lemma range_eq_Union {ι} (f : ι → α) : range f = (⋃i, {f i}) := set.ext $ assume a, by simp [@eq_comm α a] lemma image_eq_Union (f : α → β) (s : set α) : f '' s = (⋃i∈s, {f i}) := set.ext $ assume b, by simp [@eq_comm β b] lemma bUnion_range {f : ι → α} {g : α → set β} : (⋃x ∈ range f, g x) = (⋃y, g (f y)) := by rw [← sUnion_image, ← range_comp, sUnion_range] lemma bInter_range {f : ι → α} {g : α → set β} : (⋂x ∈ range f, g x) = (⋂y, g (f y)) := by rw [← sInter_image, ← range_comp, sInter_range] variables {s : set γ} {f : γ → α} {g : α → set β} lemma bUnion_image : (⋃x∈ (f '' s), g x) = (⋃y ∈ s, g (f y)) := by rw [← sUnion_image, ← image_comp, sUnion_image] lemma bInter_image : (⋂x∈ (f '' s), g x) = (⋂y ∈ s, g (f y)) := by rw [← sInter_image, ← image_comp, sInter_image] end image section preimage theorem monotone_preimage {f : α → β} : monotone (preimage f) := assume a b h, preimage_mono h @[simp] theorem preimage_Union {ι : Sort w} {f : α → β} {s : ι → set β} : preimage f (⋃i, s i) = (⋃i, preimage f (s i)) := set.ext $ by simp [preimage] theorem preimage_bUnion {ι} {f : α → β} {s : set ι} {t : ι → set β} : preimage f (⋃i ∈ s, t i) = (⋃i ∈ s, preimage f (t i)) := by simp @[simp] theorem preimage_sUnion {f : α → β} {s : set (set β)} : preimage f (⋃₀ s) = (⋃t ∈ s, preimage f t) := set.ext $ by simp [preimage] lemma preimage_Inter {ι : Sort*} {s : ι → set β} {f : α → β} : f ⁻¹' (⋂ i, s i) = (⋂ i, f ⁻¹' s i) := by ext; simp lemma preimage_bInter {s : γ → set β} {t : set γ} {f : α → β} : f ⁻¹' (⋂ i∈t, s i) = (⋂ i∈t, f ⁻¹' s i) := by ext; simp end preimage section seq def seq (s : set (α → β)) (t : set α) : set β := {b | ∃f∈s, ∃a∈t, (f : α → β) a = b} lemma seq_def {s : set (α → β)} {t : set α} : seq s t = ⋃f∈s, f '' t := set.ext $ by simp [seq] @[simp] lemma mem_seq_iff {s : set (α → β)} {t : set α} {b : β} : b ∈ seq s t ↔ ∃ (f ∈ s) (a ∈ t), (f : α → β) a = b := iff.refl _ lemma seq_subset {s : set (α → β)} {t : set α} {u : set β} : seq s t ⊆ u ↔ (∀f∈s, ∀a∈t, (f : α → β) a ∈ u) := iff.intro (assume h f hf a ha, h ⟨f, hf, a, ha, rfl⟩) (assume h b ⟨f, hf, a, ha, eq⟩, eq ▸ h f hf a ha) lemma seq_mono {s₀ s₁ : set (α → β)} {t₀ t₁ : set α} (hs : s₀ ⊆ s₁) (ht : t₀ ⊆ t₁) : seq s₀ t₀ ⊆ seq s₁ t₁ := assume b ⟨f, hf, a, ha, eq⟩, ⟨f, hs hf, a, ht ha, eq⟩ lemma singleton_seq {f : α → β} {t : set α} : set.seq {f} t = f '' t := set.ext $ by simp lemma seq_singleton {s : set (α → β)} {a : α} : set.seq s {a} = (λf:α→β, f a) '' s := set.ext $ by simp lemma seq_seq {s : set (β → γ)} {t : set (α → β)} {u : set α} : seq s (seq t u) = seq (seq ((∘) '' s) t) u := begin refine set.ext (assume c, iff.intro _ _), { rintros ⟨f, hfs, b, ⟨g, hg, a, hau, rfl⟩, rfl⟩, exact ⟨f ∘ g, ⟨(∘) f, mem_image_of_mem _ hfs, g, hg, rfl⟩, a, hau, rfl⟩ }, { rintros ⟨fg, ⟨fc, ⟨f, hfs, rfl⟩, g, hgt, rfl⟩, a, ha, rfl⟩, exact ⟨f, hfs, g a, ⟨g, hgt, a, ha, rfl⟩, rfl⟩ } end lemma image_seq {f : β → γ} {s : set (α → β)} {t : set α} : f '' seq s t = seq ((∘) f '' s) t := by rw [← singleton_seq, ← singleton_seq, seq_seq, image_singleton] lemma prod_eq_seq {s : set α} {t : set β} : set.prod s t = (prod.mk '' s).seq t := begin ext ⟨a, b⟩, split, { rintros ⟨ha, hb⟩, exact ⟨prod.mk a, ⟨a, ha, rfl⟩, b, hb, rfl⟩ }, { rintros ⟨f, ⟨x, hx, rfl⟩, y, hy, eq⟩, rw ← eq, exact ⟨hx, hy⟩ } end lemma prod_image_seq_comm (s : set α) (t : set β) : (prod.mk '' s).seq t = seq ((λb a, (a, b)) '' t) s := by rw [← prod_eq_seq, ← image_swap_prod, prod_eq_seq, image_seq, ← image_comp] end seq theorem monotone_prod [preorder α] {f : α → set β} {g : α → set γ} (hf : monotone f) (hg : monotone g) : monotone (λx, set.prod (f x) (g x)) := assume a b h, prod_mono (hf h) (hg h) instance : monad set := { pure := λ(α : Type u) a, {a}, bind := λ(α β : Type u) s f, ⋃i∈s, f i, seq := λ(α β : Type u), set.seq, map := λ(α β : Type u), set.image } instance : is_lawful_monad set := { pure_bind := assume α β x f, by simp, bind_assoc := assume α β γ s f g, set.ext $ assume a, by simp [exists_and_distrib_right.symm, -exists_and_distrib_right, exists_and_distrib_left.symm, -exists_and_distrib_left, and_assoc]; exact exists_swap, id_map := assume α, id_map, bind_pure_comp_eq_map := assume α β f s, set.ext $ by simp [set.image, eq_comm], bind_map_eq_seq := assume α β s t, by simp [seq_def] } instance : is_comm_applicative (set : Type u → Type u) := ⟨ assume α β s t, prod_image_seq_comm s t ⟩ section monad variables {α' β' : Type u} {s : set α'} {f : α' → set β'} {g : set (α' → β')} @[simp] lemma bind_def : s >>= f = ⋃i∈s, f i := rfl @[simp] lemma fmap_eq_image (f : α' → β') : f <$> s = f '' s := rfl @[simp] lemma seq_eq_set_seq {α β : Type*} (s : set (α → β)) (t : set α) : s <*> t = s.seq t := rfl @[simp] lemma pure_def (a : α) : (pure a : set α) = {a} := rfl end monad section pi lemma pi_def {α : Type*} {π : α → Type*} (i : set α) (s : Πa, set (π a)) : pi i s = (⋂ a∈i, ((λf:(Πa, π a), f a) ⁻¹' (s a))) := by ext; simp [pi] end pi end set /- disjoint sets -/ section disjoint variable [semilattice_inf_bot α] /-- Two elements of a lattice are disjoint if their inf is the bottom element. (This generalizes disjoint sets, viewed as members of the subset lattice.) -/ def disjoint (a b : α) : Prop := a ⊓ b ≤ ⊥ theorem disjoint.eq_bot {a b : α} (h : disjoint a b) : a ⊓ b = ⊥ := eq_bot_iff.2 h theorem disjoint_iff {a b : α} : disjoint a b ↔ a ⊓ b = ⊥ := eq_bot_iff.symm theorem disjoint.comm {a b : α} : disjoint a b ↔ disjoint b a := by rw [disjoint, disjoint, inf_comm] theorem disjoint.symm {a b : α} : disjoint a b → disjoint b a := disjoint.comm.1 @[simp] theorem disjoint_bot_left {a : α} : disjoint ⊥ a := disjoint_iff.2 bot_inf_eq @[simp] theorem disjoint_bot_right {a : α} : disjoint a ⊥ := disjoint_iff.2 inf_bot_eq theorem disjoint_mono {a b c d : α} (h₁ : a ≤ b) (h₂ : c ≤ d) : disjoint b d → disjoint a c := le_trans (inf_le_inf h₁ h₂) theorem disjoint_mono_left {a b c : α} (h : a ≤ b) : disjoint b c → disjoint a c := disjoint_mono h (le_refl _) theorem disjoint_mono_right {a b c : α} (h : b ≤ c) : disjoint a c → disjoint a b := disjoint_mono (le_refl _) h end disjoint namespace set protected theorem disjoint_iff {s t : set α} : disjoint s t ↔ s ∩ t ⊆ ∅ := iff.refl _ theorem disjoint_diff {a b : set α} : disjoint a (b \ a) := disjoint_iff.2 (inter_diff_self _ _) theorem disjoint_compl (s : set α) : disjoint s (-s) := assume a ⟨h₁, h₂⟩, h₂ h₁ theorem disjoint_singleton_left {a : α} {s : set α} : disjoint {a} s ↔ a ∉ s := by simp [set.disjoint_iff, subset_def]; exact iff.rfl theorem disjoint_singleton_right {a : α} {s : set α} : disjoint s {a} ↔ a ∉ s := by rw [disjoint.comm]; exact disjoint_singleton_left theorem disjoint_image_image {f : β → α} {g : γ → α} {s : set β} {t : set γ} (h : ∀b∈s, ∀c∈t, f b ≠ g c) : disjoint (f '' s) (g '' t) := by rintros a ⟨⟨b, hb, eq⟩, ⟨c, hc, rfl⟩⟩; exact h b hb c hc eq end set namespace set variables (t : α → set β) def sigma_to_Union (x : Σi, t i) : (⋃i, t i) := ⟨x.2, mem_Union.2 ⟨x.1, x.2.2⟩⟩ lemma surjective_sigma_to_Union : surjective (sigma_to_Union t) | ⟨b, hb⟩ := have ∃a, b ∈ t a, by simpa using hb, let ⟨a, hb⟩ := this in ⟨⟨a, ⟨b, hb⟩⟩, rfl⟩ lemma injective_sigma_to_Union (h : ∀i j, i ≠ j → disjoint (t i) (t j)) : injective (sigma_to_Union t) | ⟨a₁, ⟨b₁, h₁⟩⟩ ⟨a₂, ⟨b₂, h₂⟩⟩ eq := have b_eq : b₁ = b₂, from congr_arg subtype.val eq, have a_eq : a₁ = a₂, from classical.by_contradiction $ assume ne, have b₁ ∈ t a₁ ∩ t a₂, from ⟨h₁, b_eq.symm ▸ h₂⟩, h _ _ ne this, sigma.eq a_eq $ subtype.eq $ by subst b_eq; subst a_eq lemma bijective_sigma_to_Union (h : ∀i j, i ≠ j → disjoint (t i) (t j)) : bijective (sigma_to_Union t) := ⟨injective_sigma_to_Union t h, surjective_sigma_to_Union t⟩ noncomputable def Union_eq_sigma_of_disjoint {t : α → set β} (h : ∀i j, i ≠ j → disjoint (t i) (t j)) : (⋃i, t i) ≃ (Σi, t i) := (equiv.of_bijective $ bijective_sigma_to_Union t h).symm noncomputable def bUnion_eq_sigma_of_disjoint {s : set α} {t : α → set β} (h : pairwise_on s (disjoint on t)) : (⋃i∈s, t i) ≃ (Σi:s, t i.val) := equiv.trans (equiv.set_congr (bUnion_eq_Union _ _)) $ Union_eq_sigma_of_disjoint $ assume ⟨i, hi⟩ ⟨j, hj⟩ ne, h _ hi _ hj $ assume eq, ne $ subtype.eq eq end set
71f64fcfdb9d779f3c7cf7618e279459797b16a1
e38e95b38a38a99ecfa1255822e78e4b26f65bb0
/src/certigrad/predicates.lean
bdab074eb3421699c9abd206b68b6e05fe9e949c
[ "Apache-2.0" ]
permissive
ColaDrill/certigrad
fefb1be3670adccd3bed2f3faf57507f156fd501
fe288251f623ac7152e5ce555f1cd9d3a20203c2
refs/heads/master
1,593,297,324,250
1,499,903,753,000
1,499,903,753,000
97,075,797
1
0
null
1,499,916,210,000
1,499,916,210,000
null
UTF-8
Lean
false
false
7,153
lean
/- Copyright (c) 2017 Daniel Selsam. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Daniel Selsam Predicates. -/ import .util .id .reference .graph .compute_grad open list namespace certigrad def is_downstream (cost : ID) : reference → list node → Prop | _ [] := false | tgt (⟨ref, parents, _⟩ :: nodes) := if ref.1 = cost then true else (tgt ∈ parents ∧ is_downstream ref nodes) ∨ is_downstream tgt nodes instance decidable_is_downstream (cost : ID) : Π (tgt : reference) (nodes : list node), decidable (is_downstream cost tgt nodes) | _ [] := decidable.false | tgt (⟨ref, parents, _⟩ :: nodes) := show decidable (if ref.1 = cost then true else (tgt ∈ parents ∧ is_downstream cost ref nodes) ∨ is_downstream cost tgt nodes), from have H₁ : decidable (is_downstream cost ref nodes), from begin apply decidable_is_downstream end, have H₂ : decidable (is_downstream cost tgt nodes), from begin apply decidable_is_downstream end, by tactic.apply_instance def all_parents_in_env : Π (inputs : env) (nodes : list node), Prop | _ [] := true | inputs (⟨ref, parents, _⟩ :: nodes) := (∀ (parent : reference), parent ∈ parents → env.has_key parent inputs) ∧ (∀ (x : T ref.2), all_parents_in_env (env.insert ref x inputs) nodes) def all_costs_scalars (costs : list ID) : Π (nodes : list node), Prop | [] := true | (⟨ref, _, _⟩ :: nodes) := (ref.1 ∈ costs → ref.2 = []) ∧ all_costs_scalars nodes -- We group the decidable properties structure well_formed_at (costs : list ID) (nodes : list node) (inputs : env) (tgt : reference) : Prop := (uids : uniq_ids nodes inputs) (ps_in_env : all_parents_in_env inputs nodes) (costs_scalars : all_costs_scalars costs nodes) (m_contains_tgt : env.has_key tgt inputs) (tgt_cost_scalar : tgt.1 ∈ costs → tgt.2 = []) def grads_exist_at : list node → env → reference → Prop | [] _ _ := true | (⟨ref, parents, operator.det op⟩ :: nodes) m tgt := let m' := env.insert ref (op^.f (env.get_ks parents m)) m in grads_exist_at nodes m' tgt ∧ (tgt ∈ parents → op^.pre (env.get_ks parents m) ∧ grads_exist_at nodes m' ref) | (⟨ref, parents, operator.rand op⟩ :: nodes) m tgt := let m' := (λ (y : T ref.2), env.insert ref y m) in (tgt ∈ parents → op^.pre (env.get_ks parents m)) ∧ (∀ y, grads_exist_at nodes (m' y) tgt) def pdfs_exist_at : list node → env → Prop | [] _ := true | (⟨ref, parents, operator.det op⟩ :: nodes) m := pdfs_exist_at nodes (env.insert ref (op^.f (env.get_ks parents m)) m ) | (⟨ref, parents, operator.rand op⟩ :: nodes) m := let m' := (λ (y : T ref.2), env.insert ref y m) in (op^.pre (env.get_ks parents m)) ∧ (∀ y, pdfs_exist_at nodes (m' y)) -- TODO(dhs): these conditions are really nitty-gritty noncomputable def can_differentiate_under_integrals (costs : list ID) : list node → env → reference → Prop | [] _ _ := true | (⟨ref, parents, operator.det op⟩ :: nodes) inputs tgt := let inputs' := env.insert ref (op^.f (env.get_ks parents inputs)) inputs in can_differentiate_under_integrals nodes inputs' tgt ∧ (tgt ∈ parents → can_differentiate_under_integrals nodes (env.insert ref (op^.f (env.get_ks parents inputs)) inputs) ref) | (⟨ref, parents, operator.rand op⟩ :: nodes) inputs tgt := let θ : T tgt.2 := env.get tgt inputs in let g : T ref.2 → T tgt.2 → ℝ := (λ (x : T ref.2) (θ₀ : T tgt.2), E (graph.to_dist (λ (inputs : env), ⟦sum_costs inputs costs⟧) (env.insert ref x (env.insert tgt θ₀ inputs)) nodes) dvec.head) in let next_inputs := (λ (y : T ref.2), env.insert ref y inputs) in -- Note: these conditions are redundant, but it is convenient to collect all the variations we need in one place (T.is_uniformly_integrable_around (λ (θ₀ : T (tgt.snd)) (x : T (ref.snd)), rand.op.pdf op (env.get_ks parents (env.insert tgt θ₀ inputs)) x ⬝ g x θ₀) θ ∧ (T.is_uniformly_integrable_around (λ (θ₀ : T (tgt.snd)) (x : T (ref.snd)), ∇ (λ (θ₁ : T (tgt.snd)), rand.op.pdf op (env.get_ks parents (env.insert tgt θ₁ inputs)) x ⬝ g x θ₁) θ₀) θ ∧ T.is_uniformly_integrable_around (λ (θ₀ : T (tgt.snd)) (x : T (ref.snd)), ∇ (λ (θ₁ : T (tgt.snd)), rand.op.pdf op (env.get_ks parents (env.insert tgt θ inputs)) x ⬝ g x θ₁) θ₀) θ) ∧ (∀ (idx : ℕ), at_idx parents idx tgt → T.is_uniformly_integrable_around (λ (θ₀ : T (tgt.snd)) (x : T (ref.snd)), rand.op.pdf op (dvec.update_at θ₀ (env.get_ks parents (env.insert tgt θ inputs)) idx) x ⬝ g x θ) θ) ∧ (∀ (idx : ℕ), at_idx parents idx tgt → T.is_uniformly_integrable_around (λ (θ₀ : T (tgt.snd)) (x : T (ref.snd)), ∇ (λ (θ₀ : T (tgt.snd)), rand.op.pdf op (dvec.update_at θ₀ (env.get_ks parents (env.insert tgt θ inputs)) idx) x ⬝ g x θ) θ₀) θ)) ∧ (∀ y, can_differentiate_under_integrals nodes (next_inputs y) tgt) def all_pdfs_std : Π (nodes : list node), Prop | [] := true | (⟨ref, parents, operator.det op⟩ :: nodes) := all_pdfs_std nodes | (⟨(ref, .(shape)), [], operator.rand (rand.op.mvn_iso_std shape)⟩ :: nodes) := all_pdfs_std nodes | (⟨(ref, .(shape)), [(parent₁, .(shape)), (parent₂, .(shape))], operator.rand (rand.op.mvn_iso shape)⟩ :: nodes) := false lemma all_pdfs_std_det : Π (ref : reference) (parents : list reference) (op : det.op parents^.p2 ref.2) (nodes : list node), all_pdfs_std (⟨ref, parents, operator.det op⟩ :: nodes) = all_pdfs_std nodes | (i, s) [] op nodes := rfl | (i, s) [(i', s')] op nodes := rfl | (i, s) [(i', s'), (i'', s'')] op nodes := rfl | (i, s) ((i', s') :: (i'', s'') :: a :: iss) op nodes := rfl noncomputable def can_diff_under_ints_pdfs_std (costs : list ID) : Π (nodes : list node) (m : env) (tgt : reference), Prop | [] _ _ := true | (⟨ref, parents, operator.det op⟩ :: nodes) inputs tgt := let inputs' := env.insert ref (op^.f (env.get_ks parents inputs)) inputs in can_diff_under_ints_pdfs_std nodes inputs' tgt ∧ (tgt ∈ parents → can_diff_under_ints_pdfs_std nodes (env.insert ref (op^.f (env.get_ks parents inputs)) inputs) ref) | (⟨ref, parents, operator.rand op⟩ :: nodes) inputs tgt := let θ : T tgt.2 := env.get tgt inputs in let g : T ref.2 → T tgt.2 → ℝ := (λ (x : T ref.2) (θ₀ : T tgt.2), E (graph.to_dist (λ (inputs : env), ⟦sum_costs inputs costs⟧) (env.insert ref x (env.insert tgt θ₀ inputs)) nodes) dvec.head) in let next_inputs := (λ (y : T ref.2), env.insert ref y inputs) in (T.is_uniformly_integrable_around (λ (θ₀ : T (tgt.snd)) (x : T (ref.snd)), T.mvn_iso_pdf 0 1 x ⬝ g x θ₀) θ ∧ T.is_uniformly_integrable_around (λ (θ₀ : T (tgt.snd)) (x : T (ref.snd)), ∇ (λ (θ₁ : T (tgt.snd)), T.mvn_iso_pdf 0 1 x ⬝ g x θ₁) θ₀) θ) ∧ (∀ y, can_diff_under_ints_pdfs_std nodes (next_inputs y) tgt) end certigrad
44aa38993e467fae7b8eb9266b539a8069142fa0
92b1c7f0343a6a5cd36bc0f623a7490da3f1e0f3
/src/stump/algorithm_definition.lean
4f129eb3288f84e6d362294993c1e2521e9f3bc8
[ "Apache-2.0" ]
permissive
jtristan/stump-learnable
717453eb590af16e60c7d3806cc9e66492fab091
aa3c089f41602efa08d31ef6b41e549456186d57
refs/heads/master
1,625,630,634,360
1,607,552,106,000
1,607,552,106,000
218,629,406
15
2
null
null
null
null
UTF-8
Lean
false
false
577
lean
/- Copyright © 2019, Oracle and/or its affiliates. All rights reserved. -/ import .setup_definition namespace stump variables (target: ℍ) (n: ℕ) noncomputable def label_sample := vec_map (label target) def filter := vec_map (λ p: (ℍ × bool), if p.snd then p.fst else 0) noncomputable def max: Π n: ℕ, vec ℍ n → ℍ | 0 := λ x: nnreal, x | (nat.succ n) := λ p, let m := max n p.snd in if rlt m p.fst then p.fst else m noncomputable def choose (n: ℕ):vec (ℍ × bool) n → ℍ := λ data: (vec (ℍ × bool) n), max n (filter n data) end stump
118cf878a58cbce865846df0b623d4436fe7a3fc
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/category_theory/monoidal/End_auto.lean
00d11d28b0b72b17973a1f7c1fbf9ff3a34dbe5e
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
1,797
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.category_theory.monoidal.functor import Mathlib.PostPort universes u v namespace Mathlib /-! # Endofunctors as a monoidal category. We give the monoidal category structure on `C ⥤ C`, and show that when `C` itself is monoidal, it embeds via a monoidal functor into `C ⥤ C`. ## TODO Can we use this to show coherence results, e.g. a cheap proof that `λ_ (𝟙_ C) = ρ_ (𝟙_ C)`? I suspect this is harder than is usually made out. -/ namespace category_theory /-- The category of endofunctors of any category is a monoidal category, with tensor product given by composition of functors (and horizontal composition of natural transformations). -/ def endofunctor_monoidal_category (C : Type u) [category C] : monoidal_category (C ⥤ C) := monoidal_category.mk (fun (F G : C ⥤ C) => F ⋙ G) (fun (F G F' G' : C ⥤ C) (α : F ⟶ G) (β : F' ⟶ G') => α ◫ β) 𝟭 (fun (F G H : C ⥤ C) => functor.associator F G H) (fun (F : C ⥤ C) => functor.left_unitor F) fun (F : C ⥤ C) => functor.right_unitor F /-- Tensoring on the right gives a monoidal functor from `C` into endofunctors of `C`. -/ @[simp] theorem tensoring_right_monoidal_to_lax_monoidal_functor_to_functor (C : Type u) [category C] [monoidal_category C] : lax_monoidal_functor.to_functor (monoidal_functor.to_lax_monoidal_functor (tensoring_right_monoidal C)) = monoidal_category.tensoring_right C := Eq.refl (lax_monoidal_functor.to_functor (monoidal_functor.to_lax_monoidal_functor (tensoring_right_monoidal C))) end Mathlib
6f886b15b93c3480eaf4e67b56068ddb52b6d933
4727251e0cd73359b15b664c3170e5d754078599
/src/topology/category/CompHaus/default.lean
4c7d7325ab7e4672c53c6af66fe6f430adc37923
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
9,633
lean
/- Copyright (c) 2020 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Adam Topaz, Bhavik Mehta -/ import category_theory.adjunction.reflective import topology.category.Top import topology.stone_cech import category_theory.monad.limits import topology.urysohns_lemma /-! # The category of Compact Hausdorff Spaces We construct the category of compact Hausdorff spaces. The type of compact Hausdorff spaces is denoted `CompHaus`, and it is endowed with a category instance making it a full subcategory of `Top`. The fully faithful functor `CompHaus ⥤ Top` is denoted `CompHaus_to_Top`. **Note:** The file `topology/category/Compactum.lean` provides the equivalence between `Compactum`, which is defined as the category of algebras for the ultrafilter monad, and `CompHaus`. `Compactum_to_CompHaus` is the functor from `Compactum` to `CompHaus` which is proven to be an equivalence of categories in `Compactum_to_CompHaus.is_equivalence`. See `topology/category/Compactum.lean` for a more detailed discussion where these definitions are introduced. -/ universes v u open category_theory /-- The type of Compact Hausdorff topological spaces. -/ structure CompHaus := (to_Top : Top) [is_compact : compact_space to_Top] [is_hausdorff : t2_space to_Top] namespace CompHaus instance : inhabited CompHaus := ⟨{to_Top := { α := pempty }}⟩ instance : has_coe_to_sort CompHaus Type* := ⟨λ X, X.to_Top⟩ instance {X : CompHaus} : compact_space X := X.is_compact instance {X : CompHaus} : t2_space X := X.is_hausdorff instance category : category CompHaus := induced_category.category to_Top instance concrete_category : concrete_category CompHaus := induced_category.concrete_category _ @[simp] lemma coe_to_Top {X : CompHaus} : (X.to_Top : Type*) = X := rfl variables (X : Type*) [topological_space X] [compact_space X] [t2_space X] /-- A constructor for objects of the category `CompHaus`, taking a type, and bundling the compact Hausdorff topology found by typeclass inference. -/ def of : CompHaus := { to_Top := Top.of X, is_compact := ‹_›, is_hausdorff := ‹_› } @[simp] lemma coe_of : (CompHaus.of X : Type _) = X := rfl /-- Any continuous function on compact Hausdorff spaces is a closed map. -/ lemma is_closed_map {X Y : CompHaus.{u}} (f : X ⟶ Y) : is_closed_map f := λ C hC, (hC.is_compact.image f.continuous).is_closed /-- Any continuous bijection of compact Hausdorff spaces is an isomorphism. -/ lemma is_iso_of_bijective {X Y : CompHaus.{u}} (f : X ⟶ Y) (bij : function.bijective f) : is_iso f := begin let E := equiv.of_bijective _ bij, have hE : continuous E.symm, { rw continuous_iff_is_closed, intros S hS, rw ← E.image_eq_preimage, exact is_closed_map f S hS }, refine ⟨⟨⟨E.symm, hE⟩, _, _⟩⟩, { ext x, apply E.symm_apply_apply }, { ext x, apply E.apply_symm_apply } end /-- Any continuous bijection of compact Hausdorff spaces induces an isomorphism. -/ noncomputable def iso_of_bijective {X Y : CompHaus.{u}} (f : X ⟶ Y) (bij : function.bijective f) : X ≅ Y := by letI := is_iso_of_bijective _ bij; exact as_iso f end CompHaus /-- The fully faithful embedding of `CompHaus` in `Top`. -/ @[simps {rhs_md := semireducible}, derive [full, faithful]] def CompHaus_to_Top : CompHaus.{u} ⥤ Top.{u} := induced_functor _ instance CompHaus.forget_reflects_isomorphisms : reflects_isomorphisms (forget CompHaus.{u}) := ⟨by introsI A B f hf; exact CompHaus.is_iso_of_bijective _ ((is_iso_iff_bijective f).mp hf)⟩ /-- (Implementation) The object part of the compactification functor from topological spaces to compact Hausdorff spaces. -/ @[simps] def StoneCech_obj (X : Top) : CompHaus := CompHaus.of (stone_cech X) /-- (Implementation) The bijection of homsets to establish the reflective adjunction of compact Hausdorff spaces in topological spaces. -/ noncomputable def stone_cech_equivalence (X : Top.{u}) (Y : CompHaus.{u}) : (StoneCech_obj X ⟶ Y) ≃ (X ⟶ CompHaus_to_Top.obj Y) := { to_fun := λ f, { to_fun := f ∘ stone_cech_unit, continuous_to_fun := f.2.comp (@continuous_stone_cech_unit X _) }, inv_fun := λ f, { to_fun := stone_cech_extend f.2, continuous_to_fun := continuous_stone_cech_extend f.2 }, left_inv := begin rintro ⟨f : stone_cech X ⟶ Y, hf : continuous f⟩, ext (x : stone_cech X), refine congr_fun _ x, apply continuous.ext_on dense_range_stone_cech_unit (continuous_stone_cech_extend _) hf, rintro _ ⟨y, rfl⟩, apply congr_fun (stone_cech_extend_extends (hf.comp _)) y, end, right_inv := begin rintro ⟨f : (X : Type*) ⟶ Y, hf : continuous f⟩, ext, exact congr_fun (stone_cech_extend_extends hf) _, end } /-- The Stone-Cech compactification functor from topological spaces to compact Hausdorff spaces, left adjoint to the inclusion functor. -/ noncomputable def Top_to_CompHaus : Top.{u} ⥤ CompHaus.{u} := adjunction.left_adjoint_of_equiv stone_cech_equivalence.{u} (λ _ _ _ _ _, rfl) lemma Top_to_CompHaus_obj (X : Top) : ↥(Top_to_CompHaus.obj X) = stone_cech X := rfl /-- The category of compact Hausdorff spaces is reflective in the category of topological spaces. -/ noncomputable instance CompHaus_to_Top.reflective : reflective CompHaus_to_Top := { to_is_right_adjoint := ⟨Top_to_CompHaus, adjunction.adjunction_of_equiv_left _ _⟩ } noncomputable instance CompHaus_to_Top.creates_limits : creates_limits CompHaus_to_Top := monadic_creates_limits _ instance CompHaus.has_limits : limits.has_limits CompHaus := has_limits_of_has_limits_creates_limits CompHaus_to_Top instance CompHaus.has_colimits : limits.has_colimits CompHaus := has_colimits_of_reflective CompHaus_to_Top namespace CompHaus /-- An explicit limit cone for a functor `F : J ⥤ CompHaus`, defined in terms of `Top.limit_cone`. -/ def limit_cone {J : Type v} [small_category J] (F : J ⥤ CompHaus.{max v u}) : limits.cone F := { X := { to_Top := (Top.limit_cone (F ⋙ CompHaus_to_Top)).X, is_compact := begin show compact_space ↥{u : Π j, (F.obj j) | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j}, rw ← is_compact_iff_compact_space, apply is_closed.is_compact, have : {u : Π j, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j} = ⋂ (i j : J) (f : i ⟶ j), {u | F.map f (u i) = u j}, { ext1, simp only [set.mem_Inter, set.mem_set_of_eq], }, rw this, apply is_closed_Inter, intros i, apply is_closed_Inter, intros j, apply is_closed_Inter, intros f, apply is_closed_eq, { exact (continuous_map.continuous (F.map f)).comp (continuous_apply i), }, { exact continuous_apply j, } end, is_hausdorff := show t2_space ↥{u : Π j, (F.obj j) | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j}, from infer_instance }, π := { app := λ j, (Top.limit_cone (F ⋙ CompHaus_to_Top)).π.app j, naturality' := by { intros _ _ _, ext ⟨x, hx⟩, simp only [comp_apply, functor.const.obj_map, id_apply], exact (hx f).symm, } } } /-- The limit cone `CompHaus.limit_cone F` is indeed a limit cone. -/ def limit_cone_is_limit {J : Type v} [small_category J] (F : J ⥤ CompHaus.{max v u}) : limits.is_limit (limit_cone F) := { lift := λ S, (Top.limit_cone_is_limit (F ⋙ CompHaus_to_Top)).lift (CompHaus_to_Top.map_cone S), uniq' := λ S m h, (Top.limit_cone_is_limit _).uniq (CompHaus_to_Top.map_cone S) _ h } lemma epi_iff_surjective {X Y : CompHaus.{u}} (f : X ⟶ Y) : epi f ↔ function.surjective f := begin split, { contrapose!, rintros ⟨y, hy⟩ hf, let C := set.range f, have hC : is_closed C := (is_compact_range f.continuous).is_closed, let D := {y}, have hD : is_closed D := is_closed_singleton, have hCD : disjoint C D, { rw set.disjoint_singleton_right, rintro ⟨y', hy'⟩, exact hy y' hy' }, haveI : normal_space ↥(Y.to_Top) := normal_of_compact_t2, obtain ⟨φ, hφ0, hφ1, hφ01⟩ := exists_continuous_zero_one_of_closed hC hD hCD, haveI : compact_space (ulift.{u} $ set.Icc (0:ℝ) 1) := homeomorph.ulift.symm.compact_space, haveI : t2_space (ulift.{u} $ set.Icc (0:ℝ) 1) := homeomorph.ulift.symm.t2_space, let Z := of (ulift.{u} $ set.Icc (0:ℝ) 1), let g : Y ⟶ Z := ⟨λ y', ⟨⟨φ y', hφ01 y'⟩⟩, continuous_ulift_up.comp (continuous_subtype_mk (λ y', hφ01 y') φ.continuous)⟩, let h : Y ⟶ Z := ⟨λ _, ⟨⟨0, set.left_mem_Icc.mpr zero_le_one⟩⟩, continuous_const⟩, have H : h = g, { rw ← cancel_epi f, ext x, dsimp, simp only [comp_apply, continuous_map.coe_mk, subtype.coe_mk, hφ0 (set.mem_range_self x), pi.zero_apply], }, apply_fun (λ e, (e y).down) at H, dsimp at H, simp only [subtype.mk_eq_mk, hφ1 (set.mem_singleton y), pi.one_apply] at H, exact zero_ne_one H, }, { rw ← category_theory.epi_iff_surjective, apply faithful_reflects_epi (forget CompHaus) }, end lemma mono_iff_injective {X Y : CompHaus.{u}} (f : X ⟶ Y) : mono f ↔ function.injective f := begin split, { introsI hf x₁ x₂ h, let g₁ : of punit ⟶ X := ⟨λ _, x₁, continuous_of_discrete_topology⟩, let g₂ : of punit ⟶ X := ⟨λ _, x₂, continuous_of_discrete_topology⟩, have : g₁ ≫ f = g₂ ≫ f, by { ext, exact h }, rw cancel_mono at this, apply_fun (λ e, e punit.star) at this, exact this }, { rw ← category_theory.mono_iff_injective, apply faithful_reflects_mono (forget CompHaus) } end end CompHaus
7047a3da970ea8220d74bf1c7d04dc97a78ae493
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/field_theory/polynomial_galois_group.lean
3f192ae04a2d3300037aaf32bd6ae430baecdd54
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
21,707
lean
/- Copyright (c) 2020 Thomas Browning, Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import analysis.complex.polynomial import field_theory.galois import group_theory.perm.cycle.type /-! # Galois Groups of Polynomials In this file, we introduce the Galois group of a polynomial `p` over a field `F`, defined as the automorphism group of its splitting field. We also provide some results about some extension `E` above `p.splitting_field`, and some specific results about the Galois groups of ℚ-polynomials with specific numbers of non-real roots. ## Main definitions - `polynomial.gal p`: the Galois group of a polynomial p. - `polynomial.gal.restrict p E`: the restriction homomorphism `(E ≃ₐ[F] E) → gal p`. - `polynomial.gal.gal_action p E`: the action of `gal p` on the roots of `p` in `E`. ## Main results - `polynomial.gal.restrict_smul`: `restrict p E` is compatible with `gal_action p E`. - `polynomial.gal.gal_action_hom_injective`: `gal p` acting on the roots of `p` in `E` is faithful. - `polynomial.gal.restrict_prod_injective`: `gal (p * q)` embeds as a subgroup of `gal p × gal q`. - `polynomial.gal.card_of_separable`: For a separable polynomial, its Galois group has cardinality equal to the dimension of its splitting field over `F`. - `polynomial.gal.gal_action_hom_bijective_of_prime_degree`: An irreducible polynomial of prime degree with two non-real roots has full Galois group. ## Other results - `polynomial.gal.card_complex_roots_eq_card_real_add_card_not_gal_inv`: The number of complex roots equals the number of real roots plus the number of roots not fixed by complex conjugation (i.e. with some imaginary component). -/ noncomputable theory open_locale classical polynomial open finite_dimensional namespace polynomial variables {F : Type*} [field F] (p q : F[X]) (E : Type*) [field E] [algebra F E] /-- The Galois group of a polynomial. -/ @[derive [group, fintype]] def gal := p.splitting_field ≃ₐ[F] p.splitting_field namespace gal instance : has_coe_to_fun p.gal (λ _, p.splitting_field → p.splitting_field) := alg_equiv.has_coe_to_fun instance apply_mul_semiring_action : mul_semiring_action p.gal p.splitting_field := alg_equiv.apply_mul_semiring_action @[ext] lemma ext {σ τ : p.gal} (h : ∀ x ∈ p.root_set p.splitting_field, σ x = τ x) : σ = τ := begin refine alg_equiv.ext (λ x, (alg_hom.mem_equalizer σ.to_alg_hom τ.to_alg_hom x).mp ((set_like.ext_iff.mp _ x).mpr algebra.mem_top)), rwa [eq_top_iff, ←splitting_field.adjoin_roots, algebra.adjoin_le_iff], end /-- If `p` splits in `F` then the `p.gal` is trivial. -/ def unique_gal_of_splits (h : p.splits (ring_hom.id F)) : unique p.gal := { default := 1, uniq := λ f, alg_equiv.ext (λ x, by { obtain ⟨y, rfl⟩ := algebra.mem_bot.mp ((set_like.ext_iff.mp ((is_splitting_field.splits_iff _ p).mp h) x).mp algebra.mem_top), rw [alg_equiv.commutes, alg_equiv.commutes] }) } instance [h : fact (p.splits (ring_hom.id F))] : unique p.gal := unique_gal_of_splits _ (h.1) instance unique_gal_zero : unique (0 : F[X]).gal := unique_gal_of_splits _ (splits_zero _) instance unique_gal_one : unique (1 : F[X]).gal := unique_gal_of_splits _ (splits_one _) instance unique_gal_C (x : F) : unique (C x).gal := unique_gal_of_splits _ (splits_C _ _) instance unique_gal_X : unique (X : F[X]).gal := unique_gal_of_splits _ (splits_X _) instance unique_gal_X_sub_C (x : F) : unique (X - C x).gal := unique_gal_of_splits _ (splits_X_sub_C _) instance unique_gal_X_pow (n : ℕ) : unique (X ^ n : F[X]).gal := unique_gal_of_splits _ (splits_X_pow _ _) instance [h : fact (p.splits (algebra_map F E))] : algebra p.splitting_field E := (is_splitting_field.lift p.splitting_field p h.1).to_ring_hom.to_algebra instance [h : fact (p.splits (algebra_map F E))] : is_scalar_tower F p.splitting_field E := is_scalar_tower.of_algebra_map_eq (λ x, ((is_splitting_field.lift p.splitting_field p h.1).commutes x).symm) -- The `algebra p.splitting_field E` instance above behaves badly when -- `E := p.splitting_field`, since it may result in a unification problem -- `is_splitting_field.lift.to_ring_hom.to_algebra =?= algebra.id`, -- which takes an extremely long time to resolve, causing timeouts. -- Since we don't really care about this definition, marking it as irreducible -- causes that unification to error out early. attribute [irreducible] gal.algebra /-- Restrict from a superfield automorphism into a member of `gal p`. -/ def restrict [fact (p.splits (algebra_map F E))] : (E ≃ₐ[F] E) →* p.gal := alg_equiv.restrict_normal_hom p.splitting_field lemma restrict_surjective [fact (p.splits (algebra_map F E))] [normal F E] : function.surjective (restrict p E) := alg_equiv.restrict_normal_hom_surjective E section roots_action /-- The function taking `roots p p.splitting_field` to `roots p E`. This is actually a bijection, see `polynomial.gal.map_roots_bijective`. -/ def map_roots [fact (p.splits (algebra_map F E))] : root_set p p.splitting_field → root_set p E := λ x, ⟨is_scalar_tower.to_alg_hom F p.splitting_field E x, begin have key := subtype.mem x, by_cases p = 0, { simp only [h, root_set_zero] at key, exact false.rec _ key }, { rw [mem_root_set h, aeval_alg_hom_apply, (mem_root_set h).mp key, alg_hom.map_zero] } end⟩ lemma map_roots_bijective [h : fact (p.splits (algebra_map F E))] : function.bijective (map_roots p E) := begin split, { exact λ _ _ h, subtype.ext (ring_hom.injective _ (subtype.ext_iff.mp h)) }, { intro y, -- this is just an equality of two different ways to write the roots of `p` as an `E`-polynomial have key := roots_map (is_scalar_tower.to_alg_hom F p.splitting_field E : p.splitting_field →+* E) ((splits_id_iff_splits _).mpr (is_splitting_field.splits p.splitting_field p)), rw [map_map, alg_hom.comp_algebra_map] at key, have hy := subtype.mem y, simp only [root_set, finset.mem_coe, multiset.mem_to_finset, key, multiset.mem_map] at hy, rcases hy with ⟨x, hx1, hx2⟩, exact ⟨⟨x, multiset.mem_to_finset.mpr hx1⟩, subtype.ext hx2⟩ } end /-- The bijection between `root_set p p.splitting_field` and `root_set p E`. -/ def roots_equiv_roots [fact (p.splits (algebra_map F E))] : (root_set p p.splitting_field) ≃ (root_set p E) := equiv.of_bijective (map_roots p E) (map_roots_bijective p E) instance gal_action_aux : mul_action p.gal (root_set p p.splitting_field) := { smul := λ ϕ x, ⟨ϕ x, begin have key := subtype.mem x, --simp only [root_set, finset.mem_coe, multiset.mem_to_finset] at *, by_cases p = 0, { simp only [h, root_set_zero] at key, exact false.rec _ key }, { rw mem_root_set h, change aeval (ϕ.to_alg_hom x) p = 0, rw [aeval_alg_hom_apply, (mem_root_set h).mp key, alg_hom.map_zero] } end⟩, one_smul := λ _, by { ext, refl }, mul_smul := λ _ _ _, by { ext, refl } } /-- The action of `gal p` on the roots of `p` in `E`. -/ instance gal_action [fact (p.splits (algebra_map F E))] : mul_action p.gal (root_set p E) := { smul := λ ϕ x, roots_equiv_roots p E (ϕ • ((roots_equiv_roots p E).symm x)), one_smul := λ _, by simp only [equiv.apply_symm_apply, one_smul], mul_smul := λ _ _ _, by simp only [equiv.apply_symm_apply, equiv.symm_apply_apply, mul_smul] } variables {p E} /-- `polynomial.gal.restrict p E` is compatible with `polynomial.gal.gal_action p E`. -/ @[simp] lemma restrict_smul [fact (p.splits (algebra_map F E))] (ϕ : E ≃ₐ[F] E) (x : root_set p E) : ↑((restrict p E ϕ) • x) = ϕ x := begin let ψ := alg_equiv.of_injective_field (is_scalar_tower.to_alg_hom F p.splitting_field E), change ↑(ψ (ψ.symm _)) = ϕ x, rw alg_equiv.apply_symm_apply ψ, change ϕ (roots_equiv_roots p E ((roots_equiv_roots p E).symm x)) = ϕ x, rw equiv.apply_symm_apply (roots_equiv_roots p E), end variables (p E) /-- `polynomial.gal.gal_action` as a permutation representation -/ def gal_action_hom [fact (p.splits (algebra_map F E))] : p.gal →* equiv.perm (root_set p E) := mul_action.to_perm_hom _ _ lemma gal_action_hom_restrict [fact (p.splits (algebra_map F E))] (ϕ : E ≃ₐ[F] E) (x : root_set p E) : ↑(gal_action_hom p E (restrict p E ϕ) x) = ϕ x := restrict_smul ϕ x /-- `gal p` embeds as a subgroup of permutations of the roots of `p` in `E`. -/ lemma gal_action_hom_injective [fact (p.splits (algebra_map F E))] : function.injective (gal_action_hom p E) := begin rw injective_iff_map_eq_one, intros ϕ hϕ, ext x hx, have key := equiv.perm.ext_iff.mp hϕ (roots_equiv_roots p E ⟨x, hx⟩), change roots_equiv_roots p E (ϕ • (roots_equiv_roots p E).symm (roots_equiv_roots p E ⟨x, hx⟩)) = roots_equiv_roots p E ⟨x, hx⟩ at key, rw equiv.symm_apply_apply at key, exact subtype.ext_iff.mp (equiv.injective (roots_equiv_roots p E) key), end end roots_action variables {p q} /-- `polynomial.gal.restrict`, when both fields are splitting fields of polynomials. -/ def restrict_dvd (hpq : p ∣ q) : q.gal →* p.gal := if hq : q = 0 then 1 else @restrict F _ p _ _ _ ⟨splits_of_splits_of_dvd (algebra_map F q.splitting_field) hq (splitting_field.splits q) hpq⟩ lemma restrict_dvd_surjective (hpq : p ∣ q) (hq : q ≠ 0) : function.surjective (restrict_dvd hpq) := by simp only [restrict_dvd, dif_neg hq, restrict_surjective] variables (p q) /-- The Galois group of a product maps into the product of the Galois groups. -/ def restrict_prod : (p * q).gal →* p.gal × q.gal := monoid_hom.prod (restrict_dvd (dvd_mul_right p q)) (restrict_dvd (dvd_mul_left q p)) /-- `polynomial.gal.restrict_prod` is actually a subgroup embedding. -/ lemma restrict_prod_injective : function.injective (restrict_prod p q) := begin by_cases hpq : (p * q) = 0, { haveI : unique (p * q).gal, { rw hpq, apply_instance }, exact λ f g h, eq.trans (unique.eq_default f) (unique.eq_default g).symm }, intros f g hfg, dsimp only [restrict_prod, restrict_dvd] at hfg, simp only [dif_neg hpq, monoid_hom.prod_apply, prod.mk.inj_iff] at hfg, ext x hx, rw [root_set, polynomial.map_mul, polynomial.roots_mul] at hx, cases multiset.mem_add.mp (multiset.mem_to_finset.mp hx) with h h, { haveI : fact (p.splits (algebra_map F (p * q).splitting_field)) := ⟨splits_of_splits_of_dvd _ hpq (splitting_field.splits (p * q)) (dvd_mul_right p q)⟩, have key : x = algebra_map (p.splitting_field) (p * q).splitting_field ((roots_equiv_roots p _).inv_fun ⟨x, multiset.mem_to_finset.mpr h⟩) := subtype.ext_iff.mp (equiv.apply_symm_apply (roots_equiv_roots p _) ⟨x, _⟩).symm, rw [key, ←alg_equiv.restrict_normal_commutes, ←alg_equiv.restrict_normal_commutes], exact congr_arg _ (alg_equiv.ext_iff.mp hfg.1 _) }, { haveI : fact (q.splits (algebra_map F (p * q).splitting_field)) := ⟨splits_of_splits_of_dvd _ hpq (splitting_field.splits (p * q)) (dvd_mul_left q p)⟩, have key : x = algebra_map (q.splitting_field) (p * q).splitting_field ((roots_equiv_roots q _).inv_fun ⟨x, multiset.mem_to_finset.mpr h⟩) := subtype.ext_iff.mp (equiv.apply_symm_apply (roots_equiv_roots q _) ⟨x, _⟩).symm, rw [key, ←alg_equiv.restrict_normal_commutes, ←alg_equiv.restrict_normal_commutes], exact congr_arg _ (alg_equiv.ext_iff.mp hfg.2 _) }, { rwa [ne.def, mul_eq_zero, map_eq_zero, map_eq_zero, ←mul_eq_zero] } end lemma mul_splits_in_splitting_field_of_mul {p₁ q₁ p₂ q₂ : F[X]} (hq₁ : q₁ ≠ 0) (hq₂ : q₂ ≠ 0) (h₁ : p₁.splits (algebra_map F q₁.splitting_field)) (h₂ : p₂.splits (algebra_map F q₂.splitting_field)) : (p₁ * p₂).splits (algebra_map F (q₁ * q₂).splitting_field) := begin apply splits_mul, { rw ← (splitting_field.lift q₁ (splits_of_splits_of_dvd _ (mul_ne_zero hq₁ hq₂) (splitting_field.splits _) (dvd_mul_right q₁ q₂))).comp_algebra_map, exact splits_comp_of_splits _ _ h₁, }, { rw ← (splitting_field.lift q₂ (splits_of_splits_of_dvd _ (mul_ne_zero hq₁ hq₂) (splitting_field.splits _) (dvd_mul_left q₂ q₁))).comp_algebra_map, exact splits_comp_of_splits _ _ h₂, }, end /-- `p` splits in the splitting field of `p ∘ q`, for `q` non-constant. -/ lemma splits_in_splitting_field_of_comp (hq : q.nat_degree ≠ 0) : p.splits (algebra_map F (p.comp q).splitting_field) := begin let P : F[X] → Prop := λ r, r.splits (algebra_map F (r.comp q).splitting_field), have key1 : ∀ {r : F[X]}, irreducible r → P r, { intros r hr, by_cases hr' : nat_degree r = 0, { exact splits_of_nat_degree_le_one _ (le_trans (le_of_eq hr') zero_le_one) }, obtain ⟨x, hx⟩ := exists_root_of_splits _ (splitting_field.splits (r.comp q)) (λ h, hr' ((mul_eq_zero.mp (nat_degree_comp.symm.trans (nat_degree_eq_of_degree_eq_some h))).resolve_right hq)), rw [←aeval_def, aeval_comp] at hx, have h_normal : normal F (r.comp q).splitting_field := splitting_field.normal (r.comp q), have qx_int := normal.is_integral h_normal (aeval x q), exact splits_of_splits_of_dvd _ (minpoly.ne_zero qx_int) (normal.splits h_normal _) ((minpoly.irreducible qx_int).dvd_symm hr (minpoly.dvd F _ hx)) }, have key2 : ∀ {p₁ p₂ : F[X]}, P p₁ → P p₂ → P (p₁ * p₂), { intros p₁ p₂ hp₁ hp₂, by_cases h₁ : p₁.comp q = 0, { cases comp_eq_zero_iff.mp h₁ with h h, { rw [h, zero_mul], exact splits_zero _ }, { exact false.rec _ (hq (by rw [h.2, nat_degree_C])) } }, by_cases h₂ : p₂.comp q = 0, { cases comp_eq_zero_iff.mp h₂ with h h, { rw [h, mul_zero], exact splits_zero _ }, { exact false.rec _ (hq (by rw [h.2, nat_degree_C])) } }, have key := mul_splits_in_splitting_field_of_mul h₁ h₂ hp₁ hp₂, rwa ← mul_comp at key }, exact wf_dvd_monoid.induction_on_irreducible p (splits_zero _) (λ _, splits_of_is_unit _) (λ _ _ _ h, key2 (key1 h)), end /-- `polynomial.gal.restrict` for the composition of polynomials. -/ def restrict_comp (hq : q.nat_degree ≠ 0) : (p.comp q).gal →* p.gal := @restrict F _ p _ _ _ ⟨splits_in_splitting_field_of_comp p q hq⟩ lemma restrict_comp_surjective (hq : q.nat_degree ≠ 0) : function.surjective (restrict_comp p q hq) := by simp only [restrict_comp, restrict_surjective] variables {p q} /-- For a separable polynomial, its Galois group has cardinality equal to the dimension of its splitting field over `F`. -/ lemma card_of_separable (hp : p.separable) : fintype.card p.gal = finrank F p.splitting_field := begin haveI : is_galois F p.splitting_field := is_galois.of_separable_splitting_field hp, exact is_galois.card_aut_eq_finrank F p.splitting_field, end lemma prime_degree_dvd_card [char_zero F] (p_irr : irreducible p) (p_deg : p.nat_degree.prime) : p.nat_degree ∣ fintype.card p.gal := begin rw gal.card_of_separable p_irr.separable, have hp : p.degree ≠ 0 := λ h, nat.prime.ne_zero p_deg (nat_degree_eq_zero_iff_degree_le_zero.mpr (le_of_eq h)), let α : p.splitting_field := root_of_splits (algebra_map F p.splitting_field) (splitting_field.splits p) hp, have hα : is_integral F α := algebra.is_integral_of_finite _ _ α, use finite_dimensional.finrank F⟮α⟯ p.splitting_field, suffices : (minpoly F α).nat_degree = p.nat_degree, { rw [←finite_dimensional.finrank_mul_finrank F F⟮α⟯ p.splitting_field, intermediate_field.adjoin.finrank hα, this] }, suffices : minpoly F α ∣ p, { have key := (minpoly.irreducible hα).dvd_symm p_irr this, apply le_antisymm, { exact nat_degree_le_of_dvd this p_irr.ne_zero }, { exact nat_degree_le_of_dvd key (minpoly.ne_zero hα) } }, apply minpoly.dvd F α, rw [aeval_def, map_root_of_splits _ (splitting_field.splits p) hp], end section rationals lemma splits_ℚ_ℂ {p : ℚ[X]} : fact (p.splits (algebra_map ℚ ℂ)) := ⟨is_alg_closed.splits_codomain p⟩ local attribute [instance] splits_ℚ_ℂ /-- The number of complex roots equals the number of real roots plus the number of roots not fixed by complex conjugation (i.e. with some imaginary component). -/ lemma card_complex_roots_eq_card_real_add_card_not_gal_inv (p : ℚ[X]) : (p.root_set ℂ).to_finset.card = (p.root_set ℝ).to_finset.card + (gal_action_hom p ℂ (restrict p ℂ (complex.conj_ae.restrict_scalars ℚ))).support.card := begin by_cases hp : p = 0, { simp_rw [hp, root_set_zero, set.to_finset_eq_empty_iff.mpr rfl, finset.card_empty, zero_add], refine eq.symm (le_zero_iff.mp ((finset.card_le_univ _).trans (le_of_eq _))), simp_rw [hp, root_set_zero, fintype.card_eq_zero_iff], apply_instance }, have inj : function.injective (is_scalar_tower.to_alg_hom ℚ ℝ ℂ) := (algebra_map ℝ ℂ).injective, rw [←finset.card_image_of_injective _ subtype.coe_injective, ←finset.card_image_of_injective _ inj], let a : finset ℂ := _, let b : finset ℂ := _, let c : finset ℂ := _, change a.card = b.card + c.card, have ha : ∀ z : ℂ, z ∈ a ↔ aeval z p = 0 := λ z, by rw [set.mem_to_finset, mem_root_set hp], have hb : ∀ z : ℂ, z ∈ b ↔ aeval z p = 0 ∧ z.im = 0, { intro z, simp_rw [finset.mem_image, exists_prop, set.mem_to_finset, mem_root_set hp], split, { rintros ⟨w, hw, rfl⟩, exact ⟨by rw [aeval_alg_hom_apply, hw, alg_hom.map_zero], rfl⟩ }, { rintros ⟨hz1, hz2⟩, have key : is_scalar_tower.to_alg_hom ℚ ℝ ℂ z.re = z := by { ext, refl, rw hz2, refl }, exact ⟨z.re, inj (by rwa [←aeval_alg_hom_apply, key, alg_hom.map_zero]), key⟩ } }, have hc0 : ∀ w : p.root_set ℂ, gal_action_hom p ℂ (restrict p ℂ (complex.conj_ae.restrict_scalars ℚ)) w = w ↔ w.val.im = 0, { intro w, rw [subtype.ext_iff, gal_action_hom_restrict], exact complex.eq_conj_iff_im }, have hc : ∀ z : ℂ, z ∈ c ↔ aeval z p = 0 ∧ z.im ≠ 0, { intro z, simp_rw [finset.mem_image, exists_prop], split, { rintros ⟨w, hw, rfl⟩, exact ⟨(mem_root_set hp).mp w.2, mt (hc0 w).mpr (equiv.perm.mem_support.mp hw)⟩ }, { rintros ⟨hz1, hz2⟩, exact ⟨⟨z, (mem_root_set hp).mpr hz1⟩, equiv.perm.mem_support.mpr (mt (hc0 _).mp hz2), rfl⟩ } }, rw ← finset.card_disjoint_union, { apply congr_arg finset.card, simp_rw [finset.ext_iff, finset.mem_union, ha, hb, hc], tauto }, { rw finset.disjoint_left, intros z, rw [hb, hc], tauto }, { apply_instance }, end /-- An irreducible polynomial of prime degree with two non-real roots has full Galois group. -/ lemma gal_action_hom_bijective_of_prime_degree {p : ℚ[X]} (p_irr : irreducible p) (p_deg : p.nat_degree.prime) (p_roots : fintype.card (p.root_set ℂ) = fintype.card (p.root_set ℝ) + 2) : function.bijective (gal_action_hom p ℂ) := begin have h1 : fintype.card (p.root_set ℂ) = p.nat_degree, { simp_rw [root_set_def, finset.coe_sort_coe, fintype.card_coe], rw [multiset.to_finset_card_of_nodup, ←nat_degree_eq_card_roots], { exact is_alg_closed.splits_codomain p }, { exact nodup_roots ((separable_map (algebra_map ℚ ℂ)).mpr p_irr.separable) } }, have h2 : fintype.card p.gal = fintype.card (gal_action_hom p ℂ).range := fintype.card_congr (monoid_hom.of_injective (gal_action_hom_injective p ℂ)).to_equiv, let conj := restrict p ℂ (complex.conj_ae.restrict_scalars ℚ), refine ⟨gal_action_hom_injective p ℂ, λ x, (congr_arg (has_mem.mem x) (show (gal_action_hom p ℂ).range = ⊤, from _)).mpr (subgroup.mem_top x)⟩, apply equiv.perm.subgroup_eq_top_of_swap_mem, { rwa h1 }, { rw h1, convert prime_degree_dvd_card p_irr p_deg using 1, convert h2.symm }, { exact ⟨conj, rfl⟩ }, { rw ← equiv.perm.card_support_eq_two, apply nat.add_left_cancel, rw [←p_roots, ←set.to_finset_card (root_set p ℝ), ←set.to_finset_card (root_set p ℂ)], exact (card_complex_roots_eq_card_real_add_card_not_gal_inv p).symm }, end /-- An irreducible polynomial of prime degree with 1-3 non-real roots has full Galois group. -/ lemma gal_action_hom_bijective_of_prime_degree' {p : ℚ[X]} (p_irr : irreducible p) (p_deg : p.nat_degree.prime) (p_roots1 : fintype.card (p.root_set ℝ) + 1 ≤ fintype.card (p.root_set ℂ)) (p_roots2 : fintype.card (p.root_set ℂ) ≤ fintype.card (p.root_set ℝ) + 3) : function.bijective (gal_action_hom p ℂ) := begin apply gal_action_hom_bijective_of_prime_degree p_irr p_deg, let n := (gal_action_hom p ℂ (restrict p ℂ (complex.conj_ae.restrict_scalars ℚ))).support.card, have hn : 2 ∣ n := equiv.perm.two_dvd_card_support (by rw [←monoid_hom.map_pow, ←monoid_hom.map_pow, show alg_equiv.restrict_scalars ℚ complex.conj_ae ^ 2 = 1, from alg_equiv.ext complex.conj_conj, monoid_hom.map_one, monoid_hom.map_one]), have key := card_complex_roots_eq_card_real_add_card_not_gal_inv p, simp_rw [set.to_finset_card] at key, rw [key, add_le_add_iff_left] at p_roots1 p_roots2, rw [key, add_right_inj], suffices : ∀ m : ℕ, 2 ∣ m → 1 ≤ m → m ≤ 3 → m = 2, { exact this n hn p_roots1 p_roots2 }, rintros m ⟨k, rfl⟩ h2 h3, exact le_antisymm (nat.lt_succ_iff.mp (lt_of_le_of_ne h3 (show 2 * k ≠ 2 * 1 + 1, from nat.two_mul_ne_two_mul_add_one))) (nat.succ_le_iff.mpr (lt_of_le_of_ne h2 (show 2 * 0 + 1 ≠ 2 * k, from nat.two_mul_ne_two_mul_add_one.symm))), end end rationals end gal end polynomial
d4414d1b34384c3800e8713649378014a6983706
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/1156.lean
d8b5253e1f12ec260fdcbde7c136a356e98f1e4b
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
336
lean
inductive Foo : Nat -> Type where | mk (a b : Nat) : Foo a -> Foo b #check @Foo.mk example : (a b : Nat) → Foo a → Foo b := @Foo.mk #print Foo namespace Ex2 def natToType : Nat → Type | 0 => Unit | _ => Bool inductive Foo : Nat → Char → Prop | mk (n : Nat) (elem : natToType n) (c : Char) : Foo n c #print Foo end Ex2
373718acf9075f9ba28f963f7d90366e569abe96
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/tactic/suggest.lean
55259d0db3e0dbe199fcab01bebd8c45ee36b606
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
22,126
lean
/- Copyright (c) 2019 Lucas Allen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Lucas Allen, Scott Morrison -/ import data.mllist import tactic.solve_by_elim /-! # `suggest` and `library_search` `suggest` and `library_search` are a pair of tactics for applying lemmas from the library to the current goal. * `suggest` prints a list of `exact ...` or `refine ...` statements, which may produce new goals * `library_search` prints a single `exact ...` which closes the goal, or fails -/ namespace tactic open native namespace suggest open solve_by_elim /-- Map a name (typically a head symbol) to a "canonical" definitional synonym. Given a name `n`, we want a name `n'` such that a sufficiently applied expression with head symbol `n` is always definitionally equal to an expression with head symbol `n'`. Thus, we can search through all lemmas with a result type of `n'` to solve a goal with head symbol `n`. For example, `>` is mapped to `<` because `a > b` is definitionally equal to `b < a`, and `not` is mapped to `false` because `¬ a` is definitionally equal to `p → false` The default is that the original argument is returned, so `<` is just mapped to `<`. `normalize_synonym` is called for every lemma in the library, so it needs to be fast. -/ -- TODO this is a hack; if you suspect more cases here would help, please report them meta def normalize_synonym : name → name | `gt := `has_lt.lt | `ge := `has_le.le | `monotone := `has_le.le | `not := `false | n := n /-- Compute the head symbol of an expression, then normalise synonyms. This is only used when analysing the goal, so it is okay to do more expensive analysis here. -/ -- We may want to tweak this further? meta def allowed_head_symbols : expr → list name -- We first have a various "customisations": -- Because in `ℕ` `a.succ ≤ b` is definitionally `a < b`, -- we add some special cases to allow looking for `<` lemmas even when the goal has a `≤`. -- Note we only do this in the `ℕ` case, for performance. | `(@has_le.le ℕ _ (nat.succ _) _) := [`has_le.le, `has_lt.lt] | `(@ge ℕ _ _ (nat.succ _)) := [`has_le.le, `has_lt.lt] | `(@has_le.le ℕ _ 1 _) := [`has_le.le, `has_lt.lt] | `(@ge ℕ _ _ 1) := [`has_le.le, `has_lt.lt] -- And then the generic cases: | (expr.pi _ _ _ t) := allowed_head_symbols t | (expr.app f _) := allowed_head_symbols f | (expr.const n _) := [normalize_synonym n] | _ := [`_] . /-- A declaration can match the head symbol of the current goal in four possible ways: * `ex` : an exact match * `mp` : the declaration returns an `iff`, and the right hand side matches the goal * `mpr` : the declaration returns an `iff`, and the left hand side matches the goal * `both`: the declaration returns an `iff`, and the both sides match the goal -/ @[derive decidable_eq, derive inhabited] inductive head_symbol_match | ex | mp | mpr | both open head_symbol_match /-- a textual representation of a `head_symbol_match`, for trace debugging. -/ def head_symbol_match.to_string : head_symbol_match → string | ex := "exact" | mp := "iff.mp" | mpr := "iff.mpr" | both := "iff.mp and iff.mpr" /-- Determine if, and in which way, a given expression matches the specified head symbol. -/ meta def match_head_symbol (hs : name_set) : expr → option head_symbol_match | (expr.pi _ _ _ t) := match_head_symbol t | `(%%a ↔ %%b) := if hs.contains `iff then some ex else match (match_head_symbol a, match_head_symbol b) with | (some ex, some ex) := some both | (some ex, _) := some mpr | (_, some ex) := some mp | _ := none end | (expr.app f _) := match_head_symbol f | (expr.const n _) := if hs.contains (normalize_synonym n) then some ex else none | _ := if hs.contains `_ then some ex else none /-- A package of `declaration` metadata, including the way in which its type matches the head symbol which we are searching for. -/ meta structure decl_data := (d : declaration) (n : name) (m : head_symbol_match) (l : ℕ) -- cached length of name /-- Generate a `decl_data` from the given declaration if it matches the head symbol `hs` for the current goal. -/ -- We used to check here for private declarations, or declarations with certain suffixes. -- It turns out `apply` is so fast, it's better to just try them all. meta def process_declaration (hs : name_set) (d : declaration) : option decl_data := let n := d.to_name in if !d.is_trusted || n.is_internal then none else (λ m, ⟨d, n, m, n.length⟩) <$> match_head_symbol hs d.type /-- Retrieve all library definitions with a given head symbol. -/ meta def library_defs (hs : name_set) : tactic (list decl_data) := do trace_if_enabled `suggest format!"Looking for lemmas with head symbols {hs}.", env ← get_env, let defs := env.decl_filter_map (process_declaration hs), -- Sort by length; people like short proofs let defs := defs.qsort(λ d₁ d₂, d₁.l ≤ d₂.l), trace_if_enabled `suggest format!"Found {defs.length} relevant lemmas:", trace_if_enabled `suggest $ defs.map (λ ⟨d, n, m, l⟩, (n, m.to_string)), return defs /-- We unpack any element of a list of `decl_data` corresponding to an `↔` statement that could apply in both directions into two separate elements. This ensures that both directions can be independently returned by `suggest`, and avoids a problem where the application of one direction prevents the application of the other direction. (See `exp_le_exp` in the tests.) -/ meta def unpack_iff_both : list decl_data → list decl_data | [] := [] | (⟨d, n, both, l⟩ :: L) := ⟨d, n, mp, l⟩ :: ⟨d, n, mpr, l⟩ :: unpack_iff_both L | (⟨d, n, m, l⟩ :: L) := ⟨d, n, m, l⟩ :: unpack_iff_both L /-- An extension to the option structure for `solve_by_elim`. * `compulsory_hyps` specifies a list of local hypotheses which must appear in any solution. These are useful for constraining the results from `library_search` and `suggest`. * `try_this` is a flag (default: `tt`) that controls whether a "Try this:"-line should be traced. -/ meta structure suggest_opt extends opt := (compulsory_hyps : list expr := []) (try_this : bool := tt) /-- Convert a `suggest_opt` structure to a `opt` structure suitable for `solve_by_elim`, by setting the `accept` parameter to require that all complete solutions use everything in `compulsory_hyps`. -/ meta def suggest_opt.mk_accept (o : suggest_opt) : opt := { accept := λ gs, o.accept gs >> (guard $ o.compulsory_hyps.all (λ h, gs.any (λ g, g.contains_expr_or_mvar h))), ..o } /-- Apply the lemma `e`, then attempt to close all goals using `solve_by_elim opt`, failing if `close_goals = tt` and there are any goals remaining. Returns the number of subgoals which were closed using `solve_by_elim`. -/ -- Implementation note: as this is used by both `library_search` and `suggest`, -- we first run `solve_by_elim` separately on the independent goals, -- whether or not `close_goals` is set, -- and then run `solve_by_elim { all_goals := tt }`, -- requiring that it succeeds if `close_goals = tt`. meta def apply_and_solve (close_goals : bool) (opt : suggest_opt := { }) (e : expr) : tactic ℕ := do trace_if_enabled `suggest format!"Trying to apply lemma: {e}", apply e opt.to_apply_cfg, trace_if_enabled `suggest format!"Applied lemma: {e}", ng ← num_goals, -- Phase 1 -- Run `solve_by_elim` on each "safe" goal separately, not worrying about failures. -- (We only attempt the "safe" goals in this way in Phase 1. -- In Phase 2 we will do backtracking search across all goals, -- allowing us to guess solutions that involve data or unify metavariables, -- but only as long as we can finish all goals.) -- If `compulsory_hyps` is non-empty, we skip this phase and defer to phase 2. try (guard (opt.compulsory_hyps = []) >> any_goals (independent_goal >> solve_by_elim opt.to_opt)), -- Phase 2 (done >> return ng) <|> (do -- If there were any goals that we did not attempt solving in the first phase -- (because they weren't propositional, or contained a metavariable) -- as a second phase we attempt to solve all remaining goals at once -- (with backtracking across goals). ((guard (opt.compulsory_hyps ≠ []) <|> any_goals (success_if_fail independent_goal) >> skip) >> solve_by_elim { backtrack_all_goals := tt, ..opt.mk_accept }) <|> -- and fail unless `close_goals = ff` guard ¬ close_goals, ng' ← num_goals, return (ng - ng')) /-- Apply the declaration `d` (or the forward and backward implications separately, if it is an `iff`), and then attempt to solve the subgoal using `apply_and_solve`. Returns the number of subgoals successfully closed. -/ meta def apply_declaration (close_goals : bool) (opt : suggest_opt := { }) (d : decl_data) : tactic ℕ := let tac := apply_and_solve close_goals opt in do (e, t) ← decl_mk_const d.d, match d.m with | ex := tac e | mp := do l ← iff_mp_core e t, tac l | mpr := do l ← iff_mpr_core e t, tac l | both := undefined -- we use `unpack_iff_both` to ensure this isn't reachable end /-- An `application` records the result of a successful application of a library lemma. -/ meta structure application := (state : tactic_state) (script : string) (decl : option declaration) (num_goals : ℕ) (hyps_used : list expr) end suggest open solve_by_elim open suggest declare_trace suggest -- Trace a list of all relevant lemmas -- Call `apply_declaration`, then prepare the tactic script and -- count the number of local hypotheses used. private meta def apply_declaration_script (g : expr) (hyps : list expr) (opt : suggest_opt := { }) (d : decl_data) : tactic application := -- (This tactic block is only executed when we evaluate the mllist, -- so we need to do the `focus1` here.) retrieve $ focus1 $ do apply_declaration ff opt d, -- This `instantiate_mvars` is necessary so that we count used hypotheses correctly. g ← instantiate_mvars g, guard $ (opt.compulsory_hyps.all (λ h, h.occurs g)), ng ← num_goals, s ← read, m ← tactic_statement g, return { application . state := s, decl := d.d, script := m, num_goals := ng, hyps_used := hyps.filter (λ h, h.occurs g) } -- implementation note: we produce a `tactic (mllist tactic application)` first, -- because it's easier to work in the tactic monad, but in a moment we squash this -- down to an `mllist tactic application`. private meta def suggest_core' (opt : suggest_opt := { }) : tactic (mllist tactic application) := do g :: _ ← get_goals, hyps ← local_context, -- Check if `solve_by_elim` can solve the goal immediately: (retrieve (do focus1 $ solve_by_elim opt.mk_accept, s ← read, m ← tactic_statement g, -- This `instantiate_mvars` is necessary so that we count used hypotheses correctly. g ← instantiate_mvars g, guard (opt.compulsory_hyps.all (λ h, h.occurs g)), return $ mllist.of_list [⟨s, m, none, 0, hyps.filter (λ h, h.occurs g)⟩])) <|> -- Otherwise, let's actually try applying library lemmas. (do -- Collect all definitions with the correct head symbol t ← infer_type g, defs ← unpack_iff_both <$> library_defs (name_set.of_list $ allowed_head_symbols t), let defs : mllist tactic _ := mllist.of_list defs, -- Try applying each lemma against the goal, -- recording the tactic script as a string, -- the number of remaining goals, -- and number of local hypotheses used. let results := defs.mfilter_map (apply_declaration_script g hyps opt), -- Now call `symmetry` and try again. -- (Because we are using `mllist`, this is essentially free if we've already found a lemma.) symm_state ← retrieve $ try_core $ symmetry >> read, let results_symm := match symm_state with | (some s) := defs.mfilter_map (λ d, retrieve $ set_state s >> apply_declaration_script g hyps opt d) | none := mllist.nil end, return (results.append results_symm)) /-- The core `suggest` tactic. It attempts to apply a declaration from the library, then solve new goals using `solve_by_elim`. It returns a list of `application`s consisting of fields: * `state`, a tactic state resulting from the successful application of a declaration from the library, * `script`, a string of the form `Try this: refine ...` or `Try this: exact ...` which will reproduce that tactic state, * `decl`, an `option declaration` indicating the declaration that was applied (or none, if `solve_by_elim` succeeded), * `num_goals`, the number of remaining goals, and * `hyps_used`, the number of local hypotheses used in the solution. -/ meta def suggest_core (opt : suggest_opt := { }) : mllist tactic application := (mllist.monad_lift (suggest_core' opt)).join /-- See `suggest_core`. Returns a list of at most `limit` `application`s, sorted by number of goals, and then (reverse) number of hypotheses used. -/ meta def suggest (limit : option ℕ := none) (opt : suggest_opt := { }) : tactic (list application) := do let results := suggest_core opt, -- Get the first n elements of the successful lemmas L ← if h : limit.is_some then results.take (option.get h) else results.force, -- Sort by number of remaining goals, then by number of hypotheses used. return $ L.qsort (λ d₁ d₂, d₁.num_goals < d₂.num_goals ∨ (d₁.num_goals = d₂.num_goals ∧ d₁.hyps_used.length ≥ d₂.hyps_used.length)) /-- Returns a list of at most `limit` strings, of the form `Try this: exact ...` or `Try this: refine ...`, which make progress on the current goal using a declaration from the library. -/ meta def suggest_scripts (limit : option ℕ := none) (opt : suggest_opt := { }) : tactic (list string) := do L ← suggest limit opt, return $ L.map application.script /-- Returns a string of the form `Try this: exact ...`, which closes the current goal. -/ meta def library_search (opt : suggest_opt := { }) : tactic string := (suggest_core opt).mfirst (λ a, do guard (a.num_goals = 0), write a.state, return a.script) namespace interactive setup_tactic_parser open solve_by_elim declare_trace silence_suggest -- Turn off `Try this: exact/refine ...` trace messages for `suggest` /-- `suggest` tries to apply suitable theorems/defs from the library, and generates a list of `exact ...` or `refine ...` scripts that could be used at this step. It leaves the tactic state unchanged. It is intended as a complement of the search function in your editor, the `#find` tactic, and `library_search`. `suggest` takes an optional natural number `num` as input and returns the first `num` (or less, if all possibilities are exhausted) possibilities ordered by length of lemma names. The default for `num` is `50`. For performance reasons `suggest` uses monadic lazy lists (`mllist`). This means that `suggest` might miss some results if `num` is not large enough. However, because `suggest` uses monadic lazy lists, smaller values of `num` run faster than larger values. You can add additional lemmas to be used along with local hypotheses after the application of a library lemma, using the same syntax as for `solve_by_elim`, e.g. ``` example {a b c d: nat} (h₁ : a < c) (h₂ : b < d) : max (c + d) (a + b) = (c + d) := begin suggest [add_lt_add], -- Says: `Try this: exact max_eq_left_of_lt (add_lt_add h₁ h₂)` end ``` You can also use `suggest with attr` to include all lemmas with the attribute `attr`. -/ meta def suggest (n : parse (with_desc "n" small_nat)?) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (use : parse $ (tk "using" *> many ident_) <|> return []) (opt : suggest_opt := { }) : tactic unit := do (lemma_thunks, ctx_thunk) ← mk_assumption_set ff hs attr_names, use ← use.mmap get_local, L ← tactic.suggest_scripts (n.get_or_else 50) { compulsory_hyps := use, lemma_thunks := some lemma_thunks, ctx_thunk := ctx_thunk, ..opt }, if !opt.try_this || is_trace_enabled_for `silence_suggest then skip else if L.length = 0 then fail "There are no applicable declarations" else L.mmap trace >> skip /-- `suggest` lists possible usages of the `refine` tactic and leaves the tactic state unchanged. It is intended as a complement of the search function in your editor, the `#find` tactic, and `library_search`. `suggest` takes an optional natural number `num` as input and returns the first `num` (or less, if all possibilities are exhausted) possibilities ordered by length of lemma names. The default for `num` is `50`. `suggest using h₁ h₂` will only show solutions that make use of the local hypotheses `h₁` and `h₂`. For performance reasons `suggest` uses monadic lazy lists (`mllist`). This means that `suggest` might miss some results if `num` is not large enough. However, because `suggest` uses monadic lazy lists, smaller values of `num` run faster than larger values. An example of `suggest` in action, ```lean example (n : nat) : n < n + 1 := begin suggest, sorry end ``` prints the list, ```lean Try this: exact nat.lt.base n Try this: exact nat.lt_succ_self n Try this: refine not_le.mp _ Try this: refine gt_iff_lt.mp _ Try this: refine nat.lt.step _ Try this: refine lt_of_not_ge _ ... ``` -/ add_tactic_doc { name := "suggest", category := doc_category.tactic, decl_names := [`tactic.interactive.suggest], tags := ["search", "Try this"] } -- Turn off `Try this: exact ...` trace message for `library_search` declare_trace silence_library_search /-- `library_search` is a tactic to identify existing lemmas in the library. It tries to close the current goal by applying a lemma from the library, then discharging any new goals using `solve_by_elim`. If it succeeds, it prints a trace message `exact ...` which can replace the invocation of `library_search`. Typical usage is: ```lean example (n m k : ℕ) : n * (m - k) = n * m - n * k := by library_search -- Try this: exact mul_tsub n m k ``` `library_search using h₁ h₂` will only show solutions that make use of the local hypotheses `h₁` and `h₂`. By default `library_search` only unfolds `reducible` definitions when attempting to match lemmas against the goal. Previously, it would unfold most definitions, sometimes giving surprising answers, or slow answers. The old behaviour is still available via `library_search!`. You can add additional lemmas to be used along with local hypotheses after the application of a library lemma, using the same syntax as for `solve_by_elim`, e.g. ``` example {a b c d: nat} (h₁ : a < c) (h₂ : b < d) : max (c + d) (a + b) = (c + d) := begin library_search [add_lt_add], -- Says: `Try this: exact max_eq_left_of_lt (add_lt_add h₁ h₂)` end ``` You can also use `library_search with attr` to include all lemmas with the attribute `attr`. -/ meta def library_search (semireducible : parse $ optional (tk "!")) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (use : parse $ (tk "using" *> many ident_) <|> return []) (opt : suggest_opt := { }) : tactic unit := do (lemma_thunks, ctx_thunk) ← mk_assumption_set ff hs attr_names, use ← use.mmap get_local, (tactic.library_search { compulsory_hyps := use, backtrack_all_goals := tt, lemma_thunks := some lemma_thunks, ctx_thunk := ctx_thunk, md := if semireducible.is_some then tactic.transparency.semireducible else tactic.transparency.reducible, ..opt } >>= if !opt.try_this || is_trace_enabled_for `silence_library_search then (λ _, skip) else trace) <|> fail "`library_search` failed. If you aren't sure what to do next, you can also try `library_search!`, `suggest`, or `hint`. Possible reasons why `library_search` failed: * `library_search` will only apply a single lemma from the library, and then try to fill in its hypotheses from local hypotheses. * If you haven't already, try stating the theorem you want in its own lemma. * Sometimes the library has one version of a lemma but not a very similar version obtained by permuting arguments. Try replacing `a + b` with `b + a`, or `a - b < c` with `a < b + c`, to see if maybe the lemma exists but isn't stated quite the way you would like. * Make sure that you have all the side conditions for your theorem to be true. For example you won't find `a - b + b = a` for natural numbers in the library because it's false! Search for `b ≤ a → a - b + b = a` instead. * If a definition you made is in the goal, you won't find any theorems about it in the library. Try unfolding the definition using `unfold my_definition`. * If all else fails, ask on https://leanprover.zulipchat.com/, and maybe we can improve the library and/or `library_search` for next time." add_tactic_doc { name := "library_search", category := doc_category.tactic, decl_names := [`tactic.interactive.library_search], tags := ["search", "Try this"] } end interactive /-- Invoking the hole command `library_search` ("Use `library_search` to complete the goal") calls the tactic `library_search` to produce a proof term with the type of the hole. Running it on ```lean example : 0 < 1 := {!!} ``` produces ```lean example : 0 < 1 := nat.one_pos ``` -/ @[hole_command] meta def library_search_hole_cmd : hole_command := { name := "library_search", descr := "Use `library_search` to complete the goal.", action := λ _, do script ← library_search, -- Is there a better API for dropping the 'Try this: exact ' prefix on this string? return [((script.get_rest "Try this: exact ").get_or_else script, "by library_search")] } add_tactic_doc { name := "library_search", category := doc_category.hole_cmd, decl_names := [`tactic.library_search_hole_cmd], tags := ["search", "Try this"] } end tactic
aaba243af81c9b4a267a5cfd183aed1b85852708
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/hott/unfold_test.hlean
b5e398fcf62d6edb97bde6ed121ea0db45acd91b
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
1,059
hlean
import algebra.e_closure open eq namespace relation section parameters {A : Type} (R : A → A → Type) local abbreviation T := e_closure R variables ⦃a a' : A⦄ {s : R a a'} {r : T a a} parameter {R} theorem ap_ap_e_closure_elim_h₁ {B C D : Type} {f : A → B} {g : B → C} (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : square (ap (ap h) (ap_e_closure_elim_h e p t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) t) := begin induction t, apply sorry, apply sorry, { rewrite [▸*, ap_con (ap h)], refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,-inv2_inv], exact !ap_inv2 ⬝v square_inv2 v_0 }, apply sorry end end end relation
ee9904f2e5ea0e375f7ce0cf56d242d925257e6c
d0f9af2b0ace5ce352570d61b09019c8ef4a3b96
/final_exam/final_exam.lean
7cc2d67325dcb7b7993d4ad3207639bb95968122
[]
no_license
jngo13/Discrete-Mathematics
8671540ef2da7c75915d32332dd20c02f001474e
bf674a866e61f60e6e6d128df85fa73819091787
refs/heads/master
1,675,615,657,924
1,609,142,011,000
1,609,142,011,000
267,190,341
0
0
null
null
null
null
UTF-8
Lean
false
false
12,534
lean
/- Justin Ngo jmn4fms 5/4/20 Sullivan 2102-001 -/ /- CS2102 Spring 2020 Final Exam. You are to take this exam entirely on your own. You may not discuss it with anyone but the instructor and TAs. The exam has 6 qustions, some with several parts. Read the entire exam first to get a sense of the easy and hard parts. Do the easier parts first while letting your mind work in the background on the harder parts. Submit your completed exam on Collab. The exam is due no later than 5PM sharp ***EDT*** on May 8. Please set yourself a reminder. -/ /- 1. You know from our study of the Boolean satisfiability problem that there are 2^n possible combinations of Boolean values for n Boolean variables. Your task here is to give an English language (quasi-formal) proof of this fact *by induction*. To get started, let's make the property of natural numbers that is at issue clear by defining "P n" to be proposition that "the number of possible combinations of values for *n* Boolean variables is *2^n*." What you are to prove is the proposition that this is true for any value of n. That is, you are to prove ∀ n, P n. Next, recall that a proof of a universal generalization (such as ∀ n, P n) *by induction* is based on the application of the *induction principle* for for the given data type. Here the data type is ℕ, and the induction rule for ℕ is as follows: ∀ {P : ℕ → Prop}, P 0 → (∀ n', P n' → P (n' + 1)) → ∀ n, P n. ** You should assume that the number of ** combinations of zero boolean variables ** is 1. Reading backwards, this says that if you want to prove ∀ n, P n, it will *suffice* to prove P 0 and ∀ n', P n' → P (n' + 1)). The reason is that you can then apply the rule to deduce that ∀ n, P n must be true. In other words, you can reduce the task of proving ∀ n, P n to the tasks of proving the two antecedents of this conclusion in the induction rule. This induction principles tells you exactly what needs to be done. We give you the start of a quasi-formal proof. You must complete it. -/ -- Answer /- Theorem: For any natural number, n, the number of combinations of values for n Boolean variables is 2^n. Proof: By induction. To prove ∀ n, P n, where P is defined to be the proposition, "the number of possible combinations of values for n Boolean variables is 2^n," it will suffice ... <the rest of your answer here>. -/ /- **** ANSWER **** It will suffice to show that "∀ n, P n" is true for all natural numbers. Assume that n is an arbitrary but specific natural number. 1. It will sufffice to show that it is true for the base case n = 0 or 0 (P 0 →) 2. And to show that it is true for n+1 ((∀ n, P n → P (n + 1)) → ), assuming it is true for n. For any natural number n, if the number of combinations of n boolean variables is 2^n, then the number of combinations of n+1 boolean variables is 2^(n+1). And thus holds true for all natural numbers. PROOF: Given -- Number of combinations of 0 boolean variables is 1 And assumming -- P n = 2^n -- 2^n = 2^(n-1) * 2 [by property of exponents] Therefore, -- 2^(n+1) = 2^n * 2 -- P (n+1) = (P n) * 2 -- P (n+1) = 2^n * 2 and since -- 2^n * 2 = 2^(n+1), the number of combinations of n+1 boolean variables is 2^(n+1) Thus P (n+1) = 2^(n+1) QED -/ /- 2. Consider the following proposition. -/ def aProp := ∀ (α : Type), ∀ (Heavy Charmed: α → Prop), (∃ (a : α), Heavy a ∧ Charmed a) → (∃ (a : α), Charmed a) /- 2a. Give an English language rendition of this proposition. In plain English, what does it say? -/ /- **** Answer **** Suppose we have an object of type α; Suppose "heavy" and "charmed" are objects/ properties of type alpha If there exists an object "a" of this type and "a" is both heavy and charmed, THEN there exists an object that is charmed -/ /- 2b. Give a formal proof of it. -/ example : aProp := λ a, λ H C, -- Heavy, Charmed λ heavy_and_charmed, match heavy_and_charmed with | exists.intro fred pf_fred_charmed := match pf_fred_charmed with | and.intro c h := (exists.intro fred pf_fred_charmed.right) end end /- 2c. Give a quasi-formal, English-language proof of it. Try to be guided by your formal proof. Justify each step in your proof by naming the inference rule that you're using. -/ -- Your answer here /- **** Answer **** Assume we have an object a of type alpha Assume that the object a of type alpha has properties heavy and charmed. Assumming there exists an object a that is both heavy and charmed. Deconstruct this assumption to prove that there exists an object fred which is heavy and charmed by doing case analysis. And further deconstruct the assumption of a heavy and charmed object, fred, to get a proof that there exists an object that is charmed. -/ /- 3. Consider the following proposition. -/ def aProp2 := ∀ (α : Type), ∀ (Heavy Charmed: α → Prop), (∃ (a : α), Heavy a ∨ Charmed a) → (∃ (a : α), Heavy a) ∨ (∃ (a : α), Charmed a) /- 3a. Give an English language rendition of this proposition. In plain English, what does it say? -/ /- **** Answer **** Suppose we have an object of type α; Suppose "heavy" and "charmed" are objects/ properties of type alpha If there exists an object "a" of this type such that "a" is heavy or charmed, THEN there either exists an object that is heavy OR there exists an object that is charmed -/ /- 3b. Give a formal proof of it. -/ example : aProp2 := λ a, λ H C, -- Heavy, Charmed λ heavy_or_charmed, match heavy_or_charmed with | exists.intro fred pf_fred_either_heavy_or_charmed := match pf_fred_either_heavy_or_charmed with | or.inl h := or.inl (exists.intro fred h) | or.inr c := or.inr (exists.intro fred c) end end /- 3c. Give a quasi-formal, English-language proof of it. Try to be guided by your formal proof. Justify each step in your proof by naming the inference rule that you're using. -/ -- Your answer here /- **** Answer **** Assume we have an object a of type alpha Assume that the object a of type alpha has properties heavy and charmed. Assumming there exists an object a that is either heavy or an object a that is charmed. Deconstruct this assumption to prove that there exists an object fred which is heavy or there exists an object fred that is charmed by doing case analysis. And further deconstruct the assumption of a heavy or charmed object, fred, to get a proof that there exists an object that is heavy or there exists an object that is charmed. -/ /- 4. Formally specify the syntax and semantics of a language of *arithmetic* expressions that can include variables, where the meaning of an expression is (reduces to) a natural number. Hint: model your answer on our specification of the syntax and semantics of *propositional logic* expressions. -/ /- In this language, an interpretation will map variables to natural numbers rather than to Boolean values. We'll give you a start on a solution by defining (1) a type of variables that are distinguished from one another by a ℕ-valued index, (2) specifying the type of an interpretation, and (3) giving an example of an interpretation in which all variables have the value zero. -/ -- our variable type structure a_var : Type := mk :: (index : ℕ) -- friendly names for a few variables def X_var := a_var.mk 0 def Y_var := a_var.mk 1 def Z_var := a_var.mk 2 -- the type of an interpretation def interp := a_var → ℕ -- one possible interpretation, "all zero" def all_zero_interp : interp := λ v, 0 /- 4a. Define an interpretation in which X has value 3, Y has value 7, and Z has value 1, and all other variables have value 0. -/ def an_interp : interp := λ (v : a_var), match v with | a_var.mk 0 := 3 -- X | a_var.mk 1 := 7 -- Y | a_var.mk 2 := 1 -- Z | _ := 0 end /- 4b. Define the syntax of your language to have the following kinds of expressions. - ℕ literal expression - ℕ variable expression - expression + expression - expression * expression Do this by defining an inductive type, aexp, the values of which are arithmetic expressions in our language. Call your constructors lit, var, add, and mul. When you succeed, the test expressions we give you should type check. -/ inductive aexp : Type -- fill in constructors here | lit : ℕ → aexp | var : a_var → aexp | add : aexp → aexp → aexp | mul : aexp → aexp → aexp open aexp -- These expressions should type-check def X := aexp.var X_var def Y := aexp.var Y_var def Z := aexp.var Z_var def l6 := aexp.lit 6 def e1 := aexp.add X Y def e2 := aexp.mul X Z def e3 := aexp.mul e1 l6 /- 4c. Define a semantics for your language so that expressions evaluate to natural numbers as they would using the standard notions of addition and multiplication. Furthermore, literal expressions should evaluate to their natural numbers arguments, and variable expressions should evaluate the natural numbers according to an interpretation given to the evaluation function (call it aEval). Remember to put constructor expressions in parentheses when using pattern matching / destructuring. When you've succeeded, the test cases we've provided should all pass. -/ -- Your answer here def aEval : aexp → interp → ℕ -- fill in cases here | (lit v) i := v | (var v) i := i v | (add e1 e2) i := (aEval e1 i) + (aEval e2 i) | (mul e1 e2) i := (aEval e1 i) * (aEval e2 i) -- Test cases that should pass when you've succeeded example : aEval X an_interp = 3 := rfl example : aEval Y an_interp = 7 := rfl example : aEval Z an_interp = 1 := rfl example : aEval l6 all_zero_interp = 6 := rfl example : aEval e1 all_zero_interp = 0 := rfl example : aEval e2 an_interp = 3 := rfl example : aEval e3 an_interp = 60 := rfl /- 5. Explain concisely but also precisely how a proof of a proposition, P, "by contradiction" would be carried out. Be sure to point out exactly where negation elimination is involved. Then explain concisely and precisely how a proof of a proposition, ¬ P, would be carried out. -/ /- **** Answer **** To prove proposition P "by contradiction", Assume P is false which also assumes that ¬P is assumed to be true. Prove that the results of these assumptions contradict each other because it violates the law of the excluded middle: either P is true OR ¬P is true. Once the proof is reduced to ¬ (¬ P), negation elimination can be used to deduce that P is true. To prove ¬ P, assume P is true and show that this leads to a contradiction, then from that derive a proof of P being false, and use false.elim to finish the proof. This is called a "proof by negation". This shows ¬ (¬ P) is false. And then, according to the the classical principle of negation elimination, ¬P can be deduced true. -/ /- 6. A simplish proof. Give a formal proof of the following proposition. Then explain briefly in English why the proposition must be true no matter what propositions P and Q are. -/ example : ∀ (P Q R : Prop), ¬ ((P ∧ ¬ Q) ∧ (Q ∧ ¬ R)) := λ P Q R, (λ wholeprop, (let pandnq := wholeprop.left in let qandnr := wholeprop.right in let nq := pandnq.right in let q := qandnr.left in false.elim (nq q) ) ) -- Your explanation /- **** Answer **** A proof of a negation is a proof that some proposition implies false, in this case ¬ ((P ∧ ¬ Q) ∧ (Q ∧ ¬ R)) where ((P ∧ ¬ Q) ∧ (Q ∧ ¬ R)) must be proven false. If X = ((P ∧ ¬ Q) ∧ (Q ∧ ¬ R)), In order to prove a proposition ¬X, we have to prove X implies false. So assume X can lead to a contradiction. Isolating Q and ¬Q in this proof X, the two contradict each other and both Q and ¬Q cannot be true because of the law of the excluded middle. Q and ¬Q are isolated using let...in statements to retrieve the separated Q and ¬Q in the proof. Thus, Q ∧ ¬Q will always be false no matter what P and R are. And by appyling false.elim, the proof of a negation Q and ¬Q evaluates to false, and the entire proof is deduced to be true. -/
631e66483afe34e209e720baba68f1f73b3047f6
abd85493667895c57a7507870867b28124b3998f
/src/category_theory/limits/shapes/zero.lean
e1587323a482e9e78c4f87b251287e451e956341
[ "Apache-2.0" ]
permissive
pechersky/mathlib
d56eef16bddb0bfc8bc552b05b7270aff5944393
f1df14c2214ee114c9738e733efd5de174deb95d
refs/heads/master
1,666,714,392,571
1,591,747,567,000
1,591,747,567,000
270,557,274
0
0
Apache-2.0
1,591,597,975,000
1,591,597,974,000
null
UTF-8
Lean
false
false
8,987
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.limits.shapes.binary_products import category_theory.limits.shapes.images import category_theory.epi_mono import category_theory.punit /-! # Zero morphisms and zero objects A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space, and compositions of zero morphisms with anything give the zero morphism. (Notice this is extra structure, not merely a property.) A category "has a zero object" if it has an object which is both initial and terminal. Having a zero object provides zero morphisms, as the unique morphisms factoring through the zero object. ## References * https://en.wikipedia.org/wiki/Zero_morphism * [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2] -/ universes v u open category_theory namespace category_theory.limits variables (C : Type u) [category.{v} C] /-- A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space, and compositions of zero morphisms with anything give the zero morphism. -/ class has_zero_morphisms := [has_zero : Π X Y : C, has_zero (X ⟶ Y)] (comp_zero' : ∀ {X Y : C} (f : X ⟶ Y) (Z : C), f ≫ (0 : Y ⟶ Z) = (0 : X ⟶ Z) . obviously) (zero_comp' : ∀ (X : C) {Y Z : C} (f : Y ⟶ Z), (0 : X ⟶ Y) ≫ f = (0 : X ⟶ Z) . obviously) attribute [instance] has_zero_morphisms.has_zero restate_axiom has_zero_morphisms.comp_zero' attribute [simp] has_zero_morphisms.comp_zero restate_axiom has_zero_morphisms.zero_comp' attribute [simp, reassoc] has_zero_morphisms.zero_comp instance has_zero_morphisms_pempty : has_zero_morphisms.{v} pempty.{v+1} := { has_zero := by tidy } instance has_zero_morphisms_punit : has_zero_morphisms.{v} punit.{v+1} := { has_zero := λ X Y, { zero := punit.star, } } namespace has_zero_morphisms variables {C} /-- This lemma will be immediately superseded by `ext`, below. -/ private lemma ext_aux (I J : has_zero_morphisms.{v} C) (w : ∀ X Y : C, (@has_zero_morphisms.has_zero.{v} _ _ I X Y).zero = (@has_zero_morphisms.has_zero.{v} _ _ J X Y).zero) : I = J := begin resetI, cases I, cases J, congr, { ext X Y, exact w X Y }, { apply proof_irrel_heq, }, { apply proof_irrel_heq, } end /-- If you're tempted to use this lemma "in the wild", you should probably carefully consider whether you've made a mistake in allowing two instances of `has_zero_morphisms` to exist at all. See, particularly, the note on `zero_morphisms_of_zero_object` below. -/ lemma ext (I J : has_zero_morphisms.{v} C) : I = J := begin apply ext_aux, intros X Y, rw ←@has_zero_morphisms.comp_zero _ _ I X X (@has_zero_morphisms.has_zero _ _ J X X).zero, rw @has_zero_morphisms.zero_comp _ _ J, end instance : subsingleton (has_zero_morphisms.{v} C) := ⟨ext⟩ end has_zero_morphisms open has_zero_morphisms section variables {C} [has_zero_morphisms.{v} C] lemma zero_of_comp_mono {X Y Z : C} {f : X ⟶ Y} (g : Y ⟶ Z) [mono g] (h : f ≫ g = 0) : f = 0 := by { rw [←zero_comp.{v} X g, cancel_mono] at h, exact h } lemma zero_of_epi_comp {X Y Z : C} (f : X ⟶ Y) {g : Y ⟶ Z} [epi f] (h : f ≫ g = 0) : g = 0 := by { rw [←comp_zero.{v} f Z, cancel_epi] at h, exact h } lemma eq_zero_of_image_eq_zero {X Y : C} {f : X ⟶ Y} [has_image f] (w : image.ι f = 0) : f = 0 := by rw [←image.fac f, w, has_zero_morphisms.comp_zero] lemma nonzero_image_of_nonzero {X Y : C} {f : X ⟶ Y} [has_image f] (w : f ≠ 0) : image.ι f ≠ 0 := λ h, w (eq_zero_of_image_eq_zero h) end section universes v' u' variables (D : Type u') [category.{v'} D] variables [has_zero_morphisms.{v} C] [has_zero_morphisms.{v'} D] @[simp] lemma equivalence_preserves_zero_morphisms (F : C ≌ D) (X Y : C) : F.functor.map (0 : X ⟶ Y) = (0 : F.functor.obj X ⟶ F.functor.obj Y) := begin have t : F.functor.map (0 : X ⟶ Y) = F.functor.map (0 : X ⟶ Y) ≫ (0 : F.functor.obj Y ⟶ F.functor.obj Y), { apply faithful.injectivity (F.inverse), rw [functor.map_comp, equivalence.inv_fun_map], dsimp, rw [zero_comp, comp_zero, zero_comp], }, exact t.trans (by simp) end end /-- A category "has a zero object" if it has an object which is both initial and terminal. -/ class has_zero_object := (zero : C) (unique_to : Π X : C, unique (zero ⟶ X)) (unique_from : Π X : C, unique (X ⟶ zero)) instance has_zero_object_punit : has_zero_object.{v} punit.{v+1} := { zero := punit.star, unique_to := by tidy, unique_from := by tidy, } variables {C} namespace has_zero_object variables [has_zero_object.{v} C] /-- Construct a `has_zero C` for a category with a zero object. This can not be a global instance as it will trigger for every `has_zero C` typeclass search. -/ protected def has_zero : has_zero C := { zero := has_zero_object.zero.{v} } local attribute [instance] has_zero_object.has_zero local attribute [instance] has_zero_object.unique_to has_zero_object.unique_from @[ext] lemma to_zero_ext {X : C} (f g : X ⟶ 0) : f = g := by rw [(has_zero_object.unique_from.{v} X).uniq f, (has_zero_object.unique_from.{v} X).uniq g] @[ext] lemma from_zero_ext {X : C} (f g : 0 ⟶ X) : f = g := by rw [(has_zero_object.unique_to.{v} X).uniq f, (has_zero_object.unique_to.{v} X).uniq g] instance {X : C} (f : 0 ⟶ X) : mono f := { right_cancellation := λ Z g h w, by ext, } instance {X : C} (f : X ⟶ 0) : epi f := { left_cancellation := λ Z g h w, by ext, } /-- A category with a zero object has zero morphisms. It is rarely a good idea to use this. Many categories that have a zero object have zero morphisms for some other reason, for example from additivity. Library code that uses `zero_morphisms_of_zero_object` will then be incompatible with these categories because the `has_zero_morphisms` instances will not be definitionally equal. For this reason library code should generally ask for an instance of `has_zero_morphisms` separately, even if it already asks for an instance of `has_zero_objects`. -/ def zero_morphisms_of_zero_object : has_zero_morphisms.{v} C := { has_zero := λ X Y, { zero := inhabited.default (X ⟶ 0) ≫ inhabited.default (0 ⟶ Y) }, zero_comp' := λ X Y Z f, by { dunfold has_zero.zero, rw category.assoc, congr, }, comp_zero' := λ X Y Z f, by { dunfold has_zero.zero, rw ←category.assoc, congr, }} section variable [has_zero_morphisms.{v} C] /-- An arrow ending in the zero object is zero -/ -- This can't be a `simp` lemma because the left hand side would be a metavariable. lemma zero_of_to_zero {X : C} (f : X ⟶ 0) : f = 0 := by ext /-- An arrow starting at the zero object is zero -/ lemma zero_of_from_zero {X : C} (f : 0 ⟶ X) : f = 0 := by ext end /-- A zero object is in particular initial. -/ def has_initial_of_has_zero_object : has_initial.{v} C := has_initial_of_unique 0 /-- A zero object is in particular terminal. -/ def has_terminal_of_has_zero_object : has_terminal.{v} C := has_terminal_of_unique 0 end has_zero_object /-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/ instance split_mono_sigma_ι {β : Type v} [decidable_eq β] [has_zero_morphisms.{v} C] (f : β → C) [has_colimit (functor.of_function f)] (b : β) : split_mono (sigma.ι f b) := { retraction := sigma.desc (λ b', if h : b' = b then eq_to_hom (congr_arg f h) else 0), } /-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/ instance split_epi_pi_π {β : Type v} [decidable_eq β] [has_zero_morphisms.{v} C] (f : β → C) [has_limit (functor.of_function f)] (b : β) : split_epi (pi.π f b) := { section_ := pi.lift (λ b', if h : b = b' then eq_to_hom (congr_arg f h) else 0), } /-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/ instance split_mono_coprod_inl [has_zero_morphisms.{v} C] {X Y : C} [has_colimit (pair X Y)] : split_mono (coprod.inl : X ⟶ X ⨿ Y) := { retraction := coprod.desc (𝟙 X) 0, } /-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/ instance split_mono_coprod_inr [has_zero_morphisms.{v} C] {X Y : C} [has_colimit (pair X Y)] : split_mono (coprod.inr : Y ⟶ X ⨿ Y) := { retraction := coprod.desc 0 (𝟙 Y), } /-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/ instance split_epi_prod_fst [has_zero_morphisms.{v} C] {X Y : C} [has_limit (pair X Y)] : split_epi (prod.fst : X ⨯ Y ⟶ X) := { section_ := prod.lift (𝟙 X) 0, } /-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/ instance split_epi_prod_snd [has_zero_morphisms.{v} C] {X Y : C} [has_limit (pair X Y)] : split_epi (prod.snd : X ⨯ Y ⟶ Y) := { section_ := prod.lift 0 (𝟙 Y), } end category_theory.limits
15cb3bdf21e45280c5e9c9fb5ef11cf9f7e1f356
3446e92e64a5de7ed1f2109cfb024f83cd904c34
/src/game/world2/level15.lean
52568dde51e3825a27759e95a00ed8ee4749c88b
[]
no_license
kckennylau/natural_number_game
019f4a5f419c9681e65234ecd124c564f9a0a246
ad8c0adaa725975be8a9f978c8494a39311029be
refs/heads/master
1,598,784,137,722
1,571,905,156,000
1,571,905,156,000
218,354,686
0
0
null
1,572,373,319,000
1,572,373,318,000
null
UTF-8
Lean
false
false
532
lean
import mynat.definition -- hide import mynat.add -- hide import game.world2.level14 -- hide namespace mynat -- hide /- # World 2 -- Addition World ## Level 15 -- `eq_zero_of_add_right_eq_self` We have * `succ_eq_add_one : ∀ (n : mynat), succ n = n + 1` but sometimes the other way is also convenient. -/ /- Theorem For any natural number $d$, we have $$ d+1 = \operatorname{succ}(d). $$ -/ theorem add_one_eq_succ (d : mynat) : d + 1 = succ d := begin [less_leaky] rw succ_eq_add_one, refl, end end mynat -- hide
847f9debfd0ba6bb589a304b6898a2a716375899
88892181780ff536a81e794003fe058062f06758
/src/100_theorems/t051.lean
dfe16bdd50b0bb68286720eab50b9d701e29e123
[]
no_license
AtnNn/lean-sandbox
fe2c44280444e8bb8146ab8ac391c82b480c0a2e
8c68afbdc09213173aef1be195da7a9a86060a97
refs/heads/master
1,623,004,395,876
1,579,969,507,000
1,579,969,507,000
146,666,368
0
0
null
null
null
null
UTF-8
Lean
false
false
177
lean
import data.zmod.quadratic_reciprocity -- Wilson’s Theorem open nat theorem t051 {p : ℕ} : Π (hp : nat.prime p), (fact (p - 1) : zmodp p hp) = -1 := zmodp.wilsons_lemma
65e3a2f5c6d48b95ef4de49f6ae71f3198e6a4e8
9bb72db9297f7837f673785604fb89b3184e13f8
/library/data/buffer.lean
388f2785e9098450ea27d2c004a7a27279f63c4a
[ "Apache-2.0" ]
permissive
dselsam/lean
ec83d7592199faa85687d884bbaaa570b62c1652
6b0bd5bc2e07e13880d332c89093fe3032bb2469
refs/heads/master
1,621,807,064,966
1,611,454,685,000
1,611,975,642,000
42,734,348
3
3
null
1,498,748,560,000
1,442,594,289,000
C++
UTF-8
Lean
false
false
4,838
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ universes u w def buffer (α : Type u) := Σ n, array n α def mk_buffer {α : Type u} : buffer α := ⟨0, {data := λ i, fin.elim0 i}⟩ def array.to_buffer {α : Type u} {n : nat} (a : array n α) : buffer α := ⟨n, a⟩ namespace buffer variables {α : Type u} {β : Type w} def nil : buffer α := mk_buffer def size (b : buffer α) : nat := b.1 def to_array (b : buffer α) : array (b.size) α := b.2 def push_back : buffer α → α → buffer α | ⟨n, a⟩ v := ⟨n+1, a.push_back v⟩ def pop_back : buffer α → buffer α | ⟨0, a⟩ := ⟨0, a⟩ | ⟨n+1, a⟩ := ⟨n, a.pop_back⟩ def read : Π (b : buffer α), fin b.size → α | ⟨n, a⟩ i := a.read i def write : Π (b : buffer α), fin b.size → α → buffer α | ⟨n, a⟩ i v := ⟨n, a.write i v⟩ def read' [inhabited α] : buffer α → nat → α | ⟨n, a⟩ i := a.read' i def write' : buffer α → nat → α → buffer α | ⟨n, a⟩ i v := ⟨n, a.write' i v⟩ lemma read_eq_read' [inhabited α] (b : buffer α) (i : nat) (h : i < b.size) : read b ⟨i, h⟩ = read' b i := by cases b; unfold read read'; simp [array.read_eq_read'] lemma write_eq_write' (b : buffer α) (i : nat) (h : i < b.size) (v : α) : write b ⟨i, h⟩ v = write' b i v := by cases b; unfold write write'; simp [array.write_eq_write'] def to_list (b : buffer α) : list α := b.to_array.to_list protected def to_string (b : buffer char) : string := b.to_array.to_list.as_string def append_list {α : Type u} : buffer α → list α → buffer α | b [] := b | b (v::vs) := append_list (b.push_back v) vs def append_string (b : buffer char) (s : string) : buffer char := b.append_list s.to_list lemma lt_aux_1 {a b c : nat} (h : a + c < b) : a < b := lt_of_le_of_lt (nat.le_add_right a c) h lemma lt_aux_2 {n} (h : n > 0) : n - 1 < n := have h₁ : 1 > 0, from dec_trivial, nat.sub_lt h h₁ lemma lt_aux_3 {n i} (h : i + 1 < n) : n - 2 - i < n := have n > 0, from lt_trans (nat.zero_lt_succ i) h, have n - 2 < n, from nat.sub_lt this (dec_trivial), lt_of_le_of_lt (nat.sub_le _ _) this def append_array {α : Type u} {n : nat} (nz : n > 0) : buffer α → array n α → ∀ i : nat, i < n → buffer α | ⟨m, b⟩ a 0 _ := let i : fin n := ⟨n - 1, lt_aux_2 nz⟩ in ⟨m+1, b.push_back (a.read i)⟩ | ⟨m, b⟩ a (j+1) h := let i : fin n := ⟨n - 2 - j, lt_aux_3 h⟩ in append_array ⟨m+1, b.push_back (a.read i)⟩ a j (lt_aux_1 h) protected def append {α : Type u} : buffer α → buffer α → buffer α | b ⟨0, a⟩ := b | b ⟨n+1, a⟩ := append_array (nat.zero_lt_succ _) b a n (nat.lt_succ_self _) def iterate : Π b : buffer α, β → (fin b.size → α → β → β) → β | ⟨_, a⟩ b f := a.iterate b f def foreach : Π b : buffer α, (fin b.size → α → α) → buffer α | ⟨n, a⟩ f := ⟨n, a.foreach f⟩ /-- Monadically map a function over the buffer. -/ @[inline] def mmap {m} [monad m] (b : buffer α) (f : α → m β) : m (buffer β) := do b' ← b.2.mmap f, return b'.to_buffer /-- Map a function over the buffer. -/ @[inline] def map : buffer α → (α → β) → buffer β | ⟨n, a⟩ f := ⟨n, a.map f⟩ def foldl : buffer α → β → (α → β → β) → β | ⟨_, a⟩ b f := a.foldl b f def rev_iterate : Π (b : buffer α), β → (fin b.size → α → β → β) → β | ⟨_, a⟩ b f := a.rev_iterate b f def take (b : buffer α) (n : nat) : buffer α := if h : n ≤ b.size then ⟨n, b.to_array.take n h⟩ else b def take_right (b : buffer α) (n : nat) : buffer α := if h : n ≤ b.size then ⟨n, b.to_array.take_right n h⟩ else b def drop (b : buffer α) (n : nat) : buffer α := if h : n ≤ b.size then ⟨_, b.to_array.drop n h⟩ else b def reverse (b : buffer α) : buffer α := ⟨b.size, b.to_array.reverse⟩ protected def mem (v : α) (a : buffer α) : Prop := ∃i, read a i = v instance : has_mem α (buffer α) := ⟨buffer.mem⟩ instance : has_append (buffer α) := ⟨buffer.append⟩ instance [has_repr α] : has_repr (buffer α) := ⟨repr ∘ to_list⟩ meta instance [has_to_format α] : has_to_format (buffer α) := ⟨to_fmt ∘ to_list⟩ meta instance [has_to_tactic_format α] : has_to_tactic_format (buffer α) := ⟨tactic.pp ∘ to_list⟩ end buffer def list.to_buffer {α : Type u} (l : list α) : buffer α := mk_buffer.append_list l @[reducible] def char_buffer := buffer char /-- Convert a format object into a character buffer with the provided formatting options. -/ meta constant format.to_buffer : format → options → buffer char def string.to_char_buffer (s : string) : char_buffer := buffer.nil.append_string s
a4a13d5e36c10a86c9eb121169f96183db916348
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/Lean3Lib/init/data/array/basic.lean
7dd51d77be47f8bf8ab4d1d30f0bfb17285c7f26
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
10,407
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Mario Carneiro -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.data.nat.default import Mathlib.Lean3Lib.init.data.bool.default import Mathlib.Lean3Lib.init.ite_simp universes u l u_1 w v namespace Mathlib /-- In the VM, d_array is implemented as a persistent array. -/ structure d_array (n : ℕ) (α : fin n → Type u) where data : (i : fin n) → α i namespace d_array /-- The empty array. -/ def nil {α : fin 0 → Type u_1} : d_array 0 α := mk fun (_x : fin 0) => sorry /-- `read a i` reads the `i`th member of `a`. Has builtin VM implementation. -/ def read {n : ℕ} {α : fin n → Type u} (a : d_array n α) (i : fin n) : α i := data a i /-- `write a i v` sets the `i`th member of `a` to be `v`. Has builtin VM implementation. -/ def write {n : ℕ} {α : fin n → Type u} (a : d_array n α) (i : fin n) (v : α i) : d_array n α := mk fun (j : fin n) => dite (i = j) (fun (h : i = j) => eq.rec_on h v) fun (h : ¬i = j) => read a j def iterate_aux {n : ℕ} {α : fin n → Type u} {β : Type w} (a : d_array n α) (f : (i : fin n) → α i → β → β) (i : ℕ) : i ≤ n → β → β := sorry /-- Fold over the elements of the given array in ascending order. Has builtin VM implementation. -/ def iterate {n : ℕ} {α : fin n → Type u} {β : Type w} (a : d_array n α) (b : β) (f : (i : fin n) → α i → β → β) : β := iterate_aux a f n sorry b /-- Map the array. Has builtin VM implementation. -/ def foreach {n : ℕ} {α : fin n → Type u} {α' : fin n → Type v} (a : d_array n α) (f : (i : fin n) → α i → α' i) : d_array n α' := mk fun (i : fin n) => f i (read a i) def map {n : ℕ} {α : fin n → Type u} {α' : fin n → Type v} (f : (i : fin n) → α i → α' i) (a : d_array n α) : d_array n α' := foreach a f def map₂ {n : ℕ} {α : fin n → Type u} {α' : fin n → Type v} {α'' : fin n → Type w} (f : (i : fin n) → α i → α' i → α'' i) (a : d_array n α) (b : d_array n α') : d_array n α'' := foreach b fun (i : fin n) => f i (read a i) def foldl {n : ℕ} {α : fin n → Type u} {β : Type w} (a : d_array n α) (b : β) (f : (i : fin n) → α i → β → β) : β := iterate a b f def rev_iterate_aux {n : ℕ} {α : fin n → Type u} {β : Type w} (a : d_array n α) (f : (i : fin n) → α i → β → β) (i : ℕ) : i ≤ n → β → β := sorry def rev_iterate {n : ℕ} {α : fin n → Type u} {β : Type w} (a : d_array n α) (b : β) (f : (i : fin n) → α i → β → β) : β := rev_iterate_aux a f n sorry b @[simp] theorem read_write {n : ℕ} {α : fin n → Type u} (a : d_array n α) (i : fin n) (v : α i) : read (write a i v) i = v := sorry @[simp] theorem read_write_of_ne {n : ℕ} {α : fin n → Type u} (a : d_array n α) {i : fin n} {j : fin n} (v : α i) : i ≠ j → read (write a i v) j = read a j := sorry protected theorem ext {n : ℕ} {α : fin n → Type u} {a : d_array n α} {b : d_array n α} (h : ∀ (i : fin n), read a i = read b i) : a = b := sorry protected theorem ext' {n : ℕ} {α : fin n → Type u} {a : d_array n α} {b : d_array n α} (h : ∀ (i : ℕ) (h : i < n), read a { val := i, property := h } = read b { val := i, property := h }) : a = b := sorry protected def beq_aux {n : ℕ} {α : fin n → Type u} [(i : fin n) → DecidableEq (α i)] (a : d_array n α) (b : d_array n α) (i : ℕ) : i ≤ n → Bool := sorry /-- Boolean element-wise equality check. -/ protected def beq {n : ℕ} {α : fin n → Type u} [(i : fin n) → DecidableEq (α i)] (a : d_array n α) (b : d_array n α) : Bool := d_array.beq_aux a b n sorry theorem of_beq_aux_eq_tt {n : ℕ} {α : fin n → Type u} [(i : fin n) → DecidableEq (α i)] {a : d_array n α} {b : d_array n α} (i : ℕ) (h : i ≤ n) : d_array.beq_aux a b i h = tt → ∀ (j : ℕ) (h' : j < i), read a { val := j, property := lt_of_lt_of_le h' h } = read b { val := j, property := lt_of_lt_of_le h' h } := sorry theorem of_beq_eq_tt {n : ℕ} {α : fin n → Type u} [(i : fin n) → DecidableEq (α i)] {a : d_array n α} {b : d_array n α} : d_array.beq a b = tt → a = b := sorry theorem of_beq_aux_eq_ff {n : ℕ} {α : fin n → Type u} [(i : fin n) → DecidableEq (α i)] {a : d_array n α} {b : d_array n α} (i : ℕ) (h : i ≤ n) : d_array.beq_aux a b i h = false → ∃ (j : ℕ), ∃ (h' : j < i), read a { val := j, property := lt_of_lt_of_le h' h } ≠ read b { val := j, property := lt_of_lt_of_le h' h } := sorry theorem of_beq_eq_ff {n : ℕ} {α : fin n → Type u} [(i : fin n) → DecidableEq (α i)] {a : d_array n α} {b : d_array n α} : d_array.beq a b = false → a ≠ b := sorry protected instance decidable_eq {n : ℕ} {α : fin n → Type u} [(i : fin n) → DecidableEq (α i)] : DecidableEq (d_array n α) := fun (a b : d_array n α) => dite (d_array.beq a b = tt) (fun (h : d_array.beq a b = tt) => is_true sorry) fun (h : ¬d_array.beq a b = tt) => isFalse sorry end d_array /-- A non-dependent array (see `d_array`). Implemented in the VM as a persistent array. -/ def array (n : ℕ) (α : Type u) := d_array n fun (_x : fin n) => α /-- `mk_array n v` creates a new array of length `n` where each element is `v`. Has builtin VM implementation. -/ def mk_array {α : Type u_1} (n : ℕ) (v : α) : array n α := d_array.mk fun (_x : fin n) => v namespace array def nil {α : Type u_1} : array 0 α := d_array.nil def read {n : ℕ} {α : Type u} (a : array n α) (i : fin n) : α := d_array.read a i def write {n : ℕ} {α : Type u} (a : array n α) (i : fin n) (v : α) : array n α := d_array.write a i v /-- Fold array starting from 0, folder function includes an index argument. -/ def iterate {n : ℕ} {α : Type u} {β : Type v} (a : array n α) (b : β) (f : fin n → α → β → β) : β := d_array.iterate a b f /-- Map each element of the given array with an index argument. -/ def foreach {n : ℕ} {α : Type u} {β : Type v} (a : array n α) (f : fin n → α → β) : array n β := d_array.foreach a f def map₂ {n : ℕ} {α : Type u} (f : α → α → α) (a : array n α) (b : array n α) : array n α := foreach b fun (i : fin n) => f (read a i) def foldl {n : ℕ} {α : Type u} {β : Type v} (a : array n α) (b : β) (f : α → β → β) : β := iterate a b fun (_x : fin n) => f def rev_list {n : ℕ} {α : Type u} (a : array n α) : List α := foldl a [] fun (_x : α) (_y : List α) => _x :: _y def rev_iterate {n : ℕ} {α : Type u} {β : Type v} (a : array n α) (b : β) (f : fin n → α → β → β) : β := d_array.rev_iterate a b f def rev_foldl {n : ℕ} {α : Type u} {β : Type v} (a : array n α) (b : β) (f : α → β → β) : β := rev_iterate a b fun (_x : fin n) => f def to_list {n : ℕ} {α : Type u} (a : array n α) : List α := rev_foldl a [] fun (_x : α) (_y : List α) => _x :: _y theorem push_back_idx {j : ℕ} {n : ℕ} (h₁ : j < n + 1) (h₂ : j ≠ n) : j < n := nat.lt_of_le_and_ne (nat.le_of_lt_succ h₁) h₂ /-- `push_back a v` pushes value `v` to the end of the array. Has builtin VM implementation. -/ def push_back {n : ℕ} {α : Type u} (a : array n α) (v : α) : array (n + 1) α := d_array.mk fun (_x : fin (n + 1)) => sorry theorem pop_back_idx {j : ℕ} {n : ℕ} (h : j < n) : j < n + 1 := nat.lt.step h /-- Discard _last_ element in the array. Has builtin VM implementation. -/ def pop_back {n : ℕ} {α : Type u} (a : array (n + 1) α) : array n α := d_array.mk fun (_x : fin n) => sorry /-- Auxilliary function for monadically mapping a function over an array. -/ def mmap_core {n : ℕ} {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (a : array n α) (f : α → m β) (i : ℕ) (H : i ≤ n) : m (array i β) := sorry /-- Monadically map a function over the array. -/ def mmap {n : ℕ} {α : Type u} {β : Type v} {m : Type v → Type u_1} [Monad m] (a : array n α) (f : α → m β) : m (array n β) := mmap_core a f n sorry /-- Map a function over the array. -/ def map {n : ℕ} {α : Type u} {β : Type v} (a : array n α) (f : α → β) : array n β := d_array.map (fun (_x : fin n) => f) a protected def mem {n : ℕ} {α : Type u} (v : α) (a : array n α) := ∃ (i : fin n), read a i = v protected instance has_mem {n : ℕ} {α : Type u} : has_mem α (array n α) := has_mem.mk array.mem theorem read_mem {n : ℕ} {α : Type u} (a : array n α) (i : fin n) : read a i ∈ a := exists.intro i rfl protected instance has_repr {n : ℕ} {α : Type u} [has_repr α] : has_repr (array n α) := has_repr.mk (repr ∘ to_list) @[simp] theorem read_write {n : ℕ} {α : Type u} (a : array n α) (i : fin n) (v : α) : read (write a i v) i = v := d_array.read_write a i v @[simp] theorem read_write_of_ne {n : ℕ} {α : Type u} (a : array n α) {i : fin n} {j : fin n} (v : α) : i ≠ j → read (write a i v) j = read a j := d_array.read_write_of_ne a v def read' {n : ℕ} {β : Type v} [Inhabited β] (a : array n β) (i : ℕ) : β := dite (i < n) (fun (h : i < n) => read a { val := i, property := h }) fun (h : ¬i < n) => Inhabited.default def write' {n : ℕ} {α : Type u} (a : array n α) (i : ℕ) (v : α) : array n α := dite (i < n) (fun (h : i < n) => write a { val := i, property := h } v) fun (h : ¬i < n) => a theorem read_eq_read' {n : ℕ} {α : Type u} [Inhabited α] (a : array n α) {i : ℕ} (h : i < n) : read a { val := i, property := h } = read' a i := sorry theorem write_eq_write' {n : ℕ} {α : Type u} (a : array n α) {i : ℕ} (h : i < n) (v : α) : write a { val := i, property := h } v = write' a i v := sorry protected theorem ext {n : ℕ} {α : Type u} {a : array n α} {b : array n α} (h : ∀ (i : fin n), read a i = read b i) : a = b := d_array.ext h protected theorem ext' {n : ℕ} {α : Type u} {a : array n α} {b : array n α} (h : ∀ (i : ℕ) (h : i < n), read a { val := i, property := h } = read b { val := i, property := h }) : a = b := d_array.ext' h protected instance decidable_eq {n : ℕ} {α : Type u} [DecidableEq α] : DecidableEq (array n α) := eq.mpr sorry fun (a b : d_array n fun (_x : fin n) => α) => d_array.decidable_eq a b
64a3e68a71f582dc47fc0fdcba409ca189491dfc
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
/examples/lean/even.lean
15081fa686ae1ccabeb7da7a9a87b2c226fecd59
[ "Apache-2.0" ]
permissive
codyroux/lean0.1
1ce92751d664aacff0529e139083304a7bbc8a71
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
refs/heads/master
1,610,830,535,062
1,402,150,480,000
1,402,150,480,000
19,588,851
2
0
null
null
null
null
UTF-8
Lean
false
false
2,840
lean
import macros using Nat -- In this example, we prove two simple theorems about even/odd numbers. -- First, we define the predicates even and odd. definition even (a : Nat) := ∃ b, a = 2*b definition odd (a : Nat) := ∃ b, a = 2*b + 1 -- Prove that the sum of two even numbers is even. -- -- Notes: we use the macro -- obtain [bindings] ',' 'from' [expr]_1 ',' [expr]_2 -- -- It is syntax sugar for existential elimination. -- It expands to -- -- exists_elim [expr]_1 (fun [binding], [expr]_2) -- -- It is defined in the file macros.lua. -- -- We also use the calculational proof style. -- See doc/lean/calc.md for more information. -- -- We use the first two obtain-expressions to extract the -- witnesses w1 and w2 s.t. a = 2*w1 and b = 2*w2. -- We can do that because H1 and H2 are evidence/proof for the -- fact that 'a' and 'b' are even. -- -- We use a calculational proof 'calc' expression to derive -- the witness w1+w2 for the fact that a+b is also even. -- That is, we provide a derivation showing that a+b = 2*(w1 + w2) theorem EvenPlusEven {a b : Nat} (H1 : even a) (H2 : even b) : even (a + b) := obtain (w1 : Nat) (Hw1 : a = 2*w1), from H1, obtain (w2 : Nat) (Hw2 : b = 2*w2), from H2, exists_intro (w1 + w2) (calc a + b = 2*w1 + b : { Hw1 } ... = 2*w1 + 2*w2 : { Hw2 } ... = 2*(w1 + w2) : symm (distributer 2 w1 w2)) -- In the following example, we omit the arguments for add_assoc, refl and distribute. -- Lean can infer them automatically. -- -- refl is the reflexivity proof. (refl a) is a proof that two -- definitionally equal terms are indeed equal. -- "definitionally equal" means that they have the same normal form. -- We can also view it as "Proof by computation". -- The normal form of (1+1), and 2*1 is 2. -- -- Another remark: '2*w + 1 + 1' is not definitionally equal to '2*w + 2*1'. -- The gotcha is that '2*w + 1 + 1' is actually '(2*w + 1) + 1' since + -- is left associative. Moreover, Lean normalizer does not use -- any theorems such as + associativity. theorem OddPlusOne {a : Nat} (H : odd a) : even (a + 1) := obtain (w : Nat) (Hw : a = 2*w + 1), from H, exists_intro (w + 1) (calc a + 1 = 2*w + 1 + 1 : { Hw } ... = 2*w + (1 + 1) : add_assoc _ _ _ ... = 2*w + 2*1 : refl _ ... = 2*(w + 1) : symm (distributer _ _ _)) -- The following command displays the proof object produced by Lean after -- expanding macros, and infering implicit/missing arguments. print environment 2 -- By default, Lean does not display implicit arguments. -- The following command will force it to display them. set_option pp::implicit true print environment 2 -- As an exercise, prove that the sum of two odd numbers is even, -- and other similar theorems.
5f6b04d79ba14af680c680d6e6bdf7b0cc3d8730
302c785c90d40ad3d6be43d33bc6a558354cc2cf
/src/category_theory/limits/constructions/limits_of_products_and_equalizers.lean
c4675b02be588404717345f403a128c987c6bbca
[ "Apache-2.0" ]
permissive
ilitzroth/mathlib
ea647e67f1fdfd19a0f7bdc5504e8acec6180011
5254ef14e3465f6504306132fe3ba9cec9ffff16
refs/heads/master
1,680,086,661,182
1,617,715,647,000
1,617,715,647,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,815
lean
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta, Scott Morrison -/ import category_theory.limits.shapes.equalizers import category_theory.limits.shapes.finite_products import category_theory.limits.preserves.shapes.products import category_theory.limits.preserves.shapes.equalizers /-! # Constructing limits from products and equalizers. If a category has all products, and all equalizers, then it has all limits. Similarly, if it has all finite products, and all equalizers, then it has all finite limits. If a functor preserves all products and equalizers, then it preserves all limits. Similarly, if it preserves all finite products and equalizers, then it preserves all finite limits. # TODO Provide the dual results. Show the analogous results for functors which reflect or create (co)limits. -/ open category_theory open opposite namespace category_theory.limits universes v u u₂ variables {C : Type u} [category.{v} C] variables {J : Type v} [small_category J] -- We hide the "implementation details" inside a namespace namespace has_limit_of_has_products_of_has_equalizers variables {F : J ⥤ C} {c₁ : fan F.obj} {c₂ : fan (λ f : (Σ p : J × J, p.1 ⟶ p.2), F.obj f.1.2)} (s t : c₁.X ⟶ c₂.X) (hs : ∀ (f : Σ p : J × J, p.1 ⟶ p.2), s ≫ c₂.π.app f = c₁.π.app f.1.1 ≫ F.map f.2) (ht : ∀ (f : Σ p : J × J, p.1 ⟶ p.2), t ≫ c₂.π.app f = c₁.π.app f.1.2) (i : fork s t) include hs ht /-- (Implementation) Given the appropriate product and equalizer cones, build the cone for `F` which is limiting if the given cones are also. -/ @[simps] def build_limit : cone F := { X := i.X, π := { app := λ j, i.ι ≫ c₁.π.app _, naturality' := λ j₁ j₂ f, by { dsimp, simp [← hs ⟨⟨_, _⟩, f⟩, i.condition_assoc, ht] } } } variable {i} /-- (Implementation) Show the cone constructed in `build_limit` is limiting, provided the cones used in its construction are. -/ def build_is_limit (t₁ : is_limit c₁) (t₂ : is_limit c₂) (hi : is_limit i) : is_limit (build_limit s t hs ht i) := { lift := λ q, begin refine hi.lift (fork.of_ι _ _), { refine t₁.lift (fan.mk _ (λ j, _)), apply q.π.app j }, { apply t₂.hom_ext, simp [hs, ht] }, end, uniq' := λ q m w, hi.hom_ext (i.equalizer_ext (t₁.hom_ext (by simpa using w))) } end has_limit_of_has_products_of_has_equalizers open has_limit_of_has_products_of_has_equalizers /-- Given the existence of the appropriate (possibly finite) products and equalizers, we know a limit of `F` exists. (This assumes the existence of all equalizers, which is technically stronger than needed.) -/ lemma has_limit_of_equalizer_and_product (F : J ⥤ C) [has_limit (discrete.functor F.obj)] [has_limit (discrete.functor (λ f : (Σ p : J × J, p.1 ⟶ p.2), F.obj f.1.2))] [has_equalizers C] : has_limit F := has_limit.mk { cone := _, is_limit := build_is_limit (pi.lift (λ f, limit.π _ _ ≫ F.map f.2)) (pi.lift (λ f, limit.π _ f.1.2)) (by simp) (by simp) (limit.is_limit _) (limit.is_limit _) (limit.is_limit _) } /-- Any category with products and equalizers has all limits. See https://stacks.math.columbia.edu/tag/002N. -/ lemma limits_from_equalizers_and_products [has_products C] [has_equalizers C] : has_limits C := { has_limits_of_shape := λ J 𝒥, { has_limit := λ F, by exactI has_limit_of_equalizer_and_product F } } /-- Any category with finite products and equalizers has all finite limits. See https://stacks.math.columbia.edu/tag/002O. -/ lemma finite_limits_from_equalizers_and_finite_products [has_finite_products C] [has_equalizers C] : has_finite_limits C := ⟨λ J _ _, { has_limit := λ F, by exactI has_limit_of_equalizer_and_product F }⟩ variables {D : Type u₂} [category.{v} D] noncomputable theory section variables [has_limits_of_shape (discrete J) C] [has_limits_of_shape (discrete (Σ p : J × J, p.1 ⟶ p.2)) C] [has_equalizers C] variables (G : C ⥤ D) [preserves_limits_of_shape walking_parallel_pair G] [preserves_limits_of_shape (discrete J) G] [preserves_limits_of_shape (discrete (Σ p : J × J, p.1 ⟶ p.2)) G] /-- If a functor preserves equalizers and the appropriate products, it preserves limits. -/ def preserves_limit_of_preserves_equalizers_and_product : preserves_limits_of_shape J G := { preserves_limit := λ K, begin let P := ∏ K.obj, let Q := ∏ (λ (f : (Σ (p : J × J), p.fst ⟶ p.snd)), K.obj f.1.2), let s : P ⟶ Q := pi.lift (λ f, limit.π _ _ ≫ K.map f.2), let t : P ⟶ Q := pi.lift (λ f, limit.π _ f.1.2), let I := equalizer s t, let i : I ⟶ P := equalizer.ι s t, apply preserves_limit_of_preserves_limit_cone (build_is_limit s t (by simp) (by simp) (limit.is_limit _) (limit.is_limit _) (limit.is_limit _)), refine is_limit.of_iso_limit (build_is_limit _ _ _ _ _ _ _) _, { exact fan.mk _ (λ j, G.map (pi.π _ j)) }, { exact fan.mk (G.obj Q) (λ f, G.map (pi.π _ f)) }, { apply G.map s }, { apply G.map t }, { intro f, dsimp, simp only [←G.map_comp, limit.lift_π, fan.mk_π_app] }, { intro f, dsimp, simp only [←G.map_comp, limit.lift_π, fan.mk_π_app] }, { apply fork.of_ι (G.map i) _, simp only [← G.map_comp, equalizer.condition] }, { apply is_limit_of_has_product_of_preserves_limit }, { apply is_limit_of_has_product_of_preserves_limit }, { apply is_limit_fork_map_of_is_limit, apply equalizer_is_equalizer }, refine cones.ext (iso.refl _) _, intro j, dsimp, simp, -- See note [dsimp, simp]. end } end /-- If G preserves equalizers and finite products, it preserves finite limits. -/ def preserves_finite_limits_of_preserves_equalizers_and_finite_products [has_equalizers C] [has_finite_products C] (G : C ⥤ D) [preserves_limits_of_shape walking_parallel_pair G] [∀ J [fintype J], preserves_limits_of_shape (discrete J) G] (J : Type v) [small_category J] [fin_category J] : preserves_limits_of_shape J G := preserves_limit_of_preserves_equalizers_and_product G /-- If G preserves equalizers and products, it preserves all limits. -/ def preserves_limits_of_preserves_equalizers_and_products [has_equalizers C] [has_products C] (G : C ⥤ D) [preserves_limits_of_shape walking_parallel_pair G] [∀ J, preserves_limits_of_shape (discrete J) G] : preserves_limits G := { preserves_limits_of_shape := λ J 𝒥, by exactI preserves_limit_of_preserves_equalizers_and_product G } end category_theory.limits
426ff1badc9003fc383a1dd3a4416326b7274b76
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/algebra/continued_fractions/computation/terminates_iff_rat_auto.lean
53f0fbdb31854ca263d162ba2d40f0d9853247bb
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
8,350
lean
/- Copyright (c) 2020 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.algebra.continued_fractions.computation.approximations import Mathlib.algebra.continued_fractions.computation.correctness_terminating import Mathlib.data.rat.default import Mathlib.PostPort universes u_1 namespace Mathlib /-! # Termination of Continued Fraction Computations (`gcf.of`) ## Summary We show that the continued fraction for a value `v`, as defined in `algebra.continued_fractions.computation.basic`, terminates if and only if `v` corresponds to a rational number, that is `↑v = q` for some `q : ℚ`. ## Main Theorems - `gcf.coe_of_rat` shows that `gcf.of v = gcf.of q` for `v : α` given that `↑v = q` and `q : ℚ`. - `gcf.terminates_iff_rat` shows that `gcf.of v` terminates if and only if `↑v = q` for some `q : ℚ`. ## Tags rational, continued fraction, termination -/ namespace generalized_continued_fraction /- We will have to constantly coerce along our structures in the following proofs using their provided map functions. -/ /-! We want to show that the computation of a continued fraction `gcf.of v` terminates if and only if `v ∈ ℚ`. In the next section, we show the implication from left to right. We first show that every finite convergent corresponds to a rational number `q` and then use the finite correctness proof (`of_correctness_of_terminates`) of `gcf.of` to show that `v = ↑q`. -/ theorem exists_gcf_pair_rat_eq_of_nth_conts_aux {K : Type u_1} [linear_ordered_field K] [floor_ring K] (v : K) (n : ℕ) : ∃ (conts : pair ℚ), continuants_aux (generalized_continued_fraction.of v) n = pair.map coe conts := sorry theorem exists_gcf_pair_rat_eq_nth_conts {K : Type u_1} [linear_ordered_field K] [floor_ring K] (v : K) (n : ℕ) : ∃ (conts : pair ℚ), continuants (generalized_continued_fraction.of v) n = pair.map coe conts := sorry theorem exists_rat_eq_nth_numerator {K : Type u_1} [linear_ordered_field K] [floor_ring K] (v : K) (n : ℕ) : ∃ (q : ℚ), numerators (generalized_continued_fraction.of v) n = ↑q := sorry theorem exists_rat_eq_nth_denominator {K : Type u_1} [linear_ordered_field K] [floor_ring K] (v : K) (n : ℕ) : ∃ (q : ℚ), denominators (generalized_continued_fraction.of v) n = ↑q := sorry /-- Every finite convergent corresponds to a rational number. -/ theorem exists_rat_eq_nth_convergent {K : Type u_1} [linear_ordered_field K] [floor_ring K] (v : K) (n : ℕ) : ∃ (q : ℚ), convergents (generalized_continued_fraction.of v) n = ↑q := sorry /-- Every terminating continued fraction corresponds to a rational number. -/ theorem exists_rat_eq_of_terminates {K : Type u_1} [linear_ordered_field K] [floor_ring K] {v : K} (terminates : terminates (generalized_continued_fraction.of v)) : ∃ (q : ℚ), v = ↑q := sorry /-! Before we can show that the continued fraction of a rational number terminates, we have to prove some technical translation lemmas. More precisely, in this section, we show that, given a rational number `q : ℚ` and value `v : K` with `v = ↑q`, the continued fraction of `q` and `v` coincide. In particular, we show that `(↑(gcf.of q : gcf ℚ) : gcf K) = gcf.of v` in `gcf.coe_of_rat`. To do this, we proceed bottom-up, showing the correspondence between the basic functions involved in the computation first and then lift the results step-by-step. -/ /- The lifting works for arbitrary linear ordered, archimedean fields with a floor function. -/ /-! First, we show the correspondence for the very basic functions in `gcf.int_fract_pair`. -/ namespace int_fract_pair theorem coe_of_rat_eq {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : mapFr coe (int_fract_pair.of q) = int_fract_pair.of v := sorry theorem coe_stream_nth_rat_eq {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) (n : ℕ) : option.map (mapFr coe) (int_fract_pair.stream q n) = int_fract_pair.stream v n := sorry theorem coe_stream_rat_eq {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : stream.map (option.map (mapFr coe)) (int_fract_pair.stream q) = int_fract_pair.stream v := funext fun (n : ℕ) => coe_stream_nth_rat_eq v_eq_q n end int_fract_pair /-! Now we lift the coercion results to the continued fraction computation. -/ theorem coe_of_h_rat_eq {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : ↑(h (generalized_continued_fraction.of q)) = h (generalized_continued_fraction.of v) := sorry theorem coe_of_s_nth_rat_eq {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) (n : ℕ) : option.map (pair.map coe) (seq.nth (s (generalized_continued_fraction.of q)) n) = seq.nth (s (generalized_continued_fraction.of v)) n := sorry theorem coe_of_s_rat_eq {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : seq.map (pair.map coe) (s (generalized_continued_fraction.of q)) = s (generalized_continued_fraction.of v) := sorry /-- Given `(v : K), (q : ℚ), and v = q`, we have that `gcf.of q = gcf.of v` -/ theorem coe_of_rat_eq {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : mk (↑(h (generalized_continued_fraction.of q))) (seq.map (pair.map coe) (s (generalized_continued_fraction.of q))) = generalized_continued_fraction.of v := sorry theorem of_terminates_iff_of_rat_terminates {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : terminates (generalized_continued_fraction.of v) ↔ terminates (generalized_continued_fraction.of q) := sorry /-! Finally, we show that the continued fraction of a rational number terminates. The crucial insight is that, given any `q : ℚ` with `0 < q < 1`, the numerator of `fract q` is smaller than the numerator of `q`. As the continued fraction computation recursively operates on the fractional part of a value `v` and `0 ≤ fract v < 1`, we infer that the numerator of the fractional part in the computation decreases by at least one in each step. As `0 ≤ fract v`, this process must stop after finite number of steps, and the computation hence terminates. -/ namespace int_fract_pair /-- Shows that for any `q : ℚ` with `0 < q < 1`, the numerator of the fractional part of `int_fract_pair.of q⁻¹` is smaller than the numerator of `q`. -/ theorem of_inv_fr_num_lt_num_of_pos {q : ℚ} (q_pos : 0 < q) : rat.num (fr (int_fract_pair.of (q⁻¹))) < rat.num q := rat.fract_inv_num_lt_num_of_pos q_pos /-- Shows that the sequence of numerators of the fractional parts of the stream is strictly monotonically decreasing. -/ theorem stream_succ_nth_fr_num_lt_nth_fr_num_rat {q : ℚ} {n : ℕ} {ifp_n : int_fract_pair ℚ} {ifp_succ_n : int_fract_pair ℚ} (stream_nth_eq : int_fract_pair.stream q n = some ifp_n) (stream_succ_nth_eq : int_fract_pair.stream q (n + 1) = some ifp_succ_n) : rat.num (fr ifp_succ_n) < rat.num (fr ifp_n) := sorry theorem stream_nth_fr_num_le_fr_num_sub_n_rat {q : ℚ} {n : ℕ} {ifp_n : int_fract_pair ℚ} : int_fract_pair.stream q n = some ifp_n → rat.num (fr ifp_n) ≤ rat.num (fr (int_fract_pair.of q)) - ↑n := sorry theorem exists_nth_stream_eq_none_of_rat (q : ℚ) : ∃ (n : ℕ), int_fract_pair.stream q n = none := sorry end int_fract_pair /-- The continued fraction of a rational number terminates. -/ theorem terminates_of_rat (q : ℚ) : terminates (generalized_continued_fraction.of q) := sorry /-- The continued fraction `gcf.of v` terminates if and only if `v ∈ ℚ`. -/ theorem terminates_iff_rat {K : Type u_1} [linear_ordered_field K] [floor_ring K] [archimedean K] (v : K) : terminates (generalized_continued_fraction.of v) ↔ ∃ (q : ℚ), v = ↑q := sorry end Mathlib
397aef2a2abbc2eaf4ab7bec5c55322f46a37772
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/data/multiset/intervals_auto.lean
dbb044a5f592d5f026db756d588c3956a78a93c9
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
4,215
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.multiset.nodup import Mathlib.data.list.intervals import Mathlib.PostPort namespace Mathlib /-! # Intervals in ℕ as multisets For now this only covers `Ico n m`, the "closed-open" interval containing `[n, ..., m-1]`. -/ namespace multiset /-! ### Ico -/ /-- `Ico n m` is the multiset lifted from the list `Ico n m`, e.g. the set `{n, n+1, ..., m-1}`. -/ def Ico (n : ℕ) (m : ℕ) : multiset ℕ := ↑(list.Ico n m) namespace Ico theorem map_add (n : ℕ) (m : ℕ) (k : ℕ) : map (Add.add k) (Ico n m) = Ico (n + k) (m + k) := congr_arg coe (list.Ico.map_add n m k) theorem map_sub (n : ℕ) (m : ℕ) (k : ℕ) (h : k ≤ n) : map (fun (x : ℕ) => x - k) (Ico n m) = Ico (n - k) (m - k) := congr_arg coe (list.Ico.map_sub n m k h) theorem zero_bot (n : ℕ) : Ico 0 n = range n := congr_arg coe (list.Ico.zero_bot n) @[simp] theorem card (n : ℕ) (m : ℕ) : coe_fn card (Ico n m) = m - n := list.Ico.length n m theorem nodup (n : ℕ) (m : ℕ) : nodup (Ico n m) := list.Ico.nodup n m @[simp] theorem mem {n : ℕ} {m : ℕ} {l : ℕ} : l ∈ Ico n m ↔ n ≤ l ∧ l < m := list.Ico.mem theorem eq_zero_of_le {n : ℕ} {m : ℕ} (h : m ≤ n) : Ico n m = 0 := congr_arg coe (list.Ico.eq_nil_of_le h) @[simp] theorem self_eq_zero {n : ℕ} : Ico n n = 0 := eq_zero_of_le (le_refl n) @[simp] theorem eq_zero_iff {n : ℕ} {m : ℕ} : Ico n m = 0 ↔ m ≤ n := iff.trans (coe_eq_zero (list.Ico n m)) list.Ico.eq_empty_iff theorem add_consecutive {n : ℕ} {m : ℕ} {l : ℕ} (hnm : n ≤ m) (hml : m ≤ l) : Ico n m + Ico m l = Ico n l := congr_arg coe (list.Ico.append_consecutive hnm hml) @[simp] theorem inter_consecutive (n : ℕ) (m : ℕ) (l : ℕ) : Ico n m ∩ Ico m l = 0 := congr_arg coe (list.Ico.bag_inter_consecutive n m l) @[simp] theorem succ_singleton {n : ℕ} : Ico n (n + 1) = singleton n := congr_arg coe list.Ico.succ_singleton theorem succ_top {n : ℕ} {m : ℕ} (h : n ≤ m) : Ico n (m + 1) = m ::ₘ Ico n m := sorry theorem eq_cons {n : ℕ} {m : ℕ} (h : n < m) : Ico n m = n ::ₘ Ico (n + 1) m := congr_arg coe (list.Ico.eq_cons h) @[simp] theorem pred_singleton {m : ℕ} (h : 0 < m) : Ico (m - 1) m = singleton (m - 1) := congr_arg coe (list.Ico.pred_singleton h) @[simp] theorem not_mem_top {n : ℕ} {m : ℕ} : ¬m ∈ Ico n m := list.Ico.not_mem_top theorem filter_lt_of_top_le {n : ℕ} {m : ℕ} {l : ℕ} (hml : m ≤ l) : filter (fun (x : ℕ) => x < l) (Ico n m) = Ico n m := congr_arg coe (list.Ico.filter_lt_of_top_le hml) theorem filter_lt_of_le_bot {n : ℕ} {m : ℕ} {l : ℕ} (hln : l ≤ n) : filter (fun (x : ℕ) => x < l) (Ico n m) = ∅ := congr_arg coe (list.Ico.filter_lt_of_le_bot hln) theorem filter_le_of_bot {n : ℕ} {m : ℕ} (hnm : n < m) : filter (fun (x : ℕ) => x ≤ n) (Ico n m) = singleton n := congr_arg coe (list.Ico.filter_le_of_bot hnm) theorem filter_lt_of_ge {n : ℕ} {m : ℕ} {l : ℕ} (hlm : l ≤ m) : filter (fun (x : ℕ) => x < l) (Ico n m) = Ico n l := congr_arg coe (list.Ico.filter_lt_of_ge hlm) @[simp] theorem filter_lt (n : ℕ) (m : ℕ) (l : ℕ) : filter (fun (x : ℕ) => x < l) (Ico n m) = Ico n (min m l) := congr_arg coe (list.Ico.filter_lt n m l) theorem filter_le_of_le_bot {n : ℕ} {m : ℕ} {l : ℕ} (hln : l ≤ n) : filter (fun (x : ℕ) => l ≤ x) (Ico n m) = Ico n m := congr_arg coe (list.Ico.filter_le_of_le_bot hln) theorem filter_le_of_top_le {n : ℕ} {m : ℕ} {l : ℕ} (hml : m ≤ l) : filter (fun (x : ℕ) => l ≤ x) (Ico n m) = ∅ := congr_arg coe (list.Ico.filter_le_of_top_le hml) theorem filter_le_of_le {n : ℕ} {m : ℕ} {l : ℕ} (hnl : n ≤ l) : filter (fun (x : ℕ) => l ≤ x) (Ico n m) = Ico l m := congr_arg coe (list.Ico.filter_le_of_le hnl) @[simp] theorem filter_le (n : ℕ) (m : ℕ) (l : ℕ) : filter (fun (x : ℕ) => l ≤ x) (Ico n m) = Ico (max n l) m := congr_arg coe (list.Ico.filter_le n m l) end Mathlib
50732a2f50a2fb946d8b57289d7c3dbffd054b59
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/group_theory/congruence.lean
ecf6cd1c003ec98c1225a9d4fab059321847516f
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
51,257
lean
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston -/ import algebra.group.prod import algebra.hom.equiv.basic import data.setoid.basic import group_theory.submonoid.operations /-! # Congruence relations This file defines congruence relations: equivalence relations that preserve a binary operation, which in this case is multiplication or addition. The principal definition is a `structure` extending a `setoid` (an equivalence relation), and the inductive definition of the smallest congruence relation containing a binary relation is also given (see `con_gen`). The file also proves basic properties of the quotient of a type by a congruence relation, and the complete lattice of congruence relations on a type. We then establish an order-preserving bijection between the set of congruence relations containing a congruence relation `c` and the set of congruence relations on the quotient by `c`. The second half of the file concerns congruence relations on monoids, in which case the quotient by the congruence relation is also a monoid. There are results about the universal property of quotients of monoids, and the isomorphism theorems for monoids. ## Implementation notes The inductive definition of a congruence relation could be a nested inductive type, defined using the equivalence closure of a binary relation `eqv_gen`, but the recursor generated does not work. A nested inductive definition could conceivably shorten proofs, because they would allow invocation of the corresponding lemmas about `eqv_gen`. The lemmas `refl`, `symm` and `trans` are not tagged with `@[refl]`, `@[symm]`, and `@[trans]` respectively as these tags do not work on a structure coerced to a binary relation. There is a coercion from elements of a type to the element's equivalence class under a congruence relation. A congruence relation on a monoid `M` can be thought of as a submonoid of `M × M` for which membership is an equivalence relation, but whilst this fact is established in the file, it is not used, since this perspective adds more layers of definitional unfolding. ## Tags congruence, congruence relation, quotient, quotient by congruence relation, monoid, quotient monoid, isomorphism theorems -/ variables (M : Type*) {N : Type*} {P : Type*} open function setoid /-- A congruence relation on a type with an addition is an equivalence relation which preserves addition. -/ structure add_con [has_add M] extends setoid M := (add' : ∀ {w x y z}, r w x → r y z → r (w + y) (x + z)) /-- A congruence relation on a type with a multiplication is an equivalence relation which preserves multiplication. -/ @[to_additive add_con] structure con [has_mul M] extends setoid M := (mul' : ∀ {w x y z}, r w x → r y z → r (w * y) (x * z)) /-- The equivalence relation underlying an additive congruence relation. -/ add_decl_doc add_con.to_setoid /-- The equivalence relation underlying a multiplicative congruence relation. -/ add_decl_doc con.to_setoid variables {M} /-- The inductively defined smallest additive congruence relation containing a given binary relation. -/ inductive add_con_gen.rel [has_add M] (r : M → M → Prop) : M → M → Prop | of : Π x y, r x y → add_con_gen.rel x y | refl : Π x, add_con_gen.rel x x | symm : Π x y, add_con_gen.rel x y → add_con_gen.rel y x | trans : Π x y z, add_con_gen.rel x y → add_con_gen.rel y z → add_con_gen.rel x z | add : Π w x y z, add_con_gen.rel w x → add_con_gen.rel y z → add_con_gen.rel (w + y) (x + z) /-- The inductively defined smallest multiplicative congruence relation containing a given binary relation. -/ @[to_additive add_con_gen.rel] inductive con_gen.rel [has_mul M] (r : M → M → Prop) : M → M → Prop | of : Π x y, r x y → con_gen.rel x y | refl : Π x, con_gen.rel x x | symm : Π x y, con_gen.rel x y → con_gen.rel y x | trans : Π x y z, con_gen.rel x y → con_gen.rel y z → con_gen.rel x z | mul : Π w x y z, con_gen.rel w x → con_gen.rel y z → con_gen.rel (w * y) (x * z) /-- The inductively defined smallest multiplicative congruence relation containing a given binary relation. -/ @[to_additive add_con_gen "The inductively defined smallest additive congruence relation containing a given binary relation."] def con_gen [has_mul M] (r : M → M → Prop) : con M := ⟨⟨con_gen.rel r, ⟨con_gen.rel.refl, con_gen.rel.symm, con_gen.rel.trans⟩⟩, con_gen.rel.mul⟩ namespace con section variables [has_mul M] [has_mul N] [has_mul P] (c : con M) @[to_additive] instance : inhabited (con M) := ⟨con_gen empty_relation⟩ /-- A coercion from a congruence relation to its underlying binary relation. -/ @[to_additive "A coercion from an additive congruence relation to its underlying binary relation."] instance : has_coe_to_fun (con M) (λ _, M → M → Prop) := ⟨λ c, λ x y, @setoid.r _ c.to_setoid x y⟩ @[simp, to_additive] lemma rel_eq_coe (c : con M) : c.r = c := rfl /-- Congruence relations are reflexive. -/ @[to_additive "Additive congruence relations are reflexive."] protected lemma refl (x) : c x x := c.to_setoid.refl' x /-- Congruence relations are symmetric. -/ @[to_additive "Additive congruence relations are symmetric."] protected lemma symm : ∀ {x y}, c x y → c y x := λ _ _ h, c.to_setoid.symm' h /-- Congruence relations are transitive. -/ @[to_additive "Additive congruence relations are transitive."] protected lemma trans : ∀ {x y z}, c x y → c y z → c x z := λ _ _ _ h, c.to_setoid.trans' h /-- Multiplicative congruence relations preserve multiplication. -/ @[to_additive "Additive congruence relations preserve addition."] protected lemma mul : ∀ {w x y z}, c w x → c y z → c (w * y) (x * z) := λ _ _ _ _ h1 h2, c.mul' h1 h2 @[simp, to_additive] lemma rel_mk {s : setoid M} {h a b} : con.mk s h a b ↔ r a b := iff.rfl /-- Given a type `M` with a multiplication, a congruence relation `c` on `M`, and elements of `M` `x, y`, `(x, y) ∈ M × M` iff `x` is related to `y` by `c`. -/ @[to_additive "Given a type `M` with an addition, `x, y ∈ M`, and an additive congruence relation `c` on `M`, `(x, y) ∈ M × M` iff `x` is related to `y` by `c`."] instance : has_mem (M × M) (con M) := ⟨λ x c, c x.1 x.2⟩ variables {c} /-- The map sending a congruence relation to its underlying binary relation is injective. -/ @[to_additive "The map sending an additive congruence relation to its underlying binary relation is injective."] lemma ext' {c d : con M} (H : c.r = d.r) : c = d := by { rcases c with ⟨⟨⟩⟩, rcases d with ⟨⟨⟩⟩, cases H, congr, } /-- Extensionality rule for congruence relations. -/ @[ext, to_additive "Extensionality rule for additive congruence relations."] lemma ext {c d : con M} (H : ∀ x y, c x y ↔ d x y) : c = d := ext' $ by ext; apply H /-- The map sending a congruence relation to its underlying equivalence relation is injective. -/ @[to_additive "The map sending an additive congruence relation to its underlying equivalence relation is injective."] lemma to_setoid_inj {c d : con M} (H : c.to_setoid = d.to_setoid) : c = d := ext $ ext_iff.1 H /-- Iff version of extensionality rule for congruence relations. -/ @[to_additive "Iff version of extensionality rule for additive congruence relations."] lemma ext_iff {c d : con M} : (∀ x y, c x y ↔ d x y) ↔ c = d := ⟨ext, λ h _ _, h ▸ iff.rfl⟩ /-- Two congruence relations are equal iff their underlying binary relations are equal. -/ @[to_additive "Two additive congruence relations are equal iff their underlying binary relations are equal."] lemma ext'_iff {c d : con M} : c.r = d.r ↔ c = d := ⟨ext', λ h, h ▸ rfl⟩ /-- The kernel of a multiplication-preserving function as a congruence relation. -/ @[to_additive "The kernel of an addition-preserving function as an additive congruence relation."] def mul_ker (f : M → P) (h : ∀ x y, f (x * y) = f x * f y) : con M := { to_setoid := setoid.ker f, mul' := λ _ _ _ _ h1 h2, by { dsimp [setoid.ker, on_fun] at *, rw [h, h1, h2, h], } } /-- Given types with multiplications `M, N`, the product of two congruence relations `c` on `M` and `d` on `N`: `(x₁, x₂), (y₁, y₂) ∈ M × N` are related by `c.prod d` iff `x₁` is related to `y₁` by `c` and `x₂` is related to `y₂` by `d`. -/ @[to_additive prod "Given types with additions `M, N`, the product of two congruence relations `c` on `M` and `d` on `N`: `(x₁, x₂), (y₁, y₂) ∈ M × N` are related by `c.prod d` iff `x₁` is related to `y₁` by `c` and `x₂` is related to `y₂` by `d`."] protected def prod (c : con M) (d : con N) : con (M × N) := { mul' := λ _ _ _ _ h1 h2, ⟨c.mul h1.1 h2.1, d.mul h1.2 h2.2⟩, ..c.to_setoid.prod d.to_setoid } /-- The product of an indexed collection of congruence relations. -/ @[to_additive "The product of an indexed collection of additive congruence relations."] def pi {ι : Type*} {f : ι → Type*} [Π i, has_mul (f i)] (C : Π i, con (f i)) : con (Π i, f i) := { mul' := λ _ _ _ _ h1 h2 i, (C i).mul (h1 i) (h2 i), ..@pi_setoid _ _ $ λ i, (C i).to_setoid } variables (c) -- Quotients /-- Defining the quotient by a congruence relation of a type with a multiplication. -/ @[to_additive "Defining the quotient by an additive congruence relation of a type with an addition."] protected def quotient := quotient $ c.to_setoid /-- Coercion from a type with a multiplication to its quotient by a congruence relation. See Note [use has_coe_t]. -/ @[to_additive "Coercion from a type with an addition to its quotient by an additive congruence relation", priority 0] instance : has_coe_t M c.quotient := ⟨@quotient.mk _ c.to_setoid⟩ /-- The quotient by a decidable congruence relation has decidable equality. -/ @[to_additive "The quotient by a decidable additive congruence relation has decidable equality.", priority 500] -- Lower the priority since it unifies with any quotient type. instance [d : ∀ a b, decidable (c a b)] : decidable_eq c.quotient := @quotient.decidable_eq M c.to_setoid d @[simp, to_additive] lemma quot_mk_eq_coe {M : Type*} [has_mul M] (c : con M) (x : M) : quot.mk c x = (x : c.quotient) := rfl /-- The function on the quotient by a congruence relation `c` induced by a function that is constant on `c`'s equivalence classes. -/ @[elab_as_eliminator, to_additive "The function on the quotient by a congruence relation `c` induced by a function that is constant on `c`'s equivalence classes."] protected def lift_on {β} {c : con M} (q : c.quotient) (f : M → β) (h : ∀ a b, c a b → f a = f b) : β := quotient.lift_on' q f h /-- The binary function on the quotient by a congruence relation `c` induced by a binary function that is constant on `c`'s equivalence classes. -/ @[elab_as_eliminator, to_additive "The binary function on the quotient by a congruence relation `c` induced by a binary function that is constant on `c`'s equivalence classes."] protected def lift_on₂ {β} {c : con M} (q r : c.quotient) (f : M → M → β) (h : ∀ a₁ a₂ b₁ b₂, c a₁ b₁ → c a₂ b₂ → f a₁ a₂ = f b₁ b₂) : β := quotient.lift_on₂' q r f h /-- A version of `quotient.hrec_on₂'` for quotients by `con`. -/ @[to_additive "A version of `quotient.hrec_on₂'` for quotients by `add_con`."] protected def hrec_on₂ {cM : con M} {cN : con N} {φ : cM.quotient → cN.quotient → Sort*} (a : cM.quotient) (b : cN.quotient) (f : Π (x : M) (y : N), φ x y) (h : ∀ x y x' y', cM x x' → cN y y' → f x y == f x' y') : φ a b := quotient.hrec_on₂' a b f h @[simp, to_additive] lemma hrec_on₂_coe {cM : con M} {cN : con N} {φ : cM.quotient → cN.quotient → Sort*} (a : M) (b : N) (f : Π (x : M) (y : N), φ x y) (h : ∀ x y x' y', cM x x' → cN y y' → f x y == f x' y') : con.hrec_on₂ ↑a ↑b f h = f a b := rfl variables {c} /-- The inductive principle used to prove propositions about the elements of a quotient by a congruence relation. -/ @[elab_as_eliminator, to_additive "The inductive principle used to prove propositions about the elements of a quotient by an additive congruence relation."] protected lemma induction_on {C : c.quotient → Prop} (q : c.quotient) (H : ∀ x : M, C x) : C q := quotient.induction_on' q H /-- A version of `con.induction_on` for predicates which take two arguments. -/ @[elab_as_eliminator, to_additive "A version of `add_con.induction_on` for predicates which take two arguments."] protected lemma induction_on₂ {d : con N} {C : c.quotient → d.quotient → Prop} (p : c.quotient) (q : d.quotient) (H : ∀ (x : M) (y : N), C x y) : C p q := quotient.induction_on₂' p q H variables (c) /-- Two elements are related by a congruence relation `c` iff they are represented by the same element of the quotient by `c`. -/ @[simp, to_additive "Two elements are related by an additive congruence relation `c` iff they are represented by the same element of the quotient by `c`."] protected lemma eq {a b : M} : (a : c.quotient) = b ↔ c a b := quotient.eq' /-- The multiplication induced on the quotient by a congruence relation on a type with a multiplication. -/ @[to_additive "The addition induced on the quotient by an additive congruence relation on a type with an addition."] instance has_mul : has_mul c.quotient := ⟨quotient.map₂' (*) $ λ _ _ h1 _ _ h2, c.mul h1 h2⟩ /-- The kernel of the quotient map induced by a congruence relation `c` equals `c`. -/ @[simp, to_additive "The kernel of the quotient map induced by an additive congruence relation `c` equals `c`."] lemma mul_ker_mk_eq : mul_ker (coe : M → c.quotient) (λ x y, rfl) = c := ext $ λ x y, quotient.eq' variables {c} /-- The coercion to the quotient of a congruence relation commutes with multiplication (by definition). -/ @[simp, to_additive "The coercion to the quotient of an additive congruence relation commutes with addition (by definition)."] lemma coe_mul (x y : M) : (↑(x * y) : c.quotient) = ↑x * ↑y := rfl /-- Definition of the function on the quotient by a congruence relation `c` induced by a function that is constant on `c`'s equivalence classes. -/ @[simp, to_additive "Definition of the function on the quotient by an additive congruence relation `c` induced by a function that is constant on `c`'s equivalence classes."] protected lemma lift_on_coe {β} (c : con M) (f : M → β) (h : ∀ a b, c a b → f a = f b) (x : M) : con.lift_on (x : c.quotient) f h = f x := rfl /-- Makes an isomorphism of quotients by two congruence relations, given that the relations are equal. -/ @[to_additive "Makes an additive isomorphism of quotients by two additive congruence relations, given that the relations are equal."] protected def congr {c d : con M} (h : c = d) : c.quotient ≃* d.quotient := { map_mul' := λ x y, by rcases x; rcases y; refl, ..quotient.congr (equiv.refl M) $ by apply ext_iff.2 h } -- The complete lattice of congruence relations on a type /-- For congruence relations `c, d` on a type `M` with a multiplication, `c ≤ d` iff `∀ x y ∈ M`, `x` is related to `y` by `d` if `x` is related to `y` by `c`. -/ @[to_additive "For additive congruence relations `c, d` on a type `M` with an addition, `c ≤ d` iff `∀ x y ∈ M`, `x` is related to `y` by `d` if `x` is related to `y` by `c`."] instance : has_le (con M) := ⟨λ c d, ∀ ⦃x y⦄, c x y → d x y⟩ /-- Definition of `≤` for congruence relations. -/ @[to_additive "Definition of `≤` for additive congruence relations."] theorem le_def {c d : con M} : c ≤ d ↔ ∀ {x y}, c x y → d x y := iff.rfl /-- The infimum of a set of congruence relations on a given type with a multiplication. -/ @[to_additive "The infimum of a set of additive congruence relations on a given type with an addition."] instance : has_Inf (con M) := ⟨λ S, ⟨⟨λ x y, ∀ c : con M, c ∈ S → c x y, ⟨λ x c hc, c.refl x, λ _ _ h c hc, c.symm $ h c hc, λ _ _ _ h1 h2 c hc, c.trans (h1 c hc) $ h2 c hc⟩⟩, λ _ _ _ _ h1 h2 c hc, c.mul (h1 c hc) $ h2 c hc⟩⟩ /-- The infimum of a set of congruence relations is the same as the infimum of the set's image under the map to the underlying equivalence relation. -/ @[to_additive "The infimum of a set of additive congruence relations is the same as the infimum of the set's image under the map to the underlying equivalence relation."] lemma Inf_to_setoid (S : set (con M)) : (Inf S).to_setoid = Inf (to_setoid '' S) := setoid.ext' $ λ x y, ⟨λ h r ⟨c, hS, hr⟩, by rw ←hr; exact h c hS, λ h c hS, h c.to_setoid ⟨c, hS, rfl⟩⟩ /-- The infimum of a set of congruence relations is the same as the infimum of the set's image under the map to the underlying binary relation. -/ @[to_additive "The infimum of a set of additive congruence relations is the same as the infimum of the set's image under the map to the underlying binary relation."] lemma Inf_def (S : set (con M)) : ⇑(Inf S) = Inf (@set.image (con M) (M → M → Prop) coe_fn S) := by { ext, simp only [Inf_image, infi_apply, infi_Prop_eq], refl } @[to_additive] instance : partial_order (con M) := { le := (≤), lt := λ c d, c ≤ d ∧ ¬d ≤ c, le_refl := λ c _ _, id, le_trans := λ c1 c2 c3 h1 h2 x y h, h2 $ h1 h, lt_iff_le_not_le := λ _ _, iff.rfl, le_antisymm := λ c d hc hd, ext $ λ x y, ⟨λ h, hc h, λ h, hd h⟩ } /-- The complete lattice of congruence relations on a given type with a multiplication. -/ @[to_additive "The complete lattice of additive congruence relations on a given type with an addition."] instance : complete_lattice (con M) := { inf := λ c d, ⟨(c.to_setoid ⊓ d.to_setoid), λ _ _ _ _ h1 h2, ⟨c.mul h1.1 h2.1, d.mul h1.2 h2.2⟩⟩, inf_le_left := λ _ _ _ _ h, h.1, inf_le_right := λ _ _ _ _ h, h.2, le_inf := λ _ _ _ hb hc _ _ h, ⟨hb h, hc h⟩, top := { mul' := by tauto, ..setoid.complete_lattice.top}, le_top := λ _ _ _ h, trivial, bot := { mul' := λ _ _ _ _ h1 h2, h1 ▸ h2 ▸ rfl, ..setoid.complete_lattice.bot}, bot_le := λ c x y h, h ▸ c.refl x, .. complete_lattice_of_Inf (con M) $ assume s, ⟨λ r hr x y h, (h : ∀ r ∈ s, (r : con M) x y) r hr, λ r hr x y h r' hr', hr hr' h⟩ } /-- The infimum of two congruence relations equals the infimum of the underlying binary operations. -/ @[to_additive "The infimum of two additive congruence relations equals the infimum of the underlying binary operations."] lemma inf_def {c d : con M} : (c ⊓ d).r = c.r ⊓ d.r := rfl /-- Definition of the infimum of two congruence relations. -/ @[to_additive "Definition of the infimum of two additive congruence relations."] theorem inf_iff_and {c d : con M} {x y} : (c ⊓ d) x y ↔ c x y ∧ d x y := iff.rfl /-- The inductively defined smallest congruence relation containing a binary relation `r` equals the infimum of the set of congruence relations containing `r`. -/ @[to_additive add_con_gen_eq "The inductively defined smallest additive congruence relation containing a binary relation `r` equals the infimum of the set of additive congruence relations containing `r`."] theorem con_gen_eq (r : M → M → Prop) : con_gen r = Inf {s : con M | ∀ x y, r x y → s x y} := le_antisymm (λ x y H, con_gen.rel.rec_on H (λ _ _ h _ hs, hs _ _ h) (con.refl _) (λ _ _ _, con.symm _) (λ _ _ _ _ _, con.trans _) $ λ w x y z _ _ h1 h2 c hc, c.mul (h1 c hc) $ h2 c hc) (Inf_le (λ _ _, con_gen.rel.of _ _)) /-- The smallest congruence relation containing a binary relation `r` is contained in any congruence relation containing `r`. -/ @[to_additive add_con_gen_le "The smallest additive congruence relation containing a binary relation `r` is contained in any additive congruence relation containing `r`."] theorem con_gen_le {r : M → M → Prop} {c : con M} (h : ∀ x y, r x y → @setoid.r _ c.to_setoid x y) : con_gen r ≤ c := by rw con_gen_eq; exact Inf_le h /-- Given binary relations `r, s` with `r` contained in `s`, the smallest congruence relation containing `s` contains the smallest congruence relation containing `r`. -/ @[to_additive add_con_gen_mono "Given binary relations `r, s` with `r` contained in `s`, the smallest additive congruence relation containing `s` contains the smallest additive congruence relation containing `r`."] theorem con_gen_mono {r s : M → M → Prop} (h : ∀ x y, r x y → s x y) : con_gen r ≤ con_gen s := con_gen_le $ λ x y hr, con_gen.rel.of _ _ $ h x y hr /-- Congruence relations equal the smallest congruence relation in which they are contained. -/ @[simp, to_additive add_con_gen_of_add_con "Additive congruence relations equal the smallest additive congruence relation in which they are contained."] lemma con_gen_of_con (c : con M) : con_gen c = c := le_antisymm (by rw con_gen_eq; exact Inf_le (λ _ _, id)) con_gen.rel.of /-- The map sending a binary relation to the smallest congruence relation in which it is contained is idempotent. -/ @[simp, to_additive add_con_gen_idem "The map sending a binary relation to the smallest additive congruence relation in which it is contained is idempotent."] lemma con_gen_idem (r : M → M → Prop) : con_gen (con_gen r) = con_gen r := con_gen_of_con _ /-- The supremum of congruence relations `c, d` equals the smallest congruence relation containing the binary relation '`x` is related to `y` by `c` or `d`'. -/ @[to_additive sup_eq_add_con_gen "The supremum of additive congruence relations `c, d` equals the smallest additive congruence relation containing the binary relation '`x` is related to `y` by `c` or `d`'."] lemma sup_eq_con_gen (c d : con M) : c ⊔ d = con_gen (λ x y, c x y ∨ d x y) := begin rw con_gen_eq, apply congr_arg Inf, simp only [le_def, or_imp_distrib, ← forall_and_distrib] end /-- The supremum of two congruence relations equals the smallest congruence relation containing the supremum of the underlying binary operations. -/ @[to_additive "The supremum of two additive congruence relations equals the smallest additive congruence relation containing the supremum of the underlying binary operations."] lemma sup_def {c d : con M} : c ⊔ d = con_gen (c.r ⊔ d.r) := by rw sup_eq_con_gen; refl /-- The supremum of a set of congruence relations `S` equals the smallest congruence relation containing the binary relation 'there exists `c ∈ S` such that `x` is related to `y` by `c`'. -/ @[to_additive Sup_eq_add_con_gen "The supremum of a set of additive congruence relations `S` equals the smallest additive congruence relation containing the binary relation 'there exists `c ∈ S` such that `x` is related to `y` by `c`'."] lemma Sup_eq_con_gen (S : set (con M)) : Sup S = con_gen (λ x y, ∃ c : con M, c ∈ S ∧ c x y) := begin rw con_gen_eq, apply congr_arg Inf, ext, exact ⟨λ h _ _ ⟨r, hr⟩, h hr.1 hr.2, λ h r hS _ _ hr, h _ _ ⟨r, hS, hr⟩⟩, end /-- The supremum of a set of congruence relations is the same as the smallest congruence relation containing the supremum of the set's image under the map to the underlying binary relation. -/ @[to_additive "The supremum of a set of additive congruence relations is the same as the smallest additive congruence relation containing the supremum of the set's image under the map to the underlying binary relation."] lemma Sup_def {S : set (con M)} : Sup S = con_gen (Sup (@set.image (con M) (M → M → Prop) coe_fn S)) := begin rw [Sup_eq_con_gen, Sup_image], congr' with x y, simp only [Sup_image, supr_apply, supr_Prop_eq, exists_prop, rel_eq_coe] end variables (M) /-- There is a Galois insertion of congruence relations on a type with a multiplication `M` into binary relations on `M`. -/ @[to_additive "There is a Galois insertion of additive congruence relations on a type with an addition `M` into binary relations on `M`."] protected def gi : @galois_insertion (M → M → Prop) (con M) _ _ con_gen coe_fn := { choice := λ r h, con_gen r, gc := λ r c, ⟨λ H _ _ h, H $ con_gen.rel.of _ _ h, λ H, con_gen_of_con c ▸ con_gen_mono H⟩, le_l_u := λ x, (con_gen_of_con x).symm ▸ le_refl x, choice_eq := λ _ _, rfl } variables {M} (c) /-- Given a function `f`, the smallest congruence relation containing the binary relation on `f`'s image defined by '`x ≈ y` iff the elements of `f⁻¹(x)` are related to the elements of `f⁻¹(y)` by a congruence relation `c`.' -/ @[to_additive "Given a function `f`, the smallest additive congruence relation containing the binary relation on `f`'s image defined by '`x ≈ y` iff the elements of `f⁻¹(x)` are related to the elements of `f⁻¹(y)` by an additive congruence relation `c`.'"] def map_gen (f : M → N) : con N := con_gen $ λ x y, ∃ a b, f a = x ∧ f b = y ∧ c a b /-- Given a surjective multiplicative-preserving function `f` whose kernel is contained in a congruence relation `c`, the congruence relation on `f`'s codomain defined by '`x ≈ y` iff the elements of `f⁻¹(x)` are related to the elements of `f⁻¹(y)` by `c`.' -/ @[to_additive "Given a surjective addition-preserving function `f` whose kernel is contained in an additive congruence relation `c`, the additive congruence relation on `f`'s codomain defined by '`x ≈ y` iff the elements of `f⁻¹(x)` are related to the elements of `f⁻¹(y)` by `c`.'"] def map_of_surjective (f : M → N) (H : ∀ x y, f (x * y) = f x * f y) (h : mul_ker f H ≤ c) (hf : surjective f) : con N := { mul' := λ w x y z ⟨a, b, hw, hx, h1⟩ ⟨p, q, hy, hz, h2⟩, ⟨a * p, b * q, by rw [H, hw, hy], by rw [H, hx, hz], c.mul h1 h2⟩, ..c.to_setoid.map_of_surjective f h hf } /-- A specialization of 'the smallest congruence relation containing a congruence relation `c` equals `c`'. -/ @[to_additive "A specialization of 'the smallest additive congruence relation containing an additive congruence relation `c` equals `c`'."] lemma map_of_surjective_eq_map_gen {c : con M} {f : M → N} (H : ∀ x y, f (x * y) = f x * f y) (h : mul_ker f H ≤ c) (hf : surjective f) : c.map_gen f = c.map_of_surjective f H h hf := by rw ←con_gen_of_con (c.map_of_surjective f H h hf); refl /-- Given types with multiplications `M, N` and a congruence relation `c` on `N`, a multiplication-preserving map `f : M → N` induces a congruence relation on `f`'s domain defined by '`x ≈ y` iff `f(x)` is related to `f(y)` by `c`.' -/ @[to_additive "Given types with additions `M, N` and an additive congruence relation `c` on `N`, an addition-preserving map `f : M → N` induces an additive congruence relation on `f`'s domain defined by '`x ≈ y` iff `f(x)` is related to `f(y)` by `c`.' "] def comap (f : M → N) (H : ∀ x y, f (x * y) = f x * f y) (c : con N) : con M := { mul' := λ w x y z h1 h2, show c (f (w * y)) (f (x * z)), by rw [H, H]; exact c.mul h1 h2, ..c.to_setoid.comap f } @[simp, to_additive] lemma comap_rel {f : M → N} (H : ∀ x y, f (x * y) = f x * f y) {c : con N} {x y : M} : comap f H c x y ↔ c (f x) (f y) := iff.rfl section open _root_.quotient /-- Given a congruence relation `c` on a type `M` with a multiplication, the order-preserving bijection between the set of congruence relations containing `c` and the congruence relations on the quotient of `M` by `c`. -/ @[to_additive "Given an additive congruence relation `c` on a type `M` with an addition, the order-preserving bijection between the set of additive congruence relations containing `c` and the additive congruence relations on the quotient of `M` by `c`."] def correspondence : {d // c ≤ d} ≃o (con c.quotient) := { to_fun := λ d, d.1.map_of_surjective coe _ (by rw mul_ker_mk_eq; exact d.2) $ @exists_rep _ c.to_setoid, inv_fun := λ d, ⟨comap (coe : M → c.quotient) (λ x y, rfl) d, λ _ _ h, show d _ _, by rw c.eq.2 h; exact d.refl _ ⟩, left_inv := λ d, subtype.ext_iff_val.2 $ ext $ λ _ _, ⟨λ h, let ⟨a, b, hx, hy, H⟩ := h in d.1.trans (d.1.symm $ d.2 $ c.eq.1 hx) $ d.1.trans H $ d.2 $ c.eq.1 hy, λ h, ⟨_, _, rfl, rfl, h⟩⟩, right_inv := λ d, let Hm : mul_ker (coe : M → c.quotient) (λ x y, rfl) ≤ comap (coe : M → c.quotient) (λ x y, rfl) d := λ x y h, show d _ _, by rw mul_ker_mk_eq at h; exact c.eq.2 h ▸ d.refl _ in ext $ λ x y, ⟨λ h, let ⟨a, b, hx, hy, H⟩ := h in hx ▸ hy ▸ H, con.induction_on₂ x y $ λ w z h, ⟨w, z, rfl, rfl, h⟩⟩, map_rel_iff' := λ s t, ⟨λ h _ _ hs, let ⟨a, b, hx, hy, ht⟩ := h ⟨_, _, rfl, rfl, hs⟩ in t.1.trans (t.1.symm $ t.2 $ eq_rel.1 hx) $ t.1.trans ht $ t.2 $ eq_rel.1 hy, λ h _ _ hs, let ⟨a, b, hx, hy, Hs⟩ := hs in ⟨a, b, hx, hy, h Hs⟩⟩ } end end section mul_one_class variables {M} [mul_one_class M] [mul_one_class N] [mul_one_class P] (c : con M) /-- The quotient of a monoid by a congruence relation is a monoid. -/ @[to_additive "The quotient of an `add_monoid` by an additive congruence relation is an `add_monoid`."] instance mul_one_class : mul_one_class c.quotient := { one := ((1 : M) : c.quotient), mul := (*), mul_one := λ x, quotient.induction_on' x $ λ _, congr_arg (coe : M → c.quotient) $ mul_one _, one_mul := λ x, quotient.induction_on' x $ λ _, congr_arg (coe : M → c.quotient) $ one_mul _ } variables {c} /-- The 1 of the quotient of a monoid by a congruence relation is the equivalence class of the monoid's 1. -/ @[simp, to_additive "The 0 of the quotient of an `add_monoid` by an additive congruence relation is the equivalence class of the `add_monoid`'s 0."] lemma coe_one : ((1 : M) : c.quotient) = 1 := rfl variables (M c) /-- The submonoid of `M × M` defined by a congruence relation on a monoid `M`. -/ @[to_additive "The `add_submonoid` of `M × M` defined by an additive congruence relation on an `add_monoid` `M`."] protected def submonoid : submonoid (M × M) := { carrier := { x | c x.1 x.2 }, one_mem' := c.iseqv.1 1, mul_mem' := λ _ _, c.mul } variables {M c} /-- The congruence relation on a monoid `M` from a submonoid of `M × M` for which membership is an equivalence relation. -/ @[to_additive "The additive congruence relation on an `add_monoid` `M` from an `add_submonoid` of `M × M` for which membership is an equivalence relation."] def of_submonoid (N : submonoid (M × M)) (H : equivalence (λ x y, (x, y) ∈ N)) : con M := { r := λ x y, (x, y) ∈ N, iseqv := H, mul' := λ _ _ _ _, N.mul_mem } /-- Coercion from a congruence relation `c` on a monoid `M` to the submonoid of `M × M` whose elements are `(x, y)` such that `x` is related to `y` by `c`. -/ @[to_additive "Coercion from a congruence relation `c` on an `add_monoid` `M` to the `add_submonoid` of `M × M` whose elements are `(x, y)` such that `x` is related to `y` by `c`."] instance to_submonoid : has_coe (con M) (submonoid (M × M)) := ⟨λ c, c.submonoid M⟩ @[to_additive] lemma mem_coe {c : con M} {x y} : (x, y) ∈ (↑c : submonoid (M × M)) ↔ (x, y) ∈ c := iff.rfl @[to_additive] theorem to_submonoid_inj (c d : con M) (H : (c : submonoid (M × M)) = d) : c = d := ext $ λ x y, show (x, y) ∈ (c : submonoid (M × M)) ↔ (x, y) ∈ ↑d, by rw H @[to_additive] lemma le_iff {c d : con M} : c ≤ d ↔ (c : submonoid (M × M)) ≤ d := ⟨λ h x H, h H, λ h x y hc, h $ show (x, y) ∈ c, from hc⟩ /-- The kernel of a monoid homomorphism as a congruence relation. -/ @[to_additive "The kernel of an `add_monoid` homomorphism as an additive congruence relation."] def ker (f : M →* P) : con M := mul_ker f f.3 /-- The definition of the congruence relation defined by a monoid homomorphism's kernel. -/ @[simp, to_additive "The definition of the additive congruence relation defined by an `add_monoid` homomorphism's kernel."] lemma ker_rel (f : M →* P) {x y} : ker f x y ↔ f x = f y := iff.rfl /-- There exists an element of the quotient of a monoid by a congruence relation (namely 1). -/ @[to_additive "There exists an element of the quotient of an `add_monoid` by a congruence relation (namely 0)."] instance quotient.inhabited : inhabited c.quotient := ⟨((1 : M) : c.quotient)⟩ variables (c) /-- The natural homomorphism from a monoid to its quotient by a congruence relation. -/ @[to_additive "The natural homomorphism from an `add_monoid` to its quotient by an additive congruence relation."] def mk' : M →* c.quotient := ⟨coe, rfl, λ _ _, rfl⟩ variables (x y : M) /-- The kernel of the natural homomorphism from a monoid to its quotient by a congruence relation `c` equals `c`. -/ @[simp, to_additive "The kernel of the natural homomorphism from an `add_monoid` to its quotient by an additive congruence relation `c` equals `c`."] lemma mk'_ker : ker c.mk' = c := ext $ λ _ _, c.eq variables {c} /-- The natural homomorphism from a monoid to its quotient by a congruence relation is surjective. -/ @[to_additive "The natural homomorphism from an `add_monoid` to its quotient by a congruence relation is surjective."] lemma mk'_surjective : surjective c.mk' := quotient.surjective_quotient_mk' @[simp, to_additive] lemma coe_mk' : (c.mk' : M → c.quotient) = coe := rfl @[simp, to_additive] lemma mrange_mk' : c.mk'.mrange = ⊤ := monoid_hom.mrange_top_iff_surjective.2 mk'_surjective /-- The elements related to `x ∈ M`, `M` a monoid, by the kernel of a monoid homomorphism are those in the preimage of `f(x)` under `f`. -/ @[to_additive "The elements related to `x ∈ M`, `M` an `add_monoid`, by the kernel of an `add_monoid` homomorphism are those in the preimage of `f(x)` under `f`. "] lemma ker_apply_eq_preimage {f : M →* P} (x) : (ker f) x = f ⁻¹' {f x} := set.ext $ λ x, ⟨λ h, set.mem_preimage.2 $ set.mem_singleton_iff.2 h.symm, λ h, (set.mem_singleton_iff.1 $ set.mem_preimage.1 h).symm⟩ /-- Given a monoid homomorphism `f : N → M` and a congruence relation `c` on `M`, the congruence relation induced on `N` by `f` equals the kernel of `c`'s quotient homomorphism composed with `f`. -/ @[to_additive "Given an `add_monoid` homomorphism `f : N → M` and an additive congruence relation `c` on `M`, the additive congruence relation induced on `N` by `f` equals the kernel of `c`'s quotient homomorphism composed with `f`."] lemma comap_eq {f : N →* M} : comap f f.map_mul c = ker (c.mk'.comp f) := ext $ λ x y, show c _ _ ↔ c.mk' _ = c.mk' _, by rw ←c.eq; refl variables (c) (f : M →* P) /-- The homomorphism on the quotient of a monoid by a congruence relation `c` induced by a homomorphism constant on `c`'s equivalence classes. -/ @[to_additive "The homomorphism on the quotient of an `add_monoid` by an additive congruence relation `c` induced by a homomorphism constant on `c`'s equivalence classes."] def lift (H : c ≤ ker f) : c.quotient →* P := { to_fun := λ x, con.lift_on x f $ λ _ _ h, H h, map_one' := by rw ←f.map_one; refl, map_mul' := λ x y, con.induction_on₂ x y $ λ m n, f.map_mul m n ▸ rfl } variables {c f} /-- The diagram describing the universal property for quotients of monoids commutes. -/ @[to_additive "The diagram describing the universal property for quotients of `add_monoid`s commutes."] lemma lift_mk' (H : c ≤ ker f) (x) : c.lift f H (c.mk' x) = f x := rfl /-- The diagram describing the universal property for quotients of monoids commutes. -/ @[simp, to_additive "The diagram describing the universal property for quotients of `add_monoid`s commutes."] lemma lift_coe (H : c ≤ ker f) (x : M) : c.lift f H x = f x := rfl /-- The diagram describing the universal property for quotients of monoids commutes. -/ @[simp, to_additive "The diagram describing the universal property for quotients of `add_monoid`s commutes."] theorem lift_comp_mk' (H : c ≤ ker f) : (c.lift f H).comp c.mk' = f := by ext; refl /-- Given a homomorphism `f` from the quotient of a monoid by a congruence relation, `f` equals the homomorphism on the quotient induced by `f` composed with the natural map from the monoid to the quotient. -/ @[simp, to_additive "Given a homomorphism `f` from the quotient of an `add_monoid` by an additive congruence relation, `f` equals the homomorphism on the quotient induced by `f` composed with the natural map from the `add_monoid` to the quotient."] lemma lift_apply_mk' (f : c.quotient →* P) : c.lift (f.comp c.mk') (λ x y h, show f ↑x = f ↑y, by rw c.eq.2 h) = f := by ext; rcases x; refl /-- Homomorphisms on the quotient of a monoid by a congruence relation are equal if they are equal on elements that are coercions from the monoid. -/ @[to_additive "Homomorphisms on the quotient of an `add_monoid` by an additive congruence relation are equal if they are equal on elements that are coercions from the `add_monoid`."] lemma lift_funext (f g : c.quotient →* P) (h : ∀ a : M, f a = g a) : f = g := begin rw [←lift_apply_mk' f, ←lift_apply_mk' g], congr' 1, exact monoid_hom.ext_iff.2 h, end /-- The uniqueness part of the universal property for quotients of monoids. -/ @[to_additive "The uniqueness part of the universal property for quotients of `add_monoid`s."] theorem lift_unique (H : c ≤ ker f) (g : c.quotient →* P) (Hg : g.comp c.mk' = f) : g = c.lift f H := lift_funext g (c.lift f H) $ λ x, by { subst f, refl } /-- Given a congruence relation `c` on a monoid and a homomorphism `f` constant on `c`'s equivalence classes, `f` has the same image as the homomorphism that `f` induces on the quotient. -/ @[to_additive "Given an additive congruence relation `c` on an `add_monoid` and a homomorphism `f` constant on `c`'s equivalence classes, `f` has the same image as the homomorphism that `f` induces on the quotient."] theorem lift_range (H : c ≤ ker f) : (c.lift f H).mrange = f.mrange := submonoid.ext $ λ x, ⟨by rintros ⟨⟨y⟩, hy⟩; exact ⟨y, hy⟩, λ ⟨y, hy⟩, ⟨↑y, hy⟩⟩ /-- Surjective monoid homomorphisms constant on a congruence relation `c`'s equivalence classes induce a surjective homomorphism on `c`'s quotient. -/ @[to_additive "Surjective `add_monoid` homomorphisms constant on an additive congruence relation `c`'s equivalence classes induce a surjective homomorphism on `c`'s quotient."] lemma lift_surjective_of_surjective (h : c ≤ ker f) (hf : surjective f) : surjective (c.lift f h) := λ y, exists.elim (hf y) $ λ w hw, ⟨w, (lift_mk' h w).symm ▸ hw⟩ variables (c f) /-- Given a monoid homomorphism `f` from `M` to `P`, the kernel of `f` is the unique congruence relation on `M` whose induced map from the quotient of `M` to `P` is injective. -/ @[to_additive "Given an `add_monoid` homomorphism `f` from `M` to `P`, the kernel of `f` is the unique additive congruence relation on `M` whose induced map from the quotient of `M` to `P` is injective."] lemma ker_eq_lift_of_injective (H : c ≤ ker f) (h : injective (c.lift f H)) : ker f = c := to_setoid_inj $ ker_eq_lift_of_injective f H h variables {c} /-- The homomorphism induced on the quotient of a monoid by the kernel of a monoid homomorphism. -/ @[to_additive "The homomorphism induced on the quotient of an `add_monoid` by the kernel of an `add_monoid` homomorphism."] def ker_lift : (ker f).quotient →* P := (ker f).lift f $ λ _ _, id variables {f} /-- The diagram described by the universal property for quotients of monoids, when the congruence relation is the kernel of the homomorphism, commutes. -/ @[simp, to_additive "The diagram described by the universal property for quotients of `add_monoid`s, when the additive congruence relation is the kernel of the homomorphism, commutes."] lemma ker_lift_mk (x : M) : ker_lift f x = f x := rfl /-- Given a monoid homomorphism `f`, the induced homomorphism on the quotient by `f`'s kernel has the same image as `f`. -/ @[simp, to_additive "Given an `add_monoid` homomorphism `f`, the induced homomorphism on the quotient by `f`'s kernel has the same image as `f`."] lemma ker_lift_range_eq : (ker_lift f).mrange = f.mrange := lift_range $ λ _ _, id /-- A monoid homomorphism `f` induces an injective homomorphism on the quotient by `f`'s kernel. -/ @[to_additive "An `add_monoid` homomorphism `f` induces an injective homomorphism on the quotient by `f`'s kernel."] lemma ker_lift_injective (f : M →* P) : injective (ker_lift f) := λ x y, quotient.induction_on₂' x y $ λ _ _, (ker f).eq.2 /-- Given congruence relations `c, d` on a monoid such that `d` contains `c`, `d`'s quotient map induces a homomorphism from the quotient by `c` to the quotient by `d`. -/ @[to_additive "Given additive congruence relations `c, d` on an `add_monoid` such that `d` contains `c`, `d`'s quotient map induces a homomorphism from the quotient by `c` to the quotient by `d`."] def map (c d : con M) (h : c ≤ d) : c.quotient →* d.quotient := c.lift d.mk' $ λ x y hc, show (ker d.mk') x y, from (mk'_ker d).symm ▸ h hc /-- Given congruence relations `c, d` on a monoid such that `d` contains `c`, the definition of the homomorphism from the quotient by `c` to the quotient by `d` induced by `d`'s quotient map. -/ @[to_additive "Given additive congruence relations `c, d` on an `add_monoid` such that `d` contains `c`, the definition of the homomorphism from the quotient by `c` to the quotient by `d` induced by `d`'s quotient map."] lemma map_apply {c d : con M} (h : c ≤ d) (x) : c.map d h x = c.lift d.mk' (λ x y hc, d.eq.2 $ h hc) x := rfl variables (c) /-- The first isomorphism theorem for monoids. -/ @[to_additive "The first isomorphism theorem for `add_monoid`s."] noncomputable def quotient_ker_equiv_range (f : M →* P) : (ker f).quotient ≃* f.mrange := { map_mul' := monoid_hom.map_mul _, ..equiv.of_bijective ((@mul_equiv.to_monoid_hom (ker_lift f).mrange _ _ _ $ mul_equiv.submonoid_congr ker_lift_range_eq).comp (ker_lift f).mrange_restrict) $ (equiv.bijective _).comp ⟨λ x y h, ker_lift_injective f $ by rcases x; rcases y; injections, λ ⟨w, z, hz⟩, ⟨z, by rcases hz; rcases _x; refl⟩⟩ } /-- The first isomorphism theorem for monoids in the case of a homomorphism with right inverse. -/ @[to_additive "The first isomorphism theorem for `add_monoid`s in the case of a homomorphism with right inverse.", simps] def quotient_ker_equiv_of_right_inverse (f : M →* P) (g : P → M) (hf : function.right_inverse g f) : (ker f).quotient ≃* P := { to_fun := ker_lift f, inv_fun := coe ∘ g, left_inv := λ x, ker_lift_injective _ (by rw [function.comp_app, ker_lift_mk, hf]), right_inv := hf, .. ker_lift f } /-- The first isomorphism theorem for monoids in the case of a surjective homomorphism. For a `computable` version, see `con.quotient_ker_equiv_of_right_inverse`. -/ @[to_additive "The first isomorphism theorem for `add_monoid`s in the case of a surjective homomorphism. For a `computable` version, see `add_con.quotient_ker_equiv_of_right_inverse`. "] noncomputable def quotient_ker_equiv_of_surjective (f : M →* P) (hf : surjective f) : (ker f).quotient ≃* P := quotient_ker_equiv_of_right_inverse _ _ hf.has_right_inverse.some_spec /-- The second isomorphism theorem for monoids. -/ @[to_additive "The second isomorphism theorem for `add_monoid`s."] noncomputable def comap_quotient_equiv (f : N →* M) : (comap f f.map_mul c).quotient ≃* (c.mk'.comp f).mrange := (con.congr comap_eq).trans $ quotient_ker_equiv_range $ c.mk'.comp f /-- The third isomorphism theorem for monoids. -/ @[to_additive "The third isomorphism theorem for `add_monoid`s."] def quotient_quotient_equiv_quotient (c d : con M) (h : c ≤ d) : (ker (c.map d h)).quotient ≃* d.quotient := { map_mul' := λ x y, con.induction_on₂ x y $ λ w z, con.induction_on₂ w z $ λ a b, show _ = d.mk' a * d.mk' b, by rw ←d.mk'.map_mul; refl, ..quotient_quotient_equiv_quotient c.to_setoid d.to_setoid h } end mul_one_class section monoids /-- Multiplicative congruence relations preserve natural powers. -/ @[to_additive add_con.nsmul "Additive congruence relations preserve natural scaling."] protected lemma pow {M : Type*} [monoid M] (c : con M) : ∀ (n : ℕ) {w x}, c w x → c (w ^ n) (x ^ n) | 0 w x h := by simpa using c.refl _ | (nat.succ n) w x h := by simpa [pow_succ] using c.mul h (pow n h) @[to_additive] instance {M : Type*} [mul_one_class M] (c : con M) : has_one c.quotient := { one := ((1 : M) : c.quotient) } instance _root_.add_con.quotient.has_nsmul {M : Type*} [add_monoid M] (c : add_con M) : has_smul ℕ c.quotient := { smul := λ n, quotient.map' ((•) n) $ λ x y, c.nsmul n } @[to_additive add_con.quotient.has_nsmul] instance {M : Type*} [monoid M] (c : con M) : has_pow c.quotient ℕ := { pow := λ x n, quotient.map' (λ x, x ^ n) (λ x y, c.pow n) x } /-- The quotient of a semigroup by a congruence relation is a semigroup. -/ @[to_additive "The quotient of an `add_semigroup` by an additive congruence relation is an `add_semigroup`."] instance semigroup {M : Type*} [semigroup M] (c : con M) : semigroup c.quotient := function.surjective.semigroup _ quotient.surjective_quotient_mk' (λ _ _, rfl) /-- The quotient of a commutative semigroup by a congruence relation is a semigroup. -/ @[to_additive "The quotient of an `add_comm_semigroup` by an additive congruence relation is an `add_semigroup`."] instance comm_semigroup {M : Type*} [comm_semigroup M] (c : con M) : comm_semigroup c.quotient := function.surjective.comm_semigroup _ quotient.surjective_quotient_mk' (λ _ _, rfl) /-- The quotient of a monoid by a congruence relation is a monoid. -/ @[to_additive "The quotient of an `add_monoid` by an additive congruence relation is an `add_monoid`."] instance monoid {M : Type*} [monoid M] (c : con M) : monoid c.quotient := function.surjective.monoid _ quotient.surjective_quotient_mk' rfl (λ _ _, rfl) (λ _ _, rfl) /-- The quotient of a `comm_monoid` by a congruence relation is a `comm_monoid`. -/ @[to_additive "The quotient of an `add_comm_monoid` by an additive congruence relation is an `add_comm_monoid`."] instance comm_monoid {M : Type*} [comm_monoid M] (c : con M) : comm_monoid c.quotient := function.surjective.comm_monoid _ quotient.surjective_quotient_mk' rfl (λ _ _, rfl) (λ _ _, rfl) end monoids section groups variables {M} [group M] [group N] [group P] (c : con M) /-- Multiplicative congruence relations preserve inversion. -/ @[to_additive "Additive congruence relations preserve negation."] protected lemma inv : ∀ {w x}, c w x → c w⁻¹ x⁻¹ := λ x y h, by simpa using c.symm (c.mul (c.mul (c.refl x⁻¹) h) (c.refl y⁻¹)) /-- Multiplicative congruence relations preserve division. -/ @[to_additive "Additive congruence relations preserve subtraction."] protected lemma div : ∀ {w x y z}, c w x → c y z → c (w / y) (x / z) := λ w x y z h1 h2, by simpa only [div_eq_mul_inv] using c.mul h1 (c.inv h2) /-- Multiplicative congruence relations preserve integer powers. -/ @[to_additive add_con.zsmul "Additive congruence relations preserve integer scaling."] protected lemma zpow : ∀ (n : ℤ) {w x}, c w x → c (w ^ n) (x ^ n) | (int.of_nat n) w x h := by simpa only [zpow_of_nat] using c.pow _ h | -[1+ n] w x h := by simpa only [zpow_neg_succ_of_nat] using c.inv (c.pow _ h) /-- The inversion induced on the quotient by a congruence relation on a type with a inversion. -/ @[to_additive "The negation induced on the quotient by an additive congruence relation on a type with an negation."] instance has_inv : has_inv c.quotient := ⟨quotient.map' has_inv.inv $ λ a b, c.inv⟩ /-- The division induced on the quotient by a congruence relation on a type with a division. -/ @[to_additive "The subtraction induced on the quotient by an additive congruence relation on a type with a subtraction."] instance has_div : has_div c.quotient := ⟨quotient.map₂' (/) $ λ _ _ h₁ _ _ h₂, c.div h₁ h₂⟩ /-- The integer scaling induced on the quotient by a congruence relation on a type with a subtraction. -/ instance _root_.add_con.quotient.has_zsmul {M : Type*} [add_group M] (c : add_con M) : has_smul ℤ c.quotient := ⟨λ z, quotient.map' ((•) z) $ λ x y, c.zsmul z⟩ /-- The integer power induced on the quotient by a congruence relation on a type with a division. -/ @[to_additive add_con.quotient.has_zsmul] instance has_zpow : has_pow c.quotient ℤ := ⟨λ x z, quotient.map' (λ x, x ^ z) (λ x y h, c.zpow z h) x⟩ /-- The quotient of a group by a congruence relation is a group. -/ @[to_additive "The quotient of an `add_group` by an additive congruence relation is an `add_group`."] instance group : group c.quotient := function.surjective.group _ quotient.surjective_quotient_mk' rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) end groups section units variables {α : Type*} [monoid M] {c : con M} /-- In order to define a function `(con.quotient c)ˣ → α` on the units of `con.quotient c`, where `c : con M` is a multiplicative congruence on a monoid, it suffices to define a function `f` that takes elements `x y : M` with proofs of `c (x * y) 1` and `c (y * x) 1`, and returns an element of `α` provided that `f x y _ _ = f x' y' _ _` whenever `c x x'` and `c y y'`. -/ @[to_additive] def lift_on_units (u : units c.quotient) (f : Π (x y : M), c (x * y) 1 → c (y * x) 1 → α) (Hf : ∀ x y hxy hyx x' y' hxy' hyx', c x x' → c y y' → f x y hxy hyx = f x' y' hxy' hyx') : α := begin refine @con.hrec_on₂ M M _ _ c c (λ x y, x * y = 1 → y * x = 1 → α) (u : c.quotient) (↑u⁻¹ : c.quotient) (λ (x y : M) (hxy : (x * y : c.quotient) = 1) (hyx : (y * x : c.quotient) = 1), f x y (c.eq.1 hxy) (c.eq.1 hyx)) (λ x y x' y' hx hy, _) u.3 u.4, ext1, { rw [c.eq.2 hx, c.eq.2 hy] }, rintro Hxy Hxy' -, ext1, { rw [c.eq.2 hx, c.eq.2 hy] }, rintro Hyx Hyx' -, exact heq_of_eq (Hf _ _ _ _ _ _ _ _ hx hy) end /-- In order to define a function `(con.quotient c)ˣ → α` on the units of `con.quotient c`, where `c : con M` is a multiplicative congruence on a monoid, it suffices to define a function `f` that takes elements `x y : M` with proofs of `c (x * y) 1` and `c (y * x) 1`, and returns an element of `α` provided that `f x y _ _ = f x' y' _ _` whenever `c x x'` and `c y y'`. -/ add_decl_doc add_con.lift_on_add_units @[simp, to_additive] lemma lift_on_units_mk (f : Π (x y : M), c (x * y) 1 → c (y * x) 1 → α) (Hf : ∀ x y hxy hyx x' y' hxy' hyx', c x x' → c y y' → f x y hxy hyx = f x' y' hxy' hyx') (x y : M) (hxy hyx) : lift_on_units ⟨(x : c.quotient), y, hxy, hyx⟩ f Hf = f x y (c.eq.1 hxy) (c.eq.1 hyx) := rfl @[elab_as_eliminator, to_additive] lemma induction_on_units {p : units c.quotient → Prop} (u : units c.quotient) (H : ∀ (x y : M) (hxy : c (x * y) 1) (hyx : c (y * x) 1), p ⟨x, y, c.eq.2 hxy, c.eq.2 hyx⟩) : p u := begin rcases u with ⟨⟨x⟩, ⟨y⟩, h₁, h₂⟩, exact H x y (c.eq.1 h₁) (c.eq.1 h₂) end end units end con
3120f918437170dc659b436b4d5068cc54e75367
4bcaca5dc83d49803f72b7b5920b75b6e7d9de2d
/stage0/src/Lean/Meta/Match/Basic.lean
f10d04373c17096652b7402007bf1c01d37141ce
[ "Apache-2.0" ]
permissive
subfish-zhou/leanprover-zh_CN.github.io
30b9fba9bd790720bd95764e61ae796697d2f603
8b2985d4a3d458ceda9361ac454c28168d920d3f
refs/heads/master
1,689,709,967,820
1,632,503,056,000
1,632,503,056,000
409,962,097
1
0
null
null
null
null
UTF-8
Lean
false
false
12,606
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Meta.Check import Lean.Meta.Match.MatcherInfo import Lean.Meta.Match.CaseArraySizes namespace Lean.Meta.Match /-- Auxiliary annotation used to mark terms marked with the "inaccessible" annotation `.(t)` and `_` in patterns. -/ def mkInaccessible (e : Expr) : Expr := mkAnnotation `_inaccessible e def inaccessible? (e : Expr) : Option Expr := annotation? `_inaccessible e inductive Pattern : Type where | inaccessible (e : Expr) : Pattern | var (fvarId : FVarId) : Pattern | ctor (ctorName : Name) (us : List Level) (params : List Expr) (fields : List Pattern) : Pattern | val (e : Expr) : Pattern | arrayLit (type : Expr) (xs : List Pattern) : Pattern | as (varId : FVarId) (p : Pattern) : Pattern deriving Inhabited namespace Pattern partial def toMessageData : Pattern → MessageData | inaccessible e => m!".({e})" | var varId => mkFVar varId | ctor ctorName _ _ [] => ctorName | ctor ctorName _ _ pats => m!"({ctorName}{pats.foldl (fun (msg : MessageData) pat => msg ++ " " ++ toMessageData pat) Format.nil})" | val e => e | arrayLit _ pats => m!"#[{MessageData.joinSep (pats.map toMessageData) ", "}]" | as varId p => m!"{mkFVar varId}@{toMessageData p}" partial def toExpr (p : Pattern) (annotate := false) : MetaM Expr := visit p where visit (p : Pattern) := do match p with | inaccessible e => if annotate then pure (mkInaccessible e) else pure e | var fvarId => pure $ mkFVar fvarId | val e => pure e | as fvarId p => if annotate then mkAppM `namedPattern #[mkFVar fvarId, (← visit p)] else visit p | arrayLit type xs => let xs ← xs.mapM visit mkArrayLit type xs | ctor ctorName us params fields => let fields ← fields.mapM visit pure $ mkAppN (mkConst ctorName us) (params ++ fields).toArray /- Apply the free variable substitution `s` to the given pattern -/ partial def applyFVarSubst (s : FVarSubst) : Pattern → Pattern | inaccessible e => inaccessible $ s.apply e | ctor n us ps fs => ctor n us (ps.map s.apply) $ fs.map (applyFVarSubst s) | val e => val $ s.apply e | arrayLit t xs => arrayLit (s.apply t) $ xs.map (applyFVarSubst s) | var fvarId => match s.find? fvarId with | some e => inaccessible e | none => var fvarId | as fvarId p => match s.find? fvarId with | none => as fvarId $ applyFVarSubst s p | some _ => applyFVarSubst s p def replaceFVarId (fvarId : FVarId) (v : Expr) (p : Pattern) : Pattern := let s : FVarSubst := {} p.applyFVarSubst (s.insert fvarId v) partial def hasExprMVar : Pattern → Bool | inaccessible e => e.hasExprMVar | ctor _ _ ps fs => ps.any (·.hasExprMVar) || fs.any hasExprMVar | val e => e.hasExprMVar | as _ p => hasExprMVar p | arrayLit t xs => t.hasExprMVar || xs.any hasExprMVar | _ => false end Pattern partial def instantiatePatternMVars : Pattern → MetaM Pattern | Pattern.inaccessible e => return Pattern.inaccessible (← instantiateMVars e) | Pattern.val e => return Pattern.val (← instantiateMVars e) | Pattern.ctor n us ps fields => return Pattern.ctor n us (← ps.mapM instantiateMVars) (← fields.mapM instantiatePatternMVars) | Pattern.as x p => return Pattern.as x (← instantiatePatternMVars p) | Pattern.arrayLit t xs => return Pattern.arrayLit (← instantiateMVars t) (← xs.mapM instantiatePatternMVars) | p => return p structure AltLHS where ref : Syntax fvarDecls : List LocalDecl -- Free variables used in the patterns. patterns : List Pattern -- We use `List Pattern` since we have nary match-expressions. def instantiateAltLHSMVars (altLHS : AltLHS) : MetaM AltLHS := return { altLHS with fvarDecls := (← altLHS.fvarDecls.mapM instantiateLocalDeclMVars), patterns := (← altLHS.patterns.mapM instantiatePatternMVars) } structure Alt where ref : Syntax idx : Nat -- for generating error messages rhs : Expr fvarDecls : List LocalDecl patterns : List Pattern deriving Inhabited namespace Alt partial def toMessageData (alt : Alt) : MetaM MessageData := do withExistingLocalDecls alt.fvarDecls do let msg : List MessageData := alt.fvarDecls.map fun d => m!"{d.toExpr}:({d.type})" let msg : MessageData := m!"{msg} |- {alt.patterns.map Pattern.toMessageData} => {alt.rhs}" addMessageContext msg def applyFVarSubst (s : FVarSubst) (alt : Alt) : Alt := { alt with patterns := alt.patterns.map fun p => p.applyFVarSubst s, fvarDecls := alt.fvarDecls.map fun d => d.applyFVarSubst s, rhs := alt.rhs.applyFVarSubst s } def replaceFVarId (fvarId : FVarId) (v : Expr) (alt : Alt) : Alt := { alt with patterns := alt.patterns.map fun p => p.replaceFVarId fvarId v, fvarDecls := let decls := alt.fvarDecls.filter fun d => d.fvarId != fvarId decls.map $ replaceFVarIdAtLocalDecl fvarId v, rhs := alt.rhs.replaceFVarId fvarId v } /- Similar to `checkAndReplaceFVarId`, but ensures type of `v` is definitionally equal to type of `fvarId`. This extra check is necessary when performing dependent elimination and inaccessible terms have been used. For example, consider the following code fragment: ``` inductive Vec (α : Type u) : Nat → Type u where | nil : Vec α 0 | cons {n} (head : α) (tail : Vec α n) : Vec α (n+1) inductive VecPred {α : Type u} (P : α → Prop) : {n : Nat} → Vec α n → Prop where | nil : VecPred P Vec.nil | cons {n : Nat} {head : α} {tail : Vec α n} : P head → VecPred P tail → VecPred P (Vec.cons head tail) theorem ex {α : Type u} (P : α → Prop) : {n : Nat} → (v : Vec α (n+1)) → VecPred P v → Exists P | _, Vec.cons head _, VecPred.cons h (w : VecPred P Vec.nil) => ⟨head, h⟩ ``` Recall that `_` in a pattern can be elaborated into pattern variable or an inaccessible term. The elaborator uses an inaccessible term when typing constraints restrict its value. Thus, in the example above, the `_` at `Vec.cons head _` becomes the inaccessible pattern `.(Vec.nil)` because the type ascription `(w : VecPred P Vec.nil)` propagates typing constraints that restrict its value to be `Vec.nil`. After elaboration the alternative becomes: ``` | .(0), @Vec.cons .(α) .(0) head .(Vec.nil), @VecPred.cons .(α) .(P) .(0) .(head) .(Vec.nil) h w => ⟨head, h⟩ ``` where ``` (head : α), (h: P head), (w : VecPred P Vec.nil) ``` Then, when we process this alternative in this module, the following check will detect that `w` has type `VecPred P Vec.nil`, when it is supposed to have type `VecPred P tail`. Note that if we had written ``` theorem ex {α : Type u} (P : α → Prop) : {n : Nat} → (v : Vec α (n+1)) → VecPred P v → Exists P | _, Vec.cons head Vec.nil, VecPred.cons h (w : VecPred P Vec.nil) => ⟨head, h⟩ ``` we would get the easier to digest error message ``` missing cases: _, (Vec.cons _ _ (Vec.cons _ _ _)), _ ``` -/ def checkAndReplaceFVarId (fvarId : FVarId) (v : Expr) (alt : Alt) : MetaM Alt := do match alt.fvarDecls.find? fun (fvarDecl : LocalDecl) => fvarDecl.fvarId == fvarId with | none => throwErrorAt alt.ref "unknown free pattern variable" | some fvarDecl => do let vType ← inferType v unless (← isDefEqGuarded fvarDecl.type vType) do withExistingLocalDecls alt.fvarDecls do let (expectedType, givenType) ← addPPExplicitToExposeDiff vType fvarDecl.type throwErrorAt alt.ref "type mismatch during dependent match-elimination at pattern variable '{mkFVar fvarDecl.fvarId}' with type{indentExpr givenType}\nexpected type{indentExpr expectedType}" pure $ replaceFVarId fvarId v alt end Alt inductive Example where | var : FVarId → Example | underscore : Example | ctor : Name → List Example → Example | val : Expr → Example | arrayLit : List Example → Example namespace Example partial def replaceFVarId (fvarId : FVarId) (ex : Example) : Example → Example | var x => if x == fvarId then ex else var x | ctor n exs => ctor n $ exs.map (replaceFVarId fvarId ex) | arrayLit exs => arrayLit $ exs.map (replaceFVarId fvarId ex) | ex => ex partial def applyFVarSubst (s : FVarSubst) : Example → Example | var fvarId => match s.get fvarId with | Expr.fvar fvarId' _ => var fvarId' | _ => underscore | ctor n exs => ctor n $ exs.map (applyFVarSubst s) | arrayLit exs => arrayLit $ exs.map (applyFVarSubst s) | ex => ex partial def varsToUnderscore : Example → Example | var x => underscore | ctor n exs => ctor n $ exs.map varsToUnderscore | arrayLit exs => arrayLit $ exs.map varsToUnderscore | ex => ex partial def toMessageData : Example → MessageData | var fvarId => mkFVar fvarId | ctor ctorName [] => mkConst ctorName | ctor ctorName exs => m!"({mkConst ctorName}{exs.foldl (fun msg pat => m!"{msg} {toMessageData pat}") Format.nil})" | arrayLit exs => "#" ++ MessageData.ofList (exs.map toMessageData) | val e => e | underscore => "_" end Example def examplesToMessageData (cex : List Example) : MessageData := MessageData.joinSep (cex.map (Example.toMessageData ∘ Example.varsToUnderscore)) ", " structure Problem where mvarId : MVarId vars : List Expr alts : List Alt examples : List Example deriving Inhabited def withGoalOf {α} (p : Problem) (x : MetaM α) : MetaM α := withMVarContext p.mvarId x def Problem.toMessageData (p : Problem) : MetaM MessageData := withGoalOf p do let alts ← p.alts.mapM Alt.toMessageData let vars ← p.vars.mapM fun x => do let xType ← inferType x; pure m!"{x}:({xType})" return m!"remaining variables: {vars}\nalternatives:{indentD (MessageData.joinSep alts Format.line)}\nexamples:{examplesToMessageData p.examples}\n" abbrev CounterExample := List Example def counterExampleToMessageData (cex : CounterExample) : MessageData := examplesToMessageData cex def counterExamplesToMessageData (cexs : List CounterExample) : MessageData := MessageData.joinSep (cexs.map counterExampleToMessageData) Format.line structure MatcherResult where matcher : Expr -- The matcher. It is not just `Expr.const matcherName` because the type of the major premises may contain free variables. counterExamples : List CounterExample unusedAltIdxs : List Nat addMatcher : MetaM Unit /-- Convert a expression occurring as the argument of a `match` motive application back into a `Pattern` For example, we can use this method to convert `x::y::xs` at ``` ... (motive : List Nat → Sort u_1) (xs : List Nat) (h_1 : (x y : Nat) → (xs : List Nat) → motive (x :: y :: xs)) ... ``` into a pattern object -/ partial def toPattern (e : Expr) : MetaM Pattern := do match inaccessible? e with | some t => return Pattern.inaccessible t | none => match e.arrayLit? with | some (α, lits) => return Pattern.arrayLit α (← lits.mapM toPattern) | none => if e.isAppOfArity `namedPattern 3 then let p ← toPattern <| e.getArg! 2 match e.getArg! 1 with | Expr.fvar fvarId _ => return Pattern.as fvarId p | _ => throwError "unexpected occurrence of auxiliary declaration 'namedPattern'" else if isMatchValue e then return Pattern.val e else if e.isFVar then return Pattern.var e.fvarId! else let newE ← whnf e if newE != e then toPattern newE else matchConstCtor e.getAppFn (fun _ => throwError "unexpected pattern{indentExpr e}") fun v us => do let args := e.getAppArgs unless args.size == v.numParams + v.numFields do throwError "unexpected pattern{indentExpr e}" let params := args.extract 0 v.numParams let fields := args.extract v.numParams args.size let fields ← fields.mapM toPattern return Pattern.ctor v.name us params.toList fields.toList end Lean.Meta.Match
2565bd664fcafe8acc9bce583adb0d4b01a5faff
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
/tests/lean/by_contradiction.lean
e6f49eaad1ae86df6348a6f5b030b6c148f8115d
[ "Apache-2.0" ]
permissive
bre7k30/lean
de893411bcfa7b3c5572e61b9e1c52951b310aa4
5a924699d076dab1bd5af23a8f910b433e598d7a
refs/heads/master
1,610,900,145,817
1,488,006,845,000
1,488,006,845,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
609
lean
open tactic nat example (a b : nat) : a ≠ b → ¬ a = b := by do intros, by_contradiction `H, trace_state, contradiction print "-------" example (a b : nat) : ¬¬ a = b → a = b := by do intros, by_contradiction `H, trace_state, contradiction print "-------" example (p q : Prop) : ¬¬ p → p := by do intros, by_contradiction `H, -- should fail trace_state print "-------" local attribute [instance] classical.prop_decidable -- Now all propositions are decidable example (p q : Prop) : ¬¬p → p := by do intros, by_contradiction `H, trace_state, contradiction
b1ddf34f3e4f58ebb429cf4d26a3397e24165f06
9c2e8d73b5c5932ceb1333265f17febc6a2f0a39
/src/KT/rules.lean
ab3897b78e577ab04deff48af12c07e41195ea98
[ "MIT" ]
permissive
minchaowu/ModalTab
2150392108dfdcaffc620ff280a8b55fe13c187f
9bb0bf17faf0554d907ef7bdd639648742889178
refs/heads/master
1,626,266,863,244
1,592,056,874,000
1,592,056,874,000
153,314,364
12
1
null
null
null
null
UTF-8
Lean
false
false
3,889
lean
import .semantics open nnf subtype list -- TODO: we could redefine satisfiability. inductive node (Γ : seqt) : Type | closed : unsatisfiable (Γ.main ++ Γ.hdld) → node | open_ : {s // sat builder s (Γ.main ++ Γ.hdld)} → node open node def contra_rule_seqt {Δ : seqt} {n} (h : var n ∈ Δ.main ∧ neg n ∈ Δ.main) : node Δ := begin left, {exact unsat_contra_seqt h.1 h.2} end def and_rule_seqt {Γ Δ : seqt} (i : and_instance_seqt Γ Δ) : node Δ → node Γ | (closed h) := begin left, {apply unsat_of_closed_and_seqt, repeat {assumption}}, end | (open_ w) := begin right, clear and_rule_seqt, cases i with φ ψ h, constructor, exact sat_and_of_sat_split_seqt _ _ _ _ _ h w.2 end def or_rule_seqt {Γ₁ Γ₂ Δ} (i : or_instance_seqt Δ Γ₁ Γ₂) : node Γ₁ → node Γ₂ → node Δ | (open_ w) _ := begin right, clear or_rule_seqt, cases i, constructor, apply sat_or_of_sat_split_left, apply subset_append_left, assumption, apply sat_subset, swap, exact w.2, rw erase_append_left _ i_h, rw ←cons_append, simp [subset_cons], end | _ (open_ w) := begin right, clear or_rule_seqt, cases i, constructor, apply sat_or_of_sat_split_right, apply subset_append_left, assumption, apply sat_subset, swap, exact w.2, rw erase_append_left _ i_h, rw ←cons_append, simp [subset_cons] end | (closed h₁) (closed h₂):= begin left, clear or_rule_seqt, cases i, apply unsat_or_of_unsat_split_seqt, repeat {assumption} end def open_rule_seqt {Γ₁ Γ₂ Δ} {s:model} (i : or_instance_seqt Δ Γ₁ Γ₂) (h : sat builder s (Γ₁.main++Γ₁.hdld)) : node Δ := begin right, cases i, constructor, apply sat_or_of_sat_split_left, apply subset_append_left, assumption, apply sat_subset, swap, exact h, rw erase_append_left _ i_h, rw ←cons_append, simp [subset_cons] end def copy_rule_seqt {Γ Δ : seqt} (i : copy_instance_seqt Γ Δ) : node Δ → node Γ | (closed h) := begin left, clear copy_rule_seqt, cases i with φ hmem, apply unsat_copy_of_unsat_box, repeat {assumption} end | (open_ w) := begin right, clear copy_rule_seqt, cases i with φ h, constructor, apply sat_copy_of_sat_box, exact h, exact w.2 end open batch_sat_seqt def dia_rule_seqt {p : seqt → Prop} (f : Π Γ, p Γ → node Γ): Π Γ : list seqt, (∀ i∈Γ, p i) → psum ({i // i ∈ Γ ∧ unsatisfiable (seqt.main i ++ seqt.hdld i)}) {x : list model // batch_sat_seqt x Γ} | [] h := psum.inr ⟨[], bs_nil⟩ | (hd :: tl) h := match f hd (h hd (by simp)) with | (node.closed pr) := psum.inl ⟨hd, by simp, pr⟩ | (node.open_ w₁) := match dia_rule_seqt tl (λ x hx, h x $ by simp [hx]) with | (psum.inl uw) := begin left, rcases uw with ⟨w, hin, h⟩, split, split, swap, exact h, simp [hin] end | (psum.inr w₂) := psum.inr ⟨(w₁.1::w₂), bs_cons _ _ _ _ w₁.2 w₂.2⟩ end end
bd0e69db0df63772cfd718fcbd423ebba9c5a9fb
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
/tests/lean/interactive/t3.lean
2f3e3ecce829420e8803e5dee8df8ac9b53a76ef
[ "Apache-2.0" ]
permissive
codyroux/lean0.1
1ce92751d664aacff0529e139083304a7bbc8a71
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
refs/heads/master
1,610,830,535,062
1,402,150,480,000
1,402,150,480,000
19,588,851
2
0
null
null
null
null
UTF-8
Lean
false
false
132
lean
(* import("tactic.lua") *) theorem T2 (a b : Bool) : b → a \/ b. (* disj_tac() *). back. back. exact. done. print environment 1.
8695140cd9019c9cbfbad886b6b96d3182a6170f
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/vm_inline_aux.lean
ec585f38d4fbdf23df74880b58de2dba699ca4b4
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
242
lean
namespace ex set_option trace.compiler.optimize_bytecode true @[inline] def {u} cond {a : Type u} : bool → a → a → a | tt x y := x | ff x y := y -- cond should be inlined here def foo (x : bool) := 100 + cond x (10*10) (20*20) end ex
42cee6910ed2df51ac0199358741e931da83af36
947b78d97130d56365ae2ec264df196ce769371a
/stage0/src/Init/Data/FloatArray/Basic.lean
8840cd937d900f93875ea1dcd1f99bf597b86598
[ "Apache-2.0" ]
permissive
shyamalschandra/lean4
27044812be8698f0c79147615b1d5090b9f4b037
6e7a883b21eaf62831e8111b251dc9b18f40e604
refs/heads/master
1,671,417,126,371
1,601,859,995,000
1,601,860,020,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,100
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import Init.Data.Array.Basic import Init.Data.Float import Init.Data.Option.Basic universes u structure FloatArray := (data : Array Float) attribute [extern "lean_float_array_mk"] FloatArray.mk attribute [extern "lean_float_array_data"] FloatArray.data namespace FloatArray @[extern "lean_mk_empty_float_array"] def mkEmpty (c : @& Nat) : FloatArray := { data := #[] } def empty : FloatArray := mkEmpty 0 instance : Inhabited FloatArray := ⟨empty⟩ @[extern "lean_float_array_push"] def push : FloatArray → Float → FloatArray | ⟨ds⟩, b => ⟨ds.push b⟩ @[extern "lean_float_array_size"] def size : (@& FloatArray) → Nat | ⟨ds⟩ => ds.size @[extern "lean_float_array_fget"] def get (ds : @& FloatArray) (i : @& Fin ds.size) : Float := match ds, i with | ⟨ds⟩, i => ds.get i @[extern "lean_float_array_get"] def get! : (@& FloatArray) → (@& Nat) → Float | ⟨ds⟩, i => ds.get! i def get? (ds : FloatArray) (i : Nat) : Option Float := if h : i < ds.size then ds.get ⟨i, h⟩ else none @[extern "lean_float_array_fset"] def set (ds : FloatArray) (i : @& Fin ds.size) (d : Float) : FloatArray := match ds, i with | ⟨ds⟩, i=> ⟨ds.set i d⟩ @[extern "lean_float_array_set"] def set! : FloatArray → (@& Nat) → Float → FloatArray | ⟨ds⟩, i, d => ⟨ds.set! i d⟩ def isEmpty (s : FloatArray) : Bool := s.size == 0 partial def toListAux (ds : FloatArray) : Nat → List Float → List Float | i, r => if h : i < ds.size then toListAux (i+1) (ds.get ⟨i, h⟩ :: r) else r.reverse def toList (ds : FloatArray) : List Float := toListAux ds 0 [] end FloatArray def List.toFloatArrayAux : List Float → FloatArray → FloatArray | [], r => r | b::ds, r => List.toFloatArrayAux ds (r.push b) def List.toFloatArray (ds : List Float) : FloatArray := ds.toFloatArrayAux FloatArray.empty instance : HasToString FloatArray := ⟨fun ds => ds.toList.toString⟩
6586082484763465389b529e677baf4e0ce41940
c777c32c8e484e195053731103c5e52af26a25d1
/src/measure_theory/integral/exp_decay.lean
2090e724c7a2db2de50bfc5d2e41800e1f9d54ee
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
2,866
lean
/- Copyright (c) 2022 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import measure_theory.integral.interval_integral import measure_theory.integral.integral_eq_improper /-! # Integrals with exponential decay at ∞ As easy special cases of general theorems in the library, we prove the following test for integrability: * `integrable_of_is_O_exp_neg`: If `f` is continuous on `[a,∞)`, for some `a ∈ ℝ`, and there exists `b > 0` such that `f(x) = O(exp(-b x))` as `x → ∞`, then `f` is integrable on `(a, ∞)`. -/ noncomputable theory open real interval_integral measure_theory set filter open_locale topology /-- `exp (-b * x)` is integrable on `(a, ∞)`. -/ lemma exp_neg_integrable_on_Ioi (a : ℝ) {b : ℝ} (h : 0 < b) : integrable_on (λ x : ℝ, exp (-b * x)) (Ioi a) := begin have : tendsto (λ x, -exp (-b * x) / b) at_top (𝓝 (-0/b)), { refine tendsto.div_const (tendsto.neg _) _, exact tendsto_exp_at_bot.comp (tendsto_id.neg_const_mul_at_top (right.neg_neg_iff.2 h)) }, refine integrable_on_Ioi_deriv_of_nonneg' (λ x hx, _) (λ x hx, (exp_pos _).le) this, simpa [h.ne'] using ((has_deriv_at_id x).const_mul b).neg.exp.neg.div_const b, end /-- If `f` is continuous on `[a, ∞)`, and is `O (exp (-b * x))` at `∞` for some `b > 0`, then `f` is integrable on `(a, ∞)`. -/ lemma integrable_of_is_O_exp_neg {f : ℝ → ℝ} {a b : ℝ} (h0 : 0 < b) (h1 : continuous_on f (Ici a)) (h2 : f =O[at_top] (λ x, exp (-b * x))) : integrable_on f (Ioi a) := begin cases h2.is_O_with with c h3, rw [asymptotics.is_O_with_iff, eventually_at_top] at h3, cases h3 with r bdr, let v := max a r, -- show integrable on `(a, v]` from continuity have int_left : integrable_on f (Ioc a v), { rw ←(interval_integrable_iff_integrable_Ioc_of_le (le_max_left a r)), have u : Icc a v ⊆ Ici a := Icc_subset_Ici_self, exact (h1.mono u).interval_integrable_of_Icc (le_max_left a r), }, suffices : integrable_on f (Ioi v), { have t : integrable_on f (Ioc a v ∪ Ioi v) := integrable_on_union.mpr ⟨int_left, this⟩, simpa only [Ioc_union_Ioi_eq_Ioi, le_max_iff, le_refl, true_or] using t }, -- now show integrable on `(v, ∞)` from asymptotic split, { exact (h1.mono $ Ioi_subset_Ici $ le_max_left a r).ae_strongly_measurable measurable_set_Ioi }, have : has_finite_integral (λ x : ℝ, c * exp (-b * x)) (volume.restrict (Ioi v)), { exact (exp_neg_integrable_on_Ioi v h0).has_finite_integral.const_mul c }, apply this.mono, refine (ae_restrict_iff' measurable_set_Ioi).mpr _, refine ae_of_all _ (λ x h1x, _), rw [norm_mul, norm_eq_abs], rw [mem_Ioi] at h1x, specialize bdr x ((le_max_right a r).trans h1x.le), exact bdr.trans (mul_le_mul_of_nonneg_right (le_abs_self c) (norm_nonneg _)) end
1aca298b95a7a7ef8ec85671d7096e8d3e8d8885
63abd62053d479eae5abf4951554e1064a4c45b4
/src/algebra/module/prod.lean
bbd6b05c243647da551260c8a24bbee59af2ac81
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
1,579
lean
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import algebra.module.basic /-! # Prod instances for module and multiplicative actions This file defines instances for binary product of modules -/ variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {p q : α × β} namespace prod instance [has_scalar α β] [has_scalar α γ] : has_scalar α (β × γ) := ⟨λa p, (a • p.1, a • p.2)⟩ @[simp] theorem smul_fst [has_scalar α β] [has_scalar α γ] (a : α) (x : β × γ) : (a • x).1 = a • x.1 := rfl @[simp] theorem smul_snd [has_scalar α β] [has_scalar α γ] (a : α) (x : β × γ) : (a • x).2 = a • x.2 := rfl @[simp] theorem smul_mk [has_scalar α β] [has_scalar α γ] (a : α) (b : β) (c : γ) : a • (b, c) = (a • b, a • c) := rfl instance {r : semiring α} [add_comm_monoid β] [add_comm_monoid γ] [semimodule α β] [semimodule α γ] : semimodule α (β × γ) := { smul_add := assume a p₁ p₂, mk.inj_iff.mpr ⟨smul_add _ _ _, smul_add _ _ _⟩, add_smul := assume a p₁ p₂, mk.inj_iff.mpr ⟨add_smul _ _ _, add_smul _ _ _⟩, mul_smul := assume a₁ a₂ p, mk.inj_iff.mpr ⟨mul_smul _ _ _, mul_smul _ _ _⟩, one_smul := assume ⟨b, c⟩, mk.inj_iff.mpr ⟨one_smul _ _, one_smul _ _⟩, zero_smul := assume ⟨b, c⟩, mk.inj_iff.mpr ⟨zero_smul _ _, zero_smul _ _⟩, smul_zero := assume a, mk.inj_iff.mpr ⟨smul_zero _, smul_zero _⟩, .. prod.has_scalar } end prod
6550906f28f0e3094de0f7615fc7a0a84cd96351
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/analysis/special_functions/trigonometric/arctan_deriv.lean
e59749afd64dadf833047097136e9b74e78ce23c
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
7,816
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import analysis.special_functions.trigonometric.arctan import analysis.special_functions.trigonometric.complex_deriv /-! # The `arctan` function. Inequalities, derivatives, and `real.tan` as a `local_homeomorph` between `(-(π / 2), π / 2)` and the whole line. -/ noncomputable theory namespace real open set filter open_locale topological_space real lemma has_strict_deriv_at_tan {x : ℝ} (h : cos x ≠ 0) : has_strict_deriv_at tan (1 / (cos x)^2) x := by exact_mod_cast (complex.has_strict_deriv_at_tan (by exact_mod_cast h)).real_of_complex lemma has_deriv_at_tan {x : ℝ} (h : cos x ≠ 0) : has_deriv_at tan (1 / (cos x)^2) x := by exact_mod_cast (complex.has_deriv_at_tan (by exact_mod_cast h)).real_of_complex lemma tendsto_abs_tan_of_cos_eq_zero {x : ℝ} (hx : cos x = 0) : tendsto (λ x, abs (tan x)) (𝓝[≠] x) at_top := begin have hx : complex.cos x = 0, by exact_mod_cast hx, simp only [← complex.abs_of_real, complex.of_real_tan], refine (complex.tendsto_abs_tan_of_cos_eq_zero hx).comp _, refine tendsto.inf complex.continuous_of_real.continuous_at _, exact tendsto_principal_principal.2 (λ y, mt complex.of_real_inj.1) end lemma tendsto_abs_tan_at_top (k : ℤ) : tendsto (λ x, abs (tan x)) (𝓝[≠] ((2 * k + 1) * π / 2)) at_top := tendsto_abs_tan_of_cos_eq_zero $ cos_eq_zero_iff.2 ⟨k, rfl⟩ lemma continuous_at_tan {x : ℝ} : continuous_at tan x ↔ cos x ≠ 0 := begin refine ⟨λ hc h₀, _, λ h, (has_deriv_at_tan h).continuous_at⟩, exact not_tendsto_nhds_of_tendsto_at_top (tendsto_abs_tan_of_cos_eq_zero h₀) _ (hc.norm.tendsto.mono_left inf_le_left) end lemma differentiable_at_tan {x : ℝ} : differentiable_at ℝ tan x ↔ cos x ≠ 0 := ⟨λ h, continuous_at_tan.1 h.continuous_at, λ h, (has_deriv_at_tan h).differentiable_at⟩ @[simp] lemma deriv_tan (x : ℝ) : deriv tan x = 1 / (cos x)^2 := if h : cos x = 0 then have ¬differentiable_at ℝ tan x := mt differentiable_at_tan.1 (not_not.2 h), by simp [deriv_zero_of_not_differentiable_at this, h, sq] else (has_deriv_at_tan h).deriv @[simp] lemma times_cont_diff_at_tan {n x} : times_cont_diff_at ℝ n tan x ↔ cos x ≠ 0 := ⟨λ h, continuous_at_tan.1 h.continuous_at, λ h, (complex.times_cont_diff_at_tan.2 $ by exact_mod_cast h).real_of_complex⟩ lemma has_deriv_at_tan_of_mem_Ioo {x : ℝ} (h : x ∈ Ioo (-(π/2):ℝ) (π/2)) : has_deriv_at tan (1 / (cos x)^2) x := has_deriv_at_tan (cos_pos_of_mem_Ioo h).ne' lemma differentiable_at_tan_of_mem_Ioo {x : ℝ} (h : x ∈ Ioo (-(π/2):ℝ) (π/2)) : differentiable_at ℝ tan x := (has_deriv_at_tan_of_mem_Ioo h).differentiable_at lemma has_strict_deriv_at_arctan (x : ℝ) : has_strict_deriv_at arctan (1 / (1 + x^2)) x := have A : cos (arctan x) ≠ 0 := (cos_arctan_pos x).ne', by simpa [cos_sq_arctan] using tan_local_homeomorph.has_strict_deriv_at_symm trivial (by simpa) (has_strict_deriv_at_tan A) lemma has_deriv_at_arctan (x : ℝ) : has_deriv_at arctan (1 / (1 + x^2)) x := (has_strict_deriv_at_arctan x).has_deriv_at lemma differentiable_at_arctan (x : ℝ) : differentiable_at ℝ arctan x := (has_deriv_at_arctan x).differentiable_at lemma differentiable_arctan : differentiable ℝ arctan := differentiable_at_arctan @[simp] lemma deriv_arctan : deriv arctan = (λ x, 1 / (1 + x^2)) := funext $ λ x, (has_deriv_at_arctan x).deriv lemma times_cont_diff_arctan {n : with_top ℕ} : times_cont_diff ℝ n arctan := times_cont_diff_iff_times_cont_diff_at.2 $ λ x, have cos (arctan x) ≠ 0 := (cos_arctan_pos x).ne', tan_local_homeomorph.times_cont_diff_at_symm_deriv (by simpa) trivial (has_deriv_at_tan this) (times_cont_diff_at_tan.2 this) end real section /-! ### Lemmas for derivatives of the composition of `real.arctan` with a differentiable function In this section we register lemmas for the derivatives of the composition of `real.arctan` with a differentiable function, for standalone use and use with `simp`. -/ open real section deriv variables {f : ℝ → ℝ} {f' x : ℝ} {s : set ℝ} lemma has_strict_deriv_at.arctan (hf : has_strict_deriv_at f f' x) : has_strict_deriv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) * f') x := (real.has_strict_deriv_at_arctan (f x)).comp x hf lemma has_deriv_at.arctan (hf : has_deriv_at f f' x) : has_deriv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) * f') x := (real.has_deriv_at_arctan (f x)).comp x hf lemma has_deriv_within_at.arctan (hf : has_deriv_within_at f f' s x) : has_deriv_within_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) * f') s x := (real.has_deriv_at_arctan (f x)).comp_has_deriv_within_at x hf lemma deriv_within_arctan (hf : differentiable_within_at ℝ f s x) (hxs : unique_diff_within_at ℝ s x) : deriv_within (λ x, arctan (f x)) s x = (1 / (1 + (f x)^2)) * (deriv_within f s x) := hf.has_deriv_within_at.arctan.deriv_within hxs @[simp] lemma deriv_arctan (hc : differentiable_at ℝ f x) : deriv (λ x, arctan (f x)) x = (1 / (1 + (f x)^2)) * (deriv f x) := hc.has_deriv_at.arctan.deriv end deriv section fderiv variables {E : Type*} [normed_group E] [normed_space ℝ E] {f : E → ℝ} {f' : E →L[ℝ] ℝ} {x : E} {s : set E} {n : with_top ℕ} lemma has_strict_fderiv_at.arctan (hf : has_strict_fderiv_at f f' x) : has_strict_fderiv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) • f') x := (has_strict_deriv_at_arctan (f x)).comp_has_strict_fderiv_at x hf lemma has_fderiv_at.arctan (hf : has_fderiv_at f f' x) : has_fderiv_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) • f') x := (has_deriv_at_arctan (f x)).comp_has_fderiv_at x hf lemma has_fderiv_within_at.arctan (hf : has_fderiv_within_at f f' s x) : has_fderiv_within_at (λ x, arctan (f x)) ((1 / (1 + (f x)^2)) • f') s x := (has_deriv_at_arctan (f x)).comp_has_fderiv_within_at x hf lemma fderiv_within_arctan (hf : differentiable_within_at ℝ f s x) (hxs : unique_diff_within_at ℝ s x) : fderiv_within ℝ (λ x, arctan (f x)) s x = (1 / (1 + (f x)^2)) • (fderiv_within ℝ f s x) := hf.has_fderiv_within_at.arctan.fderiv_within hxs @[simp] lemma fderiv_arctan (hc : differentiable_at ℝ f x) : fderiv ℝ (λ x, arctan (f x)) x = (1 / (1 + (f x)^2)) • (fderiv ℝ f x) := hc.has_fderiv_at.arctan.fderiv lemma differentiable_within_at.arctan (hf : differentiable_within_at ℝ f s x) : differentiable_within_at ℝ (λ x, real.arctan (f x)) s x := hf.has_fderiv_within_at.arctan.differentiable_within_at @[simp] lemma differentiable_at.arctan (hc : differentiable_at ℝ f x) : differentiable_at ℝ (λ x, arctan (f x)) x := hc.has_fderiv_at.arctan.differentiable_at lemma differentiable_on.arctan (hc : differentiable_on ℝ f s) : differentiable_on ℝ (λ x, arctan (f x)) s := λ x h, (hc x h).arctan @[simp] lemma differentiable.arctan (hc : differentiable ℝ f) : differentiable ℝ (λ x, arctan (f x)) := λ x, (hc x).arctan lemma times_cont_diff_at.arctan (h : times_cont_diff_at ℝ n f x) : times_cont_diff_at ℝ n (λ x, arctan (f x)) x := times_cont_diff_arctan.times_cont_diff_at.comp x h lemma times_cont_diff.arctan (h : times_cont_diff ℝ n f) : times_cont_diff ℝ n (λ x, arctan (f x)) := times_cont_diff_arctan.comp h lemma times_cont_diff_within_at.arctan (h : times_cont_diff_within_at ℝ n f s x) : times_cont_diff_within_at ℝ n (λ x, arctan (f x)) s x := times_cont_diff_arctan.comp_times_cont_diff_within_at h lemma times_cont_diff_on.arctan (h : times_cont_diff_on ℝ n f s) : times_cont_diff_on ℝ n (λ x, arctan (f x)) s := times_cont_diff_arctan.comp_times_cont_diff_on h end fderiv end
d31418a9f5c0441ef8a88e90fcc12fff7b8e6ce5
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/algebra/algebra/bilinear.lean
b51a110222f82290b59091f0a9cde39ac0524eae
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
6,444
lean
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Yury Kudryashov -/ import algebra.algebra.basic import algebra.hom.iterate import algebra.hom.non_unital_alg import linear_algebra.tensor_product /-! # Facts about algebras involving bilinear maps and tensor products We move a few basic statements about algebras out of `algebra.algebra.basic`, in order to avoid importing `linear_algebra.bilinear_map` and `linear_algebra.tensor_product` unnecessarily. -/ open_locale tensor_product open module namespace linear_map section non_unital_non_assoc variables (R A : Type*) [comm_semiring R] [non_unital_non_assoc_semiring A] [module R A] [smul_comm_class R A A] [is_scalar_tower R A A] /-- The multiplication in a non-unital non-associative algebra is a bilinear map. A weaker version of this for semirings exists as `add_monoid_hom.mul`. -/ def mul : A →ₗ[R] A →ₗ[R] A := linear_map.mk₂ R (*) add_mul smul_mul_assoc mul_add mul_smul_comm /-- The multiplication map on a non-unital algebra, as an `R`-linear map from `A ⊗[R] A` to `A`. -/ def mul' : A ⊗[R] A →ₗ[R] A := tensor_product.lift (mul R A) variables {A} /-- The multiplication on the left in a non-unital algebra is a linear map. -/ def mul_left (a : A) : A →ₗ[R] A := mul R A a /-- The multiplication on the right in an algebra is a linear map. -/ def mul_right (a : A) : A →ₗ[R] A := (mul R A).flip a /-- Simultaneous multiplication on the left and right is a linear map. -/ def mul_left_right (ab : A × A) : A →ₗ[R] A := (mul_right R ab.snd).comp (mul_left R ab.fst) @[simp] lemma mul_left_to_add_monoid_hom (a : A) : (mul_left R a : A →+ A) = add_monoid_hom.mul_left a := rfl @[simp] lemma mul_right_to_add_monoid_hom (a : A) : (mul_right R a : A →+ A) = add_monoid_hom.mul_right a := rfl variables {R} @[simp] lemma mul_apply' (a b : A) : mul R A a b = a * b := rfl @[simp] lemma mul_left_apply (a b : A) : mul_left R a b = a * b := rfl @[simp] lemma mul_right_apply (a b : A) : mul_right R a b = b * a := rfl @[simp] lemma mul_left_right_apply (a b x : A) : mul_left_right R (a, b) x = a * x * b := rfl @[simp] lemma mul'_apply {a b : A} : mul' R A (a ⊗ₜ b) = a * b := by simp only [linear_map.mul', tensor_product.lift.tmul, mul_apply'] @[simp] lemma mul_left_zero_eq_zero : mul_left R (0 : A) = 0 := (mul R A).map_zero @[simp] lemma mul_right_zero_eq_zero : mul_right R (0 : A) = 0 := (mul R A).flip.map_zero end non_unital_non_assoc section non_unital variables (R A : Type*) [comm_semiring R] [non_unital_semiring A] [module R A] [smul_comm_class R A A] [is_scalar_tower R A A] /-- The multiplication in a non-unital algebra is a bilinear map. A weaker version of this for non-unital non-associative algebras exists as `linear_map.mul`. -/ def _root_.non_unital_alg_hom.lmul : A →ₙₐ[R] (End R A) := { map_mul' := by { intros a b, ext c, exact mul_assoc a b c }, map_zero' := by { ext a, exact zero_mul a }, .. (mul R A) } variables {R A} @[simp] lemma _root_.non_unital_alg_hom.coe_lmul_eq_mul : ⇑(non_unital_alg_hom.lmul R A) = mul R A := rfl lemma commute_mul_left_right (a b : A) : commute (mul_left R a) (mul_right R b) := by { ext c, exact (mul_assoc a c b).symm, } @[simp] lemma mul_left_mul (a b : A) : mul_left R (a * b) = (mul_left R a).comp (mul_left R b) := by { ext, simp only [mul_left_apply, comp_apply, mul_assoc] } @[simp] lemma mul_right_mul (a b : A) : mul_right R (a * b) = (mul_right R b).comp (mul_right R a) := by { ext, simp only [mul_right_apply, comp_apply, mul_assoc] } end non_unital section semiring variables (R A : Type*) [comm_semiring R] [semiring A] [algebra R A] /-- The multiplication in an algebra is an algebra homomorphism into the endomorphisms on the algebra. A weaker version of this for non-unital algebras exists as `non_unital_alg_hom.mul`. -/ def _root_.algebra.lmul : A →ₐ[R] (End R A) := { map_one' := by { ext a, exact one_mul a }, map_mul' := by { intros a b, ext c, exact mul_assoc a b c }, map_zero' := by { ext a, exact zero_mul a }, commutes' := by { intro r, ext a, exact (algebra.smul_def r a).symm, }, .. (linear_map.mul R A) } variables {R A} @[simp] lemma _root_.algebra.coe_lmul_eq_mul : ⇑(algebra.lmul R A) = mul R A := rfl @[simp] lemma mul_left_eq_zero_iff (a : A) : mul_left R a = 0 ↔ a = 0 := begin split; intros h, { rw [← mul_one a, ← mul_left_apply a 1, h, linear_map.zero_apply], }, { rw h, exact mul_left_zero_eq_zero, }, end @[simp] lemma mul_right_eq_zero_iff (a : A) : mul_right R a = 0 ↔ a = 0 := begin split; intros h, { rw [← one_mul a, ← mul_right_apply a 1, h, linear_map.zero_apply], }, { rw h, exact mul_right_zero_eq_zero, }, end @[simp] lemma mul_left_one : mul_left R (1:A) = linear_map.id := by { ext, simp only [linear_map.id_coe, one_mul, id.def, mul_left_apply] } @[simp] lemma mul_right_one : mul_right R (1:A) = linear_map.id := by { ext, simp only [linear_map.id_coe, mul_one, id.def, mul_right_apply] } @[simp] lemma pow_mul_left (a : A) (n : ℕ) : (mul_left R a) ^ n = mul_left R (a ^ n) := by simpa only [mul_left, ←algebra.coe_lmul_eq_mul] using ((algebra.lmul R A).map_pow a n).symm @[simp] lemma pow_mul_right (a : A) (n : ℕ) : (mul_right R a) ^ n = mul_right R (a ^ n) := begin simp only [mul_right, ←algebra.coe_lmul_eq_mul], exact linear_map.coe_injective (((mul_right R a).coe_pow n).symm ▸ (mul_right_iterate a n)), end end semiring section ring variables {R A : Type*} [comm_semiring R] [ring A] [algebra R A] lemma mul_left_injective [no_zero_divisors A] {x : A} (hx : x ≠ 0) : function.injective (mul_left R x) := by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› }, exact mul_right_injective₀ hx } lemma mul_right_injective [no_zero_divisors A] {x : A} (hx : x ≠ 0) : function.injective (mul_right R x) := by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› }, exact mul_left_injective₀ hx } lemma mul_injective [no_zero_divisors A] {x : A} (hx : x ≠ 0) : function.injective (mul R A x) := by { letI : is_domain A := { exists_pair_ne := ⟨x, 0, hx⟩, ..‹ring A›, ..‹no_zero_divisors A› }, exact mul_right_injective₀ hx } end ring end linear_map
6b6992bc2fadd842ea16e15cdcc1e7fe233326a9
36c7a18fd72e5b57229bd8ba36493daf536a19ce
/hott/homotopy/susp.hlean
ba3d0dc22e7776c2ebe62d0057997875a341c4a1
[ "Apache-2.0" ]
permissive
YHVHvx/lean
732bf0fb7a298cd7fe0f15d82f8e248c11db49e9
038369533e0136dd395dc252084d3c1853accbf2
refs/heads/master
1,610,701,080,210
1,449,128,595,000
1,449,128,595,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,559
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of suspension -/ import hit.pushout types.pointed cubical.square open pushout unit eq equiv equiv.ops definition susp (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star) namespace susp variable {A : Type} definition north {A : Type} : susp A := inl star definition south {A : Type} : susp A := inr star definition merid (a : A) : @north A = @south A := glue a protected definition rec {P : susp A → Type} (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) (x : susp A) : P x := begin induction x with u u, { cases u, exact PN}, { cases u, exact PS}, { apply Pm}, end protected definition rec_on [reducible] {P : susp A → Type} (y : susp A) (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y := susp.rec PN PS Pm y theorem rec_merid {P : susp A → Type} (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) (a : A) : apdo (susp.rec PN PS Pm) (merid a) = Pm a := !rec_glue protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (x : susp A) : P := susp.rec PN PS (λa, pathover_of_eq (Pm a)) x protected definition elim_on [reducible] {P : Type} (x : susp A) (PN : P) (PS : P) (Pm : A → PN = PS) : P := susp.elim PN PS Pm x theorem elim_merid {P : Type} {PN PS : P} (Pm : A → PN = PS) (a : A) : ap (susp.elim PN PS Pm) (merid a) = Pm a := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (merid a)), rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑susp.elim,rec_merid], end protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (x : susp A) : Type := susp.elim PN PS (λa, ua (Pm a)) x protected definition elim_type_on [reducible] (x : susp A) (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type := susp.elim_type PN PS Pm x theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (a : A) : transport (susp.elim_type PN PS Pm) (merid a) = Pm a := by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,elim_merid];apply cast_ua_fn end susp attribute susp.north susp.south [constructor] attribute susp.rec susp.elim [unfold 6] [recursor 6] attribute susp.elim_type [unfold 5] attribute susp.rec_on susp.elim_on [unfold 3] attribute susp.elim_type_on [unfold 2] namespace susp open pointed variables {X Y Z : Pointed} definition pointed_susp [instance] [constructor] (X : Type) : pointed (susp X) := pointed.mk north definition Susp [constructor] (X : Type) : Pointed := pointed.mk' (susp X) definition Susp_functor (f : X →* Y) : Susp X →* Susp Y := begin fconstructor, { intro x, induction x, apply north, apply south, exact merid (f a)}, { reflexivity} end definition Susp_functor_compose (g : Y →* Z) (f : X →* Y) : Susp_functor (g ∘* f) ~* Susp_functor g ∘* Susp_functor f := begin fconstructor, { intro a, induction a, { reflexivity}, { reflexivity}, { apply eq_pathover, apply hdeg_square, rewrite [▸*,ap_compose' _ (Susp_functor f),↑Susp_functor,+elim_merid]}}, { reflexivity} end -- adjunction from Coq-HoTT definition loop_susp_unit [constructor] (X : Pointed) : X →* Ω(Susp X) := begin fconstructor, { intro x, exact merid x ⬝ (merid pt)⁻¹}, { apply con.right_inv}, end definition loop_susp_unit_natural (f : X →* Y) : loop_susp_unit Y ∘* f ~* ap1 (Susp_functor f) ∘* loop_susp_unit X := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, fconstructor, { intro x', esimp [Susp_functor], symmetry, exact !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ (inverse2 !elim_merid)) }, { rewrite [▸*,idp_con (con.right_inv _)], apply inv_con_eq_of_eq_con, refine _ ⬝ !con.assoc', rewrite inverse2_right_inv, refine _ ⬝ !con.assoc', rewrite [ap_con_right_inv], unfold Susp_functor, xrewrite [idp_con_idp,-ap_compose], }, end definition loop_susp_counit [constructor] (X : Pointed) : Susp (Ω X) →* X := begin fconstructor, { intro x, induction x, exact pt, exact pt, exact a}, { reflexivity}, end definition loop_susp_counit_natural (f : X →* Y) : f ∘* loop_susp_counit X ~* loop_susp_counit Y ∘* (Susp_functor (ap1 f)) := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, fconstructor, { intro x', induction x' with p, { reflexivity}, { reflexivity}, { esimp, apply eq_pathover, apply hdeg_square, xrewrite [ap_compose f,ap_compose (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*], xrewrite [+elim_merid,▸*,idp_con]}}, { reflexivity} end definition loop_susp_counit_unit (X : Pointed) : ap1 (loop_susp_counit X) ∘* loop_susp_unit (Ω X) ~* pid (Ω X) := begin induction X with X x, fconstructor, { intro p, esimp, refine !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ inverse2 !elim_merid)}, { rewrite [▸*,inverse2_right_inv (elim_merid function.id idp)], refine !con.assoc ⬝ _, xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),idp_con_idp,-ap_compose]} end definition loop_susp_unit_counit (X : Pointed) : loop_susp_counit (Susp X) ∘* Susp_functor (loop_susp_unit X) ~* pid (Susp X) := begin induction X with X x, fconstructor, { intro x', induction x', { reflexivity}, { exact merid pt}, { apply eq_pathover, xrewrite [▸*, ap_id, ap_compose (susp.elim north north (λa, a)), +elim_merid,▸*], apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹}}, { reflexivity} end definition susp_adjoint_loop (X Y : Pointed) : map₊ (pointed.mk' (susp X)) Y ≃ map₊ X (Ω Y) := begin fapply equiv.MK, { intro f, exact ap1 f ∘* loop_susp_unit X}, { intro g, exact loop_susp_counit Y ∘* Susp_functor g}, { intro g, apply eq_of_phomotopy, esimp, refine !pwhisker_right !ap1_compose ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_susp_unit_natural⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_susp_counit_unit ⬝* _, apply pid_comp}, { intro f, apply eq_of_phomotopy, esimp, refine !pwhisker_left !Susp_functor_compose ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_susp_counit_natural⁻¹* ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_susp_unit_counit ⬝* _, apply comp_pid}, end definition susp_adjoint_loop_nat_right (f : Susp X →* Y) (g : Y →* Z) : susp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* susp_adjoint_loop X Y f := begin esimp [susp_adjoint_loop], refine _ ⬝* !passoc, apply pwhisker_right, apply ap1_compose end definition susp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y) : (susp_adjoint_loop X Z)⁻¹ (f ∘* g) ~* (susp_adjoint_loop Y Z)⁻¹ f ∘* Susp_functor g := begin esimp [susp_adjoint_loop], refine _ ⬝* !passoc⁻¹*, apply pwhisker_left, apply Susp_functor_compose end end susp
2345b11b0af39441e64308da181a99616ab564d9
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/src/Init/Data/ByteArray.lean
b6ee6ccf4b4f63a5ccc293dbe46850a9106b6952
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
204
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import Init.Data.ByteArray.Basic
98973d4528aa009aa7e82272fc43f544db84ae4d
efa51dd2edbbbbd6c34bd0ce436415eb405832e7
/20161026_ICTAC_Tutorial/ex48.lean
c10f4aa1e3b15538608a8be8b316a771776f9135
[ "Apache-2.0" ]
permissive
leanprover/presentations
dd031a05bcb12c8855676c77e52ed84246bd889a
3ce2d132d299409f1de269fa8e95afa1333d644e
refs/heads/master
1,688,703,388,796
1,686,838,383,000
1,687,465,742,000
29,750,158
12
9
Apache-2.0
1,540,211,670,000
1,422,042,683,000
Lean
UTF-8
Lean
false
false
350
lean
variable g : ℕ → ℕ → ℕ variable hg : g 0 0 = 0 theorem gex1 : ∃ x, g x x = x := ⟨0, hg⟩ theorem gex2 : ∃ x, g x 0 = x := ⟨0, hg⟩ theorem gex3 : ∃ x, g 0 0 = x := ⟨0, hg⟩ theorem gex4 : ∃ x, g x x = 0 := ⟨0, hg⟩ set_option pp.implicit true -- display implicit arguments print gex1 print gex2 print gex3 print gex4
6b0c6b00d55de58b4eeb83541f488fa022611c63
07c6143268cfb72beccd1cc35735d424ebcb187b
/src/topology/metric_space/emetric_space.lean
0ede137586a5967b9b693a76e29f12e2eb3241b1
[ "Apache-2.0" ]
permissive
khoek/mathlib
bc49a842910af13a3c372748310e86467d1dc766
aa55f8b50354b3e11ba64792dcb06cccb2d8ee28
refs/heads/master
1,588,232,063,837
1,587,304,803,000
1,587,304,803,000
176,688,517
0
0
Apache-2.0
1,553,070,585,000
1,553,070,585,000
null
UTF-8
Lean
false
false
40,317
lean
/- Copyright (c) 2015, 2017 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Robert Y. Lewis, Johannes Hölzl, Mario Carneiro, Sébastien Gouëzel -/ import data.real.nnreal data.real.ennreal import topology.uniform_space.separation topology.uniform_space.uniform_embedding import topology.uniform_space.pi topology.bases topology.uniform_space.uniform_convergence /-! # Extended metric spaces This file is devoted to the definition and study of `emetric_spaces`, i.e., metric spaces in which the distance is allowed to take the value ∞. This extended distance is called `edist`, and takes values in `ennreal`. Many definitions and theorems expected on emetric spaces are already introduced on uniform spaces and topological spaces. For example: open and closed sets, compactness, completeness, continuity and uniform continuity The class `emetric_space` therefore extends `uniform_space` (and `topological_space`). -/ open set filter classical noncomputable theory open_locale uniformity topological_space universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- Characterizing uniformities associated to a (generalized) distance function `D` in terms of the elements of the uniformity. -/ theorem uniformity_dist_of_mem_uniformity [linear_order β] {U : filter (α × α)} (z : β) (D : α → α → β) (H : ∀ s, s ∈ U ↔ ∃ε>z, ∀{a b:α}, D a b < ε → (a, b) ∈ s) : U = ⨅ ε>z, principal {p:α×α | D p.1 p.2 < ε} := le_antisymm (le_infi $ λ ε, le_infi $ λ ε0, le_principal_iff.2 $ (H _).2 ⟨ε, ε0, λ a b, id⟩) (λ r ur, let ⟨ε, ε0, h⟩ := (H _).1 ur in mem_infi_sets ε $ mem_infi_sets ε0 $ mem_principal_sets.2 $ λ ⟨a, b⟩, h) class has_edist (α : Type*) := (edist : α → α → ennreal) export has_edist (edist) /- Design note: one could define an `emetric_space` just by giving `edist`, and then derive an instance of `uniform_space` by taking the natural uniform structure associated to the distance. This creates diamonds problem for products, as the uniform structure on the product of two emetric spaces could be obtained first by obtaining two uniform spaces and then taking their products, or by taking the product of the emetric spaces and then the associated uniform structure. The two uniform structure we have just described are equal, but not defeq, which creates a lot of problem. The idea is to add, in the very definition of an `emetric_space`, a uniform structure with a uniformity which equal to the one given by the distance, but maybe not defeq. And the instance from `emetric_space` to `uniform_space` uses this uniformity. In this way, when we create the product of emetric spaces, we put in the product the uniformity corresponding to the product of the uniformities. There is one more proof obligation, that this product uniformity is equal to the uniformity corresponding to the product metric. But the diamond problem disappears. The same trick is used in the definition of a metric space, where one stores as well a uniform structure and an edistance. -/ /-- Creating a uniform space from an extended distance. -/ def uniform_space_of_edist (edist : α → α → ennreal) (edist_self : ∀ x : α, edist x x = 0) (edist_comm : ∀ x y : α, edist x y = edist y x) (edist_triangle : ∀ x y z : α, edist x z ≤ edist x y + edist y z) : uniform_space α := uniform_space.of_core { uniformity := (⨅ ε>0, principal {p:α×α | edist p.1 p.2 < ε}), refl := le_infi $ assume ε, le_infi $ by simp [set.subset_def, id_rel, edist_self, (>)] {contextual := tt}, comp := le_infi $ assume ε, le_infi $ assume h, have (2 : ennreal) = (2 : ℕ) := by simp, have A : 0 < ε / 2 := ennreal.div_pos_iff.2 ⟨ne_of_gt h, this ▸ ennreal.nat_ne_top 2⟩, lift'_le (mem_infi_sets (ε / 2) $ mem_infi_sets A (subset.refl _)) $ have ∀ (a b c : α), edist a c < ε / 2 → edist c b < ε / 2 → edist a b < ε, from assume a b c hac hcb, calc edist a b ≤ edist a c + edist c b : edist_triangle _ _ _ ... < ε / 2 + ε / 2 : ennreal.add_lt_add hac hcb ... = ε : by rw [ennreal.add_halves], by simpa [comp_rel], symm := tendsto_infi.2 $ assume ε, tendsto_infi.2 $ assume h, tendsto_infi' ε $ tendsto_infi' h $ tendsto_principal_principal.2 $ by simp [edist_comm] } section prio set_option default_priority 100 -- see Note [default priority] /-- Extended metric spaces, with an extended distance `edist` possibly taking the value ∞ Each emetric space induces a canonical `uniform_space` and hence a canonical `topological_space`. This is enforced in the type class definition, by extending the `uniform_space` structure. When instantiating an `emetric_space` structure, the uniformity fields are not necessary, they will be filled in by default. There is a default value for the uniformity, that can be substituted in cases of interest, for instance when instantiating an `emetric_space` structure on a product. Continuity of `edist` is finally proving in `topology.instances.ennreal` -/ class emetric_space (α : Type u) extends has_edist α : Type u := (edist_self : ∀ x : α, edist x x = 0) (eq_of_edist_eq_zero : ∀ {x y : α}, edist x y = 0 → x = y) (edist_comm : ∀ x y : α, edist x y = edist y x) (edist_triangle : ∀ x y z : α, edist x z ≤ edist x y + edist y z) (to_uniform_space : uniform_space α := uniform_space_of_edist edist edist_self edist_comm edist_triangle) (uniformity_edist : 𝓤 α = ⨅ ε>0, principal {p:α×α | edist p.1 p.2 < ε} . control_laws_tac) end prio /- emetric spaces are less common than metric spaces. Therefore, we work in a dedicated namespace, while notions associated to metric spaces are mostly in the root namespace. -/ variables [emetric_space α] @[priority 100] -- see Note [lower instance priority] instance emetric_space.to_uniform_space' : uniform_space α := emetric_space.to_uniform_space export emetric_space (edist_self eq_of_edist_eq_zero edist_comm edist_triangle) attribute [simp] edist_self /-- Characterize the equality of points by the vanishing of their extended distance -/ @[simp] theorem edist_eq_zero {x y : α} : edist x y = 0 ↔ x = y := iff.intro eq_of_edist_eq_zero (assume : x = y, this ▸ edist_self _) @[simp] theorem zero_eq_edist {x y : α} : 0 = edist x y ↔ x = y := iff.intro (assume h, eq_of_edist_eq_zero (h.symm)) (assume : x = y, this ▸ (edist_self _).symm) theorem edist_le_zero {x y : α} : (edist x y ≤ 0) ↔ x = y := le_zero_iff_eq.trans edist_eq_zero /-- Triangle inequality for the extended distance -/ theorem edist_triangle_left (x y z : α) : edist x y ≤ edist z x + edist z y := by rw edist_comm z; apply edist_triangle theorem edist_triangle_right (x y z : α) : edist x y ≤ edist x z + edist y z := by rw edist_comm y; apply edist_triangle lemma edist_triangle4 (x y z t : α) : edist x t ≤ edist x y + edist y z + edist z t := calc edist x t ≤ edist x z + edist z t : edist_triangle x z t ... ≤ (edist x y + edist y z) + edist z t : add_le_add_right' (edist_triangle x y z) /-- The triangle (polygon) inequality for sequences of points; `finset.Ico` version. -/ lemma edist_le_Ico_sum_edist (f : ℕ → α) {m n} (h : m ≤ n) : edist (f m) (f n) ≤ (finset.Ico m n).sum (λ i, edist (f i) (f (i + 1))) := begin revert n, refine nat.le_induction _ _, { simp only [finset.sum_empty, finset.Ico.self_eq_empty, edist_self], -- TODO: Why doesn't Lean close this goal automatically? `apply le_refl` fails too. exact le_refl (0:ennreal) }, { assume n hn hrec, calc edist (f m) (f (n+1)) ≤ edist (f m) (f n) + edist (f n) (f (n+1)) : edist_triangle _ _ _ ... ≤ (finset.Ico m n).sum _ + _ : add_le_add' hrec (le_refl _) ... = (finset.Ico m (n+1)).sum _ : by rw [finset.Ico.succ_top hn, finset.sum_insert, add_comm]; simp } end /-- The triangle (polygon) inequality for sequences of points; `finset.range` version. -/ lemma edist_le_range_sum_edist (f : ℕ → α) (n : ℕ) : edist (f 0) (f n) ≤ (finset.range n).sum (λ i, edist (f i) (f (i + 1))) := finset.Ico.zero_bot n ▸ edist_le_Ico_sum_edist f (nat.zero_le n) /-- A version of `edist_le_Ico_sum_edist` with each intermediate distance replaced with an upper estimate. -/ lemma edist_le_Ico_sum_of_edist_le {f : ℕ → α} {m n} (hmn : m ≤ n) {d : ℕ → ennreal} (hd : ∀ {k}, m ≤ k → k < n → edist (f k) (f (k + 1)) ≤ d k) : edist (f m) (f n) ≤ (finset.Ico m n).sum d := le_trans (edist_le_Ico_sum_edist f hmn) $ finset.sum_le_sum $ λ k hk, hd (finset.Ico.mem.1 hk).1 (finset.Ico.mem.1 hk).2 /-- A version of `edist_le_range_sum_edist` with each intermediate distance replaced with an upper estimate. -/ lemma edist_le_range_sum_of_edist_le {f : ℕ → α} (n : ℕ) {d : ℕ → ennreal} (hd : ∀ {k}, k < n → edist (f k) (f (k + 1)) ≤ d k) : edist (f 0) (f n) ≤ (finset.range n).sum d := finset.Ico.zero_bot n ▸ edist_le_Ico_sum_of_edist_le (zero_le n) (λ _ _, hd) /-- Two points coincide if their distance is `< ε` for all positive ε -/ theorem eq_of_forall_edist_le {x y : α} (h : ∀ε, ε > 0 → edist x y ≤ ε) : x = y := eq_of_edist_eq_zero (eq_of_le_of_forall_le_of_dense bot_le h) /-- Reformulation of the uniform structure in terms of the extended distance -/ theorem uniformity_edist : 𝓤 α = ⨅ ε>0, principal {p:α×α | edist p.1 p.2 < ε} := emetric_space.uniformity_edist theorem uniformity_basis_edist : (𝓤 α).has_basis (λ ε : ennreal, 0 < ε) (λ ε, {p:α×α | edist p.1 p.2 < ε}) := (@uniformity_edist α _).symm ▸ has_basis_binfi_principal (λ r hr p hp, ⟨min r p, lt_min hr hp, λ x hx, lt_of_lt_of_le hx (min_le_left _ _), λ x hx, lt_of_lt_of_le hx (min_le_right _ _)⟩) ⟨1, ennreal.zero_lt_one⟩ /-- Characterization of the elements of the uniformity in terms of the extended distance -/ theorem mem_uniformity_edist {s : set (α×α)} : s ∈ 𝓤 α ↔ (∃ε>0, ∀{a b:α}, edist a b < ε → (a, b) ∈ s) := uniformity_basis_edist.mem_uniformity_iff /-- Given `f : β → ennreal`, if `f` sends `{i | p i}` to a set of positive numbers accumulating to zero, then `f i`-neighborhoods of the diagonal form a basis of `𝓤 α`. For specific bases see `uniformity_basis_edist`, `uniformity_basis_edist'`, `uniformity_basis_edist_nnreal`, and `uniformity_basis_edist_inv_nat`. -/ protected theorem emetric.mk_uniformity_basis {β : Type*} {p : β → Prop} {f : β → ennreal} (hf₀ : ∀ x, p x → 0 < f x) (hf : ∀ ε, 0 < ε → ∃ x (hx : p x), f x ≤ ε) : (𝓤 α).has_basis p (λ x, {p:α×α | edist p.1 p.2 < f x}) := begin refine ⟨λ s, uniformity_basis_edist.mem_iff.trans _⟩, split, { rintros ⟨ε, ε₀, hε⟩, rcases hf ε ε₀ with ⟨i, hi, H⟩, exact ⟨i, hi, λ x hx, hε $ lt_of_lt_of_le hx H⟩ }, { exact λ ⟨i, hi, H⟩, ⟨f i, hf₀ i hi, H⟩ } end /-- Given `f : β → ennreal`, if `f` sends `{i | p i}` to a set of positive numbers accumulating to zero, then closed `f i`-neighborhoods of the diagonal form a basis of `𝓤 α`. For specific bases see `uniformity_basis_edist_le` and `uniformity_basis_edist_le'`. -/ protected theorem emetric.mk_uniformity_basis_le {β : Type*} {p : β → Prop} {f : β → ennreal} (hf₀ : ∀ x, p x → 0 < f x) (hf : ∀ ε, 0 < ε → ∃ x (hx : p x), f x ≤ ε) : (𝓤 α).has_basis p (λ x, {p:α×α | edist p.1 p.2 ≤ f x}) := begin refine ⟨λ s, uniformity_basis_edist.mem_iff.trans _⟩, split, { rintros ⟨ε, ε₀, hε⟩, rcases dense ε₀ with ⟨ε', hε'⟩, rcases hf ε' hε'.1 with ⟨i, hi, H⟩, exact ⟨i, hi, λ x hx, hε $ lt_of_le_of_lt (le_trans hx H) hε'.2⟩ }, { exact λ ⟨i, hi, H⟩, ⟨f i, hf₀ i hi, λ x hx, H (le_of_lt hx)⟩ } end theorem uniformity_basis_edist_le : (𝓤 α).has_basis (λ ε : ennreal, 0 < ε) (λ ε, {p:α×α | edist p.1 p.2 ≤ ε}) := emetric.mk_uniformity_basis_le (λ _, id) (λ ε ε₀, ⟨ε, ε₀, le_refl ε⟩) theorem uniformity_basis_edist' (ε' : ennreal) (hε' : 0 < ε') : (𝓤 α).has_basis (λ ε : ennreal, ε ∈ Ioo 0 ε') (λ ε, {p:α×α | edist p.1 p.2 < ε}) := emetric.mk_uniformity_basis (λ _, and.left) (λ ε ε₀, let ⟨δ, hδ⟩ := dense hε' in ⟨min ε δ, ⟨lt_min ε₀ hδ.1, lt_of_le_of_lt (min_le_right _ _) hδ.2⟩, min_le_left _ _⟩) theorem uniformity_basis_edist_le' (ε' : ennreal) (hε' : 0 < ε') : (𝓤 α).has_basis (λ ε : ennreal, ε ∈ Ioo 0 ε') (λ ε, {p:α×α | edist p.1 p.2 ≤ ε}) := emetric.mk_uniformity_basis_le (λ _, and.left) (λ ε ε₀, let ⟨δ, hδ⟩ := dense hε' in ⟨min ε δ, ⟨lt_min ε₀ hδ.1, lt_of_le_of_lt (min_le_right _ _) hδ.2⟩, min_le_left _ _⟩) theorem uniformity_basis_edist_nnreal : (𝓤 α).has_basis (λ ε : nnreal, 0 < ε) (λ ε, {p:α×α | edist p.1 p.2 < ε}) := emetric.mk_uniformity_basis (λ _, ennreal.coe_pos.2) (λ ε ε₀, let ⟨δ, hδ⟩ := ennreal.lt_iff_exists_nnreal_btwn.1 ε₀ in ⟨δ, ennreal.coe_pos.1 hδ.1, le_of_lt hδ.2⟩) theorem uniformity_basis_edist_inv_nat : (𝓤 α).has_basis (λ _, true) (λ n:ℕ, {p:α×α | edist p.1 p.2 < (↑n)⁻¹}) := emetric.mk_uniformity_basis (λ n _, ennreal.inv_pos.2 $ ennreal.nat_ne_top n) (λ ε ε₀, let ⟨n, hn⟩ := ennreal.exists_inv_nat_lt (ne_of_gt ε₀) in ⟨n, trivial, le_of_lt hn⟩) /-- Fixed size neighborhoods of the diagonal belong to the uniform structure -/ theorem edist_mem_uniformity {ε:ennreal} (ε0 : 0 < ε) : {p:α×α | edist p.1 p.2 < ε} ∈ 𝓤 α := mem_uniformity_edist.2 ⟨ε, ε0, λ a b, id⟩ namespace emetric theorem uniformity_has_countable_basis : is_countably_generated (𝓤 α) := is_countably_generated_of_seq ⟨_, uniformity_basis_edist_inv_nat.eq_infi⟩ /-- ε-δ characterization of uniform continuity on emetric spaces -/ theorem uniform_continuous_iff [emetric_space β] {f : α → β} : uniform_continuous f ↔ ∀ ε > 0, ∃ δ > 0, ∀{a b:α}, edist a b < δ → edist (f a) (f b) < ε := uniformity_basis_edist.uniform_continuous_iff uniformity_basis_edist /-- ε-δ characterization of uniform embeddings on emetric spaces -/ theorem uniform_embedding_iff [emetric_space β] {f : α → β} : uniform_embedding f ↔ function.injective f ∧ uniform_continuous f ∧ ∀ δ > 0, ∃ ε > 0, ∀ {a b : α}, edist (f a) (f b) < ε → edist a b < δ := uniform_embedding_def'.trans $ and_congr iff.rfl $ and_congr iff.rfl ⟨λ H δ δ0, let ⟨t, tu, ht⟩ := H _ (edist_mem_uniformity δ0), ⟨ε, ε0, hε⟩ := mem_uniformity_edist.1 tu in ⟨ε, ε0, λ a b h, ht _ _ (hε h)⟩, λ H s su, let ⟨δ, δ0, hδ⟩ := mem_uniformity_edist.1 su, ⟨ε, ε0, hε⟩ := H _ δ0 in ⟨_, edist_mem_uniformity ε0, λ a b h, hδ (hε h)⟩⟩ /-- A map between emetric spaces is a uniform embedding if and only if the edistance between `f x` and `f y` is controlled in terms of the distance between `x` and `y` and conversely. -/ theorem uniform_embedding_iff' [emetric_space β] {f : α → β} : uniform_embedding f ↔ (∀ ε > 0, ∃ δ > 0, ∀ {a b : α}, edist a b < δ → edist (f a) (f b) < ε) ∧ (∀ δ > 0, ∃ ε > 0, ∀ {a b : α}, edist (f a) (f b) < ε → edist a b < δ) := begin split, { assume h, exact ⟨uniform_continuous_iff.1 (uniform_embedding_iff.1 h).2.1, (uniform_embedding_iff.1 h).2.2⟩ }, { rintros ⟨h₁, h₂⟩, refine uniform_embedding_iff.2 ⟨_, uniform_continuous_iff.2 h₁, h₂⟩, assume x y hxy, have : edist x y ≤ 0, { refine le_of_forall_lt' (λδ δpos, _), rcases h₂ δ δpos with ⟨ε, εpos, hε⟩, have : edist (f x) (f y) < ε, by simpa [hxy], exact hε this }, simpa using this } end /-- ε-δ characterization of Cauchy sequences on emetric spaces -/ protected lemma cauchy_iff {f : filter α} : cauchy f ↔ f ≠ ⊥ ∧ ∀ ε > 0, ∃ t ∈ f, ∀ x y ∈ t, edist x y < ε := uniformity_basis_edist.cauchy_iff /-- A very useful criterion to show that a space is complete is to show that all sequences which satisfy a bound of the form `edist (u n) (u m) < B N` for all `n m ≥ N` are converging. This is often applied for `B N = 2^{-N}`, i.e., with a very fast convergence to `0`, which makes it possible to use arguments of converging series, while this is impossible to do in general for arbitrary Cauchy sequences. -/ theorem complete_of_convergent_controlled_sequences (B : ℕ → ennreal) (hB : ∀n, 0 < B n) (H : ∀u : ℕ → α, (∀N n m : ℕ, N ≤ n → N ≤ m → edist (u n) (u m) < B N) → ∃x, tendsto u at_top (𝓝 x)) : complete_space α := uniform_space.complete_of_convergent_controlled_sequences uniformity_has_countable_basis (λ n, {p:α×α | edist p.1 p.2 < B n}) (λ n, edist_mem_uniformity $ hB n) H /-- A sequentially complete emetric space is complete. -/ theorem complete_of_cauchy_seq_tendsto : (∀ u : ℕ → α, cauchy_seq u → ∃a, tendsto u at_top (𝓝 a)) → complete_space α := uniform_space.complete_of_cauchy_seq_tendsto uniformity_has_countable_basis /-- Expressing locally uniform convergence on a set using `edist`. -/ @[nolint ge_or_gt] -- see Note [nolint_ge] lemma tendsto_locally_uniformly_on_iff {ι : Type*} [topological_space β] {F : ι → β → α} {f : β → α} {p : filter ι} {s : set β} : tendsto_locally_uniformly_on F f p s ↔ ∀ ε > 0, ∀ x ∈ s, ∃ t ∈ nhds_within x s, ∀ᶠ n in p, ∀ y ∈ t, edist (f y) (F n y) < ε := begin refine ⟨λ H ε hε, H _ (edist_mem_uniformity hε), λ H u hu x hx, _⟩, rcases mem_uniformity_edist.1 hu with ⟨ε, εpos, hε⟩, rcases H ε εpos x hx with ⟨t, ht, Ht⟩, exact ⟨t, ht, Ht.mono (λ n hs x hx, hε (hs x hx))⟩ end /-- Expressing uniform convergence on a set using `edist`. -/ @[nolint ge_or_gt] -- see Note [nolint_ge] lemma tendsto_uniformly_on_iff {ι : Type*} {F : ι → β → α} {f : β → α} {p : filter ι} {s : set β} : tendsto_uniformly_on F f p s ↔ ∀ ε > 0, ∀ᶠ n in p, ∀ x ∈ s, edist (f x) (F n x) < ε := begin refine ⟨λ H ε hε, H _ (edist_mem_uniformity hε), λ H u hu, _⟩, rcases mem_uniformity_edist.1 hu with ⟨ε, εpos, hε⟩, exact (H ε εpos).mono (λ n hs x hx, hε (hs x hx)) end /-- Expressing locally uniform convergence using `edist`. -/ @[nolint ge_or_gt] -- see Note [nolint_ge] lemma tendsto_locally_uniformly_iff {ι : Type*} [topological_space β] {F : ι → β → α} {f : β → α} {p : filter ι} : tendsto_locally_uniformly F f p ↔ ∀ ε > 0, ∀ (x : β), ∃ t ∈ 𝓝 x, ∀ᶠ n in p, ∀ y ∈ t, edist (f y) (F n y) < ε := by simp [← nhds_within_univ, ← tendsto_locally_uniformly_on_univ, tendsto_locally_uniformly_on_iff] /-- Expressing uniform convergence using `edist`. -/ @[nolint ge_or_gt] -- see Note [nolint_ge] lemma tendsto_uniformly_iff {ι : Type*} {F : ι → β → α} {f : β → α} {p : filter ι} : tendsto_uniformly F f p ↔ ∀ ε > 0, ∀ᶠ n in p, ∀ x, edist (f x) (F n x) < ε := by { rw [← tendsto_uniformly_on_univ, tendsto_uniformly_on_iff], simp } end emetric open emetric /-- An emetric space is separated -/ @[priority 100] -- see Note [lower instance priority] instance to_separated : separated α := separated_def.2 $ λ x y h, eq_of_forall_edist_le $ λ ε ε0, le_of_lt (h _ (edist_mem_uniformity ε0)) /-- Auxiliary function to replace the uniformity on an emetric space with a uniformity which is equal to the original one, but maybe not defeq. This is useful if one wants to construct an emetric space with a specified uniformity. -/ def emetric_space.replace_uniformity {α} [U : uniform_space α] (m : emetric_space α) (H : @uniformity _ U = @uniformity _ emetric_space.to_uniform_space) : emetric_space α := { edist := @edist _ m.to_has_edist, edist_self := edist_self, eq_of_edist_eq_zero := @eq_of_edist_eq_zero _ _, edist_comm := edist_comm, edist_triangle := edist_triangle, to_uniform_space := U, uniformity_edist := H.trans (@emetric_space.uniformity_edist α _) } /-- The extended metric induced by an injective function taking values in an emetric space. -/ def emetric_space.induced {α β} (f : α → β) (hf : function.injective f) (m : emetric_space β) : emetric_space α := { edist := λ x y, edist (f x) (f y), edist_self := λ x, edist_self _, eq_of_edist_eq_zero := λ x y h, hf (edist_eq_zero.1 h), edist_comm := λ x y, edist_comm _ _, edist_triangle := λ x y z, edist_triangle _ _ _, to_uniform_space := uniform_space.comap f m.to_uniform_space, uniformity_edist := begin apply @uniformity_dist_of_mem_uniformity _ _ _ _ _ (λ x y, edist (f x) (f y)), refine λ s, mem_comap_sets.trans _, split; intro H, { rcases H with ⟨r, ru, rs⟩, rcases mem_uniformity_edist.1 ru with ⟨ε, ε0, hε⟩, refine ⟨ε, ε0, λ a b h, rs (hε _)⟩, exact h }, { rcases H with ⟨ε, ε0, hε⟩, exact ⟨_, edist_mem_uniformity ε0, λ ⟨a, b⟩, hε⟩ } end } /-- Emetric space instance on subsets of emetric spaces -/ instance {α : Type*} {p : α → Prop} [t : emetric_space α] : emetric_space (subtype p) := t.induced coe (λ x y, subtype.coe_ext.2) /-- The extended distance on a subset of an emetric space is the restriction of the original distance, by definition -/ theorem subtype.edist_eq {p : α → Prop} (x y : subtype p) : edist x y = edist (x : α) y := rfl /-- The product of two emetric spaces, with the max distance, is an extended metric spaces. We make sure that the uniform structure thus constructed is the one corresponding to the product of uniform spaces, to avoid diamond problems. -/ instance prod.emetric_space_max [emetric_space β] : emetric_space (α × β) := { edist := λ x y, max (edist x.1 y.1) (edist x.2 y.2), edist_self := λ x, by simp, eq_of_edist_eq_zero := λ x y h, begin cases max_le_iff.1 (le_of_eq h) with h₁ h₂, have A : x.fst = y.fst := edist_le_zero.1 h₁, have B : x.snd = y.snd := edist_le_zero.1 h₂, exact prod.ext_iff.2 ⟨A, B⟩ end, edist_comm := λ x y, by simp [edist_comm], edist_triangle := λ x y z, max_le (le_trans (edist_triangle _ _ _) (add_le_add' (le_max_left _ _) (le_max_left _ _))) (le_trans (edist_triangle _ _ _) (add_le_add' (le_max_right _ _) (le_max_right _ _))), uniformity_edist := begin refine uniformity_prod.trans _, simp [emetric_space.uniformity_edist, comap_infi], rw ← infi_inf_eq, congr, funext, rw ← infi_inf_eq, congr, funext, simp [inf_principal, ext_iff, max_lt_iff] end, to_uniform_space := prod.uniform_space } lemma prod.edist_eq [emetric_space β] (x y : α × β) : edist x y = max (edist x.1 y.1) (edist x.2 y.2) := rfl section pi open finset variables {π : β → Type*} [fintype β] /-- The product of a finite number of emetric spaces, with the max distance, is still an emetric space. This construction would also work for infinite products, but it would not give rise to the product topology. Hence, we only formalize it in the good situation of finitely many spaces. -/ instance emetric_space_pi [∀b, emetric_space (π b)] : emetric_space (Πb, π b) := { edist := λ f g, finset.sup univ (λb, edist (f b) (g b)), edist_self := assume f, bot_unique $ finset.sup_le $ by simp, edist_comm := assume f g, by unfold edist; congr; funext a; exact edist_comm _ _, edist_triangle := assume f g h, begin simp only [finset.sup_le_iff], assume b hb, exact le_trans (edist_triangle _ (g b) _) (add_le_add' (le_sup hb) (le_sup hb)) end, eq_of_edist_eq_zero := assume f g eq0, begin have eq1 : sup univ (λ (b : β), edist (f b) (g b)) ≤ 0 := le_of_eq eq0, simp only [finset.sup_le_iff] at eq1, exact (funext $ assume b, edist_le_zero.1 $ eq1 b $ mem_univ b), end, to_uniform_space := Pi.uniform_space _, uniformity_edist := begin simp only [Pi.uniformity, emetric_space.uniformity_edist, comap_infi, gt_iff_lt, preimage_set_of_eq, comap_principal], rw infi_comm, congr, funext ε, rw infi_comm, congr, funext εpos, change 0 < ε at εpos, simp [ext_iff, εpos] end } end pi namespace emetric variables {x y z : α} {ε ε₁ ε₂ : ennreal} {s : set α} /-- `emetric.ball x ε` is the set of all points `y` with `edist y x < ε` -/ def ball (x : α) (ε : ennreal) : set α := {y | edist y x < ε} @[simp] theorem mem_ball : y ∈ ball x ε ↔ edist y x < ε := iff.rfl theorem mem_ball' : y ∈ ball x ε ↔ edist x y < ε := by rw edist_comm; refl /-- `emetric.closed_ball x ε` is the set of all points `y` with `edist y x ≤ ε` -/ def closed_ball (x : α) (ε : ennreal) := {y | edist y x ≤ ε} @[simp] theorem mem_closed_ball : y ∈ closed_ball x ε ↔ edist y x ≤ ε := iff.rfl theorem ball_subset_closed_ball : ball x ε ⊆ closed_ball x ε := assume y, by simp; intros h; apply le_of_lt h theorem pos_of_mem_ball (hy : y ∈ ball x ε) : 0 < ε := lt_of_le_of_lt (zero_le _) hy theorem mem_ball_self (h : 0 < ε) : x ∈ ball x ε := show edist x x < ε, by rw edist_self; assumption theorem mem_closed_ball_self : x ∈ closed_ball x ε := show edist x x ≤ ε, by rw edist_self; exact bot_le theorem mem_ball_comm : x ∈ ball y ε ↔ y ∈ ball x ε := by simp [edist_comm] theorem ball_subset_ball (h : ε₁ ≤ ε₂) : ball x ε₁ ⊆ ball x ε₂ := λ y (yx : _ < ε₁), lt_of_lt_of_le yx h theorem closed_ball_subset_closed_ball (h : ε₁ ≤ ε₂) : closed_ball x ε₁ ⊆ closed_ball x ε₂ := λ y (yx : _ ≤ ε₁), le_trans yx h theorem ball_disjoint (h : ε₁ + ε₂ ≤ edist x y) : ball x ε₁ ∩ ball y ε₂ = ∅ := eq_empty_iff_forall_not_mem.2 $ λ z ⟨h₁, h₂⟩, not_lt_of_le (edist_triangle_left x y z) (lt_of_lt_of_le (ennreal.add_lt_add h₁ h₂) h) theorem ball_subset (h : edist x y + ε₁ ≤ ε₂) (h' : edist x y < ⊤) : ball x ε₁ ⊆ ball y ε₂ := λ z zx, calc edist z y ≤ edist z x + edist x y : edist_triangle _ _ _ ... = edist x y + edist z x : add_comm _ _ ... < edist x y + ε₁ : (ennreal.add_lt_add_iff_left h').2 zx ... ≤ ε₂ : h theorem exists_ball_subset_ball (h : y ∈ ball x ε) : ∃ ε' > 0, ball y ε' ⊆ ball x ε := begin have : 0 < ε - edist y x := by simpa using h, refine ⟨ε - edist y x, this, ball_subset _ _⟩, { rw ennreal.add_sub_cancel_of_le (le_of_lt h), apply le_refl _}, { have : edist y x ≠ ⊤ := ne_top_of_lt h, apply lt_top_iff_ne_top.2 this } end theorem ball_eq_empty_iff : ball x ε = ∅ ↔ ε = 0 := eq_empty_iff_forall_not_mem.trans ⟨λh, le_bot_iff.1 (le_of_not_gt (λ ε0, h _ (mem_ball_self ε0))), λε0 y h, not_lt_of_le (le_of_eq ε0) (pos_of_mem_ball h)⟩ /-- Relation “two points are at a finite edistance” is an equivalence relation. -/ def edist_lt_top_setoid : setoid α := { r := λ x y, edist x y < ⊤, iseqv := ⟨λ x, by { rw edist_self, exact ennreal.coe_lt_top }, λ x y h, by rwa edist_comm, λ x y z hxy hyz, lt_of_le_of_lt (edist_triangle x y z) (ennreal.add_lt_top.2 ⟨hxy, hyz⟩)⟩ } @[simp] lemma ball_zero : ball x 0 = ∅ := by rw [emetric.ball_eq_empty_iff] theorem nhds_basis_eball : (𝓝 x).has_basis (λ ε:ennreal, 0 < ε) (ball x) := nhds_basis_uniformity uniformity_basis_edist theorem nhds_eq : 𝓝 x = (⨅ε>0, principal (ball x ε)) := nhds_basis_eball.eq_binfi theorem mem_nhds_iff : s ∈ 𝓝 x ↔ ∃ε>0, ball x ε ⊆ s := nhds_basis_eball.mem_iff theorem is_open_iff : is_open s ↔ ∀x∈s, ∃ε>0, ball x ε ⊆ s := by simp [is_open_iff_nhds, mem_nhds_iff] theorem is_open_ball : is_open (ball x ε) := is_open_iff.2 $ λ y, exists_ball_subset_ball theorem is_closed_ball_top : is_closed (ball x ⊤) := is_open_iff.2 $ λ y hy, ⟨⊤, ennreal.coe_lt_top, subset_compl_iff_disjoint.2 $ ball_disjoint $ by { rw ennreal.top_add, exact le_of_not_lt hy }⟩ theorem ball_mem_nhds (x : α) {ε : ennreal} (ε0 : 0 < ε) : ball x ε ∈ 𝓝 x := mem_nhds_sets is_open_ball (mem_ball_self ε0) /-- ε-characterization of the closure in emetric spaces -/ @[nolint ge_or_gt] -- see Note [nolint_ge] theorem mem_closure_iff : x ∈ closure s ↔ ∀ε>0, ∃y ∈ s, edist x y < ε := (mem_closure_iff_nhds_basis nhds_basis_eball).trans $ by simp only [mem_ball, edist_comm x] theorem tendsto_nhds {f : filter β} {u : β → α} {a : α} : tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, edist (u x) a < ε := nhds_basis_eball.tendsto_right_iff theorem tendsto_at_top [nonempty β] [semilattice_sup β] (u : β → α) {a : α} : tendsto u at_top (𝓝 a) ↔ ∀ε>0, ∃N, ∀n≥N, edist (u n) a < ε := (at_top_basis.tendsto_iff nhds_basis_eball).trans $ by simp only [exists_prop, true_and, mem_Ici, mem_ball] /-- In an emetric space, Cauchy sequences are characterized by the fact that, eventually, the edistance between its elements is arbitrarily small -/ theorem cauchy_seq_iff [nonempty β] [semilattice_sup β] {u : β → α} : cauchy_seq u ↔ ∀ε>0, ∃N, ∀m n≥N, edist (u m) (u n) < ε := uniformity_basis_edist.cauchy_seq_iff /-- A variation around the emetric characterization of Cauchy sequences -/ theorem cauchy_seq_iff' [nonempty β] [semilattice_sup β] {u : β → α} : cauchy_seq u ↔ ∀ε>(0 : ennreal), ∃N, ∀n≥N, edist (u n) (u N) < ε := uniformity_basis_edist.cauchy_seq_iff' /-- A variation of the emetric characterization of Cauchy sequences that deals with `nnreal` upper bounds. -/ theorem cauchy_seq_iff_nnreal [nonempty β] [semilattice_sup β] {u : β → α} : cauchy_seq u ↔ ∀ ε : nnreal, 0 < ε → ∃ N, ∀ n, N ≤ n → edist (u n) (u N) < ε := uniformity_basis_edist_nnreal.cauchy_seq_iff' theorem totally_bounded_iff {s : set α} : totally_bounded s ↔ ∀ ε > 0, ∃t : set α, finite t ∧ s ⊆ ⋃y∈t, ball y ε := ⟨λ H ε ε0, H _ (edist_mem_uniformity ε0), λ H r ru, let ⟨ε, ε0, hε⟩ := mem_uniformity_edist.1 ru, ⟨t, ft, h⟩ := H ε ε0 in ⟨t, ft, subset.trans h $ Union_subset_Union $ λ y, Union_subset_Union $ λ yt z, hε⟩⟩ theorem totally_bounded_iff' {s : set α} : totally_bounded s ↔ ∀ ε > 0, ∃t⊆s, finite t ∧ s ⊆ ⋃y∈t, ball y ε := ⟨λ H ε ε0, (totally_bounded_iff_subset.1 H) _ (edist_mem_uniformity ε0), λ H r ru, let ⟨ε, ε0, hε⟩ := mem_uniformity_edist.1 ru, ⟨t, _, ft, h⟩ := H ε ε0 in ⟨t, ft, subset.trans h $ Union_subset_Union $ λ y, Union_subset_Union $ λ yt z, hε⟩⟩ section compact /-- A compact set in an emetric space is separable, i.e., it is the closure of a countable set -/ lemma countable_closure_of_compact {α : Type u} [emetric_space α] {s : set α} (hs : compact s) : ∃ t ⊆ s, (countable t ∧ s = closure t) := begin have A : ∀ (e:ennreal), e > 0 → ∃ t ⊆ s, (finite t ∧ s ⊆ (⋃x∈t, ball x e)) := totally_bounded_iff'.1 (compact_iff_totally_bounded_complete.1 hs).1, -- assume e, finite_cover_balls_of_compact hs, have B : ∀ (e:ennreal), ∃ t ⊆ s, finite t ∧ (e > 0 → s ⊆ (⋃x∈t, ball x e)), { intro e, cases le_or_gt e 0 with h, { exact ⟨∅, by finish⟩ }, { rcases A e h with ⟨s, ⟨finite_s, closure_s⟩⟩, existsi s, finish }}, /-The desired countable set is obtained by taking for each `n` the centers of a finite cover by balls of radius `1/n`, and then the union over `n`. -/ choose T T_in_s finite_T using B, let t := ⋃n:ℕ, T n⁻¹, have T₁ : t ⊆ s := begin apply Union_subset, assume n, apply T_in_s end, have T₂ : countable t := by finish [countable_Union, countable_finite], have T₃ : s ⊆ closure t, { intros x x_in_s, apply mem_closure_iff.2, intros ε εpos, rcases ennreal.exists_inv_nat_lt (bot_lt_iff_ne_bot.1 εpos) with ⟨n, hn⟩, have inv_n_pos : (0 : ennreal) < (n : ℕ)⁻¹ := by simp [ennreal.bot_lt_iff_ne_bot], have C : x ∈ (⋃y∈ T (n : ℕ)⁻¹, ball y (n : ℕ)⁻¹) := mem_of_mem_of_subset x_in_s ((finite_T (n : ℕ)⁻¹).2 inv_n_pos), rcases mem_Union.1 C with ⟨y, _, ⟨y_in_T, rfl⟩, Dxy⟩, simp at Dxy, -- Dxy : edist x y < 1 / ↑n have : y ∈ t := mem_of_mem_of_subset y_in_T (by apply subset_Union (λ (n:ℕ), T (n : ℕ)⁻¹)), have : edist x y < ε := lt_trans Dxy hn, exact ⟨y, ‹y ∈ t›, ‹edist x y < ε›⟩ }, have T₄ : closure t ⊆ s := calc closure t ⊆ closure s : closure_mono T₁ ... = s : closure_eq_of_is_closed (closed_of_compact _ hs), exact ⟨t, ⟨T₁, T₂, subset.antisymm T₃ T₄⟩⟩ end end compact section first_countable @[priority 100] -- see Note [lower instance priority] instance (α : Type u) [emetric_space α] : topological_space.first_countable_topology α := uniform_space.first_countable_topology uniformity_has_countable_basis end first_countable section second_countable open topological_space /-- A separable emetric space is second countable: one obtains a countable basis by taking the balls centered at points in a dense subset, and with rational radii. We do not register this as an instance, as there is already an instance going in the other direction from second countable spaces to separable spaces, and we want to avoid loops. -/ lemma second_countable_of_separable (α : Type u) [emetric_space α] [separable_space α] : second_countable_topology α := let ⟨S, ⟨S_countable, S_dense⟩⟩ := separable_space.exists_countable_closure_eq_univ in ⟨⟨⋃x ∈ S, ⋃ (n : nat), {ball x (n⁻¹)}, ⟨show countable ⋃x ∈ S, ⋃ (n : nat), {ball x (n⁻¹)}, { apply countable_bUnion S_countable, intros a aS, apply countable_Union, simp }, show uniform_space.to_topological_space = generate_from (⋃x ∈ S, ⋃ (n : nat), {ball x (n⁻¹)}), { have A : ∀ (u : set α), (u ∈ ⋃x ∈ S, ⋃ (n : nat), ({ball x ((n : ennreal)⁻¹)} : set (set α))) → is_open u, { simp only [and_imp, exists_prop, set.mem_Union, set.mem_singleton_iff, exists_imp_distrib], intros u x hx i u_ball, rw [u_ball], exact is_open_ball }, have B : is_topological_basis (⋃x ∈ S, ⋃ (n : nat), ({ball x (n⁻¹)} : set (set α))), { refine is_topological_basis_of_open_of_nhds A (λa u au open_u, _), rcases is_open_iff.1 open_u a au with ⟨ε, εpos, εball⟩, have : ε / 2 > 0 := ennreal.half_pos εpos, /- The ball `ball a ε` is included in `u`. We need to find one of our balls `ball x (n⁻¹)` containing `a` and contained in `ball a ε`. For this, we take `n` larger than `2/ε`, and then `x` in `S` at distance at most `n⁻¹` of `a` -/ rcases ennreal.exists_inv_nat_lt (bot_lt_iff_ne_bot.1 (ennreal.half_pos εpos)) with ⟨n, εn⟩, have : (0 : ennreal) < n⁻¹ := by simp [ennreal.bot_lt_iff_ne_bot], have : (a : α) ∈ closure (S : set α) := by rw [S_dense]; simp, rcases mem_closure_iff.1 this _ ‹(0 : ennreal) < n⁻¹› with ⟨x, xS, xdist⟩, existsi ball x (↑n)⁻¹, have I : ball x (n⁻¹) ⊆ ball a ε := λy ydist, calc edist y a = edist a y : edist_comm _ _ ... ≤ edist a x + edist y x : edist_triangle_right _ _ _ ... < n⁻¹ + n⁻¹ : ennreal.add_lt_add xdist ydist ... < ε/2 + ε/2 : ennreal.add_lt_add εn εn ... = ε : ennreal.add_halves _, simp only [emetric.mem_ball, exists_prop, set.mem_Union, set.mem_singleton_iff], exact ⟨⟨x, ⟨xS, ⟨n, rfl⟩⟩⟩, ⟨by simpa, subset.trans I εball⟩⟩ }, exact B.2.2 }⟩⟩⟩ end second_countable section diam /-- The diameter of a set in an emetric space, named `emetric.diam` -/ def diam (s : set α) := ⨆ (x ∈ s) (y ∈ s), edist x y lemma diam_le_iff_forall_edist_le {d : ennreal} : diam s ≤ d ↔ ∀ (x ∈ s) (y ∈ s), edist x y ≤ d := by simp only [diam, supr_le_iff] /-- If two points belong to some set, their edistance is bounded by the diameter of the set -/ lemma edist_le_diam_of_mem (hx : x ∈ s) (hy : y ∈ s) : edist x y ≤ diam s := diam_le_iff_forall_edist_le.1 (le_refl _) x hx y hy /-- If the distance between any two points in a set is bounded by some constant, this constant bounds the diameter. -/ lemma diam_le_of_forall_edist_le {d : ennreal} (h : ∀ (x ∈ s) (y ∈ s), edist x y ≤ d) : diam s ≤ d := diam_le_iff_forall_edist_le.2 h /-- The diameter of a subsingleton vanishes. -/ lemma diam_subsingleton (hs : s.subsingleton) : diam s = 0 := le_zero_iff_eq.1 $ diam_le_of_forall_edist_le $ λ x hx y hy, (hs hx hy).symm ▸ edist_self y ▸ le_refl _ /-- The diameter of the empty set vanishes -/ @[simp] lemma diam_empty : diam (∅ : set α) = 0 := diam_subsingleton subsingleton_empty /-- The diameter of a singleton vanishes -/ @[simp] lemma diam_singleton : diam ({x} : set α) = 0 := diam_subsingleton subsingleton_singleton lemma diam_eq_zero_iff : diam s = 0 ↔ s.subsingleton := ⟨λ h x hx y hy, edist_le_zero.1 $ h ▸ edist_le_diam_of_mem hx hy, diam_subsingleton⟩ lemma diam_pos_iff : 0 < diam s ↔ ∃ (x ∈ s) (y ∈ s), x ≠ y := begin have := not_congr (@diam_eq_zero_iff _ _ s), dunfold set.subsingleton at this, push_neg at this, simpa only [zero_lt_iff_ne_zero, exists_prop] using this end lemma diam_insert : diam (insert x s) = max (diam s) (⨆ y ∈ s, edist y x) := eq_of_forall_ge_iff $ λ d, by simp only [diam_le_iff_forall_edist_le, ball_insert_iff, max_le_iff, edist_self, zero_le, true_and, supr_le_iff, forall_and_distrib, edist_comm x, and_self, (and_assoc _ _).symm, max_comm (diam s)] lemma diam_pair : diam ({x, y} : set α) = edist x y := by simp only [supr_singleton, diam_insert, diam_singleton, ennreal.max_zero_left] lemma diam_triple : diam ({x, y, z} : set α) = max (edist x y) (max (edist y z) (edist x z)) := by simp only [diam_insert, supr_insert, supr_singleton, diam_singleton, ennreal.max_zero_left, ennreal.sup_eq_max] /-- The diameter is monotonous with respect to inclusion -/ lemma diam_mono {s t : set α} (h : s ⊆ t) : diam s ≤ diam t := diam_le_of_forall_edist_le $ λ x hx y hy, edist_le_diam_of_mem (h hx) (h hy) /-- The diameter of a union is controlled by the diameter of the sets, and the edistance between two points in the sets. -/ lemma diam_union {t : set α} (xs : x ∈ s) (yt : y ∈ t) : diam (s ∪ t) ≤ diam s + edist x y + diam t := begin have A : ∀a ∈ s, ∀b ∈ t, edist a b ≤ diam s + edist x y + diam t := λa ha b hb, calc edist a b ≤ edist a x + edist x y + edist y b : edist_triangle4 _ _ _ _ ... ≤ diam s + edist x y + diam t : add_le_add' (add_le_add' (edist_le_diam_of_mem ha xs) (le_refl _)) (edist_le_diam_of_mem yt hb), refine diam_le_of_forall_edist_le (λa ha b hb, _), cases (mem_union _ _ _).1 ha with h'a h'a; cases (mem_union _ _ _).1 hb with h'b h'b, { calc edist a b ≤ diam s : edist_le_diam_of_mem h'a h'b ... ≤ diam s + (edist x y + diam t) : le_add_right (le_refl _) ... = diam s + edist x y + diam t : by simp only [add_comm, eq_self_iff_true, add_left_comm] }, { exact A a h'a b h'b }, { have Z := A b h'b a h'a, rwa [edist_comm] at Z }, { calc edist a b ≤ diam t : edist_le_diam_of_mem h'a h'b ... ≤ (diam s + edist x y) + diam t : le_add_left (le_refl _) } end lemma diam_union' {t : set α} (h : (s ∩ t).nonempty) : diam (s ∪ t) ≤ diam s + diam t := let ⟨x, ⟨xs, xt⟩⟩ := h in by simpa using diam_union xs xt lemma diam_closed_ball {r : ennreal} : diam (closed_ball x r) ≤ 2 * r := diam_le_of_forall_edist_le $ λa ha b hb, calc edist a b ≤ edist a x + edist b x : edist_triangle_right _ _ _ ... ≤ r + r : add_le_add' ha hb ... = 2 * r : by simp [mul_two, mul_comm] lemma diam_ball {r : ennreal} : diam (ball x r) ≤ 2 * r := le_trans (diam_mono ball_subset_closed_ball) diam_closed_ball end diam end emetric --namespace
c8afc2b48f73f54ef2e2c65e52104f787729118e
92b50235facfbc08dfe7f334827d47281471333b
/library/data/pnat.lean
b171b42a32747f623bb45be98d03ff2dbcc47567
[ "Apache-2.0" ]
permissive
htzh/lean
24f6ed7510ab637379ec31af406d12584d31792c
d70c79f4e30aafecdfc4a60b5d3512199200ab6e
refs/heads/master
1,607,677,731,270
1,437,089,952,000
1,437,089,952,000
37,078,816
0
0
null
1,433,780,956,000
1,433,780,955,000
null
UTF-8
Lean
false
false
10,166
lean
/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis Basic facts about the positive natural numbers. Developed primarily for use in the construction of ℝ. For the most part, the only theorems here are those needed for that construction. -/ import data.rat.order data.nat open nat rat namespace pnat inductive pnat : Type := pos : Π n : nat, n > 0 → pnat notation `ℕ+` := pnat definition nat_of_pnat (p : pnat) : ℕ := pnat.rec_on p (λ n H, n) reserve postfix `~`:std.prec.max_plus local postfix ~ := nat_of_pnat theorem nat_of_pnat_pos (p : pnat) : p~ > 0 := pnat.rec_on p (λ n H, H) definition add (p q : pnat) : pnat := pnat.pos (p~ + q~) (nat.add_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) infix `+` := add definition mul (p q : pnat) : pnat := pnat.pos (p~ * q~) (nat.mul_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) infix `*` := mul definition le (p q : pnat) := p~ ≤ q~ infix `≤` := le notation p `≥` q := q ≤ p definition lt (p q : pnat) := p~ < q~ infix `<` := lt protected theorem pnat.eq {p q : ℕ+} : p~ = q~ → p = q := pnat.cases_on p (λ p' Hp, pnat.cases_on q (λ q' Hq, begin rewrite ↑nat_of_pnat, intro H, generalize Hp, generalize Hq, rewrite H, intro Hp Hq, apply rfl end)) definition pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) := pnat.rec_on p (λ n H, pnat.rec_on q (λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl)) definition pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) := pnat.rec_on p (λ n H, pnat.rec_on q (λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl)) theorem le.trans {p q r : pnat} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2 definition max (p q : pnat) := pnat.pos (nat.max (p~) (q~)) (nat.lt_of_lt_of_le (!nat_of_pnat_pos) (!le_max_right)) theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b := have Hnat : nat.max a~ b~ = b~, from nat.max_eq_right' H, pnat.eq Hnat theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a := have Hnat : nat.max a~ b~ = a~, from nat.max_eq_left' H, pnat.eq Hnat theorem le_of_lt {a b : ℕ+} (H : a < b) : a ≤ b := nat.le_of_lt H theorem not_lt_of_ge {a b : ℕ+} (H : a ≤ b) : ¬ (b < a) := nat.not_lt_of_ge H theorem le_of_not_gt {a b : ℕ+} (H : ¬ a < b) : b ≤ a := nat.le_of_not_gt H theorem eq_of_le_of_ge {a b : ℕ+} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := pnat.eq (nat.eq_of_le_of_ge H1 H2) theorem le.refl (a : ℕ+) : a ≤ a := !nat.le.refl notation 2 := pnat.pos 2 dec_trivial notation 3 := pnat.pos 3 dec_trivial definition pone : pnat := pnat.pos 1 dec_trivial definition rat_of_pnat [reducible] (n : ℕ+) : ℚ := pnat.rec_on n (λ n H, of_nat n) theorem pnat.to_rat_of_nat (n : ℕ+) : rat_of_pnat n = of_nat n~ := pnat.rec_on n (λ n H, rfl) -- these will come in rat theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial theorem rat_of_pnat_ge_one (n : ℕ+) : rat_of_pnat n ≥ 1 := pnat.rec_on n (λ m h, (iff.mp' !of_nat_le_of_nat) (succ_le_of_lt h)) theorem rat_of_pnat_is_pos (n : ℕ+) : rat_of_pnat n > 0 := pnat.rec_on n (λ m h, (iff.mp' !of_nat_pos) h) theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n := (iff.mp' !of_nat_le_of_nat) H theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : m < n) : of_nat m < of_nat n := (iff.mp' !of_nat_lt_of_nat) H theorem rat_of_pnat_le_of_pnat_le {m n : ℕ+} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n := begin rewrite *pnat.to_rat_of_nat, apply of_nat_le_of_nat_of_le H end theorem rat_of_pnat_lt_of_pnat_lt {m n : ℕ+} (H : m < n) : rat_of_pnat m < rat_of_pnat n := begin rewrite *pnat.to_rat_of_nat, apply of_nat_lt_of_nat_of_lt H end theorem pnat_le_of_rat_of_pnat_le {m n : ℕ+} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n := begin rewrite *pnat.to_rat_of_nat at H, apply (iff.mp !of_nat_le_of_nat) H end definition inv (n : ℕ+) : ℚ := (1 : ℚ) / rat_of_pnat n postfix `⁻¹` := inv theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := div_pos_of_pos !rat_of_pnat_is_pos theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) := begin rewrite [↑inv, -one_div_one], apply div_le_div_of_le, apply rat.zero_lt_one, apply rat_of_pnat_ge_one end theorem inv_lt_one_of_gt {n : ℕ+} (H : n~ > 1) : n⁻¹ < (1 : ℚ) := begin rewrite [↑inv, -one_div_one], apply div_lt_div_of_lt, apply rat.zero_lt_one, rewrite pnat.to_rat_of_nat, apply (of_nat_lt_of_nat_of_lt H) end theorem pone_inv : pone⁻¹ = 1 := rfl theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ := begin apply rat.le_of_lt, apply rat.add_pos, repeat apply inv_pos end theorem one_mul (n : ℕ+) : pone * n = n := begin apply pnat.eq, rewrite [↑pone, ↑mul, ↑nat_of_pnat, one_mul] end theorem pone_le (n : ℕ+) : pone ≤ n := succ_le_of_lt (nat_of_pnat_pos n) theorem pnat_to_rat_mul (a b : ℕ+) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := by rewrite *pnat.to_rat_of_nat theorem mul_lt_mul_left (a b c : ℕ+) (H : a < b) : a * c < b * c := nat.mul_lt_mul_of_pos_right H !nat_of_pnat_pos theorem inv_two_mul_lt_inv (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ := begin rewrite ↑inv, apply div_lt_div_of_lt, apply rat_of_pnat_is_pos, have H : n~ < (2 * n)~, begin rewrite -one_mul at {1}, apply mul_lt_mul_left, apply dec_trivial end, rewrite *pnat.to_rat_of_nat, apply of_nat_lt_of_nat_of_lt, apply H end theorem inv_two_mul_le_inv (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := rat.le_of_lt !inv_two_mul_lt_inv theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := div_le_div_of_le !rat_of_pnat_is_pos (rat_of_pnat_le_of_pnat_le H) theorem inv_gt_of_lt {p q : ℕ+} (H : p < q) : q⁻¹ < p⁻¹ := div_lt_div_of_lt !rat_of_pnat_is_pos (rat_of_pnat_lt_of_pnat_lt H) theorem ge_of_inv_le {p q : ℕ+} (H : p⁻¹ ≤ q⁻¹) : q ≤ p := pnat_le_of_rat_of_pnat_le (le_of_div_le !rat_of_pnat_is_pos H) theorem two_mul (p : ℕ+) : rat_of_pnat (2 * p) = (1 + 1) * rat_of_pnat p := by rewrite pnat_to_rat_mul theorem add_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := begin rewrite [↑inv, -(@add_halves (1 / (rat_of_pnat p))), *div_div_eq_div_mul'], have H : rat_of_pnat (2 * p) = rat_of_pnat p * (1 + 1), by rewrite [rat.mul.comm, two_mul], rewrite *H end theorem add_halves_double (m n : ℕ+) : m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := have hsimp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), by intros; rewrite [rat.add.assoc, -(rat.add.assoc a b b), {_+b}rat.add.comm, -*rat.add.assoc], by rewrite [-add_halves m, -add_halves n, hsimp] theorem inv_mul_eq_mul_inv {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ := by rewrite [↑inv, pnat_to_rat_mul, one_div_mul_one_div'''] theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ := begin rewrite [inv_mul_eq_mul_inv, -{q⁻¹}rat.one_mul at {2}], apply rat.mul_le_mul, apply inv_le_one, apply rat.le.refl, apply rat.le_of_lt, apply inv_pos, apply rat.le_of_lt rat.zero_lt_one end theorem pnat_mul_le_mul_left' (a b c : ℕ+) (H : a ≤ b) : c * a ≤ c * b := nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !nat_of_pnat_pos) theorem mul.assoc (a b c : ℕ+) : a * b * c = a * (b * c) := pnat.eq !nat.mul.assoc theorem mul.comm (a b : ℕ+) : a * b = b * a := pnat.eq !nat.mul.comm theorem add.assoc (a b c : ℕ+) : a + b + c = a + (b + c) := pnat.eq !nat.add.assoc theorem mul_le_mul_left (p q : ℕ+) : q ≤ p * q := begin rewrite [-one_mul at {1}, mul.comm, mul.comm p], apply pnat_mul_le_mul_left', apply pone_le end theorem mul_le_mul_right (p q : ℕ+) : p ≤ p * q := by rewrite mul.comm; apply mul_le_mul_left theorem one_lt_two : pone < 2 := dec_trivial theorem pnat.lt_of_not_le {p q : ℕ+} (H : ¬ p ≤ q) : q < p := nat.lt_of_not_ge H theorem inv_cancel_left (p : ℕ+) : rat_of_pnat p * p⁻¹ = (1 : ℚ) := mul_one_div_cancel (ne.symm (rat.ne_of_lt !rat_of_pnat_is_pos)) theorem inv_cancel_right (p : ℕ+) : p⁻¹ * rat_of_pnat p = (1 : ℚ) := by rewrite rat.mul.comm; apply inv_cancel_left theorem lt_add_left (p q : ℕ+) : p < p + q := begin have H : p~ < p~ + q~, begin rewrite -nat.add_zero at {1}, apply nat.add_lt_add_left, apply nat_of_pnat_pos end, apply H end theorem inv_add_lt_left (p q : ℕ+) : (p + q)⁻¹ < p⁻¹ := by apply inv_gt_of_lt; apply lt_add_left theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_pnat n := begin apply rat.div_le_of_le_mul, apply rat.lt_of_lt_of_le, apply inv_pos, rotate 1, apply H, apply rat.le_mul_of_div_le, apply rat_of_pnat_is_pos, apply H end theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ := begin have hsimp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, from sorry, -- simp rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul] end definition pceil (a : ℚ) : ℕ+ := pnat.pos (ubound a) !ubound_pos theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a := begin apply rat.le.trans, apply inv_ge_of_le H, apply div_le_div_of_le, apply Ha, apply ubound_ge end theorem inv_pceil_div (a b : ℚ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a := begin rewrite -(@div_div' (b / a)), apply div_le_div_of_le, apply div_pos_of_pos, apply pos_div_of_pos_of_pos Hb Ha, rewrite [(div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha)), rat.one_mul], apply ubound_ge end end pnat
07b1567faf95dc872c7aafb7d8fe164a9120aeec
ce6917c5bacabee346655160b74a307b4a5ab620
/src/ch5/ex0214.lean
6efffa429f7b808b742adfebf9d67e8ef1d2bd91
[]
no_license
Ailrun/Theorem_Proving_in_Lean
ae6a23f3c54d62d401314d6a771e8ff8b4132db2
2eb1b5caf93c6a5a555c79e9097cf2ba5a66cf68
refs/heads/master
1,609,838,270,467
1,586,846,743,000
1,586,846,743,000
240,967,761
1
0
null
null
null
null
UTF-8
Lean
false
false
104
lean
example (x y : ℕ) (h : x = y) : y = x := begin revert h, intro h₁, symmetry, assumption end
6f6cab1f4e2a047ffdef1d8c8162f9a7fbb68fd1
b19a1b7dc79c802247fdce4c04708e070863b4d2
/universal-quantifier.lean
47d4d80f4543de73daa4d6fac4fd82341d4b8545
[]
no_license
utanapishtim/promethazine
99a1e80311fb20251a54ba78a534b23852b88c40
08a6f9bd6dd08feb3df8d4697e19ffc8d333b249
refs/heads/master
1,653,595,504,487
1,480,129,933,000
1,480,129,933,000
74,801,596
0
0
null
null
null
null
UTF-8
Lean
false
false
3,059
lean
/- if A is some type, then a unary predicate p on A can be represented as an object of type A → Prop. In that case, given x : A, 'p x' dentoes the assertion that p holds of x. In a similar manner, an object r : A → A → Prop denotes a binary relation A. Then, if x y : A, 'r x y' denotes the assertion that x is related to y. '∀ x : A, p x' asserts that 'for every x : A, p x holds' ∀ INTRODUCTION: Given a proof p x, in a context where x : A is arbitrary we have a proof ∀ x : A, p x. ∀ ELIMINATION: Given a proof ∀ x : A, p x and any term t : A, we have a proof p t Π INTRODUCTION Given a term t of type B x, in a context where x : A is arbitrary we have (λ x : A, t) : Π x : A, B x Π ELIMINATION: Given a term s : Π x : A, B x and any term t : A, we have s t : B t In ther case where p x has type Prop, if we replace Π x : A, B x with ∀ x : A, p x we can read these as the correct rules for building proofs involving the universal quantifier. -/ section variables (A : Type) (p q : A → Prop) example : (∀ x : A, p x ∧ q x) → ∀ y : A, p y := assume H : ∀ x : A, p x ∧ q x, take y : A, show p y, from and.elim_left (H y) end section variables (A : Type) (r : A → A → Prop) variable trans_r : ∀ x y z, r x y → r y z → r x z variables (a b c : A) variables (Hab : r a b) (Hbc : r b c) check trans_r check trans_r a b c check trans_r a b c Hab check trans_r a b c Hab Hbc end section variables (A : Type) (r : A → A → Prop) variable trans_r : ∀ {x y z}, r x y → r y z → r x z variables (a b c : A) variables (Hab : r a b) (Hbc : r b c) check trans_r check trans_r Hab check trans_r Hab Hbc end section variables (A : Type) (r : A → A → Prop) variable refl_r : ∀ x, r x x variable symm_r : ∀ {x y}, r x y → r y x variable trans_r : ∀ {x y z}, r x y → r y z → r x z example (a b c d : A) (Hab : r a b) (Hcb : r c b) (Hcd : r c d) : rad := trans_r (trans_r Hab (symm_r Hcb)) Hcd end -- prove the following section variables (A : Type) (p q : A → Prop) example : (∀ x, p x ∧ q x) ↔ (∀ x, p x ) ∧ (∀ x, q x) := _ example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := _ example : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x := _ end section variables (A : Type) (p q : A → Prop) variable r : Prop example : A → ((∀ x : A, r) ↔ r) := _ example : (∀ x, p x ∨ r) ↔ (∀ x, p x) ∨ r := _ example : (∀ x, r → p x) ↔ (r → ∀ x, p x) := _ end section variables (men : Type) (barber : men) (shaves: men → men → Prop) example (H : ∀ x : men, shaves barder x ↔ ¬shaves x x) : false := _ end -- Prop is the type of proposition not data, and this makes Prop impredicative -- i.e. any type B that depends on var x : A, and B is type Prop then Π x : A, B -- is of type Prop as well, regardless of what universe A lives in. -- Prop is its own type!!?? Huh???
880db33959d5aa5e89b7f1a7760a7b0f1e7b7f7e
ac92829298855d39b757cf1fddca8f058436f027
/hott/homotopy/circle.hlean
4166fabbd05f559bc80c9cb898fe290065a88eb5
[ "Apache-2.0" ]
permissive
avigad/lean2
7af27190b9697b69a13268a133c1d3c8df85d2cf
34dbd6c3ae612186b8f0f80d12fbf5ae7a059ec9
refs/heads/master
1,592,027,477,851
1,500,732,234,000
1,500,732,234,000
75,484,066
0
0
null
1,480,781,056,000
1,480,781,056,000
null
UTF-8
Lean
false
false
13,760
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the circle -/ import .sphere import types.int.hott import algebra.homotopy_group .connectedness open eq susp bool is_equiv equiv is_trunc is_conn pi algebra pointed definition circle : Type₀ := sphere 1 namespace circle notation `S¹` := circle definition base1 : S¹ := !north definition base2 : S¹ := !south definition seg1 : base1 = base2 := merid ff definition seg2 : base1 = base2 := merid tt definition base : S¹ := base1 definition loop : base = base := seg2 ⬝ seg1⁻¹ definition rec2 {P : S¹ → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) (x : S¹) : P x := begin induction x with b, { exact Pb1 }, { exact Pb2 }, { esimp at *, induction b with y, { exact Ps1 }, { exact Ps2 }}, end definition rec2_on [reducible] {P : S¹ → Type} (x : S¹) (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : P x := circle.rec2 Pb1 Pb2 Ps1 Ps2 x theorem rec2_seg1 {P : S¹ → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := !rec_merid theorem rec2_seg2 {P : S¹ → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := !rec_merid definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : S¹) : P := rec2 Pb1 Pb2 (pathover_of_eq _ Ps1) (pathover_of_eq _ Ps2) x definition elim2_on [reducible] {P : Type} (x : S¹) (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P := elim2 Pb1 Pb2 Ps1 Ps2 x theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg1), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim2,rec2_seg1], end theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg2), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim2,rec2_seg2], end definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : S¹) : Type := elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x definition elim2_type_on [reducible] (x : S¹) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : Type := elim2_type Pb1 Pb2 Ps1 Ps2 x theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn protected definition rec {P : S¹ → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase) (x : S¹) : P x := begin fapply (rec2_on x), { exact Pbase}, { exact (transport P seg1 Pbase)}, { apply pathover_tr}, { apply pathover_tr_of_pathover, exact Ploop} end protected definition rec_on [reducible] {P : S¹ → Type} (x : S¹) (Pbase : P base) (Ploop : Pbase =[loop] Pbase) : P x := circle.rec Pbase Ploop x theorem rec_loop_helper {A : Type} (P : A → Type) {x y z : A} {p : x = y} {p' : z = y} {u : P x} {v : P z} (q : u =[p ⬝ p'⁻¹] v) : pathover_tr_of_pathover q ⬝o !pathover_tr⁻¹ᵒ = q := by cases p'; cases q; exact idp definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p := eq.rec_on p idp theorem rec_loop {P : S¹ → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase) : apd (circle.rec Pbase Ploop) loop = Ploop := begin rewrite [↑loop,apd_con,↑circle.rec,↑circle.rec2_on,↑base,rec2_seg2,apd_inv,rec2_seg1], apply rec_loop_helper end protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) (x : S¹) : P := circle.rec Pbase (pathover_of_eq _ Ploop) x protected definition elim_on [reducible] {P : Type} (x : S¹) (Pbase : P) (Ploop : Pbase = Pbase) : P := circle.elim Pbase Ploop x theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (circle.elim Pbase Ploop) loop = Ploop := begin apply eq_of_fn_eq_fn_inv !(pathover_constant loop), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,rec_loop], end theorem elim_seg1 {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (circle.elim Pbase Ploop) seg1 = (tr_constant seg1 Pbase)⁻¹ := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg1), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,↑circle.rec], rewrite [↑circle.rec2_on,rec2_seg1], apply inverse, apply pathover_of_eq_tr_constant_inv end theorem elim_seg2 {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (circle.elim Pbase Ploop) seg2 = Ploop ⬝ (tr_constant seg1 Pbase)⁻¹ := begin apply eq_of_fn_eq_fn_inv !(pathover_constant seg2), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,↑circle.rec], rewrite [↑circle.rec2_on,rec2_seg2], assert l : Π(A B : Type)(a a₂ a₂' : A)(b b' : B)(p : a = a₂)(p' : a₂' = a₂) (q : b = b'), pathover_tr_of_pathover (pathover_of_eq _ q) = pathover_of_eq _ (q ⬝ (tr_constant p' b')⁻¹) :> b =[p] p' ▸ b', { intros, cases q, cases p', cases p, reflexivity }, apply l end protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase) (x : S¹) : Type := circle.elim Pbase (ua Ploop) x protected definition elim_type_on [reducible] (x : S¹) (Pbase : Type) (Ploop : Pbase ≃ Pbase) : Type := circle.elim_type Pbase Ploop x theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (circle.elim_type Pbase Ploop) loop = Ploop := by rewrite [tr_eq_cast_ap_fn,↑circle.elim_type,elim_loop];apply cast_ua_fn theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (circle.elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop := by rewrite [tr_inv_fn]; apply inv_eq_inv; apply elim_type_loop end circle attribute circle.base1 circle.base2 circle.base [constructor] attribute circle.rec2 circle.elim2 [unfold 6] [recursor 6] attribute circle.elim2_type [unfold 5] attribute circle.rec2_on circle.elim2_on [unfold 2] attribute circle.elim2_type [unfold 1] attribute circle.rec circle.elim [unfold 4] [recursor 4] attribute circle.elim_type [unfold 3] attribute circle.rec_on circle.elim_on [unfold 2] attribute circle.elim_type_on [unfold 1] namespace circle open sigma /- universal property of the circle -/ definition circle_pi_equiv [constructor] (P : S¹ → Type) : (Π(x : S¹), P x) ≃ Σ(p : P base), p =[loop] p := begin fapply equiv.MK, { intro f, exact ⟨f base, apd f loop⟩}, { intro v x, induction v with p q, induction x, { exact p}, { exact q}}, { intro v, induction v with p q, fapply sigma_eq, { reflexivity}, { esimp, apply pathover_idp_of_eq, apply rec_loop}}, { intro f, apply eq_of_homotopy, intro x, induction x, { reflexivity}, { apply eq_pathover_dep, apply hdeg_squareover, esimp, apply rec_loop}} end definition circle_arrow_equiv [constructor] (P : Type) : (S¹ → P) ≃ Σ(p : P), p = p := begin fapply equiv.MK, { intro f, exact ⟨f base, ap f loop⟩}, { intro v x, induction v with p q, induction x, { exact p}, { exact q}}, { intro v, induction v with p q, fapply sigma_eq, { reflexivity}, { esimp, apply pathover_idp_of_eq, apply elim_loop}}, { intro f, apply eq_of_homotopy, intro x, induction x, { reflexivity}, { apply eq_pathover, apply hdeg_square, esimp, apply elim_loop}} end definition pointed_circle [instance] [constructor] : pointed S¹ := pointed.mk base definition pcircle [constructor] : Type* := pointed.mk' S¹ notation `S¹*` := pcircle definition loop_neq_idp : loop ≠ idp := assume H : loop = idp, have H2 : Π{A : Type₁} {a : A} {p : a = a}, p = idp, from λA a p, calc p = ap (circle.elim a p) loop : elim_loop ... = ap (circle.elim a p) (refl base) : by rewrite H, eq_bnot_ne_idp H2 definition circle_turn [reducible] (x : S¹) : x = x := begin induction x, { exact loop }, { apply eq_pathover, apply square_of_eq, rewrite ap_id } end definition turn_neq_idp : circle_turn ≠ (λx, idp) := assume H : circle_turn = λx, idp, have H2 : loop = idp, from apd10 H base, absurd H2 loop_neq_idp open int protected definition code [unfold 1] (x : S¹) : Type₀ := circle.elim_type_on x ℤ equiv_succ definition transport_code_loop (a : ℤ) : transport circle.code loop a = succ a := ap10 !elim_type_loop a definition transport_code_loop_inv (a : ℤ) : transport circle.code loop⁻¹ a = pred a := ap10 !elim_type_loop_inv a protected definition encode [unfold 2] {x : S¹} (p : base = x) : circle.code x := transport circle.code p (0 : ℤ) protected definition decode [unfold 1] {x : S¹} : circle.code x → base = x := begin induction x, { exact power loop}, { apply arrow_pathover_left, intro b, apply eq_pathover_constant_left_id_right, apply square_of_eq, rewrite [idp_con, power_con,transport_code_loop]} end definition circle_eq_equiv [constructor] (x : S¹) : (base = x) ≃ circle.code x := begin fapply equiv.MK, { exact circle.encode}, { exact circle.decode}, { exact abstract [irreducible] begin induction x, { intro a, esimp, apply rec_nat_on a, { exact idp}, { intros n p, rewrite [↑circle.encode, -power_con, con_tr, transport_code_loop], exact ap succ p}, { intros n p, rewrite [↑circle.encode, nat_succ_eq_int_succ, neg_succ, -power_con_inv, @con_tr _ circle.code, transport_code_loop_inv, ↑[circle.encode] at p, p, -neg_succ] }}, { apply pathover_of_tr_eq, apply eq_of_homotopy, intro a, apply @is_set.elim, esimp, exact _} end end}, { intro p, cases p, exact idp}, end definition base_eq_base_equiv [constructor] : base = base ≃ ℤ := circle_eq_equiv base definition decode_add (a b : ℤ) : circle.decode (a +[ℤ] b) = circle.decode a ⬝ circle.decode b := !power_con_power⁻¹ definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p +[ℤ] circle.encode q := preserve_binary_of_inv_preserve base_eq_base_equiv concat (@add ℤ _) decode_add p q --the carrier of π₁(S¹) is the set-truncation of base = base. open algebra trunc group definition fg_carrier_equiv_int : π[1](S¹*) ≃ ℤ := trunc_equiv_trunc 0 base_eq_base_equiv ⬝e @(trunc_equiv 0 ℤ) proof _ qed definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p := eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm]) definition fundamental_group_of_circle : π₁(S¹*) ≃g gℤ := begin apply (isomorphism_of_equiv fg_carrier_equiv_int), intros g h, induction g with g', induction h with h', apply encode_con, end open nat definition homotopy_group_of_circle (n : ℕ) : πg[n+2] S¹* ≃g G0 := begin refine @trivial_homotopy_add_of_is_set_loopn S¹* 1 n _, apply is_trunc_equiv_closed_rev, apply base_eq_base_equiv end definition eq_equiv_Z (x : S¹) : x = x ≃ ℤ := begin induction x, { apply base_eq_base_equiv}, { apply equiv_pathover, intro p p' q, apply pathover_of_eq, note H := eq_of_square (square_of_pathover q), rewrite con_comm_base at H, note H' := cancel_left _ H, induction H', reflexivity} end proposition is_trunc_circle [instance] : is_trunc 1 S¹ := begin apply is_trunc_succ_of_is_trunc_loop, { apply trunc_index.minus_one_le_succ}, { intro x, apply is_trunc_equiv_closed_rev, apply eq_equiv_Z} end proposition is_conn_circle [instance] : is_conn 0 S¹ := sphere.is_conn_sphere 1 definition is_conn_pcircle [instance] : is_conn 0 S¹* := !is_conn_circle definition is_trunc_pcircle [instance] : is_trunc 1 S¹* := !is_trunc_circle definition circle_mul [reducible] (x y : S¹) : S¹ := circle.elim y (circle_turn y) x definition circle_mul_base (x : S¹) : circle_mul x base = x := begin induction x, { reflexivity }, { apply eq_pathover_id_right, apply hdeg_square, apply elim_loop } end definition circle_base_mul [reducible] (x : S¹) : circle_mul base x = x := idp /- Suppose for `f, g : A -> B` we prove a homotopy `H : f ~ g` by induction on the element in `A`. And suppose `p : a = a'` is a path constructor in `A`. Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal to the square which defined H on the path constructor -/ definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base) (q : square p p (ap f loop) (ap g loop)) : natural_square (circle.rec p (eq_pathover q)) loop = q := begin refine ap square_of_pathover !rec_loop ⬝ _, exact to_right_inv !eq_pathover_equiv_square q end definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) : circle.elim a p x = a := begin induction x, { reflexivity }, { apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r } end end circle
8b84399186d2157aaf713856e418eb153f7ecc27
acc85b4be2c618b11fc7cb3005521ae6858a8d07
/data/set/function.lean
5db407f06867d19eb4253564fa5bb2b3a6ea8c1d
[ "Apache-2.0" ]
permissive
linpingchuan/mathlib
d49990b236574df2a45d9919ba43c923f693d341
5ad8020f67eb13896a41cc7691d072c9331b1f76
refs/heads/master
1,626,019,377,808
1,508,048,784,000
1,508,048,784,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,216
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Andrew Zipperer, Haitao Zhang, Minchao Wu Functions over sets. -/ import data.set.basic open function namespace set universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} /- maps to -/ @[reducible] def maps_to (f : α → β) (a : set α) (b : set β) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b theorem maps_to_of_eq_on {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : eq_on f1 f2 a) (h₂ : maps_to f1 a b) : maps_to f2 a b := λ x h, by rw [← h₁ _ h]; exact h₂ h theorem maps_to_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} {c : set γ} (h₁ : maps_to g b c) (h₂ : maps_to f a b) : maps_to (g ∘ f) a c := λ x h, h₁ (h₂ h) theorem maps_to_univ_univ (f : α → β) : maps_to f univ univ := λ x h, trivial theorem image_subset_of_maps_to_of_subset {f : α → β} {a c : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : c ⊆ a) : f '' c ⊆ b := λ y hy, let ⟨x, hx, heq⟩ := hy in by rw [←heq]; apply h₁; apply h₂; assumption theorem image_subset_of_maps_to {f : α → β} {a : set α} {b : set β} (h : maps_to f a b) : f '' a ⊆ b := image_subset_of_maps_to_of_subset h (subset.refl _) /- injectivity -/ @[reducible] def inj_on (f : α → β) (a : set α) : Prop := ∀⦃x1 x2 : α⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2 theorem inj_on_empty (f : α → β) : inj_on f ∅ := λ _ _ h₁ _ _, false.elim h₁ theorem inj_on_of_eq_on {f1 f2 : α → β} {a : set α} (h₁ : eq_on f1 f2 a) (h₂ : inj_on f1 a) : inj_on f2 a := λ _ _ h₁' h₂' heq, by apply h₂ h₁' h₂'; rw [h₁, heq, ←h₁]; repeat {assumption} theorem inj_on_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : inj_on g b) (h₃: inj_on f a) : inj_on (g ∘ f) a := λ _ _ h₁' h₂' heq, by apply h₃ h₁' h₂'; apply h₂; repeat {apply h₁, assumption}; assumption theorem inj_on_of_inj_on_of_subset {f : α → β} {a b : set α} (h₁ : inj_on f b) (h₂ : a ⊆ b) : inj_on f a := λ _ _ h₁' h₂' heq, h₁ (h₂ h₁') (h₂ h₂') heq lemma injective_iff_inj_on_univ {f : α → β} : injective f ↔ inj_on f univ := iff.intro (λ h _ _ _ _ heq, h heq) (λ h _ _ heq, h trivial trivial heq) /- surjectivity -/ @[reducible] def surj_on (f : α → β) (a : set α) (b : set β) : Prop := b ⊆ f '' a theorem surj_on_of_eq_on {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : eq_on f1 f2 a) (h₂ : surj_on f1 a b) : surj_on f2 a b := λ _ h, let ⟨x, hx⟩ := h₂ h in ⟨x, hx.left, by rw [←h₁ _ hx.left]; exact hx.right⟩ theorem surj_on_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} {c : set γ} (h₁ : surj_on g b c) (h₂ : surj_on f a b) : surj_on (g ∘ f) a c := λ z h, let ⟨y, hy⟩ := h₁ h, ⟨x, hx⟩ := h₂ hy.left in ⟨x, hx.left, calc g (f x) = g y : by rw [hx.right] ... = z : hy.right⟩ lemma surjective_iff_surj_on_univ {f : α → β} : surjective f ↔ surj_on f univ univ := by simp [surjective, surj_on, subset_def] lemma image_eq_of_maps_to_of_surj_on {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : surj_on f a b) : f '' a = b := eq_of_subset_of_subset (image_subset_of_maps_to h₁) h₂ /- bijectivity -/ @[reducible] def bij_on (f : α → β) (a : set α) (b : set β) : Prop := maps_to f a b ∧ inj_on f a ∧ surj_on f a b lemma maps_to_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : maps_to f a b := h.left lemma inj_on_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : inj_on f a := h.right.left lemma surj_on_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : surj_on f a b := h.right.right lemma bij_on.mk {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : inj_on f a) (h₃ : surj_on f a b) : bij_on f a b := ⟨h₁, h₂, h₃⟩ theorem bij_on_of_eq_on {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : eq_on f1 f2 a) (h₂ : bij_on f1 a b) : bij_on f2 a b := let ⟨map, inj, surj⟩ := h₂ in ⟨maps_to_of_eq_on h₁ map, inj_on_of_eq_on h₁ inj, surj_on_of_eq_on h₁ surj⟩ lemma image_eq_of_bij_on {f : α → β} {a : set α} {b : set β} (h : bij_on f a b) : f '' a = b := image_eq_of_maps_to_of_surj_on h.left h.right.right theorem bij_on_comp {g : β → γ} {f : α → β} {a : set α} {b : set β} {c : set γ} (h₁ : bij_on g b c) (h₂: bij_on f a b) : bij_on (g ∘ f) a c := let ⟨gmap, ginj, gsurj⟩ := h₁, ⟨fmap, finj, fsurj⟩ := h₂ in ⟨maps_to_comp gmap fmap, inj_on_comp fmap ginj finj, surj_on_comp gsurj fsurj⟩ lemma bijective_iff_bij_on_univ {f : α → β} : bijective f ↔ bij_on f univ univ := iff.intro (λ h, let ⟨inj, surj⟩ := h in ⟨maps_to_univ_univ f, iff.mp injective_iff_inj_on_univ inj, iff.mp surjective_iff_surj_on_univ surj⟩) (λ h, let ⟨map, inj, surj⟩ := h in ⟨iff.mpr injective_iff_inj_on_univ inj, iff.mpr surjective_iff_surj_on_univ surj⟩) /- left inverse -/ -- g is a left inverse to f on a @[reducible] def left_inv_on (g : β → α) (f : α → β) (a : set α) : Prop := ∀ x ∈ a, g (f x) = x theorem left_inv_on_of_eq_on_left {g1 g2 : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : eq_on g1 g2 b) (h₃ : left_inv_on g1 f a) : left_inv_on g2 f a := λ x h, calc g2 (f x) = g1 (f x) : eq.symm $ h₂ _ (h₁ h) ... = x : h₃ _ h theorem left_inv_on_of_eq_on_right {g : β → α} {f1 f2 : α → β} {a : set α} (h₁ : eq_on f1 f2 a) (h₂ : left_inv_on g f1 a) : left_inv_on g f2 a := λ x h, calc g (f2 x) = g (f1 x) : congr_arg g (h₁ _ h).symm ... = x : h₂ _ h theorem inj_on_of_left_inv_on {g : β → α} {f : α → β} {a : set α} (h : left_inv_on g f a) : inj_on f a := λ x₁ x₂ h₁ h₂ heq, calc x₁ = g (f x₁) : eq.symm $ h _ h₁ ... = g (f x₂) : congr_arg g heq ... = x₂ : h _ h₂ theorem left_inv_on_comp {f' : β → α} {g' : γ → β} {g : β → γ} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : left_inv_on f' f a) (h₃ : left_inv_on g' g b) : left_inv_on (f' ∘ g') (g ∘ f) a := λ x h, calc (f' ∘ g') ((g ∘ f) x) = f' (f x) : congr_arg f' (h₃ _ (h₁ h)) ... = x : h₂ _ h /- right inverse -/ -- g is a right inverse to f on a @[reducible] def right_inv_on (g : β → α) (f : α → β) (b : set β) : Prop := left_inv_on f g b theorem right_inv_on_of_eq_on_left {g1 g2 : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : eq_on g1 g2 b) (h₂ : right_inv_on g1 f b) : right_inv_on g2 f b := left_inv_on_of_eq_on_right h₁ h₂ theorem right_inv_on_of_eq_on_right {g : β → α} {f1 f2 : α → β} {a : set α} {b : set β} (h₁ : maps_to g b a) (h₂ : eq_on f1 f2 a) (h₃ : right_inv_on g f1 b) : right_inv_on g f2 b := left_inv_on_of_eq_on_left h₁ h₂ h₃ theorem surj_on_of_right_inv_on {g : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to g b a) (h₂ : right_inv_on g f b) : surj_on f a b := λ y h, ⟨g y, h₁ h, h₂ _ h⟩ theorem right_inv_on_comp {f' : β → α} {g' : γ → β} {g : β → γ} {f : α → β} {c : set γ} {b : set β} (g'cb : maps_to g' c b) (h₁ : right_inv_on f' f b) (h₂ : right_inv_on g' g c) : right_inv_on (f' ∘ g') (g ∘ f) c := left_inv_on_comp g'cb h₂ h₁ theorem right_inv_on_of_inj_on_of_left_inv_on {f : α → β} {g : β → α} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : maps_to g b a) (h₃ : inj_on f a) (h₄ : left_inv_on f g b) : right_inv_on f g a := λ x h, h₃ (h₂ $ h₁ h) h (h₄ _ (h₁ h)) theorem eq_on_of_left_inv_of_right_inv {g₁ g₂ : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to g₂ b a) (h₂ : left_inv_on g₁ f a) (h₃ : right_inv_on g₂ f b) : eq_on g₁ g₂ b := λ y h, calc g₁ y = (g₁ ∘ f ∘ g₂) y : congr_arg g₁ (h₃ _ h).symm ... = g₂ y : h₂ _ (h₁ h) theorem left_inv_on_of_surj_on_right_inv_on {f : α → β} {g : β → α} {a : set α} {b : set β} (h₁ : surj_on f a b) (h₂ : right_inv_on f g a) : left_inv_on f g b := λ y h, let ⟨x, hx, heq⟩ := h₁ h in calc (f ∘ g) y = (f ∘ g ∘ f) x : congr_arg (f ∘ g) heq.symm ... = f x : congr_arg f (h₂ _ hx) ... = y : heq /- inverses -/ -- g is an inverse to f viewed as a map from a to b @[reducible] def inv_on (g : β → α) (f : α → β) (a : set α) (b : set β) : Prop := left_inv_on g f a ∧ right_inv_on g f b theorem bij_on_of_inv_on {g : β → α} {f : α → β} {a : set α} {b : set β} (h₁ : maps_to f a b) (h₂ : maps_to g b a) (h₃ : inv_on g f a b) : bij_on f a b := ⟨h₁, inj_on_of_left_inv_on h₃.left, surj_on_of_right_inv_on h₂ h₃.right⟩ end set
0289ba403155f3eed5411ebeb18c88eda395f95d
e030b0259b777fedcdf73dd966f3f1556d392178
/library/data/stream.lean
d2fac509c72edb491e79d2ff093d1703e3464df5
[ "Apache-2.0" ]
permissive
fgdorais/lean
17b46a095b70b21fa0790ce74876658dc5faca06
c3b7c54d7cca7aaa25328f0a5660b6b75fe26055
refs/heads/master
1,611,523,590,686
1,484,412,902,000
1,484,412,902,000
38,489,734
0
0
null
1,435,923,380,000
1,435,923,379,000
null
UTF-8
Lean
false
false
21,352
lean
/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ open nat function option universe variables u v w def stream (α : Type u) := nat → α namespace stream variables {α : Type u} {β : Type v} {δ : Type w} def cons (a : α) (s : stream α) : stream α := λ i, match i with | 0 := a | succ n := s n end notation h :: t := cons h t @[reducible] def head (s : stream α) : α := s 0 def tail (s : stream α) : stream α := λ i, s (i+1) def drop (n : nat) (s : stream α) : stream α := λ i, s (i+n) @[reducible] def nth (n : nat) (s : stream α) : α := s n protected lemma eta (s : stream α) : head s :: tail s = s := funext (λ i, begin cases i, repeat {reflexivity} end) lemma nth_zero_cons (a : α) (s : stream α) : nth 0 (a :: s) = a := rfl lemma head_cons (a : α) (s : stream α) : head (a :: s) = a := rfl lemma tail_cons (a : α) (s : stream α) : tail (a :: s) = s := rfl lemma tail_drop (n : nat) (s : stream α) : tail (drop n s) = drop n (tail s) := funext (λ i, begin unfold tail drop, simp end) lemma nth_drop (n m : nat) (s : stream α) : nth n (drop m s) = nth (n+m) s := rfl lemma tail_eq_drop (s : stream α) : tail s = drop 1 s := rfl lemma drop_drop (n m : nat) (s : stream α) : drop n (drop m s) = drop (n+m) s := funext (λ i, begin unfold drop, rw add_assoc end) lemma nth_succ (n : nat) (s : stream α) : nth (succ n) s = nth n (tail s) := rfl lemma drop_succ (n : nat) (s : stream α) : drop (succ n) s = drop n (tail s) := rfl protected lemma ext {s₁ s₂ : stream α} : (∀ n, nth n s₁ = nth n s₂) → s₁ = s₂ := assume h, funext h def all (p : α → Prop) (s : stream α) := ∀ n, p (nth n s) def any (p : α → Prop) (s : stream α) := ∃ n, p (nth n s) lemma all_def (p : α → Prop) (s : stream α) : all p s = ∀ n, p (nth n s) := rfl lemma any_def (p : α → Prop) (s : stream α) : any p s = ∃ n, p (nth n s) := rfl protected def mem (a : α) (s : stream α) := any (λ b, a = b) s instance : has_mem α stream := ⟨stream.mem⟩ lemma mem_cons (a : α) (s : stream α) : a ∈ (a::s) := exists.intro 0 rfl lemma mem_cons_of_mem {a : α} {s : stream α} (b : α) : a ∈ s → a ∈ b :: s := assume ⟨n, h⟩, exists.intro (succ n) (by rw [nth_succ, tail_cons, h]) lemma eq_or_mem_of_mem_cons {a b : α} {s : stream α} : a ∈ b::s → a = b ∨ a ∈ s := assume ⟨n, h⟩, begin cases n with n', {left, exact h}, {right, rw [nth_succ, tail_cons] at h, exact ⟨n', h⟩} end lemma mem_of_nth_eq {n : nat} {s : stream α} {a : α} : a = nth n s → a ∈ s := assume h, exists.intro n h section map variable (f : α → β) def map (s : stream α) : stream β := λ n, f (nth n s) lemma drop_map (n : nat) (s : stream α) : drop n (map f s) = map f (drop n s) := stream.ext (λ i, rfl) lemma nth_map (n : nat) (s : stream α) : nth n (map f s) = f (nth n s) := rfl lemma tail_map (s : stream α) : tail (map f s) = map f (tail s) := begin rw tail_eq_drop, reflexivity end lemma head_map (s : stream α) : head (map f s) = f (head s) := rfl lemma map_eq (s : stream α) : map f s = f (head s) :: map f (tail s) := by rw [-stream.eta (map f s), tail_map, head_map] lemma map_cons (a : α) (s : stream α) : map f (a :: s) = f a :: map f s := begin rw [-stream.eta (map f (a :: s)), map_eq], reflexivity end lemma map_id (s : stream α) : map id s = s := rfl lemma map_map (g : β → δ) (f : α → β) (s : stream α) : map g (map f s) = map (g ∘ f) s := rfl lemma mem_map {a : α} {s : stream α} : a ∈ s → f a ∈ map f s := assume ⟨n, h⟩, exists.intro n (by rw [nth_map, h]) end map section zip variable (f : α → β → δ) def zip (s₁ : stream α) (s₂ : stream β) : stream δ := λ n, f (nth n s₁) (nth n s₂) lemma drop_zip (n : nat) (s₁ : stream α) (s₂ : stream β) : drop n (zip f s₁ s₂) = zip f (drop n s₁) (drop n s₂) := stream.ext (λ i, rfl) lemma nth_zip (n : nat) (s₁ : stream α) (s₂ : stream β) : nth n (zip f s₁ s₂) = f (nth n s₁) (nth n s₂) := rfl lemma head_zip (s₁ : stream α) (s₂ : stream β) : head (zip f s₁ s₂) = f (head s₁) (head s₂) := rfl lemma tail_zip (s₁ : stream α) (s₂ : stream β) : tail (zip f s₁ s₂) = zip f (tail s₁) (tail s₂) := rfl lemma zip_eq (s₁ : stream α) (s₂ : stream β) : zip f s₁ s₂ = f (head s₁) (head s₂) :: zip f (tail s₁) (tail s₂) := begin rw [-stream.eta (zip f s₁ s₂)], reflexivity end end zip def const (a : α) : stream α := λ n, a lemma mem_const (a : α) : a ∈ const a := exists.intro 0 rfl lemma const_eq (a : α) : const a = a :: const a := begin apply stream.ext, intro n, cases n, repeat {reflexivity} end lemma tail_const (a : α) : tail (const a) = const a := suffices tail (a :: const a) = const a, by rwa -const_eq at this, rfl lemma map_const (f : α → β) (a : α) : map f (const a) = const (f a) := rfl lemma nth_const (n : nat) (a : α) : nth n (const a) = a := rfl lemma drop_const (n : nat) (a : α) : drop n (const a) = const a := stream.ext (λ i, rfl) def iterate (f : α → α) (a : α) : stream α := λ n, nat.rec_on n a (λ n r, f r) lemma head_iterate (f : α → α) (a : α) : head (iterate f a) = a := rfl lemma tail_iterate (f : α → α) (a : α) : tail (iterate f a) = iterate f (f a) := begin apply funext, intro n, induction n with n' ih, {reflexivity}, {unfold tail iterate, unfold tail iterate at ih, rw add_one_eq_succ at ih, dsimp at ih, rw add_one_eq_succ, dsimp, rw ih} end lemma iterate_eq (f : α → α) (a : α) : iterate f a = a :: iterate f (f a) := begin rw [-stream.eta (iterate f a)], rw tail_iterate, reflexivity end lemma nth_zero_iterate (f : α → α) (a : α) : nth 0 (iterate f a) = a := rfl lemma nth_succ_iterate (n : nat) (f : α → α) (a : α) : nth (succ n) (iterate f a) = nth n (iterate f (f a)) := by rw [nth_succ, tail_iterate] section bisim variable (R : stream α → stream α → Prop) local infix ~ := R def is_bisimulation := ∀ ⦃s₁ s₂⦄, s₁ ~ s₂ → head s₁ = head s₂ ∧ tail s₁ ~ tail s₂ lemma nth_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂} n, s₁ ~ s₂ → nth n s₁ = nth n s₂ ∧ drop (n+1) s₁ ~ drop (n+1) s₂ | s₁ s₂ 0 h := bisim h | s₁ s₂ (n+1) h := match bisim h with | ⟨h₁, trel⟩ := nth_of_bisim n trel end -- If two streams are bisimilar, then they are equal lemma eq_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ := λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim R bisim n r)) end bisim lemma bisim_simple (s₁ s₂ : stream α) : head s₁ = head s₂ → s₁ = tail s₁ → s₂ = tail s₂ → s₁ = s₂ := assume hh ht₁ ht₂, eq_of_bisim (λ s₁ s₂, head s₁ = head s₂ ∧ s₁ = tail s₁ ∧ s₂ = tail s₂) (λ s₁ s₂ ⟨h₁, h₂, h₃⟩, begin constructor, exact h₁, rw [-h₂, -h₃], repeat {constructor, repeat {assumption}} end) (and.intro hh (and.intro ht₁ ht₂)) lemma coinduction {s₁ s₂ : stream α} : head s₁ = head s₂ → (∀ (β : Type u) (fr : stream α → β), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) → s₁ = s₂ := assume hh ht, eq_of_bisim (λ s₁ s₂, head s₁ = head s₂ ∧ ∀ (β : Type u) (fr : stream α → β), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) (λ s₁ s₂ h, have h₁ : head s₁ = head s₂, from and.elim_left h, have h₂ : head (tail s₁) = head (tail s₂), from and.elim_right h α (@head α) h₁, have h₃ : ∀ (β : Type u) (fr : stream α → β), fr (tail s₁) = fr (tail s₂) → fr (tail (tail s₁)) = fr (tail (tail s₂)), from λ β fr, and.elim_right h β (λ s, fr (tail s)), and.intro h₁ (and.intro h₂ h₃)) (and.intro hh ht) lemma iterate_id (a : α) : iterate id a = const a := coinduction rfl (λ β fr ch, begin rw [tail_iterate, tail_const], exact ch end) local attribute [reducible] stream lemma map_iterate (f : α → α) (a : α) : iterate f (f a) = map f (iterate f a) := begin apply funext, intro n, induction n with n' ih, {reflexivity}, { unfold map iterate nth, dsimp, unfold map iterate nth at ih, dsimp at ih, rw ih } end section corec def corec (f : α → β) (g : α → α) : α → stream β := λ a, map f (iterate g a) def corec_on (a : α) (f : α → β) (g : α → α) : stream β := corec f g a lemma corec_def (f : α → β) (g : α → α) (a : α) : corec f g a = map f (iterate g a) := rfl lemma corec_eq (f : α → β) (g : α → α) (a : α) : corec f g a = f a :: corec f g (g a) := begin rw [corec_def, map_eq, head_iterate, tail_iterate], reflexivity end lemma corec_id_id_eq_const (a : α) : corec id id a = const a := by rw [corec_def, map_id, iterate_id] lemma corec_id_f_eq_iterate (f : α → α) (a : α) : corec id f a = iterate f a := rfl end corec -- corec is also known as unfold def unfolds (g : α → β) (f : α → α) (a : α) : stream β := corec g f a lemma unfolds_eq (g : α → β) (f : α → α) (a : α) : unfolds g f a = g a :: unfolds g f (f a) := begin unfold unfolds, rw [corec_eq] end lemma nth_unfolds_head_tail : ∀ (n : nat) (s : stream α), nth n (unfolds head tail s) = nth n s := begin intro n, induction n with n' ih, {intro s, reflexivity}, {intro s, rw [nth_succ, nth_succ, unfolds_eq, tail_cons, ih]} end lemma unfolds_head_eq : ∀ (s : stream α), unfolds head tail s = s := λ s, stream.ext (λ n, nth_unfolds_head_tail n s) def interleave (s₁ s₂ : stream α) : stream α := corec_on (s₁, s₂) (λ ⟨s₁, s₂⟩, head s₁) (λ ⟨s₁, s₂⟩, (s₂, tail s₁)) infix `⋈`:65 := interleave lemma interleave_eq (s₁ s₂ : stream α) : s₁ ⋈ s₂ = head s₁ :: head s₂ :: (tail s₁ ⋈ tail s₂) := begin unfold interleave corec_on, rw corec_eq, dsimp, rw corec_eq, reflexivity end lemma tail_interleave (s₁ s₂ : stream α) : tail (s₁ ⋈ s₂) = s₂ ⋈ (tail s₁) := begin unfold interleave corec_on, rw corec_eq, reflexivity end lemma interleave_tail_tail (s₁ s₂ : stream α) : tail s₁ ⋈ tail s₂ = tail (tail (s₁ ⋈ s₂)) := begin rw [interleave_eq s₁ s₂], reflexivity end lemma nth_interleave_left : ∀ (n : nat) (s₁ s₂ : stream α), nth (2*n) (s₁ ⋈ s₂) = nth n s₁ | 0 s₁ s₂ := rfl | (succ n) s₁ s₂ := begin change nth (succ (succ (2*n))) (s₁ ⋈ s₂) = nth (succ n) s₁, rw [nth_succ, nth_succ, interleave_eq, tail_cons, tail_cons, nth_interleave_left], reflexivity end lemma nth_interleave_right : ∀ (n : nat) (s₁ s₂ : stream α), nth (2*n+1) (s₁ ⋈ s₂) = nth n s₂ | 0 s₁ s₂ := rfl | (succ n) s₁ s₂ := begin change nth (succ (succ (2*n+1))) (s₁ ⋈ s₂) = nth (succ n) s₂, rw [nth_succ, nth_succ, interleave_eq, tail_cons, tail_cons, nth_interleave_right], reflexivity end lemma mem_interleave_left {a : α} {s₁ : stream α} (s₂ : stream α) : a ∈ s₁ → a ∈ s₁ ⋈ s₂ := assume ⟨n, h⟩, exists.intro (2*n) (by rw [h, nth_interleave_left]) lemma mem_interleave_right {a : α} {s₁ : stream α} (s₂ : stream α) : a ∈ s₂ → a ∈ s₁ ⋈ s₂ := assume ⟨n, h⟩, exists.intro (2*n+1) (by rw [h, nth_interleave_right]) def even (s : stream α) : stream α := corec (λ s, head s) (λ s, tail (tail s)) s def odd (s : stream α) : stream α := even (tail s) lemma odd_eq (s : stream α) : odd s = even (tail s) := rfl lemma head_even (s : stream α) : head (even s) = head s := rfl lemma tail_even (s : stream α) : tail (even s) = even (tail (tail s)) := begin unfold even, rw corec_eq, reflexivity end lemma even_cons_cons (a₁ a₂ : α) (s : stream α) : even (a₁ :: a₂ :: s) = a₁ :: even s := begin unfold even, rw corec_eq, reflexivity end lemma even_tail (s : stream α) : even (tail s) = odd s := rfl lemma even_interleave (s₁ s₂ : stream α) : even (s₁ ⋈ s₂) = s₁ := eq_of_bisim (λ s₁' s₁, ∃ s₂, s₁' = even (s₁ ⋈ s₂)) (λ s₁' s₁ ⟨s₂, h₁⟩, begin rw h₁, constructor, {reflexivity}, {exact ⟨tail s₂, by rw [interleave_eq, even_cons_cons, tail_cons]⟩} end) (exists.intro s₂ rfl) lemma interleave_even_odd (s₁ : stream α) : even s₁ ⋈ odd s₁ = s₁ := eq_of_bisim (λ s' s, s' = even s ⋈ odd s) (λ s' s (h : s' = even s ⋈ odd s), begin rw h, constructor, {reflexivity}, {dsimp, rw [odd_eq, odd_eq, tail_interleave, tail_even]} end) rfl lemma nth_even : ∀ (n : nat) (s : stream α), nth n (even s) = nth (2*n) s | 0 s := rfl | (succ n) s := begin change nth (succ n) (even s) = nth (succ (succ (2 * n))) s, rw [nth_succ, nth_succ, tail_even, nth_even], reflexivity end lemma nth_odd : ∀ (n : nat) (s : stream α), nth n (odd s) = nth (2*n + 1) s := λ n s, begin rw [odd_eq, nth_even], reflexivity end lemma mem_of_mem_even (a : α) (s : stream α) : a ∈ even s → a ∈ s := assume ⟨n, h⟩, exists.intro (2*n) (by rw [h, nth_even]) lemma mem_of_mem_odd (a : α) (s : stream α) : a ∈ odd s → a ∈ s := assume ⟨n, h⟩, exists.intro (2*n+1) (by rw [h, nth_odd]) def append_stream : list α → stream α → stream α | [] s := s | (list.cons a l) s := a :: append_stream l s lemma nil_append_stream (s : stream α) : append_stream [] s = s := rfl lemma cons_append_stream (a : α) (l : list α) (s : stream α) : append_stream (a::l) s = a :: append_stream l s := rfl infix `++ₛ`:65 := append_stream lemma append_append_stream : ∀ (l₁ l₂ : list α) (s : stream α), (l₁ ++ l₂) ++ₛ s = l₁ ++ₛ (l₂ ++ₛ s) | [] l₂ s := rfl | (list.cons a l₁) l₂ s := by rw [list.cons_append, cons_append_stream, cons_append_stream, append_append_stream] lemma map_append_stream (f : α → β) : ∀ (l : list α) (s : stream α), map f (l ++ₛ s) = list.map f l ++ₛ map f s | [] s := rfl | (list.cons a l) s := by rw [cons_append_stream, list.map_cons, map_cons, cons_append_stream, map_append_stream] lemma drop_append_stream : ∀ (l : list α) (s : stream α), drop l^.length (l ++ₛ s) = s | [] s := by reflexivity | (list.cons a l) s := by rw [list.length_cons, add_one_eq_succ, drop_succ, cons_append_stream, tail_cons, drop_append_stream] lemma append_stream_head_tail (s : stream α) : [head s] ++ₛ tail s = s := by rw [cons_append_stream, nil_append_stream, stream.eta] lemma mem_append_stream_right : ∀ {a : α} (l : list α) {s : stream α}, a ∈ s → a ∈ l ++ₛ s | a [] s h := h | a (list.cons b l) s h := have ih : a ∈ l ++ₛ s, from mem_append_stream_right l h, mem_cons_of_mem _ ih lemma mem_append_stream_left : ∀ {a : α} {l : list α} (s : stream α), a ∈ l → a ∈ l ++ₛ s | a [] s h := absurd h (list.not_mem_nil _) | a (list.cons b l) s h := or.elim (list.eq_or_mem_of_mem_cons h) (λ (aeqb : a = b), exists.intro 0 aeqb) (λ (ainl : a ∈ l), mem_cons_of_mem b (mem_append_stream_left s ainl)) def approx : nat → stream α → list α | 0 s := [] | (n+1) s := list.cons (head s) (approx n (tail s)) lemma approx_zero (s : stream α) : approx 0 s = [] := rfl lemma approx_succ (n : nat) (s : stream α) : approx (succ n) s = head s :: approx n (tail s) := rfl lemma nth_approx : ∀ (n : nat) (s : stream α), list.nth (approx (succ n) s) n = some (nth n s) | 0 s := rfl | (n+1) s := begin rw [approx_succ, add_one_eq_succ, list.nth_succ, nth_approx], reflexivity end lemma append_approx_drop : ∀ (n : nat) (s : stream α), append_stream (approx n s) (drop n s) = s := begin intro n, induction n with n' ih, {intro s, reflexivity}, {intro s, rw [approx_succ, drop_succ, cons_append_stream, ih (tail s), stream.eta]} end -- Take lemma reduces a proof of equality of infinite streams to an -- induction over all their finite approximations. lemma take_lemma (s₁ s₂ : stream α) : (∀ (n : nat), approx n s₁ = approx n s₂) → s₁ = s₂ := begin intro h, apply stream.ext, intro n, induction n with n ih, {note aux := h 1, unfold approx at aux, injection aux with aux, exact aux}, {assert h₁ : some (nth (succ n) s₁) = some (nth (succ n) s₂), {rw [-nth_approx, -nth_approx, h (succ (succ n))]}, injection h₁, assumption} end -- auxiliary def for cycle corecursive def private def cycle_f : α × list α × α × list α → α | (v, _, _, _) := v -- auxiliary def for cycle corecursive def private def cycle_g : α × list α × α × list α → α × list α × α × list α | (v₁, [], v₀, l₀) := (v₀, l₀, v₀, l₀) | (v₁, list.cons v₂ l₂, v₀, l₀) := (v₂, l₂, v₀, l₀) private lemma cycle_g_cons (a : α) (a₁ : α) (l₁ : list α) (a₀ : α) (l₀ : list α) : cycle_g (a, a₁::l₁, a₀, l₀) = (a₁, l₁, a₀, l₀) := rfl def cycle : Π (l : list α), l ≠ [] → stream α | [] h := absurd rfl h | (list.cons a l) h := corec cycle_f cycle_g (a, l, a, l) lemma cycle_eq : ∀ (l : list α) (h : l ≠ []), cycle l h = l ++ₛ cycle l h | [] h := absurd rfl h | (list.cons a l) h := have gen : ∀ l' a', corec cycle_f cycle_g (a', l', a, l) = (a' :: l') ++ₛ corec cycle_f cycle_g (a, l, a, l), begin intro l', induction l' with a₁ l₁ ih, {intros, rw [corec_eq], reflexivity}, {intros, rw [corec_eq, cycle_g_cons, ih a₁], reflexivity} end, gen l a lemma mem_cycle {a : α} {l : list α} : ∀ (h : l ≠ []), a ∈ l → a ∈ cycle l h := assume h ainl, begin rw [cycle_eq], exact mem_append_stream_left _ ainl end lemma cycle_singleton (a : α) (h : [a] ≠ []) : cycle [a] h = const a := coinduction rfl (λ β fr ch, by rwa [cycle_eq, const_eq]) def tails (s : stream α) : stream (stream α) := corec id tail (tail s) lemma tails_eq (s : stream α) : tails s = tail s :: tails (tail s) := begin unfold tails, rw [corec_eq] end lemma nth_tails : ∀ (n : nat) (s : stream α), nth n (tails s) = drop n (tail s) := begin intro n, induction n with n' ih, {intros, reflexivity}, {intro s, rw [nth_succ, drop_succ, tails_eq, tail_cons, ih]} end lemma tails_eq_iterate (s : stream α) : tails s = iterate tail (tail s) := rfl def inits_core (l : list α) (s : stream α) : stream (list α) := corec_on (l, s) (λ ⟨a, b⟩, a) (λ p, match p with (l', s') := (l' ++ [head s'], tail s') end) def inits (s : stream α) : stream (list α) := inits_core [head s] (tail s) lemma inits_core_eq (l : list α) (s : stream α) : inits_core l s = l :: inits_core (l ++ [head s]) (tail s) := begin unfold inits_core corec_on, rw [corec_eq], reflexivity end lemma tail_inits (s : stream α) : tail (inits s) = inits_core [head s, head (tail s)] (tail (tail s)) := begin unfold inits, rw inits_core_eq, reflexivity end lemma inits_tail (s : stream α) : inits (tail s) = inits_core [head (tail s)] (tail (tail s)) := rfl lemma cons_nth_inits_core : ∀ (a : α) (n : nat) (l : list α) (s : stream α), a :: nth n (inits_core l s) = nth n (inits_core (a::l) s) := begin intros a n, induction n with n' ih, {intros, reflexivity}, {intros l s, rw [nth_succ, inits_core_eq, tail_cons, ih, inits_core_eq (a::l) s], reflexivity } end lemma nth_inits : ∀ (n : nat) (s : stream α), nth n (inits s) = approx (succ n) s := begin intro n, induction n with n' ih, {intros, reflexivity}, {intros, rw [nth_succ, approx_succ, -ih, tail_inits, inits_tail, cons_nth_inits_core]} end lemma inits_eq (s : stream α) : inits s = [head s] :: map (list.cons (head s)) (inits (tail s)) := begin apply stream.ext, intro n, cases n, {reflexivity}, {rw [nth_inits, nth_succ, tail_cons, nth_map, nth_inits], reflexivity} end lemma zip_inits_tails (s : stream α) : zip append_stream (inits s) (tails s) = const s := begin apply stream.ext, intro n, rw [nth_zip, nth_inits, nth_tails, nth_const, approx_succ, cons_append_stream, append_approx_drop, stream.eta] end def pure (a : α) : stream α := const a def apply (f : stream (α → β)) (s : stream α) : stream β := λ n, (nth n f) (nth n s) infix `⊛`:75 := apply -- input as \o* lemma identity (s : stream α) : pure id ⊛ s = s := rfl lemma composition (g : stream (β → δ)) (f : stream (α → β)) (s : stream α) : pure comp ⊛ g ⊛ f ⊛ s = g ⊛ (f ⊛ s) := rfl lemma homomorphism (f : α → β) (a : α) : pure f ⊛ pure a = pure (f a) := rfl lemma interchange (fs : stream (α → β)) (a : α) : fs ⊛ pure a = pure (λ f : α → β, f a) ⊛ fs := rfl lemma map_eq_apply (f : α → β) (s : stream α) : map f s = pure f ⊛ s := rfl def nats : stream nat := λ n, n lemma nth_nats (n : nat) : nth n nats = n := rfl lemma nats_eq : nats = 0 :: map succ nats := begin apply stream.ext, intro n, cases n, reflexivity, rw [nth_succ], reflexivity end end stream
6e32dd1b4970e501fd906da656383da0473b2da2
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/fieldIssue.lean
5ae180ba7c0481310362c8e2d1c34f03fef33110
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
306
lean
structure SCore (α : Type) := (x : α) (y : Nat) inductive M | leaf : Nat → M | node : SCore M → M abbrev S := SCore M /- We use `s : S` for convenience here -/ def SCore.doubleY (s : S) : Nat := 2 * s.y def f (s : S) : Nat := s.doubleY def g : M → Nat | M.leaf n => n | M.node s => s.doubleY
9a1067d2f404b7fd6b84bd54bd38acd4a9ec30f2
3dc4623269159d02a444fe898d33e8c7e7e9461b
/.github/workflows/project_1_a_decrire/group_action/action_groupe_to_groupoid.lean
744a7ca4ddabfb63054f72aed26d63a668ea5c26
[]
no_license
Or7ando/lean
cc003e6c41048eae7c34aa6bada51c9e9add9e66
d41169cf4e416a0d42092fb6bdc14131cee9dd15
refs/heads/master
1,650,600,589,722
1,587,262,906,000
1,587,262,906,000
255,387,160
0
0
null
null
null
null
UTF-8
Lean
false
false
2,108
lean
import group_theory.group_action import algebra.group import category_theory.category.Groupoid /-- ## Let G be a group and X a G-set (i.e a set with an G action), we make the so called 'action groupoid' ## This is a category with obj : X and for x y ∈ X, hom(x,y) = Transporteur (x,y) := { g ∈ G | g • x = y} ## The composition is given by the group law. -/ def Transporteur (G : Type )[group G](X : Type )[mul_action G X] (x y : X) : set G := { g : G | g • x = y} lemma mem_transporteur (G : Type )[group G](X : Type )[mul_action G X] (x y : X)(g : G) : (g ∈ Transporteur G X x y) ↔ g • x = y := begin split, intro, cases a, exact rfl, ---------- Grrrrouhhhhhhhhh : how to simplify intro, cases a, exact rfl, end section Transposteur parameters (G : Type )[group G](X : Type )[mul_action G X] def one_in_transporteur : ∀ x y : X, (1 : G) ∈ (Transporteur G X x y) ↔ (x = y) := begin intros x y, rw mem_transporteur (G) (X) (x) (y) (1), split, intro, cases a, exact eq.symm (one_smul G x ), intro, cases a, exact one_smul G x, end lemma transporteur_comp (x y z : X) : (Transporteur G X x y) → (Transporteur G X y z ) → (Transporteur G X x z) := λ ⟨g,proof_g⟩ ⟨h, proof_h⟩, begin have H : (h * g) • x = z, rw mul_smul, rw mem_transporteur at proof_g, rw proof_g, rw mem_transporteur at proof_h, rw proof_h, use (h * g), exact H, end lemma transporteur_inv (x y : X) : (Transporteur G X x y) → (Transporteur G X y x) := λ ⟨g,proof_g⟩, begin rw mem_transporteur at proof_g, have H : x = g⁻¹ • y, rw ← proof_g, rw ← mul_smul, rw inv_mul_self, rw one_smul, use g⁻¹, exact eq.symm H, end end Transposteur open category_theory section variables (G : Type )[group G](X : Type)[mul_action G X] end
0ba24d6df55789c19ef8f1850fd8afd65fbfcd13
8e2026ac8a0660b5a490dfb895599fb445bb77a0
/tests/lean/interactive/complete.lean
9b818104959d37aaffb3c7960cf1216e8fe16860
[ "Apache-2.0" ]
permissive
pcmoritz/lean
6a8575115a724af933678d829b4f791a0cb55beb
35eba0107e4cc8a52778259bb5392300267bfc29
refs/heads/master
1,607,896,326,092
1,490,752,175,000
1,490,752,175,000
86,612,290
0
0
null
1,490,809,641,000
1,490,809,641,000
null
UTF-8
Lean
false
false
353
lean
prelude inductive foo example := foo --^ "command": "complete" -- should not complete empty declaration completion example := foo --^ "command": "complete" @[reducible] --^ "command": "complete", "skip_completions": true example := foo set_option trace.simplify true --^ "command": "complete", "skip_completions": true
7957a3daf0f8dc391f4f5832f128cd9e96cddbc1
74caf7451c921a8d5ab9c6e2b828c9d0a35aae95
/library/init/meta/rewrite_tactic.lean
adc8f53ce76b23841fecca8e69dd9d0f9f0f9634
[ "Apache-2.0" ]
permissive
sakas--/lean
f37b6fad4fd4206f2891b89f0f8135f57921fc3f
570d9052820be1d6442a5cc58ece37397f8a9e4c
refs/heads/master
1,586,127,145,194
1,480,960,018,000
1,480,960,635,000
40,137,176
0
0
null
1,438,621,351,000
1,438,621,351,000
null
UTF-8
Lean
false
false
855
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.relation_tactics init.meta.occurrences namespace tactic /- (rewrite_core m use_instances occs symm H) -/ meta constant rewrite_core : transparency → bool → occurrences → bool → expr → tactic unit meta constant rewrite_at_core : transparency → bool → occurrences → bool → expr → expr → tactic unit meta def rewrite (th_name : name) : tactic unit := do th ← mk_const th_name, rewrite_core reducible tt occurrences.all ff th, try reflexivity meta def rewrite_at (th_name : name) (H_name : name) : tactic unit := do th ← mk_const th_name, H ← get_local H_name, rewrite_at_core reducible tt occurrences.all ff th H end tactic
116f54c0fb7afa3560fed4cf39bda44fd6f58aeb
b328e8ebb2ba923140e5137c83f09fa59516b793
/src/Init/Notation.lean
a0f95e5b61fc14a99937f22ab588a2d549affec0
[ "Apache-2.0" ]
permissive
DrMaxis/lean4
a781bcc095511687c56ab060e816fd948553e162
5a02c4facc0658aad627cfdcc3db203eac0cb544
refs/heads/master
1,677,051,517,055
1,611,876,226,000
1,611,876,226,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
11,454
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Notation for operators defined at Prelude.lean -/ prelude import Init.Prelude -- DSL for specifying parser precedences and priorities namespace Lean.Parser.Syntax syntax:65 (name := addPrec) prec " + " prec:66 : prec syntax:65 (name := subPrec) prec " - " prec:66 : prec syntax:65 (name := addPrio) prio " + " prio:66 : prio syntax:65 (name := subPrio) prio " - " prio:66 : prio end Lean.Parser.Syntax macro "max" : prec => `(1024) -- maximum precedence used in term parsers macro "lead" : prec => `(1023) macro "(" p:prec ")" : prec => p macro "min" : prec => `(10) -- minimum precedence used in term parsers macro "min1" : prec => `(11) -- `(min+1) we can only `min+1` after `Meta.lean` /- `max:prec` as a term. It is equivalent to `evalPrec! max` for `evalPrec!` defined at `Meta.lean`. We use `maxPrec!` to workaround bootstrapping issues. -/ macro "maxPrec!" : term => `(1024) macro "default" : prio => `(1000) macro "low" : prio => `(100) macro "mid" : prio => `(1000) macro "high" : prio => `(10000) macro "(" p:prio ")" : prio => p -- Basic notation for defining parsers syntax stx "+" : stx syntax stx "*" : stx syntax stx "?" : stx syntax:2 stx " <|> " stx:1 : stx macro_rules | `(stx| $p +) => `(stx| many1($p)) | `(stx| $p *) => `(stx| many($p)) | `(stx| $p ?) => `(stx| optional($p)) | `(stx| $p₁ <|> $p₂) => `(stx| orelse($p₁, $p₂)) /- Comma-separated sequence. -/ macro:max x:stx ",*" : stx => `(stx| sepBy($x, ",", ", ")) macro:max x:stx ",+" : stx => `(stx| sepBy1($x, ",", ", ")) /- Comma-separated sequence with optional trailing comma. -/ macro:max x:stx ",*,?" : stx => `(stx| sepBy($x, ",", ", ", allowTrailingSep)) macro:max x:stx ",+,?" : stx => `(stx| sepBy1($x, ",", ", ", allowTrailingSep)) macro "!" x:stx : stx => `(stx| notFollowedBy($x)) syntax (name := rawNatLit) "natLit! " num : term infixr:90 " ∘ " => Function.comp infixr:35 " × " => Prod infixl:65 " + " => HAdd.hAdd infixl:65 " - " => HSub.hSub infixl:70 " * " => HMul.hMul infixl:70 " / " => HDiv.hDiv infixl:70 " % " => HMod.hMod infixr:80 " ^ " => HPow.hPow prefix:100 "-" => Neg.neg -- declare ASCII alternatives first so that the latter Unicode unexpander wins infix:50 " <= " => HasLessEq.LessEq infix:50 " ≤ " => HasLessEq.LessEq infix:50 " < " => HasLess.Less infix:50 " >= " => GreaterEq infix:50 " ≥ " => GreaterEq infix:50 " > " => Greater infix:50 " = " => Eq infix:50 " == " => BEq.beq infix:50 " ~= " => HEq infix:50 " ≅ " => HEq /- Remark: the infix commands above ensure a delaborator is generated for each relations. We redefine the macros below to be able to use the auxiliary `binrel!` elaboration helper for binary relations. It has better support for applying coercions. For example, suppose we have `binrel! Eq n i` where `n : Nat` and `i : Int`. The default elaborator fails because we don't have a coercion from `Int` to `Nat`, but `binrel!` succeeds because it also tries a coercion from `Nat` to `Int` even when the nat occurs before the int. -/ macro_rules | `($x <= $y) => `(binrel! HasLessEq.LessEq $x $y) macro_rules | `($x ≤ $y) => `(binrel! HasLessEq.LessEq $x $y) macro_rules | `($x < $y) => `(binrel! HasLess.Less $x $y) macro_rules | `($x > $y) => `(binrel! Greater $x $y) macro_rules | `($x >= $y) => `(binrel! GreaterEq $x $y) macro_rules | `($x ≥ $y) => `(binrel! GreaterEq $x $y) macro_rules | `($x = $y) => `(binrel! Eq $x $y) macro_rules | `($x == $y) => `(binrel! BEq.beq $x $y) infixr:35 " /\\ " => And infixr:35 " ∧ " => And infixr:30 " \\/ " => Or infixr:30 " ∨ " => Or notation:max "¬" p:40 => Not p infixl:35 " && " => and infixl:30 " || " => or notation:max "!" b:40 => not b infixl:65 " ++ " => HAppend.hAppend infixr:67 " :: " => List.cons infixr:20 " <|> " => HOrElse.hOrElse infixr:60 " >> " => HAndThen.hAndThen infixl:55 " >>= " => Bind.bind infixl:60 " <*> " => Seq.seq infixl:60 " <* " => SeqLeft.seqLeft infixr:60 " *> " => SeqRight.seqRight infixr:100 " <$> " => Functor.map syntax (name := termDepIfThenElse) ppGroup(ppDedent("if " ident " : " term " then" ppSpace term ppDedent(ppSpace "else") ppSpace term)) : term macro_rules | `(if $h:ident : $c then $t:term else $e:term) => `(dite $c (fun $h:ident => $t) (fun $h:ident => $e)) syntax (name := termIfThenElse) ppGroup(ppDedent("if " term " then" ppSpace term ppDedent(ppSpace "else") ppSpace term)) : term macro_rules | `(if $c then $t:term else $e:term) => `(ite $c $t $e) macro "if " "let " pat:term " := " d:term " then " t:term " else " e:term : term => `(match $d:term with | $pat:term => $t | _ => $e) syntax:min term "<|" term:min : term macro_rules | `($f $args* <| $a) => let args := args.push a; `($f $args*) | `($f <| $a) => `($f $a) syntax:min term "|>" term:min1 : term macro_rules | `($a |> $f $args*) => let args := args.push a; `($f $args*) | `($a |> $f) => `($f $a) -- Haskell-like pipe <| -- Note that we have a whitespace after `$` to avoid an ambiguity with the antiquotations. syntax:min term atomic("$" ws) term:min : term macro_rules | `($f $args* $ $a) => let args := args.push a; `($f $args*) | `($f $ $a) => `($f $a) syntax "{ " ident (" : " term)? " // " term " }" : term macro_rules | `({ $x : $type // $p }) => `(Subtype (fun ($x:ident : $type) => $p)) | `({ $x // $p }) => `(Subtype (fun ($x:ident : _) => $p)) /- `withoutExpected! t` instructs Lean to elaborate `t` without an expected type. Recall that terms such as `match ... with ...` and `⟨...⟩` will postpone elaboration until expected type is known. So, `withoutExpected!` is not effective in this case. -/ macro "withoutExpectedType! " x:term : term => `(let aux := $x; aux) syntax "[" term,* "]" : term syntax "%[" term,* "|" term "]" : term -- auxiliary notation for creating big list literals namespace Lean macro_rules | `([ $elems,* ]) => do let rec expandListLit (i : Nat) (skip : Bool) (result : Syntax) : MacroM Syntax := do match i, skip with | 0, _ => pure result | i+1, true => expandListLit i false result | i+1, false => expandListLit i true (← `(List.cons $(elems.elemsAndSeps[i]) $result)) if elems.elemsAndSeps.size < 64 then expandListLit elems.elemsAndSeps.size false (← `(List.nil)) else `(%[ $elems,* | List.nil ]) namespace Parser.Tactic syntax (name := intro) "intro " notFollowedBy("|") (colGt term:max)* : tactic syntax (name := intros) "intros " (colGt (ident <|> "_"))* : tactic syntax (name := revert) "revert " (colGt ident)+ : tactic syntax (name := clear) "clear " (colGt ident)+ : tactic syntax (name := subst) "subst " (colGt ident)+ : tactic syntax (name := assumption) "assumption" : tactic syntax (name := apply) "apply " term : tactic syntax (name := exact) "exact " term : tactic syntax (name := refine) "refine " term : tactic syntax (name := refine!) "refine! " term : tactic syntax (name := case) "case " ident " => " tacticSeq : tactic syntax (name := allGoals) "allGoals " tacticSeq : tactic syntax (name := focus) "focus " tacticSeq : tactic syntax (name := skip) "skip" : tactic syntax (name := done) "done" : tactic syntax (name := traceState) "traceState" : tactic syntax (name := failIfSuccess) "failIfSuccess " tacticSeq : tactic syntax (name := generalize) "generalize " atomic(ident " : ")? term:51 " = " ident : tactic syntax (name := paren) "(" tacticSeq ")" : tactic syntax (name := withReducible) "withReducible " tacticSeq : tactic syntax (name := withReducibleAndInstances) "withReducibleAndInstances " tacticSeq : tactic syntax (name := first) "first " "|"? sepBy1(tacticSeq, "|") : tactic macro "try " t:tacticSeq : tactic => `(first $t | skip) macro:1 x:tactic " <;> " y:tactic:0 : tactic => `(tactic| focus ($x:tactic; allGoals $y:tactic)) macro "rfl" : tactic => `(exact rfl) macro "decide!" : tactic => `(exact decide!) macro "admit" : tactic => `(exact sorry) syntax locationWildcard := "*" syntax locationTarget := "⊢" <|> "|-" syntax locationHyp := (colGt ident)+ syntax location := withPosition("at " locationWildcard <|> locationTarget <|> locationHyp) syntax (name := change) "change " term (location)? : tactic syntax (name := changeWith) "change " term " with " term (location)? : tactic syntax rwRule := ("←" <|> "<-")? term syntax rwRuleSeq := "[" rwRule,+,? "]" syntax (name := rewrite) "rewrite " rwRule (location)? : tactic syntax (name := rewriteSeq) (priority := high) "rewrite " rwRuleSeq (location)? : tactic syntax (name := erewrite) "erewrite " rwRule (location)? : tactic syntax (name := erewriteSeq) (priority := high) "erewrite " rwRuleSeq (location)? : tactic syntax (name := rw) "rw " rwRule (location)? : tactic syntax (name := rwSeq) (priority := high) "rw " rwRuleSeq (location)? : tactic syntax (name := erw) "erw " rwRule (location)? : tactic syntax (name := erwSeq) (priority := high) "erw " rwRuleSeq (location)? : tactic private def withCheapRefl (tac : Syntax) : MacroM Syntax := `(tactic| $tac; try (withReducible rfl)) @[macro rw] def expandRw : Macro := fun stx => withCheapRefl (stx.setKind `Lean.Parser.Tactic.rewrite |>.setArg 0 (mkAtomFrom stx "rewrite")) @[macro rwSeq] def expandRwSeq : Macro := fun stx => withCheapRefl (stx.setKind `Lean.Parser.Tactic.rewriteSeq |>.setArg 0 (mkAtomFrom stx "rewrite")) @[macro erw] def expandERw : Macro := fun stx => withCheapRefl (stx.setKind `Lean.Parser.Tactic.erewrite |>.setArg 0 (mkAtomFrom stx "erewrite")) @[macro erwSeq] def expandERwSeq : Macro := fun stx => withCheapRefl (stx.setKind `Lean.Parser.Tactic.erewriteSeq |>.setArg 0 (mkAtomFrom stx "erewrite")) syntax (name := injection) "injection " term (" with " (colGt (ident <|> "_"))+)? : tactic syntax simpPre := "↓" syntax simpPost := "↑" syntax simpLemma := (simpPre <|> simpPost)? term syntax (name := simp) "simp " ("[" simpLemma,* "]")? (colGt term)? (location)? : tactic syntax (name := «have») "have " haveDecl : tactic syntax (name := «suffices») "suffices " sufficesDecl : tactic syntax (name := «show») "show " term : tactic syntax (name := «let») "let " letDecl : tactic syntax (name := «let!») "let! " letDecl : tactic syntax (name := letrec) withPosition(atomic(group("let " &"rec ")) letRecDecls) : tactic syntax inductionAlt := "| " (ident <|> "_") (ident <|> "_")* " => " (hole <|> syntheticHole <|> tacticSeq) syntax inductionAlts := "with " withPosition( (colGe inductionAlt)+) syntax (name := induction) "induction " term,+ (" using " ident)? ("generalizing " ident+)? (inductionAlts)? : tactic syntax casesTarget := atomic(ident " : ")? term syntax (name := cases) "cases " casesTarget,+ (" using " ident)? (inductionAlts)? : tactic syntax (name := existsIntro) "exists " term : tactic /- We use a priority > default, to avoid ambiguity with the builtin `have` notation -/ macro (priority := high) "have" x:ident " := " p:term : tactic => `(have $x:ident : _ := $p) syntax "repeat " tacticSeq : tactic macro_rules | `(tactic| repeat $seq) => `(tactic| first ($seq); repeat $seq | skip) end Tactic namespace Attr -- simp attribute syntax syntax (name := simp) "simp" (Tactic.simpPre <|> Tactic.simpPost)? (prio)? : attr end Attr end Parser end Lean
cd1a80f7562c7d344f3716dea75f1b0fed894934
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/analysis/normed/group/completion.lean
4c98a50f46158ffac49d04551375e6c3b504fb9e
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
1,341
lean
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import analysis.normed.group.basic import topology.algebra.group_completion import topology.metric_space.completion /-! # Completion of a normed group In this file we prove that the completion of a (semi)normed group is a normed group. ## Tags normed group, completion -/ noncomputable theory namespace uniform_space namespace completion variables (E : Type*) instance [uniform_space E] [has_norm E] : has_norm (completion E) := { norm := completion.extension has_norm.norm } @[simp] lemma norm_coe {E} [semi_normed_group E] (x : E) : ∥(x : completion E)∥ = ∥x∥ := completion.extension_coe uniform_continuous_norm x instance [semi_normed_group E] : normed_group (completion E) := { dist_eq := begin intros x y, apply completion.induction_on₂ x y; clear x y, { refine is_closed_eq (completion.uniform_continuous_extension₂ _).continuous _, exact continuous.comp completion.continuous_extension continuous_sub }, { intros x y, rw [← completion.coe_sub, norm_coe, metric.completion.dist_eq, dist_eq_norm] } end, .. uniform_space.completion.add_comm_group, .. metric.completion.metric_space } end completion end uniform_space