url
stringlengths 58
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 72
75
| comments_url
stringlengths 67
70
| events_url
stringlengths 65
68
| html_url
stringlengths 46
51
| id
int64 599M
1.83B
| node_id
stringlengths 18
32
| number
int64 1
6.09k
| title
stringlengths 1
290
| labels
list | state
stringclasses 2
values | locked
bool 1
class | milestone
dict | comments
int64 0
54
| created_at
stringlengths 20
20
| updated_at
stringlengths 20
20
| closed_at
stringlengths 20
20
⌀ | active_lock_reason
null | body
stringlengths 0
228k
⌀ | reactions
dict | timeline_url
stringlengths 67
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | draft
bool 2
classes | pull_request
dict | is_pull_request
bool 2
classes | comments_text
sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/2547 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2547/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2547/comments | https://api.github.com/repos/huggingface/datasets/issues/2547/events | https://github.com/huggingface/datasets/issues/2547 | 929,192,329 | MDU6SXNzdWU5MjkxOTIzMjk= | 2,547 | Dataset load_from_disk is too slow | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | open | false | null | 3 | 2021-06-24T12:45:44Z | 2021-06-25T14:56:38Z | null | null | @lhoestq
## Describe the bug
It's not normal that I have to wait 7-8 hours for a dataset to be loaded from disk, as there are no preprocessing steps, it's only loading it with load_from_disk. I have 96 cpus, however only 1 is used for this, which is inefficient. Moreover, its usage is at 1%... This is happening in the context of a language model training, therefore I'm wasting 100$ each time I have to load the dataset from disk again (because the spot instance was stopped by aws and I need to relaunch it for example).
## Steps to reproduce the bug
Just get the oscar in spanish (around 150GGB) and try to first save in disk and then load the processed dataset. It's not dependent on the task you're doing, it just depends on the size of the text dataset.
## Expected results
I expect the dataset to be loaded in a normal time, by using the whole machine for loading it, I mean if you store the dataset in multiple files (.arrow) and then load it from multiple files, you can use multiprocessing for that and therefore don't waste so much time.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.8.0
- Platform: Ubuntu 18
- Python version: 3.8
I've seen you're planning to include a streaming mode for load_dataset, but that only saves the downloading and processing time, that's not being a problem for me, you cannot save the pure loading from disk time, therefore that's not a solution for my use case or for anyone who wants to use your library for training a language model. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2547/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2547/timeline | null | null | null | null | false | [
"Hi ! It looks like an issue with the virtual disk you are using.\r\n\r\nWe load datasets using memory mapping. In general it makes it possible to load very big files instantaneously since it doesn't have to read the file (it just assigns virtual memory to the file on disk).\r\nHowever there happens to be issues with virtual disks (for example on spot instances), for which memory mapping does a pass over the entire file, and this takes a while. We are discussing about this issue here: #2252 \r\n\r\nMemory mapping is something handled by the OS so we can't do much about it, though we're still trying to figure out what's causing this behavior exactly to see what we can do.",
"Okay, that's exactly my case, with spot instances... Therefore this isn't something we can change in any way to be able to load the dataset faster? I mean, what do you do internally at huggingface for being able to use spot instances with datasets efficiently?",
"There are no solutions yet unfortunately.\r\nWe're still trying to figure out a way to make the loading instantaneous on such disks, I'll keep you posted"
] |
https://api.github.com/repos/huggingface/datasets/issues/4627 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4627/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4627/comments | https://api.github.com/repos/huggingface/datasets/issues/4627/events | https://github.com/huggingface/datasets/pull/4627 | 1,293,287,798 | PR_kwDODunzps46zfNa | 4,627 | fixed duplicate calculation of spearmanr function in metrics wrapper. | [] | closed | false | null | 3 | 2022-07-04T15:02:01Z | 2022-07-07T12:41:09Z | 2022-07-07T12:41:09Z | null | During _compute, the scipy.stats spearmanr function was called twice, redundantly, once for calculating the score and once for calculating the p-value, under the conditional branch where return_pvalue=True. I adjusted the _compute function to execute the spearmanr function once, store the results tuple in a temporary variable, and then pass the indexed contents to the expected keys of the returned dictionary. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4627/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4627/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4627.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4627",
"merged_at": "2022-07-07T12:41:09Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4627.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4627"
} | true | [
"Great, can open a PR in `evaluate` as well to optimize this.\r\n\r\nRelatedly, I wanted to add a new metric, Kendall Tau (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html). If I were to open a PR with the wrapper, description, citation, docstrings, readme, etc. would it make more sense to do that in the `datasets` or `evaluate` repo (or both)?\r\n\r\nThanks!",
"PR opened in`evaluate` library with same minor adjustment: https://github.com/huggingface/evaluate/pull/176 ",
"> If I were to open a PR with the wrapper, description, citation, docstrings, readme, etc. would it make more sense to do that in the datasets or evaluate repo (or both)?\r\n\r\nI think you could just add it to `evaluate`, we're not adding new metrics in this repo anymore"
] |
https://api.github.com/repos/huggingface/datasets/issues/5207 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5207/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5207/comments | https://api.github.com/repos/huggingface/datasets/issues/5207/events | https://github.com/huggingface/datasets/issues/5207 | 1,437,858,506 | I_kwDODunzps5Vs_rK | 5,207 | Connection error of the HuggingFace's dataset Hub due to SSLError with proxy | [] | open | false | null | 3 | 2022-11-07T06:56:23Z | 2022-11-12T15:31:58Z | null | null | ### Describe the bug
It's weird. I could not normally connect the dataset Hub of HuggingFace due to a SSLError in my office.
Even when I try to connect using my company's proxy address (e.g., http_proxy and https_proxy),
I'm getting the SSLError issue. What should I do to download the datanet stored in HuggingFace normally?
I welcome any comments. I think those comments will be helpful to me.
* Dataset address - https://huggingface.co/datasets/moyix/debian_csrc/viewer/moyix--debian_csrc
* Log message
```
............ OMISSION ..............
Traceback (most recent call last):
File "/data/home/geunsik-lim/qtlab/./transformers/examples/pytorch/language-modeling/run_clm.py", line 587, in <module>
main()
File "/data/home/geunsik-lim/qtlab/./transformers/examples/pytorch/language-modeling/run_clm.py", line 278, in main
raw_datasets = load_dataset(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1719, in load_dataset
builder_instance = load_dataset_builder(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1497, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1222, in dataset_module_factory
raise e1 from None
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1179, in dataset_module_factory
raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({type(e).__name__})")
ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError)
[2022-11-07 15:23:38,476] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 6760
[2022-11-07 15:23:38,476] [ERROR] [launch.py:324:sigkill_handler] ['/home/geunsik-lim/anaconda3/envs/deepspeed/bin/python', '-u', './transformers/examples/pytorch/language-modeling/run_clm.py', '--local_rank=0', '--model_name_or_path=Salesforce/codegen-350M-multi', '--per_device_train_batch_size=1', '--learning_rate', '2e-5', '--num_train_epochs', '1', '--output_dir=./codegen-350M-finetuned', '--overwrite_output_dir', '--dataset_name', 'moyix/debian_csrc', '--cache_dir', '/data/home/geunsik-lim/.cache', '--tokenizer_name', 'Salesforce/codegen-350M-multi', '--block_size', '2048', '--gradient_accumulation_steps', '32', '--do_train', '--fp16', '--deepspeed', 'ds_config_zero2.json'] exits with return code = 1
real 0m7.742s
user 0m4.930s
```
### Steps to reproduce the bug
Steps to reproduce this behavior.
```
(deepspeed) geunsik-lim@ai02:~/qtlab$ ./test_debian_csrc_dataset.py
Traceback (most recent call last):
File "/data/home/geunsik-lim/qtlab/./test_debian_csrc_dataset.py", line 6, in <module>
dataset = load_dataset("moyix/debian_csrc")
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1719, in load_dataset
builder_instance = load_dataset_builder(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1497, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1222, in dataset_module_factory
raise e1 from None
File "/home/geunsik-lim/anaconda3/envs/deepspeed/lib/python3.10/site-packages/datasets/load.py", line 1179, in dataset_module_factory
raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({type(e).__name__})")
ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError)
(deepspeed) geunsik-lim@ai02:~/qtlab$
(deepspeed) geunsik-lim@ai02:~/qtlab$
(deepspeed) geunsik-lim@ai02:~/qtlab$
(deepspeed) geunsik-lim@ai02:~/qtlab$ cat ./test_debian_csrc_dataset.py
#!/usr/bin/env python
from datasets import load_dataset
dataset = load_dataset("moyix/debian_csrc")
```
1. Adde proxy address of a company in /etc/profile
2. Download dataset with load_dataset() function of datasets package that is provided by HuggingFace.
3. In this case, the address would be "moyix--debian_csrc".
4. I get the "`ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError`)" error message.
### Expected behavior
* error message:
ConnectionError: Couldn't reach 'moyix/debian_csrc' on the Hub (SSLError)
### Environment info
* software version information:
```
(deepspeed) geunsik-lim@ai02:~$
(deepspeed) geunsik-lim@ai02:~$ conda list -f pytorch
# packages in environment at /home/geunsik-lim/anaconda3/envs/deepspeed:
#
# Name Version Build Channel
pytorch 1.13.0 py3.10_cuda11.7_cudnn8.5.0_0 pytorch
(deepspeed) geunsik-lim@ai02:~$ conda list -f python
# packages in environment at /home/geunsik-lim/anaconda3/envs/deepspeed:
#
# Name Version Build Channel
python 3.10.6 haa1d7c7_1
(deepspeed) geunsik-lim@ai02:~$ conda list -f datasets
# packages in environment at /home/geunsik-lim/anaconda3/envs/deepspeed:
#
# Name Version Build Channel
datasets 2.6.1 py_0 huggingface
(deepspeed) geunsik-lim@ai02:~$ uname -a
Linux ai02 5.4.0-131-generic #147-Ubuntu SMP Fri Oct 14 17:07:22 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
(deepspeed) geunsik-lim@ai02:~$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=20.04
DISTRIB_CODENAME=focal
DISTRIB_DESCRIPTION="Ubuntu 20.04.5 LTS"
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5207/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5207/timeline | null | null | null | null | false | [
"Hi ! It looks like an issue with your python environment, can you make sure you're able to run GET requests to https://huggingface.co using `requests` in python ?",
"Thanks for your reply. Does this mean that I have to use the `do_dataset `function and the `requests `function to download the dataset from the company's proxy environment?\r\n\r\n\r\n* Reference: \r\n```bash\r\n### How to load this dataset directly with the [datasets](https://github.com/huggingface/datasets) library\r\n\r\n\r\n* https://huggingface.co/datasets/moyix/debian_csrc\r\n\r\n* from datasets import load_dataset\r\ndataset = load_dataset(\"moyix/debian_csrc\")\r\n\r\n\r\n\r\n### Or just clone the dataset repo\r\n\r\n\r\ngit lfs install\r\ngit clone https://huggingface.co/datasets/moyix/debian_csrc\r\n# if you want to clone without large files – just their pointers\r\n# prepend your git clone with the following env var:\r\nGIT_LFS_SKIP_SMUDGE=1\r\n```",
"You can use `requests` to see if downloading a file from the Hugging Face Hub works. If so, then `datasets` should work as well. If not, then you have to find another way using an internet connection that works",
"I resolved this issue by applying to \"unblock websites\" at https://huggingface.com in a corporate network environment with a firewall. \r\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/1412 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1412/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1412/comments | https://api.github.com/repos/huggingface/datasets/issues/1412/events | https://github.com/huggingface/datasets/pull/1412 | 760,607,959 | MDExOlB1bGxSZXF1ZXN0NTM1NDEyMDg2 | 1,412 | Adding the ASSIN dataset | [] | closed | false | null | 0 | 2020-12-09T19:27:06Z | 2020-12-11T10:41:10Z | 2020-12-11T10:41:10Z | null | Adding the ASSIN dataset, a Portuguese language dataset for Natural Language Inference and Semantic Similarity Scoring | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1412/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1412/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1412.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1412",
"merged_at": "2020-12-11T10:41:10Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1412.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1412"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/5850 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5850/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5850/comments | https://api.github.com/repos/huggingface/datasets/issues/5850/events | https://github.com/huggingface/datasets/pull/5850 | 1,707,678,911 | PR_kwDODunzps5QZALv | 5,850 | Make packaged builders skip non-supported file formats | [] | open | false | null | 10 | 2023-05-12T13:52:34Z | 2023-06-07T12:26:38Z | null | null | This PR makes packaged builders skip non-supported file formats:
- Csv builder skips non-CSV files
- Analogously for the other builders
Fix #5849. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5850/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5850/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/5850.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5850",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/5850.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5850"
} | true | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5850). All of your documentation changes will be reflected on that endpoint.",
"Good idea. @mariosasko!!!\r\n\r\nPlease note that before this PR, the files are not evenly distributed for archives: `_generate_examples` gets a list of iterators, one for each archive (uncompressed to a directory).",
"This change could create silent problems when loading files with extensions that are not listed here. For example\r\n\r\n```python\r\nload_dataset(\"text\", data_files=[\"20230515.log\"])\r\n```\r\n\r\nwouldn't even log anything to say that the file was ignored.\r\n\r\nMaybe it's possible to do this at data files patterns resolution ?\r\n\r\ne.g. in get_data_patterns_in_dataset_repository / get_data_patterns_locally we could return patterns that include the most common extension",
"@lhoestq the issue you evoke (.log files skipped by text builder if .log is not added to .txt as supported extension) persists whether you perform the skip at the pattern resolution or in the builder itself.\r\n\r\nThe solution is to add the .log extension (besides the .txt) as supported by text, independently of where we perform the skip (at pattern resolution or in the builder itself).\r\n\r\nAdditionally, at the time we call for pattern resolution, we do not know the builder class yet, so that we cannot pass specific file extensions. First we call data files pattern resolution, and afterwards we call `infer_module_for_data_files` and then know the builder class.",
"> @lhoestq the issue you evoke (.log files skipped by text builder if .log is not added to .txt as supported extension) persists whether you perform the skip at the pattern resolution or in the builder itself.\r\n\r\nNo I simply think it's a bad breaking change to not support\r\n\r\n```python\r\nload_dataset(\"<builder_name>\", data_files=[\"path/to/file_with_unknown_or_no_extension\"])\r\n# or\r\nload_dataset(\"<builder_name>\", data_files=[\"https://url.to/file_with_unknown_or_no_extension\"])\r\n```\r\n\r\nIdk if it's the easiest solution, but maybe it's possible to do the change only when inferring the patterns of dataset repositories. This should avoid this breaking change.\r\n\r\nFor example it could do something like that in `get_data_patterns_locally`\r\n\r\n```python\r\n Input:\r\n\r\n my_dataset_repository/\r\n ├── README.md\r\n ├── banner.png\r\n ├── data0.csv\r\n ├── data1.csv\r\n └── data2.csv\r\n\r\n Output:\r\n\r\n {\"train\": [\"**.csv\"]}\r\n```\r\n\r\ninstead of \r\n\r\n```python\r\n Output:\r\n\r\n {\"train\": [\"**\"]}\r\n```",
"I agree with @lhoestq - it should still be possible to request parsing a file with a specific builder even if the file's extension is \"invalid\" for the builder, and only ignore non-supported file formats when inferring the patterns.",
"Therefore, if I understand correctly, what you suggest is:\r\n- if the user passes a packaged builder to `load_dataset` (e.g. `load_dataset(\"csv\",...`), then the *passed* `data_files` should not be filtered to remove unsupported extensions. No breaking change in this case\r\n- if the user passes a no-script repo/folder to `load_dataset` (e.g. `load_dataset(\"my_dataset_repository\",...`), then the *inferred* data files should be filtered to remove the extensions that are not supported by the inferred module name builder\r\n - if the user passes `data_files` as well, then I guess these should not be filtered, to avoid any breaking change as in the first case above",
"Yes that would be ideal imo !",
"I think this now fulfills all the requirements.",
"I find it a bit confusing to still be able to pass data_files that are going to be silently ignored based on the value of `only_supported_extensions`. My suggestion was to have the right data files pattern, not to filter a posteriori (sorry if my last message was confusing).\r\n\r\nHaving the right data files pattern would also allow users to inspect what's actually being loaded with\r\n```\r\nload_dataset_builder(...).config.data_files\r\n```\r\nand it would list exactly what data files are used."
] |
https://api.github.com/repos/huggingface/datasets/issues/5274 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5274/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5274/comments | https://api.github.com/repos/huggingface/datasets/issues/5274/events | https://github.com/huggingface/datasets/issues/5274 | 1,458,646,455 | I_kwDODunzps5W8S23 | 5,274 | load_dataset possibly broken for gated datasets? | [] | closed | false | null | 9 | 2022-11-21T21:59:53Z | 2023-05-27T00:06:14Z | 2022-11-28T02:50:42Z | null | ### Describe the bug
When trying to download the [winoground dataset](https://huggingface.co/datasets/facebook/winoground), I get this error unless I roll back the version of huggingface-hub:
```
[/usr/local/lib/python3.7/dist-packages/huggingface_hub/utils/_validators.py](https://localhost:8080/#) in validate_repo_id(repo_id)
165 if repo_id.count("/") > 1:
166 raise HFValidationError(
--> 167 "Repo id must be in the form 'repo_name' or 'namespace/repo_name':"
168 f" '{repo_id}'. Use `repo_type` argument if needed."
169 )
HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': 'datasets/facebook/winoground'. Use `repo_type` argument if needed
```
### Steps to reproduce the bug
Install requirements:
```
pip install transformers
pip install datasets
# It works if you uncomment the following line, rolling back huggingface hub:
# pip install huggingface-hub==0.10.1
```
Then:
```
from datasets import load_dataset
auth_token = "" # Replace with an auth token, which you can get from your huggingface account: Profile -> Settings -> Access Tokens -> New Token
winoground = load_dataset("facebook/winoground", use_auth_token=auth_token)["test"]
```
### Expected behavior
Downloading of the datset
### Environment info
Just a google colab; see here: https://colab.research.google.com/drive/15wwOSte2CjTazdnCWYUm2VPlFbk2NGc0?usp=sharing | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 1,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5274/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5274/timeline | null | completed | null | null | false | [
"@BradleyHsu",
"Btw, thanks very much for finding the hub rollback temporary fix and bringing the issue to our attention @KhoomeiK!",
"I see the same issue when calling `load_dataset('poloclub/diffusiondb', 'large_random_1k')` with `datasets==2.7.1` and `huggingface-hub=0.11.0`. No issue with `datasets=2.6.1` and `huggingface_hub==0.10.1`.\r\n\r\nhttps://github.com/poloclub/diffusiondb/issues/7",
"I fixed my issue by specifying `repo_type` in `hf_hub_url()`. https://github.com/poloclub/diffusiondb/commit/9eb91c79aaca98b0515a0ce45778b8af65b84652\r\n\r\nI opened a PR on the Winoground's repo: https://huggingface.co/datasets/facebook/winoground/discussions/2",
"This is a bug in the script, indeed. The most robust fix is to use a relative path instead of `hf_hub_url`, which does not depend on `huggingface_hub`'s version 🙂. I've opened a PR here: https://huggingface.co/datasets/facebook/winoground/discussions/3.",
"Awesome, big thanks to both @xiaohk and @mariosasko!",
"so, if i reproduce the bug, what should i do ? with huggingface_hub0.13.3 dataset2.6.1",
"huggingface_hub.utils._validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name':\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(ARGS.model_path, trust_remote_code=True)\r\n\r\nPlease handle automatically for local path and repo name inside, otherwise users always get confused about this",
"I think I'm also hitting this error, trying to load a model from a local path."
] |
https://api.github.com/repos/huggingface/datasets/issues/5628 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5628/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5628/comments | https://api.github.com/repos/huggingface/datasets/issues/5628/events | https://github.com/huggingface/datasets/pull/5628 | 1,619,641,810 | PR_kwDODunzps5LzVKi | 5,628 | add kwargs to index search | [] | closed | false | null | 1 | 2023-03-10T21:24:58Z | 2023-03-15T14:48:47Z | 2023-03-15T14:46:04Z | null | This PR proposes to add kwargs to index search methods.
This is particularly useful for setting the timeout of a query on elasticsearch.
A typical use case would be:
```python
dset.add_elasticsearch_index("filename", es_client=es_client)
scores, examples = dset.get_nearest_examples("filename", "my_name-train_29", request_timeout=60)
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 1,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5628/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5628/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/5628.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5628",
"merged_at": "2023-03-15T14:46:04Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5628.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5628"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._"
] |
https://api.github.com/repos/huggingface/datasets/issues/1768 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1768/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1768/comments | https://api.github.com/repos/huggingface/datasets/issues/1768/events | https://github.com/huggingface/datasets/pull/1768 | 792,150,745 | MDExOlB1bGxSZXF1ZXN0NTYwMDgyNzIx | 1,768 | Mention kwargs in the Dataset Formatting docs | [] | closed | false | null | 0 | 2021-01-22T16:43:20Z | 2021-01-31T12:33:10Z | 2021-01-25T09:14:59Z | null | Hi,
This was discussed in Issue #1762 where the docs didn't mention that keyword arguments to `datasets.Dataset.set_format()` are allowed.
To prevent people from having to check the code/method docs, I just added a couple of lines in the docs.
Please let me know your thoughts on this.
Thanks,
Gunjan
@lhoestq | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1768/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1768/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1768.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1768",
"merged_at": "2021-01-25T09:14:59Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1768.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1768"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/5778 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5778/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5778/comments | https://api.github.com/repos/huggingface/datasets/issues/5778/events | https://github.com/huggingface/datasets/issues/5778 | 1,678,125,951 | I_kwDODunzps5kBit_ | 5,778 | Schrödinger's dataset_dict | [] | closed | false | null | 1 | 2023-04-21T08:38:12Z | 2023-07-24T15:15:14Z | 2023-07-24T15:15:14Z | null | ### Describe the bug
If you use load_dataset('json', data_files="path/test.json"), it will return DatasetDict({train:...}).
And if you use load_dataset("path"), it will return DatasetDict({test:...}).
Why can't the output behavior be unified?
### Steps to reproduce the bug
as description above.
### Expected behavior
consistent predictable output.
### Environment info
'2.11.0' | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5778/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5778/timeline | null | completed | null | null | false | [
"Hi ! Passing `data_files=\"path/test.json\"` is equivalent to `data_files={\"train\": [\"path/test.json\"]}`, that's why you end up with a train split. If you don't pass `data_files=`, then split names are inferred from the data files names"
] |
https://api.github.com/repos/huggingface/datasets/issues/188 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/188/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/188/comments | https://api.github.com/repos/huggingface/datasets/issues/188/events | https://github.com/huggingface/datasets/issues/188 | 623,890,430 | MDU6SXNzdWU2MjM4OTA0MzA= | 188 | When will the remaining math_dataset modules be added as dataset objects | [] | closed | false | null | 3 | 2020-05-24T15:46:52Z | 2020-05-24T18:53:48Z | 2020-05-24T18:53:48Z | null | Currently only the algebra_linear_1d is supported. Is there a timeline for making the other modules supported. If no timeline is established, how can I help? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/188/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/188/timeline | null | completed | null | null | false | [
"On a similar note it would be nice to differentiate between train-easy, train-medium, and train-hard",
"Hi @tylerroost, we don't have a timeline for this at the moment.\r\nIf you want to give it a look we would be happy to review a PR on it.\r\nAlso, the library is one week old so everything is quite barebones, in particular the doc.\r\nYou should expect some bumps on the road.\r\n\r\nTo get you started, you can check the datasets scripts in the `./datasets` folder on the repo and find the one on math_datasets that will need to be modified. Then you should check the original repository on the math_dataset to see where the other files to download are located and what is the expected format for the various parts of the dataset.\r\n\r\nTo get a general overview on how datasets scripts are written and used, you can read the nice tutorial on how to add a new dataset for TensorFlow Dataset [here](https://www.tensorflow.org/datasets/add_dataset), our API is not exactly identical but it can give you a high-level overview.",
"Thanks I'll give it a look"
] |
https://api.github.com/repos/huggingface/datasets/issues/229 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/229/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/229/comments | https://api.github.com/repos/huggingface/datasets/issues/229/events | https://github.com/huggingface/datasets/pull/229 | 629,956,490 | MDExOlB1bGxSZXF1ZXN0NDI3MTcxMzc5 | 229 | Rename dataset_infos.json to dataset_info.json | [] | closed | false | null | 1 | 2020-06-03T12:31:44Z | 2020-06-03T12:52:54Z | 2020-06-03T12:48:33Z | null | As the file required for the viewing in the live nlp viewer is named as dataset_info.json | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/229/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/229/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/229.diff",
"html_url": "https://github.com/huggingface/datasets/pull/229",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/229.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/229"
} | true | [
"\r\nThis was actually the right name. `dataset_infos.json` is used to have the infos of all the dataset configurations.\r\n\r\nOn the other hand `dataset_info.json` (without 's') is a cache file with the info of one specific configuration.\r\n\r\nTo fix #228, we probably just have to clear and reload the nlp-viewer cache."
] |
https://api.github.com/repos/huggingface/datasets/issues/1070 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1070/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1070/comments | https://api.github.com/repos/huggingface/datasets/issues/1070/events | https://github.com/huggingface/datasets/pull/1070 | 756,442,481 | MDExOlB1bGxSZXF1ZXN0NTMxOTg2Nzcz | 1,070 | add conv_ai | [] | closed | false | null | 2 | 2020-12-03T18:25:20Z | 2020-12-04T07:58:35Z | 2020-12-04T06:44:34Z | null | Adding ConvAI dataset https://github.com/DeepPavlov/convai/tree/master/2017 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1070/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1070/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1070.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1070",
"merged_at": "2020-12-04T06:44:34Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1070.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1070"
} | true | [
"This one will make @thomwolf reminisce ;)",
"Merging."
] |
https://api.github.com/repos/huggingface/datasets/issues/2818 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2818/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2818/comments | https://api.github.com/repos/huggingface/datasets/issues/2818/events | https://github.com/huggingface/datasets/issues/2818 | 974,552,009 | MDU6SXNzdWU5NzQ1NTIwMDk= | 2,818 | cannot load data from my loacal path | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 1 | 2021-08-19T11:13:30Z | 2023-07-25T17:42:15Z | 2023-07-25T17:42:15Z | null | ## Describe the bug
I just want to directly load data from my local path,but find a bug.And I compare it with pandas to provide my local path is real.
here is my code
```python3
# print my local path
print(config.train_path)
# read data and print data length
tarin=pd.read_csv(config.train_path)
print(len(tarin))
# loading data by load_dataset
data = load_dataset('csv',data_files=config.train_path)
print(len(data))
```
## Steps to reproduce the bug
```python
C:\Users\wie\Documents\项目\文本分类\data\train.csv
7613
Traceback (most recent call last):
File "c:/Users/wie/Documents/项目/文本分类/lib/DataPrecess.py", line 17, in <module>
data = load_dataset('csv',data_files=config.train_path)
File "C:\Users\wie\Miniconda3\lib\site-packages\datasets\load.py", line 830, in load_dataset
**config_kwargs,
File "C:\Users\wie\Miniconda3\lib\site-packages\datasets\load.py", line 710, in load_dataset_builder
**config_kwargs,
File "C:\Users\wie\Miniconda3\lib\site-packages\datasets\builder.py", line 271, in __init__
**config_kwargs,
File "C:\Users\wie\Miniconda3\lib\site-packages\datasets\builder.py", line 386, in _create_builder_config
config_kwargs, custom_features=custom_features, use_auth_token=self.use_auth_token
File "C:\Users\wie\Miniconda3\lib\site-packages\datasets\builder.py", line 156, in create_config_id
raise ValueError("Please provide a valid `data_files` in `DatasetBuilder`")
ValueError: Please provide a valid `data_files` in `DatasetBuilder`
```
## Expected results
A clear and concise description of the expected results.
## Actual results
Specify the actual results or traceback.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.11.0
- Platform: win10
- Python version: 3.7.9
- PyArrow version: 5.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2818/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2818/timeline | null | completed | null | null | false | [
"Hi ! The `data_files` parameter must be a string, a list/tuple or a python dict.\r\n\r\nCan you check the type of your `config.train_path` please ? Or use `data_files=str(config.train_path)` ?"
] |
https://api.github.com/repos/huggingface/datasets/issues/2065 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2065/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2065/comments | https://api.github.com/repos/huggingface/datasets/issues/2065/events | https://github.com/huggingface/datasets/issues/2065 | 833,291,432 | MDU6SXNzdWU4MzMyOTE0MzI= | 2,065 | Only user permission of saved cache files, not group | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
},
{
"color": "7057ff",
"default": true,
"description": "Good for newcomers",
"id": 1935892877,
"name": "good first issue",
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue"
}
] | closed | false | null | 26 | 2021-03-17T00:20:22Z | 2023-03-31T12:17:06Z | 2021-05-10T06:45:29Z | null | Hello,
It seems when a cached file is saved from calling `dataset.map` for preprocessing, it gets the user permissions and none of the user's group permissions. As we share data files across members of our team, this is causing a bit of an issue as we have to continually reset the permission of the files. Do you know any ways around this or a way to correctly set the permissions? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2065/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2065/timeline | null | completed | null | null | false | [
"Hi ! Thanks for reporting.\r\n\r\nCurrently there's no way to specify this.\r\n\r\nWhen loading/processing a dataset, the arrow file is written using a temporary file. Then once writing is finished, it's moved to the cache directory (using `shutil.move` [here](https://github.com/huggingface/datasets/blob/f6b8251eb975f66a568356d2a40d86442c03beb9/src/datasets/arrow_dataset.py#L1646))\r\n\r\nThat means it keeps the permissions specified by the `tempfile.NamedTemporaryFile` object, i.e. `-rw-------` instead of `-rw-r--r--`. Improving this could be a nice first contribution to the library :)",
"Hi @lhoestq,\r\nI looked into this and yes you're right. The `NamedTemporaryFile` is always created with mode 0600, which prevents group from reading the file. Should we change the permissions of `tmp_file.name` [here](https://github.com/huggingface/datasets/blob/f6b8251eb975f66a568356d2a40d86442c03beb9/src/datasets/arrow_dataset.py#L1871) and [here](https://github.com/huggingface/datasets/blob/f6b8251eb975f66a568356d2a40d86442c03beb9/src/datasets/arrow_dataset.py#L1590), post creation to 0644 inorder for group and others to read it?",
"Good idea :) we could even update the permissions after the file has been moved by shutil.move [here](https://github.com/huggingface/datasets/blob/f6b8251eb975f66a568356d2a40d86442c03beb9/src/datasets/arrow_dataset.py#L1899) and [here](https://github.com/huggingface/datasets/blob/f6b8251eb975f66a568356d2a40d86442c03beb9/src/datasets/arrow_dataset.py#L1646) actually.\r\nApparently they set the default 0600 for temporary files for security reasons, so let's update the umask only after the file has been moved",
"Would it be possible to actually set the umask based on a user provided argument? For example, a popular usecase my team has is using a shared file-system for processing datasets. This may involve writing/deleting other files, or changing filenames, which a -rw-r--r-- wouldn't fix. ",
"Note that you can get the cache files of a dataset with the `cache_files` attributes.\r\nThen you can `chmod` those files and all the other cache files in the same directory.\r\n\r\nMoreover we can probably keep the same permissions after each transform. This way you just need to set the permissions once after doing `load_dataset` for example, and then all the new transformed cached files will have the same permissions.\r\nWhat do you think ?",
"This means we'll check the permissions of other `cache_files` already created for a dataset before setting permissions for new `cache_files`?",
"You can just check the permission of `dataset.cache_files[0]` imo",
"> This way you just need to set the permissions once after doing load_dataset for example, and then all the new transformed cached files will have the same permissions.\r\n\r\nI was referring to this. Ensuring that newly generated `cache_files` have the same permissions",
"Yes exactly\r\n\r\nI imagine users can first do `load_dataset`, then chmod on the arrow files. After that all the new cache files could have the same permissions as the first arrow files. Opinions on this ?",
"Sounds nice but I feel this is a sub-part of the approach mentioned by @siddk. Instead of letting the user set new permissions by itself first and then making sure newly generated files have same permissions why don't we ask the user initially only what they want? What are your thoughts?",
"Yes sounds good. Should this be a parameter in `load_dataset` ? Or an env variable ? Or use the value of `os.umask` ?",
"Ideally it should be a parameter in `load_dataset` but I'm not sure how important it is for the users (considering only important things should go into `load_dataset` parameters)",
"I think it's fairly important; for context, our team uses a shared file-system where many folks run experiments based on datasets that are cached by other users.\r\n\r\nFor example, I might start a training run, downloading a dataset. Then, a couple of days later, a collaborator using the same repository might want to use the same dataset on the same shared filesystem, but won't be able to under the default permissions.\r\n\r\nBeing able to specify directly in the top-level `load_dataset()` call seems important, but an equally valid option would be to just inherit from the running user's `umask` (this should probably be the default anyway).\r\n\r\nSo basically, argument that takes a custom set of permissions, and by default, use the running user's umask!",
"Maybe let's start by defaulting to the user's umask !\r\nDo you want to give it a try @bhavitvyamalik ?",
"Yeah sure! Instead of using default `0o644` should I first extract umask of current user and then use `os.umask` on it? We can do it inside `Dataset` class so that all folders/files created during the call use running user's umask\r\n\r\n",
"You can get the umask using `os.umask` and then I guess you can just use `os.chmod` as in your previous PR, but with the right permissions depending on the umask.",
"FWIW, we have this issue with other caches - e.g. `transformers` model files. So probably will need to backport this into `transformers` as well.\r\n\r\nthanks @thomwolf for the pointer.",
"Hi @stas00,\r\nFor this should we use the same umask code in the respective model directory inside `TRANSFORMERS_CACHE`?",
"That sounds very right to me, @bhavitvyamalik ",
"The cluster I am working on does not allow me to change the permission of the files with os.chmod. I was wondering if there is any workaround for this? My cache is in a GCP bucket and I can't change file permissions once I mount it.",
"@vmurahari3 what error do you have exactly ?",
"I get a permission denied error on https://github.com/huggingface/datasets/blob/b8363e0539c6f0cb5de49af32962cf2eb4c47395/src/datasets/arrow_dataset.py#L2799. I suspect I don't have permissions to change group permissions. I am mounting a GCP bucket through [gcsfuse](https://github.com/GoogleCloudPlatform/gcsfuse). ",
"What @lhoestq is asking for is the full multi-line traceback - it's almost never enough to show the last line - a full stack is needed to get the context. Thank you!\r\n\r\nI wonder if a workaround is to try/except and then issue a warning if this fails?",
"Hello, I'm working on a project with a very similar setup to the one mentioned by @siddk, namely we have a shared cache directory in the team that we wish to use to avoid redundant dataset downloads. However, we're hitting `PermissionError` when one member of the team tries to reload a dataset that was downloaded by another team member (stack trace below).\r\n\r\nConcretely, we first create a shared directory and give everyone read, write, execute permissions as follows (I know this isn't best practice 🤫):\r\n\r\n```shell\r\nmkdir shared-folder\r\nchmod -R 777 shared-folder\r\n```\r\n\r\nWe then set the following in our `.bashrc` profiles:\r\n\r\n```\r\n# Hugging Face caches\r\nexport HUGGINGFACE_HUB_CACHE=/path/to/shared-folder\r\nexport HF_DATASETS_CACHE=/path/to/shared-folder\r\n\r\n# For shared access to the shared-folder directory\r\numask 000\r\n```\r\n\r\nNow, running e.g. `load_dataset(\"emotion\")` the first time works (as expected), but when another team member tries to load from cache we get something like:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/load.py\", line 1759, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/load.py\", line 1496, in load_dataset_builder\r\n dataset_module = dataset_module_factory(\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/load.py\", line 1218, in dataset_module_factory\r\n raise e1 from None\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/load.py\", line 1193, in dataset_module_factory\r\n ).get_module()\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/load.py\", line 903, in get_module\r\n local_path = self.download_loading_script()\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/load.py\", line 871, in download_loading_script\r\n return cached_path(file_path, download_config=download_config)\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/utils/file_utils.py\", line 210, in cached_path\r\n output_path = ExtractManager(cache_dir=download_config.cache_dir).extract(\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/utils/extract.py\", line 42, in extract\r\n extractor_format = self.extractor.infer_extractor_format(input_path)\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/utils/extract.py\", line 287, in infer_extractor_format\r\n if extractor.is_extractable(path, magic_number=magic_number):\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/site-packages/datasets/utils/extract.py\", line 84, in is_extractable\r\n return tarfile.is_tarfile(path)\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/tarfile.py\", line 2517, in is_tarfile\r\n t = open(name)\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/tarfile.py\", line 1632, in open\r\n return func(name, \"r\", fileobj, **kwargs)\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/tarfile.py\", line 1698, in gzopen\r\n fileobj = GzipFile(name, mode + \"b\", compresslevel, fileobj)\r\n File \"~/miniconda3/envs/llama-nol/lib/python3.10/gzip.py\", line 174, in __init__\r\n fileobj = self.myfileobj = builtins.open(filename, mode or 'rb')\r\nPermissionError: [Errno 13] Permission denied: '/path/to/shared-folder/downloads/4e7db366b1ea045d0faa083a2e47ac87326ad8e653f894763b0982c2a1e94078.cc96367835404d4195bf75b2602e6dbbfd2da9288170fc0b2298fc0e376ff52a.py'\r\n```\r\n\r\nIf I understand this comment from @bhavitvyamalik:\r\n\r\n> Yeah sure! Instead of using default `0o644` should I first extract umask of current user and then use `os.umask` on it? We can do it inside `Dataset` class so that all folders/files created during the call use running user's umask\r\n\r\nthe goal was to infer the `umask` of the user profile, but perhaps I misunderstood and the true solution is to chmod the `cache_files` as @lhoestq suggests above - is that correct?\r\n\r\ncc @natolambert @nazneenrajani @edbeeching ",
"Python files are stored in the modules caches, that you can modify by setting `HF_MODULES_CACHE` as well and set appropriate permissions\r\n\r\nThey are in different locations because the `HF_MODULES_CACHE` is added to the python path to be able to import the dataset scripts :)",
"Thanks a lot for the tip @lhoestq ! I didn't know about this extra cache - thanks :)"
] |
https://api.github.com/repos/huggingface/datasets/issues/1297 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1297/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1297/comments | https://api.github.com/repos/huggingface/datasets/issues/1297/events | https://github.com/huggingface/datasets/pull/1297 | 759,404,103 | MDExOlB1bGxSZXF1ZXN0NTM0NDE1ODMx | 1,297 | OPUS Ted Talks 2013 | [] | closed | false | null | 0 | 2020-12-08T12:25:39Z | 2020-12-08T12:35:50Z | 2020-12-08T12:35:50Z | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1297/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1297/timeline | null | null | true | {
"diff_url": "https://github.com/huggingface/datasets/pull/1297.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1297",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1297.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1297"
} | true | [] |
|
https://api.github.com/repos/huggingface/datasets/issues/3875 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3875/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3875/comments | https://api.github.com/repos/huggingface/datasets/issues/3875/events | https://github.com/huggingface/datasets/pull/3875 | 1,164,029,673 | PR_kwDODunzps40LUuw | 3,875 | Module namespace cleanup for v2.0 | [] | closed | false | null | 4 | 2022-03-09T14:43:07Z | 2022-03-11T15:42:06Z | 2022-03-11T15:42:05Z | null | This is an attempt to make the user-facing `datasets`' submodule namespace cleaner:
In particular, this PR does the following:
* removes the unused `zip_nested` and `flatten_nest_dict` and their accompanying tests
* removes `pyarrow` from the top-level namespace
* properly uses `__all__` and the `from <module> import *` syntax to avoid importing the `<module>`'s submodules
* cleans up the `utils` namespace
* moves the `temp_seed` context manage from `datasets/utils/file_utils.py` to `datasets/utils/py_utils.py` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3875/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3875/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3875.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3875",
"merged_at": "2022-03-11T15:42:05Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3875.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3875"
} | true | [
"will it solve https://github.com/huggingface/datasets-preview-backend/blob/4c542a74244045929615640ccbba5a902c344c5a/pyproject.toml#L85-L89?",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3875). All of your documentation changes will be reflected on that endpoint.",
"@severo No, this PR doesn't fix that issue in the current state. We can fix it by adding `__all__` to `datasets/__init__.py` and `datasets/formatting/__init__.py`. However, this would require updating `__all__` for each new function/class definition, which could become cumbersome, and we can't do this dynamically because `mypy` is a static type checker.\r\n\r\n@lhoestq @albertvillanova WDYT?",
"Feel free to merge this one if it's good for you :)"
] |
https://api.github.com/repos/huggingface/datasets/issues/1198 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1198/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1198/comments | https://api.github.com/repos/huggingface/datasets/issues/1198/events | https://github.com/huggingface/datasets/pull/1198 | 757,903,453 | MDExOlB1bGxSZXF1ZXN0NTMzMTgwNjAz | 1,198 | Add ALT | [] | closed | false | null | 3 | 2020-12-06T11:25:30Z | 2020-12-10T04:18:12Z | 2020-12-10T04:18:12Z | null | ALT dataset -- https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/ | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1198/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1198/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1198.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1198",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1198.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1198"
} | true | [
"the `RemoteDatasetTest ` erros in the CI are fixed on master so it's fine",
"used `Translation ` feature type and fixed few typos as you suggested.",
"Sorry, I made a mistake. please see new PR here. https://github.com/huggingface/datasets/pull/1436"
] |
https://api.github.com/repos/huggingface/datasets/issues/758 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/758/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/758/comments | https://api.github.com/repos/huggingface/datasets/issues/758/events | https://github.com/huggingface/datasets/issues/758 | 728,638,559 | MDU6SXNzdWU3Mjg2Mzg1NTk= | 758 | Process 0 very slow when using num_procs with map to tokenizer | [] | closed | false | null | 6 | 2020-10-24T02:40:20Z | 2020-10-28T03:59:46Z | 2020-10-28T03:59:45Z | null | <img width="721" alt="image" src="https://user-images.githubusercontent.com/17930170/97066109-776d0d00-15ed-11eb-8bba-bb4d2e0fcc33.png">
The code I am using is
```
dataset = load_dataset("text", data_files=[file_path], split='train')
dataset = dataset.map(lambda ex: tokenizer(ex["text"], add_special_tokens=True,
truncation=True, max_length=args.block_size), num_proc=8)
dataset.set_format(type='torch', columns=['input_ids'])
dataset.save_to_disk(file_path+'.arrow')
```
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/758/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/758/timeline | null | completed | null | null | false | [
"Hi ! Thanks for reporting.\r\nIs the distribution of text length of your data evenly distributed across your dataset ? I mean, could it be because the examples in the first part of your dataset are slower to process ?\r\nAlso could how many CPUs can you use for multiprocessing ?\r\n```python\r\nimport multiprocessing\r\nprint(multiprocessing.cpu_count())\r\n```\r\nWhich tokenizer are you using ?",
"Using pre trained HF tokenizer. The result is the same with tokenizer multiprocessing off and on.\r\nI have (absolutely) no idea about the distribution, but since this issue occurs on all of my datasets(regardless of files), I don't think distribution is the problems.\r\n\r\nI can use up to 16 cores.",
"Ok weird, I don't manage to reproduce this issue on my side.\r\nDoes it happen even with `num_proc=2` for example ?\r\nAlso could you provide more details about your OS and the versions of tokenizers/datasets/multiprocess that you're using ?",
"Yes, I can confirm it also happens with ```num_proc=2```.\r\n```\r\ntokenizers 0.9.2\r\ndatasets 1.1.2\r\nmultiprocess 0.70.10\r\n```\r\n```\r\nLinux nipa2020-0629 4.4.0-178-generic #208-Ubuntu SMP Sun Apr 5 23:45:10 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux\r\n```",
"I can't reproduce on my side unfortunately with the same versions.\r\n\r\nDo you have issues when doing multiprocessing with python ?\r\n```python\r\nfrom tqdm.auto import tqdm\r\nfrom multiprocess import Pool, RLock\r\n\r\ndef process_data(shard):\r\n # implement\r\n\r\nnum_proc = 8\r\nshards = [] # implement, this must be a list of size num_proc\r\n\r\nwith Pool(num_proc, initargs=(RLock(),), initializer=tqdm.set_lock) as pool:\r\n results = [pool.apply_async(process_data, shard=shard) for shard in shards]\r\n transformed_shards = [r.get() for r in results]\r\n```",
"Nah, I'll just wait a few hours. Thank you for helping, though."
] |
https://api.github.com/repos/huggingface/datasets/issues/2106 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2106/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2106/comments | https://api.github.com/repos/huggingface/datasets/issues/2106/events | https://github.com/huggingface/datasets/issues/2106 | 839,084,264 | MDU6SXNzdWU4MzkwODQyNjQ= | 2,106 | WMT19 Dataset for Kazakh-English is not formatted correctly | [
{
"color": "2edb81",
"default": false,
"description": "A bug in a dataset script provided in the library",
"id": 2067388877,
"name": "dataset bug",
"node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug"
}
] | open | false | null | 1 | 2021-03-23T20:14:47Z | 2021-03-25T21:36:20Z | null | null | In addition to the bug of languages being switched from Issue @415, there are incorrect translations in the dataset because the English-Kazakh translations have a one off formatting error.
The News Commentary v14 parallel data set for kk-en from http://www.statmt.org/wmt19/translation-task.html has a bug here:
> Line 94. The Swiss National Bank, for its part, has been battling with the deflationary effects of the franc’s dramatic appreciation over the past few years. Швейцарияның Ұлттық банкі өз тарапынан, соңғы бірнеше жыл ішінде франк құнының қатты өсуінің дефляциялық әсерімен күресіп келеді.
>
> Line 95. Дефляциялық күштер 2008 жылы терең және ұзаққа созылған жаһандық дағдарысқа байланысты орын алған ірі экономикалық және қаржылық орын алмасулардың арқасында босатылды. Жеке қарыз қаражаты үлесінің қысқаруы орталық банктің рефляцияға жұмсалған күш-жігеріне тұрақты соққан қарсы желдей болды.
>
> Line 96. The deflationary forces were unleashed by the major economic and financial dislocations associated with the deep and protracted global crisis that erupted in 2008. Private deleveraging became a steady headwind to central bank efforts to reflate. 2009 жылы, алдыңғы қатарлы экономикалардың шамамен үштен бірі бағаның төмендеуін көрсетті, бұл соғыстан кейінгі жоғары деңгей болды.
As you can see, line 95 has only the Kazakh translation which should be part of line 96. This causes all of the following English-Kazakh translation pairs to be one off rendering ALL of those translations incorrect. This issue was not fixed when the dataset was imported to Huggingface. By running this code
```
import datasets
from datasets import load_dataset
dataset = load_dataset('wmt19', 'kk-en')
for key in dataset['train']['translation']:
if 'The deflationary forces were unleashed by the major economic and financial dislocations associated with the deep and protracted global crisis that erupted in 2008.' in key['kk']:
print(key['en'])
print(key['kk'])
break
```
we get:
> 2009 жылы, алдыңғы қатарлы экономикалардың шамамен үштен бірі бағаның төмендеуін көрсетті, бұл соғыстан кейінгі жоғары деңгей болды.
> The deflationary forces were unleashed by the major economic and financial dislocations associated with the deep and protracted global crisis that erupted in 2008. Private deleveraging became a steady headwind to central bank efforts to reflate.
which shows that the issue still persists in the Huggingface dataset. The Kazakh sentence matches up to the next English sentence in the dataset instead of the current one.
Please let me know if there's you have any ideas to fix this one-off error from the dataset or if this can be fixed by Huggingface. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2106/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2106/timeline | null | null | null | null | false | [
"Hi ! Thanks for reporting\r\n\r\nBy looking at the raw `news-commentary-v14.en-kk.tsv` file, it looks like there are at least 17 lines with this issue.\r\nMoreover these issues are not always the same:\r\n- L97 is only `kk` text and must be appended at the end of the `kk` text of the **next** line\r\n- L2897 is only `kk` text and must be appended at the end of the `kk` text of the **previous** line\r\n- L1247 and L1248 are only `kk` texts and must be inserted at the **beginning** of the `kk` text of the next line\r\n- (and there are many others)\r\n\r\nIt would be nice to have a corrected version of this file ! The file is available in the `wmt/news-commentary` repository on the Datasets Hub here:\r\nhttps://huggingface.co/datasets/wmt/news-commentary/tree/main/v14/training\r\n\r\nThen maybe we can notify the WMT authors and host the corrected version somewhere"
] |
https://api.github.com/repos/huggingface/datasets/issues/4546 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4546/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4546/comments | https://api.github.com/repos/huggingface/datasets/issues/4546/events | https://github.com/huggingface/datasets/pull/4546 | 1,282,093,288 | PR_kwDODunzps46Oe_K | 4,546 | [CI] fixing seqeval install in ci by pinning setuptools-scm | [] | closed | false | null | 1 | 2022-06-23T09:24:37Z | 2022-06-23T10:24:16Z | 2022-06-23T10:13:44Z | null | The latest setuptools-scm version supported on 3.6 is 6.4.2. However for some reason circleci has version 7, which doesn't work.
I fixed this by pinning the version of setuptools-scm in the circleci job
Fix https://github.com/huggingface/datasets/issues/4544 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4546/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4546/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4546.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4546",
"merged_at": "2022-06-23T10:13:44Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4546.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4546"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._"
] |
https://api.github.com/repos/huggingface/datasets/issues/3097 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3097/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3097/comments | https://api.github.com/repos/huggingface/datasets/issues/3097/events | https://github.com/huggingface/datasets/issues/3097 | 1,027,750,811 | I_kwDODunzps49Qjub | 3,097 | `ModuleNotFoundError: No module named 'fsspec.exceptions'` | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 1 | 2021-10-15T19:34:38Z | 2021-10-18T07:51:54Z | 2021-10-18T07:51:54Z | null | ## Describe the bug
I keep runnig into a fsspec ModuleNotFound error
## Steps to reproduce the bug
```python
>>> from datasets import get_dataset_infos
2021-10-15 15:25:37.863206: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2021-10-15 15:25:37.863252: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/__init__.py", line 37, in <module>
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/builder.py", line 56, in <module>
from .utils.streaming_download_manager import StreamingDownloadManager
File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/utils/streaming_download_manager.py", line 11, in <module>
from fsspec.exceptions import FSTimeoutError
ModuleNotFoundError: No module named 'fsspec.exceptions'
```
Yet, I do have `fsspec`:
```bash
hf@victor-scale:~/dev/promptsource$ pip show fsspec
Name: fsspec
Version: 2021.5.0
Summary: File-system specification
Home-page: http://github.com/intake/filesystem_spec
Author: None
Author-email: None
License: BSD
Location: /home/hf/dev/promptsource/.venv/lib/python3.7/site-packages
Requires:
Required-by: datasets
```
With the same version of fsspec and `datasets==1.9.0`, I don't see this problem....
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
I can't even run `datasets-cli env` actually.., but here's my env:
- `datasets` version: 1.13.3
- Platform: Ubuntu 18.04
- Python version: 3.7.10
- PyArrow version: 3.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3097/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3097/timeline | null | completed | null | null | false | [
"Thanks for reporting, @VictorSanh.\r\n\r\nI'm fixing it."
] |
https://api.github.com/repos/huggingface/datasets/issues/1148 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1148/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1148/comments | https://api.github.com/repos/huggingface/datasets/issues/1148/events | https://github.com/huggingface/datasets/pull/1148 | 757,503,918 | MDExOlB1bGxSZXF1ZXN0NTMyODY5NzM0 | 1,148 | adding polemo2 dataset | [] | closed | false | null | 0 | 2020-12-05T01:25:29Z | 2020-12-05T16:51:39Z | 2020-12-05T16:51:39Z | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1148/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1148/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1148.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1148",
"merged_at": "2020-12-05T16:51:38Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1148.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1148"
} | true | [] |
|
https://api.github.com/repos/huggingface/datasets/issues/5078 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5078/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5078/comments | https://api.github.com/repos/huggingface/datasets/issues/5078/events | https://github.com/huggingface/datasets/pull/5078 | 1,398,335,148 | PR_kwDODunzps5APjkH | 5,078 | Fix header level in Audio docs | [] | closed | false | null | 1 | 2022-10-05T20:22:44Z | 2022-10-06T08:12:23Z | 2022-10-06T08:09:41Z | null | Fixes header level so `Dataset features` is the doc title instead of `The Audio type`:
 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5078/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5078/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/5078.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5078",
"merged_at": "2022-10-06T08:09:41Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5078.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5078"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._"
] |
https://api.github.com/repos/huggingface/datasets/issues/1650 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1650/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1650/comments | https://api.github.com/repos/huggingface/datasets/issues/1650/events | https://github.com/huggingface/datasets/pull/1650 | 775,545,912 | MDExOlB1bGxSZXF1ZXN0NTQ2MjA0MzYy | 1,650 | Update README.md | [] | closed | false | null | 0 | 2020-12-28T19:09:05Z | 2020-12-29T10:43:14Z | 2020-12-29T10:43:14Z | null | added dataset summary | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1650/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1650/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1650.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1650",
"merged_at": "2020-12-29T10:43:14Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1650.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1650"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/711 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/711/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/711/comments | https://api.github.com/repos/huggingface/datasets/issues/711/events | https://github.com/huggingface/datasets/pull/711 | 714,236,408 | MDExOlB1bGxSZXF1ZXN0NDk3Mzc3NzU3 | 711 | New Update bertscore.py | [] | closed | false | null | 0 | 2020-10-04T05:13:09Z | 2020-10-05T16:26:51Z | 2020-10-05T16:26:51Z | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/711/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/711/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/711.diff",
"html_url": "https://github.com/huggingface/datasets/pull/711",
"merged_at": "2020-10-05T16:26:51Z",
"patch_url": "https://github.com/huggingface/datasets/pull/711.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/711"
} | true | [] |
|
https://api.github.com/repos/huggingface/datasets/issues/4367 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4367/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4367/comments | https://api.github.com/repos/huggingface/datasets/issues/4367/events | https://github.com/huggingface/datasets/pull/4367 | 1,240,011,602 | PR_kwDODunzps44B340 | 4,367 | Remove config names as yaml keys | [] | closed | false | null | 3 | 2022-05-18T13:59:24Z | 2022-05-20T09:35:26Z | 2022-05-20T09:27:19Z | null | Many datasets have dots in their config names. However it causes issues with the YAML tags of the dataset cards since we can't have dots in YAML keys.
I fix this, I removed the tags separations per config name completely, and have a single flat YAML for all configurations. Dataset search doesn't use this info anyway. I removed all the config names used as YAML keys, and I moved them in under a new `config:` key.
This is related to https://github.com/huggingface/datasets/pull/2362 (internal https://github.com/huggingface/moon-landing/issues/946).
Also removing the dots in the YAML keys would allow us to do as in https://github.com/huggingface/datasets/pull/4302 which removes a hack that replaces all the dots by underscores in the YAML tags.
I also added a test in the CI that checks that all the YAML tags to make sure that:
- they can be parsed using a YAML parser
- they contain only valid YAML tags like languages or task_ids | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4367/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4367/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4367.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4367",
"merged_at": "2022-05-20T09:27:19Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4367.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4367"
} | true | [
"I included the change from https://github.com/huggingface/datasets/pull/4302 directly in this PR, this way the datasets will be updated right away in the CI (the CI is only triggered when a dataset card is changed)",
"_The documentation is not available anymore as the PR was closed or merged._",
"Alright it's ready now :)\r\n\r\nHere is an example for the `ade_corpus_v2` dataset card. Notice the new `configs` key:\r\n\r\nhttps://github.com/huggingface/datasets/blob/76d9a141740a03f6836feb251f6059894b8d8046/datasets/ade_corpus_v2/README.md#L1-L78\r\n\r\nCI failures are only related to dataset cards missing some content."
] |
https://api.github.com/repos/huggingface/datasets/issues/3242 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3242/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3242/comments | https://api.github.com/repos/huggingface/datasets/issues/3242/events | https://github.com/huggingface/datasets/issues/3242 | 1,048,527,232 | I_kwDODunzps4-f0GA | 3,242 | Adding ANERcorp-CAMeLLab dataset | [
{
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset",
"id": 2067376369,
"name": "dataset request",
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request"
}
] | open | false | null | 1 | 2021-11-09T12:04:04Z | 2021-11-09T12:41:15Z | null | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3242/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3242/timeline | null | null | null | null | false | [
"Adding ANERcorp dataset\r\n\r\n## Adding a Dataset\r\n- **Name:** *ANERcorp-CAMeLLab*\r\n- **Description:** *Since its creation in 2008, the ANERcorp dataset (Benajiba & Rosso, 2008) has been a standard reference used by Arabic named entity recognition researchers around the world. However, over time, this dataset was copied over from user to user, modified slightly here and there, and split in many different configurations that made it hard to compare fairly across papers and systems.\r\n\r\nIn 2020, a group of researchers from CAMeL Lab (Habash, Alhafni and Oudah), and Mind Lab (Antoun and Baly) met with the creator of the corpus, Yassine Benajiba, to consult with him and collectively agree on an exact split, and accepted minor corrections from the original dataset. Bashar Alhafni from CAMeL Lab working with Nizar Habash implemented the decisions provided in this release.*\r\n\r\n- **Paper:** *(a) Benajiba, Yassine, Paolo Rosso, and José Miguel Benedí Ruiz. \"Anersys: An Arabic named entity recognition system based on maximum entropy.\" In International Conference on Intelligent Text Processing and Computational Linguistics, pp. 143-153. Springer, Berlin, Heidelberg, 2007.\r\n\r\n(b)Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl Eryani, Alexander Erdmann, and Nizar Habash. \"CAMeL Tools: An Open Source Python Toolkit, for Arabic Natural Language Processing.\" In Proceedings of the Conference on Language Resources and Evaluation (LREC 2020), Marseille, 2020.*\r\n- **Data:** *https://camel.abudhabi.nyu.edu/anercorp/*\r\n- **Motivation:** This is the standard dataset for evaluating NER performance in Arabic*\r\n\r\nInstructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md)."
] |
https://api.github.com/repos/huggingface/datasets/issues/6000 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6000/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6000/comments | https://api.github.com/repos/huggingface/datasets/issues/6000/events | https://github.com/huggingface/datasets/pull/6000 | 1,782,456,878 | PR_kwDODunzps5UU_FB | 6,000 | Pin `joblib` to avoid `joblibspark` test failures | [] | closed | false | null | 4 | 2023-06-30T12:36:54Z | 2023-06-30T13:17:05Z | 2023-06-30T13:08:27Z | null | `joblibspark` doesn't support the latest `joblib` release.
See https://github.com/huggingface/datasets/actions/runs/5401870932/jobs/9812337078 for the errors | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6000/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6000/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/6000.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6000",
"merged_at": "2023-06-30T13:08:27Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6000.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6000"
} | true | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006722 / 0.011353 (-0.004631) | 0.004425 / 0.011008 (-0.006583) | 0.100850 / 0.038508 (0.062341) | 0.040816 / 0.023109 (0.017707) | 0.348823 / 0.275898 (0.072925) | 0.446285 / 0.323480 (0.122805) | 0.005738 / 0.007986 (-0.002247) | 0.003517 / 0.004328 (-0.000811) | 0.078824 / 0.004250 (0.074574) | 0.064695 / 0.037052 (0.027643) | 0.389894 / 0.258489 (0.131405) | 0.416107 / 0.293841 (0.122266) | 0.028850 / 0.128546 (-0.099696) | 0.009011 / 0.075646 (-0.066635) | 0.323117 / 0.419271 (-0.096154) | 0.049162 / 0.043533 (0.005629) | 0.340144 / 0.255139 (0.085005) | 0.382072 / 0.283200 (0.098872) | 0.023160 / 0.141683 (-0.118523) | 1.549218 / 1.452155 (0.097063) | 1.581266 / 1.492716 (0.088550) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.293360 / 0.018006 (0.275353) | 0.602189 / 0.000490 (0.601700) | 0.004608 / 0.000200 (0.004408) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028144 / 0.037411 (-0.009267) | 0.107088 / 0.014526 (0.092562) | 0.112188 / 0.176557 (-0.064369) | 0.174669 / 0.737135 (-0.562466) | 0.116359 / 0.296338 (-0.179980) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422911 / 0.215209 (0.207702) | 4.231524 / 2.077655 (2.153869) | 1.906711 / 1.504120 (0.402591) | 1.706841 / 1.541195 (0.165646) | 1.792066 / 1.468490 (0.323576) | 0.559221 / 4.584777 (-4.025556) | 3.434280 / 3.745712 (-0.311433) | 1.918714 / 5.269862 (-3.351148) | 1.073070 / 4.565676 (-3.492606) | 0.067891 / 0.424275 (-0.356384) | 0.011927 / 0.007607 (0.004320) | 0.530843 / 0.226044 (0.304799) | 5.309213 / 2.268929 (3.040285) | 2.439246 / 55.444624 (-53.005378) | 2.101245 / 6.876477 (-4.775231) | 2.177436 / 2.142072 (0.035363) | 0.672150 / 4.805227 (-4.133077) | 0.137571 / 6.500664 (-6.363093) | 0.068343 / 0.075469 (-0.007126) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.265262 / 1.841788 (-0.576525) | 14.988021 / 8.074308 (6.913713) | 13.611677 / 10.191392 (3.420285) | 0.171389 / 0.680424 (-0.509035) | 0.017681 / 0.534201 (-0.516520) | 0.377542 / 0.579283 (-0.201741) | 0.399475 / 0.434364 (-0.034889) | 0.469553 / 0.540337 (-0.070785) | 0.561888 / 1.386936 (-0.825048) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006782 / 0.011353 (-0.004571) | 0.004412 / 0.011008 (-0.006597) | 0.078594 / 0.038508 (0.040086) | 0.039930 / 0.023109 (0.016820) | 0.371879 / 0.275898 (0.095981) | 0.444910 / 0.323480 (0.121430) | 0.005707 / 0.007986 (-0.002279) | 0.003901 / 0.004328 (-0.000427) | 0.080125 / 0.004250 (0.075875) | 0.063977 / 0.037052 (0.026925) | 0.382781 / 0.258489 (0.124292) | 0.441791 / 0.293841 (0.147950) | 0.030428 / 0.128546 (-0.098118) | 0.009008 / 0.075646 (-0.066638) | 0.084447 / 0.419271 (-0.334824) | 0.044432 / 0.043533 (0.000899) | 0.365686 / 0.255139 (0.110547) | 0.394312 / 0.283200 (0.111113) | 0.024508 / 0.141683 (-0.117175) | 1.577020 / 1.452155 (0.124865) | 1.630259 / 1.492716 (0.137543) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.307960 / 0.018006 (0.289953) | 0.591473 / 0.000490 (0.590983) | 0.008098 / 0.000200 (0.007898) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029567 / 0.037411 (-0.007845) | 0.112773 / 0.014526 (0.098247) | 0.117362 / 0.176557 (-0.059194) | 0.174293 / 0.737135 (-0.562843) | 0.123156 / 0.296338 (-0.173182) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457475 / 0.215209 (0.242266) | 4.599067 / 2.077655 (2.521412) | 2.262638 / 1.504120 (0.758518) | 2.124943 / 1.541195 (0.583748) | 2.339912 / 1.468490 (0.871422) | 0.566264 / 4.584777 (-4.018513) | 3.489261 / 3.745712 (-0.256451) | 1.925151 / 5.269862 (-3.344711) | 1.099389 / 4.565676 (-3.466287) | 0.068232 / 0.424275 (-0.356043) | 0.011660 / 0.007607 (0.004052) | 0.571227 / 0.226044 (0.345183) | 5.702059 / 2.268929 (3.433130) | 2.837701 / 55.444624 (-52.606924) | 2.605468 / 6.876477 (-4.271008) | 2.818396 / 2.142072 (0.676323) | 0.681856 / 4.805227 (-4.123371) | 0.141401 / 6.500664 (-6.359263) | 0.069728 / 0.075469 (-0.005741) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354935 / 1.841788 (-0.486853) | 15.437404 / 8.074308 (7.363095) | 15.415193 / 10.191392 (5.223801) | 0.153459 / 0.680424 (-0.526964) | 0.017190 / 0.534201 (-0.517011) | 0.367256 / 0.579283 (-0.212027) | 0.392709 / 0.434364 (-0.041655) | 0.426125 / 0.540337 (-0.114213) | 0.522612 / 1.386936 (-0.864324) |\n\n</details>\n</details>\n\n\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009183 / 0.011353 (-0.002170) | 0.005232 / 0.011008 (-0.005776) | 0.120349 / 0.038508 (0.081841) | 0.044715 / 0.023109 (0.021606) | 0.361519 / 0.275898 (0.085621) | 0.463702 / 0.323480 (0.140223) | 0.005842 / 0.007986 (-0.002144) | 0.004041 / 0.004328 (-0.000288) | 0.096953 / 0.004250 (0.092703) | 0.070593 / 0.037052 (0.033540) | 0.409790 / 0.258489 (0.151301) | 0.477452 / 0.293841 (0.183611) | 0.045827 / 0.128546 (-0.082719) | 0.014038 / 0.075646 (-0.061608) | 0.421317 / 0.419271 (0.002045) | 0.065276 / 0.043533 (0.021743) | 0.360074 / 0.255139 (0.104935) | 0.409147 / 0.283200 (0.125947) | 0.032444 / 0.141683 (-0.109238) | 1.739257 / 1.452155 (0.287102) | 1.831408 / 1.492716 (0.338692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274852 / 0.018006 (0.256846) | 0.596320 / 0.000490 (0.595830) | 0.006399 / 0.000200 (0.006199) | 0.000133 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031400 / 0.037411 (-0.006012) | 0.127052 / 0.014526 (0.112526) | 0.134269 / 0.176557 (-0.042288) | 0.225998 / 0.737135 (-0.511137) | 0.150019 / 0.296338 (-0.146319) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.654202 / 0.215209 (0.438993) | 6.216735 / 2.077655 (4.139081) | 2.440214 / 1.504120 (0.936094) | 2.150575 / 1.541195 (0.609380) | 2.124790 / 1.468490 (0.656300) | 0.923514 / 4.584777 (-3.661263) | 5.556924 / 3.745712 (1.811212) | 2.843886 / 5.269862 (-2.425975) | 1.834232 / 4.565676 (-2.731444) | 0.111735 / 0.424275 (-0.312540) | 0.014823 / 0.007607 (0.007216) | 0.820503 / 0.226044 (0.594459) | 7.887737 / 2.268929 (5.618809) | 3.120307 / 55.444624 (-52.324317) | 2.405856 / 6.876477 (-4.470621) | 2.411239 / 2.142072 (0.269167) | 1.071283 / 4.805227 (-3.733944) | 0.227738 / 6.500664 (-6.272926) | 0.073516 / 0.075469 (-0.001953) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.531806 / 1.841788 (-0.309982) | 18.547661 / 8.074308 (10.473353) | 21.083922 / 10.191392 (10.892530) | 0.241706 / 0.680424 (-0.438718) | 0.034169 / 0.534201 (-0.500032) | 0.497514 / 0.579283 (-0.081769) | 0.599801 / 0.434364 (0.165437) | 0.576465 / 0.540337 (0.036127) | 0.673509 / 1.386936 (-0.713427) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007558 / 0.011353 (-0.003795) | 0.005001 / 0.011008 (-0.006008) | 0.093809 / 0.038508 (0.055301) | 0.039792 / 0.023109 (0.016683) | 0.456869 / 0.275898 (0.180971) | 0.493370 / 0.323480 (0.169891) | 0.005561 / 0.007986 (-0.002424) | 0.003982 / 0.004328 (-0.000346) | 0.085421 / 0.004250 (0.081170) | 0.059817 / 0.037052 (0.022765) | 0.468040 / 0.258489 (0.209550) | 0.514853 / 0.293841 (0.221012) | 0.044267 / 0.128546 (-0.084279) | 0.012674 / 0.075646 (-0.062972) | 0.098324 / 0.419271 (-0.320948) | 0.056604 / 0.043533 (0.013071) | 0.432200 / 0.255139 (0.177061) | 0.459812 / 0.283200 (0.176612) | 0.033872 / 0.141683 (-0.107811) | 1.618576 / 1.452155 (0.166421) | 1.676562 / 1.492716 (0.183846) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230625 / 0.018006 (0.212619) | 0.600558 / 0.000490 (0.600068) | 0.003419 / 0.000200 (0.003219) | 0.000113 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026916 / 0.037411 (-0.010496) | 0.103003 / 0.014526 (0.088478) | 0.117078 / 0.176557 (-0.059478) | 0.169359 / 0.737135 (-0.567776) | 0.120305 / 0.296338 (-0.176034) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616877 / 0.215209 (0.401668) | 6.157232 / 2.077655 (4.079577) | 2.869219 / 1.504120 (1.365099) | 2.381410 / 1.541195 (0.840216) | 2.417357 / 1.468490 (0.948867) | 0.914947 / 4.584777 (-3.669830) | 5.718526 / 3.745712 (1.972814) | 2.757253 / 5.269862 (-2.512609) | 1.794122 / 4.565676 (-2.771554) | 0.108423 / 0.424275 (-0.315852) | 0.013378 / 0.007607 (0.005771) | 0.831067 / 0.226044 (0.605023) | 8.478946 / 2.268929 (6.210018) | 3.685937 / 55.444624 (-51.758687) | 2.867472 / 6.876477 (-4.009005) | 2.895975 / 2.142072 (0.753903) | 1.137547 / 4.805227 (-3.667681) | 0.213891 / 6.500664 (-6.286773) | 0.075825 / 0.075469 (0.000356) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.621193 / 1.841788 (-0.220594) | 17.322110 / 8.074308 (9.247802) | 21.804016 / 10.191392 (11.612624) | 0.243692 / 0.680424 (-0.436732) | 0.030331 / 0.534201 (-0.503870) | 0.492186 / 0.579283 (-0.087097) | 0.632583 / 0.434364 (0.198219) | 0.576265 / 0.540337 (0.035927) | 0.713165 / 1.386936 (-0.673771) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008916 / 0.011353 (-0.002437) | 0.004737 / 0.011008 (-0.006271) | 0.134271 / 0.038508 (0.095763) | 0.054472 / 0.023109 (0.031363) | 0.380942 / 0.275898 (0.105044) | 0.474138 / 0.323480 (0.150658) | 0.007917 / 0.007986 (-0.000068) | 0.003748 / 0.004328 (-0.000580) | 0.092765 / 0.004250 (0.088515) | 0.077873 / 0.037052 (0.040821) | 0.397533 / 0.258489 (0.139043) | 0.454737 / 0.293841 (0.160896) | 0.039901 / 0.128546 (-0.088645) | 0.010188 / 0.075646 (-0.065458) | 0.447312 / 0.419271 (0.028040) | 0.068684 / 0.043533 (0.025151) | 0.371554 / 0.255139 (0.116415) | 0.459655 / 0.283200 (0.176455) | 0.027157 / 0.141683 (-0.114526) | 1.874643 / 1.452155 (0.422488) | 2.014800 / 1.492716 (0.522083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227079 / 0.018006 (0.209073) | 0.483241 / 0.000490 (0.482751) | 0.012404 / 0.000200 (0.012204) | 0.000409 / 0.000054 (0.000354) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033135 / 0.037411 (-0.004277) | 0.137782 / 0.014526 (0.123257) | 0.142951 / 0.176557 (-0.033605) | 0.209825 / 0.737135 (-0.527311) | 0.152438 / 0.296338 (-0.143900) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.513066 / 0.215209 (0.297857) | 5.122776 / 2.077655 (3.045121) | 2.399270 / 1.504120 (0.895150) | 2.180143 / 1.541195 (0.638949) | 2.286395 / 1.468490 (0.817905) | 0.641866 / 4.584777 (-3.942911) | 4.694922 / 3.745712 (0.949210) | 2.543390 / 5.269862 (-2.726472) | 1.398592 / 4.565676 (-3.167084) | 0.088662 / 0.424275 (-0.335613) | 0.015854 / 0.007607 (0.008247) | 0.688891 / 0.226044 (0.462847) | 6.370148 / 2.268929 (4.101220) | 2.949974 / 55.444624 (-52.494650) | 2.538049 / 6.876477 (-4.338428) | 2.699380 / 2.142072 (0.557308) | 0.792670 / 4.805227 (-4.012557) | 0.169126 / 6.500664 (-6.331538) | 0.078511 / 0.075469 (0.003042) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.609119 / 1.841788 (-0.232669) | 18.785069 / 8.074308 (10.710761) | 16.670783 / 10.191392 (6.479391) | 0.213081 / 0.680424 (-0.467343) | 0.023904 / 0.534201 (-0.510296) | 0.567720 / 0.579283 (-0.011564) | 0.505806 / 0.434364 (0.071442) | 0.649466 / 0.540337 (0.109129) | 0.773174 / 1.386936 (-0.613762) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008036 / 0.011353 (-0.003317) | 0.004808 / 0.011008 (-0.006201) | 0.094316 / 0.038508 (0.055808) | 0.056174 / 0.023109 (0.033065) | 0.481618 / 0.275898 (0.205720) | 0.565300 / 0.323480 (0.241820) | 0.006339 / 0.007986 (-0.001646) | 0.003950 / 0.004328 (-0.000379) | 0.093389 / 0.004250 (0.089139) | 0.076163 / 0.037052 (0.039111) | 0.489013 / 0.258489 (0.230524) | 0.565451 / 0.293841 (0.271611) | 0.039392 / 0.128546 (-0.089155) | 0.010553 / 0.075646 (-0.065093) | 0.101406 / 0.419271 (-0.317865) | 0.062355 / 0.043533 (0.018822) | 0.470461 / 0.255139 (0.215322) | 0.502574 / 0.283200 (0.219375) | 0.030196 / 0.141683 (-0.111486) | 1.893926 / 1.452155 (0.441771) | 1.958902 / 1.492716 (0.466185) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198074 / 0.018006 (0.180068) | 0.476828 / 0.000490 (0.476338) | 0.003457 / 0.000200 (0.003257) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037576 / 0.037411 (0.000165) | 0.146663 / 0.014526 (0.132138) | 0.152969 / 0.176557 (-0.023588) | 0.218683 / 0.737135 (-0.518452) | 0.161552 / 0.296338 (-0.134786) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.525988 / 0.215209 (0.310779) | 5.234673 / 2.077655 (3.157018) | 2.571668 / 1.504120 (1.067548) | 2.339760 / 1.541195 (0.798565) | 2.422886 / 1.468490 (0.954395) | 0.651537 / 4.584777 (-3.933240) | 4.811148 / 3.745712 (1.065436) | 4.451165 / 5.269862 (-0.818697) | 2.016283 / 4.565676 (-2.549394) | 0.096393 / 0.424275 (-0.327882) | 0.015222 / 0.007607 (0.007615) | 0.739132 / 0.226044 (0.513087) | 6.813327 / 2.268929 (4.544399) | 3.169018 / 55.444624 (-52.275606) | 2.783120 / 6.876477 (-4.093356) | 2.918979 / 2.142072 (0.776907) | 0.797476 / 4.805227 (-4.007751) | 0.171038 / 6.500664 (-6.329626) | 0.079878 / 0.075469 (0.004409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.595082 / 1.841788 (-0.246705) | 19.685844 / 8.074308 (11.611536) | 17.518989 / 10.191392 (7.327597) | 0.220015 / 0.680424 (-0.460409) | 0.026351 / 0.534201 (-0.507850) | 0.578977 / 0.579283 (-0.000306) | 0.549564 / 0.434364 (0.115200) | 0.667564 / 0.540337 (0.127227) | 0.802121 / 1.386936 (-0.584815) |\n\n</details>\n</details>\n\n\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/5777 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5777/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5777/comments | https://api.github.com/repos/huggingface/datasets/issues/5777/events | https://github.com/huggingface/datasets/issues/5777 | 1,677,655,969 | I_kwDODunzps5j_v-h | 5,777 | datasets.load_dataset("code_search_net", "python") : NotADirectoryError: [Errno 20] Not a directory | [] | closed | false | null | 6 | 2023-04-21T02:08:07Z | 2023-06-05T05:49:52Z | 2023-05-11T11:51:56Z | null | ### Describe the bug
While checking out the [tokenizer tutorial](https://huggingface.co/course/chapter6/2?fw=pt), i noticed getting an error while initially downloading the python dataset used in the examples.
The [collab with the error is here](https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter6/section2.ipynb#scrollTo=hGb69Yo3eV8S)
```
from datasets import load_dataset
import os
os.environ["HF_DATASETS_CACHE"] = "/workspace"
# This can take a few minutes to load, so grab a coffee or tea while you wait!
raw_datasets = load_dataset("code_search_net", "python")
```
yeilds:
```
ile /opt/conda/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py:524, in xlistdir(path, use_auth_token)
522 main_hop, *rest_hops = _as_str(path).split("::")
523 if is_local_path(main_hop):
--> 524 return os.listdir(path)
525 else:
526 # globbing inside a zip in a private repo requires authentication
527 if not rest_hops and (main_hop.startswith("http://") or main_hop.startswith("https://")):
NotADirectoryError: [Errno 20] Not a directory: '/workspace/downloads/25ceeb4c25ab737d688bd56ea92bfbb1f199fe572470456cf2d675479f342ac7/python/final/jsonl/train'
```
I was able to reproduce this erro both in the collab and on my own pytorch/pytorch container pulled from the dockerhub official pytorch image, so i think it may be a server side thing.
### Steps to reproduce the bug
Steps to reproduce the issue:
1. run `raw_datasets = load_dataset("code_search_net", "python")`
### Expected behavior
expect the code to not exception during dataset pull.
### Environment info
i tried both the default HF_DATASETS_CACHE on Collab, and on my local container. i then pointed to the HF_DATASETS_CACHE to a large capacity local storage and the problem was consisten across all 3 scenarios. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5777/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5777/timeline | null | completed | null | null | false | [
"Note:\r\nI listed the datasets and grepped around to find what appears to be an alternative source for this:\r\n\r\nraw_datasets = load_dataset(\"espejelomar/code_search_net_python_10000_examples\", \"python\")",
"Thanks for reporting, @jason-brian-anderson.\r\n\r\nYes, this is a known issue: the [CodeSearchNet](https://github.com/github/CodeSearchNet) repo has been archived (Apr 11, 2023) and their source data files are no longer accessible in their S3: e.g. https://s3.amazonaws.com/code-search-net/CodeSearchNet/v2/python.zip gives 403 Forbidden error. See:\r\n- https://huggingface.co/datasets/code_search_net/discussions/3\r\n\r\nWe have contacted one of the authors of the dataset to find a solution. I'll keep you informed.\r\n\r\nCC: @hamelsmu",
"cc: @julianeagu",
"This issue is fixed because we are hosting the CodeSearchNet data files in the Hugging Face Hub. See: https://huggingface.co/datasets/code_search_net/discussions/7",
"I learned that @mallamanis has uploaded the dataset [here as well](https://zenodo.org/record/7908468) ",
"Thanks @hamelsmu for the Zenodo link. I am adding it to the dataset card on the Hugging Face Hub, so that the community knows about this \"official\" source data. I guess this link is not well known, because some community members already hosted an \"unofficial\" version of the data on Zenodo as well: https://zenodo.org/record/7857872\r\n\r\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/3670 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3670/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3670/comments | https://api.github.com/repos/huggingface/datasets/issues/3670/events | https://github.com/huggingface/datasets/pull/3670 | 1,122,439,827 | PR_kwDODunzps4x_kBx | 3,670 | feat: 🎸 generate info if dataset_infos.json does not exist | [] | closed | false | null | 3 | 2022-02-02T22:11:56Z | 2022-02-21T15:57:11Z | 2022-02-21T15:57:10Z | null | in get_dataset_infos(). Also: add the `use_auth_token` parameter, and create get_dataset_config_info()
✅ Closes: #3013 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3670/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3670/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3670.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3670",
"merged_at": "2022-02-21T15:57:10Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3670.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3670"
} | true | [
"It's a first attempt at solving https://github.com/huggingface/datasets/issues/3013.",
"I only kept these ones:\r\n```\r\n path: str,\r\n data_files: Optional[Union[Dict, List, str]] = None,\r\n download_config: Optional[DownloadConfig] = None,\r\n download_mode: Optional[GenerateMode] = None,\r\n revision: Optional[Union[str, Version]] = None,\r\n use_auth_token: Optional[Union[bool, str]] = None,\r\n **config_kwargs,\r\n```\r\n\r\nLet me know if it's better for you now !\r\n\r\n(note that there's no breaking change since the ones that are removed can be passed as config_kwargs if you really want)",
"(https://github.com/huggingface/datasets/pull/3670/commits/5636911880ea4306c27c7f5825fa3f9427ccc2b6 and https://github.com/huggingface/datasets/pull/3670/commits/07c3f0800dd34dfebb9674ad46c67a907b08ded8 -> I has forgotten to update black in my venv)"
] |
https://api.github.com/repos/huggingface/datasets/issues/934 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/934/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/934/comments | https://api.github.com/repos/huggingface/datasets/issues/934/events | https://github.com/huggingface/datasets/pull/934 | 753,860,095 | MDExOlB1bGxSZXF1ZXN0NTI5ODU2ODY4 | 934 | small updates to the "add new dataset" guide | [] | closed | false | null | 1 | 2020-11-30T22:49:10Z | 2020-12-01T04:56:22Z | 2020-11-30T23:14:00Z | null | small updates (corrections/typos) to the "add new dataset" guide | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/934/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/934/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/934.diff",
"html_url": "https://github.com/huggingface/datasets/pull/934",
"merged_at": "2020-11-30T23:14:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/934.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/934"
} | true | [
"cc @yjernite @lhoestq @thomwolf "
] |
https://api.github.com/repos/huggingface/datasets/issues/3592 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3592/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3592/comments | https://api.github.com/repos/huggingface/datasets/issues/3592/events | https://github.com/huggingface/datasets/pull/3592 | 1,107,026,723 | PR_kwDODunzps4xNYIW | 3,592 | Add QuickDraw dataset | [] | closed | false | null | 1 | 2022-01-18T15:13:39Z | 2022-06-09T10:04:54Z | 2022-06-09T09:56:13Z | null | Add the QuickDraw dataset.
TODOs:
* [x] add dummy data
* [x] add dataset card
* [x] generate `dataset_info.json` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3592/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3592/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3592.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3592",
"merged_at": "2022-06-09T09:56:13Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3592.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3592"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._"
] |
https://api.github.com/repos/huggingface/datasets/issues/4995 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4995/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4995/comments | https://api.github.com/repos/huggingface/datasets/issues/4995/events | https://github.com/huggingface/datasets/issues/4995 | 1,379,108,482 | I_kwDODunzps5SM4aC | 4,995 | Get a specific Exception when the dataset has no data | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
},
{
"color": "E5583E",
"default": false,
"description": "Related to the dataset viewer on huggingface.co",
"id": 3470211881,
"name": "dataset-viewer",
"node_id": "LA_kwDODunzps7O1zsp",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer"
}
] | closed | false | null | 0 | 2022-09-20T09:31:59Z | 2022-09-21T12:21:25Z | 2022-09-21T12:21:25Z | null | In the dataset viewer on the Hub (https://huggingface.co/datasets/glue/viewer), we would like (https://github.com/huggingface/moon-landing/issues/3882) to show a specific message when the repository lacks any data files.
In that case, instead of showing a complex traceback, we want to show a call to action to help the user upload data.
To do that, it would be very helpful to know for sure that the repository is missing any (supported) data files.
It could be done by raising a custom exception, for example, `NoDataError`. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4995/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4995/timeline | null | completed | null | null | false | [] |
https://api.github.com/repos/huggingface/datasets/issues/6087 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6087/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6087/comments | https://api.github.com/repos/huggingface/datasets/issues/6087/events | https://github.com/huggingface/datasets/issues/6087 | 1,825,133,741 | I_kwDODunzps5syVSt | 6,087 | fsspec dependency is set too low | [] | open | false | null | 0 | 2023-07-27T20:08:22Z | 2023-07-27T20:08:22Z | null | null | ### Describe the bug
fsspec.callbacks.TqdmCallback (used in https://github.com/huggingface/datasets/blob/73bed12ecda17d1573fd3bf73ed5db24d3622f86/src/datasets/utils/file_utils.py#L338) was first released in fsspec [2022.3.0](https://github.com/fsspec/filesystem_spec/releases/tag/2022.3.0, commit where it was added: https://github.com/fsspec/filesystem_spec/commit/9577c8a482eb0a69092913b81580942a68d66a76#diff-906155c7e926a9ff58b9f23369bb513b09b445f5b0f41fa2a84015d0b471c68cR180), however the dependency is set to 2021.11.1 https://github.com/huggingface/datasets/blob/main/setup.py#L129
### Steps to reproduce the bug
1. Install fsspec==2021.11.1
2. Install latest datasets==2.14.1
3. Import datasets, import fails due to lack of `fsspec.callbacks.TqdmCallback`
### Expected behavior
No import issue
### Environment info
N/A | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6087/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6087/timeline | null | null | null | null | false | [
"Thanks for reporting! A PR with a fix has just been merged."
] |
https://api.github.com/repos/huggingface/datasets/issues/3167 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3167/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3167/comments | https://api.github.com/repos/huggingface/datasets/issues/3167/events | https://github.com/huggingface/datasets/issues/3167 | 1,036,488,992 | I_kwDODunzps49x5Eg | 3,167 | bookcorpusopen no longer works | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 3 | 2021-10-26T16:06:15Z | 2021-11-17T15:53:46Z | 2021-11-17T15:53:46Z | null | ## Describe the bug
When using the latest version of datasets (1.14.0), I cannot use the `bookcorpusopen` dataset. The process blocks always around `9924 examples [00:06, 1439.61 examples/s]` when preparing the dataset. I also noticed that after half an hour the process is automatically killed because of the RAM usage (the machine has 1TB of RAM...).
This did not happen with 1.4.1.
I tried also `rm -rf ~/.cache/huggingface` but did not help.
Changing python version between 3.7, 3.8 and 3.9 did not help too.
## Steps to reproduce the bug
```python
import datasets
d = datasets.load_dataset('bookcorpusopen')
```
## Expected results
A clear and concise description of the expected results.
## Actual results
Specify the actual results or traceback.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.14.0
- Platform: Linux-5.4.0-1054-aws-x86_64-with-glibc2.27
- Python version: 3.9.7
- PyArrow version: 4.0.1
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3167/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3167/timeline | null | completed | null | null | false | [
"Hi ! Thanks for reporting :) I think #3280 should fix this",
"I tried with the latest changes from #3280 on google colab and it worked fine :)\r\nWe'll do a new release soon, in the meantime you can use the updated version with:\r\n```python\r\nload_dataset(\"bookcorpusopen\", revision=\"master\")\r\n```",
"Fixed by #3280."
] |
https://api.github.com/repos/huggingface/datasets/issues/5304 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5304/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5304/comments | https://api.github.com/repos/huggingface/datasets/issues/5304/events | https://github.com/huggingface/datasets/issues/5304 | 1,465,110,367 | I_kwDODunzps5XU89f | 5,304 | timit_asr doesn't load the test split. | [] | closed | false | null | 1 | 2022-11-26T10:18:22Z | 2023-02-10T16:33:21Z | 2023-02-10T16:33:21Z | null | ### Describe the bug
When I use the function ```timit = load_dataset('timit_asr', data_dir=data_dir)```, it only loads train split, not test split.
I tried to change the directory and filename to lower case to upper case for the test split, but it does not work at all.
```python
DatasetDict({
train: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 4620
})
test: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 0
})
})
```
The directory structure of both splits are same. (DIALECT_REGION / SPEAKER_CODE / DATA_FILES)
### Steps to reproduce the bug
1. just use ```timit = load_dataset('timit_asr', data_dir=data_dir)```
### Expected behavior
```python
DatasetDict({
train: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 4620
})
test: Dataset({
features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'],
num_rows: 1680
})
})
```
### Environment info
- ubuntu 20.04
- python 3.9.13
- datasets 2.7.1 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5304/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5304/timeline | null | completed | null | null | false | [
"The [timit_asr.py](https://huggingface.co/datasets/timit_asr/blob/main/timit_asr.py) script iterates over the WAV files per split directory using this:\r\n```python\r\nwav_paths = sorted(Path(data_dir).glob(f\"**/{split}/**/*.wav\"))\r\nwav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f\"**/{split.upper()}/**/*.WAV\"))\r\n```\r\n\r\nCan you check that there is a directory named \"test\" somewhere in your timit data directory ?"
] |
https://api.github.com/repos/huggingface/datasets/issues/262 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/262/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/262/comments | https://api.github.com/repos/huggingface/datasets/issues/262/events | https://github.com/huggingface/datasets/pull/262 | 636,702,849 | MDExOlB1bGxSZXF1ZXN0NDMyODI3Mzcz | 262 | Add new dataset ANLI Round 1 | [] | closed | false | null | 1 | 2020-06-11T04:14:57Z | 2020-06-12T22:03:03Z | 2020-06-12T22:03:03Z | null | Adding new dataset [ANLI](https://github.com/facebookresearch/anli/).
I'm not familiar with how to add new dataset. Let me know if there is any issue. I only include round 1 data here. There will be round 2, round 3 and more in the future with potentially different format. I think it will be better to separate them. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/262/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/262/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/262.diff",
"html_url": "https://github.com/huggingface/datasets/pull/262",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/262.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/262"
} | true | [
"Hello ! Thanks for adding this one :)\r\n\r\nThis looks great, you just have to do the last steps to make the CI pass.\r\nI can see that two things are missing:\r\n1. the dummy data that is used to test that the script is working as expected\r\n2. the json file with all the infos about the dataset\r\n\r\nYou can see the steps to help you create the dummy data and generate the dataset_infos.json file right [here](https://github.com/huggingface/nlp/blob/master/CONTRIBUTING.md#how-to-add-a-dataset)"
] |
https://api.github.com/repos/huggingface/datasets/issues/896 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/896/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/896/comments | https://api.github.com/repos/huggingface/datasets/issues/896/events | https://github.com/huggingface/datasets/pull/896 | 751,834,265 | MDExOlB1bGxSZXF1ZXN0NTI4MjcyMjc0 | 896 | Add template and documentation for dataset card | [] | closed | false | null | 0 | 2020-11-26T21:30:25Z | 2020-11-28T01:10:15Z | 2020-11-28T01:10:15Z | null | This PR adds a template for dataset cards, as well as a guide to filling out the template and a completed example for the ELI5 dataset, building on the work of @mcmillanmajora
New pull requests adding datasets should now have a README.md file which serves both to hold the tags we will have to index the datasets and as a data statement.
The template is designed to be pretty extensive. The idea is that the person who uploads the dataset should put in all the basic information (at least the Dataset Description section) and whatever else they feel comfortable adding and leave the `[More Information Needed]` annotation everywhere else as a placeholder.
We will then work with @mcmillanmajora to involve the data authors more directly in filling out the remaining information.
Direct links to:
- [Documentation](https://github.com/yjernite/datasets/blob/add_dataset_card_doc/templates/README_guide.md)
- [Empty template](https://github.com/yjernite/datasets/blob/add_dataset_card_doc/templates/README.md)
- [ELI5 example](https://github.com/yjernite/datasets/blob/add_dataset_card_doc/datasets/eli5/README.md) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/896/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/896/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/896.diff",
"html_url": "https://github.com/huggingface/datasets/pull/896",
"merged_at": "2020-11-28T01:10:14Z",
"patch_url": "https://github.com/huggingface/datasets/pull/896.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/896"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/2960 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2960/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2960/comments | https://api.github.com/repos/huggingface/datasets/issues/2960/events | https://github.com/huggingface/datasets/pull/2960 | 1,006,222,850 | PR_kwDODunzps4sOl0Y | 2,960 | Support pandas 1.3 new `read_csv` parameters | [] | closed | false | null | 0 | 2021-09-24T08:37:24Z | 2021-09-24T11:22:31Z | 2021-09-24T11:22:30Z | null | Support two new arguments introduced in pandas v1.3.0:
- `encoding_errors`
- `on_bad_lines`
`read_csv` reference: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2960/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2960/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2960.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2960",
"merged_at": "2021-09-24T11:22:30Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2960.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2960"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/2510 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2510/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2510/comments | https://api.github.com/repos/huggingface/datasets/issues/2510/events | https://github.com/huggingface/datasets/pull/2510 | 923,735,485 | MDExOlB1bGxSZXF1ZXN0NjcyNDY3MzY3 | 2,510 | Add align_labels_with_mapping to DatasetDict | [] | closed | false | null | 0 | 2021-06-17T10:03:35Z | 2021-06-17T10:45:25Z | 2021-06-17T10:45:24Z | null | https://github.com/huggingface/datasets/pull/2457 added the `Dataset.align_labels_with_mapping` method.
In this PR I also added `DatasetDict.align_labels_with_mapping` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2510/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2510/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2510.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2510",
"merged_at": "2021-06-17T10:45:24Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2510.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2510"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/2766 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2766/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2766/comments | https://api.github.com/repos/huggingface/datasets/issues/2766/events | https://github.com/huggingface/datasets/pull/2766 | 962,994,198 | MDExOlB1bGxSZXF1ZXN0NzA1NzAyNjM5 | 2,766 | fix typo (ShuffingConfig -> ShufflingConfig) | [] | closed | false | null | 0 | 2021-08-06T19:31:40Z | 2021-08-10T14:17:03Z | 2021-08-10T14:17:02Z | null | pretty straightforward, it should be Shuffling instead of Shuffing | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2766/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2766/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2766.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2766",
"merged_at": "2021-08-10T14:17:02Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2766.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2766"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/4217 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4217/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4217/comments | https://api.github.com/repos/huggingface/datasets/issues/4217/events | https://github.com/huggingface/datasets/issues/4217 | 1,214,688,141 | I_kwDODunzps5IZquN | 4,217 | Big_Patent dataset broken | [
{
"color": "8B51EF",
"default": false,
"description": "",
"id": 4069435429,
"name": "hosted-on-google-drive",
"node_id": "LA_kwDODunzps7yjqgl",
"url": "https://api.github.com/repos/huggingface/datasets/labels/hosted-on-google-drive"
}
] | closed | false | null | 3 | 2022-04-25T15:31:45Z | 2022-05-26T06:29:43Z | 2022-05-02T18:21:15Z | null | ## Dataset viewer issue for '*big_patent*'
**Link:** *[link to the dataset viewer page](https://huggingface.co/datasets/big_patent/viewer/all/train)*
*Unable to view because it says FileNotFound, also cannot download it through the python API*
Am I the one who added this dataset ? No
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4217/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4217/timeline | null | completed | null | null | false | [
"Thanks for reporting. The issue seems not to be directly related to the dataset viewer or the `datasets` library, but instead to it being hosted on Google Drive.\r\n\r\nSee related issues: https://github.com/huggingface/datasets/issues?q=is%3Aissue+is%3Aopen+drive.google.com\r\n\r\nTo quote [@lhoestq](https://github.com/huggingface/datasets/issues/4075#issuecomment-1087362551):\r\n\r\n> PS: if possible, please try to not use Google Drive links in your dataset script, since Google Drive has download quotas and is not always reliable.\r\n\r\n",
"We should find out if the dataset license allows redistribution and contact the data owners to propose them to host their data on our Hub.",
"The data owners have agreed on hosting their data on the Hub."
] |
https://api.github.com/repos/huggingface/datasets/issues/4822 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4822/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4822/comments | https://api.github.com/repos/huggingface/datasets/issues/4822/events | https://github.com/huggingface/datasets/issues/4822 | 1,335,675,352 | I_kwDODunzps5PnMnY | 4,822 | Moving dataset between namespaces breaks dataset viewer | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | open | false | null | 1 | 2022-08-11T09:05:30Z | 2022-09-16T20:03:09Z | null | null | ## Describe the bug
I moved a dataset from my own namespace to an org and that broke the dataset viewer. To fix it I had to manually edit the `dataset_info.json` file and change the first key in the json from `username--datasetname` to `orgname--datasetname`
## Steps to reproduce the bug
What I did was:
1- Upload a dataset to my own namespace using `push_to_hub`
2- Move the dataset from my namespace to an org using the web interface.
## Expected results
For the file to be changed accordingly.
## Actual results
Broken dataset viewer.
## Environment info
- `datasets` version: 2.3.3.dev0
- Platform: Linux-4.15.0-189-generic-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.5
- PyArrow version: 7.0.0
- Pandas version: 1.3.5
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4822/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4822/timeline | null | null | null | null | false | [
"Let's keep open for now. We should try to reproduce"
] |
https://api.github.com/repos/huggingface/datasets/issues/446 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/446/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/446/comments | https://api.github.com/repos/huggingface/datasets/issues/446/events | https://github.com/huggingface/datasets/pull/446 | 666,837,351 | MDExOlB1bGxSZXF1ZXN0NDU3NjEyNTg5 | 446 | [BugFix] fix wrong import of DEFAULT_TOKENIZER | [] | closed | false | null | 0 | 2020-07-28T07:32:47Z | 2020-07-28T07:34:46Z | 2020-07-28T07:33:59Z | null | Fixed the path to `DEFAULT_TOKENIZER`
#445 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/446/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/446/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/446.diff",
"html_url": "https://github.com/huggingface/datasets/pull/446",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/446.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/446"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/3952 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3952/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3952/comments | https://api.github.com/repos/huggingface/datasets/issues/3952/events | https://github.com/huggingface/datasets/issues/3952 | 1,171,895,531 | I_kwDODunzps5F2bTr | 3,952 | Checksum error for glue sst2, stsb, rte etc datasets | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 1 | 2022-03-17T03:45:47Z | 2022-03-17T07:10:15Z | 2022-03-17T07:10:14Z | null | ## Describe the bug
Checksum error for glue sst2, stsb, rte etc datasets
## Steps to reproduce the bug
```python
>>> nlp.load_dataset('glue', 'sst2')
Downloading and preparing dataset glue/sst2 (download: 7.09 MiB, generated: 4.81 MiB, post-processed: Unknown sizetotal: 11.90 MiB) to
Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 73.0/73.0 [00:00<00:00, 18.2kB/s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Python/3.8/lib/python/site-packages/nlp/load.py", line 548, in load_dataset
builder_instance.download_and_prepare(
File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 462, in download_and_prepare
self._download_and_prepare(
File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 521, in _download_and_prepare
verify_checksums(
File "/Library/Python/3.8/lib/python/site-packages/nlp/utils/info_utils.py", line 38, in verify_checksums
raise NonMatchingChecksumError(error_msg + str(bad_urls))
nlp.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8']
```
## Expected results
dataset load should succeed without checksum error.
## Actual results
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Python/3.8/lib/python/site-packages/nlp/load.py", line 548, in load_dataset
builder_instance.download_and_prepare(
File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 462, in download_and_prepare
self._download_and_prepare(
File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 521, in _download_and_prepare
verify_checksums(
File "/Library/Python/3.8/lib/python/site-packages/nlp/utils/info_utils.py", line 38, in verify_checksums
raise NonMatchingChecksumError(error_msg + str(bad_urls))
nlp.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8']
```
## Environment info
- `datasets` version: '1.18.3'
- Platform: Mac OS
- Python version: Python 3.8.9
- PyArrow version: '7.0.0'
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3952/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3952/timeline | null | completed | null | null | false | [
"Hi, @ravindra-ut.\r\n\r\nI'm sorry but I can't reproduce your problem:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"glue\", \"sst2\")\r\nDownloading builder script: 28.8kB [00:00, 11.6MB/s] \r\nDownloading metadata: 28.7kB [00:00, 12.9MB/s] \r\nDownloading and preparing dataset glue/sst2 (download: 7.09 MiB, generated: 4.81 MiB, post-processed: Unknown size, total: 11.90 MiB) to .../.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad...\r\nDownloading data: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7.44M/7.44M [00:01<00:00, 5.82MB/s]\r\nDataset glue downloaded and prepared to .../.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad. Subsequent calls will reuse this data. \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 895.96it/s]\r\n\r\nIn [3]: ds\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 67349\r\n })\r\n validation: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 872\r\n })\r\n test: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 1821\r\n })\r\n})\r\n``` \r\n\r\nMoreover, I see in your traceback that your error was for an URL at https://firebasestorage.googleapis.com\r\nHowever, the URLs were updated on Sep 16, 2020 (`datasets` version 1.0.2) to https://dl.fbaipublicfiles.com: https://github.com/huggingface/datasets/commit/2f03041a21c03abaececb911760c3fe4f420c229\r\n\r\nCould you please try to update `datasets`\r\n```shell\r\npip install -U datasets\r\n```\r\nand then force redownload\r\n```python\r\nds = load_dataset(\"glue\", \"sst2\", download_mode=\"force_redownload\")\r\n```\r\nto update the cache?\r\n\r\nPlease, feel free to reopen this issue if the problem persists."
] |
https://api.github.com/repos/huggingface/datasets/issues/2845 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2845/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2845/comments | https://api.github.com/repos/huggingface/datasets/issues/2845/events | https://github.com/huggingface/datasets/issues/2845 | 981,487,861 | MDU6SXNzdWU5ODE0ODc4NjE= | 2,845 | [feature request] adding easy to remember `datasets.cache_dataset()` + `datasets.is_dataset_cached()` | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | 0 | 2021-08-27T18:21:51Z | 2021-08-27T18:24:05Z | null | null | Often, there is a need to prepare a dataset but not use it immediately, e.g. think tests suite setup, so it'd be really useful to be able to do:
```
if not datasets.is_dataset_cached(ds): datasets.cache_dataset(ds)
```
This can already be done with:
```
builder = load_dataset_builder(ds)
if not os.path.idsir(builder.cache_dir):
builder.download_and_prepare()
```
but the current way is a way less intuitive and much harder to remember than the proposed API, IMHO.
One more way is to do:
```
_ = load_dataset(ds)
```
but it wastes resources loading the dataset when it's not needed.
this has been discussed at https://huggingface.slack.com/archives/C01229B19EX/p1630021912025800
Thank you!
@lhoestq
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2845/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2845/timeline | null | null | null | null | false | [] |
https://api.github.com/repos/huggingface/datasets/issues/4498 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4498/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4498/comments | https://api.github.com/repos/huggingface/datasets/issues/4498/events | https://github.com/huggingface/datasets/issues/4498 | 1,272,100,549 | I_kwDODunzps5L0rbF | 4,498 | WER and CER > 1 | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 1 | 2022-06-15T11:35:12Z | 2022-06-15T16:38:05Z | 2022-06-15T16:38:05Z | null | ## Describe the bug
It seems that in some cases in which the `prediction` is longer than the `reference` we may have word/character error rate higher than 1 which is a bit odd.
If it's a real bug I think I can solve it with a PR changing [this](https://github.com/huggingface/datasets/blob/master/metrics/wer/wer.py#L105) line to
```python
return min(incorrect / total, 1.0)
```
## Steps to reproduce the bug
```python
from datasets import load_metric
wer = load_metric("wer")
wer_value = wer.compute(predictions=["Hi World vka"], references=["Hello"])
print(wer_value)
```
## Expected results
```
1.0
```
## Actual results
```
3.0
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.3.0
- Platform: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.13
- PyArrow version: 6.0.1
- Pandas version: 1.3.5 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4498/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4498/timeline | null | completed | null | null | false | [
"WER can have values bigger than 1.0, this is expected when there are too many insertions\r\n\r\nFrom [wikipedia](https://en.wikipedia.org/wiki/Word_error_rate):\r\n> Note that since N is the number of words in the reference, the word error rate can be larger than 1.0"
] |
https://api.github.com/repos/huggingface/datasets/issues/5608 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5608/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5608/comments | https://api.github.com/repos/huggingface/datasets/issues/5608/events | https://github.com/huggingface/datasets/issues/5608 | 1,609,996,563 | I_kwDODunzps5f9pkT | 5,608 | audiofolder only creates dataset of 13 rows (files) when the data folder it's reading from has 20,000 mp3 files. | [] | closed | false | null | 2 | 2023-03-05T00:14:45Z | 2023-03-12T00:02:57Z | 2023-03-12T00:02:57Z | null | ### Describe the bug
x = load_dataset("audiofolder", data_dir="x")
When running this, x is a dataset of 13 rows (files) when it should be 20,000 rows (files) as the data_dir "x" has 20,000 mp3 files. Does anyone know what could possibly cause this (naming convention of mp3 files, etc.)
### Steps to reproduce the bug
x = load_dataset("audiofolder", data_dir="x")
### Expected behavior
x = load_dataset("audiofolder", data_dir="x") should create a dataset of 20,000 rows (files).
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.9.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5608/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5608/timeline | null | completed | null | null | false | [
"Hi!\r\n\r\n> naming convention of mp3 files\r\n\r\nYes, this could be the problem. MP3 files should end with `.mp3`/`.MP3` to be recognized as audio files.\r\n\r\nIf the file names are not the culprit, can you paste the audio folder's directory structure to help us reproduce the error (e.g., by running the `tree \"x\"` command)?",
"Hi! I'm sorry, I don't want to reveal my entire dataset, but here's a snippet (all of the mp3 files below are some of the ones not being recognized by audiofolder. Also, for another dataset, audiofolder loaded zero mp3 files because \"train\" was in the name of one of the mp3 files. \r\nmy_dataset\r\n├── data\r\n│ ├── VHA_Innovation_Stories_-_Day_2-123.mp3\r\n│ ├── VHA_Innovation_Stories_-_Day_2-124.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-93.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-94.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-95.mp3\r\n│ ├── Your_Impact\\357\\274\\232_Neurosurgery_equipment-5.mp3\r\n│ └── Your_Impact\\357\\274\\232_Neurosurgery_equipment-6.mp3\r\n└── metadata.csv\r\n\r\nHere's a few of the 13 files recognized by the dataset:\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-1.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-2.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-3.mp3\r\nIVP_⧸_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-1.mp3\r\nIVP_⧸_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-2.mp3"
] |
https://api.github.com/repos/huggingface/datasets/issues/2603 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2603/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2603/comments | https://api.github.com/repos/huggingface/datasets/issues/2603/events | https://github.com/huggingface/datasets/pull/2603 | 938,588,149 | MDExOlB1bGxSZXF1ZXN0Njg0OTQ0ODcz | 2,603 | Fix DuplicatedKeysError in omp | [] | closed | false | {
"closed_at": "2021-07-21T15:36:49Z",
"closed_issues": 29,
"created_at": "2021-06-08T18:48:33Z",
"creator": {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
},
"description": "Next minor release",
"due_on": "2021-08-05T07:00:00Z",
"html_url": "https://github.com/huggingface/datasets/milestone/6",
"id": 6836458,
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels",
"node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==",
"number": 6,
"open_issues": 0,
"state": "closed",
"title": "1.10",
"updated_at": "2021-07-21T15:36:49Z",
"url": "https://api.github.com/repos/huggingface/datasets/milestones/6"
} | 0 | 2021-07-07T07:38:32Z | 2021-07-12T14:10:41Z | 2021-07-07T12:56:35Z | null | Close #2598. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2603/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2603/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2603.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2603",
"merged_at": "2021-07-07T12:56:35Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2603.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2603"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/6062 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6062/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6062/comments | https://api.github.com/repos/huggingface/datasets/issues/6062/events | https://github.com/huggingface/datasets/pull/6062 | 1,818,341,584 | PR_kwDODunzps5WOj62 | 6,062 | Improve `Dataset.from_list` docstring | [] | closed | false | null | 4 | 2023-07-24T12:36:38Z | 2023-07-24T14:43:48Z | 2023-07-24T14:34:43Z | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6062/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6062/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/6062.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6062",
"merged_at": "2023-07-24T14:34:43Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6062.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6062"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008340 / 0.011353 (-0.003013) | 0.005053 / 0.011008 (-0.005955) | 0.103294 / 0.038508 (0.064786) | 0.069417 / 0.023109 (0.046308) | 0.436922 / 0.275898 (0.161024) | 0.461348 / 0.323480 (0.137868) | 0.006030 / 0.007986 (-0.001955) | 0.003727 / 0.004328 (-0.000601) | 0.076384 / 0.004250 (0.072134) | 0.056742 / 0.037052 (0.019689) | 0.439996 / 0.258489 (0.181507) | 0.469417 / 0.293841 (0.175577) | 0.044343 / 0.128546 (-0.084203) | 0.012634 / 0.075646 (-0.063013) | 0.359746 / 0.419271 (-0.059525) | 0.064842 / 0.043533 (0.021309) | 0.425960 / 0.255139 (0.170821) | 0.458568 / 0.283200 (0.175368) | 0.039802 / 0.141683 (-0.101881) | 1.687320 / 1.452155 (0.235165) | 1.806212 / 1.492716 (0.313496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255484 / 0.018006 (0.237478) | 0.563039 / 0.000490 (0.562549) | 0.000445 / 0.000200 (0.000245) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027511 / 0.037411 (-0.009900) | 0.089185 / 0.014526 (0.074659) | 0.098397 / 0.176557 (-0.078160) | 0.163897 / 0.737135 (-0.573238) | 0.099905 / 0.296338 (-0.196434) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.612737 / 0.215209 (0.397528) | 6.209948 / 2.077655 (4.132294) | 2.756060 / 1.504120 (1.251940) | 2.402115 / 1.541195 (0.860920) | 2.422665 / 1.468490 (0.954175) | 0.834799 / 4.584777 (-3.749977) | 5.251699 / 3.745712 (1.505986) | 5.554141 / 5.269862 (0.284280) | 3.254699 / 4.565676 (-1.310977) | 0.095697 / 0.424275 (-0.328578) | 0.009406 / 0.007607 (0.001799) | 0.729025 / 0.226044 (0.502980) | 7.195521 / 2.268929 (4.926593) | 3.360264 / 55.444624 (-52.084361) | 2.696764 / 6.876477 (-4.179713) | 2.702796 / 2.142072 (0.560724) | 0.974420 / 4.805227 (-3.830808) | 0.195215 / 6.500664 (-6.305450) | 0.069754 / 0.075469 (-0.005715) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.553458 / 1.841788 (-0.288330) | 21.972436 / 8.074308 (13.898128) | 20.027392 / 10.191392 (9.836000) | 0.216950 / 0.680424 (-0.463474) | 0.032196 / 0.534201 (-0.502005) | 0.449884 / 0.579283 (-0.129399) | 0.586213 / 0.434364 (0.151849) | 0.537227 / 0.540337 (-0.003111) | 0.751022 / 1.386936 (-0.635914) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007859 / 0.011353 (-0.003493) | 0.004762 / 0.011008 (-0.006246) | 0.086023 / 0.038508 (0.047515) | 0.069218 / 0.023109 (0.046109) | 0.449312 / 0.275898 (0.173414) | 0.481687 / 0.323480 (0.158207) | 0.006318 / 0.007986 (-0.001668) | 0.004063 / 0.004328 (-0.000266) | 0.076917 / 0.004250 (0.072667) | 0.058034 / 0.037052 (0.020981) | 0.474265 / 0.258489 (0.215775) | 0.497736 / 0.293841 (0.203895) | 0.044587 / 0.128546 (-0.083959) | 0.013880 / 0.075646 (-0.061766) | 0.089233 / 0.419271 (-0.330038) | 0.058760 / 0.043533 (0.015227) | 0.439515 / 0.255139 (0.184376) | 0.473246 / 0.283200 (0.190047) | 0.042968 / 0.141683 (-0.098715) | 1.802647 / 1.452155 (0.350493) | 1.778563 / 1.492716 (0.285847) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343741 / 0.018006 (0.325735) | 0.567409 / 0.000490 (0.566919) | 0.029727 / 0.000200 (0.029527) | 0.000147 / 0.000054 (0.000092) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031021 / 0.037411 (-0.006390) | 0.096659 / 0.014526 (0.082133) | 0.103341 / 0.176557 (-0.073215) | 0.169893 / 0.737135 (-0.567242) | 0.103280 / 0.296338 (-0.193058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.584724 / 0.215209 (0.369515) | 5.792596 / 2.077655 (3.714941) | 2.683133 / 1.504120 (1.179013) | 2.367837 / 1.541195 (0.826643) | 2.378567 / 1.468490 (0.910076) | 0.803427 / 4.584777 (-3.781350) | 5.179017 / 3.745712 (1.433305) | 4.446323 / 5.269862 (-0.823538) | 2.771731 / 4.565676 (-1.793945) | 0.100943 / 0.424275 (-0.323332) | 0.009875 / 0.007607 (0.002268) | 0.725260 / 0.226044 (0.499216) | 7.149728 / 2.268929 (4.880800) | 3.646438 / 55.444624 (-51.798187) | 2.793858 / 6.876477 (-4.082618) | 2.971966 / 2.142072 (0.829894) | 0.998147 / 4.805227 (-3.807080) | 0.198004 / 6.500664 (-6.302660) | 0.072581 / 0.075469 (-0.002888) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696737 / 1.841788 (-0.145051) | 22.615193 / 8.074308 (14.540884) | 20.272421 / 10.191392 (10.081029) | 0.237459 / 0.680424 (-0.442965) | 0.034774 / 0.534201 (-0.499427) | 0.484649 / 0.579283 (-0.094634) | 0.590263 / 0.434364 (0.155899) | 0.547833 / 0.540337 (0.007495) | 0.762109 / 1.386936 (-0.624827) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011183 / 0.011353 (-0.000170) | 0.005267 / 0.011008 (-0.005741) | 0.108506 / 0.038508 (0.069997) | 0.083541 / 0.023109 (0.060431) | 0.452189 / 0.275898 (0.176291) | 0.496229 / 0.323480 (0.172749) | 0.004951 / 0.007986 (-0.003035) | 0.004452 / 0.004328 (0.000124) | 0.085133 / 0.004250 (0.080883) | 0.061291 / 0.037052 (0.024239) | 0.450453 / 0.258489 (0.191964) | 0.506456 / 0.293841 (0.212616) | 0.049784 / 0.128546 (-0.078762) | 0.014738 / 0.075646 (-0.060908) | 0.372603 / 0.419271 (-0.046669) | 0.065223 / 0.043533 (0.021690) | 0.467872 / 0.255139 (0.212733) | 0.500062 / 0.283200 (0.216862) | 0.040911 / 0.141683 (-0.100772) | 1.852970 / 1.452155 (0.400816) | 2.016996 / 1.492716 (0.524280) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262620 / 0.018006 (0.244614) | 0.593925 / 0.000490 (0.593435) | 0.000413 / 0.000200 (0.000213) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035713 / 0.037411 (-0.001698) | 0.111403 / 0.014526 (0.096878) | 0.117259 / 0.176557 (-0.059298) | 0.201545 / 0.737135 (-0.535590) | 0.133111 / 0.296338 (-0.163228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.597318 / 0.215209 (0.382109) | 5.882691 / 2.077655 (3.805036) | 2.572203 / 1.504120 (1.068083) | 2.248016 / 1.541195 (0.706821) | 2.359103 / 1.468490 (0.890613) | 0.852023 / 4.584777 (-3.732754) | 5.270831 / 3.745712 (1.525119) | 4.712915 / 5.269862 (-0.556947) | 3.124295 / 4.565676 (-1.441381) | 0.092045 / 0.424275 (-0.332230) | 0.007834 / 0.007607 (0.000227) | 0.695711 / 0.226044 (0.469666) | 7.011760 / 2.268929 (4.742831) | 3.333300 / 55.444624 (-52.111325) | 2.745889 / 6.876477 (-4.130587) | 3.153458 / 2.142072 (1.011385) | 1.011089 / 4.805227 (-3.794139) | 0.207467 / 6.500664 (-6.293197) | 0.079802 / 0.075469 (0.004333) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.703784 / 1.841788 (-0.138003) | 24.414340 / 8.074308 (16.340032) | 22.534528 / 10.191392 (12.343136) | 0.276129 / 0.680424 (-0.404295) | 0.027954 / 0.534201 (-0.506247) | 0.484261 / 0.579283 (-0.095022) | 0.605316 / 0.434364 (0.170952) | 0.557219 / 0.540337 (0.016882) | 0.802209 / 1.386936 (-0.584727) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009109 / 0.011353 (-0.002244) | 0.005376 / 0.011008 (-0.005632) | 0.085141 / 0.038508 (0.046633) | 0.100560 / 0.023109 (0.077450) | 0.482673 / 0.275898 (0.206775) | 0.551582 / 0.323480 (0.228103) | 0.006756 / 0.007986 (-0.001229) | 0.004171 / 0.004328 (-0.000158) | 0.084184 / 0.004250 (0.079933) | 0.069283 / 0.037052 (0.032230) | 0.517722 / 0.258489 (0.259233) | 0.542641 / 0.293841 (0.248801) | 0.047790 / 0.128546 (-0.080756) | 0.014063 / 0.075646 (-0.061583) | 0.110591 / 0.419271 (-0.308680) | 0.064373 / 0.043533 (0.020840) | 0.496636 / 0.255139 (0.241497) | 0.551906 / 0.283200 (0.268707) | 0.046187 / 0.141683 (-0.095496) | 1.864836 / 1.452155 (0.412681) | 1.923765 / 1.492716 (0.431049) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286558 / 0.018006 (0.268552) | 0.610353 / 0.000490 (0.609863) | 0.012647 / 0.000200 (0.012447) | 0.000162 / 0.000054 (0.000107) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037099 / 0.037411 (-0.000313) | 0.108608 / 0.014526 (0.094082) | 0.120386 / 0.176557 (-0.056170) | 0.183450 / 0.737135 (-0.553686) | 0.124860 / 0.296338 (-0.171479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629006 / 0.215209 (0.413797) | 6.309206 / 2.077655 (4.231551) | 2.878558 / 1.504120 (1.374438) | 2.616093 / 1.541195 (1.074898) | 2.668096 / 1.468490 (1.199606) | 0.865732 / 4.584777 (-3.719045) | 5.312433 / 3.745712 (1.566721) | 4.799352 / 5.269862 (-0.470509) | 3.142207 / 4.565676 (-1.423469) | 0.099591 / 0.424275 (-0.324684) | 0.009159 / 0.007607 (0.001552) | 0.730999 / 0.226044 (0.504954) | 7.486442 / 2.268929 (5.217513) | 3.657699 / 55.444624 (-51.786925) | 3.080094 / 6.876477 (-3.796383) | 3.320976 / 2.142072 (1.178904) | 1.089324 / 4.805227 (-3.715904) | 0.222831 / 6.500664 (-6.277833) | 0.083976 / 0.075469 (0.008507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.793181 / 1.841788 (-0.048607) | 25.307444 / 8.074308 (17.233136) | 21.321713 / 10.191392 (11.130321) | 0.216326 / 0.680424 (-0.464098) | 0.034298 / 0.534201 (-0.499903) | 0.497173 / 0.579283 (-0.082110) | 0.643550 / 0.434364 (0.209186) | 0.581213 / 0.540337 (0.040876) | 0.830973 / 1.386936 (-0.555963) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006886 / 0.011353 (-0.004467) | 0.004267 / 0.011008 (-0.006741) | 0.086182 / 0.038508 (0.047674) | 0.083405 / 0.023109 (0.060296) | 0.313717 / 0.275898 (0.037819) | 0.351476 / 0.323480 (0.027996) | 0.005702 / 0.007986 (-0.002284) | 0.003802 / 0.004328 (-0.000526) | 0.065759 / 0.004250 (0.061508) | 0.060056 / 0.037052 (0.023003) | 0.315871 / 0.258489 (0.057382) | 0.364520 / 0.293841 (0.070679) | 0.032067 / 0.128546 (-0.096479) | 0.008679 / 0.075646 (-0.066967) | 0.294968 / 0.419271 (-0.124303) | 0.054684 / 0.043533 (0.011152) | 0.314124 / 0.255139 (0.058985) | 0.337312 / 0.283200 (0.054113) | 0.025051 / 0.141683 (-0.116632) | 1.505242 / 1.452155 (0.053087) | 1.608263 / 1.492716 (0.115547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266562 / 0.018006 (0.248556) | 0.579887 / 0.000490 (0.579397) | 0.004161 / 0.000200 (0.003961) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031153 / 0.037411 (-0.006258) | 0.087703 / 0.014526 (0.073177) | 0.103864 / 0.176557 (-0.072693) | 0.159032 / 0.737135 (-0.578104) | 0.102482 / 0.296338 (-0.193857) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405805 / 0.215209 (0.190596) | 4.050669 / 2.077655 (1.973014) | 2.064384 / 1.504120 (0.560264) | 1.892825 / 1.541195 (0.351630) | 2.001083 / 1.468490 (0.532593) | 0.478174 / 4.584777 (-4.106603) | 3.542580 / 3.745712 (-0.203132) | 3.319205 / 5.269862 (-1.950656) | 2.075868 / 4.565676 (-2.489808) | 0.057345 / 0.424275 (-0.366930) | 0.007459 / 0.007607 (-0.000148) | 0.483564 / 0.226044 (0.257520) | 4.827746 / 2.268929 (2.558818) | 2.579541 / 55.444624 (-52.865083) | 2.205125 / 6.876477 (-4.671352) | 2.489206 / 2.142072 (0.347133) | 0.575843 / 4.805227 (-4.229384) | 0.133010 / 6.500664 (-6.367654) | 0.061082 / 0.075469 (-0.014387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286059 / 1.841788 (-0.555729) | 20.575173 / 8.074308 (12.500865) | 14.351692 / 10.191392 (4.160300) | 0.150401 / 0.680424 (-0.530022) | 0.018678 / 0.534201 (-0.515523) | 0.397860 / 0.579283 (-0.181423) | 0.419474 / 0.434364 (-0.014890) | 0.474492 / 0.540337 (-0.065846) | 0.659510 / 1.386936 (-0.727426) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006948 / 0.011353 (-0.004405) | 0.004305 / 0.011008 (-0.006703) | 0.064220 / 0.038508 (0.025712) | 0.083251 / 0.023109 (0.060142) | 0.388148 / 0.275898 (0.112250) | 0.417834 / 0.323480 (0.094354) | 0.005762 / 0.007986 (-0.002224) | 0.003803 / 0.004328 (-0.000525) | 0.066365 / 0.004250 (0.062114) | 0.061808 / 0.037052 (0.024756) | 0.390889 / 0.258489 (0.132400) | 0.430619 / 0.293841 (0.136778) | 0.031777 / 0.128546 (-0.096770) | 0.008781 / 0.075646 (-0.066865) | 0.070844 / 0.419271 (-0.348427) | 0.050552 / 0.043533 (0.007019) | 0.378420 / 0.255139 (0.123281) | 0.403273 / 0.283200 (0.120074) | 0.024578 / 0.141683 (-0.117105) | 1.494790 / 1.452155 (0.042636) | 1.549408 / 1.492716 (0.056692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.302668 / 0.018006 (0.284662) | 0.542235 / 0.000490 (0.541746) | 0.001847 / 0.000200 (0.001647) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031947 / 0.037411 (-0.005465) | 0.092220 / 0.014526 (0.077694) | 0.104525 / 0.176557 (-0.072031) | 0.162000 / 0.737135 (-0.575135) | 0.106795 / 0.296338 (-0.189543) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412035 / 0.215209 (0.196826) | 4.106527 / 2.077655 (2.028872) | 2.111529 / 1.504120 (0.607409) | 1.953201 / 1.541195 (0.412006) | 2.079258 / 1.468490 (0.610768) | 0.479562 / 4.584777 (-4.105215) | 3.606256 / 3.745712 (-0.139456) | 5.175250 / 5.269862 (-0.094612) | 3.292465 / 4.565676 (-1.273212) | 0.057726 / 0.424275 (-0.366549) | 0.008247 / 0.007607 (0.000640) | 0.486143 / 0.226044 (0.260098) | 4.859051 / 2.268929 (2.590123) | 2.675629 / 55.444624 (-52.768995) | 2.267448 / 6.876477 (-4.609029) | 2.567639 / 2.142072 (0.425567) | 0.580822 / 4.805227 (-4.224406) | 0.134942 / 6.500664 (-6.365722) | 0.063825 / 0.075469 (-0.011644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334421 / 1.841788 (-0.507367) | 20.481428 / 8.074308 (12.407120) | 14.227943 / 10.191392 (4.036551) | 0.170711 / 0.680424 (-0.509713) | 0.018212 / 0.534201 (-0.515989) | 0.397212 / 0.579283 (-0.182071) | 0.411934 / 0.434364 (-0.022430) | 0.478019 / 0.540337 (-0.062319) | 0.645434 / 1.386936 (-0.741502) |\n\n</details>\n</details>\n\n\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/3910 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3910/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3910/comments | https://api.github.com/repos/huggingface/datasets/issues/3910/events | https://github.com/huggingface/datasets/pull/3910 | 1,168,579,694 | PR_kwDODunzps40aAiX | 3,910 | Fix text loader to split only on universal newlines | [] | closed | false | null | 6 | 2022-03-14T15:54:58Z | 2022-03-15T16:16:11Z | 2022-03-15T16:16:09Z | null | Currently, `text` loader breaks on a superset of universal newlines, which also contains Unicode line boundaries. See: https://docs.python.org/3/library/stdtypes.html#str.splitlines
However, the expected behavior is to get the lines splitted only on universal newlines: "\n", "\r\n" and "\r".
See: oscar-corpus/corpus#18
Fix #3729. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3910/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3910/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3910.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3910",
"merged_at": "2022-03-15T16:16:09Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3910.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3910"
} | true | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3910). All of your documentation changes will be reflected on that endpoint.",
"Looks like the test needs to be updated for windows ^^'",
"I don't think this is the same issue as in https://github.com/oscar-corpus/corpus/issues/18, where the OSCAR metadata has line offsets that use only `\\n` as the newline marker to count lines, not `\\r\\n` or `\\r`.\r\n\r\nIt looks like the OSCAR data loader is opening the data files with `gzip.open` directly and I don't think this text loader is used, but I'm not familiar with a lot of `datasets` internals so I could be mistaken?",
"You are right @adrianeboyd.\r\n\r\nThis PR fixes #3729.\r\n\r\nAdditionally, this PR is somehow related to the OSCAR issue. However, the OSCAR issue have multiple root causes: one is the offset initialization (as you pointed out); other is similar to this case: Unicode newlines are not properly handled.\r\n\r\nI will make a change proposal for OSCAR this afternoon.",
"@lhoestq I'm working on fixing the Windows tests on my Windows machine...",
"I finally changed the approach in order to avoid having \"\\r\\n\" and \"\\r\" line breaks in Python `str` read from files on Windows/old Macintosh machines."
] |
https://api.github.com/repos/huggingface/datasets/issues/2204 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2204/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2204/comments | https://api.github.com/repos/huggingface/datasets/issues/2204/events | https://github.com/huggingface/datasets/pull/2204 | 855,144,431 | MDExOlB1bGxSZXF1ZXN0NjEyOTU1MzM2 | 2,204 | Add configurable options to `seqeval` metric | [] | closed | false | null | 0 | 2021-04-10T19:58:19Z | 2021-04-15T13:49:46Z | 2021-04-15T13:49:46Z | null | Fixes #2148
Adds options to use strict mode, different schemes of evaluation, sample weight and adjust zero_division behavior, if encountered.
`seqeval` provides schemes as objects, hence dynamic import from string, to avoid making the user do the import (thanks to @albertvillanova for the `importlib` idea). | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2204/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2204/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2204.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2204",
"merged_at": "2021-04-15T13:49:46Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2204.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2204"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/4287 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4287/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4287/comments | https://api.github.com/repos/huggingface/datasets/issues/4287/events | https://github.com/huggingface/datasets/issues/4287 | 1,226,806,652 | I_kwDODunzps5JH5V8 | 4,287 | "NameError: name 'faiss' is not defined" on `.add_faiss_index` when `device` is not None | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 3 | 2022-05-05T15:09:45Z | 2022-05-10T13:53:19Z | 2022-05-10T13:53:19Z | null | ## Describe the bug
When using `datasets` to calculate the FAISS indices of a dataset, the exception `NameError: name 'faiss' is not defined` is triggered when trying to calculate those on a device (GPU), so `.add_faiss_index(..., device=0)` fails with that exception.
All that assuming that `datasets` is properly installed and `faiss-gpu` too, as well as all the CUDA drivers required.
## Steps to reproduce the bug
```python
# Sample code to reproduce the bug
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
import torch
torch.set_grad_enabled(False)
ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
from datasets import load_dataset
ds = load_dataset('crime_and_punish', split='train[:100]')
ds_with_embeddings = ds.map(lambda example: {'embeddings': ctx_encoder(**ctx_tokenizer(example["line"], return_tensors="pt"))[0][0].numpy()})
ds_with_embeddings.add_faiss_index(column='embeddings', device=0) # default `device=None`
```
## Expected results
A new column named `embeddings` in the dataset that we're adding the index to.
## Actual results
An exception is triggered with the following message `NameError: name 'faiss' is not defined`.
## Environment info
- `datasets` version: 2.1.0
- Platform: Linux-5.13.0-1022-azure-x86_64-with-glibc2.31
- Python version: 3.9.12
- PyArrow version: 7.0.0
- Pandas version: 1.4.2
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4287/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4287/timeline | null | completed | null | null | false | [
"So I managed to solve this by adding a missing `import faiss` in the `@staticmethod` defined in https://github.com/huggingface/datasets/blob/f51b6994db27ea69261ef919fb7775928f9ec10b/src/datasets/search.py#L305, triggered from https://github.com/huggingface/datasets/blob/f51b6994db27ea69261ef919fb7775928f9ec10b/src/datasets/search.py#L249 when trying to `ds_with_embeddings.add_faiss_index(column='embeddings', device=0)` with the code above.\r\n\r\nAs it seems that the `@staticmethod` doesn't recognize the `import faiss` defined in https://github.com/huggingface/datasets/blob/f51b6994db27ea69261ef919fb7775928f9ec10b/src/datasets/search.py#L261, so whenever the value of `device` is not None in https://github.com/huggingface/datasets/blob/71f76e0bdeaddadedc4f9c8d15cfff5a36d62f66/src/datasets/search.py#L438, that exception is triggered.\r\n\r\nSo on, adding `import faiss` inside https://github.com/huggingface/datasets/blob/71f76e0bdeaddadedc4f9c8d15cfff5a36d62f66/src/datasets/search.py#L305 right after the check of `device`'s value, solves the issue and lets you calculate the indices in GPU.\r\n\r\nI'll add the code in a PR linked to this issue in case you want to merge it!",
"Adding here the complete error traceback!\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/alvarobartt/lol.py\", line 12, in <module>\r\n ds_with_embeddings.add_faiss_index(column='embeddings', device=0) # default `device=None`\r\n File \"/home/alvarobartt/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3656, in add_faiss_index\r\n super().add_faiss_index(\r\n File \"/home/alvarobartt/.local/lib/python3.9/site-packages/datasets/search.py\", line 478, in add_faiss_index\r\n faiss_index.add_vectors(self, column=column, train_size=train_size, faiss_verbose=True)\r\n File \"/home/alvarobartt/.local/lib/python3.9/site-packages/datasets/search.py\", line 281, in add_vectors\r\n self.faiss_index = self._faiss_index_to_device(index, self.device)\r\n File \"/home/alvarobartt/.local/lib/python3.9/site-packages/datasets/search.py\", line 327, in _faiss_index_to_device\r\n faiss_res = faiss.StandardGpuResources()\r\nNameError: name 'faiss' is not defined\r\n```",
"Closed as https://github.com/huggingface/datasets/pull/4288 already merged! :hugs:"
] |
https://api.github.com/repos/huggingface/datasets/issues/3803 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3803/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3803/comments | https://api.github.com/repos/huggingface/datasets/issues/3803/events | https://github.com/huggingface/datasets/pull/3803 | 1,157,271,679 | PR_kwDODunzps4z1T48 | 3,803 | Remove deprecated methods/params (preparation for v2.0) | [] | closed | false | null | 0 | 2022-03-02T14:29:12Z | 2022-03-02T14:53:21Z | 2022-03-02T14:53:21Z | null | This PR removes the following deprecated methos/params:
* `Dataset.cast_`/`DatasetDict.cast_`
* `Dataset.dictionary_encode_column_`/`DatasetDict.dictionary_encode_column_`
* `Dataset.remove_columns_`/`DatasetDict.remove_columns_`
* `Dataset.rename_columns_`/`DatasetDict.rename_columns_`
* `prepare_module`
* param `script_version` in `load_dataset`/`load_metric`
* param `version` in `hf_github_url`
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3803/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3803/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3803.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3803",
"merged_at": "2022-03-02T14:53:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3803.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3803"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/6070 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6070/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6070/comments | https://api.github.com/repos/huggingface/datasets/issues/6070/events | https://github.com/huggingface/datasets/pull/6070 | 1,820,836,330 | PR_kwDODunzps5WXDLc | 6,070 | Fix Quickstart notebook link | [] | closed | false | null | 3 | 2023-07-25T17:48:37Z | 2023-07-25T18:19:01Z | 2023-07-25T18:10:16Z | null | Reported in https://github.com/huggingface/datasets/pull/5902#issuecomment-1649885621 (cc @alvarobartt) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6070/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6070/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/6070.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6070",
"merged_at": "2023-07-25T18:10:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6070.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6070"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008473 / 0.011353 (-0.002880) | 0.004734 / 0.011008 (-0.006274) | 0.103895 / 0.038508 (0.065387) | 0.071838 / 0.023109 (0.048729) | 0.379949 / 0.275898 (0.104051) | 0.397375 / 0.323480 (0.073895) | 0.006695 / 0.007986 (-0.001290) | 0.004536 / 0.004328 (0.000207) | 0.076151 / 0.004250 (0.071901) | 0.058690 / 0.037052 (0.021638) | 0.379937 / 0.258489 (0.121448) | 0.411833 / 0.293841 (0.117992) | 0.046805 / 0.128546 (-0.081741) | 0.013689 / 0.075646 (-0.061958) | 0.327896 / 0.419271 (-0.091375) | 0.063873 / 0.043533 (0.020340) | 0.378451 / 0.255139 (0.123312) | 0.398725 / 0.283200 (0.115525) | 0.034961 / 0.141683 (-0.106722) | 1.604999 / 1.452155 (0.152845) | 1.748370 / 1.492716 (0.255654) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224634 / 0.018006 (0.206628) | 0.548468 / 0.000490 (0.547979) | 0.005049 / 0.000200 (0.004849) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028144 / 0.037411 (-0.009267) | 0.092184 / 0.014526 (0.077659) | 0.102987 / 0.176557 (-0.073570) | 0.176987 / 0.737135 (-0.560149) | 0.103093 / 0.296338 (-0.193246) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578410 / 0.215209 (0.363201) | 5.664781 / 2.077655 (3.587126) | 2.487763 / 1.504120 (0.983643) | 2.254213 / 1.541195 (0.713018) | 2.239693 / 1.468490 (0.771202) | 0.810380 / 4.584777 (-3.774397) | 5.036540 / 3.745712 (1.290828) | 7.064695 / 5.269862 (1.794834) | 4.215101 / 4.565676 (-0.350575) | 0.089792 / 0.424275 (-0.334483) | 0.008487 / 0.007607 (0.000879) | 0.692292 / 0.226044 (0.466248) | 6.780226 / 2.268929 (4.511297) | 3.245510 / 55.444624 (-52.199114) | 2.575984 / 6.876477 (-4.300493) | 2.747546 / 2.142072 (0.605473) | 0.956604 / 4.805227 (-3.848623) | 0.198937 / 6.500664 (-6.301727) | 0.070849 / 0.075469 (-0.004620) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.536469 / 1.841788 (-0.305319) | 21.750583 / 8.074308 (13.676275) | 20.559532 / 10.191392 (10.368140) | 0.241244 / 0.680424 (-0.439180) | 0.030078 / 0.534201 (-0.504123) | 0.462204 / 0.579283 (-0.117079) | 0.600103 / 0.434364 (0.165739) | 0.535074 / 0.540337 (-0.005264) | 0.764427 / 1.386936 (-0.622509) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009712 / 0.011353 (-0.001641) | 0.005036 / 0.011008 (-0.005972) | 0.073683 / 0.038508 (0.035175) | 0.078684 / 0.023109 (0.055574) | 0.445096 / 0.275898 (0.169198) | 0.496233 / 0.323480 (0.172754) | 0.006231 / 0.007986 (-0.001755) | 0.004720 / 0.004328 (0.000392) | 0.076444 / 0.004250 (0.072194) | 0.060932 / 0.037052 (0.023880) | 0.505727 / 0.258489 (0.247238) | 0.498702 / 0.293841 (0.204861) | 0.047115 / 0.128546 (-0.081431) | 0.014028 / 0.075646 (-0.061618) | 0.099292 / 0.419271 (-0.319980) | 0.061571 / 0.043533 (0.018038) | 0.468435 / 0.255139 (0.213296) | 0.481747 / 0.283200 (0.198547) | 0.033962 / 0.141683 (-0.107721) | 1.665397 / 1.452155 (0.213242) | 1.830488 / 1.492716 (0.337772) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268217 / 0.018006 (0.250211) | 0.555123 / 0.000490 (0.554633) | 0.000451 / 0.000200 (0.000251) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034262 / 0.037411 (-0.003150) | 0.107807 / 0.014526 (0.093281) | 0.115631 / 0.176557 (-0.060926) | 0.175914 / 0.737135 (-0.561221) | 0.118775 / 0.296338 (-0.177564) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583260 / 0.215209 (0.368051) | 5.934976 / 2.077655 (3.857321) | 2.752304 / 1.504120 (1.248184) | 2.382746 / 1.541195 (0.841551) | 2.389402 / 1.468490 (0.920912) | 0.794213 / 4.584777 (-3.790564) | 5.215269 / 3.745712 (1.469557) | 7.083595 / 5.269862 (1.813733) | 3.776136 / 4.565676 (-0.789540) | 0.091141 / 0.424275 (-0.333135) | 0.008803 / 0.007607 (0.001196) | 0.726510 / 0.226044 (0.500465) | 6.926860 / 2.268929 (4.657931) | 3.475612 / 55.444624 (-51.969012) | 2.730237 / 6.876477 (-4.146240) | 2.879145 / 2.142072 (0.737073) | 0.959956 / 4.805227 (-3.845271) | 0.189812 / 6.500664 (-6.310852) | 0.071624 / 0.075469 (-0.003845) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748184 / 1.841788 (-0.093603) | 23.764520 / 8.074308 (15.690212) | 19.502461 / 10.191392 (9.311069) | 0.233987 / 0.680424 (-0.446437) | 0.028116 / 0.534201 (-0.506085) | 0.478838 / 0.579283 (-0.100445) | 0.560952 / 0.434364 (0.126588) | 0.529902 / 0.540337 (-0.010435) | 0.735095 / 1.386936 (-0.651841) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004131 / 0.011008 (-0.006878) | 0.085619 / 0.038508 (0.047111) | 0.076973 / 0.023109 (0.053864) | 0.315175 / 0.275898 (0.039277) | 0.354703 / 0.323480 (0.031223) | 0.005409 / 0.007986 (-0.002577) | 0.003438 / 0.004328 (-0.000891) | 0.064773 / 0.004250 (0.060523) | 0.056117 / 0.037052 (0.019064) | 0.313825 / 0.258489 (0.055336) | 0.354654 / 0.293841 (0.060813) | 0.031384 / 0.128546 (-0.097163) | 0.008537 / 0.075646 (-0.067109) | 0.288528 / 0.419271 (-0.130744) | 0.053036 / 0.043533 (0.009504) | 0.312213 / 0.255139 (0.057074) | 0.335952 / 0.283200 (0.052752) | 0.023165 / 0.141683 (-0.118518) | 1.497559 / 1.452155 (0.045404) | 1.561949 / 1.492716 (0.069233) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212558 / 0.018006 (0.194552) | 0.456555 / 0.000490 (0.456065) | 0.000334 / 0.000200 (0.000134) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028571 / 0.037411 (-0.008840) | 0.085154 / 0.014526 (0.070628) | 0.095961 / 0.176557 (-0.080596) | 0.153041 / 0.737135 (-0.584094) | 0.099234 / 0.296338 (-0.197105) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.381796 / 0.215209 (0.166587) | 3.806948 / 2.077655 (1.729294) | 1.829597 / 1.504120 (0.325477) | 1.659065 / 1.541195 (0.117870) | 1.738524 / 1.468490 (0.270034) | 0.483379 / 4.584777 (-4.101398) | 3.540648 / 3.745712 (-0.205064) | 3.269188 / 5.269862 (-2.000673) | 2.042113 / 4.565676 (-2.523564) | 0.056905 / 0.424275 (-0.367370) | 0.007235 / 0.007607 (-0.000373) | 0.460581 / 0.226044 (0.234537) | 4.597451 / 2.268929 (2.328522) | 2.334284 / 55.444624 (-53.110340) | 1.960026 / 6.876477 (-4.916450) | 2.172118 / 2.142072 (0.030045) | 0.576758 / 4.805227 (-4.228470) | 0.131196 / 6.500664 (-6.369468) | 0.060053 / 0.075469 (-0.015417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289466 / 1.841788 (-0.552322) | 19.713059 / 8.074308 (11.638750) | 14.292390 / 10.191392 (4.100998) | 0.146199 / 0.680424 (-0.534225) | 0.018123 / 0.534201 (-0.516078) | 0.392492 / 0.579283 (-0.186791) | 0.416544 / 0.434364 (-0.017820) | 0.457166 / 0.540337 (-0.083171) | 0.645490 / 1.386936 (-0.741446) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006508 / 0.011353 (-0.004845) | 0.004010 / 0.011008 (-0.006998) | 0.065201 / 0.038508 (0.026693) | 0.076322 / 0.023109 (0.053213) | 0.364198 / 0.275898 (0.088300) | 0.398251 / 0.323480 (0.074771) | 0.005328 / 0.007986 (-0.002658) | 0.003298 / 0.004328 (-0.001031) | 0.064378 / 0.004250 (0.060128) | 0.056053 / 0.037052 (0.019000) | 0.365431 / 0.258489 (0.106942) | 0.402777 / 0.293841 (0.108936) | 0.031014 / 0.128546 (-0.097532) | 0.008507 / 0.075646 (-0.067140) | 0.071471 / 0.419271 (-0.347801) | 0.048300 / 0.043533 (0.004768) | 0.359700 / 0.255139 (0.104561) | 0.382244 / 0.283200 (0.099044) | 0.023783 / 0.141683 (-0.117900) | 1.517518 / 1.452155 (0.065363) | 1.569732 / 1.492716 (0.077015) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257447 / 0.018006 (0.239440) | 0.452598 / 0.000490 (0.452109) | 0.015187 / 0.000200 (0.014987) | 0.000164 / 0.000054 (0.000109) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030958 / 0.037411 (-0.006454) | 0.090066 / 0.014526 (0.075540) | 0.101120 / 0.176557 (-0.075437) | 0.154295 / 0.737135 (-0.582840) | 0.103582 / 0.296338 (-0.192756) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415945 / 0.215209 (0.200736) | 4.146464 / 2.077655 (2.068809) | 2.121414 / 1.504120 (0.617294) | 1.956885 / 1.541195 (0.415690) | 2.047955 / 1.468490 (0.579465) | 0.486334 / 4.584777 (-4.098443) | 3.506263 / 3.745712 (-0.239449) | 4.942274 / 5.269862 (-0.327587) | 2.907836 / 4.565676 (-1.657841) | 0.057344 / 0.424275 (-0.366931) | 0.007813 / 0.007607 (0.000206) | 0.497888 / 0.226044 (0.271844) | 4.978017 / 2.268929 (2.709089) | 2.600447 / 55.444624 (-52.844177) | 2.335050 / 6.876477 (-4.541427) | 2.480373 / 2.142072 (0.338301) | 0.597954 / 4.805227 (-4.207274) | 0.134794 / 6.500664 (-6.365870) | 0.062605 / 0.075469 (-0.012864) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.344390 / 1.841788 (-0.497398) | 20.020067 / 8.074308 (11.945759) | 14.344626 / 10.191392 (4.153234) | 0.172101 / 0.680424 (-0.508322) | 0.018549 / 0.534201 (-0.515652) | 0.393589 / 0.579283 (-0.185694) | 0.438401 / 0.434364 (0.004037) | 0.463800 / 0.540337 (-0.076537) | 0.618269 / 1.386936 (-0.768667) |\n\n</details>\n</details>\n\n\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/2266 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2266/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2266/comments | https://api.github.com/repos/huggingface/datasets/issues/2266/events | https://github.com/huggingface/datasets/pull/2266 | 867,864,353 | MDExOlB1bGxSZXF1ZXN0NjIzNDY1OTI5 | 2,266 | Make tests run faster | [] | closed | false | null | 3 | 2021-04-26T15:55:40Z | 2021-04-29T10:00:13Z | 2021-04-29T10:00:04Z | null | From 7min to 2min to run pytest.
Ideally we should keep the whole CI run time below 10min.
In this PR I removed the remote tests that were never used.
I also replaced nested parametrized tests with unit tests.
This makes me think that we could still add more high level tests to check for a few combinations of parameters (but not all of them since there are too many of them).
Let me know what you think
Finally in another PR we can also separate in two circleci jobs:
- the tests of the code code of the lib
- the tests of the all the dataset/metric scripts. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 2,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2266/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2266/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2266.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2266",
"merged_at": "2021-04-29T10:00:04Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2266.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2266"
} | true | [
"LOL, I was also working on something similar 😅. I'm gonna have a look!!!",
"Sorry I didn't know you were also working on it ^^'\r\nAnd yes I 100% agree with you on the points you mentioned. We should definitely improve the coverage. It would be nice to have a clearer separation to know which tests in the suite are unit tests and which ones are integration tests\r\n",
"Never mind: we both noticed tests can be improved. More PRs to come... 😉 \r\n\r\nAccording to the literature, unit tests are those that test a behavior unit, isolated from the other components and must be very fast: for me, this last requirement implies that they must be performed completely _in memory_.\r\n\r\nAs opposed, integration tests are those which also test interactions with _external_ components, like web services, databases, file system, etc.\r\n\r\nThe problem I see is that our code is still too coupled and it is difficult to isolate components for testing. Therefore, I would suggest acting iteratively, by refactoring to decouple components and then implement unit tests for each component in isolation."
] |
https://api.github.com/repos/huggingface/datasets/issues/1782 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1782/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1782/comments | https://api.github.com/repos/huggingface/datasets/issues/1782/events | https://github.com/huggingface/datasets/pull/1782 | 794,167,920 | MDExOlB1bGxSZXF1ZXN0NTYxNzI5OTc3 | 1,782 | Update pyarrow import warning | [] | closed | false | null | 0 | 2021-01-26T11:47:11Z | 2021-01-26T13:50:50Z | 2021-01-26T13:50:49Z | null | Update the minimum version to >=0.17.1 in the pyarrow version check and update the message.
I also moved the check at the top of the __init__.py | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1782/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1782/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1782.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1782",
"merged_at": "2021-01-26T13:50:49Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1782.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1782"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/2354 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2354/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2354/comments | https://api.github.com/repos/huggingface/datasets/issues/2354/events | https://github.com/huggingface/datasets/issues/2354 | 890,439,523 | MDU6SXNzdWU4OTA0Mzk1MjM= | 2,354 | Document DatasetInfo attributes | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | closed | false | null | 0 | 2021-05-12T20:01:29Z | 2021-05-22T09:26:14Z | 2021-05-22T09:26:14Z | null | **Is your feature request related to a problem? Please describe.**
As noted in PR #2255, the attributes of `DatasetInfo` are not documented in the [docs](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=datasetinfo#datasetinfo). It would be nice to do so :)
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2354/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2354/timeline | null | completed | null | null | false | [] |
https://api.github.com/repos/huggingface/datasets/issues/5548 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5548/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5548/comments | https://api.github.com/repos/huggingface/datasets/issues/5548/events | https://github.com/huggingface/datasets/issues/5548 | 1,590,835,479 | I_kwDODunzps5e0jkX | 5,548 | Apply flake8-comprehensions to codebase | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | closed | false | null | 0 | 2023-02-19T20:05:38Z | 2023-02-23T13:59:41Z | 2023-02-23T13:59:41Z | null | ### Feature request
Apply ruff flake8 comprehension checks to codebase.
### Motivation
This should strictly improve the performance / readability of the codebase by removing unnecessary iteration, function calls, etc. This should generate better Python bytecode which should strictly improve performance.
I already applied this fixes to PyTorch and Sympy with little issue and have opened PRs to diffusers and transformers todo this as well.
### Your contribution
Making a PR. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5548/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5548/timeline | null | completed | null | null | false | [] |
https://api.github.com/repos/huggingface/datasets/issues/5529 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5529/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5529/comments | https://api.github.com/repos/huggingface/datasets/issues/5529/events | https://github.com/huggingface/datasets/pull/5529 | 1,582,501,233 | PR_kwDODunzps5J26Fq | 5,529 | Fix `datasets.load_from_disk`, `DatasetDict.load_from_disk` and `Dataset.load_from_disk` | [] | closed | false | null | 12 | 2023-02-13T14:54:55Z | 2023-02-23T18:14:32Z | 2023-02-23T18:05:26Z | null | ## What's in this PR?
After playing around a little bit with 🤗`datasets` in Google Cloud Storage (GCS), I found out some things that should be fixed IMO in the code:
* `datasets.load_from_disk` is not checking whether `state.json` is there too when trying to load a `Dataset`, just `dataset_info.json` is checked
* `DatasetDict.load_from_disk` is not checking whether `state.json` is there too when redirecting the user to load it as `datasets.load_from_disk`, just `dataset_info.json` is checked, which is misleading, as it won't be loadable that way either
* `Dataset.load_from_disk` is missing the `extract_path_from_uri` call before checking in the `fs` whether `dataset_info.json` and `dataset_dict.json` exist, which when using `gcsfs` leads to 400 error code (not blocking) due to `gcsfs.retry.HttpError: Invalid bucket name: 'gs:', 400`
* And, finally, the exception messages are a little bit misleading / incomplete IMO so I've tried to include all the relevant information in the messages to avoid issues when interpreting the exceptions | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5529/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5529/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/5529.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5529",
"merged_at": "2023-02-23T18:05:26Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5529.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5529"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Hmm, should this also be updated in `Dataset.load_from_disk` and `DatasetDict.load_from_disk`? https://github.com/huggingface/datasets/pull/5466 As there the paths are joined using `Path(..., ...)` and it won't work on Windows OS according to that PR, right?",
"Hi, @lhoestq could you review this PR? Thank you in advance and sorry for the ping 🤗 ",
"Besides that, I was also thinking of adding a `skip_validation` boolean arg in both `Dataset.load_from_disk` and `DatasetDict.load_from_disk` to avoid duplicating those calls too when those functions are called from `datasets.load_from_disk`.\r\n\r\nSo that `skip_validation` is set to `False` by default, but passed as `True` if called from `datasets.load_from_disk`, and that just affects the file checking part of the code on both functions, do you agree @lhoestq?",
"I think we should always verify",
"> I think we should always verify\r\n\r\nBut with the current way we're also verifying twice right? First on `datasets.load_from_disk` then on `Dataset.load_from_disk`, right?\r\n\r\nMaybe a warning before calling either `Dataset.load_from_disk` or `DatasetDict.load_from_disk` is enough?\r\n\r\ne.g. **\"Consider using `Dataset.load_from_disk` instead to avoid `fsspec` from verifying the presence of `dataset_info.json` and `state.json` in the remote filesystem twice.\"** to be showed just when `fs` is remote.",
"I don't think it's worth adding a new argument just for that. Usually we keep the set of arguments to the strict minimum",
"> I don't think it's worth adding a new argument just for that. Usually we keep the set of arguments to the strict minimum\r\n\r\nWhat about the warning?\r\n\r\nAnyway, if you don't think that's worth it feel free to merge 👍🏻 ",
"> What about the warning?\r\n\r\nWe may show warnings for suggestions, but only if the user does a very unoptimized thing. Here we're not at that level ^^'",
"Thanks for the explanation and feedback @lhoestq 🤗 ",
"> Thank you :) Added my last suggestions:\r\n\r\nThanks for the feedback, I agree with everything besides one nit! 👍🏻 ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011556 / 0.011353 (0.000203) | 0.006213 / 0.011008 (-0.004796) | 0.132390 / 0.038508 (0.093882) | 0.034609 / 0.023109 (0.011500) | 0.361156 / 0.275898 (0.085258) | 0.402524 / 0.323480 (0.079044) | 0.009138 / 0.007986 (0.001152) | 0.005728 / 0.004328 (0.001399) | 0.115406 / 0.004250 (0.111156) | 0.041440 / 0.037052 (0.004388) | 0.370232 / 0.258489 (0.111742) | 0.409944 / 0.293841 (0.116103) | 0.053803 / 0.128546 (-0.074744) | 0.022029 / 0.075646 (-0.053617) | 0.400325 / 0.419271 (-0.018946) | 0.055324 / 0.043533 (0.011791) | 0.368699 / 0.255139 (0.113560) | 0.391836 / 0.283200 (0.108636) | 0.099356 / 0.141683 (-0.042327) | 1.687881 / 1.452155 (0.235726) | 1.752202 / 1.492716 (0.259485) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012992 / 0.018006 (-0.005014) | 0.518756 / 0.000490 (0.518267) | 0.004702 / 0.000200 (0.004502) | 0.000105 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028371 / 0.037411 (-0.009041) | 0.127058 / 0.014526 (0.112532) | 0.136908 / 0.176557 (-0.039649) | 0.210168 / 0.737135 (-0.526968) | 0.139600 / 0.296338 (-0.156738) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.570901 / 0.215209 (0.355692) | 5.967213 / 2.077655 (3.889558) | 2.286745 / 1.504120 (0.782626) | 1.950682 / 1.541195 (0.409487) | 2.062536 / 1.468490 (0.594046) | 1.255671 / 4.584777 (-3.329106) | 5.454951 / 3.745712 (1.709238) | 3.076429 / 5.269862 (-2.193433) | 2.082871 / 4.565676 (-2.482806) | 0.150069 / 0.424275 (-0.274206) | 0.014864 / 0.007607 (0.007257) | 0.774672 / 0.226044 (0.548627) | 7.873992 / 2.268929 (5.605064) | 3.196165 / 55.444624 (-52.248459) | 2.366854 / 6.876477 (-4.509623) | 2.407381 / 2.142072 (0.265309) | 1.419130 / 4.805227 (-3.386097) | 0.249210 / 6.500664 (-6.251454) | 0.088648 / 0.075469 (0.013179) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.528368 / 1.841788 (-0.313420) | 17.554000 / 8.074308 (9.479692) | 20.773300 / 10.191392 (10.581908) | 0.216903 / 0.680424 (-0.463521) | 0.046544 / 0.534201 (-0.487657) | 0.538238 / 0.579283 (-0.041045) | 0.673926 / 0.434364 (0.239562) | 0.656108 / 0.540337 (0.115770) | 0.774026 / 1.386936 (-0.612910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010177 / 0.011353 (-0.001176) | 0.006334 / 0.011008 (-0.004675) | 0.100097 / 0.038508 (0.061589) | 0.039996 / 0.023109 (0.016887) | 0.420225 / 0.275898 (0.144327) | 0.437694 / 0.323480 (0.114214) | 0.007987 / 0.007986 (0.000002) | 0.005782 / 0.004328 (0.001454) | 0.106421 / 0.004250 (0.102171) | 0.046993 / 0.037052 (0.009941) | 0.397304 / 0.258489 (0.138815) | 0.441780 / 0.293841 (0.147939) | 0.064594 / 0.128546 (-0.063952) | 0.020823 / 0.075646 (-0.054823) | 0.108854 / 0.419271 (-0.310417) | 0.076457 / 0.043533 (0.032924) | 0.401712 / 0.255139 (0.146573) | 0.459292 / 0.283200 (0.176093) | 0.125044 / 0.141683 (-0.016639) | 1.765531 / 1.452155 (0.313377) | 1.845429 / 1.492716 (0.352713) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225549 / 0.018006 (0.207543) | 0.524402 / 0.000490 (0.523913) | 0.006994 / 0.000200 (0.006794) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033787 / 0.037411 (-0.003624) | 0.144895 / 0.014526 (0.130369) | 0.147185 / 0.176557 (-0.029371) | 0.228227 / 0.737135 (-0.508908) | 0.164967 / 0.296338 (-0.131371) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.628242 / 0.215209 (0.413033) | 6.348176 / 2.077655 (4.270522) | 2.615832 / 1.504120 (1.111712) | 2.217481 / 1.541195 (0.676286) | 2.287058 / 1.468490 (0.818568) | 1.322854 / 4.584777 (-3.261923) | 5.547831 / 3.745712 (1.802119) | 3.199467 / 5.269862 (-2.070395) | 2.135297 / 4.565676 (-2.430380) | 0.165134 / 0.424275 (-0.259141) | 0.014753 / 0.007607 (0.007146) | 0.778579 / 0.226044 (0.552535) | 7.982329 / 2.268929 (5.713401) | 3.331712 / 55.444624 (-52.112913) | 2.642606 / 6.876477 (-4.233871) | 2.699362 / 2.142072 (0.557290) | 1.572268 / 4.805227 (-3.232959) | 0.273348 / 6.500664 (-6.227316) | 0.082975 / 0.075469 (0.007506) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.730421 / 1.841788 (-0.111367) | 18.154495 / 8.074308 (10.080187) | 20.969885 / 10.191392 (10.778493) | 0.233652 / 0.680424 (-0.446772) | 0.026609 / 0.534201 (-0.507592) | 0.546874 / 0.579283 (-0.032410) | 0.602891 / 0.434364 (0.168527) | 0.641073 / 0.540337 (0.100736) | 0.772138 / 1.386936 (-0.614798) |\n\n</details>\n</details>\n\n\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/687 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/687/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/687/comments | https://api.github.com/repos/huggingface/datasets/issues/687/events | https://github.com/huggingface/datasets/issues/687 | 711,664,810 | MDU6SXNzdWU3MTE2NjQ4MTA= | 687 | `ArrowInvalid` occurs while running `Dataset.map()` function | [] | closed | false | null | 2 | 2020-09-30T06:16:50Z | 2020-09-30T09:53:03Z | 2020-09-30T09:53:03Z | null | It seems to fail to process the final batch. This [colab](https://colab.research.google.com/drive/1_byLZRHwGP13PHMkJWo62Wp50S_Z2HMD?usp=sharing) can reproduce the error.
Code:
```python
# train_ds = Dataset(features: {
# 'title': Value(dtype='string', id=None),
# 'score': Value(dtype='float64', id=None)
# }, num_rows: 99999)
# suggested in #665
class PicklableTokenizer(BertJapaneseTokenizer):
def __getstate__(self):
state = dict(self.__dict__)
state['do_lower_case'] = self.word_tokenizer.do_lower_case
state['never_split'] = self.word_tokenizer.never_split
del state['word_tokenizer']
return state
def __setstate(self):
do_lower_case = state.pop('do_lower_case')
never_split = state.pop('never_split')
self.__dict__ = state
self.word_tokenizer = MecabTokenizer(
do_lower_case=do_lower_case, never_split=never_split
)
t = PicklableTokenizer.from_pretrained('bert-base-japanese-whole-word-masking')
encoded = train_ds.map(
lambda examples: {'tokens': t.encode(examples['title'], max_length=1000)}, batched=True, batch_size=1000
)
```
Error Message:
```
99% 99/100 [00:22<00:00, 39.07ba/s]
---------------------------------------------------------------------------
ArrowInvalid Traceback (most recent call last)
<timed exec> in <module>
/usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint)
1242 fn_kwargs=fn_kwargs,
1243 new_fingerprint=new_fingerprint,
-> 1244 update_data=update_data,
1245 )
1246 else:
/usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
151 "output_all_columns": self._output_all_columns,
152 }
--> 153 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
154 if new_format["columns"] is not None:
155 new_format["columns"] = list(set(new_format["columns"]) & set(out.column_names))
/usr/local/lib/python3.6/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs)
161 # Call actual function
162
--> 163 out = func(self, *args, **kwargs)
164
165 # Update fingerprint of in-place transforms + update in-place history of transforms
/usr/local/lib/python3.6/site-packages/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, update_data)
1496 if update_data:
1497 batch = cast_to_python_objects(batch)
-> 1498 writer.write_batch(batch)
1499 if update_data:
1500 writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file
/usr/local/lib/python3.6/site-packages/datasets/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
271 typed_sequence = TypedSequence(batch_examples[col], type=col_type, try_type=col_try_type)
272 typed_sequence_examples[col] = typed_sequence
--> 273 pa_table = pa.Table.from_pydict(typed_sequence_examples)
274 self.write_table(pa_table)
275
/usr/local/lib/python3.6/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_pydict()
/usr/local/lib/python3.6/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_arrays()
/usr/local/lib/python3.6/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.validate()
/usr/local/lib/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status()
ArrowInvalid: Column 4 named tokens expected length 999 but got length 1000
```
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/687/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/687/timeline | null | completed | null | null | false | [
"Hi !\r\n\r\nThis is because `encode` expects one single text as input (str), or one tokenized text (List[str]).\r\nI believe that you actually wanted to use `encode_batch` which expects a batch of texts.\r\nHowever this method is only available for our \"fast\" tokenizers (ex: BertTokenizerFast).\r\nBertJapanese is not one of them unfortunately and I don't think it will be added for now (see https://github.com/huggingface/transformers/pull/7141)...\r\ncc @thomwolf for confirmation.\r\n\r\nTherefore what I'd suggest for now is disable batching and process one text at a time using `encode`.\r\nNote that you can make it faster by using multiprocessing:\r\n\r\n```python\r\nnum_proc = None # Specify here the number of processes if you want to use multiprocessing. ex: num_proc = 4\r\nencoded = train_ds.map(\r\n lambda example: {'tokens': t.encode(example['title'], max_length=1000)}, num_proc=num_proc\r\n)\r\n```\r\n",
"Thank you very much for the kind and precise suggestion!\r\nI'm looking forward to seeing BertJapaneseTokenizer built into the \"fast\" tokenizers.\r\n\r\nI tried `map` with multiprocessing as follows, and it worked!\r\n\r\n```python\r\n# There was a Pickle problem if I use `lambda` for multiprocessing\r\ndef encode(examples):\r\n return {'tokens': t.encode(examples['title'], max_length=1000)}\r\n\r\nnum_proc = 8\r\nencoded = train_ds.map(encode, num_proc=num_proc)\r\n```\r\n\r\nThank you again!"
] |
https://api.github.com/repos/huggingface/datasets/issues/2528 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2528/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2528/comments | https://api.github.com/repos/huggingface/datasets/issues/2528/events | https://github.com/huggingface/datasets/issues/2528 | 926,314,656 | MDU6SXNzdWU5MjYzMTQ2NTY= | 2,528 | Logging cannot be set to NOTSET similar to transformers | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 1 | 2021-06-21T15:04:54Z | 2021-06-24T14:42:47Z | 2021-06-24T14:42:47Z | null | ## Describe the bug
In the transformers library you can set the verbosity level to logging.NOTSET to work around the usage of tqdm and IPywidgets, however in Datasets this is no longer possible. This is because transformers set the verbosity level of tqdm with [this](https://github.com/huggingface/transformers/blob/b53bc55ba9bb10d5ee279eab51a2f0acc5af2a6b/src/transformers/file_utils.py#L1449)
`disable=bool(logging.get_verbosity() == logging.NOTSET)`
and datasets accomplishes this like [so](https://github.com/huggingface/datasets/blob/83554e410e1ab8c6f705cfbb2df7953638ad3ac1/src/datasets/utils/file_utils.py#L493)
`not_verbose = bool(logger.getEffectiveLevel() > WARNING)`
## Steps to reproduce the bug
```python
import datasets
import logging
datasets.logging.get_verbosity = lambda : logging.NOTSET
datasets.load_dataset("patrickvonplaten/librispeech_asr_dummy")
```
## Expected results
The code should download and load the dataset as normal without displaying progress bars
## Actual results
```ImportError Traceback (most recent call last)
<ipython-input-4-aec65c0509c6> in <module>
----> 1 datasets.load_dataset("patrickvonplaten/librispeech_asr_dummy")
~/venv/lib/python3.7/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, **config_kwargs)
713 dataset=True,
714 return_resolved_file_path=True,
--> 715 use_auth_token=use_auth_token,
716 )
717 # Set the base path for downloads as the parent of the script location
~/venv/lib/python3.7/site-packages/datasets/load.py in prepare_module(path, script_version, download_config, download_mode, dataset, force_local_path, dynamic_modules_path, return_resolved_file_path, **download_kwargs)
350 file_path = hf_bucket_url(path, filename=name, dataset=False)
351 try:
--> 352 local_path = cached_path(file_path, download_config=download_config)
353 except FileNotFoundError:
354 raise FileNotFoundError(
~/venv/lib/python3.7/site-packages/datasets/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs)
289 use_etag=download_config.use_etag,
290 max_retries=download_config.max_retries,
--> 291 use_auth_token=download_config.use_auth_token,
292 )
293 elif os.path.exists(url_or_filename):
~/venv/lib/python3.7/site-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, use_auth_token)
668 headers=headers,
669 cookies=cookies,
--> 670 max_retries=max_retries,
671 )
672
~/venv/lib/python3.7/site-packages/datasets/utils/file_utils.py in http_get(url, temp_file, proxies, resume_size, headers, cookies, timeout, max_retries)
493 initial=resume_size,
494 desc="Downloading",
--> 495 disable=not_verbose,
496 )
497 for chunk in response.iter_content(chunk_size=1024):
~/venv/lib/python3.7/site-packages/tqdm/notebook.py in __init__(self, *args, **kwargs)
217 total = self.total * unit_scale if self.total else self.total
218 self.container = self.status_printer(
--> 219 self.fp, total, self.desc, self.ncols)
220 self.sp = self.display
221
~/venv/lib/python3.7/site-packages/tqdm/notebook.py in status_printer(_, total, desc, ncols)
95 if IProgress is None: # #187 #451 #558 #872
96 raise ImportError(
---> 97 "IProgress not found. Please update jupyter and ipywidgets."
98 " See https://ipywidgets.readthedocs.io/en/stable"
99 "/user_install.html")
ImportError: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.8.0
- Platform: Linux-5.4.95-42.163.amzn2.x86_64-x86_64-with-debian-10.8
- Python version: 3.7.10
- PyArrow version: 3.0.0
I am running this code on Deepnote and which important to this issue **does not** support IPywidgets
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2528/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2528/timeline | null | completed | null | null | false | [
"Hi @joshzwiebel, thanks for reporting. We are going to align with `transformers`."
] |
https://api.github.com/repos/huggingface/datasets/issues/1479 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1479/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1479/comments | https://api.github.com/repos/huggingface/datasets/issues/1479/events | https://github.com/huggingface/datasets/pull/1479 | 762,320,736 | MDExOlB1bGxSZXF1ZXN0NTM2ODc3NTEz | 1,479 | Add narrativeQA | [] | closed | false | null | 2 | 2020-12-11T12:58:31Z | 2020-12-11T13:33:23Z | 2020-12-11T13:33:23Z | null | Redo of #1368 #309 #499
In redoing the dummy data a few times, I ended up adding a load of files to git. Hopefully this should work. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1479/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1479/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1479.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1479",
"merged_at": "2020-12-11T13:33:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1479.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1479"
} | true | [
"@lhoestq this is now only failing some random windows test (it appears to be somewhere in wnut_17)",
"This is a connection error, you can ignore it :) \r\nThe level of activity on the lib is quite overwhelming, it stresses a bit the CI ^^"
] |
https://api.github.com/repos/huggingface/datasets/issues/682 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/682/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/682/comments | https://api.github.com/repos/huggingface/datasets/issues/682/events | https://github.com/huggingface/datasets/pull/682 | 710,325,399 | MDExOlB1bGxSZXF1ZXN0NDk0MTkzMzEw | 682 | Update navbar chapter titles color | [] | closed | false | null | 0 | 2020-09-28T14:35:17Z | 2020-09-28T17:30:13Z | 2020-09-28T17:30:12Z | null | Consistency with the color change that was done in transformers at https://github.com/huggingface/transformers/pull/7423
It makes the background-color of the chapter titles in the docs navbar darker, to differentiate them from the inner sections.
see changes [here](https://691-250213286-gh.circle-artifacts.com/0/docs/_build/html/index.html) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/682/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/682/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/682.diff",
"html_url": "https://github.com/huggingface/datasets/pull/682",
"merged_at": "2020-09-28T17:30:12Z",
"patch_url": "https://github.com/huggingface/datasets/pull/682.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/682"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/5970 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5970/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5970/comments | https://api.github.com/repos/huggingface/datasets/issues/5970/events | https://github.com/huggingface/datasets/issues/5970 | 1,766,010,356 | I_kwDODunzps5pQy30 | 5,970 | description disappearing from Info when Uploading a Dataset Created with `from_dict` | [] | open | false | null | 2 | 2023-06-20T19:18:26Z | 2023-06-22T14:23:56Z | null | null | ### Describe the bug
When uploading a dataset created locally using `from_dict` with a specified `description` field. It appears before upload, but is missing after upload and re-download.
### Steps to reproduce the bug
I think the most relevant pattern in the code might be the following lines:
```
description_json_str = json.dumps(
{
"dataset_id": dataset.spec.dataset_id,
"env_name": dataset.spec.env_spec.id,
"action_space": serialize_space(dataset.spec.action_space),
"observation_space": serialize_space(dataset.spec.observation_space),
}
)
hugging_face_dataset = Dataset.from_dict(
episodes_dict, info=DatasetInfo(description=description_json_str)
)
```
Which comes from this function https://github.com/balisujohn/minarai/blob/8e023727f0a8488c4451651d9f7a79b981412c40/minari/integrations/hugging_face.py#L39
To replicate,
clone this branch of my Minari fork https://github.com/balisujohn/minarai/tree/dev-huggingface then run
```
python3.8 -m venv env
source env/bin/activate
python3 -m pip install -e .
python3 -m pip install pytest
```
The change the hugging face repo path in the test called `test_hugging_face_push_and_pull_dataset` in `tests/integrations/test_hugging_face.py` to one you have permissions to write to.
Then run:
```
pytest tests/integrations/test_hugging_face.py::test_hugging_face_push_and_pull_dataset
```
### Expected behavior
DATASET INFO BEFORE UPLOADING
DatasetInfo(description='{"dataset_id": "dummy-combo-test-v0", "env_name": "DummyComboEnv-v0", "action_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}]}", "observation_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"component_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [-1.0], \\"high\\": [1.0]}, \\"component_2\\": {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"subcomponent_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, \\"subcomponent_2\\": {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}, {\\"type\\": \\"Discrete\\", \\"dtype\\": \\"int64\\", \\"start\\": 0, \\"n\\": 10}]}}}}}]}]}"}', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None)
...
DATASET INFO AFTER UPLOADING AND DOWNLOADING
DatasetInfo(description='', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits={'train': SplitInfo(name='train', num_bytes=4846, num_examples=60, shard_lengths=None, dataset_name='parquet')}, download_checksums={'https://huggingface.co/datasets/balisujohn/minari_test/resolve/8217b614ff9ba5edc1a30c7df430e92a46f65363/data/train-00000-of-00001-7c5900b93b35745e.parquet': {'num_bytes': 9052, 'checksum': None}}, download_size=9052, post_processing_size=None, dataset_size=4846, size_in_bytes=13898)
...
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.2
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5970/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5970/timeline | null | null | null | null | false | [
"Here's a minimal way to reproduce the bug, for the sake of convenience.\r\n````\r\nfrom datasets import Dataset, DatasetInfo, load_dataset\r\n\r\n\r\nepisodes_dict = {\"test\":[1,2,3],\"test2\": [1,2,4]}\r\n\r\nhugging_face_dataset = Dataset.from_dict(\r\n episodes_dict, info=DatasetInfo(description=\"test_str\")\r\n)\r\nprint(hugging_face_dataset.info)\r\n\r\nhugging_face_dataset.push_to_hub(\"balisujohn/minari_test\", private=True)\r\n\r\nredownloaded_dataset= load_dataset(\"balisujohn/minari_test\")[\"train\"]\r\n\r\n\r\nprint(redownloaded_dataset.info)\r\n````\r\n",
"Thanks for reporting !\r\n\r\nFor now I would recommend uploading a separate JSON file for your metadata.\r\n\r\nAlternatively you can upload a second configuration of the dataset containing your metadata but this feature is not released yet (though you can already use it from [here](https://github.com/huggingface/datasets/pull/5331), it will be released soon)"
] |
https://api.github.com/repos/huggingface/datasets/issues/5684 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5684/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5684/comments | https://api.github.com/repos/huggingface/datasets/issues/5684/events | https://github.com/huggingface/datasets/pull/5684 | 1,646,013,226 | PR_kwDODunzps5NLXWm | 5,684 | Release: 2.11.0 | [] | closed | false | null | 5 | 2023-03-29T15:06:07Z | 2023-03-29T18:30:34Z | 2023-03-29T18:15:54Z | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5684/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5684/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/5684.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5684",
"merged_at": "2023-03-29T18:15:54Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5684.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5684"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007017 / 0.011353 (-0.004335) | 0.004917 / 0.011008 (-0.006091) | 0.098391 / 0.038508 (0.059883) | 0.032677 / 0.023109 (0.009568) | 0.312126 / 0.275898 (0.036227) | 0.352477 / 0.323480 (0.028998) | 0.005960 / 0.007986 (-0.002025) | 0.003801 / 0.004328 (-0.000528) | 0.073916 / 0.004250 (0.069666) | 0.045610 / 0.037052 (0.008557) | 0.319626 / 0.258489 (0.061137) | 0.370575 / 0.293841 (0.076734) | 0.035888 / 0.128546 (-0.092658) | 0.012012 / 0.075646 (-0.063635) | 0.338290 / 0.419271 (-0.080982) | 0.049452 / 0.043533 (0.005919) | 0.301226 / 0.255139 (0.046087) | 0.336744 / 0.283200 (0.053545) | 0.100835 / 0.141683 (-0.040847) | 1.500008 / 1.452155 (0.047853) | 1.566757 / 1.492716 (0.074041) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220668 / 0.018006 (0.202662) | 0.449273 / 0.000490 (0.448784) | 0.003861 / 0.000200 (0.003661) | 0.000126 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026847 / 0.037411 (-0.010565) | 0.105916 / 0.014526 (0.091390) | 0.116245 / 0.176557 (-0.060312) | 0.172617 / 0.737135 (-0.564519) | 0.122846 / 0.296338 (-0.173492) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417906 / 0.215209 (0.202697) | 4.169092 / 2.077655 (2.091437) | 1.934439 / 1.504120 (0.430319) | 1.735718 / 1.541195 (0.194523) | 1.828205 / 1.468490 (0.359715) | 0.697446 / 4.584777 (-3.887331) | 3.802830 / 3.745712 (0.057118) | 3.686464 / 5.269862 (-1.583398) | 1.863924 / 4.565676 (-2.701752) | 0.086520 / 0.424275 (-0.337755) | 0.012101 / 0.007607 (0.004493) | 0.521252 / 0.226044 (0.295208) | 5.200937 / 2.268929 (2.932009) | 2.414290 / 55.444624 (-53.030334) | 2.070890 / 6.876477 (-4.805587) | 2.237693 / 2.142072 (0.095621) | 0.843417 / 4.805227 (-3.961811) | 0.167856 / 6.500664 (-6.332809) | 0.064997 / 0.075469 (-0.010472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212334 / 1.841788 (-0.629454) | 14.710632 / 8.074308 (6.636324) | 14.877489 / 10.191392 (4.686097) | 0.151268 / 0.680424 (-0.529156) | 0.018663 / 0.534201 (-0.515538) | 0.429678 / 0.579283 (-0.149605) | 0.425054 / 0.434364 (-0.009310) | 0.502804 / 0.540337 (-0.037533) | 0.587932 / 1.386936 (-0.799004) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007462 / 0.011353 (-0.003891) | 0.005307 / 0.011008 (-0.005701) | 0.074309 / 0.038508 (0.035801) | 0.033437 / 0.023109 (0.010328) | 0.355087 / 0.275898 (0.079189) | 0.391417 / 0.323480 (0.067937) | 0.005904 / 0.007986 (-0.002082) | 0.004062 / 0.004328 (-0.000266) | 0.073801 / 0.004250 (0.069550) | 0.048503 / 0.037052 (0.011451) | 0.359547 / 0.258489 (0.101058) | 0.405325 / 0.293841 (0.111484) | 0.036615 / 0.128546 (-0.091931) | 0.012185 / 0.075646 (-0.063461) | 0.086829 / 0.419271 (-0.332443) | 0.049101 / 0.043533 (0.005569) | 0.334259 / 0.255139 (0.079120) | 0.376317 / 0.283200 (0.093117) | 0.099935 / 0.141683 (-0.041748) | 1.483166 / 1.452155 (0.031011) | 1.569092 / 1.492716 (0.076375) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207528 / 0.018006 (0.189521) | 0.437473 / 0.000490 (0.436983) | 0.004915 / 0.000200 (0.004715) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028632 / 0.037411 (-0.008780) | 0.111782 / 0.014526 (0.097256) | 0.122545 / 0.176557 (-0.054011) | 0.171191 / 0.737135 (-0.565945) | 0.128999 / 0.296338 (-0.167339) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424422 / 0.215209 (0.209213) | 4.239488 / 2.077655 (2.161833) | 2.027969 / 1.504120 (0.523849) | 1.800667 / 1.541195 (0.259473) | 1.898701 / 1.468490 (0.430211) | 0.711453 / 4.584777 (-3.873324) | 3.766696 / 3.745712 (0.020984) | 2.107530 / 5.269862 (-3.162331) | 1.347137 / 4.565676 (-3.218540) | 0.086823 / 0.424275 (-0.337452) | 0.012137 / 0.007607 (0.004530) | 0.523143 / 0.226044 (0.297099) | 5.273434 / 2.268929 (3.004505) | 2.545463 / 55.444624 (-52.899161) | 2.246683 / 6.876477 (-4.629793) | 2.296862 / 2.142072 (0.154789) | 0.855690 / 4.805227 (-3.949538) | 0.168526 / 6.500664 (-6.332138) | 0.063392 / 0.075469 (-0.012078) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.248926 / 1.841788 (-0.592862) | 14.676308 / 8.074308 (6.602000) | 14.524364 / 10.191392 (4.332972) | 0.184138 / 0.680424 (-0.496286) | 0.017259 / 0.534201 (-0.516942) | 0.433875 / 0.579283 (-0.145408) | 0.416787 / 0.434364 (-0.017577) | 0.532391 / 0.540337 (-0.007947) | 0.628572 / 1.386936 (-0.758364) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006469 / 0.011353 (-0.004884) | 0.004499 / 0.011008 (-0.006510) | 0.098856 / 0.038508 (0.060348) | 0.027753 / 0.023109 (0.004644) | 0.321348 / 0.275898 (0.045450) | 0.351480 / 0.323480 (0.028000) | 0.004949 / 0.007986 (-0.003036) | 0.004655 / 0.004328 (0.000327) | 0.076732 / 0.004250 (0.072482) | 0.036175 / 0.037052 (-0.000878) | 0.310111 / 0.258489 (0.051622) | 0.372427 / 0.293841 (0.078586) | 0.031947 / 0.128546 (-0.096599) | 0.011669 / 0.075646 (-0.063977) | 0.323086 / 0.419271 (-0.096186) | 0.043578 / 0.043533 (0.000045) | 0.325549 / 0.255139 (0.070410) | 0.363827 / 0.283200 (0.080627) | 0.087819 / 0.141683 (-0.053864) | 1.479429 / 1.452155 (0.027274) | 1.549797 / 1.492716 (0.057080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178502 / 0.018006 (0.160496) | 0.415954 / 0.000490 (0.415465) | 0.008767 / 0.000200 (0.008567) | 0.000429 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023639 / 0.037411 (-0.013772) | 0.096266 / 0.014526 (0.081740) | 0.106406 / 0.176557 (-0.070151) | 0.168819 / 0.737135 (-0.568317) | 0.109158 / 0.296338 (-0.187181) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420729 / 0.215209 (0.205520) | 4.219469 / 2.077655 (2.141814) | 1.885673 / 1.504120 (0.381553) | 1.681868 / 1.541195 (0.140674) | 1.709240 / 1.468490 (0.240749) | 0.694763 / 4.584777 (-3.890014) | 3.395377 / 3.745712 (-0.350335) | 1.846811 / 5.269862 (-3.423051) | 1.158381 / 4.565676 (-3.407296) | 0.082717 / 0.424275 (-0.341558) | 0.012302 / 0.007607 (0.004695) | 0.518148 / 0.226044 (0.292103) | 5.189590 / 2.268929 (2.920661) | 2.294127 / 55.444624 (-53.150498) | 1.960080 / 6.876477 (-4.916397) | 2.045359 / 2.142072 (-0.096713) | 0.803739 / 4.805227 (-4.001488) | 0.152322 / 6.500664 (-6.348342) | 0.067051 / 0.075469 (-0.008418) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206582 / 1.841788 (-0.635206) | 13.590515 / 8.074308 (5.516207) | 14.083739 / 10.191392 (3.892347) | 0.128738 / 0.680424 (-0.551686) | 0.016577 / 0.534201 (-0.517624) | 0.375499 / 0.579283 (-0.203784) | 0.383256 / 0.434364 (-0.051108) | 0.439441 / 0.540337 (-0.100896) | 0.518102 / 1.386936 (-0.868834) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006708 / 0.011353 (-0.004645) | 0.004591 / 0.011008 (-0.006417) | 0.076512 / 0.038508 (0.038004) | 0.027977 / 0.023109 (0.004868) | 0.341915 / 0.275898 (0.066017) | 0.374381 / 0.323480 (0.050901) | 0.004985 / 0.007986 (-0.003001) | 0.003374 / 0.004328 (-0.000954) | 0.075334 / 0.004250 (0.071083) | 0.037522 / 0.037052 (0.000470) | 0.341702 / 0.258489 (0.083213) | 0.384342 / 0.293841 (0.090501) | 0.032231 / 0.128546 (-0.096315) | 0.011494 / 0.075646 (-0.064153) | 0.084897 / 0.419271 (-0.334375) | 0.041914 / 0.043533 (-0.001619) | 0.342030 / 0.255139 (0.086891) | 0.371024 / 0.283200 (0.087825) | 0.089936 / 0.141683 (-0.051746) | 1.497242 / 1.452155 (0.045087) | 1.585203 / 1.492716 (0.092486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227681 / 0.018006 (0.209674) | 0.398995 / 0.000490 (0.398505) | 0.003232 / 0.000200 (0.003032) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024705 / 0.037411 (-0.012706) | 0.099906 / 0.014526 (0.085380) | 0.106806 / 0.176557 (-0.069750) | 0.157521 / 0.737135 (-0.579614) | 0.110803 / 0.296338 (-0.185535) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457442 / 0.215209 (0.242233) | 4.580101 / 2.077655 (2.502446) | 2.094687 / 1.504120 (0.590567) | 1.880722 / 1.541195 (0.339528) | 1.938746 / 1.468490 (0.470256) | 0.700933 / 4.584777 (-3.883844) | 3.416278 / 3.745712 (-0.329434) | 2.852183 / 5.269862 (-2.417679) | 1.602659 / 4.565676 (-2.963017) | 0.083949 / 0.424275 (-0.340326) | 0.012255 / 0.007607 (0.004648) | 0.551631 / 0.226044 (0.325586) | 5.539225 / 2.268929 (3.270296) | 2.707298 / 55.444624 (-52.737326) | 2.354720 / 6.876477 (-4.521757) | 2.320790 / 2.142072 (0.178717) | 0.807152 / 4.805227 (-3.998075) | 0.152048 / 6.500664 (-6.348616) | 0.067723 / 0.075469 (-0.007746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295690 / 1.841788 (-0.546097) | 13.738082 / 8.074308 (5.663774) | 14.129549 / 10.191392 (3.938157) | 0.161568 / 0.680424 (-0.518855) | 0.016678 / 0.534201 (-0.517522) | 0.386609 / 0.579283 (-0.192674) | 0.383538 / 0.434364 (-0.050826) | 0.477872 / 0.540337 (-0.062465) | 0.564547 / 1.386936 (-0.822389) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007247 / 0.011353 (-0.004106) | 0.005044 / 0.011008 (-0.005964) | 0.095135 / 0.038508 (0.056627) | 0.033622 / 0.023109 (0.010513) | 0.309969 / 0.275898 (0.034071) | 0.340354 / 0.323480 (0.016875) | 0.005635 / 0.007986 (-0.002351) | 0.003938 / 0.004328 (-0.000391) | 0.072089 / 0.004250 (0.067838) | 0.045592 / 0.037052 (0.008539) | 0.316620 / 0.258489 (0.058131) | 0.358174 / 0.293841 (0.064333) | 0.036446 / 0.128546 (-0.092100) | 0.011961 / 0.075646 (-0.063685) | 0.332299 / 0.419271 (-0.086973) | 0.049955 / 0.043533 (0.006422) | 0.307638 / 0.255139 (0.052499) | 0.331719 / 0.283200 (0.048519) | 0.095115 / 0.141683 (-0.046568) | 1.457960 / 1.452155 (0.005806) | 1.502812 / 1.492716 (0.010096) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223747 / 0.018006 (0.205740) | 0.444837 / 0.000490 (0.444347) | 0.002583 / 0.000200 (0.002383) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026461 / 0.037411 (-0.010951) | 0.103946 / 0.014526 (0.089420) | 0.114355 / 0.176557 (-0.062201) | 0.170076 / 0.737135 (-0.567059) | 0.121087 / 0.296338 (-0.175252) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403252 / 0.215209 (0.188043) | 4.016911 / 2.077655 (1.939257) | 1.787168 / 1.504120 (0.283048) | 1.605206 / 1.541195 (0.064012) | 1.657012 / 1.468490 (0.188522) | 0.701425 / 4.584777 (-3.883352) | 3.818308 / 3.745712 (0.072596) | 3.493757 / 5.269862 (-1.776105) | 1.860534 / 4.565676 (-2.705142) | 0.084994 / 0.424275 (-0.339281) | 0.011904 / 0.007607 (0.004297) | 0.534199 / 0.226044 (0.308155) | 4.992703 / 2.268929 (2.723774) | 2.286231 / 55.444624 (-53.158393) | 1.918163 / 6.876477 (-4.958314) | 2.029811 / 2.142072 (-0.112262) | 0.837532 / 4.805227 (-3.967695) | 0.168545 / 6.500664 (-6.332119) | 0.062866 / 0.075469 (-0.012604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.172862 / 1.841788 (-0.668926) | 14.966793 / 8.074308 (6.892485) | 14.202079 / 10.191392 (4.010687) | 0.144688 / 0.680424 (-0.535736) | 0.017499 / 0.534201 (-0.516702) | 0.443081 / 0.579283 (-0.136202) | 0.427496 / 0.434364 (-0.006868) | 0.525182 / 0.540337 (-0.015155) | 0.611849 / 1.386936 (-0.775087) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007264 / 0.011353 (-0.004089) | 0.005106 / 0.011008 (-0.005902) | 0.074101 / 0.038508 (0.035593) | 0.033388 / 0.023109 (0.010279) | 0.337108 / 0.275898 (0.061210) | 0.369820 / 0.323480 (0.046340) | 0.005701 / 0.007986 (-0.002284) | 0.003976 / 0.004328 (-0.000353) | 0.073517 / 0.004250 (0.069267) | 0.048741 / 0.037052 (0.011688) | 0.339118 / 0.258489 (0.080629) | 0.398687 / 0.293841 (0.104846) | 0.036661 / 0.128546 (-0.091886) | 0.012082 / 0.075646 (-0.063564) | 0.086743 / 0.419271 (-0.332529) | 0.050150 / 0.043533 (0.006617) | 0.335572 / 0.255139 (0.080433) | 0.354306 / 0.283200 (0.071107) | 0.102074 / 0.141683 (-0.039609) | 1.442911 / 1.452155 (-0.009244) | 1.531564 / 1.492716 (0.038848) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183163 / 0.018006 (0.165157) | 0.439273 / 0.000490 (0.438783) | 0.002765 / 0.000200 (0.002565) | 0.000225 / 0.000054 (0.000171) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028185 / 0.037411 (-0.009227) | 0.107337 / 0.014526 (0.092811) | 0.119925 / 0.176557 (-0.056631) | 0.172120 / 0.737135 (-0.565015) | 0.124332 / 0.296338 (-0.172007) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428750 / 0.215209 (0.213541) | 4.268933 / 2.077655 (2.191279) | 2.050135 / 1.504120 (0.546015) | 1.837567 / 1.541195 (0.296372) | 1.907040 / 1.468490 (0.438549) | 0.694162 / 4.584777 (-3.890615) | 3.831542 / 3.745712 (0.085830) | 3.476580 / 5.269862 (-1.793281) | 1.855097 / 4.565676 (-2.710580) | 0.085816 / 0.424275 (-0.338459) | 0.012195 / 0.007607 (0.004588) | 0.544920 / 0.226044 (0.318876) | 5.332977 / 2.268929 (3.064049) | 2.592097 / 55.444624 (-52.852527) | 2.295411 / 6.876477 (-4.581065) | 2.330803 / 2.142072 (0.188730) | 0.833268 / 4.805227 (-3.971959) | 0.177698 / 6.500664 (-6.322966) | 0.063780 / 0.075469 (-0.011689) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273361 / 1.841788 (-0.568427) | 14.981380 / 8.074308 (6.907072) | 14.395166 / 10.191392 (4.203774) | 0.186590 / 0.680424 (-0.493834) | 0.017676 / 0.534201 (-0.516525) | 0.432100 / 0.579283 (-0.147183) | 0.422490 / 0.434364 (-0.011874) | 0.531421 / 0.540337 (-0.008916) | 0.628548 / 1.386936 (-0.758388) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009005 / 0.011353 (-0.002348) | 0.005803 / 0.011008 (-0.005205) | 0.103491 / 0.038508 (0.064983) | 0.048099 / 0.023109 (0.024990) | 0.304026 / 0.275898 (0.028128) | 0.340840 / 0.323480 (0.017360) | 0.006782 / 0.007986 (-0.001204) | 0.004625 / 0.004328 (0.000296) | 0.076695 / 0.004250 (0.072445) | 0.057541 / 0.037052 (0.020489) | 0.304015 / 0.258489 (0.045526) | 0.347822 / 0.293841 (0.053981) | 0.037904 / 0.128546 (-0.090642) | 0.012686 / 0.075646 (-0.062960) | 0.368093 / 0.419271 (-0.051179) | 0.051795 / 0.043533 (0.008262) | 0.302553 / 0.255139 (0.047415) | 0.328581 / 0.283200 (0.045381) | 0.108947 / 0.141683 (-0.032736) | 1.449770 / 1.452155 (-0.002385) | 1.541944 / 1.492716 (0.049227) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207529 / 0.018006 (0.189523) | 0.455313 / 0.000490 (0.454823) | 0.008276 / 0.000200 (0.008076) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030564 / 0.037411 (-0.006848) | 0.122790 / 0.014526 (0.108264) | 0.126981 / 0.176557 (-0.049576) | 0.187203 / 0.737135 (-0.549932) | 0.129931 / 0.296338 (-0.166408) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402680 / 0.215209 (0.187471) | 4.017505 / 2.077655 (1.939850) | 1.801480 / 1.504120 (0.297360) | 1.647984 / 1.541195 (0.106790) | 1.702596 / 1.468490 (0.234106) | 0.717469 / 4.584777 (-3.867308) | 3.793813 / 3.745712 (0.048101) | 2.288014 / 5.269862 (-2.981848) | 1.497545 / 4.565676 (-3.068132) | 0.091241 / 0.424275 (-0.333034) | 0.013115 / 0.007607 (0.005508) | 0.498567 / 0.226044 (0.272522) | 4.990203 / 2.268929 (2.721275) | 2.334983 / 55.444624 (-53.109642) | 2.047888 / 6.876477 (-4.828589) | 2.167825 / 2.142072 (0.025753) | 0.863769 / 4.805227 (-3.941459) | 0.172699 / 6.500664 (-6.327965) | 0.069285 / 0.075469 (-0.006184) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.397331 / 1.841788 (-0.444457) | 16.678240 / 8.074308 (8.603932) | 16.665143 / 10.191392 (6.473751) | 0.151011 / 0.680424 (-0.529412) | 0.018303 / 0.534201 (-0.515898) | 0.445389 / 0.579283 (-0.133894) | 0.444644 / 0.434364 (0.010280) | 0.524647 / 0.540337 (-0.015690) | 0.629747 / 1.386936 (-0.757189) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008853 / 0.011353 (-0.002499) | 0.006196 / 0.011008 (-0.004813) | 0.078595 / 0.038508 (0.040087) | 0.048348 / 0.023109 (0.025239) | 0.347038 / 0.275898 (0.071140) | 0.385807 / 0.323480 (0.062327) | 0.007047 / 0.007986 (-0.000938) | 0.004772 / 0.004328 (0.000443) | 0.076116 / 0.004250 (0.071866) | 0.058805 / 0.037052 (0.021752) | 0.345731 / 0.258489 (0.087242) | 0.401589 / 0.293841 (0.107748) | 0.039349 / 0.128546 (-0.089197) | 0.012949 / 0.075646 (-0.062697) | 0.089761 / 0.419271 (-0.329511) | 0.060001 / 0.043533 (0.016468) | 0.351587 / 0.255139 (0.096448) | 0.377708 / 0.283200 (0.094509) | 0.117391 / 0.141683 (-0.024292) | 1.471622 / 1.452155 (0.019467) | 1.568759 / 1.492716 (0.076042) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191390 / 0.018006 (0.173384) | 0.469033 / 0.000490 (0.468544) | 0.003615 / 0.000200 (0.003415) | 0.000113 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032706 / 0.037411 (-0.004706) | 0.127095 / 0.014526 (0.112569) | 0.128755 / 0.176557 (-0.047801) | 0.182590 / 0.737135 (-0.554545) | 0.136939 / 0.296338 (-0.159400) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427392 / 0.215209 (0.212183) | 4.246708 / 2.077655 (2.169053) | 2.115557 / 1.504120 (0.611437) | 2.021221 / 1.541195 (0.480026) | 2.177559 / 1.468490 (0.709069) | 0.713930 / 4.584777 (-3.870847) | 4.192467 / 3.745712 (0.446755) | 3.645437 / 5.269862 (-1.624424) | 1.964986 / 4.565676 (-2.600690) | 0.089436 / 0.424275 (-0.334839) | 0.012917 / 0.007607 (0.005310) | 0.530468 / 0.226044 (0.304423) | 5.310759 / 2.268929 (3.041831) | 2.613566 / 55.444624 (-52.831058) | 2.350443 / 6.876477 (-4.526034) | 2.385278 / 2.142072 (0.243205) | 0.862838 / 4.805227 (-3.942389) | 0.172246 / 6.500664 (-6.328418) | 0.069570 / 0.075469 (-0.005899) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310008 / 1.841788 (-0.531780) | 16.557079 / 8.074308 (8.482771) | 15.818145 / 10.191392 (5.626752) | 0.180337 / 0.680424 (-0.500087) | 0.018117 / 0.534201 (-0.516083) | 0.433189 / 0.579283 (-0.146095) | 0.429276 / 0.434364 (-0.005088) | 0.539757 / 0.540337 (-0.000580) | 0.640905 / 1.386936 (-0.746031) |\n\n</details>\n</details>\n\n\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/2301 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2301/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2301/comments | https://api.github.com/repos/huggingface/datasets/issues/2301/events | https://github.com/huggingface/datasets/issues/2301 | 873,941,266 | MDU6SXNzdWU4NzM5NDEyNjY= | 2,301 | Unable to setup dev env on Windows | [] | closed | false | null | 2 | 2021-05-02T13:20:42Z | 2021-05-03T15:18:01Z | 2021-05-03T15:17:34Z | null | Hi
I tried installing the `".[dev]"` version on Windows 10 after cloning.
Here is the error I'm facing:
```bat
(env) C:\testing\datasets>pip install -e ".[dev]"
Obtaining file:///C:/testing/datasets
Requirement already satisfied: numpy>=1.17 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.19.5)
Collecting pyarrow>=0.17.1
Using cached pyarrow-4.0.0-cp37-cp37m-win_amd64.whl (13.3 MB)
Requirement already satisfied: dill in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (0.3.1.1)
Collecting pandas
Using cached pandas-1.2.4-cp37-cp37m-win_amd64.whl (9.1 MB)
Requirement already satisfied: requests>=2.19.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (2.25.1)
Requirement already satisfied: tqdm<4.50.0,>=4.27 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (4.49.0)
Requirement already satisfied: xxhash in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (2.0.2)
Collecting multiprocess
Using cached multiprocess-0.70.11.1-py37-none-any.whl (108 kB)
Requirement already satisfied: fsspec in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (2021.4.0)
Collecting huggingface_hub<0.1.0
Using cached huggingface_hub-0.0.8-py3-none-any.whl (34 kB)
Requirement already satisfied: importlib_metadata in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (4.0.1)
Requirement already satisfied: absl-py in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (0.12.0)
Requirement already satisfied: pytest in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (6.2.3)
Collecting pytest-xdist
Using cached pytest_xdist-2.2.1-py3-none-any.whl (37 kB)
Collecting apache-beam>=2.24.0
Using cached apache_beam-2.29.0-cp37-cp37m-win_amd64.whl (3.7 MB)
Collecting elasticsearch
Using cached elasticsearch-7.12.1-py2.py3-none-any.whl (339 kB)
Requirement already satisfied: boto3==1.16.43 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.16.43)
Requirement already satisfied: botocore==1.19.43 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.19.43)
Collecting moto[s3]==1.3.16
Using cached moto-1.3.16-py2.py3-none-any.whl (879 kB)
Collecting rarfile>=4.0
Using cached rarfile-4.0-py3-none-any.whl (28 kB)
Collecting tensorflow>=2.3
Using cached tensorflow-2.4.1-cp37-cp37m-win_amd64.whl (370.7 MB)
Requirement already satisfied: torch in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.8.1)
Requirement already satisfied: transformers in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (4.5.1)
Collecting bs4
Using cached bs4-0.0.1-py3-none-any.whl
Collecting conllu
Using cached conllu-4.4-py2.py3-none-any.whl (15 kB)
Collecting langdetect
Using cached langdetect-1.0.8-py3-none-any.whl
Collecting lxml
Using cached lxml-4.6.3-cp37-cp37m-win_amd64.whl (3.5 MB)
Collecting mwparserfromhell
Using cached mwparserfromhell-0.6-cp37-cp37m-win_amd64.whl (101 kB)
Collecting nltk
Using cached nltk-3.6.2-py3-none-any.whl (1.5 MB)
Collecting openpyxl
Using cached openpyxl-3.0.7-py2.py3-none-any.whl (243 kB)
Collecting py7zr
Using cached py7zr-0.15.2-py3-none-any.whl (66 kB)
Collecting tldextract
Using cached tldextract-3.1.0-py2.py3-none-any.whl (87 kB)
Collecting zstandard
Using cached zstandard-0.15.2-cp37-cp37m-win_amd64.whl (582 kB)
Collecting bert_score>=0.3.6
Using cached bert_score-0.3.9-py3-none-any.whl (59 kB)
Collecting rouge_score
Using cached rouge_score-0.0.4-py2.py3-none-any.whl (22 kB)
Collecting sacrebleu
Using cached sacrebleu-1.5.1-py3-none-any.whl (54 kB)
Requirement already satisfied: scipy in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.6.3)
Collecting seqeval
Using cached seqeval-1.2.2-py3-none-any.whl
Collecting sklearn
Using cached sklearn-0.0-py2.py3-none-any.whl
Collecting jiwer
Using cached jiwer-2.2.0-py3-none-any.whl (13 kB)
Requirement already satisfied: toml>=0.10.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (0.10.2)
Requirement already satisfied: requests_file>=1.5.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.5.1)
Requirement already satisfied: texttable>=1.6.3 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.6.3)
Requirement already satisfied: s3fs>=0.4.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (0.4.2)
Requirement already satisfied: Werkzeug>=1.0.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from datasets==1.5.0.dev0) (1.0.1)
Collecting black
Using cached black-21.4b2-py3-none-any.whl (130 kB)
Collecting isort
Using cached isort-5.8.0-py3-none-any.whl (103 kB)
Collecting flake8==3.7.9
Using cached flake8-3.7.9-py2.py3-none-any.whl (69 kB)
Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from boto3==1.16.43->datasets==1.5.0.dev0) (0.10.0)
Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from boto3==1.16.43->datasets==1.5.0.dev0) (0.3.7)
Requirement already satisfied: urllib3<1.27,>=1.25.4 in c:\programdata\anaconda3\envs\env\lib\site-packages (from botocore==1.19.43->datasets==1.5.0.dev0) (1.26.4)
Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from botocore==1.19.43->datasets==1.5.0.dev0) (2.8.1)
Collecting entrypoints<0.4.0,>=0.3.0
Using cached entrypoints-0.3-py2.py3-none-any.whl (11 kB)
Collecting pyflakes<2.2.0,>=2.1.0
Using cached pyflakes-2.1.1-py2.py3-none-any.whl (59 kB)
Collecting pycodestyle<2.6.0,>=2.5.0
Using cached pycodestyle-2.5.0-py2.py3-none-any.whl (51 kB)
Collecting mccabe<0.7.0,>=0.6.0
Using cached mccabe-0.6.1-py2.py3-none-any.whl (8.6 kB)
Requirement already satisfied: jsondiff>=1.1.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.3.0)
Requirement already satisfied: pytz in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (2021.1)
Requirement already satisfied: mock in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (4.0.3)
Requirement already satisfied: MarkupSafe<2.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.1.1)
Requirement already satisfied: python-jose[cryptography]<4.0.0,>=3.1.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (3.2.0)
Requirement already satisfied: aws-xray-sdk!=0.96,>=0.93 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (2.8.0)
Requirement already satisfied: cryptography>=2.3.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (3.4.7)
Requirement already satisfied: more-itertools in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (8.7.0)
Requirement already satisfied: PyYAML>=5.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (5.4.1)
Requirement already satisfied: boto>=2.36.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (2.49.0)
Requirement already satisfied: idna<3,>=2.5 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (2.10)
Requirement already satisfied: sshpubkeys>=3.1.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (3.3.1)
Requirement already satisfied: responses>=0.9.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (0.13.3)
Requirement already satisfied: xmltodict in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (0.12.0)
Requirement already satisfied: setuptools in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (52.0.0.post20210125)
Requirement already satisfied: Jinja2>=2.10.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (2.11.3)
Requirement already satisfied: zipp in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (3.4.1)
Requirement already satisfied: six>1.9 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.15.0)
Requirement already satisfied: ecdsa<0.15 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (0.14.1)
Requirement already satisfied: docker>=2.5.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (5.0.0)
Requirement already satisfied: cfn-lint>=0.4.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from moto[s3]==1.3.16->datasets==1.5.0.dev0) (0.49.0)
Requirement already satisfied: grpcio<2,>=1.29.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from apache-beam>=2.24.0->datasets==1.5.0.dev0) (1.32.0)
Collecting hdfs<3.0.0,>=2.1.0
Using cached hdfs-2.6.0-py3-none-any.whl (33 kB)
Collecting pyarrow>=0.17.1
Using cached pyarrow-3.0.0-cp37-cp37m-win_amd64.whl (12.6 MB)
Collecting fastavro<2,>=0.21.4
Using cached fastavro-1.4.0-cp37-cp37m-win_amd64.whl (394 kB)
Requirement already satisfied: httplib2<0.18.0,>=0.8 in c:\programdata\anaconda3\envs\env\lib\site-packages (from apache-beam>=2.24.0->datasets==1.5.0.dev0) (0.17.4)
Collecting pymongo<4.0.0,>=3.8.0
Using cached pymongo-3.11.3-cp37-cp37m-win_amd64.whl (382 kB)
Collecting crcmod<2.0,>=1.7
Using cached crcmod-1.7-py3-none-any.whl
Collecting avro-python3!=1.9.2,<1.10.0,>=1.8.1
Using cached avro_python3-1.9.2.1-py3-none-any.whl
Requirement already satisfied: typing-extensions<3.8.0,>=3.7.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from apache-beam>=2.24.0->datasets==1.5.0.dev0) (3.7.4.3)
Requirement already satisfied: future<1.0.0,>=0.18.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from apache-beam>=2.24.0->datasets==1.5.0.dev0) (0.18.2)
Collecting oauth2client<5,>=2.0.1
Using cached oauth2client-4.1.3-py2.py3-none-any.whl (98 kB)
Collecting pydot<2,>=1.2.0
Using cached pydot-1.4.2-py2.py3-none-any.whl (21 kB)
Requirement already satisfied: protobuf<4,>=3.12.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from apache-beam>=2.24.0->datasets==1.5.0.dev0) (3.15.8)
Requirement already satisfied: wrapt in c:\programdata\anaconda3\envs\env\lib\site-packages (from aws-xray-sdk!=0.96,>=0.93->moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.12.1)
Collecting matplotlib
Using cached matplotlib-3.4.1-cp37-cp37m-win_amd64.whl (7.1 MB)
Requirement already satisfied: junit-xml~=1.9 in c:\programdata\anaconda3\envs\env\lib\site-packages (from cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.9)
Requirement already satisfied: jsonpatch in c:\programdata\anaconda3\envs\env\lib\site-packages (from cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.32)
Requirement already satisfied: jsonschema~=3.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (3.2.0)
Requirement already satisfied: networkx~=2.4 in c:\programdata\anaconda3\envs\env\lib\site-packages (from cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (2.5.1)
Requirement already satisfied: aws-sam-translator>=1.35.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.35.0)
Requirement already satisfied: cffi>=1.12 in c:\programdata\anaconda3\envs\env\lib\site-packages (from cryptography>=2.3.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (1.14.5)
Requirement already satisfied: pycparser in c:\programdata\anaconda3\envs\env\lib\site-packages (from cffi>=1.12->cryptography>=2.3.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (2.20)
Requirement already satisfied: pywin32==227 in c:\programdata\anaconda3\envs\env\lib\site-packages (from docker>=2.5.1->moto[s3]==1.3.16->datasets==1.5.0.dev0) (227)
Requirement already satisfied: websocket-client>=0.32.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from docker>=2.5.1->moto[s3]==1.3.16->datasets==1.5.0.dev0) (0.58.0)
Requirement already satisfied: docopt in c:\programdata\anaconda3\envs\env\lib\site-packages (from hdfs<3.0.0,>=2.1.0->apache-beam>=2.24.0->datasets==1.5.0.dev0) (0.6.2)
Requirement already satisfied: filelock in c:\programdata\anaconda3\envs\env\lib\site-packages (from huggingface_hub<0.1.0->datasets==1.5.0.dev0) (3.0.12)
Requirement already satisfied: pyrsistent>=0.14.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from jsonschema~=3.0->cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (0.17.3)
Requirement already satisfied: attrs>=17.4.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from jsonschema~=3.0->cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (20.3.0)
Requirement already satisfied: decorator<5,>=4.3 in c:\programdata\anaconda3\envs\env\lib\site-packages (from networkx~=2.4->cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (4.4.2)
Requirement already satisfied: rsa>=3.1.4 in c:\programdata\anaconda3\envs\env\lib\site-packages (from oauth2client<5,>=2.0.1->apache-beam>=2.24.0->datasets==1.5.0.dev0) (4.7.2)
Requirement already satisfied: pyasn1-modules>=0.0.5 in c:\programdata\anaconda3\envs\env\lib\site-packages (from oauth2client<5,>=2.0.1->apache-beam>=2.24.0->datasets==1.5.0.dev0) (0.2.8)
Requirement already satisfied: pyasn1>=0.1.7 in c:\programdata\anaconda3\envs\env\lib\site-packages (from oauth2client<5,>=2.0.1->apache-beam>=2.24.0->datasets==1.5.0.dev0) (0.4.8)
Requirement already satisfied: pyparsing>=2.1.4 in c:\programdata\anaconda3\envs\env\lib\site-packages (from pydot<2,>=1.2.0->apache-beam>=2.24.0->datasets==1.5.0.dev0) (2.4.7)
Requirement already satisfied: certifi>=2017.4.17 in c:\programdata\anaconda3\envs\env\lib\site-packages (from requests>=2.19.0->datasets==1.5.0.dev0) (2020.12.5)
Requirement already satisfied: chardet<5,>=3.0.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from requests>=2.19.0->datasets==1.5.0.dev0) (4.0.0)
Collecting keras-preprocessing~=1.1.2
Using cached Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)
Requirement already satisfied: termcolor~=1.1.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorflow>=2.3->datasets==1.5.0.dev0) (1.1.0)
Requirement already satisfied: tensorboard~=2.4 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorflow>=2.3->datasets==1.5.0.dev0) (2.5.0)
Requirement already satisfied: wheel~=0.35 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorflow>=2.3->datasets==1.5.0.dev0) (0.36.2)
Collecting opt-einsum~=3.3.0
Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
Collecting gast==0.3.3
Using cached gast-0.3.3-py2.py3-none-any.whl (9.7 kB)
Collecting google-pasta~=0.2
Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
Requirement already satisfied: tensorflow-estimator<2.5.0,>=2.4.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorflow>=2.3->datasets==1.5.0.dev0) (2.4.0)
Collecting astunparse~=1.6.3
Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Collecting flatbuffers~=1.12.0
Using cached flatbuffers-1.12-py2.py3-none-any.whl (15 kB)
Collecting h5py~=2.10.0
Using cached h5py-2.10.0-cp37-cp37m-win_amd64.whl (2.5 MB)
Requirement already satisfied: markdown>=2.6.8 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (3.3.4)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (1.8.0)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (0.4.4)
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (0.6.0)
Requirement already satisfied: google-auth<2,>=1.6.3 in c:\programdata\anaconda3\envs\env\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (1.30.0)
Requirement already satisfied: cachetools<5.0,>=2.0.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (4.2.2)
Requirement already satisfied: requests-oauthlib>=0.7.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (1.3.0)
Requirement already satisfied: oauthlib>=3.0.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow>=2.3->datasets==1.5.0.dev0) (3.1.0)
Requirement already satisfied: regex!=2019.12.17 in c:\programdata\anaconda3\envs\env\lib\site-packages (from transformers->datasets==1.5.0.dev0) (2021.4.4)
Requirement already satisfied: tokenizers<0.11,>=0.10.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from transformers->datasets==1.5.0.dev0) (0.10.2)
Requirement already satisfied: sacremoses in c:\programdata\anaconda3\envs\env\lib\site-packages (from transformers->datasets==1.5.0.dev0) (0.0.45)
Requirement already satisfied: packaging in c:\programdata\anaconda3\envs\env\lib\site-packages (from transformers->datasets==1.5.0.dev0) (20.9)
Collecting pathspec<1,>=0.8.1
Using cached pathspec-0.8.1-py2.py3-none-any.whl (28 kB)
Requirement already satisfied: click>=7.1.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from black->datasets==1.5.0.dev0) (7.1.2)
Collecting appdirs
Using cached appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB)
Collecting mypy-extensions>=0.4.3
Using cached mypy_extensions-0.4.3-py2.py3-none-any.whl (4.5 kB)
Requirement already satisfied: typed-ast>=1.4.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from black->datasets==1.5.0.dev0) (1.4.3)
Collecting beautifulsoup4
Using cached beautifulsoup4-4.9.3-py3-none-any.whl (115 kB)
Requirement already satisfied: soupsieve>1.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from beautifulsoup4->bs4->datasets==1.5.0.dev0) (2.2.1)
Collecting python-Levenshtein
Using cached python-Levenshtein-0.12.2.tar.gz (50 kB)
Requirement already satisfied: jsonpointer>=1.9 in c:\programdata\anaconda3\envs\env\lib\site-packages (from jsonpatch->cfn-lint>=0.4.0->moto[s3]==1.3.16->datasets==1.5.0.dev0) (2.1)
Requirement already satisfied: pillow>=6.2.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from matplotlib->bert_score>=0.3.6->datasets==1.5.0.dev0) (8.2.0)
Requirement already satisfied: cycler>=0.10 in c:\programdata\anaconda3\envs\env\lib\site-packages (from matplotlib->bert_score>=0.3.6->datasets==1.5.0.dev0) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\programdata\anaconda3\envs\env\lib\site-packages (from matplotlib->bert_score>=0.3.6->datasets==1.5.0.dev0) (1.3.1)
Collecting multiprocess
Using cached multiprocess-0.70.11-py3-none-any.whl (98 kB)
Using cached multiprocess-0.70.10.zip (2.4 MB)
Using cached multiprocess-0.70.9-py3-none-any.whl
Requirement already satisfied: joblib in c:\programdata\anaconda3\envs\env\lib\site-packages (from nltk->datasets==1.5.0.dev0) (1.0.1)
Collecting et-xmlfile
Using cached et_xmlfile-1.1.0-py3-none-any.whl (4.7 kB)
Requirement already satisfied: pyzstd<0.15.0,>=0.14.4 in c:\programdata\anaconda3\envs\env\lib\site-packages (from py7zr->datasets==1.5.0.dev0) (0.14.4)
Collecting pyppmd<0.13.0,>=0.12.1
Using cached pyppmd-0.12.1-cp37-cp37m-win_amd64.whl (32 kB)
Collecting pycryptodome>=3.6.6
Using cached pycryptodome-3.10.1-cp35-abi3-win_amd64.whl (1.6 MB)
Collecting bcj-cffi<0.6.0,>=0.5.1
Using cached bcj_cffi-0.5.1-cp37-cp37m-win_amd64.whl (21 kB)
Collecting multivolumefile<0.3.0,>=0.2.0
Using cached multivolumefile-0.2.3-py3-none-any.whl (17 kB)
Requirement already satisfied: iniconfig in c:\programdata\anaconda3\envs\env\lib\site-packages (from pytest->datasets==1.5.0.dev0) (1.1.1)
Requirement already satisfied: py>=1.8.2 in c:\programdata\anaconda3\envs\env\lib\site-packages (from pytest->datasets==1.5.0.dev0) (1.10.0)
Requirement already satisfied: pluggy<1.0.0a1,>=0.12 in c:\programdata\anaconda3\envs\env\lib\site-packages (from pytest->datasets==1.5.0.dev0) (0.13.1)
Requirement already satisfied: atomicwrites>=1.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from pytest->datasets==1.5.0.dev0) (1.4.0)
Requirement already satisfied: colorama in c:\programdata\anaconda3\envs\env\lib\site-packages (from pytest->datasets==1.5.0.dev0) (0.4.4)
Collecting pytest-forked
Using cached pytest_forked-1.3.0-py2.py3-none-any.whl (4.7 kB)
Collecting execnet>=1.1
Using cached execnet-1.8.0-py2.py3-none-any.whl (39 kB)
Requirement already satisfied: apipkg>=1.4 in c:\programdata\anaconda3\envs\env\lib\site-packages (from execnet>=1.1->pytest-xdist->datasets==1.5.0.dev0) (1.5)
Collecting portalocker==2.0.0
Using cached portalocker-2.0.0-py2.py3-none-any.whl (11 kB)
Requirement already satisfied: scikit-learn>=0.21.3 in c:\programdata\anaconda3\envs\env\lib\site-packages (from seqeval->datasets==1.5.0.dev0) (0.24.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\programdata\anaconda3\envs\env\lib\site-packages (from scikit-learn>=0.21.3->seqeval->datasets==1.5.0.dev0) (2.1.0)
Building wheels for collected packages: python-Levenshtein
Building wheel for python-Levenshtein (setup.py) ... error
ERROR: Command errored out with exit status 1:
command: 'C:\ProgramData\Anaconda3\envs\env\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\VKC~1\\AppData\\Local\\Temp\\pip-install-ynt_dbm4\\python-levenshtein_c02e7e6f9def4629a475349654670ae9\\setup.py'"'"'; __file__='"'"'C:\\Users\\VKC~1\\AppData\\Local\\Temp\\pip-install-ynt_dbm4\\python-levenshtein_c02e7e6f9def4629a475349654670ae9\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -d 'C:\Users\VKC~1\AppData\Local\Temp\pip-wheel-8jh7fm18'
cwd: C:\Users\VKC~1\AppData\Local\Temp\pip-install-ynt_dbm4\python-levenshtein_c02e7e6f9def4629a475349654670ae9\
Complete output (27 lines):
running bdist_wheel
running build
running build_py
creating build
creating build\lib.win-amd64-3.7
creating build\lib.win-amd64-3.7\Levenshtein
copying Levenshtein\StringMatcher.py -> build\lib.win-amd64-3.7\Levenshtein
copying Levenshtein\__init__.py -> build\lib.win-amd64-3.7\Levenshtein
running egg_info
writing python_Levenshtein.egg-info\PKG-INFO
writing dependency_links to python_Levenshtein.egg-info\dependency_links.txt
writing entry points to python_Levenshtein.egg-info\entry_points.txt
writing namespace_packages to python_Levenshtein.egg-info\namespace_packages.txt
writing requirements to python_Levenshtein.egg-info\requires.txt
writing top-level names to python_Levenshtein.egg-info\top_level.txt
reading manifest file 'python_Levenshtein.egg-info\SOURCES.txt'
reading manifest template 'MANIFEST.in'
warning: no previously-included files matching '*pyc' found anywhere in distribution
warning: no previously-included files matching '*so' found anywhere in distribution
warning: no previously-included files matching '.project' found anywhere in distribution
warning: no previously-included files matching '.pydevproject' found anywhere in distribution
writing manifest file 'python_Levenshtein.egg-info\SOURCES.txt'
copying Levenshtein\_levenshtein.c -> build\lib.win-amd64-3.7\Levenshtein
copying Levenshtein\_levenshtein.h -> build\lib.win-amd64-3.7\Levenshtein
running build_ext
building 'Levenshtein._levenshtein' extension
error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/
----------------------------------------
ERROR: Failed building wheel for python-Levenshtein
Running setup.py clean for python-Levenshtein
Failed to build python-Levenshtein
Installing collected packages: python-Levenshtein, pytest-forked, pyppmd, pymongo, pyflakes, pydot, pycryptodome, pycodestyle, pyarrow, portalocker, pathspec, pandas, opt-einsum, oauth2client, nltk, mypy-extensions, multivolumefile, multiprocess, moto, mccabe, matplotlib, keras-preprocessing, huggingface-hub, hdfs, h5py, google-pasta, gast, flatbuffers, fastavro, execnet, et-xmlfile, entrypoints, crcmod, beautifulsoup4, bcj-cffi, avro-python3, astunparse, appdirs, zstandard, tldextract, tensorflow, sklearn, seqeval, sacrebleu, rouge-score, rarfile, pytest-xdist, py7zr, openpyxl, mwparserfromhell, lxml, langdetect, jiwer, isort, flake8, elasticsearch, datasets, conllu, bs4, black, bert-score, apache-beam
Running setup.py install for python-Levenshtein ... error
ERROR: Command errored out with exit status 1:
command: 'C:\ProgramData\Anaconda3\envs\env\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\VKC~1\\AppData\\Local\\Temp\\pip-install-ynt_dbm4\\python-levenshtein_c02e7e6f9def4629a475349654670ae9\\setup.py'"'"'; __file__='"'"'C:\\Users\\VKC~1\\AppData\\Local\\Temp\\pip-install-ynt_dbm4\\python-levenshtein_c02e7e6f9def4629a475349654670ae9\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record 'C:\Users\VKC~1\AppData\Local\Temp\pip-record-v7l7zitb\install-record.txt' --single-version-externally-managed --compile --install-headers 'C:\ProgramData\Anaconda3\envs\env\Include\python-Levenshtein'
cwd: C:\Users\VKC~1\AppData\Local\Temp\pip-install-ynt_dbm4\python-levenshtein_c02e7e6f9def4629a475349654670ae9\
Complete output (27 lines):
running install
running build
running build_py
creating build
creating build\lib.win-amd64-3.7
creating build\lib.win-amd64-3.7\Levenshtein
copying Levenshtein\StringMatcher.py -> build\lib.win-amd64-3.7\Levenshtein
copying Levenshtein\__init__.py -> build\lib.win-amd64-3.7\Levenshtein
running egg_info
writing python_Levenshtein.egg-info\PKG-INFO
writing dependency_links to python_Levenshtein.egg-info\dependency_links.txt
writing entry points to python_Levenshtein.egg-info\entry_points.txt
writing namespace_packages to python_Levenshtein.egg-info\namespace_packages.txt
writing requirements to python_Levenshtein.egg-info\requires.txt
writing top-level names to python_Levenshtein.egg-info\top_level.txt
reading manifest file 'python_Levenshtein.egg-info\SOURCES.txt'
reading manifest template 'MANIFEST.in'
warning: no previously-included files matching '*pyc' found anywhere in distribution
warning: no previously-included files matching '*so' found anywhere in distribution
warning: no previously-included files matching '.project' found anywhere in distribution
warning: no previously-included files matching '.pydevproject' found anywhere in distribution
writing manifest file 'python_Levenshtein.egg-info\SOURCES.txt'
copying Levenshtein\_levenshtein.c -> build\lib.win-amd64-3.7\Levenshtein
copying Levenshtein\_levenshtein.h -> build\lib.win-amd64-3.7\Levenshtein
running build_ext
building 'Levenshtein._levenshtein' extension
error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/
----------------------------------------
ERROR: Command errored out with exit status 1: 'C:\ProgramData\Anaconda3\envs\env\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\VKC~1\\AppData\\Local\\Temp\\pip-install-ynt_dbm4\\python-levenshtein_c02e7e6f9def4629a475349654670ae9\\setup.py'"'"'; __file__='"'"'C:\\Users\\VKC~1\\AppData\\Local\\Temp\\pip-install-ynt_dbm4\\python-levenshtein_c02e7e6f9def4629a475349654670ae9\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record 'C:\Users\VKC~1\AppData\Local\Temp\pip-record-v7l7zitb\install-record.txt' --single-version-externally-managed --compile --install-headers 'C:\ProgramData\Anaconda3\envs\env\Include\python-Levenshtein' Check the logs for full command output.
```
Here are conda and python versions:
```bat
(env) C:\testing\datasets>conda --version
conda 4.9.2
(env) C:\testing\datasets>python --version
Python 3.7.10
```
Please help me out. Thanks. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2301/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2301/timeline | null | completed | null | null | false | [
"Hi @gchhablani, \r\n\r\nThere are some 3rd-party dependencies that require to build code in C. In this case, it is the library `python-Levenshtein`.\r\n\r\nOn Windows, in order to be able to build C code, you need to install at least `Microsoft C++ Build Tools` version 14. You can find more info here: https://visualstudio.microsoft.com/visual-cpp-build-tools/",
"Hi @albertvillanova \r\n\r\nSorry for such a trivial issue ;-; \r\n\r\nThanks a lot."
] |
https://api.github.com/repos/huggingface/datasets/issues/4712 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4712/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4712/comments | https://api.github.com/repos/huggingface/datasets/issues/4712/events | https://github.com/huggingface/datasets/pull/4712 | 1,309,177,302 | PR_kwDODunzps47ohdr | 4,712 | Highlight non-commercial license in amazon_reviews_multi dataset card | [] | closed | false | null | 1 | 2022-07-19T08:36:20Z | 2022-07-27T16:09:40Z | 2022-07-27T15:57:41Z | null | Highlight that the licence granted by Amazon only covers non-commercial research use. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4712/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4712/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4712.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4712",
"merged_at": "2022-07-27T15:57:41Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4712.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4712"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._"
] |
https://api.github.com/repos/huggingface/datasets/issues/1794 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1794/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1794/comments | https://api.github.com/repos/huggingface/datasets/issues/1794/events | https://github.com/huggingface/datasets/pull/1794 | 796,975,588 | MDExOlB1bGxSZXF1ZXN0NTY0MDYyMTkw | 1,794 | Move silicone directory | [] | closed | false | null | 0 | 2021-01-29T15:33:15Z | 2021-01-29T16:31:39Z | 2021-01-29T16:31:38Z | null | The dataset was added in #1761 but not in the right directory. I'm moving it to /datasets | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1794/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1794/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1794.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1794",
"merged_at": "2021-01-29T16:31:38Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1794.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1794"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/1451 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1451/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1451/comments | https://api.github.com/repos/huggingface/datasets/issues/1451/events | https://github.com/huggingface/datasets/pull/1451 | 761,102,770 | MDExOlB1bGxSZXF1ZXN0NTM1ODIwOTY3 | 1,451 | Add European Center for Disease Control and Preventions's (ECDC) Translation Memory dataset | [] | closed | false | null | 0 | 2020-12-10T10:14:20Z | 2020-12-11T16:50:09Z | 2020-12-11T16:50:09Z | null | ECDC-TM homepage: https://ec.europa.eu/jrc/en/language-technologies/ecdc-translation-memory | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1451/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1451/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1451.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1451",
"merged_at": "2020-12-11T16:50:09Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1451.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1451"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/5538 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5538/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5538/comments | https://api.github.com/repos/huggingface/datasets/issues/5538/events | https://github.com/huggingface/datasets/issues/5538 | 1,587,732,596 | I_kwDODunzps5eouB0 | 5,538 | load_dataset in seaborn is not working for me. getting this error. | [] | closed | false | null | 1 | 2023-02-16T14:01:58Z | 2023-02-16T14:44:36Z | 2023-02-16T14:44:36Z | null | TimeoutError Traceback (most recent call last)
~\anaconda3\lib\urllib\request.py in do_open(self, http_class, req, **http_conn_args)
1345 try:
-> 1346 h.request(req.get_method(), req.selector, req.data, headers,
1347 encode_chunked=req.has_header('Transfer-encoding'))
~\anaconda3\lib\http\client.py in request(self, method, url, body, headers, encode_chunked)
1278 """Send a complete request to the server."""
-> 1279 self._send_request(method, url, body, headers, encode_chunked)
1280
~\anaconda3\lib\http\client.py in _send_request(self, method, url, body, headers, encode_chunked)
1324 body = _encode(body, 'body')
-> 1325 self.endheaders(body, encode_chunked=encode_chunked)
1326
~\anaconda3\lib\http\client.py in endheaders(self, message_body, encode_chunked)
1273 raise CannotSendHeader()
-> 1274 self._send_output(message_body, encode_chunked=encode_chunked)
1275
~\anaconda3\lib\http\client.py in _send_output(self, message_body, encode_chunked)
1033 del self._buffer[:]
-> 1034 self.send(msg)
1035
~\anaconda3\lib\http\client.py in send(self, data)
973 if self.auto_open:
--> 974 self.connect()
975 else:
~\anaconda3\lib\http\client.py in connect(self)
1440
-> 1441 super().connect()
1442
~\anaconda3\lib\http\client.py in connect(self)
944 """Connect to the host and port specified in __init__."""
--> 945 self.sock = self._create_connection(
946 (self.host,self.port), self.timeout, self.source_address)
~\anaconda3\lib\socket.py in create_connection(address, timeout, source_address)
843 try:
--> 844 raise err
845 finally:
~\anaconda3\lib\socket.py in create_connection(address, timeout, source_address)
831 sock.bind(source_address)
--> 832 sock.connect(sa)
833 # Break explicitly a reference cycle
TimeoutError: [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond
During handling of the above exception, another exception occurred:
URLError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_12220/2927704185.py in <module>
1 import seaborn as sn
----> 2 iris = sn.load_dataset('iris')
~\anaconda3\lib\site-packages\seaborn\utils.py in load_dataset(name, cache, data_home, **kws)
594 if name not in get_dataset_names():
595 raise ValueError(f"'{name}' is not one of the example datasets.")
--> 596 urlretrieve(url, cache_path)
597 full_path = cache_path
598 else:
~\anaconda3\lib\urllib\request.py in urlretrieve(url, filename, reporthook, data)
237 url_type, path = _splittype(url)
238
--> 239 with contextlib.closing(urlopen(url, data)) as fp:
240 headers = fp.info()
241
~\anaconda3\lib\urllib\request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context)
212 else:
213 opener = _opener
--> 214 return opener.open(url, data, timeout)
215
216 def install_opener(opener):
~\anaconda3\lib\urllib\request.py in open(self, fullurl, data, timeout)
515
516 sys.audit('urllib.Request', req.full_url, req.data, req.headers, req.get_method())
--> 517 response = self._open(req, data)
518
519 # post-process response
~\anaconda3\lib\urllib\request.py in _open(self, req, data)
532
533 protocol = req.type
--> 534 result = self._call_chain(self.handle_open, protocol, protocol +
535 '_open', req)
536 if result:
~\anaconda3\lib\urllib\request.py in _call_chain(self, chain, kind, meth_name, *args)
492 for handler in handlers:
493 func = getattr(handler, meth_name)
--> 494 result = func(*args)
495 if result is not None:
496 return result
~\anaconda3\lib\urllib\request.py in https_open(self, req)
1387
1388 def https_open(self, req):
-> 1389 return self.do_open(http.client.HTTPSConnection, req,
1390 context=self._context, check_hostname=self._check_hostname)
1391
~\anaconda3\lib\urllib\request.py in do_open(self, http_class, req, **http_conn_args)
1347 encode_chunked=req.has_header('Transfer-encoding'))
1348 except OSError as err: # timeout error
-> 1349 raise URLError(err)
1350 r = h.getresponse()
1351 except:
URLError: <urlopen error [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond>
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5538/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5538/timeline | null | completed | null | null | false | [
"Hi! `seaborn`'s `load_dataset` pulls datasets from [here](https://github.com/mwaskom/seaborn-data) and not from our Hub, so this issue is not related to our library in any way and should be reported in their repo instead."
] |
https://api.github.com/repos/huggingface/datasets/issues/546 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/546/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/546/comments | https://api.github.com/repos/huggingface/datasets/issues/546/events | https://github.com/huggingface/datasets/issues/546 | 689,186,526 | MDU6SXNzdWU2ODkxODY1MjY= | 546 | Very slow data loading on large dataset | [] | closed | false | null | 22 | 2020-08-31T12:57:23Z | 2022-06-17T17:06:51Z | 2020-09-08T10:19:57Z | null | I made a simple python script to check the NLP library speed, which loads 1.1 TB of textual data.
It has been 8 hours and still, it is on the loading steps.
It does work when the text dataset size is small about 1 GB, but it doesn't scale.
It also uses a single thread during the data loading step.
```
train_files = glob.glob("xxx/*.txt",recursive=True)
random.shuffle(train_files)
print(train_files)
dataset = nlp.load_dataset('text',
data_files=train_files,
name="customDataset",
version="1.0.0",
cache_dir="xxx/nlp")
```
Is there something that I am missing ? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/546/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/546/timeline | null | completed | null | null | false | [
"When you load a text file for the first time with `nlp`, the file is converted into Apache Arrow format. Arrow allows to use memory-mapping, which means that you can load an arbitrary large dataset.\r\n\r\nNote that as soon as the conversion has been done once, the next time you'll load the dataset it will be much faster.\r\n\r\nHowever for a 1TB dataset, the conversion can indeed take time. You could try to load parts of it in parallel, and then use `nlp.concatenate_datasets` to get your full dataset.",
"Humm, we can give a look at these large scale datasets indeed.\r\n\r\nDo you mind sharing a few stats on your dataset so I can try to test on a similar one?\r\n\r\nIn particular some orders of magnitudes for the number of files, number of lines per files, line lengths.",
"@lhoestq Yes, I understand that the first time requires more time. The concatenate_datasets seems to be a workaround, but I believe a multi-processing method should be integrated into load_dataset to make it easier and more efficient for users.\r\n\r\n@thomwolf Sure, here are the statistics:\r\nNumber of lines: 4.2 Billion\r\nNumber of files: 6K\r\nNumber of tokens: 800 Billion\r\nThe number of lines is distributed equally across these 6k files.\r\nThe line length varies between 100 tokens to 40k tokens.\r\n",
"@agemagician you can give a try at a multithreaded version if you want (currently on the #548).\r\n\r\nTo test it, you just need to copy the new `text` processing script which is [here](https://github.com/huggingface/nlp/blob/07d92a82b7594498ff702f3cca55c074e2052257/datasets/text/text.py) somewhere on your drive and give it's local path instead of `text` to `load_dataset`. E.g. in your example:\r\n```python\r\ntrain_files = glob.glob(\"xxx/*.txt\",recursive=True)\r\nrandom.shuffle(train_files)\r\n\r\nprint(train_files)\r\n\r\ndataset = nlp.load_dataset('./datasets/text.py', # path to where you've dowloaded the multi-threaded text loading script\r\n data_files=train_files,\r\n name=\"customDataset\",\r\n version=\"1.0.0\",\r\n cache_dir=\"xxx/nlp\")\r\n```",
"I have already generated the dataset, but now I tried to reload it and it is still very slow.\r\n\r\nI also have installed your commit and it is slow, even after the dataset was already generated.\r\n`pip install git+https://github.com/huggingface/nlp.git@07d92a82b7594498ff702f3cca55c074e2052257`\r\n\r\nIt uses only a single thread.\r\n\r\nDid I miss something ?",
"As mentioned in #548 , each time you call `load_dataset` with `data_files=`, they are hashed to get the cache directory name. Hashing can be too slow with 1TB of data. I feel like we should have a faster way of getting a hash that identifies the input data files",
"I believe this is really a very important feature, otherwise, we will still have the issue of too slow loading problems even if the data cache generation is fast.",
"Hmm ok then maybe it's the hashing step indeed.\r\n\r\nLet's see if we can improve this as well.\r\n\r\n(you will very likely have to regenerate your dataset if we change this part of the lib though since I expect modifications on this part of the lib to results in new hashes)",
"Also, @agemagician you have to follow the step I indicate in my previous message [here](https://github.com/huggingface/nlp/issues/546#issuecomment-684648927) to use the new text loading script.\r\n\r\nJust doing `pip install git+https://github.com/huggingface/nlp.git@07d92a82b7594498ff702f3cca55c074e2052257` like you did won't use the new script (they are not inside the library but hosted on our hub).",
"No problem, I will regenerate it. This will make us see if we solved both issues and now both the data generation step, as well as the hashing step, is fast.",
"Any news for the hashing ?",
"I'm working on it today :)",
"Ok so now the text files won't be hashed.\r\n\r\nI also updated #548 to include this change.\r\nLet us know if it helps @agemagician :)",
"Perfect thanks for your amazing work.",
"Right now, for caching 18Gb data, it is taking 1 hour 10 minute. Is that proper expected time? @lhoestq @agemagician \r\nIn this rate (assuming large file will caching at the same rate) caching full mC4 (27TB) requires a month (~26 days). \r\n",
"Hi ! Currently it is that slow because we haven't implemented parallelism for the dataset generation yet.\r\nThough we will definitely work on this :)\r\n\r\nFor now I'd recommend loading the dataset shard by shard in parallel, and then concatenate them:\r\n```python\r\n# in one process, load first 100 files for english\r\nshard1 = load_dataset(\"allenai/c4\", data_files=\"multilingual/c4-en.tfrecord-000**.json.gz\")\r\n# in another process load next 100 files for english\r\nshard2 = load_dataset(\"allenai/c4\", data_files=\"multilingual/c4-en.tfrecord-001**.json.gz\")\r\n\r\n# finally\r\nconcatenate_datasets([shard1, shard2, ...])",
"Thanks for the help..!!!",
"Sorry to write on a closed issue but, has there been any progress on parallelizing the `load_dataset` function?",
"Hi ! No but this is in our plans (probably a few weeks)",
"I'm literally crying waiting for the trainer to restart from checkpoint. It's getting stuck at `get_train_dataloader` and I think this is to do with the same issue... has there been any progress on this?",
"> I'm literally crying waiting for the trainer to restart from checkpoint. It's getting stuck at get_train_dataloader and I think this is to do with the same issue...\r\n\r\nOnce the dataset is cached once, it's not regenerated again. Your issue seems different",
"hmmm, yes. I'll come back with details on this, fairly easy to reproduce. Takes about 30 minutes to get from checkpoint loading to starting training..."
] |
https://api.github.com/repos/huggingface/datasets/issues/134 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/134/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/134/comments | https://api.github.com/repos/huggingface/datasets/issues/134/events | https://github.com/huggingface/datasets/pull/134 | 619,112,641 | MDExOlB1bGxSZXF1ZXN0NDE4Njk5OTYz | 134 | Update README.md | [] | closed | false | null | 1 | 2020-05-15T16:56:14Z | 2020-05-28T08:21:49Z | 2020-05-28T08:21:49Z | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/134/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/134/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/134.diff",
"html_url": "https://github.com/huggingface/datasets/pull/134",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/134.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/134"
} | true | [
"the readme got removed, closing this one"
] |
|
https://api.github.com/repos/huggingface/datasets/issues/1466 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1466/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1466/comments | https://api.github.com/repos/huggingface/datasets/issues/1466/events | https://github.com/huggingface/datasets/pull/1466 | 761,554,357 | MDExOlB1bGxSZXF1ZXN0NTM2MjA0OTMx | 1,466 | Add Turkish News Category Dataset (270K).Updates were made for review… | [] | closed | false | null | 4 | 2020-12-10T19:41:12Z | 2020-12-11T14:27:15Z | 2020-12-11T14:27:15Z | null | This PR adds the **Turkish News Categories Dataset (270K)** dataset which is a text classification dataset by me and @yavuzKomecoglu. Turkish news dataset consisting of **273601 news in 17 categories**, compiled from printed media and news websites between 2010 and 2017 by the [Interpress](https://www.interpress.com/) media monitoring company.
**Note**: Resubmitted as a clean version of the previous Pull Request(#1419). @SBrandeis @lhoestq | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1466/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1466/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1466.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1466",
"merged_at": "2020-12-11T14:27:14Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1466.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1466"
} | true | [
"@SBrandeis, What exactly is it that makes the tests fail? Can you help me please?",
"These errors\r\n```\r\n=========================== short test summary info ============================\r\nFAILED tests/test_dataset_common.py::LocalDatasetTest::test_load_dataset_ajgt_twitter_ar\r\nFAILED tests/test_dataset_common.py::LocalDatasetTest::test_load_dataset_chr_en\r\nFAILED tests/test_dataset_common.py::RemoteDatasetTest::test_load_dataset_ajgt_twitter_ar\r\nFAILED tests/test_dataset_common.py::RemoteDatasetTest::test_load_dataset_chr_en\r\n```\r\nappeared on master 3 hours ago and are now fixed.\r\n(it was due to today's update of `xlrd` that broke two datasets)\r\n\r\nYou can ignore them, they're not related to your dataset",
"> These errors\r\n> \r\n> ```\r\n> =========================== short test summary info ============================\r\n> FAILED tests/test_dataset_common.py::LocalDatasetTest::test_load_dataset_ajgt_twitter_ar\r\n> FAILED tests/test_dataset_common.py::LocalDatasetTest::test_load_dataset_chr_en\r\n> FAILED tests/test_dataset_common.py::RemoteDatasetTest::test_load_dataset_ajgt_twitter_ar\r\n> FAILED tests/test_dataset_common.py::RemoteDatasetTest::test_load_dataset_chr_en\r\n> ```\r\n> \r\n> appeared on master 3 hours ago and are now fixed.\r\n> (it was due to today's update of `xlrd` that broke two datasets)\r\n> \r\n> You can ignore them, they're not related to your dataset\r\n\r\n**If it is not a problem caused by us, we have already completed the review notes. You can then check it out and confirm?**",
"merging since the CI is fixed on master"
] |
https://api.github.com/repos/huggingface/datasets/issues/3975 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3975/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3975/comments | https://api.github.com/repos/huggingface/datasets/issues/3975/events | https://github.com/huggingface/datasets/pull/3975 | 1,174,678,942 | PR_kwDODunzps40tKdS | 3,975 | Update many missing tags to dataset README's | [] | closed | false | null | 0 | 2022-03-20T20:42:27Z | 2022-03-21T18:39:52Z | 2022-03-21T18:39:52Z | null | I've started to go through the datasets available and noticed that there are 127 datasets that does not have all the tags so I started filling them in; starting with some of the most common and QA datasets
Not 100% certain that the task_id is correct for SuperGLUE
If anyone is browsing the issues and would like to help make Hugging face datasets even more feature complete and awesome, feel free to use this tool I wrote to find the missing tags in the [datacards](https://github.com/Hugging-Face-Supporter/datacards) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3975/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3975/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3975.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3975",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/3975.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3975"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/1818 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1818/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1818/comments | https://api.github.com/repos/huggingface/datasets/issues/1818/events | https://github.com/huggingface/datasets/issues/1818 | 800,958,776 | MDU6SXNzdWU4MDA5NTg3NzY= | 1,818 | Loading local dataset raise requests.exceptions.ConnectTimeout | [] | closed | false | null | 1 | 2021-02-04T05:55:23Z | 2022-06-01T15:38:42Z | 2022-06-01T15:38:42Z | null | Load local dataset:
```
dataset = load_dataset('json', data_files=["../../data/json.json"])
train = dataset["train"]
print(train.features)
train1 = train.map(lambda x: {"labels": 1})
print(train1[:2])
```
but it raised requests.exceptions.ConnectTimeout:
```
/Users/littlely/myvirtual/tf2/bin/python3.7 /Users/littlely/projects/python_projects/pytorch_learning/nlp/dataset/transformers_datasets.py
Traceback (most recent call last):
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 160, in _new_conn
(self._dns_host, self.port), self.timeout, **extra_kw
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/connection.py", line 84, in create_connection
raise err
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/connection.py", line 74, in create_connection
sock.connect(sa)
socket.timeout: timed out
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 677, in urlopen
chunked=chunked,
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 381, in _make_request
self._validate_conn(conn)
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 978, in _validate_conn
conn.connect()
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 309, in connect
conn = self._new_conn()
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 167, in _new_conn
% (self.host, self.timeout),
urllib3.exceptions.ConnectTimeoutError: (<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)')
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/adapters.py", line 449, in send
timeout=timeout
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 727, in urlopen
method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2]
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/retry.py", line 439, in increment
raise MaxRetryError(_pool, url, error or ResponseError(cause))
urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/json/json.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)'))
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/littlely/projects/python_projects/pytorch_learning/nlp/dataset/transformers_datasets.py", line 12, in <module>
dataset = load_dataset('json', data_files=["../../data/json.json"])
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/load.py", line 591, in load_dataset
path, script_version=script_version, download_config=download_config, download_mode=download_mode, dataset=True
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/load.py", line 263, in prepare_module
head_hf_s3(path, filename=name, dataset=dataset, max_retries=download_config.max_retries)
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 232, in head_hf_s3
max_retries=max_retries,
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 523, in http_head
max_retries=max_retries,
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 458, in _request_with_retry
raise err
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 454, in _request_with_retry
response = requests.request(verb.upper(), url, **params)
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/api.py", line 61, in request
return session.request(method=method, url=url, **kwargs)
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/sessions.py", line 530, in request
resp = self.send(prep, **send_kwargs)
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/sessions.py", line 643, in send
r = adapter.send(request, **kwargs)
File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/adapters.py", line 504, in send
raise ConnectTimeout(e, request=request)
requests.exceptions.ConnectTimeout: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/json/json.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)'))
Process finished with exit code 1
```
Why it want to connect a remote url when I load local datasets, and how can I fix it? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1818/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1818/timeline | null | completed | null | null | false | [
"Hi ! Thanks for reporting. This was indeed a bug introduced when we moved the `json` dataset loader inside the `datasets` package (before that, the `json` loader was fetched online, as all the other dataset scripts).\r\n\r\nThis should be fixed on master now. Feel free to install `datasets` from source to try it out.\r\nThe fix will be available in the next release of `datasets` in a few days"
] |
https://api.github.com/repos/huggingface/datasets/issues/4034 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4034/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4034/comments | https://api.github.com/repos/huggingface/datasets/issues/4034/events | https://github.com/huggingface/datasets/pull/4034 | 1,183,033,285 | PR_kwDODunzps41IpN1 | 4,034 | Fix null checksum in xcopa dataset | [] | closed | false | null | 0 | 2022-03-28T07:48:14Z | 2022-03-28T08:06:14Z | 2022-03-28T08:06:14Z | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4034/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4034/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4034.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4034",
"merged_at": "2022-03-28T08:06:14Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4034.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4034"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/1730 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1730/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1730/comments | https://api.github.com/repos/huggingface/datasets/issues/1730/events | https://github.com/huggingface/datasets/pull/1730 | 784,617,525 | MDExOlB1bGxSZXF1ZXN0NTUzNzgxMDY0 | 1,730 | Add MNIST dataset | [] | closed | false | null | 0 | 2021-01-12T21:48:02Z | 2021-01-13T10:19:47Z | 2021-01-13T10:19:46Z | null | This PR adds the MNIST dataset to the library. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 1,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1730/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1730/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1730.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1730",
"merged_at": "2021-01-13T10:19:46Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1730.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1730"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/4567 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4567/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4567/comments | https://api.github.com/repos/huggingface/datasets/issues/4567/events | https://github.com/huggingface/datasets/pull/4567 | 1,284,528,474 | PR_kwDODunzps46Wh0- | 4,567 | Add evaluation data for amazon_reviews_multi | [
{
"color": "0e8a16",
"default": false,
"description": "Contribution to a dataset script",
"id": 4564477500,
"name": "dataset contribution",
"node_id": "LA_kwDODunzps8AAAABEBBmPA",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution"
}
] | closed | false | null | 2 | 2022-06-25T09:40:52Z | 2022-09-23T09:39:39Z | 2022-09-23T09:37:23Z | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4567/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4567/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4567.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4567",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/4567.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4567"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._",
"As discussed with @lewtun, we are closing this PR, because it requires first the task names to be aligned between AutoTrain and datasets."
] |
https://api.github.com/repos/huggingface/datasets/issues/3532 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3532/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3532/comments | https://api.github.com/repos/huggingface/datasets/issues/3532/events | https://github.com/huggingface/datasets/pull/3532 | 1,094,035,066 | PR_kwDODunzps4wi1ft | 3,532 | Give clearer instructions to add the YAML tags | [] | closed | false | null | 1 | 2022-01-05T06:47:52Z | 2022-01-17T15:54:37Z | 2022-01-17T15:54:36Z | null | Fix #3531.
CC: @julien-c @VictorSanh | {
"+1": 2,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3532/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3532/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3532.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3532",
"merged_at": "2022-01-17T15:54:36Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3532.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3532"
} | true | [
"this is great, maybe just put all of it in one line?\r\n\r\n> TODO: Add YAML tags here. Copy-paste the tags obtained with the online tagging app: https://huggingface.co/spaces/huggingface/datasets-tagging"
] |
https://api.github.com/repos/huggingface/datasets/issues/3862 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3862/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3862/comments | https://api.github.com/repos/huggingface/datasets/issues/3862/events | https://github.com/huggingface/datasets/pull/3862 | 1,162,753,733 | PR_kwDODunzps40HFht | 3,862 | Manipulate columns on IterableDataset (rename columns, cast, etc.) | [] | closed | false | null | 2 | 2022-03-08T14:53:57Z | 2022-03-10T16:40:22Z | 2022-03-10T16:40:21Z | null | I added:
- add_column
- cast
- rename_column
- rename_columns
related to https://github.com/huggingface/datasets/issues/3444
TODO:
- [x] docs
- [x] tests | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3862/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3862/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3862.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3862",
"merged_at": "2022-03-10T16:40:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3862.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3862"
} | true | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3862). All of your documentation changes will be reflected on that endpoint.",
"> IIUC we check if columns are present/not present directly in the yielded examples and not in info.features because info.features can be None (after map, for instance)?\r\n\r\nYes exactly\r\n\r\n> We should develop a solution that ensures info.features is never None. For example, one approach would be to infer them from examples in map and make them promotable from Value(\"null\") to a specific type, in case of None values.\r\n\r\nI agree this would be useful. Though inferring the type requires to start streaming some data, which takes a few seconds (compared to being instantaneous right now).\r\n\r\nLet's discuss this in a new issue maybe ?"
] |
https://api.github.com/repos/huggingface/datasets/issues/1118 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1118/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1118/comments | https://api.github.com/repos/huggingface/datasets/issues/1118/events | https://github.com/huggingface/datasets/pull/1118 | 757,142,350 | MDExOlB1bGxSZXF1ZXN0NTMyNTY3ODMw | 1,118 | Add Tashkeela dataset | [] | closed | false | null | 2 | 2020-12-04T14:26:18Z | 2020-12-04T15:47:01Z | 2020-12-04T15:46:51Z | null | Arabic Vocalized Words Dataset. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1118/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1118/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1118.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1118",
"merged_at": "2020-12-04T15:46:50Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1118.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1118"
} | true | [
"Sorry @lhoestq for the trouble, sometime I forget to change the names :/",
"> Sorry @lhoestq for the trouble, sometime I forget to change the names :/\r\n\r\nhaha it's ok ;)"
] |
https://api.github.com/repos/huggingface/datasets/issues/1526 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1526/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1526/comments | https://api.github.com/repos/huggingface/datasets/issues/1526/events | https://github.com/huggingface/datasets/pull/1526 | 764,591,243 | MDExOlB1bGxSZXF1ZXN0NTM4NTgxNDg4 | 1,526 | added Hebrew thisworld corpus | [] | closed | false | null | 1 | 2020-12-12T23:42:52Z | 2020-12-18T10:47:30Z | 2020-12-18T10:47:30Z | null | added corpus from https://thisworld.online/ , https://github.com/thisworld1/thisworld.online | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1526/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1526/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/1526.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1526",
"merged_at": "2020-12-18T10:47:30Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1526.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1526"
} | true | [
"merging since the CI is fixed on master"
] |
https://api.github.com/repos/huggingface/datasets/issues/3204 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3204/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3204/comments | https://api.github.com/repos/huggingface/datasets/issues/3204/events | https://github.com/huggingface/datasets/issues/3204 | 1,043,707,307 | I_kwDODunzps4-NbWr | 3,204 | FileNotFoundError for TupleIE dataste | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 3 | 2021-11-03T14:56:55Z | 2021-11-05T15:51:15Z | 2021-11-05T14:16:05Z | null | Hi,
`dataset = datasets.load_dataset('tuple_ie', 'all')`
returns a FileNotFound error. Is the data not available?
Many thanks.
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3204/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3204/timeline | null | completed | null | null | false | [
"@mariosasko @lhoestq Could you give me an update on how to load the dataset after the fix?\r\nThanks.",
"Hi @arda-vianai,\r\n\r\nfirst, you can try:\r\n```python\r\nimport datasets\r\ndataset = datasets.load_dataset('tuple_ie', 'all', revision=\"master\")\r\n```\r\nIf this doesn't work, your version of `datasets` is missing some features that are required to run the dataset script, so install the master version with the following command:\r\n```\r\npip install git+https://github.com/huggingface/datasets.git\r\n```\r\nand then:\r\n```python\r\nimport datasets\r\ndataset = datasets.load_dataset('tuple_ie', 'all')\r\n```\r\nshould work (even without `revision`).",
"@mariosasko \r\nThanks, it is working now. I actually did that before but I didn't restart the kernel. I restarted it and it works now. My bad!!!\r\nMany thanks and great job!\r\n-arda"
] |
https://api.github.com/repos/huggingface/datasets/issues/2000 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2000/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2000/comments | https://api.github.com/repos/huggingface/datasets/issues/2000/events | https://github.com/huggingface/datasets/issues/2000 | 823,899,910 | MDU6SXNzdWU4MjM4OTk5MTA= | 2,000 | Windows Permission Error (most recent version of datasets) | [] | closed | false | null | 5 | 2021-03-07T11:55:28Z | 2021-03-09T12:42:57Z | 2021-03-09T12:42:57Z | null | Hi everyone,
Can anyone help me with why the dataset loading script below raises a Windows Permission Error? I stuck quite closely to https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py , only I want to load the data from three local three-column tsv-files (id\ttokens\tpos_tags\n). I am using the most recent version of datasets. Thank you in advance!
Luisa
My script:
```
import datasets
import csv
logger = datasets.logging.get_logger(__name__)
class SampleConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(SampleConfig, self).__init__(**kwargs)
class Sample(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
SampleConfig(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description="Dataset with words and their POS-Tags",
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"''",
",",
"-LRB-",
"-RRB-",
".",
":",
"CC",
"CD",
"DT",
"EX",
"FW",
"HYPH",
"IN",
"JJ",
"JJR",
"JJS",
"MD",
"NN",
"NNP",
"NNPS",
"NNS",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"WDT",
"WP",
"WRB",
"``"
]
)
),
}
),
supervised_keys=None,
homepage="https://catalog.ldc.upenn.edu/LDC2011T03",
citation="Weischedel, Ralph, et al. OntoNotes Release 4.0 LDC2011T03. Web Download. Philadelphia: Linguistic Data Consortium, 2011.",
)
def _split_generators(self, dl_manager):
loaded_files = dl_manager.download_and_extract(self.config.data_files)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": loaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": loaded_files["test"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": loaded_files["val"]})
]
def _generate_examples(self, filepath):
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="cp1252") as f:
data = csv.reader(f, delimiter="\t")
ids = list()
tokens = list()
pos_tags = list()
for id_, line in enumerate(data):
#print(line)
if len(line) == 1:
if tokens:
yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags}
ids = list()
tokens = list()
pos_tags = list()
else:
ids.append(line[0])
tokens.append(line[1])
pos_tags.append(line[2])
# last example
yield id_, {"id": ids, "tokens": tokens, "pos_tags": pos_tags}
def main():
dataset = datasets.load_dataset(
"data_loading.py", data_files={
"train": "train.tsv",
"test": "test.tsv",
"val": "val.tsv"
}
)
#print(dataset)
if __name__=="__main__":
main()
```
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2000/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2000/timeline | null | completed | null | null | false | [
"Hi @itsLuisa !\r\n\r\nCould you give us more information about the error you're getting, please?\r\nA copy-paste of the Traceback would be nice to get a better understanding of what is wrong :) ",
"Hello @SBrandeis , this is it:\r\n```\r\nTraceback (most recent call last):\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 537, in incomplete_dir\r\n yield tmp_dir\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 578, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 656, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 982, in _prepare_split\r\n num_examples, num_bytes = writer.finalize()\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\arrow_writer.py\", line 297, in finalize\r\n self.write_on_file()\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\arrow_writer.py\", line 230, in write_on_file\r\n pa_array = pa.array(typed_sequence)\r\n File \"pyarrow\\array.pxi\", line 222, in pyarrow.lib.array\r\n File \"pyarrow\\array.pxi\", line 110, in pyarrow.lib._handle_arrow_array_protocol\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\arrow_writer.py\", line 97, in __arrow_array__\r\n out = pa.array(self.data, type=type)\r\n File \"pyarrow\\array.pxi\", line 305, in pyarrow.lib.array\r\n File \"pyarrow\\array.pxi\", line 39, in pyarrow.lib._sequence_to_array\r\n File \"pyarrow\\error.pxi\", line 122, in pyarrow.lib.pyarrow_internal_check_status\r\n File \"pyarrow\\error.pxi\", line 107, in pyarrow.lib.check_status\r\npyarrow.lib.ArrowTypeError: Expected bytes, got a 'list' object\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"C:/Users/Luisa/Documents/Uni/WS 2020,21/Neural Networks/Final_Project/NN_Project/data_loading.py\", line 122, in <module>\r\n main()\r\n File \"C:/Users/Luisa/Documents/Uni/WS 2020,21/Neural Networks/Final_Project/NN_Project/data_loading.py\", line 111, in main\r\n dataset = datasets.load_dataset(\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\load.py\", line 740, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 586, in download_and_prepare\r\n self._save_info()\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\contextlib.py\", line 131, in __exit__\r\n self.gen.throw(type, value, traceback)\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\site-packages\\datasets\\builder.py\", line 543, in incomplete_dir\r\n shutil.rmtree(tmp_dir)\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\shutil.py\", line 740, in rmtree\r\n return _rmtree_unsafe(path, onerror)\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\shutil.py\", line 618, in _rmtree_unsafe\r\n onerror(os.unlink, fullname, sys.exc_info())\r\n File \"C:\\Users\\Luisa\\AppData\\Local\\Programs\\Python\\Python38\\lib\\shutil.py\", line 616, in _rmtree_unsafe\r\n os.unlink(fullname)\r\nPermissionError: [WinError 32] Der Prozess kann nicht auf die Datei zugreifen, da sie von einem anderen Prozess verwendet wird: 'C:\\\\Users\\\\Luisa\\\\.cache\\\\huggingface\\\\datasets\\\\sample\\\\default-20ee7d51a6a9454f\\\\0.0.0\\\\5fc4c3a355ea77ab446bd31fca5082437600b8364d29b2b95264048bd1f398b1.incomplete\\\\sample-train.arrow'\r\n\r\nProcess finished with exit code 1\r\n```",
"Hi @itsLuisa, thanks for sharing the Traceback.\r\n\r\nYou are defining the \"id\" field as a `string` feature:\r\n```python\r\nclass Sample(datasets.GeneratorBasedBuilder):\r\n ...\r\n\r\n def _info(self):\r\n return datasets.DatasetInfo(\r\n features=datasets.Features(\r\n {\r\n \"id\": datasets.Value(\"string\"),\r\n # ^^ here\r\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\r\n \"pos_tags\": datasets.Sequence(datasets.features.ClassLabel(names=[...])),\r\n[...]\r\n```\r\n\r\nBut in the `_generate_examples`, the \"id\" field is a list:\r\n```python\r\nids = list()\r\n```\r\n\r\nChanging:\r\n```python\r\n\"id\": datasets.Value(\"string\"),\r\n```\r\nInto:\r\n```python\r\n\"id\": datasets.Sequence(datasets.Value(\"string\")),\r\n```\r\n\r\nShould fix your issue.\r\n\r\nLet me know if this helps!",
"It seems to be working now, thanks a lot for the help, @SBrandeis !",
"Glad to hear it!\r\nI'm closing the issue"
] |
https://api.github.com/repos/huggingface/datasets/issues/3124 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3124/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3124/comments | https://api.github.com/repos/huggingface/datasets/issues/3124/events | https://github.com/huggingface/datasets/pull/3124 | 1,031,976,286 | PR_kwDODunzps4td-5w | 3,124 | More efficient nested features encoding | [] | closed | false | null | 2 | 2021-10-21T01:55:31Z | 2021-11-02T15:07:13Z | 2021-11-02T11:04:04Z | null | Nested encoding of features wastes a lot of time on operations which are effectively doing nothing when lists are used.
For example, if in the input we have a list of integers, `encoded_nested_example` will iterate over it and apply `encoded_nested_example` on every element even though it just return the int as is.
A similar issue is handled at an earlier stage when casting pytorch/tensorflow/pandas objects to python lists/numpy arrays:
https://github.com/huggingface/datasets/blob/c98c23c4260edadab00f997d1a5d66b7f2e93ce9/src/datasets/features/features.py#L149-L156
https://github.com/huggingface/datasets/blob/c98c23c4260edadab00f997d1a5d66b7f2e93ce9/src/datasets/features/features.py#L212-L228
In this pull request I suggest to use the same approach in `encoded_nested_example`.
In my setup there was a major speedup with this change: loading the data was at least x4 faster. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3124/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3124/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3124.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3124",
"merged_at": "2021-11-02T11:04:04Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3124.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3124"
} | true | [
"@lhoestq @albertvillanova @mariosasko\r\nCan you please check this out?",
"Thanks, done!"
] |
https://api.github.com/repos/huggingface/datasets/issues/2214 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2214/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2214/comments | https://api.github.com/repos/huggingface/datasets/issues/2214/events | https://github.com/huggingface/datasets/issues/2214 | 856,333,657 | MDU6SXNzdWU4NTYzMzM2NTc= | 2,214 | load_metric error: module 'datasets.utils.file_utils' has no attribute 'add_start_docstrings' | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 4 | 2021-04-12T20:26:01Z | 2021-04-23T15:20:02Z | 2021-04-23T15:20:02Z | null | I'm having the same problem as [Notebooks issue 10](https://github.com/huggingface/notebooks/issues/10) on datasets 1.2.1, and it seems to be an issue with the datasets package.
```python
>>> from datasets import load_metric
>>> metric = load_metric("glue", "sst2")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/ext3/miniconda3/lib/python3.8/site-packages/datasets-1.2.1-py3.8.egg/datasets/load.py", line 502, in load_metric
File "/ext3/miniconda3/lib/python3.8/site-packages/datasets-1.2.1-py3.8.egg/datasets/load.py", line 66, in import_main_class
File "/ext3/miniconda3/lib/python3.8/importlib/__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "<frozen importlib._bootstrap>", line 1014, in _gcd_import
File "<frozen importlib._bootstrap>", line 991, in _find_and_load
File "<frozen importlib._bootstrap>", line 975, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 671, in _load_unlocked
File "<frozen importlib._bootstrap_external>", line 783, in exec_module
File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
File "/home/ns4008/.cache/huggingface/modules/datasets_modules/metrics/glue/e4606ab9804a36bcd5a9cebb2cb65bb14b6ac78ee9e6d5981fa679a495dd55de/glue.py", line 105, in <module>
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
AttributeError: module 'datasets.utils.file_utils' has no attribute 'add_start_docstrings'
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2214/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2214/timeline | null | completed | null | null | false | [
"Hi @nsaphra, thanks for reporting.\r\n\r\nThis issue was fixed in `datasets` version 1.3.0. Could you please update `datasets` and tell me if the problem persists?\r\n```shell\r\npip install -U datasets\r\n```",
"There might be a bug in the conda version of `datasets` 1.2.1 where the datasets/metric scripts are downloaded from `master` instead of the `1.2.1` repo.\r\n\r\nYou can try setting the env var `HF_SCRIPTS_VERSION=\"1.2.1\"` as a workaround. Let me know if that helps.",
"I just faced the same issue. I was using 1.2.1 from conda and received the same AttributeError complaining about 'add_start_docstrings'. Uninstalling the conda installed datasets and then installing the latest datasets (version 1.5.0) using pip install solved the issue for me. I don't like mixing up conda and pip installs in the same environments but this will have to do for now, until 1.5.0 is made available through conda.",
"Yep, seems to have fixed things! The conda package could really do with an update. Thanks!"
] |
https://api.github.com/repos/huggingface/datasets/issues/4128 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4128/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4128/comments | https://api.github.com/repos/huggingface/datasets/issues/4128/events | https://github.com/huggingface/datasets/pull/4128 | 1,197,326,311 | PR_kwDODunzps4138I6 | 4,128 | More robust `cast_to_python_objects` in `TypedSequence` | [] | closed | false | null | 1 | 2022-04-08T13:33:35Z | 2022-04-13T14:07:41Z | 2022-04-13T14:01:16Z | null | Adds a fallback to run an expensive version of `cast_to_python_objects` which exhaustively checks entire lists to avoid the `ArrowInvalid: Could not convert` error in `TypedSequence`. Currently, this error can happen in situations where only some images are decoded in `map`, in which case `cast_to_python_objects` fails to recognize that it needs to cast `PIL.Image` objects if they are not at the beginning of the sequence and stops after the first image dictionary (e.g., if `data` is `[{"bytes": None, "path": "some path"}, PIL.Image(), ...]`)
Fix #4124 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4128/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4128/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4128.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4128",
"merged_at": "2022-04-13T14:01:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4128.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4128"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._"
] |
https://api.github.com/repos/huggingface/datasets/issues/610 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/610/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/610/comments | https://api.github.com/repos/huggingface/datasets/issues/610/events | https://github.com/huggingface/datasets/issues/610 | 698,349,388 | MDU6SXNzdWU2OTgzNDkzODg= | 610 | Load text file for RoBERTa pre-training. | [] | closed | false | null | 43 | 2020-09-10T18:41:38Z | 2022-11-22T13:51:24Z | 2022-11-22T13:51:23Z | null | I migrate my question from https://github.com/huggingface/transformers/pull/4009#issuecomment-690039444
I tried to train a Roberta from scratch using transformers. But I got OOM issues with loading a large text file.
According to the suggestion from @thomwolf , I tried to implement `datasets` to load my text file. This test.txt is a simple sample where each line is a sentence.
```
from datasets import load_dataset
dataset = load_dataset('text', data_files='test.txt',cache_dir="./")
dataset.set_format(type='torch',columns=["text"])
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
next(iter(dataloader))
```
But dataload cannot yield sample and error is:
```
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-12-388aca337e2f> in <module>
----> 1 next(iter(dataloader))
/Library/Python/3.7/site-packages/torch/utils/data/dataloader.py in __next__(self)
361
362 def __next__(self):
--> 363 data = self._next_data()
364 self._num_yielded += 1
365 if self._dataset_kind == _DatasetKind.Iterable and \
/Library/Python/3.7/site-packages/torch/utils/data/dataloader.py in _next_data(self)
401 def _next_data(self):
402 index = self._next_index() # may raise StopIteration
--> 403 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
404 if self._pin_memory:
405 data = _utils.pin_memory.pin_memory(data)
/Library/Python/3.7/site-packages/torch/utils/data/_utils/fetch.py in fetch(self, possibly_batched_index)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
/Library/Python/3.7/site-packages/torch/utils/data/_utils/fetch.py in <listcomp>(.0)
42 def fetch(self, possibly_batched_index):
43 if self.auto_collation:
---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]
45 else:
46 data = self.dataset[possibly_batched_index]
KeyError: 0
```
`dataset.set_format(type='torch',columns=["text"])` returns a log says:
```
Set __getitem__(key) output type to torch for ['text'] columns (when key is int or slice) and don't output other (un-formatted) columns.
```
I noticed the dataset is `DatasetDict({'train': Dataset(features: {'text': Value(dtype='string', id=None)}, num_rows: 44)})`.
Each sample can be accessed by `dataset["train"]["text"]` instead of `dataset["text"]`.
Could you please give me any suggestions on how to modify this code to load the text file?
Versions:
Python version 3.7.3
PyTorch version 1.6.0
TensorFlow version 2.3.0
datasets version: 1.0.1 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/610/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/610/timeline | null | completed | null | null | false | [
"Could you try\r\n```python\r\nload_dataset('text', data_files='test.txt',cache_dir=\"./\", split=\"train\")\r\n```\r\n?\r\n\r\n`load_dataset` returns a dictionary by default, like {\"train\": your_dataset}",
"Hi @lhoestq\r\nThanks for your suggestion.\r\n\r\nI tried \r\n```\r\ndataset = load_dataset('text', data_files='test.txt',cache_dir=\"./\", split=\"train\")\r\nprint(dataset)\r\ndataset.set_format(type='torch',columns=[\"text\"])\r\ndataloader = torch.utils.data.DataLoader(dataset, batch_size=8)\r\nnext(iter(dataloader))\r\n```\r\n\r\nBut it still doesn't work and got error:\r\n```\r\n---------------------------------------------------------------------------\r\nTypeError Traceback (most recent call last)\r\n<ipython-input-7-388aca337e2f> in <module>\r\n----> 1 next(iter(dataloader))\r\n\r\n/Library/Python/3.7/site-packages/torch/utils/data/dataloader.py in __next__(self)\r\n 361 \r\n 362 def __next__(self):\r\n--> 363 data = self._next_data()\r\n 364 self._num_yielded += 1\r\n 365 if self._dataset_kind == _DatasetKind.Iterable and \\\r\n\r\n/Library/Python/3.7/site-packages/torch/utils/data/dataloader.py in _next_data(self)\r\n 401 def _next_data(self):\r\n 402 index = self._next_index() # may raise StopIteration\r\n--> 403 data = self._dataset_fetcher.fetch(index) # may raise StopIteration\r\n 404 if self._pin_memory:\r\n 405 data = _utils.pin_memory.pin_memory(data)\r\n\r\n/Library/Python/3.7/site-packages/torch/utils/data/_utils/fetch.py in fetch(self, possibly_batched_index)\r\n 42 def fetch(self, possibly_batched_index):\r\n 43 if self.auto_collation:\r\n---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]\r\n 45 else:\r\n 46 data = self.dataset[possibly_batched_index]\r\n\r\n/Library/Python/3.7/site-packages/torch/utils/data/_utils/fetch.py in <listcomp>(.0)\r\n 42 def fetch(self, possibly_batched_index):\r\n 43 if self.auto_collation:\r\n---> 44 data = [self.dataset[idx] for idx in possibly_batched_index]\r\n 45 else:\r\n 46 data = self.dataset[possibly_batched_index]\r\n\r\n/Library/Python/3.7/site-packages/datasets-0.4.0-py3.7.egg/datasets/arrow_dataset.py in __getitem__(self, key)\r\n 1069 format_columns=self._format_columns,\r\n 1070 output_all_columns=self._output_all_columns,\r\n-> 1071 format_kwargs=self._format_kwargs,\r\n 1072 )\r\n 1073 \r\n\r\n/Library/Python/3.7/site-packages/datasets-0.4.0-py3.7.egg/datasets/arrow_dataset.py in _getitem(self, key, format_type, format_columns, output_all_columns, format_kwargs)\r\n 1056 format_columns=format_columns,\r\n 1057 output_all_columns=output_all_columns,\r\n-> 1058 format_kwargs=format_kwargs,\r\n 1059 )\r\n 1060 return outputs\r\n\r\n/Library/Python/3.7/site-packages/datasets-0.4.0-py3.7.egg/datasets/arrow_dataset.py in _convert_outputs(self, outputs, format_type, format_columns, output_all_columns, format_kwargs)\r\n 872 continue\r\n 873 if format_columns is None or k in format_columns:\r\n--> 874 v = map_nested(command, v, **map_nested_kwargs)\r\n 875 output_dict[k] = v\r\n 876 return output_dict\r\n\r\n/Library/Python/3.7/site-packages/datasets-0.4.0-py3.7.egg/datasets/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types)\r\n 214 # Singleton\r\n 215 if not isinstance(data_struct, dict) and not isinstance(data_struct, types):\r\n--> 216 return function(data_struct)\r\n 217 \r\n 218 disable_tqdm = bool(logger.getEffectiveLevel() > INFO)\r\n\r\n/Library/Python/3.7/site-packages/datasets-0.4.0-py3.7.egg/datasets/arrow_dataset.py in command(x)\r\n 833 if x.dtype == np.object: # pytorch tensors cannot be instantied from an array of objects\r\n 834 return [map_nested(command, i, **map_nested_kwargs) for i in x]\r\n--> 835 return torch.tensor(x, **format_kwargs)\r\n 836 \r\n 837 elif format_type == \"tensorflow\":\r\n\r\nTypeError: new(): invalid data type 'str'\r\n```\r\n\r\nI found type can be ['numpy', 'torch', 'tensorflow', 'pandas'] only, how can I deal with the string type?",
"You need to tokenize the string inputs to convert them in integers before you can feed them to a pytorch dataloader.\r\n\r\nYou can read the quicktour of the datasets or the transformers libraries to know more about that:\r\n- transformers: https://huggingface.co/transformers/quicktour.html\r\n- dataset: https://huggingface.co/docs/datasets/quicktour.html",
"Hey @chiyuzhang94, I was also having trouble in loading a large text file (11GB).\r\nBut finally got it working. This is what I did after looking into the documentation.\r\n\r\n1. split the whole dataset file into smaller files\r\n```bash\r\nmkdir ./shards\r\nsplit -a 4 -l 256000 -d full_raw_corpus.txt ./shards/shard_\r\n````\r\n2. Pass paths of small data files to `load_dataset`\r\n```python\r\nfiles = glob.glob('shards/*')\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('text', data_files=files, split='train')\r\n```\r\n(On passing the whole dataset file (11GB) directly to `load_dataset` was resulting into RAM issue)\r\n\r\n3. Tokenization\r\n```python\r\ndef encode(examples):\r\n return tokenizer(examples['text'], truncation=True, padding='max_length')\r\ndataset = dataset.map(encode, batched=True)\r\ndataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])\r\n```\r\n Now you can pass `dataset` to `Trainer` or `pytorch DataLoader`\r\n```python\r\ndataloader = torch.utils.data.DataLoader(dataset, batch_size=4)\r\nnext(iter(dataloader))\r\n```\r\nHope this helps\r\n",
"Thanks, @thomwolf and @sipah00 ,\r\n\r\nI tried to implement your suggestions in my scripts. \r\nNow, I am facing some connection time-out error. I am using my local file, I have no idea why the module request s3 database.\r\n\r\nThe log is:\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/.local/lib/python3.6/site-packages/requests/adapters.py\", line 449, in send\r\n raise err\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/util/connection.py\", line 74, in create_connection\r\n timeout=timeout\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/connectionpool.py\", line 720, in urlopen\r\n sock.connect(sa)\r\nTimeoutError: [Errno 110] Connection timed out\r\n\r\nTraceback (most recent call last):\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/connectionpool.py\", line 672, in urlopen\r\n method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2]\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/util/retry.py\", line 436, in increment\r\n chunked=chunked,\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/connectionpool.py\", line 376, in _make_request\r\n raise MaxRetryError(_pool, url, error or ResponseError(cause))\r\nurllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/text/text.py (Caused by NewConnectionError('<urllib3.connection.VerifiedHTTPSConnection obj\r\nect at 0x7fff401e0e48>: Failed to establish a new connection: [Errno 110] Connection timed out',))\r\n\r\nTraceback (most recent call last):\r\n File \"/scratch/roberta_emohash/run_language_modeling.py\", line 1019, in <module>\r\n main()\r\n File \"/scratch/roberta_emohash/run_language_modeling.py\", line 962, in main\r\n train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)\r\n File \"/scratch/roberta_emohash/run_language_modeling.py\", line 177, in load_and_cache_examples\r\n return HG_Datasets(tokenizer, file_path, args)\r\n File \"/scratch/roberta_emohash/run_language_modeling.py\", line 117, in HG_Datasets\r\n dataset = load_dataset('text', data_files=files, cache_dir = args.data_cache_dir, split=\"train\")\r\n File \"/arc/project/evn_py36/datasets/datasets/src/datasets/load.py\", line 590, in load_dataset\r\n self._validate_conn(conn)\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/connectionpool.py\", line 994, in _validate_conn\r\n conn.connect()\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/connection.py\", line 300, in connect\r\n conn = self._new_conn()\r\n File \"/home/.local/lib/python3.6/site-packages/urllib3/connection.py\", line 169, in _new_conn\r\n self, \"Failed to establish a new connection: %s\" % e\r\nurllib3.exceptions.NewConnectionError: <urllib3.connection.VerifiedHTTPSConnection object at 0x7fff401e0da0>: Failed to establish a new connection: [Errno 110] Connection timed out\r\n\r\n``` \r\n\r\nDo you have any experience on this issue?",
"No, I didn't encounter this problem, it seems to me a network problem",
"I noticed this is because I use a cloud server where does not provide for connections from our standard compute nodes to outside resources. \r\n\r\nFor the `datasets` package, it seems that if the loading script is not already cached in the library it will attempt to connect to an AWS resource to download the dataset loading script. \r\n\r\nI am wondering why the package works in this way. Do you have any suggestions to solve this issue? ",
"I solved the above issue by downloading text.py manually and passing the path to the `load_dataset` function. \r\n\r\nNow, I have a new issue with the Read-only file system.\r\n\r\nThe error is: \r\n```\r\nI0916 22:14:38.453380 140737353971520 filelock.py:274] Lock 140734268996072 acquired on /scratch/chiyuzh/roberta/text.py.lock\r\nFound main folder for dataset /scratch/chiyuzh/roberta/text.py at /home/chiyuzh/.cache/huggingface/modules/datasets_modules/datasets/text\r\nCreating specific version folder for dataset /scratch/chiyuzh/roberta/text.py at /home/chiyuzh/.cache/huggingface/modules/datasets_modules/datasets/text/512f465342e4f4cd07a8791428a629c043bb89d55ad7817cbf7fcc649178b014\r\nI0916 22:14:38.530371 140737353971520 filelock.py:318] Lock 140734268996072 released on /scratch/chiyuzh/roberta/text.py.lock\r\nTraceback (most recent call last):\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling_hg.py\", line 1019, in <module>\r\n main()\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling_hg.py\", line 962, in main\r\n train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling_hg.py\", line 177, in load_and_cache_examples\r\n return HG_Datasets(tokenizer, file_path, args)\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling_hg.py\", line 117, in HG_Datasets\r\n dataset = load_dataset('/scratch/chiyuzh/roberta/text.py', data_files=files, cache_dir = args.data_cache_dir, split=\"train\")\r\n File \"/arc/project/chiyuzh/evn_py36/datasets/src/datasets/load.py\", line 590, in load_dataset\r\n path, script_version=script_version, download_config=download_config, download_mode=download_mode, dataset=True\r\n File \"/arc/project/chiyuzh/evn_py36/datasets/src/datasets/load.py\", line 385, in prepare_module\r\n os.makedirs(hash_folder_path)\r\n File \"/project/chiyuzh/evn_py36/lib/python3.6/os.py\", line 220, in makedirs\r\n mkdir(name, mode)\r\nOSError: [Errno 30] Read-only file system: '/home/chiyuzh/.cache/huggingface/modules/datasets_modules/datasets/text/512f465342e4f4cd07a8791428a629c043bb89d55ad7817cbf7fcc649178b014'\r\n\r\n```\r\n\r\nI installed datasets at /project/chiyuzh/evn_py36/datasets/src where is a writable directory.\r\nI also tried change the environment variables to the writable directory:\r\n`export HF_MODULES_PATH=/project/chiyuzh/evn_py36/datasets/cache_dir/`\r\n`export HF_DATASETS_CACHE=/project/chiyuzh/evn_py36/datasets/cache_dir/`\r\n \r\nIn my scripts, I also changed to:\r\n`dataset = load_dataset('/scratch/chiyuzh/roberta/text.py', data_files=files, cache_dir = args.data_cache_dir, split=\"train\")`\r\n`data_cache_dir = $TMPDIR/data/` that also a writable directory.\r\n \r\nBut it still try to make directory at /home/chiyuzh/.cache/huggingface/modules/.\r\nDo you have any idea about this issue? @thomwolf \r\n",
"> Hey @chiyuzhang94, I was also having trouble in loading a large text file (11GB).\r\n> But finally got it working. This is what I did after looking into the documentation.\r\n> \r\n> 1. split the whole dataset file into smaller files\r\n> \r\n> ```shell\r\n> mkdir ./shards\r\n> split -a 4 -l 256000 -d full_raw_corpus.txt ./shards/shard_\r\n> ```\r\n> \r\n> 1. Pass paths of small data files to `load_dataset`\r\n> \r\n> ```python\r\n> files = glob.glob('shards/*')\r\n> from datasets import load_dataset\r\n> dataset = load_dataset('text', data_files=files, split='train')\r\n> ```\r\n> \r\n> (On passing the whole dataset file (11GB) directly to `load_dataset` was resulting into RAM issue)\r\n> \r\n> 1. Tokenization\r\n> \r\n> ```python\r\n> def encode(examples):\r\n> return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> dataset = dataset.map(encode, batched=True)\r\n> dataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])\r\n> ```\r\n> \r\n> Now you can pass `dataset` to `Trainer` or `pytorch DataLoader`\r\n> \r\n> ```python\r\n> dataloader = torch.utils.data.DataLoader(dataset, batch_size=4)\r\n> next(iter(dataloader))\r\n> ```\r\n> \r\n> Hope this helps\r\n\r\nWhen I run 'dataset = dataset.map(encode, batched=True)',\r\nI encountered a problem like this:\r\n\r\n> Testing the mapped function outputs\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/dataset_dict.py\", line 300, in map\r\n for k, dataset in self.items()\r\n File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/dataset_dict.py\", line 300, in <dictcomp>\r\n for k, dataset in self.items()\r\n File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1224, in map\r\n update_data = does_function_return_dict(test_inputs, test_indices)\r\n File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1195, in does_function_return_dict\r\n function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs)\r\n File \"<stdin>\", line 3, in encode\r\nTypeError: __init__() takes 1 positional argument but 2 were given",
"> > Hey @chiyuzhang94, I was also having trouble in loading a large text file (11GB).\r\n> > But finally got it working. This is what I did after looking into the documentation.\r\n> > \r\n> > 1. split the whole dataset file into smaller files\r\n> > \r\n> > ```shell\r\n> > mkdir ./shards\r\n> > split -a 4 -l 256000 -d full_raw_corpus.txt ./shards/shard_\r\n> > ```\r\n> > \r\n> > \r\n> > \r\n> > 1. Pass paths of small data files to `load_dataset`\r\n> > \r\n> > ```python\r\n> > files = glob.glob('shards/*')\r\n> > from datasets import load_dataset\r\n> > dataset = load_dataset('text', data_files=files, split='train')\r\n> > ```\r\n> > \r\n> > \r\n> > (On passing the whole dataset file (11GB) directly to `load_dataset` was resulting into RAM issue)\r\n> > \r\n> > 1. Tokenization\r\n> > \r\n> > ```python\r\n> > def encode(examples):\r\n> > return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> > dataset = dataset.map(encode, batched=True)\r\n> > dataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])\r\n> > ```\r\n> > \r\n> > \r\n> > Now you can pass `dataset` to `Trainer` or `pytorch DataLoader`\r\n> > ```python\r\n> > dataloader = torch.utils.data.DataLoader(dataset, batch_size=4)\r\n> > next(iter(dataloader))\r\n> > ```\r\n> > \r\n> > \r\n> > Hope this helps\r\n> \r\n> When I run 'dataset = dataset.map(encode, batched=True)',\r\n> I encountered a problem like this:\r\n> \r\n> > Testing the mapped function outputs\r\n> > Traceback (most recent call last):\r\n> > File \"\", line 1, in \r\n> > File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/dataset_dict.py\", line 300, in map\r\n> > for k, dataset in self.items()\r\n> > File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/dataset_dict.py\", line 300, in \r\n> > for k, dataset in self.items()\r\n> > File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1224, in map\r\n> > update_data = does_function_return_dict(test_inputs, test_indices)\r\n> > File \"/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1195, in does_function_return_dict\r\n> > function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs)\r\n> > File \"\", line 3, in encode\r\n> > TypeError: **init**() takes 1 positional argument but 2 were given\r\n\r\nWhat is your encoder function?",
"> ```python\r\n> def encode(examples):\r\n> return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> ```\r\n\r\nIt is the same as suggested:\r\n\r\n> def encode(examples):\r\n return tokenizer(examples['text'], truncation=True, padding='max_length')",
"> > ```python\r\n> > def encode(examples):\r\n> > return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> > ```\r\n> \r\n> It is the same as suggested:\r\n> \r\n> > def encode(examples):\r\n> > return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n\r\nDo you use this function in a `class` object? \r\n\r\ninit() takes 1 positional argument but 2 were given. I guess the additional argument is self?",
"> > > ```python\r\n> > > def encode(examples):\r\n> > > return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> > > ```\r\n> > \r\n> > \r\n> > It is the same as suggested:\r\n> > > def encode(examples):\r\n> > > return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> \r\n> Do you use this function in a `class` object?\r\n> \r\n> init() takes 1 positional argument but 2 were given. I guess the additional argument is self?\r\n\r\nThanks for your reply.\r\nCould you provide some simple example here?\r\nCurrently, I do not use this function in a class object. \r\nI think you are right and I was wondering how to construct this class.\r\nI try to modify it based on transformers' LineByLineTextDataset. Am I correct?\r\n\r\n> class LineByLineTextDataset(Dataset):\r\n \"\"\"\r\n This will be superseded by a framework-agnostic approach\r\n soon.\r\n \"\"\"\r\n\r\n def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):\r\n assert os.path.isfile(file_path), f\"Input file path {file_path} not found\"\r\n # Here, we do not cache the features, operating under the assumption\r\n # that we will soon use fast multithreaded tokenizers from the\r\n # `tokenizers` repo everywhere =)\r\n #logger.info(\"Creating features from dataset file at %s\", file_path)\r\n #with open(file_path, encoding=\"utf-8\") as f:\r\n # lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]\r\n #batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)\r\n\r\n\timport glob\r\n\tfiles = glob.glob('/home/mtzhang111/fairseq/cs_doc/shards/shard_003*')\r\n\tfrom datasets import load_dataset\r\n\tdataset = load_dataset('text', data_files=files)\r\n batch_encoding= dataset.map(encode, batched=True)\r\n self.examples = batch_encoding[\"input_ids\"]\r\n\t\r\n\r\n def encode(examples):\r\n return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n\r\n def __len__(self):\r\n return len(self.examples)\r\n\r\n def __getitem__(self, i) -> torch.Tensor:\r\n return torch.tensor(self.examples[i], dtype=torch.long)\r\n",
"> > > > ```python\r\n> > > > def encode(examples):\r\n> > > > return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> > > > ```\r\n> > > \r\n> > > \r\n> > > It is the same as suggested:\r\n> > > > def encode(examples):\r\n> > > > return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> > \r\n> > \r\n> > Do you use this function in a `class` object?\r\n> > init() takes 1 positional argument but 2 were given. I guess the additional argument is self?\r\n> \r\n> Thanks for your reply.\r\n> Could you provide some simple example here?\r\n> Currently, I do not use this function in a class object.\r\n> I think you are right and I was wondering how to construct this class.\r\n> I try to modify it based on transformers' LineByLineTextDataset. Am I correct?\r\n> \r\n> > class LineByLineTextDataset(Dataset):\r\n> > \"\"\"\r\n> > This will be superseded by a framework-agnostic approach\r\n> > soon.\r\n> > \"\"\"\r\n> \r\n> ```\r\n> def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):\r\n> assert os.path.isfile(file_path), f\"Input file path {file_path} not found\"\r\n> # Here, we do not cache the features, operating under the assumption\r\n> # that we will soon use fast multithreaded tokenizers from the\r\n> # `tokenizers` repo everywhere =)\r\n> #logger.info(\"Creating features from dataset file at %s\", file_path)\r\n> #with open(file_path, encoding=\"utf-8\") as f:\r\n> # lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]\r\n> #batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)\r\n> \r\n> import glob\r\n> files = glob.glob('/home/mtzhang111/fairseq/cs_doc/shards/shard_003*')\r\n> from datasets import load_dataset\r\n> dataset = load_dataset('text', data_files=files)\r\n> batch_encoding= dataset.map(encode, batched=True)\r\n> self.examples = batch_encoding[\"input_ids\"]\r\n> \r\n> \r\n> def encode(examples):\r\n> return tokenizer(examples['text'], truncation=True, padding='max_length')\r\n> \r\n> def __len__(self):\r\n> return len(self.examples)\r\n> \r\n> def __getitem__(self, i) -> torch.Tensor:\r\n> return torch.tensor(self.examples[i], dtype=torch.long)\r\n> ```\r\n\r\nI am also struggling with this adaptation. \r\nI am not sure whether I am right.\r\n\r\nI think you don't need to construct `class LazyLineByLineTextDataset(Dataset)` at all. \r\ntorch.utils.data.Dataset is a generator. \r\n\r\nNow, we use `dataset = dataset.map(encode, batched=True)` as a generator. So we just pass dataset to torch.utils.data.DataLoader. ",
"@chiyuzhang94 Thanks for your reply. After some changes, currently, I managed to make the data loading process running.\r\nI published it in case you might want to take a look. Thanks for your help!\r\nhttps://github.com/shizhediao/Transformers_TPU",
"Hi @shizhediao ,\r\n\r\nThanks! It looks great!\r\n\r\nBut my problem still is the cache directory is a read-only file system. \r\n[As I mentioned](https://github.com/huggingface/datasets/issues/610#issuecomment-693912285), I tried to change the cache directory but it didn't work. \r\n\r\nDo you have any suggestions?\r\n\r\n",
"> I installed datasets at /project/chiyuzh/evn_py36/datasets/src where is a writable directory.\r\n> I also tried change the environment variables to the writable directory:\r\n> `export HF_MODULES_PATH=/project/chiyuzh/evn_py36/datasets/cache_dir/`\r\n\r\nI think it is `HF_MODULES_CACHE` and not `HF_MODULES_PATH` @chiyuzhang94 .\r\nCould you try again and let me know if it fixes your issue ?\r\n",
"We should probably add a section in the doc on the caching system with the env variables in particular.",
"Hi @thomwolf , @lhoestq ,\r\n\r\nThanks for your suggestions. With the latest version of this package, I can load text data without Internet. \r\n\r\nBut I found the speed of dataset loading is very slow. \r\n\r\nMy scrips like this: \r\n```\r\n def token_encode(examples):\r\n tokenizer_out = tokenizer(examples['text'], truncation=True, padding=\"max_length\", add_special_tokens=True, max_length=args.block_size)\r\n return tokenizer_out\r\n \r\n path = Path(file_path)\r\n files = sorted(path.glob('*'))\r\n dataset = load_dataset('./text.py', data_files=files, cache_dir = args.data_cache_dir, split=\"train\")\r\n dataset = dataset.map(token_encode, batched=True)\r\n\r\n dataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])\r\n```\r\n\r\nI have 1,123,870,657 lines in my input directory. \r\nI can find the processing speed as following. It is very slow. \r\n```\r\n| 13/1123871 [00:02<62:37:39, 4.98ba/s]^M 0%| \r\n| 14/1123871 [00:03<61:27:31, 5.08ba/s]^M 0%| \r\n| 15/1123871 [00:03<66:34:19, 4.69ba/s]^M 0%| \r\n| 16/1123871 [00:03<68:25:01, 4.56ba/s]^M 0%| \r\n| 17/1123871 [00:03<72:00:03, 4.34ba/s]^M 0%| \r\n```\r\nDo you have any suggestions to accelerate this loading process?",
"You can use multiprocessing by specifying `num_proc=` in `.map()`\r\n\r\nAlso it looks like you have `1123871` batches of 1000 elements (default batch size), i.e. 1,123,871,000 lines in total.\r\nAm I right ?",
"> You can use multiprocessing by specifying `num_proc=` in `.map()`\r\n> \r\n> Also it looks like you have `1123871` batches of 1000 elements (default batch size), i.e. 1,123,871,000 lines in total.\r\n> Am I right ?\r\n\r\nHi @lhoestq ,\r\n\r\nThanks. I will try it.\r\n\r\nYou are right. I have 1,123,870,657 lines totally in the path. I split the large file into 440 small files. Each file has 2,560,000 lines.\r\n\r\nI have another question. Because I am using a cloud server where only allows running a job up to 7 days. Hence, I need to resume my model every week. If the script needs to load and process the dataset every time. It is very low efficient based on the current processing speed. Is it possible that I process the dataset once and use the process cache to in the future work? \r\n",
"Hi @lhoestq ,\r\n\r\nI tried to use multi-processor, but I got errors as follow: \r\nBecause I am using python distributed training, it seems some conflicts with the distributed job. \r\n\r\nDo you have any suggestions?\r\n```\r\nI0925 10:19:35.603023 140737353971520 filelock.py:318] Lock 140737229443368 released on /tmp/pbs.1120510.pbsha.ib.sockeye/cache/_tmp_pbs.1120510.pbsha.ib.sockeye_cache_text_default-7fb934ed6fac5d01_0.0.0_512f465342e4f4cd07a8791428a629c043bb89d55ad7817cbf7\r\nfcc649178b014.lock\r\nTraceback (most recent call last):\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling.py\", line 1024, in <module>\r\n main()\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling.py\", line 967, in main\r\n train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling.py\", line 180, in load_and_cache_examples\r\n return HG_Datasets(tokenizer, file_path, args)\r\n File \"/scratch/chiyuzh/roberta/run_language_modeling.py\", line 119, in HG_Datasets\r\n dataset = dataset.map(token_encode, batched=True, batch_size = 10000, num_proc = 16)\r\n File \"/project/chiyuzh/evn_py36/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1287, in map\r\n transformed_shards = [r.get() for r in results]\r\n File \"/project/chiyuzh/evn_py36/lib/python3.6/site-packages/datasets/arrow_dataset.py\", line 1287, in <listcomp>\r\n transformed_shards = [r.get() for r in results]\r\n File \"/project/chiyuzh/evn_py36/lib/python3.6/multiprocessing/pool.py\", line 644, in get\r\n raise self._value\r\n File \"/project/chiyuzh/evn_py36/lib/python3.6/multiprocessing/pool.py\", line 424, in _handle_tasks\r\n put(task)\r\n File \"/project/chiyuzh/evn_py36/lib/python3.6/multiprocessing/connection.py\", line 206, in send\r\n self._send_bytes(_ForkingPickler.dumps(obj))\r\n File \"/project/chiyuzh/evn_py36/lib/python3.6/multiprocessing/reduction.py\", line 51, in dumps\r\n cls(buf, protocol).dump(obj)\r\nAttributeError: Can't pickle local object 'HG_Datasets.<locals>.token_encode'\r\n```",
"For multiprocessing, the function given to `map` must be picklable.\r\nMaybe you could try to define `token_encode` outside `HG_Datasets` ?\r\n\r\nAlso maybe #656 could make functions defined locally picklable for multiprocessing, once it's merged.",
"> I have another question. Because I am using a cloud server where only allows running a job up to 7 days. Hence, I need to resume my model every week. If the script needs to load and process the dataset every time. It is very low efficient based on the current processing speed. Is it possible that I process the dataset once and use the process cache to in the future work?\r\n\r\nFeel free to save your processed dataset using `dataset.save_to_disk(\"path/to/save/directory\")`.\r\n\r\nThen you'll be able to reload it again using\r\n```python\r\nfrom datasets import load_from_disk\r\n\r\ndataset = load_from_disk(\"path/to/save/directory\")\r\n```",
"Hi @lhoestq ,\r\n\r\nThanks for your suggestion. \r\nI tried to process the dataset and save it to disk. \r\nI have 1.12B samples in the raw dataset. I used 16 processors.\r\nI run this process job for 7 days. But it didn't finish. I don't why the processing is such slow. \r\n\r\nThe log shows that some processors (\\#12, \\#14, \\#15) are very slow. The different processor has a different speed. These slow processors look like a bottleneck. \r\n\r\nCould you please give me any suggestion to improve the processing speed? \r\n\r\nThanks. \r\nChiyu\r\n\r\nHere is my code:\r\n```\r\ndef token_encode(examples):\r\n tokenizer_out = tokenizer(examples['text'], truncation=True, padding=\"max_length\", add_special_tokens=True, max_length=args.block_size)\r\n return tokenizer_out\r\n\r\npath = Path(file_path)\r\nfiles = sorted(path.glob('*'))\r\ndataset = load_dataset('./text.py', data_files=files, cache_dir = args.data_cache_dir, split=\"train\")\r\ndataset = dataset.map(token_encode, batched=True, batch_size = 16384, num_proc = 16)\r\ndataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])\r\ndataset.save_to_disk(output_dir)\r\n```\r\nHere is the log. \r\n```\r\n^M#6: 1%|▏ | 59/4288 [55:10<66:11:58, 56.35s/ba]\r\n^M#1: 8%|▊ | 356/4288 [55:39<10:40:02, 9.77s/ba]\r\n^M#2: 5%|▍ | 210/4288 [55:33<17:47:19, 15.70s/ba]\r\n^M#0: 19%|█▉ | 836/4288 [55:53<4:08:56, 4.33s/ba]\r\n^M#0: 20%|█▉ | 837/4288 [55:57<4:01:52, 4.21s/ba]\r\n^M#1: 8%|▊ | 357/4288 [55:48<10:38:09, 9.74s/ba]\r\n^M#0: 20%|█▉ | 838/4288 [56:01<4:02:56, 4.23s/ba]\r\n^M#3: 4%|▎ | 155/4288 [55:43<24:41:20, 21.51s/ba]\r\n^M#0: 20%|█▉ | 839/4288 [56:05<4:04:48, 4.26s/ba]\r\n^M#12: 1%| | 29/4288 [54:50<133:20:53, 112.72s/ba]\r\n^M#2: 5%|▍ | 211/4288 [55:48<17:40:33, 15.61s/ba]\r\n^M#14: 0%| | 2/4288 [04:24<157:17:50, 132.12s/ba]\r\n^M#15: 0%| | 1/4288 [02:24<172:11:37, 144.60s/ba]\r\n```",
"Hi !\r\n\r\nAs far as I can tell, there could be several reasons for your processes to have different speeds:\r\n- some parts of your dataset have short passages while some have longer passages, that take more time to be processed\r\n- OR there are other processes running that prevent some of them to run at full speed\r\n- OR the value of `num_proc` is higher than the number of actual processes that you can run in parallel at full speed.\r\n\r\nSo I'd suggest you to check that you have nothing else running in parallel to your processing job, and also maybe take a look at the slow parts of the datasets.\r\nWhen doing multiprocessing, the dataset is sharded in `num_proc` contiguous parts that are processed individually in each process. If you want to take a look at the dataset processed in the 12th shard of 16 for example, you can do:\r\n\r\n```python\r\nmy_shard = dataset.shard(num_shards=16, index=12, contiguous=True)\r\n```\r\n\r\nHope this helps, let me know if you find what is causing this slow down.",
"Do you use a fast or a slow tokenizer from the `transformers` library @chiyuzhang94?",
"> Do you use a fast or a slow tokenizer from the `transformers` library @chiyuzhang94?\r\n\r\nHi @thomwolf ,\r\n I use this: \r\n```\r\nfrom transformers import\r\nAutoTokenizer.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)\r\n```\r\n\r\nI guess this is a slow one, let me explore the fast tokenizer. ",
"> Hi !\r\n> \r\n> As far as I can tell, there could be several reasons for your processes to have different speeds:\r\n> \r\n> * some parts of your dataset have short passages while some have longer passages, that take more time to be processed\r\n> * OR there are other processes running that prevent some of them to run at full speed\r\n> * OR the value of `num_proc` is higher than the number of actual processes that you can run in parallel at full speed.\r\n> \r\n> So I'd suggest you to check that you have nothing else running in parallel to your processing job, and also maybe take a look at the slow parts of the datasets.\r\n> When doing multiprocessing, the dataset is sharded in `num_proc` contiguous parts that are processed individually in each process. If you want to take a look at the dataset processed in the 12th shard of 16 for example, you can do:\r\n> \r\n> ```python\r\n> my_shard = dataset.shard(num_shards=16, index=12, contiguous=True)\r\n> ```\r\n> \r\n> Hope this helps, let me know if you find what is causing this slow down.\r\n\r\nHi @lhoestq ,\r\n\r\nThanks for your suggestions. \r\nI don't think my problem is due to any one of these seasons. \r\n\r\n1. I have 1,123,870,657 lines totally in the path. I split the large file into 440 small files. Each file has 2,560,000 lines. The last file is smaller a little bit. But they are similar. I randomly shuffled all the 1,123,870,657 lines. Hence, the sequences should also be similar across all the files. \r\n\r\n2. I run this script on the entire node. I requested all the resources on the nodes (40 CPUs, 384GB memory). Hence, these were not any other processes. \r\n\r\n 3. As I say, the node has 40 CPUs, but I set num_proc = 16. This should not be a problem.",
"Hi @thomwolf \r\nI am using `RobertaTokenizerFast` now. \r\n\r\nBut the speed is still imbalanced, some processors are still slow. \r\nHere is the part of the log. #0 is always much fast than lower rank processors. \r\n\r\n```\r\n#15: 3%|▎ | 115/3513 [3:18:36<98:01:33, 103.85s/ba]\r\n#2: 24%|██▍ | 847/3513 [3:20:43<11:06:49, 15.01s/ba]\r\n#1: 37%|███▋ | 1287/3513 [3:20:52<6:19:02, 10.22s/ba]\r\n#0: 72%|███████▏ | 2546/3513 [3:20:52<1:51:03, 6.89s/ba]\r\n#3: 18%|█▊ | 617/3513 [3:20:36<15:50:30, 19.69s/ba]\r\n#0: 73%|███████▎ | 2547/3513 [3:20:59<1:50:25, 6.86s/ba]\r\n#1: 37%|███▋ | 1288/3513 [3:21:02<6:21:13, 10.28s/ba]\r\n#7: 7%|▋ | 252/3513 [3:20:09<44:09:03, 48.74s/ba]\r\n#12: 4%|▍ | 144/3513 [3:19:19<78:00:54, 83.36s/ba]\r\n#4: 14%|█▍ | 494/3513 [3:20:37<20:46:06, 24.77s/ba]\r\n#0: 73%|███████▎ | 2548/3513 [3:21:06<1:49:26, 6.80s/ba]\r\n#2: 24%|██▍ | 848/3513 [3:20:58<11:06:17, 15.00s/ba]\r\n```\r\nHere is my script related to the datasets processing, \r\n\r\n```\r\ntokenizer = RobertaTokenizerFast.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)\r\n\r\ndef token_encode(examples):\r\n tokenizer_out = tokenizer(examples['text'], truncation=True, padding=\"max_length\", add_special_tokens=True, max_length=128)\r\n return tokenizer_out\r\n\r\ndef HG_Datasets(tokenizer, file_path, args):\r\n \r\n path = Path(file_path)\r\n files = sorted(path.glob('*'))\r\n dataset = load_dataset('./text.py', data_files=files, cache_dir = \"\"./, split=\"train\")\r\n dataset = dataset.map(token_encode, batched=True, batch_size = 20000, num_proc = 16)\r\n\r\n dataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])\r\n return dataset\r\n\r\n```\r\nI have 1,123,870,657 lines totally in the path. I split the large file into 440 small files. Each file has 2,560,000 lines.\r\n\r\nCould you please give any suggestion? Thanks very much!!"
] |
https://api.github.com/repos/huggingface/datasets/issues/4868 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4868/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4868/comments | https://api.github.com/repos/huggingface/datasets/issues/4868/events | https://github.com/huggingface/datasets/pull/4868 | 1,345,191,322 | PR_kwDODunzps49gBk0 | 4,868 | adding mafand to datasets | [
{
"color": "ffffff",
"default": true,
"description": "This will not be worked on",
"id": 1935892913,
"name": "wontfix",
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix"
}
] | closed | false | null | 6 | 2022-08-20T15:26:14Z | 2022-08-22T11:00:50Z | 2022-08-22T08:52:23Z | null | I'm addding the MAFAND dataset by Masakhane based on the paper/repository below:
Paper: https://aclanthology.org/2022.naacl-main.223/
Code: https://github.com/masakhane-io/lafand-mt
Please, help merge this
Everything works except for creating dummy data file | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4868/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4868/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/4868.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4868",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/4868.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4868"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Hi @dadelani, thanks for your awesome contribution!!! :heart: \r\n\r\nHowever, now we are using the Hub to add new datasets, instead of this GitHub repo. \r\n\r\nYou could share this dataset under your Hub organization namespace: [Masakhane NLP](https://huggingface.co/masakhane). This way the dataset will be accessible using:\r\n```python\r\nds = load_dataset(\"masakhane/mafand\")\r\n```\r\n\r\nYou have the procedure documented in our online docs: \r\n- [Create a dataset loading script](https://huggingface.co/docs/datasets/dataset_script)\r\n- [Share](https://huggingface.co/docs/datasets/share)\r\n\r\nMoreover, datasets shared on the Hub no longer need the dummy data files.\r\n\r\nPlease, feel free to ping me if you need any further guidance/support.",
"thank you for the comment. I have moved it to the Hub https://huggingface.co/datasets/masakhane/mafand",
"Great job, @dadelani!!\r\n\r\nPlease, note that in the README.md file, the YAML tags should be preceded and followed by three dashes `---`, so that they are properly parsed. See, e.g.: https://raw.githubusercontent.com/huggingface/datasets/main/templates/README.md",
"Also you could replace the line:\r\n```\r\n# Dataset Card for [Needs More Information]\r\n```\r\nwith\r\n```\r\n# Dataset Card for MAFAND-MT\r\n```",
"Great, thank you for the feedback. I have fixed both issues."
] |
https://api.github.com/repos/huggingface/datasets/issues/4210 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4210/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4210/comments | https://api.github.com/repos/huggingface/datasets/issues/4210/events | https://github.com/huggingface/datasets/issues/4210 | 1,214,089,130 | I_kwDODunzps5IXYeq | 4,210 | TypeError: Cannot cast array data from dtype('O') to dtype('int64') according to the rule 'safe' | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | 5 | 2022-04-25T07:28:42Z | 2022-05-31T12:16:31Z | 2022-05-31T12:16:31Z | null | ### System Info
```shell
- `transformers` version: 4.18.0
- Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.13
- Huggingface_hub version: 0.5.1
- PyTorch version (GPU?): 1.10.0+cu111 (True)
- Tensorflow version (GPU?): 2.8.0 (True)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
```
### Who can help?
@LysandreJik
### Information
- [ ] The official example scripts
- [X] My own modified scripts
### Tasks
- [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)
- [X] My own task or dataset (give details below)
### Reproduction
```python
from datasets import load_dataset,Features,Value,ClassLabel
class_names = ["cmn","deu","rus","fra","eng","jpn","spa","ita","kor","vie","nld","epo","por","tur","heb","hun","ell","ind","ara","arz","fin","bul","yue","swe","ukr","bel","que","ces","swh","nno","wuu","nob","zsm","est","kat","pol","lat","urd","sqi","isl","fry","afr","ron","fao","san","bre","tat","yid","uig","uzb","srp","qya","dan","pes","slk","eus","cycl","acm","tgl","lvs","kaz","hye","hin","lit","ben","cat","bos","hrv","tha","orv","cha","mon","lzh","scn","gle","mkd","slv","frm","glg","vol","ain","jbo","tok","ina","nds","mal","tlh","roh","ltz","oss","ido","gla","mlt","sco","ast","jav","oci","ile","ota","xal","tel","sjn","nov","khm","tpi","ang","aze","tgk","tuk","chv","hsb","dsb","bod","sme","cym","mri","ksh","kmr","ewe","kab","ber","tpw","udm","lld","pms","lad","grn","mlg","xho","pnb","grc","hat","lao","npi","cor","nah","avk","mar","guj","pan","kir","myv","prg","sux","crs","ckt","bak","zlm","hil","cbk","chr","nav","lkt","enm","arq","lin","abk","pcd","rom","gsw","tam","zul","awa","wln","amh","bar","hbo","mhr","bho","mrj","ckb","osx","pfl","mgm","sna","mah","hau","kan","nog","sin","glv","dng","kal","liv","vro","apc","jdt","fur","che","haw","yor","crh","pdc","ppl","kin","shs","mnw","tet","sah","kum","ngt","nya","pus","hif","mya","moh","wol","tir","ton","lzz","oar","lug","brx","non","mww","hak","nlv","ngu","bua","aym","vec","ibo","tkl","bam","kha","ceb","lou","fuc","smo","gag","lfn","arg","umb","tyv","kjh","oji","cyo","urh","kzj","pam","srd","lmo","swg","mdf","gil","snd","tso","sot","zza","tsn","pau","som","egl","ady","asm","ori","dtp","cho","max","kam","niu","sag","ilo","kaa","fuv","nch","hoc","iba","gbm","sun","war","mvv","pap","ary","kxi","csb","pag","cos","rif","kek","krc","aii","ban","ssw","tvl","mfe","tah","bvy","bcl","hnj","nau","nst","afb","quc","min","tmw","mad","bjn","mai","cjy","got","hsn","gan","tzl","dws","ldn","afh","sgs","krl","vep","rue","tly","mic","ext","izh","sma","jam","cmo","mwl","kpv","koi","bis","ike","run","evn","ryu","mnc","aoz","otk","kas","aln","akl","yua","shy","fkv","gos","fij","thv","zgh","gcf","cay","xmf","tig","div","lij","rap","hrx","cpi","tts","gaa","tmr","iii","ltg","bzt","syc","emx","gom","chg","osp","stq","frr","fro","nys","toi","new","phn","jpa","rel","drt","chn","pli","laa","bal","hdn","hax","mik","ajp","xqa","pal","crk","mni","lut","ayl","ood","sdh","ofs","nus","kiu","diq","qxq","alt","bfz","klj","mus","srn","guc","lim","zea","shi","mnr","bom","sat","szl"]
features = Features({ 'label': ClassLabel(names=class_names), 'text': Value('string')})
num_labels = features['label'].num_classes
data_files = { "train": "train.csv", "test": "test.csv" }
sentences = load_dataset("loretoparisi/tatoeba-sentences",
data_files=data_files,
delimiter='\t',
column_names=['label', 'text'],
features = features
```
ERROR:
```
ClassLabel(num_classes=403, names=['cmn', 'deu', 'rus', 'fra', 'eng', 'jpn', 'spa', 'ita', 'kor', 'vie', 'nld', 'epo', 'por', 'tur', 'heb', 'hun', 'ell', 'ind', 'ara', 'arz', 'fin', 'bul', 'yue', 'swe', 'ukr', 'bel', 'que', 'ces', 'swh', 'nno', 'wuu', 'nob', 'zsm', 'est', 'kat', 'pol', 'lat', 'urd', 'sqi', 'isl', 'fry', 'afr', 'ron', 'fao', 'san', 'bre', 'tat', 'yid', 'uig', 'uzb', 'srp', 'qya', 'dan', 'pes', 'slk', 'eus', 'cycl', 'acm', 'tgl', 'lvs', 'kaz', 'hye', 'hin', 'lit', 'ben', 'cat', 'bos', 'hrv', 'tha', 'orv', 'cha', 'mon', 'lzh', 'scn', 'gle', 'mkd', 'slv', 'frm', 'glg', 'vol', 'ain', 'jbo', 'tok', 'ina', 'nds', 'mal', 'tlh', 'roh', 'ltz', 'oss', 'ido', 'gla', 'mlt', 'sco', 'ast', 'jav', 'oci', 'ile', 'ota', 'xal', 'tel', 'sjn', 'nov', 'khm', 'tpi', 'ang', 'aze', 'tgk', 'tuk', 'chv', 'hsb', 'dsb', 'bod', 'sme', 'cym', 'mri', 'ksh', 'kmr', 'ewe', 'kab', 'ber', 'tpw', 'udm', 'lld', 'pms', 'lad', 'grn', 'mlg', 'xho', 'pnb', 'grc', 'hat', 'lao', 'npi', 'cor', 'nah', 'avk', 'mar', 'guj', 'pan', 'kir', 'myv', 'prg', 'sux', 'crs', 'ckt', 'bak', 'zlm', 'hil', 'cbk', 'chr', 'nav', 'lkt', 'enm', 'arq', 'lin', 'abk', 'pcd', 'rom', 'gsw', 'tam', 'zul', 'awa', 'wln', 'amh', 'bar', 'hbo', 'mhr', 'bho', 'mrj', 'ckb', 'osx', 'pfl', 'mgm', 'sna', 'mah', 'hau', 'kan', 'nog', 'sin', 'glv', 'dng', 'kal', 'liv', 'vro', 'apc', 'jdt', 'fur', 'che', 'haw', 'yor', 'crh', 'pdc', 'ppl', 'kin', 'shs', 'mnw', 'tet', 'sah', 'kum', 'ngt', 'nya', 'pus', 'hif', 'mya', 'moh', 'wol', 'tir', 'ton', 'lzz', 'oar', 'lug', 'brx', 'non', 'mww', 'hak', 'nlv', 'ngu', 'bua', 'aym', 'vec', 'ibo', 'tkl', 'bam', 'kha', 'ceb', 'lou', 'fuc', 'smo', 'gag', 'lfn', 'arg', 'umb', 'tyv', 'kjh', 'oji', 'cyo', 'urh', 'kzj', 'pam', 'srd', 'lmo', 'swg', 'mdf', 'gil', 'snd', 'tso', 'sot', 'zza', 'tsn', 'pau', 'som', 'egl', 'ady', 'asm', 'ori', 'dtp', 'cho', 'max', 'kam', 'niu', 'sag', 'ilo', 'kaa', 'fuv', 'nch', 'hoc', 'iba', 'gbm', 'sun', 'war', 'mvv', 'pap', 'ary', 'kxi', 'csb', 'pag', 'cos', 'rif', 'kek', 'krc', 'aii', 'ban', 'ssw', 'tvl', 'mfe', 'tah', 'bvy', 'bcl', 'hnj', 'nau', 'nst', 'afb', 'quc', 'min', 'tmw', 'mad', 'bjn', 'mai', 'cjy', 'got', 'hsn', 'gan', 'tzl', 'dws', 'ldn', 'afh', 'sgs', 'krl', 'vep', 'rue', 'tly', 'mic', 'ext', 'izh', 'sma', 'jam', 'cmo', 'mwl', 'kpv', 'koi', 'bis', 'ike', 'run', 'evn', 'ryu', 'mnc', 'aoz', 'otk', 'kas', 'aln', 'akl', 'yua', 'shy', 'fkv', 'gos', 'fij', 'thv', 'zgh', 'gcf', 'cay', 'xmf', 'tig', 'div', 'lij', 'rap', 'hrx', 'cpi', 'tts', 'gaa', 'tmr', 'iii', 'ltg', 'bzt', 'syc', 'emx', 'gom', 'chg', 'osp', 'stq', 'frr', 'fro', 'nys', 'toi', 'new', 'phn', 'jpa', 'rel', 'drt', 'chn', 'pli', 'laa', 'bal', 'hdn', 'hax', 'mik', 'ajp', 'xqa', 'pal', 'crk', 'mni', 'lut', 'ayl', 'ood', 'sdh', 'ofs', 'nus', 'kiu', 'diq', 'qxq', 'alt', 'bfz', 'klj', 'mus', 'srn', 'guc', 'lim', 'zea', 'shi', 'mnr', 'bom', 'sat', 'szl'], id=None)
Value(dtype='string', id=None)
Using custom data configuration loretoparisi--tatoeba-sentences-7b2c5e991f398f39
Downloading and preparing dataset csv/loretoparisi--tatoeba-sentences to /root/.cache/huggingface/datasets/csv/loretoparisi--tatoeba-sentences-7b2c5e991f398f39/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519...
Downloading data files: 100%
2/2 [00:18<00:00, 8.06s/it]
Downloading data: 100%
391M/391M [00:13<00:00, 35.3MB/s]
Downloading data: 100%
92.4M/92.4M [00:02<00:00, 36.5MB/s]
Failed to read file '/root/.cache/huggingface/datasets/downloads/933132df9905194ea9faeb30cabca8c49318795612f6495fcb941a290191dd5d' with error <class 'ValueError'>: invalid literal for int() with base 10: 'cmn'
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._convert_tokens()
TypeError: Cannot cast array data from dtype('O') to dtype('int64') according to the rule 'safe'
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
15 frames
/usr/local/lib/python3.7/dist-packages/pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._convert_tokens()
ValueError: invalid literal for int() with base 10: 'cmn'
```
while loading without `features` it loads without errors
```
sentences = load_dataset("loretoparisi/tatoeba-sentences",
data_files=data_files,
delimiter='\t',
column_names=['label', 'text']
)
```
but the `label` col seems to be wrong (without the `ClassLabel` object):
```
sentences['train'].features
{'label': Value(dtype='string', id=None),
'text': Value(dtype='string', id=None)}
```
The dataset was https://huggingface.co/datasets/loretoparisi/tatoeba-sentences
Dataset format is:
```
ces Nechci vědět, co je tam uvnitř.
ces Kdo o tom chce slyšet?
deu Tom sagte, er fühle sich nicht wohl.
ber Mel-iyi-d anida-t tura ?
hun Gondom lesz rá rögtön.
ber Mel-iyi-d anida-tt tura ?
deu Ich will dich nicht reden hören.
```
### Expected behavior
```shell
correctly load train and test files.
``` | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4210/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4210/timeline | null | completed | null | null | false | [
"Hi! Casting class labels from strings is currently not supported in the CSV loader, but you can get the same result with an additional map as follows:\r\n```python\r\nfrom datasets import load_dataset,Features,Value,ClassLabel\r\nclass_names = [\"cmn\",\"deu\",\"rus\",\"fra\",\"eng\",\"jpn\",\"spa\",\"ita\",\"kor\",\"vie\",\"nld\",\"epo\",\"por\",\"tur\",\"heb\",\"hun\",\"ell\",\"ind\",\"ara\",\"arz\",\"fin\",\"bul\",\"yue\",\"swe\",\"ukr\",\"bel\",\"que\",\"ces\",\"swh\",\"nno\",\"wuu\",\"nob\",\"zsm\",\"est\",\"kat\",\"pol\",\"lat\",\"urd\",\"sqi\",\"isl\",\"fry\",\"afr\",\"ron\",\"fao\",\"san\",\"bre\",\"tat\",\"yid\",\"uig\",\"uzb\",\"srp\",\"qya\",\"dan\",\"pes\",\"slk\",\"eus\",\"cycl\",\"acm\",\"tgl\",\"lvs\",\"kaz\",\"hye\",\"hin\",\"lit\",\"ben\",\"cat\",\"bos\",\"hrv\",\"tha\",\"orv\",\"cha\",\"mon\",\"lzh\",\"scn\",\"gle\",\"mkd\",\"slv\",\"frm\",\"glg\",\"vol\",\"ain\",\"jbo\",\"tok\",\"ina\",\"nds\",\"mal\",\"tlh\",\"roh\",\"ltz\",\"oss\",\"ido\",\"gla\",\"mlt\",\"sco\",\"ast\",\"jav\",\"oci\",\"ile\",\"ota\",\"xal\",\"tel\",\"sjn\",\"nov\",\"khm\",\"tpi\",\"ang\",\"aze\",\"tgk\",\"tuk\",\"chv\",\"hsb\",\"dsb\",\"bod\",\"sme\",\"cym\",\"mri\",\"ksh\",\"kmr\",\"ewe\",\"kab\",\"ber\",\"tpw\",\"udm\",\"lld\",\"pms\",\"lad\",\"grn\",\"mlg\",\"xho\",\"pnb\",\"grc\",\"hat\",\"lao\",\"npi\",\"cor\",\"nah\",\"avk\",\"mar\",\"guj\",\"pan\",\"kir\",\"myv\",\"prg\",\"sux\",\"crs\",\"ckt\",\"bak\",\"zlm\",\"hil\",\"cbk\",\"chr\",\"nav\",\"lkt\",\"enm\",\"arq\",\"lin\",\"abk\",\"pcd\",\"rom\",\"gsw\",\"tam\",\"zul\",\"awa\",\"wln\",\"amh\",\"bar\",\"hbo\",\"mhr\",\"bho\",\"mrj\",\"ckb\",\"osx\",\"pfl\",\"mgm\",\"sna\",\"mah\",\"hau\",\"kan\",\"nog\",\"sin\",\"glv\",\"dng\",\"kal\",\"liv\",\"vro\",\"apc\",\"jdt\",\"fur\",\"che\",\"haw\",\"yor\",\"crh\",\"pdc\",\"ppl\",\"kin\",\"shs\",\"mnw\",\"tet\",\"sah\",\"kum\",\"ngt\",\"nya\",\"pus\",\"hif\",\"mya\",\"moh\",\"wol\",\"tir\",\"ton\",\"lzz\",\"oar\",\"lug\",\"brx\",\"non\",\"mww\",\"hak\",\"nlv\",\"ngu\",\"bua\",\"aym\",\"vec\",\"ibo\",\"tkl\",\"bam\",\"kha\",\"ceb\",\"lou\",\"fuc\",\"smo\",\"gag\",\"lfn\",\"arg\",\"umb\",\"tyv\",\"kjh\",\"oji\",\"cyo\",\"urh\",\"kzj\",\"pam\",\"srd\",\"lmo\",\"swg\",\"mdf\",\"gil\",\"snd\",\"tso\",\"sot\",\"zza\",\"tsn\",\"pau\",\"som\",\"egl\",\"ady\",\"asm\",\"ori\",\"dtp\",\"cho\",\"max\",\"kam\",\"niu\",\"sag\",\"ilo\",\"kaa\",\"fuv\",\"nch\",\"hoc\",\"iba\",\"gbm\",\"sun\",\"war\",\"mvv\",\"pap\",\"ary\",\"kxi\",\"csb\",\"pag\",\"cos\",\"rif\",\"kek\",\"krc\",\"aii\",\"ban\",\"ssw\",\"tvl\",\"mfe\",\"tah\",\"bvy\",\"bcl\",\"hnj\",\"nau\",\"nst\",\"afb\",\"quc\",\"min\",\"tmw\",\"mad\",\"bjn\",\"mai\",\"cjy\",\"got\",\"hsn\",\"gan\",\"tzl\",\"dws\",\"ldn\",\"afh\",\"sgs\",\"krl\",\"vep\",\"rue\",\"tly\",\"mic\",\"ext\",\"izh\",\"sma\",\"jam\",\"cmo\",\"mwl\",\"kpv\",\"koi\",\"bis\",\"ike\",\"run\",\"evn\",\"ryu\",\"mnc\",\"aoz\",\"otk\",\"kas\",\"aln\",\"akl\",\"yua\",\"shy\",\"fkv\",\"gos\",\"fij\",\"thv\",\"zgh\",\"gcf\",\"cay\",\"xmf\",\"tig\",\"div\",\"lij\",\"rap\",\"hrx\",\"cpi\",\"tts\",\"gaa\",\"tmr\",\"iii\",\"ltg\",\"bzt\",\"syc\",\"emx\",\"gom\",\"chg\",\"osp\",\"stq\",\"frr\",\"fro\",\"nys\",\"toi\",\"new\",\"phn\",\"jpa\",\"rel\",\"drt\",\"chn\",\"pli\",\"laa\",\"bal\",\"hdn\",\"hax\",\"mik\",\"ajp\",\"xqa\",\"pal\",\"crk\",\"mni\",\"lut\",\"ayl\",\"ood\",\"sdh\",\"ofs\",\"nus\",\"kiu\",\"diq\",\"qxq\",\"alt\",\"bfz\",\"klj\",\"mus\",\"srn\",\"guc\",\"lim\",\"zea\",\"shi\",\"mnr\",\"bom\",\"sat\",\"szl\"]\r\nfeatures = Features({ 'label': ClassLabel(names=class_names), 'text': Value('string')})\r\nnum_labels = features['label'].num_classes\r\ndata_files = { \"train\": \"train.csv\", \"test\": \"test.csv\" }\r\nsentences = load_dataset(\r\n \"loretoparisi/tatoeba-sentences\",\r\n data_files=data_files,\r\n delimiter='\\t', \r\n column_names=['label', 'text'],\r\n)\r\n# You can make this part faster with num_proc=<some int>\r\nsentences = sentences.map(lambda ex: features[\"label\"].str2int(ex[\"label\"]) if ex[\"label\"] is not None else None, features=features)\r\n```\r\n\r\n@lhoestq IIRC, I suggested adding `cast_to_storage` to `ClassLabel` + `table_cast` to the packaged loaders if the `ClassLabel`/`Image`/`Audio` type is present in `features` to avoid this kind of error, but your concern was speed. IMO shouldn't be a problem if we do `table_cast` only when these features are present.",
"I agree packaged loaders should support `ClassLabel` feature without throwing an error.",
"@albertvillanova @mariosasko thank you, with that change now I get\r\n```\r\n---------------------------------------------------------------------------\r\nTypeError Traceback (most recent call last)\r\n[<ipython-input-9-eeb68eeb9bec>](https://localhost:8080/#) in <module>()\r\n 11 )\r\n 12 # You can make this part faster with num_proc=<some int>\r\n---> 13 sentences = sentences.map(lambda ex: features[\"label\"].str2int(ex[\"label\"]) if ex[\"label\"] is not None else None, features=features)\r\n 14 sentences = sentences.shuffle()\r\n\r\n8 frames\r\n[/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in validate_function_output(processed_inputs, indices)\r\n 2193 if processed_inputs is not None and not isinstance(processed_inputs, (Mapping, pa.Table)):\r\n 2194 raise TypeError(\r\n-> 2195 f\"Provided `function` which is applied to all elements of table returns a variable of type {type(processed_inputs)}. Make sure provided `function` returns a variable of type `dict` (or a pyarrow table) to update the dataset or `None` if you are only interested in side effects.\"\r\n 2196 )\r\n 2197 elif isinstance(indices, list) and isinstance(processed_inputs, Mapping):\r\n\r\nTypeError: Provided `function` which is applied to all elements of table returns a variable of type <class 'int'>. Make sure provided `function` returns a variable of type `dict` (or a pyarrow table) to update the dataset or `None` if you are only interested in side effects.\r\n```\r\n\r\nthe error is raised by [this](https://github.com/huggingface/datasets/blob/master/src/datasets/arrow_dataset.py#L2221)\r\n\r\n```\r\n[/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in validate_function_output(processed_inputs, indices)\r\n```",
"@mariosasko changed it like\r\n\r\n```python\r\nsentences = sentences.map(lambda ex: {\"label\" : features[\"label\"].str2int(ex[\"label\"]) if ex[\"label\"] is not None else None}, features=features)\r\n```\r\n\r\nto avoid the above errorr.",
"Any update on this? Is this correct ?\r\n> @mariosasko changed it like\r\n> \r\n> ```python\r\n> sentences = sentences.map(lambda ex: {\"label\" : features[\"label\"].str2int(ex[\"label\"]) if ex[\"label\"] is not None else None}, features=features)\r\n> ```\r\n> \r\n> to avoid the above errorr.\r\n\r\n"
] |
https://api.github.com/repos/huggingface/datasets/issues/5391 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5391/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5391/comments | https://api.github.com/repos/huggingface/datasets/issues/5391/events | https://github.com/huggingface/datasets/issues/5391 | 1,510,350,400 | I_kwDODunzps5aBh5A | 5,391 | Whisper Event - RuntimeError: The size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1 100% 1000/1000 [2:52:21<00:00, 10.34s/it] | [] | closed | false | null | 2 | 2022-12-25T15:17:14Z | 2023-07-21T14:29:47Z | 2023-07-21T14:29:47Z | null | Done in a VM with a GPU (Ubuntu) following the [Whisper Event - PYTHON](https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event#python-script) instructions.
Attempted using [RuntimeError: he size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1 100% 1000/1000 - WEB](https://discuss.huggingface.co/t/trainer-runtimeerror-the-size-of-tensor-a-462-must-match-the-size-of-tensor-b-448-at-non-singleton-dimension-1/26010/10 ) - another person experiencing the same issue. But could not resolve the issue with the google/fleurs data. __Not clear what can be modified in the PY code to resolve the input data size mismatch, as the training data is already very small__.
Tried posting on Discord, @sanchit-gandhi and @vaibhavs10. Was hoping that the event is over and some input/help is now available. [Hugging Face - whisper-small-amet](https://huggingface.co/drmeeseeks/whisper-small-amet).
The paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) am_et is a low resource language (Table E), with the WER results ranging from 120-229, based on model size. (Whisper small WER=120.2).
# ---> Initial Training Output
/usr/local/lib/python3.8/dist-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
warnings.warn(
[INFO|trainer.py:1641] 2022-12-18 05:23:28,799 >> ***** Running training *****
[INFO|trainer.py:1642] 2022-12-18 05:23:28,799 >> Num examples = 446
[INFO|trainer.py:1643] 2022-12-18 05:23:28,799 >> Num Epochs = 72
[INFO|trainer.py:1644] 2022-12-18 05:23:28,799 >> Instantaneous batch size per device = 16
[INFO|trainer.py:1645] 2022-12-18 05:23:28,799 >> Total train batch size (w. parallel, distributed & accumulation) = 32
[INFO|trainer.py:1646] 2022-12-18 05:23:28,799 >> Gradient Accumulation steps = 2
[INFO|trainer.py:1647] 2022-12-18 05:23:28,800 >> Total optimization steps = 1000
[INFO|trainer.py:1648] 2022-12-18 05:23:28,801 >> Number of trainable parameters = 241734912
# ---> Error
14% 9/65 [07:07<48:34, 52.04s/it][INFO|configuration_utils.py:523] 2022-12-18 05:03:07,941 >> Generate config GenerationConfig {
"begin_suppress_tokens": [
220,
50257
],
"bos_token_id": 50257,
"decoder_start_token_id": 50258,
"eos_token_id": 50257,
"max_length": 448,
"pad_token_id": 50257,
"transformers_version": "4.26.0.dev0",
"use_cache": false
}
Traceback (most recent call last):
File "run_speech_recognition_seq2seq_streaming.py", line 629, in <module>
main()
File "run_speech_recognition_seq2seq_streaming.py", line 578, in main
train_result = trainer.train(resume_from_checkpoint=checkpoint)
File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 1534, in train
return inner_training_loop(
File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 1859, in _inner_training_loop
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 2122, in _maybe_log_save_evaluate
metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
File "/usr/local/lib/python3.8/dist-packages/transformers/trainer_seq2seq.py", line 78, in evaluate
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 2818, in evaluate
output = eval_loop(
File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 3000, in evaluation_loop
loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
File "/usr/local/lib/python3.8/dist-packages/transformers/trainer_seq2seq.py", line 213, in prediction_step
outputs = model(**inputs)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/transformers/models/whisper/modeling_whisper.py", line 1197, in forward
outputs = self.model(
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/transformers/models/whisper/modeling_whisper.py", line 1066, in forward
decoder_outputs = self.decoder(
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1190, in _call_impl
return forward_call(*input, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/transformers/models/whisper/modeling_whisper.py", line 873, in forward
hidden_states = inputs_embeds + positions
RuntimeError: The size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1
100% 1000/1000 [2:52:21<00:00, 10.34s/it]
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5391/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5391/timeline | null | completed | null | null | false | [
"Hey @catswithbats! Super sorry for the late reply! This is happening because there is data with label length (504) that exceeds the model's max length (448). \r\n\r\nThere are two options here:\r\n1. Increase the model's `max_length` parameter: \r\n```python\r\nmodel.config.max_length = 512\r\n```\r\n2. Filter data with labels longer than max length: https://discuss.huggingface.co/t/open-to-the-community-whisper-fine-tuning-event/26681/21?u=sanchit-gandhi\r\n\r\nNote that the datasets repo is reserved for issues directly related to the HF datasets library. Issues related to custom fine-tuning implementations are more applicable to the HF Forum: https://discuss.huggingface.co. You're more likely to get a response by posting your issue in the most applicable place and boost the chance of someone sharing a working solution!",
"@sanchit-gandhi Thank you for all your work on this topic.\r\n\r\nI'm finding that changing the `max_length` value does not make this error go away."
] |
https://api.github.com/repos/huggingface/datasets/issues/6069 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6069/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6069/comments | https://api.github.com/repos/huggingface/datasets/issues/6069/events | https://github.com/huggingface/datasets/issues/6069 | 1,820,831,535 | I_kwDODunzps5sh68v | 6,069 | KeyError: dataset has no key "image" | [] | closed | false | null | 6 | 2023-07-25T17:45:50Z | 2023-07-27T12:42:17Z | 2023-07-27T12:42:17Z | null | ### Describe the bug
I've loaded a local image dataset with:
`ds = laod_dataset("imagefolder", data_dir=path-to-data)`
And defined a transform to process the data, following the Datasets docs.
However, I get a keyError error, indicating there's no "image" key in my dataset. When I printed out the example_batch sent to the transformation function, it shows only the labels are being sent to the function.
For some reason, the images are not in the example batches.
### Steps to reproduce the bug
I'm using the latest stable version of datasets
### Expected behavior
I expect the example_batches to contain both images and labels
### Environment info
I'm using the latest stable version of datasets | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6069/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6069/timeline | null | completed | null | null | false | [
"You can list the dataset's columns with `ds.column_names` before `.map` to check whether the dataset has an `image` column. If it doesn't, then this is a bug. Otherwise, please paste the line with the `.map` call.\r\n\r\n\r\n",
"This is the piece of code I am running:\r\n```\r\ndata_transforms = utils.get_data_augmentation(args)\r\nimage_dataset = utils.load_image_dataset(args.dataset)\r\n\r\ndef resize(examples):\r\n examples[\"pixel_values\"] = [image.convert(\"RGB\").resize((300, 300)) for image in examples[\"image\"]]\r\n return examples\r\n\r\ndef preprocess_train(example_batch):\r\n print(f\"Example batch: \\n{example_batch}\")\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"train\"](image.convert(\"RGB\")) for image in example_batch[\"pixel_values\"]\r\n ]\r\n return example_batch\r\n\r\ndef preprocess_val(example_batch):\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"val\"](image.convert(\"RGB\")) for image in example_batch[\"pixel_values\"]\r\n ]\r\n return example_batch\r\n\r\nimage_dataset = image_dataset.map(resize, remove_columns=[\"image\"], batched=True)\r\n\r\nimage_dataset[\"train\"].set_transform(preprocess_train)\r\nimage_dataset[\"validation\"].set_transform(preprocess_val)\r\n```\r\n\r\nWhen I print ds.column_names I get the following\r\n`{'train': ['image', 'label'], 'validation': ['image', 'label'], 'test': ['image', 'label']}`\r\n\r\nThe `print(f\"Example batch: \\n{example_batch}\")` in the `preprocess_train` function outputs only labels without images:\r\n```\r\nExample batch: \r\n{'label': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]}\r\n```\r\n\r\nThe weird part of it all is that a sample code runs in a jupyter lab notebook without any bugs, but when I run my scripts from the terminal I get the bug. The same code.",
"The `remove_columns=[\"image\"]` argument in the `.map` call removes the `image` column from the output, so drop this argument to preserve it.",
"The problem is not with the removal of the image key. The bug is why only the labels are sent to be process, instead of all the featues or dictionary keys.\r\n\r\nP.S. I just dropped the removal argument as you've suggested, but that didn't solve the problem, because only the labels are being sent to be processed",
"All the `image_dataset.column_names` after the `map` call should also be present in `preprocess_train `/`preprocess_val` unless (input) `columns` in `set_transform` are specified.\r\n\r\nIf that's not the case, we need a full reproducer (not snippets) with the environment info.",
"I have resolved the error after including a collate function as indicated in the Quick Start session of the Datasets docs.:\r\n\r\nHere is what I did:\r\n```\r\ndata_transforms = utils.get_data_augmentation(args)\r\nimage_dataset = utils.load_image_dataset(args.dataset)\r\n\r\ndef preprocess_train(example_batch):\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"train\"](image.convert(\"RGB\")) for image in example_batch[\"image\"]\r\n ]\r\n return example_batch\r\n\r\ndef preprocess_val(example_batch):\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"val\"](image.convert(\"RGB\")) for image in example_batch[\"image\"]\r\n ]\r\n return example_batch\r\n\r\ndef collate_fn(examples):\r\n images = []\r\n labels = []\r\n for example in examples:\r\n images.append((example[\"pixel_values\"]))\r\n labels.append(example[\"label\"])\r\n\r\n pixel_values = torch.stack(images)\r\n labels = torch.tensor(labels)\r\n return {\"pixel_values\": pixel_values, \"label\": labels}\r\n\r\ntrain_dataset = image_dataset[\"train\"].with_transform(preprocess_train)\r\nval_dataset = image_dataset[\"validation\"].with_transform(preprocess_val)\r\n\r\nimage_datasets = {\r\n \"train\": train_dataset,\r\n \"val\": val_dataset\r\n}\r\n\r\nsamplers = {\r\n \"train\": data.RandomSampler(train_dataset),\r\n \"val\": data.SequentialSampler(val_dataset),\r\n}\r\n\r\ndataloaders = {\r\n x: data.DataLoader(\r\n image_datasets[x],\r\n collate_fn=collate_fn,\r\n batch_size=batch_size,\r\n sampler=samplers[x],\r\n num_workers=args.num_workers,\r\n worker_init_fn=utils.set_seed_for_worker,\r\n generator=g,\r\n pin_memory=True,\r\n )\r\n for x in [\"train\", \"val\"]\r\n}\r\n\r\ntrain_loader, val_loader = dataloaders[\"train\"], dataloaders[\"val\"]\r\n```\r\nEverything runs fine without any bug now. "
] |
https://api.github.com/repos/huggingface/datasets/issues/2581 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2581/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2581/comments | https://api.github.com/repos/huggingface/datasets/issues/2581/events | https://github.com/huggingface/datasets/pull/2581 | 935,783,588 | MDExOlB1bGxSZXF1ZXN0NjgyNjQwMDY4 | 2,581 | Faster search_batch for ElasticsearchIndex due to threading | [] | closed | false | {
"closed_at": "2021-07-21T15:36:49Z",
"closed_issues": 29,
"created_at": "2021-06-08T18:48:33Z",
"creator": {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
},
"description": "Next minor release",
"due_on": "2021-08-05T07:00:00Z",
"html_url": "https://github.com/huggingface/datasets/milestone/6",
"id": 6836458,
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels",
"node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==",
"number": 6,
"open_issues": 0,
"state": "closed",
"title": "1.10",
"updated_at": "2021-07-21T15:36:49Z",
"url": "https://api.github.com/repos/huggingface/datasets/milestones/6"
} | 0 | 2021-07-02T13:42:07Z | 2021-07-12T14:13:46Z | 2021-07-12T09:52:51Z | null | Hey,
I think it makes sense to perform search_batch threaded, so ES can perform search in parallel.
Cheers! | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2581/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2581/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2581.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2581",
"merged_at": "2021-07-12T09:52:51Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2581.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2581"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/1452 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1452/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1452/comments | https://api.github.com/repos/huggingface/datasets/issues/1452/events | https://github.com/huggingface/datasets/issues/1452 | 761,104,924 | MDU6SXNzdWU3NjExMDQ5MjQ= | 1,452 | SNLI dataset contains labels with value -1 | [] | closed | false | null | 2 | 2020-12-10T10:16:55Z | 2020-12-10T17:49:55Z | 2020-12-10T17:49:55Z | null | ```
import datasets
nli_data = datasets.load_dataset("snli")
train_data = nli_data['train']
train_labels = train_data['label']
label_set = set(train_labels)
print(label_set)
```
**Output:**
`{0, 1, 2, -1}` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1452/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1452/timeline | null | completed | null | null | false | [
"I believe the `-1` label is used for missing/NULL data as per HuggingFace Dataset conventions. If I recall correctly SNLI has some entries with no (gold) labels in the dataset.",
"Ah, you're right. The dataset has some pairs with missing labels. Thanks for reminding me."
] |
https://api.github.com/repos/huggingface/datasets/issues/2328 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2328/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2328/comments | https://api.github.com/repos/huggingface/datasets/issues/2328/events | https://github.com/huggingface/datasets/pull/2328 | 877,673,896 | MDExOlB1bGxSZXF1ZXN0NjMxNTg2MzU2 | 2,328 | Add Matthews/Pearson/Spearman correlation metrics | [] | closed | false | null | 0 | 2021-05-06T16:09:27Z | 2021-05-06T16:58:10Z | 2021-05-06T16:58:10Z | null | Added three metrics:
- The Matthews correlation coefficient (from sklearn)
- The Pearson correlation coefficient (from scipy)
- The Spearman correlation coefficient (from scipy)
cc @sgugger | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2328/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2328/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/2328.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2328",
"merged_at": "2021-05-06T16:58:10Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2328.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2328"
} | true | [] |
https://api.github.com/repos/huggingface/datasets/issues/3865 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3865/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3865/comments | https://api.github.com/repos/huggingface/datasets/issues/3865/events | https://github.com/huggingface/datasets/pull/3865 | 1,162,821,908 | PR_kwDODunzps40HT9K | 3,865 | Add logo img | [] | closed | false | null | 2 | 2022-03-08T15:50:59Z | 2022-03-08T16:01:59Z | 2022-03-08T16:01:59Z | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3865/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3865/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/3865.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3865",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/3865.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3865"
} | true | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3865). All of your documentation changes will be reflected on that endpoint.",
"Superceded by https://github.com/huggingface/datasets/pull/3866"
] |
https://api.github.com/repos/huggingface/datasets/issues/5149 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5149/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5149/comments | https://api.github.com/repos/huggingface/datasets/issues/5149/events | https://github.com/huggingface/datasets/pull/5149 | 1,420,415,639 | PR_kwDODunzps5BZJab | 5,149 | Make iter_files deterministic | [] | closed | false | null | 1 | 2022-10-24T08:16:27Z | 2022-10-27T09:53:23Z | 2022-10-27T09:51:09Z | null | Fix #5145. | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5149/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5149/timeline | null | null | false | {
"diff_url": "https://github.com/huggingface/datasets/pull/5149.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5149",
"merged_at": "2022-10-27T09:51:09Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5149.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5149"
} | true | [
"_The documentation is not available anymore as the PR was closed or merged._"
] |
https://api.github.com/repos/huggingface/datasets/issues/4976 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4976/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4976/comments | https://api.github.com/repos/huggingface/datasets/issues/4976/events | https://github.com/huggingface/datasets/issues/4976 | 1,372,322,382 | I_kwDODunzps5Ry_pO | 4,976 | Hope to adapt Python3.9 as soon as possible | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | 3 | 2022-09-14T04:42:22Z | 2022-09-26T16:32:35Z | null | null | **Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is.
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context about the feature request here.
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4976/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4976/timeline | null | null | null | null | false | [
"Hi! `datasets` should work in Python 3.9. What kind of issue have you encountered?",
"There is this related issue already: https://github.com/huggingface/datasets/issues/4113\r\nAnd I guess we need a CI job for 3.9 ^^",
"Perhaps we should report this issue in the `filelock` repo?"
] |
https://api.github.com/repos/huggingface/datasets/issues/507 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/507/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/507/comments | https://api.github.com/repos/huggingface/datasets/issues/507/events | https://github.com/huggingface/datasets/issues/507 | 679,400,683 | MDU6SXNzdWU2Nzk0MDA2ODM= | 507 | Errors when I use | [] | closed | false | null | 1 | 2020-08-14T21:03:57Z | 2020-08-14T21:39:10Z | 2020-08-14T21:39:10Z | null | I tried the following example code from https://huggingface.co/deepset/roberta-base-squad2 and got errors
I am using **transformers 3.0.2** code .
from transformers.pipelines import pipeline
from transformers.modeling_auto import AutoModelForQuestionAnswering
from transformers.tokenization_auto import AutoTokenizer
model_name = "deepset/roberta-base-squad2"
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
The errors are :
res = nlp(QA_input)
File ".local/lib/python3.6/site-packages/transformers/pipelines.py", line 1316, in __call__
for s, e, score in zip(starts, ends, scores)
File ".local/lib/python3.6/site-packages/transformers/pipelines.py", line 1316, in <listcomp>
for s, e, score in zip(starts, ends, scores)
KeyError: 0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/507/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/507/timeline | null | completed | null | null | false | [
"Looks like an issue with 3.0.2 transformers version. Works fine when I use \"master\" version of transformers."
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.