code
stringlengths
17
6.64M
def get_device(device=None): if (device is None): if torch.cuda.is_available(): device = 'cuda' torch.set_default_tensor_type('torch.cuda.FloatTensor') else: device = 'cpu' elif (device == 'cuda'): if torch.cuda.is_available(): device = 'cuda' torch.set_default_tensor_type('torch.cuda.FloatTensor') else: device = 'cpu' else: device = 'cpu' if (device == 'cuda'): logger.info("CUDA device set to '{}'.".format(torch.cuda.get_device_name(0))) return device
class MyDataset(Dataset): def __init__(self, X, y): self.data = X self.target = y def __getitem__(self, index): x = self.data[index] y = self.target[index] return (x, y) def __len__(self): return len(self.data)
def lossFunctionKLD(mu, logvar): 'Compute KL divergence loss. \n Parameters\n ----------\n mu: Tensor\n Latent space mean of encoder distribution.\n logvar: Tensor\n Latent space log variance of encoder distribution.\n ' kl_error = ((- 0.5) * torch.sum((((1 + logvar) - mu.pow(2)) - logvar.exp()))) return kl_error
def recoLossGaussian(predicted_s, x, gaussian_noise_std, data_std): '\n Compute reconstruction loss for a Gaussian noise model. \n This is essentially the MSE loss with a factor depending on the standard deviation.\n Parameters\n ----------\n predicted_s: Tensor\n Predicted signal by DivNoising decoder.\n x: Tensor\n Noisy observation image.\n gaussian_noise_std: float\n Standard deviation of Gaussian noise.\n data_std: float\n Standard deviation of training and validation data combined (used for normailzation).\n ' reconstruction_error = (torch.mean(((predicted_s - x) ** 2)) / (2.0 * ((gaussian_noise_std / data_std) ** 2))) return reconstruction_error
def recoLoss(predicted_s, x, data_mean, data_std, noiseModel): 'Compute reconstruction loss for an arbitrary noise model. \n Parameters\n ----------\n predicted_s: Tensor\n Predicted signal by DivNoising decoder.\n x: Tensor\n Noisy observation image.\n data_mean: float\n Mean of training and validation data combined (used for normailzation).\n data_std: float\n Standard deviation of training and validation data combined (used for normailzation).\n device: GPU device\n torch cuda device\n ' predicted_s_denormalized = ((predicted_s * data_std) + data_mean) x_denormalized = ((x * data_std) + data_mean) predicted_s_cloned = predicted_s_denormalized predicted_s_reduced = predicted_s_cloned.permute(1, 0, 2, 3) x_cloned = x_denormalized x_cloned = x_cloned.permute(1, 0, 2, 3) x_reduced = x_cloned[(0, ...)] likelihoods = noiseModel.likelihood(x_reduced, predicted_s_reduced) log_likelihoods = torch.log(likelihoods) reconstruction_error = (- torch.mean(log_likelihoods)) return reconstruction_error
def loss_fn(predicted_s, x, mu, logvar, gaussian_noise_std, data_mean, data_std, noiseModel): 'Compute DivNoising loss. \n Parameters\n ----------\n predicted_s: Tensor\n Predicted signal by DivNoising decoder.\n x: Tensor\n Noisy observation image.\n mu: Tensor\n Latent space mean of encoder distribution.\n logvar: Tensor\n Latent space logvar of encoder distribution.\n gaussian_noise_std: float\n Standard deviation of Gaussian noise (required when using Gaussian reconstruction loss).\n data_mean: float\n Mean of training and validation data combined (used for normailzation).\n data_std: float\n Standard deviation of training and validation data combined (used for normailzation).\n device: GPU device\n torch cuda device\n noiseModel: NoiseModel object\n Distribution of noisy pixel values corresponding to clean signal (required when using general reconstruction loss).\n ' kl_loss = lossFunctionKLD(mu, logvar) if (noiseModel is not None): reconstruction_loss = recoLoss(predicted_s, x, data_mean, data_std, noiseModel) else: reconstruction_loss = recoLossGaussian(predicted_s, x, gaussian_noise_std, data_std) return (reconstruction_loss, (kl_loss / float(x.numel())))
def create_dataloaders(x_train_tensor, x_val_tensor, batch_size): train_dataset = dataLoader.MyDataset(x_train_tensor, x_train_tensor) val_dataset = dataLoader.MyDataset(x_val_tensor, x_val_tensor) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) return (train_loader, val_loader)
def create_model_and_train(basedir, data_mean, data_std, gaussian_noise_std, noise_model, n_depth, max_epochs, logger, checkpoint_callback, train_loader, val_loader, kl_annealing, weights_summary): for filename in glob.glob((basedir + '/*')): os.remove(filename) vae = lightningmodel.VAELightning(data_mean=data_mean, data_std=data_std, gaussian_noise_std=gaussian_noise_std, noise_model=noise_model, n_depth=n_depth, kl_annealing=kl_annealing) if torch.cuda.is_available(): trainer = pl.Trainer(gpus=1, max_epochs=max_epochs, logger=logger, callbacks=[EarlyStopping(monitor='val_loss', min_delta=1e-06, patience=100, verbose=True, mode='min'), checkpoint_callback], weights_summary=weights_summary) else: trainer = pl.Trainer(max_epochs=max_epochs, logger=logger, callbacks=[EarlyStopping(monitor='val_loss', min_delta=1e-06, patience=100, verbose=True, mode='min'), checkpoint_callback], weights_summary=weights_summary) trainer.fit(vae, train_loader, val_loader) collapse_flag = vae.collapse return collapse_flag
def train_network(x_train_tensor, x_val_tensor, batch_size, data_mean, data_std, gaussian_noise_std, noise_model, n_depth, max_epochs, model_name, basedir, log_info=False): (train_loader, val_loader) = create_dataloaders(x_train_tensor, x_val_tensor, batch_size) collapse_flag = True if (not os.path.exists(basedir)): os.makedirs(basedir) checkpoint_callback = ModelCheckpoint(monitor='val_loss', dirpath=basedir, filename=(model_name + '_best'), save_last=True, save_top_k=1, mode='min') checkpoint_callback.CHECKPOINT_NAME_LAST = (model_name + '_last') logger = TensorBoardLogger(basedir, name='', version='', default_hp_metric=False) weights_summary = ('top' if log_info else None) if (not log_info): pl.utilities.distributed.log.setLevel(logging.ERROR) posterior_collapse_count = 0 while (collapse_flag and (posterior_collapse_count < 20)): collapse_flag = create_model_and_train(basedir, data_mean, data_std, gaussian_noise_std, noise_model, n_depth, max_epochs, logger, checkpoint_callback, train_loader, val_loader, kl_annealing=False, weights_summary=weights_summary) if collapse_flag: posterior_collapse_count = (posterior_collapse_count + 1) if collapse_flag: print('Posterior collapse limit reached, attempting training with KL annealing turned on!') while collapse_flag: collapse_flag = create_model_and_train(basedir, data_mean, data_std, gaussian_noise_std, noise_model, n_depth, max_epochs, logger, checkpoint_callback, train_loader, val_loader, kl_annealing=True, weights_summary=weights_summary)
def PickleMapName(name): '\n\tIf you change the name of a function or module, then pickle, you can fix it with this.\n\t' if (name in renametable): return renametable[name] return name
def mapped_load_global(self): module = PickleMapName(self.readline()[:(- 1)]) name = PickleMapName(self.readline()[:(- 1)]) print('Finding ', module, name) klass = self.find_class(module, name) self.append(klass)
class MyUnpickler(pickle.Unpickler): def find_class(self, module, name): return pickle.Unpickler.find_class(self, PickleMapName(module), PickleMapName(name))
def UnPickleTM(file): "\n\tEventually we need to figure out how the mechanics of dispatch tables changed.\n\tSince we only use this as a hack anyways, I'll just comment out what changed\n\tbetween python2.7x and python3x.\n\t" tmp = None if (sys.version_info[0] < 3): f = open(file, 'rb') unpickler = pickle.Unpickler(f) unpickler.dispatch[pickle.GLOBAL] = mapped_load_global tmp = unpickler.load() f.close() else: f = open(file, 'rb') unpickler = MyUnpickler(f, encoding='latin1') tmp = unpickler.load() f.close() tmp.pop('evaluate', None) tmp.pop('MolInstance_fc_sqdiff_BP', None) tmp.pop('Eval_BPForceSingle', None) tmp.pop('TFMolManage', None) tmp.pop('TFManage', None) tmp.pop('Prepare', None) tmp.pop('load', None) tmp.pop('Load', None) tmp.pop('TensorMol.TFMolManage.path', None) tmp.pop('TensorMol.TFMolManage.Load', None) tmp.pop('TensorMol.TFMolManage.Prepare', None) tmp.pop('TensorMol.TFInstance', None) tmp.pop('TensorMol.TFInstance.train_dir', None) tmp.pop('TensorMol.TFMolInstance.train_dir', None) tmp.pop('TensorMol.TFInstance.chk_file', None) tmp.pop('TensorMol.TFMolInstance.chk_file', None) tmp.pop('save', None) tmp.pop('Save', None) tmp.pop('Trainable', None) tmp.pop('TFMolManage.Trainable', None) tmp.pop('__init__', None) return tmp
class MorseModel(ForceHolder): def __init__(self, natom_=3): '\n\t\tsimple morse model for three atoms for a training example.\n\t\t' ForceHolder.__init__(self, natom_) self.lat_pl = None self.Prepare() def PorterKarplus(self, x_pl): x1 = (x_pl[0] - x_pl[1]) x2 = (x_pl[2] - x_pl[1]) x12 = (x_pl[0] - x_pl[2]) r1 = tf.norm(x1) r2 = tf.norm(x2) r12 = tf.norm(x12) v1 = (0.7 * tf.pow((1.0 - tf.exp((- (r1 - 0.7)))), 2.0)) v2 = (0.7 * tf.pow((1.0 - tf.exp((- (r2 - 0.7)))), 2.0)) v3 = (0.7 * tf.pow((1.0 - tf.exp((- (r12 - 0.7)))), 2.0)) return ((v1 + v2) + v3) def Prepare(self): self.x_pl = tf.placeholder(tf.float64, shape=tuple([self.natom, 3])) self.Energy = self.PorterKarplus(self.x_pl) self.Force = tf.gradients(((- 1.0) * self.PorterKarplus(self.x_pl)), self.x_pl) init = tf.global_variables_initializer() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.sess.run(init) def __call__(self, x_): '\n\t\tArgs:\n\t\t\tx_: the coordinates on which to evaluate the force.\n\t\t\tlat_: the lattice boundary vectors.\n\t\tReturns:\n\t\t\tthe Energy and Force (Eh and Eh/ang.) associated with the quadratic walls.\n\t\t' (e, f) = self.sess.run([self.Energy, self.Force], feed_dict={self.x_pl: x_}) return (e, f[0])
class QuantumElectrostatic(ForceHolder): def __init__(self, natom_=3): '\n\t\tThis is a huckle-like model, something like BeH2\n\t\tfour valence charges are exchanged between the atoms\n\t\twhich experience a screened coulomb interaction\n\t\t' ForceHolder.__init__(self, natom_) self.Prepare() def HuckelBeH2(self, x_pl): r = tf.reduce_sum((x_pl * x_pl), 1) r = tf.reshape(r, [(- 1), 1]) D = tf.sqrt((((r - (2 * tf.matmul(x_pl, tf.transpose(x_pl)))) + tf.transpose(r)) + tf.cast(1e-26, tf.float64))) emat = tf.diag(self.en0s) J = tf.matrix_band_part(((- 1.0) / tf.pow((D + ((0.5 * 0.5) * 0.5)), (1.0 / 3.0))), 0, (- 1)) emat += (J + tf.transpose(J)) (e, v) = tf.self_adjoint_eig(emat) popd = tf.nn.top_k(((- 1.0) * e), 2, sorted=True).indices Energy = (e[popd[0]] + e[popd[1]]) q1 = (((- 1.0) + (v[(popd[0], 0)] * v[(popd[0], 0)])) + (v[(popd[1], 0)] * v[(popd[1], 0)])) q2 = (((- 0.5) + (v[(popd[0], 1)] * v[(popd[0], 1)])) + (v[(popd[1], 1)] * v[(popd[1], 1)])) q3 = (((- 0.5) + (v[(popd[0], 2)] * v[(popd[0], 2)])) + (v[(popd[1], 2)] * v[(popd[1], 2)])) Dipole = ((((q1 * x_pl[0]) + (q2 * x_pl[1])) + (q3 * x_pl[2])) / 3.0) return (Energy, Dipole, [q1, q2, q3]) def Prepare(self): self.en0s = tf.constant([(- 1.1), (- 0.5), (- 0.5)], dtype=tf.float64) self.x_pl = tf.placeholder(tf.float64, shape=tuple([self.natom, 3])) (self.Energy, self.Dipole, self.Charges) = self.HuckelBeH2(self.x_pl) self.Force = tf.gradients(((- 1.0) * self.Energy), self.x_pl) init = tf.global_variables_initializer() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.sess.run(init) def __call__(self, x_): '\n\t\tArgs:\n\t\t\tx_: the coordinates on which to evaluate the force.\n\t\tReturns:\n\t\t\tthe Energy and Force (Eh and Eh/ang.) associated with the quadratic walls.\n\t\t' (e, f, d, q) = self.sess.run([self.Energy, self.Force, self.Dipole, self.Charges], feed_dict={self.x_pl: x_}) return (e, f[0], d, q)
class ExtendedHuckel(ForceHolder): def __init__(self): '\n\n\t\t' ForceHolder.__init__(self, natom_) self.Prepare() def HuckelBeH2(self, x_pl): r = tf.reduce_sum((x_pl * x_pl), 1) r = tf.reshape(r, [(- 1), 1]) D = tf.sqrt((((r - (2 * tf.matmul(x_pl, tf.transpose(x_pl)))) + tf.transpose(r)) + tf.cast(1e-26, tf.float64))) emat = tf.diag(self.en0s) J = tf.matrix_band_part(((- 1.0) / tf.pow((D + ((0.5 * 0.5) * 0.5)), (1.0 / 3.0))), 0, (- 1)) emat += (J + tf.transpose(J)) (e, v) = tf.self_adjoint_eig(emat) popd = tf.nn.top_k(((- 1.0) * e), 2, sorted=True).indices Energy = (e[popd[0]] + e[popd[1]]) q1 = (((- 1.0) + (v[(popd[0], 0)] * v[(popd[0], 0)])) + (v[(popd[1], 0)] * v[(popd[1], 0)])) q2 = (((- 0.5) + (v[(popd[0], 1)] * v[(popd[0], 1)])) + (v[(popd[1], 1)] * v[(popd[1], 1)])) q3 = (((- 0.5) + (v[(popd[0], 2)] * v[(popd[0], 2)])) + (v[(popd[1], 2)] * v[(popd[1], 2)])) Dipole = ((((q1 * x_pl[0]) + (q2 * x_pl[1])) + (q3 * x_pl[2])) / 3.0) return (Energy, Dipole, [q1, q2, q3]) def Prepare(self): self.en0s = tf.constant([(- 1.1), (- 0.5), (- 0.5)], dtype=tf.float64) self.x_pl = tf.placeholder(tf.float64, shape=tuple([self.natom, 3])) (self.Energy, self.Dipole, self.Charges) = self.HuckelBeH2(self.x_pl) self.Force = tf.gradients(((- 1.0) * self.Energy), self.x_pl) init = tf.global_variables_initializer() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.sess.run(init) def __call__(self, x_): '\n\t\tArgs:\n\t\t\tx_: the coordinates on which to evaluate the force.\n\t\tReturns:\n\t\t\tthe Energy and Force (Eh and Eh/ang.) associated with the quadratic walls.\n\t\t' (e, f, d, q) = self.sess.run([self.Energy, self.Force, self.Dipole, self.Charges], feed_dict={self.x_pl: x_}) return (e, f[0], d, q)
class TMIPIManger(): def __init__(self, EnergyForceField=None, TCP_IP='localhost', TCP_PORT=31415): self.EnergyForceField = EnergyForceField self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.hasdata = False try: self.s.connect((TCP_IP, TCP_PORT)) print('Connect to server with address:', ((TCP_IP + ' ') + str(TCP_PORT))) except: print('Fail connect to server with address: ', ((TCP_IP + ' ') + str(TCP_PORT))) def md_run(self): while True: data = self.s.recv(HDRLEN) if (data.strip() == 'STATUS'): if self.hasdata: print('client has data.') self.s.sendall('HAVEDATA ') else: print('client is ready to get position from server') self.s.sendall('READY ') elif (data.strip() == 'POSDATA'): print('server is sending positon.') buf_ = self.s.recv((9 * 8)) cellh = (np.fromstring(buf_, np.float64) / BOHRPERA) buf_ = self.s.recv((9 * 8)) cellih = (np.fromstring(buf_, np.float64) * BOHRPERA) buf_ = self.s.recv(4) natom = np.fromstring(buf_, np.int32)[0] buf_ = self.s.recv(((3 * natom) * 8)) position = (np.fromstring(buf_, np.float64) / BOHRPERA).reshape(((- 1), 3)) print('cellh:', cellh, ' cellih:', cellih, ' natom:', natom) print('position:', position) print('now is running the client to calculate force...') (energy, force) = self.EnergyForceField(position) force = ((force / JOULEPERHARTREE) / BOHRPERA) vir = np.zeros((3, 3)) self.hasdata = True elif (data.strip() == 'GETFORCE'): print('server is ready to get force from client') self.s.sendall('FORCEREADY ') self.s.sendall(np.float64(energy)) self.s.sendall(np.int32(natom)) self.s.sendall(force) self.s.sendall(vir) self.s.sendall(np.int32(7)) self.s.sendall('nothing') self.hasdata = False else: raise Exception('wrong message from server')
class NN_MBE(): def __init__(self, tfm_=None): self.nn_mbe = dict() if (tfm_ != None): for order in tfm_: print(tfm_[order]) self.nn_mbe[order] = TFMolManage(tfm_[order], None, False) return def NN_Energy(self, mol): mol.Generate_All_MBE_term(atom_group=3, cutoff=6, center_atom=0) nn_energy = 0.0 for i in range(1, (mol.mbe_order + 1)): nn_energy += self.nn_mbe[i].Eval_Mol(mol) mol.Set_MBE_Force() mol.nn_energy = nn_energy print('coords of mol:', mol.coords) print('force of mol:', mol.properties['mbe_deri']) print('energy of mol:', nn_energy) return
class NN_MBE_Linear(): def __init__(self, tfm_=None): self.mbe_order = PARAMS['MBE_ORDER'] self.nn_mbe = tfm_ self.max_num_frags = None self.nnz_frags = None return def EnergyForceDipole(self, N_MB): eval_set = MSet('TmpMBESet') MBE_C = [] MBE_Index = [] NAtom = [] self.max_num_frags = ((N_MB.nf + ((N_MB.nf * (N_MB.nf - 1)) / 2)) + (((N_MB.nf * (N_MB.nf - 1)) * (N_MB.nf - 2)) / 6)) if (self.mbe_order >= 1): for i in range(N_MB.nf): natom = np.count_nonzero(N_MB.singz[i]) NAtom.append(natom) eval_set.mols.append(Mol(N_MB.singz[i][:natom], N_MB.sings[i][:natom])) MBE_C.append(N_MB.singC[i]) MBE_Index.append(N_MB.singI[i]) if (self.mbe_order >= 2): for i in range(N_MB.npair): natom = np.count_nonzero(N_MB.pairz[i]) NAtom.append(natom) eval_set.mols.append(Mol(N_MB.pairz[i][:natom], N_MB.pairs[i][:natom])) MBE_C.append(N_MB.pairC[i]) MBE_Index.append(N_MB.pairI[i]) if (self.mbe_order >= 3): for i in range(N_MB.ntrip): natom = np.count_nonzero(N_MB.tripz[i]) NAtom.append(natom) eval_set.mols.append(Mol(N_MB.tripz[i][:natom], N_MB.trips[i][:natom])) MBE_C.append(N_MB.tripC[i]) MBE_Index.append(N_MB.tripI[i]) if (self.mbe_order >= 4): raise Exception('Linear MBE only implemented up to order 3') MBE_C = np.asarray(MBE_C) self.nnz_frags = MBE_C.shape[0] for dummy_index in range(self.nnz_frags, self.max_num_frags): eval_set.mols.append(Mol(np.zeros(1, dtype=np.uint8), np.zeros((1, 3), dtype=float))) (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = self.nn_mbe.EvalBPDirectEESet(eval_set, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) print(('Etotal:', Etotal, ' self.nnz_frags:', self.nnz_frags)) E_mbe = np.sum((Etotal[:self.nnz_frags] * MBE_C)) gradient_mbe = np.zeros((N_MB.nt, 3)) atom_charge_mbe = np.zeros(N_MB.nt) for (i, index) in enumerate(MBE_Index): gradient_mbe[index] += (gradient[i][:NAtom[i]] * MBE_C[i]) atom_charge_mbe[index] += (atom_charge[i][:NAtom[i]] * MBE_C[i]) return (E_mbe, gradient_mbe, atom_charge_mbe)
class NN_MBE_BF(): def __init__(self, tfm_=None, dipole_tfm_=None): self.mbe_order = PARAMS['MBE_ORDER'] self.nn_mbe = tfm_ self.nn_dipole_mbe = dipole_tfm_ return def NN_Energy(self, mol, embed_=False): s = MSet() for order in range(1, (self.mbe_order + 1)): s.mols += mol.mbe_frags[order] energies = np.asarray(self.nn_mbe.Eval_BPEnergy(s)) pointer = 0 for order in range(1, (self.mbe_order + 1)): mol.frag_energy_sum[order] = np.sum(energies[pointer:(pointer + len(mol.mbe_frags[order]))]) if ((order == 1) or (order == 2)): for (i, mol_frag) in enumerate(mol.mbe_frags[order]): mol_frag.properties['nn_energy'] = energies[(pointer + i)] pointer += len(mol.mbe_frags[order]) if embed_: mol.MBE_Energy_Embed() else: mol.MBE_Energy() return def NN_Dipole(self, mol): s = MSet() for order in range(1, (self.mbe_order + 1)): s.mols += mol.mbe_frags[order] (dipoles, charges) = self.nn_dipole_mbe.Eval_BPDipole_2(s) pointer = 0 for order in range(1, (self.mbe_order + 1)): mol.frag_dipole_sum[order] = np.sum(dipoles[pointer:(pointer + len(mol.mbe_frags[order]))], axis=0) pointer += len(mol.mbe_frags[order]) mol.MBE_Dipole() print('mbe dipole: ', mol.nn_dipole) return def NN_Energy_Force(self, mol, embed_=False): s = MSet() for order in range(1, (self.mbe_order + 1)): s.mols += mol.mbe_frags[order] t = time.time() (energies, forces) = self.nn_mbe.Eval_BPForceSet(s) print('actual evaluation cost:', (time.time() - t)) energies = np.asarray(energies) pointer = 0 for order in range(1, (self.mbe_order + 1)): mol.frag_force_sum[order] = np.zeros((mol.NAtoms(), 3)) for (i, mol_frag) in enumerate(mol.mbe_frags[order]): mol.frag_force_sum[order][mol_frag.properties['mbe_atom_index']] += forces[(pointer + i)] mol.frag_energy_sum[order] = np.sum(energies[pointer:(pointer + len(mol.mbe_frags[order]))]) if ((order == 1) or (order == 2)): for (i, mol_frag) in enumerate(mol.mbe_frags[order]): mol_frag.properties['nn_energy'] = energies[(pointer + i)] mol_frag.properties['nn_energy_grads'] = forces[(pointer + i)] pointer += len(mol.mbe_frags[order]) if embed_: t = time.time() mol.MBE_Energy_Embed() print('MBE_Energy_Embed cost:', (t - time.time())) t = time.time() mol.MBE_Force_Embed() print('MBE_Force_Embed cost:', (t - time.time())) else: t = time.time() mol.MBE_Energy() print('MBE_Energy_Embed cost:', (t - time.time())) t = time.time() mol.MBE_Force() print('MBE_Force_Embed cost:', (t - time.time())) return (mol.nn_energy, mol.nn_force) def NN_Charge(self, mol, grads_=False): s = MSet() for order in range(1, (self.mbe_order + 1)): s.mols += mol.mbe_frags[order] if (not grads_): (dipoles, charges) = self.nn_dipole_mbe.Eval_BPDipole_2(s) else: (dipoles, charges, gradient) = self.nn_dipole_mbe.Eval_BPDipoleGrad_2(s) pointer = 0 for order in range(1, (self.mbe_order + 1)): mol.frag_charge_sum[order] = np.zeros(mol.NAtoms()) charge_charge_sum = 0.0 for (i, mol_frag) in enumerate(mol.mbe_frags[order]): mol.frag_charge_sum[order][mol_frag.properties['mbe_atom_index']] += charges[(pointer + i)] if (order == 2): mol_frag.properties['atom_charges'] = charges[(pointer + i)] if grads_: mol_frag.properties['atom_charges_grads'] = gradient[(pointer + i)] pointer += len(mol.mbe_frags[order]) t = time.time() mol.MBE_Charge() print('MBE_Charge cost:', (time.time() - t)) return mol.nn_charge
class SteepestDescent(): def __init__(self, ForceAndEnergy_, x0_): '\n\t\tThe desired interface for a solver in tensormol.\n\n\t\tArgs:\n\t\t\tForceAndEnergy_: a routine which returns energy, force.\n\t\t\tx0_: a initial vector\n\t\t' self.step = 0 self.x0 = x0_.copy() if (len(self.x0.shape) == 2): self.natom = self.x0.shape[0] else: self.natom = (self.x0.shape[0] * self.x0.shape[1]) self.EForce = ForceAndEnergy_ return def __call__(self, new_vec_): '\n\t\tIterate\n\n\t\tArgs:\n\t\t\tnew_vec_: Point at which to minimize gradients\n\t\tReturns:\n\t\t\tNext point, energy, and gradient.\n\t\t' (e, g) = self.EForce(new_vec_) self.step += 1 return ((new_vec_ + (PARAMS['SDStep'] * g)), e, g)
class VerletOptimizer(): def __init__(self, ForceAndEnergy_, x0_): "\n\t\tBased on Hankelman's momentum optimizer.\n\n\t\tArgs:\n\t\t\tForceAndEnergy_: a routine which returns energy, force.\n\t\t\tx0_: a initial vector\n\t\t" self.step = 0 self.x0 = x0_.copy() self.v = np.zeros(x0_.shape) self.a = np.zeros(x0_.shape) self.dt = 0.1 if (len(self.x0.shape) == 2): self.natom = self.x0.shape[0] else: self.natom = (self.x0.shape[0] * self.x0.shape[1]) self.EForce = ForceAndEnergy_ return def __call__(self, x_): '\n\t\tIterate\n\n\t\tArgs:\n\t\t\tnew_vec_: Point at which to minimize gradients\n\t\tReturns:\n\t\t\tNext point, energy, and gradient.\n\t\t' x = ((x_ + (self.v * self.dt)) + ((((1.0 / 2.0) * self.a) * self.dt) * self.dt)) (e, f_x_) = self.EForce(x) self.v += (((1.0 / 2.0) * (self.a + f_x_)) * self.dt) if (np.sum((self.v * f_x_)) < 0): self.v *= 0.0 self.a *= 0.0 self.step += 1 return (x, e, f_x_)
class BFGS(SteepestDescent): def __init__(self, ForceAndEnergy_, x0_): '\n\t\tSimplest Possible minimizing BFGS\n\n\t\tArgs:\n\t\t\tForceAndEnergy_: a routine which returns energy, force.\n\t\t\tx0_: a initial vector\n\t\t' self.m_max = PARAMS['MaxBFGS'] self.step = 0 self.x0 = x0_.copy() if (len(self.x0.shape) == 2): self.natom = self.x0.shape[0] else: self.natom = (self.x0.shape[0] * self.x0.shape[1]) self.EForce = ForceAndEnergy_ self.R_Hist = np.zeros(([self.m_max] + list(self.x0.shape))) self.F_Hist = np.zeros(([self.m_max] + list(self.x0.shape))) return def BFGSstep(self, new_vec_, new_residual_): if (self.step < self.m_max): self.R_Hist[self.step] = new_vec_.copy() self.F_Hist[self.step] = new_residual_.copy() else: self.R_Hist = np.roll(self.R_Hist, (- 1), axis=0) self.F_Hist = np.roll(self.F_Hist, (- 1), axis=0) self.R_Hist[(- 1)] = new_vec_.copy() self.F_Hist[(- 1)] = new_residual_.copy() q = new_residual_.copy() a = np.zeros(min(self.m_max, self.step)) for i in range((min(self.m_max, self.step) - 1), 0, (- 1)): s = (self.R_Hist[i] - self.R_Hist[(i - 1)]) y = (self.F_Hist[i] - self.F_Hist[(i - 1)]) rho = (1.0 / np.sum((y * s))) a[i] = (rho * np.sum((s * q))) q -= (a[i] * y) if (self.step < 1): H = 1.0 else: num = min((self.m_max - 1), self.step) v1 = (self.R_Hist[num] - self.R_Hist[(num - 1)]) v2 = (self.F_Hist[num] - self.F_Hist[(num - 1)]) H = (np.sum((v1 * v2)) / np.sum((v2 * v2))) if (abs(H) < 0.001): self.step += 1 return ((- 0.001) * new_residual_) z = (H * q) for i in range(1, min(self.m_max, self.step)): s = (self.R_Hist[i] - self.R_Hist[(i - 1)]) y = (self.F_Hist[i] - self.F_Hist[(i - 1)]) rho = (1.0 / np.sum((y * s))) beta = (rho * np.sum((y * z))) z += (s * (a[i] - beta)) self.step += 1 return ((- 1.0) * z) def __call__(self, new_vec_): '\n\t\tIterate BFGS\n\n\t\tArgs:\n\t\t\tnew_vec_: Point at which to minimize gradients\n\t\tReturns:\n\t\t\tNext point, energy, and gradient.\n\t\t' (e, g) = self.EForce(new_vec_) z = self.BFGSstep(new_vec_, g) return ((new_vec_ + (0.005 * z)), e, g)
class BFGS_WithLinesearch(BFGS): def __init__(self, ForceAndEnergy_, x0_): '\n\t\tSimplest Possible BFGS\n\n\t\tArgs:\n\t\t\tForceAndEnergy_: a routine which returns energy, force.\n\t\t\tx0_: a initial vector\n\t\t' BFGS.__init__(self, ForceAndEnergy_, x0_) self.alpha = PARAMS['GSSearchAlpha'] self.Energy = (lambda x: self.EForce(x, False)) return def LineSearch(self, x0_, p_, thresh=0.0001): '\n\t\tgolden section search to find the minimum of f on [a,b]\n\n\t\tArgs:\n\t\t\tf_: a function which returns energy.\n\t\t\tx0_: Origin of the search.\n\t\t\tp_: search direction.\n\n\t\tReturns:\n\t\t\tx: coordinates which minimize along this search direction.\n\t\t' k = 0 rmsdist = 10.0 a = x0_ b = (x0_ + (self.alpha * p_)) c = (b - ((b - a) / GOLDENRATIO)) d = (a + ((b - a) / GOLDENRATIO)) fa = self.Energy(a) fb = self.Energy(b) fc = self.Energy(c) fd = self.Energy(d) while (rmsdist > thresh): if ((fa < fc) and (fa < fd) and (fa < fb)): print('Line Search: Overstep') if (self.alpha > 0.0001): self.alpha /= 1.71 else: print('Keeping step') return a a = x0_ b = (x0_ + (self.alpha * p_)) c = (b - ((b - a) / GOLDENRATIO)) d = (a + ((b - a) / GOLDENRATIO)) fa = self.Energy(a) fb = self.Energy(b) fc = self.Energy(c) fd = self.Energy(d) elif ((fb < fc) and (fb < fd) and (fb < fa)): print('Line Search: Understep') if (self.alpha < 100.0): self.alpha *= 1.7 a = x0_ b = (x0_ + (self.alpha * p_)) c = (b - ((b - a) / GOLDENRATIO)) d = (a + ((b - a) / GOLDENRATIO)) fa = self.Energy(a) fb = self.Energy(b) fc = self.Energy(c) fd = self.Energy(d) elif (fc < fd): b = d c = (b - ((b - a) / GOLDENRATIO)) d = (a + ((b - a) / GOLDENRATIO)) fb = fd fc = self.Energy(c) fd = self.Energy(d) else: a = c c = (b - ((b - a) / GOLDENRATIO)) d = (a + ((b - a) / GOLDENRATIO)) fa = fc fc = self.Energy(c) fd = self.Energy(d) rmsdist = (np.sum(np.linalg.norm((a - b), axis=1)) / self.natom) k += 1 return ((b + a) / 2) def __call__(self, new_vec_): '\n\t\tIterate BFGS\n\n\t\tArgs:\n\t\t\tnew_vec_: Point at which to minimize gradients\n\t\tReturns:\n\t\t\tNext point, energy, and gradient.\n\t\t' (e, g) = self.EForce(new_vec_) z = self.BFGSstep(new_vec_, g) new_vec = self.LineSearch(new_vec_, z) return (new_vec, e, g)
class Basis(): def __init__(self, Name_=None): self.path = './basis/' self.name = Name_ self.params = None def Load(self, filename=None): print('Unpickling Basis Set') if (filename == None): filename = self.name f = open(((self.path + filename) + '.tmb'), 'rb') tmp = pickle.load(f) self.__dict__.update(tmp) f.close() return def Save(self): if (filename == None): filename = self.name f = open(((((self.path + self.name) + '_') + self.dig.name) + '.tmb'), 'wb') pickle.dump(self.__dict__, f, protocol=pickle.HIGHEST_PROTOCOL) f.close() return
class Basis_GauSH(Basis): def __init__(self, Name_=None): Basis.__init__(self, Name_) self.type = 'GauSH' self.RBFS = np.tile(np.array([[0.1, 0.156787], [0.3, 0.3], [0.5, 0.5], [0.7, 0.7], [1.3, 1.3], [2.2, 2.4], [4.4, 2.4], [6.6, 2.4], [8.8, 2.4], [11.0, 2.4], [13.2, 2.4], [15.4, 2.4]]), (10, 1, 1)) return def Orthogonalize(self): from TensorMol.LinearOperations import MatrixPower S_Rad = MolEmb.Overlap_RBFS(PARAMS, self.RBFS) self.SRBF = np.zeros((self.RBFS.shape[0], PARAMS['SH_NRAD'], PARAMS['SH_NRAD'])) for i in range(S_Rad.shape[0]): self.SRBF[i] = MatrixPower(S_Rad[i], ((- 1.0) / 2))
class EmbeddingOptimizer(): '\n\tProvides an objective function to optimize an embedding, maximizing the reversibility of the embedding, and the distance the embedding predicts between molecules which are not equivalent in their geometry or stoiciometry.\n\t' def __init__(self, method_, set_, dig_, OptParam_, OType_=None, Elements_=None): print('Will produce an objective function to optimize basis parameters, and then optimize it') self.method = method_ self.set = set_ self.dig = dig_ self.OptParam = OptParam_ LOGGER.info('Optimizing %s part of %s based off of %s', self.OptParam, self.dig.name, self.method) if (self.method == 'Ipecac'): self.ip = Ipecac.Ipecac(self.set, self.dig, eles_=[1, 6, 7, 8]) self.Mols = [] self.DistortMols = [] self.DesiredEmbs = [] for mol in self.set.mols: self.Mols.append(copy.deepcopy(mol)) self.Mols[(- 1)].BuildDistanceMatrix() for mol in self.Mols: self.DistortMols.append(copy.deepcopy(mol)) self.DistortMols[(- 1)].Distort(0.15) self.DistortMols[(- 1)].BuildDistanceMatrix() LOGGER.info('Using %d unique geometries', len(self.Mols)) elif (self.method == 'KRR'): self.OType = OType_ if (self.OType == None): raise Exception('KRR optimization requires setting OType_ for the EmbeddingOptimizer.') self.elements = Elements_ if (self.elements == None): raise Exception('KRR optimization requires setting Elements_ for the EmbeddingOptimizer.') self.TreatedAtoms = self.set.AtomTypes() print('Optimizing based off ', self.OType, ' using elements') return def SetBasisParams(self, basisParams_): if (self.dig.name == 'GauSH'): if (self.OptParam == 'radial'): PARAMS['RBFS'] = basisParams_[:(PARAMS['SH_NRAD'] * 2)].reshape(PARAMS['SH_NRAD'], 2).copy() elif (self.OptParam == 'atomic'): PARAMS['ANES'][[0, 5, 6, 7]] = basisParams_[[0, 1, 2, 3]].copy() elif (self.digname == 'ANI1_Sym'): raise Exception('Not yet implemented for ANI1') S_Rad = MolEmb.Overlap_RBF(PARAMS) PARAMS['SRBF'] = MatrixPower(S_Rad, ((- 1.0) / 2)) print('Eigenvalue Overlap Error: ', ((1 / np.amin(np.linalg.eigvals(S_Rad))) / 1000000.0)) return np.abs(((1 / np.amin(np.linalg.eigvals(S_Rad))) / 1000000.0)) def Ipecac_Objective(self, basisParams_): '\n\t\tResets the parameters. Builds the overlap if neccesary. Resets the desired embeddings. Reverses the distorted set and computes an error.\n\t\t' berror = self.SetBasisParams(basisParams_) self.SetEmbeddings() resultmols = [] for i in range(len(self.DistortMols)): m = copy.deepcopy(self.DistortMols[i]) emb = self.DesiredEmbs[i] resultmols.append(self.ip.ReverseAtomwiseEmbedding(emb, m.atoms, guess_=m.coords, GdDistMatrix=self.Mols[i].DistMatrix)) SelfDistances = 0.0 OtherDistances = 0.0 for i in range(len(self.DistortMols)): SelfDistances += self.Mols[i].rms_inv(resultmols[i]) print(SelfDistances) for j in range(len(self.DistortMols)): if ((i != j) and (len(self.Mols[i].atoms) == len(self.Mols[j].atoms))): OtherDistances += np.exp(((- 1.0) * self.Mols[i].rms_inv(resultmols[j]))) LOGGER.info('Using params_: %s', basisParams_) LOGGER.info('Got Error: %.6f', ((berror + SelfDistances) + OtherDistances)) return ((berror + SelfDistances) + OtherDistances) def KRR_Objective(self, basisParams_): '\n\t\tResets the parameters. Builds the overlap if neccesary. Resets the desired embeddings. Reverses the distorted set and computes an error.\n\t\t' berror = self.SetBasisParams(basisParams_) sqerr = 0.0 tset = TensorData(self.set, self.dig) tset.BuildTrainMolwise((self.set.name + '_BasisOpt')) for ele in self.elements: ele_inst = Instance_KRR(tset, ele, None) sqerr += (ele_inst.basis_opt_run() ** 2) LOGGER.info('Basis Params: %s', basisParams_) LOGGER.info('SqError: %f', (sqerr + berror)) return (sqerr + berror) def PerformOptimization(self): prm0 = PARAMS['RBFS'][:PARAMS['SH_NRAD']].flatten() print(prm0) print('Optimizing RBFS.') if (self.method == 'Ipecac'): obj = (lambda x: self.Ipecac_Objective(x)) elif (self.method == 'KRR'): obj = (lambda x: self.KRR_Objective(x)) res = optimize.minimize(obj, prm0, method='COBYLA', tol=1e-08, options={'disp': True, 'rhobeg': 0.1}) LOGGER.info('Opt complete: %s', res.message) LOGGER.info('Optimal Basis Parameters: %s', res.x) return def BasinHopping(self): prm0 = PARAMS['RBFS'][:PARAMS['SH_NRAD']].flatten() print(prm0) print('Optimizing RBFS.') if (self.method == 'Ipecac'): obj = (lambda x: self.Ipecac_Objective(x)) elif (self.method == 'KRR'): obj = (lambda x: self.KRR_Objective(x)) min_kwargs = {'method': 'COBYLA', 'options': "{'rhobeg':0.1}"} ret = optimize.basinhopping(obj, prm0, minimizer_kwargs=min_kwargs, niter=100) LOGGER.info('Optimal Basis Parameters: %s', res.x) return def SetEmbeddings(self): self.DesiredEmbs = [] for mol in self.Mols: self.DesiredEmbs.append(self.dig.Emb(mol, MakeOutputs=False))
class Ipecac(): def __init__(self, set_, dig_, eles_): '\n\t\tArgs:\n\t\t\tset_ : an MSet of molecules\n\t\t\tdig_: embedding type for reversal\n\t\t\teles_: list of possible elements for reversal\n\t\t' self.set = set_ self.dig = dig_ self.eles = eles_ def ReverseAtomwiseEmbedding(self, emb_, atoms_, guess_, GdDistMatrix): '\n\t\tArgs:\n\t\t\tatoms_: a list of element types for which this routine provides coords.\n\t\t\tdig_: a digester\n\t\t\temb_: the embedding which we will try to construct a mol to match. Because this is atomwise this will actually be a (natoms X embedding shape) tensor.\n\t\tReturns:\n\t\t\tA best-fit version of a molecule which produces an embedding as close to emb_ as possible.\n\t\t' natoms = emb_.shape[0] if (atoms_ == None): atoms = np.full(natoms, 6) else: atoms = atoms_ coords = guess_ objective = (lambda crds: self.EmbAtomwiseErr(Mol(atoms, crds.reshape(natoms, 3)), emb_)) if 1: def callbk(x_): mn = Mol(atoms, x_.reshape(natoms, 3)) mn.BuildDistanceMatrix() print('Distance error : ', np.sqrt(np.sum(((GdDistMatrix - mn.DistMatrix) * (GdDistMatrix - mn.DistMatrix))))) import scipy.optimize step = 0 res = optimize.minimize(objective, coords.reshape((natoms * 3)), method='L-BFGS-B', tol=1e-12, options={'maxiter': 5000000, 'maxfun': 10000000}, callback=callbk) mfit = Mol(atoms, res.x.reshape(natoms, 3)) self.DistanceErr(GdDistMatrix, mfit) return mfit def BruteForceAtoms(self, mol_, emb_): print('Searching for best atom fit') bestmol = copy.deepcopy(mol_) besterr = 100.0 for stoich in itertools.product([1, 6, 7, 8], repeat=len(mol_.atoms)): tmpmol = Mol(np.array(stoich), mol_.coords) tmperr = self.EmbAtomwiseErr(tmpmol, emb_) if (tmperr < besterr): bestmol = copy.deepcopy(tmpmol) besterr = tmperr print(besterr) print(bestmol.atoms) return bestmol.atoms def EmbAtomwiseErr(self, mol_, emb_): ins = self.dig.Emb(mol_, MakeOutputs=False) err = np.sqrt(np.sum(((ins - emb_) * (ins - emb_)))) return err def DistanceErr(self, GdDistMatrix_, mol_): mol_.BuildDistanceMatrix() print('Final Distance error : ', np.sqrt(np.sum(((GdDistMatrix_ - mol_.DistMatrix) * (GdDistMatrix_ - mol_.DistMatrix)))))
class OnlineEstimator(): '\n\tSimple storage-less Knuth estimator which\n\taccumulates mean and variance.\n\t' def __init__(self, x_): self.n = 1 self.mean = (x_ * 0.0) self.m2 = (x_ * 0.0) delta = (x_ - self.mean) self.mean += (delta / self.n) delta2 = (x_ - self.mean) self.m2 += (delta * delta2) def __call__(self, x_): self.n += 1 delta = (x_ - self.mean) self.mean += (delta / self.n) delta2 = (x_ - self.mean) self.m2 += (delta * delta2) return (self.mean, (self.m2 / (self.n - 1)))
class NudgedElasticBand(): def __init__(self, f_, g0_, g1_, name_='Neb', thresh_=None, nbeads_=None): '\n\t\tNudged Elastic band. JCP 113 9978\n\n\t\tArgs:\n\t\t\tf_: an energy, force routine (energy Hartree, Force Kcal/ang.)\n\t\t\tg0_: initial molecule.\n\t\t\tg1_: final molecule.\n\n\t\tReturns:\n\t\t\tA reaction path.\n\t\t' self.name = name_ self.thresh = PARAMS['OptThresh'] if (thresh_ != None): self.thresh = thresh_ self.max_opt_step = PARAMS['OptMaxCycles'] self.nbeads = PARAMS['NebNumBeads'] if (nbeads_ != None): self.nbeads = nbeads_ self.k = PARAMS['NebK'] self.f = f_ self.atoms = g0_.atoms.copy() self.natoms = len(self.atoms) self.beads = np.array([(((1.0 - l) * g0_.coords) + (l * g1_.coords)) for l in np.linspace(0.0, 1.0, self.nbeads)]) self.Fs = np.zeros(self.beads.shape) self.Ss = np.zeros(self.beads.shape) self.Ts = np.zeros(self.beads.shape) self.Es = np.zeros(self.nbeads) self.Esi = np.zeros(self.nbeads) self.Rs = np.zeros(self.nbeads) self.Solver = None self.step = 0 if (PARAMS['NebSolver'] == 'SD'): self.Solver = SteepestDescent(self.WrappedEForce, self.beads) if (PARAMS['NebSolver'] == 'Verlet'): self.Solver = VerletOptimizer(self.WrappedEForce, self.beads) elif (PARAMS['NebSolver'] == 'BFGS'): self.Solver = BFGS_WithLinesearch(self.WrappedEForce, self.beads) elif (PARAMS['NebSolver'] == 'DIIS'): self.Solver = DIIS(self.WrappedEForce, self.beads) elif (PARAMS['NebSolver'] == 'CG'): self.Solver = ConjGradient(self.WrappedEForce, self.beads) else: raise Exception('Missing Neb Solver') for (i, bead) in enumerate(self.beads): m = Mol(self.atoms, bead) m.WriteXYZfile('./results/', 'NebTraj0') return def Tangent(self, beads_, i): if ((i == 0) or (i == (self.nbeads - 1))): return np.zeros(self.beads[0].shape) tm1 = (beads_[i] - beads_[(i - 1)]) tp1 = (beads_[(i + 1)] - beads_[i]) t = (tm1 + tp1) t = (t / np.sqrt(np.einsum('ia,ia', t, t))) return t def SpringEnergy(self, beads_): tmp = 0.0 for i in range((self.nbeads - 1)): tmp2 = (beads_[(i + 1)] - beads_[i]) tmp += (((0.5 * self.k) * self.nbeads) * np.sum((tmp2 * tmp2))) return tmp def SpringDeriv(self, beads_, i): if ((i == 0) or (i == (self.nbeads - 1))): return np.zeros(self.beads[0].shape) tmp = ((self.k * self.nbeads) * (((2.0 * beads_[i]) - beads_[(i + 1)]) - beads_[(i - 1)])) return tmp def Parallel(self, v_, t_): return (t_ * np.einsum('ia,ia', v_, t_)) def Perpendicular(self, v_, t_): return (v_ - (t_ * np.einsum('ia,ia', v_, t_))) def BeadAngleCosine(self, beads_, i): v1 = (beads_[(i + 1)] - beads_[i]) v2 = (beads_[(i - 1)] - beads_[i]) return (np.einsum('ia,ia', v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))) def NebForce(self, beads_, i, DoForce=True): '\n\t\tThis uses the mixing of Perpendicular spring force\n\t\tto reduce kinks\n\t\t' if ((i == 0) or (i == (self.nbeads - 1))): self.Fs[i] = np.zeros(self.beads[0].shape) self.Es[i] = self.f(beads_[i], False) elif DoForce: (self.Es[i], self.Fs[i]) = self.f(beads_[i], DoForce) else: self.Es[i] = self.f(beads_[i], DoForce) if (not DoForce): return self.Es[i] t = self.Tangent(beads_, i) self.Ts[i] = t S = ((- 1.0) * self.SpringDeriv(beads_, i)) Spara = self.Parallel(S, t) self.Ss[i] = Spara F = self.Fs[i].copy() F = self.Perpendicular(F, t) if 0: if (np.linalg.norm(F) != 0.0): Fn = (F / np.linalg.norm(F)) else: Fn = F Sperp = self.Perpendicular(self.Perpendicular(S, t), Fn) Fneb = (Spara + F) if (PARAMS['NebClimbingImage'] and (self.step > 10) and (i == self.TSI)): print('Climbing image i', i) Fneb = (self.Fs[i] + (((- 2.0) * np.sum((self.Fs[i] * self.Ts[i]))) * self.Ts[i])) return (self.Es[i], Fneb) def WrappedEForce(self, beads_, DoForce=True): F = np.zeros(beads_.shape) if DoForce: for (i, bead) in enumerate(beads_): (self.Es[i], F[i]) = self.NebForce(beads_, i, DoForce) F[i] = RemoveInvariantForce(bead, F[i], self.atoms) F[i] /= JOULEPERHARTREE TE = (np.sum(self.Es) + self.SpringEnergy(beads_)) return (TE, F) else: for (i, bead) in enumerate(beads_): self.Es[i] = self.NebForce(beads_, i, DoForce) TE = (np.sum(self.Es) + self.SpringEnergy(beads_)) return TE def IntegrateEnergy(self): '\n\t\tUse the fundamental theorem of line integrals to calculate an energy.\n\t\tAn interpolated path could improve this a lot.\n\t\t' self.Esi[0] = self.Es[0] for i in range(1, self.nbeads): dR = (self.beads[i] - self.beads[(i - 1)]) dV = (((- 1) * (self.Fs[i] + self.Fs[(i - 1)])) / 2.0) self.Esi[i] = (self.Esi[(i - 1)] + np.einsum('ia,ia', dR, dV)) def HighQualityPES(self, npts_=100): '\n\t\tDo a high-quality integration of the path and forces.\n\t\t' from scipy.interpolate import CubicSpline ls = np.linspace(0.0, 1.0, self.nbeads) Rint = CubicSpline(self.beads) Fint = CubicSpline(self.Fs) Es = np.zeros(npts_) Es[0] = 0 ls = np.linspace(0.0, 1.0, npts_) for (i, l) in enumerate(ls): if (i == 0): continue else: Es[i] = (Es[(i - 1)] + np.einsum('ia,ia', (Rint(l) - Rint(ls[(i - 1)])), ((- 1.0) * Fint(l)))) m = Mol(self.atoms, Rint(l)) m.properties['Energy'] = Es[i] m.properties['Force'] = Fint(l) m.WriteXYZfile('./results/', 'NebHQTraj') def WriteTrajectory(self, nm_): for (i, bead) in enumerate(self.beads): m = Mol(self.atoms, bead) m.WriteXYZfile('./results/', ('Bead' + str(i))) for (i, bead) in enumerate(self.beads): m = Mol(self.atoms, bead) m.properties['bead'] = i m.properties['Energy'] = self.Es[i] m.properties['NormNebForce'] = np.linalg.norm(self.Fs[i]) m.WriteXYZfile('./results/', (nm_ + 'Traj')) return def Opt(self, filename='Neb', Debug=False): '\n\t\tOptimize the nudged elastic band using the solver that has been selected.\n\t\t' self.step = 0 self.Fs = np.ones(self.beads.shape) PES = np.zeros((self.max_opt_step, self.nbeads)) while ((self.step < self.max_opt_step) and (np.sqrt(np.mean((self.Fs * self.Fs))) > self.thresh)): (self.beads, energy, self.Fs) = self.Solver(self.beads) PES[self.step] = self.Es.copy() self.IntegrateEnergy() print('Rexn Profile: ', self.Es, self.Esi) self.TSI = np.argmax(self.Es) beadFs = [np.linalg.norm(x) for x in self.Fs[1:(- 1)]] beadFperp = [np.linalg.norm(self.Perpendicular(self.Fs[i], self.Ts[i])) for i in range(1, (self.nbeads - 1))] beadRs = [np.linalg.norm((self.beads[(x + 1)] - self.beads[x])) for x in range((self.nbeads - 1))] beadCosines = [self.BeadAngleCosine(self.beads, i) for i in range(1, (self.nbeads - 1))] print('Frce Profile: ', beadFs) print('F_|_ Profile: ', beadFperp) print('Dist Profile: ', beadRs) print('BCos Profile: ', beadCosines) minforce = np.min(beadFs) if ((self.step % 10) == 0): self.WriteTrajectory(filename) LOGGER.info((self.name + 'Step: %i Objective: %.5f RMS Gradient: %.5f Max Gradient: %.5f |F_perp| : %.5f |F_spring|: %.5f '), self.step, np.sum(PES[self.step]), np.sqrt(np.mean((self.Fs * self.Fs))), np.max(self.Fs), np.mean(beadFperp), np.linalg.norm(self.Ss)) self.step += 1 print('Activation Energy:', (np.max(self.Es) - np.min(self.Es))) np.savetxt((('./results/NEB_' + filename) + '_Energy.txt'), PES) return self.beads
def PeriodicVelocityVerletStep(pf_, a_, x_, v_, m_, dt_): "\n\tA Periodic Velocity Verlet Step (just modulo's the vectors.)\n\n\tArgs:\n\t\tpf_: The PERIODIC force class (returns Joules/Angstrom)\n\t\ta_: The acceleration at current step. (A^2/fs^2)\n\t\tx_: Current coordinates (A)\n\t\tv_: Velocities (A/fs)\n\t\tm_: the mass vector. (kg)\n\tReturns:\n\t\tx: updated positions\n\t\tv: updated Velocities\n\t\ta: updated accelerations\n\t\te: Energy at midpoint per unit cell.\n\t" x = ((x_ + (v_ * dt_)) + ((((1.0 / 2.0) * a_) * dt_) * dt_)) x = pf_.lattice.ModuloLattice(x) (e, f_x_) = pf_(x) a = (pow(10.0, (- 10.0)) * np.einsum('ax,a->ax', f_x_, (1.0 / m_))) v = (v_ + (((1.0 / 2.0) * (a_ + a)) * dt_)) return (x, v, a, e)
class PeriodicNoseThermostat(NoseThermostat): def __init__(self, m_, v_): NoseThermostat.__init__(self, m_, v_) return def step(self, pf_, a_, x_, v_, m_, dt_): '\n\t\tA periodic Nose thermostat velocity verlet step\n\t\thttp://www2.ph.ed.ac.uk/~dmarendu/MVP/MVP03.pdf\n\n\t\tArgs:\n\t\t\tpf_: a Periodic force class.\n\t\t\ta_: acceleration\n\t\t\tx_: coordinates\n\t\t\tv_: velocities\n\t\t\tm_: masses\n\t\t\tdt_: timestep.\n\t\t' self.kT = ((IDEALGASR * pow(10.0, (- 10.0))) * self.T) self.tau = ((20.0 * PARAMS['MDdt']) * self.N) self.Q = ((self.kT * self.tau) * self.tau) x = ((x_ + (v_ * dt_)) + ((((1.0 / 2.0) * (a_ - (self.eta * v_))) * dt_) * dt_)) x = pf_.lattice.ModuloLattice(x) vdto2 = (v_ + (((1.0 / 2.0) * (a_ - (self.eta * v_))) * dt_)) (e, f_x_) = pf_(x) a = (pow(10.0, (- 10.0)) * np.einsum('ax,a->ax', f_x_, (1.0 / m_))) ke = ((1.0 / 2.0) * np.dot(np.einsum('ia,ia->i', v_, v_), m_)) etadto2 = (self.eta + ((dt_ / (2.0 * self.Q)) * (ke - ((((3.0 * self.N) + 1) / 2.0) * self.kT)))) kedto2 = ((1.0 / 2.0) * np.dot(np.einsum('ia,ia->i', vdto2, vdto2), m_)) self.eta = (etadto2 + ((dt_ / (2.0 * self.Q)) * (kedto2 - ((((3.0 * self.N) + 1) / 2.0) * self.kT)))) v = ((vdto2 + ((dt_ / 2.0) * a)) / (1 + ((dt_ / 2.0) * self.eta))) return (x, v, a, e)
class PeriodicVelocityVerlet(VelocityVerlet): def __init__(self, Force_, name_='PdicMD', v0_=None): '\n\t\tMolecular dynamics\n\n\t\tArgs:\n\t\t\tForce_: A PERIODIC energy, force CLASS.\n\t\t\tPMol_: initial molecule.\n\t\t\tPARAMS["MDMaxStep"]: Number of steps to take.\n\t\t\tPARAMS["MDTemp"]: Temperature to initialize or Thermostat to.\n\t\t\tPARAMS["MDdt"]: Timestep.\n\t\t\tPARAMS["MDV0"]: Sort of velocity initialization (None, or "Random")\n\t\t\tPARAMS["MDLogTrajectory"]: Write MD Trajectory.\n\t\tReturns:\n\t\t\tNothing.\n\t\t' self.PForce = Force_ VelocityVerlet.__init__(self, None, self.PForce.mol0, name_, self.PForce.__call__) if (v0_ is not None): self.v = v0_ if (PARAMS['MDThermostat'] == 'Nose'): self.Tstat = PeriodicNoseThermostat(self.m, self.v) else: print('Unthermostated Periodic Velocity Verlet.') return def Density(self): '\n\t\tReturns the density in g/cm**3 of the bulk.\n\t\t' return self.PForce.Density() def WriteTrajectory(self): m = Mol(self.atoms, self.x) m.properties['Lattice'] = self.PForce.lattice.lattice.copy() m.properties['Time'] = self.t m.properties['KineticEnergy'] = self.KE m.properties['PotEnergy'] = self.EPot m.WriteXYZfile('./results/', ('MDTrajectory' + self.name), 'a', True) return def Prop(self): '\n\t\tPropagate VelocityVerlet\n\t\t' print('begin Periodic VelocityVerlet') step = 0 self.md_log = np.zeros((self.maxstep, 7)) while (step < self.maxstep): t = time.time() self.t = (step * self.dt) self.KE = KineticEnergy(self.v, self.m) Teff = (((2.0 / 3.0) * self.KE) / IDEALGASR) if (PARAMS['MDThermostat'] == None): (self.x, self.v, self.a, self.EPot) = PeriodicVelocityVerletStep(self.PForce, self.a, self.x, self.v, self.m, self.dt) else: (self.x, self.v, self.a, self.EPot) = self.Tstat.step(self.PForce, self.a, self.x, self.v, self.m, self.dt) self.md_log[(step, 0)] = self.t self.md_log[(step, 4)] = self.KE self.md_log[(step, 5)] = self.EPot self.md_log[(step, 6)] = (self.KE + ((self.EPot - self.EPot0) * JOULEPERHARTREE)) if PARAMS['PrintTMTimer']: PrintTMTIMER() if (((step % 1) == 0) and PARAMS['MDLogTrajectory']): self.WriteTrajectory() if ((step % 500) == 0): np.savetxt(((('./results/' + 'MDLog') + self.name) + '.txt'), self.md_log) step += 1 LOGGER.info('Step: %i time: %.1f(fs) <KE>(kJ/mol): %.5f <|a|>(m/s2): %.5f <EPot>(Eh): %.5f <Etot>(kJ/mol): %.5f Rho(g/cm**3): %.5f Teff(K): %.5f', step, self.t, (self.KE / 1000.0), np.linalg.norm(self.a), self.EPot, ((self.KE / 1000.0) + (self.EPot * KJPERHARTREE)), self.Density(), Teff) print(('per step cost:', (time.time() - t))) return
class PeriodicBoxingDynamics(PeriodicVelocityVerlet): def __init__(self, Force_, BoxingLatp_=np.eye(3), name_='PdicBoxMD', BoxingT_=400): '\n\t\tPeriodically Crushes a molecule by shrinking it\'s lattice to obtain a desired density.\n\n\t\tArgs:\n\t\t\tForce_: A PeriodicForce object\n\t\t\tBoxingLatp_ : Final Lattice.\n\t\t\tBoxingT_: amount of time for the boxing dynamics in fs.\n\t\t\tPARAMS["MDMaxStep"]: Number of steps to take.\n\t\t\tPARAMS["MDTemp"]: Temperature to initialize or Thermostat to.\n\t\t\tPARAMS["MDdt"]: Timestep.\n\t\t\tPARAMS["MDV0"]: Sort of velocity initialization (None, or "Random")\n\t\t\tPARAMS["MDLogTrajectory"]: Write MD Trajectory.\n\t\tReturns:\n\t\t\tNothing.\n\t\t' self.PForce = Force_ self.BoxingLat0 = Force_.lattice.lattice.copy() self.BoxingLatp = BoxingLatp_.copy() self.BoxingT = BoxingT_ VelocityVerlet.__init__(self, None, self.PForce.mol0, name_, self.PForce.__call__) if (PARAMS['MDThermostat'] == 'Nose'): self.Tstat = PeriodicNoseThermostat(self.m, self.v) else: print('Unthermostated Periodic Velocity Verlet.') return def Prop(self): '\n\t\tPropagate VelocityVerlet\n\t\t' step = 0 self.md_log = np.zeros((self.maxstep, 7)) while (step < self.maxstep): t = time.time() self.t = (step * self.dt) self.KE = KineticEnergy(self.v, self.m) if (self.t > self.BoxingT): print('Exceeded Boxtime\n', self.BoxingLatp) else: newlattice = ((((self.BoxingT - self.t) / self.BoxingT) * self.BoxingLat0) + ((1.0 - ((self.BoxingT - self.t) / self.BoxingT)) * self.BoxingLatp)) self.x = self.PForce.AdjustLattice(self.x, self.PForce.lattice.lattice, newlattice) self.v = self.PForce.AdjustLattice(self.v, self.PForce.lattice.lattice, newlattice) self.a = self.PForce.AdjustLattice(self.a, self.PForce.lattice.lattice, newlattice) self.PForce.ReLattice(newlattice) print('Density:', self.Density()) Teff = (((2.0 / 3.0) * self.KE) / IDEALGASR) if (PARAMS['MDThermostat'] == None): (self.x, self.v, self.a, self.EPot) = PeriodicVelocityVerletStep(self.PForce, self.a, self.x, self.v, self.m, self.dt) else: (self.x, self.v, self.a, self.EPot) = self.Tstat.step(self.PForce, self.a, self.x, self.v, self.m, self.dt) self.md_log[(step, 0)] = self.t self.md_log[(step, 4)] = self.KE self.md_log[(step, 5)] = self.EPot self.md_log[(step, 6)] = (self.KE + ((self.EPot - self.EPot0) * JOULEPERHARTREE)) if (((step % 3) == 0) and PARAMS['MDLogTrajectory']): self.WriteTrajectory() if ((step % 500) == 0): np.savetxt(((('./results/' + 'MDLog') + self.name) + '.txt'), self.md_log) step += 1 LOGGER.info('Step: %i time: %.1f(fs) <KE>(kJ/mol): %.5f <|a|>(m/s2): %.5f <EPot>(Eh): %.5f <Etot>(kJ/mol): %.5f Teff(K): %.5f', step, self.t, (self.KE / 1000.0), np.linalg.norm(self.a), self.EPot, ((self.KE / 1000.0) + (self.EPot * KJPERHARTREE)), Teff) print(('per step cost:', (time.time() - t))) return
class PeriodicAnnealer(PeriodicVelocityVerlet): def __init__(self, Force_, name_='PdicAnneal', AnnealThresh_=9e-06): '\n\t\tAnneals a periodic molecule.\n\n\t\tArgs:\n\t\t\tForce_: A PeriodicForce object\n\t\t\tPARAMS["MDMaxStep"]: Number of steps to take.\n\t\t\tPARAMS["MDTemp"]: Temperature to initialize or Thermostat to.\n\t\t\tPARAMS["MDdt"]: Timestep.\n\t\t\tPARAMS["MDV0"]: Sort of velocity initialization (None, or "Random")\n\t\t\tPARAMS["MDLogTrajectory"]: Write MD Trajectory.\n\t\tReturns:\n\t\t\tNothing.\n\t\t' PeriodicVelocityVerlet.__init__(self, Force_, name_) self.dt = 0.1 self.v *= 0.0 self.AnnealT0 = PARAMS['MDAnnealT0'] self.AnnealSteps = PARAMS['MDAnnealSteps'] self.MinS = 0 self.MinE = 99999999.0 self.Minx = None self.AnnealThresh = AnnealThresh_ self.Tstat = PeriodicNoseThermostat(self.m, self.v) return def Prop(self): '\n\t\tPropagate VelocityVerlet\n\t\t' step = 0 self.md_log = np.zeros((self.maxstep, 7)) while (step < self.AnnealSteps): t = time.time() self.t = (step * self.dt) self.KE = KineticEnergy(self.v, self.m) Teff = (((2.0 / 3.0) * self.KE) / IDEALGASR) AnnealFrac = (float((self.AnnealSteps - step)) / self.AnnealSteps) self.Tstat.T = (((self.AnnealT0 * AnnealFrac) + (PARAMS['MDAnnealTF'] * (1.0 - AnnealFrac))) + pow(10.0, (- 10.0))) (self.x, self.v, self.a, self.EPot) = self.Tstat.step(self.PForce, self.a, self.x, self.v, self.m, self.dt) if ((self.EPot < self.MinE) and (abs((self.EPot - self.MinE)) > self.AnnealThresh) and (step > 1)): self.MinE = self.EPot self.Minx = self.x.copy() self.MinS = step LOGGER.info(' -- cycling annealer -- ') if (PARAMS['MDAnnealT0'] > PARAMS['MDAnnealTF']): self.AnnealT0 = (self.Tstat.T + PARAMS['MDAnnealKickBack']) print(self.x) step = 0 self.md_log[(step, 0)] = self.t self.md_log[(step, 4)] = self.KE self.md_log[(step, 5)] = self.EPot self.md_log[(step, 6)] = (self.KE + ((self.EPot - self.EPot0) * JOULEPERHARTREE)) if (((step % 3) == 0) and PARAMS['MDLogTrajectory']): self.WriteTrajectory() if ((step % 500) == 0): np.savetxt(((('./results/' + 'MDLog') + self.name) + '.txt'), self.md_log) step += 1 LOGGER.info('Step: %i time: %.1f(fs) <KE>(kJ/mol): %.5f <|a|>(m/s2): %.5f <EPot>(Eh): %.5f <Etot>(kJ/mol): %.5f Rho(g/cm3) %.5f Teff(K): %.5f T_target(K): %.5f', step, self.t, (self.KE / 1000.0), np.linalg.norm(self.a), self.EPot, ((self.KE / 1000.0) + (self.EPot * KJPERHARTREE)), self.Density(), Teff, self.Tstat.T) print(('per step cost:', (time.time() - t))) Mol(self.atoms, self.Minx).WriteXYZfile('./results', 'PAnnealMin', wprop=True) return
class LocalReactions(): def __init__(self, f_, g0_, Nstat_=20): '\n\t\tIn this case the bumps are pretty severe\n\t\tand the metadynamics is designed to sample reactions rapidly.\n\n\t\tArgs:\n\t\t\tf_: an energy, force routine (energy Hartree, Force Kcal/ang.)\n\t\t\tg0_: initial molecule.\n\t\t' self.NStat = Nstat_ LOGGER.info('Finding reactions between %i local minima... ', self.NStat) MOpt = MetaOptimizer(f_, g0_, StopAfter_=self.NStat) mins = MOpt.MetaOpt() LOGGER.info('---------------------------------') LOGGER.info('--------- Nudged Bands ----------') LOGGER.info('---------------------------------') nbead = 15 self.path = np.zeros(shape=(((self.NStat - 1) * nbead), g0_.NAtoms(), 3)) for i in range((self.NStat - 1)): g0 = Mol(g0_.atoms, mins[i]) g1 = Mol(g0_.atoms, mins[(i + 1)]) neb = NudgedElasticBand(f_, g0, g1, name_=('Neb' + str(i)), thresh_=0.004, nbeads_=nbead) self.path[(i * nbead):((i + 1) * nbead)] = neb.Opt() for i in range(self.path.shape[0]): m = Mol(g0_.atoms, self.path[i]) m.WriteXYZfile('./results/', 'WebPath') return
def FillWithGas(l=10.0): '\n\tFills a box of length l with H2, CH4, N2, H2O, CO\n\t' return
class PairProvider(): def __init__(self, nmol_, natom_): '\n\t\tReturns pairs within a cutoff.\n\n\t\tArgs:\n\t\t\tnatom: number of atoms in a molecule.\n\t\t\tnmol: number of molecules in the batch.\n\t\t' self.nmol = nmol_ self.natom = natom_ self.sess = None self.xyzs_pl = None self.nnz_pl = None self.rng_pl = None self.Prepare() return def PairsWithinCutoff(self, xyzs_pl, rng_pl, nnz_pl): "\n\t\tIt's up to whatever routine calls this to chop out\n\t\tall the indices which are larger than the number of atoms in this molecule.\n\t\t" nrawpairs = ((self.nmol * self.natom) * self.natom) Ds = TFDistances(xyzs_pl) Ds = tf.matrix_band_part(Ds, 0, (- 1)) Ds = tf.where(tf.equal(Ds, 0.0), (10000.0 * tf.ones_like(Ds)), Ds) inds = tf.reshape(AllDoublesSet(tf.tile(tf.reshape(tf.range(self.natom), [1, self.natom]), [self.nmol, 1])), [((self.nmol * self.natom) * self.natom), 3]) nnzs = tf.reshape(tf.tile(tf.reshape(nnz_pl, [self.nmol, 1, 1]), [1, self.natom, self.natom]), [((self.nmol * self.natom) * self.natom), 1]) a1 = tf.slice(inds, [0, 1], [(- 1), 1]) a2 = tf.slice(inds, [0, 2], [(- 1), 1]) prs = tf.reshape(tf.less(Ds, rng_pl), [((self.nmol * self.natom) * self.natom), 1]) msk0 = tf.reshape(tf.logical_and(tf.logical_and(tf.less(a1, nnzs), tf.less(a2, nnzs)), prs), [nrawpairs]) inds = tf.boolean_mask(inds, msk0) a1 = tf.slice(inds, [0, 1], [(- 1), 1]) a2 = tf.slice(inds, [0, 2], [(- 1), 1]) nodiag = tf.not_equal(a1, a2) msk = tf.reshape(nodiag, [tf.shape(inds)[0]]) return tf.boolean_mask(inds, msk) def Prepare(self): with tf.Graph().as_default(): self.xyzs_pl = tf.placeholder(tf.float64, shape=tuple([None, self.natom, 3])) self.rng_pl = tf.placeholder(tf.float64, shape=()) self.nnz_pl = tf.placeholder(tf.int32, shape=None) init = tf.global_variables_initializer() self.GetPairs = self.PairsWithinCutoff(self.xyzs_pl, self.rng_pl, self.nnz_pl) self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.sess.run(init) return def __call__(self, xpl, rngpl, nnz): '\n\t\tReturns the nonzero pairs.\n\t\t' tmp = self.sess.run([self.GetPairs], feed_dict={self.xyzs_pl: xpl, self.rng_pl: rngpl, self.nnz_pl: nnz}) return tmp[0]
class MolInstance_BP_Dipole(MolInstance_fc_sqdiff_BP): '\n\t\tCalculate the Dipole of Molecules\n\t' def __init__(self, TData_, Name_=None, Trainable_=True): '\n\t\tRaise a Behler-Parinello TensorFlow instance.\n\n\t\tArgs:\n\t\t\tTData_: A TensorMolData instance.\n\t\t\tName_: A name for this instance.\n\t\t' self.NetType = 'fc_sqdiff_BP' MolInstance.__init__(self, TData_, Name_, Trainable_) self.name = ((((((('Mol_' + self.TData.name) + '_') + self.TData.dig.name) + '_') + str(self.TData.order)) + '_') + self.NetType) LOGGER.debug(('Raised Instance: ' + self.name)) self.train_dir = (PARAMS['networks_directory'] + self.name) self.learning_rate = 0.0001 self.momentum = 0.95 if self.Trainable: self.TData.LoadDataToScratch(self.tformer) self.inshape = np.prod(self.TData.dig.eshape) print('MolInstance_BP_Dipole.inshape: ', self.inshape) self.eles = self.TData.eles self.n_eles = len(self.eles) self.MeanStoich = self.TData.MeanStoich self.MeanNumAtoms = np.sum(self.MeanStoich) self.AtomBranchNames = [] self.netcharge_output = None self.dipole_output = None self.inp_pl = None self.mats_pl = None self.coords = None self.label_pl = None self.batch_size = 10000 self.batch_size_output = 0 self.hidden1 = 100 self.hidden2 = 100 self.hidden3 = 100 self.summary_op = None self.summary_writer = None def Clean(self): MolInstance_fc_sqdiff_BP.Clean(self) self.coords_pl = None self.netcharge_output = None self.dipole_output = None return def TrainPrepare(self, continue_training=False): '\n\t\tGet placeholders, graph and losses in order to begin training.\n\t\tAlso assigns the desired padding.\n\n\t\tArgs:\n\t\t\tcontinue_training: should read the graph variables from a saved checkpoint.\n\t\t' self.MeanNumAtoms = self.TData.MeanNumAtoms print('self.MeanNumAtoms: ', self.MeanNumAtoms) self.batch_size_output = int(((1.5 * self.batch_size) / self.MeanNumAtoms)) print('Assigned batch input size: ', self.batch_size) print('Assigned batch output size in BP_Dipole:', self.batch_size_output) with tf.Graph().as_default(): self.inp_pl = [] self.mats_pl = [] self.coords_pl = [] for e in range(len(self.eles)): self.inp_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.inshape]))) self.mats_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.batch_size_output]))) self.coords_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, 3]))) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 4])) (self.netcharge_output, self.dipole_output, self.atom_outputs) = self.inference(self.inp_pl, self.mats_pl, self.coords_pl) self.check = tf.add_check_numerics_ops() (self.total_loss, self.loss) = self.loss_op(self.netcharge_output, self.dipole_output, self.label_pl) self.train_op = self.training(self.total_loss, self.learning_rate, self.momentum) self.summary_op = tf.summary.merge_all() init = tf.global_variables_initializer() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver = tf.train.Saver() try: metafiles = [x for x in os.listdir(self.train_dir) if (x.count('meta') > 0)] if (len(metafiles) > 0): most_recent_meta_file = metafiles[0] LOGGER.info(('Restoring training from Metafile: ' + most_recent_meta_file)) config = tf.ConfigProto(allow_soft_placement=True) self.sess = tf.Session(config=config) self.saver = tf.train.import_meta_graph(((self.train_dir + '/') + most_recent_meta_file)) self.saver.restore(self.sess, tf.train.latest_checkpoint(self.train_dir)) except Exception as Ex: print('Restore Failed', Ex) pass self.summary_writer = tf.summary.FileWriter(self.train_dir, self.sess.graph) self.sess.run(init) return def loss_op(self, netcharge_output, dipole_output, labels): '\n\t\ttotal_loss = scaler*l2(netcharge) + l2(dipole)\n\t\t' charge_labels = tf.slice(labels, [0, 0], [self.batch_size_output, 1]) dipole_labels = tf.slice(labels, [0, 1], [self.batch_size_output, 3]) charge_diff = tf.subtract(netcharge_output, charge_labels) dipole_diff = tf.subtract(dipole_output, dipole_labels) charge_loss = tf.nn.l2_loss(charge_diff) dipole_loss = tf.nn.l2_loss(dipole_diff) loss = tf.add(charge_loss, dipole_loss) tf.add_to_collection('losses', loss) return (tf.add_n(tf.get_collection('losses'), name='total_loss'), loss) def inference(self, inp_pl, mats_pl, coords_pl): "\n\t\tBuilds a Behler-Parinello graph which also matches monopole,3-dipole, and 9-quadropole elements.\n\n\t\t- It has the shape of two energy networks in parallel.\n\t\t- One network produces the energy, the other produces the charge on an atom.\n\t\t- The charges are constrained to reproduce the molecular multipoles.\n\t\t- The energy and charge are together constrained to produce the molecular energy.\n\t\t- The same atomic linear transformation is used to produce the charges as the energy.\n\t\t- All multipoles have the form of a dot product with atomic charges. That's pre-computed externally\n\t\tThe attenuated coulomb energy has the form of a per-molecule vector-matrix-vector product.\n\t\tAnd it is generated as well by this routine.\n\n\t\tArgs:\n\t\t\t\tinp_pl: a list of (num_of atom type X flattened input shape) matrix of input cases.\n\t\t\t\tmats_pl: a list of (num_of atom type X batchsize) matrices which linearly combines the elements to give molecular outputs.\n\t\t\t\tmul_pl: Multipole inputs (see Mol::GenerateMultipoleInputs)\n\t\tReturns:\n\t\t\tAtom BP Energy, Atom Charges\n\t\t\tI'm thinking about doing the contractions for the multipoles and electrostatic energy loss in loss_op... haven't settled on it yet.\n\n\t\t" branches = [] atom_outputs = [] hidden1_units = self.hidden1 hidden2_units = self.hidden2 hidden3_units = self.hidden3 netcharge_output = tf.zeros([self.batch_size_output, 1], dtype=self.tf_prec) dipole_output = tf.zeros([self.batch_size_output, 3], dtype=self.tf_prec) nrm1 = (1.0 / (10 + math.sqrt(float(self.inshape)))) nrm2 = (1.0 / (10 + math.sqrt(float(hidden1_units)))) nrm3 = (1.0 / (10 + math.sqrt(float(hidden2_units)))) nrm4 = (1.0 / (10 + math.sqrt(float(hidden3_units)))) LOGGER.info('Norms: %f,%f,%f', nrm1, nrm2, nrm3) for e in range(len(self.eles)): branches.append([]) inputs = inp_pl[e] mats = mats_pl[e] coords = coords_pl[e] shp_in = tf.shape(inputs) shp_coords = tf.shape(coords) if (PARAMS['CheckLevel'] > 2): tf.Print(tf.to_float(shp_in), [tf.to_float(shp_in)], message=(('Element ' + str(e)) + 'input shape '), first_n=10000000, summarize=100000000) mats_shape = tf.shape(mats) tf.Print(tf.to_float(mats_shape), [tf.to_float(mats_shape)], message=(('Element ' + str(e)) + 'mats shape '), first_n=10000000, summarize=100000000) tf.Print(tf.to_float(shp_coords), [tf.to_float(shp_coords)], message=(('Element ' + str(e)) + 'coords shape '), first_n=10000000, summarize=100000000) if (PARAMS['CheckLevel'] > 3): tf.Print(tf.to_float(inputs), [tf.to_float(inputs)], message='This is input shape ', first_n=10000000, summarize=100000000) with tf.name_scope((str(self.eles[e]) + '_hidden_1')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[self.inshape, hidden1_units], var_stddev=nrm1, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden1_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(tf.nn.relu((tf.matmul(inputs, weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_hidden_2')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden1_units, hidden2_units], var_stddev=nrm2, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden2_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(tf.nn.relu((tf.matmul(branches[(- 1)][(- 1)], weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_hidden_3')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden2_units, hidden3_units], var_stddev=nrm3, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden3_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(tf.nn.relu((tf.matmul(branches[(- 1)][(- 1)], weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_regression_linear')): shp = tf.shape(inputs) weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden3_units, 1], var_stddev=nrm4, var_wd=None) biases = tf.Variable(tf.zeros([1], dtype=self.tf_prec), name='biases') branches[(- 1)].append((tf.matmul(branches[(- 1)][(- 1)], weights) + biases)) shp_out = tf.shape(branches[(- 1)][(- 1)]) cut = tf.slice(branches[(- 1)][(- 1)], [0, 0], [shp_out[0], 1]) rshp = tf.reshape(cut, [1, shp_out[0]]) atom_outputs.append(rshp) coords_rshp = tf.transpose(coords) coords_rshp_shape = tf.shape(coords_rshp) dipole_tmp = tf.multiply(rshp, coords_rshp) dipole_tmp = tf.reshape(dipole_tmp, [3, shp_out[0]]) netcharge = tf.matmul(rshp, mats) dipole = tf.matmul(dipole_tmp, mats) netcharge = tf.transpose(netcharge) dipole = tf.transpose(dipole) netcharge_output = tf.add(netcharge_output, netcharge) dipole_output = tf.add(dipole_output, dipole) tf.verify_tensor_all_finite(netcharge_output, 'Nan in output!!!') tf.verify_tensor_all_finite(dipole_output, 'Nan in output!!!') return (netcharge_output, dipole_output, atom_outputs) def fill_feed_dict(self, batch_data): '\n\t\tFill the tensorflow feed dictionary.\n\n\t\tArgs:\n\t\t\tbatch_data: a list of numpy arrays containing inputs, bounds, matrices and desired energies in that order.\n\t\t\tand placeholders to be assigned. (it can be longer than that c.f. TensorMolData_BP)\n\n\t\tReturns:\n\t\t\tFilled feed dictionary.\n\t\t' for e in range(len(self.eles)): if (not np.all(np.isfinite(batch_data[0][e]), axis=(0, 1))): print('I was fed shit1') raise Exception('DontEatShit') if (not np.all(np.isfinite(batch_data[1][e]), axis=(0, 1))): print('I was fed shit3') raise Exception('DontEatShit') if (not np.all(np.isfinite(batch_data[2][e]), axis=(0, 1))): print('I was fed shit3') raise Exception('DontEatShit') if (not np.all(np.isfinite(batch_data[3]), axis=(0, 1))): print('I was fed shit4') raise Exception('DontEatShit') feed_dict = {i: d for (i, d) in zip((((self.inp_pl + self.mats_pl) + self.coords_pl) + [self.label_pl]), (((batch_data[0] + batch_data[1]) + batch_data[2]) + [batch_data[3]]))} return feed_dict def train_step(self, step): '\n\t\tPerform a single training step (complete processing of all input), using minibatches of size self.batch_size\n\n\t\tArgs:\n\t\t\tstep: the index of this step.\n\t\t' Ncase_train = self.TData.NTrain start_time = time.time() train_loss = 0.0 num_of_mols = 0 for ministep in range(0, int((Ncase_train / self.batch_size))): batch_data = self.TData.GetTrainBatch(self.batch_size, self.batch_size_output) actual_mols = np.count_nonzero(np.any(batch_data[3][1:], axis=1)) (dump_, dump_2, total_loss_value, loss_value, netcharge_output, dipole_output) = self.sess.run([self.check, self.train_op, self.total_loss, self.loss, self.netcharge_output, self.dipole_output], feed_dict=self.fill_feed_dict(batch_data)) train_loss = (train_loss + loss_value) duration = (time.time() - start_time) num_of_mols += actual_mols self.print_training(step, train_loss, num_of_mols, duration) return def test(self, step): '\n\t\tPerform a single test step (complete processing of all input), using minibatches of size self.batch_size\n\n\t\tArgs:\n\t\t\tstep: the index of this step.\n\t\t' test_loss = 0.0 start_time = time.time() Ncase_test = self.TData.NTest num_of_mols = 0 for ministep in range(0, int((Ncase_test / self.batch_size))): batch_data = self.TData.GetTestBatch(self.batch_size, self.batch_size_output) feed_dict = self.fill_feed_dict(batch_data) actual_mols = np.count_nonzero(np.any(batch_data[3][1:], axis=1)) (total_loss_value, loss_value, netcharge_output, dipole_output, atom_outputs) = self.sess.run([self.total_loss, self.loss, self.netcharge_output, self.dipole_output, self.atom_outputs], feed_dict=feed_dict) test_loss += loss_value num_of_mols += actual_mols print('testing result:') print('acurrate charge, dipole:', batch_data[3][:20]) print('predict dipole', dipole_output[:20]) duration = (time.time() - start_time) self.print_training(step, test_loss, num_of_mols, duration) return (test_loss, feed_dict) def print_training(self, step, loss, Ncase, duration, Train=True): if Train: print('step: ', ('%7d' % step), ' duration: ', ('%.5f' % duration), ' train loss: ', ('%.10f' % (float(loss) / Ncase))) else: print('step: ', ('%7d' % step), ' duration: ', ('%.5f' % duration), ' test loss: ', ('%.10f' % (float(loss) / NCase))) return def evaluate(self, batch_data): nmol = batch_data[3].shape[0] LOGGER.debug('nmol: %i', batch_data[3].shape[0]) self.batch_size_output = nmol if (not self.sess): LOGGER.info('loading the session..') self.EvalPrepare() feed_dict = self.fill_feed_dict(batch_data) (netcharge, dipole, total_loss_value, loss_value, atom_outputs) = self.sess.run([self.netcharge_output, self.dipole_output, self.total_loss, self.loss, self.atom_outputs], feed_dict=feed_dict) return (netcharge, (dipole / AUPERDEBYE), atom_outputs) def EvalPrepare(self): if isinstance(self.inshape, tuple): if (len(self.inshape) > 1): raise Exception('My input should be flat') else: self.inshape = self.inshape[0] with tf.Graph().as_default(), tf.device('/job:localhost/replica:0/task:0/gpu:1'): self.inp_pl = [] self.mats_pl = [] self.coords_pl = [] for e in range(len(self.eles)): self.inp_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.inshape]))) self.mats_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.batch_size_output]))) self.coords_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, 3]))) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 4])) (self.netcharge_output, self.dipole_output, self.atom_outputs) = self.inference(self.inp_pl, self.mats_pl, self.coords_pl) self.check = tf.add_check_numerics_ops() (self.total_loss, self.loss) = self.loss_op(self.netcharge_output, self.dipole_output, self.label_pl) self.train_op = self.training(self.total_loss, self.learning_rate, self.momentum) self.summary_op = tf.summary.merge_all() init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver.restore(self.sess, self.chk_file) return def Prepare(self): self.MeanNumAtoms = self.TData.MeanNumAtoms self.batch_size_output = int(((1.5 * self.batch_size) / self.MeanNumAtoms)) with tf.Graph().as_default(), tf.device('/job:localhost/replica:0/task:0/gpu:1'): self.inp_pl = [] self.mats_pl = [] self.coords = [] for e in range(len(self.eles)): self.inp_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.inshape]))) self.mats_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.batch_size_output]))) self.coords_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, 3]))) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 4])) (self.netcharge_output, self.dipole_output, self.atom_outputs) = self.inference(self.inp_pl, self.mats_pl, self.coords_pl) self.check = tf.add_check_numerics_ops() (self.total_loss, self.loss) = self.loss_op(self.netcharge_output, self.dipole_out, self.label_pl) self.train_op = self.training(self.total_loss, self.learning_rate, self.momentum) self.summary_op = tf.summary.merge_all() init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver.restore(self.sess, self.chk_file) return
class MolInstance_BP_Dipole_2(MolInstance_BP_Dipole): '\n\t\tCalculate the Dipole of Molecules\n\t' def __init__(self, TData_, Name_=None, Trainable_=True): '\n\t\tRaise a Behler-Parinello TensorFlow instance.\n\n\t\tArgs:\n\t\t\tTData_: A TensorMolData instance.\n\t\t\tName_: A name for this instance.\n\t\t' self.NetType = 'fc_sqdiff_BP' MolInstance.__init__(self, TData_, Name_, Trainable_) self.name = ((((((('Mol_' + self.TData.name) + '_') + self.TData.dig.name) + '_') + str(self.TData.order)) + '_') + self.NetType) LOGGER.debug(('Raised Instance: ' + self.name)) self.train_dir = (PARAMS['networks_directory'] + self.name) self.momentum = 0.95 if self.Trainable: self.TData.LoadDataToScratch(self.tformer) self.inshape = np.prod(self.TData.dig.eshape) print('MolInstance_BP_Dipole.inshape: ', self.inshape) self.eles = self.TData.eles self.n_eles = len(self.eles) self.MeanStoich = self.TData.MeanStoich self.MeanNumAtoms = np.sum(self.MeanStoich) self.AtomBranchNames = [] self.netcharge_output = None self.dipole_output = None self.inp_pl = None self.mats_pl = None self.coords = None self.label_pl = None self.natom_pl = None self.charge_gradient = None self.output_list = None self.unscaled_atom_outputs = None self.batch_size = 10000 self.batch_size_output = 0 self.summary_op = None self.summary_writer = None def Clean(self): MolInstance_BP_Dipole.Clean(self) self.natom_pl = None self.net_charge = None self.charge_gradient = None self.unscaled_atom_outputs = None self.output_list = None return def TrainPrepare(self, continue_training=False): '\n\t\tGet placeholders, graph and losses in order to begin training.\n\t\tAlso assigns the desired padding.\n\n\t\tArgs:\n\t\t\tcontinue_training: should read the graph variables from a saved checkpoint.\n\t\t' self.MeanNumAtoms = self.TData.MeanNumAtoms print('self.MeanNumAtoms: ', self.MeanNumAtoms) self.batch_size_output = int(((1.5 * self.batch_size) / self.MeanNumAtoms)) print('Assigned batch input size: ', self.batch_size) print('Assigned batch output size in BP_Dipole:', self.batch_size_output) with tf.Graph().as_default(): self.inp_pl = [] self.mats_pl = [] self.coords_pl = [] for e in range(len(self.eles)): self.inp_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.inshape]))) self.mats_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.batch_size_output]))) self.coords_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, 3]))) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 3])) self.natom_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 1])) (self.dipole_output, self.atom_outputs, self.unscaled_atom_outputs, self.net_charge) = self.inference(self.inp_pl, self.mats_pl, self.coords_pl, self.natom_pl) self.check = tf.add_check_numerics_ops() (self.total_loss, self.loss) = self.loss_op(self.dipole_output, self.label_pl) self.train_op = self.training(self.total_loss, self.learning_rate, self.momentum) self.summary_op = tf.summary.merge_all() init = tf.global_variables_initializer() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver = tf.train.Saver() self.summary_writer = tf.summary.FileWriter(self.train_dir, self.sess.graph) self.sess.run(init) return def loss_op(self, dipole_output, labels): '\n\t\ttotal_loss = l2(dipole)\n\t\t' dipole_diff = tf.subtract(dipole_output, labels) loss = tf.nn.l2_loss(dipole_diff) tf.add_to_collection('losses', loss) return (tf.add_n(tf.get_collection('losses'), name='total_loss'), loss) def inference(self, inp_pl, mats_pl, coords_pl, natom_pl): "\n\t\tBuilds a Behler-Parinello graph which also matches monopole,3-dipole, and 9-quadropole elements.\n\n\t\t- It has the shape of two energy networks in parallel.\n\t\t- One network produces the energy, the other produces the charge on an atom.\n\t\t- The charges are constrained to reproduce the molecular multipoles.\n\t\t- The energy and charge are together constrained to produce the molecular energy.\n\t\t- The same atomic linear transformation is used to produce the charges as the energy.\n\t\t- All multipoles have the form of a dot product with atomic charges. That's pre-computed externally\n\t\tThe attenuated coulomb energy has the form of a per-molecule vector-matrix-vector product.\n\t\tAnd it is generated as well by this routine.\n\n\t\tArgs:\n\t\t\t\tinp_pl: a list of (num_of atom type X flattened input shape) matrix of input cases.\n\t\t\t\tmats_pl: a list of (num_of atom type X batchsize) matrices which linearly combines the elements to give molecular outputs.\n\t\t\t\tmul_pl: Multipole inputs (see Mol::GenerateMultipoleInputs)\n\t\tReturns:\n\t\t\tAtom BP Energy, Atom Charges\n\t\t\tI'm thinking about doing the contractions for the multipoles and electrostatic energy loss in loss_op... haven't settled on it yet.\n\n\t\t" branches = [] atom_outputs = [] hidden1_units = self.hidden1 hidden2_units = self.hidden2 hidden3_units = self.hidden3 netcharge_output = tf.zeros([self.batch_size_output, 1], dtype=self.tf_prec) scaled_netcharge_output = tf.zeros([1, self.batch_size_output], dtype=self.tf_prec) dipole_output = tf.zeros([self.batch_size_output, 3], dtype=self.tf_prec) nrm1 = (1.0 / (10 + math.sqrt(float(self.inshape)))) nrm2 = (1.0 / (10 + math.sqrt(float(hidden1_units)))) nrm3 = (1.0 / (10 + math.sqrt(float(hidden2_units)))) nrm4 = (1.0 / (10 + math.sqrt(float(hidden3_units)))) LOGGER.info('Norms: %f,%f,%f', nrm1, nrm2, nrm3) for e in range(len(self.eles)): branches.append([]) inputs = inp_pl[e] mats = mats_pl[e] coords = coords_pl[e] shp_in = tf.shape(inputs) shp_coords = tf.shape(coords) if (PARAMS['CheckLevel'] > 2): tf.Print(tf.to_float(shp_in), [tf.to_float(shp_in)], message=(('Element ' + str(e)) + 'input shape '), first_n=10000000, summarize=100000000) mats_shape = tf.shape(mats) tf.Print(tf.to_float(mats_shape), [tf.to_float(mats_shape)], message=(('Element ' + str(e)) + 'mats shape '), first_n=10000000, summarize=100000000) tf.Print(tf.to_float(shp_coords), [tf.to_float(shp_coords)], message=(('Element ' + str(e)) + 'coords shape '), first_n=10000000, summarize=100000000) if (PARAMS['CheckLevel'] > 3): tf.Print(tf.to_float(inputs), [tf.to_float(inputs)], message='This is input shape ', first_n=10000000, summarize=100000000) with tf.name_scope((str(self.eles[e]) + '_hidden_1')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[self.inshape, hidden1_units], var_stddev=nrm1, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden1_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(tf.nn.relu((tf.matmul(inputs, weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_hidden_2')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden1_units, hidden2_units], var_stddev=nrm2, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden2_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(tf.nn.relu((tf.matmul(branches[(- 1)][(- 1)], weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_hidden_3')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden2_units, hidden3_units], var_stddev=nrm3, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden3_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(tf.nn.relu((tf.matmul(branches[(- 1)][(- 1)], weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_regression_linear')): shp = tf.shape(inputs) weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden3_units, 1], var_stddev=nrm4, var_wd=None) biases = tf.Variable(tf.zeros([1], dtype=self.tf_prec), name='biases') branches[(- 1)].append((tf.matmul(branches[(- 1)][(- 1)], weights) + biases)) shp_out = tf.shape(branches[(- 1)][(- 1)]) cut = tf.slice(branches[(- 1)][(- 1)], [0, 0], [shp_out[0], 1]) rshp = tf.reshape(cut, [1, shp_out[0]]) atom_outputs.append(rshp) netcharge = tf.matmul(rshp, mats) netcharge = tf.transpose(netcharge) netcharge_output = tf.add(netcharge_output, netcharge) delta_charge = tf.multiply(netcharge_output, natom_pl) delta_charge = tf.transpose(delta_charge) scaled_charge_list = [] for e in range(len(self.eles)): mats = mats_pl[e] shp_out = tf.shape(atom_outputs[e]) coords = coords_pl[e] trans_mats = tf.transpose(mats) ele_delta_charge = tf.matmul(delta_charge, trans_mats) scaled_charge = tf.subtract(atom_outputs[e], ele_delta_charge) scaled_charge_list.append(scaled_charge) scaled_netcharge = tf.matmul(scaled_charge, mats) scaled_netcharge_output = tf.add(scaled_netcharge_output, scaled_netcharge) coords_rshp = tf.transpose(coords) dipole_tmp = tf.multiply(scaled_charge, coords_rshp) dipole_tmp = tf.reshape(dipole_tmp, [3, shp_out[1]]) dipole = tf.matmul(dipole_tmp, mats) dipole = tf.transpose(dipole) dipole_output = tf.add(dipole_output, dipole) tf.verify_tensor_all_finite(netcharge_output, 'Nan in output!!!') tf.verify_tensor_all_finite(dipole_output, 'Nan in output!!!') return (dipole_output, scaled_charge_list, atom_outputs, scaled_netcharge_output) def fill_feed_dict(self, batch_data): '\n\t\tFill the tensorflow feed dictionary.\n\n\t\tArgs:\n\t\t\tbatch_data: a list of numpy arrays containing inputs, bounds, matrices and desired energies in that order.\n\t\t\tand placeholders to be assigned. (it can be longer than that c.f. TensorMolData_BP)\n\n\t\tReturns:\n\t\t\tFilled feed dictionary.\n\t\t' for e in range(len(self.eles)): if (not np.all(np.isfinite(batch_data[0][e]), axis=(0, 1))): print('I was fed shit1') raise Exception('DontEatShit') if (not np.all(np.isfinite(batch_data[1][e]), axis=(0, 1))): print('I was fed shit3') raise Exception('DontEatShit') if (not np.all(np.isfinite(batch_data[2][e]), axis=(0, 1))): print('I was fed shit3') raise Exception('DontEatShit') if (not np.all(np.isfinite(batch_data[4]), axis=(0, 1))): print('I was fed shit5') raise Exception('DontEatShit') feed_dict = {i: d for (i, d) in zip(((((self.inp_pl + self.mats_pl) + self.coords_pl) + [self.natom_pl]) + [self.label_pl]), ((((batch_data[0] + batch_data[1]) + batch_data[2]) + [batch_data[3]]) + [batch_data[4]]))} return feed_dict def train_step(self, step): '\n\t\tPerform a single training step (complete processing of all input), using minibatches of size self.batch_size\n\n\t\tArgs:\n\t\t\tstep: the index of this step.\n\t\t' Ncase_train = self.TData.NTrain start_time = time.time() train_loss = 0.0 num_of_mols = 0 for ministep in range(0, int((Ncase_train / self.batch_size))): batch_data = self.TData.GetTrainBatch(self.batch_size, self.batch_size_output) actual_mols = np.count_nonzero(np.any(batch_data[3][1:], axis=1)) (dump_, dump_2, total_loss_value, loss_value, dipole_output, atom_outputs, net_charge) = self.sess.run([self.check, self.train_op, self.total_loss, self.loss, self.dipole_output, self.atom_outputs, self.net_charge], feed_dict=self.fill_feed_dict(batch_data)) train_loss = (train_loss + loss_value) duration = (time.time() - start_time) num_of_mols += actual_mols self.print_training(step, train_loss, num_of_mols, duration) return def test(self, step): '\n\t\tPerform a single test step (complete processing of all input), using minibatches of size self.batch_size\n\n\t\tArgs:\n\t\t\tstep: the index of this step.\n\t\t' test_loss = 0.0 start_time = time.time() Ncase_test = self.TData.NTest num_of_mols = 0 for ministep in range(0, int((Ncase_test / self.batch_size))): batch_data = self.TData.GetTestBatch(self.batch_size, self.batch_size_output) feed_dict = self.fill_feed_dict(batch_data) actual_mols = np.count_nonzero(np.any(batch_data[3][1:], axis=1)) (total_loss_value, loss_value, dipole_output, atom_outputs, net_charge) = self.sess.run([self.total_loss, self.loss, self.dipole_output, self.atom_outputs, self.net_charge], feed_dict=feed_dict) test_loss += loss_value num_of_mols += actual_mols print('acurrate charge, dipole:', batch_data[4][:20], ' dipole shape:', batch_data[4].shape) print('predict dipole', dipole_output[:20]) duration = (time.time() - start_time) self.print_training(step, test_loss, num_of_mols, duration) return (test_loss, feed_dict) def print_training(self, step, loss, Ncase, duration, Train=True): if Train: print('step: ', ('%7d' % step), ' duration: ', ('%.5f' % duration), ' train loss: ', ('%.10f' % (float(loss) / Ncase))) else: print('step: ', ('%7d' % step), ' duration: ', ('%.5f' % duration), ' test loss: ', ('%.10f' % (float(loss) / NCase))) return def evaluate(self, batch_data, IfChargeGrad=False): nmol = batch_data[4].shape[0] LOGGER.debug('nmol: %i', batch_data[4].shape[0]) self.batch_size_output = nmol if (not self.sess): LOGGER.info('loading the session..') self.EvalPrepare() feed_dict = self.fill_feed_dict(batch_data) if (not IfChargeGrad): output_list = self.sess.run([self.output_list], feed_dict=feed_dict) return ((output_list[0][0] / AUPERDEBYE), output_list[0][1]) else: (output_list, charge_gradient) = self.sess.run([self.output_list, self.charge_gradient], feed_dict=feed_dict) return ((output_list[0] / AUPERDEBYE), output_list[1], charge_gradient) def EvalPrepare(self): if isinstance(self.inshape, tuple): if (len(self.inshape) > 1): raise Exception('My input should be flat') else: self.inshape = self.inshape[0] with tf.Graph().as_default(), tf.device('/job:localhost/replica:0/task:0/gpu:1'): self.inp_pl = [] self.mats_pl = [] self.coords_pl = [] for e in range(len(self.eles)): self.inp_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.inshape]))) self.mats_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.batch_size_output]))) self.coords_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, 3]))) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 3])) self.natom_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 1])) self.output_list = self.inference(self.inp_pl, self.mats_pl, self.coords_pl, self.natom_pl) self.charge_gradient = tf.gradients(self.output_list[2], self.inp_pl) self.check = tf.add_check_numerics_ops() self.summary_op = tf.summary.merge_all() init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver.restore(self.sess, self.chk_file) return def Prepare(self): self.MeanNumAtoms = self.TData.MeanNumAtoms self.batch_size_output = int(((1.5 * self.batch_size) / self.MeanNumAtoms)) with tf.Graph().as_default(), tf.device('/job:localhost/replica:0/task:0/gpu:1'): self.inp_pl = [] self.mats_pl = [] self.coords = [] for e in range(len(self.eles)): self.inp_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.inshape]))) self.mats_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, self.batch_size_output]))) self.coords_pl.append(tf.placeholder(self.tf_prec, shape=tuple([None, 3]))) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 3])) self.natom_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size_output, 1])) (self.dipole_output, self.atom_outputs, self.unscaled_atom_outputs, self.net_charge) = self.inference(self.inp_pl, self.mats_pl, self.coords_pl, self.natom_pl) (self.total_loss, self.loss) = self.loss_op(self.dipole_out, self.label_pl) self.train_op = self.training(self.total_loss, self.learning_rate, self.momentum) self.summary_op = tf.summary.merge_all() init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver.restore(self.sess, self.chk_file) return
class MolInstance_BP_Dipole_2_Direct(MolInstance_DirectBP_NoGrad): '\n\t\tCalculate the Dipole of Molecules\n\t' def __init__(self, TData_, Name_=None, Trainable_=True, ForceType_='LJ'): '\n\t\tArgs:\n\t\t TData_: A TensorMolData instance.\n\t\t Name_: A name for this instance.\n\t\t' self.NetType = 'RawBP_Dipole' MolInstance.__init__(self, TData_, Name_, Trainable_) self.SFPa = None self.SFPr = None self.Ra_cut = None self.Rr_cut = None self.MaxNAtoms = self.TData.MaxNAtoms self.eles = self.TData.eles self.n_eles = len(self.eles) self.eles_np = np.asarray(self.eles).reshape((self.n_eles, 1)) self.eles_pairs = [] for i in range(len(self.eles)): for j in range(i, len(self.eles)): self.eles_pairs.append([self.eles[i], self.eles[j]]) self.eles_pairs_np = np.asarray(self.eles_pairs) self.SetANI1Param() self.batch_size = PARAMS['batch_size'] self.NetType = 'RawBP_Dipole' self.name = ((((('Mol_' + self.TData.name) + '_') + self.TData.dig.name) + '_') + self.NetType) LOGGER.debug(('Raised Instance: ' + self.name)) self.train_dir = (PARAMS['networks_directory'] + self.name) if self.Trainable: self.TData.LoadDataToScratch(self.tformer) self.xyzs_pl = None self.Zs_pl = None self.label_pl = None self.sess = None self.total_loss = None self.loss = None self.train_op = None self.summary_op = None self.saver = None self.summary_writer = None self.netcharge_output = None self.dipole_output = None self.natom_pl = None self.charge_gradient = None self.output_list = None self.unscaled_atom_outputs = None def Clean(self): MolInstance_DirectBP_NoGrad.Clean(self) self.unscaled_atom_outputs = None self.netcharge_output = None self.dipole_output = None self.natom_pl = None self.output_list = None return def TrainPrepare(self, continue_training=False): '\n\t\tGet placeholders, graph and losses in order to begin training.\n\t\tAlso assigns the desired padding.\n\n\t\tArgs:\n\t\t\tcontinue_training: should read the graph variables from a saved checkpoint.\n\t\t' with tf.Graph().as_default(): self.xyzs_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size, self.MaxNAtoms, 3])) self.Zs_pl = tf.placeholder(tf.int64, shape=tuple([self.batch_size, self.MaxNAtoms])) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size, 3])) self.natom_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size])) Ele = tf.Variable(self.eles_np, trainable=False, dtype=tf.int64) Elep = tf.Variable(self.eles_pairs_np, trainable=False, dtype=tf.int64) SFPa = tf.Variable(self.SFPa, trainable=False, dtype=self.tf_prec) SFPr = tf.Variable(self.SFPr, trainable=False, dtype=self.tf_prec) SFPa2 = tf.Variable(self.SFPa2, trainable=False, dtype=self.tf_prec) SFPr2 = tf.Variable(self.SFPr2, trainable=False, dtype=self.tf_prec) Rr_cut = tf.Variable(self.Rr_cut, trainable=False, dtype=self.tf_prec) Ra_cut = tf.Variable(self.Ra_cut, trainable=False, dtype=self.tf_prec) zeta = tf.Variable(self.zeta, trainable=False, dtype=self.tf_prec) eta = tf.Variable(self.eta, trainable=False, dtype=self.tf_prec) (self.Scatter_Sym, self.Sym_Index) = TFSymSet_Scattered_Update_Scatter(self.xyzs_pl, self.Zs_pl, Ele, SFPr2, Rr_cut, Elep, SFPa2, zeta, eta, Ra_cut) (self.dipole_output, self.atom_outputs, self.unscaled_atom_outputs) = self.inference(self.Scatter_Sym, self.Sym_Index, self.xyzs_pl, self.natom_pl) self.check = tf.add_check_numerics_ops() (self.total_loss, self.loss) = self.loss_op(self.dipole_output, self.label_pl) self.train_op = self.training(self.total_loss, self.learning_rate, self.momentum) init = tf.global_variables_initializer() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver = tf.train.Saver() self.summary_writer = tf.summary.FileWriter(self.train_dir, self.sess.graph) self.sess.run(init) return def loss_op(self, dipole_output, labels): '\n\t\ttotal_loss = l2(dipole)\n\t\t' dipole_diff = tf.subtract(dipole_output, labels) loss = tf.nn.l2_loss(dipole_diff) tf.add_to_collection('losses', loss) return (tf.add_n(tf.get_collection('losses'), name='total_loss'), loss) def inference(self, inp, indexs, xyzs, natom): '\n\t\tBuilds a Behler-Parinello graph\n\n\t\tArgs:\n\t\t\tinp: a list of (num_of atom type X flattened input shape) matrix of input cases.\n\t\t\tindex: a list of (num_of atom type X batchsize) array which linearly combines the elements\n\t\tReturns:\n\t\t\tThe BP graph output\n\t\t' branches = [] atom_outputs = [] hidden1_units = self.hidden1 hidden2_units = self.hidden2 hidden3_units = self.hidden3 output = tf.zeros([self.batch_size, self.MaxNAtoms], dtype=self.tf_prec) nrm1 = (1.0 / (10 + math.sqrt(float(self.inshape)))) nrm2 = (1.0 / (10 + math.sqrt(float(hidden1_units)))) nrm3 = (1.0 / (10 + math.sqrt(float(hidden2_units)))) nrm4 = (1.0 / (10 + math.sqrt(float(hidden3_units)))) print('Norms:', nrm1, nrm2, nrm3) LOGGER.info('Layer initial Norms: %f %f %f', nrm1, nrm2, nrm3) for e in range(len(self.eles)): branches.append([]) inputs = inp[e] shp_in = tf.shape(inputs) index = tf.cast(indexs[e], tf.int64) if (PARAMS['CheckLevel'] > 2): tf.Print(tf.to_float(shp_in), [tf.to_float(shp_in)], message=(('Element ' + str(e)) + 'input shape '), first_n=10000000, summarize=100000000) index_shape = tf.shape(index) tf.Print(tf.to_float(index_shape), [tf.to_float(index_shape)], message=(('Element ' + str(e)) + 'index shape '), first_n=10000000, summarize=100000000) if (PARAMS['CheckLevel'] > 3): tf.Print(tf.to_float(inputs), [tf.to_float(inputs)], message='This is input shape ', first_n=10000000, summarize=100000000) with tf.name_scope((str(self.eles[e]) + '_hidden_1')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[self.inshape, hidden1_units], var_stddev=nrm1, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden1_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(self.activation_function((tf.matmul(inputs, weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_hidden_2')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden1_units, hidden2_units], var_stddev=nrm2, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden2_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(self.activation_function((tf.matmul(branches[(- 1)][(- 1)], weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_hidden_3')): weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden2_units, hidden3_units], var_stddev=nrm3, var_wd=0.001) biases = tf.Variable(tf.zeros([hidden3_units], dtype=self.tf_prec), name='biases') branches[(- 1)].append(self.activation_function((tf.matmul(branches[(- 1)][(- 1)], weights) + biases))) with tf.name_scope((str(self.eles[e]) + '_regression_linear')): shp = tf.shape(inputs) weights = self._variable_with_weight_decay(var_name='weights', var_shape=[hidden3_units, 1], var_stddev=nrm4, var_wd=None) biases = tf.Variable(tf.zeros([1], dtype=self.tf_prec), name='biases') branches[(- 1)].append((tf.matmul(branches[(- 1)][(- 1)], weights) + biases)) shp_out = tf.shape(branches[(- 1)][(- 1)]) cut = tf.slice(branches[(- 1)][(- 1)], [0, 0], [shp_out[0], 1]) rshp = tf.reshape(cut, [1, shp_out[0]]) atom_outputs.append(rshp) rshpflat = tf.reshape(cut, [shp_out[0]]) atom_indice = tf.slice(index, [0, 1], [shp_out[0], 1]) ToAdd = tf.reshape(tf.scatter_nd(atom_indice, rshpflat, [(self.batch_size * self.MaxNAtoms)]), [self.batch_size, self.MaxNAtoms]) output = tf.add(output, ToAdd) tf.verify_tensor_all_finite(output, 'Nan in output!!!') netcharge = tf.reshape(tf.reduce_sum(output, axis=1), [self.batch_size]) delta_charge = tf.multiply(netcharge, natom) delta_charge_tile = tf.tile(tf.reshape(delta_charge, [self.batch_size, 1]), [1, self.MaxNAtoms]) scaled_charge = tf.subtract(output, delta_charge_tile) flat_dipole = tf.multiply(tf.reshape(xyzs, [(self.batch_size * self.MaxNAtoms), 3]), tf.reshape(scaled_charge, [(self.batch_size * self.MaxNAtoms), 1])) dipole = tf.reduce_sum(tf.reshape(flat_dipole, [self.batch_size, self.MaxNAtoms, 3]), axis=1) return (dipole, scaled_charge, output) def fill_feed_dict(self, batch_data): '\n\t\tFill the tensorflow feed dictionary.\n\n\t\tArgs:\n\t\t\tbatch_data: a list of numpy arrays containing inputs, bounds, matrices and desired energies in that order.\n\t\t\tand placeholders to be assigned. (it can be longer than that c.f. TensorMolData_BP)\n\n\t\tReturns:\n\t\t\tFilled feed dictionary.\n\t\t' if (not np.all(np.isfinite(np.sum(batch_data[2], axis=1)), axis=0)): print('I was fed shit') raise Exception('DontEatShit') feed_dict = {i: d for (i, d) in zip(((([self.xyzs_pl] + [self.Zs_pl]) + [self.label_pl]) + [self.natom_pl]), ((([batch_data[0]] + [batch_data[1]]) + [batch_data[2]]) + [batch_data[3]]))} return feed_dict def train_step(self, step): '\n\t\tPerform a single training step (complete processing of all input), using minibatches of size self.batch_size\n\n\t\tArgs:\n\t\t step: the index of this step.\n\t\t' Ncase_train = self.TData.NTrain start_time = time.time() train_loss = 0.0 train_energy_loss = 0.0 train_grads_loss = 0.0 num_of_mols = 0 pre_output = np.zeros(self.batch_size, dtype=np.float64) for ministep in range(0, int((Ncase_train / self.batch_size))): batch_data = self.TData.GetTrainBatch(self.batch_size) actual_mols = self.batch_size t = time.time() (dump_, dump_2, total_loss_value, loss_value, dipole_output, atom_outputs) = self.sess.run([self.check, self.train_op, self.total_loss, self.loss, self.dipole_output, self.atom_outputs], feed_dict=self.fill_feed_dict(batch_data)) train_loss = (train_loss + loss_value) duration = (time.time() - start_time) num_of_mols += actual_mols self.print_training(step, train_loss, num_of_mols, duration) return def test(self, step): '\n\t\tPerform a single test step (complete processing of all input), using minibatches of size self.batch_size\n\n\t\tArgs:\n\t\t\tstep: the index of this step.\n\t\t' test_loss = 0.0 start_time = time.time() Ncase_test = self.TData.NTest num_of_mols = 0 for ministep in range(0, int((Ncase_test / self.batch_size))): batch_data = self.TData.GetTestBatch(self.batch_size) feed_dict = self.fill_feed_dict(batch_data) actual_mols = self.batch_size (total_loss_value, loss_value, dipole_output, atom_outputs) = self.sess.run([self.total_loss, self.loss, self.dipole_output, self.atom_outputs], feed_dict=feed_dict) test_loss += loss_value num_of_mols += actual_mols duration = (time.time() - start_time) print('testing...') self.print_training(step, test_loss, num_of_mols, duration) return (test_loss, feed_dict) def evaluate(self, batch_data, IfGrad=True): '\n\t\tEvaluate the energy, atom energies, and IfGrad = True the gradients\n\t\tof this Direct Behler-Parinello graph.\n\t\t' nmol = batch_data[2].shape[0] self.MaxNAtoms = batch_data[0].shape[1] LOGGER.debug('nmol: %i', batch_data[2].shape[0]) self.batch_size = nmol if (not self.sess): print('loading the session..') self.EvalPrepare() feed_dict = self.fill_feed_dict(batch_data) (dipole_output, atom_outputs) = self.sess.run([self.dipole_output, self.atom_outputs], feed_dict=feed_dict) return (dipole_output, atom_outputs) def Prepare(self): self.TrainPrepare() return def EvalPrepare(self): "\n\t\tDoesn't generate the training operations or losses.\n\t\t" with tf.Graph().as_default(): self.xyzs_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size, self.MaxNAtoms, 3])) self.Zs_pl = tf.placeholder(tf.int64, shape=tuple([self.batch_size, self.MaxNAtoms])) self.label_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size, 3])) self.natom_pl = tf.placeholder(self.tf_prec, shape=tuple([self.batch_size])) Ele = tf.Variable(self.eles_np, trainable=False, dtype=tf.int64) Elep = tf.Variable(self.eles_pairs_np, trainable=False, dtype=tf.int64) SFPa = tf.Variable(self.SFPa, trainable=False, dtype=self.tf_prec) SFPr = tf.Variable(self.SFPr, trainable=False, dtype=self.tf_prec) SFPa2 = tf.Variable(self.SFPa2, trainable=False, dtype=self.tf_prec) SFPr2 = tf.Variable(self.SFPr2, trainable=False, dtype=self.tf_prec) Rr_cut = tf.Variable(self.Rr_cut, trainable=False, dtype=self.tf_prec) Ra_cut = tf.Variable(self.Ra_cut, trainable=False, dtype=self.tf_prec) zeta = tf.Variable(self.zeta, trainable=False, dtype=self.tf_prec) eta = tf.Variable(self.eta, trainable=False, dtype=self.tf_prec) (self.Scatter_Sym, self.Sym_Index) = TFSymSet_Scattered_Update_Scatter(self.xyzs_pl, self.Zs_pl, Ele, SFPr2, Rr_cut, Elep, SFPa2, zeta, eta, Ra_cut) (self.dipole_output, self.atom_outputs, self.unscaled_atom_outputs) = self.inference(self.Scatter_Sym, self.Sym_Index, self.xyzs_pl, self.natom_pl) self.check = tf.add_check_numerics_ops() self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver = tf.train.Saver() self.saver.restore(self.sess, self.chk_file) self.summary_writer = tf.summary.FileWriter(self.train_dir, self.sess.graph) print('Prepared for Evaluation...') return
class TMParams(dict): def __init__(self, *args, **kwargs): myparam = kwargs.pop('myparam', '') dict.__init__(self, *args, **kwargs) self['GIT_REVISION'] = os.popen('git rev-parse --short HEAD').read() self['CheckLevel'] = 1 self['PrintTMTimer'] = False self['MAX_ATOMIC_NUMBER'] = 10 self['RBFS'] = np.array([[0.35, 0.35], [0.7, 0.35], [1.05, 0.35], [1.4, 0.35], [1.75, 0.35], [2.1, 0.35], [2.45, 0.35], [2.8, 0.35], [3.15, 0.35], [3.5, 0.35], [3.85, 0.35], [4.2, 0.35], [4.55, 0.35], [4.9, 0.35]]) self['ANES'] = np.array([2.2, 1.0, 1.0, 1.0, 1.0, 2.55, 3.04, 3.44]) self['SRBF'] = np.zeros((self['RBFS'].shape[0], self['RBFS'].shape[0])) self['SH_LMAX'] = 4 self['SH_NRAD'] = 14 self['SH_ORTH'] = 1 self['SH_rot_invar'] = False self['SH_MAXNR'] = self['RBFS'].shape[0] self['AN1_r_Rc'] = 4.6 self['AN1_a_Rc'] = 3.1 self['AN1_eta'] = 4.0 self['AN1_zeta'] = 8.0 self['AN1_num_r_Rs'] = 32 self['AN1_num_a_Rs'] = 8 self['AN1_num_a_As'] = 8 self['AN1_r_Rs'] = np.array([((self['AN1_r_Rc'] * i) / self['AN1_num_r_Rs']) for i in range(0, self['AN1_num_r_Rs'])]) self['AN1_a_Rs'] = np.array([((self['AN1_a_Rc'] * i) / self['AN1_num_a_Rs']) for i in range(0, self['AN1_num_a_Rs'])]) self['AN1_a_As'] = np.array([(((2.0 * Pi) * i) / self['AN1_num_a_As']) for i in range(0, self['AN1_num_a_As'])]) self['GradScalar'] = 1.0 self['DipoleScalar'] = 1.0 self['RotateSet'] = 0 self['TransformSet'] = 1 self['NModePts'] = 10 self['NDistorts'] = 5 self['GoK'] = 0.05 self['dig_ngrid'] = 20 self['dig_SamplingType'] = 'Smooth' self['BlurRadius'] = 0.05 self['Classify'] = False self['Embedded_Charge_Order'] = 2 self['MBE_ORDER'] = 3 self['MonitorSet'] = None self['NetNameSuffix'] = '' self['NeuronType'] = 'relu' self['tf_prec'] = 'tf.float64' self['learning_rate'] = 0.001 self['learning_rate_dipole'] = 0.0001 self['learning_rate_energy'] = 1e-05 self['momentum'] = 0.9 self['max_steps'] = 1001 self['batch_size'] = 1000 self['test_freq'] = 10 self['HiddenLayers'] = [200, 200, 200] self['hidden1'] = 512 self['hidden2'] = 512 self['hidden3'] = 512 self['GradWeight'] = 0.01 self['TestRatio'] = 0.2 self['Profiling'] = False self['max_checkpoints'] = 1 self['KeepProb'] = 0.7 self['weight_decay'] = 0.001 self['ConvFilter'] = [32, 64] self['ConvKernelSize'] = [[8, 1], [4, 1]] self['ConvStrides'] = [[8, 1], [4, 1]] self['sigmoid_alpha'] = 100.0 self['EnergyScalar'] = 1.0 self['GradScalar'] = (1.0 / 20.0) self['DipoleScaler'] = 1.0 self['InNormRoutine'] = None self['OutNormRoutine'] = None self['RandomizeData'] = True self['MxTimePerElement'] = 36000 self['MxMemPerElement'] = 16000 self['ChopTo'] = None self['RotAvOutputs'] = 1 self['OctahedralAveraging'] = 0 self['train_gradients'] = True self['train_dipole'] = True self['train_quadrupole'] = False self['train_rotation'] = True self['OptMaxCycles'] = 50 self['OptThresh'] = 0.0001 self['OptMaxStep'] = 0.1 self['OptStepSize'] = 0.1 self['OptMomentum'] = 0.5 self['OptMomentumDecay'] = 0.8 self['OptPrintLvl'] = 1 self['OptLatticeStep'] = 0.05 self['GSSearchAlpha'] = 0.05 self['SDStep'] = 0.05 self['MaxBFGS'] = 7 self['NebSolver'] = 'Verlet' self['NebNumBeads'] = 18 self['NebK'] = 0.07 self['NebKMax'] = 1.0 self['NebClimbingImage'] = True self['DiisSize'] = 20 self['RemoveInvariant'] = True self['MDMaxStep'] = 20000 self['MDdt'] = 0.2 self['MDTemp'] = 300.0 self['MDV0'] = 'Random' self['MDThermostat'] = None self['MDLogTrajectory'] = True self['MDUpdateCharges'] = True self['MDIrForceMin'] = False self['MDAnnealT0'] = 20.0 self['MDAnnealTF'] = 300.0 self['MDAnnealKickBack'] = 1.0 self['MDAnnealSteps'] = 1000 self['MDFieldVec'] = np.array([1.0, 0.0, 0.0]) self['MDFieldAmp'] = 0.0 self['MDFieldFreq'] = (1.0 / 1.2) self['MDFieldTau'] = 1.2 self['MDFieldT0'] = 3.0 self['MetaBumpTime'] = 15.0 self['MetaBowlK'] = 0.0 self['MetaMaxBumps'] = 500 self['MetaMDBumpHeight'] = 0.05 self['MetaMDBumpWidth'] = 0.1 self['AddEcc'] = True self['OPR12'] = 'Poly' self['Poly_Width'] = 4.6 self['Elu_Width'] = 4.6 self['EEOn'] = True self['EESwitchFunc'] = 'CosLR' self['EEVdw'] = True self['EEOrder'] = 2 self['EEdr'] = 1.0 self['EECutoff'] = 5.0 self['EECutoffOn'] = 4.4 self['EECutoffOff'] = 15.0 self['Erf_Width'] = 0.2 self['DSFAlpha'] = 0.18 self['tm_root'] = '.' self['sets_dir'] = (self['tm_root'] + '/datasets/') self['networks_directory'] = (self['tm_root'] + '/networks/') self['output_root'] = '.' self['results_dir'] = (self['output_root'] + '/results/') self['dens_dir'] = (self['output_root'] + '/densities/') self['log_dir'] = (self['output_root'] + '/logs/') self['Qchem_RIMP2_Block'] = '$rem\n jobtype sp\n method rimp2\n MAX_SCF_CYCLES 200\n basis cc-pvtz\n aux_basis rimp2-cc-pvtz\n symmetry false\n INCFOCK 0\n thresh 12\n SCF_CONVERGENCE 12\n$end\n' np.set_printoptions(formatter={'float': '{: .8f}'.format}) def __str__(self): tore = '' for k in self.keys(): tore = ((((tore + k) + ':') + str(self[k])) + '\n') return tore
def TMBanner(): print('--------------------------') try: if (sys.version_info[0] < 3): print((((((((((((' ' + unichr(4944)) + unichr(8455)) + unichr(8469)) + unichr(1029)) + unichr(10686)) + unichr(11364)) + '-') + unichr(5711)) + unichr(10686)) + unichr(8466)) + ' 0.1')) else: print((((((((((((' ' + chr(4944)) + chr(8455)) + chr(8469)) + chr(1029)) + chr(10686)) + chr(11364)) + '-') + chr(5711)) + chr(10686)) + chr(8466)) + ' 0.1')) except: pass print('--------------------------') print('By using this software you accept the terms of the GNU public license in ') print('COPYING, and agree to attribute the use of this software in publications as: \n') print('K.Yao, J. E. Herr, D. Toth, R. McIntyre, J. Garside, J. Parckhill. TensorMol 0.2 (2018)') print('--------------------------')
def TMLogger(path_): logger = logging.getLogger() logger.handlers = [] tore = logging.getLogger('TensorMol') tore.setLevel(logging.DEBUG) if (not os.path.exists(path_)): os.makedirs(path_) fh = logging.FileHandler(filename=((path_ + time.strftime('%a_%b_%d_%H.%M.%S_%Y')) + '.log')) fh.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.INFO) fformatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') pformatter = logging.Formatter('%(message)s') fh.setFormatter(fformatter) ch.setFormatter(pformatter) tore.addHandler(fh) tore.addHandler(ch) return tore
def MakeDirIfAbsent(path): if ((sys.version_info[0] + (sys.version_info[1] * 0.1)) < 3.2): try: os.makedirs(path) except OSError: if (not os.path.isdir(path)): raise else: os.makedirs(path, exist_ok=True)
def PrintTMTIMER(): LOGGER.info('======= Accumulated Time Information =======') LOGGER.info('Category ||| Time Per Call ||| Total Elapsed ') for key in TMTIMER.keys(): if (TMTIMER[key][1] > 0): LOGGER.info((key + ' ||| %0.5f ||| %0.5f '), (TMTIMER[key][0] / TMTIMER[key][1]), TMTIMER[key][0])
def TMTiming(nm_='Obs'): if (not (nm_ in TMTIMER.keys())): TMTIMER[nm_] = [0.0, 0] def wrap(f): def wf(*args, **kwargs): t0 = time.time() output = f(*args, **kwargs) TMTIMER[nm_][0] += (time.time() - t0) TMTIMER[nm_][1] += 1 return output LOGGER.debug((('TMTimed ' + nm_) + str(TMTIMER[nm_]))) return wf return wrap
@atexit.register def exitTensorMol(): PrintTMTIMER() LOGGER.info('Total Time : %0.5f s', (time.time() - TMSTARTTIME)) LOGGER.info('~ Adios Homeshake ~')
def complement(a, b): return [i for i in a if (b.count(i) == 0)]
def scitodeci(sci): tmp = re.search('(\\d+\\.?\\d+)\\*\\^(-?\\d+)', sci) return (float(tmp.group(1)) * pow(10, float(tmp.group(2))))
def AtomicNumber(Symb): try: return atoi[Symb] except Exception as Ex: raise Exception('Unknown Atom') return 0
def AtomicSymbol(number): try: return atoi.keys()[atoi.values().index(number)] except Exception as Ex: raise Exception('Unknown Atom') return 0
def LtoS(l): s = '' for i in l: s += (str(i) + ' ') return s
def nCr(n, r): f = math.factorial return int(((f(n) / f(r)) / f((n - r))))
def DSF(R, R_c, alpha): if (R > R_c): return 0.0 else: twooversqrtpi = 1.1283791671 XX = (alpha * R_c) ZZ = (scipy.special.erfc(XX) / R_c) YY = (((twooversqrtpi * alpha) * math.exp(((- XX) * XX))) / R_c) LR = (((scipy.special.erfc((alpha * R)) / R) - ZZ) + ((R - R_c) * ((ZZ / R_c) + YY))) return LR
def DSF_Gradient(R, R_c, alpha): if (R > R_c): return 0.0 else: twooversqrtpi = 1.1283791671 XX = (alpha * R_c) ZZ = (scipy.special.erfc(XX) / R_c) YY = (((twooversqrtpi * alpha) * math.exp(((- XX) * XX))) / R_c) grads = (- ((((scipy.special.erfc((alpha * R)) / R) / R) + (((twooversqrtpi * alpha) * math.exp(((((- alpha) * R) * alpha) * R))) / R)) - ((ZZ / R_c) + YY))) return grads
def EluAjust(x, a, x0, shift): if (x > x0): return ((a * (x - x0)) + shift) else: return ((a * (math.exp((x - x0)) - 1.0)) + shift)
def sigmoid_with_param(x, prec=tf.float64): return (tf.log((1.0 + tf.exp(tf.multiply(tf.cast(PARAMS['sigmoid_alpha'], dtype=prec), x)))) / tf.cast(PARAMS['sigmoid_alpha'], dtype=prec))
def guassian_act(x, prec=tf.float64): return tf.exp(((- x) * x))
def guassian_rev_tozero(x, prec=tf.float64): return tf.where(tf.greater(x, 0.0), (1.0 - tf.exp(((- x) * x))), tf.zeros_like(x))
def guassian_rev_tozero_tolinear(x, prec=tf.float64): a = 0.5 b = (- 0.06469509698101589) x0 = 0.2687204431537632 step1 = tf.where(tf.greater(x, 0.0), (1.0 - tf.exp(((- x) * x))), tf.zeros_like(x)) return tf.where(tf.greater(x, x0), ((a * x) + b), step1)
def square_tozero_tolinear(x, prec=tf.float64): a = 1.0 b = (- 0.0025) x0 = 0.005 step1 = tf.where(tf.greater(x, 0.0), ((100.0 * x) * x), tf.zeros_like(x)) return tf.where(tf.greater(x, x0), ((a * x) + b), step1)
@app.route('/') def main(): c = db.incr('counter') return render_template('main.html', counter=c)
@socketio.on('connect', namespace='/tms') def ws_conn(): c = db.incr('user_count') socketio.emit('msg', {'count': c}, namespace='/tms')
@socketio.on('disconnect', namespace='/tms') def ws_disconn(): c = db.decr('user_count') socketio.emit('msg', {'count': c}, namespace='/tms')
def WriteXYZfile(atoms, coords, nm_='out.xyz'): natom = len(atoms) f = open(nm_, 'w') f.write(((str(natom) + '\n') + '\n')) for i in range(natom): f.write((((((((atoms[i] + ' ') + str(coords[i][0])) + ' ') + str(coords[i][1])) + ' ') + str(coords[i][2])) + '\n'))
def vlog(level): os.environ['TF_CPP_MIN_VLOG_LEVEL'] = str(level)
class TemporaryFileHelper(): 'Provides a way to fetch contents of temporary file.' def __init__(self, temporary_file): self.temporary_file = temporary_file def getvalue(self): return open(self.temporary_file.name).read()
class capture_stderr(): 'Utility to capture output, use as follows\n with util.capture_stderr() as stderr:\n sess = tf.Session()\n\n print("Captured:", stderr.getvalue()).\n ' def __init__(self, fd=STDERR): self.fd = fd self.prevfd = None def __enter__(self): t = tempfile.NamedTemporaryFile() self.prevfd = os.dup(self.fd) os.dup2(t.fileno(), self.fd) return TemporaryFileHelper(t) def __exit__(self, exc_type, exc_value, traceback): os.dup2(self.prevfd, self.fd)
def _parse_logline(l): if ('MemoryLogTensorOutput' in l): m = tensor_output_regex.search(l) if (not m): m = tensor_output_regex_no_bytes.search(l) assert m, l d = m.groupdict() d['type'] = 'MemoryLogTensorOutput' elif ('MemoryLogTensorAllocation' in l): m = tensor_allocation_regex.search(l) if (not m): return {'type': 'MemoryLogTensorAllocation', 'line': l, 'allocation_id': '-1'} assert m, l d = m.groupdict() d['type'] = 'MemoryLogTensorAllocation' if debug_messages: print(('Got allocation for %s, %s' % (d['allocation_id'], d['kernel_name']))) elif ('MemoryLogTensorDeallocation' in l): m = tensor_deallocation_regex.search(l) assert m, l d = m.groupdict() d['type'] = 'MemoryLogTensorDeallocation' if debug_messages: print(('Got deallocation for %s' % d['allocation_id'])) elif ('MemoryLogStep' in l): m = tensor_logstep_regex.search(l) assert m, l d = m.groupdict() d['type'] = 'MemoryLogStep' elif ('MemoryLogRawAllocation' in l): m = raw_allocation_regex.search(l) assert m, l d = m.groupdict() d['type'] = 'MemoryLogRawAllocation' elif ('MemoryLogRawDeallocation' in l): m = raw_deallocation_regex.search(l) assert m, l d = m.groupdict() d['type'] = 'MemoryLogRawDeallocation' else: assert False, ('Unknown log line: ' + l) if (not ('allocation_id' in d)): d['allocation_id'] = '-1' d['line'] = l return d
def memory_timeline(log): if hasattr(log, 'getvalue'): log = log.getvalue() def unique_alloc_id(line): if (line['allocation_id'] == '-1'): return '-1' return ((line['allocation_id'] + '-') + line['allocator_name']) def get_alloc_names(line): alloc_id = unique_alloc_id(line) for entry in reversed(allocation_map.get(alloc_id, [])): kernel_name = entry.get('kernel_name', 'unknown') if (not ('unknown' in kernel_name)): return (((kernel_name + '(') + unique_alloc_id(line)) + ')') return (('(' + alloc_id) + ')') def get_alloc_bytes(line): for entry in allocation_map.get(unique_alloc_id(line), []): if ('allocated_bytes' in entry): return entry['allocated_bytes'] return '0' def get_alloc_type(line): for entry in allocation_map.get(unique_alloc_id(line), []): if ('allocator_name' in entry): return entry['allocator_name'] return '0' parsed_lines = [] for l in log.split('\n'): if ('LOG_MEMORY' in l): parsed_lines.append(_parse_logline(l)) allocation_map = {} for line in parsed_lines: if ((line['type'] == 'MemoryLogTensorAllocation') or (line['type'] == 'MemoryLogRawAllocation') or (line['type'] == 'MemoryLogTensorOutput')): allocation_map.setdefault(unique_alloc_id(line), []).append(line) if debug_messages: print(allocation_map) result = [] for (i, line) in enumerate(parsed_lines): if (int(line['allocation_id']) == (- 1)): continue alloc_names = get_alloc_names(line) if (int(line.get('allocated_bytes', (- 1))) < 0): alloc_bytes = get_alloc_bytes(line) else: alloc_bytes = line.get('allocated_bytes', (- 1)) alloc_type = get_alloc_type(line) if (line['type'] == 'MemoryLogTensorOutput'): continue if ((line['type'] == 'MemoryLogTensorDeallocation') or (line['type'] == 'MemoryLogRawDeallocation')): alloc_bytes = ('-' + alloc_bytes) result.append((i, alloc_names, alloc_bytes, alloc_type)) return result
def peak_memory(log, gpu_only=False): 'Peak memory used across all devices.' peak_memory = (- 123456789) total_memory = 0 for record in memory_timeline(log): (i, kernel_name, allocated_bytes, allocator_type) = record allocated_bytes = int(allocated_bytes) if gpu_only: if (not allocator_type.startswith('gpu')): continue total_memory += allocated_bytes peak_memory = max(total_memory, peak_memory) return peak_memory
def print_memory_timeline(log, gpu_only=False, ignore_less_than_bytes=0): total_memory = 0 for record in memory_timeline(log): (i, kernel_name, allocated_bytes, allocator_type) = record allocated_bytes = int(allocated_bytes) if gpu_only: if (not allocator_type.startswith('gpu')): continue if (abs(allocated_bytes) < ignore_less_than_bytes): continue total_memory += allocated_bytes print(('%9d %42s %11d %11d %s' % (i, kernel_name, allocated_bytes, total_memory, allocator_type)))
def plot_memory_timeline(log, gpu_only=False, ignore_less_than_bytes=1000): total_memory = 0 timestamps = [] data = [] current_time = 0 for record in memory_timeline(log): (timestamp, kernel_name, allocated_bytes, allocator_type) = record allocated_bytes = int(allocated_bytes) if (abs(allocated_bytes) < ignore_less_than_bytes): continue if gpu_only: if (not record[3].startswith('gpu')): continue timestamps.append((current_time - 1e-08)) data.append(total_memory) total_memory += int(record[2]) timestamps.append(current_time) data.append(total_memory) current_time += 1 plt.plot(timestamps, data)
def smart_initialize(variables=None, sess=None): "Initializes all uninitialized variables in correct order. Initializers\n are only run for uninitialized variables, so it's safe to run this multiple\n times.\n\n Args:\n sess: session to use. Use default session if None.\n " from tensorflow.contrib import graph_editor as ge def make_initializer(var): def f(): return tf.assign(var, var.initial_value).op return f def make_noop(): return tf.no_op() def make_safe_initializer(var): 'Returns initializer op that only runs for uninitialized ops.' return tf.cond(tf.is_variable_initialized(var), make_noop, make_initializer(var), name=('safe_init_' + var.op.name)).op if (not sess): sess = tf.get_default_session() g = tf.get_default_graph() if (not variables): variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) safe_initializers = {} for v in variables: safe_initializers[v.op.name] = make_safe_initializer(v) for v in variables: var_name = v.op.name var_cache = g.get_operation_by_name((var_name + '/read')) ge.reroute.add_control_inputs(var_cache, [safe_initializers[var_name]]) sess.run(tf.group(*safe_initializers.values())) for v in variables: var_name = v.op.name var_cache = g.get_operation_by_name((var_name + '/read')) ge.reroute.remove_control_inputs(var_cache, [safe_initializers[var_name]])
def QchemDft(m_, basis_='6-31g*', xc_='b3lyp'): istring = '$molecule\n0 1 \n' crds = m_.coords.copy() crds[(abs(crds) < 0.0)] *= 0.0 for j in range(len(m_.atoms)): istring = ((((((((istring + itoa[m_.atoms[j]]) + ' ') + str(crds[(j, 0)])) + ' ') + str(crds[(j, 1)])) + ' ') + str(crds[(j, 2)])) + '\n') istring = (((((istring + '$end\n\n$rem\njobtype sp\nbasis ') + basis_) + '\nexchange ') + xc_) + '\n thresh 11\n symmetry false\n sym_ignore true\n$end\n') f = open('./qchem/tmp.in', 'w') f.write(istring) f.close() subprocess.call('qchem ./qchem/tmp.in ./qchem/tmp.out'.split(), shell=False) f = open('./qchem/tmp.out', 'r') lines = f.readlines() f.close() for line in lines: if (line.count(' met') > 0): return np.array([float(line.split()[1])])[0] return np.array([0.0])[0]
def david_AnnealHarmonic(set_='david_test', Anneal=True, WriteNM_=False): '\n\tOptionally anneals a molecule and then runs it through a finite difference normal mode analysis\n\n\tArgs:\n\t\tset_: dataset from which a molecule comes\n\t\tAnneal: whether or not to perform an annealing routine before the analysis\n\t\tWriteNM_: whether or not to write normal modes to a readable file\n\tReturns:\n\t\tFrequencies (wavenumbers)\n\t\tNormal modes (cartesian)\n\t' a = MSet(set_) a.ReadXYZ(set_) manager = TFMolManage('Mol_uneq_chemspider_ANI1_Sym_fc_sqdiff_BP_1', None, False, RandomTData_=False, Trainable_=False) x_ = a.mols[6] qmanager = TFMolManage('Mol_chemspider9_multipole_ANI1_Sym_Dipole_BP_1', None, False, RandomTData_=False, Trainable_=False) EnergyField = (lambda x: manager.Eval_BPForceSingle(Mol(x_.atoms, x), True)[0]) ForceField = (lambda x: manager.Eval_BPForceSingle(Mol(x_.atoms, x), True)) ChargeField = (lambda x: qmanager.Eval_BPDipole(Mol(x_.atoms, x), False)[2][0]) masses = np.array(map((lambda x: ATOMICMASSESAMU[(x - 1)]), x_.atoms)) m_ = masses eps_ = 0.04 if (Anneal == True): PARAMS['OptMomentum'] = 0.0 PARAMS['OptMomentumDecay'] = 0.9 PARAMS['OptStepSize'] = 0.02 PARAMS['OptMaxCycles'] = 200 PARAMS['MDdt'] = 0.2 PARAMS['RemoveInvariant'] = True PARAMS['MDMaxStep'] = 100 PARAMS['MDThermostat'] = 'Nose' PARAMS['MDV0'] = None PARAMS['MDTemp'] = 1.0 annealx_ = Annealer(ForceField, ChargeField, x_, 'Anneal') annealx_.Prop() x_.coords = annealx_.Minx.copy() x_.WriteXYZfile('./results/', 'davidIR_opt') HarmonicSpectra(EnergyField, x_.coords, masses, x_.atoms, WriteNM_=True)
def WriteXYZfile(atoms, coords, nm_='out.xyz'): natom = len(atoms) f = open(nm_, 'w') f.write(((str(natom) + '\n') + '\n')) for i in range(natom): f.write((((((((atoms[i] + ' ') + str(coords[i][0])) + ' ') + str(coords[i][1])) + ' ') + str(coords[i][2])) + '\n'))
def GetEnergyAndForceFromManager(MName_, a): '\n\tMName: name of the manager. (specifies sampling method)\n\tset_: An MSet() dataset which has been loaded.\n\t' TreatedAtoms = a.AtomTypes() d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='AtomizationEnergy') tset = TensorMolData_BP_Direct_Linear(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScalar'] = 1 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] manager = TFMolManage(MName_, tset, False, RandomTData_=False, Trainable_=False) nmols = len(a.mols) EErr = np.zeros(nmols) FErr = np.zeros(nmols) for (i, mol) in enumerate(a.mols): mol.properties['atomization'] = mol.properties['energy'] mol.properties['gradients'] = mol.properties['forces'] for j in range(0, mol.NAtoms()): mol.properties['atomization'] -= ele_E_david[mol.atoms[j]] q_en = mol.properties['atomization'] q_f = mol.properties['gradients'] (en, grad) = manager.Eval_BPEnergy_Direct_Grad_Linear(Mol(mol.atoms, mol.coords)) new_grad = (grad / (- JOULEPERHARTREE)) EErr[i] = (en - q_en) F_diff = (new_grad - q_f) FErr[i] = np.sqrt((np.sum((F_diff * F_diff)) / mol.NAtoms())) final_E_err = (np.sqrt((np.sum((EErr * EErr)) / nmols)) * KCALPERHARTREE) final_F_err = ((np.sum(FErr) / nmols) * KCALPERHARTREE) print(np.sum(FErr, axis=0), nmols) print('RMS energy error: ', (np.sqrt((np.sum((EErr * EErr)) / nmols)) * KCALPERHARTREE)) print('<|F_err|> error: ', ((np.sum(FErr) / nmols) * KCALPERHARTREE)) return (final_E_err, final_F_err)
def CompareAllData(): '\n\tCompares all errors from every network tested against every dataset.\n\tResults are stored in a dictionary; the keys for the dictionary are\n\tthe managers.\n\t' f = open('/media/sdb1/dtoth/TensorMol/results/SamplingData.txt', 'w') managers = ['Mol_DavidMD_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_Grad_Linear_1', 'Mol_DavidMetaMD_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_Grad_Linear_1', 'Mol_DavidNM_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_Grad_Linear_1', 'Mol_DavidRandom_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_Grad_Linear_1', 'Mol_Hybrid_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_Grad_Linear_1', 'Mol_GoldStd_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_Grad_Linear_1'] SetNames = ['DavidMD', 'DavidMetaMD', 'DavidNM', 'DavidRandom', 'Hybrid', 'GoldStd'] MSets = [MSet(name) for name in SetNames] for aset in MSets: aset.Load() results = {} print('Loaded Sets... ') for i in managers: for j in range(len(MSets)): (en, f) = GetEnergyAndForceFromManager(i, MSets[j]) results[(i, SetNames[j])] = (en, f) print(results) try: f.write(results) except: f.write(str(results))
def TestOptimization(MName_): '\n\tDistorts a set of molecules from their equilibrium geometries,\n\tthen optimizes the distorted geometries using a trained network.\n\n\tArgs:\n\n\t\tMName_: Trained network\n\n\tReturns:\n\n\t\tnp.mean(rms_list): Average value of all of the RMS errors for all molecules\n\t' a = MSet('david_test') a.ReadXYZ() mol = a.mols[(- 2)] PARAMS['hidden1'] = 200 PARAMS['hidden2'] = 200 PARAMS['hidden3'] = 200 PARAMS['Hidden layers'] = [200, 200, 200] TreatedAtoms = a.AtomTypes() print('TreatedAtoms:', TreatedAtoms) d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='AtomizationEnergy') tset = TensorMolData_BP_Direct_Linear(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage(MName_, tset, False, RandomTData_=False, Trainable_=False) rms_list = [] EnergyForceField = (lambda x: manager.Eval_BPEnergy_Direct_Grad_Linear(Mol(mol.atoms, x))) mol.Distort(0.2) PARAMS['OptMaxCycles'] = 2000 molp = GeomOptimizer(EnergyForceField).Opt(mol) tmp_rms = mol.rms_inv(molp) rms_list.append(tmp_rms) print('RMS:', tmp_rms) return np.mean(rms_list)
def GetEnergyVariance(MName_): '\n\tUseful routine to get the data for\n\ta plot of the energy variance within a dataset (MSet).\n\n\tArgs:\n\t\tMName_: Name of dataset as a string\n\t' a = MSet(MName_) a.Load() for mol in a.mols: mol.properties['energy'] = mol.properties['atomization'] ens = np.array([mol.properties['energy'] for m in a.mols]) ensmav = (ens - np.average(ens)) np.savetxt(MName_, ensmav)
def Prepare(): if 1: a = MSet('watercube', center_=False) a.ReadXYZ('watercube') repeat = 5 space = 3.0 mol_cout = np.zeros((repeat ** 3), dtype=int) tm_coords = [] tm_atoms = [] portion = (np.array([1.0, 1.0, 1.0, 1, 0, 9.0]) / np.sum(np.array([1, 1, 1, 1, 9]))) print('portion:', portion) for i in range(0, repeat): for j in range(0, repeat): for k in range(0, repeat): s = random.random() print('s:', s) if (s < np.sum(portion[:1])): index = 0 elif (s < np.sum(portion[:2])): index = 1 elif (s < np.sum(portion[:3])): index = 2 elif (s < np.sum(portion[:4])): index = 3 else: index = 4 print('index:', index) m = a.mols[index] tm_coords += list((m.coords + np.asarray([(i * space), (j * space), (k * space)]))) tm_atoms += list(m.atoms) tm_coords = np.asarray(tm_coords) tm_atoms = np.asarray(tm_atoms, dtype=int) tm = Mol(tm_atoms, tm_coords) tm.WriteXYZfile(fpath='./datasets', fname='reactor') if 0: a = MSet('watercube', center_=False) a.ReadXYZ('watercube') m = a.mols[0] m.coords = (m.coords + 1) repeat = 4 space = 4.0 tm_coords = np.zeros((((repeat ** 3) * m.NAtoms()), 3)) tm_atoms = np.zeros(((repeat ** 3) * m.NAtoms()), dtype=int) p = 0 for i in range(0, repeat): for j in range(0, repeat): for k in range(0, repeat): tm_coords[(p * m.NAtoms()):((p + 1) * m.NAtoms())] = (m.coords + np.asarray([(i * space), (j * space), (k * space)])) tm_atoms[(p * m.NAtoms()):((p + 1) * m.NAtoms())] = m.atoms p += 1 tm = Mol(tm_atoms, tm_coords) tm.WriteXYZfile(fpath='./datasets', fname='watercube')
def Eval(): if 1: a = MSet('reactor', center_=True) a.ReadXYZ('reactor') TreatedAtoms = np.array([1, 6, 7, 8], dtype=np.uint8) PARAMS['NetNameSuffix'] = 'act_sigmoid100' PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 21 PARAMS['batch_size'] = 50 PARAMS['test_freq'] = 1 PARAMS['tf_prec'] = 'tf.float64' PARAMS['EnergyScalar'] = 1.0 PARAMS['GradScalar'] = (1.0 / 20.0) PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'sigmoid_with_param' PARAMS['sigmoid_alpha'] = 100.0 PARAMS['HiddenLayers'] = [2000, 2000, 2000] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 0 PARAMS['Elu_Width'] = 4.6 PARAMS['EECutoffOff'] = 15.0 PARAMS['DSFAlpha'] = (0.18 * BOHRPERA) PARAMS['AddEcc'] = True PARAMS['KeepProb'] = [1.0, 1.0, 1.0, 0.7] PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 2 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE_WithEle(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_chemspider12_clean_maxatom35_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_DSF_elu_Normalize_Dropout_act_sigmoid100', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_DSF_elu_Normalize_Dropout', False, False) m = a.mols[0] print('m.coords:', np.max(m.coords, axis=0), np.min(m.coords, axis=0)) m.coords = (m.coords - np.min(m.coords, axis=0)) print('m.coords:', np.max(m.coords, axis=0), np.min(m.coords, axis=0)) def EnAndForce(x_, DoForce=True): m.coords = x_ (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy def GetEnergyForceForMol(m): def EnAndForce(x_, DoForce=True): tmpm = Mol(m.atoms, x_) (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy return EnAndForce def EnForceCharge(x_): m.coords = x_ (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] return (energy, force, atom_charge[0]) def ChargeField(x_): m.coords = x_ (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] return atom_charge[0] def EnergyField(x_): return EnAndForce(x_, True)[0] def DipoleField(x_): q = np.asarray(ChargeField(x_)) dipole = np.zeros(3) for i in range(0, q.shape[0]): dipole += (q[i] * x_[i]) return dipole def DFTForceField(x_, DoForce=True): if DoForce: return QchemDFT(Mol(m.atoms, x_), basis_='6-31g*', xc_='b3lyp', jobtype_='force', threads=24) else: return np.asarray([QchemDFT(Mol(m.atoms, x_), basis_='6-31g*', xc_='b3lyp', jobtype_='sp', threads=24)])[0] DFTDipoleField = (lambda x: QchemDFT(Mol(m.atoms, x), basis_='6-31g', xc_='b3lyp', jobtype_='dipole', threads=12)) EnergyForceField = (lambda x: EnAndForce(x)) PARAMS['MDdt'] = 0.2 PARAMS['RemoveInvariant'] = True PARAMS['MDMaxStep'] = 10000 PARAMS['MDThermostat'] = 'Nose' PARAMS['MDTemp'] = 300.0 meta = BoxedMetaDynamics(EnergyForceField, m, name_='BoxMetaReactor', Box_=np.array((18.0 * np.eye(3)))) meta.Prop() return if 0: a = MSet('watercube', center_=False) a.ReadXYZ('watercube') TreatedAtoms = np.array([1, 6, 7, 8], dtype=np.uint8) PARAMS['NetNameSuffix'] = 'act_sigmoid100' PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 21 PARAMS['batch_size'] = 50 PARAMS['test_freq'] = 1 PARAMS['tf_prec'] = 'tf.float64' PARAMS['EnergyScalar'] = 1.0 PARAMS['GradScalar'] = (1.0 / 20.0) PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'sigmoid_with_param' PARAMS['sigmoid_alpha'] = 100.0 PARAMS['HiddenLayers'] = [2000, 2000, 2000] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 0 PARAMS['Elu_Width'] = 4.6 PARAMS['EECutoffOff'] = 15.0 PARAMS['DSFAlpha'] = (0.18 * BOHRPERA) PARAMS['AddEcc'] = True PARAMS['KeepProb'] = [1.0, 1.0, 1.0, 0.7] PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 2 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE_WithEle(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_chemspider12_clean_maxatom35_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_DSF_elu_Normalize_Dropout_act_sigmoid100', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_DSF_elu_Normalize_Dropout', False, False) m = a.mols[1] print('m.coords:', np.max(m.coords, axis=0), np.min(m.coords, axis=0)) m.coords += np.asarray([0, 1, 0]) def EnAndForce(x_, DoForce=True): m.coords = x_ (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy def GetEnergyForceForMol(m): def EnAndForce(x_, DoForce=True): tmpm = Mol(m.atoms, x_) (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy return EnAndForce def EnForceCharge(x_): m.coords = x_ (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] return (energy, force, atom_charge[0]) def ChargeField(x_): m.coords = x_ (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] return atom_charge[0] def EnergyField(x_): return EnAndForce(x_, True)[0] def DipoleField(x_): q = np.asarray(ChargeField(x_)) dipole = np.zeros(3) for i in range(0, q.shape[0]): dipole += (q[i] * x_[i]) return dipole def DFTForceField(x_, DoForce=True): if DoForce: return QchemDFT(Mol(m.atoms, x_), basis_='6-31g*', xc_='b3lyp', jobtype_='force', threads=24) else: return np.asarray([QchemDFT(Mol(m.atoms, x_), basis_='6-31g*', xc_='b3lyp', jobtype_='sp', threads=24)])[0] DFTDipoleField = (lambda x: QchemDFT(Mol(m.atoms, x), basis_='6-31g', xc_='b3lyp', jobtype_='dipole', threads=12)) EnergyForceField = (lambda x: EnAndForce(x)) PARAMS['MDdt'] = 0.2 PARAMS['RemoveInvariant'] = True PARAMS['MDMaxStep'] = 10000 PARAMS['MDThermostat'] = 'Nose' PARAMS['MDTemp'] = 300.0 meta = BoxedMetaDynamics(EnergyForceField, m, name_='BoxMetaTest', Box_=np.array((16.0 * np.eye(3)))) meta.Prop() return
def GenerateData(model_='Huckel'): '\n\tGenerate random configurations in a reasonable range.\n\tand calculate their energies and forces.\n\t' nsamp = 10000 crds = np.random.uniform(4.0, size=(nsamp, 3, 3)) st = MSet() MDL = None natom = 4 ANS = np.array([3, 1, 1]) if (model_ == 'Morse'): MDL = MorseModel() else: MDL = QuantumElectrostatic() for s in range(nsamp): if (model_ == 'Morse'): st.mols.append(Mol(np.array([1.0, 1.0, 1.0]), crds[s])) (en, f) = MDL(crds[s]) st.mols[(- 1)].properties['dipole'] = np.array([0.0, 0.0, 0.0]) else: st.mols.append(Mol(np.array([3.0, 1.0, 1.0]), crds[s])) (en, f, d, q) = MDL(crds[s]) st.mols[(- 1)].properties['dipole'] = d st.mols[(- 1)].properties['charges'] = q st.mols[(- 1)].properties['energy'] = en st.mols[(- 1)].properties['force'] = f st.mols[(- 1)].properties['gradients'] = ((- 1.0) * f) st.mols[(- 1)].CalculateAtomization() return st
def TestTraining_John(): PARAMS['train_dipole'] = True tset = GenerateData() net = BehlerParinelloDirectGauSH(tset) net.train() return
def TestTraining(): a = GenerateData() TreatedAtoms = a.AtomTypes() PARAMS['NetNameSuffix'] = 'training_sample' PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 15 PARAMS['batch_size'] = 100 PARAMS['test_freq'] = 5 PARAMS['tf_prec'] = 'tf.float64' PARAMS['EnergyScalar'] = 1.0 PARAMS['GradScalar'] = (1.0 / 20.0) PARAMS['NeuronType'] = 'sigmoid_with_param' PARAMS['sigmoid_alpha'] = 100.0 PARAMS['KeepProb'] = [1.0, 1.0, 1.0, 1.0] d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='AtomizationEnergy') tset = TensorMolData_BP_Direct_EandG_Release(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EandG_SymFunction') PARAMS['Profiling'] = 0 manager.Train(1)
def TestOpt(): return
def TestMD(): return
def TrainPrepare(): if 0: a = MSet('chemspider9_force') dic_list = pickle.load(open('./datasets/chemspider9_force.dat', 'rb')) for dic in dic_list: atoms = [] for atom in dic['atoms']: atoms.append(AtomicNumber(atom)) atoms = np.asarray(atoms, dtype=np.uint8) mol = Mol(atoms, dic['xyz']) mol.properties['charges'] = dic['charges'] mol.properties['dipole'] = dic['dipole'] mol.properties['quadropole'] = dic['quad'] mol.properties['energy'] = dic['scf_energy'] mol.properties['gradients'] = dic['gradients'] mol.CalculateAtomization() a.mols.append(mol) a.Save() if 1: B3LYP631GstarAtom = {} B3LYP631GstarAtom[1] = (- 0.5002727827) B3LYP631GstarAtom[6] = (- 37.8462793509) B3LYP631GstarAtom[7] = (- 54.5844908554) B3LYP631GstarAtom[8] = (- 75.0606111011) a = MSet('chemspider9_metady_force') dic_list = pickle.load(open('./datasets/chemspider9_metady_force.dat', 'rb')) for dic in dic_list: atoms = [] for atom in dic['atoms']: atoms.append(AtomicNumber(atom)) atoms = np.asarray(atoms, dtype=np.uint8) mol = Mol(atoms, dic['xyz']) mol.properties['charges'] = dic['charges'] mol.properties['dipole'] = np.asarray(dic['dipole']) mol.properties['quadropole'] = dic['quad'] mol.properties['energy'] = dic['scf_energy'] mol.properties['gradients'] = dic['gradients'] mol.properties['atomization'] = dic['scf_energy'] for i in range(0, mol.NAtoms()): mol.properties['atomization'] -= B3LYP631GstarAtom[mol.atoms[i]] a.mols.append(mol) a.mols[100].WriteXYZfile(fname='metady_test') print(a.mols[100].properties) a.Save() if 0: RIMP2Atom = {} RIMP2Atom[1] = (- 0.4998098112) RIMP2Atom[8] = (- 74.9659650581) a = MSet('H2O_augmented_more_cutoff5_rimp2_force_dipole') dic_list = pickle.load(open('./datasets/H2O_augmented_more_cutoff5_rimp2_force_dipole.dat', 'rb')) for dic in dic_list: atoms = [] for atom in dic['atoms']: atoms.append(AtomicNumber(atom)) atoms = np.asarray(atoms, dtype=np.uint8) mol = Mol(atoms, dic['xyz']) mol.properties['mul_charges'] = dic['mul_charges'] mol.properties['dipole'] = dic['dipole'] mol.properties['scf_dipole'] = dic['scf_dipole'] mol.properties['energy'] = dic['energy'] mol.properties['scf_energy'] = dic['scf_energy'] mol.properties['gradients'] = dic['gradients'] mol.properties['atomization'] = dic['energy'] for i in range(0, mol.NAtoms()): mol.properties['atomization'] -= RIMP2Atom[mol.atoms[i]] a.mols.append(mol) a.Save() if 1: RIMP2Atom = {} RIMP2Atom[1] = (- 0.4998098112) RIMP2Atom[8] = (- 74.9659650581) a = MSet('H2O_augmented_more_bowl02_rimp2_force_dipole') dic_list_1 = pickle.load(open('./datasets/H2O_augmented_more_cutoff5_rimp2_force_dipole.dat', 'rb')) dic_list_2 = pickle.load(open('./datasets/H2O_long_dist_pair.dat', 'rb')) dic_list_3 = pickle.load(open('./datasets/H2O_metady_bowl02.dat', 'rb')) dic_list = ((dic_list_1 + dic_list_2) + dic_list_3) random.shuffle(dic_list) for dic in dic_list: atoms = [] for atom in dic['atoms']: atoms.append(AtomicNumber(atom)) atoms = np.asarray(atoms, dtype=np.uint8) mol = Mol(atoms, dic['xyz']) mol.properties['mul_charges'] = dic['mul_charges'] mol.properties['dipole'] = dic['dipole'] mol.properties['scf_dipole'] = dic['scf_dipole'] mol.properties['energy'] = dic['energy'] mol.properties['scf_energy'] = dic['scf_energy'] mol.properties['gradients'] = dic['gradients'] mol.properties['atomization'] = dic['energy'] for i in range(0, mol.NAtoms()): mol.properties['atomization'] -= RIMP2Atom[mol.atoms[i]] a.mols.append(mol) b = MSet('H2O_bowl02_rimp2_force_dipole') for dic in dic_list_3: atoms = [] for atom in dic['atoms']: atoms.append(AtomicNumber(atom)) atoms = np.asarray(atoms, dtype=np.uint8) mol = Mol(atoms, dic['xyz']) mol.properties['mul_charges'] = dic['mul_charges'] mol.properties['dipole'] = dic['dipole'] mol.properties['scf_dipole'] = dic['scf_dipole'] mol.properties['energy'] = dic['energy'] mol.properties['scf_energy'] = dic['scf_energy'] mol.properties['gradients'] = dic['gradients'] mol.properties['atomization'] = dic['energy'] for i in range(0, mol.NAtoms()): mol.properties['atomization'] -= RIMP2Atom[mol.atoms[i]] b.mols.append(mol) print('number of a mols:', len(a.mols)) print('number of b mols:', len(b.mols)) a.Save() b.Save() if 0: a = MSet('chemspider9_force') a.Load() rmsgrad = np.zeros(len(a.mols)) for (i, mol) in enumerate(a.mols): rmsgrad[i] = (np.sum(np.square(mol.properties['gradients'])) ** 0.5) meangrad = np.mean(rmsgrad) print('mean:', meangrad, 'std:', np.std(rmsgrad)) np.savetxt('chemspider9_force_dist.dat', rmsgrad) for (i, mol) in enumerate(a.mols): rmsgrad = (np.sum(np.square(mol.properties['gradients'])) ** 0.5) if (2 > rmsgrad > 1.5): mol.WriteXYZfile(fname='large_force') print(rmsgrad) if 0: a = MSet('chemspider9_force') a.Load() b = MSet('chemspider9_force_cleaned') for (i, mol) in enumerate(a.mols): rmsgrad = (np.sum(np.square(mol.properties['gradients'])) ** 0.5) if (rmsgrad <= 1.5): b.mols.append(mol) b.Save() c = MSet('chemspider9_force_cleaned_debug') c.mols = b.mols[:1000] c.Save() if 0: a = MSet('chemspider9_force') a.Load() print(a.mols[0].properties) a.mols[0].WriteXYZfile(fname='test')
def TrainForceField(): if 0: a = MSet('chemspider9_force_cleaned') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['hidden1'] = 1000 PARAMS['hidden2'] = 1000 PARAMS['hidden3'] = 1000 PARAMS['learning_rate'] = 0.001 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 101 PARAMS['batch_size'] = 28 PARAMS['test_freq'] = 2 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 0.05 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE') manager.Train(maxstep=101) if 0: a = MSet('H2O_augmented_more_cutoff5_rimp2_force_dipole') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 1101 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 4.0 PARAMS['Erf_Width'] = 0.2 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE') manager.Train() if 0: a = MSet('H2O_augmented_more_cutoff5_rimp2_force_dipole') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 0.0001 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 2 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 1 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 4.4 PARAMS['EECutoffOff'] = 15.0 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_H2O_augmented_more_cutoff5_rimp2_force_dipole_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_1', tset, False, 'fc_sqdiff_BP_Direct_EE') manager.Continue_Training(target='All') if 0: a = MSet('H2O_augmented_more_cutoff5_rimp2_force_dipole') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 901 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['AN1_r_Rc'] = 8.0 PARAMS['AN1_num_r_Rs'] = 64 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE') manager.Train() if 1: a = MSet('H2O_augmented_more_cutoff5_rimp2_force_dipole') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 901 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['AN1_r_Rc'] = 5.0 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE') manager.Train() if 0: a = MSet('H2O_augmented_more_cutoff5_rimp2_force_dipole') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 901 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['AN1_r_Rc'] = 8.0 PARAMS['AN1_num_r_Rs'] = 64 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode') manager.Train() if 0: a = MSet('H2O_augmented_more_rimp2_force_dipole') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 901 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [512, 512, 512] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['AN1_r_Rc'] = 8.0 PARAMS['AN1_num_r_Rs'] = 64 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE') manager.Train() if 1: a = MSet('H2O_bowl02_rimp2_force_dipole') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 901 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['AN1_r_Rc'] = 8.0 PARAMS['AN1_num_r_Rs'] = 64 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE') manager.Train() if 0: a = MSet('chemspider9_metady_force') a.Load() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 101 PARAMS['batch_size'] = 35 PARAMS['test_freq'] = 2 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [1000, 1000, 1000] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 10 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode') manager.Train()
def EvalForceField(): if 0: a = MSet('H2O_force_test', center_=False) a.ReadXYZ('H2O_force_test') TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 300 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['AN1_r_Rc'] = 5.0 PARAMS['AN1_num_r_Rs'] = 32 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_H2O_augmented_more_cutoff5_rimp2_force_dipole_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_1', tset, False, 'fc_sqdiff_BP_Direct_EE', False, False) m = a.mols[4] def EnAndForce(x_): m.coords = x_ (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEESingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) energy = Etotal[0] force = gradient[0] return (energy, force) def EnForceCharge(x_): m.coords = x_ (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEESingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) energy = Etotal[0] force = gradient[0] return (energy, force, atom_charge) def ChargeField(x_): m.coords = x_ (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEESingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) energy = Etotal[0] force = gradient[0] return atom_charge[0] ForceField = (lambda x: EnAndForce(x)[(- 1)]) EnergyField = (lambda x: EnAndForce(x)[0]) EnergyForceField = (lambda x: EnAndForce(x)) PARAMS['MDdt'] = 0.2 PARAMS['RemoveInvariant'] = True PARAMS['MDMaxStep'] = 10000 PARAMS['MDThermostat'] = 'Nose' PARAMS['MDV0'] = None PARAMS['MDAnnealTF'] = 300.0 PARAMS['MDAnnealT0'] = 0.0 PARAMS['MDAnnealSteps'] = 10000 anneal = Annealer(EnergyForceField, None, m, 'Anneal') anneal.Prop() m.coords = anneal.Minx.copy() m.WriteXYZfile('./results/', 'Anneal_opt') PARAMS['MDThermostat'] = None PARAMS['MDTemp'] = 0 PARAMS['MDdt'] = 0.1 PARAMS['MDV0'] = None PARAMS['MDMaxStep'] = 100000 md = IRTrajectory(EnAndForce, ChargeField, m, 'IR') md.Prop() WriteDerDipoleCorrelationFunction(md.mu_his) if 0: a = MSet('NeigborMB_test', center_=False) a.ReadXYZ('NeigborMB_test') TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 300 PARAMS['batch_size'] = 1000 PARAMS['test_freq'] = 10 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [200, 200, 200] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['AN1_r_Rc'] = 5.0 PARAMS['AN1_num_r_Rs'] = 32 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 100 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_H2O_augmented_more_cutoff5_rimp2_force_dipole_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_1', tset, False, 'fc_sqdiff_BP_Direct_EE', False, False) m = a.mols[5] mono_index = [] for i in range(0, 10): mono_index.append([(i * 3), ((i * 3) + 1), ((i * 3) + 2)]) MBEterms = MBNeighbors(m.coords, m.atoms, mono_index) mbe = NN_MBE_Linear(manager) def EnAndForce(x_): m.coords = x_ MBEterms.Update(m.coords, 10, 10) (Etotal, gradient, charge) = mbe.EnergyForceDipole(MBEterms) energy = Etotal force = gradient return (energy, force) EnergyForceField = (lambda x: EnAndForce(x)) print(EnergyForceField(m.coords)) def ChargeField(x_): m.coords = x_ MBEterms.Update(m.coords, 20.0, 20.0) (Etotal, gradient, charge) = mbe.EnergyForceDipole(MBEterms) return charge ForceField = (lambda x: EnAndForce(x)[(- 1)]) EnergyField = (lambda x: EnAndForce(x)[0]) EnergyForceField = (lambda x: EnAndForce(x)) PARAMS['MDThermostat'] = 'Nose' PARAMS['MDTemp'] = 30 PARAMS['MDdt'] = 0.1 PARAMS['RemoveInvariant'] = True PARAMS['MDV0'] = None PARAMS['MDMaxStep'] = 10000 warm = VelocityVerlet(ForceField, m, 'warm', EnergyForceField) warm.Prop() m.coords = warm.x.copy() PARAMS['MDThermostat'] = None PARAMS['MDTemp'] = 0 PARAMS['MDdt'] = 0.1 PARAMS['MDV0'] = None PARAMS['MDMaxStep'] = 40000 md = IRTrajectory(EnAndForce, ChargeField, m, 'IR', warm.v) md.Prop() WriteDerDipoleCorrelationFunction(md.mu_his) if 1: os.environ['CUDA_VISIBLE_DEVICES'] = '0' a = MSet('chemspider9_metady_force') a.Load() b = MSet('IRSmallmols') b.ReadXYZ() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 101 PARAMS['batch_size'] = 35 PARAMS['test_freq'] = 2 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [1000, 1000, 1000] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 10 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_chemspider9_metady_force_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_ChargeEncode_1', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode', False, False) m = b.mols[8] def EnAndForce(x_): m.coords = x_ (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEESingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) energy = Etotal[0] force = gradient[0] return (energy, force) def EnForceCharge(x_): m.coords = x_ (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEESingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) energy = Etotal[0] force = gradient[0] return (energy, force, atom_charge) def ChargeField(x_): m.coords = x_ (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEESingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) energy = Etotal[0] force = gradient[0] return atom_charge[0] ForceField = (lambda x: EnAndForce(x)[(- 1)]) EnergyField = (lambda x: EnAndForce(x)[0]) EnergyForceField = (lambda x: EnAndForce(x)) PARAMS['OptMaxCycles'] = 200 Opt = GeomOptimizer(EnergyForceField) m = Opt.Opt(m) PARAMS['MDdt'] = 0.2 PARAMS['RemoveInvariant'] = True PARAMS['MDMaxStep'] = 10000 PARAMS['MDThermostat'] = 'Nose' PARAMS['MDV0'] = None PARAMS['MDAnnealTF'] = 300.0 PARAMS['MDAnnealT0'] = 0.1 PARAMS['MDAnnealSteps'] = 10000 anneal = Annealer(EnergyForceField, None, m, 'Anneal') anneal.Prop() m.coords = anneal.Minx.copy() m.WriteXYZfile('./results/', 'Anneal_opt') PARAMS['MDThermostat'] = None PARAMS['MDTemp'] = 0 PARAMS['MDdt'] = 0.1 PARAMS['MDV0'] = None PARAMS['MDMaxStep'] = 40000 md = IRTrajectory(EnAndForce, ChargeField, m, 'IR', anneal.v) md.Prop() WriteDerDipoleCorrelationFunction(md.mu_his) if 0: os.environ['CUDA_VISIBLE_DEVICES'] = '0' a = MSet('chemspider9_metady_force') a.Load() b = MSet('chemspider12_metady_test') b.ReadXYZ() TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 101 PARAMS['batch_size'] = 35 PARAMS['test_freq'] = 2 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScaler'] = 1.0 PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [1000, 1000, 1000] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 7.0 PARAMS['Erf_Width'] = 0.4 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 10 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_chemspider9_metady_force_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_ChargeEncode_1', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode', False, False) m = b.mols[1] def EnAndForce(x_): m.coords = x_ (Etotal, Ebp, Ecc, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEESingle(m, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff']) energy = Etotal[0] force = gradient[0] return (energy, force) ForceField = (lambda x: QchemDFT(Mol(m.atoms, x), basis_='6-31g*', xc_='b3lyp', jobtype_='force', filename_='chemspider12_meta_test', path_='./qchem/', threads=24)) EnergyField = (lambda x: EnAndForce(x)[0]) EnergyForceField = (lambda x: EnAndForce(x)) PARAMS['MDdt'] = 0.5 PARAMS['RemoveInvariant'] = True PARAMS['MDMaxStep'] = 10000 PARAMS['MDThermostat'] = 'Nose' PARAMS['MDTemp'] = 500.0 PARAMS['MetaBowlK'] = 0.0 meta = MetaDynamics(ForceField, m) meta.Prop()
def TestIPI(): if 1: a = MSet('water_tiny', center_=False) a.ReadXYZ('water_tiny') m = a.mols[(- 1)] m.coords = ((m.coords - np.min(m.coords)) + 1e-05) TreatedAtoms = a.AtomTypes() PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 101 PARAMS['batch_size'] = 150 PARAMS['test_freq'] = 1 PARAMS['tf_prec'] = 'tf.float64' PARAMS['GradScalar'] = (1.0 / 20.0) PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'relu' PARAMS['HiddenLayers'] = [500, 500, 500] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 0 PARAMS['Poly_Width'] = 4.6 PARAMS['EECutoffOff'] = 15.0 PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 15 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE_WithEle(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_H2O_wb97xd_1to21_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_1', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw', False, False) cellsize = 9.3215 lat = (cellsize * np.eye(3)) PF = TFPeriodicVoxelForce(15.0, lat) zp = np.zeros((m.NAtoms() * PF.tess.shape[0]), dtype=np.int32) xp = np.zeros(((m.NAtoms() * PF.tess.shape[0]), 3)) for i in range(0, PF.tess.shape[0]): zp[(i * m.NAtoms()):((i + 1) * m.NAtoms())] = m.atoms xp[(i * m.NAtoms()):((i + 1) * m.NAtoms())] = (m.coords + (cellsize * PF.tess[i])) m_periodic = Mol(zp, xp) def EnAndForce(x_): x_ = np.mod(x_, cellsize) xp = np.zeros(((m.NAtoms() * PF.tess.shape[0]), 3)) for i in range(0, PF.tess.shape[0]): xp[(i * m.NAtoms()):((i + 1) * m.NAtoms())] = (x_ + (cellsize * PF.tess[i])) m_periodic.coords = xp m_periodic.coords[:m.NAtoms()] = x_ (Etotal, gradient) = manager.EvalBPDirectEEUpdateSinglePeriodic(m_periodic, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], m.NAtoms()) energy = Etotal[0] force = gradient[0] print('energy:', energy) return (energy, force) ForceField = (lambda x: EnAndForce(x)[(- 1)]) EnergyField = (lambda x: EnAndForce(x)[0]) EnergyForceField = (lambda x: EnAndForce(x)) interface = TMIPIManger(EnergyForceField, TCP_IP='localhost', TCP_PORT=31415) interface.md_run() return
def GetChemSpiderNetwork(a, Solvation_=False): TreatedAtoms = np.array([1, 6, 7, 8], dtype=np.uint8) PARAMS['tm_root'] = '/home/animal/Packages/TensorMol' PARAMS['tf_prec'] = 'tf.float64' PARAMS['NeuronType'] = 'sigmoid_with_param' PARAMS['sigmoid_alpha'] = 100.0 PARAMS['HiddenLayers'] = [2000, 2000, 2000] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 0 PARAMS['Elu_Width'] = 4.6 PARAMS['EECutoffOff'] = 15.0 PARAMS['AddEcc'] = True PARAMS['KeepProb'] = [1.0, 1.0, 1.0, 0.7] d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE_WithEle(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) PARAMS['DSFAlpha'] = (0.18 * BOHRPERA) manager = TFMolManage('chemspider12_nosolvation', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_DSF_elu_Normalize_Dropout', False, False) return manager
def EnAndForce(x_, DoForce=True): mtmp = Mol(m.atoms, x_) (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(mtmp, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy
def GetChemSpider12(a): TreatedAtoms = np.array([1, 6, 7, 8], dtype=np.uint8) PARAMS['NetNameSuffix'] = 'act_sigmoid100' PARAMS['learning_rate'] = 1e-05 PARAMS['momentum'] = 0.95 PARAMS['max_steps'] = 21 PARAMS['batch_size'] = 50 PARAMS['test_freq'] = 1 PARAMS['tf_prec'] = 'tf.float64' PARAMS['EnergyScalar'] = 1.0 PARAMS['GradScalar'] = (1.0 / 20.0) PARAMS['DipoleScaler'] = 1.0 PARAMS['NeuronType'] = 'sigmoid_with_param' PARAMS['sigmoid_alpha'] = 100.0 PARAMS['HiddenLayers'] = [2000, 2000, 2000] PARAMS['EECutoff'] = 15.0 PARAMS['EECutoffOn'] = 0 PARAMS['Elu_Width'] = 4.6 PARAMS['EECutoffOff'] = 15.0 PARAMS['DSFAlpha'] = 0.18 PARAMS['AddEcc'] = True PARAMS['KeepProb'] = [1.0, 1.0, 1.0, 0.7] PARAMS['learning_rate_dipole'] = 0.0001 PARAMS['learning_rate_energy'] = 1e-05 PARAMS['SwitchEpoch'] = 2 d = MolDigester(TreatedAtoms, name_='ANI1_Sym_Direct', OType_='EnergyAndDipole') tset = TensorMolData_BP_Direct_EE_WithEle(a, d, order_=1, num_indis_=1, type_='mol', WithGrad_=True) manager = TFMolManage('Mol_chemspider12_maxatom35_H2O_with_CH4_ANI1_Sym_Direct_fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_DSF_elu_Normalize_Dropout_act_sigmoid100_rightalpha', tset, False, 'fc_sqdiff_BP_Direct_EE_ChargeEncode_Update_vdw_DSF_elu_Normalize_Dropout', False, False) return manager
def Eval(): a = MSet('EndiandricC', center_=False) a.ReadXYZ() manager = GetChemSpider12(a) def GetEnergyForceForMol(m): def EnAndForce(x_, DoForce=True): tmpm = Mol(m.atoms, x_) (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(tmpm, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy return EnAndForce if 0: PARAMS['OptMaxCycles'] = 20 print('Optimizing ', len(a.mols), ' mols') for i in range(6): F = GetEnergyForceForMol(a.mols[i]) Opt = GeomOptimizer(F) a.mols[i] = Opt.Opt(a.mols[i]) a.mols[i].WriteXYZfile('./results/', ('OptMol' + str(i))) PARAMS['OptMaxCycles'] = 500 PARAMS['NebSolver'] = 'Verlet' PARAMS['SDStep'] = 0.05 PARAMS['NebNumBeads'] = 22 PARAMS['MaxBFGS'] = 12 (a.mols[0], a.mols[1]) = a.mols[0].AlignAtoms(a.mols[1]) a.mols[0].WriteXYZfile('./results/', ('Aligned' + str(0))) a.mols[0].WriteXYZfile('./results/', ('Aligned' + str(1))) F = GetEnergyForceForMol(a.mols[0]) neb = NudgedElasticBand(F, a.mols[0], a.mols[1]) Beads = neb.Opt('NebStep1')
def TestBetaHairpin(): a = MSet('2evq', center_=False) a.ReadXYZ() a.OnlyAtoms([1, 6, 7, 8]) manager = GetChemSpider12(a) def F(z_, x_, nreal_, DoForce=True): '\n\t\tThis is the primitive form of force routine required by PeriodicForce.\n\t\t' mtmp = Mol(z_, x_) if DoForce: (en, f) = manager.EvalBPDirectEEUpdateSinglePeriodic(mtmp, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], nreal_, True) return (en[0], f[0]) else: en = manager.EvalBPDirectEEUpdateSinglePeriodic(mtmp, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], nreal_, True, DoForce) return en[0] m = a.mols[0] xmn = np.amin(m.coords, axis=0) m.coords -= xmn xmx = np.amax(m.coords, axis=0) print('Xmn,Xmx', xmn, xmx) m.properties['lattice'] = np.array([[xmx[0], 0.0, 0.0], [0.0, xmx[1], 0.0], [0.0, 0.0, xmx[2]]]) PF = PeriodicForce(m, m.properties['lattice']) PF.BindForce(F, 15.0) if 0: for i in range(4): print('En0:', PF(m.coords)[0]) m.coords += ((np.random.random((1, 3)) - 0.5) * 3.0) m.coords = PF.lattice.ModuloLattice(m.coords) print(('En:' + str(i)), PF(m.coords)[0]) PARAMS['OptMaxCycles'] = 100 POpt = PeriodicGeomOptimizer(PF) PF.mol0 = POpt.Opt(m, 'ProOpt') PARAMS['MDTemp'] = 300.0 PARAMS['MDdt'] = 0.2 PARAMS['MDMaxStep'] = 2000 traj = PeriodicVelocityVerlet(PF, 'Protein0') traj.Prop()
def TestUrey(): a = MSet('2mzx_open') a.ReadXYZ() m = a.mols[0] m.coords -= np.min(m.coords) manager = GetChemSpider12(a) def GetEnergyForceForMol(m): def EnAndForce(x_, DoForce=True): tmpm = Mol(m.atoms, x_) (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(tmpm, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy return EnAndForce F = GetEnergyForceForMol(m) PARAMS['OptMaxCycles'] = 500 Opt = MetaOptimizer(F, m, Box_=False) Opt.Opt(m)
def MetadynamicsStatistics(): '\n\tGather statistics about the metadynamics exploration process varying bump depth, and width.\n\t' sugarXYZ = '23\n\n \tC 0.469801362563 -0.186971976654 -0.917684108862\n\tO -0.859493679862 0.107094904765 -0.545217785597\n\tC -1.33087192983 -0.507316368828 0.650893179939\n\tC -0.438298062157 -0.0755659372548 1.80797104148\n\tO -0.778094885449 -0.696482563857 3.03079166065\n\tC 1.00192237607 -0.469457749055 1.52906960905\n\tC 1.477875031 0.077136161307 0.194458937693\n\tO 1.68692471022 1.45839447946 0.287157941131\n\tO 1.85082739088 0.082940968659 2.50886417356\n\tC -2.78317030311 -0.10545520088 0.824144527485\n\tO 0.616447904421 -1.51600440404 -1.31396642612\n\tH -1.26896203668 -1.59866670272 0.550821100756\n\tH -0.480848486767 1.0203835586 1.89601850937\n\tH 1.05389278947 -1.56571961461 1.52835050017\n\tH 2.41481082624 -0.436974077322 -0.0657764020213\n\tH 0.69100263804 0.494721792561 -1.74781805697\n\tH -0.193905967702 -1.76927170884 -1.75808894835\n\tH 2.04490869072 1.58866981496 1.17215002368\n\tH 1.58881143012 -0.273592522211 3.36016004218\n\tH -1.59032043389 -0.31753857396 3.3666667337\n\tH -2.86651153898 0.952637274148 1.08604018776\n\tH -3.31879024248 -0.265179614329 -0.112506279571\n\tH -3.27220758287 -0.69654193988 1.59910983889\n\t' m = Mol() m.FromXYZString(sugarXYZ) def GetEnergyForceForMol(m): s = MSet() s.mols.append(m) manager = GetChemSpider12(s) def EnAndForce(x_, DoForce=True): tmpm = Mol(m.atoms, x_) (Etotal, Ebp, Ebp_atom, Ecc, Evdw, mol_dipole, atom_charge, gradient) = manager.EvalBPDirectEEUpdateSingle(tmpm, PARAMS['AN1_r_Rc'], PARAMS['AN1_a_Rc'], PARAMS['EECutoffOff'], True) energy = Etotal[0] force = gradient[0] if DoForce: return (energy, force) else: return energy return EnAndForce F = GetEnergyForceForMol(m) Opt = GeomOptimizer(F) m = Opt.Opt(m) PARAMS['MDdt'] = 0.5 PARAMS['MDMaxStep'] = 8000 PARAMS['MetaBumpTime'] = 10.0 PARAMS['MetaMaxBumps'] = 500 PARAMS['MetaBowlK'] = 0.0 PARAMS['MDThermostat'] = 'Andersen' PARAMS['MDTemp'] = 300.0 PARAMS['MDV0'] = None if 0: PARAMS['MetaMDBumpHeight'] = 0.0 PARAMS['MetaMDBumpWidth'] = 0.5 traj = MetaDynamics(None, m, 'MetaMD_000_05', F) traj.Prop() PARAMS['MetaMDBumpHeight'] = 0.5 PARAMS['MetaMDBumpWidth'] = 0.5 traj = MetaDynamics(None, m, 'MetaMD_050_05', F) traj.Prop() PARAMS['MetaMDBumpHeight'] = 0.5 PARAMS['MetaMDBumpWidth'] = 1.0 traj = MetaDynamics(None, m, 'MetaMD_050_10', F) traj.Prop() PARAMS['MetaMDBumpHeight'] = 0.5 PARAMS['MetaMDBumpWidth'] = 2.0 traj = MetaDynamics(None, m, 'MetaMD_050_20', F) traj.Prop() PARAMS['MetaMDBumpHeight'] = 1.0 PARAMS['MetaMDBumpWidth'] = 1.0 traj = MetaDynamics(None, m, 'MetaMD_100_10', F) traj.Prop() PARAMS['MetaMDBumpHeight'] = 1.0 PARAMS['MetaMDBumpWidth'] = 2.0 traj = MetaDynamics(None, m, 'MetaMD_100_20', F) traj.Prop() PARAMS['MetaBumpTime'] = 10.0 PARAMS['MetaMDBumpHeight'] = 2.0 PARAMS['MetaMDBumpWidth'] = 1.0 PARAMS['MetaBowlK'] = 0.1 traj = MetaDynamics(None, m, 'MetaMD_100_10_X', F) traj.Prop()