TeX
stringlengths
1
269k
c_{j}=\epsilon_{2}
\{e_{1},e_{2}\}
\Delta_{2}({\text{MARK\_LEFT}})=(c_{1})\times X+(1-c_{1})\times X
A
S
\alpha\geq 1
|w_{3}+w^{*}+w_{4}-w_{3}-w_{4}|=w^{*}
\displaystyle\pi_{v_{i},u_{j}}
\{v^{\prime}_{4},v^{\prime}_{5},v^{\prime}_{6}\}
x=w_{0}
v_{n_{1}+1}
\displaystyle=
e^{*},
{n_{L}}{n_{R}}\times(({\mathcal{L}}-i-1)({\mathcal{R}}-j)-({\mathcal{L}}-i)({% \mathcal{R}}-j))={n_{L}}{n_{R}}\times({\mathcal{L}}{\mathcal{R}}-{\mathcal{L}}% j-i{\mathcal{R}}+ij-{\mathcal{R}}+j-{\mathcal{L}}{\mathcal{R}}+{\mathcal{L}}j+% i{\mathcal{R}}-ij)={n_{L}}{n_{R}}\times(j-{\mathcal{R}})
{R}_{j}
-2\times R_{i}\times(S_{RM}-R_{i})
V_{m}=\{v|v,u\in V,\exists e=(u,v)\in E_{m}\}
v_{2}
\Delta_{v_{i},u_{j}}=\mathcal{E}^{v_{i},u_{j}}_{2}-\mathcal{E}^{v_{i},u_{j}}_{% 1}=\left|w^{*}_{k}\right|-\left|\mathcal{W}^{\prime}(E^{(v_{i},u_{j})})-% \mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|\leq\left|w^{*}_{k}-\mathcal{W}^{% \prime}(E^{(v_{i},u_{j})})+\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|
k
w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i},\epsilon_{i}\in\{0,w^{*}\}
c_{1}
n_{R}=3
\displaystyle=n_{L}\times(w_{0}-x+w_{0}+w_{1}-x+\dots+w_{0}+w_{1}+\dots+w_{k}-% x)=n_{L}\times\big{(}\big{(}\sum_{j=0}^{k}(k+1-j)w_{j}\big{)}-(k+1)\times x% \big{)}
\mathcal{C}(v)=k
\{v_{1},v_{2}\}
\mathcal{E}_{L}^{(\frac{k}{2})}
k^{\prime}
c_{i}+c_{j}\leq 1
S_{L}-L_{i}-S_{R}\leq 0
\{v^{\prime}_{1},v^{\prime}_{2},v^{\prime}_{3}\}
E^{\prime}\subset E
v_{1},v_{3}\in\overline{V_{m}}
w^{*}_{1},w^{*}_{2},\dots,w^{*}_{k}
\mathcal{F}
x<0
C\leq x\leq B+C
T_{j}^{L}
\mathcal{E}(M_{L}^{*})\leq\mathcal{E}(M_{R}^{*})\xrightarrow[]{}\sum_{e_{i}\in E% _{L}}L_{i}\times w^{*}\times(S_{L}-L_{i}-S_{R})\leq\sum_{e_{i}\in E_{R}}R_{i}% \times w^{*}\times(S_{R}-R_{i}-S_{L})
x\geq A+B
\mathcal{E}_{LR}
\displaystyle\geq\mathcal{E}(M_{0})+\sum_{e_{i}\in E_{L}}L_{i}\times w^{*}% \times(S_{L}-L_{i}-S_{R})=\mathcal{E}(M_{L}^{*})
x<w_{0}
S_{RM}>0
\mathcal{E}(M)<\mathcal{E}(M^{\prime})
{L}_{i}
{n_{R}}
e_{1}=(v_{1},v_{3})
{\mathcal{L}}\xleftarrow[]{}|E_{L}|
\mathcal{E}_{L}
\mathcal{E}(M^{\prime\prime})\leq\mathcal{E}(M)
w^{*}
0<\epsilon<w_{\frac{k}{2}+1}
|\sum_{k=i}^{n_{1}}\epsilon_{k}|
|\Delta E|
-R_{i}\times S_{LM}
w^{\prime}(e)=w(e)+w(e^{*})
u_{1}\in T_{i}^{L},u_{2}\in T_{j}^{R}
S_{RM}=0
\Delta({\text{MARK\_LEFT}})\leq 0
C_{R}
-L_{i}\times(S_{LM})+L_{i}\times(S_{LU}-L_{i})
c_{0},c_{1},\dots,c_{i}
k+1-j
|\Delta E|\geq(n-2)B=|\overline{V_{m}}|B
B\times k^{\prime}\times(n-(k+k^{\prime}))=B\times(n-2)
P^{\prime}
|\Delta E|^{\prime}\geq w^{*}
C
|y-C|+|y-B-C|
E_{m}\subset E
j<i+1
\overline{V_{m}}=V-V_{m}
v_{i}\in V_{L},v_{i}\neq v_{n_{1}+1}
{\mathcal{L}}
e^{*}=(v_{1},v_{2})
y=C
\mathcal{E}(M_{L}^{*})\leq\mathcal{E}(M_{R}^{*})
u\in T_{2}^{L}
\Delta({\text{UNMARK\_RIGHT}})
v_{i},v_{j}\in V_{L}\;(i<j,\;j\neq n_{1}+1)
c_{i}=1
{n^{2}_{R}}\times((j-1)({\mathcal{R}}-j+1)-j({\mathcal{R}}-j))={n^{2}_{R}}% \times(j{\mathcal{R}}-j^{2}+j-{\mathcal{R}}+j-1-j{\mathcal{R}}+j^{2})={n^{2}_{% R}}\times(2j-{\mathcal{R}}-1)
\mathcal{C}(u)=k^{\prime}
E^{\prime}
0.4
\Delta({\text{UNMARK\_RIGHT}})=0
{n_{L}}{n_{R}}((i+1)j-ij)={n_{L}}{n_{R}}\times j
-\left|w^{*}-\sum_{k=i}^{n_{1}}\epsilon_{k}\right|
c_{i}<c_{j}
e\in E^{\prime}
k-k^{\prime}\geq 0
-R_{i}\times(S_{RU})+R_{i}\times(S_{RM}-R_{i})
w^{*}_{k}
\operatorname{CONTRACTION}(\pi)
T-\{v_{1},v_{2}\}
V_{R}
\begin{array}[]{cc}\Delta&=R_{i}\times\bigg{(}\underbrace{-(S_{RM}-R_{i})}_{<0% }-S_{RU}\underbrace{-S_{LM}}_{<0}+S_{LU}\bigg{)}<R_{i}(\underbrace{-S_{RU}+S_{% LU}}_{\leq 0})<0\end{array}
G=P_{n}
\triangleright