id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
160
b683eae30eca-9
Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property max_context_size: int¶ Get max context size for this model. model Config¶ Bases: object Configuration for this pydantic object. allow_population_by_field_name = True¶ Examples using PromptLayerOpenAI¶ PromptLayer PromptLayer OpenAI
https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAI.html
f60cbfa038f1-0
langchain.llms.bananadev.Banana¶ class langchain.llms.bananadev.Banana(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, model_key: str = '', model_kwargs: Dict[str, Any] = None, banana_api_key: Optional[str] = None)[source]¶ Bases: LLM Banana large language models. To use, you should have the banana-dev python package installed, and the environment variable BANANA_API_KEY set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example from langchain.llms import Banana banana = Banana(model_key="") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param banana_api_key: Optional[str] = None¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_key: str = ''¶ model endpoint to use param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
f60cbfa038f1-1
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value,
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
f60cbfa038f1-2
need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
f60cbfa038f1-3
Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
f60cbfa038f1-4
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
f60cbfa038f1-5
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
f60cbfa038f1-6
Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
f60cbfa038f1-7
eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic config. extra = 'forbid'¶ Examples using Banana¶ Banana
https://api.python.langchain.com/en/latest/llms/langchain.llms.bananadev.Banana.html
322e64c3bdda-0
langchain.llms.databricks.get_repl_context¶ langchain.llms.databricks.get_repl_context() → Any[source]¶ Gets the notebook REPL context if running inside a Databricks notebook. Returns None otherwise.
https://api.python.langchain.com/en/latest/llms/langchain.llms.databricks.get_repl_context.html
33229d270385-0
langchain.llms.azureml_endpoint.AzureMLEndpointClient¶ class langchain.llms.azureml_endpoint.AzureMLEndpointClient(endpoint_url: str, endpoint_api_key: str, deployment_name: str = '')[source]¶ Bases: object AzureML Managed Endpoint client. Initialize the class. Methods __init__(endpoint_url, endpoint_api_key[, ...]) Initialize the class. call(body, **kwargs) call. call(body: bytes, **kwargs: Any) → bytes[source]¶ call. Examples using AzureMLEndpointClient¶ AzureML Online Endpoint
https://api.python.langchain.com/en/latest/llms/langchain.llms.azureml_endpoint.AzureMLEndpointClient.html
5dea13ff1d77-0
langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference¶ class langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, max_new_tokens: int = 512, top_k: Optional[int] = None, top_p: Optional[float] = 0.95, typical_p: Optional[float] = 0.95, temperature: float = 0.8, repetition_penalty: Optional[float] = None, truncate: Optional[int] = None, stop_sequences: List[str] = None, seed: Optional[int] = None, inference_server_url: str = '', timeout: int = 120, server_kwargs: Dict[str, Any] = None, streaming: bool = False, client: Any = None, async_client: Any = None)[source]¶ Bases: LLM HuggingFace text generation API. It generates text from a given prompt. Attributes: - max_new_tokens: The maximum number of tokens to generate. - top_k: The number of top-k tokens to consider when generating text. - top_p: The cumulative probability threshold for generating text. - typical_p: The typical probability threshold for generating text. - temperature: The temperature to use when generating text. - repetition_penalty: The repetition penalty to use when generating text. - truncate: truncate inputs tokens to the given size - stop_sequences: A list of stop sequences to use when generating text. - seed: The seed to use when generating text.
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-1
- seed: The seed to use when generating text. - inference_server_url: The URL of the inference server to use. - timeout: The timeout value in seconds to use while connecting to inference server. - server_kwargs: The keyword arguments to pass to the inference server. - client: The client object used to communicate with the inference server. - async_client: The async client object used to communicate with the server. Methods: - _call: Generates text based on a given prompt and stop sequences. - _acall: Async generates text based on a given prompt and stop sequences. - _llm_type: Returns the type of LLM. - _default_params: Returns the default parameters for calling text generation inference API. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param async_client: Any = None¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param client: Any = None¶ param inference_server_url: str = ''¶ param max_new_tokens: int = 512¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param repetition_penalty: Optional[float] = None¶ param seed: Optional[int] = None¶ param server_kwargs: Dict[str, Any] [Optional]¶ param stop_sequences: List[str] [Optional]¶ param streaming: bool = False¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.8¶ param timeout: int = 120¶ param top_k: Optional[int] = None¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-2
param timeout: int = 120¶ param top_k: Optional[int] = None¶ param top_p: Optional[float] = 0.95¶ param truncate: Optional[int] = None¶ param typical_p: Optional[float] = 0.95¶ param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-3
Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-4
**kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-5
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-6
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-7
Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
5dea13ff1d77-8
eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶ Examples using HuggingFaceTextGenInference¶ Huggingface TextGen Inference
https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html
7ed6cf3515b2-0
langchain.llms.octoai_endpoint.OctoAIEndpoint¶ class langchain.llms.octoai_endpoint.OctoAIEndpoint(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, endpoint_url: Optional[str] = None, model_kwargs: Optional[dict] = None, octoai_api_token: Optional[str] = None)[source]¶ Bases: LLM OctoAI LLM Endpoints. OctoAIEndpoint is a class to interact with OctoAICompute Service large language model endpoints. To use, you should have the octoai python package installed, and the environment variable OCTOAI_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Example from langchain.llms.octoai_endpoint import OctoAIEndpoint OctoAIEndpoint( octoai_api_token="octoai-api-key", endpoint_url="https://mpt-7b-demo-kk0powt97tmb.octoai.cloud/generate", model_kwargs={ "max_new_tokens": 200, "temperature": 0.75, "top_p": 0.95, "repetition_penalty": 1, "seed": None, "stop": [], }, ) Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
7ed6cf3515b2-1
param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param endpoint_url: Optional[str] = None¶ Endpoint URL to use. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Optional[dict] = None¶ Key word arguments to pass to the model. param octoai_api_token: Optional[str] = None¶ OCTOAI API Token param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
7ed6cf3515b2-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
7ed6cf3515b2-3
Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
7ed6cf3515b2-4
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
7ed6cf3515b2-5
**kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
7ed6cf3515b2-6
first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
7ed6cf3515b2-7
Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶ Examples using OctoAIEndpoint¶ OctoAI Compute Service
https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html
0ea3a6a6fbce-0
langchain.llms.base.LLM¶ class langchain.llms.base.LLM(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None)[source]¶ Bases: BaseLLM Base LLM abstract class. The purpose of this class is to expose a simpler interface for working with LLMs, rather than expect the user to implement the full _generate method. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None¶ param callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.base.LLM.html
0ea3a6a6fbce-1
Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
https://api.python.langchain.com/en/latest/llms/langchain.llms.base.LLM.html
0ea3a6a6fbce-2
text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/llms/langchain.llms.base.LLM.html
0ea3a6a6fbce-3
first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls,
https://api.python.langchain.com/en/latest/llms/langchain.llms.base.LLM.html
0ea3a6a6fbce-4
API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text.
https://api.python.langchain.com/en/latest/llms/langchain.llms.base.LLM.html
0ea3a6a6fbce-5
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python
https://api.python.langchain.com/en/latest/llms/langchain.llms.base.LLM.html
0ea3a6a6fbce-6
Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ Examples using LLM¶ Custom LLM
https://api.python.langchain.com/en/latest/llms/langchain.llms.base.LLM.html
ad0a5fb03991-0
langchain.llms.vertexai.is_codey_model¶ langchain.llms.vertexai.is_codey_model(model_name: str) → bool[source]¶ Returns True if the model name is a Codey model. Parameters model_name – The model name to check. Returns: True if the model name is a Codey model.
https://api.python.langchain.com/en/latest/llms/langchain.llms.vertexai.is_codey_model.html
933a3541a41c-0
langchain.llms.bedrock.Bedrock¶ class langchain.llms.bedrock.Bedrock(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, client: Any = None, region_name: Optional[str] = None, credentials_profile_name: Optional[str] = None, model_id: str, model_kwargs: Optional[Dict] = None, endpoint_url: Optional[str] = None)[source]¶ Bases: LLM Bedrock models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param credentials_profile_name: Optional[str] = None¶ The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
933a3541a41c-1
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html param endpoint_url: Optional[str] = None¶ Needed if you don’t want to default to us-east-1 endpoint param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_id: str [Required]¶ Id of the model to call, e.g., amazon.titan-tg1-large, this is equivalent to the modelId property in the list-foundation-models api param model_kwargs: Optional[Dict] = None¶ Key word arguments to pass to the model. param region_name: Optional[str] = None¶ The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
933a3541a41c-2
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
933a3541a41c-3
to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
933a3541a41c-4
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
933a3541a41c-5
text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction.
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
933a3541a41c-6
Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
933a3541a41c-7
This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that AWS credentials to and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶ Examples using Bedrock¶ Bedrock
https://api.python.langchain.com/en/latest/llms/langchain.llms.bedrock.Bedrock.html
777624a8f0e0-0
langchain.llms.llamacpp.LlamaCpp¶ class langchain.llms.llamacpp.LlamaCpp(*, cache: Optional[bool] = None, verbose: bool = True, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, client: Any = None, model_path: str, lora_base: Optional[str] = None, lora_path: Optional[str] = None, n_ctx: int = 512, n_parts: int = - 1, seed: int = - 1, f16_kv: bool = True, logits_all: bool = False, vocab_only: bool = False, use_mlock: bool = False, n_threads: Optional[int] = None, n_batch: Optional[int] = 8, n_gpu_layers: Optional[int] = None, suffix: Optional[str] = None, max_tokens: Optional[int] = 256, temperature: Optional[float] = 0.8, top_p: Optional[float] = 0.95, logprobs: Optional[int] = None, echo: Optional[bool] = False, stop: Optional[List[str]] = [], repeat_penalty: Optional[float] = 1.1, top_k: Optional[int] = 40, last_n_tokens_size: Optional[int] = 64, use_mmap: Optional[bool] = True, rope_freq_scale: float = 1.0, rope_freq_base: float = 10000.0, streaming: bool = True)[source]¶ Bases: LLM llama.cpp model. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor.
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-1
path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="/path/to/llama/model") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param echo: Optional[bool] = False¶ Whether to echo the prompt. param f16_kv: bool = True¶ Use half-precision for key/value cache. param last_n_tokens_size: Optional[int] = 64¶ The number of tokens to look back when applying the repeat_penalty. param logits_all: bool = False¶ Return logits for all tokens, not just the last token. param logprobs: Optional[int] = None¶ The number of logprobs to return. If None, no logprobs are returned. param lora_base: Optional[str] = None¶ The path to the Llama LoRA base model. param lora_path: Optional[str] = None¶ The path to the Llama LoRA. If None, no LoRa is loaded. param max_tokens: Optional[int] = 256¶ The maximum number of tokens to generate. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_path: str [Required]¶ The path to the Llama model file. param n_batch: Optional[int] = 8¶ Number of tokens to process in parallel. Should be a number between 1 and n_ctx.
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-2
Should be a number between 1 and n_ctx. param n_ctx: int = 512¶ Token context window. param n_gpu_layers: Optional[int] = None¶ Number of layers to be loaded into gpu memory. Default None. param n_parts: int = -1¶ Number of parts to split the model into. If -1, the number of parts is automatically determined. param n_threads: Optional[int] = None¶ Number of threads to use. If None, the number of threads is automatically determined. param repeat_penalty: Optional[float] = 1.1¶ The penalty to apply to repeated tokens. param rope_freq_base: float = 10000.0¶ Base frequency for rope sampling. param rope_freq_scale: float = 1.0¶ Scale factor for rope sampling. param seed: int = -1¶ Seed. If -1, a random seed is used. param stop: Optional[List[str]] = []¶ A list of strings to stop generation when encountered. param streaming: bool = True¶ Whether to stream the results, token by token. param suffix: Optional[str] = None¶ A suffix to append to the generated text. If None, no suffix is appended. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: Optional[float] = 0.8¶ The temperature to use for sampling. param top_k: Optional[int] = 40¶ The top-k value to use for sampling. param top_p: Optional[float] = 0.95¶ The top-p value to use for sampling. param use_mlock: bool = False¶ Force system to keep model in RAM. param use_mmap: Optional[bool] = True¶ Whether to keep the model loaded in RAM
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-3
Whether to keep the model loaded in RAM param verbose: bool = True¶ Print verbose output to stderr. param vocab_only: bool = False¶ Only load the vocabulary, no weights. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API.
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-4
This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-5
to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-6
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int[source]¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-7
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-8
Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that llama-cpp-python library is installed. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
777624a8f0e0-9
eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ Examples using LlamaCpp¶ Llama.cpp Llama-cpp Running LLMs locally Use local LLMs WebResearchRetriever
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
53295a6f6eb7-0
langchain.llms.manifest.ManifestWrapper¶ class langchain.llms.manifest.ManifestWrapper(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, client: Any = None, llm_kwargs: Optional[Dict] = None)[source]¶ Bases: LLM HazyResearch’s Manifest library. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param llm_kwargs: Optional[Dict] = None¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
53295a6f6eb7-1
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns
https://api.python.langchain.com/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
53295a6f6eb7-2
to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
53295a6f6eb7-3
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
https://api.python.langchain.com/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
53295a6f6eb7-4
text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction.
https://api.python.langchain.com/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
53295a6f6eb7-5
Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
https://api.python.langchain.com/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
53295a6f6eb7-6
This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶ Examples using ManifestWrapper¶ Hazy Research Manifest
https://api.python.langchain.com/en/latest/llms/langchain.llms.manifest.ManifestWrapper.html
7c05bb849304-0
langchain_experimental.llms.rellm_decoder.import_rellm¶ langchain_experimental.llms.rellm_decoder.import_rellm() → rellm[source]¶ Lazily import rellm.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.rellm_decoder.import_rellm.html
5f6e24832974-0
langchain.llms.google_palm.generate_with_retry¶ langchain.llms.google_palm.generate_with_retry(llm: GooglePalm, **kwargs: Any) → Any[source]¶ Use tenacity to retry the completion call.
https://api.python.langchain.com/en/latest/llms/langchain.llms.google_palm.generate_with_retry.html
5765a96f3679-0
langchain.llms.aviary.Aviary¶ class langchain.llms.aviary.Aviary(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, model: str = 'amazon/LightGPT', aviary_url: Optional[str] = None, aviary_token: Optional[str] = None, use_prompt_format: bool = True, version: Optional[str] = None)[source]¶ Bases: LLM Aviary hosted models. Aviary is a backend for hosted models. You can find out more about aviary at http://github.com/ray-project/aviary To get a list of the models supported on an aviary, follow the instructions on the website to install the aviary CLI and then use: aviary models AVIARY_URL and AVIARY_TOKEN environment variables must be set. Example from langchain.llms import Aviary os.environ["AVIARY_URL"] = "<URL>" os.environ["AVIARY_TOKEN"] = "<TOKEN>" light = Aviary(model='amazon/LightGPT') output = light('How do you make fried rice?') Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param aviary_token: Optional[str] = None¶ param aviary_url: Optional[str] = None¶ param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
5765a96f3679-1
param callbacks: Callbacks = None¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model: str = 'amazon/LightGPT'¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param use_prompt_format: bool = True¶ param verbose: bool [Optional]¶ Whether to print out response text. param version: Optional[str] = None¶ __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
5765a96f3679-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
5765a96f3679-3
Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
5765a96f3679-4
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
5765a96f3679-5
**kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
5765a96f3679-6
first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
5765a96f3679-7
Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.aviary.Aviary.html
6de605b934e3-0
langchain.llms.stochasticai.StochasticAI¶ class langchain.llms.stochasticai.StochasticAI(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, api_url: str = '', model_kwargs: Dict[str, Any] = None, stochasticai_api_key: Optional[str] = None)[source]¶ Bases: LLM StochasticAI large language models. To use, you should have the environment variable STOCHASTICAI_API_KEY set with your API key. Example from langchain.llms import StochasticAI stochasticai = StochasticAI(api_url="") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_url: str = ''¶ Model name to use. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param stochasticai_api_key: Optional[str] = None¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text.
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
6de605b934e3-1
param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value,
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
6de605b934e3-2
need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
6de605b934e3-3
Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ validator build_extra  »  all fields[source]¶ Build extra kwargs from additional params that were passed in. dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
6de605b934e3-4
Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
6de605b934e3-5
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
6de605b934e3-6
Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
6de605b934e3-7
eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶ Examples using StochasticAI¶ StochasticAI
https://api.python.langchain.com/en/latest/llms/langchain.llms.stochasticai.StochasticAI.html
92ecb32b6693-0
langchain.llms.minimax.Minimax¶ class langchain.llms.minimax.Minimax(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, model: str = 'abab5.5-chat', max_tokens: int = 256, temperature: float = 0.7, top_p: float = 0.95, model_kwargs: Dict[str, Any] = None, minimax_api_host: Optional[str] = None, minimax_group_id: Optional[str] = None, minimax_api_key: Optional[str] = None)[source]¶ Bases: LLM Wrapper around Minimax large language models. To use, you should have the environment variable MINIMAX_API_KEY and MINIMAX_GROUP_ID set with your API key, or pass them as a named parameter to the constructor. .. rubric:: Example Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param max_tokens: int = 256¶ Denotes the number of tokens to predict per generation. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param minimax_api_host: Optional[str] = None¶ param minimax_api_key: Optional[str] = None¶ param minimax_group_id: Optional[str] = None¶ param model: str = 'abab5.5-chat'¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
92ecb32b6693-1
param model: str = 'abab5.5-chat'¶ Model name to use. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ A non-negative float that tunes the degree of randomness in generation. param top_p: float = 0.95¶ Total probability mass of tokens to consider at each step. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
92ecb32b6693-2
Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
92ecb32b6693-3
Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM.
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
92ecb32b6693-4
dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
92ecb32b6693-5
**kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
92ecb32b6693-6
first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. property lc_attributes: Dict¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
92ecb32b6693-7
Validate that api key and python package exists in environment. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶ Examples using Minimax¶ Minimax
https://api.python.langchain.com/en/latest/llms/langchain.llms.minimax.Minimax.html
23737589a94e-0
langchain.llms.koboldai.KoboldApiLLM¶ class langchain.llms.koboldai.KoboldApiLLM(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, endpoint: str, use_story: Optional[bool] = False, use_authors_note: Optional[bool] = False, use_world_info: Optional[bool] = False, use_memory: Optional[bool] = False, max_context_length: Optional[int] = 1600, max_length: Optional[int] = 80, rep_pen: Optional[float] = 1.12, rep_pen_range: Optional[int] = 1024, rep_pen_slope: Optional[float] = 0.9, temperature: Optional[float] = 0.6, tfs: Optional[float] = 0.9, top_a: Optional[float] = 0.9, top_p: Optional[float] = 0.95, top_k: Optional[int] = 0, typical: Optional[float] = 0.5)[source]¶ Bases: LLM Kobold API language model. It includes several fields that can be used to control the text generation process. To use this class, instantiate it with the required parameters and call it with a prompt to generate text. For example: kobold = KoboldApiLLM(endpoint=”http://localhost:5000”) result = kobold(“Write a story about a dragon.”) This will send a POST request to the Kobold API with the provided prompt and generate text.
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-1
generate text. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param endpoint: str [Required]¶ The API endpoint to use for generating text. param max_context_length: Optional[int] = 1600¶ Maximum number of tokens to send to the model. minimum: 1 param max_length: Optional[int] = 80¶ Number of tokens to generate. maximum: 512 minimum: 1 param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param rep_pen: Optional[float] = 1.12¶ Base repetition penalty value. minimum: 1 param rep_pen_range: Optional[int] = 1024¶ Repetition penalty range. minimum: 0 param rep_pen_slope: Optional[float] = 0.9¶ Repetition penalty slope. minimum: 0 param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: Optional[float] = 0.6¶ Temperature value. exclusiveMinimum: 0 param tfs: Optional[float] = 0.9¶ Tail free sampling value. maximum: 1 minimum: 0 param top_a: Optional[float] = 0.9¶ Top-a sampling value. minimum: 0 param top_k: Optional[int] = 0¶ Top-k sampling value. minimum: 0 param top_p: Optional[float] = 0.95¶ Top-p sampling value. maximum: 1 minimum: 0
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-2
Top-p sampling value. maximum: 1 minimum: 0 param typical: Optional[float] = 0.5¶ Typical sampling value. maximum: 1 minimum: 0 param use_authors_note: Optional[bool] = False¶ Whether to use the author’s note from the KoboldAI GUI when generating text. This has no effect unless use_story is also enabled. param use_memory: Optional[bool] = False¶ Whether to use the memory from the KoboldAI GUI when generating text. param use_story: Optional[bool] = False¶ Whether or not to use the story from the KoboldAI GUI when generating text. param use_world_info: Optional[bool] = False¶ Whether to use the world info from the KoboldAI GUI when generating text. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-3
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-4
to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-5
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-6
text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction.
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-7
Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. validator raise_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. save(file_path: Union[Path, str]) → None¶ Save the LLM. Parameters file_path – Path to file to save the LLM to. Example: .. code-block:: python llm.save(file_path=”path/llm.yaml”) validator set_verbose  »  verbose¶ If verbose is None, set it. This allows users to pass in None as verbose to access the global setting.
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
23737589a94e-8
This allows users to pass in None as verbose to access the global setting. stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ Examples using KoboldApiLLM¶ KoboldAI API
https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html
24b2d33b72d0-0
langchain_experimental.llms.jsonformer_decoder.import_jsonformer¶ langchain_experimental.llms.jsonformer_decoder.import_jsonformer() → jsonformer[source]¶ Lazily import jsonformer.
https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.jsonformer_decoder.import_jsonformer.html
6bf9d6959fce-0
langchain.llms.sagemaker_endpoint.SagemakerEndpoint¶ class langchain.llms.sagemaker_endpoint.SagemakerEndpoint(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, client: Any = None, endpoint_name: str = '', region_name: str = '', credentials_profile_name: Optional[str] = None, content_handler: LLMContentHandler, model_kwargs: Optional[Dict] = None, endpoint_kwargs: Optional[Dict] = None)[source]¶ Bases: LLM Sagemaker Inference Endpoint models. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[BaseCallbackManager] = None¶ param callbacks: Callbacks = None¶ param content_handler: langchain.llms.sagemaker_endpoint.LLMContentHandler [Required]¶ The content handler class that provides an input and
https://api.python.langchain.com/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html
6bf9d6959fce-1
The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. param credentials_profile_name: Optional[str] = None¶ The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html param endpoint_kwargs: Optional[Dict] = None¶ Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> param endpoint_name: str = ''¶ The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Optional[Dict] = None¶ Key word arguments to pass to the model. param region_name: str = ''¶ The aws region where the Sagemaker model is deployed, eg. us-west-2. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ Check Cache and run the LLM on the given prompt and input.
https://api.python.langchain.com/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html
6bf9d6959fce-2
Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
https://api.python.langchain.com/en/latest/llms/langchain.llms.sagemaker_endpoint.SagemakerEndpoint.html