latex_formula
stringlengths
6
4.11M
\begin{equation} \tilde{d}\circ U= U\circ d\ . \end{equation}
\begin{equation} \tilde d^*=(-1)^{ni+1}*\tilde d*. \end{equation}
\begin{align} \langle \sum_I(\Delta \omega_I) dx^I;\sum_I\omega_Idx^I \rangle=&\sum_{\mu\in \Z^n}\sum_I (\Delta \omega_I(\mu)) \overline{\omega_I(\mu) }\nonumber\\ =&\sum_{\mu\in \Z^n}\sum_I \sum_{\alpha=1}^n((\mathcal{D}_{\alpha}^2\omega_I)(\mu-e_\alpha))\overline{\omega_I(\mu)}\nonumber\\ =&\sum_{\mu\in \Z^n}\sum_I \sum_{\alpha=1}^n| \mathcal{D}_{\alpha}\omega_I (\mu)|^2\ . \end{align}
\begin{align} \langle (\tilde d\tilde d^*)\omega, \omega \rangle &= \langle \tilde d*\omega;\tilde d*\omega\rangle\nonumber\\ &=\langle \tilde d\sum_I{\rm sign}(IJ_I) \omega_Idx^J;\tilde d\sum_I{\rm sign}(IJ_I) \omega_Idx^{J_I}\rangle\nonumber\\ &=\langle \sum_I{\rm sign}(IJ_I) \sum_{\alpha=1}^n{ \mathcal D_{\alpha}\omega_I}dx^\alpha\wedge dx^{J_I};\sum_I{\rm sign}(IJ_I) \sum_{\alpha=1}^n{ \mathcal D_{\alpha}\omega_I}dx^\alpha\wedge dx^{J_I}\rangle\nonumber\\ &=\sum_{\mu\in \Z^n}\sum_I\sum_{\substack{\alpha\neq J_I(i)\\ j+1\leq i\leq n}}| \mathcal D_{\alpha}\omega_I (\mu)|^2\nonumber\\ &=\sum_{\mu\in \Z^n}\sum_I\sum_{i=1}^j| \mathcal{D}_{I(i)}\omega_I (\mu)|^2. \end{align}
\begin{align} \langle (\tilde d^*\tilde d)\omega, \omega \rangle &= \langle \tilde d\omega;\tilde d\omega\rangle\nonumber\\ &=\langle \sum_I\sum_{\alpha=1}^n{ \mathcal D_{\alpha}\omega_I}dx^\alpha\wedge dx^J;\sum_I\sum_{\alpha=1}^n{ \mathcal D_{\alpha}\omega_I}dx^\alpha\wedge dx^J\rangle\nonumber\\ &=\sum_{\mu\in \Z^n}\sum_I\sum_{\substack{\alpha\neq I(i)\\ 1\leq i\leq j}}| \mathcal D_{\alpha}\omega_I (\mu)|^2\nonumber\\ &=\sum_{\mu\in \Z^n}\sum_I\sum_{i=j+1}^n| \mathcal{D}_{J_I(i)}\omega_I (\mu)|^2. \end{align}
\begin{align*} \langle \omega, \eta\rangle_{\ell^2( h\Z^n;\bigwedge^{j}(h \Z^n))}&=\frac1{h^{2j}}\sum_{\mu\in h\Z^n;I\in P^{j,n}_+}\omega_I(\mu)\overline{\eta}_I(\mu), \\ \langle f, g\rangle_{\ell^2\Big(h\Z^n;\C^{\binom{n}{j}}\Big)}&=\sum_{\mu\in h\Z^n;1\leq l\leq \binom{n}{j} }f_l(\mu)\overline{g}_l(\mu). \end{align*}
\begin{align*} I(i)=&I'(i),i<l,\\ I(l)<&I'(l). \end{align*}
\begin{equation} (\tilde U_{j,h} \omega)_{l}(\mu):=\frac1{h^{{j}}}\omega_{I^j_l}(\mu),1\leq l \leq \binom{n}{j}. \end{equation}
\begin{equation} (\tilde{U}_{j,h}^* f)(\mu):=h^{j}\sum_{l=1}^{\binom{n}{j}} f_l(\mu)dx^{I^j_l} \end{equation}
\begin{align*} a_{h,l}(\xi):=\frac{(-1+e^{-2\pi ih\xi_l})}h,1\leq l \leq n. \end{align*}
\begin{align*} (\tilde d_{j,h}\tilde U_{j,h}^* f)(\mu)&=h^{j}\sum_l^{\binom{n}{j}} (\tilde d_{0,h} f_{j,l})(\mu)\wedge dx^{I^j_l}\\ &=h^{j}\sum_l^{\binom{n}{j}} \sum_{\alpha=1}^n {(f_{j,l}(\mu+h\delta_\alpha)-f_{j,l}(\mu))}dx^\alpha\wedge dx^{I^j_l}\\ &=h^{j}\sum_{1\leq \tilde l\leq {\binom{n}{j}}} \left(\sum_{\substack{ \alpha,l \\ dx^\alpha\wedge dx^{I^j_l}=(\pm)dx^{ I^{j+1}_{\tilde l}} }} {(f_{j,l}(\mu+h\delta_\alpha)-f_{j,l}(\mu))}\right) (\pm)dx^{ I^{j+1}_{\tilde l}}. \end{align*}
\begin{align} (F H_h F^*-z)^{-1}(\xi) &=\frac{1}{r_z(\xi)} FH_hF^*+\frac{z}{r_z(\xi)} \end{align}
\begin{equation} (\mathcal{F} H \mathcal{F}^*-z)^{-1}(\xi)=\frac{1}{R_z(\xi)}\mathcal{F} H \mathcal{F}^*+\frac{z}{R_z(\xi)} \end{equation}
\begin{align} &\sum_{\mu\in\Z^n}|\hat{\varphi}(\xi+\mu)|^2=1,\xi\in\R^n,\\ &{\rm supp}(\hat{\varphi})\subset (-1,1)^n. \end{align}
\begin{align*} \left(1-Q_h^*Q_h\right)g(\xi)&=g(\xi)-\sum_{\mu\in\{0,\pm1\}^n} \hat{\varphi}(h\xi)\overline{\hat{\varphi}(h\xi+\mu)}g(\xi+h^{-1}\mu)\\ &=(1-|\hat\varphi(h\xi)|^2)g(\xi)-\sum_{0\neq\mu\in\{0,\pm1\}^n} \hat{\varphi}(h\xi)\overline{\hat{\varphi}(h\xi+\mu)}g(\xi+h^{-1}\mu). \end{align*}
\begin{equation} \left(Q_h^* \dfrac{a_l}{r_z} Q_h -Q_h^*Q_h\dfrac{A_l}{R_z} \right)\psi=\sum_{\mu\in\{0,\pm1\}^n} \hat{\varphi}(h\xi)\overline{\hat{\varphi}(h\xi+\mu)}\mathcal B_h(\xi+h^{-1}\mu)\psi(\xi+h^{-1}\mu), \end{equation}
\begin{align*} \prescript{}{i_0}{(\hat{s}^*})(i)=&\begin{cases} \hat{s}^*(i)&i<i_0\\ \hat{s}^*(i+1)& i_0\leq i \end{cases}\\ =&\begin{cases} \hat{s}(j-i+1)&i<i_0\\ \hat{s}(j-i)& i_0\leq i \end{cases} \end{align*}
\begin{align*} (\prescript{}{j-i_0+1}{\hat{s}})^*(i)=&\prescript{}{j-i_0+1}{\hat{s}}(j-i)\\ =&\begin{cases} \hat{s}(j-i)&j-i<j-i_0+1\\ \hat{s}(j-i+1)& j-i_0+1\leq j- i \end{cases}\\ =&\begin{cases} \hat{s}(j-i)& i_0\leq i\\ \hat{s}(j-i+1)&i<i_0 \end{cases} \end{align*}
\begin{align*} \prescript{}{i_1}{(\prescript{}{i_0}{\hat{s}})}(i)=&\begin{cases} \prescript{}{i_0}{\hat{s}}(i)&i<i_1\\ \prescript{}{i_0}{\hat{s}}(i+1)& i_1\leq i \end{cases}\\ =&\begin{cases} \hat{s}(i)&i<i_1\\ \hat{s}(i+1)&i_1\leq i\leq i_0-2\\ \hat{s}(i+2)&i_0-1\leq i \end{cases} \end{align*}
\begin{align*} \prescript{}{i_0-1}{(\prescript{}{i_1}{\hat{s}})}(i) =&\begin{cases} \prescript{}{i_1}{\hat{s}}(i)&i<i_0-1\\ \prescript{}{i_1}{\hat{s}}(i+1)& i_0-1\leq i \end{cases} \end{align*}
\begin{align*} \partial (\overline{s}) =&\cup_{i=1}^j \{(-1)^{j-i} (\lfloor \overline{s} \rfloor;\prescript{}{i}{(\hat{s}^*)}) \}\bigcup\cup_{i=1}^j\{(-1)^{i} (\lceil \overline{s} \rceil;(\prescript{}{i}{(\hat{s}^*)})^*) \}\\ =&\cup_{i=1}^j \{(-1)^{j-i} (\lceil s \rceil\lfloor ;(\prescript{}{j-i+1}{\hat{s}})^*) \}\bigcup\cup_{i=1}^j\{(-1)^{i} (\lfloor s \rfloor;\prescript{}{j-i+1}{\hat{s}}) \}\\ =&\cup_{m=1}^j \{(-1)^{m-1} (\lceil s \rceil\lfloor ;(\prescript{}{m}{\hat{s}})^*) \}\bigcup\cup_{m=1}^j\{(-1)^{j-m+1} (\lfloor s \rfloor;\prescript{}{m}{\hat{s}}) \}\\ =&\cup_{m=1}^j \overline{\{(-1)^{m} (\lceil s \rceil\lfloor ;(\prescript{}{m}{\hat{s}})^*) \}}\bigcup\cup_{m=1}^j\overline{\{(-1)^{j-m} (\lfloor s \rfloor;\prescript{}{m}{\hat{s}}) \}}=\overline{\partial(s)}\ . \end{align*}
\begin{align*} B_l(A_i)(s)=B_l((-1)^{j-i}(\lfloor s \rfloor ; \prescript{}{i}{\hat{s}})=&B_l((\lceil s \rceil-\delta_i ; (\prescript{}{i}{\hat{s}})^*)\\ =&(-1)^{l}(\lfloor s \rfloor ; (\prescript{}{l}{((\prescript{}{i}{\hat{s}})^*}))^*)\\ =&(\lfloor s \rfloor ; \prescript{}{j-l}{(\prescript{}{i}{\hat{s}})})= \begin{cases}(\lfloor s \rfloor ; \prescript{}{j-l}{(\prescript{}{i}{\hat{s}})}) &\text{ if }j-l<i\\ (\lfloor s \rfloor ; \prescript{}{i}{(\prescript{}{j-l+1}{\hat{s}})}) &\text{ if }i\leq j-l \end{cases}\ . \end{align*}
\begin{equation} (\om+\ddc\f)^n=\mu\tag{MA} \end{equation}
\[ \MA_\om(\f):=\tfrac1{[\om]^n}(\om+\ddc\f)^n. \]
\begin{equation} \MA_\om(\f_w)=\d_w,\f_w(w)=0\tag{$\star$} \end{equation}
\[ \f_\Sigma:=\sup\{\f\in\CPSH(Y,\theta)\mid \f|_\Sigma\le 0\}. \]
\[ \MA_\om(\pi^\star\f)=\sigma_\star\MA_\theta(\f). \]
\[ Z_Y(\f):=c_Y\{\f<\sup\f\}, \]
\[ \te(\Sigma):=\sup\f_\Sigma \]
\begin{equation} \B_-(\theta)=\bigcup_{\e\in\Q_{>0}}\B_+(\theta+\e\om) \end{equation}
\begin{align*} \theta\in\Psef(X) & \Leftrightarrow \B_-(\theta)\ne X;\\ \theta\in\Nef(X) & \Leftrightarrow \B_-(\theta)=\emptyset;\\ \theta\in\Mov(X) &\Leftrightarrow \codim\B_-(\theta)\ge 2. \end{align*}
\begin{equation} \PSH(\pi^\star\theta)=\pi^\star\PSH(\theta); \end{equation}
\begin{equation} \hf^\la:=\inf_{t>0}\{t\cdot\f-t\la\} \end{equation}
\begin{equation} \f=\sup_{\la\le\sup\f}\{\hf^\la+\la\}. \end{equation}
\begin{equation} \hf^{\max}(v)=\lim_{t\to 0_+}\frac{\f(tv)-\f(v_\triv)}{t} \end{equation}
\begin{equation} \f=\sup_{\la\le\la_{\max}}\{\p_{B_\la}+\la\},\p_{B_\la}=\hf^\la. \end{equation}
\begin{equation} Z_X(S):=\bigcup_{v\in S} Z_X(v). \end{equation}
\[ Z_X(\f):=Z_X(\{\f<\sup\f\}). \]
\begin{equation} V_\theta:=\sup\left\{\f\in\PSH(\theta)\mid\f\le 0\right\}. \end{equation}
\begin{equation} v(\theta):=-V_\theta(v)=\inf\{-\f(v)\mid\f\in\PSH(\theta),\,\f\le 0\}\in\R_{\ge 0}. \end{equation}
\begin{equation} v(\theta)=\sup_{\e>0} v(\theta+\e\om) \end{equation}
\begin{align*} v(\|L\|) : & =\lim_{m\to\infty}\tfrac{1}{m}\min\left\{v(s)\mid s\in\Hnot(X,mL)\setminus\{0\}\right\}\\ & =\inf\left\{v(D)\mid D\sim_\Q L\text{ effective }\Q{-divisor}\right\}. \end{align*}
\[ \Nz(\pi^\star\theta)=\Nz(\theta) \quad\text{and} \env(\pi^\star\theta)=\env(\theta) \]
\begin{equation} \Nz_X(\theta)=\sum_{E\subset X} \ord_E(\theta) E \end{equation}
\begin{equation} \Nz_X(D):=\Nz_X([D])\le D. \end{equation}
\begin{equation} \f_\Sigma=\f_{\om,\Sigma}:=\sup\{\f\in\PSH(\om)\mid \f|_{\Sigma}\le 0\}. \end{equation}
\begin{equation} \|\mu\|=\sup_{\f\in\cE^1(\om)}\left(\en(\f)-\int\f\,\mu\right)\in [0,+\infty], \end{equation}
\begin{equation} \pi^\star\hf^\la_\Sigma =\sup\{\tau\in\PSH_\hom(\pi^\star\om-\la D)\}-\la\p_D=V_{\pi^\star\om-\la D}-\la\p_D. \end{equation}
\[ Z_X(\f_\Sigma) =Z_X(\hf_\Sigma^{\max}) =\pi(Z_Y(\pi^*\hf_\Sigma^{\max})). \]
\[ \pi^\star\hf^{\max}_\Sigma=V_{\pi^\star\om-\la_\psef D}-\la_\psef\p_D. \]
\[ X^{\mathrm{qm}}:=\bigcup_\cX\D_\cX\subset X^\an \]
\begin{equation} \PL(X)=\bigcup_\cX p_\cX^\star\PL(\D_\cX). \end{equation}
\begin{equation} \RPL(X)=\bigcup_\cX p_\cX^\star\RPL(\D_\cX), \end{equation}
\begin{equation} \sup_X\f=\max_{\Ga_\cX}\f \end{equation}
\[ \f_w:=\f_{\om,w}:=\sup\{\f\in\PSH(\om)\mid \f(w)\le 0\}. \]
\begin{equation} \env(\f\circ p_\cX)=\sup\left\{\p\in\PSH(\om)\mid\p\le\f\text{ on }\D_\cX\right\}. \end{equation}
\[ \MA_{\pi^\star\om}(\f_w)=\d_w\quad\text{and} \f_w(w)=0. \]
\[ \f_w=\pi^\star\f_v. \]
\[ S'tl25*1=HWVo?+M@"F>ddeM,1K8-Ahl4qr[k`@;f[9aC*T@^_C5SZQL7FB.7T4)ZI)H+e9X*CgajQE2RhO6Z]E".Hq6eBaPe:M1TOT\k-;>'o4t06XtFCA0<@Y$M7&-/4E/Red$[[A<?Po-Lm0Tsugc1OiVW:bE]#@m[msnOUh*hlI+$"]Am'p+9Mc+;E]6E^u8VKKt59qRgc-Yrk7B6'N:7\=;SrKD/qO$rQ6e7/Q':4IKKDT!1l,.tlKl<R=;9R\:=bhN0ou5om`+@s2D=Ub_9^j#[WGH6@&NkTM:<YW]oKHC<5ui?lL&L3`q,KbbV6j<7;"jb=VrRF_+BS(Z).O]S^Jp93L=<^^p)/'m^I4D4J1@:sV1K11\4s2t]0aj@Vi+et" 3OHqL>ZZ<Rq8+2EBXs0?;ohT]WW`At)(=TB+Lj8XHBDG,&>?_c57"sW8L=2P@BZ-QUBEY.jGS:hOmmi1\&554U/4YO*#jVqn3#8'QW<+[\ A-"jLXp!EB:A(.J-Ug.[l_[$#'`1e)LK@0Je4imVqH[]!(<SoHO,4N_<jc*!C#gFF#qV\=_#!WF01R)- 53(*>pR=*[g,T^7XO2:OKbkAl6(Pl,#'W`U1h'KA1r;=fWtR#^+FTtNN3P.=QXjaS\enAIR#kE1ELZ1I ((g7ZML$**Yd]up:bd9j!_dl`m'!jFT<@KQQZ=OCaJ*bfB$O7k:4$2[84*U*dE!CHBU)=q-<R?PAc-Xi)hE\N/Q'd#]ro+="";,&[4mBVDF_5.V R64.^r/c./G\^2,jQuhIXbOt&WiAn6a<H7V*XZ(fW&UjrcCI$eJQ4!`@/KZbFSt+8LFjL><uGq)-f("d"i."JJ0FN+qk[mX!?jGO)&jChUXI*BYisoQ=fVSs7&_*8ScAn9a@AYAP2E)^1ST\HXJ$@ c_Lh=G`Z`J`*J9NH?X0o*XQb+.7*TG&i'=n0ZNVO0Z@)dd6@,G0btinGgO<Y)AB^qU(:ei1R'$7dSM2N@=N*0i>cj#I5QZbNPphIl6h('".0cog$2P[,7_4QRZY<&@Tgqf-8Wl'U8bH1LQci"8`@" Z$#B`Xc^Y^Q:_Al*3aCT1M>!hP]'l1<DPpM9Emq88<p>XQ4PA[.aSUHTmUfu0H\Q$CnO_):5ORrZa2Gd>6_sSAq6jIRAf*RhL30od56&hB1ohD3/\+?"o*f5fuqQ2*8RDOAl]0NH1-$T/*D_rf&j3c=EQ99&+L-DAQRCL\8B-lX#t^2Z89I6gnANE?<>EMNmmEcbdl4sPhKe:T[8PWXr(-OtS:^+i c'os(]Q<723^-SZ@b(YKfs?HK3Va"LDM"RE]4QSmJe>*7$k44gQuY;],?)eLZ6IDVbebQ32Z.hcl"qH-a?Gm=QRZR-#tg/@Udn>_Ln(deo:`^?;)N_=V8r5qXr2B,0K(gY+4")gNBHguYJ3g[M=c95a_2eD 77;cA7UKMpqGlc(;p>;@"\Z()1N:3AK7BT1PGmD8CD<nB__rina7<;"r1+=S>`GSZ8<u&`O9:+-=c9a>&<5CI"Tc"b`q\9#tKo@RX7<7Tj=^l(9+u2LujFHL,ga(BT>"&WlGNi\^QC/cWb*=L, :4gmMhEFRq0R"*>EcpSN8&WP!pua;T4tO]7I+k]h5=@I)3X_ZC!UK_[VabG3V*.Chkq^ZH8B:ULkX6qM\jhC99q,;&gHb_7)EI:<s#0;,],2tBa0qS'T9hBL;q.q7BKUc#@1l7 67a]chq1m9"$[4]>>;A,f<.LO4f=7#cd"jUHaI<I;!B]_B,bI1U.+^*rV#X5J]E_/NDZLC2fBc7X/UY` O+Yj-d;eR-[00R*LdsIIGBX;S3Q0>S0NBML7FVa*TR$r@@k$eYO6QL:.,B!$lnP2R/0i6T#o&(#VJg7f ]_h-/'GeU1QM^RVl'Ukm\,-\D+9.*"1)aj+rr)J,H[GYYJ,fC*s3QFTb(1p#Ga*i<Aq6jId4)#+i1r;N n-&/E\&MsVjl_aW7*rqAb+;Q(j75nL>u_UZalWbdV+mR)P9DSQhp@*dTB2\lmQ$0D]tM,=,/Cm=p\Oa_ khUq#(C&S>*C#"#VEdTQd7VC:o6iaQlKT54=TWi5t.dk+=HejqJJ4;R58Ko?BFLur2*2X=K(WOkuk5u!I__bXmO&`'7jdmd0qH/&t;q? 7@,SO;\#j/Xn!kF^Li"q6MWA&jUd^beDr#mmo5#RCVJR(eDoiTeso]tM+cB$KlLgt('-p$:4Zo#W8BT2jJOM$I4rG-*'ZTeVtr+F6Ggn\uO- OohFGaXE-\i/hcr-rE:s;]0<LW,#J/XAp"N2GE#BG&dEQm=PWSmbYXhYHO"84`K=E/=U;\#KdN24d'L` Qn">fPe,Cg`)\XY:)8o7)PXQ7YoU*@.6*\PB(H*s6=Z&QV@_nb<[2#ELs-RD\JYW?G"i[LAaO>?:IPr`1A:`uL ().^$"rA\mB&J>C@SZsm:3o1^V_Z\C+b(c<&A!0f(s.jBq.'85"iU\7_$*H7)&d5t/.)ss#^R:;YT+5[ds!8i2UDjbi.>S!eEcdlVNI!sQ&f@"?tus`VEceke?lZGKC:WNMs5R&'H:]i(N;l# 1r;Bql5TEgWLR.n87r/J$#,R0)3Vi?URW!b^-P&iJS&jJmni,huXC'L.45Qa=o$G5h??q(1E:lL88,u/IZ+b^')CZR_]0_e-m>i@SB5f8*=7T41kQ1GX;Nu"!s=[rOVA\T(HN"g3\5gp]IPFl/WjA),&OE[QAoIca"sRla6F;5!*nnP1c,aqNPQLs<0RX=\@KXm5!mh>sr*'oI6Eo=mrb8JT UHBa)l/3\]
\begin{align} \begin{cases} \mu \nabla \times \nabla \times \u = \lambda \u & \hbox{in}~\Omega, \\ \nabla \cdot \u =0 & \hbox{in}~\Omega, \\ {\bm n} \times \u= \bm {0} & \hbox{on}~\partial\Omega, \end{cases} \end{align}
\begin{align} \begin{cases} \mu \nabla \times \nabla \times \u + \nabla p = \lambda \u & \hbox{in}~\Omega, \\ \nabla \cdot \u =0 & \hbox{in}~\Omega, \\ {\bm n} \times \u= \bm {0} ~\hbox{and}~ p=0& \hbox{on}~\partial\Omega. \end{cases} \end{align}
\begin{align} \mu (\nabla \times \u, \nabla \times \vt) = \lambda (\u,\vt) , \forall \vt \in H_0({\textbf{curl}},\Omega), \end{align}
\begin{align} \mu (\nabla \times \u_h, \nabla \times \vt_h) = \lambda (\u_h,\vt_h) , \forall \vt_h \in {\cal V}_h . \end{align}
\begin{align} B_{ }([\u,p],[\vt,q]) = \lambda (\u,\vt) , \forall [\vt,q] \in {\cal X}, \end{align}
\begin{align*} B_{ }([\u,p],[\vt,q]) = \mu (\nabla \times \u, \nabla \times \vt) + (\nabla p, \vt ) - (\nabla q, \u ) . \end{align*}
\begin{align} B_{ }([\u_h,p_h],[\vt_h,q_h]) = \lambda_h (\u_h,\vt_h) , \forall [\vt_h,q_h] \in {\cal X}_h. \end{align}
\begin{align} B_{\text{S}}([\u_h,p_h],[\vt_h,q_h]) = \lambda_h (\u_h,\vt_h) , \forall [\vt_h,q_h] \in {\cal X}_h, \end{align}
\begin{align*} B_{\text{S}}([\u_h,p_h],[\vt_h,q_h]) &= B([\u_h,p_h],[\vt_h,q_h]) \\ &+ \sum_{K} \tau_{p} (\tilde{P}(\nabla p_h), \tilde{P}(\nabla q_h))_K \\ &+ \sum_{K} \tau_{\u}(\tilde{P}(\nabla \cdot \u_h), \tilde{P}(\nabla \cdot \vt_h))_K. \end{align*}
\begin{align*} \mu \nabla \times \nabla \times \u +\nabla p = \lambda \u & \hbox{in}~\Omega, \\ -\frac{\ell}{\mu} \Delta p+ \nabla \cdot \u =0 & \hbox{in}~\Omega, \\ {\bm n} \times \u= \bm {0} & \hbox{on}~\partial\Omega, \end{align*}
\begin{align} B_{ }([\u,p],[\vt,q]) = (\f,\vt) , \forall [\vt,q] \in {\cal X}. \end{align}
\begin{align} B_{\text{S}}([\u_h,p_h],[\vt_h,q_h]) = (\f,\vt_h) , \forall [\vt_h,q_h] \in {\cal X}_h, \end{align}
\begin{align} \Vert [\vt,q] \Vert^2_{\rm AG} := \mu \Vert\nabla\times \vt \Vert^2_{L^2(\Omega)} + \frac{\mu}{\ell^2} \Vert \vt \Vert^2_{L^2(\Omega)} + \frac{\ell^2}{\mu} \Vert \nabla p \Vert^2_{L^2(\Omega)}, \end{align}
\begin{align} \Vert [\vt,q] \Vert^2_{\rm OSGS} := \mu \Vert\nabla\times \vt \Vert^2_{L^2(\Omega)} + \frac{\mu}{\ell^2} \Vert \vt \Vert^2_{L^2(\Omega)} + \frac{\ell^2}{\mu} \Vert P_h^\bot(\nabla p) \Vert^2_{L^2(\Omega)} + \frac{h^2}{\mu} \Vert P_h(\nabla p) \Vert^2_{L^2(\Omega)}. \end{align}
\[ \|\u-\u_h\|_{L^2(\Omega)}=\|T\f-T_h\f\|_{L^2(\Omega)}\lesssim \varphi(h) \|\f\|_{L^2(\Omega)}, \]
\[ \aligned &|\lambda-\lambda_h^i|=O(h^{2r}),&&i=1,\dots,m,\\ &\hat\delta(E,E_h)=O(h^r), \endaligned \]
\[ \vertiii{\u-\u_h}=O(h^r), \]
\[ P1ml,9iAjLMWUS&quh,sQmHS9\d<+ER*0oV'OAjSo&=F[D_g^ADf2X!:,p4TG?N0>@5@QbN*g6\c.op-9^Lr,J;AZkT*YIiVUQNn'c996i5YggPV+ (ap.`Xki/."+J3Y+WFG#)X525]/aY;'IkD0?Gn'tiumY,>]'>DB[I0($Q>N,#IJ'El*4]/p/=DVi-4?j ?;X!9KolSG1.)A.XYcXS]<qGlah&@:^2",eKqqcP3qq]K^qEsCfl1jL=J,90=^HY&N*dHUo?i8n"_.u,Xh;5PkZGFlQ77X-9sg!rd=33IBD[nWSsRM5"[&4F.]/'cR[W(dDV;M]"hn4O`.hPp*2,_nqaVDe)bQSR^*d W`_F[h)Wr.m)(.cgfhIq9W8jLD:kFnB4Eup#^I(]fBH_\_AsD:>p=bc'i*BKTU5_A,IM=!:cERng5rm\ #?K'c]I4r.@Y$d1:J^;M&EaS[[FOB[jZr`k2Q/c:BTplaDn+a1LF2EC\*l!Mnh24(VXV1mp8:H)Mt&hm5n"UE[sCg:BXK(>[@JBI$`:tRg:8i?8O_'^"$:(l/W4_C7P[1fd=QPV#sF@`$0)]M3Rcg)Y`s4:RW19f$!QI98J*BV;1p-U"I`=>jt4-<EQV_>OD=^7YT2EId3MqnN1.pV-C8bj5*mk&hQB$2[8>F6uUOCi/hAJRhl3MXm>,J&2aOo!dS)@\.`)r-Jj=$T;Nm^7.5` '0i10PP&#f"f)fV0fg)IF)ljr6KY/GF.E^NEO#hWSq=e!U=T(n[R3S`<#f#+bh<4)E>j'o)@.'h2#OiM3gh<^KcA)BA13Spt0eX;mbZ/(03T^EnrkAY^Kq fCb-IlS;KSK6J$iEt-qn)l"o5`<:LmNCVO\L<`LH\?4E'[<i>,@mehI-_><hYQE03eF)VF4Z_bbhE`ta `Iu.RQmA`]A!ms6']E.KJ9E@1,)-\L-RMWWPBeKk9Q\ICa5u7!WSQKLG1KEtCNX:@0ssYGVU2/"Us8Jg *$mRdD#)eLqbDj98V3L*iGUc?9O$$R]1^XA,bE,A/b?&;8?buF^EG:!-fe!;-l?_=D"S"@c!tl6aiM,t Dh-F[=hj@gl0iNH-24$Wh]\.C:an4YA*N1"!jEqaX#>i10"NR0me6:XeDI_:[ajVk&6oSlZXg!k-/QlFSXqcFY"^'t.6Dld]Be&M`5V!d7AZ0_$d@3k'GHk/F.0FoU'R8rjbV#&K[C*[j(l]n0";5Nk^8k/+-]jB )cs<G"`s@X^^g8Ugc!tl6ZQSkN^6*\H`bN@S6/HD[@3\KKqlm[b/<P4G:^a6K14a?ZXo83&IssP*Jl^Mi>=-3Dabt+r4>B<YDp`!V+W`^a"s-"d/'U"Z+>l3Oa16iaLj-82,TU8`7$B/eOf&[J><Lc(/d)?EmCcoV3",5<_2$p 3oY*sh0lT--fck\T$dMLsiZp.fT[:F)cQf,?<)ZRQaaQ6\qTCfpc/=I9rGjVs4gZ6&`*r)2,-i,#JfF/[8B -TBoEZ+>nIOa16i!3c:%p"Ree5I,R$gjeI/>7C3[p\&(o-f%S9^sbmjki;mX-=6!Z\]
\begin{align} u_t-|Du|^{\gamma}\big(\Delta u+(p-2)\Delta_\infty^Nu\big)=0 \end{align}
\begin{align*} \ilN u:=\abs{Du}^{-2}\sum_{i,j=1}^nu_{x_i}u_{x_j}u_{x_ix_j}=\abs{Du}^{-2}\la Du,D^2uDu\ra =\abs{Du}^{-2}\il u \end{align*}
\begin{equation} u_t-\Delta_p u=0 \end{equation}
\begin{equation} u_t-\plN u=0 \end{equation}
\begin{align*} \Delta u:=\sum_{i=1}^nu_{x_ix_i} \end{align*}
\begin{align*} \il u:=\sum_{i,j=1}^nu_{x_i}u_{x_j}u_{x_ix_j}=\la Du,D^2uDu\ra \end{align*}
\begin{align*} \ilN u:=\frac{\il u}{|Du|^2}. \end{align*}
\begin{align} u_t-|Du|^{\gamma}\big(\Delta u+(p-2)\ilN u\big)=0\quad\text{in }\Omega_T, \end{align}
\begin{equation} F(Du,D^2 u):=\abs{Du}^{\gamma}\big(\Delta u+(p-2)\Delta_{\infty}^{N} u\big) \end{equation}
\[ \begin{split} f(0)=f'(0)=f''(0)=0,\ f''(r)>0 \text{ for all }r>0, \end{split} \]
\[ \begin{split} \lim_{x\to 0,x\neq 0}F(Dg(x),D^2g(x))=0. \end{split} \]
\[ \begin{split} \Sigma=\{ \sigma \in C^{1}(\R) \,:\, \sigma \text{ is even},\, \sigma(0)=\sigma'(0)=0,\text{ and }\sigma(r)>0 \text{ for all } r\neq 0 \}. \end{split} \]
\[ \begin{split} \begin{cases} \vp_t(x_0,t_0)-F(D\vp(x_0,t_0),D^2\vp(x_0,t_0))\ge 0 & \text{if }D\vp(x_0,t_0)\neq 0,\\ \vp_t(x_0,t_0)\ge 0 & \text{if }D\vp(x_0,t_0)= 0. \end{cases} \end{split} \]
\begin{equation} \ue_t-(\abs{D\ue}^2+\epsilon)^{\gamma/2}\Big(\Delta\ue+(p-2)\frac{\il\ue}{\abs{D\ue}^2+\epsilon}\Big)=0 \end{equation}
\begin{equation} \begin{aligned} &(|D\ue|^2+\epsilon)^{\frac{p-2-\gamma}{2}}(\ue_{x_k})_t -\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2}{2}}AD\ue_{x_k}\big) \\ & +(p-2-\gamma)(|D\ue|^2+\epsilon)^{\frac{p-4-\gamma}{2}}\ue_t\la D\ue,D\ue_{x_k}\ra=0 \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &(|D\ue|^2+\epsilon)^{\frac{p-2-\gamma+s}{2}}\ue_{x_k}(\ue_{x_k})_t -(|D\ue|^2+\epsilon)^{s/2}\ue_{x_k}\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2}{2}}AD\ue_{x_k}\big) \\ & +(p-2-\gamma)(|D\ue|^2+\epsilon)^{\frac{p-4-\gamma+s}{2}}\ue_t\la D\ue,D\ue_{x_k}\ra \ue_{x_k}=0. \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &\frac{\big((|D\ue |^2+\epsilon)^{\frac{p+s-\gamma}{2}}\big)_t}{p+s-\gamma} -(|D\ue|^2+\epsilon)^{s/2}\sum_{k=1}^n\ue_{x_k}\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2}{2}}AD\ue_{x_k}\big) \\ & +(p-2-\gamma)(|D\ue|^2+\epsilon)^{\frac{p-2-\gamma+s}{2}}\ue_t\frac{\il \ue}{|D\ue|^2+\epsilon}=0. \end{aligned} \end{equation}
\begin{align*} &\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}}AD^2\ue D\ue \big)\\ =&\sum_{k=1}^n\diverg\Big(\big((|D\ue|^2+\epsilon)^{s/2} \ue_{x_k} \big)\big((|D\ue|^2+\epsilon)^{\frac{p-2}{2}}A D\ue_{x_k}\big)\Big)\\ =&(|D\ue|^2+\epsilon)^{s/2}\sum_{k=1}^n\ue_{x_k}\diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2}{2}}AD\ue_{x_k}\big)\\ &+(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{|D^2\ue|^2+(p-2+s)\frac{|D^2\ue D\ue|^2}{|D\ue|^2+\epsilon} +s(p-2)\frac{(\il \ue)^2}{(|D\ue|^2+\epsilon)^2} \Big\}, \end{align*}
\begin{equation} \begin{aligned} &(|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}} \Big\{|D^2\ue|^2+(p-2+s)\frac{|D^2\ue D\ue|^2}{|D\ue|^2+\epsilon} +s(p-2)\frac{(\il \ue)^2}{(|D\ue|^2+\epsilon)^2} \\ & +(p-2-\gamma)(|D\ue|^2+\epsilon)^{-\gamma/2}\ue_t\frac{\il \ue}{|D\ue|^2+\epsilon} \Big\} \\ &= \diverg\big((|D\ue|^2+\epsilon)^{\frac{p-2+s}{2}}AD^2\ue D\ue \big) -\frac{\big((|D\ue |^2+\epsilon)^{\frac{p+s-\gamma}{2}}\big)_t}{p+s-\gamma}. \end{aligned} \end{equation}
\begin{equation} \begin{aligned} &|Du|^{p-2+s} \Big\{\frac{1}{n-1}(\Delta_Tu)^2+(p+s)|D_T|Du||^2+(p-1)(s+1)(\ilN u)^2 \\ & +(p-2-\gamma)\abs{Du}^{-\gamma}u_t\ilN u\Big\} \\ &\leq \diverg\big(|Du|^{p-2+s}AD^2uDu\big) -\frac{\big(\abs{Du}^{p+s-\gamma}\big)_t}{p+s-\gamma}, \end{aligned} \end{equation}
\begin{equation} \abs{D_T\abs{Du}}^2:=\frac{|D^2uDu|^2}{|Du|^2}-(\ilN u)^2 \quad\text{and} \Delta_T u:=\Delta u-\ilN u. \end{equation}
\begin{equation} \begin{aligned} Q: &=\frac{1}{n-1}(\Delta_Tu)^2+(p-1)(p-1+s-\gamma)(\ilN u)^2+(p-2-\gamma)\Delta_Tu\ilN u \\ &=:\la \bar{x},M\bar{x}\ra, \end{aligned} \end{equation}
\begin{equation} \begin{aligned} u_t |Du|^{q-2}\Delta_q^N u=u_t\diverg\big(|Du|^{q-2}Du\big) &= \diverg(u_t|Du|^{q-2}Du)-\frac{(|Du|^{q})_t}{q} \end{aligned} \end{equation}