code
stringlengths
17
6.64M
class MixtureODELayer(nn.Module): 'Produces a mixture of experts where output = sigma(t) * f(t, x).\n Time-dependent weights sigma(t) help learn to blend the experts without resorting to a highly stiff f.\n Supports both regular and diffeq experts.\n ' def __init__(self, experts): super(MixtureODELayer, self).__init__() assert (len(experts) > 1) wrapped_experts = [diffeq_wrapper(ex) for ex in experts] self.experts = nn.ModuleList(wrapped_experts) self.mixture_weights = nn.Linear(1, len(self.experts)) def forward(self, t, y): dys = [] for f in self.experts: dys.append(f(t, y)) dys = torch.stack(dys, 0) weights = self.mixture_weights(t).view((- 1), *([1] * (dys.ndimension() - 1))) dy = torch.sum((dys * weights), dim=0, keepdim=False) return dy
class ResNet(container.SequentialDiffEq): def __init__(self, dim, intermediate_dim, n_resblocks, conv_block=None): super(ResNet, self).__init__() if (conv_block is None): conv_block = basic.ConcatCoordConv2d self.dim = dim self.intermediate_dim = intermediate_dim self.n_resblocks = n_resblocks layers = [] layers.append(conv_block(dim, intermediate_dim, ksize=3, stride=1, padding=1, bias=False)) for _ in range(n_resblocks): layers.append(BasicBlock(intermediate_dim, conv_block)) layers.append(nn.GroupNorm(NGROUPS, intermediate_dim, eps=0.0001)) layers.append(nn.ReLU(inplace=True)) layers.append(conv_block(intermediate_dim, dim, ksize=1, bias=False)) super(ResNet, self).__init__(*layers) def __repr__(self): return '{name}({dim}, intermediate_dim={intermediate_dim}, n_resblocks={n_resblocks})'.format(name=self.__class__.__name__, **self.__dict__)
class BasicBlock(nn.Module): expansion = 1 def __init__(self, dim, conv_block=None): super(BasicBlock, self).__init__() if (conv_block is None): conv_block = basic.ConcatCoordConv2d self.norm1 = nn.GroupNorm(NGROUPS, dim, eps=0.0001) self.relu1 = nn.ReLU(inplace=True) self.conv1 = conv_block(dim, dim, ksize=3, stride=1, padding=1, bias=False) self.norm2 = nn.GroupNorm(NGROUPS, dim, eps=0.0001) self.relu2 = nn.ReLU(inplace=True) self.conv2 = conv_block(dim, dim, ksize=3, stride=1, padding=1, bias=False) def forward(self, t, x): residual = x out = self.norm1(x) out = self.relu1(out) out = self.conv1(t, out) out = self.norm2(out) out = self.relu2(out) out = self.conv2(t, out) out += residual return out
class DiffEqWrapper(nn.Module): def __init__(self, module): super(DiffEqWrapper, self).__init__() self.module = module if (len(signature(self.module.forward).parameters) == 1): self.diffeq = (lambda t, y: self.module(y)) elif (len(signature(self.module.forward).parameters) == 2): self.diffeq = self.module else: raise ValueError('Differential equation needs to either take (t, y) or (y,) as input.') def forward(self, t, y): return self.diffeq(t, y) def __repr__(self): return self.diffeq.__repr__()
def diffeq_wrapper(layer): return DiffEqWrapper(layer)
class ReshapeDiffEq(nn.Module): def __init__(self, input_shape, net): super(ReshapeDiffEq, self).__init__() assert (len(signature(net.forward).parameters) == 2), 'use diffeq_wrapper before reshape_wrapper.' self.input_shape = input_shape self.net = net def forward(self, t, x): batchsize = x.shape[0] x = x.view(batchsize, *self.input_shape) return self.net(t, x).view(batchsize, (- 1)) def __repr__(self): return self.diffeq.__repr__()
def reshape_wrapper(input_shape, layer): return ReshapeDiffEq(input_shape, layer)
class ZeroMeanTransform(nn.Module): def __init__(self): nn.Module.__init__(self) def forward(self, x, logpx=None, reverse=False): if reverse: x = (x + 0.5) if (logpx is None): return x return (x, logpx) else: x = (x - 0.5) if (logpx is None): return x return (x, logpx)
class LogitTransform(nn.Module): '\n The proprocessing step used in Real NVP:\n y = sigmoid(x) - a / (1 - 2a)\n x = logit(a + (1 - 2a)*y)\n ' def __init__(self, alpha=_DEFAULT_ALPHA): nn.Module.__init__(self) self.alpha = alpha def forward(self, x, logpx=None, reverse=False): if reverse: return _sigmoid(x, logpx, self.alpha) else: return _logit(x, logpx, self.alpha)
class SigmoidTransform(nn.Module): 'Reverse of LogitTransform.' def __init__(self, alpha=_DEFAULT_ALPHA): nn.Module.__init__(self) self.alpha = alpha def forward(self, x, logpx=None, reverse=False): if reverse: return _logit(x, logpx, self.alpha) else: return _sigmoid(x, logpx, self.alpha)
def _logit(x, logpx=None, alpha=_DEFAULT_ALPHA): s = (alpha + ((1 - (2 * alpha)) * x)) y = (torch.log(s) - torch.log((1 - s))) if (logpx is None): return y return (y, (logpx - _logdetgrad(x, alpha).view(x.size(0), (- 1)).sum(1, keepdim=True)))
def _sigmoid(y, logpy=None, alpha=_DEFAULT_ALPHA): x = ((torch.sigmoid(y) - alpha) / (1 - (2 * alpha))) if (logpy is None): return x return (x, (logpy + _logdetgrad(x, alpha).view(x.size(0), (- 1)).sum(1, keepdim=True)))
def _logdetgrad(x, alpha): s = (alpha + ((1 - (2 * alpha)) * x)) logdetgrad = ((- torch.log((s - (s * s)))) + math.log((1 - (2 * alpha)))) return logdetgrad
class BruteForceLayer(nn.Module): def __init__(self, dim): super(BruteForceLayer, self).__init__() self.weight = nn.Parameter(torch.eye(dim)) def forward(self, x, logpx=None, reverse=False): if (not reverse): y = F.linear(x, self.weight) if (logpx is None): return y else: return (y, (logpx - self._logdetgrad.expand_as(logpx))) else: y = F.linear(x, self.weight.double().inverse().float()) if (logpx is None): return y else: return (y, (logpx + self._logdetgrad.expand_as(logpx))) @property def _logdetgrad(self): return torch.log(torch.abs(torch.det(self.weight.double()))).float()
class PlanarFlow(nn.Module): def __init__(self, nd=1): super(PlanarFlow, self).__init__() self.nd = nd self.activation = torch.tanh self.register_parameter('u', nn.Parameter(torch.randn(self.nd))) self.register_parameter('w', nn.Parameter(torch.randn(self.nd))) self.register_parameter('b', nn.Parameter(torch.randn(1))) self.reset_parameters() def reset_parameters(self): stdv = (1.0 / math.sqrt(self.nd)) self.u.data.uniform_((- stdv), stdv) self.w.data.uniform_((- stdv), stdv) self.b.data.fill_(0) self.make_invertible() def make_invertible(self): u = self.u.data w = self.w.data dot = torch.dot(u, w) m = ((- 1) + math.log((1 + math.exp(dot)))) du = (((m - dot) / torch.norm(w)) * w) u = (u + du) self.u.data = u def forward(self, z, logp=None, reverse=False): 'Computes f(z) and log q(f(z))' assert (not reverse), 'Planar normalizing flow cannot be reversed.' (logp - torch.log((self._detgrad(z) + 1e-08))) h = self.activation((torch.mm(z, self.w.view(self.nd, 1)) + self.b)) z = (z + (self.u.expand_as(z) * h)) f = self.sample(z) if (logp is not None): qf = self.log_density(z, logp) return (f, qf) else: return f def sample(self, z): 'Computes f(z)' h = self.activation((torch.mm(z, self.w.view(self.nd, 1)) + self.b)) output = (z + (self.u.expand_as(z) * h)) return output def _detgrad(self, z): 'Computes |det df/dz|' with torch.enable_grad(): z = z.requires_grad_(True) h = self.activation((torch.mm(z, self.w.view(self.nd, 1)) + self.b)) psi = grad(h, z, grad_outputs=torch.ones_like(h), create_graph=True, only_inputs=True)[0] u_dot_psi = torch.mm(psi, self.u.view(self.nd, 1)) detgrad = (1 + u_dot_psi) return detgrad def log_density(self, z, logqz): 'Computes log density of the flow given the log density of z' return (logqz - torch.log((self._detgrad(z) + 1e-08)))
class MovingBatchNormNd(nn.Module): def __init__(self, num_features, eps=0.0001, decay=0.1, bn_lag=0.0, affine=True): super(MovingBatchNormNd, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps self.decay = decay self.bn_lag = bn_lag self.register_buffer('step', torch.zeros(1)) if self.affine: self.weight = Parameter(torch.Tensor(num_features)) self.bias = Parameter(torch.Tensor(num_features)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters() @property def shape(self): raise NotImplementedError def reset_parameters(self): self.running_mean.zero_() self.running_var.fill_(1) if self.affine: self.weight.data.zero_() self.bias.data.zero_() def forward(self, x, logpx=None, reverse=False): if reverse: return self._reverse(x, logpx) else: return self._forward(x, logpx) def _forward(self, x, logpx=None): c = x.size(1) used_mean = self.running_mean.clone().detach() used_var = self.running_var.clone().detach() if self.training: x_t = x.transpose(0, 1).contiguous().view(c, (- 1)) batch_mean = torch.mean(x_t, dim=1) batch_var = torch.var(x_t, dim=1) if (self.bn_lag > 0): used_mean = (batch_mean - ((1 - self.bn_lag) * (batch_mean - used_mean.detach()))) used_mean /= (1.0 - (self.bn_lag ** (self.step[0] + 1))) used_var = (batch_var - ((1 - self.bn_lag) * (batch_var - used_var.detach()))) used_var /= (1.0 - (self.bn_lag ** (self.step[0] + 1))) self.running_mean -= (self.decay * (self.running_mean - batch_mean.data)) self.running_var -= (self.decay * (self.running_var - batch_var.data)) self.step += 1 used_mean = used_mean.view(*self.shape).expand_as(x) used_var = used_var.view(*self.shape).expand_as(x) y = ((x - used_mean) * torch.exp(((- 0.5) * torch.log((used_var + self.eps))))) if self.affine: weight = self.weight.view(*self.shape).expand_as(x) bias = self.bias.view(*self.shape).expand_as(x) y = ((y * torch.exp(weight)) + bias) if (logpx is None): return y else: return (y, (logpx - self._logdetgrad(x, used_var).view(x.size(0), (- 1)).sum(1, keepdim=True))) def _reverse(self, y, logpy=None): used_mean = self.running_mean used_var = self.running_var if self.affine: weight = self.weight.view(*self.shape).expand_as(y) bias = self.bias.view(*self.shape).expand_as(y) y = ((y - bias) * torch.exp((- weight))) used_mean = used_mean.view(*self.shape).expand_as(y) used_var = used_var.view(*self.shape).expand_as(y) x = ((y * torch.exp((0.5 * torch.log((used_var + self.eps))))) + used_mean) if (logpy is None): return x else: return (x, (logpy + self._logdetgrad(x, used_var).view(x.size(0), (- 1)).sum(1, keepdim=True))) def _logdetgrad(self, x, used_var): logdetgrad = ((- 0.5) * torch.log((used_var + self.eps))) if self.affine: weight = self.weight.view(*self.shape).expand(*x.size()) logdetgrad += weight return logdetgrad def __repr__(self): return '{name}({num_features}, eps={eps}, decay={decay}, bn_lag={bn_lag}, affine={affine})'.format(name=self.__class__.__name__, **self.__dict__)
def stable_var(x, mean=None, dim=1): if (mean is None): mean = x.mean(dim, keepdim=True) mean = mean.view((- 1), 1) res = torch.pow((x - mean), 2) max_sqr = torch.max(res, dim, keepdim=True)[0] var = (torch.mean((res / max_sqr), 1, keepdim=True) * max_sqr) var = var.view((- 1)) var[(var != var)] = 0 return var
class MovingBatchNorm1d(MovingBatchNormNd): @property def shape(self): return [1, (- 1)]
class MovingBatchNorm2d(MovingBatchNormNd): @property def shape(self): return [1, (- 1), 1, 1]
class BasicBlock(nn.Module): expansion = 1 def __init__(self, dim): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn1 = nn.GroupNorm(2, dim, eps=0.0001) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn2 = nn.GroupNorm(2, dim, eps=0.0001) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out
class ResNeXtBottleneck(nn.Module): '\n RexNeXt bottleneck type C (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua)\n ' def __init__(self, dim, cardinality=4, base_depth=32): ' Constructor\n Args:\n in_channels: input channel dimensionality\n out_channels: output channel dimensionality\n stride: conv stride. Replaces pooling layer.\n cardinality: num of convolution groups.\n base_width: base number of channels in each group.\n widen_factor: factor to reduce the input dimensionality before convolution.\n ' super(ResNeXtBottleneck, self).__init__() D = (cardinality * base_depth) self.conv_reduce = nn.Conv2d(dim, D, kernel_size=1, stride=1, padding=0, bias=False) self.bn_reduce = nn.BatchNorm2d(D) self.conv_grp = nn.Conv2d(D, D, kernel_size=3, stride=1, padding=1, groups=cardinality, bias=False) self.bn = nn.BatchNorm2d(D) self.conv_expand = nn.Conv2d(D, dim, kernel_size=1, stride=1, padding=0, bias=False) self.bn_expand = nn.BatchNorm2d(dim) def forward(self, x): bottleneck = self.conv_reduce.forward(x) bottleneck = F.relu(self.bn_reduce.forward(bottleneck), inplace=True) bottleneck = self.conv_grp.forward(bottleneck) bottleneck = F.relu(self.bn.forward(bottleneck), inplace=True) bottleneck = self.conv_expand.forward(bottleneck) bottleneck = self.bn_expand.forward(bottleneck) return F.relu((x + bottleneck), inplace=True)
class SqueezeLayer(nn.Module): def __init__(self, downscale_factor): super(SqueezeLayer, self).__init__() self.downscale_factor = downscale_factor def forward(self, x, logpx=None, reverse=False): if reverse: return self._upsample(x, logpx) else: return self._downsample(x, logpx) def _downsample(self, x, logpx=None): squeeze_x = squeeze(x, self.downscale_factor) if (logpx is None): return squeeze_x else: return (squeeze_x, logpx) def _upsample(self, y, logpy=None): unsqueeze_y = unsqueeze(y, self.downscale_factor) if (logpy is None): return unsqueeze_y else: return (unsqueeze_y, logpy)
def unsqueeze(input, upscale_factor=2): '\n [:, C*r^2, H, W] -> [:, C, H*r, W*r]\n ' (batch_size, in_channels, in_height, in_width) = input.size() out_channels = (in_channels // (upscale_factor ** 2)) out_height = (in_height * upscale_factor) out_width = (in_width * upscale_factor) input_view = input.contiguous().view(batch_size, out_channels, upscale_factor, upscale_factor, in_height, in_width) output = input_view.permute(0, 1, 4, 2, 5, 3).contiguous() return output.view(batch_size, out_channels, out_height, out_width)
def squeeze(input, downscale_factor=2): '\n [:, C, H*r, W*r] -> [:, C*r^2, H, W]\n ' (batch_size, in_channels, in_height, in_width) = input.size() out_channels = (in_channels * (downscale_factor ** 2)) out_height = (in_height // downscale_factor) out_width = (in_width // downscale_factor) input_view = input.contiguous().view(batch_size, in_channels, out_height, downscale_factor, out_width, downscale_factor) output = input_view.permute(0, 1, 3, 5, 2, 4).contiguous() return output.view(batch_size, out_channels, out_height, out_width)
class MultiscaleParallelCNF(nn.Module): '\n CNF model for image data.\n\n Squeezes the input into multiple scales, applies different conv-nets at each scale\n and adds the resulting gradients\n\n Will downsample the input until one of the\n dimensions is less than or equal to 4.\n\n Args:\n input_size (tuple): 4D tuple of the input size.\n n_scale (int): Number of scales for the representation z.\n n_resblocks (int): Length of the resnet for each coupling layer.\n ' def __init__(self, input_size, n_scale=float('inf'), n_blocks=1, intermediate_dims=(32,), alpha=(- 1), time_length=1.0): super(MultiscaleParallelCNF, self).__init__() print(input_size) self.n_scale = min(n_scale, self._calc_n_scale(input_size)) self.n_blocks = n_blocks self.intermediate_dims = intermediate_dims self.alpha = alpha self.time_length = time_length if (not (self.n_scale > 0)): raise ValueError(('Could not compute number of scales for input ofsize (%d,%d,%d,%d)' % input_size)) self.transforms = self._build_net(input_size) def _build_net(self, input_size): (_, c, h, w) = input_size transforms = [] transforms.append(ParallelCNFLayers(initial_size=(c, h, w), idims=self.intermediate_dims, init_layer=(layers.LogitTransform(self.alpha) if (self.alpha > 0) else layers.ZeroMeanTransform()), n_blocks=self.n_blocks, time_length=self.time_length)) return nn.ModuleList(transforms) def get_regularization(self): if (len(self.regularization_fns) == 0): return None acc_reg_states = tuple(([0.0] * len(self.regularization_fns))) for module in self.modules(): if isinstance(module, layers.CNF): acc_reg_states = tuple(((acc + reg) for (acc, reg) in zip(acc_reg_states, module.get_regularization_states()))) return sum(((state * coeff) for (state, coeff) in zip(acc_reg_states, self.regularization_coeffs))) def _calc_n_scale(self, input_size): (_, _, h, w) = input_size n_scale = 0 while ((h >= 4) and (w >= 4)): n_scale += 1 h = (h // 2) w = (w // 2) return n_scale def calc_output_size(self, input_size): (n, c, h, w) = input_size output_sizes = [] for i in range(self.n_scale): if (i < (self.n_scale - 1)): c *= 2 h //= 2 w //= 2 output_sizes.append((n, c, h, w)) else: output_sizes.append((n, c, h, w)) return tuple(output_sizes) def forward(self, x, logpx=None, reverse=False): if reverse: return self._generate(x, logpx) else: return self._logdensity(x, logpx) def _logdensity(self, x, logpx=None): _logpx = (torch.zeros(x.shape[0], 1).to(x) if (logpx is None) else logpx) for idx in range(len(self.transforms)): (x, _logpx) = self.transforms[idx].forward(x, _logpx) return (x if (logpx is None) else (x, _logpx)) def _generate(self, z, logpz=None): _logpz = (torch.zeros(z.shape[0], 1).to(z) if (logpz is None) else logpz) for idx in reversed(range(len(self.transforms))): (z, _logpz) = self.transforms[idx](z, _logpz, reverse=True) return (z if (logpz is None) else (z, _logpz))
class ParallelSumModules(nn.Module): def __init__(self, models): super(ParallelSumModules, self).__init__() self.models = nn.ModuleList(models) self.cpu = (not torch.cuda.is_available()) def forward(self, t, y): out = sum((model(t, y) for model in self.models)) return out
class ParallelCNFLayers(layers.SequentialFlow): def __init__(self, initial_size, idims=(32,), scales=4, init_layer=None, n_blocks=1, time_length=1.0): strides = tuple(([1] + [1 for _ in idims])) chain = [] if (init_layer is not None): chain.append(init_layer) get_size = (lambda s: ((initial_size[0] * (4 ** s)), (initial_size[1] // (2 ** s)), (initial_size[2] // (2 ** s)))) def _make_odefunc(): nets = [ODEnet(idims, get_size(scale), strides, True, layer_type='concat', num_squeeze=scale) for scale in range(scales)] net = ParallelSumModules(nets) f = layers.ODEfunc(net) return f chain += [layers.CNF(_make_odefunc(), T=time_length) for _ in range(n_blocks)] super(ParallelCNFLayers, self).__init__(chain)
class Uniform(nn.Module): def __init__(self, a=0, b=1): super(Normal, self).__init__() self.a = Variable(torch.Tensor([a])) self.b = Variable(torch.Tensor([b])) def _check_inputs(self, size, params): if ((size is None) and (params is None)): raise ValueError('Either one of size or params should be provided.') elif ((size is not None) and (params is not None)): a = params.select((- 1), 0).expand(size) b = params.select((- 1), 1).expand(size) return (a, b) elif (size is not None): a = self.a.expand(size) b = self.b.expand(size) return (a, b) elif (params is not None): a = params.select((- 1), 0) b = params.select((- 1), 1) return (a, b) else: raise ValueError('Given invalid inputs: size={}, params={})'.format(size, params)) def sample(self, size=None, params=None): (mu, logsigma) = self._check_inputs(size, params) std_z = Variable(torch.randn(mu.size()).type_as(mu.data)) sample = ((std_z * torch.exp(logsigma)) + mu) return sample def log_density(self, sample, params=None): if (params is not None): (mu, logsigma) = self._check_inputs(None, params) else: (mu, logsigma) = self._check_inputs(sample.size(), None) mu = mu.type_as(sample) logsigma = logsigma.type_as(sample) c = self.normalization.type_as(sample.data) inv_sigma = torch.exp((- logsigma)) tmp = ((sample - mu) * inv_sigma) return ((- 0.5) * (((tmp * tmp) + (2 * logsigma)) + c)) def get_params(self): return torch.cat([self.mu, self.logsigma]) @property def nparams(self): return 2 @property def ndim(self): return 1 @property def is_reparameterizable(self): return True def __repr__(self): tmpstr = (self.__class__.__name__ + ' ({:.3f}, {:.3f})'.format(self.mu.data[0], self.logsigma.exp().data[0])) return tmpstr
class Normal(nn.Module): 'Samples from a Normal distribution using the reparameterization trick.\n ' def __init__(self, mu=0, sigma=1): super(Normal, self).__init__() self.normalization = Variable(torch.Tensor([np.log((2 * np.pi))])) self.mu = Variable(torch.Tensor([mu])) self.logsigma = Variable(torch.Tensor([math.log(sigma)])) def _check_inputs(self, size, mu_logsigma): if ((size is None) and (mu_logsigma is None)): raise ValueError('Either one of size or params should be provided.') elif ((size is not None) and (mu_logsigma is not None)): mu = mu_logsigma.select((- 1), 0).expand(size) logsigma = mu_logsigma.select((- 1), 1).expand(size) return (mu, logsigma) elif (size is not None): mu = self.mu.expand(size) logsigma = self.logsigma.expand(size) return (mu, logsigma) elif (mu_logsigma is not None): mu = mu_logsigma.select((- 1), 0) logsigma = mu_logsigma.select((- 1), 1) return (mu, logsigma) else: raise ValueError('Given invalid inputs: size={}, mu_logsigma={})'.format(size, mu_logsigma)) def sample(self, size=None, params=None): (mu, logsigma) = self._check_inputs(size, params) std_z = Variable(torch.randn(mu.size()).type_as(mu.data)) sample = ((std_z * torch.exp(logsigma)) + mu) return sample def log_density(self, sample, params=None): if (params is not None): (mu, logsigma) = self._check_inputs(None, params) else: (mu, logsigma) = self._check_inputs(sample.size(), None) mu = mu.type_as(sample) logsigma = logsigma.type_as(sample) c = self.normalization.type_as(sample.data) inv_sigma = torch.exp((- logsigma)) tmp = ((sample - mu) * inv_sigma) return ((- 0.5) * (((tmp * tmp) + (2 * logsigma)) + c)) def NLL(self, params, sample_params=None): 'Analytically computes\n E_N(mu_2,sigma_2^2) [ - log N(mu_1, sigma_1^2) ]\n If mu_2, and sigma_2^2 are not provided, defaults to entropy.\n ' (mu, logsigma) = self._check_inputs(None, params) if (sample_params is not None): (sample_mu, sample_logsigma) = self._check_inputs(None, sample_params) else: (sample_mu, sample_logsigma) = (mu, logsigma) c = self.normalization.type_as(sample_mu.data) nll = ((((logsigma.mul((- 2)).exp() * (sample_mu - mu).pow(2)) + torch.exp((sample_logsigma.mul(2) - logsigma.mul(2)))) + (2 * logsigma)) + c) return nll.mul(0.5) def kld(self, params): 'Computes KL(q||p) where q is the given distribution and p\n is the standard Normal distribution.\n ' (mu, logsigma) = self._check_inputs(None, params) kld = ((logsigma.mul(2).add(1) - mu.pow(2)) - logsigma.exp().pow(2)) kld.mul_((- 0.5)) return kld def get_params(self): return torch.cat([self.mu, self.logsigma]) @property def nparams(self): return 2 @property def ndim(self): return 1 @property def is_reparameterizable(self): return True def __repr__(self): tmpstr = (self.__class__.__name__ + ' ({:.3f}, {:.3f})'.format(self.mu.data[0], self.logsigma.exp().data[0])) return tmpstr
class Laplace(nn.Module): 'Samples from a Laplace distribution using the reparameterization trick.\n ' def __init__(self, mu=0, scale=1): super(Laplace, self).__init__() self.normalization = Variable(torch.Tensor([(- math.log(2))])) self.mu = Variable(torch.Tensor([mu])) self.logscale = Variable(torch.Tensor([math.log(scale)])) def _check_inputs(self, size, mu_logscale): if ((size is None) and (mu_logscale is None)): raise ValueError('Either one of size or params should be provided.') elif ((size is not None) and (mu_logscale is not None)): mu = mu_logscale.select((- 1), 0).expand(size) logscale = mu_logscale.select((- 1), 1).expand(size) return (mu, logscale) elif (size is not None): mu = self.mu.expand(size) logscale = self.logscale.expand(size) return (mu, logscale) elif (mu_logscale is not None): mu = mu_logscale.select((- 1), 0) logscale = mu_logscale.select((- 1), 1) return (mu, logscale) else: raise ValueError('Given invalid inputs: size={}, mu_logscale={})'.format(size, mu_logscale)) def sample(self, size=None, params=None): (mu, logscale) = self._check_inputs(size, params) scale = torch.exp(logscale) u = (Variable(torch.rand(mu.size()).type_as(mu.data)) - 0.5) sample = (mu - ((scale * torch.sign(u)) * torch.log(((1 - (2 * torch.abs(u))) + eps)))) return sample def log_density(self, sample, params=None): if (params is not None): (mu, logscale) = self._check_inputs(None, params) else: (mu, logscale) = self._check_inputs(sample.size(), None) mu = mu.type_as(sample) logscale = logscale.type_as(sample) c = self.normalization.type_as(sample.data) inv_scale = torch.exp((- logscale)) ins_exp = ((- torch.abs((sample - mu))) * inv_scale) return ((ins_exp + c) - logscale) def get_params(self): return torch.cat([self.mu, self.logscale]) @property def nparams(self): return 2 @property def ndim(self): return 1 @property def is_reparameterizable(self): return True def __repr__(self): tmpstr = (self.__class__.__name__ + ' ({:.3f}, {:.3f})'.format(self.mu.data[0], self.logscale.exp().data[0])) return tmpstr
class SpectralNorm(object): def __init__(self, name='weight', dim=0, eps=1e-12): self.name = name self.dim = dim self.eps = eps def compute_weight(self, module, n_power_iterations): if (n_power_iterations < 0): raise ValueError('Expected n_power_iterations to be non-negative, but got n_power_iterations={}'.format(n_power_iterations)) weight = getattr(module, (self.name + '_orig')) u = getattr(module, (self.name + '_u')) v = getattr(module, (self.name + '_v')) weight_mat = weight if (self.dim != 0): weight_mat = weight_mat.permute(self.dim, *[d for d in range(weight_mat.dim()) if (d != self.dim)]) height = weight_mat.size(0) weight_mat = weight_mat.reshape(height, (- 1)) with torch.no_grad(): for _ in range(n_power_iterations): v = normalize(torch.matmul(weight_mat.t(), u), dim=0, eps=self.eps) u = normalize(torch.matmul(weight_mat, v), dim=0, eps=self.eps) setattr(module, (self.name + '_u'), u) setattr(module, (self.name + '_v'), v) sigma = torch.dot(u, torch.matmul(weight_mat, v)) weight = (weight / sigma) setattr(module, self.name, weight) def remove(self, module): weight = getattr(module, self.name) delattr(module, self.name) delattr(module, (self.name + '_u')) delattr(module, (self.name + '_orig')) module.register_parameter(self.name, torch.nn.Parameter(weight)) def get_update_method(self, module): def update_fn(module, n_power_iterations): self.compute_weight(module, n_power_iterations) return update_fn def __call__(self, module, unused_inputs): del unused_inputs self.compute_weight(module, n_power_iterations=0) if (not module.training): r_g = getattr(module, (self.name + '_orig')).requires_grad setattr(module, self.name, getattr(module, self.name).detach().requires_grad_(r_g)) @staticmethod def apply(module, name, dim, eps): fn = SpectralNorm(name, dim, eps) weight = module._parameters[name] height = weight.size(dim) u = normalize(weight.new_empty(height).normal_(0, 1), dim=0, eps=fn.eps) v = normalize(weight.new_empty(int((weight.numel() / height))).normal_(0, 1), dim=0, eps=fn.eps) delattr(module, fn.name) module.register_parameter((fn.name + '_orig'), weight) module.register_buffer(fn.name, weight.data) module.register_buffer((fn.name + '_u'), u) module.register_buffer((fn.name + '_v'), v) setattr(module, POWER_ITERATION_FN, types.MethodType(fn.get_update_method(module), module)) module.register_forward_pre_hook(fn) return fn
def inplace_spectral_norm(module, name='weight', dim=None, eps=1e-12): 'Applies spectral normalization to a parameter in the given module.\n\n .. math::\n \\mathbf{W} = \\dfrac{\\mathbf{W}}{\\sigma(\\mathbf{W})} \\\\\n \\sigma(\\mathbf{W}) = \\max_{\\mathbf{h}: \\mathbf{h} \\ne 0} \\dfrac{\\|\\mathbf{W} \\mathbf{h}\\|_2}{\\|\\mathbf{h}\\|_2}\n\n Spectral normalization stabilizes the training of discriminators (critics)\n in Generaive Adversarial Networks (GANs) by rescaling the weight tensor\n with spectral norm :math:`\\sigma` of the weight matrix calculated using\n power iteration method. If the dimension of the weight tensor is greater\n than 2, it is reshaped to 2D in power iteration method to get spectral\n norm. This is implemented via a hook that calculates spectral norm and\n rescales weight before every :meth:`~Module.forward` call.\n\n See `Spectral Normalization for Generative Adversarial Networks`_ .\n\n .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957\n\n Args:\n module (nn.Module): containing module\n name (str, optional): name of weight parameter\n n_power_iterations (int, optional): number of power iterations to\n calculate spectal norm\n dim (int, optional): dimension corresponding to number of outputs,\n the default is 0, except for modules that are instances of\n ConvTranspose1/2/3d, when it is 1\n eps (float, optional): epsilon for numerical stability in\n calculating norms\n\n Returns:\n The original module with the spectal norm hook\n\n Example::\n\n >>> m = spectral_norm(nn.Linear(20, 40))\n Linear (20 -> 40)\n >>> m.weight_u.size()\n torch.Size([20])\n\n ' if (dim is None): if isinstance(module, (torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d)): dim = 1 else: dim = 0 SpectralNorm.apply(module, name, dim=dim, eps=eps) return module
def remove_spectral_norm(module, name='weight'): 'Removes the spectral normalization reparameterization from a module.\n\n Args:\n module (nn.Module): containing module\n name (str, optional): name of weight parameter\n\n Example:\n >>> m = spectral_norm(nn.Linear(40, 10))\n >>> remove_spectral_norm(m)\n ' for (k, hook) in module._forward_pre_hooks.items(): if (isinstance(hook, SpectralNorm) and (hook.name == name)): hook.remove(module) del module._forward_pre_hooks[k] return module raise ValueError("spectral_norm of '{}' not found in {}".format(name, module))
def makedirs(dirname): if (not os.path.exists(dirname)): os.makedirs(dirname)
def get_logger(logpath, filepath, package_files=[], displaying=True, saving=True, debug=False): logger = logging.getLogger() if debug: level = logging.DEBUG else: level = logging.INFO logger.setLevel(level) if saving: info_file_handler = logging.FileHandler(logpath, mode='a') info_file_handler.setLevel(level) logger.addHandler(info_file_handler) if displaying: console_handler = logging.StreamHandler() console_handler.setLevel(level) logger.addHandler(console_handler) logger.info(filepath) with open(filepath, 'r') as f: logger.info(f.read()) for f in package_files: logger.info(f) with open(f, 'r') as package_f: logger.info(package_f.read()) return logger
class AverageMeter(object): 'Computes and stores the average and current value' def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += (val * n) self.count += n self.avg = (self.sum / self.count)
class RunningAverageMeter(object): 'Computes and stores the average and current value' def __init__(self, momentum=0.99): self.momentum = momentum self.reset() def reset(self): self.val = None self.avg = 0 def update(self, val): if (self.val is None): self.avg = val else: self.avg = ((self.avg * self.momentum) + (val * (1 - self.momentum))) self.val = val
def inf_generator(iterable): 'Allows training with DataLoaders in a single infinite loop:\n for i, (x, y) in enumerate(inf_generator(train_loader)):\n ' iterator = iterable.__iter__() while True: try: (yield iterator.__next__()) except StopIteration: iterator = iterable.__iter__()
def save_checkpoint(state, save, epoch): if (not os.path.exists(save)): os.makedirs(save) filename = os.path.join(save, ('checkpt-%04d.pth' % epoch)) torch.save(state, filename)
def isnan(tensor): return (tensor != tensor)
def logsumexp(value, dim=None, keepdim=False): 'Numerically stable implementation of the operation\n value.exp().sum(dim, keepdim).log()\n ' if (dim is not None): (m, _) = torch.max(value, dim=dim, keepdim=True) value0 = (value - m) if (keepdim is False): m = m.squeeze(dim) return (m + torch.log(torch.sum(torch.exp(value0), dim=dim, keepdim=keepdim))) else: m = torch.max(value) sum_exp = torch.sum(torch.exp((value - m))) if isinstance(sum_exp, Number): return (m + math.log(sum_exp)) else: return (m + torch.log(sum_exp))
def add_noise(x): '\n [0, 1] -> [0, 255] -> add noise -> [0, 1]\n ' if args.add_noise: noise = x.new().resize_as_(x).uniform_() x = ((x * 255) + noise) x = (x / 256) return x
def update_lr(optimizer, itr): iter_frac = min((float((itr + 1)) / max(args.warmup_iters, 1)), 1.0) lr = (args.lr * iter_frac) for param_group in optimizer.param_groups: param_group['lr'] = lr
def get_train_loader(train_set, epoch): if (args.batch_size_schedule != ''): epochs = ([0] + list(map(int, args.batch_size_schedule.split('-')))) n_passed = sum((np.array(epochs) <= epoch)) current_batch_size = int((args.batch_size * n_passed)) else: current_batch_size = args.batch_size train_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=current_batch_size, shuffle=True, drop_last=True, pin_memory=True) logger.info('===> Using batch size {}. Total {} iterations/epoch.'.format(current_batch_size, len(train_loader))) return train_loader
def get_dataset(args): trans = (lambda im_size: tforms.Compose([tforms.Resize(im_size), tforms.ToTensor(), add_noise])) if (args.data == 'mnist'): im_dim = 1 im_size = (28 if (args.imagesize is None) else args.imagesize) train_set = dset.MNIST(root='./data', train=True, transform=trans(im_size), download=True) test_set = dset.MNIST(root='./data', train=False, transform=trans(im_size), download=True) elif (args.data == 'svhn'): im_dim = 3 im_size = (32 if (args.imagesize is None) else args.imagesize) train_set = dset.SVHN(root='./data', split='train', transform=trans(im_size), download=True) test_set = dset.SVHN(root='./data', split='test', transform=trans(im_size), download=True) elif (args.data == 'cifar10'): im_dim = 3 im_size = (32 if (args.imagesize is None) else args.imagesize) train_set = dset.CIFAR10(root='./data', train=True, transform=tforms.Compose([tforms.Resize(im_size), tforms.RandomHorizontalFlip(), tforms.ToTensor(), add_noise]), download=True) test_set = dset.CIFAR10(root='./data', train=False, transform=trans(im_size), download=True) elif (args.data == 'celeba'): im_dim = 3 im_size = (64 if (args.imagesize is None) else args.imagesize) train_set = dset.CelebA(train=True, transform=tforms.Compose([tforms.ToPILImage(), tforms.Resize(im_size), tforms.RandomHorizontalFlip(), tforms.ToTensor(), add_noise])) test_set = dset.CelebA(train=False, transform=tforms.Compose([tforms.ToPILImage(), tforms.Resize(im_size), tforms.ToTensor(), add_noise])) elif (args.data == 'lsun_church'): im_dim = 3 im_size = (64 if (args.imagesize is None) else args.imagesize) train_set = dset.LSUN('data', ['church_outdoor_train'], transform=tforms.Compose([tforms.Resize(96), tforms.RandomCrop(64), tforms.Resize(im_size), tforms.ToTensor(), add_noise])) test_set = dset.LSUN('data', ['church_outdoor_val'], transform=tforms.Compose([tforms.Resize(96), tforms.RandomCrop(64), tforms.Resize(im_size), tforms.ToTensor(), add_noise])) data_shape = (im_dim, im_size, im_size) if (not args.conv): data_shape = (((im_dim * im_size) * im_size),) test_loader = torch.utils.data.DataLoader(dataset=test_set, batch_size=args.test_batch_size, shuffle=False, drop_last=True) return (train_set, test_loader, data_shape)
def compute_bits_per_dim(x, model): zero = torch.zeros(x.shape[0], 1).to(x) (z, delta_logp) = model(x, zero) logpz = standard_normal_logprob(z).view(z.shape[0], (- 1)).sum(1, keepdim=True) logpx = (logpz - delta_logp) logpx_per_dim = (torch.sum(logpx) / x.nelement()) bits_per_dim = ((- (logpx_per_dim - np.log(256))) / np.log(2)) return bits_per_dim
def create_model(args, data_shape, regularization_fns): hidden_dims = tuple(map(int, args.dims.split(','))) strides = tuple(map(int, args.strides.split(','))) if args.multiscale: model = odenvp.ODENVP((args.batch_size, *data_shape), n_blocks=args.num_blocks, intermediate_dims=hidden_dims, nonlinearity=args.nonlinearity, alpha=args.alpha, cnf_kwargs={'T': args.time_length, 'train_T': args.train_T, 'regularization_fns': regularization_fns}) elif args.parallel: model = multiscale_parallel.MultiscaleParallelCNF((args.batch_size, *data_shape), n_blocks=args.num_blocks, intermediate_dims=hidden_dims, alpha=args.alpha, time_length=args.time_length) else: if args.autoencode: def build_cnf(): autoencoder_diffeq = layers.AutoencoderDiffEqNet(hidden_dims=hidden_dims, input_shape=data_shape, strides=strides, conv=args.conv, layer_type=args.layer_type, nonlinearity=args.nonlinearity) odefunc = layers.AutoencoderODEfunc(autoencoder_diffeq=autoencoder_diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher) cnf = layers.CNF(odefunc=odefunc, T=args.time_length, regularization_fns=regularization_fns, solver=args.solver) return cnf else: def build_cnf(): diffeq = layers.ODEnet(hidden_dims=hidden_dims, input_shape=data_shape, strides=strides, conv=args.conv, layer_type=args.layer_type, nonlinearity=args.nonlinearity) odefunc = layers.ODEfunc(diffeq=diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher) cnf = layers.CNF(odefunc=odefunc, T=args.time_length, train_T=args.train_T, regularization_fns=regularization_fns, solver=args.solver) return cnf chain = ([layers.LogitTransform(alpha=args.alpha)] if (args.alpha > 0) else [layers.ZeroMeanTransform()]) chain = (chain + [build_cnf() for _ in range(args.num_blocks)]) if args.batch_norm: chain.append(layers.MovingBatchNorm2d(data_shape[0])) model = layers.SequentialFlow(chain) return model
def batch_iter(X, batch_size=args.batch_size, shuffle=False): '\n X: feature tensor (shape: num_instances x num_features)\n ' if shuffle: idxs = torch.randperm(X.shape[0]) else: idxs = torch.arange(X.shape[0]) if X.is_cuda: idxs = idxs.cuda() for batch_idxs in idxs.split(batch_size): (yield X[batch_idxs])
def update_lr(optimizer, n_vals_without_improvement): global ndecs if ((ndecs == 0) and (n_vals_without_improvement > (args.early_stopping // 3))): for param_group in optimizer.param_groups: param_group['lr'] = (args.lr / 10) ndecs = 1 elif ((ndecs == 1) and (n_vals_without_improvement > ((args.early_stopping // 3) * 2))): for param_group in optimizer.param_groups: param_group['lr'] = (args.lr / 100) ndecs = 2 else: for param_group in optimizer.param_groups: param_group['lr'] = (args.lr / (10 ** ndecs))
def load_data(name): if (name == 'bsds300'): return datasets.BSDS300() elif (name == 'power'): return datasets.POWER() elif (name == 'gas'): return datasets.GAS() elif (name == 'hepmass'): return datasets.HEPMASS() elif (name == 'miniboone'): return datasets.MINIBOONE() else: raise ValueError('Unknown dataset')
def build_model(input_dim): hidden_dims = tuple(map(int, args.dims.split('-'))) chain = [] for i in range(args.depth): if args.glow: chain.append(layers.BruteForceLayer(input_dim)) chain.append(layers.MaskedCouplingLayer(input_dim, hidden_dims, 'alternate', swap=((i % 2) == 0))) if args.batch_norm: chain.append(layers.MovingBatchNorm1d(input_dim, bn_lag=args.bn_lag)) return layers.SequentialFlow(chain)
def compute_loss(x, model): zero = torch.zeros(x.shape[0], 1).to(x) (z, delta_logp) = model(x, zero) logpz = standard_normal_logprob(z).view(z.shape[0], (- 1)).sum(1, keepdim=True) logpx = (logpz - delta_logp) loss = (- torch.mean(logpx)) return loss
def restore_model(model, filename): checkpt = torch.load(filename, map_location=(lambda storage, loc: storage)) model.load_state_dict(checkpt['state_dict']) return model
def construct_model(): if args.nf: chain = [] for i in range(args.depth): chain.append(layers.PlanarFlow(2)) return layers.SequentialFlow(chain) else: chain = [] for i in range(args.depth): if args.glow: chain.append(layers.BruteForceLayer(2)) chain.append(layers.CouplingLayer(2, swap=((i % 2) == 0))) return layers.SequentialFlow(chain)
def get_transforms(model): if args.nf: sample_fn = None else: def sample_fn(z, logpz=None): if (logpz is not None): return model(z, logpz, reverse=True) else: return model(z, reverse=True) def density_fn(x, logpx=None): if (logpx is not None): return model(x, logpx, reverse=False) else: return model(x, reverse=False) return (sample_fn, density_fn)
def compute_loss(args, model, batch_size=None): if (batch_size is None): batch_size = args.batch_size x = toy_data.inf_train_gen(args.data, batch_size=batch_size) x = torch.from_numpy(x).type(torch.float32).to(device) zero = torch.zeros(x.shape[0], 1).to(x) (z, delta_logp) = model(x, zero) logpz = standard_normal_logprob(z).sum(1, keepdim=True) logpx = (logpz - delta_logp) loss = (- torch.mean(logpx)) return loss
def sample_data(data=None, rng=None, batch_size=200): 'data and rng are ignored.' inds = np.random.choice(int(probs.shape[0]), int(batch_size), p=probs) m = means[inds] samples = ((np.random.randn(*m.shape) * std) + m) return samples
def get_transforms(model): def sample_fn(z, logpz=None): if (logpz is not None): return model(z, logpz, reverse=True) else: return model(z, reverse=True) def density_fn(x, logpx=None): if (logpx is not None): return model(x, logpx, reverse=False) else: return model(x, reverse=False) return (sample_fn, density_fn)
def compute_loss(args, model, batch_size=None): if (batch_size is None): batch_size = args.batch_size x = sample_data(args.data, batch_size=batch_size) x = torch.from_numpy(x).type(torch.float32).to(device) zero = torch.zeros(x.shape[0], 1).to(x) (z, delta_logp) = model(x, zero) logpz = standard_normal_logprob(z).sum(1, keepdim=True) logpx = (logpz - delta_logp) loss = (- torch.mean(logpx)) return loss
def standard_normal_logprob(z): logZ = ((- 0.5) * math.log((2 * math.pi))) return (logZ - (z.pow(2) / 2))
def set_cnf_options(args, model): def _set(module): if isinstance(module, layers.CNF): module.solver = args.solver module.atol = args.atol module.rtol = args.rtol if (args.step_size is not None): module.solver_options['step_size'] = args.step_size if (args.solver in ['fixed_adams', 'explicit_adams']): module.solver_options['max_order'] = 4 module.test_solver = (args.test_solver if args.test_solver else args.solver) module.test_atol = (args.test_atol if args.test_atol else args.atol) module.test_rtol = (args.test_rtol if args.test_rtol else args.rtol) if isinstance(module, layers.ODEfunc): module.rademacher = args.rademacher module.residual = args.residual model.apply(_set)
def override_divergence_fn(model, divergence_fn): def _set(module): if isinstance(module, layers.ODEfunc): if (divergence_fn == 'brute_force'): module.divergence_fn = divergence_bf elif (divergence_fn == 'approximate'): module.divergence_fn = divergence_approx model.apply(_set)
def count_nfe(model): class AccNumEvals(object): def __init__(self): self.num_evals = 0 def __call__(self, module): if isinstance(module, layers.ODEfunc): self.num_evals += module.num_evals() accumulator = AccNumEvals() model.apply(accumulator) return accumulator.num_evals
def count_parameters(model): return sum((p.numel() for p in model.parameters() if p.requires_grad))
def count_total_time(model): class Accumulator(object): def __init__(self): self.total_time = 0 def __call__(self, module): if isinstance(module, layers.CNF): self.total_time = (self.total_time + (module.sqrt_end_time * module.sqrt_end_time)) accumulator = Accumulator() model.apply(accumulator) return accumulator.total_time
def add_spectral_norm(model, logger=None): 'Applies spectral norm to all modules within the scope of a CNF.' def apply_spectral_norm(module): if ('weight' in module._parameters): if logger: logger.info('Adding spectral norm to {}'.format(module)) spectral_norm.inplace_spectral_norm(module, 'weight') def find_cnf(module): if isinstance(module, layers.CNF): module.apply(apply_spectral_norm) else: for child in module.children(): find_cnf(child) find_cnf(model)
def spectral_norm_power_iteration(model, n_power_iterations=1): def recursive_power_iteration(module): if hasattr(module, spectral_norm.POWER_ITERATION_FN): getattr(module, spectral_norm.POWER_ITERATION_FN)(n_power_iterations) model.apply(recursive_power_iteration)
def append_regularization_to_log(log_message, regularization_fns, reg_states): for (i, reg_fn) in enumerate(regularization_fns): log_message = (((log_message + ' | ') + INV_REGULARIZATION_FNS[reg_fn]) + ': {:.8f}'.format(reg_states[i].item())) return log_message
def create_regularization_fns(args): regularization_fns = [] regularization_coeffs = [] for (arg_key, reg_fn) in six.iteritems(REGULARIZATION_FNS): if (getattr(args, arg_key) is not None): regularization_fns.append(reg_fn) regularization_coeffs.append(eval(('args.' + arg_key))) regularization_fns = tuple(regularization_fns) regularization_coeffs = tuple(regularization_coeffs) return (regularization_fns, regularization_coeffs)
def get_regularization(model, regularization_coeffs): if (len(regularization_coeffs) == 0): return None acc_reg_states = tuple(([0.0] * len(regularization_coeffs))) for module in model.modules(): if isinstance(module, layers.CNF): acc_reg_states = tuple(((acc + reg) for (acc, reg) in zip(acc_reg_states, module.get_regularization_states()))) return acc_reg_states
def build_model_tabular(args, dims, regularization_fns=None): hidden_dims = tuple(map(int, args.dims.split('-'))) def build_cnf(): diffeq = layers.ODEnet(hidden_dims=hidden_dims, input_shape=(dims,), strides=None, conv=False, layer_type=args.layer_type, nonlinearity=args.nonlinearity) odefunc = layers.ODEfunc(diffeq=diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher) cnf = layers.CNF(odefunc=odefunc, T=args.time_length, train_T=args.train_T, regularization_fns=regularization_fns, solver=args.solver) return cnf chain = [build_cnf() for _ in range(args.num_blocks)] if args.batch_norm: bn_layers = [layers.MovingBatchNorm1d(dims, bn_lag=args.bn_lag) for _ in range(args.num_blocks)] bn_chain = [layers.MovingBatchNorm1d(dims, bn_lag=args.bn_lag)] for (a, b) in zip(chain, bn_layers): bn_chain.append(a) bn_chain.append(b) chain = bn_chain model = layers.SequentialFlow(chain) set_cnf_options(args, model) return model
def batch_iter(X, batch_size=args.batch_size, shuffle=False): '\n X: feature tensor (shape: num_instances x num_features)\n ' if shuffle: idxs = torch.randperm(X.shape[0]) else: idxs = torch.arange(X.shape[0]) if X.is_cuda: idxs = idxs.cuda() for batch_idxs in idxs.split(batch_size): (yield X[batch_idxs])
def update_lr(optimizer, n_vals_without_improvement): global ndecs if ((ndecs == 0) and (n_vals_without_improvement > (args.early_stopping // 3))): for param_group in optimizer.param_groups: param_group['lr'] = (args.lr / 10) ndecs = 1 elif ((ndecs == 1) and (n_vals_without_improvement > ((args.early_stopping // 3) * 2))): for param_group in optimizer.param_groups: param_group['lr'] = (args.lr / 100) ndecs = 2 else: for param_group in optimizer.param_groups: param_group['lr'] = (args.lr / (10 ** ndecs))
def load_data(name): if (name == 'bsds300'): return datasets.BSDS300() elif (name == 'power'): return datasets.POWER() elif (name == 'gas'): return datasets.GAS() elif (name == 'hepmass'): return datasets.HEPMASS() elif (name == 'miniboone'): return datasets.MINIBOONE() else: raise ValueError('Unknown dataset')
def compute_loss(x, model): zero = torch.zeros(x.shape[0], 1).to(x) (z, delta_logp) = model(x, zero) logpz = standard_normal_logprob(z).view(z.shape[0], (- 1)).sum(1, keepdim=True) logpx = (logpz - delta_logp) loss = (- torch.mean(logpx)) return loss
def restore_model(model, filename): checkpt = torch.load(filename, map_location=(lambda storage, loc: storage)) model.load_state_dict(checkpt['state_dict']) return model
def get_transforms(model): def sample_fn(z, logpz=None): if (logpz is not None): return model(z, logpz, reverse=True) else: return model(z, reverse=True) def density_fn(x, logpx=None): if (logpx is not None): return model(x, logpx, reverse=False) else: return model(x, reverse=False) return (sample_fn, density_fn)
def compute_loss(args, model, batch_size=None): if (batch_size is None): batch_size = args.batch_size x = toy_data.inf_train_gen(args.data, batch_size=batch_size) x = torch.from_numpy(x).type(torch.float32).to(device) zero = torch.zeros(x.shape[0], 1).to(x) (z, delta_logp) = model(x, zero) logpz = standard_normal_logprob(z).sum(1, keepdim=True) logpx = (logpz - delta_logp) loss = (- torch.mean(logpx)) return loss
def run(args, kwargs): args.model_signature = str(datetime.datetime.now())[0:19].replace(' ', '_') args.model_signature = args.model_signature.replace(':', '_') snapshots_path = os.path.join(args.out_dir, (('vae_' + args.dataset) + '_')) snap_dir = (snapshots_path + args.flow) if (args.flow != 'no_flow'): snap_dir += (('_' + 'num_flows_') + str(args.num_flows)) if (args.flow == 'orthogonal'): snap_dir = ((snap_dir + '_num_vectors_') + str(args.num_ortho_vecs)) elif (args.flow == 'orthogonalH'): snap_dir = ((snap_dir + '_num_householder_') + str(args.num_householder)) elif (args.flow == 'iaf'): snap_dir = ((snap_dir + '_madehsize_') + str(args.made_h_size)) elif (args.flow == 'permutation'): snap_dir = (((snap_dir + '_') + 'kernelsize_') + str(args.kernel_size)) elif (args.flow == 'mixed'): snap_dir = (((snap_dir + '_') + 'num_householder_') + str(args.num_householder)) elif (args.flow == 'cnf_rank'): snap_dir = ((((((snap_dir + '_rank_') + str(args.rank)) + '_') + args.dims) + '_num_blocks_') + str(args.num_blocks)) elif ('cnf' in args.flow): snap_dir = ((((snap_dir + '_') + args.dims) + '_num_blocks_') + str(args.num_blocks)) if args.retrain_encoder: snap_dir = (snap_dir + '_retrain-encoder_') elif args.evaluate: snap_dir = (snap_dir + '_evaluate_') snap_dir = (((snap_dir + '__') + args.model_signature) + '/') args.snap_dir = snap_dir if (not os.path.exists(snap_dir)): os.makedirs(snap_dir) utils.makedirs(args.snap_dir) logger = utils.get_logger(logpath=os.path.join(args.snap_dir, 'logs'), filepath=os.path.abspath(__file__)) logger.info(args) torch.save(args, ((snap_dir + args.flow) + '.config')) (train_loader, val_loader, test_loader, args) = load_dataset(args, **kwargs) if (not args.evaluate): if (args.flow == 'no_flow'): model = VAE.VAE(args) elif (args.flow == 'planar'): model = VAE.PlanarVAE(args) elif (args.flow == 'iaf'): model = VAE.IAFVAE(args) elif (args.flow == 'orthogonal'): model = VAE.OrthogonalSylvesterVAE(args) elif (args.flow == 'householder'): model = VAE.HouseholderSylvesterVAE(args) elif (args.flow == 'triangular'): model = VAE.TriangularSylvesterVAE(args) elif (args.flow == 'cnf'): model = CNFVAE.CNFVAE(args) elif (args.flow == 'cnf_bias'): model = CNFVAE.AmortizedBiasCNFVAE(args) elif (args.flow == 'cnf_hyper'): model = CNFVAE.HypernetCNFVAE(args) elif (args.flow == 'cnf_lyper'): model = CNFVAE.LypernetCNFVAE(args) elif (args.flow == 'cnf_rank'): model = CNFVAE.AmortizedLowRankCNFVAE(args) else: raise ValueError('Invalid flow choice') if args.retrain_encoder: logger.info(f'Initializing decoder from {args.model_path}') dec_model = torch.load(args.model_path) dec_sd = {} for (k, v) in dec_model.state_dict().items(): if ('p_x' in k): dec_sd[k] = v model.load_state_dict(dec_sd, strict=False) if args.cuda: logger.info('Model on GPU') model.cuda() logger.info(model) if args.retrain_encoder: parameters = [] logger.info('Optimizing over:') for (name, param) in model.named_parameters(): if ('p_x' not in name): logger.info(name) parameters.append(param) else: parameters = model.parameters() optimizer = optim.Adamax(parameters, lr=args.learning_rate, eps=1e-07) train_loss = [] val_loss = [] best_loss = np.inf best_bpd = np.inf e = 0 epoch = 0 train_times = [] for epoch in range(1, (args.epochs + 1)): t_start = time.time() tr_loss = train(epoch, train_loader, model, optimizer, args, logger) train_loss.append(tr_loss) train_times.append((time.time() - t_start)) logger.info(('One training epoch took %.2f seconds' % (time.time() - t_start))) (v_loss, v_bpd) = evaluate(val_loader, model, args, logger, epoch=epoch) val_loss.append(v_loss) if (v_loss < best_loss): e = 0 best_loss = v_loss if (args.input_type != 'binary'): best_bpd = v_bpd logger.info('->model saved<-') torch.save(model, ((snap_dir + args.flow) + '.model')) elif ((args.early_stopping_epochs > 0) and (epoch >= args.warmup)): e += 1 if (e > args.early_stopping_epochs): break if (args.input_type == 'binary'): logger.info('--> Early stopping: {}/{} (BEST: loss {:.4f})\n'.format(e, args.early_stopping_epochs, best_loss)) else: logger.info('--> Early stopping: {}/{} (BEST: loss {:.4f}, bpd {:.4f})\n'.format(e, args.early_stopping_epochs, best_loss, best_bpd)) if math.isnan(v_loss): raise ValueError('NaN encountered!') train_loss = np.hstack(train_loss) val_loss = np.array(val_loss) plot_training_curve(train_loss, val_loss, fname=(snap_dir + ('/training_curve_%s.pdf' % args.flow))) train_times = np.array(train_times) mean_train_time = np.mean(train_times) std_train_time = np.std(train_times, ddof=1) logger.info(('Average train time per epoch: %.2f +/- %.2f' % (mean_train_time, std_train_time))) logger.info(args) logger.info(('Stopped after %d epochs' % epoch)) logger.info(('Average train time per epoch: %.2f +/- %.2f' % (mean_train_time, std_train_time))) final_model = torch.load(((snap_dir + args.flow) + '.model')) (validation_loss, validation_bpd) = evaluate(val_loader, final_model, args, logger) else: validation_loss = 'N/A' validation_bpd = 'N/A' logger.info(f'Loading model from {args.model_path}') final_model = torch.load(args.model_path) (test_loss, test_bpd) = evaluate(test_loader, final_model, args, logger, testing=True) logger.info('FINAL EVALUATION ON VALIDATION SET. ELBO (VAL): {:.4f}'.format(validation_loss)) logger.info('FINAL EVALUATION ON TEST SET. NLL (TEST): {:.4f}'.format(test_loss)) if (args.input_type != 'binary'): logger.info('FINAL EVALUATION ON VALIDATION SET. ELBO (VAL) BPD : {:.4f}'.format(validation_bpd)) logger.info('FINAL EVALUATION ON TEST SET. NLL (TEST) BPD: {:.4f}'.format(test_bpd))
def binary_loss_function(recon_x, x, z_mu, z_var, z_0, z_k, ldj, beta=1.0): '\n Computes the binary loss function while summing over batch dimension, not averaged!\n :param recon_x: shape: (batch_size, num_channels, pixel_width, pixel_height), bernoulli parameters p(x=1)\n :param x: shape (batchsize, num_channels, pixel_width, pixel_height), pixel values rescaled between [0, 1].\n :param z_mu: mean of z_0\n :param z_var: variance of z_0\n :param z_0: first stochastic latent variable\n :param z_k: last stochastic latent variable\n :param ldj: log det jacobian\n :param beta: beta for kl loss\n :return: loss, ce, kl\n ' reconstruction_function = nn.BCELoss(size_average=False) batch_size = x.size(0) bce = reconstruction_function(recon_x, x) log_p_zk = log_normal_standard(z_k, dim=1) log_q_z0 = log_normal_diag(z_0, mean=z_mu, log_var=z_var.log(), dim=1) summed_logs = torch.sum((log_q_z0 - log_p_zk)) summed_ldj = torch.sum(ldj) kl = (summed_logs - summed_ldj) loss = (bce + (beta * kl)) loss /= float(batch_size) bce /= float(batch_size) kl /= float(batch_size) return (loss, bce, kl)
def multinomial_loss_function(x_logit, x, z_mu, z_var, z_0, z_k, ldj, args, beta=1.0): '\n Computes the cross entropy loss function while summing over batch dimension, not averaged!\n :param x_logit: shape: (batch_size, num_classes * num_channels, pixel_width, pixel_height), real valued logits\n :param x: shape (batchsize, num_channels, pixel_width, pixel_height), pixel values rescaled between [0, 1].\n :param z_mu: mean of z_0\n :param z_var: variance of z_0\n :param z_0: first stochastic latent variable\n :param z_k: last stochastic latent variable\n :param ldj: log det jacobian\n :param args: global parameter settings\n :param beta: beta for kl loss\n :return: loss, ce, kl\n ' num_classes = 256 batch_size = x.size(0) x_logit = x_logit.view(batch_size, num_classes, args.input_size[0], args.input_size[1], args.input_size[2]) target = (x * (num_classes - 1)).long() ce = cross_entropy(x_logit, target, size_average=False) log_p_zk = log_normal_standard(z_k, dim=1) log_q_z0 = log_normal_diag(z_0, mean=z_mu, log_var=z_var.log(), dim=1) summed_logs = torch.sum((log_q_z0 - log_p_zk)) summed_ldj = torch.sum(ldj) kl = (summed_logs - summed_ldj) loss = (ce + (beta * kl)) loss /= float(batch_size) ce /= float(batch_size) kl /= float(batch_size) return (loss, ce, kl)
def binary_loss_array(recon_x, x, z_mu, z_var, z_0, z_k, ldj, beta=1.0): '\n Computes the binary loss without averaging or summing over the batch dimension.\n ' batch_size = x.size(0) if (len(ldj.size()) > 1): ldj = ldj.view(ldj.size(0), (- 1)).sum((- 1)) bce = (- log_bernoulli(x.view(batch_size, (- 1)), recon_x.view(batch_size, (- 1)), dim=1)) log_p_zk = log_normal_standard(z_k, dim=1) log_q_z0 = log_normal_diag(z_0, mean=z_mu, log_var=z_var.log(), dim=1) logs = (log_q_z0 - log_p_zk) loss = (bce + (beta * (logs - ldj))) return loss
def multinomial_loss_array(x_logit, x, z_mu, z_var, z_0, z_k, ldj, args, beta=1.0): '\n Computes the discritezed logistic loss without averaging or summing over the batch dimension.\n ' num_classes = 256 batch_size = x.size(0) x_logit = x_logit.view(batch_size, num_classes, args.input_size[0], args.input_size[1], args.input_size[2]) target = (x * (num_classes - 1)).long() ce = cross_entropy(x_logit, target, size_average=False, reduce=False) ce = ce.view(batch_size, (- 1)).sum(dim=1) log_p_zk = log_normal_standard(z_k.view(batch_size, (- 1)), dim=1) log_q_z0 = log_normal_diag(z_0.view(batch_size, (- 1)), mean=z_mu.view(batch_size, (- 1)), log_var=z_var.log().view(batch_size, (- 1)), dim=1) logs = (log_q_z0 - log_p_zk) loss = (ce + (beta * (logs - ldj))) return loss
def cross_entropy(input, target, weight=None, size_average=True, ignore_index=(- 100), reduce=True): '\n Taken from the master branch of pytorch, accepts (N, C, d_1, d_2, ..., d_K) input shapes\n instead of only (N, C, d_1, d_2) or (N, C).\n This criterion combines `log_softmax` and `nll_loss` in a single\n function.\n See :class:`~torch.nn.CrossEntropyLoss` for details.\n Args:\n input: Variable :math:`(N, C)` where `C = number of classes`\n target: Variable :math:`(N)` where each value is\n `0 <= targets[i] <= C-1`\n weight (Tensor, optional): a manual rescaling weight given to each\n class. If given, has to be a Tensor of size `C`\n size_average (bool, optional): By default, the losses are averaged\n over observations for each minibatch. However, if the field\n sizeAverage is set to False, the losses are instead summed\n for each minibatch. Ignored if reduce is False. Default: ``True``\n ignore_index (int, optional): Specifies a target value that is ignored\n and does not contribute to the input gradient. When size_average is\n True, the loss is averaged over non-ignored targets. Default: -100\n reduce (bool, optional): By default, the losses are averaged or summed over\n observations for each minibatch depending on size_average. When reduce\n is False, returns a loss per batch element instead and ignores\n size_average. Default: ``True``\n ' return nll_loss(F.log_softmax(input, 1), target, weight, size_average, ignore_index, reduce)
def nll_loss(input, target, weight=None, size_average=True, ignore_index=(- 100), reduce=True): '\n Taken from the master branch of pytorch, accepts (N, C, d_1, d_2, ..., d_K) input shapes\n instead of only (N, C, d_1, d_2) or (N, C).\n The negative log likelihood loss.\n See :class:`~torch.nn.NLLLoss` for details.\n Args:\n input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`\n in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K > 1`\n in the case of K-dimensional loss.\n target: :math:`(N)` where each value is `0 <= targets[i] <= C-1`,\n or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K >= 1` for\n K-dimensional loss.\n weight (Tensor, optional): a manual rescaling weight given to each\n class. If given, has to be a Tensor of size `C`\n size_average (bool, optional): By default, the losses are averaged\n over observations for each minibatch. If size_average\n is False, the losses are summed for each minibatch. Default: ``True``\n ignore_index (int, optional): Specifies a target value that is ignored\n and does not contribute to the input gradient. When size_average is\n True, the loss is averaged over non-ignored targets. Default: -100\n ' dim = input.dim() if (dim == 2): return F.nll_loss(input, target, weight=weight, size_average=size_average, ignore_index=ignore_index, reduce=reduce) elif (dim == 4): return F.nll_loss(input, target, weight=weight, size_average=size_average, ignore_index=ignore_index, reduce=reduce) elif ((dim == 3) or (dim > 4)): n = input.size(0) c = input.size(1) out_size = ((n,) + input.size()[2:]) if (target.size()[1:] != input.size()[2:]): raise ValueError('Expected target size {}, got {}'.format(out_size, input.size())) input = input.contiguous().view(n, c, 1, (- 1)) target = target.contiguous().view(n, 1, (- 1)) if reduce: _loss = nn.NLLLoss2d(weight=weight, size_average=size_average, ignore_index=ignore_index, reduce=reduce) return _loss(input, target) out = F.nll_loss(input, target, weight=weight, size_average=size_average, ignore_index=ignore_index, reduce=reduce) return out.view(out_size) else: raise ValueError('Expected 2 or more dimensions (got {})'.format(dim))
def calculate_loss(x_mean, x, z_mu, z_var, z_0, z_k, ldj, args, beta=1.0): '\n Picks the correct loss depending on the input type.\n ' if (args.input_type == 'binary'): (loss, rec, kl) = binary_loss_function(x_mean, x, z_mu, z_var, z_0, z_k, ldj, beta=beta) bpd = 0.0 elif (args.input_type == 'multinomial'): (loss, rec, kl) = multinomial_loss_function(x_mean, x, z_mu, z_var, z_0, z_k, ldj, args, beta=beta) bpd = (loss.data[0] / (np.prod(args.input_size) * np.log(2.0))) else: raise ValueError(('Invalid input type for calculate loss: %s.' % args.input_type)) return (loss, rec, kl, bpd)
def calculate_loss_array(x_mean, x, z_mu, z_var, z_0, z_k, ldj, args): '\n Picks the correct loss depending on the input type.\n ' if (args.input_type == 'binary'): loss = binary_loss_array(x_mean, x, z_mu, z_var, z_0, z_k, ldj) elif (args.input_type == 'multinomial'): loss = multinomial_loss_array(x_mean, x, z_mu, z_var, z_0, z_k, ldj, args) else: raise ValueError(('Invalid input type for calculate loss: %s.' % args.input_type)) return loss
def train(epoch, train_loader, model, opt, args, logger): model.train() train_loss = np.zeros(len(train_loader)) train_bpd = np.zeros(len(train_loader)) num_data = 0 beta = min([((epoch * 1.0) / max([args.warmup, 1.0])), args.max_beta]) logger.info('beta = {:5.4f}'.format(beta)) end = time.time() for (batch_idx, (data, _)) in enumerate(train_loader): if args.cuda: data = data.cuda() if args.dynamic_binarization: data = torch.bernoulli(data) data = data.view((- 1), *args.input_size) opt.zero_grad() (x_mean, z_mu, z_var, ldj, z0, zk) = model(data) if ('cnf' in args.flow): f_nfe = count_nfe(model) (loss, rec, kl, bpd) = calculate_loss(x_mean, data, z_mu, z_var, z0, zk, ldj, args, beta=beta) loss.backward() if ('cnf' in args.flow): t_nfe = count_nfe(model) b_nfe = (t_nfe - f_nfe) train_loss[batch_idx] = loss.item() train_bpd[batch_idx] = bpd opt.step() rec = rec.item() kl = kl.item() num_data += len(data) batch_time = (time.time() - end) end = time.time() if ((batch_idx % args.log_interval) == 0): if (args.input_type == 'binary'): perc = ((100.0 * batch_idx) / len(train_loader)) log_msg = 'Epoch {:3d} [{:5d}/{:5d} ({:2.0f}%)] | Time {:.3f} | Loss {:11.6f} | Rec {:11.6f} | KL {:11.6f}'.format(epoch, num_data, len(train_loader.sampler), perc, batch_time, loss.item(), rec, kl) else: perc = ((100.0 * batch_idx) / len(train_loader)) tmp = 'Epoch {:3d} [{:5d}/{:5d} ({:2.0f}%)] | Time {:.3f} | Loss {:11.6f} | Bits/dim {:8.6f}' log_msg = (tmp.format(epoch, num_data, len(train_loader.sampler), perc, batch_time, loss.item(), bpd), '\trec: {:11.3f}\tkl: {:11.6f}'.format(rec, kl)) log_msg = ''.join(log_msg) if ('cnf' in args.flow): log_msg += ' | NFE Forward {} | NFE Backward {}'.format(f_nfe, b_nfe) logger.info(log_msg) if (args.input_type == 'binary'): logger.info('====> Epoch: {:3d} Average train loss: {:.4f}'.format(epoch, (train_loss.sum() / len(train_loader)))) else: logger.info('====> Epoch: {:3d} Average train loss: {:.4f}, average bpd: {:.4f}'.format(epoch, (train_loss.sum() / len(train_loader)), (train_bpd.sum() / len(train_loader)))) return train_loss
def evaluate(data_loader, model, args, logger, testing=False, epoch=0): model.eval() loss = 0.0 batch_idx = 0 bpd = 0.0 if (args.input_type == 'binary'): loss_type = 'elbo' else: loss_type = 'bpd' if (testing and ('cnf' in args.flow)): override_divergence_fn(model, 'brute_force') for (data, _) in data_loader: batch_idx += 1 if args.cuda: data = data.cuda() with torch.no_grad(): data = data.view((- 1), *args.input_size) (x_mean, z_mu, z_var, ldj, z0, zk) = model(data) (batch_loss, rec, kl, batch_bpd) = calculate_loss(x_mean, data, z_mu, z_var, z0, zk, ldj, args) bpd += batch_bpd loss += batch_loss.item() if ((batch_idx == 1) and (testing is False)): plot_reconstructions(data, x_mean, batch_loss, loss_type, epoch, args) loss /= len(data_loader) bpd /= len(data_loader) if testing: logger.info('====> Test set loss: {:.4f}'.format(loss)) if (testing and (not ('cnf' in args.flow))): with torch.no_grad(): test_data = data_loader.dataset.tensors[0] if args.cuda: test_data = test_data.cuda() logger.info('Computing log-likelihood on test set') model.eval() if (args.dataset == 'caltech'): (log_likelihood, nll_bpd) = calculate_likelihood(test_data, model, args, logger, S=2000, MB=500) else: (log_likelihood, nll_bpd) = calculate_likelihood(test_data, model, args, logger, S=5000, MB=500) if ('cnf' in args.flow): override_divergence_fn(model, args.divergence_fn) else: log_likelihood = None nll_bpd = None if (args.input_type in ['multinomial']): bpd = (loss / (np.prod(args.input_size) * np.log(2.0))) if (testing and (not ('cnf' in args.flow))): logger.info('====> Test set log-likelihood: {:.4f}'.format(log_likelihood)) if (args.input_type != 'binary'): logger.info('====> Test set bpd (elbo): {:.4f}'.format(bpd)) logger.info('====> Test set bpd (log-likelihood): {:.4f}'.format((log_likelihood / (np.prod(args.input_size) * np.log(2.0))))) if (not testing): return (loss, bpd) else: return (log_likelihood, nll_bpd)
def log_normal_diag(x, mean, log_var, average=False, reduce=True, dim=None): log_norm = ((- 0.5) * (log_var + (((x - mean) * (x - mean)) * log_var.exp().reciprocal()))) if reduce: if average: return torch.mean(log_norm, dim) else: return torch.sum(log_norm, dim) else: return log_norm
def log_normal_normalized(x, mean, log_var, average=False, reduce=True, dim=None): log_norm = ((- (x - mean)) * (x - mean)) log_norm *= torch.reciprocal((2.0 * log_var.exp())) log_norm += ((- 0.5) * log_var) log_norm += ((- 0.5) * torch.log((2.0 * PI))) if reduce: if average: return torch.mean(log_norm, dim) else: return torch.sum(log_norm, dim) else: return log_norm
def log_normal_standard(x, average=False, reduce=True, dim=None): log_norm = (((- 0.5) * x) * x) if reduce: if average: return torch.mean(log_norm, dim) else: return torch.sum(log_norm, dim) else: return log_norm
def log_bernoulli(x, mean, average=False, reduce=True, dim=None): probs = torch.clamp(mean, min=MIN_EPSILON, max=MAX_EPSILON) log_bern = ((x * torch.log(probs)) + ((1.0 - x) * torch.log((1.0 - probs)))) if reduce: if average: return torch.mean(log_bern, dim) else: return torch.sum(log_bern, dim) else: return log_bern
def load_static_mnist(args, **kwargs): '\n Dataloading function for static mnist. Outputs image data in vectorized form: each image is a vector of size 784\n ' args.dynamic_binarization = False args.input_type = 'binary' args.input_size = [1, 28, 28] def lines_to_np_array(lines): return np.array([[int(i) for i in line.split()] for line in lines]) with open(os.path.join('data', 'MNIST_static', 'binarized_mnist_train.amat')) as f: lines = f.readlines() x_train = lines_to_np_array(lines).astype('float32') with open(os.path.join('data', 'MNIST_static', 'binarized_mnist_valid.amat')) as f: lines = f.readlines() x_val = lines_to_np_array(lines).astype('float32') with open(os.path.join('data', 'MNIST_static', 'binarized_mnist_test.amat')) as f: lines = f.readlines() x_test = lines_to_np_array(lines).astype('float32') np.random.shuffle(x_train) y_train = np.zeros((x_train.shape[0], 1)) y_val = np.zeros((x_val.shape[0], 1)) y_test = np.zeros((x_test.shape[0], 1)) train = data_utils.TensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train)) train_loader = data_utils.DataLoader(train, batch_size=args.batch_size, shuffle=True, **kwargs) validation = data_utils.TensorDataset(torch.from_numpy(x_val).float(), torch.from_numpy(y_val)) val_loader = data_utils.DataLoader(validation, batch_size=args.batch_size, shuffle=False, **kwargs) test = data_utils.TensorDataset(torch.from_numpy(x_test).float(), torch.from_numpy(y_test)) test_loader = data_utils.DataLoader(test, batch_size=args.batch_size, shuffle=False, **kwargs) return (train_loader, val_loader, test_loader, args)
def load_freyfaces(args, **kwargs): args.input_size = [1, 28, 20] args.input_type = 'multinomial' args.dynamic_binarization = False TRAIN = 1565 VAL = 200 TEST = 200 with open('data/Freyfaces/freyfaces.pkl', 'rb') as f: data = pickle.load(f, encoding='latin1')[0] data = (data / 255.0) np.random.seed(args.freyseed) np.random.shuffle(data) x_train = data[0:TRAIN].reshape((- 1), (28 * 20)) x_val = data[TRAIN:(TRAIN + VAL)].reshape((- 1), (28 * 20)) x_test = data[(TRAIN + VAL):((TRAIN + VAL) + TEST)].reshape((- 1), (28 * 20)) y_train = np.zeros((x_train.shape[0], 1)) y_val = np.zeros((x_val.shape[0], 1)) y_test = np.zeros((x_test.shape[0], 1)) train = data_utils.TensorDataset(torch.from_numpy(x_train).float(), torch.from_numpy(y_train)) train_loader = data_utils.DataLoader(train, batch_size=args.batch_size, shuffle=True, **kwargs) validation = data_utils.TensorDataset(torch.from_numpy(x_val).float(), torch.from_numpy(y_val)) val_loader = data_utils.DataLoader(validation, batch_size=args.batch_size, shuffle=False, **kwargs) test = data_utils.TensorDataset(torch.from_numpy(x_test).float(), torch.from_numpy(y_test)) test_loader = data_utils.DataLoader(test, batch_size=args.batch_size, shuffle=False, **kwargs) return (train_loader, val_loader, test_loader, args)
def load_omniglot(args, **kwargs): n_validation = 1345 args.input_size = [1, 28, 28] args.input_type = 'binary' args.dynamic_binarization = True def reshape_data(data): return data.reshape(((- 1), 28, 28)).reshape(((- 1), (28 * 28)), order='F') omni_raw = loadmat(os.path.join('data', 'OMNIGLOT', 'chardata.mat')) train_data = reshape_data(omni_raw['data'].T.astype('float32')) x_test = reshape_data(omni_raw['testdata'].T.astype('float32')) np.random.shuffle(train_data) x_train = train_data[:(- n_validation)] x_val = train_data[(- n_validation):] if args.dynamic_binarization: args.input_type = 'binary' np.random.seed(777) x_val = np.random.binomial(1, x_val) x_test = np.random.binomial(1, x_test) else: args.input_type = 'gray' y_train = np.zeros((x_train.shape[0], 1)) y_val = np.zeros((x_val.shape[0], 1)) y_test = np.zeros((x_test.shape[0], 1)) train = data_utils.TensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train)) train_loader = data_utils.DataLoader(train, batch_size=args.batch_size, shuffle=True, **kwargs) validation = data_utils.TensorDataset(torch.from_numpy(x_val).float(), torch.from_numpy(y_val)) val_loader = data_utils.DataLoader(validation, batch_size=args.batch_size, shuffle=False, **kwargs) test = data_utils.TensorDataset(torch.from_numpy(x_test).float(), torch.from_numpy(y_test)) test_loader = data_utils.DataLoader(test, batch_size=args.batch_size, shuffle=False, **kwargs) return (train_loader, val_loader, test_loader, args)
def load_caltech101silhouettes(args, **kwargs): args.input_size = [1, 28, 28] args.input_type = 'binary' args.dynamic_binarization = False def reshape_data(data): return data.reshape(((- 1), 28, 28)).reshape(((- 1), (28 * 28)), order='F') caltech_raw = loadmat(os.path.join('data', 'Caltech101Silhouettes', 'caltech101_silhouettes_28_split1.mat')) x_train = (1.0 - reshape_data(caltech_raw['train_data'].astype('float32'))) np.random.shuffle(x_train) x_val = (1.0 - reshape_data(caltech_raw['val_data'].astype('float32'))) np.random.shuffle(x_val) x_test = (1.0 - reshape_data(caltech_raw['test_data'].astype('float32'))) y_train = caltech_raw['train_labels'] y_val = caltech_raw['val_labels'] y_test = caltech_raw['test_labels'] train = data_utils.TensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train)) train_loader = data_utils.DataLoader(train, batch_size=args.batch_size, shuffle=True, **kwargs) validation = data_utils.TensorDataset(torch.from_numpy(x_val).float(), torch.from_numpy(y_val)) val_loader = data_utils.DataLoader(validation, batch_size=args.batch_size, shuffle=False, **kwargs) test = data_utils.TensorDataset(torch.from_numpy(x_test).float(), torch.from_numpy(y_test)) test_loader = data_utils.DataLoader(test, batch_size=args.batch_size, shuffle=False, **kwargs) return (train_loader, val_loader, test_loader, args)
def load_dataset(args, **kwargs): if (args.dataset == 'mnist'): (train_loader, val_loader, test_loader, args) = load_static_mnist(args, **kwargs) elif (args.dataset == 'caltech'): (train_loader, val_loader, test_loader, args) = load_caltech101silhouettes(args, **kwargs) elif (args.dataset == 'freyfaces'): (train_loader, val_loader, test_loader, args) = load_freyfaces(args, **kwargs) elif (args.dataset == 'omniglot'): (train_loader, val_loader, test_loader, args) = load_omniglot(args, **kwargs) else: raise Exception('Wrong name of the dataset!') return (train_loader, val_loader, test_loader, args)
def calculate_likelihood(X, model, args, logger, S=5000, MB=500): N_test = X.size(0) X = X.view((- 1), *args.input_size) likelihood_test = [] if (S <= MB): R = 1 else: R = (S // MB) S = MB end = time.time() for j in range(N_test): x_single = X[j].unsqueeze(0) a = [] for r in range(0, R): x = x_single.expand(S, *x_single.size()[1:]).contiguous() (x_mean, z_mu, z_var, ldj, z0, zk) = model(x) a_tmp = calculate_loss_array(x_mean, x, z_mu, z_var, z0, zk, ldj, args) a.append((- a_tmp.cpu().data.numpy())) a = np.asarray(a) a = np.reshape(a, ((a.shape[0] * a.shape[1]), 1)) likelihood_x = logsumexp(a) likelihood_test.append((likelihood_x - np.log(len(a)))) if ((j % 1) == 0): logger.info('Progress: {:.2f}% | Time: {:.4f}'.format(((j / (1.0 * N_test)) * 100), (time.time() - end))) end = time.time() likelihood_test = np.array(likelihood_test) nll = (- np.mean(likelihood_test)) if (args.input_type == 'multinomial'): bpd = (nll / (np.prod(args.input_size) * np.log(2.0))) elif (args.input_type == 'binary'): bpd = 0.0 else: raise ValueError('invalid input type!') return (nll, bpd)
def plot_training_curve(train_loss, validation_loss, fname='training_curve.pdf', labels=None): '\n Plots train_loss and validation loss as a function of optimization iteration\n :param train_loss: np.array of train_loss (1D or 2D)\n :param validation_loss: np.array of validation loss (1D or 2D)\n :param fname: output file name\n :param labels: if train_loss and validation loss are 2D, then labels indicate which variable is varied\n accross training curves.\n :return: None\n ' plt.close() matplotlib.rcParams.update({'font.size': 14}) matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' if (len(train_loss.shape) == 1): (fig, ax) = plt.subplots(nrows=1, ncols=1) figsize = (6, 4) if (train_loss.shape[0] == validation_loss.shape[0]): x = np.arange(train_loss.shape[0]) ax.plot(x, train_loss, '-', lw=2.0, color='black', label='train') ax.plot(x, validation_loss, '-', lw=2.0, color='blue', label='val') elif ((train_loss.shape[0] % validation_loss.shape[0]) == 0): x = np.arange(train_loss.shape[0]) ax.plot(x, train_loss, '-', lw=2.0, color='black', label='train') x = np.arange(validation_loss.shape[0]) x = (((x + 1) * train_loss.shape[0]) / validation_loss.shape[0]) ax.plot(x, validation_loss, '-', lw=2.0, color='blue', label='val') else: raise ValueError('Length of train_loss and validation_loss must be equal or divisible') miny = (np.minimum(validation_loss.min(), train_loss.min()) - 20.0) maxy = (np.maximum(validation_loss.max(), train_loss.max()) + 30.0) ax.set_ylim([miny, maxy]) elif (len(train_loss.shape) == 2): cmap = plt.cm.brg cNorm = matplotlib.colors.Normalize(vmin=0, vmax=train_loss.shape[0]) scalarMap = matplotlib.cm.ScalarMappable(norm=cNorm, cmap=cmap) (fig, ax) = plt.subplots(nrows=1, ncols=1) figsize = (6, 4) if (labels is None): labels = [('%d' % i) for i in range(train_loss.shape[0])] if (train_loss.shape[1] == validation_loss.shape[1]): for i in range(train_loss.shape[0]): color_val = scalarMap.to_rgba(i) x = np.arange(train_loss.shape[0]) ax.plot(x, train_loss[i], '-', lw=2.0, color=color_val, label=labels[i]) ax.plot(x, validation_loss[i], '--', lw=2.0, color=color_val) elif ((train_loss.shape[1] % validation_loss.shape[1]) == 0): for i in range(train_loss.shape[0]): color_val = scalarMap.to_rgba(i) x = np.arange(train_loss.shape[1]) ax.plot(x, train_loss[i], '-', lw=2.0, color=color_val, label=labels[i]) x = np.arange(validation_loss.shape[1]) x = (((x + 1) * train_loss.shape[1]) / validation_loss.shape[1]) ax.plot(x, validation_loss[i], '-', lw=2.0, color=color_val) miny = (np.minimum(validation_loss.min(), train_loss.min()) - 20.0) maxy = (np.maximum(validation_loss.max(), train_loss.max()) + 30.0) ax.set_ylim([miny, maxy]) else: raise ValueError('train_loss and validation_loss must be 1D or 2D arrays') ax.set_xlabel('iteration') ax.set_ylabel('loss') plt.title('Training and validation loss') fig.set_size_inches(figsize) fig.subplots_adjust(hspace=0.1) plt.savefig(fname, bbox_inches='tight') plt.close()