TeX
stringlengths 1
269k
⌀ |
---|
E^{(v_{1},u_{5})}=\{e_{1},e^{*}_{1},e_{2},e_{3},e^{*}_{2},e_{4}\} |
x=\sum_{k=i}^{n_{1}}\epsilon_{k} |
v_{i},v_{j}\in V_{R} |
G^{\prime} |
c_{i+1},\dots,c_{k} |
S_{R}-R_{i}-S_{L}\leq 0 |
n\geq 3 |
\underbrace{|w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})|%
}_{=w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})\text{ %
because }c_{i}+c_{j}\leq 1}-\underbrace{|w^{*}-(c_{i}\times w^{*}+c_{j}\times w%
^{*})|}_{=w^{*}-(c_{i}\times w^{*}+c_{j}\times w^{*})\text{ because }c_{i}+c_{%
j}\leq 1}=\epsilon\times w^{*} |
w_{i}=w(e_{i})\;\forall i\in\{0,\dots,k+1\} |
u_{1}\in T_{1}^{L},u_{2}\in T_{2}^{L} |
\pi |
\displaystyle\mathcal{E}_{L}^{(i+1)}= |
i\geq\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}} |
\displaystyle\mathcal{E}(M)= |
n_{L}n_{R}|x+y-A-B-C| |
V^{\prime}\subset V |
R_{i}={n_{R}},\;1\leq i\leq{\mathcal{R}} |
\pi_{v_{i},u_{j+1}}=\pi_{v_{i},u_{j}}+w^{*}_{k}\text{, }\pi^{\prime}_{v_{i},u_%
{j}}=\pi^{\prime}_{v_{i},u_{j+1}}\text{, and }\pi^{\prime\prime}_{v_{i},u_{j}}%
=\pi^{\prime\prime}_{v_{i},u_{j+1}} |
u_{1}\in T_{i}^{L},u_{2}\in T_{j}^{L} |
\epsilon=0.4 |
e\in E_{m} |
c_{i} |
e_{i},w_{i}=w(e_{i}) |
\displaystyle\mathcal{E}^{(x<w_{0})}_{L} |
V_{m}=\{u_{1},\dots,u_{2k}\} |
\displaystyle\underbrace{n_{L}\times n_{R}\times|x+y-A-B-C|}_{\text{between %
the subpath of }w_{1}\text{ and }w_{2}} |
\mathcal{E}^{v_{i},u_{j}}_{2}=\left|\pi^{\prime\prime}_{v_{i},u_{j}}-\pi_{v_{i%
},u_{j}}\right|=\left|w^{*}_{k}\right| |
c_{i}>0 |
d |
x<A |
\frac{\mathcal{E}^{(\frac{k}{2})}_{L}}{n_{L}}-\frac{\mathcal{E}_{L}}{n_{L}}\leq
0 |
\mathcal{E}^{v_{i},u_{j+1}}_{2}=0 |
\displaystyle\xrightarrow[]{}\mathcal{E}(M)\geq\mathcal{E}(M_{L}^{*}) |
|x+y-A-B-C| |
E^{(u,v)} |
x=w_{0}+w_{1}+\dots+w_{\frac{k}{2}} |
w_{1}+w_{2}+w_{3} |
j\xleftarrow[]{}0 |
S_{R}=S_{RU}+S_{RM} |
v^{*} |
c_{1}+c_{2}=0.6+0.8=1.4>1 |
S_{L}=\sum_{i=1}^{{\mathcal{L}}}L_{i} |
c_{1}+c_{2}=1+\epsilon |
w^{\prime}(e_{i})=w(e_{i})+w^{*} |
\{e_{1},e_{3}\} |
G^{{}^{\prime}} |
i\xleftarrow{}i+1 |
\Delta(f) |
\displaystyle n_{L}\times k^{\prime}\times\underbrace{\big{(}|x-A|+|x-A-B|\big%
{)}}_{\geq B\text{ (Lemma \ref{l12})}}+n_{R}\times k^{\prime}\times\underbrace%
{\big{(}|y-C|+|y-B-C|\big{)}}_{\geq B\text{ (Lemma \ref{l12})}} |
i<\frac{{\mathcal{L}}}{2}+\frac{{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}} |
\epsilon_{2}\in\{0,w^{*}\} |
\displaystyle\mathcal{E}(M) |
|V|=n |
V_{L}=\{u|(u,v_{1})\in E^{\prime}\},{\mathcal{L}}=|V_{L}| |
e_{k+1} |
|x-A-B| |
n_{L}+n_{R}=n-2=\left|\overline{V_{m}}\right| |
T_{i}^{L} |
x,z |
i={\mathcal{L}} |
\epsilon>0 |
G_{1} |
v_{1} |
E^{\prime}\subseteq E |
S_{R}^{\prime}\geq S_{L}^{\prime} |
M |
e^{*} |
u |
u_{1}\in T_{i}^{R},u_{2}\in T_{j}^{R} |
y |
\displaystyle|\Delta E|= |
v_{i} |
V_{L},V_{R}\subset V |
\displaystyle=\mathcal{E}(M_{0})+(\epsilon_{1}+\epsilon_{2})\times\sum_{e_{i}%
\in E_{L}}L_{i}\times w^{*}\times(S_{L}-L_{i}-S_{R})\xrightarrow[S_{L}-L_{i}-S%
_{R}\leq 0]{\epsilon_{1}+\epsilon_{2}\leq 1} |
\{u_{1},v_{1}\} |
\Delta({\text{UNMARK\_RIGHT}})=R_{i}\times\bigg{(}-(S_{RM}-R_{i})-S_{RU}-S_{LM%
}+S_{LU}\bigg{)} |
(u,v) |
\alpha_{1}=|x-A|+|x-A-B| |
|z|\leq|x|+|z-x|\xrightarrow[]{}|z|-|x|\leq|z-x| |
B<0 |
n_{R}\geq 0 |
21-7>1=R_{2} |
v^{*}=\{v_{2},v_{3},\dots,v_{k+2}\} |
w:E\rightarrow\mathbb{R}_{\geq 0} |
e\in E |
i=\{1,\dots,{\mathcal{L}}\} |
\Delta_{1}({\text{MARK\_LEFT}})<0 |
0-\left|\sum_{k=i}^{j-1}\epsilon_{k}\right| |
u,v\in G |
\mathcal{E}_{R}=n_{R}\times\big{(}\underbrace{|y-w_{k+1}|}_{\text{between the %
vertices of }V_{R}\text{ and }v_{k+2}}+\underbrace{|y-w_{k+1}-w_{k}|}_{\text{%
between the vertices of }V_{R}\text{ and }v_{k+1}}+\dots+\underbrace{|y-w_{k+1%
}-w_{k}-\dots-w_{1}|}_{\text{between the vertices of }V_{R}\text{ and }v_{2}}%
\big{)} |
V_{m}=\{v_{1},v_{2}\} |
R_{i}\times R_{j}\times w^{*} |
L_{i}\times L_{j}\times w^{*} |
\displaystyle\underbrace{\mathcal{E}(M_{0})}_{\text{The error associated with %
the empty marking}}+\underbrace{\epsilon_{1}\times\sum_{e_{i}\in E_{L}}L_{i}%
\times w^{*}\times(S_{L}-L_{i}-S_{R})}_{\text{The sum of all }\Delta({\text{%
MARK\_LEFT}})\text{'s by
}\epsilon_{1}} |
(u_{2i-1},u_{2i}) |
V_{R}=\{v_{i}|n_{1}+2\leq i\leq n_{2}+2\} |
E_{R} |
w:E\Rightarrow\mathbb{R}_{\geq 0} |
x=A |
\epsilon_{i}=0\;\;\forall i\neq n_{1} |