input
stringlengths
3.68k
4.11k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the lost record of all rows is 7.125 . Output:
[ "round_eq { avg { all_rows ; lost } ; 7.125 }" ]
task210-92b5d5bbf9474850b5e4ce2a6c4ecdb7
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose surface record fuzzily matches to grass . there is only one such row in the table . the outcome record of this unqiue row is winner . Output:
[ "and { only { filter_eq { all_rows ; surface ; grass } } ; eq { hop { filter_eq { all_rows ; surface ; grass } ; outcome } ; winner } }" ]
task210-3312af054be54990af27edbc73fc6b91
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the to par record of all rows is -5.6 . Output:
[ "round_eq { avg { all_rows ; to par } ; -5.6 }" ]
task210-651736e277374acf80b4d78f1df40af7
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the votes record of all rows is 76762 . Output:
[ "round_eq { avg { all_rows ; votes } ; 76762 }" ]
task210-e8e68ed6f380494ea5199599e65df235
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the goals record of all rows is 120.8 . Output:
[ "round_eq { avg { all_rows ; goals } ; 120.8 }" ]
task210-22c044f815f049e2a81897a9ae88d1f6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose laps record is less than 20 . there is only one such row in the table . the name record of this unqiue row is ryan dalziel . Output:
[ "and { only { filter_less { all_rows ; laps ; 20 } } ; eq { hop { filter_less { all_rows ; laps ; 20 } ; name } ; ryan dalziel } }" ]
task210-79056b27d3644428a49be34a00a70d81
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the first downs record of all rows is 19.42 . Output:
[ "round_eq { avg { all_rows ; first downs } ; 19.42 }" ]
task210-0a69b90c09a44ae9b2444b3040fafa2c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose nationality record fuzzily matches to japan . select the row whose time record of these rows is maximum . the name record of this row is noriko inada . Output:
[ "eq { hop { argmax { filter_eq { all_rows ; nationality ; japan } ; time } ; name } ; noriko inada }" ]
task210-ccaf1aa0f40844b7993aee31bafe3f57
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose opposing teams record fuzzily matches to japan . take the against record of this row . select the rows whose opposing teams record fuzzily matches to usa . take the against record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; opposing teams ; japan } ; against } ; hop { filter_eq { all_rows ; opposing teams ; usa } ; against } }" ]
task210-fc80bfd6e20e4a64a6fda6b2ba389acc
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the nationality records of all rows , most of them fuzzily match to united states . Output:
[ "most_eq { all_rows ; nationality ; united states }" ]
task210-e3ea9b195d9c405285be829fe8befcde
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose rank record is greater than or equal to 4 . the sum of the total record of these rows is 5 . Output:
[ "round_eq { sum { filter_greater_eq { all_rows ; rank ; 4 } ; total } ; 5 }" ]
task210-2307cd799bed4e87b66fab2ce9ab91d3
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the races record of all rows is 8.73 . Output:
[ "round_eq { avg { all_rows ; races } ; 8.73 }" ]
task210-eb125915ce1341f0be15d4817efe212a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose executive director record fuzzily matches to jessie a montalbo . there is only one such row in the table . Output:
[ "only { filter_eq { all_rows ; executive director ; jessie a montalbo } }" ]
task210-fab3bd656d40475080ebba5436651103
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose drawn record is greater than 5 . there is only one such row in the table . the team record of this unqiue row is portuguesa . Output:
[ "and { only { filter_greater { all_rows ; drawn ; 5 } } ; eq { hop { filter_greater { all_rows ; drawn ; 5 } ; team } ; portuguesa } }" ]
task210-4262aaa92dcf40f79b3995b68da09ff6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose event record is less than 65 kg . for the quarterfinal records of these rows , most of them fuzzily match to did not advance . Output:
[ "most_eq { filter_less { all_rows ; event ; 65 kg } ; quarterfinal ; did not advance }" ]
task210-1a3f2c774b124f9896feae73055319ae
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose method record fuzzily matches to draw . there is only one such row in the table . the opponent record of this unqiue row is yoko takahashi . Output:
[ "and { only { filter_eq { all_rows ; method ; draw } } ; eq { hop { filter_eq { all_rows ; method ; draw } ; opponent } ; yoko takahashi } }" ]
task210-7d74bfb7d5f04cfdb92bb1c4caec398b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the current status records of all rows , most of them fuzzily match to active . Output:
[ "most_eq { all_rows ; current status ; active }" ]
task210-ff22a7b102b549f29b5ad9d46c32fbe2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the points records of all rows , most of them are greater than 6 . Output:
[ "most_greater { all_rows ; points ; 6 }" ]
task210-0ba5e55b37454fafab1bf66065990d5b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose chassis record fuzzily matches to hesketh 308e . take the year record of this row . select the rows whose chassis record fuzzily matches to surtees ts19 . take the year record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; chassis ; hesketh 308e } ; year } ; hop { filter_eq { all_rows ; chassis ; surtees ts19 } ; year } }" ]
task210-e6317db2263341c59f1536b854223a42
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose area record of all rows is maximum . the rr romaja record of this row is gyeongsangbuk . Output:
[ "eq { hop { argmax { all_rows ; area } ; rr romaja } ; gyeongsangbuk }" ]
task210-13c2d30c86da497a8ccf862660970289
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the attendance record of all rows is 54939 . Output:
[ "round_eq { avg { all_rows ; attendance } ; 54939 }" ]
task210-cf52c2c5a6fb46ddb06ad3f9448bc42a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose appearances record of all rows is maximum . the name record of this row is valdo . Output:
[ "eq { hop { argmax { all_rows ; appearances } ; name } ; valdo }" ]
task210-4fd3b22fcaff4a39b51cd4d689477752
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose season record fuzzily matches to 9 . take the viewers ( in millions ) record of this row . select the rows whose season record fuzzily matches to 4 . take the viewers ( in millions ) record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; season ; 9 } ; viewers ( in millions ) } ; hop { filter_eq { all_rows ; season ; 4 } ; viewers ( in millions ) } }" ]
task210-9f8b26d224e7445088c74880e40d091d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose score record fuzzily matches to l . select the row whose date record of these rows is 3rd minimum . the attendance record of this row is 11741 . Output:
[ "eq { hop { nth_argmin { filter_eq { all_rows ; score ; l } ; date ; 3 } ; attendance } ; 11741 }" ]
task210-bcac5d57c931471cbc361fe8b12999ef
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose country record fuzzily matches to italy . there is only one such row in the table . the athlete record of this unqiue row is beatrice adelizzi & giulia lapi . Output:
[ "and { only { filter_eq { all_rows ; country ; italy } } ; eq { hop { filter_eq { all_rows ; country ; italy } ; athlete } ; beatrice adelizzi & giulia lapi } }" ]
task210-4c0f6caf4894403fbeab18dd319e7464
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the sum of the current record of all rows is 10 . Output:
[ "round_eq { sum { all_rows ; current } ; 10 }" ]
task210-a9b5107c11ea44ee98cc92395f85ae48
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the score records of all rows , most of them are greater than 10 . Output:
[ "most_greater { all_rows ; score ; 10 }" ]
task210-df4086e7f64646069a0e3d3d8121a506
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose opponent record fuzzily matches to jacksonville jaguars . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; opponent ; jacksonville jaguars } } ; 2 }" ]
task210-40104a4262ee4b68a3fa16285704fe3e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose competition record fuzzily matches to friendly . there is only one such row in the table . the date record of this unqiue row is 15 august 2012 . Output:
[ "and { only { filter_eq { all_rows ; competition ; friendly } } ; eq { hop { filter_eq { all_rows ; competition ; friendly } ; date } ; 15 august 2012 } }" ]
task210-78f37368298949689bd4c3db0f17fe18
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose nation record fuzzily matches to united kingdom . take the silver record of this row . select the rows whose nation record fuzzily matches to finland . take the silver record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; nation ; united kingdom } ; silver } ; hop { filter_eq { all_rows ; nation ; finland } ; silver } }" ]
task210-d79abba527bf4ce1bab9f3e32c947aef
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose incumbent record fuzzily matches to wilbur mills . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to james william trimble . take the first elected record of this row . the second record is 6 years larger than the first record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; incumbent ; wilbur mills } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; james william trimble } ; first elected } } ; -6 years }" ]
task210-14d0b5ebe450462797e151ff89f69ae8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose relationship with predecessor record fuzzily matches to and . there is only one such row in the table . the name record of this unqiue row is maximilian . Output:
[ "and { only { filter_eq { all_rows ; relationship with predecessor ; and } } ; eq { hop { filter_eq { all_rows ; relationship with predecessor ; and } ; name } ; maximilian } }" ]
task210-58eae30cfeae4e3d878c0abaa9b3c7fa
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose music record fuzzily matches to george gershwin . the number of such rows is 4 . Output:
[ "eq { count { filter_eq { all_rows ; music ; george gershwin } } ; 4 }" ]
task210-6e5956b0a31c4998bb54538eafe7e9cd
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose place record fuzzily matches to reno , nv . there is only one such row in the table . the athlete record of this unqiue row is gwen torrence . Output:
[ "and { only { filter_eq { all_rows ; place ; reno , nv } } ; eq { hop { filter_eq { all_rows ; place ; reno , nv } ; athlete } ; gwen torrence } }" ]
task210-f4d988b58b864a7ab6b3249aca36a09f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose nor 1 record of all rows is 3rd maximum . the driver record of this row is jens klingmann . Output:
[ "eq { hop { nth_argmax { all_rows ; nor 1 ; 3 } ; driver } ; jens klingmann }" ]
task210-63b2a8906a594f469bbc190ed135eeef
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose gold record is equal to 0 . among these rows , select the rows whose silver record is equal to 0 . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; gold ; 0 } ; silver ; 0 } } ; 2 }" ]
task210-ae288ad93a6d4f95a723379b707d1af1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the enrollment record of all rows is 20944 . Output:
[ "round_eq { avg { all_rows ; enrollment } ; 20944 }" ]
task210-8d685e4047bb424caf88de0c59ddb58d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the location records of all rows , most of them fuzzily match to edison international field of anaheim . Output:
[ "most_eq { all_rows ; location ; edison international field of anaheim }" ]
task210-af96d2a306a34a4b89d605484dd5e672
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose championship record fuzzily matches to australian open . take the score in the final record of this row . select the rows whose championship record fuzzily matches to wimbledon . take the score in the final record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; championship ; australian open } ; score in the final } ; hop { filter_eq { all_rows ; championship ; wimbledon } ; score in the final } }" ]
task210-2e10d9ea93b24e0da8e242df59456924
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose player record fuzzily matches to tim jones . take the pick record of this row . select the rows whose player record fuzzily matches to lew kamanu . take the pick record of this row . the first record is greater than the second record . the position record of the first row is quarterback . the position record of the second row is defensive end . Output:
[ "and { greater { hop { filter_eq { all_rows ; player ; tim jones } ; pick } ; hop { filter_eq { all_rows ; player ; lew kamanu } ; pick } } ; and { eq { hop { filter_eq { all_rows ; player ; tim jones } ; position } ; quarterback } ; eq { hop { filter_eq { all_rows ; player ; lew kamanu } ; position } ; defensive end } } }" ]
task210-db35757448c54991bb081b60df36f059
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose home team score record is greater than 15.0 . among these rows , select the rows whose crowd record is less than 10000 . the number of such rows is 2 . Output:
[ "eq { count { filter_less { filter_greater { all_rows ; home team score ; 15.0 } ; crowd ; 10000 } } ; 2 }" ]
task210-7399aed407994eb4bd8c29de4f8b091b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the formats records of all rows , most of them fuzzily match to vinyl . Output:
[ "most_eq { all_rows ; formats ; vinyl }" ]
task210-403bd38339ef4c829462ce1476463831
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the podiums record of all rows is 2.89 . Output:
[ "round_eq { avg { all_rows ; podiums } ; 2.89 }" ]
task210-735891e59a6e4dfda3999d6b356736dc
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose rank record is less than or equal to 5 . the average of the bronze record of these rows is 4 . Output:
[ "round_eq { avg { filter_less_eq { all_rows ; rank ; 5 } ; bronze } ; 4 }" ]
task210-3cc920ee178049ebbaaef0ddeeacd10f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose oberbayern record fuzzily matches to fc ingolstadt 04 . the minimum season record of these rows is 2005 . Output:
[ "eq { min { filter_eq { all_rows ; oberbayern ; fc ingolstadt 04 } ; season } ; 2005 }" ]
task210-b3991b391cc944b3b27b65f642e95f15
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose first place record of all rows is maximum . the region represented record of this row is china . Output:
[ "eq { hop { argmax { all_rows ; first place } ; region represented } ; china }" ]
task210-efc9a0be71e04422b88335e4f055e36c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose equipment record fuzzily matches to ktm - vmc . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; equipment ; ktm - vmc } } ; 2 }" ]
task210-cfbb9e0a12524aa7b4ee2e46ab7a6e5d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose november record fuzzily matches to 27 . take the points record of this row . select the rows whose november record fuzzily matches to 29 . take the points record of this row . the second record is 2 larger than the first record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; november ; 27 } ; points } ; hop { filter_eq { all_rows ; november ; 29 } ; points } } ; -2 }" ]
task210-13b46df06da54a1e836886791936a5de
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose year record fuzzily matches to 1959 . take the rank record of this row . select the rows whose year record fuzzily matches to 1958 . take the rank record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; year ; 1959 } ; rank } ; hop { filter_eq { all_rows ; year ; 1958 } ; rank } }" ]
task210-bd0dbcc7d82c4b8ea17ce53bc7b1c66f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose club / team record fuzzily matches to brisbane broncos . take the established record of this row . select the rows whose club / team record fuzzily matches to brisbane bandits . take the established record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; club / team ; brisbane broncos } ; established } ; hop { filter_eq { all_rows ; club / team ; brisbane bandits } ; established } }" ]
task210-75eb590453094a349df861229d7a69b1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose win % record of all rows is 1st maximum . the opposition record of this row is pune warriors india . Output:
[ "eq { hop { nth_argmax { all_rows ; win % ; 1 } ; opposition } ; pune warriors india }" ]
task210-70fd17c6460340739e465dd6a24995bf
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose price record of all rows is 2nd minimum . the internet plan record of this row is internet 30 . Output:
[ "eq { hop { nth_argmin { all_rows ; price ; 2 } ; internet plan } ; internet 30 }" ]
task210-c39c3e6812cf4005ba52ea3fd09c2a37
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose name record fuzzily matches to keutenberg . take the kilometer record of this row . select the rows whose name record fuzzily matches to fromberg . take the kilometer record of this row . the first record is 4 larger than the second record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; name ; keutenberg } ; kilometer } ; hop { filter_eq { all_rows ; name ; fromberg } ; kilometer } } ; 4 }" ]
task210-57d9010288214aa8b0d98f2af5d99c75
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose county record fuzzily matches to new haven . for the proposed records of these rows , most of them are less than 2000 . Output:
[ "most_less { filter_eq { all_rows ; county ; new haven } ; proposed ; 2000 }" ]
task210-28f38e51012d46e2aaa3dc999ac4bb01
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the age records of all rows , most of them are greater than 18 . Output:
[ "most_greater { all_rows ; age ; 18 }" ]
task210-1437dfd2611c450980be056d310c820a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the population ( 2010 census ) record of all rows is 68,253 . Output:
[ "round_eq { avg { all_rows ; population ( 2010 census ) } ; 68,253 }" ]
task210-0dbb51ef3f7149ea925f20f75d5f3ec4
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the competition records of all rows , most of them fuzzily match to uefa intertoto cup . Output:
[ "most_eq { all_rows ; competition ; uefa intertoto cup }" ]
task210-a9ad0862ee414e6d91865d56048fbd58
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose first broadcast record fuzzily matches to september 2013 . the number of such rows is 4 . Output:
[ "eq { count { filter_eq { all_rows ; first broadcast ; september 2013 } } ; 4 }" ]
task210-43d2455847714dddbdc4eb729965877c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose location record fuzzily matches to minsk . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { all_rows ; location ; minsk } } ; 3 }" ]
task210-ac126bb3ccf94328bfd7a081f0061556
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the date records of all rows , all of them fuzzily match to september . Output:
[ "all_eq { all_rows ; date ; september }" ]
task210-01e0bcf2e80a4ae29eca324ce375419a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the date records of all rows , all of them fuzzily match to 1 august . Output:
[ "all_eq { all_rows ; date ; 1 august }" ]
task210-03b692737d7f421a92107fe801d2f9a8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose date record of all rows is 5th minimum . the venue record of this row is guangzhou . Output:
[ "eq { hop { nth_argmin { all_rows ; date ; 5 } ; venue } ; guangzhou }" ]
task210-144a6f20884741ea8b965b0c20a49111
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the country records of all rows , most of them fuzzily match to japan . Output:
[ "most_eq { all_rows ; country ; japan }" ]
task210-aa80fedc3f3948f29df3a4cecd0b145a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose status record fuzzily matches to display only . there is only one such row in the table . the number record of this unqiue row is 1 . Output:
[ "and { only { filter_eq { all_rows ; status ; display only } } ; eq { hop { filter_eq { all_rows ; status ; display only } ; number } ; 1 } }" ]
task210-cb13bacdebe5492e9c3ea3338f4c4c8e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose year record of all rows is 4th minimum . the champion record of this row is emory . Output:
[ "eq { hop { nth_argmin { all_rows ; year ; 4 } ; champion } ; emory }" ]
task210-16cecd2c630c4434b9a3c7f70178c444
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the gold record of all rows is .8 . Output:
[ "round_eq { avg { all_rows ; gold } ; .8 }" ]
task210-ffd6ed4526d84cdab7ae5584724f841c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose events record of all rows is maximum . the tournament record of this row is the open championship . Output:
[ "eq { hop { argmax { all_rows ; events } ; tournament } ; the open championship }" ]
task210-ea77e5ab5568425086a6790bb7440e57
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose name record fuzzily matches to still standing . take the launched record of this row . select the rows whose name record fuzzily matches to falling angel . take the launched record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; name ; still standing } ; launched } ; hop { filter_eq { all_rows ; name ; falling angel } ; launched } }" ]
task210-c38afd647a0b44ef8fb40dc04ae9786e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose 2012 club record fuzzily matches to diablo water polo . there is only one such row in the table . the name record of this unqiue row is maggie steffens . Output:
[ "and { only { filter_eq { all_rows ; 2012 club ; diablo water polo } } ; eq { hop { filter_eq { all_rows ; 2012 club ; diablo water polo } ; name } ; maggie steffens } }" ]
task210-dcde8a7c1ca64e318fb4e720f3878b48
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose event record fuzzily matches to wc beijing . the sum of the rank points record of these rows is 23 . Output:
[ "round_eq { sum { filter_eq { all_rows ; event ; wc beijing } ; rank points } ; 23 }" ]
task210-3928802b73914254a163222de394d173
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the us viewers ( million ) records of all rows , most of them are greater than or equal to 1.0 . Output:
[ "most_greater_eq { all_rows ; us viewers ( million ) ; 1.0 }" ]
task210-44c4a2a4c0a1429c931ccf49addd677d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose races record is less than 10 . there is only one such row in the table . the drivers record of this unqiue row is ben hanley . Output:
[ "and { only { filter_less { all_rows ; races ; 10 } } ; eq { hop { filter_less { all_rows ; races ; 10 } ; drivers } ; ben hanley } }" ]
task210-707c034a61134c49a9bf2e9c11e7707f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose original air date record fuzzily matches to april . for the us viewers ( million ) records of these rows , most of them are greater than or equal to 9 . Output:
[ "most_greater_eq { filter_eq { all_rows ; original air date ; april } ; us viewers ( million ) ; 9 }" ]
task210-65188e7bbb8c479faa7c8d5007507877
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the maximum distance record of all rows is 2500 m . Output:
[ "eq { max { all_rows ; distance } ; 2500 m }" ]
task210-54ae72f4c1da4f84b9b7b424bb7a0d91
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose outcome of election record fuzzily matches to minority in parliament . among these rows , select the rows whose number of pnc votes record is greater than 200000 . there is only one such row in the table . the election record of this unqiue row is 2000 . Output:
[ "and { only { filter_greater { filter_eq { all_rows ; outcome of election ; minority in parliament } ; number of pnc votes ; 200000 } } ; eq { hop { filter_greater { filter_eq { all_rows ; outcome of election ; minority in parliament } ; number of pnc votes ; 200000 } ; election } ; 2000 } }" ]
task210-f71a9764f7df4ed88dd57619ed5dc96c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the attendance record of all rows is 36859 . Output:
[ "round_eq { avg { all_rows ; attendance } ; 36859 }" ]
task210-d876a720d37640f4aef38a1842238326
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose points record is equal to 0 . there is only one such row in the table . the opponent record of this unqiue row is new jersey devils . Output:
[ "and { only { filter_eq { all_rows ; points ; 0 } } ; eq { hop { filter_eq { all_rows ; points ; 0 } ; opponent } ; new jersey devils } }" ]
task210-113e12a22f3e48fb89e5244c024a6875
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date of vacancy record fuzzily matches to 1 april 2008 . there is only one such row in the table . the outgoing manager record of this unqiue row is andy ritchie . Output:
[ "and { only { filter_eq { all_rows ; date of vacancy ; 1 april 2008 } } ; eq { hop { filter_eq { all_rows ; date of vacancy ; 1 april 2008 } ; outgoing manager } ; andy ritchie } }" ]
task210-11546f19300f4c639bdf425467556596
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose date record of all rows is minimum . the race record of this row is manikato stakes . Output:
[ "eq { hop { argmin { all_rows ; date } ; race } ; manikato stakes }" ]
task210-147f8b791d514a9dab74767fe5e2c3f1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose position record fuzzily matches to end . among these rows , select the rows whose draft record fuzzily matches to nfl . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; position ; end } ; draft ; nfl } } ; 2 }" ]
task210-e4f427060021403c9839250ee8510bc5
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose escorts record is equal to - . there is only one such row in the table . the nato member record of this unqiue row is belgium . Output:
[ "and { only { filter_eq { all_rows ; escorts ; - } } ; eq { hop { filter_eq { all_rows ; escorts ; - } ; nato member } ; belgium } }" ]
task210-3ff85ed565374e96a678ca1692ec2c92
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose ties played record of all rows is 2nd maximum . the player record of this row is dovydas šakinis . Output:
[ "eq { hop { nth_argmax { all_rows ; ties played ; 2 } ; player } ; dovydas šakinis }" ]
task210-01e09f7fb1a542ae8944f2a3a3805247
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose reason for change record fuzzily matches to resigned . among these rows , select the rows whose date successor seated record fuzzily matches to november . the number of such rows is 4 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; reason for change ; resigned } ; date successor seated ; november } } ; 4 }" ]
task210-ed475fba14704e7dba5cafbf819d6a0f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose citrate record fuzzily matches to negative . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { all_rows ; citrate ; negative } } ; 3 }" ]
task210-178b63e0dd2b4ea6be8b8ace813342cd
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose incorporated record of all rows is 2nd minimum . the company record of this row is airline allied services ltd . Output:
[ "eq { hop { nth_argmin { all_rows ; incorporated ; 2 } ; company } ; airline allied services ltd }" ]
task210-9a5f412ce6d541feb4bc79e136c1c3bf
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose coach record fuzzily matches to bj coleman . there is only one such row in the table . the episode summary record of this unqiue row is chris is made into a celebrity assistant . Output:
[ "and { only { filter_eq { all_rows ; coach ; bj coleman } } ; eq { hop { filter_eq { all_rows ; coach ; bj coleman } ; episode summary } ; chris is made into a celebrity assistant } }" ]
task210-ee6719c381e84216b458cfc0481c7d2a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose party record fuzzily matches to democratic . there is only one such row in the table . the incumbent record of this unqiue row is robert cramer . Output:
[ "and { only { filter_eq { all_rows ; party ; democratic } } ; eq { hop { filter_eq { all_rows ; party ; democratic } ; incumbent } ; robert cramer } }" ]
task210-be86f11dff11455d9faedc6b63a7ddb8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose original air date record of all rows is 2nd minimum . the celebrity record of this row is margot kidder . Output:
[ "eq { hop { nth_argmin { all_rows ; original air date ; 2 } ; celebrity } ; margot kidder }" ]
task210-8754e7b875b94a9497fd23b47f8e9324
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose bronze record of all rows is maximum . the nation record of this row is spain . Output:
[ "eq { hop { argmax { all_rows ; bronze } ; nation } ; spain }" ]
task210-7fc0fba2575c4dd687af7c379c9f8391
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the result records of all rows , most of them fuzzily match to aus . Output:
[ "most_eq { all_rows ; result ; aus }" ]
task210-53ef881c4111426689c4118461e443e8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose pieces record of all rows is 2nd maximum . the release record of this row is 1999 . Output:
[ "eq { hop { nth_argmax { all_rows ; pieces ; 2 } ; release } ; 1999 }" ]
task210-0b02f6c3b51e4e7288da60bccd5faa25
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the apparent magnitude record of all rows is 12.24 . Output:
[ "round_eq { avg { all_rows ; apparent magnitude } ; 12.24 }" ]
task210-adbaab71d0c645299220321dff11bff7
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose venue record fuzzily matches to johannesburg . for the runs records of these rows , most of them are greater than 140 . Output:
[ "most_greater { filter_eq { all_rows ; venue ; johannesburg } ; runs ; 140 }" ]
task210-3c1848737757483e8a4de1def15b8f10
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the goals record of all rows is 113 . Output:
[ "round_eq { avg { all_rows ; goals } ; 113 }" ]
task210-e732f341512646299acf34983a3e7ab1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose founded record of all rows is minimum . the team record of this row is northern demons . Output:
[ "eq { hop { argmin { all_rows ; founded } ; team } ; northern demons }" ]
task210-6dc0703de76d496085388cc4c1f7cd62
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose year record of all rows is minimum . the winner record of this row is deep gold . Output:
[ "eq { hop { argmin { all_rows ; year } ; winner } ; deep gold }" ]
task210-000c0fd8bcf541b586bf25decbdeb89b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the analogue power records of all rows , most of them are greater than 1000 kw . Output:
[ "most_greater { all_rows ; analogue power ; 1000 kw }" ]
task210-d7a99a7e731c48a4bf1b107aa32aefb0
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose capacity record of all rows is maximum . the team record of this row is dinamo zagreb . Output:
[ "eq { hop { argmax { all_rows ; capacity } ; team } ; dinamo zagreb }" ]
task210-c29fd9ec4d404db28643fd3edfc651c2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose opponent record fuzzily matches to los angeles raiders . take the date record of this row . select the rows whose opponent record fuzzily matches to st louis cardinals . take the date record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; opponent ; los angeles raiders } ; date } ; hop { filter_eq { all_rows ; opponent ; st louis cardinals } ; date } }" ]
task210-7a5bbad6fae14a1fbd0573862302f0b5
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose tv time record fuzzily matches to fox . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; tv time ; fox } } ; 2 }" ]
task210-9806d545e94f4a818ba33f9aa89dc5a8