library
stringclasses 1
value | test_file
stringclasses 785
values | test_function
stringlengths 1
295
| before
stringlengths 0
448k
| after
stringlengths 0
487k
| context_before
stringclasses 947
values | context_after
stringlengths 0
16.3k
| commit_before
stringclasses 1
value | commit_after
stringclasses 1
value | change_type
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|---|
torch
|
test/distributed/test_c10d_nccl.py
|
test_timeout_dumps_on_stuck_ranks
|
def test_timeout_dumps_on_stuck_ranks(self):
# need rank0 to crash quicker after detecting timeout
os.environ["TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"] = "1"
# restore this env var to its prior default in case another test changed it
os.environ["TORCH_NCCL_COORD_CHECK_MILSEC"] = "1000"
if self.rank == self.MAIN_PROCESS_RANK:
# wait for both rank0 and 1 to crash before looking for both ranks' output
# file, and we rely on rank1 to sleep long enough to dump the debug info.
self.assertEqual(self._wait_process(0, timeout=90), -6)
self.assertEqual(self._wait_process(1, timeout=90), -6)
self.assertTrue(os.path.exists(self._trace_name(rank=1)))
self.assertTrue(os.path.exists(self._trace_name(rank=0)))
with open(self._trace_name(rank=0), "rb") as f:
t = pickle.load(f)
t = t["entries"]
self.assertEqual(len(t), 2)
with open(self._trace_name(rank=1), "rb") as f:
t = pickle.load(f)
t = t["entries"]
self.assertEqual(len(t), 1)
self.assertEqual(t[0]["collective_seq_id"], 1)
self.assertEqual(t[0]["state"], "completed")
return
pg = self._create_process_group_nccl()
device = self.local_device
with torch.cuda.device(device):
a = torch.full((3, 4), float(self.rank), device=device)
pg.allreduce(a).wait()
if self.rank == 0:
pg.allreduce(a).wait()
# rank 0 will get stuck, timeout and then signal a timeout to all ranks.
torch.cuda.synchronize(device=device)
if self.rank == 1:
# Force rank 1 to idle so that it will eventually timeout as well after
# getting the global signal to dump the debugging info.
time.sleep(600)
|
import copy
import json
import os
import pickle
import random
import re
import signal
import sys
import tempfile
import threading
import time
import warnings
from contextlib import contextmanager
from datetime import datetime, timedelta
from enum import auto, Enum
from itertools import chain, product
from unittest import mock, SkipTest
import torch
import torch.distributed as c10d
from typing import Dict, List
import test_c10d_common
from test_c10d_common import ConvNet, DoubleGpuNet, gpus_for_rank, ModuleForDdpCommHook
import torch.distributed as dist
import torch.distributed.algorithms.ddp_comm_hooks.default_hooks as default
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch._C._distributed_c10d import OpType
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
get_timeout,
init_multigpu_helper,
MultiProcessTestCase,
requires_gloo,
requires_nccl,
requires_nccl_version,
skip_if_lt_x_gpu,
skip_if_rocm_multiprocess,
TEST_SKIPS,
with_dist_debug_levels,
with_nccl_blocking_wait,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TEST_WITH_ROCM,
TestCase,
)
BFLOAT16_AVAILABLE = torch.cuda.is_available() and (
(torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 11)
or torch.version.hip is not None
)
from torch.distributed.distributed_c10d import _get_process_group_uid
from torch._C._distributed_c10d import _get_intra_node_comm_usage_counter
from torch.testing._internal.common_cuda import SM80OrLater
@skip_but_pass_in_sandcastle
class NCCLTraceTestTimeoutDumpOnStuckRanks(NCCLTraceTestDumpOnTimeoutBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_nccl.py
|
_wait_process
|
def _wait_process(self, rank, timeout):
try:
self.processes[rank].join(timeout)
return self.processes[rank].exitcode
except TimeoutError:
return None
|
import copy
import json
import os
import pickle
import random
import re
import signal
import sys
import tempfile
import threading
import time
import warnings
from contextlib import contextmanager
from datetime import datetime, timedelta
from enum import auto, Enum
from itertools import chain, product
from unittest import mock, SkipTest
import torch
import torch.distributed as c10d
from typing import Dict, List
import test_c10d_common
from test_c10d_common import ConvNet, DoubleGpuNet, gpus_for_rank, ModuleForDdpCommHook
import torch.distributed as dist
import torch.distributed.algorithms.ddp_comm_hooks.default_hooks as default
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch._C._distributed_c10d import OpType
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
get_timeout,
init_multigpu_helper,
MultiProcessTestCase,
requires_gloo,
requires_nccl,
requires_nccl_version,
skip_if_lt_x_gpu,
skip_if_rocm_multiprocess,
TEST_SKIPS,
with_dist_debug_levels,
with_nccl_blocking_wait,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TEST_WITH_ROCM,
TestCase,
)
BFLOAT16_AVAILABLE = torch.cuda.is_available() and (
(torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 11)
or torch.version.hip is not None
)
from torch.distributed.distributed_c10d import _get_process_group_uid
from torch._C._distributed_c10d import _get_intra_node_comm_usage_counter
from torch.testing._internal.common_cuda import SM80OrLater
class NCCLTraceTestDumpOnTimeoutBase(NCCLTraceTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_nccl.py
|
_check_return_codes
|
def _check_return_codes(self, elapsed_time):
# the base test infra assumes processes exit with matching return codes,
# but we want rank0 to abort and rank1 to exit cleanly in this test
self.assertEqual(self.processes[0].exitcode, -6)
self.assertEqual(self.processes[1].exitcode, 0)
|
import copy
import json
import os
import pickle
import random
import re
import signal
import sys
import tempfile
import threading
import time
import warnings
from contextlib import contextmanager
from datetime import datetime, timedelta
from enum import auto, Enum
from itertools import chain, product
from unittest import mock, SkipTest
import torch
import torch.distributed as c10d
from typing import Dict, List
import test_c10d_common
from test_c10d_common import ConvNet, DoubleGpuNet, gpus_for_rank, ModuleForDdpCommHook
import torch.distributed as dist
import torch.distributed.algorithms.ddp_comm_hooks.default_hooks as default
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch._C._distributed_c10d import OpType
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
get_timeout,
init_multigpu_helper,
MultiProcessTestCase,
requires_gloo,
requires_nccl,
requires_nccl_version,
skip_if_lt_x_gpu,
skip_if_rocm_multiprocess,
TEST_SKIPS,
with_dist_debug_levels,
with_nccl_blocking_wait,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TEST_WITH_ROCM,
TestCase,
)
BFLOAT16_AVAILABLE = torch.cuda.is_available() and (
(torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 11)
or torch.version.hip is not None
)
from torch.distributed.distributed_c10d import _get_process_group_uid
from torch._C._distributed_c10d import _get_intra_node_comm_usage_counter
from torch.testing._internal.common_cuda import SM80OrLater
class NCCLTraceTestDumpOnTimeoutBase(NCCLTraceTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_nccl.py
|
test_nccl_errors_dump
|
def test_nccl_errors_dump(self):
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
os.environ["TORCH_NCCL_TRACE_BUFFER_SIZE"] = "1000"
os.environ["TORCH_NCCL_DUMP_ON_TIMEOUT"] = "1"
# need rank0 to dump before abort
os.environ["TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"] = "5"
if self.rank == self.MAIN_PROCESS_RANK:
# wait for both rank0 and 1 to crash before looking for dump
self.assertEqual(self._wait_process(0, timeout=90), -6)
self.assertEqual(self._wait_process(1, timeout=90), 1)
# verify that the trace file exists for rank0
self.assertTrue(os.path.exists(self._trace_name(rank=0)))
return
store = c10d.FileStore(self.file_name, self.world_size)
process_group = c10d.ProcessGroupNCCL(
store,
self.rank,
self.world_size,
timeout=timedelta(seconds=10),
)
process_group.allreduce(torch.rand(10).cuda(self.rank))
if self.rank == 0:
work = process_group.allreduce(torch.rand(10).cuda(self.rank))
# expect an error to be raised
with self.assertRaisesRegex(dist.DistBackendError, ""):
# Block the current stream on the NCCL stream
work.wait()
# Run some GPU operations
a = torch.rand(10).cuda(self.rank)
elif self.rank == 1:
# Clean up structures (ex: files for FileStore before going down)
del process_group
sys.exit(1)
# tests that needs to be run with a larger world size
|
import copy
import json
import os
import pickle
import random
import re
import signal
import sys
import tempfile
import threading
import time
import warnings
from contextlib import contextmanager
from datetime import datetime, timedelta
from enum import auto, Enum
from itertools import chain, product
from unittest import mock, SkipTest
import torch
import torch.distributed as c10d
from typing import Dict, List
import test_c10d_common
from test_c10d_common import ConvNet, DoubleGpuNet, gpus_for_rank, ModuleForDdpCommHook
import torch.distributed as dist
import torch.distributed.algorithms.ddp_comm_hooks.default_hooks as default
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch._C._distributed_c10d import OpType
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
get_timeout,
init_multigpu_helper,
MultiProcessTestCase,
requires_gloo,
requires_nccl,
requires_nccl_version,
skip_if_lt_x_gpu,
skip_if_rocm_multiprocess,
TEST_SKIPS,
with_dist_debug_levels,
with_nccl_blocking_wait,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TEST_WITH_ROCM,
TestCase,
)
BFLOAT16_AVAILABLE = torch.cuda.is_available() and (
(torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 11)
or torch.version.hip is not None
)
from torch.distributed.distributed_c10d import _get_process_group_uid
from torch._C._distributed_c10d import _get_intra_node_comm_usage_counter
from torch.testing._internal.common_cuda import SM80OrLater
@skip_but_pass_in_sandcastle
class NcclErrorDumpTest(NCCLTraceTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_nccl.py
|
_create_process_group_nccl
|
def _create_process_group_nccl(self, store, opts):
# create nccl processgroup with opts
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
pg_options=opts)
pg = c10d.distributed_c10d._get_default_group()
return pg
|
def _create_process_group_nccl(self, store, opts, device_id=None):
# create nccl processgroup with opts
c10d.init_process_group(
"nccl",
world_size=self.world_size,
rank=self.rank,
store=store,
pg_options=opts,
device_id=device_id,
)
pg = c10d.distributed_c10d._get_default_group()
return pg
|
import copy
import math
import os
import random
import signal
import sys
import tempfile
import threading
import time
from contextlib import contextmanager
from datetime import timedelta
from itertools import product
from unittest import mock
import torch
import torch.distributed as c10d
import test_c10d_common
import torch.distributed as dist
import torch.distributed.algorithms.ddp_comm_hooks.default_hooks as default
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from test_c10d_common import gpus_for_rank, DoubleGpuNet, ConvNet, ModuleForDdpCommHook
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
init_multigpu_helper,
requires_nccl,
requires_gloo,
requires_nccl_version,
skip_if_lt_x_gpu,
get_timeout,
skip_if_rocm,
with_dist_debug_levels,
with_nccl_blocking_wait,
)
from torch.testing._internal.common_utils import (
TestCase,
run_tests,
retry_on_connect_failures,
TEST_WITH_DEV_DBG_ASAN,
TEST_WITH_ROCM,
sandcastle_skip,
sandcastle_skip_if,
)
BFLOAT16_AVAILABLE = (
torch.cuda.is_available()
and
(
(torch.version.cuda is not None and int(torch.version.cuda.split('.')[0]) >= 11)
or torch.version.hip is not None
)
)
class ProcessGroupNCCLTest(MultiProcessTestCase):
|
import copy
import json
import os
import pickle
import random
import re
import signal
import sys
import tempfile
import threading
import time
import warnings
from contextlib import contextmanager
from datetime import datetime, timedelta
from enum import auto, Enum
from itertools import chain, product
from unittest import mock, SkipTest
import torch
import torch.distributed as c10d
from typing import Dict, List
import test_c10d_common
from test_c10d_common import ConvNet, DoubleGpuNet, gpus_for_rank, ModuleForDdpCommHook
import torch.distributed as dist
import torch.distributed.algorithms.ddp_comm_hooks.default_hooks as default
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch._C._distributed_c10d import OpType
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
get_timeout,
init_multigpu_helper,
MultiProcessTestCase,
requires_gloo,
requires_nccl,
requires_nccl_version,
skip_if_lt_x_gpu,
skip_if_rocm_multiprocess,
TEST_SKIPS,
with_dist_debug_levels,
with_nccl_blocking_wait,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
skip_but_pass_in_sandcastle_if,
TEST_CUDA,
TEST_WITH_DEV_DBG_ASAN,
TEST_WITH_ROCM,
TestCase,
)
BFLOAT16_AVAILABLE = torch.cuda.is_available() and (
(torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 11)
or torch.version.hip is not None
)
class ProcessGroupNCCLGroupTest(MultiProcessTestCase):
from torch.distributed.distributed_c10d import _get_process_group_uid
from torch._C._distributed_c10d import _get_intra_node_comm_usage_counter
from torch.testing._internal.common_cuda import SM80OrLater
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_c10d_ops_nccl.py
|
test_tensor_register_hook
|
def test_tensor_register_hook(self):
os.environ["TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"] = "1"
pg = self.pg
local_device_id = self.rank_to_GPU[self.rank][0]
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# allgather_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size), dtype=tensor.dtype).cuda(
local_device_id
)
allgather_base(output_t, tensor)
# Verification
self.assertEqual(torch.arange(self.world_size), output_t)
# Unset env
del os.environ["TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"]
|
import math
import os
import sys
import tempfile
import torch
import torch.distributed as c10d
import torch.distributed as dist
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
init_multigpu_helper,
MultiProcContinousTest,
requires_nccl,
)
from torch.testing._internal.common_utils import (
skip_but_pass_in_sandcastle_if,
skipIfRocm,
TEST_WITH_DEV_DBG_ASAN,
)
class ProcessGroupNCCLOpTest(MultiProcContinousTest):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ops_nccl.py
|
allgather_base
|
def allgather_base(output_t, input_t):
work = pg._allgather_base(output_t, input_t)
work.wait()
# allgather_base is GPU number agnostic.
# Each rank contribute one tensor regardless of GPU counts
tensor = torch.tensor([self.rank]).cuda(local_device_id)
output_t = torch.empty((self.world_size), dtype=tensor.dtype).cuda(
local_device_id
)
allgather_base(output_t, tensor)
# Verification
self.assertEqual(torch.arange(self.world_size), output_t)
|
import math
import os
import sys
import tempfile
import torch
import torch.distributed as c10d
import torch.distributed as dist
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
init_multigpu_helper,
MultiProcContinousTest,
requires_nccl,
)
from torch.testing._internal.common_utils import (
skip_but_pass_in_sandcastle_if,
skipIfRocm,
TEST_WITH_DEV_DBG_ASAN,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_barrier_implies_wait
|
def test_barrier_implies_wait(self):
pg = self._create_process_group_ucc()
# Kick off allreduce operations
size = (100, 100)
num = 16
tensors = [torch.full(size, float(i)) for i in range(num)]
for tensor in tensors:
# Note: leak the returned work handle
pg.allreduce(tensor)
# Barrier should ensure all previous work has completed
pg.barrier().get_future().wait()
for i, tensor in enumerate(tensors):
self.assertEqual(torch.full(size, float(i * self.world_size)), tensor)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_processes()
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
_get_process_group
|
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_ucc_backend_4gpu_module
|
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_empty_tensors
|
def test_empty_tensors(self):
pg = self._create_process_group_ucc()
xs = [torch.FloatTensor([])]
fut = pg.broadcast(xs).get_future()
fut.wait()
output = fut.value()
self.assertEqual(0, output[0].numel())
self.assertEqual(xs[0], output[0], exact_dtype=False)
# TODO: add error check testing
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
broadcast
|
def broadcast(xs, rootRank, rootTensor):
opts = c10d.BroadcastOptions()
opts.rootRank = rootRank
opts.rootTensor = rootTensor
fut = pg.broadcast(xs, opts).get_future()
fut.wait()
return fut.value()
# Every rank is root once
for i in range(self.world_size):
# Run with 1 input tensor
x = fn(torch.tensor([self.rank]))
output = broadcast([x], i, 0)
self.assertEqual(torch.tensor([i]), output[0], exact_dtype=False)
# TODO: UCC currently does not support multi tensor input
# Test overloaded convenience function
x = torch.tensor([self.rank + 1.0])
fut = pg.broadcast(x, root=0).get_future()
fut.wait()
result = fut.value()
self.assertEqual(torch.tensor([1.0]), result[0])
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_broadcast_basics
|
def test_broadcast_basics(self):
self._test_broadcast_basics(lambda t: t.clone())
# TODO: test_broadcast_basics_cuda times out locally
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_allreduce_basics
|
def test_allreduce_basics(self):
self._test_allreduce_basics(lambda t: t.clone())
# TODO: test_allreduce_basics_cuda times out locally
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
_test_allgather_basics
|
def _test_allgather_basics(self, fn):
pg = self._create_process_group_ucc()
# TODO: Run with N input tensor per rank; for now, UCC only supports single tensor input so N=1
for n in [1]:
input = [fn(torch.tensor([n * self.rank + i])) for i in range(n)]
output = [
[fn(torch.tensor([-1])) for _ in range(n * self.world_size)]
for _ in range(n)
]
expected_output = [
[fn(torch.tensor([i])) for i in range(n * self.world_size)]
for _ in range(n)
]
fut = pg.allgather(output, input).get_future()
fut.wait()
result = fut.value()
if n == 1:
result = [result]
self.assertEqual(expected_output, result)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_allgather_basics
|
def test_allgather_basics(self):
self._test_allgather_basics(lambda t: t.clone())
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
task_parameters
|
def task_parameters(self):
return (self.t0.p, self.t1.p, self.task_unused.p)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
forward
|
def forward(self, x, rank):
return self.t0(x) if rank == 0 else self.t1(x)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
task_parameters
|
def task_parameters(self):
return (self.t0.p, self.t1.p, self.task_unused.p)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
forward
|
def forward(self, x, rank):
return self.t0(x) if rank == 0 else self.t1(x)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
simple_reduce_tests
|
def simple_reduce_tests(rank, world_size):
tests = [
(
c10d.ReduceOp.SUM,
torch.tensor([rank + 1.0]),
torch.tensor([float(world_size * (world_size + 1) / 2)]),
),
(
c10d.ReduceOp.PRODUCT,
torch.tensor([rank + 1.0]),
torch.tensor([float(math.factorial(world_size))]),
),
(
c10d.ReduceOp.MIN,
torch.tensor([rank + 1.0]),
torch.tensor([1.0]),
),
(
c10d.ReduceOp.MAX,
torch.tensor([rank + 1.0]),
torch.tensor([world_size]),
),
]
# Generate tests for BAND.
# The bit that is set changes in every iteration to check
# that the output changes accordingly.
for i in range(4):
vin = rank | (1 << i)
vout = 1 << i
tests.append(
(
c10d.ReduceOp.BAND,
torch.tensor([vin], dtype=torch.int32),
torch.tensor([vout], dtype=torch.int32),
),
)
# Generate tests for BOR.
# These emulate a larger world size per iteration by having every
# rank contribute multiple values that are pre-OR'ed.
for i in range(1, 5):
vin = reduce(operator.or_, [rank * i + j for j in range(i)])
vout = reduce(operator.or_, range(world_size * i))
tests.append(
(
c10d.ReduceOp.BOR,
torch.tensor([vin], dtype=torch.int32),
torch.tensor([vout], dtype=torch.int32),
),
)
# Generate tests for XOR.
# These emulate a larger world size per iteration by having every
# rank contribute multiple values that are pre-XOR'ed.
for i in range(1, 5):
vin = reduce(operator.xor, [rank * i + j for j in range(i)])
vout = reduce(operator.xor, range(world_size * i))
tests.append(
(
c10d.ReduceOp.BXOR,
torch.tensor([vin], dtype=torch.int32),
torch.tensor([vout], dtype=torch.int32),
),
)
return tests
class RendezvousEnvTest(TestCase):
@requires_ucc()
@retry_on_connect_failures
def test_logging_init(self):
os.environ["WORLD_SIZE"] = "1"
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = str(common.find_free_port())
os.environ["RANK"] = "0"
previous_handlers = logging.root.handlers
c10d.init_process_group(backend="ucc", init_method="env://")
current_handlers = logging.root.handlers
self.assertEqual(len(previous_handlers), len(current_handlers))
for current, previous in zip(current_handlers, previous_handlers):
self.assertEqual(current, previous)
c10d.destroy_process_group()
class TimeoutTest(test_c10d_common.AbstractTimeoutTest, TestCase):
@requires_ucc()
@retry_on_connect_failures
def test_default_store_timeout_ucc(self):
self._test_default_store_timeout("ucc")
class ProcessGroupUCCTest(MultiProcessTestCase):
def _create_process_group_ucc(self):
store = c10d.FileStore(self.file_name, self.world_size)
return c10d.ProcessGroupUCC(store, self.rank, self.world_size)
def setUp(self):
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@requires_ucc()
def test_empty_tensors(self):
pg = self._create_process_group_ucc()
xs = [torch.FloatTensor([])]
fut = pg.broadcast(xs).get_future()
fut.wait()
output = fut.value()
self.assertEqual(0, output[0].numel())
self.assertEqual(xs[0], output[0], exact_dtype=False)
# TODO: add error check testing
def _test_broadcast_basics(self, fn):
pg = self._create_process_group_ucc()
def broadcast(xs, rootRank, rootTensor):
opts = c10d.BroadcastOptions()
opts.rootRank = rootRank
opts.rootTensor = rootTensor
fut = pg.broadcast(xs, opts).get_future()
fut.wait()
return fut.value()
# Every rank is root once
for i in range(self.world_size):
# Run with 1 input tensor
x = fn(torch.tensor([self.rank]))
output = broadcast([x], i, 0)
self.assertEqual(torch.tensor([i]), output[0], exact_dtype=False)
# TODO: UCC currently does not support multi tensor input
# Test overloaded convenience function
x = torch.tensor([self.rank + 1.0])
fut = pg.broadcast(x, root=0).get_future()
fut.wait()
result = fut.value()
self.assertEqual(torch.tensor([1.0]), result[0])
@requires_ucc()
def test_broadcast_basics(self):
self._test_broadcast_basics(lambda t: t.clone())
# TODO: test_broadcast_basics_cuda times out locally
def _test_allreduce_basics(self, fn):
pg = self._create_process_group_ucc()
# Single input tests
tests = simple_reduce_tests(self.rank, self.world_size)
for op, input, expected in tests:
opts = c10d.AllreduceOptions()
opts.reduceOp = op
tensor = fn(input)
fut = pg.allreduce([tensor], opts).get_future()
fut.wait()
result = fut.value()
self.assertEqual(expected, result[0], exact_dtype=False)
# TODO: UCC currently does not support multi tensor input
# Test overloaded convenience function (defaults to using sum)
x = fn(torch.tensor([self.rank + 1.0]))
fut = pg.allreduce(x).get_future()
fut.wait()
result = fut.value()
self.assertEqual(
torch.tensor([float(self.world_size * (self.world_size + 1) / 2)]),
result[0],
)
@requires_ucc()
def test_allreduce_basics(self):
self._test_allreduce_basics(lambda t: t.clone())
# TODO: test_allreduce_basics_cuda times out locally
def _test_allgather_basics(self, fn):
pg = self._create_process_group_ucc()
# TODO: Run with N input tensor per rank; for now, UCC only supports single tensor input so N=1
for n in [1]:
input = [fn(torch.tensor([n * self.rank + i])) for i in range(n)]
output = [
[fn(torch.tensor([-1])) for _ in range(n * self.world_size)]
for _ in range(n)
]
expected_output = [
[fn(torch.tensor([i])) for i in range(n * self.world_size)]
for _ in range(n)
]
fut = pg.allgather(output, input).get_future()
fut.wait()
result = fut.value()
if n == 1:
result = [result]
self.assertEqual(expected_output, result)
def test_allgather_basics(self):
self._test_allgather_basics(lambda t: t.clone())
def _test_reduce_basics(self, fn):
pg = self._create_process_group_ucc()
for op, input, output in simple_reduce_tests(self.rank, self.world_size):
for root in range(self.world_size):
opts = c10d.ReduceOptions()
opts.reduceOp = op
opts.rootRank = root
tmp = fn(input)
fut = pg.reduce([tmp], opts).get_future()
fut.wait()
result = fut.value()
if root == self.rank:
self.assertEqual(output, result[0], exact_dtype=False)
@requires_ucc()
def test_reduce_basics(self):
self._test_reduce_basics(lambda t: t.clone())
# TODO: test_reduce_basics_cuda times out locally
@requires_ucc()
def test_send_recv_all_to_all(self):
pg = self._create_process_group_ucc()
# Preallocate tensors for input/output
inputs = [torch.tensor([self.rank]) for _ in range(self.world_size)]
outputs = [torch.tensor([-1]) for _ in range(self.world_size)]
# Issue sends
send_work = []
for i in range(self.world_size):
if i == self.rank:
continue
send_work.append(pg.send([inputs[i]], i, 0))
# Issue recvs
recv_work = []
for i in range(self.world_size):
if i == self.rank:
continue
recv_work.append(pg.recv([outputs[i]], i, 0))
# Wait for sends to complete
for work in send_work:
work.wait()
self.assertTrue(work.is_completed())
# Wait for recvs to complete
for work in recv_work:
work.wait()
self.assertTrue(work.is_completed())
# Test that every output other than our own contains the respective rank
for i in range(self.world_size):
if i == self.rank:
continue
self.assertEqual(torch.tensor([i]), outputs[i])
# TODO: test_barrier_implies_wait fails with numerical mismatch, will investigate later
@skip_but_pass_in_sandcastle("fails with numerical mismatch, skip for now")
@requires_ucc()
def test_barrier_implies_wait(self):
pg = self._create_process_group_ucc()
# Kick off allreduce operations
size = (100, 100)
num = 16
tensors = [torch.full(size, float(i)) for i in range(num)]
for tensor in tensors:
# Note: leak the returned work handle
pg.allreduce(tensor)
# Barrier should ensure all previous work has completed
pg.barrier().get_future().wait()
for i, tensor in enumerate(tensors):
self.assertEqual(torch.full(size, float(i * self.world_size)), tensor)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.t0 = Task()
self.t1 = Task()
self.task_unused = Task()
def task_parameters(self):
return (self.t0.p, self.t1.p, self.task_unused.p)
def forward(self, x, rank):
return self.t0(x) if rank == 0 else self.t1(x)
def run_and_verify_grad(model):
# Run forward
output = model(8, self.rank)
# The grads of all parameters should be None at this point.
t0_p, t1_p, task_unused_p = model.module.task_parameters()
self.assertIsNone(t0_p.grad)
self.assertIsNone(t1_p.grad)
self.assertIsNone(task_unused_p.grad)
# Run backward
output.mean().backward()
# Now locally unused parameter should have grad updated on all ranks.
# However the globally unused parameter should still have None grad.
self.assertIsNotNone(t0_p.grad)
self.assertIsNotNone(t1_p.grad)
self.assertIsNone(task_unused_p.grad)
process_group = self._get_process_group()
# Test on CPU
cpu_model = DistributedDataParallel(
GlobalLocalUnusedParamModule().cpu(),
process_group=process_group,
find_unused_parameters=True,
gradient_as_bucket_view=gradient_as_bucket_view,
static_graph=static_graph,
)
run_and_verify_grad(cpu_model)
# Test on GPU
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
GlobalLocalUnusedParamModule().to(device_id),
device_ids=[device_id],
process_group=process_group,
find_unused_parameters=True,
gradient_as_bucket_view=gradient_as_bucket_view,
static_graph=static_graph,
)
run_and_verify_grad(gpu_model)
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_global_local_unused_params_grad(self):
self._test_global_local_unused_params_grad()
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_global_local_unused_params_grad_with_grad_is_view(self):
self._test_global_local_unused_params_grad(gradient_as_bucket_view=True)
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_global_local_unused_params_grad_with_static_graph(self):
self._test_global_local_unused_params_grad(static_graph=True)
# TODO: times out
@skip_but_pass_in_sandcastle("times out")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_find_unused_parameters_when_unused_parameters_empty(self):
"""
An empty unused_parameters array does not imply find_unused_parameters =
false. This test makes sure that DDP allreduces unused parameters
accordingly where the forward pass in some process uses all parameters.
This unit test creates a module that uses all parameters in rank = 0, and
has unused parameters in other ranks.
"""
class FindUnusedParamModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.t0 = Task()
self.t1 = Task()
def task_parameters(self):
return (self.t0.p, self.t1.p)
def forward(self, x, rank):
return self.t1(self.t0(x)) if rank == 0 else self.t1(x)
def run_and_verify_grad(model):
# Run forward
output = model(8, self.rank)
# The grads of all parameters should be None at this point.
[self.assertIsNone(t_p.grad) for t_p in model.module.task_parameters()]
# Run backward
output.mean().backward()
# Now locally unused parameter should have grad updated on all ranks.
[self.assertIsNotNone(t_p.grad) for t_p in model.module.task_parameters()]
process_group = self._get_process_group()
# Test on CPU
cpu_model = DistributedDataParallel(
FindUnusedParamModule().cpu(),
process_group=process_group,
find_unused_parameters=True,
)
run_and_verify_grad(cpu_model)
# Test on GPU
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
FindUnusedParamModule().to(device_id),
device_ids=[device_id],
process_group=process_group,
find_unused_parameters=True,
)
run_and_verify_grad(gpu_model)
@requires_ucc()
def test_ignored_output(self):
"""
Test that the output of a model can be ignored and that there is no
implicit requirement that `backward` gets called.
"""
process_group = self._get_process_group()
class IgnoredOutput(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
model = DistributedDataParallel(
IgnoredOutput().float(),
process_group=process_group,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)])
# Run a few iterations where we ignore the output.
for _ in range(4):
output = model(input)
del output
# Run a few iterations where we use the output.
for _ in range(4):
output = model(input)
loss = criterion(output, target)
loss.backward()
@requires_ucc()
def test_ignored_output_with_unused_parameters(self):
"""
Test that the output of a model can be ignored and that there is no
implicit requirement that `backward` gets called, if not all model
parameters participated in computing the model output.
"""
process_group = self._get_process_group()
class IgnoredOutputWithUnusedParameters(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.fc3 = nn.Linear(4, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
model = DistributedDataParallel(
IgnoredOutputWithUnusedParameters().float(),
process_group=process_group,
find_unused_parameters=True,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)])
# Run a few iterations where we ignore the output.
for _ in range(4):
output = model(input)
del output
# Run a few iterations where we use the output.
for _ in range(4):
output = model(input)
loss = criterion(output, target)
loss.backward()
def _run_and_verify_sparse_gradients(self, vanilla_model, ddp_model):
mult = 2
batch_size = mult * self.world_size
criterion = nn.CrossEntropyLoss()
input = torch.randint(0, 10, [batch_size, 2])
target = torch.randint(0, 10, [batch_size])
# Run with entire batch against single process version
criterion(vanilla_model(input), target).backward()
# Run with partial batch against multi process version
partial_input = input.split(mult)[self.rank]
partial_target = target.split(mult)[self.rank]
criterion(ddp_model(partial_input), partial_target).backward()
# Check that the gradients are sparse and identical
vanilla_parameter = next(vanilla_model.parameters())
ddp_parameter = next(ddp_model.parameters())
self.assertEqual(
vanilla_parameter.grad.coalesce(), ddp_parameter.grad.coalesce()
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_save_load_checkpoint(self):
dist.init_process_group(
"ucc",
init_method=f"file://{self.file_name}",
world_size=self.world_size,
rank=self.rank,
)
class TestModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
def train_loop(model, optimizer, iterations):
for _ in range(iterations):
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model_withload = TestModel().float().to(device_id)
model_withoutload = TestModel().float().to(device_id)
ddp_withload = DistributedDataParallel(
model_withload,
device_ids=[device_id],
)
ddp_withoutload = DistributedDataParallel(
model_withoutload,
device_ids=[device_id],
)
# ensure that all the three models start with the same set of parameters. By default they are randomized on construction
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
for p in model_withload.parameters():
with torch.no_grad():
p.zero_()
for p in ddp_withoutload.parameters():
with torch.no_grad():
p.zero_()
batch_size = 4
criterion = nn.CrossEntropyLoss()
optimizer_withload = torch.optim.SGD(ddp_withload.parameters(), lr=0.001)
optimizer_non_ddp_withload = torch.optim.SGD(
model_withload.parameters(), lr=0.001
)
optimizer_withoutload = torch.optim.SGD(ddp_withoutload.parameters(), lr=0.001)
input = torch.rand([batch_size, 2], dtype=torch.float).to(device_id)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
# run the model for 6 iterations, with a checkpoint in the middle
train_loop(ddp_withload, optimizer_withload, 3)
# zero out parameters of both DDP and non-DDP models and reload them from the DDP state dict
checkpoint_path = tempfile.gettempdir() + "/model.checkpoint"
if self.rank == 0:
torch.save(ddp_withload.state_dict(), checkpoint_path)
dist.barrier()
map_location = {"cuda:%d" % 0: "cuda:%d" % self.rank}
ddp_state_dict = torch.load(checkpoint_path, map_location=map_location)
for model in [ddp_withload, model_withload]:
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
ddp_withload.load_state_dict(ddp_state_dict)
# the non-DDP model needs to first remove the prefix of "module." from the DDP state dict
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
ddp_state_dict, "module."
)
model_withload.load_state_dict(ddp_state_dict)
train_loop(ddp_withload, optimizer_withload, 3)
train_loop(model_withload, optimizer_non_ddp_withload, 3)
# re-run the model with the same inputs for 6 iterations with no checkpoint
train_loop(ddp_withoutload, optimizer_withoutload, 6)
for p_withload, p_withoutload, p_non_ddp_withload in zip(
ddp_withload.parameters(),
ddp_withoutload.parameters(),
model_withload.parameters(),
):
self.assertEqual(p_withload, p_withoutload)
self.assertEqual(p_non_ddp_withload, p_withoutload)
def _test_sparse_gradients(self, gradient_as_bucket_view=False):
process_group = self._get_process_group()
# Ensure initialized weights and inputs are identical across processes
torch.manual_seed(1337)
vanilla_model = SparseGradientModule()
ddp_model = DistributedDataParallel(
copy.deepcopy(vanilla_model),
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
self._run_and_verify_sparse_gradients(vanilla_model, ddp_model)
# TODO: backward pass: input tensor has to be dense
@skip_but_pass_in_sandcastle("backward pass: input tensor has to be dense")
@requires_ucc()
def test_sparse_gradients(self):
self._test_sparse_gradients()
# TODO: backward pass: input tensor has to be dense
@skip_but_pass_in_sandcastle("backward pass: input tensor has to be dense")
@requires_ucc()
def test_sparse_gradients_grad_is_view(self):
self._test_sparse_gradients(gradient_as_bucket_view=True)
@requires_ucc()
def test_ddp_comm_hook_future_passing_cpu(self):
"""
This unit test verifies whether the Future object is passed properly.
The callback function creates a Future object and sets a value to it.
"""
process_group = self._get_process_group()
# Test on CPU
cpu_model = DistributedDataParallel(
ModuleForDdpCommHook().cpu(), process_group=process_group
)
# Register DDP Communication Hook
cpu_model.register_comm_hook(None, self._simple_hook)
# check whether the grads are equal to what then callback returns.
# without the comm_hook, result would be 0.25 * torch.ones(2, 2).
self._run_and_verify_hook(cpu_model, 8, 2 * torch.ones(2, 2))
def _gpu_model_with_ddp_comm_hook(
self, process_group, hook=None, gradient_as_bucket_view=False, state=None
):
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
ModuleForDdpCommHook().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
# Register a DDP communication hook if any.
if hook is not None:
gpu_model.register_comm_hook(state, hook)
return gpu_model
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ddp_comm_hook_future_passing_gpu_ucc(self):
"""
This unit test verifies whether the Future object is passed properly using ucc backend.
The hook callback function creates a Future object and sets a value to it.
"""
process_group = self._get_process_group()
# Get GPU model with simple_hook registered.
gpu_model = self._gpu_model_with_ddp_comm_hook(process_group, self._simple_hook)
# check whether the grads are equal to what simple_hook's then callback returns.
# without the comm_hook, result would be 0.25 * torch.ones(2, 2).
self._run_and_verify_hook(gpu_model, 8, 2 * torch.ones(2, 2))
@requires_ucc()
def test_ddp_invalid_comm_hook_init(self):
"""
This unit test makes sure that register_comm_hook properly checks the format
of hook defined by user. The Python hook must be callable. This test also
checks whether bucket annotation checked properly if defined.
"""
process_group = self._get_process_group()
model = DistributedDataParallel(
ModuleForDdpCommHook(), process_group=process_group
)
with self.assertRaisesRegex(TypeError, "Communication hook must be callable."):
model.register_comm_hook(state=None, hook=1)
with self.assertRaisesRegex(
ValueError, "bucket annotation should be dist.GradBucket."
):
def comm_hook(
state: object, bucket: int
) -> torch.futures.Future[torch.Tensor]:
return torch.futures.Future()
model.register_comm_hook(state=None, hook=comm_hook)
@requires_ucc()
def test_ddp_invalid_comm_hook_return_type(self):
"""
This test checks whether return annotation checked properly if defined. It also
checks whether an internal error is thrown if return type is incorrect and user
hasn't specified any return type annotation.
"""
process_group = self._get_process_group()
model = DistributedDataParallel(
ModuleForDdpCommHook(), process_group=process_group
)
expected_err = (
"Communication hook: return annotation should be torch.futures.Future"
)
with self.assertRaisesRegex(
ValueError,
expected_err,
):
def comm_hook(state: object, bucket: dist.GradBucket) -> int:
return torch.futures.Future()
model.register_comm_hook(state=None, hook=comm_hook)
verify_ddp_error_logged(model, expected_err)
with self.assertRaisesRegex(
RuntimeError,
"callback must return a torch.futures.Future object, but got",
):
def comm_hook(state: object, bucket: dist.GradBucket):
return 1
model.register_comm_hook(state=None, hook=comm_hook)
# Run forward
output = model(8, self.rank)
# Run backward
output.mean().backward()
@requires_ucc()
def test_ddp_comm_hook_register_just_once(self):
"""
DDP communication hook can only be registered once. This test validates whether
the error is thrown properly when register_comm_hook is called more than once.
"""
process_group = self._get_process_group()
model = DistributedDataParallel(
ModuleForDdpCommHook(), process_group=process_group
)
def dummy_hook(state, bucket):
fut = torch.futures.Future()
fut.set_result([bucket.buffer()])
return fut
model.register_comm_hook(None, dummy_hook)
with self.assertRaisesRegex(
RuntimeError,
"register_comm_hook or register_builtin_comm_hook can only be called once.",
):
model.register_comm_hook(None, dummy_hook)
# TODO: backward pass: input tensor must be dense
@skip_but_pass_in_sandcastle("backward pass: input tensor has to be dense")
@requires_ucc()
def test_ddp_comm_hook_sparse_gradients(self):
"""
Runs "test_sparse_gradients" unit test with DDP communication hook. We define a
simple hook that does allreduce and works with ucc backend for this test.
"""
process_group = self._get_process_group()
# Ensure initialized weights and inputs are identical across processes
torch.manual_seed(1337)
vanilla_model = SparseGradientModule()
ddp_model = DistributedDataParallel(
copy.deepcopy(vanilla_model),
process_group=process_group,
)
def allreduce_hook_ucc(
state: object, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
def div_by_world_size(fut):
# Divide the result by 2 * world_size.
return fut.wait()[0] / self.world_size
# Prepare allreduced grad bucket tensors by running an async work.
fut = process_group.allreduce([bucket.buffer()]).get_future()
return fut.then(div_by_world_size)
ddp_model.register_comm_hook(None, allreduce_hook_ucc)
self._run_and_verify_sparse_gradients(vanilla_model, ddp_model)
class CommTest(test_c10d_common.AbstractCommTest, MultiProcessTestCase):
@property
def device(self):
return "cpu"
def setUp(self):
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_sequence_num_set_default_pg_ucc(self):
self._test_sequence_num_set_default_pg(backend="ucc")
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_sequence_num_set_ucc_new_group(self):
self._test_sequence_num_set_new_group(backend="ucc")
@skip_if_lt_x_gpu(2)
@requires_ucc()
def test_sequence_num_incremented_ucc_default(self):
self._test_sequence_num_incremented_default_group("ucc")
@skip_if_lt_x_gpu(4)
@requires_ucc()
def test_sequence_num_incremented_ucc_subgroup(self):
if self.world_size < 4:
return skip_but_pass_in_sandcastle("Test requires world_size of at least 4")
self._test_sequence_num_incremented_subgroup("ucc")
@skip_but_pass_in_sandcastle("Fails on M60")
@requires_ucc()
def test_ucc_barrier_device_ids(self):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="ucc", rank=self.rank, world_size=self.world_size, store=store
)
with self.assertRaisesRegex(RuntimeError, "device_ids not supported"):
c10d.barrier(device_ids=[self.rank])
@skip_but_pass_in_sandcastle("Fails on M60")
@skip_if_lt_x_gpu(2)
@requires_ucc()
def test_ucc_warn_not_in_group(self):
self._test_warn_not_in_group(backend="ucc")
@skip_if_lt_x_gpu(2)
@requires_ucc()
def test_ucc_rank_membership(self):
self._test_rank_membership(backend="ucc")
@skip_if_lt_x_gpu(2)
@requires_ucc()
def test_tensor_dtype_mismatch(self):
self._test_tensor_dtype_mismatch(backend="ucc")
@skip_if_lt_x_gpu(2)
@requires_ucc()
def test_tensor_dtype_complex(self):
self._test_tensor_dtype_complex(backend="ucc")
class UccProcessGroupWithDispatchedCollectivesTests(
test_c10d_common.ProcessGroupWithDispatchedCollectivesTests
):
@skip_but_pass_in_sandcastle("Fails on M60")
@requires_ucc()
@skip_if_lt_x_gpu(1)
def test_collectives(self):
# includes reduce, broadcast, all_reduce, all_gather, reduce_scatter, barrier, all_to_all, scatter
self._test_collectives(backend="ucc")
@skip_but_pass_in_sandcastle("Fails on M60")
@requires_ucc()
@skip_if_lt_x_gpu(1)
def test_allgather_base(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"ucc",
world_size=self.world_size,
rank=self.rank,
store=store,
)
device = "cuda"
tensor = torch.ones(10, 10, device=torch.device(device))
output_tensor = torch.zeros(10, 10, device=torch.device(device))
dist.all_gather_into_tensor(output_tensor, tensor)
self.assertEqual(output_tensor, tensor)
if __name__ == "__main__":
assert (
not torch.cuda._initialized
), "test_distributed must not have initialized CUDA context on main process"
run_tests()
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_logging_init
|
def test_logging_init(self):
os.environ["WORLD_SIZE"] = "1"
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = str(common.find_free_port())
os.environ["RANK"] = "0"
previous_handlers = logging.root.handlers
c10d.init_process_group(backend="ucc", init_method="env://")
current_handlers = logging.root.handlers
self.assertEqual(len(previous_handlers), len(current_handlers))
for current, previous in zip(current_handlers, previous_handlers):
self.assertEqual(current, previous)
c10d.destroy_process_group()
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class RendezvousEnvTest(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_default_store_timeout_ucc
|
def test_default_store_timeout_ucc(self):
self._test_default_store_timeout("ucc")
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class TimeoutTest(test_c10d_common.AbstractTimeoutTest, TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
_create_process_group_ucc
|
def _create_process_group_ucc(self):
store = c10d.FileStore(self.file_name, self.world_size)
return c10d.ProcessGroupUCC(store, self.rank, self.world_size)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_processes()
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
forward
|
def forward(self, x, rank):
return self.t0(x) if rank == 0 else self.t1(x)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_ignored_output_with_unused_parameters
|
def test_ignored_output_with_unused_parameters(self):
"""
Test that the output of a model can be ignored and that there is no
implicit requirement that `backward` gets called, if not all model
parameters participated in computing the model output.
"""
process_group = self._get_process_group()
class IgnoredOutputWithUnusedParameters(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.fc3 = nn.Linear(4, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
model = DistributedDataParallel(
IgnoredOutputWithUnusedParameters().float(),
process_group=process_group,
find_unused_parameters=True,
)
batch_size = 4
criterion = nn.CrossEntropyLoss()
input = torch.rand([batch_size, 2], dtype=torch.float)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)])
# Run a few iterations where we ignore the output.
for _ in range(4):
output = model(input)
del output
# Run a few iterations where we use the output.
for _ in range(4):
output = model(input)
loss = criterion(output, target)
loss.backward()
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
forward
|
def forward(self, x, rank):
return self.t0(x) if rank == 0 else self.t1(x)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_save_load_checkpoint
|
def test_save_load_checkpoint(self):
dist.init_process_group(
"ucc",
init_method=f"file://{self.file_name}",
world_size=self.world_size,
rank=self.rank,
)
class TestModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return F.softmax(x, dim=1)
def train_loop(model, optimizer, iterations):
for _ in range(iterations):
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model_withload = TestModel().float().to(device_id)
model_withoutload = TestModel().float().to(device_id)
ddp_withload = DistributedDataParallel(
model_withload,
device_ids=[device_id],
)
ddp_withoutload = DistributedDataParallel(
model_withoutload,
device_ids=[device_id],
)
# ensure that all the three models start with the same set of parameters. By default they are randomized on construction
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
for p in model_withload.parameters():
with torch.no_grad():
p.zero_()
for p in ddp_withoutload.parameters():
with torch.no_grad():
p.zero_()
batch_size = 4
criterion = nn.CrossEntropyLoss()
optimizer_withload = torch.optim.SGD(ddp_withload.parameters(), lr=0.001)
optimizer_non_ddp_withload = torch.optim.SGD(
model_withload.parameters(), lr=0.001
)
optimizer_withoutload = torch.optim.SGD(ddp_withoutload.parameters(), lr=0.001)
input = torch.rand([batch_size, 2], dtype=torch.float).to(device_id)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
# run the model for 6 iterations, with a checkpoint in the middle
train_loop(ddp_withload, optimizer_withload, 3)
# zero out parameters of both DDP and non-DDP models and reload them from the DDP state dict
checkpoint_path = tempfile.gettempdir() + "/model.checkpoint"
if self.rank == 0:
torch.save(ddp_withload.state_dict(), checkpoint_path)
dist.barrier()
map_location = {"cuda:%d" % 0: "cuda:%d" % self.rank}
ddp_state_dict = torch.load(checkpoint_path, map_location=map_location)
for model in [ddp_withload, model_withload]:
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
ddp_withload.load_state_dict(ddp_state_dict)
# the non-DDP model needs to first remove the prefix of "module." from the DDP state dict
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
ddp_state_dict, "module."
)
model_withload.load_state_dict(ddp_state_dict)
train_loop(ddp_withload, optimizer_withload, 3)
train_loop(model_withload, optimizer_non_ddp_withload, 3)
# re-run the model with the same inputs for 6 iterations with no checkpoint
train_loop(ddp_withoutload, optimizer_withoutload, 6)
for p_withload, p_withoutload, p_non_ddp_withload in zip(
ddp_withload.parameters(),
ddp_withoutload.parameters(),
model_withload.parameters(),
):
self.assertEqual(p_withload, p_withoutload)
self.assertEqual(p_non_ddp_withload, p_withoutload)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
forward
|
def forward(self, x, rank):
return self.t0(x) if rank == 0 else self.t1(x)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
train_loop
|
def train_loop(model, optimizer, iterations):
for _ in range(iterations):
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
device_id = gpus_for_rank(self.world_size)[self.rank][0]
model_withload = TestModel().float().to(device_id)
model_withoutload = TestModel().float().to(device_id)
ddp_withload = DistributedDataParallel(
model_withload,
device_ids=[device_id],
)
ddp_withoutload = DistributedDataParallel(
model_withoutload,
device_ids=[device_id],
)
# ensure that all the three models start with the same set of parameters. By default they are randomized on construction
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
for p in model_withload.parameters():
with torch.no_grad():
p.zero_()
for p in ddp_withoutload.parameters():
with torch.no_grad():
p.zero_()
batch_size = 4
criterion = nn.CrossEntropyLoss()
optimizer_withload = torch.optim.SGD(ddp_withload.parameters(), lr=0.001)
optimizer_non_ddp_withload = torch.optim.SGD(
model_withload.parameters(), lr=0.001
)
optimizer_withoutload = torch.optim.SGD(ddp_withoutload.parameters(), lr=0.001)
input = torch.rand([batch_size, 2], dtype=torch.float).to(device_id)
target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(
device_id
)
# run the model for 6 iterations, with a checkpoint in the middle
train_loop(ddp_withload, optimizer_withload, 3)
# zero out parameters of both DDP and non-DDP models and reload them from the DDP state dict
checkpoint_path = tempfile.gettempdir() + "/model.checkpoint"
if self.rank == 0:
torch.save(ddp_withload.state_dict(), checkpoint_path)
dist.barrier()
map_location = {"cuda:%d" % 0: "cuda:%d" % self.rank}
ddp_state_dict = torch.load(checkpoint_path, map_location=map_location)
for model in [ddp_withload, model_withload]:
for p in ddp_withload.parameters():
with torch.no_grad():
p.zero_()
ddp_withload.load_state_dict(ddp_state_dict)
# the non-DDP model needs to first remove the prefix of "module." from the DDP state dict
torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(
ddp_state_dict, "module."
)
model_withload.load_state_dict(ddp_state_dict)
train_loop(ddp_withload, optimizer_withload, 3)
train_loop(model_withload, optimizer_non_ddp_withload, 3)
# re-run the model with the same inputs for 6 iterations with no checkpoint
train_loop(ddp_withoutload, optimizer_withoutload, 6)
for p_withload, p_withoutload, p_non_ddp_withload in zip(
ddp_withload.parameters(),
ddp_withoutload.parameters(),
model_withload.parameters(),
):
self.assertEqual(p_withload, p_withoutload)
self.assertEqual(p_non_ddp_withload, p_withoutload)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_ddp_comm_hook_future_passing_cpu
|
def test_ddp_comm_hook_future_passing_cpu(self):
"""
This unit test verifies whether the Future object is passed properly.
The callback function creates a Future object and sets a value to it.
"""
process_group = self._get_process_group()
# Test on CPU
cpu_model = DistributedDataParallel(
ModuleForDdpCommHook().cpu(), process_group=process_group
)
# Register DDP Communication Hook
cpu_model.register_comm_hook(None, self._simple_hook)
# check whether the grads are equal to what then callback returns.
# without the comm_hook, result would be 0.25 * torch.ones(2, 2).
self._run_and_verify_hook(cpu_model, 8, 2 * torch.ones(2, 2))
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
comm_hook
|
def comm_hook(
state: object, bucket: int
) -> torch.futures.Future[torch.Tensor]:
return torch.futures.Future()
model.register_comm_hook(state=None, hook=comm_hook)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_ddp_comm_hook_sparse_gradients
|
def test_ddp_comm_hook_sparse_gradients(self):
"""
Runs "test_sparse_gradients" unit test with DDP communication hook. We define a
simple hook that does allreduce and works with ucc backend for this test.
"""
process_group = self._get_process_group()
# Ensure initialized weights and inputs are identical across processes
torch.manual_seed(1337)
vanilla_model = SparseGradientModule()
ddp_model = DistributedDataParallel(
copy.deepcopy(vanilla_model),
process_group=process_group,
)
def allreduce_hook_ucc(
state: object, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
def div_by_world_size(fut):
# Divide the result by 2 * world_size.
return fut.wait()[0] / self.world_size
# Prepare allreduced grad bucket tensors by running an async work.
fut = process_group.allreduce([bucket.buffer()]).get_future()
return fut.then(div_by_world_size)
ddp_model.register_comm_hook(None, allreduce_hook_ucc)
self._run_and_verify_sparse_gradients(vanilla_model, ddp_model)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class DistributedDataParallelTest(
test_c10d_common.CommonDistributedDataParallelTest, MultiProcessTestCase
):
def setUp(self):
super().setUp()
self._spawn_processes()
def _get_process_group(self):
store = self._get_store()
c10d.init_process_group(
"ucc", store=store, rank=self.rank, world_size=self.world_size
)
return c10d.distributed_c10d._get_default_group()
def _test_ucc_backend(
self, devices, device_ids, multi_device=False, gradient_as_bucket_view=False
):
process_group = self._get_process_group()
self._test_ddp_with_process_group(
process_group, devices, device_ids, multi_device, gradient_as_bucket_view
)
@requires_ucc()
def test_ucc_backend_cpu_module(self):
self._test_ucc_backend([torch.device("cpu")], None)
@requires_ucc()
def test_ucc_backend_cpu_module_grad_is_view(self):
self._test_ucc_backend(
[torch.device("cpu")], None, gradient_as_bucket_view=True
)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_integer_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, int_devices)
@requires_ucc()
@skip_if_lt_x_gpu(2)
def test_ucc_backend_1gpu_module_device_ids_torch_device_list(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:1]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, devices)
# TODO: test_ucc_backend_2gpu_module and test_ucc_backend_4gpu_module
# require broadcast_coalesced which is not supported by ucc currently
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(4)
def test_ucc_backend_2gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:2]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
@skip_but_pass_in_sandcastle(
"requires broadcast coalesced, which is not supported by ucc currently"
)
@requires_ucc()
@skip_if_lt_x_gpu(8)
def test_ucc_backend_4gpu_module(self):
int_devices = gpus_for_rank(self.world_size)[self.rank][:4]
devices = [torch.device("cuda:" + str(i)) for i in int_devices]
self._test_ucc_backend(devices, None, multi_device=True)
def _test_global_local_unused_params_grad(
self, gradient_as_bucket_view=False, static_graph=False
):
"""
By simulating a multi-task training, this test is to make sure:
1) DDP does not touch the grad of globally unused parameters.
2) DDP does update the grad of locally unused parameters.
"""
class GlobalLocalUnusedParamModule(nn.Module):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
div_by_world_size
|
def div_by_world_size(fut):
# Divide the result by 2 * world_size.
return fut.wait()[0] / self.world_size
# Prepare allreduced grad bucket tensors by running an async work.
fut = process_group.allreduce([bucket.buffer()]).get_future()
return fut.then(div_by_world_size)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
device
|
def device(self):
return "cpu"
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class CommTest(test_c10d_common.AbstractCommTest, MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_processes()
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class ProcessGroupUCCTest(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
func
|
def func(a):
ar = _functional_collectives.all_reduce(a, "sum", "0")
b = torch.matmul(a, a)
return torch.matmul(ar, b)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
# Verify that the wait_tensor is sinked below the 1st matmul but
# above the 2nd matmul.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
func
|
def func(a):
ar = _functional_collectives.all_reduce(a, "sum", "0")
b = torch.matmul(a, a)
return torch.matmul(ar, b)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
# Verify that the wait_tensor is sinked below the 1st matmul but
# above the 2nd matmul.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
func
|
def func(a):
ar = _functional_collectives.all_reduce(a, "sum", "0")
b = torch.matmul(a, a)
return torch.matmul(ar, b)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
# Verify that the wait_tensor is sinked below the 1st matmul but
# above the 2nd matmul.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
func
|
def func(a):
ar = _functional_collectives.all_reduce(a, "sum", "0")
b = torch.matmul(a, a)
return torch.matmul(ar, b)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
# Verify that the wait_tensor is sinked below the 1st matmul but
# above the 2nd matmul.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
func
|
def func(a):
ar = _functional_collectives.all_reduce(a, "sum", "0")
b = torch.matmul(a, a)
return torch.matmul(ar, b)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
# Verify that the wait_tensor is sinked below the 1st matmul but
# above the 2nd matmul.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
test_nccl_heuristics
|
def test_nccl_heuristics(self):
assert len(baseLat) == len(NCCL_ALGO)
assert all(len(x) == len(NCCL_PROTO) for x in baseLat)
assert len(hwLat) == len(NCCL_HW)
assert all(len(x) == len(NCCL_ALGO) for x in hwLat)
assert all(len(y) == len(NCCL_PROTO) for x in hwLat for y in x)
assert len(llMaxBws) == len(NVIDIA_GPU_TYPE)
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
@requires_nccl()
class TestComputeCommReorderingMultiProc(DynamoDistributedMultiProcTestCase):
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_c10d_ucc.py
|
test_tensor_dtype_complex
|
def test_tensor_dtype_complex(self):
self._test_tensor_dtype_complex(backend="ucc")
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
class CommTest(test_c10d_common.AbstractCommTest, MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_c10d_ucc.py
|
test_allgather_base
|
def test_allgather_base(self):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
"ucc",
world_size=self.world_size,
rank=self.rank,
store=store,
)
device = "cuda"
tensor = torch.ones(10, 10, device=torch.device(device))
output_tensor = torch.zeros(10, 10, device=torch.device(device))
dist.all_gather_into_tensor(output_tensor, tensor)
self.assertEqual(output_tensor, tensor)
|
import copy
import logging
import math
import operator
import os
import random
import sys
import tempfile
from functools import reduce
import torch
import torch.distributed as c10d
import test_c10d_common
from test_c10d_common import (
gpus_for_rank,
ModuleForDdpCommHook,
SparseGradientModule,
Task,
)
import torch.distributed as dist
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_ucc,
skip_if_lt_x_gpu,
verify_ddp_error_logged,
)
from torch.testing._internal.common_utils import (
retry_on_connect_failures,
run_tests,
skip_but_pass_in_sandcastle,
TestCase,
)
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_collective_utils.py
|
setUp
|
def setUp(self):
super().setUp()
self._spawn_processes()
|
from unittest import mock
import torch.distributed as c10d
from torch.distributed.collective_utils import all_gather, broadcast
from torch.testing._internal.common_distributed import MultiProcessTestCase
class TestCollectiveUtils(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_collective_utils.py
|
opts
|
def opts(self, threads=2):
opts = c10d.ProcessGroupGloo._Options()
opts._timeout = 50.0
opts._threads = threads
return opts
|
from unittest import mock
import torch.distributed as c10d
from torch.distributed.collective_utils import all_gather, broadcast
from torch.testing._internal.common_distributed import MultiProcessTestCase
class TestCollectiveUtils(MultiProcessTestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
get_snode_runtime_for_reorder_compute_test
|
def get_snode_runtime_for_reorder_compute_test(snode):
# NOTE: custom cost model to show that the compute reordering algorithm is working
# Collective kernels
if isinstance(snode.node, ir._CollectiveKernel):
return 100
elif isinstance(snode.node, ir._WaitKernel):
return 0
# High-arithmetic-intensity compute kernels
elif isinstance(snode.node, ir.ExternKernel):
return 5
# All other kernels
return 1
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
create_grouped_node_for_allreduce_and_its_deps
|
def create_grouped_node_for_allreduce_and_its_deps(snodes):
name_to_snode = {snode.node.name: snode for snode in snodes}
all_reduce_snodes = [
snode
for snode in snodes
if isinstance(snode.node, ir._CollectiveKernel)
and snode.node.op_overload == torch.ops._c10d_functional.all_reduce_.default
]
assert len(all_reduce_snodes) == 1
all_reduce_snode = all_reduce_snodes[0]
all_reduce_dep_snodes = [
name_to_snode[node.name] for node in all_reduce_snode.node.inputs
]
assert len(all_reduce_dep_snodes) == 1
all_reduce_dep_snode = all_reduce_dep_snodes[0]
grouped_snode = scheduler.GroupedSchedulerNode.create(
[all_reduce_dep_snode, all_reduce_snode]
)
new_snode_order = []
new_snode_order.append(grouped_snode)
for snode in snodes:
if snode in grouped_snode.snodes:
continue
new_snode_order.append(snode)
return new_snode_order
@requires_nccl()
class TestComputeCommReorderingMultiProc(DynamoDistributedMultiProcTestCase):
"""
Run correctness checks in multi-proc runner, mark with minimum # GPUs to run under
"""
def get_world_trs(self):
return {
"tag": "",
"ranks": list(range(self.world_size)),
"group_size": self.world_size,
}
@property
def world_size(self) -> int:
# hack: no matter whether we have 2 or 3 or 4 gpus, just run on 2
# works around issue with skipif<2 and workers with unpredictable #s gpu
return 2
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
# TODO: somehow inductor bg compile threads are causing hangs at exit with distributed work dtor
@patch.object(torch._inductor.config, "compile_threads", 1)
@patch.object(torch._inductor.config, "reorder_for_locality", False)
@patch.object(torch._inductor.config, "reorder_for_compute_comm_overlap", True)
@patch.object(
torch._inductor.config,
"reorder_for_compute_comm_overlap_passes",
[
"sink_waits",
],
)
def test_sink_waits(self):
def func(a):
ar = _functional_collectives.all_reduce(a, "sum", "0")
b = torch.matmul(a, a)
return torch.matmul(ar, b)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
# Verify that the wait_tensor is sinked below the 1st matmul but
# above the 2nd matmul.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
# TODO: somehow inductor bg compile threads are causing hangs at exit with distributed work dtor
@patch.object(torch._inductor.config, "compile_threads", 1)
@patch.object(torch._inductor.config, "reorder_for_locality", False)
@patch.object(torch._inductor.config, "reorder_for_compute_comm_overlap", True)
@patch.object(
torch._inductor.config,
"reorder_for_compute_comm_overlap_passes",
[
"raise_comms",
],
)
def test_raise_comms(self):
def func(a):
b = torch.matmul(a, a)
c = torch.relu(b)
d = torch.matmul(c, c)
e = _functional_collectives.all_reduce(b, "sum", "0")
return torch.matmul(d, e)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
print(code)
# Verify that the all_reduce_ has been raised above the 2nd matmul
# but below the 1st matmul. Note that the all_reduce_ directly
# writes to the output buffer of the 1st matmul, which is an input
# to the first relu. Therefore, the all_reduce_ should be scheduled
# after the first relu.
(
FileCheck()
.check("extern_kernels.mm")
.check("triton_poi_fused_relu")
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
# TODO: somehow inductor bg compile threads are causing hangs at exit with distributed work dtor
@patch.object(torch._inductor.config, "compile_threads", 1)
@patch.object(torch._inductor.config, "reorder_for_compute_comm_overlap", True)
@patch.object(
torch._inductor.config,
"reorder_for_compute_comm_overlap_passes",
[
"sink_waits",
"raise_comms",
],
)
def test_sink_waits_raise_comms(self):
def func(a, *, tag, ranks, group_size):
b = torch.matmul(a, a)
c = torch.relu(b)
d = torch.matmul(c, c)
e = _functional_collectives.all_reduce(b, "sum", "0")
f = torch.relu(d)
g = torch.matmul(f, f)
return torch.mm(e, g)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# Things to verify:
# - The clone prologue of the all_reduce_ should not be fused with
# any relus.
# - The all_reduce_ and its prologue should be raised above the 2nd
# matmul but below the 1st matmul.
# - The wait_tensor should be sinked below the 3rd matmul but above
# the 4th matmul.
(
FileCheck()
.check("extern_kernels.mm")
.check("triton_poi_fused_all_reduce_0")
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("triton_poi_fused_relu")
.check("extern_kernels.mm")
.check("triton_poi_fused_relu")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
# TODO: somehow inductor bg compile threads are causing hangs at exit with distributed work dtor
@patch.object(torch._inductor.config, "compile_threads", 1)
@patch.object(torch._inductor.config, "reorder_for_compute_comm_overlap", True)
@patch.object(
torch._inductor.config,
"reorder_for_compute_comm_overlap_passes",
[
"reorder_compute_for_overlap",
],
)
def test_reorder_compute_for_overlap(self):
def func(a, *, tag, ranks, group_size):
ar = _functional_collectives.all_reduce(a, "sum", ranks, tag)
g = torch.matmul(a, a)
c = torch.relu(a)
d = torch.matmul(c, c)
f = d * c * ar
fr = _functional_collectives.all_reduce(f, "sum", ranks, tag)
e = torch.matmul(d + ar + fr, g)
return (e,)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: after scheduling the first all_reduce:
# 1. we first schedule the ops (c and d) that ARE required for second all_reduce but DO NOT depend on first all_reduce.
# 2. then, we schedule the ops (g) that ARE NOT required for second all_reduce and DO NOT depend on first all_reduce.
# 3. then, we schedule the ops (f) that ARE required for second all_reduce and DO depend on first all_reduce.
# and then, we schedule the second all_reduce. And then schedule all ops that depend on second all_reduce.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("triton_poi_fused_relu")
.check("extern_kernels.mm")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("triton_poi_fused_mul")
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("triton_poi_fused_add")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
# TODO: somehow inductor bg compile threads are causing hangs at exit with distributed work dtor
@patch.object(torch._inductor.config, "compile_threads", 1)
@patch.object(torch._inductor.config, "reorder_for_compute_comm_overlap", True)
@patch.object(
torch._inductor.config,
"reorder_for_compute_comm_overlap_passes",
[
"reorder_compute_for_overlap",
],
)
@patch.object(
torch._inductor.config,
"estimate_op_runtime",
get_snode_runtime_for_reorder_compute_test,
)
def test_reorder_compute_for_overlap_custom_runtime_estimation(self):
def func(a, *, tag, ranks, group_size):
ar = _functional_collectives.all_reduce(a, "sum", ranks, tag)
g = torch.matmul(a, a)
c = torch.relu(a)
d = torch.matmul(c, c)
f = d * c * ar
fr = _functional_collectives.all_reduce(f, "sum", ranks, tag)
e = torch.matmul(d + ar + fr, g)
return (e,)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: after scheduling the first all_reduce:
# 1. we first schedule the ops (c and d) that ARE required for second all_reduce but DO NOT depend on first all_reduce.
# 2. then, we schedule the ops (g) that ARE NOT required for second all_reduce and DO NOT depend on first all_reduce.
# 3. then, we schedule the ops (f) that ARE required for second all_reduce and DO depend on first all_reduce.
# and then, we schedule the second all_reduce. And then schedule all ops that depend on second all_reduce.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("triton_poi_fused_relu")
.check("extern_kernels.mm")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("triton_poi_fused_mul")
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("triton_poi_fused_add")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
# TODO: somehow inductor bg compile threads are causing hangs at exit with distributed work dtor
@patch.object(torch._inductor.config, "compile_threads", 1)
@patch.object(
torch._inductor.config,
"_pre_fusion_custom_pass",
create_grouped_node_for_allreduce_and_its_deps,
)
def test_grouped_scheduler_node(self):
def func(a, *, tag, ranks, group_size):
add = a + a
div = add / a
ar = _functional_collectives.all_reduce(div, "sum", ranks, tag)
# Normally, we would fuse `add = a + a`, `div = add / a` and `mul = a * a` together into a single fused op,
# but here in this unit test, we intentionally put `add`, `div` and `ar` computation
# into a GroupedSchedulerNode, which prevents them from being fused with any other ops.
mul = a * a
mm = torch.matmul(mul, ar)
return (mm,)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# Expectations:
# 1. `add = a + a` and `div = add / a` are still fused, which means fusion
# still happens among nodes within a GroupedSchedulerNode.
# 2. `mul = a * a` is not fused with `add` or `div`, because the latter two are within
# GroupedSchedulerNode and thus are prevented from being fused with any outside ops.
FileCheck().check("triton_poi_fused_add_div_0.").check(
"_c10d_functional.all_reduce_."
).check("triton_poi_fused_mul_1.").run(code)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
def test_nccl_heuristics(self):
assert len(baseLat) == len(NCCL_ALGO)
assert all(len(x) == len(NCCL_PROTO) for x in baseLat)
assert len(hwLat) == len(NCCL_HW)
assert all(len(x) == len(NCCL_ALGO) for x in hwLat)
assert all(len(y) == len(NCCL_PROTO) for x in hwLat for y in x)
assert len(llMaxBws) == len(NVIDIA_GPU_TYPE)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_compute_comm_reordering.py
|
func
|
def func(a):
ar = _functional_collectives.all_reduce(a, "sum", "0")
b = torch.matmul(a, a)
return torch.matmul(ar, b)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size, fake_pg=not at_least_x_gpu(2)
):
inputs = torch.ones(4, 4, dtype=torch.float, device="cuda") + self.rank
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs)
# Verify that the wait_tensor is sinked below the 1st matmul but
# above the 2nd matmul.
(
FileCheck()
.check("torch.ops._c10d_functional.all_reduce_.default")
.check("extern_kernels.mm")
.check("torch.ops._c10d_functional.wait_tensor.default")
.check("extern_kernels.mm")
.run(code)
)
out = compiled(inputs)
correct = func(inputs)
self.assertTrue(same(out, correct))
|
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.utils import same
from torch._inductor import ir, scheduler
from torch._inductor.comm_analysis import (
baseLat,
hwLat,
llMaxBws,
NCCL_ALGO,
NCCL_HW,
NCCL_PROTO,
NVIDIA_GPU_TYPE,
)
from torch._inductor.utils import run_and_get_triton_code
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
at_least_x_gpu,
DynamoDistributedMultiProcTestCase,
requires_nccl,
)
from torch.utils._triton import has_triton
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_data_parallel.py
|
test
|
def test(inner_m, dp_device, inp, device_ids, should_fail):
if device_ids is None:
device_ids = list(range(torch.cuda.device_count()))
if isinstance(device_ids[0], torch.device):
expect_device = device_ids[0]
else:
expect_device = torch.device("cuda:{}".format(device_ids[0]))
if should_fail:
def assert_correct():
return self.assertRaisesRegex(RuntimeError, error_msg.format(expect_device))
else:
assert_correct = dummy_ctx_manager
# test DataParallel module
dpm = nn.DataParallel(inner_m, device_ids)
if dp_device is not None:
dpm = dpm.to(dp_device)
with assert_correct():
dpm(inp)
# test functional
with assert_correct():
nn.parallel.data_parallel(inner_m.to(dp_device), inp, device_ids)
test(l.to('cpu'), None, inp, None, should_fail=True)
test(l.cuda(1), None, inp_cuda0, None, should_fail=True)
test(l.cuda(), None, inp_cuda0, [1, 0], should_fail=True)
test(l.cuda(), None, inp_cuda0, None, should_fail=False)
test(l.cpu(), 'cuda', inp_cuda0, None, should_fail=False)
test(l.cuda(1), None, inp_cuda1, [1, 0], should_fail=False)
test(l.cpu(), 'cuda:1', inp_cuda1, [1, 0], should_fail=False)
s = nn.Sequential(l.cpu())
test(s, None, inp, None, should_fail=True)
test(s, None, inp, [0, 1], should_fail=True)
test(s, None, inp, [1, 0], should_fail=True)
s = nn.Sequential(deepcopy(l).cpu(), l.cuda())
test(s, None, inp, None, should_fail=True)
test(s, None, inp, [0, 1], should_fail=True)
test(s, None, inp, [1, 0], should_fail=True)
s = nn.Sequential(l.cuda(), deepcopy(l).cuda(1))
test(s, None, inp, None, should_fail=True)
test(s, None, inp, [0, 1], should_fail=True)
test(s, None, inp, [1, 0], should_fail=True)
s = nn.Sequential(l.cuda(), deepcopy(l).cuda())
test(s, None, inp, None, should_fail=False)
test(s, None, inp, [0, 1], should_fail=False)
test(s, None, inp, [1, 0], should_fail=True)
test(s.cpu(), None, inp, [1, 0], should_fail=True)
test(s.cuda(1), None, inp, [1, 0], should_fail=False)
|
def test(inner_m, dp_device, inp, device_ids, should_fail):
if device_ids is None:
device_ids = list(range(torch.cuda.device_count()))
if isinstance(device_ids[0], torch.device):
expect_device = device_ids[0]
else:
expect_device = torch.device(f"cuda:{device_ids[0]}")
if should_fail:
def assert_correct():
return self.assertRaisesRegex(
RuntimeError, error_msg.format(expect_device)
)
else:
assert_correct = dummy_ctx_manager
# test DataParallel module
dpm = nn.DataParallel(inner_m, device_ids)
if dp_device is not None:
dpm = dpm.to(dp_device)
with assert_correct():
dpm(inp)
# test functional
with assert_correct():
nn.parallel.data_parallel(inner_m.to(dp_device), inp, device_ids)
test(l.to("cpu"), None, inp, None, should_fail=True)
test(l.cuda(1), None, inp_cuda0, None, should_fail=True)
test(l.cuda(), None, inp_cuda0, [1, 0], should_fail=True)
test(l.cuda(), None, inp_cuda0, None, should_fail=False)
test(l.cpu(), "cuda", inp_cuda0, None, should_fail=False)
test(l.cuda(1), None, inp_cuda1, [1, 0], should_fail=False)
test(l.cpu(), "cuda:1", inp_cuda1, [1, 0], should_fail=False)
s = nn.Sequential(l.cpu())
test(s, None, inp, None, should_fail=True)
test(s, None, inp, [0, 1], should_fail=True)
test(s, None, inp, [1, 0], should_fail=True)
s = nn.Sequential(deepcopy(l).cpu(), l.cuda())
test(s, None, inp, None, should_fail=True)
test(s, None, inp, [0, 1], should_fail=True)
test(s, None, inp, [1, 0], should_fail=True)
s = nn.Sequential(l.cuda(), deepcopy(l).cuda(1))
test(s, None, inp, None, should_fail=True)
test(s, None, inp, [0, 1], should_fail=True)
test(s, None, inp, [1, 0], should_fail=True)
s = nn.Sequential(l.cuda(), deepcopy(l).cuda())
test(s, None, inp, None, should_fail=False)
test(s, None, inp, [0, 1], should_fail=False)
test(s, None, inp, [1, 0], should_fail=True)
test(s.cpu(), None, inp, [1, 0], should_fail=True)
test(s.cuda(1), None, inp, [1, 0], should_fail=False)
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
test_data_parallel_complex
|
def test_data_parallel_complex(self):
# We expect complex parameters to be broadcast by view_as_real, e.g. move from C to R^2
class Cplx(torch.nn.Module):
def __init__(self):
super().__init__()
self.cplx = torch.nn.Parameter(torch.zeros(1, 10, dtype=torch.cfloat).cuda())
def forward(self, x):
return x + self.cplx
cplx = torch.nn.DataParallel(Cplx().cuda())
input = torch.rand(1, 10, dtype=torch.cfloat).cuda()
result = cplx(input)
# 2 is the extra real view dimension here
self.assertEqual(result.size(), torch.Size([1, 10, 2]))
self.assertEqual(result, torch.view_as_real(input))
|
def test_data_parallel_complex(self):
# We expect complex parameters to be broadcast by view_as_real, e.g. move from C to R^2
class Cplx(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.cplx = torch.nn.Parameter(
torch.zeros(1, 10, dtype=torch.cfloat).cuda()
)
def forward(self, x):
return x + self.cplx
cplx = torch.nn.DataParallel(Cplx().cuda())
input = torch.rand(1, 10, dtype=torch.cfloat).cuda()
result = cplx(input)
# 2 is the extra real view dimension here
self.assertEqual(result.size(), torch.Size([1, 10, 2]))
self.assertEqual(result, torch.view_as_real(input))
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestDataParallel(TestCase):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestDataParallel(TestCase):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
test_data_parallel_module_kwargs_only_empty_tuple
|
def test_data_parallel_module_kwargs_only_empty_tuple(self, device, dtype):
class Net(nn.Module):
def __init__(self):
super().__init__()
self.l = l
def forward(self, input):
return self.l(input['data'])
l = nn.Linear(10, 5).to(device, dtype)
i = torch.randn(20, 10, device=device, dtype=dtype)
expected_out = l(i)
n = nn.DataParallel(Net())
out = n(input={'data': i, 'unused': ()})
self.assertEqual(out.get_device(), 0)
self.assertEqual(out, expected_out, atol=dtype2prec_DONTUSE[dtype], rtol=0)
|
def test_data_parallel_module_kwargs_only_empty_tuple(self, device, dtype):
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.l = l
def forward(self, input):
return self.l(input["data"])
l = nn.Linear(10, 5).to(device, dtype)
i = torch.randn(20, 10, device=device, dtype=dtype)
expected_out = l(i)
n = nn.DataParallel(Net())
out = n(input={"data": i, "unused": ()})
self.assertEqual(out.get_device(), 0)
self.assertEqual(out, expected_out, atol=dtype2prec_DONTUSE[dtype], rtol=0)
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
import gc
class TestDataParallelDeviceType(TestCase):
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
import gc
class TestDataParallelDeviceType(TestCase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_device_mesh.py
|
_get_device_type
|
def _get_device_type(world_size):
if (
torch.cuda.is_available()
and torch.cuda.device_count() >= world_size
and is_nccl_available()
):
device_type = "cuda"
else:
device_type = "cpu"
return device_type
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
_set_env_var
|
def _set_env_var(addr="localhost", port="25364", world_size=1, rank=0):
os.environ["MASTER_ADDR"] = addr
os.environ["MASTER_PORT"] = port
os.environ["WORLD_SIZE"] = f"{world_size}"
os.environ["RANK"] = f"{rank}"
class DeviceMeshTestGlooBackend(DTensorTestBase):
@property
def backend(self):
return "gloo"
@with_comms
def test_device_mesh_reuse_default_group(self):
mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_group = mesh.get_group()
default_group = _get_default_group()
if torch.cuda.is_available():
self.assertNotEqual(mesh_group, default_group)
self.assertEqual(get_world_size(mesh_group), get_world_size(default_group))
else:
self.assertEqual(mesh_group, default_group)
class DeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 4
def test_init_process_group(self):
device_type = _get_device_type(self.world_size)
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
_set_env_var(world_size=self.world_size, rank=self.rank)
DeviceMesh(device_type, mesh_tensor)
self.assertTrue(is_initialized())
self.destroy_pg()
@with_comms
@skip_if_lt_x_gpu(4)
def test_assert_invalid_mesh_tensor(self):
mesh = torch.arange(self.world_size).to(self.rank)
with self.assertRaises(ValueError):
device_mesh = DeviceMesh(self.device_type, mesh)
@with_comms
def test_get_group_and_get_all_groups(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
self.assertEqual(mesh_2d.get_group(0), mesh_2d.get_group("dp"))
self.assertEqual(mesh_2d.get_group(1), mesh_2d.get_group("tp"))
self.assertEqual(mesh_2d.get_group("dp"), dp_mesh.get_group())
self.assertEqual(mesh_2d.get_group("tp"), tp_mesh.get_group())
groups = mesh_2d.get_all_groups()
self.assertEqual(len(groups), 2)
self.assertTrue(tp_mesh.get_group() in groups)
self.assertTrue(dp_mesh.get_group() in groups)
@with_comms
def test_get_local_rank_raises_exception(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
with self.assertRaisesRegex(
RuntimeError,
"Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
):
local_rank = mesh_2d.get_local_rank()
@with_comms
def test_get_local_rank(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
self.assertEqual(mesh_2d.get_local_rank("dp"), mesh_2d.get_local_rank(0))
self.assertEqual(mesh_2d.get_local_rank("tp"), mesh_2d.get_local_rank(1))
dp_mesh = mesh_2d["dp"]
tp_mesh = mesh_2d["tp"]
self.assertEqual(dp_mesh.get_local_rank(), mesh_2d.get_local_rank("dp"))
self.assertEqual(tp_mesh.get_local_rank(), mesh_2d.get_local_rank("tp"))
# Verify flattened mesh local rank correctness.
flattened_mesh = mesh_2d["dp", "tp"]._flatten()
self.assertEqual(flattened_mesh.get_local_rank(), self.rank)
@with_comms
def test_device_mesh_2d(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
# construct a cuda device mesh
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < 2)
dim_ranks = expected_ranks_by_dim[dim]
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
current_rank_expected_group_ranks = (
dim_ranks[0] if self.rank in dim_ranks[0] else dim_ranks[1]
)
self.assertEqual(global_ranks, current_rank_expected_group_ranks)
@with_comms
def test_device_mesh_init_backend(self):
mesh = DeviceMesh(self.device_type, [1], _init_backend=False)
with self.assertRaisesRegex(RuntimeError, "process groups not initialized!"):
mesh.get_group()
# coordinates should always been populated when init_backend is False, as whenever
# we call init_backend we should make sure the default pg already created
mesh.get_coordinate()
def test_fake_pg_device_mesh(self):
fake_store = FakeStore()
init_process_group("fake", store=fake_store, rank=0, world_size=self.world_size)
device_type = "cuda" if torch.cuda.is_available() else "cpu"
mesh = DeviceMesh(device_type, torch.arange(self.world_size))
local_tensor = torch.randn(2, 8)
global_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=0, group=(mesh, 0)
)
self.assertEqual(global_tensor.shape, (self.world_size * 2, 8))
@with_comms
def test_from_group_with_global_pg(self):
# Simple test: check `from_group` from a mesh pg vs. directly
# initializing via `init_device_mesh`
ref_global_mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_pg = ref_global_mesh.get_group()
global_mesh = DeviceMesh.from_group(mesh_pg, self.device_type)
self.assertEqual(ref_global_mesh, global_mesh)
self.assertEqual(ref_global_mesh._dim_group_infos, global_mesh._dim_group_infos)
self.assertEqual(
ref_global_mesh._coordinate_on_dim, global_mesh._coordinate_on_dim
)
@with_comms
def test_from_group_with_invalid_mesh(self):
global_pg = _get_default_group()
global_pg_size = global_pg.size()
assert global_pg_size == 4, "Test assumes global world size of 4"
invalid_mesh = [[0, 1], [2, 3]] # 2D mesh when we need 1D
regex = r"Invalid mesh \[\[0, 1\], \[2, 3\]\] for ProcessGroup with ranks \[0, 1, 2, 3\]"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(global_pg, "cuda", invalid_mesh)
device_mesh = init_device_mesh(self.device_type, (2, 2))
groups = device_mesh.get_all_groups()
invalid_mesh = (0, 1, 2, 3) # 1D mesh when we need 2D
regex = r"Expects mesh with ndim equal to number of ProcessGroups but got mesh \[0, 1, 2, 3\] and 2 ProcessGroups"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(groups, self.device_type, invalid_mesh)
def test_raises_invalid_device_type(self):
with self.assertRaisesRegex(
RuntimeError,
"Device type with GPU index is not supported",
):
# test init_device_mesh with an invalid device type that contains a GPU index
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
"cuda:0", mesh_shape=mesh_shape, mesh_dim_names=("dp", "tp")
)
@with_comms
def test_set_mesh_dim_group_options(self):
device_type = "cuda" if torch.cuda.is_available() else "cpu"
_mesh_resources._set_mesh_dim_group_options(1, "fake", None)
mesh_tensor = torch.arange(4).reshape(2, 2)
mesh = DeviceMesh(device_type, mesh_tensor)
self.assertEqual(mesh.get_group(1)._get_backend_name(), "fake")
class DeviceMeshTestNDim(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_device_mesh_nd(self):
# construct a cuda device mesh
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < mesh_tensor.ndim)
dim_ranks = mesh_tensor.swapdims(-1, dim).reshape(-1, 2)
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
for ranks in dim_ranks:
if self.rank in ranks:
self.assertEqual(global_ranks, ranks.tolist())
@with_comms
def test_device_mesh_hash(self):
mesh_tensor_2d = torch.arange(8).reshape(4, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor_2d)
mesh2 = DeviceMesh(self.device_type, mesh_tensor_2d)
self.assertEqual(hash(mesh), hash(mesh2))
mesh_tensor_3d = torch.arange(8).reshape(2, 2, 2)
mesh3 = DeviceMesh(self.device_type, mesh_tensor_3d)
self.assertNotEqual(hash(mesh), hash(mesh3))
self.assertNotEqual(hash(mesh2), hash(mesh3))
@with_comms
def test_get_local_rank_3d(self):
"""
If we have a 3D mesh and we want to apply dp, pp, tp to it,
mesh_dim_names = ["dp", "pp", "tp"], and the mesh tensor would be:
mesh_3d_tensor = [
[
[0, 1],
[2, 3],
],
[
[4, 5],
[6, 7],
]
]
"""
mesh_shape = (2, 2, 2)
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "pp", "tp")
)
# tp_rank_0: [0, 2, 4, 6], tp_rank_1: [1, 3, 5, 7]
tp_rank = mesh_3d.get_local_rank("tp")
expected_tp_rank = self.rank % 2
self.assertEqual(tp_rank, expected_tp_rank)
# pp_rank_0: [0, 1, 4, 5], pp_rank_1: [2, 3, 6, 7]
pp_rank = mesh_3d.get_local_rank("pp")
expected_pp_rank = 0 if self.rank % 4 <= 1 else 1
self.assertEqual(pp_rank, expected_pp_rank)
# dp_rank_0: [0, 1, 2, 3], dp_rank_1: [4, 5, 6, 7]
dp_rank = mesh_3d.get_local_rank("dp")
expected_dp_rank = self.rank // 4
self.assertEqual(dp_rank, expected_dp_rank)
@with_comms
def test_device_mesh_parent_child_hash(self):
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("DP", "TP")
)
mesh_group_1 = torch.arange(0, self.world_size // 2)
mesh_group_2 = torch.arange(self.world_size // 2, self.world_size)
ep_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
ep_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
ep_mesh = ep_mesh_1 if self.rank < self.world_size // 2 else ep_mesh_2
# ep_mesh is considered different from mesh_2d["TP"]
self.assertEqual(mesh_2d["TP"]._flatten_mesh_list, ep_mesh._flatten_mesh_list)
self.assertEqual(mesh_2d["TP"].mesh.shape, ep_mesh.mesh.shape)
self.assertEqual(mesh_2d["TP"].device_type, ep_mesh.device_type)
self.assertNotEqual(mesh_2d["TP"].mesh_dim_names, ep_mesh.mesh_dim_names)
self.assertEqual(mesh_2d["TP"]._thread_id, ep_mesh._thread_id)
self.assertNotEqual(hash(mesh_2d["TP"]), hash(ep_mesh))
self.assertNotEqual(mesh_2d["TP"], ep_mesh)
another_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
another_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
another_mesh = (
another_mesh_1 if self.rank < self.world_size // 2 else another_mesh_2
)
# another_mesh is considered the same as ep_mesh
self.assertEqual(ep_mesh._flatten_mesh_list, another_mesh._flatten_mesh_list)
self.assertEqual(ep_mesh.mesh.shape, another_mesh.mesh.shape)
self.assertEqual(ep_mesh.device_type, another_mesh.device_type)
self.assertEqual(ep_mesh.mesh_dim_names, another_mesh.mesh_dim_names)
self.assertEqual(ep_mesh._thread_id, another_mesh._thread_id)
self.assertEqual(hash(ep_mesh), hash(another_mesh))
self.assertEqual(ep_mesh, another_mesh)
@with_comms
def test_from_group_with_mesh_shape(self):
"""Tests ``from_group`` when passing ``mesh_shape`` as 2D."""
# Consider two different logical views of the same mesh:
# - (4, 2) ("dp", "tp") mesh
# - (2, 2, 2) ("dp_replicate", "dp_shard", "tp") mesh
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp_replicate", "dp_shard", "tp")
ref_mesh = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
dp_shard_group = ref_mesh["dp_shard"].get_group()
dp_replicate_group = ref_mesh["dp_replicate"].get_group()
dp_mesh = DeviceMesh.from_group(
[dp_replicate_group, dp_shard_group],
self.device_type,
mesh=ref_mesh.mesh[:, :, ref_mesh.get_local_rank(2)],
mesh_dim_names=mesh_dim_names[:2],
)
ref_mesh_dp_dim_group_infos = ref_mesh._dim_group_infos[:2]
for (_, ref_ranks, _), (_, ranks, _) in zip(
ref_mesh_dp_dim_group_infos, dp_mesh._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
# Cannot check directly for mesh equality since parent meshes are not
# the same since the ref's parent mesh is 3D
self.assertEqual(dp_mesh["dp_replicate"].mesh, ref_mesh["dp_replicate"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_replicate"]._dim_group_infos,
ref_mesh["dp_replicate"]._dim_group_infos,
):
self.assertEqual(ref_ranks, ranks)
self.assertEqual(dp_mesh["dp_shard"].mesh, ref_mesh["dp_shard"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_shard"]._dim_group_infos, ref_mesh["dp_shard"]._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
class InitDeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_init_device_mesh(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
ref_mesh = DeviceMesh(
self.device_type,
torch.arange(8).view(mesh_shape),
mesh_dim_names=mesh_dim_names,
)
# test init_device_mesh with mesh_dim_names
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(mesh_2d, ref_mesh)
self.assertEqual(mesh_2d.mesh_dim_names, mesh_dim_names)
@with_comms
def test_raises_duplicate_mesh_dim_names(self):
with self.assertRaisesRegex(
RuntimeError,
"Each mesh_dim_name must be unique.",
):
mesh = init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=["dp", "dp"],
)
@with_comms
def test_raises_mesh_shape_mesh_dim_names_mismatch(self):
with self.assertRaisesRegex(
RuntimeError,
"mesh_shape and mesh_dim_names should have same length!",
):
mesh = init_device_mesh(
self.device_type,
(8,),
mesh_dim_names=["dp", "tp"],
)
class TestDeviceMeshGetItem(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_raises_no_mesh_dim_found(self):
with self.assertRaisesRegex(
RuntimeError, "Cannot slice a DeviceMesh without mesh_dim_names!"
):
mesh = init_device_mesh(self.device_type, (2, 4))
child_mesh = mesh["DP"]
@with_comms
def test_raises_invalid_mesh_dim_name(self):
child_mesh_dim_name = ("PP",)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
mesh_dim_names = ("DP", "TP")
mesh = init_device_mesh(
self.device_type, (2, 4), mesh_dim_names=mesh_dim_names
)
child_mesh = mesh[child_mesh_dim_name]
@with_comms
def test_get_item_2d(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
pg_ranks_by_dim_name = {}
for mesh_dim_name in mesh_dim_names:
mesh_dim = mesh_dim_names.index(mesh_dim_name)
pg_ranks_by_dim_name[mesh_dim_name] = mesh_2d.mesh.swapdims(
-1, mesh_dim
).reshape(-1, mesh_2d.mesh.size(mesh_dim))
tp_mesh = mesh_2d["TP"]
tp_group_idx = self.rank // 4
self.assertEqual(tp_mesh.mesh, pg_ranks_by_dim_name["TP"][tp_group_idx])
dp_mesh = mesh_2d["DP"]
dp_group_idx = self.rank % 4
self.assertEqual(mesh_2d["DP"].mesh, pg_ranks_by_dim_name["DP"][dp_group_idx])
@with_comms
def test_get_item_1d(self):
mesh = init_device_mesh(self.device_type, (8,), mesh_dim_names=("dp",))
# Make sure slicing out 1D mesh from a 1D mesh works.
dp_mesh = mesh["dp"]
self.assertEqual(dp_mesh, mesh)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
dp_mesh = mesh["dim0"]
@with_comms
def test_get_item_3d(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("Replicate", "Shard", "TP")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
tp_group = [[0, 1], [2, 3], [4, 5], [6, 7]]
tp_group_idx = int(self.rank / 2)
self.assertEqual(mesh_3d["TP"].mesh.tolist(), tp_group[tp_group_idx])
shard_group = [[0, 2], [1, 3], [4, 6], [5, 7]]
shard_group_idx = self.rank % 2 + self.rank // 4 * 2
self.assertEqual(mesh_3d["Shard"].mesh.tolist(), shard_group[shard_group_idx])
replicate_group = [[0, 4], [1, 5], [2, 6], [3, 7]]
replicate_group_idx = self.rank % 4
self.assertEqual(
mesh_3d["Replicate"].mesh.tolist(), replicate_group[replicate_group_idx]
)
# We support both UX for nD slicing.
# mesh_3d[["Replicate", "Shard"]] or mesh_3d["Replicate", "Shard"]
hsdp_mesh_1 = mesh_3d[["Replicate", "Shard"]]
hsdp_mesh_2 = mesh_3d["Replicate", "Shard"]
hsdp_group = [[[0, 2], [4, 6]], [[1, 3], [5, 7]]]
hsdp_group_idx = self.rank % 2
self.assertEqual(hsdp_mesh_1.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_2.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_1, hsdp_mesh_2)
@with_comms
def test_cache_and_reuse_submesh_slice_result(self):
mesh = init_device_mesh(self.device_type, (2, 4), mesh_dim_names=("dp", "tp"))
dp_mesh = mesh["dp"]
ref_pg_count = _world.group_count
# When we call the "dp" slice second time, it should not create any new pg.
# As we are just using the cached result so the pg count should be the same.
dp_mesh_2 = mesh["dp"]
self.assertEqual(ref_pg_count, _world.group_count)
# When we call the "tp" slice, it should not create a new pg, as the "tp" slice would
# just reuse the parent mesh pg.
tp_mesh = mesh["tp"]
self.assertEqual(_world.group_count, ref_pg_count)
@with_comms
def test_get_item_3d_noncontiguous_slicing(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "pp", "cp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Slice order simply decides which mesh_dim sits on which mesh_dim.
# For dp_cp_mesh, cp mesh is the innermost dimension.
dp_cp_mesh = mesh_3d["dp", "cp"]
expected_mesh_tensor = (
torch.tensor([[0, 1], [4, 5]], dtype=torch.int)
if self.rank in (0, 1, 4, 5)
else torch.tensor([[2, 3], [6, 7]], dtype=torch.int)
)
dp_local_rank = dp_cp_mesh.get_local_rank("dp")
self.assertEqual(dp_cp_mesh.mesh, expected_mesh_tensor)
cp_mesh = mesh_3d["cp"]
# Check on the current dp_local_rank, whether the cp mesh tensor is the same.
self.assertEqual(dp_cp_mesh.mesh[dp_local_rank], cp_mesh.mesh)
with self.assertRaisesRegex(
KeyError,
"Invalid mesh_dim_names",
):
cp_dp_mesh = mesh_3d["cp", "dp"]
@with_comms
def test_flatten_mesh(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "cp", "tp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Test flatten contiguous dims
dp_cp_mesh = mesh_3d["dp", "cp"]
flattened_dp_cp_mesh = dp_cp_mesh._flatten()
self.assertEqual(dp_cp_mesh.mesh.flatten(), flattened_dp_cp_mesh.mesh)
self.assertEqual(flattened_dp_cp_mesh.mesh_dim_names[0], "dp_cp")
root_mesh = _mesh_resources.get_root_mesh(dp_cp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_root_dims = _mesh_resources.flatten_name_to_root_dims[root_mesh][
"dp_cp"
]
self.assertEqual(flatten_mesh_root_dims, (0, 1))
ref_pg_count = _world.group_count
# Calling flatten again should not create a new pg.
flattened_dp_cp_mesh_2 = dp_cp_mesh._flatten()
self.assertEqual(flattened_dp_cp_mesh, flattened_dp_cp_mesh_2)
self.assertEqual(ref_pg_count, _world.group_count)
# Test flatten non-contiguous dims
dp_tp_mesh = mesh_3d["dp", "tp"]
flattened_dp_tp_mesh = dp_tp_mesh._flatten()
self.assertEqual(dp_tp_mesh.mesh.flatten(), flattened_dp_tp_mesh.mesh)
self.assertEqual(flattened_dp_tp_mesh.mesh_dim_names[0], "dp_tp")
root_mesh = _mesh_resources.get_root_mesh(dp_tp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_root_dims = _mesh_resources.flatten_name_to_root_dims[root_mesh][
"dp_tp"
]
self.assertEqual(flatten_mesh_root_dims, (0, 2))
# Test flatten with a flattened mesh_dim_name
cp_tp_mesh = mesh_3d["cp", "tp"]
cp_tp_mesh._flatten("dummy")
self.assertEqual(mesh_3d["dummy"].mesh_dim_names[0], "dummy")
@with_comms
def test_reconstruct_mesh_with_flatten_dim(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("replicate", "shard", "cp")
)
shard_cp_mesh = mesh_3d["shard", "cp"]._flatten()
hsdp_mesh = mesh_3d["replicate", "shard_cp"]
expected_mesh_tensor = torch.tensor(
[[0, 1, 2, 3], [4, 5, 6, 7]], dtype=torch.int
)
self.assertEqual(hsdp_mesh.mesh, expected_mesh_tensor)
self.assertEqual(shard_cp_mesh.get_group(), mesh_3d["shard_cp"].get_group())
self.assertEqual(
shard_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="shard_cp")
)
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()
spmd_mesh = mesh_3d["dp_cp", "tp"]
expected_mesh_tensor = torch.tensor(
[[0, 1], [2, 3], [4, 5], [6, 7]], dtype=torch.int
)
self.assertEqual(spmd_mesh.mesh, expected_mesh_tensor)
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d["dp_cp"].get_group())
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="dp_cp"))
class TestMeshEnv(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_get_root_mesh(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]
dp_tp_mesh = mesh_3d["dp", "tp"]
cp_tp_mesh = mesh_3d["cp", "tp"]
dp_mesh = mesh_3d["dp"]
cp_mesh = mesh_3d["cp"]
tp_mesh = mesh_3d["tp"]
self.assertEqual(_mesh_resources.get_root_mesh(dp_cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(tp_mesh), mesh_3d)
@with_comms
def test_get_root_mesh_dim_exist(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["DP"]), 0)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["TP"]), 1)
@with_comms
def test_get_root_mesh_dim_not_exist(self):
mesh_shape = (self.world_size,)
mesh = init_device_mesh(self.device_type, mesh_shape)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh), None)
@with_comms
def test_get_mesh_dim_by_name(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "DP"), 0)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "TP"), 1)
@with_comms
def test_get_all_submeshes(self):
mesh_2d = init_device_mesh(
self.device_type, (2, 4), mesh_dim_names=("replicate", "shard")
)
all_submeshes = _mesh_resources._get_all_submeshes(mesh_2d, "replicate")
self.assertEqual(len(all_submeshes), 4)
self.assertEqual(
all(submesh.mesh.numel() == 2 for submesh in all_submeshes), True
)
class DeviceMeshCollectiveTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_broadcast_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
mesh_broadcast(local_tensor, mesh, mesh_dim=0)
self.assertEqual(local_tensor, torch.zeros(3, 3))
@with_comms
def test_scatter_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
scatter_tensor_shape = [3, 3, 3]
for scatter_dim in range(len(scatter_tensor_shape)):
shard_placement = Shard(scatter_dim)
scatter_tensor_shape[scatter_dim] *= self.world_size
# make the random seed same across rank
torch.manual_seed(0)
global_tensor = torch.randn(scatter_tensor_shape, device=self.device_type)
splitted_list, _ = shard_placement._split_tensor(
global_tensor, mesh.size(), with_padding=True, contiguous=True
)
recv_tensor = torch.empty_like(splitted_list[mesh.get_rank()])
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh_scatter(recv_tensor, splitted_list, mesh, mesh_dim=0)
self.assertEqual(recv_tensor, splitted_list[mesh.get_rank()])
@with_comms
def test_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.randn(
device_mesh.size() + 3, device_mesh.size() + 1, device=self.device_type
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
scattered_tensor = torch.empty_like(padded_tensor_list[my_rank])
mesh_scatter(scattered_tensor, padded_tensor_list, device_mesh, mesh_dim=0)
if pad_sizes[my_rank] != 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(scattered_tensor, tensor_splitted_list[my_rank])
@with_comms
def test_all_gather_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_padded_list, pad_sizes = shard_placement._split_tensor(
tensor_to_split,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
local_tensor = tensor_padded_list[my_rank]
big_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=shard_dim, group=(device_mesh, 0)
)
big_tensor_chunks = list(
torch.chunk(big_tensor, device_mesh.size(), dim=shard_dim)
)
unpadded_list = [
(
unpad_tensor(big_tensor, shard_dim, pad_sizes[i])
if pad_sizes[i] > 0
else big_tensor
)
for i, big_tensor in enumerate(big_tensor_chunks)
]
all_gathered_tensor = torch.cat(unpadded_list, dim=shard_dim)
self.assertEqual(all_gathered_tensor.size(), tensor_to_split.size())
self.assertEqual(all_gathered_tensor, tensor_to_split)
@with_comms
def test_reduce_scatter_contiguous(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
# Init the tensor
step = self.world_size * 2
total_elem = step**2
tensor = torch.arange(0, total_elem).view(step, -1).to(device=self.device_type)
tensor = tensor * (my_rank + 1)
# Get non-contiguous tensor by slicing
tensor_to_reduce = tensor[::2, :2]
tensor_contiguous = tensor_to_reduce.clone().contiguous()
# Partial to Shard to trigger reduce_scatter
tensor_to_reduce = DTensor.from_local(
tensor_to_reduce, device_mesh, [_Partial()]
)
tensor_contiguous = DTensor.from_local(
tensor_contiguous, device_mesh, [_Partial()]
)
new_tensor = tensor_to_reduce.redistribute(device_mesh, [Shard(0)])
new_tensor_contiguous = tensor_contiguous.redistribute(device_mesh, [Shard(0)])
# The output for contiguous and non-contiguous tensors of the same value
# should return the same reducescatter value.
new_tensor_local = new_tensor._local_tensor
new_tensor_contiguous_local = new_tensor_contiguous._local_tensor
self.assertEqual(new_tensor_local, new_tensor_contiguous_local)
self.assertEqual(list(new_tensor_local.size()), [1, 2])
# Check the reduce numerical value
sum_base = (1 + self.world_size) * self.world_size / 2
first_elem = my_rank * sum_base * step * 2
expected_tensor = torch.tensor(
[[first_elem, first_elem + sum_base]],
dtype=new_tensor_local.dtype,
device=self.device_type,
)
self.assertEqual(new_tensor_local, expected_tensor)
@with_comms
def test_reduce_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = (
torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
* self.rank
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
tensor_to_reduce = torch.cat(padded_tensor_list, shard_dim)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
scattered_tensor = funcol.reduce_scatter_tensor(
tensor_to_reduce,
reduceOp="sum",
scatter_dim=shard_dim,
group=(device_mesh, 0),
)
# unpad scattered_tensor
if pad_sizes[my_rank] > 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(
scattered_tensor,
torch.ones_like(tensor_splitted_list[my_rank]) * res_num,
)
@with_comms
def test_broadcast_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
cloned_local_tensor = local_tensor.clone()
mesh_broadcast(cloned_local_tensor, mesh, mesh_dim=dim)
res_num = global_ranks[0]
self.assertEqual(cloned_local_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_scatter_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
scattered_tensors = [
torch.ones(3, 3, device=self.device_type) * global_rank
for global_rank in global_ranks
]
received_tensor = torch.empty_like(
scattered_tensors[mesh.get_coordinate()[dim]]
)
mesh_scatter(received_tensor, scattered_tensors, mesh, mesh_dim=dim)
self.assertEqual(received_tensor, torch.ones(3, 3) * self.rank)
if __name__ == "__main__":
run_tests()
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_device_mesh_reuse_default_group
|
def test_device_mesh_reuse_default_group(self):
mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_group = mesh.get_group()
default_group = _get_default_group()
if torch.cuda.is_available():
self.assertNotEqual(mesh_group, default_group)
self.assertEqual(get_world_size(mesh_group), get_world_size(default_group))
else:
self.assertEqual(mesh_group, default_group)
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTestGlooBackend(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
world_size
|
def world_size(self):
return 4
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_device_mesh.py
|
world_size
|
def world_size(self):
return 4
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_from_group_with_mesh_shape
|
def test_from_group_with_mesh_shape(self):
"""Tests ``from_group`` when passing ``mesh_shape`` as 2D."""
# Consider two different logical views of the same mesh:
# - (4, 2) ("dp", "tp") mesh
# - (2, 2, 2) ("dp_replicate", "dp_shard", "tp") mesh
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp_replicate", "dp_shard", "tp")
ref_mesh = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
dp_shard_group = ref_mesh["dp_shard"].get_group()
dp_replicate_group = ref_mesh["dp_replicate"].get_group()
dp_mesh = DeviceMesh.from_group(
[dp_replicate_group, dp_shard_group],
self.device_type,
mesh=ref_mesh.mesh[:, :, ref_mesh.get_local_rank(2)],
mesh_dim_names=mesh_dim_names[:2],
)
ref_mesh_dp_dim_group_infos = ref_mesh._dim_group_infos[:2]
for (_, ref_ranks, _), (_, ranks, _) in zip(
ref_mesh_dp_dim_group_infos, dp_mesh._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
# Cannot check directly for mesh equality since parent meshes are not
# the same since the ref's parent mesh is 3D
self.assertEqual(dp_mesh["dp_replicate"].mesh, ref_mesh["dp_replicate"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_replicate"]._dim_group_infos,
ref_mesh["dp_replicate"]._dim_group_infos,
):
self.assertEqual(ref_ranks, ranks)
self.assertEqual(dp_mesh["dp_shard"].mesh, ref_mesh["dp_shard"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_shard"]._dim_group_infos, ref_mesh["dp_shard"]._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTestNDim(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
world_size
|
def world_size(self):
return 4
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_raises_mesh_shape_mesh_dim_names_mismatch
|
def test_raises_mesh_shape_mesh_dim_names_mismatch(self):
with self.assertRaisesRegex(
RuntimeError,
"mesh_shape and mesh_dim_names should have same length!",
):
mesh = init_device_mesh(
self.device_type,
(8,),
mesh_dim_names=["dp", "tp"],
)
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class InitDeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_device_mesh.py
|
world_size
|
def world_size(self):
return 4
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_reconstruct_mesh_with_flatten_dim
|
def test_reconstruct_mesh_with_flatten_dim(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("replicate", "shard", "cp")
)
shard_cp_mesh = mesh_3d["shard", "cp"]._flatten()
hsdp_mesh = mesh_3d["replicate", "shard_cp"]
expected_mesh_tensor = torch.tensor(
[[0, 1, 2, 3], [4, 5, 6, 7]], dtype=torch.int
)
self.assertEqual(hsdp_mesh.mesh, expected_mesh_tensor)
self.assertEqual(shard_cp_mesh.get_group(), mesh_3d["shard_cp"].get_group())
self.assertEqual(
shard_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="shard_cp")
)
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()
spmd_mesh = mesh_3d["dp_cp", "tp"]
expected_mesh_tensor = torch.tensor(
[[0, 1], [2, 3], [4, 5], [6, 7]], dtype=torch.int
)
self.assertEqual(spmd_mesh.mesh, expected_mesh_tensor)
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d["dp_cp"].get_group())
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="dp_cp"))
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class TestDeviceMeshGetItem(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_device_mesh_init_backend
|
def test_device_mesh_init_backend(self):
mesh = DeviceMesh(self.device_type, [1], _init_backend=False)
with self.assertRaisesRegex(RuntimeError, "process groups not initialized!"):
mesh.get_group()
# coordinates should always been populated when init_backend is False, as whenever
# we call init_backend we should make sure the default pg already created
mesh.get_coordinate()
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_from_group_with_invalid_mesh
|
def test_from_group_with_invalid_mesh(self):
global_pg = _get_default_group()
global_pg_size = global_pg.size()
assert global_pg_size == 4, "Test assumes global world size of 4"
invalid_mesh = [[0, 1], [2, 3]] # 2D mesh when we need 1D
regex = r"Invalid mesh \[\[0, 1\], \[2, 3\]\] for ProcessGroup with ranks \[0, 1, 2, 3\]"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(global_pg, "cuda", invalid_mesh)
device_mesh = init_device_mesh(self.device_type, (2, 2))
groups = device_mesh.get_all_groups()
invalid_mesh = (0, 1, 2, 3) # 1D mesh when we need 2D
regex = r"Expects mesh with ndim equal to number of ProcessGroups but got mesh \[0, 1, 2, 3\] and 2 ProcessGroups"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(groups, self.device_type, invalid_mesh)
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_set_mesh_dim_group_options
|
def test_set_mesh_dim_group_options(self):
device_type = "cuda" if torch.cuda.is_available() else "cpu"
_mesh_resources._set_mesh_dim_group_options(1, "fake", None)
mesh_tensor = torch.arange(4).reshape(2, 2)
mesh = DeviceMesh(device_type, mesh_tensor)
self.assertEqual(mesh.get_group(1)._get_backend_name(), "fake")
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_data_parallel.py
|
__init__
|
def __init__(self, t):
super().__init__()
self.register_buffer('t_rg', t)
self.register_buffer('t_not_rg', t.clone().detach())
|
def __init__(self, t):
super().__init__()
self.t_rg = nn.Buffer(t)
self.t_not_rg = nn.Buffer(t.clone().detach())
|
import contextlib
import io
from copy import deepcopy
from collections import OrderedDict
from itertools import product
import functools
import torch
from torch import nn
from torch.cuda.amp import autocast
import torch.nn.parallel as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_utils import sandcastle_skip_if
import torch.nn.functional as F
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(_assertGradAndGradgradChecks, check_batched_grad=False)
class TestModule(nn.Module):
import gc
|
import contextlib
import functools
import io
from collections import OrderedDict
from copy import deepcopy
from itertools import product
import torch
import torch.nn.functional as F
import torch.nn.parallel as dp
from torch import nn
from torch.cuda.amp import autocast
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import (
_assertGradAndGradgradChecks,
dtype2prec_DONTUSE,
gradcheck,
run_tests,
skip_but_pass_in_sandcastle_if,
TestCase,
)
NO_NCCL = not hasattr(torch.distributed, "ProcessGroupNCCL")
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
_assertGradAndGradgradChecks = functools.partial(
_assertGradAndGradgradChecks, check_batched_grad=False
)
class TestModule(nn.Module):
import gc
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_device_mesh.py
|
world_size
|
def world_size(self):
return 4
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_get_all_submeshes
|
def test_get_all_submeshes(self):
mesh_2d = init_device_mesh(
self.device_type, (2, 4), mesh_dim_names=("replicate", "shard")
)
all_submeshes = _mesh_resources._get_all_submeshes(mesh_2d, "replicate")
self.assertEqual(len(all_submeshes), 4)
self.assertEqual(
all(submesh.mesh.numel() == 2 for submesh in all_submeshes), True
)
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class TestMeshEnv(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
world_size
|
def world_size(self):
return 4
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_device_mesh.py
|
test_scatter_nd
|
def test_scatter_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
scattered_tensors = [
torch.ones(3, 3, device=self.device_type) * global_rank
for global_rank in global_ranks
]
received_tensor = torch.empty_like(
scattered_tensors[mesh.get_coordinate()[dim]]
)
mesh_scatter(received_tensor, scattered_tensors, mesh, mesh_dim=dim)
self.assertEqual(received_tensor, torch.ones(3, 3) * self.rank)
|
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
class DeviceMeshCollectiveTest(DTensorTestBase):
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
init_weights
|
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
class ToyModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
def forward(self, inputs):
return self.net(inputs)
|
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
class ToyModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
get_model
|
def get_model(device, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5):
m = ToyModel(in_feat=in_feat, hidden_feat=hidden_feat, out_feat=out_feat).to(device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(device)
outputs = m(inputs)
return m, inputs, outputs
|
def get_model(
device, bsz=20, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None
):
m = ToyModel(
in_feat=in_feat,
hidden_feat=hidden_feat,
out_feat=out_feat,
ctx_manager=ctx_manager,
).to(device)
m.apply(init_weights)
inputs = torch.rand(bsz, in_feat).to(device)
outputs = m(inputs)
return m, inputs, outputs
class MutatingModel(nn.Module):
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
self.state = 1
def forward(self, inputs):
self.state = 2
return self.net(inputs) * self.state
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
get_toy_model_for_activation_checkpointing
|
def get_toy_model_for_activation_checkpointing(device):
m = ToyOuterModel(device).to(device)
m.apply(init_weights)
inputs = torch.rand(100, 100).to(device)
return m, inputs
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
find_first_node
|
def find_first_node(gm, func):
for node in gm.graph.nodes:
if node.target is func:
return node
return None
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
added
|
||
torch
|
test/distributed/test_dynamo_distributed.py
|
get_custom_model
|
def get_custom_model(device):
class MyCustomLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.randn(512, 512))
def forward(self, x):
tmp = torch.mm(x, self.weight.t())
# test an edge case where torch.where.scalar was decomposed to aten.where.self(tensor, tensor, tensor)
# and the tensors T(0.4) and T(0.5) were not wrapped in FakeTensors during DDPOptimizer compilation
return tmp + torch.where(tmp < 0.5, 0.3, 0.6)
class MyLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(512, 512)
def forward(self, x):
return self.linear(x)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
mods = [
(MyLinear(), torch.nn.ReLU()),
# sandwich the custom in the middle so it comes before and after
(MyCustomLinear(), torch.nn.ReLU()),
(MyLinear(), torch.nn.ReLU()),
]
self.seq = torch.nn.Sequential(*[x for items in mods for x in items])
def forward(self, x, y):
# test special case where the 0th bucket (layers close to graph input) is at capacity, which would
# trigger a new bucket, but there are only trivial ops without parameters to put into the new bucket.
# optimize this case by fusing that 'empty bucket' back together with the previous full one
return self.seq(x + y)
m = MyModule().to(device)
m.apply(init_weights)
inputs = torch.rand((512, 512)).to(device)
# test duplicated inputs
inputs = (inputs, inputs)
correct_outputs = m(*inputs)
return m, inputs, correct_outputs
|
def get_custom_model(device):
class MyCustomLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = nn.Parameter(torch.randn(512, 512))
def forward(self, x):
tmp = torch.mm(x, self.weight.t())
# test an edge case where torch.where.scalar was decomposed to aten.where.self(tensor, tensor, tensor)
# and the tensors T(0.4) and T(0.5) were not wrapped in FakeTensors during DDPOptimizer compilation
return tmp + torch.where(tmp < 0.5, 0.3, 0.6)
class MyLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(512, 512)
def forward(self, x):
return self.linear(x)
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
mods = [
(MyLinear(), torch.nn.ReLU()),
# sandwich the custom in the middle so it comes before and after
(MyCustomLinear(), torch.nn.ReLU()),
(MyLinear(), torch.nn.ReLU()),
]
self.seq = torch.nn.Sequential(*[x for items in mods for x in items])
def forward(self, x, y):
# test special case where the 0th bucket (layers close to graph input) is at capacity, which would
# trigger a new bucket, but there are only trivial ops without parameters to put into the new bucket.
# optimize this case by fusing that 'empty bucket' back together with the previous full one
return self.seq(x + y)
m = MyModule().to(device)
m.apply(init_weights)
inputs = torch.rand((512, 512)).to(device)
# test duplicated inputs
inputs = (inputs, inputs)
correct_outputs = m(*inputs)
return m, inputs, correct_outputs
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
forward
|
def forward(self, inputs):
return self.net(inputs)
|
def forward(self, inputs):
if self.ctx_manager is not None:
with self.ctx_manager():
return self.net(inputs)
else:
return self.net(inputs)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
torch
|
test/distributed/test_dynamo_distributed.py
|
__init__
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5):
super().__init__()
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
def __init__(self, in_feat=10, hidden_feat=5000, out_feat=5, ctx_manager=None):
super().__init__()
self.ctx_manager = ctx_manager
self.net = nn.Sequential(
*[nn.Linear(in_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, hidden_feat), nn.ReLU()]
+ [nn.Linear(hidden_feat, out_feat), nn.ReLU()]
)
|
import copy
import functools
import random
import unittest
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
from torch._dynamo.backends.distributed import DDPOptimizer
import torch._dynamo.test_case
from contextlib import contextmanager
from torch import nn
from torch._dynamo import config
from torch._dynamo.utils import same
from torch._dynamo.testing import collect_results
from torch._inductor.utils import has_triton
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import (
DynamoDistributedSingleProcTestCase,
DynamoDistributedMultiProcTestCase,
import_transformers_or_skip,
skip_if_lt_x_gpu,
requires_nccl,
_dynamo_dist_per_rank_init,
)
import torch._dynamo.logging
class ToyModel(nn.Module):
from transformers import BertConfig, AutoModelForMaskedLM
from transformers.models.bert.modeling_bert import BertLayer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch._dynamo.test_case import run_tests
|
import contextlib
import copy
import functools
import random
import unittest
from contextlib import contextmanager
from datetime import timedelta
from io import StringIO
from typing import List
from unittest.mock import patch
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
import torch.distributed as dist
import torch.optim as optim
from torch import nn
from torch._C import FileCheck
from torch._dynamo import config
from torch._dynamo.backends.distributed import DDPOptimizer
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import collect_results
from torch._dynamo.utils import same
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.distributed._functional_collectives import _maybe_wrap_tensor
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
)
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
import_transformers_or_skip,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import requires_cuda
from torch.utils._triton import has_triton
class ToyModel(nn.Module):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from transformers import AutoModelForMaskedLM, BertConfig
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
checkpoint_wrapper,
CheckpointImpl,
)
from torch._dynamo.utils import counters
from transformers.models.bert.modeling_bert import BertLayer
from torch._dynamo.comptime import comptime
from torch._dynamo.utils import counters
from torch._inductor.utils import fresh_inductor_cache
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint
from torch._dynamo.test_case import run_tests
|
c263bd43e8e8502d4726643bc6fd046f0130ac0e
|
32f585d9346e316e554c8d9bf7548af9f62141fc
|
modified
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.