code
stringlengths 17
6.64M
|
---|
class Logger():
' Writes evaluation results of training/testing '
@classmethod
def initialize(cls, args, training):
logtime = datetime.datetime.now().__format__('_%m%d_%H%M%S')
logpath = (args.logpath if training else (('_TEST_' + args.load.split('/')[(- 2)].split('.')[0]) + logtime))
if (logpath == ''):
logpath = logtime
cls.logpath = os.path.join('logs', (logpath + '.log'))
cls.benchmark = args.benchmark
os.makedirs(cls.logpath)
logging.basicConfig(filemode='w', filename=os.path.join(cls.logpath, 'log.txt'), level=logging.INFO, format='%(message)s', datefmt='%m-%d %H:%M:%S')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
cls.tbd_writer = SummaryWriter(os.path.join(cls.logpath, 'tbd/runs'))
logging.info('\n:=========== Few-shot Seg. with HSNet ===========')
for arg_key in args.__dict__:
logging.info(('| %20s: %-24s' % (arg_key, str(args.__dict__[arg_key]))))
logging.info(':================================================\n')
@classmethod
def info(cls, msg):
' Writes log message to log.txt '
logging.info(msg)
@classmethod
def save_model_miou(cls, model, epoch, val_miou):
torch.save(model.state_dict(), os.path.join(cls.logpath, 'best_model.pt'))
cls.info(('Model saved @%d w/ val. mIoU: %5.2f.\n' % (epoch, val_miou)))
@classmethod
def log_params(cls, model):
backbone_param = 0
learner_param = 0
for k in model.state_dict().keys():
n_param = model.state_dict()[k].view((- 1)).size(0)
if (k.split('.')[0] in 'backbone'):
if (k.split('.')[1] in ['classifier', 'fc']):
continue
backbone_param += n_param
else:
learner_param += n_param
Logger.info(('Backbone # param.: %d' % backbone_param))
Logger.info(('Learnable # param.: %d' % learner_param))
Logger.info(('Total # param.: %d' % (backbone_param + learner_param)))
|
def fix_randseed(seed):
' Set random seeds for reproducibility '
if (seed is None):
seed = int((random.random() * 100000.0))
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
|
def mean(x):
return ((sum(x) / len(x)) if (len(x) > 0) else 0.0)
|
def to_cuda(batch):
for (key, value) in batch.items():
if isinstance(value, torch.Tensor):
batch[key] = value.cuda()
return batch
|
def to_cpu(tensor):
return tensor.detach().clone().cpu()
|
class DatasetCOCO(Dataset):
def __init__(self, datapath, fold, transform, split, shot, use_original_imgsize):
self.split = ('val' if (split in ['val', 'test']) else 'trn')
self.fold = fold
self.nfolds = 4
self.nclass = 80
self.benchmark = 'coco'
self.shot = shot
self.split_coco = (split if (split == 'val2014') else 'train2014')
self.base_path = os.path.join(datapath, 'COCO2014')
self.transform = transform
self.use_original_imgsize = use_original_imgsize
self.class_ids = self.build_class_ids()
self.img_metadata_classwise = self.build_img_metadata_classwise()
self.img_metadata = self.build_img_metadata()
def __len__(self):
return (len(self.img_metadata) if (self.split == 'trn') else 1000)
def __getitem__(self, idx):
(query_img, query_mask, support_imgs, support_masks, query_name, support_names, class_sample, org_qry_imsize) = self.load_frame()
query_img = self.transform(query_img)
query_mask = query_mask.float()
if (not self.use_original_imgsize):
query_mask = F.interpolate(query_mask.unsqueeze(0).unsqueeze(0).float(), query_img.size()[(- 2):], mode='nearest').squeeze()
support_imgs = torch.stack([self.transform(support_img) for support_img in support_imgs])
for (midx, smask) in enumerate(support_masks):
support_masks[midx] = F.interpolate(smask.unsqueeze(0).unsqueeze(0).float(), support_imgs.size()[(- 2):], mode='nearest').squeeze()
support_masks = torch.stack(support_masks)
batch = {'query_img': query_img, 'query_mask': query_mask, 'query_name': query_name, 'org_query_imsize': org_qry_imsize, 'support_imgs': support_imgs, 'support_masks': support_masks, 'support_names': support_names, 'class_id': torch.tensor(class_sample)}
return batch
def build_class_ids(self):
nclass_trn = (self.nclass // self.nfolds)
class_ids_val = [(self.fold + (self.nfolds * v)) for v in range(nclass_trn)]
class_ids_trn = [x for x in range(self.nclass) if (x not in class_ids_val)]
class_ids = (class_ids_trn if (self.split == 'trn') else class_ids_val)
return class_ids
def build_img_metadata_classwise(self):
with open(('./data/splits/coco/%s/fold%d.pkl' % (self.split, self.fold)), 'rb') as f:
img_metadata_classwise = pickle.load(f)
return img_metadata_classwise
def build_img_metadata(self):
img_metadata = []
for k in self.img_metadata_classwise.keys():
img_metadata += self.img_metadata_classwise[k]
return sorted(list(set(img_metadata)))
def read_mask(self, name):
mask_path = os.path.join(self.base_path, 'annotations', name)
mask = torch.tensor(np.array(Image.open((mask_path[:mask_path.index('.jpg')] + '.png'))))
return mask
def load_frame(self):
class_sample = np.random.choice(self.class_ids, 1, replace=False)[0]
query_name = np.random.choice(self.img_metadata_classwise[class_sample], 1, replace=False)[0]
query_img = Image.open(os.path.join(self.base_path, query_name)).convert('RGB')
query_mask = self.read_mask(query_name)
org_qry_imsize = query_img.size
query_mask[(query_mask != (class_sample + 1))] = 0
query_mask[(query_mask == (class_sample + 1))] = 1
support_names = []
while True:
support_name = np.random.choice(self.img_metadata_classwise[class_sample], 1, replace=False)[0]
if (query_name != support_name):
support_names.append(support_name)
if (len(support_names) == self.shot):
break
support_imgs = []
support_masks = []
for support_name in support_names:
support_imgs.append(Image.open(os.path.join(self.base_path, support_name)).convert('RGB'))
support_mask = self.read_mask(support_name)
support_mask[(support_mask != (class_sample + 1))] = 0
support_mask[(support_mask == (class_sample + 1))] = 1
support_masks.append(support_mask)
return (query_img, query_mask, support_imgs, support_masks, query_name, support_names, class_sample, org_qry_imsize)
|
class FSSDataset():
@classmethod
def initialize(cls, img_size, datapath, use_original_imgsize):
cls.datasets = {'pascal': DatasetPASCAL, 'coco': DatasetCOCO, 'fss': DatasetFSS}
cls.img_mean = [0.485, 0.456, 0.406]
cls.img_std = [0.229, 0.224, 0.225]
cls.datapath = datapath
cls.use_original_imgsize = use_original_imgsize
cls.transform = transforms.Compose([transforms.Resize(size=(img_size, img_size)), transforms.ToTensor(), transforms.Normalize(cls.img_mean, cls.img_std)])
@classmethod
def build_dataloader(cls, benchmark, bsz, nworker, fold, split, shot=1):
shuffle = (split == 'trn')
nworker = (nworker if (split == 'trn') else 0)
dataset = cls.datasets[benchmark](cls.datapath, fold=fold, transform=cls.transform, split=split, shot=shot, use_original_imgsize=cls.use_original_imgsize)
dataloader = DataLoader(dataset, batch_size=bsz, shuffle=shuffle, num_workers=nworker)
return dataloader
|
class DatasetFSS(Dataset):
def __init__(self, datapath, fold, transform, split, shot, use_original_imgsize):
self.split = split
self.benchmark = 'fss'
self.shot = shot
self.base_path = os.path.join(datapath, 'FSS-1000')
with open(('./data/splits/fss/%s.txt' % split), 'r') as f:
self.categories = f.read().split('\n')[:(- 1)]
self.categories = sorted(self.categories)
self.class_ids = self.build_class_ids()
self.img_metadata = self.build_img_metadata()
self.transform = transform
def __len__(self):
return len(self.img_metadata)
def __getitem__(self, idx):
(query_name, support_names, class_sample) = self.sample_episode(idx)
(query_img, query_mask, support_imgs, support_masks) = self.load_frame(query_name, support_names)
query_img = self.transform(query_img)
query_mask = F.interpolate(query_mask.unsqueeze(0).unsqueeze(0).float(), query_img.size()[(- 2):], mode='nearest').squeeze()
support_imgs = torch.stack([self.transform(support_img) for support_img in support_imgs])
support_masks_tmp = []
for smask in support_masks:
smask = F.interpolate(smask.unsqueeze(0).unsqueeze(0).float(), support_imgs.size()[(- 2):], mode='nearest').squeeze()
support_masks_tmp.append(smask)
support_masks = torch.stack(support_masks_tmp)
batch = {'query_img': query_img, 'query_mask': query_mask, 'query_name': query_name, 'support_imgs': support_imgs, 'support_masks': support_masks, 'support_names': support_names, 'class_id': torch.tensor(class_sample)}
return batch
def load_frame(self, query_name, support_names):
query_img = Image.open(query_name).convert('RGB')
support_imgs = [Image.open(name).convert('RGB') for name in support_names]
query_id = query_name.split('/')[(- 1)].split('.')[0]
query_name = (os.path.join(os.path.dirname(query_name), query_id) + '.png')
support_ids = [name.split('/')[(- 1)].split('.')[0] for name in support_names]
support_names = [(os.path.join(os.path.dirname(name), sid) + '.png') for (name, sid) in zip(support_names, support_ids)]
query_mask = self.read_mask(query_name)
support_masks = [self.read_mask(name) for name in support_names]
return (query_img, query_mask, support_imgs, support_masks)
def read_mask(self, img_name):
mask = torch.tensor(np.array(Image.open(img_name).convert('L')))
mask[(mask < 128)] = 0
mask[(mask >= 128)] = 1
return mask
def sample_episode(self, idx):
query_name = self.img_metadata[idx]
class_sample = self.categories.index(query_name.split('/')[(- 2)])
if (self.split == 'val'):
class_sample += 520
elif (self.split == 'test'):
class_sample += 760
support_names = []
while True:
support_name = np.random.choice(range(1, 11), 1, replace=False)[0]
support_name = (os.path.join(os.path.dirname(query_name), str(support_name)) + '.jpg')
if (query_name != support_name):
support_names.append(support_name)
if (len(support_names) == self.shot):
break
return (query_name, support_names, class_sample)
def build_class_ids(self):
if (self.split == 'trn'):
class_ids = range(0, 520)
elif (self.split == 'val'):
class_ids = range(520, 760)
elif (self.split == 'test'):
class_ids = range(760, 1000)
return class_ids
def build_img_metadata(self):
img_metadata = []
for cat in self.categories:
img_paths = sorted([path for path in glob.glob(('%s/*' % os.path.join(self.base_path, cat)))])
for img_path in img_paths:
if (os.path.basename(img_path).split('.')[1] == 'jpg'):
img_metadata.append(img_path)
return img_metadata
|
class DatasetPASCAL(Dataset):
def __init__(self, datapath, fold, transform, split, shot, use_original_imgsize):
self.split = ('val' if (split in ['val', 'test']) else 'trn')
self.fold = fold
self.nfolds = 4
self.nclass = 20
self.benchmark = 'pascal'
self.shot = shot
self.use_original_imgsize = use_original_imgsize
self.img_path = os.path.join(datapath, 'VOC2012/JPEGImages/')
self.ann_path = os.path.join(datapath, 'VOC2012/SegmentationClassAug/')
self.transform = transform
self.class_ids = self.build_class_ids()
self.img_metadata = self.build_img_metadata()
self.img_metadata_classwise = self.build_img_metadata_classwise()
def __len__(self):
return (len(self.img_metadata) if (self.split == 'trn') else 1000)
def __getitem__(self, idx):
idx %= len(self.img_metadata)
(query_name, support_names, class_sample) = self.sample_episode(idx)
(query_img, query_cmask, support_imgs, support_cmasks, org_qry_imsize) = self.load_frame(query_name, support_names)
query_img = self.transform(query_img)
if (not self.use_original_imgsize):
query_cmask = F.interpolate(query_cmask.unsqueeze(0).unsqueeze(0).float(), query_img.size()[(- 2):], mode='nearest').squeeze()
(query_mask, query_ignore_idx) = self.extract_ignore_idx(query_cmask.float(), class_sample)
support_imgs = torch.stack([self.transform(support_img) for support_img in support_imgs])
support_masks = []
support_ignore_idxs = []
for scmask in support_cmasks:
scmask = F.interpolate(scmask.unsqueeze(0).unsqueeze(0).float(), support_imgs.size()[(- 2):], mode='nearest').squeeze()
(support_mask, support_ignore_idx) = self.extract_ignore_idx(scmask, class_sample)
support_masks.append(support_mask)
support_ignore_idxs.append(support_ignore_idx)
support_masks = torch.stack(support_masks)
support_ignore_idxs = torch.stack(support_ignore_idxs)
batch = {'query_img': query_img, 'query_mask': query_mask, 'query_name': query_name, 'query_ignore_idx': query_ignore_idx, 'org_query_imsize': org_qry_imsize, 'support_imgs': support_imgs, 'support_masks': support_masks, 'support_names': support_names, 'support_ignore_idxs': support_ignore_idxs, 'class_id': torch.tensor(class_sample)}
return batch
def extract_ignore_idx(self, mask, class_id):
boundary = (mask / 255).floor()
mask[(mask != (class_id + 1))] = 0
mask[(mask == (class_id + 1))] = 1
return (mask, boundary)
def load_frame(self, query_name, support_names):
query_img = self.read_img(query_name)
query_mask = self.read_mask(query_name)
support_imgs = [self.read_img(name) for name in support_names]
support_masks = [self.read_mask(name) for name in support_names]
org_qry_imsize = query_img.size
return (query_img, query_mask, support_imgs, support_masks, org_qry_imsize)
def read_mask(self, img_name):
'Return segmentation mask in PIL Image'
mask = torch.tensor(np.array(Image.open((os.path.join(self.ann_path, img_name) + '.png'))))
return mask
def read_img(self, img_name):
'Return RGB image in PIL Image'
return Image.open((os.path.join(self.img_path, img_name) + '.jpg'))
def sample_episode(self, idx):
(query_name, class_sample) = self.img_metadata[idx]
support_names = []
while True:
support_name = np.random.choice(self.img_metadata_classwise[class_sample], 1, replace=False)[0]
if (query_name != support_name):
support_names.append(support_name)
if (len(support_names) == self.shot):
break
return (query_name, support_names, class_sample)
def build_class_ids(self):
nclass_trn = (self.nclass // self.nfolds)
class_ids_val = [((self.fold * nclass_trn) + i) for i in range(nclass_trn)]
class_ids_trn = [x for x in range(self.nclass) if (x not in class_ids_val)]
if (self.split == 'trn'):
return class_ids_trn
else:
return class_ids_val
def build_img_metadata(self):
def read_metadata(split, fold_id):
fold_n_metadata = os.path.join(('data/splits/pascal/%s/fold%d.txt' % (split, fold_id)))
with open(fold_n_metadata, 'r') as f:
fold_n_metadata = f.read().split('\n')[:(- 1)]
fold_n_metadata = [[data.split('__')[0], (int(data.split('__')[1]) - 1)] for data in fold_n_metadata]
return fold_n_metadata
img_metadata = []
if (self.split == 'trn'):
for fold_id in range(self.nfolds):
if (fold_id == self.fold):
continue
img_metadata += read_metadata(self.split, fold_id)
elif (self.split == 'val'):
img_metadata = read_metadata(self.split, self.fold)
else:
raise Exception(('Undefined split %s: ' % self.split))
print(('Total (%s) images are : %d' % (self.split, len(img_metadata))))
return img_metadata
def build_img_metadata_classwise(self):
img_metadata_classwise = {}
for class_id in range(self.nclass):
img_metadata_classwise[class_id] = []
for (img_name, img_class) in self.img_metadata:
img_metadata_classwise[img_class] += [img_name]
return img_metadata_classwise
|
class CenterPivotConv4d(nn.Module):
' CenterPivot 4D conv'
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, bias=True):
super(CenterPivotConv4d, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size[:2], stride=stride[:2], bias=bias, padding=padding[:2])
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size[2:], stride=stride[2:], bias=bias, padding=padding[2:])
self.stride34 = stride[2:]
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.idx_initialized = False
def prune(self, ct):
(bsz, ch, ha, wa, hb, wb) = ct.size()
if (not self.idx_initialized):
idxh = torch.arange(start=0, end=hb, step=self.stride[2:][0], device=ct.device)
idxw = torch.arange(start=0, end=wb, step=self.stride[2:][1], device=ct.device)
self.len_h = len(idxh)
self.len_w = len(idxw)
self.idx = (idxw.repeat(self.len_h, 1) + (idxh.repeat(self.len_w, 1).t() * wb)).view((- 1))
self.idx_initialized = True
ct_pruned = ct.view(bsz, ch, ha, wa, (- 1)).index_select(4, self.idx).view(bsz, ch, ha, wa, self.len_h, self.len_w)
return ct_pruned
def forward(self, x):
if (self.stride[2:][(- 1)] > 1):
out1 = self.prune(x)
else:
out1 = x
(bsz, inch, ha, wa, hb, wb) = out1.size()
out1 = out1.permute(0, 4, 5, 1, 2, 3).contiguous().view((- 1), inch, ha, wa)
out1 = self.conv1(out1)
(outch, o_ha, o_wa) = (out1.size((- 3)), out1.size((- 2)), out1.size((- 1)))
out1 = out1.view(bsz, hb, wb, outch, o_ha, o_wa).permute(0, 3, 4, 5, 1, 2).contiguous()
(bsz, inch, ha, wa, hb, wb) = x.size()
out2 = x.permute(0, 2, 3, 1, 4, 5).contiguous().view((- 1), inch, hb, wb)
out2 = self.conv2(out2)
(outch, o_hb, o_wb) = (out2.size((- 3)), out2.size((- 2)), out2.size((- 1)))
out2 = out2.view(bsz, ha, wa, outch, o_hb, o_wb).permute(0, 3, 1, 2, 4, 5).contiguous()
if ((out1.size()[(- 2):] != out2.size()[(- 2):]) and (self.padding[(- 2):] == (0, 0))):
out1 = out1.view(bsz, outch, o_ha, o_wa, (- 1)).sum(dim=(- 1))
out2 = out2.squeeze()
y = (out1 + out2)
return y
|
class Correlation():
@classmethod
def multilayer_correlation(cls, query_feats, support_feats, stack_ids):
eps = 1e-05
corrs = []
for (idx, (query_feat, support_feat)) in enumerate(zip(query_feats, support_feats)):
(bsz, ch, hb, wb) = support_feat.size()
support_feat = support_feat.view(bsz, ch, (- 1))
support_feat = (support_feat / (support_feat.norm(dim=1, p=2, keepdim=True) + eps))
(bsz, ch, ha, wa) = query_feat.size()
query_feat = query_feat.view(bsz, ch, (- 1))
query_feat = (query_feat / (query_feat.norm(dim=1, p=2, keepdim=True) + eps))
corr = torch.bmm(query_feat.transpose(1, 2), support_feat).view(bsz, ha, wa, hb, wb)
corr = corr.clamp(min=0)
corrs.append(corr)
corr_l4 = torch.stack(corrs[(- stack_ids[0]):]).transpose(0, 1).contiguous()
corr_l3 = torch.stack(corrs[(- stack_ids[1]):(- stack_ids[0])]).transpose(0, 1).contiguous()
corr_l2 = torch.stack(corrs[(- stack_ids[2]):(- stack_ids[1])]).transpose(0, 1).contiguous()
return [corr_l4, corr_l3, corr_l2]
|
def extract_feat_vgg(img, backbone, feat_ids, bottleneck_ids=None, lids=None):
' Extract intermediate features from VGG '
feats = []
feat = img
for (lid, module) in enumerate(backbone.features):
feat = module(feat)
if (lid in feat_ids):
feats.append(feat.clone())
return feats
|
def extract_feat_res(img, backbone, feat_ids, bottleneck_ids, lids):
' Extract intermediate features from ResNet'
feats = []
feat = backbone.conv1.forward(img)
feat = backbone.bn1.forward(feat)
feat = backbone.relu.forward(feat)
feat = backbone.maxpool.forward(feat)
for (hid, (bid, lid)) in enumerate(zip(bottleneck_ids, lids)):
res = feat
feat = backbone.__getattr__(('layer%d' % lid))[bid].conv1.forward(feat)
feat = backbone.__getattr__(('layer%d' % lid))[bid].bn1.forward(feat)
feat = backbone.__getattr__(('layer%d' % lid))[bid].relu.forward(feat)
feat = backbone.__getattr__(('layer%d' % lid))[bid].conv2.forward(feat)
feat = backbone.__getattr__(('layer%d' % lid))[bid].bn2.forward(feat)
feat = backbone.__getattr__(('layer%d' % lid))[bid].relu.forward(feat)
feat = backbone.__getattr__(('layer%d' % lid))[bid].conv3.forward(feat)
feat = backbone.__getattr__(('layer%d' % lid))[bid].bn3.forward(feat)
if (bid == 0):
res = backbone.__getattr__(('layer%d' % lid))[bid].downsample.forward(res)
feat += res
if ((hid + 1) in feat_ids):
feats.append(feat.clone())
feat = backbone.__getattr__(('layer%d' % lid))[bid].relu.forward(feat)
return feats
|
class HPNLearner(nn.Module):
def __init__(self, inch):
super(HPNLearner, self).__init__()
def make_building_block(in_channel, out_channels, kernel_sizes, spt_strides, group=4):
assert (len(out_channels) == len(kernel_sizes) == len(spt_strides))
building_block_layers = []
for (idx, (outch, ksz, stride)) in enumerate(zip(out_channels, kernel_sizes, spt_strides)):
inch = (in_channel if (idx == 0) else out_channels[(idx - 1)])
ksz4d = ((ksz,) * 4)
str4d = ((1, 1) + ((stride,) * 2))
pad4d = (((ksz // 2),) * 4)
building_block_layers.append(Conv4d(inch, outch, ksz4d, str4d, pad4d))
building_block_layers.append(nn.GroupNorm(group, outch))
building_block_layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*building_block_layers)
(outch1, outch2, outch3) = (16, 64, 128)
self.encoder_layer4 = make_building_block(inch[0], [outch1, outch2, outch3], [3, 3, 3], [2, 2, 2])
self.encoder_layer3 = make_building_block(inch[1], [outch1, outch2, outch3], [5, 3, 3], [4, 2, 2])
self.encoder_layer2 = make_building_block(inch[2], [outch1, outch2, outch3], [5, 5, 3], [4, 4, 2])
self.encoder_layer4to3 = make_building_block(outch3, [outch3, outch3, outch3], [3, 3, 3], [1, 1, 1])
self.encoder_layer3to2 = make_building_block(outch3, [outch3, outch3, outch3], [3, 3, 3], [1, 1, 1])
self.decoder1 = nn.Sequential(nn.Conv2d(outch3, outch3, (3, 3), padding=(1, 1), bias=True), nn.ReLU(), nn.Conv2d(outch3, outch2, (3, 3), padding=(1, 1), bias=True), nn.ReLU())
self.decoder2 = nn.Sequential(nn.Conv2d(outch2, outch2, (3, 3), padding=(1, 1), bias=True), nn.ReLU(), nn.Conv2d(outch2, 2, (3, 3), padding=(1, 1), bias=True))
def interpolate_support_dims(self, hypercorr, spatial_size=None):
(bsz, ch, ha, wa, hb, wb) = hypercorr.size()
hypercorr = hypercorr.permute(0, 4, 5, 1, 2, 3).contiguous().view(((bsz * hb) * wb), ch, ha, wa)
hypercorr = F.interpolate(hypercorr, spatial_size, mode='bilinear', align_corners=True)
(o_hb, o_wb) = spatial_size
hypercorr = hypercorr.view(bsz, hb, wb, ch, o_hb, o_wb).permute(0, 3, 4, 5, 1, 2).contiguous()
return hypercorr
def forward(self, hypercorr_pyramid):
hypercorr_sqz4 = self.encoder_layer4(hypercorr_pyramid[0])
hypercorr_sqz3 = self.encoder_layer3(hypercorr_pyramid[1])
hypercorr_sqz2 = self.encoder_layer2(hypercorr_pyramid[2])
hypercorr_sqz4 = self.interpolate_support_dims(hypercorr_sqz4, hypercorr_sqz3.size()[(- 4):(- 2)])
hypercorr_mix43 = (hypercorr_sqz4 + hypercorr_sqz3)
hypercorr_mix43 = self.encoder_layer4to3(hypercorr_mix43)
hypercorr_mix43 = self.interpolate_support_dims(hypercorr_mix43, hypercorr_sqz2.size()[(- 4):(- 2)])
hypercorr_mix432 = (hypercorr_mix43 + hypercorr_sqz2)
hypercorr_mix432 = self.encoder_layer3to2(hypercorr_mix432)
(bsz, ch, ha, wa, hb, wb) = hypercorr_mix432.size()
hypercorr_encoded = hypercorr_mix432.view(bsz, ch, ha, wa, (- 1)).mean(dim=(- 1))
hypercorr_decoded = self.decoder1(hypercorr_encoded)
upsample_size = (((hypercorr_decoded.size((- 1)) * 2),) * 2)
hypercorr_decoded = F.interpolate(hypercorr_decoded, upsample_size, mode='bilinear', align_corners=True)
logit_mask = self.decoder2(hypercorr_decoded)
return logit_mask
|
def test(model, dataloader, nshot):
' Test HSNet '
utils.fix_randseed(0)
average_meter = AverageMeter(dataloader.dataset)
for (idx, batch) in enumerate(dataloader):
batch = utils.to_cuda(batch)
pred_mask = model.module.predict_mask_nshot(batch, nshot=nshot)
assert (pred_mask.size() == batch['query_mask'].size())
(area_inter, area_union) = Evaluator.classify_prediction(pred_mask.clone(), batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss=None)
average_meter.write_process(idx, len(dataloader), epoch=(- 1), write_batch_idx=1)
if Visualizer.visualize:
Visualizer.visualize_prediction_batch(batch['support_imgs'], batch['support_masks'], batch['query_img'], batch['query_mask'], pred_mask, batch['class_id'], idx, (area_inter[1].float() / area_union[1].float()))
average_meter.write_result('Test', 0)
(miou, fb_iou) = average_meter.compute_iou()
return (miou, fb_iou)
|
def train(epoch, model, dataloader, optimizer, training):
' Train HSNet '
(utils.fix_randseed(None) if training else utils.fix_randseed(0))
(model.module.train_mode() if training else model.module.eval())
average_meter = AverageMeter(dataloader.dataset)
for (idx, batch) in enumerate(dataloader):
batch = utils.to_cuda(batch)
logit_mask = model(batch['query_img'], batch['support_imgs'].squeeze(1), batch['support_masks'].squeeze(1))
pred_mask = logit_mask.argmax(dim=1)
loss = model.module.compute_objective(logit_mask, batch['query_mask'])
if training:
optimizer.zero_grad()
loss.backward()
optimizer.step()
(area_inter, area_union) = Evaluator.classify_prediction(pred_mask, batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss.detach().clone())
average_meter.write_process(idx, len(dataloader), epoch, write_batch_idx=50)
average_meter.write_result(('Training' if training else 'Validation'), epoch)
avg_loss = utils.mean(average_meter.loss_buf)
(miou, fb_iou) = average_meter.compute_iou()
return (avg_loss, miou, fb_iou)
|
def parse_arguments():
'\n Parse options for functions.\n '
parser = argparse.ArgumentParser(description='Tool for managing Elasticsearch indices')
subparsers = parser.add_subparsers()
create = subparsers.add_parser('create', help='Create Elasticsearch index')
create.add_argument('-i', '--index', required=True, help='Name of the new index')
create.add_argument('-m', '--mappings', type=argparse.FileType('r'), required=True, help='File where mappings configuration is store for the index')
delete = subparsers.add_parser('delete', help='Delete one or more Elasticsearch indices')
delete.add_argument('-e', '--erase', nargs='*', required=True, help='Name of index to delete')
index = subparsers.add_parser('index', help='Index JSON files')
index.add_argument('-d', '--dir', required=True, help='Directory where the JSON files are stored. Be sure that in this path to the Spider folder!!!')
index.add_argument('-l', '--location', required=True, help='Name of the index where to index JSON files. If index do not exist it is created')
index.add_argument('-t', '--item-type', required=True, help='Name of type to be stored in ES index')
index.add_argument('-c', '--chunk-size', type=int, nargs='?', default=500, help='Number of JSON line to load into memory before indexing')
reindex = subparsers.add_parser('reindex', help='Reindex index')
reindex.add_argument('-s', '--source', required=True, help='Source index where documents are stored')
reindex.add_argument('-t', '--target', required=True, help='Target index where to move documents')
args = parser.parse_args()
return args
|
def create_index(es, index_name, body):
if (not es.indices.exists(index_name)):
es.indices.create(index=index_name, body=body)
|
def delete_indices(es, indices_name):
for index in indices_name:
if es.indices.exists(index):
es.indices.delete(index=index)
else:
logger.info('Index `{}` not found'.format(index))
|
def reindex(es, source_index, target_index):
helpers.reindex(es, source_index=source_index, target_index=target_index)
|
def lazy_indexing(es, path, chunck, index, item_type):
def serialize_json(json_line):
to_null = ['author', 'article_tag', 'list_of_tags', 'keywords', 'news_keywords']
for tag in to_null:
if (json_line[tag] == '---'):
json_line[tag] = None
if (json_line['publication_date'] == '---'):
json_line['publication_date'] = datetime.strptime('1900-01-01', '%Y-%m-%d')
else:
try:
json_line['publication_date'] = datetime.strptime(json_line['publication_date'], '%d %B %Y').date()
except ValueError:
try:
json_line['publication_date'] = datetime.strptime(json_line['publication_date'].replace('T', ' '), '%Y-%m-%d %H:%S')
except ValueError:
pass
return json_line
def lazy_json_load(filename):
with open(filename) as infile:
for line in infile:
json_line = json.loads(line)
formattd_json_line = serialize_json(json_line)
index_action = {'_index': index, '_type': item_type, '_id': formattd_json_line['url'], '_source': formattd_json_line}
(yield index_action)
files = [file for file in glob.glob((path + '/**/*.json'), recursive=True) if (not ('active.json' in file.split('/')))]
logger.info('Fond {0} documents to index'.format(len(files)))
for filename in files:
logger.info('Indexing : {}'.format(filename))
helpers.bulk(client=es, chunk_size=chunck, actions=lazy_json_load(filename), index=index, doc_type='news_article', stats_only=True)
|
def groupByQuery(eintrag, eintrag_spalte):
return dataset.groupby(eintrag_spalte).get_group(eintrag)
|
def groupByQuery(eintrag, eintrag_spalte):
return dataset.groupby(eintrag_spalte).get_group(eintrag)
|
def gendata(records, index, type):
for (k, v) in zip(records.keys(), records.values()):
(yield {'_index': index, '_id': k, '_source': v})
|
def extract_classifications(line):
classifications_list = []
start_classification = line.find('<classifications-ipcr>')
relative_end_classification = (line[start_classification:].find('</classifications-ipcr>') + 23)
classification_string = line[start_classification:(start_classification + relative_end_classification)]
try:
treeRoot = ET.fromstring(classification_string)
for classifications in treeRoot.findall('classification-ipcr'):
for classification in classifications:
classifications_list.append(classification.text)
except:
print(('error classification for line: ' + classification_string))
return classifications_list
|
def extract_citationIDs(application_identifier, line):
words = line.split('\t')[6].split(' ')
indices = [i for (i, x) in enumerate(words) if ('sr-cit' in x)]
return [((application_identifier + '_') + words[i][(words[i].find('sr-cit') + 6):(words[i].find('sr-cit') + 10)]) for i in indices]
|
def normalize_claims(claims):
normalized_claims = []
for claim in claims.split(','):
if ('-' not in claim):
normalized_claims.append(int(claim))
else:
for number in range(int(claim.split('-')[0]), (int(claim.split('-')[1]) + 1)):
normalized_claims.append(number)
return normalized_claims
|
def extract_citation_entry(citation_id, searchreport_line):
citation = {}
start_citation = searchreport_line.find(('<citation id="sr-cit' + citation_id[(- 4):]))
relative_end_citation = (searchreport_line[start_citation:].find('</citation>') + 11)
citation_string = searchreport_line[start_citation:(start_citation + relative_end_citation)]
try:
treeRoot = ET.fromstring(citation_string)
except:
print(('error citation for line: ' + citation_string))
return citation
treeRoot.findall('category')
last_category = ''
for element in treeRoot:
if (element.tag == 'category'):
last_category = element.text
elif (element.tag == 'rel-claims'):
for category in last_category.split(','):
citation.update({(('category' + '_') + category): normalize_claims(element.text)})
elif (element.tag == 'rel-passage'):
for category in last_category.split(','):
for passage in element:
old_rel_passage = citation.get((('rel-passage' + '_') + category))
if (old_rel_passage == None):
old_rel_passage = ''
citation.update({(('rel-passage' + '_') + category): (old_rel_passage + passage.text)})
elif (element.tag == 'patcit'):
citation.update({'dnum': element.attrib['dnum']})
citation.update({'url': element.attrib['url']})
for subelement in element:
if (subelement.tag == 'document-id'):
for child in subelement:
if (child.tag == 'country'):
citation.update({'country': child.text})
elif (child.tag == 'doc-number'):
citation.update({'doc-number': child.text})
elif (child.tag == 'kind'):
citation.update({'kind': child.text})
elif (child.tag == 'name'):
citation.update({'name': child.text})
elif (child.tag == 'date'):
citation.update({'date': child.text})
elif (element.tag == 'nplcit'):
citation.update({'nplcit': 'true'})
if ((last_category != '') and ((('rel-passage' + '_') + last_category.split(',')[0]) not in citation.keys())):
print(((('Kategorie ohne rel-passage, Citation ID/String: ' + citation_id) + ' / ') + citation_string))
return citation
|
def main(file):
f = open(file, 'r', encoding='utf8', errors='ignore')
lines = f.readlines()
records = {}
citations = {}
for line in lines:
if ('\ten\t' in line):
application_identifier = line.split('EP\t')[1].split('\ten\t')[0].replace('\t', '')
application_number = line.split('EP\t')[1].split('\t')[0]
application_category = line.split('EP\t')[1].split('\t')[1]
application_date = line.split('EP\t')[1].split('\t')[2]
if (application_identifier not in records):
records.update({application_identifier: {'application_number': application_number, 'application_category': application_category, 'application_date': application_date}})
record = records.get(application_identifier)
if ('\tTITLE\t' in line):
record.update({'title': line.split('\tTITLE\t')[1]})
elif ('\tABSTR\t' in line):
record.update({'abstract': line.split('\tABSTR\t')[1]})
elif ('\tDESCR\t' in line):
record.update({'description': line.split('\tDESCR\t')[1]})
elif ('\tCLAIM\t' in line):
record.update({'claims': line.split('\tCLAIM\t')[1]})
elif ('\tAMEND\t' in line):
record.update({'amended_claims': line.split('\tAMEND\t')[1]})
elif ('\tACSTM\t' in line):
record.update({'amended_claims_statements': line.split('\tACSTM\t')[1]})
elif ('\tSRPRT\t' in line):
record.update({'citation_ipcr_classification': extract_classifications(line)})
record.update({'citation_ids': extract_citationIDs(application_identifier, line)})
for citation_id in record['citation_ids']:
print(('evaluate citation id: ' + citation_id))
citations.update({citation_id: extract_citation_entry(citation_id, line.split('\tSRPRT\t')[1])})
elif ('\tPDFEP\t' in line):
record.update({'publication_url': line.split('\tPDFEP\t')[1]})
records.update({application_identifier: record})
upload(records, INDEX_APPL, 'patent_eu')
upload(citations, INDEX_CIT, 'citation_eu')
|
def createIndexPatentApplications():
settings = {'settings': {'number_of_shards': 1, 'number_of_replicas': 0}, 'mappings': {'properties': {'application_number': {'type': 'keyword'}, 'application_category': {'type': 'keyword'}, 'application_date': {'type': 'date'}, 'title': {'type': 'text'}, 'abstract': {'type': 'text'}, 'description': {'type': 'text'}, 'claims': {'type': 'text'}, 'amended_claims': {'type': 'text'}, 'amended_claims_statements': {'type': 'text'}, 'citation_ipcr_classification': {'type': 'keyword'}, 'citation_ids': {'type': 'keyword'}, 'publication_url': {'type': 'text'}}}}
es = Elasticsearch(hosts=['http://172.16.64.23:9200/'])
response = es.indices.create(index=INDEX_APPL, ignore=400, body=settings)
print(response)
|
def createIndexCitations():
settings = {'settings': {'number_of_shards': 1, 'number_of_replicas': 0, 'index.mapping.ignore_malformed': True}, 'mappings': {'properties': {'dnum': {'type': 'keyword'}, 'publication_url': {'type': 'text'}, 'country': {'type': 'keyword'}, 'kind': {'type': 'keyword'}, 'doc_number': {'type': 'keyword'}, 'name': {'type': 'text'}, 'date': {'type': 'date'}, 'category_X': {'type': 'integer'}, 'category_P': {'type': 'integer'}, 'category_A': {'type': 'integer'}, 'category_D': {'type': 'integer'}, 'category_Y': {'type': 'integer'}, 'category_L': {'type': 'integer'}, 'category_O': {'type': 'integer'}, 'category_T': {'type': 'integer'}, 'category_E': {'type': 'integer'}, 'rel-passage_X': {'type': 'text'}, 'rel-passage_P': {'type': 'text'}, 'rel-passage_A': {'type': 'text'}, 'rel-passage_D': {'type': 'text'}, 'rel-passage_Y': {'type': 'text'}, 'rel-passage_L': {'type': 'text'}, 'rel-passage_O': {'type': 'text'}, 'rel-passage_T': {'type': 'text'}, 'rel-passage_E': {'type': 'text'}, 'nplcit': {'type': 'boolean'}}}}
es = Elasticsearch(hosts=['http://172.16.64.23:9200/'])
response = es.indices.create(index=INDEX_CIT, ignore=400, body=settings)
print(response)
|
def upload(records, index, type):
client = connections.create_connection(hosts=['http://172.16.64.23:9200/'])
res = helpers.bulk(client, gendata(records, index, type), index=index, chunk_size=1000, request_timeout=200)
print(res)
|
def gendata(records, index, type):
for (k, v) in zip(records.keys(), records.values()):
(yield {'_index': index, '_id': k, '_source': v})
|
def extract_classifications(line):
classifications_list = []
start_classification = line.find('<classifications-ipcr>')
relative_end_classification = (line[start_classification:].find('</classifications-ipcr>') + 23)
classification_string = line[start_classification:(start_classification + relative_end_classification)]
try:
treeRoot = ET.fromstring(classification_string)
for classifications in treeRoot.findall('classification-ipcr'):
for classification in classifications:
classifications_list.append(classification.text)
except:
print(('error classification for line: ' + classification_string))
return classifications_list
|
def extract_citationIDs(application_identifier, line):
words = line.split('\t')[6].split(' ')
indices = [i for (i, x) in enumerate(words) if ('sr-cit' in x)]
return [((application_identifier + '_') + words[i][(words[i].find('sr-cit') + 6):(words[i].find('sr-cit') + 10)]) for i in indices]
|
def normalize_claims(claims):
normalized_claims = []
for claim in claims.split(','):
if ('-' not in claim):
normalized_claims.append(int(claim))
else:
for number in range(int(claim.split('-')[0]), (int(claim.split('-')[1]) + 1)):
normalized_claims.append(number)
return normalized_claims
|
def extract_citation_entry(citation_id, searchreport_line):
citation = {}
start_citation = searchreport_line.find(('<citation id="sr-cit' + citation_id[(- 4):]))
relative_end_citation = (searchreport_line[start_citation:].find('</citation>') + 11)
citation_string = searchreport_line[start_citation:(start_citation + relative_end_citation)]
try:
treeRoot = ET.fromstring(citation_string)
except:
print(('error citation for line: ' + citation_string))
return citation
treeRoot.findall('category')
last_category = ''
for element in treeRoot:
if (element.tag == 'category'):
last_category = element.text
elif (element.tag == 'rel-claims'):
for category in last_category.split(','):
citation.update({(('category' + '_') + category): normalize_claims(element.text)})
elif (element.tag == 'rel-passage'):
for category in last_category.split(','):
for passage in element:
old_rel_passage = citation.get((('rel-passage' + '_') + category))
if (old_rel_passage == None):
old_rel_passage = ''
citation.update({(('rel-passage' + '_') + category): (old_rel_passage + passage.text)})
elif (element.tag == 'patcit'):
citation.update({'dnum': element.attrib['dnum']})
citation.update({'url': element.attrib['url']})
for subelement in element:
if (subelement.tag == 'document-id'):
for child in subelement:
if (child.tag == 'country'):
citation.update({'country': child.text})
elif (child.tag == 'doc-number'):
citation.update({'doc-number': child.text})
elif (child.tag == 'kind'):
citation.update({'kind': child.text})
elif (child.tag == 'name'):
citation.update({'name': child.text})
elif (child.tag == 'date'):
citation.update({'date': child.text})
elif (element.tag == 'nplcit'):
citation.update({'nplcit': 'true'})
if ((last_category != '') and ((('rel-passage' + '_') + last_category.split(',')[0]) not in citation.keys())):
print(((('Kategorie ohne rel-passage, Citation ID/String: ' + citation_id) + ' / ') + citation_string))
return citation
|
def main(file):
f = open(file, 'r', encoding='utf8', errors='ignore')
lines = f.readlines()
records = {}
citations = {}
for line in lines:
if ('\ten\t' in line):
application_identifier = line.split('EP\t')[1].split('\ten\t')[0].replace('\t', '')
application_number = line.split('EP\t')[1].split('\t')[0]
application_category = line.split('EP\t')[1].split('\t')[1]
application_date = line.split('EP\t')[1].split('\t')[2]
if (application_date == ''):
print(('Skipping entry, because of missing date: ' + application_identifier))
continue
if (application_identifier not in records):
records.update({application_identifier: {'application_number': application_number, 'application_category': application_category, 'application_date': application_date}})
record = records.get(application_identifier)
if ('\tTITLE\t' in line):
record.update({'title': line.split('\tTITLE\t')[1]})
elif ('\tABSTR\t' in line):
record.update({'abstract': line.split('\tABSTR\t')[1]})
elif ('\tDESCR\t' in line):
record.update({'description': line.split('\tDESCR\t')[1]})
elif ('\tCLAIM\t' in line):
record.update({'claims': line.split('\tCLAIM\t')[1]})
elif ('\tAMEND\t' in line):
record.update({'amended_claims': line.split('\tAMEND\t')[1]})
elif ('\tACSTM\t' in line):
record.update({'amended_claims_statements': line.split('\tACSTM\t')[1]})
elif ('\tSRPRT\t' in line):
record.update({'citation_ipcr_classification': extract_classifications(line)})
record.update({'citation_ids': extract_citationIDs(application_identifier, line)})
for citation_id in record['citation_ids']:
print(('evaluate citation id: ' + citation_id))
citations.update({citation_id: extract_citation_entry(citation_id, line.split('\tSRPRT\t')[1])})
elif ('\tPDFEP\t' in line):
record.update({'publication_url': line.split('\tPDFEP\t')[1]})
records.update({application_identifier: record})
upload(records, INDEX_APPL, 'patent_eu')
upload(citations, INDEX_CIT, 'citation_eu')
|
def createIndexPatentApplications():
settings = {'settings': {'number_of_shards': 1, 'number_of_replicas': 0}, 'mappings': {'properties': {'application_number': {'type': 'keyword'}, 'application_category': {'type': 'keyword'}, 'application_date': {'type': 'date'}, 'title': {'type': 'text'}, 'abstract': {'type': 'text'}, 'description': {'type': 'text'}, 'claims': {'type': 'text'}, 'amended_claims': {'type': 'text'}, 'amended_claims_statements': {'type': 'text'}, 'citation_ipcr_classification': {'type': 'keyword'}, 'citation_ids': {'type': 'keyword'}, 'publication_url': {'type': 'text'}}}}
es = Elasticsearch(hosts=['http://172.16.64.23:9200/'])
response = es.indices.create(index=INDEX_APPL, ignore=400, body=settings)
print(response)
|
def createIndexCitations():
settings = {'settings': {'number_of_shards': 1, 'number_of_replicas': 0, 'index.mapping.ignore_malformed': True}, 'mappings': {'properties': {'dnum': {'type': 'keyword'}, 'publication_url': {'type': 'text'}, 'country': {'type': 'keyword'}, 'kind': {'type': 'keyword'}, 'doc_number': {'type': 'keyword'}, 'name': {'type': 'text'}, 'date': {'type': 'date'}, 'category_X': {'type': 'integer'}, 'category_P': {'type': 'integer'}, 'category_A': {'type': 'integer'}, 'category_D': {'type': 'integer'}, 'category_Y': {'type': 'integer'}, 'category_L': {'type': 'integer'}, 'category_O': {'type': 'integer'}, 'category_T': {'type': 'integer'}, 'category_E': {'type': 'integer'}, 'rel-passage_X': {'type': 'text'}, 'rel-passage_P': {'type': 'text'}, 'rel-passage_A': {'type': 'text'}, 'rel-passage_D': {'type': 'text'}, 'rel-passage_Y': {'type': 'text'}, 'rel-passage_L': {'type': 'text'}, 'rel-passage_O': {'type': 'text'}, 'rel-passage_T': {'type': 'text'}, 'rel-passage_E': {'type': 'text'}, 'nplcit': {'type': 'boolean'}}}}
es = Elasticsearch(hosts=['http://172.16.64.23:9200/'])
response = es.indices.create(index=INDEX_CIT, ignore=400, body=settings)
print(response)
|
def upload(records, index, type):
client = connections.create_connection(hosts=['http://172.16.64.23:9200/'])
res = helpers.bulk(client, gendata(records, index, type), index=index, chunk_size=1000, request_timeout=200)
print(res)
|
def query_exist_claim():
return {'query': {'bool': {'filter': [{'exists': {'field': 'citation_ids'}}, {'exists': {'field': 'claims'}}]}}}
|
def query_citation_id(citation_entry):
return {'query': {'bool': {'filter': [{'exists': {'field': 'category_A'}}, {'ids': {'values': [citation_entry]}}]}}}
|
def process_hits(es, response, patent_application_id_column, patent_citation_column, application_claim_number_column, application_claim_text_column, related_passages_against_claim_column, category_column):
print(response)
all_response_patent_applications = response.get('hits').get('hits')
for element in all_response_patent_applications:
patent_application_id = element.get('_id')
claims_text_raw = element.get('_source').get('claims')
max_claim = int(claims_text_raw.split('<claim id="c-en-00')[(- 1)][:2])
for claim in range(1, (max_claim + 1)):
for citation_id in element.get('_source').get('citation_ids'):
print(citation_id)
response_citation = es.search(index='ep_patent_citations', body=query_citation_id(citation_id), size=10000)
print(response_citation)
try:
response_citation.get('hits').get('hits')[0].get('_source')
except:
continue
response_rel_claims = response_citation.get('hits').get('hits')[0].get('_source').get('category_A')
response_rel_passage = response_citation.get('hits').get('hits')[0].get('_source').get('rel-passage_A')
if (claim in response_rel_claims):
try:
application_claim_text_column.append(claims_text_raw.split((((('<claim id="c-en-00' + '{:02d}'.format(claim)) + '" num="00') + '{:02d}'.format(claim)) + '">'))[1].split('</claim>')[0])
except:
print(((('Discarded Claim. ID: ' + str(claim)) + ', Patent Application ID: ') + str(patent_application_id)))
continue
patent_application_id_column.append(patent_application_id)
patent_citation_column.append(citation_id)
application_claim_number_column.append(claim)
related_passages_against_claim_column.append(response_rel_passage)
category_column.append('A')
|
def main():
patent_application_id_column = []
patent_citation_column = []
application_claim_number_column = []
application_claim_text_column = []
related_passages_against_claim_column = []
category_column = []
es = Elasticsearch(hosts=['http://172.16.64.23:9200/'])
response = es.search(index='ep_patent_applications', body=query_exist_claim(), scroll='2m')
print(response)
sid = response.get('_scroll_id')
scroll_size = len(response['hits']['hits'])
process_hits(es, response, patent_application_id_column, patent_citation_column, application_claim_number_column, application_claim_text_column, related_passages_against_claim_column, category_column)
while (scroll_size > 0):
'Scrolling...'
response = es.scroll(scroll_id=sid, scroll='2m')
process_hits(es, response, patent_application_id_column, patent_citation_column, application_claim_number_column, application_claim_text_column, related_passages_against_claim_column, category_column)
sid = response['_scroll_id']
scroll_size = len(response['hits']['hits'])
column_data = {'patent_application_id': patent_application_id_column, 'patent_citation_id': patent_citation_column, 'application_claim_number': application_claim_number_column, 'application_claim_text': application_claim_text_column, 'related_passages_against_claim': related_passages_against_claim_column, 'category': category_column}
print(column_data)
df = pd.DataFrame(data=column_data, columns=['patent_application_id', 'patent_citation_id', 'application_claim_number', 'application_claim_text', 'related_passages_against_claim', 'category'])
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', 30)
df.to_csv('./frame_negativeSamples.csv')
|
def query_exist_claim():
return {'query': {'bool': {'filter': [{'exists': {'field': 'citation_ids'}}, {'exists': {'field': 'claims'}}]}}}
|
def query_citation_id(citation_entry):
return {'query': {'bool': {'filter': [{'exists': {'field': 'category_X'}}, {'ids': {'values': [citation_entry]}}]}}}
|
def process_hits(es, response, patent_application_id_column, patent_citation_column, application_claim_number_column, application_claim_text_column, related_passages_against_claim_column, category_column):
print(response)
all_response_patent_applications = response.get('hits').get('hits')
for element in all_response_patent_applications:
patent_application_id = element.get('_id')
claims_text_raw = element.get('_source').get('claims')
max_claim = int(claims_text_raw.split('<claim id="c-en-00')[(- 1)][:2])
for claim in range(1, (max_claim + 1)):
for citation_id in element.get('_source').get('citation_ids'):
print(citation_id)
response_citation = es.search(index='ep_patent_citations', body=query_citation_id(citation_id), size=10000)
print(response_citation)
try:
response_citation.get('hits').get('hits')[0].get('_source')
except:
continue
response_rel_claims = response_citation.get('hits').get('hits')[0].get('_source').get('category_X')
response_rel_passage = response_citation.get('hits').get('hits')[0].get('_source').get('rel-passage_X')
if (claim in response_rel_claims):
try:
application_claim_text_column.append(claims_text_raw.split((((('<claim id="c-en-00' + '{:02d}'.format(claim)) + '" num="00') + '{:02d}'.format(claim)) + '">'))[1].split('</claim>')[0])
except:
print(((('Discarded Claim. ID: ' + str(claim)) + ', Patent Application ID: ') + str(patent_application_id)))
continue
patent_application_id_column.append(patent_application_id)
patent_citation_column.append(citation_id)
application_claim_number_column.append(claim)
related_passages_against_claim_column.append(response_rel_passage)
category_column.append('X')
|
def main():
patent_application_id_column = []
patent_citation_column = []
application_claim_number_column = []
application_claim_text_column = []
related_passages_against_claim_column = []
category_column = []
es = Elasticsearch(hosts=['http://172.16.64.23:9200/'])
response = es.search(index='ep_patent_applications', body=query_exist_claim(), scroll='2m')
print(response)
sid = response.get('_scroll_id')
scroll_size = len(response['hits']['hits'])
process_hits(es, response, patent_application_id_column, patent_citation_column, application_claim_number_column, application_claim_text_column, related_passages_against_claim_column, category_column)
while (scroll_size > 0):
'Scrolling...'
response = es.scroll(scroll_id=sid, scroll='2m')
process_hits(es, response, patent_application_id_column, patent_citation_column, application_claim_number_column, application_claim_text_column, related_passages_against_claim_column, category_column)
sid = response['_scroll_id']
scroll_size = len(response['hits']['hits'])
column_data = {'patent_application_id': patent_application_id_column, 'patent_citation_id': patent_citation_column, 'application_claim_number': application_claim_number_column, 'application_claim_text': application_claim_text_column, 'related_passages_against_claim': related_passages_against_claim_column, 'category': category_column}
print(column_data)
df = pd.DataFrame(data=column_data, columns=['patent_application_id', 'patent_citation_id', 'application_claim_number', 'application_claim_text', 'related_passages_against_claim', 'category'])
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', 30)
df.to_csv('./frame.csv')
|
def desirable(tag):
return ((tag[0] in ['paragraph', '-', '[']) or ((tag[1] in ['CD']) and tag[0].isdigit()))
|
def syntax_right(tag_before_tag, tag):
if (tag[1] != 'CD'):
return True
else:
return (((tag[1] == 'CD') and ('paragraph' in tag_before_tag[0])) or ('[' in tag_before_tag[0]))
|
def text_is_range(tag_before_tag, tag, tag_after_tag):
return ((tag_before_tag[1] == 'CD') and (tag[0] == '-') and (tag_after_tag[1] == 'CD'))
|
def extract_paragraphs(text):
tokens = nltk.word_tokenize(text.lower().replace('paragraphs', 'paragraph'))
pos_tags = nltk.pos_tag(tokens)
pos_tags = [tag for tag in pos_tags if desirable(tag)]
pos_tags = [tag for (tag_before_tag, tag) in zip(([('', '')] + pos_tags[:(- 1)]), pos_tags) if syntax_right(tag_before_tag, tag)]
pos_tags = [tag for tag in pos_tags if ((not ('paragraph' in tag[0])) and (not ('[' in tag[0])))]
pos_tags_ranges = [list(range(int(tag_before_tag[0]), (int(tag_after_tag[0]) + 1))) for (tag_before_tag, tag, tag_after_tag) in zip(([('', '')] + pos_tags[:(- 1)]), pos_tags, (pos_tags[1:] + [('', '')])) if text_is_range(tag_before_tag, tag, tag_after_tag)]
pos_tags_numbers_only = [int(tag[0]) for tag in pos_tags if (tag[0] != '-')]
end_result_paragraph_numbers = pos_tags_numbers_only
for range_list in pos_tags_ranges:
end_result_paragraph_numbers = (end_result_paragraph_numbers + range_list)
end_result_paragraph_numbers = list(set(end_result_paragraph_numbers))
return end_result_paragraph_numbers
|
def getAccessToken():
payload = 'grant_type=client_credentials'
usrPass = ((consumer_key + ':') + consumer_secret_key)
b64Val = base64.b64encode(bytes(usrPass, 'utf-8'))
header = {'authorization': ('Basic %s' % b64Val.decode('utf-8')), 'content-type': 'application/x-www-form-urlencoded'}
request_token = requests.post(token_url, headers=header, data=payload)
access_token = request_token.json()['access_token']
return access_token
|
def getEquivalents(number):
access_token = getAccessToken()
equivalent = []
payload = number
header = {'authorization': ('Bearer %s' % access_token), 'content-type': 'text/plain'}
request_equivalent = requests.post(request_url, headers=header, data=payload)
response = request_equivalent.text
try:
root = ET.fromstring(response)
for inquiry_result in list(root.iter('{http://ops.epo.org}equivalents-inquiry'))[0].iter('{http://ops.epo.org}inquiry-result'):
for publication_reference in inquiry_result.iter('{http://www.epo.org/exchange}publication-reference'):
for document_id in publication_reference.iter('{http://www.epo.org/exchange}document-id'):
for doc_number in document_id.iter('{http://www.epo.org/exchange}doc-number'):
equivalent.append(doc_number.text)
print(equivalent)
except:
print(('unexpected response or no equivalents :' + number))
return equivalent
|
def query_patent_citation_country_docNumber(id):
return {'query': {'bool': {'filter': [{'ids': {'values': [id]}}]}}}
|
def elasticSearch_process(id):
response_citation = es.search(index='ep_patent_citations', body=query_patent_citation_country_docNumber(id), size=10000)
try:
country = response_citation.get('hits').get('hits')[0].get('_source').get('country')
docNumber = response_citation.get('hits').get('hits')[0].get('_source').get('doc-number')
print((country + docNumber))
return (country + docNumber)
except:
return 'error es_response'
|
def getPatentCitationIds(csv_path):
list_of_patent_citation_ids = []
list_of_equivalents_lists = []
dataframe = pd.read_csv(csv_path, header=0, skiprows=range(1, 2767211))
patent_citation_id_iterator = dataframe['patent_citation_id']
for id in patent_citation_id_iterator.unique():
list_of_patent_citation_ids.append(id)
citation_identifier = elasticSearch_process(id)
if (citation_identifier is not 'error es_response'):
equivalents_list = getEquivalents(citation_identifier)
else:
equivalents_list = ['error es_response']
list_of_equivalents_lists.append(equivalents_list)
time.sleep(6.0)
return pd.DataFrame({'patent_citation_id': list_of_patent_citation_ids, 'equivalents': list_of_equivalents_lists})
|
def process_csv(path):
global counter_error
global counter_success
with open(path) as f:
lines = f.readlines()
follow_up_next_line = False
current_id = ''
for line in lines:
if (follow_up_next_line is True):
equivalents_list = line.replace('[', '').replace(']', '').replace("'", '').rstrip().split(', ')
equivalents_list.append(current_id)
equivalents_list = list(dict.fromkeys(equivalents_list))
column_id.append(current_id)
column_equivalents.append(equivalents_list)
follow_up_next_line = False
counter_success = (counter_success + 1)
elif str.__contains__(line, 'unexpected response or no equivalents :'):
counter_error = (counter_error + 1)
else:
current_id = line.rstrip()
follow_up_next_line = True
|
def elasticsearch_request_getDnum(citation_id):
return {'query': {'bool': {'filter': [{'ids': {'values': [citation_id]}}]}}}
|
def elasticsearch_request_getParagraphText(application_number, application_category):
return {'query': {'bool': {'filter': [{'term': {'application_number': application_number}}, {'term': {'application_category': application_category}}]}}}
|
def getPatentDetails(citation_id):
response = es.search(index='ep_patent_citations', body=elasticsearch_request_getDnum(citation_id))
print(response)
try:
dnum = response['hits']['hits'][0]['_source']['dnum']
docNumber = response['hits']['hits'][0]['_source']['doc-number']
patentCountry = response['hits']['hits'][0]['_source']['country']
patentCategory = response['hits']['hits'][0]['_source']['kind']
except:
return 'not found'
return (dnum, docNumber, patentCountry, patentCategory)
|
def dataframeToDict(dataframe, dictionary):
for (index, entry) in dataframe.iterrows():
id_list = entry['equivalent_patents'].strip('][').split(', ')
clean_id_list = []
for value in id_list:
clean_id_list.append(value.replace("'", ''))
dictionary[entry['patent_id']] = clean_id_list
return dictionary
|
def getParagraphText(dnum, application_category, paragraphs):
response = es.search(index='ep_patent_applications', body=elasticsearch_request_getParagraphText(dnum, application_category))
try:
paragraph_field = response['hits']['hits'][0]['_source']['description']
except:
return 'not found'
extracted_paragraph = ''
for paragraph in paragraphs:
found_paragraph_position_start = paragraph_field.find((((('<p id="p' + ('%04d' % int(paragraph))) + '" num="') + ('%04d' % int(paragraph))) + '">'))
found_paragraph_position_end = (paragraph_field.find('</p>', found_paragraph_position_start) + 3)
extracted_paragraph = ((extracted_paragraph + ' ') + paragraph_field[found_paragraph_position_start:found_paragraph_position_end])
return extracted_paragraph
|
def getParagraphFromText(paragraphsText, paragraphNumber):
found_paragraph_position_start = paragraphsText.find((((('<p id="p' + ('%04d' % int(paragraphNumber))) + '" num="') + ('%04d' % int(paragraphNumber))) + '">'))
found_paragraph_position_end = (paragraphsText.find('</p', found_paragraph_position_start) + 3)
extracted_paragraph = paragraphsText[found_paragraph_position_start:found_paragraph_position_end]
return extracted_paragraph
|
def execute():
path = '/mnt/data/datasets/patents/patent_matching'
positives = pd.read_csv((path + '/positives_satellite.csv'), header=0, dtype={'application_claim_text': str, 'patent_searchReport_paragraph': str})
negatives = pd.read_csv((path + '/negatives_satellite.csv'), header=0, dtype={'application_claim_text': str, 'patent_searchReport_paragraph': str})
sample_size = 1.0
positives = positives[['application_claim_text', 'patent_searchReport_paragraph']]
positives['label'] = '1'
positives = positives.rename(columns={'application_claim_text': 'text', 'patent_searchReport_paragraph': 'text_b'})
negatives = negatives[['application_claim_text', 'patent_searchReport_paragraph']]
negatives['label'] = '0'
negatives = negatives.rename(columns={'application_claim_text': 'text', 'patent_searchReport_paragraph': 'text_b'})
allSamples = positives.append(negatives).dropna()
allSamples['text_b'] = allSamples['text_b'].str.replace('<\\/p', '', regex=True)
allSamples['text'] = allSamples['text'].str.replace('<\\/p', '', regex=True)
allSamples['text_b'] = allSamples['text_b'].str.replace('\\<.+?\\>', '', regex=True)
allSamples['text'] = allSamples['text'].str.replace('\\<.+?\\>', '', regex=True)
allSamples['text_b'] = allSamples['text_b'].str.replace('--\\>', '', regex=True)
allSamples['text'] = allSamples['text'].str.replace('--\\>', '', regex=True)
allSamples['text_b'] = allSamples['text_b'].str.replace('"', '', regex=True)
allSamples['text'] = allSamples['text'].str.replace('"', '', regex=True)
allSamples['text_b'] = allSamples['text_b'].str.replace('[^A-Za-z0-9\\s.]+', '', regex=True)
allSamples['text'] = allSamples['text'].str.replace('[^A-Za-z0-9\\s.]+', '', regex=True)
allSamples['text_b'].replace('^\\s', '', regex=True, inplace=True)
allSamples['text'].replace('^\\s', '', regex=True, inplace=True)
allSamples['text_b'].replace('\\B\\s+|\\s+\\B', '', regex=True, inplace=True)
allSamples['text'].replace('\\B\\s+|\\s+\\B', '', regex=True, inplace=True)
allSamples['text_b'].replace('^[\\s]*$', np.nan, regex=True, inplace=True)
allSamples['text'].replace('^[\\s]*$', np.nan, regex=True, inplace=True)
allSamples = allSamples.sort_values(by=['text']).dropna()
(train, test_dev) = train_test_split(allSamples, test_size=0.2, shuffle=False)
(test, dev) = train_test_split(test_dev, test_size=0.5, shuffle=False)
train = train.sample(frac=sample_size)
test = test.sample(frac=sample_size)
dev = dev.sample(frac=sample_size)
print('Check for intersection values:')
print('Train in Test')
print(train['text'].isin(test['text']).value_counts())
print('Train in Dev')
print(train['text'].isin(dev['text']).value_counts())
print('Test in Dev')
print(test['text'].isin(dev['text']).value_counts())
train.to_csv((path + '/train.tsv'), sep='\t', index=False)
test.to_csv((path + '/test.tsv'), sep='\t', index=False)
dev.to_csv((path + '/dev.tsv'), sep='\t', index=False)
|
def query_citation_id(citation_entry):
return {'query': {'ids': {'values': [citation_entry]}}}
|
def process_hits(response, column_id_pa, column_cit_srprt, column_category_P, column_category_A, column_category_D, column_category_Y, column_category_L, column_category_O, column_category_T, column_category_E, column_category_X):
all_response_patent_applications = response.get('hits').get('hits')
for element in all_response_patent_applications:
element_id_pa = element.get('_id')
for citation_id in element.get('_source').get('citation_ids'):
column_id_pa.append(element_id_pa)
column_cit_srprt.append(citation_id)
response_citation = es.search(index='ep_patent_citations', body=query_citation_id(citation_id), size=10000, filter_path=['hits.total.value', 'hits.hits'])
response_citation_entry = response_citation.get('hits').get('hits')[0].get('_source')
column_category_P.append((response_citation_entry.get('category_P') != None))
column_category_A.append((response_citation_entry.get('category_A') != None))
column_category_D.append((response_citation_entry.get('category_D') != None))
column_category_Y.append((response_citation_entry.get('category_Y') != None))
column_category_L.append((response_citation_entry.get('category_L') != None))
column_category_O.append((response_citation_entry.get('category_O') != None))
column_category_T.append((response_citation_entry.get('category_T') != None))
column_category_E.append((response_citation_entry.get('category_E') != None))
column_category_X.append((response_citation_entry.get('category_X') != None))
|
def read_file(f):
with open(f, 'r') as f:
return json.load(f)
|
def get_results(results, dataset, name):
if (dataset not in datasets_mt_few_shot):
res = {k: round((v['acc'] * 100), 1) for (k, v) in results.items()}
else:
res = {k.replace(name, 'few-shot'): round((v['acc'] * 100), 1) for (k, v) in results.items()}
res = dict(sorted(res.items()))
task_names = list(res.keys())
results_dataset = defaultdict(dict)
dataset_names = set([task[:(- 3)] for task in task_names])
for dataset_name in dataset_names:
results_dataset[dataset_name] = defaultdict(dict)
for task in task_names:
dataset_name = task[:(- 3)]
lang = task[(- 2):]
results_dataset[dataset_name][lang] = res[task]
for (dataset_name, resu) in results_dataset.items():
values = [v for (k, v) in resu.items() if (k != 'en')]
results_dataset[dataset_name]['avg'] = round((sum(values) / len(values)), 1)
for (resource, langs) in languages.items():
values = [v for (k, v) in resu.items() if (k in langs)]
if (len(values) > 0):
results_dataset[dataset_name][resource] = round((sum(values) / len(values)), 1)
return results_dataset
|
def get_all_results(models, datasets):
all_results = defaultdict(dict)
for (model, names) in models.items():
for dataset in datasets:
for name in names:
shots = (8 if ('mgsm' in dataset) else 0)
if (not os.path.exists(f'../results/{model}/{name}/{name}_{dataset}_{shots}-shot.json')):
print(f'../results/{model}/{name}/{name}_{dataset}_{shots}-shot.json')
continue
output = read_file(f'../results/{model}/{name}/{name}_{dataset}_{shots}-shot.json')
results = get_results(output['results'], dataset, name)
for dataset_name in results:
if (dataset_name not in all_results):
all_results[dataset_name] = defaultdict(dict)
all_results[dataset_name][name].update(results[dataset_name])
return all_results
|
def get_dataframes(all_results, datasets):
results_avg = pd.DataFrame()
for dataset in datasets:
results = pd.DataFrame(all_results[dataset]).T
results['dataset'] = dataset
results['model'] = [models_reverse[model] for model in results.index]
results['size'] = model_sizes_all[:len(results)]
results_avg['model'] = results['model']
results_avg['size'] = results['size']
results_avg[dataset] = results['avg']
(yield results)
size = results_avg['size']
results_avg = results_avg.drop(columns=['size'])
results_avg['avg'] = results_avg.mean(axis=1).round(1)
results_avg['dataset'] = 'avg'
results_avg['size'] = size
(yield results_avg)
|
def plot_size_df_models(df, langs=False):
df.set_index('size', inplace=True)
df.groupby('model')['avg'].plot(x='size', y='acc', title=list(df['dataset'])[0], legend=True, marker='o')
plt.xscale('log')
plt.xticks(model_sizes_all, model_sizes_all, rotation='vertical')
plt.show()
if langs:
for lang in df.columns:
if (lang in ['dataset', 'model', 'avg', 'size']):
continue
df.groupby('model')[lang].plot(x='size', title=f"{list(df['dataset'])[0]}_{lang}", legend=True, marker='o')
plt.xscale('log')
plt.xticks(model_sizes_all, model_sizes_all, rotation='vertical')
plt.show()
|
def get_dataframes_model(all_results, datasets, model_name, divide=False):
dataset_keys = list(all_results.keys())
if divide:
df_avg_self = pd.DataFrame()
df_avg_mt = pd.DataFrame()
else:
df_avg = {}
for average in (['avg'] + list(languages.keys())):
df_avg[average] = pd.DataFrame()
for dataset in datasets:
dfs = []
for dataset_key in dataset_keys:
if dataset_key.startswith(dataset):
if (model_name == 'open_llama_v2'):
if (not any([(model.lower() in models['open_llama_v2']) for model in all_results[dataset_key]])):
continue
elif (not any([(model_name in model.lower()) for model in all_results[dataset_key]])):
continue
if (('600M' in dataset_key) or ('1.3B' in dataset_key)):
continue
results = pd.DataFrame(all_results[dataset_key]).T
results['dataset'] = dataset_key
results['model'] = [models_reverse[model] for model in results.index]
results = results[(results['model'] == model_name)]
results.drop(columns=['model'], inplace=True)
results['model'] = model_name
results['size'] = model_sizes[model_name][:len(results)]
dfs.append(results)
df_concat = pd.concat(dfs)
df_concat = df_concat.sort_values(['size', 'dataset'])
df_concat = df_concat.reindex(columns=(['model', 'size', 'dataset'] + [col for col in df_concat.columns if (col not in ['model', 'size', 'dataset'])]))
df_concat['dataset'] = df_concat['dataset'].str.replace(dataset, 'Direct')
df_concat['dataset'] = df_concat['dataset'].str.replace('Direct-mt_few-shot', 'Self-translate')
df_concat['dataset'] = df_concat['dataset'].str.replace('Direct-mt_nllb-200-3.3B', 'MT (NLLB)')
if divide:
df_concat_self = df_concat[df_concat['dataset'].isin(['Direct', 'Self-MT'])]
df_concat_mt = df_concat[df_concat['dataset'].isin(['Self-MT', 'MT'])]
df_avg_self['model'] = df_concat_self['model']
df_avg_self['size'] = df_concat_self['size']
df_avg_self['dataset'] = df_concat_self['dataset']
df_avg_self[dataset] = df_concat_self['avg']
df_avg_mt['model'] = df_concat_mt['model']
df_avg_mt['size'] = df_concat_mt['size']
df_avg_mt['dataset'] = df_concat_mt['dataset']
df_avg_mt[dataset] = df_concat_mt['avg']
(yield df_concat_self)
(yield df_concat_mt)
else:
for average in (['avg'] + list(languages.keys())):
df_avg[average]['model'] = df_concat['model']
df_avg[average]['size'] = df_concat['size']
df_avg[average]['dataset'] = df_concat['dataset']
df_avg[average][dataset] = df_concat[average]
(yield df_concat)
if divide:
size = df_avg_self['size']
df_avg_self = df_avg_self.drop(columns=['size'])
size = df_avg_mt['size']
df_avg_mt = df_avg_mt.drop(columns=['size'])
df_avg_self['avg'] = df_avg_self.mean(axis=1).round(1)
df_avg_mt['avg'] = df_avg_mt.mean(axis=1).round(1)
df_avg_self['size'] = size
df_avg_mt['size'] = size
(yield df_avg_self)
(yield df_avg_mt)
else:
for average in (['avg'] + list(languages.keys())):
size = df_avg[average]['size']
df_avg[average] = df_avg[average].drop(columns=['size'])
df_avg[average][average] = df_avg[average].mean(axis=1).round(1)
df_avg[average]['size'] = size
(yield df_avg[average])
|
def plot_size_df_datasets(df, model_name, title, langs=False):
titles = {'low': 'Low-resource languages', 'high': 'High-resource languages', 'avg': 'Average'}
df.set_index('size', inplace=True)
for average in (['avg'] + list(languages.keys())):
if (average not in df.columns):
continue
df.groupby('dataset')[average].plot(x='size', y='acc', title=f'{title} {titles[average]}', ylabel='Average accuracy', xlabel='Model size (B)', legend=True, marker='o')
plt.xscale('log')
plt.xticks(model_sizes[model_name], model_sizes[model_name], rotation='vertical')
if (title == ''):
plt.ylim(46, 62)
plt.savefig(f'plots/{model_name}_{average}.pdf', bbox_inches='tight')
plt.show()
if langs:
for lang in df.columns:
if (lang in ['dataset', 'avg', 'size']):
continue
df.groupby('dataset')[lang].plot(x='size', y='acc', title=f'{title}_{lang}', ylabel='Accuracy', xlabel='Model size (B)', legend=True, marker='o')
plt.xscale('log')
plt.xticks(model_sizes[model_name], model_sizes[model_name], rotation='vertical')
plt.show()
|
def get_metrics():
metrics_dict = defaultdict(dict)
for dataset_name in _DATASETS:
for model_name in _MODELS:
if ((model_name == 'bloom-560m') and (dataset_name == 'xnli')):
with open(f'metrics/{dataset_name}/bloom-1b1.json') as f:
metrics_dict[dataset_name][model_name] = json.load(f)
else:
with open(f'metrics/{dataset_name}/{model_name}.json') as f:
metrics_dict[dataset_name][model_name] = json.load(f)
for language in metrics_dict[dataset_name][model_name]:
avg = defaultdict(float)
for field in metrics_dict[dataset_name][model_name][language]:
for (metric, value) in metrics_dict[dataset_name][model_name][language][field].items():
avg[metric] += value
for metric in avg:
avg[metric] /= len(metrics_dict[dataset_name][model_name][language])
avg[metric] = round(avg[metric], 2)
metrics_dict[dataset_name][model_name][language]['avg'] = dict(avg)
return dict(metrics_dict)
|
def add_avg(metrics_dict):
metrics_dict_split = defaultdict(dict)
for metric in ['sacrebleu', 'chrf++', 'comet']:
metrics_dict_split[metric] = deepcopy(metrics_dict)
for dataset_name in metrics_dict:
for model_name in metrics_dict[dataset_name]:
'\n if model_name == "bloom-560m" and dataset_name == "xnli":\n continue\n '
for (language, language_dict) in metrics_dict[dataset_name][model_name].items():
avg = metrics_dict[dataset_name][model_name][language]['avg']
metrics_dict_split[metric][dataset_name][model_name][language] = avg.get(metric, 0)
metrics_dict_split[metric][dataset_name][model_name]['avg'] = round((sum(metrics_dict_split[metric][dataset_name][model_name].values()) / len(metrics_dict_split[metric][dataset_name][model_name])), 2)
items = metrics_dict_split[metric][dataset_name][model_name]
values = items.values()
metrics_dict_split[metric][dataset_name][model_name]['avg'] = round((sum(values) / len(values)), 1)
for (resource, langs) in languages.items():
values = [v for (k, v) in items.items() if (k in langs)]
if (len(values) > 0):
metrics_dict_split[metric][dataset_name][model_name][resource] = round((sum(values) / len(values)), 1)
return dict(metrics_dict_split)
|
def plot_size_df_datasets(df, model_name, title, langs=False):
df.set_index('size', inplace=True)
df_model = df[(df['model'] == model_name)]
for average in (['avg'] + list(languages.keys())):
if (average not in df.columns):
continue
df_model[average].plot(x='size', y='acc', title=(f'{title} {average}' if title else ''), ylabel='Average COMET', xlabel='Model size (B)', legend=True, marker='o', label='Self-translate', color='C2')
plt.axhline(y=df.loc[3.3][average], color='C1', linestyle='--', label='MT (NLLB)')
plt.legend()
plt.xscale('log')
plt.ylim(55, 90)
plt.xticks(model_sizes[model_name], model_sizes[model_name], rotation='vertical')
if (title == ''):
plt.savefig(f'plots/{average}.pdf', bbox_inches='tight')
plt.show()
if langs:
for lang in df.columns:
if (lang in ['dataset', 'avg', 'size']):
continue
df[lang].plot(x='size', y='acc', title=f'{title}_{lang}', ylabel='BLEU', xlabel='Model size (B)', legend=True, marker='o')
plt.xscale('log')
plt.xticks(model_sizes[model_name], model_sizes[model_name], rotation='vertical')
plt.show()
|
def get_dataframes_model(metrics_dict_split, model_name):
for metric in ['comet']:
df_avg = {}
for average in (['avg'] + list(languages.keys())):
df_avg[average] = pd.DataFrame({'model': _MODELS}, index=_MODELS)
for dataset_name in metrics_dict_split[metric]:
df = pd.DataFrame(metrics_dict_split[metric][dataset_name]).T
for average in (['avg'] + list(languages.keys())):
df_avg[average][dataset_name] = df[average]
df['model'] = model_names_all
df['size'] = model_sizes_all
df = df.reindex(columns=(['model', 'size'] + [col for col in df.columns if (col not in ['model', 'size'])]))
display(df)
print(df.to_latex(index=False))
plot_size_df_datasets(df, model_name, f'{dataset_name} {metric}')
for average in (['avg'] + list(languages.keys())):
df_avg[average][average] = df_avg[average].mean(axis=1).round(1)
df_avg[average]['model'] = model_names_all
df_avg[average]['size'] = model_sizes_all
df_avg[average] = df_avg[average].reindex(columns=(['model', 'size'] + [col for col in df_avg[average].columns if (col not in ['model', 'size'])]))
display(df_avg[average])
print(df_avg[average].to_latex(index=False))
plot_size_df_datasets(df_avg[average], model_name, title='')
|
def get_dataset(dataset_args: Dict[(str, str)]) -> DatasetDict:
'\n Loads the dataset using the dataset_args.\n\n Args:\n - dataset_args (dict): A dictionary containing the dataset name, split, and configurations.\n\n Returns:\n - dataset (DatasetDict): A dictionary containing the dataset.\n '
dataset = DatasetDict()
if (dataset_args['dataset'] == 'xcopa'):
dataset['en'] = load_dataset('super_glue', 'copa', split=dataset_args['dataset_split'])
else:
dataset['en'] = load_dataset(dataset_args['dataset'], 'en', split=dataset_args['dataset_split'])
for config in dataset_args['dataset_configs']:
dataset[config] = load_dataset(dataset_args['dataset'], config, split=dataset_args['dataset_split'])
return dataset
|
def get_dataset_mt(dataset_args: Dict[(str, str)], model: str) -> DatasetDict:
'\n Loads the machine translation dataset using the dataset_args and model.\n\n Args:\n - dataset_args (dict): A dictionary containing the dataset name, split, and configurations.\n - model (str): The name of the model.\n\n Returns:\n - dataset (DatasetDict): A dictionary containing the machine translation dataset.\n '
dataset = DatasetDict()
for config in dataset_args['dataset_configs']:
dataset[config] = load_dataset(dataset_args['dataset_mt'], model, split=config)
return dataset
|
def get_texts(dataset: DatasetDict, dataset_args: Dict[(str, str)]) -> DefaultDict[(str, Dict[(str, List[str])])]:
'\n Extracts the texts from the dataset.\n\n Args:\n - dataset (DatasetDict): A dictionary containing the dataset.\n - dataset_args (dict): A dictionary containing the dataset name, split, and configurations.\n\n Returns:\n - texts (defaultdict): A dictionary containing the texts for each configuration and field.\n '
texts = defaultdict(dict)
for config in dataset:
for field in dataset_args['dataset_fields']:
texts[config][field] = dataset[config][field]
return texts
|
def load_comet(model_name: str='Unbabel/wmt22-comet-da'):
'\n Loads the COMET model from a checkpoint.\n\n Args:\n - model_name (str): The name of the COMET model.\n\n Returns:\n - model: The loaded COMET model.\n '
model_path = download_model(model_name)
model = load_from_checkpoint(model_path)
return model
|
@find_executable_batch_size(starting_batch_size=2048)
def compute_comet(batch_size: int, model: load_from_checkpoint, predictions: List[str], references: List[str], sources: List[str], gpus: Optional[int]=None, progress_bar: bool=False) -> Dict[(str, float)]:
'\n Computes the COMET score for a batch of translations.\n\n Args:\n - batch_size (int): The batch size for the COMET model.\n - model (load_from_checkpoint): The loaded COMET model.\n - predictions (List[str]): A list of translated sentences.\n - references (List[str]): A list of reference sentences.\n - sources (List[str]): A list of source sentences.\n - gpus (int): The number of GPUs to use for computation.\n - progress_bar (bool): Whether to display a progress bar during computation.\n\n Returns:\n - model_output (Dict[str, float]): A dictionary containing the COMET score for each sentence.\n '
if (gpus is None):
gpus = (1 if torch.cuda.is_available() else 0)
data = {'src': sources, 'mt': predictions, 'ref': references}
data = [dict(zip(data, t)) for t in zip(*data.values())]
model_output = model.predict(data, batch_size=batch_size, gpus=gpus, progress_bar=progress_bar)
return model_output
|
def evaluate_translations(predictions: List[str], references: List[str], sources: List[str]) -> Dict[(str, float)]:
'\n Evaluates the translations using sacrebleu, chrf and comet metrics.\n\n Args:\n - predictions (List[str]): A list of predicted translations.\n - references (List[str]): A list of reference translations.\n - sources (List[str]): A list of source sentences.\n\n Returns:\n - result_dictionary (Dict[str, float]): A dictionary containing the evaluation results for each metric.\n '
print('Loading sacrebleu...')
sacrebleu = evaluate.load('sacrebleu')
print('Loading chrf...')
chrf = evaluate.load('chrf')
print('Loading comet...')
model = load_comet('Unbabel/wmt22-comet-da')
result_dictionary = {}
print(f'Computing sacrebleu')
sacrebleu_results = sacrebleu.compute(predictions=predictions, references=references)
result_dictionary['sacrebleu'] = round(sacrebleu_results['score'], 2)
print(f'Computing chrf score')
chrf_results = chrf.compute(predictions=predictions, references=references, word_order=2)
result_dictionary['chrf++'] = round(chrf_results['score'], 2)
print('Computing comet score')
comet_results = compute_comet(model=model, predictions=predictions, references=references, sources=sources, progress_bar=True)
comet_results['mean_score'] = (sum(comet_results['scores']) / len(comet_results['scores']))
result_dictionary['comet'] = round((comet_results['mean_score'] * 100), 2)
print(result_dictionary)
return result_dictionary
|
def evaluate_texts(predictions: DefaultDict[(str, Dict[(str, List[str])])], references: DefaultDict[(str, Dict[(str, List[str])])], dataset_args: Dict[(str, str)], model_name: str) -> None:
'\n Evaluates the translations for each configuration and field.\n\n Args:\n - predictions (defaultdict): A dictionary containing the predicted translations for each configuration and field.\n - references (defaultdict): A dictionary containing the reference translations for each configuration and field.\n - dataset_args (dict): A dictionary containing the dataset name, split, and configurations.\n - model_name (str): The name of the model.\n '
evaluations = {}
for config in predictions:
evaluations[config] = {}
print(f'Evaluating config {config}')
for field in dataset_args['dataset_fields']:
print(f'Evaluating field {field}')
evaluations[config][field] = evaluate_translations(predictions=predictions[config][field], references=references['en'][field], sources=references[config][field])
save_file(evaluations, dataset_args, model_name)
|
def save_file(evaluations: Dict[(str, Dict[(str, Dict[(str, float)])])], dataset_args: Dict[(str, str)], model_name: str) -> None:
'\n Saves the evaluation results to a file.\n\n Args:\n - evaluations (dict): A dictionary containing the evaluation results for each configuration and field.\n - dataset_args (dict): A dictionary containing the dataset name, split, and configurations.\n - model_name (str): The name of the model.\n '
dirname = f"metrics/{dataset_args['dataset'].split('/')[(- 1)]}"
if (not os.path.exists(dirname)):
os.makedirs(dirname)
filename = f'{dirname}/{model_name}.json'
with open(filename, 'w', encoding='utf-8') as file:
json.dump(evaluations, file, indent=2)
|
def main() -> None:
'\n Main function that evaluates the translations for each dataset and model.\n '
for dataset_name in _DATASETS:
dataset_args = dataset_configs[dataset_name]
print('Evaluating dataset', dataset_name)
dataset = get_dataset(dataset_args)
references = get_texts(dataset, dataset_args)
for model_name in _MODELS:
if ((model_name == 'bloom-560m') and (dataset_name == 'xnli')):
continue
print('Evaluating model', model_name)
dataset_mt = get_dataset_mt(dataset_args, model_name)
predictions = get_texts(dataset_mt, dataset_args)
evaluate_texts(predictions, references, dataset_args, model_name)
|
def count_lines(input_list: List[str]) -> int:
'\n Counts the number of lines in a list of strings.\n\n Args:\n input_list (List[str]): List of strings.\n\n Returns:\n int: Number of lines in the list.\n '
return len(input_list)
|
class DatasetReader(IterableDataset):
def __init__(self, sentences: List[str], tokenizer, max_length: int=128):
'\n Initializes the DatasetReader class.\n\n Args:\n sentences (List[str]): List of sentences.\n tokenizer: Tokenizer object.\n max_length (int, optional): Maximum length of the tokenized sentence. Defaults to 128.\n '
self.sentences = sentences
self.tokenizer = tokenizer
self.max_length = max_length
self.current_line = 0
self.total_lines = count_lines(sentences)
print(f'{self.total_lines} lines in list')
def preprocess(self, text: str) -> dict:
'\n Preprocesses a sentence by tokenizing it.\n\n Args:\n text (str): Input sentence.\n\n Returns:\n dict: Tokenized sentence.\n '
self.current_line += 1
text = text.rstrip().strip()
if (len(text) == 0):
print(f'Warning: empty sentence at line {self.current_line}')
return self.tokenizer(text, padding=False, truncation=True, max_length=self.max_length, return_tensors=None)
def __iter__(self):
mapped_itr = map(self.preprocess, self.sentences)
return mapped_itr
def __len__(self) -> int:
return self.total_lines
|
class ParallelTextReader(IterableDataset):
def __init__(self, predictions: List[str], references: List[str]):
'\n Initializes the ParallelTextReader class.\n\n Args:\n predictions (List[str]): List of predicted sentences.\n references (List[str]): List of reference sentences.\n '
self.predictions = predictions
self.references = references
predictions_lines = count_lines(predictions)
references_lines = count_lines(references)
assert (predictions_lines == references_lines), f'Lines in predictions and references do not match {predictions_lines} vs {references_lines}'
self.num_sentences = references_lines
self.current_line = 0
def preprocess(self, pred: str, gold: str) -> Tuple[(str, List[str])]:
'\n Preprocesses a predicted and a reference sentence by stripping them.\n\n Args:\n pred (str): Predicted sentence.\n gold (str): Reference sentence.\n\n Returns:\n Tuple[str, List[str]]: Tuple containing the predicted sentence and a list with the reference sentence.\n '
self.current_line += 1
pred = pred.rstrip().strip()
gold = gold.rstrip().strip()
if (len(pred) == 0):
print(f'Warning: Pred empty sentence at line {self.current_line}')
if (len(gold) == 0):
print(f'Warning: Gold empty sentence at line {self.current_line}')
return (pred, [gold])
def __iter__(self):
mapped_itr = map(self.preprocess, self.predictions, self.references)
return mapped_itr
def __len__(self) -> int:
return self.num_sentences
|
def encode_string(text):
return text.replace('\r', '\\r').replace('\n', '\\n').replace('\t', '\\t')
|
def get_dataloader(accelerator: Accelerator, translate_data, tokenizer: PreTrainedTokenizerBase, batch_size: int, max_length: int) -> DataLoader:
dataset = DatasetReader(translate_data, tokenizer, max_length)
if (accelerator.distributed_type == DistributedType.TPU):
data_collator = DataCollatorForSeq2Seq(tokenizer, padding='max_length', max_length=max_length, label_pad_token_id=tokenizer.pad_token_id, return_tensors='pt')
else:
data_collator = DataCollatorForSeq2Seq(tokenizer, padding=True, label_pad_token_id=tokenizer.pad_token_id, pad_to_multiple_of=8, return_tensors='pt')
return DataLoader(dataset, batch_size=batch_size, collate_fn=data_collator, num_workers=0)
|
def main(source_lang: str, target_lang: str, starting_batch_size: int, model_name: str='facebook/m2m100_1.2B', cache_dir: str=None, precision: str='32', max_length: int=128, num_beams: int=4, num_return_sequences: int=1, do_sample: bool=False, temperature: float=1.0, top_k: int=50, top_p: float=1.0, keep_special_tokens: bool=False, sentences_path: str=None, output_path: str=None, sentences_list: str=None, return_output: bool=False):
if (not return_output):
os.makedirs(os.path.abspath(os.path.dirname(output_path)), exist_ok=True)
accelerator = Accelerator(mixed_precision=(precision if (precision != '32') else 'no'), split_batches=False, dispatch_batches=False)
print(f'Loading tokenizer {model_name}...')
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name, cache_dir=cache_dir)
print(f'Loading model {model_name}...')
model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model_name_or_path=model_name, cache_dir=cache_dir)
model.eval()
print(f'''Preparing data...
''')
if (precision == '32'):
model = model.float()
elif (precision == 'fp16'):
model = model.half()
elif (precision == 'bf16'):
model = model.bfloat16()
else:
raise ValueError('Precision not supported. Supported values: 32, fp16, bf16')
try:
_ = tokenizer.lang_code_to_id[source_lang]
except KeyError:
raise KeyError(f'Language {source_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}')
tokenizer.src_lang = source_lang
try:
lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
except KeyError:
raise KeyError(f'Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}')
gen_kwargs = {'max_length': max_length, 'num_beams': num_beams, 'num_return_sequences': num_return_sequences, 'do_sample': do_sample, 'temperature': temperature, 'top_k': top_k, 'top_p': top_p}
total_lines: int = (count_lines(sentences_path) if (sentences_list == None) else len(sentences_list))
if accelerator.is_main_process:
print(f'''** Translation **
Input file: {sentences_path}
Output file: {output_path}
Source language: {source_lang}
Target language: {target_lang}
Starting batch size: {starting_batch_size}
Device: {str(accelerator.device).split(':')[0]}
Num. Devices: {accelerator.num_processes}
Distributed_type: {accelerator.distributed_type}
Max length: {max_length}
Precision: {model.dtype}
Model: {model_name}
''')
print('** Generation parameters **')
print('\n'.join((f'{k}: {v}' for (k, v) in gen_kwargs.items())))
print('\n')
def save_sentences(tgt_text: list):
nonlocal return_output, output_path
if return_output:
save_sentences.sentences.extend(tgt_text)
else:
print('\n'.join(tgt_text), file=save_sentences.f)
if (not return_output):
save_sentences.f = open(output_path, 'w', encoding='utf-8')
save_sentences.sentences = []
@find_executable_batch_size(starting_batch_size=starting_batch_size)
def inference(batch_size):
nonlocal model, tokenizer, sentences_path, max_length, output_path, lang_code_to_idx, gen_kwargs, precision, sentences_list, return_output
print(f'Translating with batch size {batch_size}')
translate_data = (sentences_path if (sentences_list == None) else sentences_list)
data_loader = get_dataloader(accelerator=accelerator, translate_data=translate_data, tokenizer=tokenizer, batch_size=batch_size, max_length=max_length)
(model, data_loader) = accelerator.prepare(model, data_loader)
samples_seen: int = 0
with tqdm(total=total_lines, desc='Dataset translation', leave=True, ascii=True, disable=(not accelerator.is_main_process)) as pbar:
with torch.no_grad():
for (step, batch) in enumerate(data_loader):
batch['input_ids'] = batch['input_ids']
batch['attention_mask'] = batch['attention_mask']
generated_tokens = accelerator.unwrap_model(model).generate(**batch, forced_bos_token_id=lang_code_to_idx, **gen_kwargs)
generated_tokens = accelerator.pad_across_processes(generated_tokens, dim=1, pad_index=tokenizer.pad_token_id)
generated_tokens = accelerator.gather(generated_tokens).cpu().numpy()
tgt_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=(not keep_special_tokens))
if accelerator.is_main_process:
if (step == (math.ceil((math.ceil((total_lines / batch_size)) / accelerator.num_processes)) - 1)):
tgt_text = tgt_text[:((total_lines * num_return_sequences) - samples_seen)]
else:
samples_seen += len(tgt_text)
save_sentences([encode_string(sentence) for sentence in tgt_text])
pbar.update((len(tgt_text) // gen_kwargs['num_return_sequences']))
inference()
print(f'''Translation done.
''')
if return_output:
return save_sentences.sentences
|
def get_dataset(dataset_args: Dict[(str, Any)]) -> DatasetDict:
'\n Load the dataset specified in dataset_args and return a DatasetDict object.\n\n Args:\n - dataset_args: A dictionary containing the dataset name, dataset configurations, dataset split.\n\n Returns:\n - A DatasetDict object containing the loaded dataset.\n '
dataset = DatasetDict()
for config in dataset_args['dataset_configs']:
dataset[config] = load_dataset(dataset_args['dataset'], config, split=dataset_args['dataset_split'])
return dataset
|
def get_texts(dataset: DatasetDict, dataset_args: Dict[(str, Any)]) -> Dict[(str, Dict[(str, Any)])]:
'\n Extract the texts from the dataset and return a dictionary containing the texts.\n\n Args:\n - dataset: A DatasetDict object containing the loaded dataset.\n - dataset_args: A dictionary containing the dataset configurations.\n\n Returns:\n - A dictionary containing the texts extracted from the dataset.\n '
texts = defaultdict(dict)
for config in dataset_args['dataset_configs']:
for field in dataset_args['dataset_fields']:
texts[config][field] = dataset[config][field]
return texts
|
def get_few_shot_dataset(dataset_args: Dict[(str, Any)]) -> DatasetDict:
'\n Load the few-shot dataset specified in dataset_args and return a DatasetDict object.\n\n Args:\n - dataset_args: A dictionary containing the few-shot dataset configurations.\n\n Returns:\n - A DatasetDict object containing the loaded few-shot dataset.\n '
dataset = DatasetDict()
dataset['en'] = load_dataset('facebook/flores', 'eng_Latn', split='dev')
for config in dataset_args['dataset_configs']:
dataset[config] = load_dataset('facebook/flores', dataset_args['lang_codes'][config], split='dev')
return dataset
|
def get_few_shot_prompts(dataset: DatasetDict, dataset_args: Dict[(str, Any)], translate_args: Dict[(str, Any)], shots: int) -> Dict[(str, str)]:
'\n Generate few-shot prompts for each language in dataset_args and return a dictionary containing the prompts.\n\n Args:\n - dataset: A DatasetDict object containing the few-shot dataset.\n - dataset_args: A dictionary containing the dataset configurations.\n - translate_args: A dictionary containing the translation configurations.\n - shots: An integer representing the number of few-shot prompts to generate.\n\n Returns:\n - A dictionary containing the few-shot prompts for each language.\n '
prompts = {}
for config in dataset_args['dataset_configs']:
prompts[config] = ''
(i, shot) = (0, 0)
while (shot < shots):
if (len(dataset[config][i]['sentence']) < 100):
prompts[config] += f"{dataset_args['lang_names'][config]}: {dataset[config][i]['sentence']}{translate_args['eos_token']}"
prompts[config] += f"English: {dataset['en'][i]['sentence']}{translate_args['eos_token']}"
shot += 1
i += 1
prompts[config] += f"{dataset_args['lang_names'][config]}:"
return prompts
|
def text_with_prompt(text: str, prompt: str, translate_args: Dict[(str, Any)]) -> str:
'\n Concatenate the text with the prompt and the eos_token.\n\n Args:\n - text: A string representing the text to be concatenated.\n - prompt: A string representing the prompt to be concatenated.\n - translate_args: A dictionary containing the translation configurations.\n\n Returns:\n - A string representing the concatenated text with the prompt and the eos_token.\n '
return f"{prompt} {text}{translate_args['eos_token']}English:"
|
def map_texts_with_prompts(texts: Dict[(str, Dict[(str, List[str])])], prompts: Dict[(str, str)], translate_args: Dict[(str, Any)]) -> Dict[(str, Dict[(str, List[str])])]:
'\n Map the texts with the prompts.\n\n Args:\n - texts: A dictionary containing the texts to be mapped.\n - prompts: A dictionary containing the prompts to be mapped.\n - translate_args: A dictionary containing the translation configurations.\n\n Returns:\n - A dictionary containing the mapped texts with the prompts.\n '
texts_with_prompts = defaultdict(dict)
for config in texts:
for field in dataset_args['dataset_fields']:
texts_with_prompts[config][field] = [text_with_prompt(text, prompt=prompts[config], translate_args=translate_args) for text in texts[config][field]]
return texts_with_prompts
|