latex_formula
stringlengths
6
4.11M
\begin{equation} \begin{aligned} \diverg&\big(|Du|^{p-2+s }AD^2uDu\big) -\frac{\big(\abs{Du}^{p +s-\gamma}\big)_t}{p +s-\gamma} \\ & = \diverg\big(|Du|^{p-2+s }(D^2uDu-\Delta uDu)\big) +u_t\diverg\big(|Du|^{p-2+s-\gamma}Du\big), \end{aligned} \end{equation}
\begin{align*} u_t=|Du|^{\gamma}(\Delta_Tu+(p-1)\ilN u), \text{and}\Delta_{p+s-\gamma}^Nu=\Delta_Tu+(p-1+s-\gamma)\ilN u \end{align*}
\begin{equation} \begin{aligned} &u_t\diverg\big(|Du|^{p-2+s-\gamma}Du\big)\\ =&|Du|^{\gamma}\big(\Delta_Tu+(p-1)\ilN u\big)\cdot|Du|^{p-2+s-\gamma}\cdot\big(\Delta_Tu+(p-1+s-\gamma)\ilN u\big) \\ =&|Du|^{p-2+s }\Big\{(\Delta_Tu)^2+(2 p-2+s-\gamma) \Delta_Tu\ilN u+(p-1)(p-1+s-\gamma)(\ilN u)^2\Big\}. \end{aligned} \end{equation}
\begin{equation} \begin{aligned} |Du|^{p-2+s}& \Big\{|D^2 u|^2-(\Delta u)^2 +(p-2+s)\frac{|D^2uDu|^2}{|Du|^2}-(p-2+s )\Delta u\ilN u\Big\} \\ =& \diverg\big(|Du|^{p-2+s}(D^2uDu-\Delta uDu)\big) \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &|Du|^{p-2+s } \Big\{\Big(w_2- \frac{n-2}{n-1} w_1\Big)(\Delta_T u)^2 +w_1(p +s )\abs{D_T\abs{Du}}^2 \\ & +w_2(p-1)(p-1+s-\gamma)(\ilN u)^2+\big(w_2(2p-2+s-\gamma)-w_1(p +s )\big)\Delta_Tu\ilN u\Big\} \\ &\leq w_1\diverg\big(|Du|^{p-2+s }(D^2uDu-\Delta uDu)\big) +w_2 u_t\diverg\big(|Du|^{p-2+s-\gamma}Du\big), \end{aligned} \end{equation}
\begin{equation} \begin{aligned} S &:= w_1\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}}(D^2\ue D\ue-\Delta \ue D\ue)\big) \\ & +w_2\ue_t\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}}D\ue\big) \\ & +w_3\epsilon\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}-1}(D^2\ue D\ue-\Delta \ue D\ue)\big) \\ & +w_4\epsilon\ue_t\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}-1}D\ue\big), \end{aligned} \end{equation}
\begin{align} \theta:=\frac{|D\ue|^2}{|D\ue|^2+\epsilon} \quad\text{and}\kappa:=1-\theta=\frac{\epsilon}{|D\ue|^2+\epsilon}, \end{align}
\begin{equation} \begin{aligned} &\ez\ue_t\diverg\big((\abs{D\ue}^2+\ez)^{\frac{p-2+s-\gamma}{2}-1}D\ue\big)\\ =&\theta(\abs{D\ue}^2+\ez)^{\frac{p-2+s }{2}}\Big((\Delta_T\ue)^2+\big((2p-6+s-\gamma)\theta+2 \big)\Delta_T\ue\ilN \ue\\ &+\big((p-2)\theta+1\big)\big((p-4+s-\gamma)\theta+1 \big)(\ilN \ue)^2\Big) \end{aligned} \end{equation}
\begin{align*} \ue_t=(|D\ue|^2+\epsilon)^{\gamma/2}\Big(\Delta_T \ue+\big((p-2)\theta+1\big)\ilN\ue\Big) \end{align*}
\begin{equation} \begin{aligned} &\ez\diverg\big((\abs{D\ue}^2+\ez)^{\frac{p-2+s}{2}-1}(D^2\ue D\ue-\Delta \ue D\ue)\big)\\ =&\theta(\abs{D\ue}^2+\ez)^{\frac{p-2+s}{2}} \Big\{|D^2 \ue|^2-(\Delta \ue)^2 +(p-4+s)\theta \abs{D\abs{D\ue}}^2\\ &-(p-4+s)\theta \Delta \ue \ilN\ue \Big\}. \end{aligned} \end{equation}
\begin{align} &(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{ c_1|D^2\ue|^2+c_2|D_T|D\ue||^2 +(c_3-c_1)(\Delta_T\ue)^2 \\ & +\Big((c_3+c_4)\big((p-2)\theta+1\big)-c_1\Big)(\ilN \ue)^2 \\ & +\Big(c_3\big((p-2)\theta+1\big)+(c_3+c_4)-(2c_1+c_2)\Big) \Delta_T\ue\ilN \ue \Big\}= S, \end{align}
\begin{align*} D_T|Du|:= \begin{cases} \la e_1,D|Du|\ra e_1 +\ldots +\la e_{n-1},D|Du|\ra e_{n-1} &\quad\text{if }Du\neq 0, \\ 0 &\quad\text{if }Du=0, \end{cases} \end{align*}
\begin{align*} \ilN u:= \begin{cases} \left< \frac{Du}{|Du|},D|Du|\right>=\frac{\il u}{|Du|^2} &\quad\text{if }Du\neq 0, \\ 0 &\quad\text{if }Du=0. \end{cases} \end{align*}
\begin{equation} |D|Du||^2=\abs{D_T|Du|}^2+(\ilN u)^2 \quad\text{a.e.\ in space in } \Omega_T, \end{equation}
\begin{equation} \Delta_T u=\Delta u-\ilN u \quad\text{a.e.\ in } \Omega_T. \end{equation}
\begin{equation} \begin{aligned} &(|Du|^2+\epsilon)^{\alpha/2} \Big\{|D^2u|^2-(\Delta u)^2 +\alpha\frac{|D^2uDu|^2}{|Du|^2+\epsilon}-\alpha\Delta u\frac{\il u}{|Du|^2+\epsilon}\Big\}\\ =& \diverg\big((|Du|^2+\epsilon)^{\alpha/2}(D^2uDu-\Delta uDu)\big). \end{aligned} \end{equation}
\begin{align*} &\diverg\big((|Du|^2+\ez)^{\alpha/2}(D^2uDu-\Delta uDu )\big)\\ =& \big< D^2uDu-\Delta uDu , D\big((|Du|^2+\ez)^{\alpha/2} \big)\big>+ (|Du|^2+\ez)^{\alpha/2}\diverg ( D^2uDu-\Delta uDu )\\ =&\big< D^2uDu-\Delta uDu , D\big((|Du|^2+\ez)^{\alpha/2} \big)\big>+ (|Du|^2+\ez)^{\alpha/2}\big(|D^2u|^2 -(\Delta u)^2 \big)\\ =&(|Du|^2+\ez)^{\alpha/2}\Big\{|D^2u|^2-(\Delta u)^2+\alpha\frac{|D^2uDu|^2}{|Du|^2+\ez}-\alpha\Delta u\frac{\il u}{|Du|^2+\ez}\Big\}, \end{align*}
\begin{equation} \begin{aligned} &u_t(|Du|^2+\epsilon)^{\beta/2} \Big(\Delta u +\beta\frac{\il u}{|Du|^2+\epsilon}\Big) \\ =&u_t\diverg\big((|Du|^2+\ez)^{\beta/2}Du\big) \\ =& \begin{cases} \displaystyle\diverg\big(u_t(|Du|^2+\epsilon)^{\beta/2} Du\big)-\Big(\frac{(|Du|^2+\epsilon)^{\frac{\beta+2}{2}}}{\beta+2}\Big)_t &\quad\text{if }\beta\neq -2, \\ \displaystyle\diverg\big(u_t(|Du|^2+\epsilon)^{-1}Du\big)-\Big(\frac{\ln (|Du|^2+\epsilon)}{2}\Big)_t &\quad\text{if }\beta=-2. \end{cases} \end{aligned} \end{equation}
\begin{align*} &\diverg\big(u_t(|Du|^2+\epsilon)^{\beta/2} Du\big)-\Big(\frac{(|Du|^2+\epsilon)^{\frac{\beta+2}{2}}}{\beta+2}\Big)_t\\ =&u_t\diverg\big((|Du|^2+\epsilon)^{\beta/2} Du\big)+(|Du|^2+\epsilon)^{\beta/2} Du Du_t -\Big(\frac{(|Du|^2+\epsilon)^{\frac{\beta+2}{2}}}{\beta+2}\Big)_t\\ =&u_t\diverg\big((|Du|^2+\epsilon)^{\beta/2} Du\big)\\ =&u_t\big<D\big((|Du|^2+\epsilon)^{\beta/2}\big), Du\big>+u_t (|Du|^2+\epsilon)^{\beta/2} \diverg(Du) \\ =&u_t(|Du|^2+\ez)^{\beta/2}\Big(\Delta u+\beta\frac{\il u}{|Du|^2+\ez}\Big). \end{align*}
\begin{equation} GD_1(\alpha):=\diverg\big((|Du|^2+\epsilon)^{\alpha/2}(D^2u Du-\Delta uDu)\big) \end{equation}
\begin{equation} \begin{aligned} GD_2(\alpha):= \begin{cases} \displaystyle\diverg\big(u_t(|Du|^2+\epsilon)^{\frac{\alpha-\gamma}{2}} Du\big)-\Big(\frac{(|Du|^2+\epsilon)^{\frac{\alpha-\gamma+2}{2}}}{\alpha-\gamma+2}\Big)_t &\quad\text{if }\alpha\neq \gamma-2, \\ \displaystyle\diverg\big(u_t(|Du|^2+\epsilon)^{-1} Du\big)-\Big(\frac{\ln (|Du|^2+\epsilon)}{2}\Big)_t &\quad\text{if }\alpha=\gamma-2. \end{cases} \end{aligned} \end{equation}
\begin{equation} \begin{aligned} S:=&w_1GD_1(p-2+s)+w_2GD_2(p-2+s)\\ &+\epsilon w_3GD_1(p-4+s)+\epsilon w_4GD_2(p-4+s) \end{aligned} \end{equation}
\begin{align*} \theta=\frac{|D\ue|^2}{|D\ue|^2+\epsilon} \quad\text{and}\kappa=\frac{\epsilon}{|D\ue|^2+\epsilon}, \end{align*}
\begin{align*} \frac{|D^2\ue D\ue|^2}{|D\ue|^2+\epsilon}=\theta \abs{D\abs{D\ue}}^2 \quad\text{and}\frac{\il \ue}{|D\ue|^2+\epsilon}=\theta\ilN \ue. \end{align*}
\begin{align*} S =& w_1 (|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{|D^2\ue|^2-(\Delta \ue)^2 +(p-2+s)\Big(\frac{|D^2\ue D\ue|^2}{|D\ue|^2+\epsilon}- \Delta \ue\frac{\il \ue}{|D\ue|^2+\epsilon}\Big)\Big\}\\ &+w_2\ue_t(|D\ue|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}} \Big\{\Delta \ue +(p-2+s-\gamma)\frac{\il \ue}{|D\ue|^2+\epsilon}\Big\}\\ &+\ez w_3(|D\ue|^2+\epsilon)^{\frac{p-4+s}{2}} \Big\{|D^2\ue|^2-(\Delta \ue)^2 +(p-4+s)\Big(\frac{|D^2\ue D\ue|^2}{|D\ue|^2+\epsilon}- \Delta \ue\frac{\il \ue}{|D\ue|^2+\epsilon}\Big)\Big\}\\ &+\ez w_4\ue_t(|D\ue|^2+\epsilon)^{\frac{p-4+s-\gamma}{2}} \Big\{\Delta \ue +(p-4+s-\gamma)\frac{\il \ue}{|D\ue|^2+\epsilon}\Big\}. \end{align*}
\begin{align*} S=&(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{ (w_1+w_3\kappa)\big(|D^2\ue|^2-(\Delta \ue)^2\big)\\ & +\big(w_1(p-2+s)+w_3(p-4+s)\kappa\big)\theta(|D|D\ue||^2-\Delta \ue\ilN \ue) \\ & +(w_2+w_4\kappa)(|D\ue|^2+\epsilon)^{-\gamma/2}\ue_t\Delta \ue\\ & +\big(w_2(p-2+s-\gamma)+w_4(p-4+s-\gamma)\kappa\big)\theta(|D\ue|^2+\epsilon)^{-\gamma/2}\ue_t\ilN \ue \Big\}\\ =& (|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{ c_1\big(|D^2\ue|^2-(\Delta \ue)^2\big) +c_2(|D|D\ue||^2-\Delta \ue\ilN \ue) \\ & +c_3(|D\ue|^2+\epsilon)^{-\gamma/2}\ue_t\Delta \ue +c_4(|D\ue|^2+\epsilon)^{-\gamma/2}\ue_t\ilN \ue \Big\} \end{align*}
\begin{align} \begin{cases} c_1=w_1+w_3\kappa, &c_2=\big(w_1(p-2+s)+w_3(p-4+s)\kappa\big)\theta,\\ c_3=w_2+w_4\kappa, &c_4=\big(w_2(p-2+s-\gamma)+w_4(p-4+s-\gamma)\kappa\big)\theta. \end{cases} \end{align}
\begin{equation} \begin{aligned} S &= (|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{ c_1|D^2\ue|^2+c_2|D_T|D\ue||^2 -c_1(\Delta_T\ue)^2 -c_1(\ilN \ue)^2 \\ & -(2c_1+c_2)\Delta_T\ue\ilN \ue +c_3(|D\ue|^2+\epsilon)^{-\gamma/2}\ue_t\Delta_T\ue \\ & +(c_3+c_4)(|D\ue|^2+\epsilon)^{-\gamma/2}\ue_t\ilN \ue \Big\} \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{ c_1|D^2\ue|^2+c_2|D_T|D\ue||^2 +(c_3-c_1)(\Delta_T\ue)^2 \\ & +\big((c_3+c_4)P_\theta -c_1\big)(\ilN \ue)^2 \\ & +\big(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\big)\Delta_T\ue\ilN \ue \Big\}=S, \end{aligned} \end{equation}
\begin{equation} \begin{aligned} (|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{ c_1|D^2\ue|^2+c_2|D_T|D\ue||^2 + R\Big\}=S \end{aligned} \end{equation}
\begin{align*} R &:= (c_3-c_1)(\Delta_T\ue)^2 +\big((c_3+c_4)P_\theta-c_1\big)(\ilN \ue)^2 \\ & +\big(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\big)\Delta_T\ue\ilN \ue \end{align*}
\begin{align*} \begin{cases} N_{11}&=c_2-c_1\\ N_{12}=N_{21}&= \tfrac{1}{2}\big(c_3P_\theta+(c_3+c_4) -(2c_1+c_2)\big)\\ N_{22}&=(c_3+c_4)P_\theta-c_1. \end{cases} \end{align*}
\begin{align*} \|N\|_{L^\infty(\Omega_T)} :=\sup\{|N(x,t)|:(x,t)\in \Omega_T\} \end{align*}
\begin{align*} S=w_1GD_1(p-2+s)+w_2GD_2(p-2+s)+\epsilon w_3GD_1(p-4+s)+\epsilon w_4GD_2(p-4+s) \end{align*}
\begin{equation} \begin{aligned} S &= (|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{ c_1|D^2\ue|^2+c_2|D_T|D\ue||^2+\la \bar{x},N\bar{x}\ra \Big\} \end{aligned} \end{equation}
\begin{align*} \big(M+\lambda(N-M)\big)_{11} =M_{11}+\lambda(N_{11}-M_{11}) \geq c-\lambda(\|N\|_{L^{\infty}(\Omega_T)}+\|M\|_{L^\infty(\Omega_T)}), \end{align*}
\begin{align*} \operatorname{det}\big(M+\lambda(N-M)\big) &= \operatorname{det}(M) +\lambda\big(M_{11}N_{22}+M_{22}N_{11}-2M_{12}N_{12}-2\det(M)\big) \\ & +\lambda^2\operatorname{det}(N-M) \\ &\geq c-2\lambda\left(2\|M\|_{L^\infty(\Omega_T)}\|N\|_{L^\infty(\Omega_T)}+\|M\|_{L^\infty(\Omega_T)}^2\right)-\lambda^2\|N-M\|_{L^\infty(\Omega_T)}^2 \\ &\geq c-4\lambda\left(\|M\|_{L^\infty(\Omega_T)}+\|N\|_{L^\infty(\Omega_T)}\right)^2. \end{align*}
\begin{equation} \begin{aligned} \int_{Q_r}&\abs{D\big((|D\ue|^2+\epsilon)^{\frac{p-2+s}{4}}D\ue\big)}^2dxdt\\ \leq& \frac{C}{r^2}\Big( \int_{Q_{2r}}(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}}|D\ue|^2dxdt +\int_{Q_{2r}}(|D\ue|^2+\epsilon)^{\frac{p+s-\gamma}{2}}dxdt\Big) \\ &+\epsilon\Big(\frac{C}{r^2}\int_{Q_{2r}}\big|\ln(|D\ue|^2+\epsilon)\big|dxdt +C\int_{B_{2r}}\big|\ln(|D\ue(x,t_0)|^2+\epsilon)\big|dx\Big) \end{aligned} \end{equation}
\begin{equation} u_t-|Du|^{\gamma}\big(\Delta u+(p-2)\ilN u\big)=0, \end{equation}
\begin{equation} S=w_1GD_1(p-2+s)+w_2GD_2(p-2+s) \end{equation}
\begin{equation} \begin{aligned} |Du|^{p-2+s}& \Big\{ w_1|D^2u|^2+w_1(p-2+s)|D_T|Du||^2+(w_2-w_1)(\Delta_T u)^2 \\ & +\big(w_2(p-1)(p-1+s-\gamma)-w_1\big)(\ilN u)^2 \\ & +\big(w_2(2p-2+s-\gamma)-w_1(p+s)\big)\Delta_Tu\ilN u \Big\}=S. \end{aligned} \end{equation}
\begin{align*} Q: &= \Big(w_2- \frac{n-2}{n-1} w_1\Big)(\Delta_T u)^2 +w_2(p-1)(p-1+s-\gamma)(\ilN u)^2 \\ & +\big(w_2(2p-2+s-\gamma)-w_1(p+s)\big)\Delta_Tu\ilN u. \end{align*}
\begin{align*} D\varphi (x_0,t_0)=Du(x_0,t_0)\neq 0, \phi_t(x_0,t_0)=u_t(x_0,t_0)=0 \end{align*}
\begin{align*} \vp_t(x_0,t_0)=C>0. \end{align*}
\begin{align*} \phi(x,t)=u(x_0,t_0)+\vp_t(x_0,t_0)(t-t_0)+f(\abs x)+\sigma(t-t_0) \end{align*}
\begin{align} \lim_{y\to 0,y\neq 0}F\big(Dg(y),D^2g(y)\big)=0. \end{align}
\begin{align} \phi_t(x,t_0)-F\big(D\phi(x,t_0),D^2\phi(x,t_0)\big)=\vp_t(x_0,t_0)-F\big(Dg(x),D^2g(x)\big)>0. \end{align}
\begin{equation} \begin{aligned} \phi_t(x,t_0)-F\big(D\phi(x,t_0),D^2\phi(x,t_0)\big) &=\vp_t(x_0,t_0)-F\big(Dg(x),D^2g(x)\big) \\ &=u_t(x,t_0)-F\big(Dg(x),D^2g(x)\big) \\ &\le u_t(x,t_0)-F\big(Du(x,t_0),D^2u(x,t_0)\big)=0, \end{aligned} \end{equation}
\begin{align*} \left|D(|Du|^{\frac{p-2+s}2}Du)\right| &=\frac{1}{2}\alpha^{\frac{p+s}{2}}(\alpha-1)(p+s)|x_1|^{\frac{(\alpha-1)(p+s)}{2}-1}\\ &=C(p,s,\gamma)|x_1|^{\frac{ p+s }{2(\gamma+1)}-1}. \end{align*}
\begin{equation} \begin{aligned} &(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{|D^2\ue|^2+(p-2+s)\frac{|D^2\ue D\ue|^2}{|D\ue|^2+\epsilon} +s(p-2)\frac{(\il \ue)^2}{(|D\ue|^2+\epsilon)^2} \\ & +(p-2-\gamma)(|D\ue|^2+\epsilon)^{- {\gamma}/{2}}\ue_t\frac{\il \ue}{|D\ue|^2+\epsilon} \Big\} \\ &= \diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}}AD^2\ue D\ue \big) -\frac{\big((|D\ue |^2+\epsilon)^{\frac{p+s-\gamma}{2}}\big)_t}{p+s-\gamma}, \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{1+(p-2+s)\theta+s(p-2)\theta^2 \\ & +(p-2-\gamma)\big((p-2)\theta+1\big)\theta\Big\}|D^2\ue|^2 \\ &= \diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}}(D^2\ue D\ue-\Delta\ue D\ue) \big) \\ & +\ue_t\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}}D\ue\big). \end{aligned} \end{equation}
\begin{equation} \ue_t-(|D\ue|^2+\epsilon)^{\gamma/2}\Big(\Delta\ue+(p-2)\frac{\il\ue}{|D\ue|^2+\epsilon}\Big)=0 \end{equation}
\begin{align} S= w_1\diverg (D^2\ue D\ue-\Delta \ue D\ue) +w_2\ue_t\diverg\big((|D\ue|^2+\ez)^{-\frac{\gamma}{2}}D\ue\big), \end{align}
\begin{equation} \begin{aligned} \int_{Q_r}|D^2\ue|^2dxdt &\leq \frac{C}{r^2}\Big( \int_{Q_{2r}}|D\ue|^2dxdt +\int_{Q_{2r}}(|D\ue|^2+\epsilon)^{\frac{2-\gamma}{2}}dxdt\Big) \\ & +\epsilon\Big(\frac{C}{r^2}\int_{Q_{2r}}\big|\ln(|D\ue|^2+\epsilon)\big|dxdt +C\int_{B_{2r}}\big|\ln(|D\ue(x,t_0)|^2+\epsilon)\big|dx \Big) \end{aligned} \end{equation}
\begin{align} S&=w_1GD_1(p-2+s)+w_2GD_2(p-2+s)+\epsilon w_3GD_1(p-4+s)+\epsilon w_4GD_2(p-4+s)\nonumber\\ &=w_1GD_1(0)+w_2GD_2(0)+w_3\epsilon GD_1(-2)+w_4\epsilon GD_2(-2), \end{align}
\begin{equation} \begin{aligned} \begin{cases} w_1= p-\gamma -2\sqrt{(p-1)(1-\gamma)} +\eta, &w_2=2, \\ w_3=0, &w_4=0, \end{cases} \end{aligned} \end{equation}
\begin{equation} \begin{aligned} \begin{cases} w_1=p-\gamma, &w_2=2 \\ w_3=4-p+\gamma,&w_4=2, \end{cases} \end{aligned} \end{equation}
\begin{align} S &= c_1|D^2\ue|^2+c_2|D_T|D\ue||^2+(c_3-c_1)(\Delta_T \ue)^2+\big((c_3+c_4)P_\theta-c_1\big) (\ilN \ue)^2\nonumber\\ & +\big(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\big)\Delta_T \ue \ilN \ue. \end{align}
\begin{align} \begin{cases} c_1=w_1+w_3\kappa, &c_2=-2w_3\theta\kappa, \\ c_3=w_2+w_4\kappa, &c_4=-(w_2\gamma+w_4\kappa(2+\gamma))\theta, \end{cases} \end{align}
\begin{equation} \begin{aligned} S=&c_1\big(2|D_T|D\ue| |^2 + (\Delta_T \ue)^2 +(\ilN \ue )^2\big)+c_2|D_T|D\ue||^2+(c_3-c_1)(\Delta_T \ue)^2\\ &+\big((c_3+c_4)P_\theta-c_1\big) (\ilN \ue)^2 +\big(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\big)\Delta_T \ue \ilN \ue\\ =&(2c_1 +c_2)|D_T|D\ue||^2+Q. \end{aligned} \end{equation}
\begin{equation} \begin{aligned} Q=c_3 (\Delta_T \ue )^2+ (c_3+c_4)P_\theta (\ilN \ue)^2 +\big(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\big) \Delta_T \ue \ilN \ue, \end{aligned} \end{equation}
\begin{align} 2c_1+c_2=2(w_1+w_3\kappa)-2w_3\theta\kappa\geq c \end{align}
\begin{align} c_3=w_2+w_4\kappa\geq c, \end{align}
\begin{align} \det(M)=c_3(c_3+c_4)P_\theta-\frac{\big(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\big)^2}{4}\geq c \end{align}
\begin{align*} \begin{cases} c_1=w_1, &c_2=0,\\ c_3=w_2, &c_4=-w_2\gamma\theta. \end{cases} \end{align*}
\begin{equation} \begin{aligned} S=2w_1|D_T|D\ue||^2+ w_2(\Delta_T \ue )^2+w_2 P_\theta R_\theta(\ilN \ue)^2+\big(w_2(P_\theta+R_\theta)-2w_1\big)\Delta_T \ue \ilN \ue, \end{aligned} \end{equation}
\begin{equation} \begin{aligned} S=&2w_1|D_T|D\ue||^2+ 2\Big((\Delta_T \ue )^2+ P_\theta R_\theta(\ilN \ue)^2+( P_\theta+R_\theta -w_1)\Delta_T \ue \ilN \ue\Big)\\ =& 2w_1|D_T|D\ue||^2+Q, \end{aligned} \end{equation}
\begin{align*} X_1^\prime(\theta) =&p-2-\gamma-\frac{(p-2) R_\theta-\gamma P_\theta }{\sqrt{P_\theta R_\theta}}\\ =&\frac{(\sqrt{P_\theta}-\sqrt{R_\theta})\big((p-2)\sqrt{R_\theta}+\gamma\sqrt{P_\theta}\big)}{ \sqrt{P_\theta R_\theta }}. \end{align*}
\begin{align*} \sup_\theta X_1 (\theta)& =\max\{X_1 (0), X_1 (1)\}\\ &=\max\Big\{0, \big(\sqrt{p-1}-\sqrt{1-\gamma}\big)^2 \Big\}\\ &= \big(\sqrt{p-1}-\sqrt{1-\gamma}\big)^2. \end{align*}
\begin{align*} \inf_\theta X_2(\theta)& =\min\Big\{X_2(0),X_2\Big(\frac{p-2-\gamma}{(p-2)\gamma}\Big), X_2(1)\Big\}\\ &=\min\Big\{4, \frac{p-2}{\gamma}+\frac{\gamma}{p-2}+2,\big(\sqrt{p-1}+\sqrt{1-\gamma}\big)^2 \Big\}\\ &=\min\Big\{4, \big(\sqrt{p-1}+\sqrt{1-\gamma}\big)^2 \Big\}. \end{align*}
\begin{align*} w_1=\big(\sqrt{p-1}-\sqrt{1-\gamma}\big)^2+\eta. \end{align*}
\begin{align} \begin{cases} 2c_1+c_2&=2(w_1+w_3\kappa)-2w_3\theta\kappa\geq c,\\ c_3&=w_2+w_4\kappa\geq c,\\ \det(M)&=c_3(c_3+c_4)P_\theta-\frac{\left(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\right)^2}{4}\geq c \end{cases} \end{align}
\begin{align*} Q=c_3 (\Delta_T \ue )^2+ (c_3+c_4)P_\theta (\ilN \ue)^2 +\big(c_3P_\theta+(c_3+c_4)-(2c_1+c_2)\big) \Delta_T \ue \ilN \ue. \end{align*}
\begin{align} \begin{cases} w_1 =p-\gamma, &w_2=2, \\ w_3 =4-p+\gamma, &w_4=2, \end{cases} \end{align}
\begin{align} \begin{cases} 2c_1+c_2&=2(w_1+w_3\kappa)-2w_3\theta\kappa\geq c,\\ c_3&=w_2+w_4\kappa\geq c,\\ c_3+c_4&=w_2+w_4\kappa-\big(w_2\gamma+w_4\kappa(2+\gamma)\big)\theta\geq c \end{cases} \end{align}
\begin{align*} 2c_1+c_2 =&2(p-\gamma)+2(4-p+\gamma)\kappa^2. \end{align*}
\begin{equation} \begin{aligned} 2c_1+c_2\geq\min\{2(p-\gamma), 8\}>0. \end{aligned} \end{equation}
\begin{align} c_3=2+2\kappa\geq2>0. \end{align}
\begin{align*} c_3+c_4 =&2(1-\gamma)-2\kappa+2(2+\gamma)\kappa^2. \end{align*}
\begin{align} c_3+c_4=2(1-\gamma)-\frac{1}{2(2+\gamma)}>0 \end{align}
\begin{align} u_t-|Du|^{\gamma}\big(\Delta u+(p-2)\Delta_\infty^Nu\big)=0. \end{align}
\begin{equation} \begin{cases} \begin{aligned} \ue_t-(|D\ue|^2+\epsilon)^{\gamma/2}\Big(\Delta\ue+(p-2)\frac{\il\ue}{|D\ue|^2+\epsilon}\Big)=0 \quad&\text{in } U_{t_1,t_2};\\ \ue=u \quad&\text{on } \partial_pU_{t_1,t_2}, \end{aligned} \end{cases} \end{equation}
\begin{equation} \begin{aligned} \int_{Q_r}|D^2\ue|^2dxdt &\leq \frac{C}{r^2}\Big( \int_{Q_{2r}}|D\ue|^2dxdt +\int_{Q_{2r}}(|D\ue|^2+\epsilon)^{\frac{2-\gamma}{2}}dxdt\Big) \\ & +\epsilon\Big(\frac{C}{r^2}\int_{Q_{2r}}\big|\ln(|D\ue|^2+\epsilon)\big|dxdt \\ & +C\int_{B_{2r}}\big|\ln\big(|D\ue(x,t_0)|^2+\epsilon\big)\big|dx \Big) \end{aligned} \end{equation}
\begin{equation} \begin{cases} \begin{aligned} \bar{u}_t-|D\bar{u}|^\gamma\big(\Delta\bar{u}+(p-2)\ilN\bar{u}\big)=0 \quad&\text{in } U_{t_1,t_2};\\ \bar{u}=u \quad&\text{on } \partial_pU_{t_1,t_2}. \end{aligned} \end{cases} \end{equation}
\begin{align*} \int_{Q_{r}}|D^2u|^2dxdt &\leq \liminf_{\epsilon\to 0}\int_{Q_{r}}|D^2\ue|^2dxdt \\ &\leq \liminf_{\epsilon\to 0} \Bigg(\frac{C}{r^2}\Big(\int_{Q_{2r}} |D\ue|^2 dxdt +\int_{Q_{2r}}(|D\ue|^2+\epsilon)^{\frac{2-\gamma}{2}}dxdt\Big) \\ & +\epsilon\Big(\frac{C}{r^2}\int_{Q_{2r}}\big|\ln(|D\ue|^2+\epsilon)\big|dxdt +C\int_{B_{2r}}\big|\ln\big(|D\ue(x,t_0)|^2+\epsilon\big)\big|dx \Big)\Bigg) \\ &= \frac{C}{r^2}\Big(\int_{Q_{2r}}|Du|^2 dxdt +\int_{Q_{2r}}|Du|^{2-\gamma} dxdt\Big), \end{align*}
\begin{align*} \abs{\ue_t}=& \abs{ (|D\ue|^2+\epsilon)^{\gamma/2}\Big(\Delta\ue+(p-2)\frac{\il\ue}{|D\ue|^2+\epsilon}\Big)}\nonumber\\ \leq& (|D\ue|^2+\epsilon)^{\gamma/2}(\abs{\Delta\ue}+\abs{p-2}\abs{D^2\ue} )\nonumber\\ \leq & (p+2)(|D\ue|^2+\epsilon)^{\gamma/2}\abs{D^2\ue}. \end{align*}
\begin{equation} \begin{aligned} \int_{Q_r}&\abs{D\big((|Du|^2+\epsilon)^{\frac{p-2+s}{4}}Du\big)}^2dxdt\\ \leq& \frac{C}{r^2}\Big( \int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-2+s}{2}}|Du|^2dxdt +\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p+s-\gamma}{2}}dxdt\Big) \\ &+\epsilon\Big(\frac{C}{r^2}\int_{Q_{2r}}\abs{\ln(|Du|^2+\epsilon)}dxdt +C\int_{B_{2r}}\abs{\ln\big(|Du(x,t_0)|^2+\epsilon\big)}dx \Big) \end{aligned} \end{equation}
\begin{equation} \begin{aligned} \lambda(|Du|^2+&\epsilon)^{\frac{p-2+s}{2}}|D^2u|^2\\ &\leq w_1\diverg\big((|Du|^2+\epsilon)^{\frac{p-2+s}{2}}(D^2uDu-\Delta uDu)\big) \\ & +w_2 \diverg\big(u_t(|Du|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}} Du\big) -w_2\Big(\frac{(|Du|^2+\epsilon)^{\frac{p+s-\gamma}{2}}}{p+s-\gamma}\Big)_t \\ & +\epsilon w_3\diverg\big((|Du|^2+\epsilon)^{\frac{p-4+s}{2}}(D^2uDu-\Delta uDu)\big) \\ & +\epsilon w_4 \diverg\big(u_t(|Du|^2+\epsilon)^{\frac{p-4+s-\gamma}{2}} Du\big) -\epsilon w_4\Big(\frac{(|Du|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}}}{p-2+s-\gamma}\Big)_t. \end{aligned} \end{equation}
\begin{equation} \begin{aligned} \lambda\int_{Q_{2r}}(|Du|^2+&\epsilon)^{\frac{p-2+s}{2}}|D^2u|^2\phi^2dxdt \\ &\leq -2w_1\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-2+s}{2}}\la D^2uDu-\Delta uDu,D\phi\ra \phi dxdt \\ & -2w_2\int_{Q_{2r}} u_t(|Du|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}} \la Du,D\phi\ra\phi dxdt \\ & +\frac{2w_2}{p+s-\gamma}\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p+s-\gamma}{2}}\phi_t\phi dxdt \\ & -2\epsilon w_3\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-4+s}{2}}\la D^2uDu-\Delta uDu,D\phi\ra \phi dxdt \\ & -2\epsilon w_4 \int_{Q_{2r}}u_t(|Du|^2+\epsilon)^{\frac{p-4+s-\gamma}{2}}\la Du,D\phi\ra\phi dxdt \\ & +\frac{2\epsilon w_4}{p-2+s-\gamma}\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}}\phi_t\phi dxdt. \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &\lambda\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-2+s}{2}}|D^2u|^2\phi^2dxdt \\ &\leq C\Big(\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-2+s}{2}}|D^2u||Du||D\phi|\phi dxdt \\ & +\int_{Q_{2r}} |u_t|(|Du|^2+\epsilon)^{\frac{p-2+s-\gamma}{2}}|Du||D\phi|\phi dxdt \\ & +\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p+s-\gamma}{2}}|\phi_t|\phi dxdt\Big), \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &(\lambda-2\eta)\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-2+s}{2}}|D^2u|^2\phi^2dxdt \\ &\leq \frac{C}{\eta}\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p-2+s}{2}}|Du|^2|D\phi|^2dxdt +C\int_{Q_{2r}}(|Du|^2+\epsilon)^{\frac{p+s-\gamma}{2}}|\phi_t|\phi dxdt, \end{aligned} \end{equation}
\begin{equation} (|Du|^2+\epsilon)^{-\gamma/2}|u_t| =\abs{\Delta u+(p-2)\frac{\il u}{|Du|^2+\epsilon}}\leq C|D^2u| \end{equation}
\begin{equation} \begin{aligned} &\lambda\int_{Q_{2r}}(|Du|^2+\epsilon)^{\gamma/2}|D^2u|^2\phi^2dxdt \\ &\leq C\Big(\int_{Q_{2r}}(|Du|^2+\epsilon)^{\gamma/2}|D^2u||Du||D\phi|\phi dxdt +\int_{Q_{2r}} |u_t||Du||D\phi|\phi dxdt \\ & +\int_{Q_{2r}}(|Du|^2+\epsilon)|\phi_t|\phi dxdt +\epsilon\int_{Q_{2r}}\big|\ln(|Du|^2+\epsilon)\big||\phi_t|\phi dxdt \\ & +\epsilon\int_{B_{2r}}\abs{\ln\big(|Du(x,t_0)|^2+\epsilon\big)}\phi^2(x,t_0)dx \Big), \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &(\lambda-2\eta)\int_{Q_{2r}}(|Du|^2+\epsilon)^{\gamma/2}|D^2u|^2\phi^2dxdt \\ &\leq \frac{C}{\eta}\int_{Q_{2r}}(|Du|^2+\epsilon)^{\gamma/2}|Du|^2|D\phi|^2dxdt +C\Big(\int_{Q_{2r}}(|Du|^2+\epsilon)|\phi_t|\phi dxdt \\ & +\epsilon\int_{Q_{2r}}\big|\ln(|Du|^2+\epsilon)\big||\phi_t|\phi dxdt +\epsilon\int_{B_{2r}}\big|\ln\big(|Du(x,t_0)|^2+\epsilon\big)\big|\phi^2(x,t_0)dx \Big) \end{aligned} \end{equation}
\begin{align*} Q &= \Big(w_2-\frac{n-2}{n-1}w_1\Big)(\Delta_T u)^2 +w_2(p-1)(p-1+s-\gamma)(\ilN u)^2 \\ & +\big(w_2(2p-2+s-\gamma)-w_1(p+s)\big)\Delta_Tu\ilN u. \end{align*}
\begin{equation} P:=p-1\quad\text{and}K:=\gamma+1, \end{equation}
\begin{equation} G:=p-1+s-\gamma\quad\text{and}E:=s+1+\frac{p-1}{n-1}. \end{equation}
\begin{align*} \operatorname{det}(M) =a\Big(w_2-\frac{n-2}{n-1}\Big)^2+b\Big(w_2-\frac{n-2}{n-1}\Big)+c \end{align*}
\begin{align} a=-\frac{1}{4}(G-P)^2, b=P\cdot E+\frac{1}{2}(G-P)\Big(\frac{G}{n-1}+K-\frac{(n-2)P}{n-1}\Big) \nonumber \end{align}
\begin{align*} b^2-4ac=G\cdot P\cdot E\Big(\frac{G}{n-1}+K\Big). \end{align*}