library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
get_hf_bert
|
def get_hf_bert(rank):
# Note: use @import_transformers_or_skip on your test case if you use this
# in a multiprocessing test
try:
from transformers import BertConfig, AutoModelForMaskedLM
except ImportError as e:
raise unittest.SkipTest("Unable to import transformers") from e
batch_size, max_length, config, device = 4, 512, BertConfig(), f"cuda:{rank}"
model = AutoModelForMaskedLM.from_config(config).to(device)
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_length)).to(device)
decoder_ids = torch.randint(0, config.vocab_size, (batch_size, max_length)).to(device)
inputs = {'input_ids': input_ids, 'labels': decoder_ids}
model.train()
return model, inputs
class CheckSplitsCompiler:
def __init__(self):
self.compiler_called = 0
def compile_fn(self, gm, example_inputs):
self.compiler_called += 1
return gm
# This simulates DDP, but it doesn't actually do any process communication;
# it just has enough properties so that the dynamo distributed optimization is
# able to optimize. Feel free to simulate more properties as necessary. The
# other important thing is patching _active_ddp_module, which is what actually
# triggers DDP optimization
class FakeDDP(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
bucket_cap_mb = 25
self.bucket_bytes_cap = int(bucket_cap_mb * 1024 * 1024)
@contextmanager
def _inside_ddp_forward(self):
DDP._active_ddp_module = self
try:
yield
except Exception:
raise
finally:
DDP._active_ddp_module = None
def forward(self, *inputs, **kwargs):
with self._inside_ddp_forward():
return self.module.forward(*inputs, **kwargs)
|
def get_hf_bert(rank):
# Note: use @import_transformers_or_skip on your test case if you use this
# in a multiprocessing test
try:
from transformers import AutoModelForMaskedLM, BertConfig
except ImportError as e:
raise unittest.SkipTest("Unable to import transformers") from e
batch_size, max_length, config, device = 4, 512, BertConfig(), f"cuda:{rank}"
model = AutoModelForMaskedLM.from_config(config).to(device)
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_length)).to(device)
decoder_ids = torch.randint(0, config.vocab_size, (batch_size, max_length)).to(
device
)
inputs = {"input_ids": input_ids, "labels": decoder_ids}
model.train()
return model, inputs
class CheckSplitsCompiler:
def __init__(self) -> None:
self.compiler_called = 0
def compile_fn(self, gm, example_inputs):
self.compiler_called += 1
return gm
# This simulates DDP, but it doesn't actually do any process communication;
# it just has enough properties so that the dynamo distributed optimization is
# able to optimize. Feel free to simulate more properties as necessary. The
# other important thing is patching _active_ddp_module, which is what actually
# triggers DDP optimization
class FakeDDP(nn.Module):
def __init__(self, module, bucket_cap_mb=25):
super().__init__()
self.module = module
self.bucket_bytes_cap = int(bucket_cap_mb * 1024 * 1024)
@contextmanager
def _inside_ddp_forward(self):
DDP._active_ddp_module = self
try:
yield
finally:
DDP._active_ddp_module = None
def forward(self, *inputs, **kwargs):
with self._inside_ddp_forward():
return self.module.forward(*inputs, **kwargs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
_inside_ddp_forward
|
def _inside_ddp_forward(self):
DDP._active_ddp_module = self
try:
yield
except Exception:
raise
finally:
DDP._active_ddp_module = None
|
def _inside_ddp_forward(self):
DDP._active_ddp_module = self
try:
yield
finally:
DDP._active_ddp_module = None
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
class FakeDDP(nn.Module):
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
class FakeDDP(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
run_hf_bert_ddp
|
def run_hf_bert_ddp(self, model, inputs, backend):
reset_rng_state()
correct_outputs = model(**inputs)
correct_loss = correct_outputs.loss
correct_loss.backward()
reset_rng_state()
opt_model = torch._dynamo.optimize(backend)(model)
opt_outputs = opt_model(**inputs)
opt_loss = opt_outputs.loss
opt_loss.backward()
inputs_flat = [inputs[k] for k in inputs]
correct_results = collect_results(model, correct_outputs.logits, correct_loss, inputs_flat)
opt_results = collect_results(opt_model, opt_outputs.logits, opt_loss, inputs_flat)
self.assertTrue(same(correct_results, opt_results))
class TestFakeDistributedSingleProc(torch._dynamo.test_case.TestCase):
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(config, "optimize_ddp", True)
@patch.object(torch._inductor.config, "fallback_random", True)
def test_hf_bert_ddp_inductor(self):
model, inputs = get_hf_bert(0)
model = FakeDDP(model)
run_hf_bert_ddp(self, model, inputs, "inductor")
@patch.object(config, "optimize_ddp", True)
def test_hf_bert_ddp_aot_eager(self):
model, inputs = get_hf_bert(0)
model = FakeDDP(model)
run_hf_bert_ddp(self, model, inputs, "aot_eager")
@patch.object(config, "optimize_ddp", True)
def test_issue90375(self):
class Model(nn.Module):
def forward(self):
return torch.randn(3) * torch.randn(3)
model = Model()
model = FakeDDP(model)
opt_model = torch._dynamo.optimize("aot_eager")(model)
opt_model()
# Are these tests failing? Check and see if TestFakeDistributedSingleProc has a
# single process version; if it's just a problem in the Dynamo distributed
# optimizer, you should be able to repro it single process!
@requires_nccl()
class TestMultiProc(DynamoDistributedMultiProcTestCase):
"""
Note: MultiProcTestCase spawns processes per test and is slow.
Prefer MultiThreadedTestCase for most tests. Perhaps use this one
sparingly for integration tests.
"""
@skip_if_lt_x_gpu(2)
@patch.object(config, "optimize_ddp", False)
def test_ddp_baseline_aot_eager_multiprocess(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
self.assertFalse(config.optimize_ddp)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
m = DDP(m, device_ids=[self.rank])
m = torch._dynamo.optimize("aot_eager")(m)
outputs = m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@skip_if_lt_x_gpu(2)
@import_transformers_or_skip()
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(config, "optimize_ddp", True)
@patch.object(torch._inductor.config, "fallback_random", True)
def test_hf_bert_ddp_inductor(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model, inputs = get_hf_bert(self.rank)
model = DDP(model)
run_hf_bert_ddp(self, model, inputs, "inductor")
@skip_if_lt_x_gpu(2)
@import_transformers_or_skip()
@patch.object(config, "optimize_ddp", True)
def test_hf_bert_ddp_aot_eager(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model, inputs = get_hf_bert(self.rank)
model = DDP(model)
run_hf_bert_ddp(self, model, inputs, "aot_eager")
@skip_if_lt_x_gpu(1)
def test_fsdp_aot_eager(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
# Test with basic FSDP wrapping (outer wrap around whole model)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(m, use_orig_params=True)
fsdp_m = torch._dynamo.optimize("aot_eager")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
# Test with recursive wrapping, nested FSDP around each Linear
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(
m,
auto_wrap_policy=functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls=(nn.Linear, )
),
use_orig_params=True
)
fsdp_m = torch._dynamo.optimize("aot_eager")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@skip_if_lt_x_gpu(1)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_fsdp_inductor(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
# Test with basic FSDP wrapping (outer wrap around whole model)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(m, use_orig_params=True)
fsdp_m = torch._dynamo.optimize("inductor")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
# Test with recursive wrapping, nested FSDP around each Linear
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(
m,
auto_wrap_policy=functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls=(nn.Linear, )
),
use_orig_params=True
)
fsdp_m = torch._dynamo.optimize("inductor")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@import_transformers_or_skip()
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
# TODO(whc) Investigate why cudagraphs breaks inductor+fsdp for hf_bert
@patch.object(torch._inductor.config.triton, "cudagraphs", False)
@patch.object(torch._inductor.config, "fallback_random", True)
def test_hf_bert_fsdp(self):
from transformers.models.bert.modeling_bert import BertLayer
def apply_fsdp(model, wrap_policy):
model = FSDP(
copy.deepcopy(model),
auto_wrap_policy=wrap_policy,
use_orig_params=True
)
return model
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
for (wrap_policy, test_instance) in (
(
None,
"FSDP without recursive wrapping"
),
(
functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls=(BertLayer, )
),
"FSDP with recursive wrapping BertLayer instances"
)
):
print(f"Running hf_bert test for {test_instance}")
model, inputs = get_hf_bert(self.rank)
reset_rng_state()
eager_model = apply_fsdp(model, wrap_policy)
correct_outputs = eager_model(**inputs)
correct_loss = correct_outputs.loss
correct_loss.backward()
reset_rng_state()
opt_model = apply_fsdp(model, wrap_policy)
opt_model = torch._dynamo.optimize("inductor")(opt_model)
opt_outputs = opt_model(**inputs)
opt_loss = opt_outputs.loss
opt_loss.backward()
inputs_flat = [inputs[k] for k in inputs]
correct_results = collect_results(eager_model, correct_outputs.logits, correct_loss, inputs_flat)
opt_results = collect_results(opt_model, opt_outputs.logits, opt_loss, inputs_flat)
self.assertTrue(same(correct_results, opt_results))
@requires_nccl()
class TestSingleProc(DynamoDistributedSingleProcTestCase):
"""
Test harness initializes dist process group.
Test simple things here since they are simpler to debug.
Use TestMultiProc for things that really need to run on multiple nodes
"""
def get_model(self, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5):
m = ToyModel(in_feat=in_feat, hidden_feat=hidden_feat, out_feat=out_feat).to(self.device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(self.device)
outputs = m(inputs)
return m, inputs, outputs
@patch.object(config, "optimize_ddp", False)
def test_ddp_baseline_aot_eager(self):
from torch.nn.parallel import DistributedDataParallel as DDP
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids)
ddp_m = torch._dynamo.optimize("aot_eager")(ddp_m)
outputs = ddp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(config, "optimize_ddp", False)
def test_ddp_baseline_inductor(self):
from torch.nn.parallel import DistributedDataParallel as DDP
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids)
ddp_m = torch._dynamo.optimize("inductor")(ddp_m)
outputs = ddp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@patch.object(config, "optimize_ddp", True)
def test_graph_split(self):
"""
Just ensures that the appropriate number of splits happen (based on
bucket size and model parameters) - verifies the number of times
the user-provided compiler is called by the DDPOptimizer which is
doing the graph splitting
"""
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
check_splits_compiler = CheckSplitsCompiler()
@torch._dynamo.optimize(check_splits_compiler.compile_fn)
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
@patch.object(config, "optimize_ddp", True)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_graph_split_inductor(self):
"""
Same as above, but using inductor backend.
We observed issues with inductor/fx interface in the past.
"""
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
@torch._dynamo.optimize("inductor")
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
@patch.object(config, "optimize_ddp", True)
def test_no_split(self):
"""
Ensures the DDPOptimizer returns a correct, compiled module without
introducing graph splits. (Based on model parmeters fitting in the bucket)
"""
# DDP will always do a 'first bucket' with a really small size; so only a tiny model will escape this
m, inputs, correct_outputs = self.get_model(hidden_feat=5)
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=250)
check_splits_compiler = CheckSplitsCompiler()
@torch._dynamo.optimize(check_splits_compiler.compile_fn)
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 1)
@patch.object(config, "optimize_ddp", True)
def test_aot_autograd(self):
"""
Explicitly check AotAutograd family of compilers work,
since they require example inputs propagated between graph splits.
"""
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
@torch._dynamo.optimize("aot_eager")
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
opt_outputs.sum().backward()
self.assertTrue(same(correct_outputs, opt_outputs))
@patch.object(config, "optimize_ddp", True)
def test_custom_layer(self):
"""
Just ensures that the appropriate number of splits happen (based on
bucket size and model parameters) - verifies the number of times
the user-provided compiler is called by the DDPOptimizer which is
doing the graph splitting
"""
m, inputs, correct_outputs = get_custom_model(self.device)
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=1)
check_splits_compiler = CheckSplitsCompiler()
@torch._dynamo.optimize(check_splits_compiler.compile_fn)
def opt_fn(inputs):
return ddp_m(*inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_empty_graph_inductor(self):
def fn():
get_world_size = torch.distributed.distributed_c10d.get_world_size()
return (get_world_size,)
opt_fn = torch._dynamo.optimize("inductor")(fn)
res = None
try:
res = opt_fn()[0]
except Exception:
pass
self.assertEqual(res, 1)
@patch.object(config, "optimize_ddp", False)
def test_ignored_parameters(self):
"""
Verifies ddp graph-split logic ignores parameters marked to ignore on DDP module.
Hooks up graph-split optimizer manually so it can peek at internal state.
"""
m, inputs, correct_outputs = get_custom_model(self.device)
parameters_to_ignore = ["seq.2.weight", "seq.4.linear.bias"]
DDP._set_params_and_buffers_to_ignore_for_model(m, parameters_to_ignore)
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
parameter_ids_to_ignore = [
id(ddp_m.module.get_parameter(p))
for p in ddp_m.parameters_to_ignore
]
check_splits_compiler = CheckSplitsCompiler()
ddp_optimizer = DDPOptimizer(
bucket_bytes_cap=ddp_m.bucket_bytes_cap,
backend_compile_fn=check_splits_compiler.compile_fn
)
@torch._dynamo.optimize(ddp_optimizer.compile_fn)
def opt_fn(inputs):
return ddp_m(*inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 2)
for b in ddp_optimizer.buckets:
for p_id in b.param_ids:
self.assertFalse(p_id in parameter_ids_to_ignore)
def test_fsdp_orig_params_assert(self):
# Test with basic FSDP wrapping (outer wrap around whole model)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(m, use_orig_params=False)
fsdp_m = torch._dynamo.optimize()(fsdp_m)
self.assertRaisesRegex(AssertionError, "Dynamo only supports FSDP with use_orig_params=True", fsdp_m, inputs)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|
def run_hf_bert_ddp(self, model, inputs, backend):
reset_rng_state()
correct_outputs = model(**inputs)
correct_loss = correct_outputs.loss
correct_loss.backward()
reset_rng_state()
opt_model = torch._dynamo.optimize(backend)(model)
opt_outputs = opt_model(**inputs)
opt_loss = opt_outputs.loss
opt_loss.backward()
inputs_flat = [inputs[k] for k in inputs]
correct_results = collect_results(
model, correct_outputs.logits, correct_loss, inputs_flat
)
opt_results = collect_results(opt_model, opt_outputs.logits, opt_loss, inputs_flat)
self.assertTrue(same(correct_results, opt_results))
class TestFakeDistributedSingleProc(torch._dynamo.test_case.TestCase):
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(config, "optimize_ddp", True)
@patch.object(torch._inductor.config, "fallback_random", True)
def test_hf_bert_ddp_inductor(self):
model, inputs = get_hf_bert(0)
model = FakeDDP(model)
run_hf_bert_ddp(self, model, inputs, "inductor")
@patch.object(config, "optimize_ddp", True)
def test_hf_bert_ddp_aot_eager(self):
model, inputs = get_hf_bert(0)
model = FakeDDP(model)
run_hf_bert_ddp(self, model, inputs, "aot_eager")
@patch.object(config, "optimize_ddp", True)
def test_issue90375(self):
class Model(nn.Module):
def forward(self):
return torch.randn(3) * torch.randn(3)
model = Model()
model = FakeDDP(model)
opt_model = torch._dynamo.optimize("aot_eager")(model)
opt_model()
@patch.object(config, "optimize_ddp", True)
def test_symbol_splitting(self):
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight1 = nn.Parameter(torch.randn(512, 512))
self.weight2 = nn.Parameter(torch.randn(512, 512))
def forward(self, x):
x = torch.cat([x, x])
y = x @ self.weight1
z = x + y @ self.weight2
return z
model = Model()
model = FakeDDP(model)
opt_model = torch.compile(dynamic=True)(model)
opt_model(torch.randn(20, 512))
@config.patch(optimize_ddp=True, capture_scalar_outputs=True)
def test_unbacked_symbol_splitting_direct(self):
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight1 = nn.Parameter(torch.randn(512, 512))
self.weight2 = nn.Parameter(torch.randn(512, 512))
def forward(self, x, y):
u0, u1 = y.tolist()
x = torch.cat([x, x])
y = x @ self.weight1
z = (x + y @ self.weight2) * u0
return z
model = Model()
model = FakeDDP(model)
opt_model = torch.compile(dynamic=True)(model)
opt_model(torch.randn(20, 512), torch.tensor([12, 13]))
@config.patch(optimize_ddp=True, capture_scalar_outputs=True)
def test_unbacked_symbol_splitting_indirect(self):
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight1 = nn.Parameter(torch.randn(512, 512))
self.weight2 = nn.Parameter(torch.randn(512, 512))
def forward(self, x, y):
u0, u1 = y.tolist()
a = torch.ones(u0)
x = torch.cat([x, x])
y = x @ self.weight1
z = (x + y @ self.weight2) * a.sum()
return z
model = Model()
model = FakeDDP(model)
opt_model = torch.compile(dynamic=True)(model)
opt_model(torch.randn(20, 512), torch.tensor([12, 13]))
@config.patch(optimize_ddp=True, capture_scalar_outputs=True)
def test_unbacked_symbol_splitting_torture_multi(self):
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight1 = nn.Parameter(torch.randn(512, 512))
self.weight2 = nn.Parameter(torch.randn(512, 512))
self.weight3 = nn.Parameter(torch.randn(512, 512))
def forward(self, x, y):
# partition one (contains the u0 def)
u0, u1 = y.tolist()
x = torch.cat([x, x])
y1 = x @ self.weight1
# partition two (contains the variable)
y2 = y1 @ self.weight2
a = torch.ones(u0)
# partition three
z = (x + y2 @ self.weight3) * a.sum()
return z
model = Model()
model = FakeDDP(model, bucket_cap_mb=1)
opt_model = torch.compile(dynamic=True)(model)
opt_model(torch.randn(20, 512), torch.tensor([12, 13]))
@config.patch(optimize_ddp=True, capture_dynamic_output_shape_ops=True)
def test_unbacked_symbol_splitting_no_binding(self):
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight1 = nn.Parameter(torch.randn(512, 512))
self.weight2 = nn.Parameter(torch.randn(512, 512))
def forward(self, x, y):
nz = y.nonzero()
x = torch.cat([x, x])
y = x @ self.weight1
z = (x + y @ self.weight2) * (nz + 1).sum()
return z
model = Model()
model = FakeDDP(model)
opt_model = torch.compile(dynamic=True)(model)
opt_model(torch.randn(20, 512), torch.tensor([0.0, 12.0, 0.0, 11.0]))
@patch.object(config, "optimize_ddp", True)
def test_call_method_forward(self):
class Model(nn.Module):
def __init__(
self,
):
super().__init__()
layers = []
for l in range(2):
layer = nn.ModuleList(
[
nn.LayerNorm(96),
nn.MultiheadAttention(
embed_dim=96, num_heads=4, batch_first=True
),
]
)
layers.append(layer)
self.layers = nn.ModuleList(layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: [Batch, Freq, Time, Feature]
B, F, T, H = x.shape
for m in self.layers:
x = x.reshape(B * F, T, H)
x = m[0](x)
x, attn = m[1].forward(x, x, x)
x = x.reshape(B, F, T, H)
return x
model = Model()
model = FakeDDP(model)
opt_model = torch.compile(model)
opt_model(torch.randn(2, 129, 100, 96))
# Are these tests failing? Check and see if TestFakeDistributedSingleProc has a
# single process version; if it's just a problem in the Dynamo distributed
# optimizer, you should be able to repro it single process!
@requires_nccl()
class TestMultiProc(DynamoDistributedMultiProcTestCase):
"""
Note: MultiProcTestCase spawns processes per test and is slow.
Prefer MultiThreadedTestCase for most tests. Perhaps use this one
sparingly for integration tests.
"""
@skip_if_lt_x_gpu(2)
@config.patch(optimize_ddp=False, enable_compiler_collectives=True)
def test_ddp_baseline_aot_eager_multiprocess(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
self.assertFalse(config.optimize_ddp)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
m = DDP(m, device_ids=[self.rank])
m = torch._dynamo.optimize("aot_eager")(m)
outputs = m(inputs)
self.assertTrue(same(correct_outputs, outputs))
def _test_hf_bert_ddp_inductor(self, static_graph):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model, inputs = get_hf_bert(self.rank)
model = DDP(model, static_graph=static_graph)
run_hf_bert_ddp(self, model, inputs, "inductor")
@skip_if_lt_x_gpu(2)
@import_transformers_or_skip()
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(optimize_ddp=True, enable_compiler_collectives=True)
@patch.object(torch._inductor.config, "fallback_random", True)
def test_hf_bert_ddp_inductor(self):
self._test_hf_bert_ddp_inductor(static_graph=False)
@skip_if_lt_x_gpu(2)
@import_transformers_or_skip()
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(optimize_ddp=True, enable_compiler_collectives=True)
@patch.object(torch._inductor.config, "fallback_random", True)
def test_hf_bert_ddp_inductor_static_graph(self):
self._test_hf_bert_ddp_inductor(static_graph=True)
def _test_hf_bert_aot_eager(self, static_graph):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model, inputs = get_hf_bert(self.rank)
model = DDP(model, static_graph=static_graph)
run_hf_bert_ddp(self, model, inputs, "aot_eager")
@skip_if_lt_x_gpu(2)
@import_transformers_or_skip()
@config.patch(optimize_ddp=True, enable_compiler_collectives=True)
def test_hf_bert_ddp_aot_eager(self):
self._test_hf_bert_aot_eager(static_graph=False)
@skip_if_lt_x_gpu(2)
@import_transformers_or_skip()
@config.patch(optimize_ddp=True, enable_compiler_collectives=True)
def test_hf_bert_ddp_aot_eager_static_graph(self):
self._test_hf_bert_aot_eager(static_graph=True)
@skip_if_lt_x_gpu(2)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(optimize_ddp=False, enable_compiler_collectives=True)
def test_ddp_activation_checkpointing(self):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
class MyModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(64, 32)
self.fc2 = torch.nn.Linear(32, 16)
self.fc3 = torch.nn.Linear(16, 8)
def forward(self, inp):
return self.fc3(self.fc2(self.fc1(inp)))
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
self.assertFalse(config.optimize_ddp)
model = MyModel().to(device="cuda")
# Activation checkpointing for Linear layers.
non_reentrant_wrapper = functools.partial(
checkpoint_wrapper,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
check_fn = lambda submodule: isinstance( # noqa: E731
submodule, torch.nn.Linear
)
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn
)
model = DDP(model)
x = torch.randn(10, 64).cuda()
correct_outputs = model(x)
opt_model = torch.compile(model)
outputs = opt_model(x)
self.assertTrue(same(correct_outputs, outputs))
@config.patch(enable_compiler_collectives=True)
@skip_if_lt_x_gpu(1)
def test_fsdp_aot_eager(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
# Test with basic FSDP wrapping (outer wrap around whole model)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(m, use_orig_params=True)
fsdp_m = torch._dynamo.optimize("aot_eager")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
# Test with recursive wrapping, nested FSDP around each Linear
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(
m,
auto_wrap_policy=functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls=(nn.Linear,)
),
use_orig_params=True,
)
fsdp_m = torch._dynamo.optimize("aot_eager")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@config.patch(enable_compiler_collectives=True)
@skip_if_lt_x_gpu(1)
def test_fsdp_setattr(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
# Test with basic FSDP wrapping (outer wrap around whole model)
from torch._dynamo.utils import counters
counters.clear()
m, inputs, correct_outputs = get_mutating_model(f"cuda:{self.rank}")
fsdp_m = FSDP(m, use_orig_params=True)
fsdp_m = torch.compile(fsdp_m, backend="eager", fullgraph=False)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
self.assertEqual(len(counters["graph_break"]), 1)
first_graph_break = list(counters["graph_break"].keys())[0] # noqa: RUF015
self.assertTrue("setattr" not in first_graph_break)
@config.patch(enable_compiler_collectives=True)
@skip_if_lt_x_gpu(1)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_fsdp_inductor(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
# Test with basic FSDP wrapping (outer wrap around whole model)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(m, use_orig_params=True)
fsdp_m = torch._dynamo.optimize("inductor")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
# Test with recursive wrapping, nested FSDP around each Linear
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(
m,
auto_wrap_policy=functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls=(nn.Linear,)
),
use_orig_params=True,
)
fsdp_m = torch._dynamo.optimize("inductor")(fsdp_m)
outputs = fsdp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@config.patch(enable_compiler_collectives=True)
@skip_if_lt_x_gpu(1)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_fsdp_activation_checkpointing(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model, inputs = get_toy_model_for_activation_checkpointing(
f"cuda:{self.rank}"
)
is_inner = lambda module: isinstance(module, ToyInnerModel) # noqa: E731
wrap_policy = functools.partial(lambda_auto_wrap_policy, lambda_fn=is_inner)
model = apply_fsdp_with_checkpointing(model, wrap_policy, is_inner)
correct_outputs = model(inputs)
cnt = torch._dynamo.testing.CompileCounterWithBackend("inductor")
opt_model = torch._dynamo.optimize(cnt)(model)
outputs = opt_model(inputs)
self.assertTrue(same(correct_outputs, outputs))
# Each FSDP module is a separate graph
self.assertEqual(cnt.frame_count, 2)
self.assertTrue(
find_first_node(cnt.graphs[0], tag_activation_checkpoint) is not None
)
@import_transformers_or_skip()
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
# TODO(whc) Investigate why cudagraphs breaks inductor+fsdp for hf_bert
@patch.object(torch._inductor.config.triton, "cudagraphs", False)
@patch.object(torch._inductor.config, "fallback_random", True)
@config.patch(enable_compiler_collectives=True)
@unittest.skipIf(
PLATFORM_SUPPORTS_FLASH_ATTENTION or PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
"Inaccurate results with fused SDPA kernels",
)
def test_hf_bert_fsdp(self):
def apply_fsdp(model, wrap_policy):
model = FSDP(
copy.deepcopy(model), auto_wrap_policy=wrap_policy, use_orig_params=True
)
return model
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
for wrap_policy, test_instance in (
(None, "FSDP without recursive wrapping"),
):
print(f"Running hf_bert test for {test_instance}")
model, inputs = get_hf_bert(self.rank)
reset_rng_state()
eager_model = apply_fsdp(model, wrap_policy)
correct_outputs = eager_model(**inputs)
correct_loss = correct_outputs.loss
correct_loss.backward()
reset_rng_state()
opt_model = apply_fsdp(model, wrap_policy)
opt_model = torch._dynamo.optimize("inductor")(opt_model)
opt_outputs = opt_model(**inputs)
opt_loss = opt_outputs.loss
opt_loss.backward()
inputs_flat = [inputs[k] for k in inputs]
correct_results = collect_results(
eager_model, correct_outputs.logits, correct_loss, inputs_flat
)
opt_results = collect_results(
opt_model, opt_outputs.logits, opt_loss, inputs_flat
)
self.assertTrue(same(correct_results, opt_results))
@import_transformers_or_skip()
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
# TODO(whc) Investigate why cudagraphs breaks inductor+fsdp for hf_bert
@patch.object(torch._inductor.config.triton, "cudagraphs", False)
@patch.object(torch._inductor.config, "fallback_random", True)
@config.patch(guard_nn_modules=True, enable_compiler_collectives=True)
def test_hf_bert_fsdp_activation_checkpointing(self):
from transformers.models.bert.modeling_bert import BertLayer
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
for wrap_policy, test_instance in (
(
functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls=(BertLayer,)
),
"FSDP with recursive wrapping BertLayer instances",
),
):
print(
f"Running hf_bert_activation_checkpointing test for {test_instance}"
)
model, inputs = get_hf_bert(self.rank)
check_fn = lambda submodule: isinstance( # noqa: E731
submodule, BertLayer
)
reset_rng_state()
eager_model = apply_fsdp_with_checkpointing(
model, wrap_policy, check_fn
)
correct_outputs = eager_model(**inputs)
correct_loss = correct_outputs.loss
correct_loss.backward()
reset_rng_state()
opt_model = apply_fsdp_with_checkpointing(model, wrap_policy, check_fn)
opt_model = torch._dynamo.optimize("inductor")(opt_model)
opt_outputs = opt_model(**inputs)
opt_loss = opt_outputs.loss
opt_loss.backward()
inputs_flat = [inputs[k] for k in inputs]
correct_results = collect_results(
eager_model, correct_outputs.logits, correct_loss, inputs_flat
)
opt_results = collect_results(
opt_model, opt_outputs.logits, opt_loss, inputs_flat
)
self.assertTrue(same(correct_results, opt_results))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(enable_compiler_collectives=True)
def test_compiler_collectives_automatic_dynamic_tensor(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
class SimpleModel(nn.Module):
def __init__(self, input_size, output_size):
super().__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, x):
return self.linear(x)
torch._dynamo.utils.clear_compilation_metrics()
model = SimpleModel(10, 2).to(self.rank)
model.forward = torch.compile(model.forward)
ddp_model = DDP(model, device_ids=[self.rank])
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
def B(s):
return [torch.randn(s, 10), torch.randint(0, 2, (s,))]
if self.rank == 0:
dataloader = [B(5), B(8), B(6)]
else:
dataloader = [B(6), B(6), B(3)]
for data, labels in dataloader:
data, labels = data.to(self.rank), labels.to(self.rank)
optimizer.zero_grad()
output = ddp_model(data)
loss = loss_fn(output, labels)
loss.backward()
optimizer.step()
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(enable_compiler_collectives=True)
def test_compiler_collectives_automatic_dynamic_scalar(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
torch._dynamo.utils.clear_compilation_metrics()
# TODO: This should be possible to do inside the function, but
device = f"cuda:{self.rank}"
@torch.compile()
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(enable_compiler_collectives=True)
def test_compiler_collectives_automatic_dynamic_speculation_divergence(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
torch._dynamo.utils.clear_compilation_metrics()
# TODO: This should be possible to do inside the function, but
device = f"cuda:{self.rank}"
@torch.compile()
def f(x, y):
zx = x.shape
zy = y.shape
return x.sum() + y.sum()
if self.rank == 0:
dataloader = [4, 4]
else:
dataloader = [3, 4]
for data in dataloader:
f(
torch.randn(data, device=self.rank),
torch.randn(data, device=self.rank),
)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(enable_compiler_collectives=True)
def test_compiler_collectives_graph_break_empty_graph_still_collective(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
torch._dynamo.utils.clear_compilation_metrics()
device = f"cuda:{self.rank}"
@torch.compile()
def f(x, y):
z = y
print("woof")
zx = x.shape
zy = y.shape
return x.sum() + y.sum()
if self.rank == 0:
dataloader = [5, 5, 6]
else:
dataloader = [3, 4, 5]
for data in dataloader:
f(
torch.randn(data, device=self.rank),
torch.randn(data, device=self.rank),
)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(enable_compiler_collectives=True)
def test_compiler_collectives_dim_mismatch(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
torch._dynamo.utils.clear_compilation_metrics()
@torch.compile()
def f(x, y):
zx = x.shape
zy = y.shape
return x.sum() + y.sum()
if self.rank == 0:
dataloader = [[4, 2]]
else:
dataloader = [[3]]
for data in dataloader:
f(
torch.randn(data, device=self.rank),
torch.randn(data, device=self.rank),
)
metrics = torch._dynamo.utils.get_compilation_metrics()
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@config.patch(enable_compiler_collectives=True)
def test_compiler_collectives_missing_source(self):
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
torch._dynamo.utils.clear_compilation_metrics()
@torch.compile()
def f(rank, xs):
return xs[rank].sum()
xs = []
for _ in range(self.world_size):
xs.append(torch.randn(10, device=self.rank))
f(self.rank, xs)
metrics = torch._dynamo.utils.get_compilation_metrics()
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(torch._inductor.config, "fx_graph_cache", False)
@patch.object(torch._inductor.config, "fx_graph_remote_cache", False)
def test_asymmetric_compilation(self):
from torch._dynamo.comptime import comptime
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
torch._dynamo.utils.clear_compilation_metrics()
device = f"cuda:{self.rank}"
pg = dist.distributed_c10d._get_default_group()
cnt = torch._dynamo.testing.CompileCounter()
sleep_time = 5
@torch._dynamo.optimize(cnt)
def f(x):
if self.rank == 0:
comptime.sleep(sleep_time)
y = 2 * x
return y.sum()
backend = pg._get_backend(torch.device(device))
backend._set_default_timeout(timedelta(seconds=sleep_time - 2))
x = torch.ones(4, device=device)
# NCCL startup is lazy
w = pg.allreduce(x)
w.wait()
f(x)
if self.rank != 0:
# test fails with NCCL timeout without this line
dist.distributed_c10d._add_ephemeral_timeout_for_all_pgs(
timedelta(seconds=sleep_time)
)
w = pg.allreduce(x)
w.wait()
torch.cuda.synchronize(device)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(torch._inductor.config, "fx_graph_cache", True)
@patch.object(torch._inductor.config, "fx_graph_remote_cache", False)
@patch.object(torch._inductor.config, "sleep_sec_TESTING_ONLY", 10)
def test_asymmetric_compilation_with_fx_cache(self):
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
with fresh_inductor_cache(), _dynamo_dist_per_rank_init(
self.rank, self.world_size
):
torch._dynamo.utils.clear_compilation_metrics()
device = f"cuda:{self.rank}"
pg = dist.distributed_c10d._get_default_group()
@torch.compile
def f(x):
y = 2 * x
return y.sum()
backend = pg._get_backend(torch.device(device))
backend._set_default_timeout(timedelta(seconds=5))
counters.clear()
x = torch.ones(4, device=device)
f(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
w = pg.allreduce(x)
w.wait()
torch.cuda.synchronize(device)
torch._dynamo.reset()
if self.rank == 0:
with fresh_inductor_cache():
f(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
else:
f(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
w = pg.allreduce(x)
w.wait()
torch.cuda.synchronize(device)
@requires_nccl()
@requires_cuda
class TestSingleProc(DynamoDistributedSingleProcTestCase):
"""
Test harness initializes dist process group.
Test simple things here since they are simpler to debug.
Use TestMultiProc for things that really need to run on multiple nodes
"""
def get_model(
self, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None
):
m = ToyModel(
in_feat=in_feat,
hidden_feat=hidden_feat,
out_feat=out_feat,
ctx_manager=ctx_manager,
).to(self.device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(self.device)
outputs = m(inputs)
return m, inputs, outputs
@patch.object(config, "optimize_ddp", False)
def test_ddp_baseline_aot_eager(self):
from torch.nn.parallel import DistributedDataParallel as DDP
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids)
ddp_m = torch._dynamo.optimize("aot_eager")(ddp_m)
outputs = ddp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(config, "optimize_ddp", False)
def test_ddp_baseline_inductor(self):
from torch.nn.parallel import DistributedDataParallel as DDP
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids)
ddp_m = torch._dynamo.optimize("inductor")(ddp_m)
outputs = ddp_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
@patch.object(config, "optimize_ddp", True)
def test_graph_split(self):
assert config.optimize_ddp
"""
Just ensures that the appropriate number of splits happen (based on
bucket size and model parameters) - verifies the number of times
the user-provided compiler is called by the DDPOptimizer which is
doing the graph splitting
"""
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
check_splits_compiler = CheckSplitsCompiler()
@torch._dynamo.optimize(check_splits_compiler.compile_fn)
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
@patch.object(config, "optimize_ddp", True)
def test_graph_split_ctx_manager(self):
"""
Ensures that we get the right number of splits and that the respective
context managers' effects are applied to the computation.
"""
for get_compiler in [
lambda: CheckSplitsCompiler(),
lambda: None,
]:
for ctx_manager, output_test in [
(
lambda: torch.autocast(
torch.device(self.device).type, torch.float16
),
lambda out: self.assertEqual(out.dtype, torch.float16),
),
(torch.enable_grad, lambda out: self.assertTrue(out.requires_grad)),
(torch.no_grad, lambda out: self.assertTrue(not out.requires_grad)),
]:
m, inputs, correct_outputs = self.get_model(
out_feat=1000,
hidden_feat=1000,
in_feat=1000,
ctx_manager=ctx_manager,
)
# inp - 1000 * 1000 matrix of float32 (4 bytes) = 4MB
# hidden - 1000 * 1000 matrix of float32 (4 bytes) = 4MB
bucket_cap_mb = 3.5 # 4MB
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=bucket_cap_mb)
compiler = get_compiler()
@torch._dynamo.optimize(
compiler.compile_fn if compiler else "aot_eager"
)
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
if compiler:
self.assertEqual(compiler.compiler_called, 4)
output_test(opt_outputs)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 4)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
@patch.object(config, "optimize_ddp", True)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_graph_split_inductor(self):
assert config.optimize_ddp
"""
Same as above, but using inductor backend.
We observed issues with inductor/fx interface in the past.
"""
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
@torch._dynamo.optimize("inductor")
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
@torch._inductor.config.patch(
{"layout_optimization": True, "keep_output_stride": False}
)
@patch.object(config, "optimize_ddp", True)
def _test_graph_split_inductor_layout_optimizations_impl(self, context):
assert config.optimize_ddp
channel_dim = 512
# channel dim must be > 64 for inductor to do layout optimization and use NHWC
class ToyModelConv(nn.Module):
def __init__(self) -> None:
super().__init__()
self.net = nn.Sequential(
*[
nn.Conv2d(channel_dim, channel_dim, 1, stride=1, bias=False),
nn.ReLU(),
]
+ [
nn.Conv2d(channel_dim, channel_dim, 1, stride=1, bias=False),
nn.ReLU(),
]
+ [
nn.Conv2d(channel_dim, channel_dim, 1, stride=1, bias=False),
nn.ReLU(),
]
+ [
nn.Conv2d(channel_dim, channel_dim, 1, stride=1, bias=False),
nn.ReLU(),
]
)
def forward(self, inputs):
return self.net(inputs)
def get_model():
m = ToyModelConv().to(self.device)
m.apply(init_weights)
inputs = torch.rand(2, channel_dim, channel_dim, 128).to(self.device)
outputs = m(inputs)
return m, inputs, outputs
with context():
m, inputs, correct_outputs = get_model()
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
@torch._dynamo.optimize("inductor")
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_graph_split_inductor_layout_optimizations_training(self):
self._test_graph_split_inductor_layout_optimizations_impl(
contextlib.nullcontext
)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_graph_split_inductor_layout_optimizations_inference(self):
self._test_graph_split_inductor_layout_optimizations_impl(torch.no_grad)
@patch.object(config, "optimize_ddp", True)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_graph_split_inductor_transpose(self):
assert config.optimize_ddp
B = 100
N = 30
D = 50
K = 70
class Foo(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear0 = nn.Linear(N, K)
self.linear1 = torch.nn.Linear(D * K, 2048)
def forward(self, x):
xt = x.transpose(2, 1)
xt = self.linear0(xt).flatten(1)
return self.linear1(xt)
mod = Foo().to(self.device)
compiled_mod = torch.compile(mod, backend="inductor")
ddp_compiled_mod = DDP(compiled_mod, device_ids=self.device_ids)
x = torch.randn((B, N, D), dtype=torch.float32, device=self.device)
self.assertTrue(same(mod(x), ddp_compiled_mod(x)))
x_1 = torch.randn((B * 2, N, D), dtype=torch.float32, device=self.device)
self.assertTrue(same(mod(x_1), ddp_compiled_mod(x_1)))
x_2 = torch.randn((B * 3, N, D), dtype=torch.float32, device=self.device)
self.assertTrue(same(mod(x_2), ddp_compiled_mod(x_2)))
@patch.object(config, "optimize_ddp", True)
def test_no_split(self):
"""
Ensures the DDPOptimizer returns a correct, compiled module without
introducing graph splits. (Based on model parameters fitting in the bucket)
"""
# DDP will always do a 'first bucket' with a really small size; so only a tiny model will escape this
m, inputs, correct_outputs = self.get_model(hidden_feat=5)
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=250)
check_splits_compiler = CheckSplitsCompiler()
@torch._dynamo.optimize(check_splits_compiler.compile_fn)
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 1)
@patch.object(config, "optimize_ddp", True)
def test_aot_autograd(self):
"""
Explicitly check AotAutograd family of compilers work,
since they require example inputs propagated between graph splits.
"""
m, inputs, correct_outputs = self.get_model()
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
@torch._dynamo.optimize("aot_eager")
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
opt_outputs.sum().backward()
self.assertTrue(same(correct_outputs, opt_outputs))
@patch.object(config, "optimize_ddp", True)
def test_custom_layer(self):
"""
Just ensures that the appropriate number of splits happen (based on
bucket size and model parameters) - verifies the number of times
the user-provided compiler is called by the DDPOptimizer which is
doing the graph splitting
"""
m, inputs, correct_outputs = get_custom_model(self.device)
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=1)
check_splits_compiler = CheckSplitsCompiler()
@torch._dynamo.optimize(check_splits_compiler.compile_fn)
def opt_fn(inputs):
return ddp_m(*inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_empty_graph_inductor(self):
def fn():
get_world_size = torch.distributed.distributed_c10d.get_world_size()
return (get_world_size,)
opt_fn = torch._dynamo.optimize("inductor")(fn)
res = None
try:
res = opt_fn()[0]
except Exception:
pass
self.assertEqual(res, 1)
@patch.object(config, "optimize_ddp", False)
def test_ignored_parameters(self):
"""
Verifies ddp graph-split logic ignores parameters marked to ignore on DDP module.
Hooks up graph-split optimizer manually so it can peek at internal state.
"""
m, inputs, correct_outputs = get_custom_model(self.device)
parameters_to_ignore = ["seq.2.weight", "seq.4.linear.bias"]
DDP._set_params_and_buffers_to_ignore_for_model(m, parameters_to_ignore)
ddp_m = DDP(m, device_ids=self.device_ids, bucket_cap_mb=25)
parameter_ids_to_ignore = [
id(ddp_m.module.get_parameter(p)) for p in ddp_m.parameters_to_ignore
]
check_splits_compiler = CheckSplitsCompiler()
ddp_optimizer = DDPOptimizer(
bucket_bytes_cap=ddp_m.bucket_bytes_cap,
backend_compile_fn=check_splits_compiler.compile_fn,
)
@torch._dynamo.optimize(ddp_optimizer.compile_fn)
def opt_fn(inputs):
return ddp_m(*inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 2)
for b in ddp_optimizer.buckets:
for p_id in b.param_ids:
self.assertFalse(p_id in parameter_ids_to_ignore)
@patch.object(config, "optimize_ddp", True)
def test_higher_order_op(self):
from torch.utils.checkpoint import checkpoint
N = 1000
class InnerModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = torch.nn.Linear(N, N)
self.linear2 = torch.nn.Linear(N, N)
def forward(self, x):
a = self.linear1(x)
a = self.linear2(a)
return a
class MockModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.inner_mod1 = InnerModule()
self.inner_mod2 = InnerModule()
def forward(self, x):
a = checkpoint(self.inner_mod1, x, use_reentrant=False)
a = torch.cos(a)
a = checkpoint(self.inner_mod2, a, use_reentrant=False)
a = torch.cos(a)
return a
mod = MockModule().cuda()
mod = DDP(mod, bucket_cap_mb=1)
x = torch.randn(N, N, device="cuda", requires_grad=True)
args = (x,)
backend = "aot_eager"
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
"DDPOptimizer backend: Found a higher order op in the graph",
):
torch.compile(mod, backend=cnt)(*args)
def test_fsdp_orig_params_assert(self):
# Test with basic FSDP wrapping (outer wrap around whole model)
m, inputs, correct_outputs = get_model(f"cuda:{self.rank}")
fsdp_m = FSDP(m, use_orig_params=False)
fsdp_m = torch._dynamo.optimize()(fsdp_m)
self.assertRaisesRegex(
AssertionError,
"Dynamo only supports FSDP with use_orig_params=True",
fsdp_m,
inputs,
)
def test_fsdp_skip_guards(self):
"""
It's currently difficult to test dynamo guards. Most guards tests are indirect- modify something and
observe that the guard in question failed. In this case, since the FSDP guards were already deemed
useless and skipping them is expected to have no practical effect, it's pretty contrived to even try to
make those guards fail. Instead, we observe the 'guard source' printed by dynamo's comptime print_guards
function.
Note: comptime prints the guards before the time they get installed or not installed, so in both cases
(skip or no skip) the same guards get printed. The difference is that in the skip case, they show up
with a special 'guard source' which will cuase them to not be installed. So all we check for is the expected
guard source 'local_fsdp_module'.
"""
global GUARDS_FILE
GUARDS_FILE = StringIO()
for skip_guards, expected_guard_source in (
(True, "local_fsdp_module"),
(False, "local_unspecialized_nn_module"),
):
torch._dynamo.reset()
class ToyModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
def forward(self, inputs):
out = self.net(inputs)
@comptime
def _(ctx):
ctx.print_guards(file=GUARDS_FILE)
return out
device = f"cuda:{self.rank}"
m = ToyModel(
in_feat=10,
hidden_feat=5000,
out_feat=5,
).to(device)
inputs = torch.rand(20, 10).to(device)
m.apply(init_weights)
correct_outputs = m(inputs)
fsdp_m = FSDP(m, use_orig_params=True)
with torch._dynamo.config.patch(skip_fsdp_guards=skip_guards):
opt_m = torch._dynamo.optimize("aot_eager")(fsdp_m)
outputs = opt_m(inputs)
# far from an exhaustive check of all the expected guards, just check a couple of them.
FileCheck().check("""local "L['self']" TYPE_MATCH""").check(
f"""{expected_guard_source} "L['self']._modules['net']" TYPE_MATCH"""
).check(
f"""{expected_guard_source} "L['self']._modules['net']._modules['0']" TYPE_MATCH"""
).run(
GUARDS_FILE.getvalue()
)
self.assertTrue(same(correct_outputs, outputs))
def test_fsdp_skip_register_attr_or_module(self):
"""
ensure FSDP module is not registered as attrbutes
in the fx graph
see `not source.guard_source().is_fsdp_module()`
before calling `register_attr_or_module`
in variables/builder.py
"""
class ToyModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
)
def forward(self, inputs):
out = self.net(inputs)
return out
torch._dynamo.reset()
device = f"cuda:{self.rank}"
m = ToyModel(
in_feat=10,
hidden_feat=5000,
out_feat=5,
).to(device)
inputs = torch.rand(20, 10).to(device)
m.apply(init_weights)
correct_outputs = m(inputs)
fsdp_m = FSDP(m, use_orig_params=True)
def debug_compiler(gm, _):
for node in gm.graph.nodes:
if node.op == "get_attr":
for name in [
"l__self___net_0_weight",
"l__self___net_0_bias",
"l__self___net_2_weight",
"l__self___net_2_bias",
]:
self.assertFalse(
name in node.name,
f"FSDP module {name} should not be registered as attributes",
)
return gm
opt_m = torch._dynamo.optimize(backend=debug_compiler)(fsdp_m)
outputs = opt_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
def test_fsdp_dup_tensors_same_source(self):
"""
Tests that FSDP-managed modules' parameters and buffers with the same
source are de-duplicated, meaning that they are each only passed once
as a graph input.
"""
class DuplicateModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self._param = torch.randn((3,), device="cuda")
self._buf = torch.nn.Buffer(
torch.randn((3,), requires_grad=False, device="cuda")
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Use `_param` and `_buf` each twice in this compiled forward
# to exercise if they are de-duplicated by TorchDynamo
z = x + self._buf + self._buf
z += self._param + self._param
return z
model = DuplicateModule()
fsdp_model = FSDP(copy.deepcopy(model), use_orig_params=True)
fsdp_model = torch._dynamo.optimize("aot_eager")(fsdp_model)
inp = torch.randn((2, 3), device="cuda")
local_out = model(inp)
fsdp_out = fsdp_model(inp)
self.assertEqual(local_out, fsdp_out)
@patch.object(config, "guard_nn_modules", True)
def test_fsdp_dup_tensors_diff_source(self):
"""
Tests that FSDP-managed modules' parameters and buffers with different
source do not result in incorrect AOTAutograd de-dup guards like
``a is b``, where ``a`` and ``b`` are certainly not the same. We check
this by checking for per-invocation recompiles.
"""
class BufModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self._buf = nn.Buffer(
torch.randn((3,), requires_grad=False, device="cuda")
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self._buf
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self._param = nn.Parameter(torch.randn((1,), device="cuda"))
self._buf_module = BufModule()
# Share the buffer, meaning same tensor but different source
self._buf = self._buf_module._buf
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Use the same buffer tensor twice in the compiled forward,
# including a data mutation to trigger de-dup logic
self._buf.mul_(2)
z = x + self._buf
z = self._buf_module(z)
z += self._param
return z
fsdp_model = FSDP(Model(), use_orig_params=True)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fsdp_model = torch._dynamo.optimize(cnt)(fsdp_model)
inp = torch.randn((2, 3), device="cuda")
for _ in range(15):
fsdp_model(inp)
# Check for no recompiles (if there were incorrect de-dup guards, then
# the frame count would be equal to the number of forward calls)
self.assertEqual(cnt.frame_count, 1)
def test_fsdp_staticmethod(self):
"""
Tests that Dynamo compiles staticmethods for FSDP-managed modules
correctly both when the staticmethod is invoked from the class and from
the object itself.
"""
class ModuleWithStaticMethod(nn.Module):
def __init__(self, use_self: bool):
super().__init__()
self._use_self = use_self
torch.manual_seed(42) # force `_param` to be deterministic
self._param = nn.Parameter(torch.randn((3,), device="cuda"))
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self._use_self:
z = self._add(x, self._param)
else:
z = ModuleWithStaticMethod._add(x, self._param)
z *= 2
return z
@staticmethod
def _add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x + y
model = ModuleWithStaticMethod(False)
x = torch.randn((2, 3), device="cuda")
ref_out = model(x)
test_outs: List[torch.Tensor] = []
for use_self in (False, True):
model = ModuleWithStaticMethod(use_self)
fsdp_model = FSDP(model, use_orig_params=True)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fsdp_model = torch._dynamo.optimize(cnt)(fsdp_model)
test_outs.append(fsdp_model(x))
# Check for no recompiles, which could happen if incorrectly
# passing args to the staticmethod (e.g. doubly passing `self`)
# 3 is expected here for 1 forward.
# Graph 1 should be add and imul
self.assertEqual(cnt.frame_count, 1)
for test_out in test_outs:
self.assertEqual(test_out, ref_out)
def test_async_subclass_no_specialize(self):
cnt = torch._dynamo.testing.CompileCounterWithBackend("eager")
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def f(x):
return x + 1
f(_maybe_wrap_tensor(torch.randn(10)))
f(_maybe_wrap_tensor(torch.randn(12)))
self.assertEqual(cnt.frame_count, 1)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
test_hf_bert_ddp_inductor_static_graph
|
def test_hf_bert_ddp_inductor_static_graph(self):
self._test_hf_bert_ddp_inductor(static_graph=True)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
@requires_nccl()
class TestMultiProc(DynamoDistributedMultiProcTestCase):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_functional_api.py
|
new_subgroups
|
def new_subgroups(group_size: int, pg_tag=None):
world_size = dist.get_world_size()
subgroups = []
cur_subgroup = None
for subgroup_id in range(world_size // group_size):
start_rank = subgroup_id * group_size
end_rank = start_rank + group_size
ranks_in_subgroup = list(range(start_rank, end_rank))
subgroup = c10d._new_group_with_tag(
ranks=ranks_in_subgroup,
pg_tag=pg_tag,
)
subgroups.append(subgroup)
rank = dist.get_rank()
if rank in ranks_in_subgroup:
cur_subgroup = subgroup
return cur_subgroup, subgroups
class TestExpand(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
def test_expand_1d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3], "bla")
self.assertEqual("bla", tag)
def test_expand_2d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]], "blu")
self.assertEqual("blu", tag)
with self.assertRaisesRegex(ValueError, "group sizes must be identical"):
ft_c._expand_group([[0], [1, 2, 3]])
def test_expand_process_group(self):
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD)
self.assertEqual(c10d._get_group_tag(dist.group.WORLD), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD, "bla")
self.assertEqual("bla", tag)
my_pg, others = new_subgroups(group_size=2)
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual(c10d._get_group_tag(my_pg), tag)
self.assertEqual(dist.get_process_group_ranks(my_pg), rankset)
self.assertEqual(2, group_size)
my_pg = None
for i in range(dist.get_world_size()):
group = c10d._new_group_with_tag([i], pg_tag="my_pg")
if i == dist.get_rank():
my_pg = group
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual("my_pg", tag)
self.assertEqual([dist.get_rank()], rankset)
self.assertEqual(1, group_size)
tag, rankset, group_size = ft_c._expand_group(my_pg, "bla")
self.assertEqual("bla", tag)
def test_expand_device_mesh(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
def test_expand_device_mesh_tuple(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4).view(2, 2))
with self.assertRaisesRegex(AssertionError, "Only 1D mesh"):
tag, rankset, group_size = ft_c._expand_group(mesh)
tag, rankset, group_size = ft_c._expand_group((mesh, 0))
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
expected_rankset = [0, 2] if dist.get_rank() in [0, 2] else [1, 3]
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group((mesh, 1))
expected_rankset = [0, 1] if dist.get_rank() in [0, 1] else [2, 3]
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=1)), tag)
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
class TestPgTag(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
"""
The behavior we want is as follow:
- rankset+tag will always result in the same PG.
Do we enforce this by failing creation of new PGs or returning existing ones?
Return existing one.
- default tag gives existing behavior.
This means we should create duplicates.
- _expand_group on _default-tagged pg should always resolve to it
This mean we can't depend on empty tag + rankset.
"""
def test_pg_creation_with_tag(self):
my_group, _ = new_subgroups(group_size=2, pg_tag="blu")
my_group2, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(my_group, my_group2)
my_group3, _ = new_subgroups(group_size=2, pg_tag="blu2")
self.assertNotEqual(my_group, my_group3)
my_group4, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group, my_group4)
my_group5, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group4, my_group5)
def test_pg_lookup_roundtrip(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="blu2")
pg_notag0, _ = new_subgroups(group_size=2)
pg_notag1, _ = new_subgroups(group_size=2)
def roundtrip(pg):
tag, rankset, _ = ft_c._expand_group(pg)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag0))
self.assertEqual(pg_tag1, roundtrip(pg_tag1))
self.assertEqual(pg_notag0, roundtrip(pg_notag0))
self.assertEqual(pg_notag1, roundtrip(pg_notag1))
def test_pg_lookup_with_tag(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="bla")
pg_notag0, _ = new_subgroups(group_size=2)
def roundtrip(pg, pg_tag):
tag, rankset, _ = ft_c._expand_group(pg, pg_tag)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag1, "blu"))
self.assertEqual(pg_tag0, roundtrip(pg_notag0, "blu"))
# Cannot erase the tag of a PG
self.assertEqual(pg_tag0, roundtrip(pg_tag0, ""))
def test_find_or_create_pg(self):
pg = c10d._find_or_create_pg_by_ranks_and_tag("blu", [0, 1, 2, 3], 2)
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(pg, pg_tag0)
def test_find_root_pg(self):
pg = c10d._find_pg_by_ranks_and_tag("", [0, 1, 2, 3])
self.assertEqual(dist.group.WORLD, pg)
@instantiate_parametrized_tests
class TestTraceableCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
@parametrize("device", ["cpu", "cuda"])
def test_broadcast(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
if dist.get_rank() == 0:
tensor = torch.ones([4], device=device)
else:
tensor = torch.zeros([4], device=device)
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.broadcast(tensor, 0, mesh)
self.assertEqual(res, torch.ones([4], device=device))
@parametrize("device", ["cpu", "cuda"])
def test_all_reduce_eager(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensor = torch.ones([4], device=device)
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_reduce(tensor, "sum", mesh)
self.assertEqual(res, torch.tensor([4, 4, 4, 4], dtype=torch.float))
mesh = dt.DeviceMesh(device, torch.arange(4).view(2, 2))
res2 = ft_c.all_reduce(tensor, "sum", (mesh, 1))
self.assertEqual(res2, torch.tensor([2, 2, 2, 2], dtype=torch.float))
@parametrize("device", ["cpu", "cuda"])
def test_all_reduce_coalesced_eager(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
t0 = torch.ones([4], device=device)
t1 = torch.ones([6], device=device) + 2
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_reduce_coalesced([t0, t1], "sum", mesh)
self.assertEqual(res[0], t0 * 4)
self.assertEqual(res[1], t1 * 4)
@parametrize("device", ["cpu", "cuda"])
def test_all_gather_tensor(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
# testing 1d/2d mesh
mesh_1d = dt.DeviceMesh(device, torch.arange(self.world_size))
mesh_2d = dt.DeviceMesh(device, torch.arange(self.world_size).view(2, 2))
for mesh in [mesh_1d, mesh_2d]:
dims_to_gather = [0, 1, 2]
for dim in dims_to_gather:
output_size = [3, 3, 3]
output_size[dim] *= mesh.size(0)
# each rank have its own tensor, all_gather gives a bigger tensor
local_tensor = torch.ones([3, 3, 3], device=device)
gathered_tensor = ft_c.all_gather_tensor(
local_tensor, gather_dim=dim, group=(mesh, 0)
)
self.assertEqual(gathered_tensor, torch.ones(output_size))
@parametrize("device", ["cpu", "cuda"])
def test_all_gather_into_tensor_coalesced(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensors = [torch.ones([4], device=device), torch.ones([4], device=device) + 1]
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_gather_into_tensor_coalesced(tensors, mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.ones([4 * dist.get_world_size()], device=device), res[0])
self.assertEqual(
torch.ones([4 * dist.get_world_size()], device=device) + 1, res[1]
)
@parametrize("device", ["cpu", "cuda"])
def test_reduce_scatter_tensor(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
# testing 1d/2d mesh
mesh_1d = dt.DeviceMesh(device, torch.arange(self.world_size))
mesh_2d = dt.DeviceMesh(device, torch.arange(self.world_size).view(2, 2))
for mesh in [mesh_1d, mesh_2d]:
dims_to_scatter = [0, 1]
for dim in dims_to_scatter:
group_size = mesh.size(0)
input_size = [3, 3]
output_size = [3, 3]
output_size[dim] *= group_size
input_tensor = torch.ones(output_size, device=device)
res_num = 1 * group_size
rs_tensor = ft_c.reduce_scatter_tensor(
input_tensor, "sum", scatter_dim=dim, group=(mesh, 0)
)
self.assertEqual(rs_tensor, torch.ones(input_size) * res_num)
@parametrize("device", ["cpu", "cuda"])
def test_reduce_scatter_into_tensor_coalesced(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensors = [
torch.ones([4], dtype=torch.int64, device=device),
torch.ones([4], dtype=torch.int64, device=device) + 1,
]
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.reduce_scatter_tensor_coalesced(tensors, "sum", [0, 0], mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.tensor([4], device=device), res[0])
self.assertEqual(torch.tensor([8], device=device), res[1])
class TestMetaCollectives(TestCase):
def test_all_reduce(self):
x = torch.rand((2, 3, 4), device="meta")
out = ft_c.all_reduce(x, "sum", "0")
self.assertEqual(x.size(), out.size())
class TestGradCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 2
def setUp(self):
super().setUp()
self._spawn_threads()
def test_all_reduce(self):
x = torch.rand([4], requires_grad=True)
y = torch.rand([4], requires_grad=True)
out = ft_c.all_reduce(x, "sum", dist.group.WORLD)
(out + y).sum().backward()
self.assertIsNone(x.grad)
class TestMakeFx(TestCase):
def setUp(self):
# make_fx is not thread-safe due to patching nd mutating global states
# so create a fake_pg.
self.rank = 0
self.world_size = 2
store = FakeStore()
dist.init_process_group(
backend="fake",
world_size=self.world_size,
rank=self.rank,
store=store,
)
def tearDown(self):
super().tearDown()
self.assertFalse(torch.fx._symbolic_trace.is_fx_tracing())
def test_all_reduce_tracing(self):
def allred(input):
return ft_c.all_reduce(input, "sum", group=dist.group.WORLD) + 1
graph = make_fx(allred)(torch.rand(4))
FileCheck().check("all_reduce").check("wait_tensor").run(str(graph.graph))
mesh = dt.DeviceMesh("cpu", torch.arange(self.world_size))
def allred_mesh(input):
return ft_c.all_reduce(input, "sum", mesh) + 1
mesh_graph = make_fx(allred_mesh)(torch.rand(4))
FileCheck().check_not("get_attr").check("wait_tensor").run(
str(mesh_graph.graph)
)
def allred_mesh_dim(input):
return ft_c.all_reduce(input, "sum", (mesh, 0)) + 1
mesh_dim_graph = make_fx(allred_mesh_dim)(torch.rand(4))
FileCheck().check_not("get_attr").check("wait_tensor").run(
str(mesh_dim_graph.graph)
)
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
WORLD_SIZE = 2
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
world_size
|
def world_size(self):
return 4
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_threads()
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_expand_1d_rank_list
|
def test_expand_1d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3], "bla")
self.assertEqual("bla", tag)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_expand_2d_rank_list
|
def test_expand_2d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]], "blu")
self.assertEqual("blu", tag)
with self.assertRaisesRegex(ValueError, "group sizes must be identical"):
ft_c._expand_group([[0], [1, 2, 3]])
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_expand_process_group
|
def test_expand_process_group(self):
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD)
self.assertEqual(c10d._get_group_tag(dist.group.WORLD), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD, "bla")
self.assertEqual("bla", tag)
my_pg, others = new_subgroups(group_size=2)
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual(c10d._get_group_tag(my_pg), tag)
self.assertEqual(dist.get_process_group_ranks(my_pg), rankset)
self.assertEqual(2, group_size)
my_pg = None
for i in range(dist.get_world_size()):
group = c10d._new_group_with_tag([i], pg_tag="my_pg")
if i == dist.get_rank():
my_pg = group
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual("my_pg", tag)
self.assertEqual([dist.get_rank()], rankset)
self.assertEqual(1, group_size)
tag, rankset, group_size = ft_c._expand_group(my_pg, "bla")
self.assertEqual("bla", tag)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_expand_device_mesh
|
def test_expand_device_mesh(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_expand_device_mesh_tuple
|
def test_expand_device_mesh_tuple(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4).view(2, 2))
with self.assertRaisesRegex(AssertionError, "Only 1D mesh"):
tag, rankset, group_size = ft_c._expand_group(mesh)
tag, rankset, group_size = ft_c._expand_group((mesh, 0))
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
expected_rankset = [0, 2] if dist.get_rank() in [0, 2] else [1, 3]
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group((mesh, 1))
expected_rankset = [0, 1] if dist.get_rank() in [0, 1] else [2, 3]
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=1)), tag)
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
world_size
|
def world_size(self):
return 4
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_threads()
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
@requires_nccl()
class TestSingleProc(DynamoDistributedSingleProcTestCase):
"""
Test harness initializes dist process group.
Test simple things here since they are simpler to debug.
Use TestMultiProc for things that really need to run on multiple nodes
"""
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/test_dynamo_distributed.py
|
get_model
|
def get_model(device, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5):
m = ToyModel(in_feat=in_feat, hidden_feat=hidden_feat, out_feat=out_feat).to(device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(device)
outputs = m(inputs)
return m, inputs, outputs
|
def get_model(
device, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None
):
m = ToyModel(
in_feat=in_feat,
hidden_feat=hidden_feat,
out_feat=out_feat,
ctx_manager=ctx_manager,
).to(device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(device)
outputs = m(inputs)
return m, inputs, outputs
class MutatingModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
self.state = 1
def forward(self, inputs):
self.state = 2
return self.net(inputs) * self.state
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
test_asymmetric_compilation_with_fx_cache
|
def test_asymmetric_compilation_with_fx_cache(self):
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
with fresh_inductor_cache(), _dynamo_dist_per_rank_init(
self.rank, self.world_size
):
torch._dynamo.utils.clear_compilation_metrics()
device = f"cuda:{self.rank}"
pg = dist.distributed_c10d._get_default_group()
@torch.compile
def f(x):
y = 2 * x
return y.sum()
backend = pg._get_backend(torch.device(device))
backend._set_default_timeout(timedelta(seconds=5))
counters.clear()
x = torch.ones(4, device=device)
f(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
w = pg.allreduce(x)
w.wait()
torch.cuda.synchronize(device)
torch._dynamo.reset()
if self.rank == 0:
with fresh_inductor_cache():
f(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
else:
f(x)
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 1)
self.assertEqual(counters["inductor"]["fxgraph_cache_bypass"], 0)
w = pg.allreduce(x)
w.wait()
torch.cuda.synchronize(device)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
@requires_nccl()
class TestMultiProc(DynamoDistributedMultiProcTestCase):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_pg_creation_with_tag
|
def test_pg_creation_with_tag(self):
my_group, _ = new_subgroups(group_size=2, pg_tag="blu")
my_group2, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(my_group, my_group2)
my_group3, _ = new_subgroups(group_size=2, pg_tag="blu2")
self.assertNotEqual(my_group, my_group3)
my_group4, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group, my_group4)
my_group5, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group4, my_group5)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestPgTag(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_pg_lookup_roundtrip
|
def test_pg_lookup_roundtrip(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="blu2")
pg_notag0, _ = new_subgroups(group_size=2)
pg_notag1, _ = new_subgroups(group_size=2)
def roundtrip(pg):
tag, rankset, _ = ft_c._expand_group(pg)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag0))
self.assertEqual(pg_tag1, roundtrip(pg_tag1))
self.assertEqual(pg_notag0, roundtrip(pg_notag0))
self.assertEqual(pg_notag1, roundtrip(pg_notag1))
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestPgTag(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
roundtrip
|
def roundtrip(pg):
tag, rankset, _ = ft_c._expand_group(pg)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag0))
self.assertEqual(pg_tag1, roundtrip(pg_tag1))
self.assertEqual(pg_notag0, roundtrip(pg_notag0))
self.assertEqual(pg_notag1, roundtrip(pg_notag1))
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_pg_lookup_with_tag
|
def test_pg_lookup_with_tag(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="bla")
pg_notag0, _ = new_subgroups(group_size=2)
def roundtrip(pg, pg_tag):
tag, rankset, _ = ft_c._expand_group(pg, pg_tag)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag1, "blu"))
self.assertEqual(pg_tag0, roundtrip(pg_notag0, "blu"))
# Cannot erase the tag of a PG
self.assertEqual(pg_tag0, roundtrip(pg_tag0, ""))
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestPgTag(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
roundtrip
|
def roundtrip(pg):
tag, rankset, _ = ft_c._expand_group(pg)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag0))
self.assertEqual(pg_tag1, roundtrip(pg_tag1))
self.assertEqual(pg_notag0, roundtrip(pg_notag0))
self.assertEqual(pg_notag1, roundtrip(pg_notag1))
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_find_or_create_pg
|
def test_find_or_create_pg(self):
pg = c10d._find_or_create_pg_by_ranks_and_tag("blu", [0, 1, 2, 3], 2)
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(pg, pg_tag0)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestPgTag(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_find_root_pg
|
def test_find_root_pg(self):
pg = c10d._find_pg_by_ranks_and_tag("", [0, 1, 2, 3])
self.assertEqual(dist.group.WORLD, pg)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestPgTag(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
world_size
|
def world_size(self):
return 4
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_threads()
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_fake_pg_tracing
|
def test_fake_pg_tracing(self):
store = dist.HashStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
default_pg = dist.distributed_c10d._get_default_group()
def allgather_fn(tensor):
return funcol.all_gather_tensor(tensor, 0, default_pg)
gm = make_fx(allgather_fn)(torch.randn(2, 2, device="cuda"))
FileCheck().check("all_gather").check("wait_tensor").run(str(gm.graph))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
allgather_fn
|
def allgather_fn(tensor):
return funcol.all_gather_tensor(tensor, 0, default_pg)
gm = make_fx(allgather_fn)(torch.randn(2, 2, device="cuda"))
FileCheck().check("all_gather").check("wait_tensor").run(str(gm.graph))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_broadcast
|
def test_broadcast(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
# src == rank
output = torch.ones(3, 3)
dist.broadcast(output, src=0)
self.assertEqual(tuple(output.shape), (3, 3))
# src != rank
output = torch.ones(3, 3)
dist.broadcast(output, src=1)
self.assertEqual(tuple(output.shape), (3, 3))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_scatter
|
def test_scatter(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
# src == rank
output = torch.ones(3, 3)
to_scatter = [torch.ones(3, 3) * rank for rank in range(2)]
dist.scatter(output, to_scatter)
self.assertEqual(tuple(output.shape), (3, 3))
# src != rank
output = torch.ones(3, 3)
dist.scatter(output, None, src=1)
self.assertEqual(tuple(output.shape), (3, 3))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_alltoall
|
def test_alltoall(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
output_list = [torch.ones(3, 3) for _ in range(2)]
input_list = [torch.ones(3, 3) for _ in range(2)]
dist.all_to_all(output_list, input_list)
self.assertEqual(len(output_list), 2)
for output in output_list:
self.assertEqual(tuple(output.shape), (3, 3))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_alltoall_base
|
def test_alltoall_base(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
out_tensor = torch.ones(3, 3)
in_tensor = torch.ones(3, 3)
output_split = [1, 1]
input_split = [1, 1]
dist.all_to_all_single(out_tensor, in_tensor, output_split, input_split)
self.assertEqual(tuple(out_tensor.shape), (3, 3))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_send
|
def test_send(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
tensor = torch.ones(3, 3)
dist.send(tensor, 1)
self.assertEqual(tuple(tensor.shape), (3, 3))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_fsdp_tp_fake_e2e
|
def test_fsdp_tp_fake_e2e(self):
world_size = 4
tp_size = 2
store = dist.HashStore()
dist.init_process_group(
backend="fake", rank=0, world_size=world_size, store=store
)
device_mesh = DeviceMesh("cuda", torch.arange(0, world_size).view(-1, tp_size))
device_mesh = init_device_mesh(
"cuda", (world_size // tp_size, tp_size), mesh_dim_names=["dp", "tp"]
)
sequence_parallelize_plan = {
"net1": ColwiseParallel(input_layouts=Shard(0)),
"net2": RowwiseParallel(output_layouts=Shard(0)),
}
pairwise_parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
for parallel_plan in [sequence_parallelize_plan, pairwise_parallelize_plan]:
my_module = parallelize_module(
MLPModule(device="cuda"),
device_mesh["tp"],
parallel_plan,
)
sharded_module = FSDP(
my_module, use_orig_params=True, device_mesh=device_mesh["dp"]
)
optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
for i in range(10):
dp_rank = dist.get_rank()
torch.manual_seed(i + dp_rank)
input = torch.randn(20, 10).cuda(dist.get_rank())
x = sharded_module(input)
loss = x.sum()
loss.backward()
optim.step()
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
apply_fsdp
|
def apply_fsdp(model, wrap_policy):
model = FSDP(
copy.deepcopy(model),
auto_wrap_policy=wrap_policy,
use_orig_params=True
)
return model
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
for (wrap_policy, test_instance) in (
(
None,
"FSDP without recursive wrapping"
),
(
functools.partial(
transformer_auto_wrap_policy, transformer_layer_cls=(BertLayer, )
),
"FSDP with recursive wrapping BertLayer instances"
)
):
print(f"Running hf_bert test for {test_instance}")
model, inputs = get_hf_bert(self.rank)
reset_rng_state()
eager_model = apply_fsdp(model, wrap_policy)
correct_outputs = eager_model(**inputs)
correct_loss = correct_outputs.loss
correct_loss.backward()
reset_rng_state()
opt_model = apply_fsdp(model, wrap_policy)
opt_model = torch._dynamo.optimize("inductor")(opt_model)
opt_outputs = opt_model(**inputs)
opt_loss = opt_outputs.loss
opt_loss.backward()
inputs_flat = [inputs[k] for k in inputs]
correct_results = collect_results(eager_model, correct_outputs.logits, correct_loss, inputs_flat)
opt_results = collect_results(opt_model, opt_outputs.logits, opt_loss, inputs_flat)
self.assertTrue(same(correct_results, opt_results))
|
def apply_fsdp(model, wrap_policy):
model = FSDP(
copy.deepcopy(model), auto_wrap_policy=wrap_policy, use_orig_params=True
)
return model
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
for wrap_policy, test_instance in (
(None, "FSDP without recursive wrapping"),
):
print(f"Running hf_bert test for {test_instance}")
model, inputs = get_hf_bert(self.rank)
reset_rng_state()
eager_model = apply_fsdp(model, wrap_policy)
correct_outputs = eager_model(**inputs)
correct_loss = correct_outputs.loss
correct_loss.backward()
reset_rng_state()
opt_model = apply_fsdp(model, wrap_policy)
opt_model = torch._dynamo.optimize("inductor")(opt_model)
opt_outputs = opt_model(**inputs)
opt_loss = opt_outputs.loss
opt_loss.backward()
inputs_flat = [inputs[k] for k in inputs]
correct_results = collect_results(
eager_model, correct_outputs.logits, correct_loss, inputs_flat
)
opt_results = collect_results(
opt_model, opt_outputs.logits, opt_loss, inputs_flat
)
self.assertTrue(same(correct_results, opt_results))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
B
|
def B(s):
return [torch.randn(s, 10), torch.randint(0, 2, (s,))]
if self.rank == 0:
dataloader = [B(5), B(8), B(6)]
else:
dataloader = [B(6), B(6), B(3)]
for data, labels in dataloader:
data, labels = data.to(self.rank), labels.to(self.rank)
optimizer.zero_grad()
output = ddp_model(data)
loss = loss_fn(output, labels)
loss.backward()
optimizer.step()
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
test_fsdp_dup_tensors_diff_source
|
def test_fsdp_dup_tensors_diff_source(self):
"""
Tests that FSDP-managed modules' parameters and buffers with different
source do not result in incorrect AOTAutograd de-dup guards like
``a is b``, where ``a`` and ``b`` are certainly not the same. We check
this by checking for per-invocation recompiles.
"""
class BufModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self._buf = nn.Buffer(
torch.randn((3,), requires_grad=False, device="cuda")
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self._buf
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self._param = nn.Parameter(torch.randn((1,), device="cuda"))
self._buf_module = BufModule()
# Share the buffer, meaning same tensor but different source
self._buf = self._buf_module._buf
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Use the same buffer tensor twice in the compiled forward,
# including a data mutation to trigger de-dup logic
self._buf.mul_(2)
z = x + self._buf
z = self._buf_module(z)
z += self._param
return z
fsdp_model = FSDP(Model(), use_orig_params=True)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fsdp_model = torch._dynamo.optimize(cnt)(fsdp_model)
inp = torch.randn((2, 3), device="cuda")
for _ in range(15):
fsdp_model(inp)
# Check for no recompiles (if there were incorrect de-dup guards, then
# the frame count would be equal to the number of forward calls)
self.assertEqual(cnt.frame_count, 1)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
@requires_nccl()
@requires_cuda
class TestSingleProc(DynamoDistributedSingleProcTestCase):
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
test_fsdp_staticmethod
|
def test_fsdp_staticmethod(self):
"""
Tests that Dynamo compiles staticmethods for FSDP-managed modules
correctly both when the staticmethod is invoked from the class and from
the object itself.
"""
class ModuleWithStaticMethod(nn.Module):
def __init__(self, use_self: bool):
super().__init__()
self._use_self = use_self
torch.manual_seed(42) # force `_param` to be deterministic
self._param = nn.Parameter(torch.randn((3,), device="cuda"))
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self._use_self:
z = self._add(x, self._param)
else:
z = ModuleWithStaticMethod._add(x, self._param)
z *= 2
return z
@staticmethod
def _add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x + y
model = ModuleWithStaticMethod(False)
x = torch.randn((2, 3), device="cuda")
ref_out = model(x)
test_outs: List[torch.Tensor] = []
for use_self in (False, True):
model = ModuleWithStaticMethod(use_self)
fsdp_model = FSDP(model, use_orig_params=True)
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fsdp_model = torch._dynamo.optimize(cnt)(fsdp_model)
test_outs.append(fsdp_model(x))
# Check for no recompiles, which could happen if incorrectly
# passing args to the staticmethod (e.g. doubly passing `self`)
# 3 is expected here for 1 forward.
# Graph 1 should be add and imul
self.assertEqual(cnt.frame_count, 1)
for test_out in test_outs:
self.assertEqual(test_out, ref_out)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
@requires_nccl()
@requires_cuda
class TestSingleProc(DynamoDistributedSingleProcTestCase):
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
test_async_subclass_no_specialize
|
def test_async_subclass_no_specialize(self):
cnt = torch._dynamo.testing.CompileCounterWithBackend("eager")
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def f(x):
return x + 1
f(_maybe_wrap_tensor(torch.randn(10)))
f(_maybe_wrap_tensor(torch.randn(12)))
self.assertEqual(cnt.frame_count, 1)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
@requires_nccl()
@requires_cuda
class TestSingleProc(DynamoDistributedSingleProcTestCase):
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
f
|
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|
def f(x, y):
return x + torch.ones(y, device=device).sum()
if self.rank == 0:
dataloader = [3, 3, 7]
else:
dataloader = [3, 4, 9]
for data in dataloader:
f(torch.randn(5, device=self.rank), data)
metrics = torch._dynamo.utils.get_compilation_metrics()
# Number of compiles same on all nodes
res = [None] * self.world_size
torch.distributed.all_gather_object(res, len(metrics))
for r in res[1:]:
self.assertEqual(res[0], r)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
|
torch
|
test/distributed/test_fake_pg.py
|
tearDown
|
def tearDown(self):
super().tearDown()
dist.destroy_process_group()
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_all_reduce
|
def test_all_reduce(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=1, world_size=2, store=store)
output = torch.ones(3, 3) * dist.get_rank()
dist.all_reduce(output)
self.assertEqual(tuple(output.shape), (3, 3))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_fake_pg.py
|
test_allgather
|
def test_allgather(self):
store = FakeStore()
dist.init_process_group(backend="fake", rank=1, world_size=2, store=store)
input_tensor = torch.ones(3, 3) * dist.get_rank()
output_tensors = [torch.empty_like(input_tensor) for _ in range(2)]
dist.all_gather(output_tensors, input_tensor)
for _, out_tensor in enumerate(output_tensors):
self.assertEqual(tuple(out_tensor.shape), (3, 3))
|
import sys
import unittest
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as funcol
import torch.nn as nn
from torch.distributed._tensor import DeviceMesh, init_device_mesh, Shard
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import MLPModule
from torch.testing._internal.distributed.fake_pg import FakeStore
HAS_CUDA = torch.cuda.is_available()
class TestFakePG(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
test_fsdp_skip_guards
|
def test_fsdp_skip_guards(self):
"""
It's currently difficult to test dynamo guards. Most guards tests are indirect- modify something and
observe that the guard in question failed. In this case, since the FSDP guards were already deemed
useless and skipping them is expected to have no practical effect, it's pretty contrived to even try to
make those guards fail. Instead, we observe the 'guard source' printed by dynamo's comptime print_guards
function.
Note: comptime prints the guards before the time they get installed or not installed, so in both cases
(skip or no skip) the same guards get printed. The difference is that in the skip case, they show up
with a special 'guard source' which will cuase them to not be installed. So all we check for is the expected
guard source 'local_fsdp_module'.
"""
global GUARDS_FILE
GUARDS_FILE = StringIO()
for skip_guards, expected_guard_source in (
(True, "local_fsdp_module"),
(False, "local_unspecialized_nn_module"),
):
torch._dynamo.reset()
class ToyModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
def forward(self, inputs):
out = self.net(inputs)
@comptime
def _(ctx):
ctx.print_guards(file=GUARDS_FILE)
return out
device = f"cuda:{self.rank}"
m = ToyModel(
in_feat=10,
hidden_feat=5000,
out_feat=5,
).to(device)
inputs = torch.rand(20, 10).to(device)
m.apply(init_weights)
correct_outputs = m(inputs)
fsdp_m = FSDP(m, use_orig_params=True)
with torch._dynamo.config.patch(skip_fsdp_guards=skip_guards):
opt_m = torch._dynamo.optimize("aot_eager")(fsdp_m)
outputs = opt_m(inputs)
# far from an exhaustive check of all the expected guards, just check a couple of them.
FileCheck().check("""local "L['self']" TYPE_MATCH""").check(
f"""{expected_guard_source} "L['self']._modules['net']" TYPE_MATCH"""
).check(
f"""{expected_guard_source} "L['self']._modules['net']._modules['0']" TYPE_MATCH"""
).run(
GUARDS_FILE.getvalue()
)
self.assertTrue(same(correct_outputs, outputs))
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
@requires_nccl()
@requires_cuda
class TestSingleProc(DynamoDistributedSingleProcTestCase):
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
_
|
def _(ctx):
ctx.print_guards(file=GUARDS_FILE)
return out
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
test_fsdp_skip_register_attr_or_module
|
def test_fsdp_skip_register_attr_or_module(self):
"""
ensure FSDP module is not registered as attrbutes
in the fx graph
see `not source.guard_source().is_fsdp_module()`
before calling `register_attr_or_module`
in variables/builder.py
"""
class ToyModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
)
def forward(self, inputs):
out = self.net(inputs)
return out
torch._dynamo.reset()
device = f"cuda:{self.rank}"
m = ToyModel(
in_feat=10,
hidden_feat=5000,
out_feat=5,
).to(device)
inputs = torch.rand(20, 10).to(device)
m.apply(init_weights)
correct_outputs = m(inputs)
fsdp_m = FSDP(m, use_orig_params=True)
def debug_compiler(gm, _):
for node in gm.graph.nodes:
if node.op == "get_attr":
for name in [
"l__self___net_0_weight",
"l__self___net_0_bias",
"l__self___net_2_weight",
"l__self___net_2_bias",
]:
self.assertFalse(
name in node.name,
f"FSDP module {name} should not be registered as attributes",
)
return gm
opt_m = torch._dynamo.optimize(backend=debug_compiler)(fsdp_m)
outputs = opt_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
@requires_nccl()
@requires_cuda
class TestSingleProc(DynamoDistributedSingleProcTestCase):
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
debug_compiler
|
def debug_compiler(gm, _):
for node in gm.graph.nodes:
if node.op == "get_attr":
for name in [
"l__self___net_0_weight",
"l__self___net_0_bias",
"l__self___net_2_weight",
"l__self___net_2_bias",
]:
self.assertFalse(
name in node.name,
f"FSDP module {name} should not be registered as attributes",
)
return gm
opt_m = torch._dynamo.optimize(backend=debug_compiler)(fsdp_m)
outputs = opt_m(inputs)
self.assertTrue(same(correct_outputs, outputs))
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_reduce_scatter_into_tensor_coalesced
|
def test_reduce_scatter_into_tensor_coalesced(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensors = [
torch.ones([4], dtype=torch.int64, device=device),
torch.ones([4], dtype=torch.int64, device=device) + 1,
]
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.reduce_scatter_tensor_coalesced(tensors, "sum", [0, 0], mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.tensor([4], device=device), res[0])
self.assertEqual(torch.tensor([8], device=device), res[1])
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
@instantiate_parametrized_tests
class TestTraceableCollectives(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_all_reduce
|
def test_all_reduce(self):
x = torch.rand((2, 3, 4), device="meta")
out = ft_c.all_reduce(x, "sum", "0")
self.assertEqual(x.size(), out.size())
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestMetaCollectives(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
world_size
|
def world_size(self):
return 4
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_threads()
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
test_all_reduce
|
def test_all_reduce(self):
x = torch.rand((2, 3, 4), device="meta")
out = ft_c.all_reduce(x, "sum", "0")
self.assertEqual(x.size(), out.size())
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestMetaCollectives(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
get_model
|
def get_model(device, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5):
m = ToyModel(in_feat=in_feat, hidden_feat=hidden_feat, out_feat=out_feat).to(device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(device)
outputs = m(inputs)
return m, inputs, outputs
|
def get_model(
device, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None
):
m = ToyModel(
in_feat=in_feat,
hidden_feat=hidden_feat,
out_feat=out_feat,
ctx_manager=ctx_manager,
).to(device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(device)
outputs = m(inputs)
return m, inputs, outputs
class MutatingModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
self.state = 1
def forward(self, inputs):
self.state = 2
return self.net(inputs) * self.state
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
opt_fn
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibilty with dynamo explain
explain_out = torch._dynamo.explain(ddp_m, inputs)
break_reasons = explain_out[4]
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all(["DDPOptimizer" in r.reason for r in break_reasons]))
|
def opt_fn(inputs):
return ddp_m(inputs)
opt_outputs = opt_fn(inputs)
self.assertTrue(same(correct_outputs, opt_outputs))
self.assertEqual(check_splits_compiler.compiler_called, 3)
# ensure compatibility with dynamo explain
explain_out = torch._dynamo.explain(ddp_m)(inputs)
break_reasons = explain_out.break_reasons
self.assertEqual(len(break_reasons), 3)
self.assertTrue(all("DDPOptimizer" in r.reason for r in break_reasons))
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
test_higher_order_op
|
def test_higher_order_op(self):
from torch.utils.checkpoint import checkpoint
N = 1000
class InnerModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = torch.nn.Linear(N, N)
self.linear2 = torch.nn.Linear(N, N)
def forward(self, x):
a = self.linear1(x)
a = self.linear2(a)
return a
class MockModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.inner_mod1 = InnerModule()
self.inner_mod2 = InnerModule()
def forward(self, x):
a = checkpoint(self.inner_mod1, x, use_reentrant=False)
a = torch.cos(a)
a = checkpoint(self.inner_mod2, a, use_reentrant=False)
a = torch.cos(a)
return a
mod = MockModule().cuda()
mod = DDP(mod, bucket_cap_mb=1)
x = torch.randn(N, N, device="cuda", requires_grad=True)
args = (x,)
backend = "aot_eager"
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
"DDPOptimizer backend: Found a higher order op in the graph",
):
torch.compile(mod, backend=cnt)(*args)
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
@requires_nccl()
@requires_cuda
class TestSingleProc(DynamoDistributedSingleProcTestCase):
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_functional_api.py
|
world_size
|
def world_size(self):
return 4
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class TestExpand(MultiThreadedTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
process_group
|
def process_group(self):
return dist.group.WORLD
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
WORLD_SIZE = 2
class TestCollectivesWithNCCL(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
dist_init
|
def dist_init(self):
dist.init_process_group(
backend=BACKEND,
world_size=self.world_size,
rank=self.rank,
init_method=f"file://{self.file_name}",
)
# set device for nccl pg for collectives
if BACKEND == "nccl":
torch.cuda.set_device(self.rank)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
WORLD_SIZE = 2
class TestCollectivesWithNCCL(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_functional_api.py
|
allreduce
|
def allreduce(t, pg):
return ft_c.all_reduce(t, "sum", pg)
compiled_allreduce = torch.compile(allreduce, fullgraph=True)
compiled_allreduce(torch.randn(8, device=self.device), self.process_group)
|
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
WORLD_SIZE = 2
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_inductor_collectives.py
|
matmul_cat_col
|
def matmul_cat_col(a, b, c, d, e, f, *, tag, ranks, group_size):
x = torch.matmul(a, b)
y = torch.matmul(c, d)
z = torch.cat((x, y))
ar = torch.ops.c10d_functional.all_reduce(z, "sum", tag, ranks, group_size)
g = torch.matmul(e, f)
ar = torch.ops.c10d_functional.wait_tensor(ar)
out = torch.add(ar, g.repeat(2, 1))
return (out,)
|
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
)
from torch.utils._triton import has_triton
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_inductor_collectives.py
|
compile
|
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
example = functools.partial(
example,
**self.get_world_trs(),
)
t = torch.randn(4, 4, device="cuda")
inputs = (t if self.rank == 0 else torch.zeros(4, 4, device="cuda"), 0)
eager_out = example(*inputs)
self.assertTrue(same(t, eager_out))
compiled_func = compile(example, inputs)
compiled_out = compiled_func(*inputs)
self.assertTrue(same(eager_out, compiled_out))
|
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
)
from torch.utils._triton import has_triton
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_inductor_collectives.py
|
test_allreduce_inductor_cudagraph_trees
|
def test_allreduce_inductor_cudagraph_trees(self):
"""
Tests whether cudagraph trees support all_reduce from nccl
"""
import torch.distributed as dist
# dist.all_reduce is an inplace op in eager mode but a functionanlized op in compiled mode.
# so we define eager_func and func separately for the same semantic.
def eager_func(x):
y = x * x
dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
def func(x):
y = x * x
y = dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
options = {
"triton.cudagraphs": True,
"triton.cudagraph_trees": True,
}
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
compiled_func = torch.compile(
func, backend="inductor", fullgraph=True, options=options, dynamic=None
)
for nelem in [1024, 2048, 4096]:
x = torch.randn(nelem, device="cuda", dtype=torch.bfloat16)
golden_out = eager_func(x)
for _ in range(3):
compiled_out = compiled_func(x)
self.assertEqual(golden_out, compiled_out)
|
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
)
from torch.utils._triton import has_triton
@requires_nccl()
class TestCollectivesMultiProc(DynamoDistributedMultiProcTestCase):
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_inductor_collectives.py
|
eager_func
|
def eager_func(x):
y = x * x
dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
|
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
)
from torch.utils._triton import has_triton
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_inductor_collectives.py
|
func
|
def func(x):
y = x * x
y = dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
options = {
"triton.cudagraphs": True,
"triton.cudagraph_trees": True,
}
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
compiled_func = torch.compile(
func, backend="inductor", fullgraph=True, options=options, dynamic=None
)
for nelem in [1024, 2048, 4096]:
x = torch.randn(nelem, device="cuda", dtype=torch.bfloat16)
golden_out = eager_func(x)
for _ in range(3):
compiled_out = compiled_func(x)
self.assertEqual(golden_out, compiled_out)
|
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
)
from torch.utils._triton import has_triton
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_inductor_collectives.py
|
eager_func
|
def eager_func(x):
y = x * x
dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
|
import functools
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
)
from torch.utils._triton import has_triton
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.