code
stringlengths
17
6.64M
class CelebA5bit(object): LOC = 'data/celebahq64_5bit/celeba_full_64x64_5bit.pth' def __init__(self, train=True, transform=None): self.dataset = torch.load(self.LOC).float().div(31) if (not train): self.dataset = self.dataset[:5000] self.transform = transform def __len__(self): return self.dataset.size(0) @property def ndim(self): return self.dataset.size(1) def __getitem__(self, index): x = self.dataset[index] x = (self.transform(x) if (self.transform is not None) else x) return (x, 0)
class CelebAHQ(Dataset): TRAIN_LOC = 'data/celebahq/celeba256_train.pth' TEST_LOC = 'data/celebahq/celeba256_validation.pth' def __init__(self, train=True, transform=None): return super(CelebAHQ, self).__init__((self.TRAIN_LOC if train else self.TEST_LOC), transform)
class Imagenet32(Dataset): TRAIN_LOC = 'data/imagenet32/train_32x32.pth' TEST_LOC = 'data/imagenet32/valid_32x32.pth' def __init__(self, train=True, transform=None): return super(Imagenet32, self).__init__((self.TRAIN_LOC if train else self.TEST_LOC), transform)
class Imagenet64(Dataset): TRAIN_LOC = 'data/imagenet64/train_64x64.pth' TEST_LOC = 'data/imagenet64/valid_64x64.pth' def __init__(self, train=True, transform=None): return super(Imagenet64, self).__init__((self.TRAIN_LOC if train else self.TEST_LOC), transform, in_mem=False)
class ActNormNd(nn.Module): def __init__(self, num_features, eps=1e-12): super(ActNormNd, self).__init__() self.num_features = num_features self.eps = eps self.weight = Parameter(torch.Tensor(num_features)) self.bias = Parameter(torch.Tensor(num_features)) self.register_buffer('initialized', torch.tensor(0)) @property def shape(self): raise NotImplementedError def forward(self, x, logpx=None): c = x.size(1) if (not self.initialized): with torch.no_grad(): x_t = x.transpose(0, 1).contiguous().view(c, (- 1)) batch_mean = torch.mean(x_t, dim=1) batch_var = torch.var(x_t, dim=1) batch_var = torch.max(batch_var, torch.tensor(0.2).to(batch_var)) self.bias.data.copy_((- batch_mean)) self.weight.data.copy_(((- 0.5) * torch.log(batch_var))) self.initialized.fill_(1) bias = self.bias.view(*self.shape).expand_as(x) weight = self.weight.view(*self.shape).expand_as(x) y = ((x + bias) * torch.exp(weight)) if (logpx is None): return y else: return (y, (logpx - self._logdetgrad(x))) def inverse(self, y, logpy=None): assert self.initialized bias = self.bias.view(*self.shape).expand_as(y) weight = self.weight.view(*self.shape).expand_as(y) x = ((y * torch.exp((- weight))) - bias) if (logpy is None): return x else: return (x, (logpy + self._logdetgrad(x))) def _logdetgrad(self, x): return self.weight.view(*self.shape).expand(*x.size()).contiguous().view(x.size(0), (- 1)).sum(1, keepdim=True) def __repr__(self): return '{name}({num_features})'.format(name=self.__class__.__name__, **self.__dict__)
class ActNorm1d(ActNormNd): @property def shape(self): return [1, (- 1)]
class ActNorm2d(ActNormNd): @property def shape(self): return [1, (- 1), 1, 1]
class Identity(nn.Module): def forward(self, x): return x
class FullSort(nn.Module): def forward(self, x): return torch.sort(x, 1)[0]
class MaxMin(nn.Module): def forward(self, x): (b, d) = x.shape max_vals = torch.max(x.view(b, (d // 2), 2), 2)[0] min_vals = torch.min(x.view(b, (d // 2), 2), 2)[0] return torch.cat([max_vals, min_vals], 1)
class LipschitzCube(nn.Module): def forward(self, x): return ((((x >= 1).to(x) * (x - (2 / 3))) + ((x <= (- 1)).to(x) * (x + (2 / 3)))) + ((((x > (- 1)) * (x < 1)).to(x) * (x ** 3)) / 3))
class SwishFn(torch.autograd.Function): @staticmethod def forward(ctx, x, beta): beta_sigm = torch.sigmoid((beta * x)) output = (x * beta_sigm) ctx.save_for_backward(x, output, beta) return (output / 1.1) @staticmethod def backward(ctx, grad_output): (x, output, beta) = ctx.saved_tensors beta_sigm = (output / x) grad_x = (grad_output * ((beta * output) + (beta_sigm * (1 - (beta * output))))) grad_beta = torch.sum((grad_output * ((x * output) - (output * output)))).expand_as(beta) return ((grad_x / 1.1), (grad_beta / 1.1))
class Swish(nn.Module): def __init__(self): super(Swish, self).__init__() self.beta = nn.Parameter(torch.tensor([0.5])) def forward(self, x): return (x * torch.sigmoid_((x * F.softplus(self.beta)))).div_(1.1)
class SpectralNormLinear(nn.Module): def __init__(self, in_features, out_features, bias=True, coeff=0.97, n_iterations=None, atol=None, rtol=None, **unused_kwargs): del unused_kwargs super(SpectralNormLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.coeff = coeff self.n_iterations = n_iterations self.atol = atol self.rtol = rtol self.weight = nn.Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = nn.Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() (h, w) = self.weight.shape self.register_buffer('scale', torch.tensor(0.0)) self.register_buffer('u', F.normalize(self.weight.new_empty(h).normal_(0, 1), dim=0)) self.register_buffer('v', F.normalize(self.weight.new_empty(w).normal_(0, 1), dim=0)) self.compute_weight(True, 200) def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if (self.bias is not None): (fan_in, _) = init._calculate_fan_in_and_fan_out(self.weight) bound = (1 / math.sqrt(fan_in)) init.uniform_(self.bias, (- bound), bound) def compute_weight(self, update=True, n_iterations=None, atol=None, rtol=None): n_iterations = (self.n_iterations if (n_iterations is None) else n_iterations) atol = (self.atol if (atol is None) else atol) rtol = (self.rtol if (rtol is None) else atol) if ((n_iterations is None) and ((atol is None) or (rtol is None))): raise ValueError('Need one of n_iteration or (atol, rtol).') if (n_iterations is None): n_iterations = 20000 u = self.u v = self.v weight = self.weight if update: with torch.no_grad(): itrs_used = 0.0 for _ in range(n_iterations): old_v = v.clone() old_u = u.clone() v = F.normalize(torch.mv(weight.t(), u), dim=0, out=v) u = F.normalize(torch.mv(weight, v), dim=0, out=u) itrs_used = (itrs_used + 1) if ((atol is not None) and (rtol is not None)): err_u = (torch.norm((u - old_u)) / (u.nelement() ** 0.5)) err_v = (torch.norm((v - old_v)) / (v.nelement() ** 0.5)) tol_u = (atol + (rtol * torch.max(u))) tol_v = (atol + (rtol * torch.max(v))) if ((err_u < tol_u) and (err_v < tol_v)): break if (itrs_used > 0): u = u.clone() v = v.clone() sigma = torch.dot(u, torch.mv(weight, v)) with torch.no_grad(): self.scale.copy_(sigma) factor = torch.max(torch.ones(1).to(weight.device), (sigma / self.coeff)) weight = (weight / factor) return weight def forward(self, input): weight = self.compute_weight(update=self.training) return F.linear(input, weight, self.bias) def extra_repr(self): return 'in_features={}, out_features={}, bias={}, coeff={}, n_iters={}, atol={}, rtol={}'.format(self.in_features, self.out_features, (self.bias is not None), self.coeff, self.n_iterations, self.atol, self.rtol)
class SpectralNormConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, n_iterations=None, atol=None, rtol=None, **unused_kwargs): del unused_kwargs super(SpectralNormConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.coeff = coeff self.n_iterations = n_iterations self.atol = atol self.rtol = rtol self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() self.initialized = False self.register_buffer('spatial_dims', torch.tensor([1.0, 1.0])) self.register_buffer('scale', torch.tensor(0.0)) def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if (self.bias is not None): (fan_in, _) = init._calculate_fan_in_and_fan_out(self.weight) bound = (1 / math.sqrt(fan_in)) init.uniform_(self.bias, (- bound), bound) def _initialize_u_v(self): if (self.kernel_size == (1, 1)): self.register_buffer('u', F.normalize(self.weight.new_empty(self.out_channels).normal_(0, 1), dim=0)) self.register_buffer('v', F.normalize(self.weight.new_empty(self.in_channels).normal_(0, 1), dim=0)) else: (c, h, w) = (self.in_channels, int(self.spatial_dims[0].item()), int(self.spatial_dims[1].item())) with torch.no_grad(): num_input_dim = ((c * h) * w) v = F.normalize(torch.randn(num_input_dim).to(self.weight), dim=0, eps=1e-12) u = F.conv2d(v.view(1, c, h, w), self.weight, stride=self.stride, padding=self.padding, bias=None) num_output_dim = (((u.shape[0] * u.shape[1]) * u.shape[2]) * u.shape[3]) self.out_shape = u.shape u = F.normalize(torch.randn(num_output_dim).to(self.weight), dim=0, eps=1e-12) self.register_buffer('u', u) self.register_buffer('v', v) def compute_weight(self, update=True, n_iterations=None): if (not self.initialized): self._initialize_u_v() self.initialized = True if (self.kernel_size == (1, 1)): return self._compute_weight_1x1(update, n_iterations) else: return self._compute_weight_kxk(update, n_iterations) def _compute_weight_1x1(self, update=True, n_iterations=None, atol=None, rtol=None): n_iterations = (self.n_iterations if (n_iterations is None) else n_iterations) atol = (self.atol if (atol is None) else atol) rtol = (self.rtol if (rtol is None) else atol) if ((n_iterations is None) and ((atol is None) or (rtol is None))): raise ValueError('Need one of n_iteration or (atol, rtol).') if (n_iterations is None): n_iterations = 20000 u = self.u v = self.v weight = self.weight.view(self.out_channels, self.in_channels) if update: with torch.no_grad(): itrs_used = 0 for _ in range(n_iterations): old_v = v.clone() old_u = u.clone() v = F.normalize(torch.mv(weight.t(), u), dim=0, out=v) u = F.normalize(torch.mv(weight, v), dim=0, out=u) itrs_used = (itrs_used + 1) if ((atol is not None) and (rtol is not None)): err_u = (torch.norm((u - old_u)) / (u.nelement() ** 0.5)) err_v = (torch.norm((v - old_v)) / (v.nelement() ** 0.5)) tol_u = (atol + (rtol * torch.max(u))) tol_v = (atol + (rtol * torch.max(v))) if ((err_u < tol_u) and (err_v < tol_v)): break if (itrs_used > 0): u = u.clone() v = v.clone() sigma = torch.dot(u, torch.mv(weight, v)) with torch.no_grad(): self.scale.copy_(sigma) factor = torch.max(torch.ones(1).to(weight.device), (sigma / self.coeff)) weight = (weight / factor) return weight.view(self.out_channels, self.in_channels, 1, 1) def _compute_weight_kxk(self, update=True, n_iterations=None, atol=None, rtol=None): n_iterations = (self.n_iterations if (n_iterations is None) else n_iterations) atol = (self.atol if (atol is None) else atol) rtol = (self.rtol if (rtol is None) else atol) if ((n_iterations is None) and ((atol is None) or (rtol is None))): raise ValueError('Need one of n_iteration or (atol, rtol).') if (n_iterations is None): n_iterations = 20000 u = self.u v = self.v weight = self.weight (c, h, w) = (self.in_channels, int(self.spatial_dims[0].item()), int(self.spatial_dims[1].item())) if update: with torch.no_grad(): itrs_used = 0 for _ in range(n_iterations): old_u = u.clone() old_v = v.clone() v_s = F.conv_transpose2d(u.view(self.out_shape), weight, stride=self.stride, padding=self.padding, output_padding=0) v = F.normalize(v_s.view((- 1)), dim=0, out=v) u_s = F.conv2d(v.view(1, c, h, w), weight, stride=self.stride, padding=self.padding, bias=None) u = F.normalize(u_s.view((- 1)), dim=0, out=u) itrs_used = (itrs_used + 1) if ((atol is not None) and (rtol is not None)): err_u = (torch.norm((u - old_u)) / (u.nelement() ** 0.5)) err_v = (torch.norm((v - old_v)) / (v.nelement() ** 0.5)) tol_u = (atol + (rtol * torch.max(u))) tol_v = (atol + (rtol * torch.max(v))) if ((err_u < tol_u) and (err_v < tol_v)): break if (itrs_used > 0): u = u.clone() v = v.clone() weight_v = F.conv2d(v.view(1, c, h, w), weight, stride=self.stride, padding=self.padding, bias=None) weight_v = weight_v.view((- 1)) sigma = torch.dot(u.view((- 1)), weight_v) with torch.no_grad(): self.scale.copy_(sigma) factor = torch.max(torch.ones(1).to(weight.device), (sigma / self.coeff)) weight = (weight / factor) return weight def forward(self, input): if (not self.initialized): self.spatial_dims.copy_(torch.tensor(input.shape[2:4]).to(self.spatial_dims)) weight = self.compute_weight(update=self.training) return F.conv2d(input, weight, self.bias, self.stride, self.padding, 1, 1) def extra_repr(self): s = '{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}' if (self.padding != ((0,) * len(self.padding))): s += ', padding={padding}' if (self.bias is None): s += ', bias=False' s += ', coeff={}, n_iters={}, atol={}, rtol={}'.format(self.coeff, self.n_iterations, self.atol, self.rtol) return s.format(**self.__dict__)
class LopLinear(nn.Linear): 'Lipschitz constant defined using operator norms.' def __init__(self, in_features, out_features, bias=True, coeff=0.97, domain=float('inf'), codomain=float('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LopLinear, self).__init__(in_features, out_features, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint (max_across_input_dims, self.norm_type) = operator_norm_settings(self.domain, self.codomain) self.max_across_dim = (1 if max_across_input_dims else 0) self.register_buffer('scale', torch.tensor(0.0)) def compute_weight(self): scale = _norm_except_dim(self.weight, self.norm_type, dim=self.max_across_dim) if (not self.local_constraint): scale = scale.max() with torch.no_grad(): self.scale.copy_(scale.max()) factor = torch.max(torch.ones(1).to(self.weight), (scale / self.coeff)) return (self.weight / factor) def forward(self, input): weight = self.compute_weight() return F.linear(input, weight, self.bias) def extra_repr(self): s = super(LopLinear, self).extra_repr() return (s + ', coeff={}, domain={}, codomain={}, local={}'.format(self.coeff, self.domain, self.codomain, self.local_constraint))
class LopConv2d(nn.Conv2d): 'Lipschitz constant defined using operator norms.' def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, domain=float('inf'), codomain=float('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LopConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint (max_across_input_dims, self.norm_type) = operator_norm_settings(self.domain, self.codomain) self.max_across_dim = (1 if max_across_input_dims else 0) self.register_buffer('scale', torch.tensor(0.0)) def compute_weight(self): scale = _norm_except_dim(self.weight, self.norm_type, dim=self.max_across_dim) if (not self.local_constraint): scale = scale.max() with torch.no_grad(): self.scale.copy_(scale.max()) factor = torch.max(torch.ones(1).to(self.weight.device), (scale / self.coeff)) return (self.weight / factor) def forward(self, input): weight = self.compute_weight() return F.conv2d(input, weight, self.bias, self.stride, self.padding, 1, 1) def extra_repr(self): s = super(LopConv2d, self).extra_repr() return (s + ', coeff={}, domain={}, codomain={}, local={}'.format(self.coeff, self.domain, self.codomain, self.local_constraint))
class LipNormLinear(nn.Linear): 'Lipschitz constant defined using operator norms.' def __init__(self, in_features, out_features, bias=True, coeff=0.97, domain=float('inf'), codomain=float('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LipNormLinear, self).__init__(in_features, out_features, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint (max_across_input_dims, self.norm_type) = operator_norm_settings(self.domain, self.codomain) self.max_across_dim = (1 if max_across_input_dims else 0) with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self.max_across_dim) if (not self.local_constraint): w_scale = w_scale.max() self.scale = nn.Parameter(_logit((w_scale / self.coeff))) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self.max_across_dim) if (not self.local_constraint): w_scale = w_scale.max() return (((self.weight / w_scale) * torch.sigmoid(self.scale)) * self.coeff) def forward(self, input): weight = self.compute_weight() return F.linear(input, weight, self.bias) def extra_repr(self): s = super(LipNormLinear, self).extra_repr() return (s + ', coeff={}, domain={}, codomain={}, local={}'.format(self.coeff, self.domain, self.codomain, self.local_constraint))
class LipNormConv2d(nn.Conv2d): 'Lipschitz constant defined using operator norms.' def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, domain=float('inf'), codomain=float('inf'), local_constraint=True, **unused_kwargs): del unused_kwargs super(LipNormConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, bias) self.coeff = coeff self.domain = domain self.codomain = codomain self.local_constraint = local_constraint (max_across_input_dims, self.norm_type) = operator_norm_settings(self.domain, self.codomain) self.max_across_dim = (1 if max_across_input_dims else 0) with torch.no_grad(): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self.max_across_dim) if (not self.local_constraint): w_scale = w_scale.max() self.scale = nn.Parameter(_logit((w_scale / self.coeff))) def compute_weight(self): w_scale = _norm_except_dim(self.weight, self.norm_type, dim=self.max_across_dim) if (not self.local_constraint): w_scale = w_scale.max() return ((self.weight / w_scale) * torch.sigmoid(self.scale)) def forward(self, input): weight = self.compute_weight() return F.conv2d(input, weight, self.bias, self.stride, self.padding, 1, 1) def extra_repr(self): s = super(LipNormConv2d, self).extra_repr() return (s + ', coeff={}, domain={}, codomain={}, local={}'.format(self.coeff, self.domain, self.codomain, self.local_constraint))
def _logit(p): p = torch.max((torch.ones(1) * 0.1), torch.min((torch.ones(1) * 0.9), p)) return (torch.log((p + 1e-10)) + torch.log(((1 - p) + 1e-10)))
def _norm_except_dim(w, norm_type, dim): if ((norm_type == 1) or (norm_type == 2)): return torch.norm_except_dim(w, norm_type, dim) elif (norm_type == float('inf')): return _max_except_dim(w, dim)
def _max_except_dim(input, dim): maxed = input for axis in range((input.ndimension() - 1), dim, (- 1)): (maxed, _) = maxed.max(axis, keepdim=True) for axis in range((dim - 1), (- 1), (- 1)): (maxed, _) = maxed.max(axis, keepdim=True) return maxed
def operator_norm_settings(domain, codomain): if ((domain == 1) and (codomain == 1)): max_across_input_dims = True norm_type = 1 elif ((domain == 1) and (codomain == 2)): max_across_input_dims = True norm_type = 2 elif ((domain == 1) and (codomain == float('inf'))): max_across_input_dims = True norm_type = float('inf') elif ((domain == 2) and (codomain == float('inf'))): max_across_input_dims = False norm_type = 2 elif ((domain == float('inf')) and (codomain == float('inf'))): max_across_input_dims = False norm_type = 1 else: raise ValueError('Unknown combination of domain "{}" and codomain "{}"'.format(domain, codomain)) return (max_across_input_dims, norm_type)
def get_linear(in_features, out_features, bias=True, coeff=0.97, domain=None, codomain=None, **kwargs): _linear = InducedNormLinear if (domain == 1): if (codomain in [1, 2, float('inf')]): _linear = LopLinear elif (codomain == float('inf')): if (domain in [2, float('inf')]): _linear = LopLinear return _linear(in_features, out_features, bias, coeff, domain, codomain, **kwargs)
def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, domain=None, codomain=None, **kwargs): _conv2d = InducedNormConv2d if (domain == 1): if (codomain in [1, 2, float('inf')]): _conv2d = LopConv2d elif (codomain == float('inf')): if (domain in [2, float('inf')]): _conv2d = LopConv2d return _conv2d(in_channels, out_channels, kernel_size, stride, padding, bias, coeff, domain, codomain, **kwargs)
class InducedNormLinear(nn.Module): def __init__(self, in_features, out_features, bias=True, coeff=0.97, domain=2, codomain=2, n_iterations=None, atol=None, rtol=None, zero_init=False, **unused_kwargs): del unused_kwargs super(InducedNormLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.coeff = coeff self.n_iterations = n_iterations self.atol = atol self.rtol = rtol self.domain = domain self.codomain = codomain self.weight = nn.Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = nn.Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters(zero_init) with torch.no_grad(): (domain, codomain) = self.compute_domain_codomain() (h, w) = self.weight.shape self.register_buffer('scale', torch.tensor(0.0)) self.register_buffer('u', normalize_u(self.weight.new_empty(h).normal_(0, 1), codomain)) self.register_buffer('v', normalize_v(self.weight.new_empty(w).normal_(0, 1), domain)) with torch.no_grad(): self.compute_weight(True, n_iterations=200, atol=None, rtol=None) best_scale = self.scale.clone() (best_u, best_v) = (self.u.clone(), self.v.clone()) if (not ((domain == 2) and (codomain == 2))): for _ in range(10): self.register_buffer('u', normalize_u(self.weight.new_empty(h).normal_(0, 1), codomain)) self.register_buffer('v', normalize_v(self.weight.new_empty(w).normal_(0, 1), domain)) self.compute_weight(True, n_iterations=200) if (self.scale > best_scale): (best_u, best_v) = (self.u.clone(), self.v.clone()) self.u.copy_(best_u) self.v.copy_(best_v) def reset_parameters(self, zero_init=False): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if zero_init: self.weight.data.div_(1000) if (self.bias is not None): (fan_in, _) = init._calculate_fan_in_and_fan_out(self.weight) bound = (1 / math.sqrt(fan_in)) init.uniform_(self.bias, (- bound), bound) def compute_domain_codomain(self): if torch.is_tensor(self.domain): domain = asym_squash(self.domain) codomain = asym_squash(self.codomain) else: (domain, codomain) = (self.domain, self.codomain) return (domain, codomain) def compute_one_iter(self): (domain, codomain) = self.compute_domain_codomain() u = self.u.detach() v = self.v.detach() weight = self.weight.detach() u = normalize_u(torch.mv(weight, v), codomain) v = normalize_v(torch.mv(weight.t(), u), domain) return torch.dot(u, torch.mv(weight, v)) def compute_weight(self, update=True, n_iterations=None, atol=None, rtol=None): u = self.u v = self.v weight = self.weight if update: n_iterations = (self.n_iterations if (n_iterations is None) else n_iterations) atol = (self.atol if (atol is None) else atol) rtol = (self.rtol if (rtol is None) else atol) if ((n_iterations is None) and ((atol is None) or (rtol is None))): raise ValueError('Need one of n_iteration or (atol, rtol).') max_itrs = 200 if (n_iterations is not None): max_itrs = n_iterations with torch.no_grad(): (domain, codomain) = self.compute_domain_codomain() for _ in range(max_itrs): if ((n_iterations is None) and (atol is not None) and (rtol is not None)): old_v = v.clone() old_u = u.clone() u = normalize_u(torch.mv(weight, v), codomain, out=u) v = normalize_v(torch.mv(weight.t(), u), domain, out=v) if ((n_iterations is None) and (atol is not None) and (rtol is not None)): err_u = (torch.norm((u - old_u)) / (u.nelement() ** 0.5)) err_v = (torch.norm((v - old_v)) / (v.nelement() ** 0.5)) tol_u = (atol + (rtol * torch.max(u))) tol_v = (atol + (rtol * torch.max(v))) if ((err_u < tol_u) and (err_v < tol_v)): break self.v.copy_(v) self.u.copy_(u) u = u.clone() v = v.clone() sigma = torch.dot(u, torch.mv(weight, v)) with torch.no_grad(): self.scale.copy_(sigma) factor = torch.max(torch.ones(1).to(weight.device), (sigma / self.coeff)) weight = (weight / factor) return weight def forward(self, input): weight = self.compute_weight(update=False) return F.linear(input, weight, self.bias) def extra_repr(self): (domain, codomain) = self.compute_domain_codomain() return 'in_features={}, out_features={}, bias={}, coeff={}, domain={:.2f}, codomain={:.2f}, n_iters={}, atol={}, rtol={}, learnable_ord={}'.format(self.in_features, self.out_features, (self.bias is not None), self.coeff, domain, codomain, self.n_iterations, self.atol, self.rtol, torch.is_tensor(self.domain))
class InducedNormConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True, coeff=0.97, domain=2, codomain=2, n_iterations=None, atol=None, rtol=None, **unused_kwargs): del unused_kwargs super(InducedNormConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.coeff = coeff self.n_iterations = n_iterations self.domain = domain self.codomain = codomain self.atol = atol self.rtol = rtol self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() self.register_buffer('initialized', torch.tensor(0)) self.register_buffer('spatial_dims', torch.tensor([1.0, 1.0])) self.register_buffer('scale', torch.tensor(0.0)) self.register_buffer('u', self.weight.new_empty(self.out_channels)) self.register_buffer('v', self.weight.new_empty(self.in_channels)) def compute_domain_codomain(self): if torch.is_tensor(self.domain): domain = asym_squash(self.domain) codomain = asym_squash(self.codomain) else: (domain, codomain) = (self.domain, self.codomain) return (domain, codomain) def reset_parameters(self): init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if (self.bias is not None): (fan_in, _) = init._calculate_fan_in_and_fan_out(self.weight) bound = (1 / math.sqrt(fan_in)) init.uniform_(self.bias, (- bound), bound) def _initialize_u_v(self): with torch.no_grad(): (domain, codomain) = self.compute_domain_codomain() if (self.kernel_size == (1, 1)): self.u.resize_(self.out_channels).normal_(0, 1) self.u.copy_(normalize_u(self.u, codomain)) self.v.resize_(self.in_channels).normal_(0, 1) self.v.copy_(normalize_v(self.v, domain)) else: (c, h, w) = (self.in_channels, int(self.spatial_dims[0].item()), int(self.spatial_dims[1].item())) with torch.no_grad(): num_input_dim = ((c * h) * w) self.v.resize_(num_input_dim).normal_(0, 1) self.v.copy_(normalize_v(self.v, domain)) u = F.conv2d(self.v.view(1, c, h, w), self.weight, stride=self.stride, padding=self.padding, bias=None) num_output_dim = (((u.shape[0] * u.shape[1]) * u.shape[2]) * u.shape[3]) self.u.resize_(num_output_dim).normal_(0, 1) self.u.copy_(normalize_u(self.u, codomain)) self.initialized.fill_(1) self.compute_weight(True) best_scale = self.scale.clone() (best_u, best_v) = (self.u.clone(), self.v.clone()) if (not ((domain == 2) and (codomain == 2))): for _ in range(10): if (self.kernel_size == (1, 1)): self.u.copy_(normalize_u(self.weight.new_empty(self.out_channels).normal_(0, 1), codomain)) self.v.copy_(normalize_v(self.weight.new_empty(self.in_channels).normal_(0, 1), domain)) else: self.u.copy_(normalize_u(torch.randn(num_output_dim).to(self.weight), codomain)) self.v.copy_(normalize_v(torch.randn(num_input_dim).to(self.weight), domain)) self.compute_weight(True, n_iterations=200) if (self.scale > best_scale): (best_u, best_v) = (self.u.clone(), self.v.clone()) self.u.copy_(best_u) self.v.copy_(best_v) def compute_one_iter(self): if (not self.initialized): raise ValueError('Layer needs to be initialized first.') (domain, codomain) = self.compute_domain_codomain() if (self.kernel_size == (1, 1)): u = self.u.detach() v = self.v.detach() weight = self.weight.detach().view(self.out_channels, self.in_channels) u = normalize_u(torch.mv(weight, v), codomain) v = normalize_v(torch.mv(weight.t(), u), domain) return torch.dot(u, torch.mv(weight, v)) else: u = self.u.detach() v = self.v.detach() weight = self.weight.detach() (c, h, w) = (self.in_channels, int(self.spatial_dims[0].item()), int(self.spatial_dims[1].item())) u_s = F.conv2d(v.view(1, c, h, w), weight, stride=self.stride, padding=self.padding, bias=None) out_shape = u_s.shape u = normalize_u(u_s.view((- 1)), codomain) v_s = F.conv_transpose2d(u.view(out_shape), weight, stride=self.stride, padding=self.padding, output_padding=0) v = normalize_v(v_s.view((- 1)), domain) weight_v = F.conv2d(v.view(1, c, h, w), weight, stride=self.stride, padding=self.padding, bias=None) return torch.dot(u.view((- 1)), weight_v.view((- 1))) def compute_weight(self, update=True, n_iterations=None, atol=None, rtol=None): if (not self.initialized): self._initialize_u_v() if (self.kernel_size == (1, 1)): return self._compute_weight_1x1(update, n_iterations, atol, rtol) else: return self._compute_weight_kxk(update, n_iterations, atol, rtol) def _compute_weight_1x1(self, update=True, n_iterations=None, atol=None, rtol=None): n_iterations = (self.n_iterations if (n_iterations is None) else n_iterations) atol = (self.atol if (atol is None) else atol) rtol = (self.rtol if (rtol is None) else atol) if ((n_iterations is None) and ((atol is None) or (rtol is None))): raise ValueError('Need one of n_iteration or (atol, rtol).') max_itrs = 200 if (n_iterations is not None): max_itrs = n_iterations u = self.u v = self.v weight = self.weight.view(self.out_channels, self.in_channels) if update: with torch.no_grad(): (domain, codomain) = self.compute_domain_codomain() itrs_used = 0 for _ in range(max_itrs): old_v = v.clone() old_u = u.clone() u = normalize_u(torch.mv(weight, v), codomain, out=u) v = normalize_v(torch.mv(weight.t(), u), domain, out=v) itrs_used = (itrs_used + 1) if ((n_iterations is None) and (atol is not None) and (rtol is not None)): err_u = (torch.norm((u - old_u)) / (u.nelement() ** 0.5)) err_v = (torch.norm((v - old_v)) / (v.nelement() ** 0.5)) tol_u = (atol + (rtol * torch.max(u))) tol_v = (atol + (rtol * torch.max(v))) if ((err_u < tol_u) and (err_v < tol_v)): break if (itrs_used > 0): if ((domain != 1) and (domain != 2)): self.v.copy_(v) if ((codomain != 2) and (codomain != float('inf'))): self.u.copy_(u) u = u.clone() v = v.clone() sigma = torch.dot(u, torch.mv(weight, v)) with torch.no_grad(): self.scale.copy_(sigma) factor = torch.max(torch.ones(1).to(weight.device), (sigma / self.coeff)) weight = (weight / factor) return weight.view(self.out_channels, self.in_channels, 1, 1) def _compute_weight_kxk(self, update=True, n_iterations=None, atol=None, rtol=None): n_iterations = (self.n_iterations if (n_iterations is None) else n_iterations) atol = (self.atol if (atol is None) else atol) rtol = (self.rtol if (rtol is None) else atol) if ((n_iterations is None) and ((atol is None) or (rtol is None))): raise ValueError('Need one of n_iteration or (atol, rtol).') max_itrs = 200 if (n_iterations is not None): max_itrs = n_iterations u = self.u v = self.v weight = self.weight (c, h, w) = (self.in_channels, int(self.spatial_dims[0].item()), int(self.spatial_dims[1].item())) if update: with torch.no_grad(): (domain, codomain) = self.compute_domain_codomain() itrs_used = 0 for _ in range(max_itrs): old_u = u.clone() old_v = v.clone() u_s = F.conv2d(v.view(1, c, h, w), weight, stride=self.stride, padding=self.padding, bias=None) out_shape = u_s.shape u = normalize_u(u_s.view((- 1)), codomain, out=u) v_s = F.conv_transpose2d(u.view(out_shape), weight, stride=self.stride, padding=self.padding, output_padding=0) v = normalize_v(v_s.view((- 1)), domain, out=v) itrs_used = (itrs_used + 1) if ((n_iterations is None) and (atol is not None) and (rtol is not None)): err_u = (torch.norm((u - old_u)) / (u.nelement() ** 0.5)) err_v = (torch.norm((v - old_v)) / (v.nelement() ** 0.5)) tol_u = (atol + (rtol * torch.max(u))) tol_v = (atol + (rtol * torch.max(v))) if ((err_u < tol_u) and (err_v < tol_v)): break if (itrs_used > 0): if (domain != 2): self.v.copy_(v) if (codomain != 2): self.u.copy_(u) v = v.clone() u = u.clone() weight_v = F.conv2d(v.view(1, c, h, w), weight, stride=self.stride, padding=self.padding, bias=None) weight_v = weight_v.view((- 1)) sigma = torch.dot(u.view((- 1)), weight_v) with torch.no_grad(): self.scale.copy_(sigma) factor = torch.max(torch.ones(1).to(weight.device), (sigma / self.coeff)) weight = (weight / factor) return weight def forward(self, input): if (not self.initialized): self.spatial_dims.copy_(torch.tensor(input.shape[2:4]).to(self.spatial_dims)) weight = self.compute_weight(update=False) return F.conv2d(input, weight, self.bias, self.stride, self.padding, 1, 1) def extra_repr(self): (domain, codomain) = self.compute_domain_codomain() s = '{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}' if (self.padding != ((0,) * len(self.padding))): s += ', padding={padding}' if (self.bias is None): s += ', bias=False' s += ', coeff={}, domain={:.2f}, codomain={:.2f}, n_iters={}, atol={}, rtol={}, learnable_ord={}'.format(self.coeff, domain, codomain, self.n_iterations, self.atol, self.rtol, torch.is_tensor(self.domain)) return s.format(**self.__dict__)
def projmax_(v): 'Inplace argmax on absolute value.' ind = torch.argmax(torch.abs(v)) v.zero_() v[ind] = 1 return v
def normalize_v(v, domain, out=None): if ((not torch.is_tensor(domain)) and (domain == 2)): v = F.normalize(v, p=2, dim=0, out=out) elif (domain == 1): v = projmax_(v) else: vabs = torch.abs(v) vph = (v / vabs) vph[torch.isnan(vph)] = 1 vabs = (vabs / torch.max(vabs)) vabs = (vabs ** (1 / (domain - 1))) v = ((vph * vabs) / vector_norm(vabs, domain)) return v
def normalize_u(u, codomain, out=None): if ((not torch.is_tensor(codomain)) and (codomain == 2)): u = F.normalize(u, p=2, dim=0, out=out) elif (codomain == float('inf')): u = projmax_(u) else: uabs = torch.abs(u) uph = (u / uabs) uph[torch.isnan(uph)] = 1 uabs = (uabs / torch.max(uabs)) uabs = (uabs ** (codomain - 1)) if (codomain == 1): u = ((uph * uabs) / vector_norm(uabs, float('inf'))) else: u = ((uph * uabs) / vector_norm(uabs, (codomain / (codomain - 1)))) return u
def vector_norm(x, p): x = x.view((- 1)) return (torch.sum((x ** p)) ** (1 / p))
def leaky_elu(x, a=0.3): return ((a * x) + ((1 - a) * F.elu(x)))
def asym_squash(x): return ((torch.tanh((- leaky_elu(((- x) + 0.5493061829986572)))) * 2) + 3)
def _ntuple(n): def parse(x): if isinstance(x, container_abcs.Iterable): return x return tuple(repeat(x, n)) return parse
def _ntuple(n): def parse(x): if isinstance(x, container_abcs.Iterable): return x return tuple(repeat(x, n)) return parse
class SequentialFlow(nn.Module): 'A generalized nn.Sequential container for normalizing flows.\n ' def __init__(self, layersList): super(SequentialFlow, self).__init__() self.chain = nn.ModuleList(layersList) def forward(self, x, logpx=None): if (logpx is None): for i in range(len(self.chain)): x = self.chain[i](x) return x else: for i in range(len(self.chain)): (x, logpx) = self.chain[i](x, logpx) return (x, logpx) def inverse(self, y, logpy=None): if (logpy is None): for i in range((len(self.chain) - 1), (- 1), (- 1)): y = self.chain[i].inverse(y) return y else: for i in range((len(self.chain) - 1), (- 1), (- 1)): (y, logpy) = self.chain[i].inverse(y, logpy) return (y, logpy)
class Inverse(nn.Module): def __init__(self, flow): super(Inverse, self).__init__() self.flow = flow def forward(self, x, logpx=None): return self.flow.inverse(x, logpx) def inverse(self, y, logpy=None): return self.flow.forward(y, logpy)
class InvertibleLinear(nn.Module): def __init__(self, dim): super(InvertibleLinear, self).__init__() self.dim = dim self.weight = nn.Parameter(torch.eye(dim)[torch.randperm(dim)]) def forward(self, x, logpx=None): y = F.linear(x, self.weight) if (logpx is None): return y else: return (y, (logpx - self._logdetgrad)) def inverse(self, y, logpy=None): x = F.linear(y, self.weight.inverse()) if (logpy is None): return x else: return (x, (logpy + self._logdetgrad)) @property def _logdetgrad(self): return torch.log(torch.abs(torch.det(self.weight))) def extra_repr(self): return 'dim={}'.format(self.dim)
class InvertibleConv2d(nn.Module): def __init__(self, dim): super(InvertibleConv2d, self).__init__() self.dim = dim self.weight = nn.Parameter(torch.eye(dim)[torch.randperm(dim)]) def forward(self, x, logpx=None): y = F.conv2d(x, self.weight.view(self.dim, self.dim, 1, 1)) if (logpx is None): return y else: return (y, (logpx - ((self._logdetgrad.expand_as(logpx) * x.shape[2]) * x.shape[3]))) def inverse(self, y, logpy=None): x = F.conv2d(y, self.weight.inverse().view(self.dim, self.dim, 1, 1)) if (logpy is None): return x else: return (x, (logpy + ((self._logdetgrad.expand_as(logpy) * x.shape[2]) * x.shape[3]))) @property def _logdetgrad(self): return torch.log(torch.abs(torch.det(self.weight))) def extra_repr(self): return 'dim={}'.format(self.dim)
class MovingBatchNormNd(nn.Module): def __init__(self, num_features, eps=0.0001, decay=0.1, bn_lag=0.0, affine=True): super(MovingBatchNormNd, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps self.decay = decay self.bn_lag = bn_lag self.register_buffer('step', torch.zeros(1)) if self.affine: self.bias = Parameter(torch.Tensor(num_features)) else: self.register_parameter('bias', None) self.register_buffer('running_mean', torch.zeros(num_features)) self.reset_parameters() @property def shape(self): raise NotImplementedError def reset_parameters(self): self.running_mean.zero_() if self.affine: self.bias.data.zero_() def forward(self, x, logpx=None): c = x.size(1) used_mean = self.running_mean.clone().detach() if self.training: x_t = x.transpose(0, 1).contiguous().view(c, (- 1)) batch_mean = torch.mean(x_t, dim=1) if (self.bn_lag > 0): used_mean = (batch_mean - ((1 - self.bn_lag) * (batch_mean - used_mean.detach()))) used_mean /= (1.0 - (self.bn_lag ** (self.step[0] + 1))) self.running_mean -= (self.decay * (self.running_mean - batch_mean.data)) self.step += 1 used_mean = used_mean.view(*self.shape).expand_as(x) y = (x - used_mean) if self.affine: bias = self.bias.view(*self.shape).expand_as(x) y = (y + bias) if (logpx is None): return y else: return (y, logpx) def inverse(self, y, logpy=None): used_mean = self.running_mean if self.affine: bias = self.bias.view(*self.shape).expand_as(y) y = (y - bias) used_mean = used_mean.view(*self.shape).expand_as(y) x = (y + used_mean) if (logpy is None): return x else: return (x, logpy) def __repr__(self): return '{name}({num_features}, eps={eps}, decay={decay}, bn_lag={bn_lag}, affine={affine})'.format(name=self.__class__.__name__, **self.__dict__)
class MovingBatchNorm1d(MovingBatchNormNd): @property def shape(self): return [1, (- 1)]
class MovingBatchNorm2d(MovingBatchNormNd): @property def shape(self): return [1, (- 1), 1, 1]
class SqueezeLayer(nn.Module): def __init__(self, downscale_factor): super(SqueezeLayer, self).__init__() self.downscale_factor = downscale_factor def forward(self, x, logpx=None): squeeze_x = squeeze(x, self.downscale_factor) if (logpx is None): return squeeze_x else: return (squeeze_x, logpx) def inverse(self, y, logpy=None): unsqueeze_y = unsqueeze(y, self.downscale_factor) if (logpy is None): return unsqueeze_y else: return (unsqueeze_y, logpy)
def unsqueeze(input, upscale_factor=2): return torch.pixel_shuffle(input, upscale_factor)
def squeeze(input, downscale_factor=2): '\n [:, C, H*r, W*r] -> [:, C*r^2, H, W]\n ' (batch_size, in_channels, in_height, in_width) = input.shape out_channels = (in_channels * (downscale_factor ** 2)) out_height = (in_height // downscale_factor) out_width = (in_width // downscale_factor) input_view = input.reshape(batch_size, in_channels, out_height, downscale_factor, out_width, downscale_factor) output = input_view.permute(0, 1, 3, 5, 2, 4) return output.reshape(batch_size, out_channels, out_height, out_width)
class CosineAnnealingWarmRestarts(_LRScheduler): 'Set the learning rate of each parameter group using a cosine annealing\n schedule, where :math:`\\eta_{max}` is set to the initial lr, :math:`T_{cur}`\n is the number of epochs since the last restart and :math:`T_{i}` is the number\n of epochs between two warm restarts in SGDR:\n .. math::\n \\eta_t = \\eta_{min} + \\frac{1}{2}(\\eta_{max} - \\eta_{min})(1 +\n \\cos(\\frac{T_{cur}}{T_{i}}\\pi))\n When :math:`T_{cur}=T_{i}`, set :math:`\\eta_t = \\eta_{min}`.\n When :math:`T_{cur}=0`(after restart), set :math:`\\eta_t=\\eta_{max}`.\n It has been proposed in\n `SGDR: Stochastic Gradient Descent with Warm Restarts`_.\n Args:\n optimizer (Optimizer): Wrapped optimizer.\n T_0 (int): Number of iterations for the first restart.\n T_mult (int, optional): A factor increases :math:`T_{i}` after a restart. Default: 1.\n eta_min (float, optional): Minimum learning rate. Default: 0.\n last_epoch (int, optional): The index of last epoch. Default: -1.\n .. _SGDR\\: Stochastic Gradient Descent with Warm Restarts:\n https://arxiv.org/abs/1608.03983\n ' def __init__(self, optimizer, T_0, T_mult=1, eta_min=0, last_epoch=(- 1)): if ((T_0 <= 0) or (not isinstance(T_0, int))): raise ValueError('Expected positive integer T_0, but got {}'.format(T_0)) if ((T_mult < 1) or (not isinstance(T_mult, int))): raise ValueError('Expected integer T_mul >= 1, but got {}'.format(T_mult)) self.T_0 = T_0 self.T_i = T_0 self.T_mult = T_mult self.eta_min = eta_min super(CosineAnnealingWarmRestarts, self).__init__(optimizer, last_epoch) self.T_cur = last_epoch def get_lr(self): return [(self.eta_min + (((base_lr - self.eta_min) * (1 + math.cos(((math.pi * self.T_cur) / self.T_i)))) / 2)) for base_lr in self.base_lrs] def step(self, epoch=None): 'Step could be called after every update, i.e. if one epoch has 10 iterations\n (number_of_train_examples / batch_size), we should call SGDR.step(0.1), SGDR.step(0.2), etc.\n This function can be called in an interleaved way.\n Example:\n >>> scheduler = SGDR(optimizer, T_0, T_mult)\n >>> for epoch in range(20):\n >>> scheduler.step()\n >>> scheduler.step(26)\n >>> scheduler.step() # scheduler.step(27), instead of scheduler(20)\n ' if (epoch is None): epoch = (self.last_epoch + 1) self.T_cur = (self.T_cur + 1) if (self.T_cur >= self.T_i): self.T_cur = (self.T_cur - self.T_i) self.T_i = (self.T_i * self.T_mult) elif (epoch >= self.T_0): if (self.T_mult == 1): self.T_cur = (epoch % self.T_0) else: n = int(math.log((((epoch / self.T_0) * (self.T_mult - 1)) + 1), self.T_mult)) self.T_cur = (epoch - ((self.T_0 * ((self.T_mult ** n) - 1)) / (self.T_mult - 1))) self.T_i = (self.T_0 * (self.T_mult ** n)) else: self.T_i = self.T_0 self.T_cur = epoch self.last_epoch = math.floor(epoch) for (param_group, lr) in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr
class Adam(Optimizer): 'Implements Adam algorithm.\n\n It has been proposed in `Adam: A Method for Stochastic Optimization`_.\n\n Arguments:\n params (iterable): iterable of parameters to optimize or dicts defining\n parameter groups\n lr (float, optional): learning rate (default: 1e-3)\n betas (Tuple[float, float], optional): coefficients used for computing\n running averages of gradient and its square (default: (0.9, 0.999))\n eps (float, optional): term added to the denominator to improve\n numerical stability (default: 1e-8)\n weight_decay (float, optional): weight decay (L2 penalty) (default: 0)\n amsgrad (boolean, optional): whether to use the AMSGrad variant of this\n algorithm from the paper `On the Convergence of Adam and Beyond`_\n (default: False)\n\n .. _Adam\\: A Method for Stochastic Optimization:\n https://arxiv.org/abs/1412.6980\n .. _On the Convergence of Adam and Beyond:\n https://openreview.net/forum?id=ryQu7f-RZ\n ' def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False): if (not (0.0 <= lr)): raise ValueError('Invalid learning rate: {}'.format(lr)) if (not (0.0 <= eps)): raise ValueError('Invalid epsilon value: {}'.format(eps)) if (not (0.0 <= betas[0] < 1.0)): raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) if (not (0.0 <= betas[1] < 1.0)): raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(Adam, self).__init__(params, defaults) def __setstate__(self, state): super(Adam, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): 'Performs a single optimization step.\n\n Arguments:\n closure (callable, optional): A closure that reevaluates the model\n and returns the loss.\n ' loss = None if (closure is not None): loss = closure() for group in self.param_groups: for p in group['params']: if (p.grad is None): continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] if (len(state) == 0): state['step'] = 0 state['exp_avg'] = torch.zeros_like(p.data) state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: state['max_exp_avg_sq'] = torch.zeros_like(p.data) (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] (beta1, beta2) = group['betas'] state['step'] += 1 exp_avg.mul_(beta1).add_((1 - beta1), grad) exp_avg_sq.mul_(beta2).addcmul_((1 - beta2), grad, grad) if amsgrad: torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = (1 - (beta1 ** state['step'])) bias_correction2 = (1 - (beta2 ** state['step'])) step_size = ((group['lr'] * math.sqrt(bias_correction2)) / bias_correction1) p.data.addcdiv_((- step_size), exp_avg, denom) if (group['weight_decay'] != 0): p.data.add(((- step_size) * group['weight_decay']), p.data) return loss
class Adamax(Optimizer): 'Implements Adamax algorithm (a variant of Adam based on infinity norm).\n\n It has been proposed in `Adam: A Method for Stochastic Optimization`__.\n\n Arguments:\n params (iterable): iterable of parameters to optimize or dicts defining\n parameter groups\n lr (float, optional): learning rate (default: 2e-3)\n betas (Tuple[float, float], optional): coefficients used for computing\n running averages of gradient and its square\n eps (float, optional): term added to the denominator to improve\n numerical stability (default: 1e-8)\n weight_decay (float, optional): weight decay (L2 penalty) (default: 0)\n\n __ https://arxiv.org/abs/1412.6980\n ' def __init__(self, params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0): if (not (0.0 <= lr)): raise ValueError('Invalid learning rate: {}'.format(lr)) if (not (0.0 <= eps)): raise ValueError('Invalid epsilon value: {}'.format(eps)) if (not (0.0 <= betas[0] < 1.0)): raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) if (not (0.0 <= betas[1] < 1.0)): raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) if (not (0.0 <= weight_decay)): raise ValueError('Invalid weight_decay value: {}'.format(weight_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(Adamax, self).__init__(params, defaults) def step(self, closure=None): 'Performs a single optimization step.\n\n Arguments:\n closure (callable, optional): A closure that reevaluates the model\n and returns the loss.\n ' loss = None if (closure is not None): loss = closure() for group in self.param_groups: for p in group['params']: if (p.grad is None): continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adamax does not support sparse gradients') state = self.state[p] if (len(state) == 0): state['step'] = 0 state['exp_avg'] = torch.zeros_like(p.data) state['exp_inf'] = torch.zeros_like(p.data) (exp_avg, exp_inf) = (state['exp_avg'], state['exp_inf']) (beta1, beta2) = group['betas'] eps = group['eps'] state['step'] += 1 exp_avg.mul_(beta1).add_((1 - beta1), grad) norm_buf = torch.cat([exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0) torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long())) bias_correction = (1 - (beta1 ** state['step'])) clr = (group['lr'] / bias_correction) p.data.addcdiv_((- clr), exp_avg, exp_inf) if (group['weight_decay'] != 0): p.data.add(((- clr) * group['weight_decay']), p.data) return loss
class RMSprop(Optimizer): 'Implements RMSprop algorithm.\n\n Proposed by G. Hinton in his\n `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.\n\n The centered version first appears in `Generating Sequences\n With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.\n\n Arguments:\n params (iterable): iterable of parameters to optimize or dicts defining\n parameter groups\n lr (float, optional): learning rate (default: 1e-2)\n momentum (float, optional): momentum factor (default: 0)\n alpha (float, optional): smoothing constant (default: 0.99)\n eps (float, optional): term added to the denominator to improve\n numerical stability (default: 1e-8)\n centered (bool, optional) : if ``True``, compute the centered RMSProp,\n the gradient is normalized by an estimation of its variance\n weight_decay (float, optional): weight decay (L2 penalty) (default: 0)\n\n ' def __init__(self, params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False): if (not (0.0 <= lr)): raise ValueError('Invalid learning rate: {}'.format(lr)) if (not (0.0 <= eps)): raise ValueError('Invalid epsilon value: {}'.format(eps)) if (not (0.0 <= momentum)): raise ValueError('Invalid momentum value: {}'.format(momentum)) if (not (0.0 <= weight_decay)): raise ValueError('Invalid weight_decay value: {}'.format(weight_decay)) if (not (0.0 <= alpha)): raise ValueError('Invalid alpha value: {}'.format(alpha)) defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay) super(RMSprop, self).__init__(params, defaults) def __setstate__(self, state): super(RMSprop, self).__setstate__(state) for group in self.param_groups: group.setdefault('momentum', 0) group.setdefault('centered', False) def step(self, closure=None): 'Performs a single optimization step.\n\n Arguments:\n closure (callable, optional): A closure that reevaluates the model\n and returns the loss.\n ' loss = None if (closure is not None): loss = closure() for group in self.param_groups: for p in group['params']: if (p.grad is None): continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('RMSprop does not support sparse gradients') state = self.state[p] if (len(state) == 0): state['step'] = 0 state['square_avg'] = torch.zeros_like(p.data) if (group['momentum'] > 0): state['momentum_buffer'] = torch.zeros_like(p.data) if group['centered']: state['grad_avg'] = torch.zeros_like(p.data) square_avg = state['square_avg'] alpha = group['alpha'] state['step'] += 1 square_avg.mul_(alpha).addcmul_((1 - alpha), grad, grad) if group['centered']: grad_avg = state['grad_avg'] grad_avg.mul_(alpha).add_((1 - alpha), grad) avg = square_avg.addcmul((- 1), grad_avg, grad_avg).sqrt().add_(group['eps']) else: avg = square_avg.sqrt().add_(group['eps']) if (group['momentum'] > 0): buf = state['momentum_buffer'] buf.mul_(group['momentum']).addcdiv_(grad, avg) p.data.add_((- group['lr']), buf) else: p.data.addcdiv_((- group['lr']), grad, avg) if (group['weight_decay'] != 0): p.data.add(((- group['lr']) * group['weight_decay']), p.data) return loss
def makedirs(dirname): if (not os.path.exists(dirname)): os.makedirs(dirname)
def get_logger(logpath, filepath, package_files=[], displaying=True, saving=True, debug=False): logger = logging.getLogger() if debug: level = logging.DEBUG else: level = logging.INFO logger.setLevel(level) if saving: info_file_handler = logging.FileHandler(logpath, mode='a') info_file_handler.setLevel(level) logger.addHandler(info_file_handler) if displaying: console_handler = logging.StreamHandler() console_handler.setLevel(level) logger.addHandler(console_handler) logger.info(filepath) with open(filepath, 'r') as f: logger.info(f.read()) for f in package_files: logger.info(f) with open(f, 'r') as package_f: logger.info(package_f.read()) return logger
class AverageMeter(object): 'Computes and stores the average and current value' def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += (val * n) self.count += n self.avg = (self.sum / self.count)
class RunningAverageMeter(object): 'Computes and stores the average and current value' def __init__(self, momentum=0.99): self.momentum = momentum self.reset() def reset(self): self.val = None self.avg = 0 def update(self, val): if (self.val is None): self.avg = val else: self.avg = ((self.avg * self.momentum) + (val * (1 - self.momentum))) self.val = val
def inf_generator(iterable): 'Allows training with DataLoaders in a single infinite loop:\n for i, (x, y) in enumerate(inf_generator(train_loader)):\n ' iterator = iterable.__iter__() while True: try: (yield iterator.__next__()) except StopIteration: iterator = iterable.__iter__()
def save_checkpoint(state, save, epoch, last_checkpoints=None, num_checkpoints=None): if (not os.path.exists(save)): os.makedirs(save) filename = os.path.join(save, ('checkpt-%04d.pth' % epoch)) torch.save(state, filename) if ((last_checkpoints is not None) and (num_checkpoints is not None)): last_checkpoints.append(epoch) if (len(last_checkpoints) > num_checkpoints): rm_epoch = last_checkpoints.pop(0) os.remove(os.path.join(save, ('checkpt-%04d.pth' % rm_epoch)))
def isnan(tensor): return (tensor != tensor)
def logsumexp(value, dim=None, keepdim=False): 'Numerically stable implementation of the operation\n value.exp().sum(dim, keepdim).log()\n ' if (dim is not None): (m, _) = torch.max(value, dim=dim, keepdim=True) value0 = (value - m) if (keepdim is False): m = m.squeeze(dim) return (m + torch.log(torch.sum(torch.exp(value0), dim=dim, keepdim=keepdim))) else: m = torch.max(value) sum_exp = torch.sum(torch.exp((value - m))) if isinstance(sum_exp, Number): return (m + math.log(sum_exp)) else: return (m + torch.log(sum_exp))
class ExponentialMovingAverage(object): def __init__(self, module, decay=0.999): 'Initializes the model when .apply() is called the first time.\n This is to take into account data-dependent initialization that occurs in the first iteration.' self.module = module self.decay = decay self.shadow_params = {} self.nparams = sum((p.numel() for p in module.parameters())) def init(self): for (name, param) in self.module.named_parameters(): self.shadow_params[name] = param.data.clone() def apply(self): if (len(self.shadow_params) == 0): self.init() else: with torch.no_grad(): for (name, param) in self.module.named_parameters(): self.shadow_params[name] -= ((1 - self.decay) * (self.shadow_params[name] - param.data)) def set(self, other_ema): self.init() with torch.no_grad(): for (name, param) in other_ema.shadow_params.items(): self.shadow_params[name].copy_(param) def replace_with_ema(self): for (name, param) in self.module.named_parameters(): param.data.copy_(self.shadow_params[name]) def swap(self): for (name, param) in self.module.named_parameters(): tmp = self.shadow_params[name].clone() self.shadow_params[name].copy_(param.data) param.data.copy_(tmp) def __repr__(self): return '{}(decay={}, module={}, nparams={})'.format(self.__class__.__name__, self.decay, self.module.__class__.__name__, self.nparams)
def count_parameters(model): return sum((p.numel() for p in model.parameters() if p.requires_grad))
def standard_normal_sample(size): return torch.randn(size)
def standard_normal_logprob(z): logZ = ((- 0.5) * math.log((2 * math.pi))) return (logZ - (z.pow(2) / 2))
def compute_loss(args, model, batch_size=None, beta=1.0): if (batch_size is None): batch_size = args.batch_size x = toy_data.inf_train_gen(args.data, batch_size=batch_size) x = torch.from_numpy(x).type(torch.float32).to(device) zero = torch.zeros(x.shape[0], 1).to(x) (z, delta_logp) = model(x, zero) logpz = standard_normal_logprob(z).sum(1, keepdim=True) logpx = (logpz - (beta * delta_logp)) loss = (- torch.mean(logpx)) return (loss, torch.mean(logpz), torch.mean((- delta_logp)))
def parse_vnorms(): ps = [] for p in args.vnorms: if (p == 'f'): ps.append(float('inf')) else: ps.append(float(p)) return (ps[:(- 1)], ps[1:])
def compute_p_grads(model): scales = 0.0 nlayers = 0 for m in model.modules(): if (isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear)): scales = (scales + m.compute_one_iter()) nlayers += 1 scales.mul((1 / nlayers)).mul(0.01).backward() for m in model.modules(): if (isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear)): if ((m.domain.grad is not None) and torch.isnan(m.domain.grad)): m.domain.grad = None
def build_nnet(dims, activation_fn=torch.nn.ReLU): nnet = [] (domains, codomains) = parse_vnorms() if args.learn_p: if args.mixed: domains = [torch.nn.Parameter(torch.tensor(0.0)) for _ in domains] else: domains = ([torch.nn.Parameter(torch.tensor(0.0))] * len(domains)) codomains = (domains[1:] + [domains[0]]) for (i, (in_dim, out_dim, domain, codomain)) in enumerate(zip(dims[:(- 1)], dims[1:], domains, codomains)): nnet.append(activation_fn()) nnet.append(base_layers.get_linear(in_dim, out_dim, coeff=args.coeff, n_iterations=args.n_lipschitz_iters, atol=args.atol, rtol=args.rtol, domain=domain, codomain=codomain, zero_init=(out_dim == 2))) return torch.nn.Sequential(*nnet)
def update_lipschitz(model, n_iterations): for m in model.modules(): if (isinstance(m, base_layers.SpectralNormConv2d) or isinstance(m, base_layers.SpectralNormLinear)): m.compute_weight(update=True, n_iterations=n_iterations) if (isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear)): m.compute_weight(update=True, n_iterations=n_iterations)
def get_ords(model): ords = [] for m in model.modules(): if (isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear)): (domain, codomain) = m.compute_domain_codomain() if torch.is_tensor(domain): domain = domain.item() if torch.is_tensor(codomain): codomain = codomain.item() ords.append(domain) ords.append(codomain) return ords
def pretty_repr(a): return (('[[' + ','.join(list(map((lambda i: f'{i:.2f}'), a)))) + ']]')
class BSDS300(): '\n A dataset of patches from BSDS300.\n ' class Data(): '\n Constructs the dataset.\n ' def __init__(self, data): self.x = data[:] self.N = self.x.shape[0] def __init__(self): f = h5py.File((datasets.root + 'BSDS300/BSDS300.hdf5'), 'r') self.trn = self.Data(f['train']) self.val = self.Data(f['validation']) self.tst = self.Data(f['test']) self.n_dims = self.trn.x.shape[1] self.image_size = ([int(np.sqrt((self.n_dims + 1)))] * 2) f.close()
class GAS(): class Data(): def __init__(self, data): self.x = data.astype(np.float32) self.N = self.x.shape[0] def __init__(self): file = (datasets.root + 'gas/ethylene_CO.pickle') (trn, val, tst) = load_data_and_clean_and_split(file) self.trn = self.Data(trn) self.val = self.Data(val) self.tst = self.Data(tst) self.n_dims = self.trn.x.shape[1]
def load_data(file): data = pd.read_pickle(file) data.drop('Meth', axis=1, inplace=True) data.drop('Eth', axis=1, inplace=True) data.drop('Time', axis=1, inplace=True) return data
def get_correlation_numbers(data): C = data.corr() A = (C > 0.98) B = A.as_matrix().sum(axis=1) return B
def load_data_and_clean(file): data = load_data(file) B = get_correlation_numbers(data) while np.any((B > 1)): col_to_remove = np.where((B > 1))[0][0] col_name = data.columns[col_to_remove] data.drop(col_name, axis=1, inplace=True) B = get_correlation_numbers(data) data = ((data - data.mean()) / data.std()) return data
def load_data_and_clean_and_split(file): data = load_data_and_clean(file).as_matrix() N_test = int((0.1 * data.shape[0])) data_test = data[(- N_test):] data_train = data[0:(- N_test)] N_validate = int((0.1 * data_train.shape[0])) data_validate = data_train[(- N_validate):] data_train = data_train[0:(- N_validate)] return (data_train, data_validate, data_test)
class MINIBOONE(): class Data(): def __init__(self, data): self.x = data.astype(np.float32) self.N = self.x.shape[0] def __init__(self): file = (datasets.root + 'miniboone/data.npy') (trn, val, tst) = load_data_normalised(file) self.trn = self.Data(trn) self.val = self.Data(val) self.tst = self.Data(tst) self.n_dims = self.trn.x.shape[1]
def load_data(root_path): data = np.load(root_path) N_test = int((0.1 * data.shape[0])) data_test = data[(- N_test):] data = data[0:(- N_test)] N_validate = int((0.1 * data.shape[0])) data_validate = data[(- N_validate):] data_train = data[0:(- N_validate)] return (data_train, data_validate, data_test)
def load_data_normalised(root_path): (data_train, data_validate, data_test) = load_data(root_path) data = np.vstack((data_train, data_validate)) mu = data.mean(axis=0) s = data.std(axis=0) data_train = ((data_train - mu) / s) data_validate = ((data_validate - mu) / s) data_test = ((data_test - mu) / s) return (data_train, data_validate, data_test)
class POWER(): class Data(): def __init__(self, data): self.x = data.astype(np.float32) self.N = self.x.shape[0] def __init__(self): (trn, val, tst) = load_data_normalised() self.trn = self.Data(trn) self.val = self.Data(val) self.tst = self.Data(tst) self.n_dims = self.trn.x.shape[1]
def load_data(): return np.load((datasets.root + 'power/data.npy'))
def load_data_split_with_noise(): rng = np.random.RandomState(42) data = load_data() rng.shuffle(data) N = data.shape[0] data = np.delete(data, 3, axis=1) data = np.delete(data, 1, axis=1) voltage_noise = (0.01 * rng.rand(N, 1)) gap_noise = (0.001 * rng.rand(N, 1)) sm_noise = rng.rand(N, 3) time_noise = np.zeros((N, 1)) noise = np.hstack((gap_noise, voltage_noise, sm_noise, time_noise)) data = (data + noise) N_test = int((0.1 * data.shape[0])) data_test = data[(- N_test):] data = data[0:(- N_test)] N_validate = int((0.1 * data.shape[0])) data_validate = data[(- N_validate):] data_train = data[0:(- N_validate)] return (data_train, data_validate, data_test)
def load_data_normalised(): (data_train, data_validate, data_test) = load_data_split_with_noise() data = np.vstack((data_train, data_validate)) mu = data.mean(axis=0) s = data.std(axis=0) data_train = ((data_train - mu) / s) data_validate = ((data_validate - mu) / s) data_test = ((data_test - mu) / s) return (data_train, data_validate, data_test)
def get_losses(filename): with open(filename, 'r') as f: lines = f.readlines() losses = [] for line in lines: w = re.findall('Bit/dim [^|(]*\\([0-9\\.]*\\)', line) if w: w = re.findall('\\([0-9\\.]*\\)', w[0]) if w: w = re.findall('[0-9\\.]+', w[0]) if w: losses.append(float(w[0])) return losses
def get_values(filename): with open(filename, 'r') as f: lines = f.readlines() losses = [] nfes = [] for line in lines: w = re.findall('Steps [^|(]*\\([0-9\\.]*\\)', line) if w: w = re.findall('\\([0-9\\.]*\\)', w[0]) if w: w = re.findall('[0-9\\.]+', w[0]) if w: nfes.append(float(w[0])) w = re.findall('Bit/dim [^|(]*\\([0-9\\.]*\\)', line) if w: w = re.findall('\\([0-9\\.]*\\)', w[0]) if w: w = re.findall('[0-9\\.]+', w[0]) if w: losses.append(float(w[0])) return (losses, nfes)
def construct_discrete_model(): chain = [] for i in range(args.depth): if args.glow: chain.append(layers.BruteForceLayer(2)) chain.append(layers.CouplingLayer(2, swap=((i % 2) == 0))) return layers.SequentialFlow(chain)
def get_transforms(model): def sample_fn(z, logpz=None): if (logpz is not None): return model(z, logpz, reverse=True) else: return model(z, reverse=True) def density_fn(x, logpx=None): if (logpx is not None): return model(x, logpx, reverse=False) else: return model(x, reverse=False) return (sample_fn, density_fn)
def get_values(filename): with open(filename, 'r') as f: lines = f.readlines() losses = [] nfes = [] for line in lines: w = re.findall('Steps [^|(]*\\([0-9\\.]*\\)', line) if w: w = re.findall('\\([0-9\\.]*\\)', w[0]) if w: w = re.findall('[0-9\\.]+', w[0]) if w: nfes.append(float(w[0])) w = re.findall('Bit/dim [^|(]*\\([0-9\\.]*\\)', line) if w: w = re.findall('\\([0-9\\.]*\\)', w[0]) if w: w = re.findall('[0-9\\.]+', w[0]) if w: losses.append(float(w[0])) return (losses, nfes)
def log_to_csv(log_filename, csv_filename): with open(log_filename, 'r') as f: lines = f.readlines() with open(csv_filename, 'w', newline='') as csvfile: fieldnames = None writer = None for line in lines: if line.startswith('Iter'): quants = _line_to_dict(line) if (fieldnames is None): fieldnames = quants.keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() writer.writerow(quants)
def _line_to_dict(line): line = re.sub(':', '', line) line = re.sub('\\([^)]*\\)', '', line) quants = {} for quant_str in line.split('|'): quant_str = quant_str.strip() (key, val) = quant_str.split(' ') quants[key] = val return quants
def plot_pairplot(csv_filename, fig_filename, top=None): import seaborn as sns import pandas as pd sns.set(style='ticks', color_codes=True) quants = pd.read_csv(csv_filename) if (top is not None): quants = quants[:top] g = sns.pairplot(quants, kind='reg', diag_kind='kde', markers='.') g.savefig(fig_filename)
def add_noise(x): '\n [0, 1] -> [0, 255] -> add noise -> [0, 1]\n ' noise = x.new().resize_as_(x).uniform_() x = ((x * 255) + noise) x = (x / 256) return x
def get_dataset(args): trans = (lambda im_size: tforms.Compose([tforms.Resize(im_size), tforms.ToTensor(), add_noise])) if (args.data == 'mnist'): im_dim = 1 im_size = (28 if (args.imagesize is None) else args.imagesize) train_set = dset.MNIST(root='./data', train=True, transform=trans(im_size), download=True) test_set = dset.MNIST(root='./data', train=False, transform=trans(im_size), download=True) elif (args.data == 'svhn'): im_dim = 3 im_size = (32 if (args.imagesize is None) else args.imagesize) train_set = dset.SVHN(root='./data', split='train', transform=trans(im_size), download=True) test_set = dset.SVHN(root='./data', split='test', transform=trans(im_size), download=True) elif (args.data == 'cifar10'): im_dim = 3 im_size = (32 if (args.imagesize is None) else args.imagesize) train_set = dset.CIFAR10(root='./data', train=True, transform=trans(im_size), download=True) test_set = dset.CIFAR10(root='./data', train=False, transform=trans(im_size), download=True) elif (args.dataset == 'celeba'): im_dim = 3 im_size = (64 if (args.imagesize is None) else args.imagesize) train_set = dset.CelebA(train=True, transform=tforms.Compose([tforms.ToPILImage(), tforms.Resize(im_size), tforms.RandomHorizontalFlip(), tforms.ToTensor(), add_noise])) test_set = dset.CelebA(train=False, transform=tforms.Compose([tforms.ToPILImage(), tforms.Resize(args.imagesize), tforms.ToTensor(), add_noise])) data_shape = (im_dim, im_size, im_size) train_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=args.batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_set, batch_size=args.batch_size, shuffle=False) return (train_loader, test_loader, data_shape)
def add_spectral_norm(model): def recursive_apply_sn(parent_module): for child_name in list(parent_module._modules.keys()): child_module = parent_module._modules[child_name] classname = child_module.__class__.__name__ if ((classname.find('Conv') != (- 1)) and ('weight' in child_module._parameters)): del parent_module._modules[child_name] parent_module.add_module(child_name, spectral_norm.spectral_norm(child_module, 'weight')) else: recursive_apply_sn(child_module) recursive_apply_sn(model)
def build_model(args, state_dict): (train_loader, test_loader, data_shape) = get_dataset(args) hidden_dims = tuple(map(int, args.dims.split(','))) strides = tuple(map(int, args.strides.split(','))) if args.autoencode: def build_cnf(): autoencoder_diffeq = layers.AutoencoderDiffEqNet(hidden_dims=hidden_dims, input_shape=data_shape, strides=strides, conv=args.conv, layer_type=args.layer_type, nonlinearity=args.nonlinearity) odefunc = layers.AutoencoderODEfunc(autoencoder_diffeq=autoencoder_diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher) cnf = layers.CNF(odefunc=odefunc, T=args.time_length, solver=args.solver) return cnf else: def build_cnf(): diffeq = layers.ODEnet(hidden_dims=hidden_dims, input_shape=data_shape, strides=strides, conv=args.conv, layer_type=args.layer_type, nonlinearity=args.nonlinearity) odefunc = layers.ODEfunc(diffeq=diffeq, divergence_fn=args.divergence_fn, residual=args.residual, rademacher=args.rademacher) cnf = layers.CNF(odefunc=odefunc, T=args.time_length, solver=args.solver) return cnf chain = [layers.LogitTransform(alpha=args.alpha), build_cnf()] if args.batch_norm: chain.append(layers.MovingBatchNorm2d(data_shape[0])) model = layers.SequentialFlow(chain) if args.spectral_norm: add_spectral_norm(model) model.load_state_dict(state_dict) return (model, test_loader.dataset)
class Adam(Optimizer): 'Implements Adam algorithm.\n\n It has been proposed in `Adam: A Method for Stochastic Optimization`_.\n\n Arguments:\n params (iterable): iterable of parameters to optimize or dicts defining\n parameter groups\n lr (float, optional): learning rate (default: 1e-3)\n betas (Tuple[float, float], optional): coefficients used for computing\n running averages of gradient and its square (default: (0.9, 0.999))\n eps (float, optional): term added to the denominator to improve\n numerical stability (default: 1e-8)\n weight_decay (float, optional): weight decay (L2 penalty) (default: 0)\n amsgrad (boolean, optional): whether to use the AMSGrad variant of this\n algorithm from the paper `On the Convergence of Adam and Beyond`_\n (default: False)\n\n .. _Adam\\: A Method for Stochastic Optimization:\n https://arxiv.org/abs/1412.6980\n .. _On the Convergence of Adam and Beyond:\n https://openreview.net/forum?id=ryQu7f-RZ\n ' def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False): if (not (0.0 <= lr)): raise ValueError('Invalid learning rate: {}'.format(lr)) if (not (0.0 <= eps)): raise ValueError('Invalid epsilon value: {}'.format(eps)) if (not (0.0 <= betas[0] < 1.0)): raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) if (not (0.0 <= betas[1] < 1.0)): raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(Adam, self).__init__(params, defaults) def __setstate__(self, state): super(Adam, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): 'Performs a single optimization step.\n\n Arguments:\n closure (callable, optional): A closure that reevaluates the model\n and returns the loss.\n ' loss = None if (closure is not None): loss = closure() for group in self.param_groups: for p in group['params']: if (p.grad is None): continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] if (len(state) == 0): state['step'] = 0 state['exp_avg'] = torch.zeros_like(p.data) state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: state['max_exp_avg_sq'] = torch.zeros_like(p.data) (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] (beta1, beta2) = group['betas'] state['step'] += 1 exp_avg.mul_(beta1).add_((1 - beta1), grad) exp_avg_sq.mul_(beta2).addcmul_((1 - beta2), grad, grad) if amsgrad: torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = (1 - (beta1 ** state['step'])) bias_correction2 = (1 - (beta2 ** state['step'])) step_size = ((group['lr'] * math.sqrt(bias_correction2)) / bias_correction1) if (group['weight_decay'] != 0): p.data.add(((- step_size) * group['weight_decay']), p.data) p.data.addcdiv_((- step_size), exp_avg, denom) return loss
class Dataset(object): def __init__(self, loc, transform=None): self.dataset = torch.load(loc).float().div(255) self.transform = transform def __len__(self): return self.dataset.size(0) @property def ndim(self): return self.dataset.size(1) def __getitem__(self, index): x = self.dataset[index] x = (self.transform(x) if (self.transform is not None) else x) return (x, 0)
class CelebA(Dataset): TRAIN_LOC = 'data/celeba/celeba_train.pth' VAL_LOC = 'data/celeba/celeba_val.pth' def __init__(self, train=True, transform=None): return super(CelebA, self).__init__((self.TRAIN_LOC if train else self.VAL_LOC), transform)
class CNF(nn.Module): def __init__(self, odefunc, T=1.0, train_T=False, regularization_fns=None, solver='dopri5', atol=1e-05, rtol=1e-05): super(CNF, self).__init__() if train_T: self.register_parameter('sqrt_end_time', nn.Parameter(torch.sqrt(torch.tensor(T)))) else: self.register_buffer('sqrt_end_time', torch.sqrt(torch.tensor(T))) nreg = 0 if (regularization_fns is not None): odefunc = RegularizedODEfunc(odefunc, regularization_fns) nreg = len(regularization_fns) self.odefunc = odefunc self.nreg = nreg self.regularization_states = None self.solver = solver self.atol = atol self.rtol = rtol self.test_solver = solver self.test_atol = atol self.test_rtol = rtol self.solver_options = {} def forward(self, z, logpz=None, integration_times=None, reverse=False): if (logpz is None): _logpz = torch.zeros(z.shape[0], 1).to(z) else: _logpz = logpz if (integration_times is None): integration_times = torch.tensor([0.0, (self.sqrt_end_time * self.sqrt_end_time)]).to(z) if reverse: integration_times = _flip(integration_times, 0) self.odefunc.before_odeint() reg_states = tuple((torch.tensor(0).to(z) for _ in range(self.nreg))) if self.training: state_t = odeint(self.odefunc, ((z, _logpz) + reg_states), integration_times.to(z), atol=self.atol, rtol=self.rtol, method=self.solver, options=self.solver_options) else: state_t = odeint(self.odefunc, (z, _logpz), integration_times.to(z), atol=self.test_atol, rtol=self.test_rtol, method=self.test_solver) if (len(integration_times) == 2): state_t = tuple((s[1] for s in state_t)) (z_t, logpz_t) = state_t[:2] self.regularization_states = state_t[2:] if (logpz is not None): return (z_t, logpz_t) else: return z_t def get_regularization_states(self): reg_states = self.regularization_states self.regularization_states = None return reg_states def num_evals(self): return self.odefunc._num_evals.item()
def _flip(x, dim): indices = ([slice(None)] * x.dim()) indices[dim] = torch.arange((x.size(dim) - 1), (- 1), (- 1), dtype=torch.long, device=x.device) return x[tuple(indices)]
class SequentialFlow(nn.Module): 'A generalized nn.Sequential container for normalizing flows.\n ' def __init__(self, layersList): super(SequentialFlow, self).__init__() self.chain = nn.ModuleList(layersList) def forward(self, x, logpx=None, reverse=False, inds=None): if (inds is None): if reverse: inds = range((len(self.chain) - 1), (- 1), (- 1)) else: inds = range(len(self.chain)) if (logpx is None): for i in inds: x = self.chain[i](x, reverse=reverse) return x else: for i in inds: (x, logpx) = self.chain[i](x, logpx, reverse=reverse) return (x, logpx)
class SequentialDiffEq(nn.Module): 'A container for a sequential chain of layers. Supports both regular and diffeq layers.\n ' def __init__(self, *layers): super(SequentialDiffEq, self).__init__() self.layers = nn.ModuleList([diffeq_wrapper(layer) for layer in layers]) def forward(self, t, x): for layer in self.layers: x = layer(t, x) return x