input
stringlengths
2.65k
237k
output
stringclasses
1 value
####Please do not remove lines below#### from lmfit import Parameters import numpy as np import sys import os sys.path.append(os.path.abspath('.')) sys.path.append(os.path.abspath('./Functions')) sys.path.append(os.path.abspath('./Fortran_routines')) ####Please do not remove lines above#### ####Import your modules below if needed#### from FormFactors.Sphere import Sphere from ff_sphere import ff_sphere_ml from Chemical_Formula import Chemical_Formula from PeakFunctions import LogNormal, Gaussian from Structure_Factors import hard_sphere_sf, sticky_sphere_sf from utils import find_minmax, calc_rho, create_steps from functools import lru_cache import time class Biphasic_Sphere_Uniform: #Please put the class name same as the function name def __init__(self, x=0, Np=20, flux=1e13, term='Total',dist='Gaussian', Energy=None, relement='Au', NrDep='False', norm=1.0, sbkg=0.0, cbkg=0.0, abkg=0.0, D=1.0, phi=0.1, U=-1.0, SF='None',Rsig=0.0, mpar={'Phase_1':{'Material':['Au','H2O'], 'Density':[19.32,1.0], 'VolFrac':[1.0,1.0], 'Rmoles':[1.0,0.0], 'R':[1.0,0.0]}, 'Phase_2':{'Material':['Au','H2O'], 'Density':[19.32,1.0], 'VolFrac':[1.0,1.0], 'Rmoles':[1.0,0.0], 'R':[1.0,0.0]}, 'Solvent':{'Material':['H2O','H2O'], 'Density':[1.0,1.0], 'VolFrac':[1.0,1.0], 'Rmoles':[1.0,0.0], 'R':[1.0,0.0]}}): """ Documentation Calculates the Energy dependent form factor of multilayered spherical nanoparticles with two different set of materials x : Reciprocal wave-vector 'Q' inv-Angs in the form of a scalar or an array relement : Resonant element of the nanoparticle. Default: 'Au' Energy : Energy of X-rays in keV at which the form-factor is calculated. Default: None Np : No. of points with which the size distribution will be computed. Default: 10 NrDep : Energy dependence of the non-resonant element. Default= 'False' (Energy independent), 'True' (Energy dependent) dist : The probablity distribution fucntion for the radii of different interfaces in the nanoparticles. Default: Gaussian norm : The density of the nanoparticles in Molar (Moles/Liter) sbkg : Constant incoherent background for SAXS-term cbkg : Constant incoherent background for cross-term abkg : Constant incoherent background for Resonant-term flux : Total X-ray flux to calculate the errorbar to simulate the errorbar for the fitted data term : 'SAXS-term' or 'Cross-term' or 'Resonant-term' or 'Total' D : Hard Sphere Diameter phi : Volume fraction of particles U : The sticky-sphere interaction energy SF : Type of structure factor. Default: 'None' Rsig : Widths of the total radius of the nanoparticles. Default: 0.0 mpar : Multi-parameter which defines the following including the solvent/bulk medium which is the last one. Default: 'H2O' Material ('Materials' using chemical formula), Density ('Density' in gm/cubic-cms), Density of solvent ('SolDensity' in gm/cubic-cms) of the particular layer Mole-fraction ('Rmoles') of resonant element in the material) Radii ('R' in Angs), and """ if type(x)==list: self.x=np.array(x) else: self.x=x self.norm=norm self.sbkg=sbkg self.cbkg=cbkg self.abkg=abkg self.dist=dist self.Np=Np self.Energy=Energy self.relement=relement self.NrDep=NrDep #self.rhosol=rhosol self.flux=flux self.D=D self.phi=phi self.U=U self.__mpar__=mpar #If there is any multivalued parameter self.SF=SF self.term=term self.Rsig=Rsig self.__Density__={} self.__VolFrac__={} self.__R__={} self.__Rmoles__={} self.__material__={} self.choices={'dist':['Gaussian','LogNormal'],'NrDep':['True','False'],'SF':['None','Hard-Sphere', 'Sticky-Sphere'], 'term':['SAXS-term','Cross-term','Resonant-term','Total']} #If there are choices available for any fixed parameters self.__fit__=False self.__mkeys__=list(self.__mpar__.keys()) self.init_params() def init_params(self): """ Define all the fitting parameters like self.params.add('sig',value = 0, vary = 0, min = -np.inf, max = np.inf, expr = None, brute_step = None) """ self.params=Parameters() self.params.add('norm',value=self.norm,vary=0, min = -np.inf, max = np.inf, expr = None, brute_step = 0.1) self.params.add('D', value=self.D, vary=0, min=-np.inf, max=np.inf, expr=None, brute_step=0.1) self.params.add('phi', value=self.phi, vary=0, min=-np.inf, max=np.inf, expr=None, brute_step=0.1) self.params.add('sbkg',value=self.sbkg,vary=0, min = -np.inf, max = np.inf, expr = None, brute_step = 0.1) self.params.add('cbkg', value=self.cbkg, vary=0, min=-np.inf, max=np.inf, expr=None, brute_step=0.1) self.params.add('abkg', value=self.abkg, vary=0, min=-np.inf, max=np.inf, expr=None, brute_step=0.1) self.params.add('U', value=self.U, vary=0, min=-np.inf, max=np.inf, expr=None, brute_step=0.1) self.params.add('Rsig',value=self.Rsig,vary=0,min=0,max=np.inf,expr=None,brute_step=0.1) mkey1=self.__mkeys__[0] for key in self.__mpar__[mkey1].keys(): if key != 'Material': for i in range(len(self.__mpar__[mkey1][key])): self.params.add('__%s_%s_%03d' % (mkey1, key, i), value=self.__mpar__[mkey1][key][i], vary=0, min=-np.inf, max=np.inf, expr=None, brute_step=0.1) for mkey in self.__mkeys__[1:]: for key in self.__mpar__[mkey].keys(): if key!='Material' and key!='R': for i in range(len(self.__mpar__[mkey][key])): self.params.add('__%s_%s_%03d'%(mkey, key,i),value=self.__mpar__[mkey][key][i],vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=0.1) elif key=='R': for i in range(len(self.__mpar__[mkey][key])): self.params.add('__%s_%s_%03d'%(mkey, key,i),value=self.__mpar__[mkey][key][i],vary=0,min=-np.inf,max=np.inf ,expr='__%s_%s_%03d'%(mkey1, key,i),brute_step=0.1) @lru_cache(maxsize=10) def calc_Rdist(self, R, Rsig, dist, N): R = np.array(R) totalR = np.sum(R[:-1]) if Rsig > 0.001: fdist = eval(dist + '.' + dist + '(x=0.001, pos=totalR, wid=Rsig)') if dist == 'Gaussian': rmin, rmax = max(0.001, totalR - 5 * Rsig), totalR + 5 * Rsig dr = np.linspace(rmin, rmax, N) else: rmin, rmax = max(-3, np.log(totalR) - 5 * Rsig), np.log(totalR) + 5 * Rsig dr = np.logspace(rmin, rmax, N, base=np.exp(1.0)) fdist.x = dr rdist = fdist.y() sumdist = np.sum(rdist) rdist = rdist / sumdist return dr, rdist, totalR else: return [totalR], [1.0], totalR @lru_cache(maxsize=10) def new_sphere(self, q, R, Rsig, rho, eirho, adensity, dist='Gaussian',Np=10): q = np.array(q) dr, rdist, totalR = self.calc_Rdist(R, Rsig, dist, Np) form = np.zeros_like(q) eiform = np.zeros_like(q) aform = np.zeros_like(q) cform = np.zeros_like(q) pfac = (4 * np.pi * 2.818e-5 * 1.0e-8) ** 2 for i in range(len(dr)): r = np.array(R) * (1 + (dr[i] - totalR) / totalR) ff, mff = ff_sphere_ml(q, r, rho) form = form + rdist[i] * ff eiff, meiff = ff_sphere_ml(q, r, eirho) eiform = eiform + rdist[i] * eiff aff, maff = ff_sphere_ml(q, r, adensity) aform = aform + rdist[i] * aff cform = cform + rdist[i] * (meiff * maff.conjugate()+meiff.conjugate()*maff) return pfac * form, pfac * eiform, pfac * aform, np.abs(pfac * cform)/2 # in cm^2 @lru_cache(maxsize=2) def new_sphere_dict(self, q, R, Rsig, rho, eirho, adensity, dist='Gaussian',Np=10,key='SAXS-term'): form, eiform, aform, cform = self.new_sphere(q, R, Rsig, rho, eirho, adensity,dist=dist,Np=Np) if key == 'SAXS-term': return eiform elif key == 'Resonant-term': return aform elif key == 'Cross-term': return cform elif key == 'Total': return form def update_params(self): for mkey in self.__mkeys__: key = 'Density' Nmpar=len(self.__mpar__[mkey][key]) self.__Density__[mkey] = [self.params['__%s_%s_%03d' % (mkey, key, i)].value for i in range(Nmpar)] key = 'VolFrac' self.__VolFrac__[mkey] = [self.params['__%s_%s_%03d' % (mkey, key, i)].value for i in range(Nmpar)] key = 'Rmoles' self.__Rmoles__[mkey] = [self.params['__%s_%s_%03d' % (mkey, key, i)].value for i in range(Nmpar)] key = 'R' self.__R__[mkey] = [self.params['__%s_%s_%03d' % (mkey, key, i)].value for i in range(Nmpar)] key = 'Material' self.__material__[mkey] = [self.__mpar__[mkey][key][i] for i in range(Nmpar)] for mkey in self.__mkeys__[1:]: key='R' for i in range(Nmpar): self.params['__%s_%s_%03d'%(mkey,key,i)].set(expr='__%s_%s_%03d'%(self.__mkeys__[0],key,i)) mkey = 'Solvent' key = 'VolFrac' for i in range(Nmpar): self.params['__%s_%s_%03d' % (mkey, key, i)].set( expr='1.0-__Phase_1_VolFrac_%03d-__Phase_2_VolFrac_%03d' % (i, i)) def y(self): """ Define the function in terms of x to return some value """ svol = 1.5 * 0.0172 ** 2 / 370 ** 2 # scattering volume in cm^3 self.output_params = {'scaler_parameters': {}} self.update_params() mkey = 'Solvent' sol_density = tuple(np.ones_like(self.__Density__[mkey])) R = self.__R__[mkey] rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(R=tuple(R), material=tuple(self.__material__[mkey]), relement=self.relement, density=tuple(self.__Density__[mkey]), sol_density=sol_density, Energy=self.Energy, Rmoles=tuple(self.__Rmoles__[mkey]), NrDep=self.NrDep) for mkey in self.__mkeys__: if mkey != 'Solvent': trho, teirho, tadensity, trhor, teirhor, tadensityr = calc_rho(R=tuple(self.__R__[mkey]), material=tuple(self.__material__[mkey]), relement=self.relement, density=tuple(self.__Density__[mkey]), sol_density=sol_density, Energy=self.Energy, Rmoles=tuple(self.__Rmoles__[mkey]), NrDep=self.NrDep) vf = np.array(self.__VolFrac__[mkey]) rho = rho + vf * trho eirho = eirho + vf * teirho adensity = adensity + vf * tadensity if type(self.x) == dict: sqf = {} for key in self.x.keys(): sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(tuple(self.x[key]), tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, tuple(rho), tuple(eirho), tuple(adensity), key=key, dist=self.dist,Np=self.Np) # in cm^-1 if self.SF is None: struct = np.ones_like(self.x[key]) # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0) elif self.SF == 'Hard-Sphere': struct = hard_sphere_sf(self.x[key], D=self.D, phi=self.phi) else: struct = sticky_sphere_sf(self.x[key], D=self.D, phi=self.phi, U=self.U, delta=0.01) if key == 'SAXS-term': sqf[key] = sqf[key] * struct + self.sbkg if key == 'Cross-term': sqf[key] = sqf[key] * struct + self.cbkg if key == 'Resonant-term': sqf[key] = sqf[key] * struct + self.abkg key1 = 'Total' total = self.norm * 6.022e20 * struct * self.new_sphere_dict(tuple(self.x[key]), tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, tuple(rho), tuple(eirho), tuple(adensity), key=key1,dist=self.dist,Np=self.Np) + self.sbkg # in cm^-1 if not self.__fit__: dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist, self.Np) self.output_params['Distribution'] = {'x': dr, 'y': rdist} self.output_params['Simulated_total_wo_err'] = {'x': self.x[key], 'y': total} self.output_params['Total'] = {'x': self.x[key], 'y': total} for key in self.x.keys(): self.output_params[key] = {'x': self.x[key], 'y': sqf[key]} self.output_params['rho_r'] = {'x': rhor[:, 0], 'y': rhor[:, 1]} self.output_params['eirho_r'] = {'x': eirhor[:, 0], 'y': eirhor[:, 1]} self.output_params['adensity_r'] = {'x': adensityr[:, 0], 'y': adensityr[:, 1]} self.output_params['Structure_Factor'] = {'x': self.x[key], 'y': struct} else: if self.SF is None: struct = np.ones_like(self.x) elif self.SF == 'Hard-Sphere': struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi) else: struct = sticky_sphere_sf(self.x, D=self.D, phi=self.phi, U=self.U, delta=0.01) tsqf, eisqf, asqf, csqf = self.new_sphere(tuple(self.x), tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, tuple(rho), tuple(eirho), tuple(adensity),dist=self.dist,Np=self.Np) sqf = self.norm * np.array(tsqf) * 6.022e20 * struct + self.sbkg # in cm^-1 # if not self.__fit__: #Generate all the quantities below while not fitting asqf = self.norm * np.array(asqf) * 6.022e20 * struct + self.abkg # in cm^-1 eisqf = self.norm * np.array(eisqf) * 6.022e20 * struct + self.sbkg # in
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_config import cfg from oslo_utils import uuidutils from ironic.common import driver_factory from ironic.common import exception from ironic.common import network from ironic.common import states from ironic.conductor import task_manager from ironic.conductor import utils as conductor_utils from ironic import objects from ironic.objects import fields as obj_fields from ironic.tests import base as tests_base from ironic.tests.unit.conductor import mgr_utils from ironic.tests.unit.db import base as db_base from ironic.tests.unit.db import utils as db_utils from ironic.tests.unit.objects import utils as obj_utils CONF = cfg.CONF class NodeSetBootDeviceTestCase(db_base.DbTestCase): def test_node_set_boot_device_non_existent_device(self): mgr_utils.mock_the_extension_manager(driver="fake_ipmitool") self.driver = driver_factory.get_driver("fake_ipmitool") ipmi_info = db_utils.get_test_ipmi_info() node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake_ipmitool', driver_info=ipmi_info) task = task_manager.TaskManager(self.context, node.uuid) self.assertRaises(exception.InvalidParameterValue, conductor_utils.node_set_boot_device, task, device='fake') def test_node_set_boot_device_valid(self): mgr_utils.mock_the_extension_manager(driver="fake_ipmitool") self.driver = driver_factory.get_driver("fake_ipmitool") ipmi_info = db_utils.get_test_ipmi_info() node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake_ipmitool', driver_info=ipmi_info) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.management, 'set_boot_device') as mock_sbd: conductor_utils.node_set_boot_device(task, device='pxe') mock_sbd.assert_called_once_with(task, device='pxe', persistent=False) def test_node_set_boot_device_adopting(self): mgr_utils.mock_the_extension_manager(driver="fake_ipmitool") self.driver = driver_factory.get_driver("fake_ipmitool") ipmi_info = db_utils.get_test_ipmi_info() node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake_ipmitool', driver_info=ipmi_info, provision_state=states.ADOPTING) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.management, 'set_boot_device') as mock_sbd: conductor_utils.node_set_boot_device(task, device='pxe') self.assertFalse(mock_sbd.called) class NodePowerActionTestCase(db_base.DbTestCase): def setUp(self): super(NodePowerActionTestCase, self).setUp() mgr_utils.mock_the_extension_manager() self.driver = driver_factory.get_driver("fake") def test_node_power_action_power_on(self): """Test node_power_action to turn node power on.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_OFF) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_OFF conductor_utils.node_power_action(task, states.POWER_ON) node.refresh() get_power_mock.assert_called_once_with(mock.ANY) self.assertEqual(states.POWER_ON, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) @mock.patch('ironic.objects.node.NodeSetPowerStateNotification') def test_node_power_action_power_on_notify(self, mock_notif): """Test node_power_action to power on node and send notification.""" self.config(notification_level='info') self.config(host='my-host') # Required for exception handling mock_notif.__name__ = 'NodeSetPowerStateNotification' node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_OFF) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_OFF conductor_utils.node_power_action(task, states.POWER_ON) node.refresh() get_power_mock.assert_called_once_with(mock.ANY) self.assertEqual(states.POWER_ON, node.power_state) self.assertIsNone(node.target_power_state) self.assertIsNone(node.last_error) # 2 notifications should be sent: 1 .start and 1 .end self.assertEqual(2, mock_notif.call_count) self.assertEqual(2, mock_notif.return_value.emit.call_count) first_notif_args = mock_notif.call_args_list[0][1] second_notif_args = mock_notif.call_args_list[1][1] self.assertNotificationEqual(first_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.start', obj_fields.NotificationLevel.INFO) self.assertNotificationEqual(second_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.end', obj_fields.NotificationLevel.INFO) def test_node_power_action_power_off(self): """Test node_power_action to turn node power off.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_ON conductor_utils.node_power_action(task, states.POWER_OFF) node.refresh() get_power_mock.assert_called_once_with(mock.ANY) self.assertEqual(states.POWER_OFF, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) def test_node_power_action_power_reboot(self): """Test for reboot a node.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'reboot') as reboot_mock: with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: conductor_utils.node_power_action(task, states.REBOOT) self.assertFalse(get_power_mock.called) node.refresh() reboot_mock.assert_called_once_with(mock.ANY) self.assertEqual(states.POWER_ON, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) def test_node_power_action_invalid_state(self): """Test for exception when changing to an invalid power state.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_ON self.assertRaises(exception.InvalidParameterValue, conductor_utils.node_power_action, task, "INVALID_POWER_STATE") node.refresh() self.assertFalse(get_power_mock.called) self.assertEqual(states.POWER_ON, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNotNone(node['last_error']) # last_error is cleared when a new transaction happens conductor_utils.node_power_action(task, states.POWER_OFF) node.refresh() self.assertEqual(states.POWER_OFF, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) @mock.patch('ironic.objects.node.NodeSetPowerStateNotification') def test_node_power_action_invalid_state_notify(self, mock_notif): """Test for notification when changing to an invalid power state.""" self.config(notification_level='info') self.config(host='my-host') # Required for exception handling mock_notif.__name__ = 'NodeSetPowerStateNotification' node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_ON self.assertRaises(exception.InvalidParameterValue, conductor_utils.node_power_action, task, "INVALID_POWER_STATE") node.refresh() self.assertFalse(get_power_mock.called) self.assertEqual(states.POWER_ON, node.power_state) self.assertIsNone(node.target_power_state) self.assertIsNotNone(node.last_error) # 2 notifications should be sent: 1 .start and 1 .error self.assertEqual(2, mock_notif.call_count) self.assertEqual(2, mock_notif.return_value.emit.call_count) first_notif_args = mock_notif.call_args_list[0][1] second_notif_args = mock_notif.call_args_list[1][1] self.assertNotificationEqual(first_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.start', obj_fields.NotificationLevel.INFO) self.assertNotificationEqual(second_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.error', obj_fields.NotificationLevel.ERROR) def test_node_power_action_already_being_processed(self): """Test node power action after aborted power action. The target_power_state is expected to be None so it isn't checked in the code. This is what happens if it is not None. (Eg, if a conductor had died during a previous power-off attempt and left the target_power_state set to states.POWER_OFF, and the user is attempting to power-off again.) """ node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON, target_power_state=states.POWER_OFF) task = task_manager.TaskManager(self.context, node.uuid) conductor_utils.node_power_action(task, states.POWER_OFF) node.refresh() self.assertEqual(states.POWER_OFF, node['power_state']) self.assertEqual(states.NOSTATE, node['target_power_state']) self.assertIsNone(node['last_error']) @mock.patch.object(conductor_utils, 'LOG', autospec=True) def test_node_power_action_in_same_state(self, log_mock): """Test setting node state to its present state. Test that we don't try to set the power state if the requested state is the same as the current state. """ node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', last_error='anything but None', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_ON with mock.patch.object(self.driver.power, 'set_power_state') as set_power_mock: conductor_utils.node_power_action(task, states.POWER_ON) node.refresh() get_power_mock.assert_called_once_with(mock.ANY) self.assertFalse(set_power_mock.called, "set_power_state unexpectedly called") self.assertEqual(states.POWER_ON, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) log_mock.warning.assert_called_once_with( u"Not going to change node %(node)s power state because " u"current state = requested state = '%(state)s'.", {'state': states.POWER_ON, 'node': node.uuid}) def test_node_power_action_in_same_state_db_not_in_sync(self): """Test setting node state to its present state if DB is out of sync. Under rare conditions (see bug #1403106) database might contain stale information, make sure we fix it. """ node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', last_error='anything but None', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_OFF with mock.patch.object(self.driver.power, 'set_power_state') as set_power_mock: conductor_utils.node_power_action(task, states.POWER_OFF) node.refresh() get_power_mock.assert_called_once_with(mock.ANY) self.assertFalse(set_power_mock.called, "set_power_state unexpectedly called") self.assertEqual(states.POWER_OFF, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) def test_node_power_action_failed_getting_state(self): """Test for exception when we can't get the current power state.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_state_mock: get_power_state_mock.side_effect = ( exception.InvalidParameterValue('failed getting power state')) self.assertRaises(exception.InvalidParameterValue, conductor_utils.node_power_action, task, states.POWER_ON) node.refresh() get_power_state_mock.assert_called_once_with(mock.ANY) self.assertEqual(states.POWER_ON, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNotNone(node['last_error']) @mock.patch('ironic.objects.node.NodeSetPowerStateNotification') def test_node_power_action_failed_getting_state_notify(self, mock_notif): """Test for notification when we can't get the current power state.""" self.config(notification_level='info') self.config(host='my-host') # Required for exception handling mock_notif.__name__ = 'NodeSetPowerStateNotification' node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_state_mock: get_power_state_mock.side_effect = ( exception.InvalidParameterValue('failed getting power state')) self.assertRaises(exception.InvalidParameterValue, conductor_utils.node_power_action, task, states.POWER_ON) node.refresh() get_power_state_mock.assert_called_once_with(mock.ANY) self.assertEqual(states.POWER_ON, node.power_state) self.assertIsNone(node.target_power_state) self.assertIsNotNone(node.last_error) # 2 notifications should be sent: 1 .start and 1 .error self.assertEqual(2, mock_notif.call_count) self.assertEqual(2, mock_notif.return_value.emit.call_count) first_notif_args = mock_notif.call_args_list[0][1] second_notif_args = mock_notif.call_args_list[1][1] self.assertNotificationEqual(first_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.start', obj_fields.NotificationLevel.INFO) self.assertNotificationEqual(second_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.error', obj_fields.NotificationLevel.ERROR) def test_node_power_action_set_power_failure(self): """Test if an exception is thrown when the set_power call fails.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_OFF) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: with mock.patch.object(self.driver.power, 'set_power_state') as set_power_mock: get_power_mock.return_value = states.POWER_OFF set_power_mock.side_effect = exception.IronicException() self.assertRaises( exception.IronicException, conductor_utils.node_power_action, task, states.POWER_ON) node.refresh() get_power_mock.assert_called_once_with(mock.ANY) set_power_mock.assert_called_once_with(mock.ANY, states.POWER_ON) self.assertEqual(states.POWER_OFF, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNotNone(node['last_error']) @mock.patch('ironic.objects.node.NodeSetPowerStateNotification') def test_node_power_action_set_power_failure_notify(self, mock_notif): """Test if a notification is sent when the set_power call fails.""" self.config(notification_level='info') self.config(host='my-host') # Required for exception handling mock_notif.__name__ = 'NodeSetPowerStateNotification' node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_OFF) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: with mock.patch.object(self.driver.power, 'set_power_state') as set_power_mock: get_power_mock.return_value = states.POWER_OFF set_power_mock.side_effect = exception.IronicException() self.assertRaises( exception.IronicException, conductor_utils.node_power_action, task, states.POWER_ON) node.refresh() get_power_mock.assert_called_once_with(mock.ANY) set_power_mock.assert_called_once_with(mock.ANY, states.POWER_ON) self.assertEqual(states.POWER_OFF, node.power_state) self.assertIsNone(node.target_power_state) self.assertIsNotNone(node.last_error) # 2 notifications should be sent: 1 .start and 1 .error self.assertEqual(2, mock_notif.call_count) self.assertEqual(2, mock_notif.return_value.emit.call_count) first_notif_args = mock_notif.call_args_list[0][1] second_notif_args = mock_notif.call_args_list[1][1] self.assertNotificationEqual(first_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.start', obj_fields.NotificationLevel.INFO) self.assertNotificationEqual( second_notif_args, 'ironic-conductor', CONF.host, 'baremetal.node.power_set.error', obj_fields.NotificationLevel.ERROR) def test_node_power_action_power_on_storage_attach(self): """Test node_power_action to turn node power on and attach storage.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_OFF, storage_interface="cinder", provision_state=states.ACTIVE) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(task.driver.storage, 'attach_volumes', autospec=True) as attach_mock: conductor_utils.node_power_action(task, states.POWER_ON) node.refresh() attach_mock.assert_called_once_with(task) self.assertEqual(states.POWER_ON, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) def test_node_power_action_reboot_storage_attach(self): """Test node_power_action to reboot the node and attach storage.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON, storage_interface="cinder", provision_state=states.ACTIVE) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(task.driver.storage, 'attach_volumes', autospec=True) as attach_mock: conductor_utils.node_power_action(task, states.REBOOT) node.refresh() attach_mock.assert_called_once_with(task) self.assertEqual(states.POWER_ON, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) def test_node_power_action_power_off_storage_detach(self): """Test node_power_action to turn node power off and detach storage.""" node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', power_state=states.POWER_ON, storage_interface="cinder", provision_state=states.ACTIVE) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(task.driver.storage, 'detach_volumes', autospec=True) as detach_mock: conductor_utils.node_power_action(task, states.POWER_OFF) node.refresh() detach_mock.assert_called_once_with(task) self.assertEqual(states.POWER_OFF, node['power_state']) self.assertIsNone(node['target_power_state']) self.assertIsNone(node['last_error']) def test__calculate_target_state(self): for new_state in (states.POWER_ON, states.REBOOT, states.SOFT_REBOOT): self.assertEqual( states.POWER_ON, conductor_utils._calculate_target_state(new_state)) for new_state in (states.POWER_OFF, states.SOFT_POWER_OFF): self.assertEqual( states.POWER_OFF, conductor_utils._calculate_target_state(new_state)) self.assertIsNone(conductor_utils._calculate_target_state('bad_state')) def test__can_skip_state_change_different_state(self): """Test setting node state to different state. Test that we should change state if requested state is different from current state. """ node = obj_utils.create_test_node(self.context, uuid=uuidutils.generate_uuid(), driver='fake', last_error='anything but None', power_state=states.POWER_ON) task = task_manager.TaskManager(self.context, node.uuid) with mock.patch.object(self.driver.power, 'get_power_state') as get_power_mock: get_power_mock.return_value = states.POWER_ON result = conductor_utils._can_skip_state_change( task, states.POWER_OFF) self.assertFalse(result) get_power_mock.assert_called_once_with(mock.ANY) @mock.patch.object(conductor_utils, 'LOG', autospec=True) def test__can_skip_state_change_same_state(self, mock_log): """Test setting node state to its present state.
<gh_stars>0 #!/usr/bin/env python3 desc="""Convert basecalled Fast5 with modifications annotated by guppy v3.1.5+ to FastQ with modification probabilities encoded as FastQ qualities. More info at: https://github.com/lpryszcz/modPhred Dependencies: h5py, pyguppyclient, running guppy_basecall_server TO DO: - catch exception of guppy client """ epilog="""Author: <EMAIL> Barcelona, 17/02/2021 """ from guppy_encode import * import pyguppyclient, re, time, tempfile from pyguppyclient import GuppyClientBase, yield_reads from pyguppyclient.ipc import SimpleRequestType, SimpleReplyType def get_completed_reads(client, trace=True, state=False): """Get completed reads from pyguppyclient v0.0.6""" reads = [] flag = (not trace) ^ state << 1 res = client.send(SimpleRequestType.GET_FIRST_CALLED_BLOCK, data=flag) while res is not None: read, called = res while not called.complete: _, block = client.send(SimpleRequestType.GET_NEXT_CALLED_BLOCK, data=read.read_tag) called += block # store read reads.append((read, called)) res = client.send(SimpleRequestType.GET_FIRST_CALLED_BLOCK, data=flag) return reads def _get_read_data_v006(client): """Store read id, sequence and base_mod_probs. Compatible with v0.0.6""" reads = [] for read, called in get_completed_reads(client): reads.append((read.read_id, called.seq, called.mod_probs*255, " ".join(called.mod_long_names), called.mod_alphabet)) return reads def _get_read_data_v007a1(client): """Store read id, sequence and base_mod_probs. Compatible with v0.0.7a1. """ reads = [] # v0.0.7a1 returns reads, error_msg for read in client.pcl_client.get_completed_reads()[0]: md, ds = read["metadata"], read["datasets"] reads.append((md["read_id"], ds["sequence"], ds["base_mod_probs"], md["base_mod_long_names"], md["base_mod_alphabet"])) return reads def _get_read_data_v009(client): """Store read id, sequence and base_mod_probs. Compatible with v0.0.9. """ reads = [] # v0.0.9 returns reads for read in client.pcl_client.get_completed_reads(): md, ds = read["metadata"], read["datasets"] reads.append((md["read_id"], ds["sequence"], ds["base_mod_probs"], md["base_mod_long_names"], md["base_mod_alphabet"])) return reads def get_basecalled_reads_data(fn, client, _get_read_data): """Return basecalled reads from given Fast5 file. This implementation is >10x faster than using GuppyBasecallerClient.basecall() """ reads = [] # submit all reads for ri, read in enumerate(yield_reads(fn), 1): #if ri>100: break client.pass_read(read) # gradually grab basecalled reads (initially there will be none) if not ri%100: reads += _get_read_data(client) # wait for the rest of the reads while len(reads)<ri: time.sleep(.1) reads += _get_read_data(client) return reads def basecalling_worker(args): """Basecalling worker. Basecalling is running as a separate worker process, so GPU is fully loaded. Here read objects are small (10-100 Mb per Fast5), thus easy to pickle. """ fn, config, host, port = args # define parameters for pyguppyclient v0.0.6 or newer ver = pyguppyclient.__version__ kwargs = {} # no trace=True for v0.0.6, v0.0.7a1 if ver=="0.0.6": _get_read_data = _get_read_data_v006 elif ver=="0.0.7a1": _get_read_data = _get_read_data_v007a1 elif ver=="0.0.9": kwargs = {"trace": True} _get_read_data = _get_read_data_v009 else: sys.stderr.write("[ERROR] Unsupported pyguppy version: %s\n"%ver) sys.exit(1) # here due to v0.0.7a1 errors, we have to skip with and use connect after patching #with GuppyClientBase(config_name=config, host=host, port=port, **kwargs) as client: client = GuppyClientBase(config_name=config, host=host, port=port, **kwargs) # patch v0.0.7a1 that doesn't return trace and mod_probs if pyguppyclient.__version__=="0.0.7a1": client.pcl_client.set_params({'move_and_trace_enabled': True}) client.connect() reads = get_basecalled_reads_data(fn, client, _get_read_data) client.disconnect() # this is a bit dirty, but works fine return fn, reads def get_encoded_FastQ(reads, fn, MaxPhredProb): """Store modificoation probability in FastQ""" basecount = warns = 0 data, rname = [], "" alphabet, symbol2modbase, canonical2mods, base2positions, mods2count = '', {}, {}, {}, {} # open out file with gzip compression outfn = fn+".fq.gz_" # The default mode is "rb", and the default compresslevel is 9. out = gzip.open(outfn, "wt") for ri, (read_name, seq, mod_probs, mods, output_alphabet) in enumerate(reads, 1): # prepare data storage if not already prepared if ri==1: alphabet, symbol2modbase, canonical2mods, base2positions = get_alphabet(output_alphabet, mods) rna = True if "U" in alphabet else False mods2count = {m: 0 for mods in canonical2mods.values() for m in mods} # get mod probabilities and normalise to MaxPhredProb modbaseprobNorm = np.array(mod_probs / MaxProb * MaxPhredProb, dtype='uint8') # reverse only if RNA if rna: modbaseprobNorm = modbaseprobNorm[::-1] basecount += len(seq) # get modprobs as qualities phredmodprobs, mod2count = get_phredmodprobs(seq, modbaseprobNorm, mods2count, base2positions, canonical2mods, MaxPhredProb) out.write("@%s\n%s\n+\n%s\n"%(read_name, seq, phredmodprobs)) # report number of bases if rname: name = "/".join(fn.split("/")[-4:]) # mv only if finished os.replace(fn+".fq.gz_", fn+".fq.gz") return basecount, mods2count, alphabet, symbol2modbase, canonical2mods, base2positions def start_guppy_server(host, config, port, device): """Start guppy_basecall_server and return its Popen object, host and port. This starts new basecall server only if host is a path to guppy binary. Otherwise, it'll use host:port provided on the startup. """ def get_guppy_port(tmp, pat=re.compile(r'Starting server on port:\W+(\d+)')): """Return guppy port""" if os.path.isfile(tmp): for line in open(tmp): for m in pat.finditer(line): return int(m.groups()[0]) return None proc = None if os.path.isfile(host): logger("Starting %s ..."%host) # get uniquely named tmp file tmp = os.path.join(tempfile.gettempdir(), next(tempfile._get_candidate_names())) # create log log = open(tmp+".log", "w") # start guppy process args = [host, "-l", tmp, "-c", config, "-x", device, "-p", "auto"]#; print(args) proc = subprocess.Popen(args, shell=False, stdout=log, stderr=log) while True: # get guppy port port = get_guppy_port(log.name) if port is not None: break # if no port, check if guppy init failed exitcode = proc.poll() if exitcode is not None: sys.stderr.write("There was some issue while starting guppy.\n") sys.stderr.write("Check logs for details: grep '' %s* \n"%tmp) # output guppy log to stderr log.close() for line in open(log.name): sys.stderr.write(line) sys.exit(exitcode) time.sleep(0.1) host = "localhost" return proc, host, port def mod_encode(indirs, threads, config, host, port, MaxModsPerBase=3, recursive=False, remove=False, device="cuda:0"): """Convert basecalled Fast5 into FastQ with base modification probabilities encoded as FastQ qualities. """ # start guppy server if needed guppy_proc, host, port = start_guppy_server(host, config, port, device) fast5_dirs = set() MaxPhredProb = get_MaxPhredProb(MaxModsPerBase) logger("Encoding modification info from %s directories...\n"%len(indirs)) for indir in indirs: if recursive: fnames = sorted(map(str, Path(indir).rglob('*.fast5'))) else: fnames = sorted(map(str, Path(indir).glob('*.fast5'))) # process & remove Fast5 files modified more than --remove minutes ago if remove: now = time.time() fnames = list(filter(lambda f: now-os.path.getmtime(f)>=remove*60, fnames)) logger(" %s with %s Fast5 file(s)...\n"%(indir, len(fnames))) # load current data - this may cause problems if recursion was done... data = load_info(indir, recursive) # exit if not fnames nor modPhred.pkl if not fnames and not data: warning("[mod_encode][WARNING] No Fast5 files and no previously process data in %s\n"%indir) sys.exit(1) continue # get already processed files fast5 = {} if data: # start from the beginning if different MaxModsPerBase used if data["MaxModsPerBase"] != MaxModsPerBase: info = "[mod_encode][WARNING] Previously you used --MaxModsPerBase %s, while now %s. Recomputing FastQ files..." warning(info%(data["MaxModsPerBase"], MaxModsPerBase)) else: fast5 = data["fast5"] logger(" %s were processed earlier."%len(fast5), add_memory=0) # process files if not already processed (FastQ not present or FastQ is older than Fast5) p = Pool(1) #, maxtasksperchild=1000) args = [(fn, config, host, port) for fn in fnames if not os.path.isfile(fn+".fq.gz") or os.path.getmtime(fn)>os.path.getmtime(fn+".fq.gz")] for ii, (fn, reads) in enumerate(p.imap(basecalling_worker, args), 1): # store modification probability in FastQ (basecount, mods2count, alphabet, symbol2modbase, canonical2mods, base2positions) = get_encoded_FastQ(reads, fn, MaxPhredProb) # skip files without bases if not basecount: continue sys.stderr.write(" %s / %s %s with %s bases. Detected mods: %s \r"%(ii, len(fnames), os.path.basename(fn), basecount, str(mods2count))) data = load_info(indir, recursive) # store data if data: # either add new Fast5 fast5 = data["fast5"] fast5[fn] = basecount fast5mod = data["fast5mod"] fast5mod[fn] = mods2count else: # or start pickle from scratch if doesn't exists fast5 = {fn: basecount} fast5mod = {fn: mods2count} moltype, bases = get_moltype(alphabet) nmods = sum(len(v) for k, v in canonical2mods.items()) info = " %s alphabet with %s modification(s) %s. symbol2modbase: %s" logger(info%(moltype, nmods, str(canonical2mods), str(symbol2modbase)), add_memory=0) # make sure --MaxModsPerBase is sufficiently large maxnmodsperbase = max(len(v) for k, v in canonical2mods.items()) if maxnmodsperbase>MaxModsPerBase: info = "[mod_encode][WARNING] Too many modifications per base (%s). \nPlease restart with --MaxModsPerBase %s or larger!" warning(info%(maxnmodsperbase, maxnmodsperbase)) # this keeps info on completed Fast5>FastQ this way dump_info(indir, alphabet, symbol2modbase, canonical2mods, base2positions, fast5, fast5mod, MaxModsPerBase, MaxPhredProb) # report total number of bases for project data = load_info(indir, recursive) symbol2modbase = data["symbol2modbase"] totbases = sum(v for k, v in data["fast5"].items()) # get total number of modifications mods2count = {} if "fast5mod" in data: for fn in data["fast5mod"]: for k, v in data["fast5mod"][fn].items(): if k not in mods2count: mods2count[k] = v else: mods2count[k] += v modcount = ", ".join(("{:,} {} [{:7,.3%}]".format(c, symbol2modbase[m], c/totbases) for m, c in mods2count.items())) logger(" {:,} bases saved in FastQ, of those: {} ".format(totbases, modcount), add_memory=0) # close pool p.close() # and guppy basecall server if it was started by this process if guppy_proc: guppy_proc.terminate() return fast5_dirs def warning(info): def count(i=0): i+=1 logger(info, add_timestamp=0,
<reponame>kzeiler/modflow6 import os import numpy as np import pytest try: import flopy except: msg = "Error. FloPy package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install flopy" raise Exception(msg) from flopy.utils.lgrutil import Lgr from framework import testing_framework from simulation import Simulation # Test for the interface model approach. # It compares the result of a single, strongly anisotropic model # with XT3D enabled to the equivalent case where the domain is # decomposed and joined by a GWF-GWF exchange with XT3D applied. # # 'refmodel' 'leftmodel' 'rightmodel' # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 VS 1 1 1 1 1 + 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # # The head values should always be indentical. All models are # part of the same solution for convenience. # In addition, a check on the x,y,z components of specific discharge # is present. The values of the left submodel are compared to # the left part of the full model, and similar for right: they # should be identical. Finally, the budget error is checked. ex = ["ifmod_xt3d02"] exdirs = [] for s in ex: exdirs.append(os.path.join("temp", s)) # global convenience... mname_ref = "refmodel" mname_left = "leftmodel" mname_right = "rightmodel" hclose_check = 1e-9 useXT3D = True def get_model(idx, dir): name = ex[idx] # parameters and spd # tdis nper = 1 tdis_rc = [] for i in range(nper): tdis_rc.append((1.0, 1, 1)) # solver data nouter, ninner = 100, 300 hclose, rclose, relax = hclose_check, 1e-3, 0.97 # model spatial discretization nlay = 1 ncol = 10 ncol_left = 5 ncol_right = 5 nrow = 10 # cell spacing delr = 10.0 delc = 10.0 area = delr * delc # shift (hor. and vert.) shift_some_x = -20 * delr # avoids overlap shift_x = 5 * delr shift_y = 0.0 # top/bot of the aquifer tops = [0.0, -5.0] # hydraulic conductivity k11 = 10.0 k22 = 0.1 k_angle = 45.0 # boundary stress period data h_left = -2.0 h_right = -2.0 # initial head h_start = -2.0 # well well_id = (0, 4, 4) well_rate = -1.0 # This creates the single model, for reference: left_chd = [[(0, irow, 0), h_left] for irow in range(nrow)] right_chd = [[(0, irow, ncol - 1), h_right] for irow in range(nrow)] chd_data = left_chd + right_chd chd_spd = {0: chd_data} sim = flopy.mf6.MFSimulation( sim_name=name, version="mf6", exe_name="mf6", sim_ws=dir ) tdis = flopy.mf6.ModflowTdis( sim, time_units="DAYS", nper=nper, perioddata=tdis_rc ) ims = flopy.mf6.ModflowIms( sim, print_option="SUMMARY", outer_dvclose=hclose, outer_maximum=nouter, under_relaxation="DBD", inner_maximum=ninner, inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration="BICGSTAB", relaxation_factor=relax, ) gwf = flopy.mf6.ModflowGwf(sim, modelname=mname_ref, save_flows=True) dis = flopy.mf6.ModflowGwfdis( gwf, nlay=nlay, nrow=nrow, ncol=ncol, delr=delr, delc=delc, xorigin=shift_some_x, yorigin=0.0, top=tops[0], botm=tops[1:], ) # initial conditions ic = flopy.mf6.ModflowGwfic(gwf, strt=h_start) # node property flow npf = flopy.mf6.ModflowGwfnpf( gwf, save_specific_discharge=True, xt3doptions=useXT3D, save_flows=True, icelltype=0, k=k11, k22=k22, angle1=k_angle, ) # chd file chd = flopy.mf6.ModflowGwfchd(gwf, stress_period_data=chd_spd) # well wel1 = flopy.mf6.ModflowGwfwel( gwf, stress_period_data=[[well_id, well_rate]], print_input=True, print_flows=True, save_flows=False, pname="WEL-1", ) # output control oc = flopy.mf6.ModflowGwfoc( gwf, head_filerecord="{}.hds".format(mname_ref), budget_filerecord="{}.cbc".format(mname_ref), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], ) # Now create two coupled models with the interface model enabled, # to be stored in the same solution as the reference model # submodel on the left: left_chd = [[(0, irow, 0), h_left] for irow in range(nrow)] chd_spd_left = {0: left_chd} gwf = flopy.mf6.ModflowGwf(sim, modelname=mname_left, save_flows=True) dis = flopy.mf6.ModflowGwfdis( gwf, nlay=nlay, nrow=nrow, ncol=ncol_left, delr=delr, delc=delc, top=tops[0], botm=tops[1:], ) ic = flopy.mf6.ModflowGwfic(gwf, strt=h_start) npf = flopy.mf6.ModflowGwfnpf( gwf, save_specific_discharge=True, xt3doptions=useXT3D, save_flows=True, icelltype=0, k=k11, k22=k22, angle1=k_angle, ) chd = flopy.mf6.ModflowGwfchd(gwf, stress_period_data=chd_spd_left) oc = flopy.mf6.ModflowGwfoc( gwf, head_filerecord="{}.hds".format(mname_left), budget_filerecord="{}.cbc".format(mname_left), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], ) wel1 = flopy.mf6.ModflowGwfwel( gwf, stress_period_data=[[well_id, well_rate]], print_input=True, print_flows=True, save_flows=False, pname="WEL-1", ) # submodel on the right: right_chd = [[(0, irow, ncol_right - 1), h_right] for irow in range(nrow)] chd_spd_right = {0: right_chd} gwf = flopy.mf6.ModflowGwf(sim, modelname=mname_right, save_flows=True) dis = flopy.mf6.ModflowGwfdis( gwf, nlay=nlay, nrow=nrow, ncol=ncol_right, delr=delr, delc=delc, xorigin=shift_x, yorigin=shift_y, top=tops[0], botm=tops[1:], ) ic = flopy.mf6.ModflowGwfic(gwf, strt=h_start) npf = flopy.mf6.ModflowGwfnpf( gwf, save_specific_discharge=True, xt3doptions=useXT3D, save_flows=True, icelltype=0, k=k11, k22=k22, angle1=k_angle, ) chd = flopy.mf6.ModflowGwfchd(gwf, stress_period_data=chd_spd_right) oc = flopy.mf6.ModflowGwfoc( gwf, head_filerecord="{}.hds".format(mname_right), budget_filerecord="{}.cbc".format(mname_right), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], ) # exchangedata angldegx = 0.0 cdist = delr gwfgwf_data = [ [ (0, irow, ncol_left - 1), (0, irow, 0), 1, delr / 2.0, delr / 2.0, delc, angldegx, cdist, ] for irow in range(nrow) ] gwfgwf = flopy.mf6.ModflowGwfgwf( sim, exgtype="GWF6-GWF6", nexg=len(gwfgwf_data), exgmnamea=mname_left, exgmnameb=mname_right, exchangedata=gwfgwf_data, auxiliary=["ANGLDEGX", "CDIST"], xt3d=useXT3D, ) return sim def build_model(idx, exdir): sim = get_model(idx, exdir) return sim, None def qxqyqz(fname, nlay, nrow, ncol): nodes = nlay * nrow * ncol cbb = flopy.utils.CellBudgetFile(fname, precision="double") spdis = cbb.get_data(text="DATA-SPDIS")[0] qx = np.ones((nodes), dtype=float) * 1.0e30 qy = np.ones((nodes), dtype=float) * 1.0e30 qz = np.ones((nodes), dtype=float) * 1.0e30 n0 = spdis["node"] - 1 qx[n0] = spdis["qx"] qy[n0] = spdis["qy"] qz[n0] = spdis["qz"] qx = qx.reshape(nlay, nrow, ncol) qy = qy.reshape(nlay, nrow, ncol) qz = qz.reshape(nlay, nrow, ncol) qx = np.ma.masked_equal(qx, 1.0e30) qy = np.ma.masked_equal(qy, 1.0e30) qz = np.ma.masked_equal(qz, 1.0e30) return qx, qy, qz def compare_to_ref(sim): print("comparing heads and spec. discharge to single model reference...") fpth = os.path.join(sim.simpath, "{}.hds".format(mname_ref)) hds = flopy.utils.HeadFile(fpth) heads = hds.get_data() fpth = os.path.join(sim.simpath, "{}.cbc".format(mname_ref)) nlay, nrow, ncol = heads.shape qxb, qyb, qzb = qxqyqz(fpth, nlay, nrow, ncol) fpth = os.path.join(sim.simpath, "{}.hds".format(mname_left)) hds = flopy.utils.HeadFile(fpth) heads_left = hds.get_data() fpth = os.path.join(sim.simpath, "{}.cbc".format(mname_left)) nlay, nrow, ncol = heads_left.shape qxb_left, qyb_left, qzb_left = qxqyqz(fpth, nlay, nrow, ncol) fpth = os.path.join(sim.simpath, "{}.hds".format(mname_right)) hds = flopy.utils.HeadFile(fpth) heads_right = hds.get_data() fpth = os.path.join(sim.simpath, "{}.cbc".format(mname_right)) nlay, nrow, ncol = heads_right.shape qxb_right, qyb_right, qzb_right = qxqyqz(fpth, nlay, nrow, ncol) heads_2models = np.append(heads_left[0], heads_right[0], axis=1) # compare heads maxdiff = np.amax(abs(heads - heads_2models)) assert ( maxdiff < 10 * hclose_check ), "Max. head diff. {} should \ be within solver tolerance (x10): {}".format( maxdiff, 10 * hclose_check ) # compare spdis_x left maxdiff = np.amax(abs(qxb[:, :, 0:5] - qxb_left)) assert ( maxdiff < 10 * hclose_check ), "Max. diff. in spec. discharge (x) {} \ should be within solver tolerance (x10): {}".format( maxdiff, 10 * hclose_check ) # compare spdis_y left maxdiff = np.amax(abs(qyb[:, :, 0:5] - qyb_left)) assert ( maxdiff < 10 * hclose_check ), "Max. diff. in spec. discharge (y) {} \ should be within solver tolerance (x10): {}".format( maxdiff, 10 * hclose_check ) # compare spdis_z left maxdiff = np.amax(abs(qzb[:, :, 0:5] - qzb_left)) assert ( maxdiff < 10 * hclose_check ), "Max. diff. in spec. discharge (z) {} \ should be within solver tolerance (x10): {}".format( maxdiff, 10 * hclose_check ) # compare spdis_x right maxdiff = np.amax(abs(qxb[:, :, 5:] - qxb_right)) assert ( maxdiff < 10 * hclose_check ), "Max. diff. in spec. discharge (x) {} \ should be within solver tolerance (x10): {}".format( maxdiff, 10 * hclose_check ) # compare spdis_y right maxdiff = np.amax(abs(qyb[:, :, 5:] - qyb_right))
import json import logging import os import time from pathlib import Path import click import requests from requests import HTTPError from tenacity import retry, stop_after_delay, wait_fixed from n26.config import Config, MFA_TYPE_SMS from n26.const import DAILY_WITHDRAWAL_LIMIT, DAILY_PAYMENT_LIMIT from n26.util import create_request_url from Crypto import Random from Crypto.Cipher import AES, PKCS1_v1_5 from Crypto.Protocol.KDF import PBKDF2 from Crypto.Hash import SHA512 from Crypto.PublicKey import RSA from Crypto.Util.Padding import pad import base64 import json LOGGER = logging.getLogger(__name__) BASE_URL_DE = 'https://api.tech26.de' BASE_URL_GLOBAL = 'https://api.tech26.global' BASIC_AUTH_HEADERS = {"Authorization": "Basic bXktdHJ1c3RlZC13ZHBDbGllbnQ6c2VjcmV0"} USER_AGENT = ("Mozilla/5.0 (X11; Linux x86_64) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/59.0.3071.86 Safari/537.36") GET = "get" POST = "post" EXPIRATION_TIME_KEY = "expiration_time" ACCESS_TOKEN_KEY = "access_token" REFRESH_TOKEN_KEY = "refresh_token" GRANT_TYPE_PASSWORD = "password" GRANT_TYPE_REFRESH_TOKEN = "refresh_token" class Api(object): """ Api class can be imported as a library in order to use it within applications """ def __init__(self, cfg: Config = None): """ Constructor accepting None to maintain backward compatibility :param cfg: configuration object """ if not cfg: cfg = Config() self.config = cfg self._token_data = {} BASIC_AUTH_HEADERS["device-token"] = self.config.DEVICE_TOKEN.value @property def token_data(self) -> dict: if self.config.LOGIN_DATA_STORE_PATH.value is None: return self._token_data else: return self._read_token_file(self.config.LOGIN_DATA_STORE_PATH.value) @token_data.setter def token_data(self, data: dict): if self.config.LOGIN_DATA_STORE_PATH.value is None: self._token_data = data else: self._write_token_file(data, self.config.LOGIN_DATA_STORE_PATH.value) @staticmethod def _read_token_file(path: str) -> dict: """ :return: the stored token data or an empty dict """ LOGGER.debug("Reading token data from {}".format(path)) path = Path(path).expanduser().resolve() if not path.exists(): return {} if not path.is_file(): raise IsADirectoryError("File path exists and is not a file: {}".format(path)) if path.stat().st_size <= 0: # file is empty return {} with open(path, "r") as file: return json.loads(file.read()) @staticmethod def _write_token_file(token_data: dict, path: str): LOGGER.debug("Writing token data to {}".format(path)) path = Path(path).expanduser().resolve() # delete existing file if permissions don't match or file size is abnormally small if path.exists() and (path.stat().st_mode != 0o100600 or path.stat().st_size < 10): path.unlink() path.parent.mkdir(parents=True, exist_ok=True, mode=0o700) with os.fdopen(os.open(path, os.O_WRONLY | os.O_CREAT, 0o600), 'w') as file: file.seek(0) file.write(json.dumps(token_data, indent=2)) file.truncate() # IDEA: @get_token decorator def get_account_info(self) -> dict: """ Retrieves basic account information """ return self._do_request(GET, BASE_URL_DE + '/api/me') def get_account_statuses(self) -> dict: """ Retrieves additional account information """ return self._do_request(GET, BASE_URL_DE + '/api/me/statuses') def get_addresses(self) -> dict: """ Retrieves a list of addresses of the account owner """ return self._do_request(GET, BASE_URL_DE + '/api/addresses') def get_balance(self) -> dict: """ Retrieves the current balance """ return self._do_request(GET, BASE_URL_DE + '/api/accounts') def get_spaces(self) -> dict: """ Retrieves a list of all spaces """ return self._do_request(GET, BASE_URL_DE + '/api/spaces') def barzahlen_check(self) -> dict: return self._do_request(GET, BASE_URL_DE + '/api/barzahlen/check') def get_cards(self): """ Retrieves a list of all cards """ return self._do_request(GET, BASE_URL_DE + '/api/v2/cards') def get_account_limits(self) -> list: """ Retrieves a list of all active account limits """ return self._do_request(GET, BASE_URL_DE + '/api/settings/account/limits') def set_account_limits(self, daily_withdrawal_limit: int = None, daily_payment_limit: int = None) -> None: """ Sets account limits :param daily_withdrawal_limit: daily withdrawal limit :param daily_payment_limit: daily payment limit """ if daily_withdrawal_limit is not None: self._do_request(POST, BASE_URL_DE + '/api/settings/account/limits', json={ "limit": DAILY_WITHDRAWAL_LIMIT, "amount": daily_withdrawal_limit }) if daily_payment_limit is not None: self._do_request(POST, BASE_URL_DE + '/api/settings/account/limits', json={ "limit": DAILY_PAYMENT_LIMIT, "amount": daily_payment_limit }) def get_contacts(self): """ Retrieves a list of all contacts """ return self._do_request(GET, BASE_URL_DE + '/api/smrt/contacts') def get_standing_orders(self) -> dict: """ Get a list of standing orders """ return self._do_request(GET, BASE_URL_DE + '/api/transactions/so') def get_transactions(self, from_time: int = None, to_time: int = None, limit: int = 20, pending: bool = None, categories: str = None, text_filter: str = None, last_id: str = None) -> dict: """ Get a list of transactions. Note that some parameters can not be combined in a single request (like text_filter and pending) and will result in a bad request (400) error. :param from_time: earliest transaction time as a Timestamp > 0 - milliseconds since 1970 in CET :param to_time: latest transaction time as a Timestamp > 0 - milliseconds since 1970 in CET :param limit: Limit the number of transactions to return to the given amount - default 20 as the n26 API returns only the last 20 transactions by default :param pending: show only pending transactions :param categories: Comma separated list of category IDs :param text_filter: Query string to search for :param last_id: ?? :return: list of transactions """ if pending and limit: # pending does not support limit limit = None return self._do_request(GET, BASE_URL_DE + '/api/smrt/transactions', { 'from': from_time, 'to': to_time, 'limit': limit, 'pending': pending, 'categories': categories, 'textFilter': text_filter, 'lastId': last_id }) def get_transactions_limited(self, limit: int = 5) -> dict: import warnings warnings.warn( "get_transactions_limited is deprecated, use get_transactions(limit=5) instead", DeprecationWarning ) return self.get_transactions(limit=limit) def get_statements(self) -> list: """ Retrieves a list of all statements """ return self._do_request(GET, BASE_URL_DE + '/api/statements') def block_card(self, card_id: str) -> dict: """ Blocks a card. If the card is already blocked this will have no effect. :param card_id: the id of the card to block :return: some info about the card (not including it's blocked state... thanks n26!) """ return self._do_request(POST, BASE_URL_DE + '/api/cards/%s/block' % card_id) def unblock_card(self, card_id: str) -> dict: """ Unblocks a card. If the card is already unblocked this will have no effect. :param card_id: the id of the card to block :return: some info about the card (not including it's unblocked state... thanks n26!) """ return self._do_request(POST, BASE_URL_DE + '/api/cards/%s/unblock' % card_id) def get_savings(self) -> dict: return self._do_request(GET, BASE_URL_DE + '/api/hub/savings/accounts') def get_statistics(self, from_time: int = 0, to_time: int = int(time.time()) * 1000) -> dict: """ Get statistics in a given time frame :param from_time: Timestamp - milliseconds since 1970 in CET :param to_time: Timestamp - milliseconds since 1970 in CET """ if not from_time: from_time = 0 if not to_time: to_time = int(time.time()) * 1000 return self._do_request(GET, BASE_URL_DE + '/api/smrt/statistics/categories/%s/%s' % (from_time, to_time)) def get_available_categories(self) -> list: return self._do_request(GET, BASE_URL_DE + '/api/smrt/categories') def get_invitations(self) -> list: return self._do_request(GET, BASE_URL_DE + '/api/aff/invitations') def _do_request(self, method: str = GET, url: str = "/", params: dict = None, json: dict = None, headers: dict = None) -> list or dict or None: """ Executes a http request based on the given parameters :param method: the method to use (GET, POST) :param url: the url to use :param params: query parameters that will be appended to the url :param json: request body :param headers: custom headers :return: the response parsed as a json """ access_token = self.get_token() _headers = {'Authorization': 'Bearer {}'.format(access_token)} if headers is not None: _headers.update(headers) url = create_request_url(url, params) if method is GET: response = requests.get(url, headers=_headers, json=json) elif method is POST: response = requests.post(url, headers=_headers, json=json) else: raise ValueError("Unsupported method: {}".format(method)) response.raise_for_status() # some responses do not return data so we just ignore the body in that case if len(response.content) > 0: return response.json() def get_encryption_key(self, public_key: str = None) -> dict: """ Receive public encryption key for the JSON String containing the PIN encryption key """ return self._do_request(GET, BASE_URL_DE + '/api/encryption/key', params={ 'publicKey': public_key }) def encrypt_user_pin(self, pin: str): """ Encrypts user PIN and prepares it in a format required for a transaction order :return: encrypted and base64 encoded PIN as well as an encrypted and base64 encoded JSON containing the PIN encryption key """ # generate AES256 key and IV random_password = Random.get_random_bytes(32) salt = Random.get_random_bytes(16) # noinspection PyTypeChecker key = PBKDF2(random_password, salt, 32, count=1000000, hmac_hash_module=SHA512) iv = Random.new().read(AES.block_size) key64 = base64.b64encode(key).decode('utf-8') iv64 = base64.b64encode(iv).decode('utf-8') # encode the key and iv as a json string aes_secret = { 'secretKey': key64, 'iv': iv64 } # json string has to be represented in byte form for encryption unencrypted_aes_secret = bytes(json.dumps(aes_secret), 'utf-8') # Encrypt the secret JSON with RSA using the provided public key public_key = self.get_encryption_key() public_key_non64 = base64.b64decode(public_key['publicKey']) public_key_object = RSA.importKey(public_key_non64) public_key_cipher = PKCS1_v1_5.new(public_key_object) encrypted_secret = public_key_cipher.encrypt(unencrypted_aes_secret) encrypted_secret64 = base64.b64encode(encrypted_secret) # Encrypt user's pin private_key_cipher = AES.new(key=key, mode=AES.MODE_CBC, iv=iv) # the pin has to be padded and transformed into bytes for a correct ecnryption format encrypted_pin = private_key_cipher.encrypt(pad(bytes(pin, 'utf-8'), 16)) encrypted_pin64 = base64.b64encode(encrypted_pin) return encrypted_secret64, encrypted_pin64 def create_transaction(self, iban: str, bic: str, name: str, reference: str, amount: float, pin: str): """
from builtins import object import uuid from axes.handlers.proxy import AxesProxyHandler from django import forms from django.conf import settings from django.contrib.auth import get_user_model, password_validation, authenticate from django.contrib.auth.hashers import make_password from django.contrib.auth.password_validation import validate_password from django.utils.translation import gettext_lazy as _ from rest_framework import serializers, exceptions, validators from rest_framework_jwt.serializers import JSONWebTokenSerializer from rest_framework_jwt.settings import api_settings import passwordmeter from bluebottle.bluebottle_drf2.serializers import SorlImageField, ImageSerializer from bluebottle.clients import properties from bluebottle.geo.models import Location, Place from bluebottle.geo.serializers import PlaceSerializer from bluebottle.initiatives.models import Theme from bluebottle.members.models import MemberPlatformSettings, UserActivity, UserSegment from bluebottle.organizations.serializers import OrganizationSerializer from bluebottle.segments.models import Segment from bluebottle.segments.serializers import SegmentTypeSerializer from bluebottle.time_based.models import Skill from bluebottle.utils.serializers import PermissionField, TruncatedCharField, CaptchaField BB_USER_MODEL = get_user_model() jwt_payload_handler = api_settings.JWT_PAYLOAD_HANDLER jwt_encode_handler = api_settings.JWT_ENCODE_HANDLER class AxesJSONWebTokenSerializer(JSONWebTokenSerializer): def validate(self, attrs): credentials = { self.username_field: attrs.get(self.username_field), 'password': attrs.get('password') } if all(credentials.values()): request = self.context['request'] user = authenticate(request, **credentials) if getattr(request, 'axes_locked_out', False): raise exceptions.Throttled( 600, 'Too many failed password attempts.' ) if user: if not user.is_active: msg = _('User account is disabled.') raise serializers.ValidationError(msg) payload = jwt_payload_handler(user) return { 'token': jwt_encode_handler(payload), 'user': user } else: msg = _('Unable to log in with provided credentials.') raise serializers.ValidationError(msg) else: msg = _('Must include "{username_field}" and "password".') msg = msg.format(username_field=self.username_field) raise serializers.ValidationError(msg) class PrivateProfileMixin(object): private_fields = ( 'url', 'full_name', 'picture', 'about_me', 'location', 'last_name', 'phone_number', 'avatar', 'website', 'twitter', 'facebook', 'skypename' ) def to_representation(self, obj): data = super(PrivateProfileMixin, self).to_representation(obj) user = self.context['request'].user can_read_full_profile = self.context['request'].user.has_perm( 'members.api_read_full_member') if obj != user and not can_read_full_profile: for field in self.private_fields: if field in data: del data[field] return data class BaseUserPreviewSerializer(PrivateProfileMixin, serializers.ModelSerializer): """ Serializer for a subset of a member's public profile. This is usually embedded into other serializers. """ def __init__(self, *args, **kwargs): kwargs['read_only'] = True super(BaseUserPreviewSerializer, self).__init__(*args, **kwargs) avatar = SorlImageField('133x133', source='picture', crop='center') # TODO: Remove first/last name and only use these full_name = serializers.ReadOnlyField( source='get_full_name', read_only=True) short_name = serializers.ReadOnlyField( source='get_short_name', read_only=True) is_active = serializers.BooleanField(read_only=True) is_anonymous = serializers.SerializerMethodField() def get_is_anonymous(self, obj): return False class Meta(object): model = BB_USER_MODEL fields = ('id', 'first_name', 'last_name', 'initials', 'about_me', 'avatar', 'full_name', 'short_name', 'is_active', 'is_anonymous') class AnonymizedUserPreviewSerializer(PrivateProfileMixin, serializers.ModelSerializer): """ Serializer for a subset of a member's public profile. This is usually embedded into other serializers. """ is_anonymous = serializers.SerializerMethodField() def __init__(self, *args, **kwargs): kwargs['read_only'] = True super(AnonymizedUserPreviewSerializer, self).__init__(*args, **kwargs) id = 0 def get_is_anonymous(self, obj): return False class Meta(object): model = BB_USER_MODEL fields = ('id', 'is_anonymous') class UserPreviewSerializer(serializers.ModelSerializer): """ User preview serializer that respects anonymization_age """ def to_representation(self, instance): if self.parent.__class__.__name__ == 'ReactionSerializer': # For some reason self.parent.instance doesn't work on ReactionSerializer if self.parent.instance: if self.parent.instance.anonymized: return {"id": 0, "is_anonymous": True} else: wallpost = self.parent.parent.parent.instance if wallpost.anonymized: return {"id": 0, "is_anonymous": True} if self.parent and self.parent.instance and getattr(self.parent.instance, 'anonymized', False): return {"id": 0, "is_anonymous": True} return BaseUserPreviewSerializer(instance, context=self.context).to_representation(instance) class Meta(object): model = BB_USER_MODEL fields = ( 'id', 'first_name', 'last_name', 'initials', 'about_me', 'avatar', 'full_name', 'short_name', 'is_active' ) class UserPermissionsSerializer(serializers.Serializer): def get_attribute(self, obj): return obj project_list = PermissionField('initiative-list') project_manage_list = PermissionField('initiative-list') homepage = PermissionField('home-page-detail') class Meta(object): fields = [ 'project_list', 'project_manage_list', 'homepage' ] class CurrentUserSerializer(BaseUserPreviewSerializer): """ Serializer for the current authenticated user. This is the same as the serializer for the member preview with the addition of id_for_ember. """ # This is a hack to work around an issue with Ember-Data keeping the id as # 'current'. id_for_ember = serializers.IntegerField(source='id', read_only=True) full_name = serializers.CharField(source='get_full_name', read_only=True) permissions = UserPermissionsSerializer(read_only=True) organization = OrganizationSerializer( read_only=True, source='partner_organization' ) segments = serializers.PrimaryKeyRelatedField( many=True, queryset=Segment.objects ) class Meta(object): model = BB_USER_MODEL fields = UserPreviewSerializer.Meta.fields + ( 'id_for_ember', 'primary_language', 'email', 'full_name', 'phone_number', 'last_login', 'date_joined', 'location', 'verified', 'permissions', 'matching_options_set', 'organization', 'segments', 'required' ) class OldSegmentSerializer(serializers.ModelSerializer): type = SegmentTypeSerializer() class Meta(object): model = Segment fields = ( 'id', 'name', 'type' ) class UserProfileSerializer(PrivateProfileMixin, serializers.ModelSerializer): """ Serializer for a member's public profile. """ url = serializers.HyperlinkedIdentityField(view_name='user-profile-detail', lookup_field='pk') picture = ImageSerializer(required=False) date_joined = serializers.DateTimeField(read_only=True) full_name = serializers.CharField(source='get_full_name', read_only=True) short_name = serializers.CharField(source='get_short_name', read_only=True) primary_language = serializers.CharField(required=False, default=properties.LANGUAGE_CODE) location = serializers.PrimaryKeyRelatedField(required=False, allow_null=True, queryset=Location.objects) avatar = SorlImageField('133x133', source='picture', crop='center', required=False) skill_ids = serializers.PrimaryKeyRelatedField(many=True, source='skills', required=False, queryset=Skill.objects) favourite_theme_ids = serializers.PrimaryKeyRelatedField( many=True, source='favourite_themes', queryset=Theme.objects) segments = serializers.PrimaryKeyRelatedField( many=True, queryset=Segment.objects ) is_active = serializers.BooleanField(read_only=True) def save(self, *args, **kwargs): instance = super().save(*args, **kwargs) if 'location' in self.validated_data: # if we are setting the location, make sure we verify the location too instance.location_verified = True instance.save() if 'segments' in self.validated_data: # if we are setting segments, make sure we verify them too UserSegment.objects.filter(member_id=instance.pk).update(verified=True) return instance class Meta(object): model = BB_USER_MODEL fields = ( 'id', 'url', 'full_name', 'short_name', 'initials', 'picture', 'primary_language', 'about_me', 'location', 'avatar', 'date_joined', 'is_active', 'website', 'twitter', 'facebook', 'skypename', 'skill_ids', 'favourite_theme_ids', 'subscribed', 'segments' ) class UserActivitySerializer(serializers.ModelSerializer): """ Serializer for user activity (log paths) """ path = TruncatedCharField(length=200, required=False) class Meta(object): model = UserActivity fields = ( 'id', 'path', ) class ManageProfileSerializer(UserProfileSerializer): """ Serializer for the a member's private profile. """ partial = True from_facebook = serializers.SerializerMethodField() place = PlaceSerializer(required=False, allow_null=True) def get_from_facebook(self, instance): try: instance.social_auth.get(provider='facebook') return True except instance.social_auth.model.DoesNotExist: return False class Meta(object): model = BB_USER_MODEL fields = UserProfileSerializer.Meta.fields + ( 'email', 'newsletter', 'campaign_notifications', 'matching_options_set', 'location', 'birthdate', 'gender', 'first_name', 'last_name', 'phone_number', 'from_facebook', 'place', ) def update(self, instance, validated_data): place = validated_data.pop('place', None) if place: if instance.place: current_place = instance.place for key, value in list(place.items()): setattr(current_place, key, value) current_place.save() else: instance.place = Place.objects.create(**place) else: if instance.place: instance.place = None return super(ManageProfileSerializer, self).update(instance, validated_data) class UserDataExportSerializer(UserProfileSerializer): """ Serializer for the a member's data dump. """ class Meta(object): model = BB_USER_MODEL fields = ( 'id', 'email', 'location', 'birthdate', 'url', 'full_name', 'short_name', 'initials', 'picture', 'gender', 'first_name', 'last_name', 'phone_number', 'primary_language', 'about_me', 'location', 'avatar', 'date_joined', 'website', 'twitter', 'facebook', 'skypename', 'skills', 'favourite_themes' ) class PasswordValidator(object): requires_context = True def __call__(self, value, serializer_field): if serializer_field.parent.instance: user = serializer_field.parent.instance else: user = None password_validation.validate_password(value, user) return value # Thanks to <NAME> for this code: # https://groups.google.com/d/msg/django-rest-framework/abMsDCYbBRg/d2orqUUdTqsJ class PasswordField(serializers.CharField): """ Special field to update a password field. """ widget = forms.widgets.PasswordInput hidden_password_string = '********' def __init__(self, **kwargs): super(PasswordField, self).__init__(**kwargs) validator = PasswordValidator() self.validators.append(validator) def to_representation(self, value): """ Hide hashed-password in API display. """ return self.hidden_password_string class SignUpTokenSerializer(serializers.ModelSerializer): """ Serializer for creating users. This can only be used for creating users (POST) and should not be used for listing, editing or viewing users. """ email = serializers.EmailField(max_length=254) url = serializers.CharField(required=False, allow_blank=True) segment_id = serializers.CharField(required=False, allow_blank=True) class Meta(object): model = BB_USER_MODEL fields = ('id', 'email', 'url', 'segment_id') def validate_email(self, email): settings = MemberPlatformSettings.objects.get() if ( settings.email_domain and not email.endswith('@{}'.format(settings.email_domain)) ): raise serializers.ValidationError( ('Only emails for the domain {} are allowed').format( settings.email_domain) ) if len(BB_USER_MODEL.objects.filter(email__iexact=email, is_active=True)): raise serializers.ValidationError( 'a member with this email address already exists.', code='duplicate-facebook', ) return email class JSONAPIMeta: resource_name = 'signup-tokens' class SignUpTokenConfirmationSerializer(serializers.ModelSerializer): """ Serializer for creating users. This can only be used for creating users (POST) and should not be used for listing, editing or viewing users. """ password = PasswordField(required=True, max_length=128) token = serializers.CharField(required=True, max_length=128) jwt_token = serializers.CharField(source='get_jwt_token', read_only=True) first_name = serializers.CharField(max_length=100) last_name = serializers.CharField(max_length=100) class Meta(object): model = BB_USER_MODEL fields = ('id', 'password', 'token', 'jwt_token', 'first_name', 'last_name', ) def validate_password(self, password): return make_password(password) class JSONAPIMeta: resource_name = 'signup-token-confirmations' class PasswordStrengthSerializer(serializers.ModelSerializer): password = serializers.CharField(write_only=True) email = serializers.CharField(write_only=True, allow_blank=True) strength = serializers.SerializerMethodField() def validate(self, data): user = BB_USER_MODEL(**data) validate_password(data['password'], user) return data def get_strength(self, data): strength, _ = passwordmeter.test(data['password']) return strength class Meta(object): model = BB_USER_MODEL fields = ('id', 'password', 'email', 'strength') class JSONAPIMeta: resource_name = 'password-strengths' class UserCreateSerializer(serializers.ModelSerializer): """ Serializer for creating users. This can only be used for creating users (POST) and should not be used for listing, editing or viewing users. """ email = serializers.EmailField( max_length=254, validators=[ validators.UniqueValidator( queryset=BB_USER_MODEL.objects.all(), lookup='iexact' ) ] ) email_confirmation = serializers.EmailField( label=_('email_confirmation'), max_length=254, required=False) password = PasswordField(required=True, max_length=128) token = serializers.CharField(required=False, max_length=128) jwt_token = serializers.CharField(source='get_jwt_token', read_only=True) primary_language = serializers.CharField(required=False) @property def errors(self): errors = super(UserCreateSerializer, self).errors if 'email' in errors and 'email' in self.data and errors['email'][0].code == 'unique': user = self.Meta.model.objects.get(email__iexact=self.data['email']) conflict = { 'email': user.email, 'id': user.id } # We assume if they have a social auth associated then they use it if user.social_auth.count() > 0: social_auth = user.social_auth.all()[0] conflict['provider'] = social_auth.provider conflict['type'] = 'social' else: conflict['type'] = 'email' errors[ settings.REST_FRAMEWORK.get( 'NON_FIELD_ERRORS_KEY', 'non_field_errors') ] = [conflict] request = self.context['request'] AxesProxyHandler.user_login_failed(self, {}, request) if getattr(request, 'axes_locked_out', False): raise exceptions.Throttled( 600, 'Too many
diff_rel) return OptionalStartEnd(self.start_abs_msec, self.end_abs_msec) HeapId = int TimeForStageByHeap = Mapping[GcJoinStage, Mapping[HeapId, OptionalStartEnd]] MutTimeForStageByHeap = Dict[GcJoinStage, Dict[HeapId, MutOptionalStartEnd]] def get_join_stage_start_end_times_for_heaps(gc: AbstractTraceGC) -> TimeForStageByHeap: return lazy_property(gc, get_join_stage_start_end_times_for_heaps_worker) # For each stage, for each heap, get the first and last events in that stage. def get_join_stage_start_end_times_for_heaps_worker(gc: AbstractTraceGC) -> TimeForStageByHeap: start_end_for_stage_by_heap: MutTimeForStageByHeap = {} def get_start_end(stage: GcJoinStage, heap: int) -> MutOptionalStartEnd: return start_end_for_stage_by_heap.setdefault(stage, {}).setdefault( heap, MutOptionalStartEnd() ) all_heaps: Set[int] = set() for i, heap in enumerate(gc.ServerGcHeapHistories): assert heap.HeapId == i all_heaps.add(heap.HeapId) single_threaded_join_stage: Optional[GcJoinStage] = None for join in heap.GcJoins: stage = GcJoinStage(join.JoinID) time = GcJoinTime(join.Time) join_type = GcJoinType(join.Type) if time == GcJoinTime.start: if stage != GcJoinStage.restart: start_end = get_start_end(stage, heap.HeapId) start_end.n_starts += 1 start_end.start_rel_msec = join.RelativeTimestampMsc start_end.start_abs_msec = join.AbsoluteTimestampMsc if join_type == GcJoinType.last_join: single_threaded_join_stage = GcJoinStage(stage) elif time == GcJoinTime.end: if stage == GcJoinStage.restart: # assert False if single_threaded_join_stage is not None: # if True: # assert False # TODO start_end = start_end_for_stage_by_heap[single_threaded_join_stage][ heap.HeapId ] start_end.end_abs_msec = join.AbsoluteTimestampMsc start_end.end_rel_msec = join.RelativeTimestampMsc single_threaded_join_stage = None else: # TODO: The time should only be there once, shouldn't it? # Why are we joining the same stage multiple times? # assert start_end_for_stage_by_heap[stage][heap.HeapId].end == 0 # start_end_for_stage_by_heap.setdefault(stage, {}) start_end = get_start_end(stage, heap.HeapId) start_end.n_ends += 1 start_end.end_rel_msec = join.RelativeTimestampMsc start_end.end_abs_msec = join.AbsoluteTimestampMsc else: raise Exception(time) print("ALLHEAPS", all_heaps) for stage, heap_to_start_end in start_end_for_stage_by_heap.items(): hp_num = 3 if hp_num in heap_to_start_end: start_end = heap_to_start_end[3] # print( # f"{stage}: heap {hp_num} start_end is {start_end}, span is {start_end.finish(stage, hp_num).span_msec}" # ) else: print(f"heap {hp_num} has no stage {stage}") def finish_stage( stage: GcJoinStage, heap_to_start_end: Mapping[HeapId, MutOptionalStartEnd] ) -> Tuple[GcJoinStage, Mapping[HeapId, OptionalStartEnd]]: # TODO: apparently one of the heaps may randomly be missing. Don't know why. # seen_heaps = sorted(stage.keys()) # all_heaps = tuple(range(gc.HeapCount)) # assert seen_heaps == all_heaps, f"Expected heaps {all_heaps}, only got {seen_heaps}" return ( stage, map_mapping(lambda hp_num, se: (hp_num, se.finish(stage, hp_num)), heap_to_start_end), ) return map_mapping(finish_stage, start_end_for_stage_by_heap) @with_slots @dataclass(frozen=True) class StatsOverAllJoins: median_join_msec: float maximum_join_msec: float minimum_join_msec: float @with_slots @dataclass(frozen=True) class AbsPct: absolute: float percentage: float @with_slots @dataclass(frozen=True) class ForHeap: deviation_from_median_join_stage_duration: AbsPct @with_slots @dataclass(frozen=True) class IndividualJoinStats: join_stage_name: str median_heap_join_msec: float minimum_heap_join_msec: float # TODO: never used? maximum_heap_join_msec: float Heaps: Mapping[int, ForHeap] @with_slots @dataclass(frozen=True) class StatsOverIndividualGcPhase: median_phase_join_msec: float max_phase_join_msec: float # TODO: never used? min_phase_join_msec: float deviation_from_median_join_msec: AbsPct @with_slots @dataclass(frozen=True) class GcJoinStatistics: statistics_over_all_joins: StatsOverAllJoins statistics_over_individual_joins: Mapping[GcJoinStage, IndividualJoinStats] statistics_over_individual_gc_phases: Mapping[GcJoinPhase, StatsOverIndividualGcPhase] def _get_join_duration_by_heap(gc: AbstractTraceGC) -> Mapping[GcJoinStage, Mapping[HeapId, float]]: all_times = _get_join_times_for_all_heaps(gc).unwrap() # TODO: handle err in unwrap res: Dict[GcJoinStage, Dict[HeapId, float]] = {} for hp_num, stage_to_times in enumerate(all_times): for stage, times in stage_to_times.items(): # TODO: old gui assumed a given stage only happened once. That isn't true and this throws away data. res.setdefault(stage, {})[hp_num] = times[-1] return res def _get_stats_for_join_phase(gc: AbstractTraceGC, join_stage: GcJoinStage) -> IndividualJoinStats: heap_to_join_duration = _get_join_duration_by_heap(gc)[join_stage] join_durations_for_stage = tuple(heap_to_join_duration.values()) median_join_msec_for_stage = median(join_durations_for_stage) max_join_msec_for_stage = max(join_durations_for_stage) min_join_msec_for_stage = min(join_durations_for_stage) join_stage_name = GcJoinStage(join_stage).name return IndividualJoinStats( join_stage_name=join_stage_name, median_heap_join_msec=median_join_msec_for_stage, minimum_heap_join_msec=min_join_msec_for_stage, maximum_heap_join_msec=max_join_msec_for_stage, Heaps=_get_for_heaps(heap_to_join_duration), ) def _get_for_heap(median_join_msec_for_stage: float, heap_join_duration: float) -> ForHeap: absolute_deviation_from_median = abs(heap_join_duration - median_join_msec_for_stage) percent_deviation_from_median = ( absolute_deviation_from_median / median_join_msec_for_stage * 100.0 ) return ForHeap(AbsPct(absolute_deviation_from_median, percent_deviation_from_median)) def _get_for_heaps(heap_to_join_duration: Mapping[int, float]) -> Mapping[int, ForHeap]: median_join_msec_for_stage = median(heap_to_join_duration.values()) return { heap_number: _get_for_heap(median_join_msec_for_stage, heap_join_duration) for heap_number, heap_join_duration in heap_to_join_duration.items() } def get_gc_join_duration_statistics(gc: AbstractTraceGC) -> Result[str, GcJoinStatistics]: assert _all_gc_join_ids_valid(gc) join_duration_by_heap = _get_join_duration_by_heap(gc) join_stage_to_individual_join_stats = { join_stage: _get_stats_for_join_phase(gc, join_stage) for join_stage in join_duration_by_heap } def f(all_join_durations_iter: Iterable[float]) -> GcJoinStatistics: all_join_durations = tuple(all_join_durations_iter) median_join_duration_all = median(all_join_durations) all_join_stats = StatsOverAllJoins( median_join_msec=median_join_duration_all, maximum_join_msec=max(all_join_durations), minimum_join_msec=min(all_join_durations), ) join_duration_list_by_gc_phase = _get_join_duration_list_by_gc_phase(gc) return GcJoinStatistics( all_join_stats, join_stage_to_individual_join_stats, _get_stats_for_individual_phases( join_duration_list_by_gc_phase, median_join_duration_all ), ) return map_ok(_get_all_join_durations_for_all_heaps(gc), f) def _get_join_duration_list_by_gc_phase( gc: AbstractTraceGC, ) -> Mapping[GcJoinPhase, Sequence[float]]: return make_multi_mapping( (gc_phase_for_stage, join_duration) for join_stage, heap_to_join_duration in _get_join_duration_by_heap(gc).items() for gc_phase_for_stage in optional_to_iter(_try_get_join_phase(join_stage)) for join_duration in heap_to_join_duration.values() ) def _get_stats_for_individual_phases( join_duration_list_by_gc_phase: Mapping[GcJoinPhase, Sequence[float]], all_joins_median_duration: float, ) -> Mapping[GcJoinPhase, StatsOverIndividualGcPhase]: join_stats_by_gc_phase: Dict[GcJoinPhase, StatsOverIndividualGcPhase] = {} for phase in GC_JOIN_STAGES_BY_GC_PHASE: join_durations_for_all_joins_in_phase = join_duration_list_by_gc_phase.get(phase) if join_durations_for_all_joins_in_phase is not None: assert not is_empty(join_durations_for_all_joins_in_phase) median_join_duration = median(join_durations_for_all_joins_in_phase) absolute_deviation_from_median = abs(median_join_duration - all_joins_median_duration) percent_deviation_from_median = ( absolute_deviation_from_median / all_joins_median_duration * 100.0 ) s = StatsOverIndividualGcPhase( median_phase_join_msec=median_join_duration, max_phase_join_msec=max(join_durations_for_all_joins_in_phase), min_phase_join_msec=min(join_durations_for_all_joins_in_phase), deviation_from_median_join_msec=AbsPct( absolute_deviation_from_median, percent_deviation_from_median ), ) add(join_stats_by_gc_phase, phase, s) return join_stats_by_gc_phase def get_gc_join_timeframes( clr: Clr, gc: AbstractTraceGC ) -> Tuple[bool, Mapping[str, StartEnd], Mapping[str, StartEnd], Mapping[int, StartEnd]]: phase_time_frames: Dict[GcJoinPhase, StartEnd] = {} join_stage_time_frames: Dict[GcJoinStage, StartEnd] = {} join_index_time_frames: Dict[int, StartEnd] = {} can_determine_join_stages = _all_gc_join_ids_valid(gc) if can_determine_join_stages: times = _get_gc_join_stage_timeframes(gc) # At this point, we now have the start/end times of each granular join stage. We want to # turn this detailed information into high-level start/stop times for different GC phases, # e.g. the mark phase or compact phase (if it occurs). From here, based on the join stage # sequence observed in each phase, we can come up with some heuristics to determine the # start of a phase, the end, or both. start_for_phase: Dict[GcJoinPhase, float] = defaultdict(lambda: inf) end_for_phase: Dict[GcJoinPhase, float] = defaultdict(float) for phase, stages_within_phase in GC_JOIN_STAGES_BY_GC_PHASE.items(): # In general, we can always mark the end of a phase by enumerating all join stages in # that stage and tracking the latest join end fired for a stage within that phase. # Similarly, we can track the stage with the earliest join start fired within a phase # and declare that as the start of our phase as an approximation. for stage in stages_within_phase: if ( stage in times.start_for_stage and times.start_for_stage[stage].time < start_for_phase[phase] ): start_for_phase[phase] = times.start_for_stage[stage].time if ( stage in times.end_for_stage and times.end_for_stage[stage].time > end_for_phase[phase] ): end_for_phase[phase] = times.end_for_stage[stage].time # The above is a good generalization/first step, but there are a few exceptions we need to # make for certain GC phases: # 1. The join within the plan phase is actually at the end of the plan phase. # The beginning of the plan phase should be defined as the end of the mark phase. # 2. The join within the sweep phase is also a marker for the end of the sweep phase. The # beginning of the sweep phase should be defined as the end of the plan phase. # 3. The post-GC work join is for the start of post-gc work. The above loop will actually # mark the end of post-GC work as the end of this join which is incorrect; the actual # end of this phase should be marked as the start of the EE restart. start_for_phase[GcJoinPhase.plan] = end_for_phase[GcJoinPhase.mark] if GcJoinPhase.sweep in start_for_phase: start_for_phase[GcJoinPhase.sweep] = end_for_phase[GcJoinPhase.plan] # I'll deal with the special case for post-GC work properly later. # For now I'll define the end of post-GC work as the end of the GC entirely # (which shouldn't be a horrible approximation anyways) end_for_phase[GcJoinPhase.post_gc] = gc.PauseDurationMSec for phase in start_for_phase: phase_time_frames[phase] = StartEnd(start_for_phase[phase], end_for_phase[phase]) for stage in times.start_for_stage: if stage in times.end_for_stage: join_stage_time_frames[stage] = StartEnd( times.start_for_stage[stage].time, times.end_for_stage[stage].time ) else: join_stage_time_frames[stage] = StartEnd(times.start_for_stage[stage].time, inf) for stage in times.end_for_stage: if stage in times.start_for_stage: pass # We already covered this case in the loop above else: join_stage_time_frames[stage] = StartEnd(-inf, times.end_for_stage[stage].time) else: join_index_start_times, join_index_end_times = _get_join_index_start_end_times_for_heaps( clr, gc ) for join_index in join_index_start_times: try: min_join_start_time = min(join_index_start_times[join_index].values()) except ValueError: min_join_start_time = -inf try: max_join_end_time = max(join_index_end_times[join_index].values()) except ValueError: max_join_end_time = inf join_index_time_frames[join_index] = StartEnd(min_join_start_time, max_join_end_time) return ( can_determine_join_stages, map_mapping_keys(lambda phase: phase.name, phase_time_frames), map_mapping_keys(lambda stage: stage.name, join_stage_time_frames), join_index_time_frames, ) @with_slots @dataclass(frozen=True) class TimeAndHeap: # For a start time, this has the time of the *first* heap's start, and that heap number. # For an end time, this has the time of the *last* heap's end, and that heap number time: float heap_num: int @with_slots @dataclass(frozen=True) class StartEndTimesForStages: start_for_stage: Mapping[GcJoinStage, TimeAndHeap] end_for_stage: Mapping[GcJoinStage, TimeAndHeap] def _get_gc_join_stage_timeframes(gc: AbstractTraceGC) -> StartEndTimesForStages: start_end_for_stage_by_heap = get_join_stage_start_end_times_for_heaps(gc) # Finding the start/end of GC join stages is effectively a matter of finding the first # join start fired and the last join end fired. Obviously there are some cases where this isn't # going to be 100% correct, e.g. when the restart end happens after all other threads call # join end and *especially* in cases if a thread gets switched out during single-threaded # mode. However, we would still expect someone to find this relatively easily in a timeline # view despite this error. start_for_stage = {} end_for_stage =
<gh_stars>10-100 # MIT License # # Copyright (c) 2018 kuangliu # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # ------------------------------------------------------------------------------ # # MIT License # # Copyright (c) 2017 <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # ------------------------------------------------------------------------------ # # Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torchvision import torchvision.transforms as transforms import torch.utils.data as data from PIL import Image from xml.etree import ElementTree import os import glob from pathlib import Path import numpy as np import random import itertools import torch.nn.functional as F try: import ujson as json except ImportError: import json import gc import time import bz2 import pickle from math import sqrt, ceil, cos, sin, pi from mlperf_logging.mllog import constants from mlperf_logger import log_event from SSD import _C as C from fused_color_jitter import FusedColorJitter # This function is from https://github.com/kuangliu/pytorch-ssd def calc_iou_tensor(box1, box2): """ Calculation of IoU based on two boxes tensor, Reference to https://github.com/kuangliu/pytorch-ssd input: box1 (N, 4) box2 (M, 4) output: IoU (N, M) """ N = box1.size(0) M = box2.size(0) be1 = box1.unsqueeze(1).expand(-1, M, -1) be2 = box2.unsqueeze(0).expand(N, -1, -1) # Left Top & Right Bottom lt = torch.max(be1[:,:,:2], be2[:,:,:2]) #mask1 = (be1[:,:, 0] < be2[:,:, 0]) ^ (be1[:,:, 1] < be2[:,:, 1]) #mask1 = ~mask1 rb = torch.min(be1[:,:,2:], be2[:,:,2:]) #mask2 = (be1[:,:, 2] < be2[:,:, 2]) ^ (be1[:,:, 3] < be2[:,:, 3]) #mask2 = ~mask2 delta = rb - lt delta[delta < 0] = 0 intersect = delta[:,:,0]*delta[:,:,1] #*mask1.float()*mask2.float() delta1 = be1[:,:,2:] - be1[:,:,:2] area1 = delta1[:,:,0]*delta1[:,:,1] delta2 = be2[:,:,2:] - be2[:,:,:2] area2 = delta2[:,:,0]*delta2[:,:,1] iou = intersect/(area1 + area2 - intersect) return iou # This class is from https://github.com/chauhan-utk/ssd.DomainAdaptation class SSDCropping(object): """ Cropping for SSD, according to original paper Choose between following 3 conditions: 1. Preserve the original image 2. Random crop minimum IoU is among 0.1, 0.3, 0.5, 0.7, 0.9 3. Random crop Reference to https://github.com/chauhan-utk/ssd.DomainAdaptation """ def __init__(self): self.sample_options = ( # Do nothing None, # min IoU, max IoU (0.1, None), (0.3, None), (0.5, None), (0.7, None), (0.9, None), # no IoU requirements (None, None), ) # Implementation uses 1 iteration to find a possible candidate, this # was shown to produce the same mAP as using more iterations. self.num_cropping_iterations = 1 log_event(key=constants.MAX_SAMPLES, value=self.num_cropping_iterations) def __call__(self, img, img_size, bboxes, labels): # Ensure always return cropped image while True: mode = random.choice(self.sample_options) if mode is None: return img, img_size, bboxes, labels htot, wtot = img_size min_iou, max_iou = mode min_iou = float("-inf") if min_iou is None else min_iou max_iou = float("+inf") if max_iou is None else max_iou # Implementation use 50 iteration to find possible candidate for _ in range(self.num_cropping_iterations): # suze of each sampled path in [0.1, 1] 0.3*0.3 approx. 0.1 w = random.uniform(0.3 , 1.0) h = random.uniform(0.3 , 1.0) if w/h < 0.5 or w/h > 2: continue # left 0 ~ wtot - w, top 0 ~ htot - h left = random.uniform(0, 1.0 - w) top = random.uniform(0, 1.0 - h) right = left + w bottom = top + h ious = calc_iou_tensor(bboxes, torch.tensor([[left, top, right, bottom]])) # tailor all the bboxes and return if not ((ious > min_iou) & (ious < max_iou)).all(): continue # discard any bboxes whose center not in the cropped image xc = 0.5*(bboxes[:, 0] + bboxes[:, 2]) yc = 0.5*(bboxes[:, 1] + bboxes[:, 3]) masks = (xc > left) & (xc < right) & (yc > top) & (yc < bottom) # if no such boxes, continue searching again if not masks.any(): continue bboxes[bboxes[:, 0] < left, 0] = left bboxes[bboxes[:, 1] < top, 1] = top bboxes[bboxes[:, 2] > right, 2] = right bboxes[bboxes[:, 3] > bottom, 3] = bottom #print(left, top, right, bottom) #print(labels, bboxes, masks) bboxes = bboxes[masks, :] labels = labels[masks] left_idx = int(left*wtot) top_idx = int(top*htot) right_idx = int(right*wtot) bottom_idx = int(bottom*htot) #print(left_idx,top_idx,right_idx,bottom_idx) #img = img[:, top_idx:bottom_idx, left_idx:right_idx] img = img.crop((left_idx, top_idx, right_idx, bottom_idx)) bboxes[:, 0] = (bboxes[:, 0] - left)/w bboxes[:, 1] = (bboxes[:, 1] - top)/h bboxes[:, 2] = (bboxes[:, 2] - left)/w bboxes[:, 3] = (bboxes[:, 3] - top)/h htot = bottom_idx - top_idx wtot = right_idx - left_idx return img, (htot, wtot), bboxes, labels # Don't need to cast to float, already there (from FusedColorJitter) class ToTensor(object): def __init__(self): pass def __call__(self, img): img = torch.Tensor(np.array(img)) # Transform from HWC to CHW img = img.permute(2, 0 ,1).div(255) return img class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, image, bboxes): if random.random() < self.p: bboxes[:, 0], bboxes[:, 2] = 1.0 - bboxes[:, 2], 1.0 - bboxes[:, 0] return image.transpose(Image.FLIP_LEFT_RIGHT), bboxes return image, bboxes # Do data augumentation class SSDTransformer(object): """ SSD Data Augumentation, according to original paper Composed by several steps: Cropping Resize Flipping Jittering """ def __init__(self, size = (300, 300), val=False): # define vgg16 mean self.size = size self.val = val self.crop = SSDCropping() self.img_trans = transforms.Compose([ transforms.Resize(self.size), #transforms.ColorJitter(brightness=0.125, contrast=0.5, # saturation=0.5, hue=0.05 #), #transforms.ToTensor(), FusedColorJitter(), ToTensor(), ]) self.hflip = RandomHorizontalFlip() # All Pytorch Tensor will be normalized # https://discuss.pytorch.org/t/how-to-preprocess-input-for-pre-trained-networks/683 normalization_mean = [0.485, 0.456, 0.406] normalization_std = [0.229, 0.224, 0.225] self.normalize = transforms.Normalize(mean=normalization_mean, std=normalization_std) self.trans_val = transforms.Compose([ transforms.Resize(self.size), transforms.ToTensor(), self.normalize,]) def __call__(self, img, img_size, bbox=None, label=None, max_num=200): #img = torch.tensor(img) if self.val: bbox_out = torch.zeros(max_num, 4) label_out = torch.zeros(max_num, dtype=torch.long) bbox_out[:bbox.size(0), :] = bbox label_out[:label.size(0)] = label return self.trans_val(img), img_size, bbox_out, label_out # random crop img, img_size, bbox, label = self.crop(img, img_size, bbox, label) # random horiz. flip img, bbox = self.hflip(img, bbox) # [Resize, ColorJitter, ToTensor] img = self.img_trans(img).contiguous() img = self.normalize(img) return img, img_size, bbox, label # Implement a datareader for COCO dataset class COCODetection(data.Dataset): def __init__(self, img_folder, annotate_file, transform=None, data=None): self.img_folder = img_folder self.annotate_file = annotate_file if
<reponame>oliviertrottier/dendrites-ssd<gh_stars>1-10 import sys import os import json import re from argparse import ArgumentParser from collections import OrderedDict from utils.augmentations import SSDAugmentation, TreeAugmentation # Get project and dataset directories across platform from .host_config import get_host_config, CONFIGS_DIR HOST_CONFIG = get_host_config() ROOT_DIR = HOST_CONFIG['root'] # Allow the user to set the configs from the command line. # Inspired from: # https://github.com/ltrottier/pytorch-object-recognition/blob/master/opts.py # Original author: <NAME> parser = ArgumentParser() # dataset parser.add_argument('--dataset_dir', type=str, help='Subdirectory of the host root directory.') parser.add_argument('--dataset_name', type=str, default='Tree', help='Name of dataset') parser.add_argument('--dataset_num_classes', type=int, default=2, help="Number of classes") parser.add_argument('--dataset_classes_name', type=str, default=['branchpoints', 'branchtips'], help="Name of classes") parser.add_argument('--dataset_object_properties', type=str, default=['xmin', 'xmax', 'ymin', 'ymax', 'class'], help='ordered object properties that appear in the ground truth and detection files.') parser.add_argument('--dataset_augmentation', type=str, default='SSDAugmentation', help='Type of augmentation scheme used when loading images.') parser.add_argument('--dataset_images_dir', type=str, default='images/', help='Subdirectory of dataset_dir where images are saved') parser.add_argument('--dataset_bounding_boxes_dir', type=str, default='bounding_boxes/', help='Subdirectory of dataset_dir where bounding boxes properties are saved') # dataloader parser.add_argument('--dataloader_batch_size', type=int, default=4, help='Batch size for training') parser.add_argument('--dataloader_num_workers', type=int, default=1, help='Number of workers to load dataset') # train parser.add_argument('--train_cuda', type=bool, default=True, help='Use CUDA to train the model') parser.add_argument('--train_num_epochs', type=int, default=300, help='Number of training epochs') parser.add_argument('--train_start_epoch', type=int, default=0, help='Starting epoch of training.') parser.add_argument('--train_resume', type=str, help='Checkpoint state_dict file in --output_weights_dir to resume training from') parser.add_argument('--train_resume_weights_only', default=False, type=bool, help='Resume only weights (not epoch, lr, etc)') parser.add_argument('--train_lr_init', type=float, default=0.0001, help='Initial learning rate') parser.add_argument('--train_lr_schedule', type=int, default=[80, 160, 240, 280], help='Epoch number when learning rate is reduced.') parser.add_argument('--train_lr_decay', type=float, default=0.1, help='Learning rate reduction (%%) applied at each epoch in --train_lr_schedule') parser.add_argument('--train_momentum', type=float, default=0.9, help='Momentum value for optimizer') parser.add_argument('--train_weight_decay', type=float, default=5e-4, help='Weigth decay for SGD') parser.add_argument('--train_visdom', default=False, type=bool, help='Use visdom to visualize') # model parser.add_argument('--model_basenet', type=str, default='vgg16_reducedfc.pth', help='Pretrained base model') parser.add_argument('--model_num_classes', type=str, default=parser.get_default("dataset_num_classes") + 1, help='Number of classes that the model distinguishes. Background class adds 1.') parser.add_argument('--model_pixel_means', type=int, default=[129, 129, 129], help='Mean value of pixels. Subtracted before processing') parser.add_argument('--model_feature_maps_dim', type=int, default=[38, 19, 10, 5, 3, 1], help='Square dimension of feature maps.') parser.add_argument('--model_input_size', type=int, default=300, help='Square size of network input image') parser.add_argument('--model_prior_box_scales', type=float, default=[0.1, 0.2, 0.37, 0.54, 0.71, 0.88, 1.05], help='Size of prior boxes relative to --model_input_size') parser.add_argument('--model_prior_box_aspect_ratios', type=float, default=[[1 / 2, 2], [1 / 2, 2, 1 / 3, 3], [1 / 2, 2, 1 / 3, 3], [1 / 2, 2, 1 / 3, 3], [1 / 2, 2], [1 / 2, 2]], help='Aspect ratios of prior boxes in each feature map') parser.add_argument('--model_prior_box_clip', type=bool, default=True, help='Clip the prior box dimensions to fit the image.') parser.add_argument('--model_prior_box_variance', type=float, default=[0.1, 0.2], help='Variance used to encore/decode bounding boxes') # eval parser.add_argument('--eval_model_name', default='ssd300_' + parser.get_default("dataset_name") + '_Final.pth', type=str, help='trained model filename in --output_weights_dir used for evaluation') parser.add_argument('--eval_overwrite_all_detections', default=False, type=bool, help='Overwrite all_detections file') parser.add_argument('--eval_confidence_threshold', default=0.01, type=float, help='Discard detected boxes below confidence threshold') parser.add_argument('--eval_top_k', default=50, type=int, help='Restrict the number of predictions per image') parser.add_argument('--eval_cuda', default=True, type=bool, help='Use CUDA to evaluate the model') # criterion parser.add_argument('--criterion_train', type=str, default='multibox') # output parser.add_argument('--output_weights_dir', type=str, default='weights/', help='Subdirectory of ROOT_DIR for saving training checkpoints') parser.add_argument('--output_detections_dir', type=str, default='detections/', help='Subdirectory of dataset_dir where detections are saved') # SSD300 CONFIGS # Bounding boxes colors COLORS = ((255, 0, 0, 128), (0, 255, 0, 128), (0, 0, 255, 128), (0, 255, 255, 128), (255, 0, 255, 128), (255, 255, 0, 128)) MEANS = (104, 117, 123) # Note that 1 more class is added to the number of classes to account for the background class (0). extra_configs = {'variance': [0.1, 0.2]} # Configurations for recognizing branchpoints on 300x300 images of trees, without noise. test_config = { 'dataset_dir': 'dir/test', 'dataset_num_classes': 3 } # Configurations for specific synthesizers tree_synth0_config = { 'pixel_means': (13, 35, 170), 'num_classes': 2, 'classes_name': ['background', 'branchpoints'], 'lr_steps': (60, 120, 180), 'N_epochs': 300, 'feature_maps': [38, 19, 10, 5, 3, 1], 'min_dim': 300, 'steps': [8, 16, 32, 64, 100, 300], 'min_sizes': [30, 60, 111, 162, 213, 264], 'max_sizes': [60, 111, 162, 213, 264, 315], 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]], 'variance': [0.1, 0.2], 'clip': True, 'name': 'Tree', } tree_synth1_config = { 'pixel_means': (13, 35, 170), 'num_classes': 3, 'classes_name': ['background', 'branchpoints', 'branchtips'], 'lr_steps': (60, 120, 180), 'N_epochs': 300, 'feature_maps': [38, 19, 10, 5, 3, 1], 'min_dim': 300, 'steps': [8, 16, 32, 64, 100, 300], 'min_sizes': [30, 60, 111, 162, 213, 264], 'max_sizes': [60, 111, 162, 213, 264, 315], 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]], 'variance': [0.1, 0.2], 'clip': True, 'name': 'Tree', } tree_synth2_config = { 'pixel_means': (129, 129, 129), 'num_classes': 3, 'classes_name': ['background', 'branchpoints', 'branchtips'], 'lr_steps': (60, 120, 180), 'N_epochs': 300, 'feature_maps': [38, 19, 10, 5, 3, 1], 'min_dim': 300, 'steps': [8, 16, 32, 64, 100, 300], 'min_sizes': [30, 60, 111, 162, 213, 264], 'max_sizes': [60, 111, 162, 213, 264, 315], 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]], 'variance': [0.1, 0.2], 'clip': True, 'name': 'Tree', } # Configuration class definitions class dataset: def __init__(self, dir, name, num_classes, classes_name, images_dir, object_properties, augmentation, bounding_boxes_dir): self.dir = dir self.name = name self.num_classes = num_classes self.classes_name = classes_name self.images_dir = images_dir self.object_properties = object_properties self.augmentation = augmentation self.bounding_boxes_dir = bounding_boxes_dir class dataloader: def __init__(self, batch_size, num_workers): self.batch_size = batch_size self.num_workers = num_workers class train: def __init__(self, cuda, num_epochs, start_epoch, resume, resume_weights_only, lr_init, lr_schedule, lr_decay, momentum, weight_decay, visdom): self.cuda = cuda self.num_epochs = num_epochs self.start_epoch = start_epoch self.resume = resume self.resume_weights_only = resume_weights_only self.lr_init = lr_init self.lr_schedule = lr_schedule self.lr_decay = lr_decay self.momentum = momentum self.weight_decay = weight_decay self.visdom = visdom class model: def __init__(self, basenet, num_classes, pixel_means, feature_maps_dim, input_size, prior_box_scales, prior_box_aspect_ratios, prior_box_clip, prior_box_variance): self.basenet = basenet self.num_classes = num_classes self.pixel_means = pixel_means self.feature_maps_dim = feature_maps_dim self.input_size = input_size self.prior_box_scales = prior_box_scales self.prior_box_aspect_ratios = prior_box_aspect_ratios self.prior_box_clip = prior_box_clip self.prior_box_variance = prior_box_variance class eval: def __init__(self, model_name, overwrite_all_detections, confidence_threshold, top_k, cuda): self.model_name = model_name self.overwrite_all_detections = overwrite_all_detections self.confidence_threshold = confidence_threshold self.top_k = top_k self.cuda = cuda class criterion: def __init__(self, train): self.train = train class output: def __init__(self, weights_dir, detections_dir): self.weights_dir = weights_dir self.detections_dir = detections_dir class configs: def __init__(self, dataset, dataloader, train, model, eval, criterion, output): self.dataset = dataset self.dataloader = dataloader self.train = train self.model = model self.eval = eval self.criterion = criterion self.output = output def build_absolute_paths(self): self.dataset.dir = os.path.join(ROOT_DIR, self.dataset.dir) self.dataset.bounding_boxes_dir = os.path.join(self.dataset.dir, self.dataset.bounding_boxes_dir) self.dataset.images_dir = os.path.join(self.dataset.dir, self.dataset.images_dir) self.output.weights_dir = os.path.join(ROOT_DIR, self.output.weights_dir) self.output.detections_dir = os.path.join(self.dataset.dir, self.output.detections_dir) self.model.basenet = os.path.join(self.output.weights_dir, self.model.basenet) if self.train.resume: self.train.resume = os.path.join(self.output.weights_dir, self.train.resume) self.eval.model_name = os.path.join(self.output.weights_dir, self.eval.model_name) def get_config_names(self): conf_categories = list(vars(self).keys()) configuration_names = [] for category in conf_categories: conf_names = list(vars(getattr(self, category)).keys()) for conf in conf_names: configuration_names.append(category + '_' + conf) return configuration_names def replace(self, new_config_dict): for new_conf_name in new_config_dict: conf_tuple = separate_config_name(new_conf_name) setattr(getattr(self, conf_tuple[0]), conf_tuple[1], new_config_dict[new_conf_name]) def dict(self): dict = vars(self).copy() for category in dict: dict[category] = vars(dict[category]) return dict def __str__(self): conf_categories = list(vars(self).keys()) configurations = [] for category in conf_categories: conf_names = list(vars(getattr(self, category)).keys()) for conf in conf_names: configurations.append( '{}_{} : {}\n'.format(category, conf, repr(getattr(getattr(self, category), conf)))) return "".join(configurations) def create_config_obj(config_dict): dataset_dict = config_dict['dataset'] dir = dataset_dict['dir'] name = dataset_dict['name'] num_classes = dataset_dict['num_classes'] classes_name = dataset_dict['classes_name'] images_dir = dataset_dict['images_dir'] object_properties = dataset_dict['object_properties'] augmentation = dataset_dict['augmentation'] bounding_boxes_dir = dataset_dict['bounding_boxes_dir'] dataset_conf = dataset(dir, name, num_classes, classes_name, images_dir, object_properties, augmentation, bounding_boxes_dir) dataloader_dict = config_dict['dataloader'] batch_size = dataloader_dict['batch_size'] num_workers = dataloader_dict['num_workers'] dataloader_conf = dataloader(batch_size, num_workers) train_dict = config_dict['train'] cuda = train_dict['cuda'] num_epochs = train_dict['num_epochs'] start_epoch = train_dict['start_epoch'] resume = train_dict['resume'] resume_weights_only = train_dict['resume_weights_only'] lr_init = train_dict['lr_init'] lr_schedule = train_dict['lr_schedule'] lr_decay = train_dict['lr_decay'] momentum = train_dict['momentum'] weight_decay = train_dict['weight_decay'] visdom = train_dict['visdom'] train_conf = train(cuda, num_epochs, start_epoch, resume, resume_weights_only, lr_init, lr_schedule, lr_decay, momentum, weight_decay, visdom) model_dict = config_dict['model'] basenet = model_dict['basenet'] num_classes = model_dict['num_classes'] pixel_means = model_dict['pixel_means'] feature_maps_dim = model_dict['feature_maps_dim'] input_size = model_dict['input_size'] prior_box_scales = model_dict['prior_box_scales'] prior_box_aspect_ratios = model_dict['prior_box_aspect_ratios'] prior_box_clip = model_dict['prior_box_clip'] prior_box_variance = model_dict['prior_box_variance'] model_conf = model(basenet, num_classes, pixel_means, feature_maps_dim, input_size, prior_box_scales, prior_box_aspect_ratios, prior_box_clip, prior_box_variance) eval_dict = config_dict['eval'] model_name = eval_dict['model_name'] overwrite_all_detections = eval_dict['overwrite_all_detections'] confidence_threshold = eval_dict['confidence_threshold'] top_k = eval_dict['top_k'] cuda = eval_dict['cuda'] eval_conf = eval(model_name, overwrite_all_detections, confidence_threshold, top_k, cuda) criterion_dict = config_dict['criterion'] criterion_conf = criterion(criterion_dict['train']) output_dict = config_dict['output'] weights_dir = output_dict['weights_dir'] detections_dir = output_dict['detections_dir'] output_conf = output(weights_dir, detections_dir) configs_obj = configs(dataset_conf, dataloader_conf, train_conf, model_conf, eval_conf, criterion_conf, output_conf) # check that the config object has all the defined configurations configuration_names = get_configs_name() obj_configuration_names = set(configs_obj.get_config_names()) missing_configurations = set(configuration_names).difference(obj_configuration_names) if missing_configurations: raise Exception('The following configurations are missing: {}'.format(missing_configurations)) # throw warnings if some configurations were not used input_configuration_names = set(join_configs_categories(config_dict).keys()) unused_configurations = input_configuration_names.difference(obj_configuration_names) if unused_configurations: print('WARNING! The following configurations have not been used: {}'.format(unused_configurations)) # configure the augmentation sheme if configs_obj.dataset.augmentation ==
dtype=np.float).flatten() x = np.asanyarray(x, dtype=np.float).flatten() if np.isnan(mindx): mindx = 0 mindx = mindx or 0 if np.isnan(startdat): startdat = 0 startdat = startdat or 0 # No strict validation here, they are scalards and they must be validated # before going into the C-layer if not utils.isscalar(mindx): raise ValueError("'mindx' must be scalar, NaN, or empty.") if not utils.isscalar(startdat): raise ValueError("'startdat' must be scalar, NaN, or empty.") # Confirm that there are still data points left, else abort: if np.abs(x[0] - x[-1]) < mindx: out = np.zeros(x.shape) out.fill(1) log.warn('Too few values to inspect') return out grad_min = ddatdx[0] grad_max = ddatdx[1] out = gradientvalues(dat, x, grad_min, grad_max, mindx, startdat, toldat) return out def dataqc_solarelevation(lon, lat, dt): """ Description Computes instantaneous no-sky solar radiation and altitude from date and time stamp and position data. It is put together from expressions taken from Appendix E in the 1978 edition of Almanac for Computers, Nautical Almanac Office, U.S. Naval Observatory. They are reduced accuracy expressions valid for the years 1800-2100. Solar declination computed from these expressions is accurate to at least 1'. The solar constant (1368.0 W/m^2) represents a mean of satellite measurements made over the last sunspot cycle (1979-1995) taken from Coffey et al (1995), Earth System Monitor, 6, 6-10. This code is a python implementation of soradna1.m available in Air-Sea Toolbox. Implemented by: 1997-03-08: Version 1.0 (author unknown) of soradna1.m. 1998-08-28: Version 1.1 (author unknown) of soradna1.m. 1999-08-05: Version 2.0 (author unknown) of soradna1.m. 2013-04-07: <NAME>. Initial python implementation. Note, this function is derived from old, unmaintained code. More robust implementations exist (e.g. PyEphem and PySolar) that will probably calculate these values more accurately. Usage: z, sorad = dataqc_solarelevation(lon, lat, dt) where z = solar altitude [degrees] sorad = no atmosphere solar radiation [W m^-2] lon = longitude (east is positive) [decimal degress] lat = latitude [decimal degrees] dt = date and time stamp in UTC [seconds since 1970-01-01] Examples dt = 1329177600 # 2012-02-14 00:00:00 z, sorad = dataqc_solarelevation(120, 30, dt) z = 15.1566, sorad = 366.8129 OOI (2012). Data Product Specification for Solar Elevation. Document Control Number 1341-100011. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-10011_Data_Product_SPEC_SOLRELV_OOI.pdf) """ # Test lengths and types of inputs. Latitude and longitude must be the same # size and can either be a scalar or a vecotr. The date and time stamp # can also be either a scalar or a vector. If all three inputs are vectors, # they must be of the same length. if len(lon) != len(lat): raise ValueError('\'lon\' and \'lat\' must be the same size') if utils.isvector(lon) and utils.isvector(lat) and utils.isvector(dt): # test their lengths if not len(lon) == len(lat) == len(dt): raise ValueError('If all inputs are vectors, these must all ' 'be of the same length') # set constants (using values from as_consts.m) # ------ short-wave flux calculations # the solar constant [W m^-2] represents a mean of satellite measurements # made over the last sunspot cycle (1979-1995), taken from Coffey et al. # (1995), Earth System Monitor, 6, 6-10. solar_const = 1368.0 # Create a time tuple in UTC from the Epoch time input, and then create # scalars or numpy arrays of time elements for subsequent calculations. ldt = len(dt) yy = np.zeros(ldt, dtype=np.int) mn = np.zeros(ldt, dtype=np.int) dd = np.zeros(ldt, dtype=np.int) hh = np.zeros(ldt, dtype=np.int) mm = np.zeros(ldt, dtype=np.int) ss = np.zeros(ldt, dtype=np.int) for i in range(ldt): # create time tuple in UTC gtime = time.gmtime(dt[i]) # create scalar elements yy[i] = gtime[0] mn[i] = gtime[1] dd[i] = gtime[2] hh[i] = gtime[3] mm[i] = gtime[4] ss[i] = gtime[5] #constants used in function deg2rad = np.pi / 180.0 rad2deg = 1 / deg2rad # compute Universal Time in hours utime = hh + (mm + ss / 60.0) / 60.0 # compute Julian ephemeris date in days (Day 1 is 1 Jan 4713 B.C. which # equals -4712 Jan 1) jed = (367.0 * yy - np.fix(7.0*(yy+np.fix((mn+9)/12.0))/4.0) + np.fix(275.0*mn/9.0) + dd + 1721013 + utime / 24.0) # compute interval in Julian centuries since 1900 jc_int = (jed - 2415020.0) / 36525.0 # compute mean anomaly of the sun ma_sun = 358.475833 + 35999.049750 * jc_int - 0.000150 * jc_int**2 ma_sun = (ma_sun - np.fix(ma_sun/360.0) * 360.0) * deg2rad # compute mean longitude of sun ml_sun = 279.696678 + 36000.768920 * jc_int + 0.000303 * jc_int**2 ml_sun = (ml_sun - np.fix(ml_sun/360.0) * 360.0) * deg2rad # compute mean anomaly of Jupiter ma_jup = 225.444651 + 2880.0 * jc_int + 154.906654 * jc_int ma_jup = (ma_jup - np.fix(ma_jup/360.0) * 360.0) * deg2rad # compute longitude of the ascending node of the moon's orbit an_moon = (259.183275 - 1800 * jc_int - 134.142008 * jc_int + 0.002078 * jc_int**2) an_moon = (an_moon - np.fix(an_moon/360.0) * 360.0 + 360.0) * deg2rad # compute mean anomaly of Venus ma_ven = (212.603219 + 58320 * jc_int + 197.803875 * jc_int + 0.001286 * jc_int**2) ma_ven = (ma_ven - np.fix(ma_ven/360.0) * 360.0) * deg2rad # compute sun theta theta = (0.397930 * np.sin(ml_sun) + 0.009999 * np.sin(ma_sun-ml_sun) + 0.003334 * np.sin(ma_sun+ml_sun) - 0.000208 * jc_int * np.sin(ml_sun) + 0.000042 * np.sin(2*ma_sun+ml_sun) - 0.000040 * np.cos(ml_sun) - 0.000039 * np.sin(an_moon-ml_sun) - 0.000030 * jc_int * np.sin(ma_sun-ml_sun) - 0.000014 * np.sin(2*ma_sun-ml_sun) - 0.000010 * np.cos(ma_sun-ml_sun-ma_jup) - 0.000010 * jc_int * np.sin(ma_sun+ml_sun)) # compute sun rho rho = (1.000421 - 0.033503 * np.cos(ma_sun) - 0.000140 * np.cos(2*ma_sun) + 0.000084 * jc_int * np.cos(ma_sun) - 0.000033 * np.sin(ma_sun-ma_jup) + 0.000027 * np.sin(2.*ma_sun-2.*ma_ven)) # compute declination decln = np.arcsin(theta/np.sqrt(rho)) # compute equation of time (in seconds of time) l = 276.697 + 0.98564734 * (jed-2415020.0) l = (l - 360.0 * np.fix(l/360.0)) * deg2rad eqt = (-97.8 * np.sin(l) - 431.3 * np.cos(l) + 596.6 * np.sin(2*l) - 1.9 * np.cos(2*l) + 4.0 * np.sin(3*l) + 19.3 * np.cos(3*l) - 12.7 * np.sin(4*l)) eqt = eqt / 60.0 # compute local hour angle from global hour angle gha = 15.0 * (utime-12) + 15.0 * eqt / 60.0 lha = gha - lon # compute radius vector rv = np.sqrt(rho) # compute solar altitude sz = (np.sin(deg2rad*lat) * np.sin(decln) + np.cos(deg2rad*lat) * np.cos(decln) * np.cos(deg2rad*lha)) z = rad2deg * np.arcsin(sz) # compute solar radiation outside atmosphere (defaults to 0 when solar # altitude is below the horizon) sorad = (solar_const / rv**2) * np.sin(deg2rad * z) sorad[z < 0] = 0 return (z, sorad) def dataqc_propagateflags_wrapper(strict_validation=False, *args): ''' This is a function that wraps dataqc_propagateflags for use in ION It accepts a variable number of vector arguments (of the same shape) and calls dataqc_propagateflags ''' if not strict_validation: shapes = np.array([i.shape[0] for i in args]) if not (shapes == shapes[0]).all(): raise ValueError('Input vectors are not the same shape') return dataqc_propagateflags(np.array(args), strict_validation=strict_validation) def dataqc_propagateflags(inflags, strict_validation=False): """ Description: Propagate "bad" qc flags (from an arbitrary number of source datasets) to another (derived) dataset. Consider data from an oceanographic CTD (conductivity, temperature, and pressure) instrument. From these three time series, you want to compute salinity. If any of the three source data (conductivity, temperature, pressure) is of bad quality, the salinity will be bad as well. You can feed your QC assessment of the former three into this routine, which will then give you the combined assessment for the derived (here: salinity) property. Implemented by: 2012-07-17: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. Usage: outflag = dataqc_propagateflags(inflags) where outflag = a 1-by-N boolean vector that contains 1 where all of the inflags are 1, and 0 otherwise. inflags = an M-by-N boolean matrix, where each of the M rows contains flags of an independent data set such that "0" means bad data and "1" means good data. References: OOI (2012). Data
3 Args: file_path (str): path to pickle file Returns: obj (object): object saved in pickle file ''' with open(file_path, 'rb') as f: try: obj = pickle.load(f, encoding='latin1') except TypeError: # pragma no cover obj = pickle.load(f) # pragma no cover return obj def rate_conversion(annual_rate, start_age, end_age, S): ''' This function converts annual rates to model period ratesself. Args: annual_rate (array_like): annualized rates start_age (int): age at which agents become economically active end_age (int): maximum age of agents S (int): number of model periods in agents life Returns: rate (array_like): model period rates ''' rate = (1 + annual_rate) ** ((end_age - start_age) / S) - 1 return rate def save_return_table(table_df, output_type, path, precision=2): ''' Function to save or return a table of data. Args: table_df (Pandas DataFrame): table output_type (string): specifies the type of file to save table to: 'csv', 'tex', 'excel', 'json' path (string): specifies path to save file with table to precision (integer): number of significant digits to print. Defaults to 0. Returns: table_df (Pandas DataFrame): table ''' pd.options.display.float_format = ( '{:,.' + str(precision) + 'f}').format if path is None: if output_type == 'tex': tab_str = table_df.to_latex(index=False, na_rep='') return tab_str elif output_type == 'json': tab_str = table_df.to_json(double_precision=precision) return tab_str elif output_type == 'html': tab_html = table_df.to_html( classes="table table-striped table-hover" ).replace('\n', '') tab_html.replace('\n', '') return tab_html else: return table_df else: if output_type == 'tex': table_df.to_latex(buf=path, index=False, na_rep='') elif output_type == 'csv': table_df.to_csv(path_or_buf=path, index=False, na_rep='') elif output_type == 'json': table_df.to_json(path_or_buf=path, double_precision=precision) elif output_type == 'excel': table_df.to_excel(excel_writer=path, index=False, na_rep='') else: print('Please enter a valid output format') # pragma no cover assert(False) # pragma no cover class Inequality(): ''' A class with methods to compute different measures of inequality. ''' def __init__(self, dist, pop_weights, ability_weights, S, J): ''' Args: dist (Numpy array): distribution of endogenous variables over age and lifetime income group, size, SxJ pop_weights (Numpy array): fraction of population by each age, length S ability_weights (Numpy array): fraction of population for each lifetime income group, length J S (int): number of economically active periods in lifetime J (int): number of ability types Returns: None ''' self.dist = dist self.pop_weights = pop_weights self.ability_weights = ability_weights weights = (np.tile(pop_weights.reshape(S, 1), (1, J)) * ability_weights.reshape(1, J)) flattened_dist = dist.flatten() flattened_weights = weights.flatten() idx = np.argsort(flattened_dist) self.sort_dist = flattened_dist[idx] self.sort_weights = flattened_weights[idx] self.cum_weights = np.cumsum(self.sort_weights) def gini(self, type='overall'): ''' Compute the Gini coefficient Args: None Returns: gini_coeff (scalar): Gini coefficient ''' if type == 'overall': p = np.cumsum(self.sort_weights) nu = np.cumsum(self.sort_dist * self.sort_weights) elif type == 'age': flattened_dist = self.dist.sum(axis=1).flatten() flattened_weights = self.pop_weights.flatten() idx = np.argsort(flattened_dist) sort_dist = flattened_dist[idx] sort_weights = flattened_weights[idx]/flattened_weights.sum() p = np.cumsum(sort_weights) nu = np.cumsum(sort_dist*sort_weights) elif type == 'ability': flattened_dist = self.dist.sum(axis=0).flatten() flattened_weights = self.ability_weights.flatten() idx = np.argsort(flattened_dist) sort_dist = flattened_dist[idx] sort_weights = flattened_weights[idx]/flattened_weights.sum() p = np.cumsum(sort_weights) nu = np.cumsum(sort_dist*sort_weights) nu = nu / nu[-1] gini_coeff = (nu[1:] * p[:-1]).sum() - (nu[:-1] * p[1:]).sum() return gini_coeff def var_of_logs(self): ''' Compute the variance of logs Args: None Returns: var_ln_dist (scalar): variance of logs ''' ln_dist = np.log(self.sort_dist) weight_mean = (( ln_dist * self.sort_weights).sum() / self.sort_weights.sum()) var_ln_dist = (( (self.sort_weights * ((ln_dist - weight_mean) ** 2)).sum()) * (1. / (self.sort_weights.sum()))) return var_ln_dist def ratio_pct1_pct2(self, pct1, pct2): ''' Compute the pct1/pct2 percentile ratio Args: pct1 (scalar): percentile to compute the top pctile% for, in (0, 1). pct2 (scalar): percentile to compute the top pctile% for, in (0, 1) Returns: pct_ratio (scalar): ratio of pct1 to pct2 Notes: usually pct1 > pct 2 ''' assert pct1 > 0 assert pct1 < 1 assert pct2 > 0 assert pct2 < 1 loc_pct1 = np.argmin(np.abs(self.cum_weights - pct1)) loc_pct2 = np.argmin(np.abs(self.cum_weights - pct2)) pct_ratio = self.sort_dist[loc_pct1] / self.sort_dist[loc_pct2] return pct_ratio def pct(self, pct): ''' Returns value at given percentile Args: pct1 (scalar): percentile to compute the value at, in (0, 1). Returns: value (scalar): value of variable at pct ''' assert pct > 0 assert pct < 1 loc_pct = np.argmin(np.abs(self.cum_weights - pct)) value = self.sort_dist[loc_pct] return value def top_share(self, pctile): ''' Compute the top X% share Args: pctile (scalar): percentile to compute the top pctile% for, in (0, 1). Returns: pctile_share (scalar): share of variable attributed to the top pctile group ''' assert pctile > 0 assert pctile < 1 loc_pctile = np.argmin(np.abs(self.cum_weights - (1 - pctile))) pctile_share = (( self.sort_dist[loc_pctile:] * self.sort_weights[loc_pctile:]).sum() / (self.sort_dist * self.sort_weights).sum()) return pctile_share def read_cbo_forecast(): ''' This function reads the CBO Long-Term Budget Projections document from https://www.cbo.gov/about/products/budget-economic-data#1 and then formats the relevant data for use with OG-Core ''' CBO_LT_URL = ( 'https://www.cbo.gov/system/files/2020-09/51119-2020-09-ltbo_0.xlsx' ) # Read in data df = pd.read_excel(CBO_LT_URL, sheet_name='3. Economic Vars', skiprows=7, nrows=45) df.drop(columns=['Unnamed: 3', 'Unnamed: 4'], inplace=True) df[~((pd.isnull(df['Unnamed: 0'])) & (pd.isnull(df['Unnamed: 1'])) & (pd.isnull(df['Unnamed: 2'])))] df.fillna(value='', inplace=True) df['full_var_name'] = (df['Unnamed: 0'] + df['Unnamed: 1'] + df['Unnamed: 2']) CBO_VAR_NAMES = { 'Real GDP (Billions of 2019 dollars) ': 'Y', 'On 10-year Treasury notes and the OASDI trust funds': 'r', 'Growth of Real Earnings per Worker': 'w_growth', 'Growth of Total Hours Worked': 'L_growth', 'Hours of All Persons (Nonfarm Business Sector)': 'L', 'Personal Consumption Expenditures': 'C', 'Gross Private Domestic Investment': 'I_total', 'Government Consumption Expenditures and Gross Investment': 'G', 'Old-Age and Survivors Insurance': 'agg_pension_outlays', 'Individual income taxes': 'iit_revenue', 'Payroll taxes': 'payroll_tax_revenue', 'Corporate income taxes': 'business_tax_revenue', 'Wages and Salaries': 'wL'} df['var_name'] = df['full_var_name'].replace(CBO_VAR_NAMES) # keep just variables of interest df.drop(columns=[ 'Unnamed: 0', 'Unnamed: 1', 'Unnamed: 2', 'full_var_name'], inplace=True) df = df[df['var_name'].isin(CBO_VAR_NAMES.values())] # Keep just real interest rate (not nominal) # Note that real interest rate comes first in table df.drop_duplicates(subset='var_name', inplace=True) # reshape so that variable names down column df = pd.melt(df, id_vars='var_name', value_vars=[i for i in range(1990, 2051)]) df = df.pivot(index='variable', columns='var_name', values='value') df.reset_index(inplace=True) df.rename(columns={'variable': 'year'}, inplace=True) # add debt forcast df_fiscal = pd.read_excel(CBO_LT_URL, sheet_name='1. Summary Extended Baseline', skiprows=9, nrows=32) df_fiscal = df_fiscal[['Fiscal Year', 'Revenues', 'Federal Debt Held by the Public']] df_lt = df.merge(df_fiscal, left_on='year', right_on='Fiscal Year', how='left') df_lt.rename(columns={'Federal Debt Held by the Public': 'D/Y'}, inplace=True) df_lt['D'] = df_lt['Y'] * df_lt['D/Y'] CBO_10yr_budget_URL = ( 'https://www.cbo.gov/system/files/2021-02/51118-2021-02-11-' + 'budgetprojections.xlsx') df = pd.read_excel(CBO_10yr_budget_URL, sheet_name='Table 1-1', skiprows=8, nrows=7) df.rename( columns={'Unnamed: 0': 'variable', 'Actual, \n2020': 2020}, inplace=True) df.drop(columns=['Unnamed: 15', 'Unnamed: 16', '2026.1', '2031.1'], inplace=True) df1 = df[~((pd.isnull(df.variable)) | (df.variable == 'Other'))] df = pd.read_excel(CBO_10yr_budget_URL, sheet_name='Table 1-3', skiprows=9, nrows=22) df.rename(columns={'Unnamed: 0': 'variable'}, inplace=True) df.drop(columns=['2026.1', '2031.1'], inplace=True) df.drop_duplicates(subset='variable', keep='last', inplace=True) df2 = df[~pd.isnull(df.variable)] CBO_10yr_macro_URL = ( 'https://www.cbo.gov/system/files/2021-02/51135-2021-02-' + 'economicprojections.xlsx') df = pd.read_excel(CBO_10yr_macro_URL, sheet_name='2. Calendar Year', skiprows=6, nrows=131) df.rename(columns={'Unnamed: 1': 'variable'}, inplace=True) df.drop(columns=[ 'Unnamed: 0', 'Unnamed: 2', 'Units', 'Unnamed: 19', 'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23', 'Unnamed: 24'], inplace=True) # Note that real values come second (after nominal values) df.drop_duplicates(subset='variable', keep='last', inplace=True) df3 = df[~pd.isnull(df.variable)] df_st = df1.append(df2, sort=False, ignore_index=True).append( df3, sort=False, ignore_index=True) df_st['var_name'] = df_st['variable'].replace(CBO_VAR_NAMES) df_st = df_st[~pd.isnull(df_st.var_name)] df_st.drop(columns=['variable'], inplace=True) # reshape so each row a year df_st = pd.melt(df_st, id_vars='var_name', value_vars=[i for i in range(2017, 2031)]) df_st = df_st.pivot(index='variable', columns='var_name', values='value').reset_index() df_st.rename(columns={'variable': 'year'}, inplace=True) # merge with long term data df_cbo = df_lt.merge(df_st, how='outer', on='year', suffixes=('_lt', '_st')) # replace * with 0 df_cbo.replace(to_replace='*', value=0.0, inplace=True) return df_cbo def print_progress(iteration, total, source_name='', prefix='Progress:', suffix='Complete', decimals=1, bar_length=50): ''' Prints a progress bar to the terminal when completing small tasks of a larger job. Args: iteration (int>=1): which task the job is currently doing total (int>=1): how many tasks are in the job source_name (string): name of source data prefix (string): what to print before the progress bar suffix (string): what to print after the progress bar decimals (int>=0): how many decimals in the percentage bar_length (int>=3): how many boxes in the progress bar Functions called: None Objects created within function: status (string): status of download str_format (string): string containing percentage completed percents (string): percentage completed filled_length (int): number of boxes in the progress bar to fill bar (string): progress bar Returns: status ''' status = 'Incomplete' str_format = "{0:." + str(decimals) + "f}" percents = str_format.format(100 * (iteration / float(total))) filled_length = int(round(bar_length *
<reponame>mhauskn/dm_control """ This model taken from: https://github.com/karpathy/minGPT/blob/master/mingpt/model.py GPT model: - the initial stem consists of a combination of token encoding and a positional encoding - the meat of it is a uniform sequence of Transformer blocks - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - all blocks feed into a central residual pathway similar to resnets - the final decoder is a linear projection into a vanilla Softmax classifier """ import math import json import torch import torch.nn as nn from torch.nn import functional as F from absl import logging import numpy as np from torch.distributions import Normal, Independent class GPTConfig: """ base GPT config, params common to all GPT versions """ embd_pdrop = 0.1 resid_pdrop = 0.1 attn_pdrop = 0.1 def __init__(self, obs_size, action_size, block_size, **kwargs): self.obs_size = obs_size self.action_size = action_size self.block_size = block_size for k,v in kwargs.items(): setattr(self, k, v) def to_json(self, output_fname): with open(output_fname, 'w') as f: f.write(json.dumps(self.__dict__)) @staticmethod def from_json(fname): with open(fname, 'r') as f: kwargs = json.loads(f.read()) return GPTConfig(**kwargs) class GPT1Config(GPTConfig): """ GPT-1 like network roughly 125M params """ n_layer = 12 n_head = 12 n_embd = 768 class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. It is possible to use torch.nn.MultiheadAttention here but I am including an explicit implementation here to show that there is nothing too scary here. """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) self.n_head = config.n_head def forward(self, x, layer_past=None): B, T, C = x.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_drop(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_drop(self.proj(y)) return y class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.mlp = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.resid_pdrop), ) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x class GPT(nn.Module): """ the full GPT language model, with a context size of block_size """ def __init__(self, config): super().__init__() # input embedding stem self.tok_emb = nn.Linear(config.obs_size, config.n_embd) # self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) # self.head = nn.Linear(config.n_embd, config.action_size, bias=False) self.head = SquashedGaussianHead(config.n_embd, config.action_size, act_limit=1) self.block_size = config.block_size self.observables = config.observables self.apply(self._init_weights) self.criterion = nn.MSELoss() logging.info("%s number of parameters: %e", self.__class__.__name__, sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def configure_optimizers(self, train_config): """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (torch.nn.Linear, ) blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name if pn.endswith('bias'): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) # special case the position embedding parameter in the root GPT module as not decayed no_decay.add('pos_emb') # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) # create the pytorch optimizer object optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas) return optimizer def forward(self, idx, targets=None): b, t, d = idx.size() assert t <= self.block_size, "Cannot forward, model block size is exhausted." # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) x = self.blocks(x) x = self.ln_f(x) # logits = self.head(x) logits, logp_a = self.head(x, act=targets, deterministic=True) # if we are given some desired targets also calculate the loss loss = None if targets is not None: # loss = self.criterion(logits, targets) # loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) loss = -logp_a return logits, loss class FFConfig: """ base GPT config, params common to all GPT versions """ hidden_size = 1024 def __init__(self, obs_size, action_size, block_size, **kwargs): assert block_size == 1, f"FFNet requires block_size=1." self.obs_size = obs_size self.action_size = action_size self.block_size = block_size for k,v in kwargs.items(): setattr(self, k, v) def to_json(self, output_fname): with open(output_fname, 'w') as f: f.write(json.dumps(self.__dict__)) @staticmethod def from_json(fname): with open(fname, 'r') as f: kwargs = json.loads(f.read()) return FFConfig(**kwargs) class FFNet(nn.Module): """ Fully connected baseline. Modeled after the network used in Comic. """ def __init__(self, config): super().__init__() self.mlp = nn.Sequential( nn.Linear(config.obs_size, config.hidden_size), nn.ReLU(), nn.Linear(config.hidden_size, config.hidden_size), nn.ReLU(), nn.Linear(config.hidden_size, config.action_size) ) self.criterion = nn.MSELoss() # self.criterion = nn.L1Loss() self.block_size = config.block_size self.observables = config.observables logging.info("%s number of parameters: %e", self.__class__.__name__, sum(p.numel() for p in self.parameters())) def configure_optimizers(self, train_config): optimizer = torch.optim.AdamW(self.mlp.parameters(), lr=train_config.learning_rate, betas=train_config.betas) return optimizer def forward(self, x, targets=None): logits = self.mlp(x) loss = None if targets is not None: loss = self.criterion(logits, targets) return logits, loss class GaussianHead(nn.Module): """ The GaussianHead has a floating std deviation. """ def __init__(self, input_dim, act_dim): super().__init__() log_std = -0.5 * np.ones(act_dim, dtype=np.float32) self.log_std_layer = torch.nn.Parameter(torch.as_tensor(log_std)) self.mu_layer = nn.Linear(input_dim, act_dim, bias=False) def forward(self, obs, act=None, deterministic=False): # Optionally pass in an action to get the log_prob of that action mu = self.mu_layer(obs) std = torch.exp(self.log_std_layer) pi = Independent(Normal(mu, std), 1) if act is None: act = pi.mean if deterministic else pi.rsample() log_prob = pi.log_prob(act) return pi, act, log_prob class ActorCritic(nn.Module): """ The default Actor-Critic network compatible with PPO & A2C. """ def __init__(self, obs_size, action_size, hidden_size): super().__init__() self.policy_net = nn.Sequential( nn.Linear(obs_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), ) self.policy_head = GaussianHead(hidden_size, action_size) self.value_net = nn.Sequential( nn.Linear(obs_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1) ) logging.info("%s number of parameters: %e", self.__class__.__name__, sum(p.numel() for p in self.parameters())) def forward(self, obs, act=None, deterministic=False): z = self.policy_net(obs) pi, act, log_prob = self.policy_head(z, act, deterministic) val = self.value_net(obs).squeeze(-1) return pi, act, val, log_prob def act(self,
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, SubsampleLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer from lasagne.updates import adagrad, nesterov_momentum from functools import partial import os NAME = "e91" PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL=250 """Conclusions: length 1000 and 5 appliances still dies immediately if learning rate is 0.1 """ def exp_a(name): """RESULTS: Died immediately.""" print("e82 with seq length 1000 and 5 appliances") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'a', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.1), layers_config=[ { 'type': BLSTMLayer, 'num_units': 60, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 80, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_b(name): """RESULTS: Finishes training. Learns dish washer pretty well and something else.""" print("e82 with seq length 1000 and 5 appliances and learning rate 0.01") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'b', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.01), layers_config=[ { 'type': BLSTMLayer, 'num_units': 60, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 80, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_c(name): """RESULTS: Fails after 250 epochs. But learning looks promising!""" print("e59 but with 5 appliances and 60 units in Conv1D") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'c', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.1), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(25), 'b': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(10), 'b': Uniform(10) }, { 'type': BLSTMLayer, 'num_units': 40, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 60, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_d(name): """Most promising yet! Finishes training. Learns everything but fridge and hair straighteners.""" print("e59 but with 5 appliances and learning rate 0.01") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'd', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.01), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(25), 'b': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(10), 'b': Uniform(10) }, { 'type': BLSTMLayer, 'num_units': 40, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 60, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_e(name): """Finishes training. Learns dish washer and that's about it. Worse than D.""" print("e59 but with 5 appliances and learning rate 0.01, linear outputs and MSE") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'e', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=mse, updates=partial(nesterov_momentum, learning_rate=0.01), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(25), 'b': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(10), 'b': Uniform(10) }, { 'type': BLSTMLayer, 'num_units': 40, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 60, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None } ] ) return net def exp_f(name): """Fails immediately.""" print("e59 but with 5 appliances and learning rate 0.1, and single output (Fridge)") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=True, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'f', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.1), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(25), 'b': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(10), 'b': Uniform(10) }, { 'type': BLSTMLayer, 'num_units': 40, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 60, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_g(name): """Fails immediately""" print("e59 but with 5 appliances and learning rate 0.1, and single output (Fridge), linear output and MSE") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=True, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'g', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=mse, updates=partial(nesterov_momentum, learning_rate=0.1), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(25), 'b': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(10), 'b': Uniform(10) }, { 'type': BLSTMLayer, 'num_units': 40, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 60, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None } ] ) return net def exp_g(name): """Fails immediately.""" print("e59 but with 5 appliances and learning rate 0.1, and single output (washer), linear output and MSE") source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ 'dish washer', ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[80, 20, 20, 20, 600], min_on_durations=[60, 60, 60, 300, 300], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=True, boolean_targets=False, min_off_duration=60, subsample_target=5, train_buildings=[1], validation_buildings=[1] ) net = Net( experiment_name=name + 'g', source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=mse, updates=partial(nesterov_momentum, learning_rate=0.1), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(25), 'b': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(10), 'b': Uniform(10) }, { 'type': BLSTMLayer, 'num_units': 40, 'W_in_to_cell': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 60, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None } ] ) return net def exp_h(name):
= self.start_epoch*len(self.train_loader) stage3_epoches = self.epoch_stage3 - self.start_epoch lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, stage3_epoches+5) for epoch in range(self.start_epoch, self.epoch_stage3): epoch += 1 self.unet.train(True) epoch_loss = 0 self.reset_grad() # 梯度累加的时候需要使用 tbar = tqdm.tqdm(self.train_loader) for i, (images, masks) in enumerate(tbar): # GT : Ground Truth images = images.to(self.device) masks = masks.to(self.device) assert images.size(2) == 1024 # SR : Segmentation Result net_output = self.unet(images) net_output_flat = net_output.view(net_output.size(0), -1) masks_flat = masks.view(masks.size(0), -1) loss_set = self.criterion_stage3(net_output_flat, masks_flat) try: loss_num = len(loss_set) except: loss_num = 1 # 依据返回的损失个数分情况处理 if loss_num > 1: for loss_index, loss_item in enumerate(loss_set): if loss_index > 0: loss_name = 'stage3_loss_%d' % loss_index self.writer.add_scalar(loss_name, loss_item.item(), global_step_before + i) loss = loss_set[0] else: loss = loss_set epoch_loss += loss.item() # Backprop + optimize, see https://discuss.pytorch.org/t/why-do-we-need-to-set-the-gradients-manually-to-zero-in-pytorch/4903/20 for Accumulating Gradients if epoch <= self.epoch_stage3 - self.epoch_stage3_accumulation: self.reset_grad() loss.backward() self.optimizer.step() else: # loss = loss / self.accumulation_steps # Normalize our loss (if averaged) loss.backward() # Backward pass if (i+1) % self.accumulation_steps == 0: # Wait for several backward steps self.optimizer.step() # Now we can do an optimizer step self.reset_grad() params_groups_lr = str() for group_ind, param_group in enumerate(self.optimizer.param_groups): params_groups_lr = params_groups_lr + 'params_group_%d' % (group_ind) + ': %.12f, ' % (param_group['lr']) # 保存到tensorboard,每一步存储一个 self.writer.add_scalar('Stage3_train_loss', loss.item(), global_step_before+i) descript = "Train Loss: %.7f, lr: %s" % (loss.item(), params_groups_lr) tbar.set_description(desc=descript) # 更新global_step_before为下次迭代做准备 global_step_before += len(tbar) # Print the log info print('Finish Stage3 Epoch [%d/%d], Average Loss: %.7f' % (epoch, self.epoch_stage3, epoch_loss/len(tbar))) write_txt(self.save_path, 'Finish Stage3 Epoch [%d/%d], Average Loss: %.7f' % (epoch, self.epoch_stage3, epoch_loss/len(tbar))) # 验证模型,保存权重,并保存日志 loss_mean, dice_mean = self.validation(stage=3) if dice_mean > self.max_dice: is_best = True self.max_dice = dice_mean else: is_best = False self.lr = lr_scheduler.get_lr() state = {'epoch': epoch, 'state_dict': self.unet.module.state_dict(), 'max_dice': self.max_dice, 'optimizer' : self.optimizer.state_dict(), 'lr' : self.lr} self.save_checkpoint(state, 3, index, is_best) self.writer.add_scalar('Stage3_val_loss', loss_mean, epoch) self.writer.add_scalar('Stage3_val_dice', dice_mean, epoch) self.writer.add_scalar('Stage3_lr', self.lr[0], epoch) # 学习率衰减 lr_scheduler.step() def validation(self, stage=1): # 验证的时候,train(False)是必须的0,设置其中的BN层、dropout等为eval模式 # with torch.no_grad(): 可以有,在这个上下文管理器中,不反向传播,会加快速度,可以使用较大batch size self.unet.eval() tbar = tqdm.tqdm(self.valid_loader) loss_sum, dice_sum = 0, 0 if stage == 1: criterion = self.criterion elif stage == 2: criterion = self.criterion_stage2 elif stage == 3: criterion = self.criterion_stage3 with torch.no_grad(): for i, (images, masks) in enumerate(tbar): images = images.to(self.device) masks = masks.to(self.device) net_output = self.unet(images) net_output_flat = net_output.view(net_output.size(0), -1) masks_flat = masks.view(masks.size(0), -1) loss_set = criterion(net_output_flat, masks_flat) try: loss_num = len(loss_set) except: loss_num = 1 # 依据返回的损失个数分情况处理 if loss_num > 1: loss = loss_set[0] else: loss = loss_set loss_sum += loss.item() # 计算dice系数,预测出的矩阵要经过sigmoid含义以及阈值,阈值默认为0.5 net_output_flat_sign = (torch.sigmoid(net_output_flat)>0.5).float() dice = self.dice_overall(net_output_flat_sign, masks_flat).mean() dice_sum += dice.item() descript = "Val Loss: {:.7f}, dice: {:.7f}".format(loss.item(), dice.item()) tbar.set_description(desc=descript) loss_mean, dice_mean = loss_sum/len(tbar), dice_sum/len(tbar) print("Val Loss: {:.7f}, dice: {:.7f}".format(loss_mean, dice_mean)) write_txt(self.save_path, "Val Loss: {:.7f}, dice: {:.7f}".format(loss_mean, dice_mean)) return loss_mean, dice_mean # dice for threshold selection def dice_overall(self, preds, targs): n = preds.shape[0] # batch size为多少 preds = preds.view(n, -1) targs = targs.view(n, -1) # preds, targs = preds.to(self.device), targs.to(self.device) preds, targs = preds.cpu(), targs.cpu() # tensor之间按位相成,求两个集合的交(只有1×1等于1)后。按照第二个维度求和,得到[batch size]大小的tensor,每一个值代表该输入图片真实类标与预测类标的交集大小 intersect = (preds * targs).sum(-1).float() # tensor之间按位相加,求两个集合的并。然后按照第二个维度求和,得到[batch size]大小的tensor,每一个值代表该输入图片真实类标与预测类标的并集大小 union = (preds + targs).sum(-1).float() ''' 输入图片真实类标与预测类标无并集有两种情况:第一种为预测与真实均没有类标,此时并集之和为0;第二种为真实有类标,但是预测完全错误,此时并集之和不为0; 寻找输入图片真实类标与预测类标并集之和为0的情况,将其交集置为1,并集置为2,最后还有一个2*交集/并集,值为1; 其余情况,直接按照2*交集/并集计算,因为上面的并集并没有减去交集,所以需要拿2*交集,其最大值为1 ''' u0 = union == 0 intersect[u0] = 1 union[u0] = 2 return (2. * intersect / union) def classify_score(self, preds, targs): '''若当前图像中有mask,则为正类,若当前图像中无mask,则为负类。从分类的角度得分当前的准确率 Args: preds: 预测出的mask矩阵 targs: 真实的mask矩阵 Return: 分类准确率 ''' n = preds.shape[0] # batch size为多少 preds = preds.view(n, -1) targs = targs.view(n, -1) # preds, targs = preds.to(self.device), targs.to(self.device) preds_, targs_ = torch.sum(preds, 1), torch.sum(targs, 1) preds_, targs_ = preds_ > 0, targs_ > 0 preds_, targs_ = preds_.cpu(), targs_.cpu() score = torch.sum(preds_ == targs_) return score.item()/n def choose_threshold(self, model_path, index): '''利用线性法搜索当前模型的最优阈值和最优像素阈值;先利用粗略搜索和精细搜索两个过程搜索出最优阈值,然后搜索出最优像素阈值;并保存搜索图 Args: model_path: 当前模型权重的位置 index: 当前为第几个fold Return: 最优阈值,最优像素阈值,最高得分 ''' self.unet.module.load_state_dict(torch.load(model_path)['state_dict']) stage = eval(model_path.split('/')[-1].split('_')[2]) print('Loaded from %s, using choose_threshold!' % model_path) self.unet.eval() with torch.no_grad(): # 先大概选取阈值范围 dices_big = [] thrs_big = np.arange(0.1, 1, 0.1) # 阈值列表 for th in thrs_big: tmp = [] tbar = tqdm.tqdm(self.valid_loader) for i, (images, masks) in enumerate(tbar): # GT : Ground Truth images = images.to(self.device) net_output = torch.sigmoid(self.unet(images)) preds = (net_output > th).to(self.device).float() # 大于阈值的归为1 # preds[preds.view(preds.shape[0],-1).sum(-1) < noise_th,...] = 0.0 # 过滤噪声点 tmp.append(self.dice_overall(preds, masks).mean()) # tmp.append(self.classify_score(preds, masks)) dices_big.append(sum(tmp) / len(tmp)) dices_big = np.array(dices_big) best_thrs_big = thrs_big[dices_big.argmax()] # 精细选取范围 dices_little = [] thrs_little = np.arange(best_thrs_big-0.05, best_thrs_big+0.05, 0.01) # 阈值列表 for th in thrs_little: tmp = [] tbar = tqdm.tqdm(self.valid_loader) for i, (images, masks) in enumerate(tbar): # GT : Ground Truth images = images.to(self.device) net_output = torch.sigmoid(self.unet(images)) preds = (net_output > th).to(self.device).float() # 大于阈值的归为1 # preds[preds.view(preds.shape[0],-1).sum(-1) < noise_th,...] = 0.0 # 过滤噪声点 tmp.append(self.dice_overall(preds, masks).mean()) # tmp.append(self.classify_score(preds, masks)) dices_little.append(sum(tmp) / len(tmp)) dices_little = np.array(dices_little) # score = dices.max() best_thr = thrs_little[dices_little.argmax()] # 选最优像素阈值 if stage != 3: dices_pixel = [] pixel_thrs = np.arange(0, 2304, 256) # 阈值列表 for pixel_thr in pixel_thrs: tmp = [] tbar = tqdm.tqdm(self.valid_loader) for i, (images, masks) in enumerate(tbar): # GT : Ground Truth images = images.to(self.device) net_output = torch.sigmoid(self.unet(images)) preds = (net_output > best_thr).to(self.device).float() # 大于阈值的归为1 preds[preds.view(preds.shape[0],-1).sum(-1) < pixel_thr,...] = 0.0 # 过滤噪声点 tmp.append(self.dice_overall(preds, masks).mean()) # tmp.append(self.classify_score(preds, masks)) dices_pixel.append(sum(tmp) / len(tmp)) dices_pixel = np.array(dices_pixel) score = dices_pixel.max() best_pixel_thr = pixel_thrs[dices_pixel.argmax()] elif stage == 3: best_pixel_thr, score = 0, dices_little.max() print('best_thr:{}, best_pixel_thr:{}, score:{}'.format(best_thr, best_pixel_thr, score)) plt.figure(figsize=(10.4, 4.8)) plt.subplot(1, 3, 1) plt.title('Large-scale search') plt.plot(thrs_big, dices_big) plt.subplot(1, 3, 2) plt.title('Little-scale search') plt.plot(thrs_little, dices_little) plt.subplot(1, 3, 3) plt.title('pixel thrs search') if stage != 3: plt.plot(pixel_thrs, dices_pixel) plt.savefig(os.path.join(self.save_path, 'stage{}'.format(stage)+'_fold'+str(index))) # plt.show() plt.close() return float(best_thr), float(best_pixel_thr), float(score) def pred_mask_count(self, model_path, masks_bool, val_index, best_thr, best_pixel_thr): '''加载模型,根据最优阈值和最优像素阈值,得到在验证集上的分类准确率。适用于训练的第二阶段使用 dice 选完阈值,查看分类准确率 Args: model_path: 当前模型的权重路径 masks_bool: 全部数据集中的每个是否含有mask val_index: 当前验证集的在全部数据集的下标 best_thr: 选出的最优阈值 best_pixel_thr: 选出的最优像素阈值 Return: None, 打印出有多少个真实情况有多少个正样本,实际预测出了多少个样本。但是不是很严谨,因为这不能代表正确率。 ''' count_true, count_pred = 0,0 for index1 in val_index: if masks_bool[index1]: count_true += 1 self.unet.module.load_state_dict(torch.load(model_path)['state_dict']) print('Loaded from %s' % model_path) self.unet.eval() with torch.no_grad(): tmp = [] tbar = tqdm.tqdm(self.valid_loader) for i, (images, masks) in enumerate(tbar): # GT : Ground Truth images = images.to(self.device) net_output = torch.sigmoid(self.unet(images)) preds = (net_output > best_thr).to(self.device).float() # 大于阈值的归为1 preds[preds.view(preds.shape[0],-1).sum(-1) < best_pixel_thr,...] = 0.0 # 过滤噪声点 n = preds.shape[0] # batch size为多少 preds = preds.view(n, -1) for index2 in range(n): pred = preds[index2, ...] if torch.sum(pred) > 0: count_pred += 1 tmp.append(self.dice_overall(preds, masks).mean()) print('score:', sum(tmp) / len(tmp)) print('count_true:{}, count_pred:{}'.format(count_true, count_pred)) def grid_search(self, thrs_big, pixel_thrs): '''利用网格法搜索最优阈值和最优像素阈值 Args: thrs_big: 网格法搜索时的一系列阈值 pixel_thrs: 网格搜索时的一系列像素阈值 Return: 最优阈值,最优像素阈值,最高得分,网络矩阵中每个位置的得分 ''' with torch.no_grad(): # 先大概选取阈值范围和像素阈值范围 dices_big = [] # 存放的是二维矩阵,每一行为每一个阈值下所有像素阈值得到的得分 for th in thrs_big: dices_pixel = [] for pixel_thr in pixel_thrs: tmp = [] tbar = tqdm.tqdm(self.valid_loader) for i, (images, masks) in enumerate(tbar): # GT : Ground Truth images = images.to(self.device) net_output = torch.sigmoid(self.unet(images)) preds = (net_output > th).to(self.device).float() # 大于阈值的归为1 preds[preds.view(preds.shape[0],-1).sum(-1) < pixel_thr,...] = 0.0 # 过滤噪声点 tmp.append(self.dice_overall(preds, masks).mean()) # tmp.append(self.classify_score(preds, masks)) dices_pixel.append(sum(tmp) / len(tmp)) dices_big.append(dices_pixel) dices_big = np.array(dices_big) print('粗略挑选最优阈值和最优像素阈值,dices_big_shape:{}'.format(np.shape(dices_big))) re = np.where(dices_big == np.max(dices_big)) # 如果有多个最大值的处理方式 if np.shape(re)[1] != 1: re = re[0] best_thrs_big, best_pixel_thr = thrs_big[int(re[0])], pixel_thrs[int(re[1])] best_thr, score = best_thrs_big, dices_big.max() return best_thr, best_pixel_thr, score, dices_big def choose_threshold_grid(self, model_path, index): '''利用网格法搜索当前模型的最优阈值和最优像素阈值,分为粗略搜索和精细搜索两个过程;并保存热力图 Args: model_path: 当前模型权重的位置 index: 当前为第几个fold Return: 最优阈值,最优像素阈值,最高得分 ''' self.unet.module.load_state_dict(torch.load(model_path)['state_dict']) stage = eval(model_path.split('/')[-1].split('_')[2]) print('Loaded from %s, using choose_threshold_grid!' % model_path) self.unet.eval() thrs_big1 = np.arange(0.60, 0.81, 0.015) # 阈值列表 pixel_thrs1 = np.arange(768, 2305, 256) # 像素阈值列表 best_thr1, best_pixel_thr1, score1, dices_big1 = self.grid_search(thrs_big1, pixel_thrs1) print('best_thr1:{}, best_pixel_thr1:{}, score1:{}'.format(best_thr1, best_pixel_thr1, score1)) thrs_big2 = np.arange(best_thr1-0.015, best_thr1+0.015, 0.0075) # 阈值列表 pixel_thrs2 = np.arange(best_pixel_thr1-256, best_pixel_thr1+257, 128) # 像素阈值列表 best_thr2, best_pixel_thr2, score2, dices_big2 = self.grid_search(thrs_big2, pixel_thrs2) print('best_thr2:{}, best_pixel_thr2:{}, score2:{}'.format(best_thr2, best_pixel_thr2, score2)) if score1 < score2: best_thr, best_pixel_thr, score, dices_big = best_thr2, best_pixel_thr2, score2, dices_big2 else: best_thr, best_pixel_thr, score, dices_big = best_thr1, best_pixel_thr1, score1, dices_big1 print('best_thr:{}, best_pixel_thr:{}, score:{}'.format(best_thr, best_pixel_thr, score)) f, (ax1, ax2) = plt.subplots(figsize=(14.4, 4.8), ncols=2) cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True) data1 = pd.DataFrame(data=dices_big1, index=np.around(thrs_big1, 3), columns=pixel_thrs1) sns.heatmap(data1, linewidths = 0.05, ax = ax1, vmax=np.max(dices_big1), vmin=np.min(dices_big1), cmap=cmap, annot=True, fmt='.4f') ax1.set_title('Large-scale search') data2 = pd.DataFrame(data=dices_big2, index=np.around(thrs_big2, 3), columns=pixel_thrs2) sns.heatmap(data2, linewidths = 0.05, ax = ax2, vmax=np.max(dices_big2), vmin=np.min(dices_big2), cmap=cmap, annot=True, fmt='.4f') ax2.set_title('Little-scale search') f.savefig(os.path.join(self.save_path, 'stage{}'.format(stage)+'_fold'+str(index))) # plt.show() plt.close() return
# -*- coding: utf-8 -*- #!/usr/bin/env bash # # Author: XuMing <<EMAIL>> # Brief: corrector with spell and stroke import codecs import os import pdb import time import math import sys import argparse import jieba.posseg as pseg from collections import defaultdict from pypinyin import lazy_pinyin pwd_path = os.path.abspath(os.path.dirname(__file__)) sys.path.append(pwd_path + '/../') import pycorrector.config as config from pycorrector.detector import detect from pycorrector.detector import get_frequency from pycorrector.detector import get_ppl_score from pycorrector.detector import trigram_char from pycorrector.detector import word_freq from pycorrector.utils.io_utils import dump_pkl from pycorrector.utils.io_utils import get_logger from pycorrector.utils.io_utils import load_pkl from pycorrector.utils.text_utils import is_chinese_string from pycorrector.utils.text_utils import is_chinese from pycorrector.utils.text_utils import traditional2simplified from pycorrector.utils.text_utils import tokenize default_logger = get_logger(__file__) def load_char_dict(path): char_dict = '' with codecs.open(path, 'r', encoding='utf-8') as f: for w in f: char_dict += w.strip() return char_dict def load_2char_dict(path): text = codecs.open(path, 'rb', encoding = 'utf-8').read() return set(text.split('\n')) def load_word_dict(path): word_dict = set() word_dict_file = codecs.open(path, 'rb', encoding = 'utf-8').readlines() for line in word_dict_file: word_dict.add(line.split()[0]) return word_dict def load_same_pinyin(path, sep='\t'): """ 加载同音字 :param path: :return: """ result = dict() if not os.path.exists(path): default_logger.debug("file not exists:", path) return result with codecs.open(path, 'r', encoding='utf-8') as f: for line in f: line = traditional2simplified(line.strip()) parts = line.split(sep) if parts and len(parts) > 2: key_char = parts[0] # same_pron_same_tone = set(list(parts[1])) # same_pron_diff_tone = set(list(parts[2])) # value = same_pron_same_tone.union(same_pron_diff_tone) value = set(list("".join(parts))) if len(key_char) > 1 or not value: continue result[key_char] = value # these pairs would be dealed with rule result['他'] -= {'她', '它'} result['她'] -= {'他', '它'} result['它'] -= {'她', '他'} result['影'] -= {'音'} result['车'] = result['扯'] return result def load_same_stroke(path, sep=','): """ 加载形似字 :param path: :param sep: :return: """ result = defaultdict(set) if not os.path.exists(path): default_logger.debug("file not exists:", path) return result with codecs.open(path, 'r', encoding='utf-8') as f: for line in f: line = traditional2simplified(line.strip()) parts = line.strip().split(sep) if parts and len(parts) > 1: for i, c in enumerate(parts): # result[c].add(c) # result[c] |= set(list(parts[:i] + parts[i + 1:])) result[c] |= set(parts) return result char_dict_path = os.path.join(pwd_path, config.char_dict_path) cn_char_set = load_char_dict(char_dict_path) two_char_dict = load_2char_dict(pwd_path + '/data/char_two_set.txt') # # word dictionary word_dict_text_path = os.path.join(pwd_path, config.word_dict_path) word_dict_model_path = os.path.join(pwd_path, config.word_dict_model_path) if os.path.exists(word_dict_model_path): cn_word_set = load_pkl(word_dict_model_path) else: default_logger.debug('load word dict from text file:', word_dict_model_path) cn_word_set = load_word_dict(word_dict_text_path) dump_pkl(cn_word_set, word_dict_model_path) # similar pronuciation same_pinyin_text_path = os.path.join(pwd_path, config.same_pinyin_text_path) same_pinyin_model_path = os.path.join(pwd_path, config.same_pinyin_model_path) # same_pinyin = load_same_pinyin(same_pinyin_text_path) if os.path.exists(same_pinyin_model_path): same_pinyin = load_pkl(same_pinyin_model_path) else: default_logger.debug('load same pinyin from text file:', same_pinyin_text_path) same_pinyin = load_same_pinyin(same_pinyin_text_path) dump_pkl(same_pinyin, same_pinyin_model_path) # similar shape same_stroke_text_path = os.path.join(pwd_path, config.same_stroke_text_path) same_stroke_model_path = os.path.join(pwd_path, config.same_stroke_model_path) if os.path.exists(same_stroke_model_path): same_stroke = load_pkl(same_stroke_model_path) else: default_logger.debug('load same stroke from text file:', same_stroke_text_path) same_stroke = load_same_stroke(same_stroke_text_path) dump_pkl(same_stroke, same_stroke_model_path) def get_confusion_char_set(char): # confusion_char_set = get_same_pinyin(char).union(get_same_stroke(char)) confusion_char_set = same_pinyin.get(char, set()) confusion_char_set |= same_stroke.get(char, set()) if not confusion_char_set: confusion_char_set = {char} return confusion_char_set def get_confusion_two_char_set(word): return set([char_1 + char_2 for char_1 in get_confusion_char_set(word[0]) \ for char_2 in get_confusion_char_set(word[1]) \ if char_1 + char_2 in cn_word_set]) def _generate_items(sentence, idx, word, fraction=1): if len(word) == 1: confusion_word_set = set([i for i in get_confusion_char_set(word[0]) if i]) if len(word) > 1: def combine_two_confusion_char(sentence, idx, word): # # assuming there is only two char to change # # definitely not the final version, need to be fixed!!!! result = set() for i in range(len(word) - 1): for j in range(i + 1,len(word)): result |= set([word[: i] + i_word + word[i + 1: j] + j_word + word[j + 1:] \ for i_word in get_confusion_char_set(word[i]) if i_word \ for j_word in get_confusion_char_set(word[j]) if j_word]) return result def confusion_set(sentence, idx, word): # maximum number of change char is set up by 'edit_distance' # the maximum edit-distance edit_distance = 2 cands_tmp = [['',0]] result = set() ids = list(range(int(idx.split(',')[0]), int(idx.split(',')[1]))) # # change individual char while cands_tmp: if len(cands_tmp[0][0]) == len(word): result.add(cands_tmp[0][0]) elif cands_tmp[0][1] == edit_distance: result.add(cands_tmp[0][0] + word[len(cands_tmp[0][0]):]) else: target_idx = ids[len(cands_tmp[0][0])] for char_cand in get_confusion_char_set(sentence[target_idx]): if target_idx == 0: if char_cand + sentence[target_idx + 1] not in two_char_dict: continue elif target_idx == len(sentence) - 1: if sentence[target_idx - 1] + char_cand not in two_char_dict: continue elif char_cand + sentence[target_idx + 1] not in two_char_dict and \ sentence[target_idx - 1] + char_cand not in two_char_dict: continue if char_cand == sentence[target_idx]: cands_tmp.append([cands_tmp[0][0] + char_cand, cands_tmp[0][1]]) else: cands_tmp.append([cands_tmp[0][0] + char_cand, cands_tmp[0][1] + 1]) cands_tmp.pop(0) # # change connected two chars for i in range(len(word) - 1): for char_i in get_confusion_char_set(word[i]): for char_j in get_confusion_char_set(word[i + 1]): if char_i + char_j in two_char_dict: result.add(word[:i] + char_i + char_j + word[i + 2:]) return result confusion_word_set = confusion_set(sentence, idx, word) confusion_word_list = [item for item in confusion_word_set if is_chinese_string(item)] confusion_sorted = sorted(confusion_word_list, key=lambda k: get_frequency(k), reverse=True) return confusion_sorted[:len(confusion_word_list) // fraction + 1] def get_sub_array(nums): """ 取所有连续子串, [0, 1, 2, 5, 7, 8] => [[0, 3], 5, [7, 9]] :param nums: sorted(list) :return: """ ret = [] for i, c in enumerate(nums): if i == 0: pass elif i <= ii: continue elif i == len(nums) - 1: ret.append([c]) break ii = i cc = c # get continuity Substring while ii < len(nums) - 1 and nums[ii + 1] == cc + 1: ii = ii + 1 cc = cc + 1 if ii > i: ret.append([c, nums[ii] + 1]) else: ret.append([c]) return ret def get_valid_sub_array(sentence, sub_array_list): """ this function is to get rid of puctuation in detected string :param sentence: target sentence subarray: index of suspected string :return valid_array: index of valid suspected string without punctuation """ # print(sub_array_list) valid_array_detail = [] for sub_array in sub_array_list: valid_sub_array_detail = [] if len(sub_array) == 1: if is_chinese(sentence[sub_array[0]]): valid_array_detail.append([sub_array[0], sub_array[0]]) else: for i in range(sub_array[0], sub_array[1]): if is_chinese(sentence[i]): valid_sub_array_detail.append(i) elif valid_sub_array_detail: valid_array_detail.append(valid_sub_array_detail) valid_sub_array_detail = [] if valid_sub_array_detail: valid_array_detail.append(valid_sub_array_detail) # print(valid_array_detail) return [[sub[0], sub[-1] + 1] for sub in valid_array_detail] def count_diff(str1, str2): """ Counting the number of different chars between two string. Assuming len(str1) == len(str2) """ count = 0 for i in range(len(str1)): if str1[i] != str2[i]: count += 1 return count def correct_stat(sentence, sub_sents, param_ec, param_gd): """ statistical correction input sentence : error sentence in form of string sub_sents: pair of index range of suspect chars and corresponding suspect chars in the form like: [['str(b_idx),str(e_idx)',str(suspect_chars)], ...]\ param_ec : paramter for edition cost, might change for matching your own language model param_gd : paramter for global decision, might change for different lm output sentence : corrected sentence in form of string detail : correction detail in form like [[err_chars, cor_chars, b_idx, e_idx + 1]] """ detail = [] cands = [] for idx, item in sub_sents: maybe_error_items = _generate_items(sentence, idx, item) if not maybe_error_items: continue ids = idx.split(',') begin_id = int(ids[0]) end_id = int(ids[-1]) if len(ids) > 1 else int(ids[0]) + 1 before = sentence[:begin_id] after = sentence[end_id:] base_score = get_ppl_score(list(before + item + after), mode=trigram_char) min_score = base_score corrected_item = item for candidate in maybe_error_items: score = get_ppl_score(list(before + candidate + after), mode=trigram_char) \ + param_ec * count_diff(item, candidate) * math.log(base_score) if score < min_score: corrected_item = candidate min_score = score delta_score = base_score - min_score cands.append([idx, corrected_item, delta_score]) cands.sort(key = lambda x: x[2], reverse = True) for i, [idx, corrected_item, delta_score] in enumerate(cands): if delta_score > i * param_gd * math.log(base_score): idx = [int(idx.split(",")[0]), int(idx.split(",")[1])] detail.append(list(zip([sentence[idx[0]:idx[1]]], \ [corrected_item], \ [idx[0]], \ [idx[1]]))) sentence = sentence[: idx[0]] + \ corrected_item + \ sentence[idx[1]:] else: break return sentence, detail def get_sub_sent(idx, sentence): """ To get the longest sub_sentence which the target char(sentence[idx]) belong to and does not contain any non-charactor symbol(punctuation) """ begin_id = 0 end_id = 0 for i in range(idx,-1,-1): if not is_chinese(sentence[i]): begin_id = i break for i in range(idx, len(sentence)): if not is_chinese(sentence[i]): end_id = i break return [begin_id, end_id] def correct_rule(sentence): """ rule-based correction(strongly depending on POS tagging) input sentence : error sentence output sentence : corrected sentence detail : correction detail(exactly same form as that of correct_stat()) """ detail = [] old_sentence = sentence # # rule for '他她它' here is too simple to apply for present, improvement needed! # # rule for '他她它'('he, she, it') # dict_hsi = { # '他' : {'爸','父','爷','哥','弟','兄','子','叔','伯','他','爹','先生'}, # '她' : {'妈','母','奶','姐','妹','姑姑','婶','姊','妯','娌','她','婆','姨','太太','夫人','娘'}, # '它' : {'它'} # } # for i in range(len(sentence)): # if sentence[i] in dict_hsi.keys(): # for key in dict_hsi.keys():
import os import time import logging import numpy as np from scipy.interpolate import interp1d from scipy.optimize import fsolve from scipy.integrate import solve_ivp, trapz, quad from .utils import InvalidJumpError from .utils import GRAV_ACC, EPS from .utils import compute_dist_from_flat, vel2speed if 'ONHEROKU' in os.environ: plt = None else: import matplotlib.pyplot as plt class Surface(object): """Base class for a 2D curve that represents the cross section of a surface expressed in a standard Cartesian coordinate system.""" # If a user provides x,y data to create the surface that has any x spacings # greater than this value, then the data will be interpolated before the # slope and curvature derivatives are calculated. max_x_spacing = 0.3 # meters def __init__(self, x, y): """Instantiates an arbitrary 2D surface. Parameters ========== x : array_like, shape(n,) The horizontal, x, coordinates of the slope. x[0] should be the left most horizontal position and corresponds to the start of the surface. This should be monotonically increasing and ideally have no adjacent spacings less than 0.3 meter. y : array_like, shape(n,) The vertical, y, coordinates of the slope. y[0] corresponds to the start of the surface. Warns ===== x and y values that have any x spacings larger than 0.3 meters will be resampled at x spacings of approximately 0.3 meters. """ self.x = np.asarray(x) self.y = np.asarray(y) self._initialize_surface() def _initialize_surface(self): self._check_monotonic() self._check_x_spacing() self._initialize_gradients() self._initialize_interpolators() def _check_x_spacing(self): """Resamples x and y at an approximately 0.3 linear spacing if any x spacings are too large.""" if any(np.diff(self.x) > self.max_x_spacing): msg = ('The x values have at least one spacing larger than ' '{:1.1f} meters and will be replace with a finer x spacing ' 'and the y values linearly interpolated at this new ' 'spacing.') logging.warning(msg.format(self.max_x_spacing)) # ensure spacing is less than max_x_spacing total_x = self.x[-1] - self.x[0] num = round(np.ceil(total_x / self.max_x_spacing)) + 1 x = np.linspace(self.x[0], self.x[-1], num=num) kwargs = {'fill_value': 'extrapolate'} interp_y = interp1d(self.x, self.y, **kwargs) y = interp_y(x) self.x = x self.y = y def _initialize_gradients(self): self.slope = np.gradient(self.y, self.x, edge_order=2) slope_deriv = np.gradient(self.slope, self.x, edge_order=2) self.curvature = slope_deriv / (1 + self.slope**2)**1.5 def _initialize_interpolators(self): kwargs = {'fill_value': 'extrapolate'} self.interp_y = interp1d(self.x, self.y, **kwargs) self.interp_slope = interp1d(self.x, self.slope, **kwargs) self.interp_curvature = interp1d(self.x, self.curvature, **kwargs) def _check_monotonic(self): # NOTE: eps solution only works when adding to 0. eps = np.finfo(float).eps count = 0 while any(np.diff(self.x) == 0): idx = np.array(np.where(np.diff(self.x) == 0), dtype=np.int32) self.x[idx+1] += 20*eps count += 1 if count > 10: msg = ('While loop ran for too long: epsilon error') raise InvalidJumpError(msg) if any(np.diff(self.x) < 0): msg = ('x-coordinates are not monotonically increasing.') raise InvalidJumpError(msg) @property def start(self): """Returns the x and y coordinates at the start point of the surface.""" return self.x[0], self.y[0] @property def end(self): """Returns the x and y coordinates at the end point of the surface.""" return self.x[-1], self.y[-1] def shift_coordinates(self, delx, dely): """Shifts the x and y coordinates by delx and dely respectively. This modifies the surface in place.""" self.x += delx self.y += dely # NOTE : Only the interpolators have to be reinitialized, the gradients # don't have to be computed again. For now, this method is here for # consistency among *Surface classes. self._initialize_surface() def distance_from(self, xp, yp): """Returns the shortest distance from point (xp, yp) to the surface. Parameters ========== xp : float The horizontal, x, coordinate of the point. yp : float The vertical, y, coordinate of the point. Returns ======= distance : float The shortest distance from the point to the surface. If the point is above the surface a positive distance is returned, else a negative distance. Note ==== This general implementation can be slow, so implement overloaded ``distance_from()`` methods in subclasses when you can. """ def distance_squared(x): return (xp - x)**2 + (yp - self.interp_y(x))**2 distances = np.sqrt((self.x - xp)**2 + (self.y - yp)**2) x = fsolve(distance_squared, self.x[np.argmin(distances)]) return np.sign(yp - self.interp_y(x)) * np.sqrt(distance_squared(x)) def length(self): """Returns the length of the surface in meters via a numerical line integral.""" def func(x): return np.sqrt(1.0 + self.interp_slope(x)**2) return quad(func, self.x[0], self.x[-1])[0] def area_under(self, x_start=None, x_end=None, interval=0.05): """Returns the area under the curve integrating wrt to the x axis at 0.05 m intervals using the trapezoidal rule.""" if x_start is not None: if x_start < self.start[0] or x_start > self.end[0]: raise ValueError('x_start has to be between start and end.') else: x_start = self.start[0] if x_end is not None: if x_end < self.start[0] or x_end > self.end[0]: raise ValueError('x_end has to be between start and end.') else: x_end = self.end[0] x = np.linspace(x_start, x_end, num=int((x_end - x_start) / interval)) y = self.interp_y(x) return trapz(y, x) def height_above(self, surface): """Returns an array of values giving the height each point in this surface is above the provided surface.""" return self.y - surface.interp_y(self.x) def calculate_efh(self, takeoff_angle, takeoff_point, skier, increment=0.2): """Returns the equivalent fall height for the surface at the specified constant intervals relative to the provided takeoff point or the start of the surface. Parameters ========== takeoff_angle : float Takeoff angle in radians. takeoff_point : 2-tuple of floats x and y coordinates of the point at which the skier leaves the takeoff ramp. skier : Skier A skier instance. increment : float, optional x increment in meters between each calculated landing location. Returns ======= distance_x : ndarray, shape(n,) Horizontal x locations of the equivalent fall height measures spaced at the specified meter intervals relative to leftmost point on the surface or the takeoff point, whichever is greater. efh : ndarray, shape(n,) The equivalent fall height corresponding to each value in ``distance_x``. takeoff_speeds : ndarray, shape(n,) The takeoff speed required to land the corresponding x coordinate. """ if abs(takeoff_angle) > np.pi/2: msg = ('Takeoff angle must be between -pi/2 and pi/2.') raise InvalidJumpError(msg) if self.x[0] < takeoff_point[0] < self.x[-1]: check_takeoff = self.interp_y(takeoff_point[0]) if takeoff_point[1] - check_takeoff < 0: msg = ('Takeoff point cannot be under the surface.') raise InvalidJumpError(msg) elif self.end[0] <= takeoff_point[0]: msg = ('Takeoff point cannot be downhill from surface.') raise InvalidJumpError(msg) # NOTE : If the takeoff point is before the start of the surface and below the # height of the first surface point, the slope between the takeoff point # and the left-most surface point must be less than the takeoff angle. elif (takeoff_point[0] < self.start[0]): slope = (self.start[1] - takeoff_point[1])/(self.start[0] - takeoff_point[0]) if takeoff_angle < np.arctan(slope): msg = ('Takeoff angle does not allow impact on the surface ' 'from above.') raise InvalidJumpError(msg) isGreaterTakeoff = self.x >= takeoff_point[0] x = self.x[isGreaterTakeoff] y = self.y[isGreaterTakeoff] # NOTE : intervals are desired but the x distance is not necessarily # divisible by the increment, so we drop the remainder so it is # divisible and make the range inclusive. remainder = (x[-1] - x[0]) % increment rnge = (x[0], x[-1] - remainder) num_points = int((x[-1] - x[0] - remainder) / increment) + 1 distance_x = np.linspace(*rnge, num=num_points) slope = self.interp_slope(distance_x) slope_angle = np.arctan(slope) kwargs = {'fill_value': 'extrapolate'} interp_y_efh = interp1d(x, y, **kwargs) height_y = interp_y_efh(distance_x) # NOTE : Create a surface under the surface that the skier will impact # if they pass over the primary surface (self). catch_surf = HorizontalSurface(np.min(height_y) - 0.1, abs(distance_x[0] - distance_x[-1] + 2.0), start=distance_x[-1] - 1.0) efh = np.empty(len(distance_x)) efh[:] = np.nan takeoff_speeds = np.full(len(distance_x), np.nan) for i, (x, y, m) in enumerate(zip(distance_x, height_y, slope_angle)): takeoff_speed, impact_vel = \ skier.speed_to_land_at((x, y), takeoff_point, takeoff_angle, catch_surf) # TODO: Use fly to check that it hits the x,y impact_speed, impact_angle = vel2speed(*impact_vel) # NOTE : A nan is inserted if skier surpasses 100 miles per hour if takeoff_speed > 44: msg = ('Impact of the surface from above is only possible until' ' {:.2f} meters. Calculation aborted.') logging.warning(msg.format(x)) break efh[i] = (impact_speed ** 2 * np.sin(m - impact_angle) ** 2 / (2 * GRAV_ACC)) takeoff_speeds[i] = takeoff_speed return distance_x, efh, takeoff_speeds def plot(self, ax=None, **plot_kwargs): """Returns a
customdatasrc Sets the source reference on Chart Studio Cloud for customdata . fill Sets the area to fill with a solid color. Use with `fillcolor` if not "none". "toself" connects the endpoints of the trace (or each segment of the trace if it has gaps) into a closed shape. fillcolor Sets the fill color. Defaults to a half-transparent variant of the line color, marker color, or marker line color, whichever is available. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.scattermapbox.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-format#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Sets hover text elements associated with each (lon,lat) pair If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (lon,lat) coordinates. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . lat Sets the latitude coordinates (in degrees North). latsrc Sets the source reference on Chart Studio Cloud for lat . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. line :class:`plotly.graph_objects.scattermapbox.Line` instance or dict with compatible properties lon Sets the longitude coordinates (in degrees East). lonsrc Sets the source reference on Chart Studio Cloud for lon . marker :class:`plotly.graph_objects.scattermapbox.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . mode Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. selected :class:`plotly.graph_objects.scattermapbox.Selected` instance or dict with compatible properties selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stream :class:`plotly.graph_objects.scattermapbox.Stream` instance or dict with compatible properties subplot Sets a reference between this trace's data coordinates and a mapbox subplot. If "mapbox" (the default value), the data refer to `layout.mapbox`. If "mapbox2", the data refer to `layout.mapbox2`, and so on. text Sets text elements associated with each (lon,lat) pair If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (lon,lat) coordinates. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the icon text font (color=mapbox.layer.paint.text- color, size=mapbox.layer.layout.text-size). Has an effect only when `type` is set to "symbol". textposition Sets the positions of the `text` elements with respects to the (x,y) coordinates. textsrc Sets the source reference on Chart Studio Cloud for text . texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-format#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `lat`, `lon` and `text`. texttemplatesrc Sets the source reference on Chart Studio Cloud for texttemplate . uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. unselected :class:`plotly.graph_objects.scattermapbox.Unselected` instance or dict with compatible properties visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). row : 'all', int or None (default) Subplot row index (starting from 1) for the trace to be added. Only valid if figure was created using `plotly.tools.make_subplots`.If 'all', addresses all rows in the specified column(s). col : 'all', int or None (default) Subplot col index (starting from 1) for the trace to be added. Only valid if figure was created using `plotly.tools.make_subplots`.If 'all', addresses all columns in the specified row(s). Returns ------- Figure """ from plotly.graph_objs import Scattermapbox new_trace = Scattermapbox( below=below, connectgaps=connectgaps, customdata=customdata, customdatasrc=customdatasrc, fill=fill, fillcolor=fillcolor, hoverinfo=hoverinfo, hoverinfosrc=hoverinfosrc, hoverlabel=hoverlabel, hovertemplate=hovertemplate, hovertemplatesrc=hovertemplatesrc, hovertext=hovertext, hovertextsrc=hovertextsrc, ids=ids, idssrc=idssrc, lat=lat, latsrc=latsrc, legendgroup=legendgroup, line=line, lon=lon, lonsrc=lonsrc, marker=marker, meta=meta, metasrc=metasrc, mode=mode, name=name, opacity=opacity, selected=selected, selectedpoints=selectedpoints, showlegend=showlegend, stream=stream, subplot=subplot, text=text, textfont=textfont, textposition=textposition, textsrc=textsrc, texttemplate=texttemplate, texttemplatesrc=texttemplatesrc, uid=uid, uirevision=uirevision, unselected=unselected, visible=visible, **kwargs ) return self.add_trace(new_trace, row=row, col=col) def add_scatterpolar( self, cliponaxis=None, connectgaps=None, customdata=None, customdatasrc=None, dr=None, dtheta=None, fill=None, fillcolor=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hoveron=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, legendgroup=None, line=None, marker=None, meta=None, metasrc=None, mode=None, name=None, opacity=None, r=None, r0=None, rsrc=None, selected=None, selectedpoints=None, showlegend=None, stream=None, subplot=None, text=None, textfont=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, theta=None, theta0=None, thetasrc=None,
will be set if the application can process the # policyConstraints extension. If the application can process the # policyConstraints extension, then the path should not validate # successfully. If the application can not process the policyConstraints # extension, then the path should validate successfully. TestInfo(False, user_constrained_policy_set=[]), ], '4.8.8': [ # Different Policies Test8 # Procedure: Validate Different Policies Test8 EE using the default # settings or open and verify Signed Test Message 192.168.127.12 using the # default settings. # # Expected Result: The authorities-constrained-policy-set and the # user-constrained-policy-set will be empty. The explicit-policy-indicator # will be set if the application can process the policyConstraints # extension. If the application can process the policyConstraints extension # then the path should not validate successfully. If the application can # not process the policyConstraints extension, then the path should # validate successfully. TestInfo(False, user_constrained_policy_set=[]), ], '4.8.9': [ # Different Policies Test9 # Procedure: Validate Different Policies Test9 EE using the default # settings or open and verify Signed Test Message 192.168.3.114 using the # default settings. # # Expected Result: The authorities-constrained-policy-set and the # user-constrained-policy-set will be empty. The explicit-policy-indicator # will be set if the application can process the policyConstraints # extension. If the application can process the policyConstraints # extension, then the path should not validate successfully. If the # application can not process the policyConstraints extension, then the # path should validate successfully. TestInfo(False, user_constrained_policy_set=[]), ], '4.8.10': [ # All Certificates Same Policies Test10 # 1. default settings. The path should validate successfully. TestInfo(True, user_constrained_policy_set=[TEST_POLICY_1, TEST_POLICY_2]), # 2. default settings, but with initial-policy-set = {NIST-test-policy-1}. # The path should validate successfully. TestInfo(True, initial_policy_set=[TEST_POLICY_1], user_constrained_policy_set=[TEST_POLICY_1]), # 3. default settings, but with initial-policy-set = {NIST-test-policy-2}. # The path should validate successfully. TestInfo(True, initial_policy_set=[TEST_POLICY_2], user_constrained_policy_set=[TEST_POLICY_2]), ], '4.8.11': [ # All Certificates AnyPolicy Test11 # 1. default settings. The path should validate successfully. TestInfo(True, user_constrained_policy_set=[ANY_POLICY]), # 2. default settings, but with initial-policy-set = {NIST-test-policy-1}. # The path should validate successfully. TestInfo(True, initial_policy_set=[TEST_POLICY_1], user_constrained_policy_set=[TEST_POLICY_1]), ], '4.8.12': [ # Different Policies Test12 # Procedure: Validate Different Policies Test12 EE using the default # settings or open and verify Signed Test Message 172.16.58.3 using the # default settings. # # Expected Result: The authorities-constrained-policy-set and the # user-constrained-policy-set will be empty. The explicit-policy-indicator # will be set if the application can process the policyConstraints # extension. If the application can process the policyConstraints # extension, then the path should not validate successfully. If the # application can not process the policyConstraints extension, then the # path should validate successfully. TestInfo(False, user_constrained_policy_set=[]), ], '4.8.13': [ # All Certificates Same Policies Test13 # 1. default settings, but with initial-policy-set = {NIST-test-policy-1}. # The path should validate successfully. TestInfo(True, initial_policy_set=[TEST_POLICY_1], user_constrained_policy_set=[TEST_POLICY_1]), # 2. default settings, but with initial-policy-set = {NIST-test-policy-2}. # The path should validate successfully. TestInfo(True, initial_policy_set=[TEST_POLICY_2], user_constrained_policy_set=[TEST_POLICY_2]), # 3. default settings, but with initial-policy-set = {NIST-test-policy-3}. # The path should validate successfully. TestInfo(True, initial_policy_set=[TEST_POLICY_3], user_constrained_policy_set=[TEST_POLICY_3]), ], '4.8.14': [ # AnyPolicy Test14 # 1. default settings, but with initial-policy-set = {NIST-test-policy-1}. # The path should validate successfully. TestInfo(True, initial_policy_set=[TEST_POLICY_1], user_constrained_policy_set=[TEST_POLICY_1]), # 2. default settings, but with initial-policy-set = {NIST-test-policy-2}. # The path should not validate successfully. TestInfo(False, initial_policy_set=[TEST_POLICY_2], user_constrained_policy_set=[]), ], '4.8.15': [ # User Notice Qualifier Test15 # Procedure: Validate User Notice Qualifier Test15 EE using the default # settings or open and verify Signed Test Message 172.16.58.3 using the # default settings. # # Expected Result: The authorities-constrained-policy-set will be # {NIST-test-policy-1} and the explicit-policy-indicator will be the same # as the initial-explicit-policy indicator. If the initial-policy-set is # any-policy or otherwise includes NIST-test-policy-1, then the # user-constrained-policy-set will be {NIST-test-policy-1}. If not, the # user-constrained-policy-set will be empty. If the initial-explicit-policy # indicator is set and the initial-policy-set does not include # NIST-test-policy-1, then the path should be rejected, otherwise it should # validate successfully. If the path validates successfully, then the # application should display the user notice. TestInfo(True, user_constrained_policy_set=[TEST_POLICY_1]), ], '4.8.16': [ # User Notice Qualifier Test16 # Procedure: Validate User Notice Qualifier Test16 EE using the default # settings or open and verify Signed Test Message 172.16.58.3 using the # default settings. # # Expected Result: The authorities-constrained-policy-set will be # {NIST-test-policy-1} and the explicit-policy-indicator will be the same # as the initial-explicit-policy indicator. If the initial-policy-set is # any-policy or otherwise includes NIST-test-policy-1, then the # user-constrained-policy-set will be {NIST-test-policy-1}. If not, the # user-constrained-policy-set will be empty. If the initial-explicit-policy # indicator is set and the initial-policy-set does not include # NIST-test-policy-1, then the path should be rejected, otherwise it should # validate successfully. If the path validates successfully, then the # application should display the user notice associated with # NIST-test-policy-1. The user notice associated with NIST-test-policy-2 # should not be displayed. TestInfo(True, user_constrained_policy_set=[TEST_POLICY_1]), ], '4.8.17': [ # User Notice Qualifier Test17 # Procedure: Validate User Notice Qualifier Test17 EE using the default # settings or open and verify Signed Test Message 172.16.58.3 using the # default settings. # # Expected Result: The authorities-constrained-policy-set will be # {NIST-test-policy-1} and the explicit-policy-indicator will be the same # as the initial-explicit-policy indicator. If the initial-policy-set is # any-policy or otherwise includes NIST-test-policy-1, then the # user-constrained-policy-set will be {NIST-test-policy-1}. If not, the # user-constrained-policy-set will be empty. If the initial-explicit-policy # indicator is set and the initial-policy-set does not include # NIST-test-policy-1, then the path should be rejected, otherwise it should # validate successfully. If the path validates successfully, then the # application should display the user notice associated with anyPolicy. TestInfo(True, user_constrained_policy_set=[TEST_POLICY_1]), ], '4.8.18': [ # User Notice Qualifier Test18 # 1. default settings, but with initial-policy-set = {NIST-test-policy-1}. # The path should validate successfully and the qualifier associated with # NIST-test-policy-1 in the end entity certificate should be displayed. TestInfo(True, initial_policy_set=[TEST_POLICY_1], user_constrained_policy_set=[TEST_POLICY_1]), # 2. default settings, but with initial-policy-set = {NIST-test-policy-2}. # The path should validate successfully and the qualifier associated with # anyPolicy in the end entity certificate should be displayed. TestInfo(True, initial_policy_set=[TEST_POLICY_2], user_constrained_policy_set=[TEST_POLICY_2]), ], '4.8.19': [ # User Notice Qualifier Test19 # Procedure: Validate User Notice Qualifier Test19 EE using the default # settings or open and verify Signed Test Message 192.168.3.11 using the # default settings. # # Expected Result: The authorities-constrained-policy-set will be # {NIST-test-policy-1} and the explicit-policy-indicator will be the same # as the initial-explicit-policy indicator. If the initial-policy-set is # any-policy or otherwise includes NIST-test-policy-1, then the # user-constrained-policy-set will be {NIST-test-policy-1}. If not, the # user-constrained-policy-set will be empty. If the initial-explicit-policy # indicator is set and the initial-policy-set does not include # NIST-test-policy-1, then the path should be rejected, otherwise it should # validate successfully. Since the explicitText exceeds the maximum size # of 200 characters, the application may choose to reject the certificate. # If the application accepts the certificate, display of the user notice is # optional. TestInfo(True, user_constrained_policy_set=[TEST_POLICY_1]), ], '4.8.20': [ # CPS Pointer Qualifier Test20 # Procedure: Validate CPS Pointer Qualifier Test20 EE using the default # settings or open and verify Signed Test Message 6.2.2.85 using the # default settings. (If possible, it is recommended that this test be run # with the initial-explicit-policy indicator set. If this can not be done, # manually check that the authorities-constrained-policy-set and # user-constrained-policy-set are correct.) # # Expected Result: The authorities-constrained-policy-set will be # {NIST-test-policy-1} and the explicit-policy-indicator will be the same # as the initial-explicit-policy indicator. If the initial-policy-set is # any-policy or otherwise includes NIST-test-policy-1, then the # user-constrained-policy-set will be {NIST-test-policy-1}. If not, the # user-constrained-policy-set will be empty. If the initial-explicit-policy # indicator is set and the initial-policy-set does not include # NIST-test-policy-1, then the path should be rejected, otherwise it should # validate
numbers) """ # Note: can also get usd_attr.GetTimeSamples() prim = stage.GetPrimAtPath(scene_path) if UsdGeom.Points(prim): geom_points = UsdGeom.Points(prim) result = geom_points.GetPointsAttr().GetBracketingTimeSamples(target_time) elif UsdGeom.PointInstancer(prim): instancer = UsdGeom.PointInstancer(prim) result = instancer.GetPositionsAttr().GetBracketingTimeSamples(target_time) else: raise TypeError('The prim is neither UsdGeomPoints nor UsdGeomPointInstancer.') return result def add_pointcloud(stage, points, scene_path, colors=None, time=None, points_type='point_instancer'): r"""Add a pointcloud to an existing USD stage. Create a pointcloud represented by point instances of a sphere centered at each point coordinate. The stage is modified but not saved to disk. Args: stage (Usd.Stage): Stage onto which to add the pointcloud. points (torch.FloatTensor): Pointcloud tensor containing ``N`` points of shape ``(N, 3)``. scene_path (str): Absolute path of pointcloud within the USD file scene. Must be a valid Sdf.Path. colors (torch.FloatTensor, optional): Color tensor corresponding each point in the pointcloud tensor of shape ``(N, 3)``. colors only works if points_type is 'usd_geom_points'. time (convertible to float, optional): Positive integer defining the time at which the supplied parameters correspond to. points_type (str): String that indicates whether to save pointcloud as UsdGeomPoints or PointInstancer. 'usd_geom_points' indicates UsdGeomPoints and 'point_instancer' indicates PointInstancer. Please refer here for UsdGeomPoints: https://graphics.pixar.com/usd/docs/api/class_usd_geom_points.html and here for PointInstancer https://graphics.pixar.com/usd/docs/api/class_usd_geom_point_instancer.html. Default: 'point_instancer'. Returns: (Usd.Stage) Example: >>> stage = create_stage('./new_stage.usd') >>> points = torch.rand(100, 3) >>> stage = add_pointcloud(stage, points, '/World/PointClouds/pointcloud_0') >>> stage.Save() """ scene_path = Sdf.Path(scene_path) if time is None: time = Usd.TimeCode.Default() if stage.GetPrimAtPath(scene_path): points_prim = stage.GetPrimAtPath(scene_path) else: if points_type == 'point_instancer': points_prim = stage.DefinePrim(scene_path, 'PointInstancer') elif points_type == 'usd_geom_points': points_prim = stage.DefinePrim(scene_path, 'Points') else: raise ValueError('Expected points_type to be "usd_geom_points" or "point_instancer", ' f'but got "{points_type}".') if points_type == 'point_instancer': geom_points = UsdGeom.PointInstancer(points_prim) sphere = UsdGeom.Sphere.Define(stage, f'{scene_path}/sphere') sphere.GetRadiusAttr().Set(0.5) geom_points.CreatePrototypesRel().SetTargets([sphere.GetPath()]) elif points_type == 'usd_geom_points': geom_points = UsdGeom.Points(points_prim) # Calculate default point scale bounds = points.max(dim=0)[0] - points.min(dim=0)[0] min_bound = min(bounds) scale = (min_bound / points.size(0) ** (1 / 3)).item() # Generate instancer parameters positions = points.detach().cpu().tolist() scales = np.asarray([scale, ] * points.size(0)) if points_type == 'point_instancer': indices = [0] * points.size(0) # Populate point instancer geom_points.GetProtoIndicesAttr().Set(indices, time=time) geom_points.GetPositionsAttr().Set(positions, time=time) scales = [(scale,) * 3] * points.size(0) geom_points.GetScalesAttr().Set(scales, time=time) elif points_type == 'usd_geom_points': # Populate UsdGeomPoints geom_points.GetPointsAttr().Set(points.numpy(), time=time) geom_points.GetWidthsAttr().Set(Vt.FloatArray.FromNumpy(scales), time=time) if colors is not None and points_type == 'usd_geom_points': assert colors.shape == points.shape, 'Colors and points must have the same shape.' geom_points.GetDisplayColorAttr().Set(colors.numpy(), time=time) return stage def export_pointcloud(file_path, pointcloud, scene_path='/World/PointClouds/pointcloud_0', color=None, time=None, points_type='point_instancer'): r"""Export a single pointcloud to a USD scene. Export a single pointclouds to USD. The pointcloud will be added to the USD stage and represented by point instances of a sphere centered at each point coordinate. The stage is then saved to disk. Args: file_path (str): Path to usd file (\*.usd, \*.usda). pointcloud (torch.FloatTensor): Pointcloud tensor containing ``N`` points of shape ``(N, 3)``. scene_path (str, optional): Absolute path of pointcloud within the USD file scene. Must be a valid Sdf.Path. If no path is provided, a default path is used. color (torch.FloatTensor, optional): Color tensor corresponding each point in the pointcloud tensor of shape ``(N, 3)``. colors only works if points_type is 'usd_geom_points'. time (convertible to float): Positive integer defining the time at which the supplied parameters correspond to. points_type (str): String that indicates whether to save pointcloud as UsdGeomPoints or PointInstancer. 'usd_geom_points' indicates UsdGeomPoints and 'point_instancer' indicates PointInstancer. Please refer here for UsdGeomPoints: https://graphics.pixar.com/usd/docs/api/class_usd_geom_points.html and here for PointInstancer https://graphics.pixar.com/usd/docs/api/class_usd_geom_point_instancer.html. Default: 'point_instancer'. Returns: (Usd.Stage) Example: >>> points = torch.rand(100, 3) >>> stage = export_pointcloud('./new_stage.usd', points) """ stage = export_pointclouds(file_path, [pointcloud], [scene_path], colors=[color], times=[time], points_type=points_type) return stage def export_pointclouds(file_path, pointclouds, scene_paths=None, colors=None, times=None, points_type='point_instancer'): r"""Export one or more pointclouds to a USD scene. Export one or more pointclouds to USD. The pointclouds will be added to the USD stage and represented by point instances of a sphere centered at each point coordinate. The stage is then saved to disk. Args: file_path (str): Path to usd file (\*.usd, \*.usda). pointclouds (list of torch.FloatTensor): List of pointcloud tensors of length ``N`` defining N pointclouds. scene_paths (list of str, optional): Absolute path(s) of pointcloud(s) within the USD file scene. Must be a valid Sdf.Path. If no path is provided, a default path is used. times (list of int): Positive integers defining the time at which the supplied parameters correspond to. colors (list of tensors, optional): Lits of RGB colors of length ``N``, each corresponding to a pointcloud in the pointcloud list. colors only works if points_type is 'usd_geom_points'. points_type (str): String that indicates whether to save pointcloud as UsdGeomPoints or PointInstancer. 'usd_geom_points' indicates UsdGeomPoints and 'point_instancer' indicates PointInstancer. Please refer here for UsdGeomPoints: https://graphics.pixar.com/usd/docs/api/class_usd_geom_points.html and here for PointInstancer https://graphics.pixar.com/usd/docs/api/class_usd_geom_point_instancer.html. Default: 'point_instancer'. Returns: (Usd.Stage) Example: >>> points = torch.rand(100, 3) >>> stage = export_pointcloud('./new_stage.usd', points) """ if scene_paths is None: scene_paths = [f'/World/PointClouds/pointcloud_{i}' for i in range(len(pointclouds))] if times is None: times = [Usd.TimeCode.Default()] * len(scene_paths) if colors is None: colors = [None] * len(scene_paths) assert len(pointclouds) == len(scene_paths) stage = create_stage(file_path) for scene_path, points, color, time in zip(scene_paths, pointclouds, colors, times): add_pointcloud(stage, points, scene_path, color, time=time, points_type=points_type) stage.Save() return stage # VoxelGrid Functions def import_voxelgrid(file_path, scene_path, time=None): r"""Import a single voxelgrid from a USD file. Assumes that the USD voxelgrid is defined by a point instancer. Converts the coordinates of each point instance to an occupied voxel. The output grid size is determined by the `grid_size` primvar. If not specified, grid size will be determined by the axis with the largest number of occupied voxels. The output voxelgrid will be of shape ``[grid_size, grid_size, grid_size]``. Args: file_path (str): Path to usd file (\*.usd, \*.usda). scene_path (str): Scene path within the USD file indicating which PointInstancer primitive to import as a voxelgrid. time (convertible to float, optional): Positive integer indicating the time at which to retrieve parameters. Returns: torch.BoolTensor Example: >>> voxelgrid = torch.rand(32, 32, 32) > 0.5 >>> stage = export_voxelgrid('./new_stage.usd', voxelgrid, scene_path='/World/voxelgrid') >>> voxelgrid_imp = import_voxelgrid(file_path='./new_stage.usd', ... scene_path='/World/voxelgrid') >>> voxelgrid_imp.shape torch.Size([32, 32, 32]) """ if time is None: time = Usd.TimeCode.Default() voxelgrid_list = import_voxelgrids(file_path, [scene_path], times=[time]) return voxelgrid_list[0] def import_voxelgrids(file_path, scene_paths=None, times=None): r"""Import one or more voxelgrids from a USD file. Assumes that the USD voxelgrid is defined by a point instancer. Converts the coordinates of each point instance to an occupied voxel. The output grid size is determined from the `grid_size` primvar. If not specified, grid size will be determined by the axis with the largest number of occupied voxels. The output voxelgrid will be of shape ``[grid_size, grid_size, grid_size]``. Args: file_path (str): Path to usd file (\*.usd, \*.usda). scene_paths (list of str, optional): Scene path(s) within the USD file indicating which PointInstancer primitive(s) to import. If None, will return all pointclouds found based on PointInstancer prims with `kaolin_type` primvar set to `VoxelGrid`. times (list of int): Positive integers indicating the time at which to retrieve parameters. Returns: (list of torch.BoolTensor) Example: >>> voxelgrid_1 = torch.rand(32, 32, 32) > 0.5 >>> voxelgrid_2 = torch.rand(32, 32, 32) > 0.5 >>> stage = export_voxelgrids('./new_stage.usd', [voxelgrid_1, voxelgrid_2]) >>> voxelgrid_imp = import_voxelgrids(file_path='./new_stage.usd') >>> len(voxelgrid_imp) 2 >>> voxelgrid_imp[0].shape torch.Size([32, 32, 32]) """ assert os.path.exists(file_path) stage = Usd.Stage.Open(file_path) # If scene path not specified, find all point clouds if scene_paths is None: scene_paths = [] for p in stage.Traverse(): is_point_instancer = UsdGeom.PointInstancer(p) if is_point_instancer and p.GetAttribute('primvars:kaolin_type').Get() == 'VoxelGrid': scene_paths.append(p.GetPath()) if times is None: times = [Usd.TimeCode.Default()] * len(scene_paths) voxelgrids = [] for scene_path, time in zip(scene_paths, times): prim = stage.GetPrimAtPath(scene_path) assert prim, f'The prim at {scene_path} does not exist.' instancer = UsdGeom.PointInstancer(prim) assert instancer # Currently only support pointclouds from point instancers voxel_indices = torch.tensor(instancer.GetPositionsAttr().Get(time=time), dtype=torch.long) bounds = voxel_indices.max(dim=0)[0] max_bound = bounds.max() grid_size = prim.GetAttribute('primvars:grid_size').Get(time=time) if grid_size is not None: assert max_bound < grid_size else: grid_size = max_bound voxelgrid = torch.zeros([grid_size, grid_size, grid_size], dtype=torch.bool) voxelgrid[voxel_indices[:, 0], voxel_indices[:, 1], voxel_indices[:, 2]] = 1. voxelgrids.append(voxelgrid) return voxelgrids def add_voxelgrid(stage, voxelgrid, scene_path, time=None): r"""Add a voxelgrid to an existing USD stage. Add a voxelgrid where occupied voxels are defined by non-zero
EXACT same) : >>> model = nn.models.NeuralNetwork() >>> model.add(nn.layers.Flatten()) >>> model.add(nn.layers.Dense(784, 64, activation = nn.layers.ReLU())) >>> model.add(nn.layers.Dense(64, 32, activation = nn.layers.ReLU())) >>> model.add(nn.layers.Dense(32, 10, activation = nn.layers.ReLU())) Obviously we want to finalize our model for good practice : >>> model.finalize(loss = nn.loss.CrossEntropy(), optimizer = nn.optimizers.Adam()) and we can enter in the weights & biases using the enter_parameters() : >>> model.enter_parameters(params) #must be params given from the give_parameters() method and train! : >>> model.train(X_train, y_train, epochs = 100) #let's try 100 epochs this time The reason this is such a big deal is because we don't have to start training from scratch all over again. The model will not have to start from 0% accuracy, but may start with 80% given the params belonging to our partially-trained model we loaded from the pickle file. This is of course not a big deal for something like MNIST but will be for bigger model architectures, or datasets. Of course there's a lot more things we could've changed, but I think that's pretty good for now! """ def __init__(self, layers=None): from .layers import Dense, Flatten, Softmax, Dropout from .loss import CrossEntropy, softmax from .optimizers import Adam, SGD from .utils_nn import revert_one_hot_nn, revert_softmax_nn self.Dense = Dense self.Flatten = Flatten self.Softmax = Softmax self.Dropout = Dropout self.CrossEntropy = CrossEntropy self.softmax = softmax self.Adam = Adam self.SGD = SGD self.revert_one_hot = revert_one_hot_nn self.revert_softmax = revert_softmax_nn self.layers = [] if layers: # self.layers = layers for layer in layers: self.layers.append(layer) if layer.activation: self.layers.append(layer.activation) self.finalized = False self.sgd_indices = ... self.adam_t = 0 warnings.filterwarnings("ignore", category=RuntimeWarning) warnings.filterwarnings("ignore", category=np.ComplexWarning) def num_parameters(self): num_params = 0 for layer in self.layers: if isinstance(layer, self.Dense): num_params += ( np.product(layer.parameters["weights"].shape) + layer.parameters["bias"].shape ) return num_params def enter_parameters(self, parameters): for layer_num in range(len(self.layers)): try: if ( parameters[layer_num]["weights"] == None and parameters[layer_num]["bias"] == None ): continue except Exception: self.layers[layer_num].parameters["weights"] = parameters[ layer_num ]["weights"] self.layers[layer_num].parameters["bias"] = parameters[ layer_num ]["bias"] def give_parameters(self): parameters = [] for layer in self.layers: try: parameters.append( { "weights": layer.parameters["weights"], "bias": layer.parameters["bias"], } ) except Exception: parameters.append({"weights": None, "bias": None}) return parameters def pickle_params(self, FILE_NAME="NeuralNetwork_learnt_parameters"): parameters = NeuralNetwork.give_parameters(self) import pickle with open(FILE_NAME + ".pickle", "wb") as f: pickle.dump(parameters, f, protocol=pickle.HIGHEST_PROTOCOL) def add(self, layer): self.layers.append(layer) if layer.activation: self.layers.append(layer.activation) def forward(self, inputs): for layer in self.layers: if isinstance(layer, self.Softmax): continue inputs = layer.forward(inputs) return inputs def backward(self, grad): for layer in reversed(self.layers): if isinstance(layer, self.Softmax): continue grad = layer.backward(grad) return grad def finalize(self, loss, optimizer): """Both of these have to be the classes for the loss and optimizations""" self.loss, self.optimizer = loss, optimizer self.finalized = True def _sgd_updating_indices(self): """only call if the loss is SGD""" for layer_num in range(len(self.layers)): layer = self.layers[layer_num] layer.indices = self.sgd_indices self.layers[layer_num] = layer def _chunk_train(self, data_chunk, label_chunk): """the actual training code!""" predicted = NeuralNetwork.forward(self, data_chunk) for layer_num in range(len(self.layers)): if self.layers[layer_num].nesterov: """nesterov accel""" try: self.layers[layer_num].parameters["weights"] += ( self.optimizer.momentum * self.optimizer.momentum_params[ "weights" + str(layer_num) ] ) self.layers[layer_num].parameters["bias"] += ( self.optimizer.momentum * self.optimizer.momentum_params[ "bias" + str(layer_num) ] ) except Exception: pass if isinstance(self.optimizer, self.Adam): self.adam_t += 1 self.optimizer.t = self.adam_t if isinstance(self.optimizer, self.SGD): """select indices for the gradients and update all layers""" start_index = np.random.randint(len(predicted) - 3) self.sgd_indices = slice(start_index, len(predicted) - 1) NeuralNetwork._sgd_updating_indices(self) grad = self.loss.grad( label_chunk[self.sgd_indices], predicted[self.sgd_indices] ) # calculate the dL/dY NeuralNetwork.backward(self, grad) self.optimizer.update(self.layers) def train(self, x_train, y_train, epochs=1, batch_size=32, show_loop=True): if not self.finalized: raise ValueError( "This model isn't finalized. Call it through model.finalize()." ) if isinstance(self.layers[-1], self.Softmax) and not isinstance( self.loss, self.CrossEntropy ): raise ValueError( "If the last layer activation is softmax, you must be using CrossEntropy loss." ) if isinstance(self.loss, self.CrossEntropy) and not isinstance( self.layers[-1], self.Softmax ): raise ValueError( "If the loss function is crossentropy, you must be using Softmax as your last layer." ) x_train, y_train = np.array(x_train), np.array(y_train) if len(y_train.shape) != 2: raise ValueError("y_train must be 2D.") if ( not isinstance(self.layers[0], self.Flatten) and len(x_train.shape) > 2 ): raise ValueError( "There must be a Flatten layer in the beginning if you are working with data that is not " "a matrix (e.g. something that is 60k * 28 * 28 not 60k * 784)" ) # perform batch operations if batch_size > x_train.shape[0]: warnings.warn( "Batch size is more than the number of samples, so we have set batch_size = 1 and are just performing full batch gradient descent." ) batch_size = 1 x_train = np.array_split(x_train, batch_size) y_train = np.array_split(y_train, batch_size) self.optimizer.setup(self.layers) epochs = ( tqdm(range(epochs), position=0, ncols=100) if show_loop else range(epochs) ) evaluation_batch = random.randint(0, len(x_train) - 1) evaluation_method = ( NeuralNetwork.regression_evaluate if self.loss.type_regression else NeuralNetwork.categorical_evaluate ) for epoch in epochs: Parallel(prefer="threads")( delayed(NeuralNetwork._chunk_train)( self, data_chunk, label_chunk ) for data_chunk, label_chunk in zip(x_train, y_train) ) if show_loop: epochs.set_description( "Acc : " + str( round( evaluation_method( self, x_train[evaluation_batch], y_train[evaluation_batch], ) * 100, 2, ) ) + "%" ) # adjust dropout for layer_num in range(len(self.layers)): """adjust the weights and biases if there is dropout""" try: layer = self.layers[layer_num] if isinstance(layer, self.Dropout): receiving_layer = self.layers[ layer_num + 1 ] # this is the layer that receives the dropout receiving_layer.parameters["weights"] *= 1 - layer.dr receiving_layer.parameters["bias"] *= 1 - layer.dr self.layers[layer_num + 1] = receiving_layer except Exception: pass def full_batch_train(self, x_train, y_train, epochs=1, show_loop=True): if not self.finalized: raise ValueError( "This model isn't finalized. Call it through model.finalize()." ) if isinstance(self.layers[-1], self.Softmax) and not isinstance( self.loss, self.CrossEntropy ): raise ValueError( "If the last layer activation is softmax, you must be using CrossEntropy loss." ) if isinstance(self.loss, self.CrossEntropy) and not isinstance( self.layers[-1], self.Softmax ): raise ValueError( "If the loss function is crossentropy, you must be using Softmax as your last layer." ) x_train, y_train = np.array(x_train), np.array(y_train) if len(y_train.shape) != 2: raise ValueError("y_train must be 2D.") if ( not isinstance(self.layers[0], self.Flatten) and len(x_train.shape) > 2 ): raise ValueError( "There must be a Flatten layer in the beginning if you are working with data that is not " "a matrix (e.g. something that is 60k * 28 * 28 not 60k * 784)" ) epochs = ( tqdm(range(epochs), position=0, ncols=100) if show_loop else range(epochs) ) evaluation_method = ( NeuralNetwork.regression_evaluate if self.loss.type_regression else NeuralNetwork.categorical_evaluate ) self.optimizer.setup(self.layers) # setup the optimizer for epoch in epochs: NeuralNetwork._chunk_train(self, x_train, y_train) if show_loop == True: epochs.set_description( "Acc : " + str( round( evaluation_method(self, x_train, y_train) * 100, 2 ) ) + "%" ) # adjust dropout for layer_num in range(len(self.layers)): """adjust the weights and biases if there is dropout""" try: layer = self.layers[layer_num] if isinstance(layer, self.Dropout): receiving_layer = self.layers[ layer_num + 1 ] # this is the layer that receives the dropout receiving_layer.parameters["weights"] *= 1 - layer.dr receiving_layer.parameters["bias"] *= 1 - layer.dr self.layers[layer_num + 1] = receiving_layer except Exception: pass def mini_batch_train( self, x_train, y_train, epochs=1, N=0.2, show_loop=True ): if not self.finalized: raise ValueError( "This model isn't finalized. Call it through model.finalize()." ) if isinstance(self.layers[-1], self.Softmax) and not isinstance( self.loss, self.CrossEntropy ): raise ValueError( "If the last layer activation is softmax, you must be using CrossEntropy loss." ) if isinstance(self.loss, self.CrossEntropy) and not isinstance( self.layers[-1], self.Softmax ): raise ValueError( "If the loss function is crossentropy, you must be using Softmax as your last layer." ) x_train, y_train = np.array(x_train), np.array(y_train) if len(y_train.shape) != 2: raise ValueError("y_train must be 2D.") if ( not isinstance(self.layers[0], self.Flatten) and len(x_train.shape) > 2 ): raise ValueError( "There must be a Flatten layer in the beginning if you are working with data that is not " "a matrix (e.g. something that is 60k * 28 * 28 not 60k * 784)" ) if N == 1: raise ValueError( "N cannot be equal to 1, has to be between 0 and 1." ) N *= len(x_train) N = round(N) epochs = ( tqdm(range(epochs), position=0, ncols=100) if show_loop else range(epochs) ) evaluation_method = ( NeuralNetwork.regression_evaluate if self.loss.type_regression else NeuralNetwork.categorical_evaluate ) self.optimizer.setup(self.layers) for epoch in epochs: # set up the mini-batch start_index = random.randint(0, len(x_train) - N - 1) end_index =
- all need looped over... - settings_inputs to be moved to switchboard print Dir[l].split('/')[-2] ntor = setting_ntor[1] #requested ntor mode number !!! NEEDS A FUNCTION !!! #Create global 2D diagnostics folder and extract current simulation name DirEquil2D = CreateNewFolder(Dir[l],'2DEquil_Plots/') DirString = Dir[l].split('/')[-2] SubString = DirString.split('_')[-1] #Extract Kstep [-] & Time [ms] arrays from SEQ.harmonics & toroidal harmonics from energy_n.txt SEQArray, KStepArray, TimeArray, ntorArray = ExtractMEGA_DataRanges(Dir[l], DataFile='harmonics') try: DeltaKstep = KStepArray[1]-KStepArray[0] #KStep Interval [-] except: DeltaKstep = KStepArray[0] try: DeltaTime = TimeArray[1]-TimeArray[0] #Time Interval [ms] except: DeltaTime = TimeArray[0] KStepMod = len(KStepArray)/len(SEQArray) #KStep indices per SEQ [-] ntor_tot = ntorArray[2] #Total number of positive & negative modes (Inc n=0) ntor_pos = ntorArray[1] #Number of positive modes (Ignoring n=0) ntor0Idx = ntorArray[0] #ntor = 0 index, contains (var0 + dvar) data #Extract toroidal mode number array index (ntorIdx) from requested mode number (ntor) ntorIdx = Set_ntorIdx(ntor,ntorArray) #Set SEQ and Kstep ranges as requested - else default to max range KStepRange,KStepStep = Set_KStepRange(KStepArray,setting_kstep) SEQRange = Set_SEQRange(setting_SEQ) #Extract relevant spatial normalisation factors NormVariables,NormValues,NormUnits = ExtractMEGA_Normalisations(Dir[l]) ZMin = NormValues[NormVariables.index('bottom_sim')]; ZMax = NormValues[NormVariables.index('top_sim')] Zgeo = NormValues[NormVariables.index('zaxis')]; Rgeo = NormValues[NormVariables.index('raxis')] for j in range(SEQRange[0],SEQRange[1]): #Set SEQIndex for current simulation folder SEQ = j #Extract and plot data for each timestep for i in tqdm( range(KStepRange[0],KStepRange[1],KStepStep) ): #Set TimeIndex and employ to extract KStep and Time KStepIdx = i; #[-] IdxOffset = SEQ*KStepMod #[-] KStep = KStepArray[KStepIdx+IdxOffset] #[-] Time = TimeArray[KStepIdx+IdxOffset] #[ms] #Extract ALL VARIABLES FOR SINGLE KSTEP from Harmonics, it contains: #HarmonicsData.rho_pol [1D array] :: HarmonicsData.q_psi [1D array] #HarmonicsData.kst [1D array] :: HarmonicsData.time [1D array] #HarmonicsData.Variables[i]: [3D Array] of shape [mpol][ntor][lpsi][A/B] for a single kstep HarmonicsData = ExtractMEGA_Harmonics(Dir[l],'All',ntor_tot,KStepIdx,SEQ,'3D') #Extract data resolution and poloidal axes from repository .dat files #DataShape contains data resolution of form: [mpol,ntor,lpsi,ltheta] Crdr,Crdz = ExtractMEGA_PoloidalGrid(DirRepository,HarmonicsData) Crdz = [Crdz[x]+ZMin for x in range(0,len(Crdz))] #Offset vertical axis such that Z0 = Zgeo DataShape = ExtractMEGA_DataShape(HarmonicsData) mpol_res = DataShape[0]; ntor_res = DataShape[1] lpsi_res = DataShape[2]; ltheta_res = DataShape[3] #For each requested variable at the current Kstep for j in range(0,len(variables)): #Create global 2D diagnostics folder and extract current simulation name DirMovie = CreateNewFolder(DirEquil2D,variables[j]+'_n'+str(ntor)) #Select variable and Merge 3D Data into 2D poloidal slice PoloidalImage = Extract_PoloidalImage(HarmonicsData,variables[j],ntorIdx) #==========# #Create figure and define Title, Legend, Axis Labels etc... fig,ax = figure(subplots=[1,1], aspectratio=image_aspectratio) #Extract Variablelabel and define figure texts VariableLabel = VariableLabelMaker(variables[j]) Title = VariableLabel+', n='+str(ntor)+', t='+str(round(Time,3))+' ms \n Simulation: '+DirString Xlabel,Ylabel = 'Radius $R$ [m]', 'Height $Z$ [m]' Legend = list() #Plot 2D poloidally resolved figure and beautify im = ax.contourf(Crdr, Crdz, PoloidalImage, 100); plt.axis('scaled') im2 = ax.contour(Crdr, Crdz, PoloidalImage, 20); plt.axis('scaled') cbar = Colourbar(ax,im,VariableLabel,5) ImageOptions(fig,ax,Xlabel,Ylabel,Title,Legend) #Save 2D poloidally resolved figure for current simulation SaveString = variables[j]+'_n'+str(ntor)+'_kstep'+str('%07.f'%KStep)+ext plt.savefig(DirMovie+SaveString) # plt.show() plt.close('all') #==========# if write_ASCII == True: #Create directory to hold ASCII data DirASCII = CreateNewFolder(DirEquil2D,'2DEquil_Data/') DirASCII_Var = CreateNewFolder(DirASCII,variables[j]+'/') #Set ASCII data file name string and header SaveString = variables[j]+'_n'+str(ntor)+'_t='+str(round(Time,3))+'.dat' Header = [VariableLabel,' ', 'R',lpsi_res, 'theta', ltheta_res, '\n'] #Write 1D data header, then 2D PoloidalImage WriteFile_ASCII(Header, DirASCII_Var+SaveString, 'w', 'RSV') WriteFile_ASCII(PoloidalImage, DirASCII_Var+SaveString, 'a', write_ASCIIFormat) #endif #endfor - Variable loop #!!! AUTO CREATE MOVIES FOR EACH VARIABLE HERE !!! #!!! AUTO CREATE MOVIES FOR EACH VARIABLE HERE !!! #endfor - Kstep loop #endfor - SEQ loop #endfor - dir loop #endif #==========##==========##==========# #==========##==========##==========# if any([savefig_2Dequilibrium,savefig_2Dequilmovie]) == True: print '--------------------------------' print '2D Equilibrium Analysis Complete' print '--------------------------------' #endif #====================================================================# #====================================================================# #====================================================================# #TEMPORALLY/SPECTRALLY RESOLVED DIAGNOSTICS# #====================================================================# #====================================================================# #1D POLOIDAL SPECTRUM ANALYSIS# #====================================================================# if savefig_1Dpolspectrum == True: #For each detected simulation folder for l in range(0,len(Dir)): #DEVELOPMENT SETTINGS - all need looped over... - settings_inputs to be moved to switchboard print Dir[l].split('/')[-2] ntor = setting_ntor[1] #requested ntor mode number !!! NEEDS A FUNCTION !!! variable = SpectralVariable #requested response variable !!! Need to impliment vrad etc... # ~~~ TESTING PURPOSES TO BE MOVED TO SWITCHBOARD TESTING PURPOSES ~~~~ # ntor = -2 setting_mpol = [3,10,1] #[5,9,1] #[-9,-5,1] # ~~~ TESTING PURPOSES TO BE MOVED TO SWITCHBOARD TESTING PURPOSES ~~~~ # #Create global 2D diagnostics folder and extract current simulation name DirSpectral = CreateNewFolder(Dir[l],'1DSpectral_Plots/') #Spatio-Temporal Folder DirSpectral_ntor = CreateNewFolder(DirSpectral,variable+'_ntor='+str(ntor)) #Spatio-Temporal Images Folder DirString = Dir[l].split('/')[-2] #Full Simulation Name SubString = DirString.split('_')[-1] #Simulation Nickname #Extract Kstep [-] & Time [ms] arrays from SEQ.harmonics & toroidal harmonics from energy_n.txt SEQArray, KStepArray, TimeArray, ntorArray = ExtractMEGA_DataRanges(Dir[l], DataFile='harmonics') DeltaKstep = KStepArray[1]-KStepArray[0] #KStep Interval [-] DeltaTime = TimeArray[1]-TimeArray[0] #Time Interval [ms] KStepMod = len(KStepArray)/len(SEQArray) #KStep indices per SEQ [-] ntor_tot = ntorArray[2] #Total number of positive & negative modes (Inc n=0) ntor_pos = ntorArray[1] #Number of positive modes (Ignoring n=0) ntor0 = ntorArray[0] #ntor = 0, baseline equilibrium data #Extract Energy_n outputs and header for plotting #energy_n: [ntor][timestep] Energy_n,Header_n = ExtractMEGA_Energy(Dir[l],'energy_n') Energy_TimeArray = Energy_n[1] #Extract full time array [ms] for plotting Energy_n = Energy_n[2::] #Remove KStep and Time arrays from array #Extract toroidal mode number array index (ntorIdx) from requested mode number (ntor) ntorIdx = Set_ntorIdx(ntor,ntorArray) #Set Kstep ranges as requested - else default to max range KStepRange,KStepStep = Set_KStepRange(KStepArray,setting_kstep) SEQRange = Set_SEQRange(setting_SEQ) #Extract Variablelabel for chosen variable VariableLabel = VariableLabelMaker(variable) #Units='Perturbation [-]' for j in tqdm( range(SEQRange[0],SEQRange[1]) ): #Set SEQIndex for current simulation folder SEQ = j #Extract and plot data for each timestep for i in range(KStepRange[0],KStepRange[1],KStepStep): #Set TimeIndex and employ to extract KStep and Time KStepIdx = i #[-] IdxOffset = SEQ*KStepMod #[-] KStep = KStepArray[KStepIdx+IdxOffset] #[-] Time = TimeArray[KStepIdx+IdxOffset] #[ms] #Extract ALL VARIABLES FOR SINGLE KSTEP from Harmonics, it contains: #HarmonicsData.rho_pol [1D array] :: HarmonicsData.q_psi [1D array] #HarmonicsData.kst [1D array] :: HarmonicsData.time [1D array] #HarmonicsData.Variables[i]: [3D Array] of shape [mpol][ntor][lpsi][A/B] for a single kstep HarmonicsData = ExtractMEGA_Harmonics(Dir[l],'All',ntor_tot,KStepIdx,SEQ,'3D') rho_pol = HarmonicsData.rho_pol; q_psi = HarmonicsData.q_psi #DataShape contains data resolution of form: [mpol,ntor,lpsi,ltheta] DataShape = ExtractMEGA_DataShape(HarmonicsData)#; print DataShape mpol_res = DataShape[0]; ntor_res = DataShape[1] lpsi_res = DataShape[2]; ltheta_res = DataShape[3] #Extract radial magnetic field (brad) from SEQ.harmonic object #Data is of shape: Data[mpol,ntor,lpsi,A/B] Data = getattr(HarmonicsData, variable) #Combine spectral components A and B in quadrature to obtain variable amplitude #Pos corresponds to resonant poloidal modes i.e. +m on RHS of image #Neg corresponds to non-resonant poloidal modes i.e. -m on LHS of image #One of ntor_pos-ntor or ntor_pos+ntor will equal 0, representing the equilibrium values. DataAmpPos = np.sqrt( (Data[:, ntor_pos-ntor,:,0]**2) + (Data[:, ntor_pos-ntor,:,1]**2) ) DataAmpNeg = np.sqrt( (Data[:, ntor_pos+ntor,:,0]**2) + (Data[:, ntor_pos+ntor,:,1]**2) ) DataAmpNeg = np.flip( DataAmpNeg,axis=0) #Flip LHS of image for plotting #Concat positive and negative ntor to obtain full poloidal harmonic spectrum #DataAmp is of shape: [2*mpol-1][lpsi] DataAmp = np.concatenate((DataAmpNeg,DataAmpPos[1:,:]),axis=0) #Define mpol data index and true value ranges applying user settings #mpol index ranges :: 0 to (2*mpol_res)+1, starting at zero #mpol harmonic ranges :: -mpol_res to mpol_res, including zero mpol_idxmin = setting_mpol[0] + (mpol_res-1) mpol_idxmax = setting_mpol[1] + (mpol_res) mpol_idxrange = [mpol_idxmin, mpol_idxmax] mpol_valrange = [mpol_idxmin-mpol_res+1, mpol_idxmax-mpol_res] mpol_step = setting_mpol[2] #==========##==========# #Create figure fig,ax = figure(subplots=[1,1], aspectratio=image_aspectratio) #Plot 1D radial profiles (rho_pol) of poloidal perturbation amplitude over mpol_range Legend = list() for k in range(mpol_idxrange[0],mpol_idxrange[1],mpol_step): mpol_idx = k; #mpol HarmonicsData/DataAmp array index mpol = k-mpol_res+1 #mpol real harmonic number (+1 accounts for mpol=0) #Structure: DataAmp[rho_pol][mpol] ax.plot(rho_pol,DataAmp[:][mpol_idx], lw=2) Legend.append('$m_{pol}$: '+str(mpol)) #Alternative idea for plotting - plot difference between Pure-MHD and total perturbations # k=2 #Overwrite k for testing purposes # DataAmpNeg = np.flip( DataAmpNeg,axis=0) #Flip it back so 'k' indices align # AmpDiff = DataAmpPos[:][k] - DataAmpNeg[:][k] #Amplitude difference for mpol == k # ax.plot(rho_pol,DataAmpNeg[:][k], 'k--', lw=1) #negative mpol = pure MHD perturbation # ax.plot(rho_pol,DataAmpPos[:][k], 'r--', lw=1) #positive mpol = total MHD perturbation # ax.plot(rho_pol,AmpDiff, 'b-', lw=2) #Plasma response portion of MHD pert. #endif #endfor ##### Title = 'Poloidal Spectrum: n='+str(ntor)+', m='+str(setting_mpol[0])+','+str(setting_mpol[1])+', t='+str(round(Time,3))+' [ms] \n Simulation: '+DirString Xlabel,Ylabel = 'Normalised Minor Radius $\\rho_{pol}$ [-]', VariableLabel ImageOptions(fig,ax,Xlabel,Ylabel,Title,'') # ax.set_xlim(image_rhopolcrop[0],image_rhopolcrop[1]) ax.set_ylim(0,0.8) ax.legend(Legend, fontsize=18, frameon=False) ax.set_xlabel('Normalised Minor Radius $\\rho_{pol}$ [-]', fontsize=18) ax.set_ylabel(VariableLabel, fontsize=18) #Save poloidal spectrum figure for current SEQ and Kstep SaveString = 'PoloidalSpectrum_'+variable+'_n'+str(ntor)+'_kstep'+str('%07.f'%KStep)+ext plt.savefig(DirSpectral_ntor+SaveString) # plt.show() plt.close('all') #==========##==========# #==========##==========# if write_ASCII == True: DirASCII = CreateNewFolder(DirSpectral_ntor,"ASCII_Data") #Spatio-Temporal Data Folder #Save Yaxis (rho_pol) and safety factor for future plotting WriteFile_ASCII(rho_pol, DirASCII+'rho_pol', 'w', write_ASCIIFormat) WriteFile_ASCII(q_psi, DirASCII+'q_psi', 'w', write_ASCIIFormat) #Write 1D data header, then 1D radially resolved poloidal perturbation amplitude array mpolString = '_m'+str(mpol_valrange[0])+':'+str(mpol_valrange[1]) ntorString = '_n'+str(ntor) TimeString = '_t='+str(round(Time,3)) SaveString = '1DPolSpectrum_'+variable+ntorString+mpolString+TimeString+'.dat' Header = [VariableLabel,' ', 'mpol',mpol_valrange[0],mpol_valrange[-1], 'rhopol',rho_pol[0],rho_pol[-1], '\n'] WriteFile_ASCII(Header, DirASCII+SaveString, 'w', 'RSV') # DataAmp is of shape: [2*mpol-1][lpsi] ASCII_Output = DataAmp[:][mpol_idxrange[0]:mpol_idxrange[1]] WriteFile_ASCII(ASCII_Output, DirASCII+SaveString, 'a', write_ASCIIFormat) #endif - Write_ASCII #endfor - KStep loop #endfor - SEQ loop #endfor - Dir loop #endif - Diag loop #==========##==========##==========# #==========##==========##==========# if any([savefig_1Dpolspectrum]) == True: print '--------------------------------------' print '1D Poloidal Spectrum Analysis Complete' print '--------------------------------------' #endif #====================================================================# #====================================================================# #====================================================================# #2D POLOIDAL SPECTRUM ANALYSIS# #====================================================================# if savefig_2Dpolspectrum == True: #For each detected simulation folder for l in range(0,len(Dir)): #DEVELOPMENT SETTINGS - all need looped over... - settings_inputs to be moved to switchboard print Dir[l].split('/')[-2] ntor = setting_ntor[1] #requested ntor mode number !!! NEEDS A FUNCTION !!! variable = SpectralVariable #requested response variable !!! Need to impliment vrad etc... #Initiate any required lists DataAmpPROES_pol,DataAmpPROES_rad = list(),list() XaxisPROES = list() #Create global 2D diagnostics folder and extract current simulation name DirSpectral = CreateNewFolder(Dir[l],'2DSpectral_Plots/') #Spatio-Temporal Folder DirSpectral_ntor = CreateNewFolder(DirSpectral,variable+'_ntor='+str(ntor)) #Spatio-Temporal Images Folder DirString = Dir[l].split('/')[-2] #Full Simulation Name SubString = DirString.split('_')[-1] #Simulation Nickname #Extract Kstep [-] & Time [ms] arrays from SEQ.harmonics & toroidal harmonics from energy_n.txt SEQArray, KStepArray, TimeArray, ntorArray = ExtractMEGA_DataRanges(Dir[l], DataFile='harmonics') DeltaKstep = KStepArray[1]-KStepArray[0] #KStep Interval [-] DeltaTime = TimeArray[1]-TimeArray[0] #Time Interval [ms] KStepMod = len(KStepArray)/len(SEQArray) #KStep indices per SEQ [-] ntor_tot = ntorArray[2] #Total number of positive & negative modes (Inc n=0) ntor_pos = ntorArray[1] #Number of positive modes (Ignoring n=0) ntor0 = ntorArray[0] #ntor = 0, baseline equilibrium data #Extract Energy_n outputs and header for plotting #energy_n: [ntor][timestep] Energy_n,Header_n = ExtractMEGA_Energy(Dir[l],'energy_n') Energy_TimeArray = Energy_n[1] #Extract full time array [ms] for plotting Energy_n = Energy_n[2::] #Remove KStep and Time arrays from array #Extract toroidal mode number array index (ntorIdx) from requested mode number (ntor) ntorIdx = Set_ntorIdx(ntor,ntorArray) #Set Kstep ranges as requested - else default to max range KStepRange,KStepStep = Set_KStepRange(KStepArray,setting_kstep) SEQRange = Set_SEQRange(setting_SEQ) #Extract Variablelabel for chosen variable VariableLabel = VariableLabelMaker(variable) #Units='Perturbation [-]' for j in tqdm(
<gh_stars>0 import logging from typing import Dict, List, Optional, Union import copy import torch import torch.nn.functional as F from overrides import overrides from allennlp.data import Vocabulary from allennlp.common.params import Params from allennlp.models.model import Model from allennlp.modules import TextFieldEmbedder, FeedForward, TimeDistributed from allennlp.modules.span_extractors import EndpointSpanExtractor, SelfAttentiveSpanExtractor from allennlp.nn import util, InitializerApplicator, RegularizerApplicator # Import submodules. from spanmb.models.ner import NERTagger from spanmb.models.relation import RelationExtractor from spanmb.data.dataset_readers import document from spanmb.models.span_extractor import MaxSpanExtractor logger = logging.getLogger(__name__) # pylint: disable=invalid-name @Model.register("spanmb") class SpanMB(Model): """ TODO(dwadden) document me. Parameters ---------- vocab : ``Vocabulary`` text_field_embedder : ``TextFieldEmbedder`` Used to embed the ``text`` ``TextField`` we get as input to the model. context_layer : ``Seq2SeqEncoder`` This layer incorporates contextual information for each word in the document. feature_size: ``int`` The embedding size for all the embedded features, such as distances or span widths. submodule_params: ``TODO(dwadden)`` A nested dictionary specifying parameters to be passed on to initialize submodules. max_span_width: ``int`` The maximum width of candidate spans. target_task: ``str``: The task used to make early stopping decisions. initializer : ``InitializerApplicator``, optional (default=``InitializerApplicator()``) Used to initialize the model parameters. module_initializer : ``InitializerApplicator``, optional (default=``InitializerApplicator()``) Used to initialize the individual modules. regularizer : ``RegularizerApplicator``, optional (default=``None``) If provided, will be used to calculate the regularization penalty during training. display_metrics: ``List[str]``. A list of the metrics that should be printed out during model training. """ def __init__(self, vocab: Vocabulary, embedder: TextFieldEmbedder, modules, # TODO(dwadden) Add type. feature_size: int, max_span_width: int, target_task: str, feedforward_params: Dict[str, Union[int, float]], loss_weights: Dict[str, float], initializer: InitializerApplicator = InitializerApplicator(), module_initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, display_metrics: List[str] = None) -> None: super(SpanMB, self).__init__(vocab, regularizer) #################### # Create span extractor. self._endpoint_span_extractor = EndpointSpanExtractor( embedder.get_output_dim(), combination="x,y", num_width_embeddings=max_span_width, span_width_embedding_dim=feature_size, bucket_widths=False) self._max_span_extractor = MaxSpanExtractor( embedder.get_output_dim() ) # max pooling on span and span width feature # self._max_span_extractor = MaxSpanExtractor( # embedder.get_output_dim(), # num_width_embeddings=max_span_width, # span_width_embedding_dim=feature_size, # bucket_widths=False # ) #################### # Set parameters. self._embedder = embedder self._loss_weights = loss_weights self._max_span_width = max_span_width self._display_metrics = self._get_display_metrics(target_task) token_emb_dim = self._embedder.get_output_dim() span_emb_dim = self._endpoint_span_extractor.get_output_dim() + self._max_span_extractor.get_output_dim() #################### # Create submodules. modules = Params(modules) # Helper function to create feedforward networks. def make_feedforward(input_dim): return FeedForward(input_dim=input_dim, num_layers=feedforward_params["num_layers"], hidden_dims=feedforward_params["hidden_dims"], activations=torch.nn.ReLU(), dropout=feedforward_params["dropout"]) # Submodules self._ner = NERTagger.from_params(vocab=vocab, make_feedforward=make_feedforward, span_emb_dim=span_emb_dim, params=modules.pop("ner")) self._relation = RelationExtractor.from_params(vocab=vocab, make_feedforward=make_feedforward, token_emb_dim=token_emb_dim, span_emb_dim=span_emb_dim, feature_size=feature_size, params=modules.pop("relation")) #################### # Initialize text embedder and all submodules for module in [self._ner, self._relation]: module_initializer(module) initializer(self) @staticmethod def _get_display_metrics(target_task): """ The `target` is the name of the task used to make early stopping decisions. Show metrics related to this task. """ lookup = { "ner": [f"MEAN__{name}" for name in ["ner_precision", "ner_recall", "ner_f1"]], "relation": [f"MEAN__{name}" for name in ["relation_precision", "relation_recall", "relation_f1"]]} if target_task not in lookup: raise ValueError(f"Invalied value {target_task} has been given as the target task.") return lookup[target_task] @staticmethod def _debatch(x): # TODO(dwadden) Get rid of this when I find a better way to do it. return x if x is None else x.squeeze(0) @overrides def forward(self, text, spans, metadata, ner_labels=None, ner_nested=None, relation_labels=None): """ TODO(dwadden) change this. """ # In AllenNLP, AdjacencyFields are passed in as floats. This fixes it. if relation_labels is not None: relation_labels = relation_labels.long() # TODO(dwadden) Multi-document minibatching isn't supported yet. For now, get rid of the # extra dimension in the input tensors. Will return to this once the model runs. if len(metadata) > 1: raise NotImplementedError("Multi-document minibatching not yet supported.") metadata = metadata[0] spans = self._debatch(spans) # (n_sents, max_n_spans, 2) ner_labels = self._debatch(ner_labels) # (n_sents, max_n_spans) if ner_nested is not None: ner_nested = self._debatch(ner_nested) relation_labels = self._debatch(relation_labels) # (n_sents, max_n_spans, max_n_spans) # print("batch_si=ze: ", spans.size(0)) # Encode using BERT, then debatch. # Since the data are batched, we use `num_wrapping_dims=1` to unwrap the document dimension. # (1, n_sents, max_sententence_length, embedding_dim) # TODO(dwadden) Deal with the case where the input is longer than 512. text_embeddings = self._embedder(text, num_wrapping_dims=1) # (n_sents, max_n_wordpieces, embedding_dim) text_embeddings = self._debatch(text_embeddings) # (n_sents, max_sentence_length) text_mask = self._debatch(util.get_text_field_mask(text, num_wrapping_dims=1).float()) sentence_lengths = text_mask.sum(dim=1).long() # (n_sents) span_mask = (spans[:, :, 0] >= 0).float() # (n_sents, max_n_spans) # SpanFields return -1 when they are used as padding. As we do some comparisons based on # span widths when we attend over the span representations that we generate from these # indices, we need them to be <= 0. This is only relevant in edge cases where the number of # spans we consider after the pruning stage is >= the total number of spans, because in this # case, it is possible we might consider a masked span. spans = F.relu(spans.float()).long() # (n_sents, max_n_spans, 2) # Shape: (batch_size, num_spans, 3 * encoding_dim + feature_size) span_embeddings = self._endpoint_span_extractor(text_embeddings, spans) max_span_embeddings = self._max_span_extractor(text_embeddings, spans) span_embeddings = torch.cat([max_span_embeddings, span_embeddings], -1) # Make calls out to the modules to get results. output_ner = {'loss': 0} output_relation = {'loss': 0} # # Prune and compute span representations for relation module # if self._loss_weights["relation"] > 0 or self._relation.rel_prop > 0: # output_relation = self._relation.compute_representations( # spans, span_mask, span_embeddings, text_embeddings, sentence_lengths, metadata) # if self._relation.rel_prop > 0: # output_relation = self._relation.relation_propagation(output_relation) # span_embeddings = self.update_span_embeddings(span_embeddings, span_mask, # output_relation["top_span_embeddings"], # output_relation["top_span_mask"], # output_relation["top_span_indices"]) # Prune and compute span representations for relation module if self._loss_weights["relation"] > 0: output_relation = self._relation.compute_representations( spans, span_mask, span_embeddings, text_embeddings, sentence_lengths, metadata) # Make predictions and compute losses for each module if self._loss_weights['ner'] > 0: output_ner = self._ner( spans, span_mask, span_embeddings, sentence_lengths, ner_labels, ner_nested, metadata) top_ner_predicted_labels, top_ner_gold_labels = self.get_top_span_ner_labels( output_ner["predicted_ner"], output_ner["span_mask"], ner_labels, output_relation["top_span_mask"], output_relation["top_span_indices"]) if self._loss_weights["relation"] > 0: output_relation["top_ner_predicted_labels"] = top_ner_predicted_labels output_relation["top_ner_gold_labels"] = top_ner_gold_labels if self._loss_weights['relation'] > 0: output_relation = self._relation.predict_labels(relation_labels, output_relation, metadata) # if self._loss_weights['relation'] > 0: # output_relation = self._relation( # spans, span_mask, span_embeddings, sentence_lengths, relation_labels, metadata) # Use `get` since there are some cases where the output dict won't have a loss - for # instance, when doing prediction. loss = (self._loss_weights['ner'] * output_ner.get("loss", 0) + self._loss_weights['relation'] * output_relation.get("loss", 0)) # Multiply the loss by the weight multiplier for this document. weight = metadata.weight if metadata.weight is not None else 1.0 loss *= torch.tensor(weight) output_dict = dict(relation=output_relation, ner=output_ner) output_dict['loss'] = loss output_dict["metadata"] = metadata # torch.cuda.empty_cache() return output_dict def update_span_embeddings(self, span_embeddings, span_mask, top_span_embeddings, top_span_mask, top_span_indices): # TODO(Ulme) Speed this up by tensorizing new_span_embeddings = span_embeddings.clone() for sample_nr in range(len(top_span_mask)): for top_span_nr, span_nr in enumerate(top_span_indices[sample_nr]): if top_span_mask[sample_nr, top_span_nr] == 0 or span_mask[sample_nr, span_nr] == 0: break new_span_embeddings[sample_nr, span_nr] = top_span_embeddings[sample_nr, top_span_nr] return new_span_embeddings def get_top_span_ner_labels(self, predicted_ner, span_mask, gold_ner_labels, top_span_mask, top_span_indices): top_predicted_ner = top_span_mask.new_zeros([top_span_mask.size(0), top_span_mask.size(1)]) top_gold_ner = top_span_mask.new_zeros([top_span_mask.size(0), top_span_mask.size(1)]) for sample_nr in range(len(top_span_mask)): for top_span_nr, span_nr in enumerate(top_span_indices[sample_nr]): if top_span_mask[sample_nr, top_span_nr] == 0 or span_mask[sample_nr, span_nr] == 0: break top_predicted_ner[sample_nr, top_span_nr] = predicted_ner[sample_nr, span_nr] if gold_ner_labels is not None: top_gold_ner[sample_nr, top_span_nr] = gold_ner_labels[sample_nr, span_nr] return top_predicted_ner, top_gold_ner @overrides def make_output_human_readable(self, output_dict: Dict[str, torch.Tensor]): """ Converts the list of spans and predicted antecedent indices into clusters of spans for each element in the batch. Parameters ---------- output_dict : ``Dict[str, torch.Tensor]``, required. The result of calling :func:`forward` on an instance or batch of instances. Returns ------- The same output dictionary, but with an additional ``clusters`` key: clusters : ``List[List[List[Tuple[int, int]]]]`` A nested list, representing, for each instance in the batch, the list of clusters, which are in turn comprised of a list of (start, end) inclusive spans into the original document. """ doc = copy.deepcopy(output_dict["metadata"]) if self._loss_weights["ner"] > 0: for predictions, sentence in zip(output_dict["ner"]["predictions"], doc): sentence.predicted_ner = predictions if self._loss_weights["relation"] > 0: for predictions, sentence in zip(output_dict["relation"]["predictions"], doc): sentence.predicted_relations = predictions return doc def get_metrics(self, reset: bool = False) -> Dict[str, float]: """ Get all metrics from all modules. For the ones that shouldn't be displayed, prefix their keys with an underscore. """ metrics_ner = self._ner.get_metrics(reset=reset) metrics_relation = self._relation.get_metrics(reset=reset) # Make sure that there aren't any conflicting names. metric_names = (list(metrics_ner.keys()) + list(metrics_relation.keys())) assert len(set(metric_names)) == len(metric_names) all_metrics = dict(list(metrics_ner.items()) + list(metrics_relation.items())) # If no list of desired metrics given, display them all. if self._display_metrics is None: return all_metrics # Otherwise only display the selected ones. res = {} for k, v in
"set_segment_records\(\) missing 2 required ", "positional arguments: 'values' and 'file'", ) ), self.database.set_segment_records, ) self.assertRaisesRegex( TypeError, "".join( ( "delete_segment_records\(\) missing 2 required ", "positional arguments: 'values' and 'file'", ) ), self.database.delete_segment_records, ) self.assertRaisesRegex( TypeError, "".join( ( "insert_segment_records\(\) missing 2 required ", "positional arguments: 'values' and 'file'", ) ), self.database.insert_segment_records, ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_record_number\(\) takes from 2 to 4 ", "positional arguments but 5 were given", ) ), self.database.recordlist_record_number, *(None, None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_record_number_range\(\) takes from 2 to 5 ", "positional arguments but 6 were given", ) ), self.database.recordlist_record_number_range, *(None, None, None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_ebm\(\) takes from 2 to 3 ", "positional arguments but 4 were given", ) ), self.database.recordlist_ebm, *(None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "get_table_connection\(\) missing 1 required positional ", "argument: 'file'", ) ), self.database.get_table_connection, ) def test_02_get_primary_record(self): self.assertEqual(self.database.get_primary_record("file1", None), None) def test_03_get_primary_record(self): self.assertEqual(self.database.get_primary_record("file1", 1), None) def test_04_get_primary_record(self): self.database.put("file1", None, "new value") self.assertEqual( self.database.get_primary_record("file1", 1), (1, "new value") ) def test_05_remove_record_from_ebm(self): self.assertRaisesRegex( _sqlite.DatabaseError, "Existence bit map for segment does not exist", self.database.remove_record_from_ebm, *("file1", 2), ) def test_06_remove_record_from_ebm(self): self.assertEqual(self.database.add_record_to_ebm("file1", 2), (0, 2)) self.assertEqual( self.database.remove_record_from_ebm("file1", 2), (0, 2) ) def test_07_add_record_to_ebm(self): self.assertEqual(self.database.add_record_to_ebm("file1", 2), (0, 2)) self.assertEqual(self.database.add_record_to_ebm("file1", 4), (0, 4)) def test_08_get_high_record(self): self.assertEqual(self.database.get_high_record("file1"), None) def test_09_get_segment_records(self): self.database.insert_segment_records((12,), "file1") self.assertEqual(self.database.get_segment_records(1, "file1"), 12) def test_10_get_segment_records(self): self.database.insert_segment_records((12,), "file1") self.assertRaisesRegex( _sqlite.DatabaseError, "Segment record 2 missing in 'file1'", self.database.get_segment_records, *(2, "file1"), ) def test_11_set_segment_records(self): self.database.insert_segment_records((12,), "file1") self.database.set_segment_records((13, 1), "file1") self.assertEqual(self.database.get_segment_records(1, "file1"), 13) def test_12_delete_segment_records(self): self.database.delete_segment_records((12,), "file1") def test_13_insert_segment_records(self): self.assertEqual( self.database.insert_segment_records((12,), "file1"), 1 ) def test_14_recordset_record_number(self): self.assertIsInstance( self.database.recordlist_record_number("file1"), recordset.RecordList, ) def test_15_recordset_record_number(self): self.assertIsInstance( self.database.recordlist_record_number("file1", key=500), recordset.RecordList, ) def test_16_recordset_record_number(self): cursor = self.database.dbenv.cursor() statement = " ".join( ( "insert into", "file1", "(", "file1", ",", "Value", ")", "values ( ? , ? )", ) ) values = 1, "Some value" cursor.execute(statement, values) statement = " ".join( ( "insert into", "file1__ebm", "(", "file1__ebm", ",", "Value", ")", "values ( ? , ? )", ) ) values = 1, b"\x740" + b"\x00" * ( SegmentSize.db_segment_size_bytes - 1 ) cursor.execute(statement, values) rl = self.database.recordlist_record_number("file1", key=1) self.assertIsInstance(rl, recordset.RecordList) self.assertEqual(rl.count_records(), 1) def test_17_recordset_record_number_range(self): self.assertIsInstance( self.database.recordlist_record_number_range("file1"), recordset.RecordList, ) def test_18_recordset_record_number_range(self): self.create_ebm() rs = self.database.recordlist_record_number_range( "file1", keystart=0, keyend=2000 ) self.assertIsInstance(rs, recordset.RecordList) self.assertEqual( rs[0].tobytes(), b"\x7f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff", ) def test_19_recordset_record_number_range(self): self.create_ebm() rs = self.database.recordlist_record_number_range("file1", keystart=10) self.assertIsInstance(rs, recordset.RecordList) self.assertEqual( rs[0].tobytes(), b"\x00\x3f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff", ) def test_20_recordset_record_number_range(self): self.create_ebm() rs = self.database.recordlist_record_number_range("file1", keyend=35) self.assertIsInstance(rs, recordset.RecordList) self.assertEqual( rs[0].tobytes(), b"\x7f\xff\xff\xff\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", ) def test_21_recordset_record_number_range(self): self.create_ebm() rs = self.database.recordlist_record_number_range( "file1", keystart=10, keyend=35 ) self.assertIsInstance(rs, recordset.RecordList) self.assertEqual( rs[0].tobytes(), b"\x00\x3f\xff\xff\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", ) def test_22_recordset_record_number_range(self): self.create_ebm() self.create_ebm_extra(2) self.create_ebm_extra(3) self.create_ebm_extra(4) rs = self.database.recordlist_record_number_range( "file1", keystart=170, keyend=350 ) self.assertIsInstance(rs, recordset.RecordList) self.assertEqual(len(rs), 2) self.assertEqual( rs[1].tobytes(), b"\x00\x00\x00\x00\x00\x3f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff", ) self.assertEqual( rs[2].tobytes(), b"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00\x00\x00\x00", ) def test_23_recordset_record_number_range(self): self.create_ebm() self.create_ebm_extra(2) self.create_ebm_extra(3) self.create_ebm_extra(4) rs = self.database.recordlist_record_number_range( "file1", keystart=350, keyend=170 ) self.assertIsInstance(rs, recordset.RecordList) self.assertEqual(len(rs), 0) def test_24_recordset_ebm(self): self.assertIsInstance( self.database.recordlist_ebm("file1"), recordset.RecordList ) def test_25_recordset_ebm(self): self.create_ebm() self.assertIsInstance( self.database.recordlist_ebm("file1"), recordset.RecordList ) def test_26_get_table_connection(self): self.assertIsInstance( self.database.get_table_connection("file1"), dbe_module.Connection ) def create_ebm(self): cursor = self.database.dbenv.cursor() statement = " ".join( ( "insert into", "file1__ebm", "(", "file1__ebm", ",", "Value", ")", "values ( ? , ? )", ) ) values = 1, b"\x7f" + b"\xff" * (SegmentSize.db_segment_size_bytes - 1) cursor.execute(statement, values) def create_ebm_extra(self, segment): cursor = self.database.dbenv.cursor() statement = " ".join( ( "insert into", "file1__ebm", "(", "file1__ebm", ",", "Value", ")", "values ( ? , ? )", ) ) values = ( segment, b"\xff" + b"\xff" * (SegmentSize.db_segment_size_bytes - 1), ) cursor.execute(statement, values) class Database_find_values(_SQLiteOpen): def setUp(self): super().setUp() self.valuespec = ValuesClause() self.valuespec.field = "field1" def test_01_find_values(self): self.assertRaisesRegex( TypeError, "".join( ( "find_values\(\) missing 2 required positional arguments: ", "'valuespec' and 'file'", ) ), self.database.find_values, ) def test_02_find_values(self): self.valuespec.above_value = "b" self.valuespec.below_value = "d" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_03_find_values(self): self.valuespec.above_value = "b" self.valuespec.to_value = "d" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_04_find_values(self): self.valuespec.from_value = "b" self.valuespec.to_value = "d" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_05_find_values(self): self.valuespec.from_value = "b" self.valuespec.below_value = "d" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_06_find_values(self): self.valuespec.above_value = "b" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_07_find_values(self): self.valuespec.from_value = "b" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_08_find_values(self): self.valuespec.to_value = "d" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_09_find_values(self): self.valuespec.below_value = "d" self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_10_find_values(self): self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], [] ) def test_11_find_values(self): cursor = self.database.dbenv.cursor() statement = " ".join( ( "insert into", "file1_field1", "(", "field1", ")", "values ( ? )", ) ) values = ("d",) cursor.execute(statement, values) self.assertEqual( [i for i in self.database.find_values(self.valuespec, "file1")], ["d"], ) class Database_make_recordset(_SQLiteOpen): def setUp(self): super().setUp() segments = ( b"\x7f\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", b"\x00\x00\x00\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", b"\x00\x00\x00\x00\x00\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00", b"\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\x00\x00\x00\x00\x00\x00", b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\x00\x00\x00\x00", b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\x00\x00", b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff", b"\x00\x40\x00\x41", b"\x00\x42\x00\x43\x00\x44", ) self.segments = {} keys = ( "a_o", "aa_o", "ba_o", "bb_o", "c_o", "cep", "deq", ) self.keyvalues = {} key_statement = " ".join( ( "insert into file1_field1 (", "field1", ",", "Segment", ",", "RecordCount", ",", "file1", ")", "values ( ? , ? , ? , ? )", ) ) cursor = self.database.dbenv.cursor() try: for s in segments: cursor.execute( "insert into file1__segment ( RecordNumbers ) values ( ? )", (s,), ) self.segments[ cursor.execute( "select last_insert_rowid() from file1__segment" ).fetchone()[0] ] = s for e, k in enumerate(keys): self.keyvalues[k] = e + 1 cursor.execute( key_statement, (k, 0, 32 if e else 31, self.keyvalues[k]) ) self.keyvalues["tww"] = 8 cursor.execute(key_statement, ("tww", 0, 2, self.keyvalues["tww"])) self.keyvalues["twy"] = 9 cursor.execute(key_statement, ("twy", 0, 2, self.keyvalues["twy"])) cursor.execute(key_statement, ("one", 0, 1, 50)) cursor.execute(key_statement, ("nin", 0, 1, 100)) cursor.execute(key_statement, ("www", 0, 2, self.keyvalues["twy"])) cursor.execute(key_statement, ("www", 1, 2, self.keyvalues["twy"])) finally: cursor.close() def test_01(self): self.assertRaisesRegex( TypeError, "".join( ( "add_record_to_field_value\(\) missing 5 required ", "positional arguments: 'file', 'field', 'key', 'segment', ", "and 'record_number'", ) ), self.database.add_record_to_field_value, ) self.assertRaisesRegex( TypeError, "".join( ( "remove_record_from_field_value\(\) missing 5 required ", "positional arguments: 'file', 'field', 'key', 'segment', ", "and 'record_number'", ) ), self.database.remove_record_from_field_value, ) self.assertRaisesRegex( TypeError, "".join( ( "populate_segment\(\) missing 2 required ", "positional arguments: 'segment_reference' and 'file'", ) ), self.database.populate_segment, ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_key_like\(\) takes from 3 to 5 ", "positional arguments but 6 were given", ) ), self.database.recordlist_key_like, *(None, None, None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_key\(\) takes from 3 to 5 ", "positional arguments but 6 were given", ) ), self.database.recordlist_key, *(None, None, None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_key_startswith\(\) takes from 3 to 5 ", "positional arguments but 6 were given", ) ), self.database.recordlist_key_startswith, *(None, None, None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_key_range\(\) takes from 3 to 8 ", "positional arguments but 9 were given", ) ), self.database.recordlist_key_range, *(None, None, None, None, None, None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "recordlist_all\(\) takes from 3 to 4 ", "positional arguments but 5 were given", ) ), self.database.recordlist_all, *(None, None, None, None), ) self.assertRaisesRegex( TypeError, "".join( ( "unfile_records_under\(\) missing 3 required ", "positional arguments: 'file', 'field', and 'key'", ) ), self.database.unfile_records_under, ) self.assertRaisesRegex( TypeError, "".join( ( "file_records_under\(\) missing 4 required positional ", "arguments: 'file', 'field', 'recordset', and 'key'", ) ), self.database.file_records_under, ) def test_02_add_record_to_field_value(self): self.database.add_record_to_field_value( "file1", "field1", "indexvalue", 1, 0 ) def test_03_add_record_to_field_value(self): self.database.add_record_to_field_value( "file1", "field1", "nin", 0, 99 ) def test_04_add_record_to_field_value(self): self.database.add_record_to_field_value( "file1", "field1", "twy", 0, 99 ) def test_05_add_record_to_field_value(self): self.database.add_record_to_field_value( "file1", "field1", "aa_o", 0, 99 ) def test_06_remove_record_from_field_value(self): self.database.remove_record_from_field_value( "file1", "field1", "indexvalue", 1, 0 ) def test_07_remove_record_from_field_value(self): self.database.remove_record_from_field_value( "file1", "field1", "nin", 0, 99 ) def test_08_remove_record_from_field_value(self): self.database.remove_record_from_field_value( "file1", "field1", "twy", 0, 68 ) def test_09_remove_record_from_field_value(self): self.database.remove_record_from_field_value( "file1", "field1", "bb_o", 0, 68 ) def test_10_remove_record_from_field_value(self): self.database.remove_record_from_field_value( "file1", "field1", "tww", 0, 65 ) def test_11_remove_record_from_field_value(self): self.database.remove_record_from_field_value( "file1", "field1", "one", 0, 50 ) def test_12_populate_segment(self): s = self.database.populate_segment(("keyvalue", 2, 1, 3), "file1") self.assertIsInstance(s, recordset.RecordsetSegmentInt) def test_13_populate_segment(self): ss = " ".join( ( "select field1 , Segment , RecordCount , file1 from", 'file1_field1 where field1 == "one" and Segment == 0', ) ) s = self.database.populate_segment( self.database.dbenv.cursor().execute(ss).fetchone(), "file1" ) self.assertIsInstance(s, recordset.RecordsetSegmentInt) def test_14_populate_segment(self): s = self.database.populate_segment( ("tww", 0, 2, self.keyvalues["tww"]), "file1" ) self.assertIsInstance(s,
<filename>chi/plots/_time_series.py<gh_stars>1-10 # # This file is part of the chi repository # (https://github.com/DavAug/chi/) which is released under the # BSD 3-clause license. See accompanying LICENSE.md for copyright notice and # full license details. # import numpy as np import pandas as pd import plotly.colors import plotly.graph_objects as go from chi import plots class PDPredictivePlot(plots.SingleFigure): """ A figure class that visualises the predictions of a predictive pharmacodynamic model. Extends :class:`SingleFigure`. Parameters ---------- updatemenu Boolean flag that enables or disables interactive buttons, such as a logarithmic scale switch for the y-axis. """ def __init__(self, updatemenu=True): super(PDPredictivePlot, self).__init__(updatemenu) def _add_data_trace(self, _id, times, measurements, color): """ Adds scatter plot of an indiviudals pharamcodynamics to figure. """ self._fig.add_trace( go.Scatter( x=times, y=measurements, name="ID: %d" % _id, showlegend=True, mode="markers", marker=dict( symbol='circle', color=color, opacity=0.7, line=dict(color='black', width=1)))) def _add_prediction_scatter_trace(self, times, samples): """ Adds scatter plot of samples from the predictive model. """ # Get colour (light blueish) color = plotly.colors.qualitative.Pastel2[1] # Add trace self._fig.add_trace( go.Scatter( x=times, y=samples, name="Predicted samples", showlegend=True, mode="markers", marker=dict( symbol='circle', color=color, opacity=0.7, line=dict(color='black', width=1)))) def _add_prediction_bulk_prob_trace(self, data): """ Adds the bulk probabilities as two line plots (one for upper and lower limit) and shaded area to the figure. """ # Construct times that go from min to max and back to min # (Important for shading with 'toself') times = data['Time'].unique() times = np.hstack([times, times[::-1]]) # Get unique bulk probabilities and sort in descending order bulk_probs = data['Bulk probability'].unique() bulk_probs[::-1].sort() # Get colors (shift start a little bit, because 0th level is too light) n_traces = len(bulk_probs) shift = 2 colors = plotly.colors.sequential.Blues[shift:shift+n_traces] # Add traces for trace_id, bulk_prob in enumerate(bulk_probs): # Get relevant upper and lower percentiles mask = data['Bulk probability'] == bulk_prob reduced_data = data[mask] upper = reduced_data['Upper'].to_numpy() lower = reduced_data['Lower'].to_numpy() values = np.hstack([upper, lower[::-1]]) # Add trace self._fig.add_trace(go.Scatter( x=times, y=values, line=dict(width=1, color=colors[trace_id]), fill='toself', legendgroup='Model prediction', name='Predictive model', text="%s Bulk" % bulk_prob, hoverinfo='text', showlegend=True if trace_id == n_traces-1 else False)) def _compute_bulk_probs(self, data, bulk_probs, time_key, sample_key): """ Computes the upper and lower percentiles from the predictive model samples, corresponding to the provided bulk probabilities. """ # Create container for perecentiles container = pd.DataFrame(columns=[ 'Time', 'Upper', 'Lower', 'Bulk probability']) # Translate bulk probabilities into percentiles percentiles = [] for bulk_prob in bulk_probs: lower = 0.5 - bulk_prob / 2 upper = 0.5 + bulk_prob / 2 percentiles.append([bulk_prob, lower, upper]) # Get unique times unique_times = data[time_key].unique() # Fill container with percentiles for each time for time in unique_times: # Mask relevant data mask = data[time_key] == time reduced_data = data[mask] # Get percentiles percentile_df = reduced_data[sample_key].rank( pct=True) for item in percentiles: bulk_prob, lower, upper = item # Get biomarker value corresponding to percentiles mask = percentile_df <= lower biom_lower = reduced_data[mask][sample_key].max() mask = percentile_df >= upper biom_upper = reduced_data[mask][sample_key].min() # Append percentiles to container container = container.append(pd.DataFrame({ 'Time': [time], 'Lower': [biom_lower], 'Upper': [biom_upper], 'Bulk probability': [str(bulk_prob)]})) return container def add_data( self, data, observable=None, id_key='ID', time_key='Time', obs_key='Observable', value_key='Value'): """ Adds pharmacodynamic time series data of (multiple) individuals to the figure. Expects a :class:`pandas.DataFrame` with an ID, a time, an observable and a value column, and adds a scatter plot of the measured time series to the figure. Each individual receives a unique colour. Parameters ---------- data A :class:`pandas.DataFrame` with the time series PD data in form of an ID, time, and observable column. observable The predicted observable. This argument is used to determine the relevant rows in the dataframe. If ``None``, the first observable in the observable column is selected. id_key Key label of the :class:`DataFrame` which specifies the ID column. The ID refers to the identity of an individual. Defaults to ``'ID'``. time_key Key label of the :class:`DataFrame` which specifies the time column. Defaults to ``'Time'``. obs_key Key label of the :class:`DataFrame` which specifies the observable column. Defaults to ``'Observable'``. value_key Key label of the :class:`DataFrame` which specifies the column of the measured values. Defaults to ``'Value'``. """ # Check input format if not isinstance(data, pd.DataFrame): raise TypeError( 'Data has to be pandas.DataFrame.') for key in [id_key, time_key, obs_key, value_key]: if key not in data.keys(): raise ValueError( 'Data does not have the key <' + str(key) + '>.') # Default to first bimoarker, if observable is not specified biom_types = data[obs_key].unique() if observable is None: observable = biom_types[0] if observable not in biom_types: raise ValueError( 'The observable could not be found in the observable column.') # Mask data for observable mask = data[obs_key] == observable data = data[mask] # Get a colour scheme colors = plotly.colors.qualitative.Plotly n_colors = len(colors) # Fill figure with scatter plots of individual data ids = data[id_key].unique() for index, _id in enumerate(ids): # Get individual data mask = data[id_key] == _id times = data[time_key][mask] measurements = data[value_key][mask] color = colors[index % n_colors] # Create Scatter plot self._add_data_trace(_id, times, measurements, color) def add_prediction( self, data, observable=None, bulk_probs=[0.9], time_key='Time', obs_key='Observable', value_key='Value'): r""" Adds the prediction to the figure. Expects a :class:`pandas.DataFrame` with a time, an observable and a value column. The time column determines the times of the measurements and the value column the measured value. The observable column determines the observable. A list of bulk probabilities ``bulk_probs`` can be specified, which are then added as area to the figure. The corresponding upper and lower percentiles are estimated from the ranks of the provided samples. .. warning:: For low sample sizes the illustrated bulk probabilities may deviate significantly from the theoretical bulk probabilities. The upper and lower limit are determined from the rank of the samples for each time point. Parameters ---------- data A :class:`pandas.DataFrame` with the time series PD simulation in form of a time and observable column. observable The predicted observable. This argument is used to determine the relevant rows in the dataframe. If ``None``, the first observable in the observable column is selected. bulk_probs A list of bulk probabilities that are illustrated in the figure. If ``None`` the samples are illustrated as a scatter plot. time_key Key label of the :class:`pandas.DataFrame` which specifies the time column. Defaults to ``'Time'``. obs_key Key label of the :class:`pandas.DataFrame` which specifies the observable column. Defaults to ``'Observable'``. value_key Key label of the :class:`pandas.DataFrame` which specifies the value column. Defaults to ``'Value'``. """ # Check input format if not isinstance(data, pd.DataFrame): raise TypeError( 'Data has to be pandas.DataFrame.') for key in [time_key, obs_key, value_key]: if key not in data.keys(): raise ValueError( 'Data does not have the key <' + str(key) + '>.') # Default to first bimoarker, if observable is not specified biom_types = data[obs_key].dropna().unique() if observable is None: observable = biom_types[0] if observable not in biom_types: raise ValueError( 'The observable could not be found in the observable column.') # Mask data for observable mask = data[obs_key] == observable data = data[mask] # Add samples as scatter plot if no bulk probabilites are provided, and # terminate method if bulk_probs is None: times = data[time_key] samples = data[value_key] self._add_prediction_scatter_trace(times, samples) return None # Not more than 7 bulk probabilities are allowed (Purely aesthetic # criterion) if len(bulk_probs) > 7: raise ValueError( 'At most 7 different bulk probabilities can be illustrated at ' 'the same time.') # Make sure that bulk probabilities are between 0 and 1 bulk_probs = [float(probability) for probability in bulk_probs] for probability in bulk_probs: if (probability < 0) or (probability > 1): raise ValueError( 'The provided bulk probabilities have to between 0 and 1.') # Add bulk probabilities to figure percentile_df = self._compute_bulk_probs( data, bulk_probs, time_key, value_key) self._add_prediction_bulk_prob_trace(percentile_df) class PKPredictivePlot(plots.SingleSubplotFigure): """ A figure class that visualises the predictions of a predictive pharmacokinetic model. Extends :class:`SingleSubplotFigure`. Parameters ---------- updatemenu Boolean flag that enables or disables interactive buttons, such as a logarithmic scale switch for the y-axis. """ def __init__(self, updatemenu=True): super(PKPredictivePlot, self).__init__() self._create_template_figure( rows=2, cols=1, shared_x=True, row_heights=[0.2, 0.8]) # Define legend name of prediction self._prediction_name = 'Predictive model' if updatemenu: self._add_updatemenu() def _add_dose_trace( self, _id, times,
# Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. import numpy as np import pandas as pd import warnings from sklearn.linear_model import LinearRegression import scipy.cluster.hierarchy as sch import datetime import random class backtest_model: """ Given a user-defined portfolio construction strategy (a function that takes in stock-related data and returns portfolio weights) and the data that the user wish the strategy to be tested on, calculate several evaluation metrics of the portfolio, including net_returns, sharpe ratio, certainty equivalent returns, turnover, etc. Various inputs can be modified to suit the needs of strategy and backtesting scenarios, such as price-impact models, transaction costs, etc. Initiate the model with the strategy function, and clarify involved data types needed, whose sequence MUST be consistent with that of the list of dataframes used inside strategy function :param strategy: user-defined function that serves as portfolio construction strategy :type strategy: function :param involved_data_type: a list of strings that indicate the type of data {'price','return','ex_return'} used in the strategy, the order of the strings will be the order that data are passed to the strategy :type involved_data_type: list :param need_extra_data: indicate whether the strategy need extra_data (data other than {'price','return','ex_return'}) to function. Note: 1. the datetime index of extra_data must match that of the provided data. 2. change-of-frequency functionality will be suspended if extra data is needed :type need_extra_data: bool :param trace_back: indicate whether the strategy need to trace back to past portfolios to function. Note: please handle the boundary situation where past portfolios is empty in the strategy function :type trace_back: bool :param name: name of the strategy to be tested :type name: str :param missing_val : indicate whether user strategy function can handle missing values in the data on its own. True means the function can deal with missing values. False means it cannot :type missing_val: bool """ def __init__(self, strategy, involved_data_type, need_extra_data=False, trace_back=False, name='Unnamed', missing_val=False): """ Initiate the model with the strategy function, and clarify involved data types needed, whose sequence MUST be consistent with that of the list of dataframes used inside strategy function :param strategy: user-defined function that serves as portfolio construction strategy :type strategy: function :param involved_data_type: a list of strings that indicate the type of data {'price','return','ex_return'} used in the strategy, the order of the strings will be the order that data are passed to the strategy :type involved_data_type: list :param need_extra_data: indicate whether the strategy need extra_data (data other than {'price','return','ex_return'}) to function. Note: 1. the datetime index of extra_data must match that of the provided data. 2. change-of-frequency functionality will be suspended if extra data is needed :type need_extra_data: bool :param trace_back: indicate whether the strategy need to trace back to past portfolios to function. Note: please handle the boundary situation where past portfolios is empty in the strategy function :type trace_back: bool :param name: name of the strategy to be tested :type name: str :param missing_val : indicate whether user strategy function can handle missing values in the data on its own. True means the function can deal with missing values. False means it cannot. A wrapper function would be applied to the strategy function to deal with missing data. It will only pass in columns with full data and assign to other assets weight 0 while keeping the relative position the same. Warning: 1. The wrapper will slow the running speed significantly. 2. The wrapper does not cover missing data in "extra_data".. :type missing_val: bool """ def wrapper(function, list_df, extra_data=pd.DataFrame(), historical_portfolios=pd.DataFrame()): length = list_df[0].shape[1] for frame in list_df: if length >= len(frame.columns[frame.isna().any() == False]): length = len(frame.columns[frame.isna().any() == False]) position_nan = frame.isna().any().values w = np.zeros(list_df[0].shape[1]) if need_extra_data: if trace_back: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df],extra_data, historical_portfolios) else: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df],extra_data) else: if trace_back: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df],historical_portfolios) else: w[position_nan == False] = function([frame[frame.columns[position_nan == False]] for frame in list_df]) return w if not missing_val: if name not in ['naive allocation portfolio', 'inverse variance allocation portfolio', 'min. variance allocation portfolio', 'basic mean-variance allocation portfolio', 'Fama-French 3-factor model portfolio', 'hierarchical-risk-parity portfolio', 'Bayes_Stein_shrinkage portfolio']: warnings.warn('The library will deal with missing data. Running speed will be significantly reduced!') if need_extra_data: if trace_back: self.__strategy = lambda x,y,z: wrapper(strategy, x,extra_data=y,historical_portfolios=z) else: self.__strategy = lambda x,y: wrapper(strategy, x,extra_data=y) else: if trace_back: self.__strategy = lambda x,z: wrapper(strategy, x,historical_portfolios=z) else: self.__strategy = lambda x: wrapper(strategy, x) else: self.__strategy = strategy if type(involved_data_type) != list: raise Exception('"involved_data_type" must be given in a list') else: self.__involved_data_type = involved_data_type if type(need_extra_data) != bool: raise Exception('"need_extra_data" must be a bool variable') else: self.__need_extra_data = need_extra_data if type(trace_back) != bool: raise Exception('"trace_back" must be a bool variable') else: self.__trace_back = trace_back if type(name) != str: raise Exception('"name" must be a string variable') else: self.name = name self.__last_test_frequency = None self.__last_test_portfolios = None self.__price_impact = False self.__sharpe = None self.__ceq = None self.__average_turnover = None self.__total_turnover = None self.__net_returns = None self.__net_excess_returns = None # function to prepare data, including change of frequency, convert between price, return and ex_return def __prepare_data(self, data, freq_data, data_type, rf, interval, window, freq_strategy, volume=pd.DataFrame(), price_impact=False): if not isinstance(data, pd.DataFrame): raise Exception('Please provide correct format of test data!') try: data.index = pd.to_datetime(data.index) except: print( 'Invalid index provided in your test data, please make sure that index is in compatible datetime format') volume.index = pd.to_datetime(volume.index) data = data.copy() if data_type == 'return': if freq_data != freq_strategy: warnings.warn( 'data_type==return with interval>1 or change of frequency, Expect large amount of computational error') data['###rf'] = rf # add 'rf' to the dataframe to go through transformation together data = (1 + data).apply(lambda x: np.cumprod(x)) data = data.resample(freq_strategy).ffill().fillna(method='ffill').pct_change(fill_method=None).dropna(axis=0, how='all') normal_return_df = data.iloc[:,:-1] risk_free_df=data.iloc[:,-1] excess_return_df = normal_return_df.sub(risk_free_df.values, axis=0).dropna(axis=0, how='all') return (normal_return_df, excess_return_df, risk_free_df, pd.DataFrame(index=normal_return_df.index)) else: normal_return_df = data excess_return_df = normal_return_df.sub(rf.values, axis=0) return (normal_return_df, excess_return_df, rf.loc[normal_return_df.index], pd.DataFrame(index=normal_return_df.index)) elif data_type == 'ex_return': if freq_data != freq_strategy: warnings.warn( 'data_type==ex_return with interval>1 or change of frequency, Expect large amount of computational error') data = data.add(rf, axis=0) data['###rf'] = rf # add 'rf' to the dataframe to go through transformation together data = (1 + data).apply(lambda x: np.cumprod(x)) data = data.resample(freq_strategy).ffill().fillna(method='ffill').pct_change(fill_method=None).dropna(axis=0, how='all') normal_return_df = data.iloc[:, :-1] risk_free_df = data.iloc[:, -1] excess_return_df = normal_return_df.sub(risk_free_df.values, axis=0).dropna(axis=0, how='all') return (normal_return_df, excess_return_df, risk_free_df, pd.DataFrame(index=normal_return_df.index)) else: excess_return_df = data normal_return_df = excess_return_df.add(rf, axis=0) return (normal_return_df, excess_return_df, rf.loc[normal_return_df.index], pd.DataFrame(index=normal_return_df.index)) elif data_type == 'price': #data['###rf'] = rf # add 'rf' to the dataframe to go through transformation together rf_df=np.cumprod(1+rf) if freq_data != freq_strategy: data = data.resample(freq_strategy).ffill().fillna(method='ffill') rf_df=rf_df.resample(freq_strategy).ffill().fillna(method='ffill') if price_impact: volume = volume.resample(freq_strategy).mean() normal_return_df = data.pct_change(fill_method=None).dropna(axis=0, how='all') risk_free_df=rf_df.pct_change(fill_method=None).dropna(axis=0,how='all').loc[normal_return_df.index] excess_return_df = normal_return_df.sub(risk_free_df.values, axis=0) if price_impact: return (normal_return_df, excess_return_df, volume.loc[normal_return_df.index], risk_free_df, data.loc[normal_return_df.index]) else: return (normal_return_df, excess_return_df, risk_free_df, data.loc[normal_return_df.index]) # rebalance function to be applied to each rolling window of length (window) def __rebalance(self, ex_return_df, normal_return_df, price_df, window, extra_data=None): historical_portfolios = [] map = {'price': price_df, 'ex_return': ex_return_df, 'return': normal_return_df} if self.__need_extra_data: if self.__trace_back: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type], extra_data.loc[df.index], historical_portfolios)) else: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type], extra_data.loc[df.index])) else: if self.__trace_back: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type], historical_portfolios)) else: for df in ex_return_df.rolling(window): if df.shape[0] >= window: historical_portfolios.append( self.__strategy([map[i].loc[df.index] for i in self.__involved_data_type])) return historical_portfolios def __test_price_impact(self, data, freq_data, data_type, rf, interval, window, freq_strategy, ptc_buy, ptc_sell, ftc, volume, c, initial_wealth, extra_data, price_impact_model='default',power=0.6): # prepare data normal_return_df, excess_return_df, volume, risk_free_rate, price_df = self.__prepare_data(data, freq_data, data_type, rf, interval, window, freq_strategy, volume, price_impact=True) T = excess_return_df.shape[0] # length of dataset N = excess_return_df.shape[1] # number of assets if window < N: warnings.warn('window length smaller than the number of assets, may not get feasible portfolios') if window >= T
whitespace before newline """ # Arrange source_markdown = """a![Foo](/uri\a\a "testing")a ---""".replace( "\a", " " ) expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:":: \n:]', "[text(2,11):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_64b(): """ Test case extra 64b: variation of 64 with whitespace after newline """ # Arrange source_markdown = """a![Foo](/uri "testing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:"::\n :]', "[text(2,12):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_64c(): """ Test case extra 64c: variation of 64 with whitespace before and after newline """ # Arrange source_markdown = """a![Foo](/uri\a\a "testing")a ---""".replace( "\a", " " ) expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:":: \n :]', "[text(2,12):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_65(): """ Test case extra 65: SetExt heading with inline image with newline after the URI and no text """ # Arrange source_markdown = """a![Foo](/uri )a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", "[image(1,2):inline:/uri::Foo::::Foo:False:::\n:]", "[text(2,2):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_66(): """ Test case extra 66: SetExt heading with inline image with newline in the title """ # Arrange source_markdown = """a![Foo](/uri "test ing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:test\ning:Foo::::Foo:False:":: :]', "[text(2,6):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="test\ning" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_67(): """ Test case extra 67: SetExt heading with inline image with newline after the title """ # Arrange source_markdown = """a![Foo](/uri "testing" )a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:":: :\n]', "[text(2,2):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_67a(): """ Test case extra 67a: variation of 67 with whitespace before newline """ # Arrange source_markdown = """a![Foo](/uri "testing"\a\a )a ---""".replace( "\a", " " ) expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:":: : \n]', "[text(2,2):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_67b(): """ Test case extra 67b: variation of 67 with whitespace after newline """ # Arrange source_markdown = """a![Foo](/uri "testing" )a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:":: :\n ]', "[text(2,5):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_67c(): """ Test case extra 67c: variation of 67 with whitespace before and after newline """ # Arrange source_markdown = """a![Foo](/uri "testing"\a\a )a ---""".replace( "\a", " " ) expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:":: : \n ]', "[text(2,5):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_68x(): """ Test case extra 68: SetExt heading with link containing label with replacement """ # Arrange source_markdown = """a[Fo&beta;o](/uri "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:testing::::Fo&beta;o:False:":: :]', "[text(1,3):Fo\a&beta;\aβ\ao:]", "[end-link::]", "[text(1,29):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="testing">Foβo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_68a(): """ Test case extra 68a: variation of 68 without special characters """ # Arrange source_markdown = """a[Foo](/uri "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:testing::::Foo:False:":: :]', "[text(1,3):Foo:]", "[end-link::]", "[text(1,23):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="testing">Foo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_68b(): """ Test case extra 68b: variation of 68 with newline before special characters """ # Arrange source_markdown = """a[Fo &beta;o](/uri "testing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:testing::::Fo\n&beta;o:False:":: :]', "[text(1,3):Fo\n\a&beta;\aβ\ao::\n]", "[end-link::]", "[text(2,25):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="testing">Fo\nβo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_69(): """ Test case extra 69: SetExt heading with link containing label with backslash """ # Arrange source_markdown = """a[Fo\\]o](/uri "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:testing::::Fo\\]o:False:":: :]', "[text(1,3):Fo\\\b]o:]", "[end-link::]", "[text(1,25):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="testing">Fo]o</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_69a(): """ Test case extra 69a: variation of 69 with newline before special characters """ # Arrange source_markdown = """a[Fo \\]o](/uri "testing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:testing::::Fo\n\\]o:False:":: :]', "[text(1,3):Fo\n\\\b]o::\n]", "[end-link::]", "[text(2,21):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="testing">Fo\n]o</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_70(): """ Test case extra 70: SetExt heading with link containing uri with space """ # Arrange source_markdown = """a[Foo](</my uri> "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/my%20uri:testing:/my uri:::Foo:True:":: :]', "[text(1,3):Foo:]", "[end-link::]", "[text(1,28):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/my%20uri" title="testing">Foo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_70a(): """ Test case extra 70a: variation of 70 with newline before special characters, rendering it invalid """ # Arrange source_markdown = """a[Foo](</my uri> "testing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", "[text(1,2):[:]", "[text(1,3):Foo:]", "[text(1,6):]:]", '[text(1,7):(\a<\a&lt;\a/my\nuri\a>\a&gt;\a \a"\a&quot;\atesting\a"\a&quot;\a)a::\n \x02]', "[end-setext::]", ] expected_gfm = """<h2>a[Foo](&lt;/my\nuri&gt; &quot;testing&quot;)a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_71(): """ Test case extra 71: SetExt heading with link containing title with replacement """ # Arrange source_markdown = """a[Foo](/uri "test&beta;ing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:testβing::test&beta;ing::Foo:False:":: :]', "[text(1,3):Foo:]", "[end-link::]", "[text(1,29):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="testβing">Foo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_71a(): """ Test case extra 71a: variation of 71 with newline before special characters """ # Arrange source_markdown = """a[Foo](/uri "test &beta;ing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:test\nβing::test\n&beta;ing::Foo:False:":: :]', "[text(1,3):Foo:]", "[end-link::]", "[text(2,12):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="test\nβing">Foo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_72(): """ Test case extra 72: SetExt heading with link containing title with backslash """ # Arrange source_markdown = """a[Foo](/uri "test\\#ing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:test#ing::test\\#ing::Foo:False:":: :]', "[text(1,3):Foo:]", "[end-link::]", "[text(1,25):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="test#ing">Foo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_72a(): """ Test case extra 72a: variation of 72 with newline before special characters """ # Arrange source_markdown = """a[Foo](/uri "test \\#ing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[link(1,2):inline:/uri:test\n#ing::test\n\\#ing::Foo:False:":: :]', "[text(1,3):Foo:]", "[end-link::]", "[text(2,8):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<a href="/uri" title="test\n#ing">Foo</a>a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_73(): """ Test case extra 73: SetExt heading with image containing label with replacement """ # Arrange source_markdown = """a![Fo&beta;o](/uri "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foβo::::Fo&beta;o:False:":: :]', "[text(1,30):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foβo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_73a(): """ Test case extra 73a: variation of 73 without special characters """ # Arrange source_markdown = """a![Foo](/uri "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Foo::::Foo:False:":: :]', "[text(1,24):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_73b(): """ Test case extra 73b: 73 variation of with newline before special characters """ # Arrange source_markdown = """a![Fo &beta;o](/uri "testing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Fo\nβo::::Fo\n&beta;o:False:":: :]', "[text(2,25):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Fo\nβo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_74(): """ Test case extra 74: SetExt heading with image containing label with backslash """ # Arrange source_markdown = """a![Fo\\]o](/uri "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Fo]o::::Fo\\]o:False:":: :]', "[text(1,26):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Fo]o" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_74a(): """ Test case extra 74a: variation of 74 with newline before special characters """ # Arrange source_markdown = """a![Fo \\]o](/uri "testing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testing:Fo\n]o::::Fo\n\\]o:False:":: :]', "[text(2,21):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Fo\n]o" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_75(): """ Test case extra 75: SetExt heading with image containing uri with space """ # Arrange source_markdown = """a![Foo](</my uri> "testing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/my%20uri:testing:Foo:/my uri:::Foo:True:":: :]', "[text(1,29):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/my%20uri" alt="Foo" title="testing" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_75a(): """ Test case extra 75a: variation of 75 with newline before special characters, invalidating it """ # Arrange source_markdown = """a![Foo](</my uri> "testing")a ---""" expected_tokens = [ "[setext(3,1):-:3::(1,1)]", "[text(1,1):a:]", "[text(1,2):![:]", "[text(1,4):Foo:]", "[text(1,7):]:]", '[text(1,8):(\a<\a&lt;\a/my\nuri\a>\a&gt;\a \a"\a&quot;\atesting\a"\a&quot;\a)a::\n \x02]', "[end-setext::]", ] expected_gfm = """<h2>a![Foo](&lt;/my\nuri&gt; &quot;testing&quot;)a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens) @pytest.mark.gfm def test_setext_headings_extra_76(): """ Test case extra 76: SetExt heading with image containing title with replacement """ # Arrange source_markdown = """a![Foo](/uri "test&beta;ing")a ---""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", '[image(1,2):inline:/uri:testβing:Foo::test&beta;ing::Foo:False:":: :]', "[text(1,30):a:]", "[end-setext::]", ] expected_gfm = """<h2>a<img src="/uri" alt="Foo" title="testβing" />a</h2>""" # Act & Assert
<gh_stars>0 # ========================================================================================================================= # File Name : preprocessing.py # ------------------------------------------------------------------------------------------------------------------------- # Purpose : Purpose of this script is to remove the both irrelevant and repeative keywords # Author : <NAME> # Co-Author : <NAME> and <NAME> # Creation Date : 11-June-2020 # History # ------------------------------------------------------------------------------------------------------------------------- # Date | Author | Co-Author | Remark # 11-June-2020 | <NAME> | <NAME> and <NAME> | Initial Release # ========================================================================================================================= # ========================================================================================================================= # Import required Module / Packages # ------------------------------------------------------------------------------------------------------------------------- import nltk import re from bs4 import BeautifulSoup import unicodedata from contractions import CONTRACTION_MAP from nltk.corpus import wordnet from nltk.tokenize.toktok import ToktokTokenizer import en_core_web_sm from nltk.corpus import words engwords = words.words() import traceback ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Tokenizing the keywords ########################################################################################################################### tokenizer = ToktokTokenizer() stopword_list = nltk.corpus.stopwords.words('english') # nlp = spacy.load('en', parse=True, tag=True, entity=True) nlp = en_core_web_sm.load() # nlp_vec = spacy.load('en_vectors_web_lg', parse=True, tag=True, entity=True) ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Reove html tags ########################################################################################################################### def strip_html_tags(text): soup = BeautifulSoup(text, "html.parser") if bool(soup.find()): [s.extract() for s in soup(['iframe', 'script'])] stripped_text = soup.get_text() stripped_text = re.sub(r'[\r|\n|\r\n]+', '\n', stripped_text) stripped_text = re.sub(r'''(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'".,<>?«»“”‘’]))''', " ", stripped_text) else: stripped_text = text # print('Strip html tags completed') return stripped_text ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Stemming of keywords in other words get into root word ########################################################################################################################### def simple_porter_stemming(text): ps = nltk.porter.PorterStemmer() text = ' '.join([ps.stem(word) for word in text.split()]) # print('Stemming completed') return text ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Lemetizaton of keywords in other words get into root words ########################################################################################################################### def lemmatize_text(text): text = nlp(text) text = ' '.join([word.lemma_ if word.lemma_ != '-PRON-' else word.text for word in text]) # print('Lemmatiation completed') return text ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Removal repeated words ########################################################################################################################### def remove_repeated_words(text): tokens = tokenizer.tokenize(text) tokens = [token.strip() for token in tokens] seen = set() seen_add = seen.add def add(x): seen_add(x) return x text = ' '.join(add(i) for i in tokens if i not in seen) # print('remove repeated words completed') return text ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Removal of repeated characters ########################################################################################################################### def remove_repeated_characters(text): repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)') match_substitution = r'\1\2\3' tokens = tokenizer.tokenize(text) tokens = [token.strip() for token in tokens] def replace(old_word): if wordnet.synsets(old_word): return old_word new_word = repeat_pattern.sub(match_substitution, old_word) return replace(new_word) if new_word != old_word else new_word correct_tokens = [replace(word) for word in tokens] # print('remove repeated characters') return correct_tokens ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Expand the contractions which can be later tokenized or removed ########################################################################################################################### def expand_contractions(text, contraction_mapping=CONTRACTION_MAP): contractions_pattern = re.compile('({})'.format('|'.join(contraction_mapping.keys())), flags=re.IGNORECASE|re.DOTALL) def expand_match(contraction): match = contraction.group(0) first_char = match[0] expanded_contraction = contraction_mapping.get(match)\ if contraction_mapping.get(match)\ else contraction_mapping.get(match.lower()) expanded_contraction = first_char+expanded_contraction[1:] return expanded_contraction expanded_text = contractions_pattern.sub(expand_match, text) expanded_text = re.sub("'", "", expanded_text) # print('expand contractions completed') return expanded_text ########################################################################################################################### # Author : Tapas Mohanty # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Remove accented characters ########################################################################################################################### def remove_accented_chars(text): text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8', 'ignore') # print('removal accented chars') return text ########################################################################################################################### # Author : Tapas Mohanty # Co-Author : <NAME> and <NAME> # Modified : # Functionality : Remove special characters ########################################################################################################################### def remove_special_characters(text, remove_digits=False): pattern = r'[^a-zA-Z0-9\s]|\[|\]' if not remove_digits else r'[^a-zA-Z\s]|\[|\]' text = re.sub(pattern, '', text) # print('removal special characters completed') return text ########################################################################################################################### # Author : Tapas Mohanty # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Remove stopwords which are listed in nltk library ########################################################################################################################### def remove_stopwords(text, is_lower_case=False, stopwords = stopword_list): tokens = tokenizer.tokenize(text) tokens = [token.strip() for token in tokens] if is_lower_case: filtered_tokens = [token for token in tokens if token not in stopwords] else: filtered_tokens = [token for token in tokens if token.lower() not in stopwords] filtered_text = ' '.join(filtered_tokens) # print('removal stopwords completed') return filtered_text ########################################################################################################################### # Author : Tapas Mohanty # Co-Author : <NAME> and <NAME> # Modified : # Functionality : Remove custom keywords which are mentioned in the text file i.e. # stopwords.txt ########################################################################################################################### def custom_stopwords(text, custok): tokens = tokenizer.tokenize(text) tokens = [token.strip() for token in tokens] filtered_custokens = [token for token in tokens if token not in custok] filtered_text = ' '.join(filtered_custokens) # print('removal custom stopwords completed') return filtered_text ########################################################################################################################### # Author : Tapas Mohanty # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Remove non-engish Keywords ########################################################################################################################### def get_keywords(text, eng_words = engwords): tokens = tokenizer.tokenize(text) eng_tokens = [token for token in tokens if token in eng_words] eng_text = ' '.join(eng_tokens) # print('removal of non-english keywords completed') return eng_text ########################################################################################################################### # Author : Tapas Mohanty # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Reomve those keywords which are present in other columns ########################################################################################################################### def col_keyword(pData, pTktDesc, column): try: pData['combined'] = pData[column].apply(lambda row: ' '.join(row)) pData['Sample'] = ([' '.join(set(a.split(' ')).difference(set(b.split(' ')))) for a, b in zip(pData[pTktDesc], pData['combined'])]) del pData['combined'] except Exception as e: print('*** Error[001]: ocurred while combining column',e) return pData ########################################################################################################################### # Author : <NAME> # Co-Author : <NAME> and <NAME> # Modified : # Reviewer : # Functionality : Import all the above functions menioned in ths script ########################################################################################################################### def normalize_corpus(corpus, html_stripping= True, contraction_expansion= True, accented_char_removal= True, text_lower_case= True, text_stemming= False, text_lemmatization= True, special_char_removal= True, remove_digits= True, stopword_removal= True, ewords = True, custm_stpwrds= True, stopwords=stopword_list, remove_rptd_wrds= True, eng_words = engwords): normalized_corpus = [] # normalize each document in the corpus custok = [] with open('stopwords.txt', 'r') as f: for word in f: word = word.split('\n') custok.append(word[0]) print('--> preprocessing started') for index, doc in enumerate(corpus): # print(index) try: # strip HTML if html_stripping: doc = strip_html_tags(doc) except Exception as e: raise(e) print(traceback.format_exc()) print('*** Error[002]: preprocessing file ocurred in html_stripping on row no: ', index) try: # remove extra newlines doc = doc.translate(doc.maketrans("\n\t\r", " ")) except Exception as e: print(traceback.format_exc()) print('*** Error[003] preprocessing file ocurred on row no: ', index) try: # remove accented characters if accented_char_removal: doc = remove_accented_chars(doc) except Exception as e: raise(e) print(traceback.format_exc()) print('*** Error[004]: preprocessing file ocurred in accented_char_removal on row no: ', index) try: # expand contractions if contraction_expansion: doc = expand_contractions(doc) except Exception as e: print('*** Error[005] preprocessing file ocurred in contraction_expansion on row no: ', index) try: # lemmatize text if text_lemmatization: doc = lemmatize_text(doc) except Exception as e: raise(e) print('*** Error[006]: preprocessing file ocurred in text_lemmatization on row no: ', index) try: # stem text if text_stemming and not text_lemmatization: doc = simple_porter_stemming(doc) except Exception as e: print('*** Error[007]: ocurred in text_stemming on row no: ', index) try: # remove special characters and\or digits if special_char_removal: # insert spaces between special characters to isolate them special_char_pattern = re.compile(r'([{.(-)!}])') doc = special_char_pattern.sub(" \\1 ", doc) doc = remove_special_characters(doc, remove_digits=remove_digits) except Exception as e: raise(e) print('*** Error[008] preprocessing file ocurred in special_char_removal on row no: ', index) try: # remove extra whitespace doc = re.sub(' +', ' ', doc) except Exception as e: print('*** Error[009]: preprocessing file ocurred on row no: ', index) try: # lowercase the text if text_lower_case: doc = doc.lower() except Exception as e: raise(e) print(traceback.format_exc()) print('*** Error[010]: preprocessing file ocurred in text_lower_case on row no: ', index) try: # remove stopwords if stopword_removal: doc = remove_stopwords(doc, is_lower_case=text_lower_case, stopwords = stopwords) except Exception as e: raise(e) print(traceback.format_exc()) print('*** Error[011]: preprocessing file ocurred in stopword_removal on row no: ', index) try: #Remove non-english keywords if ewords: doc = get_keywords(doc, eng_words = eng_words) except Exception as e: raise(e) print(traceback.format_exc()) print('*** Error[012]: preprocessing file ocurred in ewords on row no: ', index) try: #Remove custom keywords if custm_stpwrds: doc =
import math from functools import wraps, partial, reduce from operator import mul import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from src.modules import FeedForwardNetwork, ESM1bLayerNorm, NormalizedResidualBlock, MLP TOKEN_SELF_ATTN_VALUE = <PASSWORD> # carefully set for half precision to work # We followed implement in https://github.com/lucidrains/reformer-pytorch def chunked_sum(tensor, chunks=1): *orig_size, last_dim = tensor.shape tensor = tensor.reshape(-1, last_dim) summed_tensors = [c.sum(dim=-1) for c in tensor.chunk(chunks, dim=0)] return torch.cat(summed_tensors, dim=0).reshape(orig_size) def process_inputs_chunk(fn, chunks=1, dim=0): def inner_fn(*args, **kwargs): keys, values, len_args = kwargs.keys(), kwargs.values(), len(args) chunked_args = list(zip(*map(lambda x: x.chunk(chunks, dim=dim), list(args) + list(values)))) all_args = map(lambda x: (x[:len_args], dict(zip(keys, x[len_args:]))), chunked_args) outputs = [fn(*c_args, **c_kwargs) for c_args, c_kwargs in all_args] return tuple(map(lambda x: torch.cat(x, dim=dim), zip(*outputs))) return inner_fn def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def exists(val): return val is not None def batched_index_select(values, indices): last_dim = values.shape[-1] # batch gene dim[batch,gene, return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim)) def default(val, default_val): return default_val if val is None else val def sort_key_val(t1, t2, dim=-1): values, indices = t1.sort(dim=dim) t2 = t2.expand_as(t1) return values, t2.gather(dim, indices) def expand_dim(dim, k, t): t = t.unsqueeze(dim) expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def merge_dims(ind_from, ind_to, tensor): shape = list(tensor.shape) arr_slice = slice(ind_from, ind_to + 1) shape[arr_slice] = [reduce(mul, shape[arr_slice])] return tensor.reshape(*shape) def split_at_index(dim, index, t): pre_slices = (slice(None),) * dim l = (*pre_slices, slice(None, index)) r = (*pre_slices, slice(index, None)) return t[l], t[r] def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j=2) x1, x2 = x.unbind(dim=-1) x = torch.stack((-x2, x1), dim=-1) return rearrange(x, '... d j -> ... (d j)') def apply_rotary_pos_emb(qk, sinu_pos): sinu_pos = sinu_pos.type(qk.dtype) sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j=2) sin, cos = sinu_pos.unbind(dim=-2) sin, cos = map(lambda t: repeat(t, 'n d -> n (d j)', j=2), (sin, cos)) seq_len = sin.shape[0] qk, qk_pass = qk[:, :seq_len], qk[:, seq_len:] qk = (qk * cos) + (rotate_every_two(qk) * sin) return torch.cat((qk, qk_pass), dim=1) def cache_method_decorator(cache_attr, cache_namespace, reexecute=False): def inner_fn(fn): @wraps(fn) def wrapper(self, *args, key_namespace=None, fetch=False, set_cache=True, **kwargs): namespace_str = str(default(key_namespace, '')) _cache = getattr(self, cache_attr) _keyname = f'{cache_namespace}:{namespace_str}' if fetch: val = _cache[_keyname] if reexecute: fn(self, *args, **kwargs) else: val = fn(self, *args, **kwargs) if set_cache: setattr(self, cache_attr, {**_cache, **{_keyname: val}}) return val return wrapper return inner_fn class LSHAttention(nn.Module): def __init__(self, dropout=0., bucket_size=64, n_hashes=4, causal=False, allow_duplicate_attention=True, attend_across_buckets=True, rehash_each_round=True, drop_for_hash_rate=0.0, random_rotations_per_head=False, dim_per_head=16, return_attn=False): super().__init__() if dropout >= 1.0: raise ValueError('Dropout rates must be lower than 1.') self.dropout = nn.Dropout(dropout) self.dropout_for_hash = nn.Dropout(drop_for_hash_rate) assert rehash_each_round or allow_duplicate_attention, ( 'The setting {allow_duplicate_attention=False, rehash_each_round=False}' ' is not implemented.') self.causal = causal self.bucket_size = bucket_size self.n_hashes = n_hashes self.dim_per_head = dim_per_head self._allow_duplicate_attention = allow_duplicate_attention self._attend_across_buckets = attend_across_buckets self._rehash_each_round = rehash_each_round self._random_rotations_per_head = random_rotations_per_head # will expend extra computation to return attention matrix self._return_attn = return_attn # cache buckets for reversible network, reported by authors to make Reformer work at depth self._cache = {} @cache_method_decorator('_cache', 'buckets', reexecute=True) def hash_vectors(self, n_buckets, vecs): batch_size = vecs.shape[0] device = vecs.device assert n_buckets % 2 == 0 rot_size = n_buckets rotations_shape = ( # batch_size if self._random_rotations_per_head else 1, 1, vecs.shape[-1], self.n_hashes, rot_size // 2) random_rotations = torch.randn(rotations_shape, dtype=vecs.dtype, device=device).expand(batch_size, -1, -1, -1) # batch,hidden,nhash,bin dropped_vecs = self.dropout_for_hash(vecs) # batch,ngene,hidden rotated_vecs = torch.einsum('btf,bfhi->bhti', dropped_vecs, random_rotations) # batch,nhash,ngene,bin rotated_vecs = torch.cat([rotated_vecs, -rotated_vecs], dim=-1) buckets = torch.argmax(rotated_vecs, dim=-1) # batch,nhash,ngene,whichbin offsets = torch.arange(self.n_hashes, device=device) offsets = torch.reshape(offsets * n_buckets, (1, -1, 1)) buckets = torch.reshape(buckets + offsets, (batch_size, -1,)) return buckets def forward(self, qk, v, query_len=None, return_attn=False, input_mask=None, **kwargs): batch_size, seqlen, dim, device = *qk.shape, qk.device query_len = default(query_len, seqlen) is_reverse = kwargs.pop('_reverse', False) depth = kwargs.pop('_depth', None) assert seqlen % ( self.bucket_size * 2) == 0, f'Sequence length ({seqlen}) needs to be divisible by target bucket size x 2 - ' \ f'{self.bucket_size * 2}' n_buckets = seqlen // self.bucket_size buckets = self.hash_vectors(n_buckets, qk, key_namespace=depth, fetch=is_reverse, set_cache=self.training) # batch, # (nhash,ngene,whichbin) # We use the same vector as both a query and a key. assert int(buckets.shape[1]) == self.n_hashes * seqlen total_hashes = self.n_hashes ticker = torch.arange(total_hashes * seqlen, device=device).unsqueeze(0).expand_as(buckets) buckets_and_t = seqlen * buckets + (ticker % seqlen) buckets_and_t = buckets_and_t.detach() sbuckets_and_t, sticker = sort_key_val(buckets_and_t, ticker, dim=-1) _, undo_sort = sticker.sort(dim=-1) del ticker sbuckets_and_t = sbuckets_and_t.detach() sticker = sticker.detach() undo_sort = undo_sort.detach() st = (sticker % seqlen) sqk = batched_index_select(qk, st) # batch gene dim sv = batched_index_select(v, st) # Split off a "bin" axis so that attention only occurs within chunks. chunk_size = total_hashes * n_buckets bq_t = bkv_t = torch.reshape(st, (batch_size, chunk_size, -1)) bqk = torch.reshape(sqk, (batch_size, chunk_size, -1, dim)) bv = torch.reshape(sv, (batch_size, chunk_size, -1, dim)) bq = bqk bk = F.normalize(bqk, p=2, dim=-1).type_as(bq) def look_one_back(x): x_extra = torch.cat([x[:, -1:, ...], x[:, :-1, ...]], dim=1) return torch.cat([x, x_extra], dim=2) bk = look_one_back(bk) bv = look_one_back(bv) bkv_t = look_one_back(bkv_t) lens = bk.shape[-1] // self.dim_per_head # Dot-product attention. dots = 0 tk = 64 if return_attn: for i in range(lens // tk): dots += (torch.einsum('bhie,bhje->bhij', bq[:, :, :, i * tk * self.dim_per_head:(i + 1) * tk * self.dim_per_head], bk[:, :, :, i * tk * self.dim_per_head:(i + 1) * tk * self.dim_per_head]) * (dim ** -0.5)) if lens % tk != 0: dots += (torch.einsum('bhie,bhje->bhij', bq[:, :, :, -(len(bk) % tk) * self.dim_per_head:], bk[:, :, :, -(len(bk) % tk) * self.dim_per_head:]) * (dim ** -0.5)) else: dots = (torch.einsum('bhie,bhje->bhij', bq, bk) * (dim ** -0.5)) masked_value = max_neg_value(dots) if input_mask is not None: mq = input_mask.gather(1, st).reshape((batch_size, chunk_size, -1)) mkv = look_one_back(mq) mask = mq[:, :, :, None] * mkv[:, :, None, :] # print((mask==1).sum(),batch_size,chunk_size) dots.masked_fill_(mask == 0, masked_value) del mask # Mask out attention to self except when no other targets are available. self_mask = bq_t[:, :, :, None] == bkv_t[:, :, None, :] dots.masked_fill_(self_mask, TOKEN_SELF_ATTN_VALUE) del self_mask # Mask out attention to other hash buckets. bq_buckets = bkv_buckets = torch.reshape(sbuckets_and_t // seqlen, (batch_size, chunk_size, -1)) bkv_buckets = look_one_back(bkv_buckets) bucket_mask = bq_buckets[:, :, :, None] != bkv_buckets[:, :, None, :] dots.masked_fill_(bucket_mask, masked_value) del bucket_mask # Softmax. dots_logsumexp = torch.logsumexp(dots, dim=-1, keepdim=True) dots = torch.exp(dots - dots_logsumexp).type_as(dots) bo = torch.einsum('buij,buje->buie', dots, bv) so = torch.reshape(bo, (batch_size, -1, dim)) slogits = torch.reshape(dots_logsumexp, (batch_size, -1,)) # unsort logits o = batched_index_select(so, undo_sort) logits = slogits.gather(1, undo_sort) o = torch.reshape(o, (batch_size, total_hashes, seqlen, dim)) logits = torch.reshape(logits, (batch_size, total_hashes, seqlen, 1)) if query_len != seqlen: query_slice = (slice(None), slice(None), slice(0, query_len)) o, logits = o[query_slice], logits[query_slice] probs = torch.exp(logits - torch.logsumexp(logits, dim=1, keepdim=True)) out = torch.sum(o * probs, dim=1) attn = torch.empty(0, device=device) # return unsorted attention weights if return_attn: attn_unsort = ((bq_t * seqlen)[:, :, :, None] + bkv_t[:, :, None, :]) attn_unsort = attn_unsort.view(batch_size * total_hashes, -1).long() unsorted_dots = torch.zeros(batch_size * total_hashes, seqlen * seqlen, device=device) unsorted_dots.scatter_add_(1, attn_unsort, dots.view_as(attn_unsort)) del attn_unsort unsorted_dots = unsorted_dots.reshape(batch_size, total_hashes, seqlen, seqlen) attn = torch.sum(unsorted_dots[:, :, 0:query_len, :] * probs, dim=1) # return output, attention matrix, and bucket distribution return out, attn, buckets class LSHSelfAttention(nn.Module): def __init__(self, dim, heads=8, bucket_size=64, n_hashes=4, causal=False, dim_head=None, attn_chunks=1, random_rotations_per_head=False, attend_across_buckets=True, allow_duplicate_attention=True, num_mem_kv=0, use_full_attn=False, full_attn_thres=None, post_attn_dropout=0., dropout=0., n_local_attn_heads=0, **kwargs): super().__init__() assert dim_head or (dim % heads) == 0, 'dimensions must be divisible by number of heads' assert n_local_attn_heads < heads, 'local attention heads must be less than number of heads' dim_head = default(dim_head, dim // heads) dim_heads = dim_head * heads self.dim = dim self.heads = heads self.dim_head = dim_head self.attn_chunks = default(attn_chunks, 1) self.dim_per_head = dim // heads v_dim = dim_heads self.toqk = nn.Linear(dim, dim_heads, bias=False) self.tov = nn.Linear(dim, v_dim, bias=False) self.bucket_size = bucket_size self.lsh_attn = LSHAttention(bucket_size=bucket_size, n_hashes=n_hashes, causal=causal, dim_per_head=self.dim_per_head, random_rotations_per_head=random_rotations_per_head, attend_across_buckets=attend_across_buckets, allow_duplicate_attention=allow_duplicate_attention, dropout=dropout, **kwargs) self.post_attn_dropout = nn.Dropout(post_attn_dropout) self.use_full_attn = use_full_attn self.full_attn_thres = default(full_attn_thres, bucket_size) self.num_mem_kv = num_mem_kv self.mem_kv = nn.Parameter(torch.randn(1, num_mem_kv, dim, requires_grad=True)) if num_mem_kv > 0 else None self.n_local_attn_heads = n_local_attn_heads self.callback = None def forward(self, x, return_attn, input_mask=None, **kwargs): b, t, e, h, dh, m = *x.shape, self.heads, self.dim_head, self.num_mem_kv kv_len = t qk = self.toqk(x) # batch gene
records:%s' %(k,len(chrDataSets))) if(lengthChrDataSets>=clusterConfigs['record']): ##总行数>record ##对chrDataSets进行考虑record 和 threshold ##对chrDataSets根据Region value 进行排序 #for item in chrDataSets: # print(item[regionColumn]) chrDataSets.sort(key=lambda x:x[regionColumn]) ##此时chrDataSets已经排序 按照regionColumn 值 升序 排练 ##todo 对chrDataSets 的row 统计 threshold,record chrRowMaxNumber = len(chrDataSets) if k not in resultClusterDicts: resultClusterDicts[k]={} chrDataSetsClusteredIndexList=[] for i in range(0,chrRowMaxNumber): if i not in chrDataSetsClusteredIndexList: IClusteredGroup=[] for j in range(i+1,chrRowMaxNumber): if (int(chrDataSets[j][regionColumn])-int(chrDataSets[i][regionColumn])<=clusterConfigs['threshold']): IClusteredGroup.append(j) else: break if len(IClusteredGroup)>=(clusterConfigs['record']-1): IClusteredGroup.append(i) IClusteredGroup.sort() print(IClusteredGroup) cls_name_prefix="" if clusterConfigs['clusterPrefix']!="": cls_name_prefix=clusterConfigs['clusterPrefix']+'-' clusterName = cls_name_prefix+'C'+str(k)+'-'+str(i)+'-'+str(j) if clusterName not in resultClusterDicts[k]: resultClusterDicts[k][clusterName]=[] clusteredCount+=1 for ij in IClusteredGroup: resultClusterDicts[k][clusterName].append(chrDataSets[ij]) ## sum all valid coverage sumALLCoverageOfAllValidClsName+=int(chrDataSets[ij][coverageColumn]) chrDataSetsClusteredIndexList.append(ij) #print(chrDataSets[ij]) else: continue ##collect all result into list print('SUM Coverage Of All Cluster:%s' % sumALLCoverageOfAllValidClsName) clusteredResult = [] pa=0 for chr in resultClusterDicts.keys(): for clsName in resultClusterDicts[chr].keys(): ## 得到当前clustername 的所有行 sumCoverageOfClsName=0 sumCountOfClsName=0 sumFrequencyOfClsName=0 sumRowOfClsName=0 lastRowOfClsName=len(resultClusterDicts[chr][clsName]) r=0 for row in resultClusterDicts[chr][clsName]: r+=1 ## == row[0] #print('current cls:%s'%row) sumCoverageOfClsName+=int(row[coverageColumn]) sumCountOfClsName+=int(row[countColumn]) sumFrequencyOfClsName+=float(row[frequencyColumn]) sumRowOfClsName+=1 if r==lastRowOfClsName: row[insertColumns['pbColumn']['index']]=float(sumCoverageOfClsName)/float(sumALLCoverageOfAllValidClsName) row[insertColumns['pabColumn']['index']]=float(sumCountOfClsName)/float(sumCoverageOfClsName) row[insertColumns['cfColumn']['index']]=sumFrequencyOfClsName row[insertColumns['crColumn']['index']]=sumRowOfClsName pa += (float(row[insertColumns['pbColumn']['index']])*float(row[insertColumns['pabColumn']['index']])) row[insertColumns['clusterColumn']['index']]=clsName clusteredResult.append(row) ##from result list into all original data for csv file for row in range(1,rowMaxCount): for rowR in clusteredResult: if (rowR[chromosomeColumn]==clusterFileDataSet[row][chromosomeColumn]) and (rowR[regionColumn]==clusterFileDataSet[row][regionColumn]): clusterFileDataSet[row][insertColumns['clusterColumn']['index']]=rowR[insertColumns['clusterColumn']['index']] pb=clusterFileDataSet[row][insertColumns['pbColumn']['index']]=rowR[insertColumns['pbColumn']['index']] pab=clusterFileDataSet[row][insertColumns['pabColumn']['index']]=rowR[insertColumns['pabColumn']['index']] clusterFileDataSet[row][insertColumns['cfColumn']['index']]=rowR[insertColumns['cfColumn']['index']] clusterFileDataSet[row][insertColumns['crColumn']['index']]=rowR[insertColumns['crColumn']['index']] if clusterFileDataSet[row][insertColumns['pbColumn']['index']] !='': clusterFileDataSet[row][insertColumns['paColumn']['index']]=pa clusterFileDataSet[row][insertColumns['pbaColumn']['index']]=(pb*pab)/pa break ## prefix = str(clusteredCount)+'_'+ "_".join(["%s%s" % (k, v) for k, v in SortedDict(clusterConfigs).items()])+'_' resultFilePath = generateResultFilePath(clusterfileabspath,prefix) saveDataToCSV([],clusterFileDataSet,resultFilePath,',') print("calculated end") def exonFile(exonDataFilePath,bedFilePath): _exonFile(exonDataFilePath,bedFilePath) def _exonFile(exonDataFilePath,bedFilePath): print("acting input exon data file") if os.path.isdir(exonDataFilePath): print("exon data file is a directory:%s" % exonDataFilePath) for root,dirs,files in os.walk(os.path.abspath(exonDataFilePath)): for file in files: filename,fileext=os.path.splitext(file) if fileext=='.csv': exondatafileabspath = root+os.sep+file _exonSingleDataFile(exondatafileabspath,bedFilePath) elif os.path.isfile(exonDataFilePath): print("exon data file is a single file:%s" % exonDataFilePath) exondatafileabspath = os.path.abspath(exonDataFilePath) _exonSingleDataFile(exondatafileabspath,bedFilePath) print("action is end") def _exonSingleDataFile(exondatafileabspath,bedFilePath): print("exon data file :%s" % exondatafileabspath) if not os.path.isfile(exondatafileabspath): print("exon data file :%s is not exist!" % exondatafileabspath) sys.exit() resultFilePath = generateResultFilePath(exondatafileabspath) if os.path.isfile(resultFilePath): print("delete old result file :%s" % resultFilePath) os.remove(resultFilePath) print("loading file") exonFileDataSet=[] exonColumn=0 chromosomeColumn = -1 regionColumn=-1 i=0 print("generating data set from exon file") filename,fileext=os.path.splitext(exondatafileabspath) if fileext=='.csv': exonFileDataSetOrig = getDataFromCSV(False,',',exondatafileabspath) exonFileDataSetOrigTitleRow = exonFileDataSetOrig[0] exonFileDataSetOrigTitleRow.insert(exonColumn,'') for col in exonFileDataSetOrigTitleRow: if(chromosomeColumn==-1 and col.lower()=='chromosome'): chromosomeColumn=i print('chromosomeColumn:%s'% chromosomeColumn) if(regionColumn==-1 and col.lower()=='region'): regionColumn=i print('regionColumn:%s'% regionColumn) i+=1 exonFileDataSet.append(exonFileDataSetOrigTitleRow) for row in range(1,len(exonFileDataSetOrig)):##第2行数据开始,第1行为标题 exonFileRow = [] exonFileDataSetOrig[row].insert(exonColumn,'') for col in range(0,len(exonFileDataSetOrig[row])): if col==regionColumn: colValue=int(exonFileDataSetOrig[row][col]) else: colValue=exonFileDataSetOrig[row][col] exonFileRow.append(colValue) exonFileDataSet.append(exonFileRow) print("generated end") rowMaxCount = len(exonFileDataSet) exonFileDataSet[0][exonColumn]='EXON' print("calculating") bedFileDataDicts = readyBedFileData(bedFilePath) #print(bedFileDataDicts.keys()) for row in range(1,rowMaxCount): dstChromosome = exonFileDataSet[row][chromosomeColumn] dstRegion = exonFileDataSet[row][regionColumn] ##above int() chrKey = 'chr'+str(dstChromosome) if chrKey in bedFileDataDicts: for bedRow in bedFileDataDicts[chrKey]: posStart = int(bedRow[1]) posEnd = int(bedRow[2]) if dstRegion>=posStart and dstRegion<=posEnd: mark = bedRow[5].strip().upper() if mark=='CDS': exonFileDataSet[row][exonColumn] = 'CDS' print('pos:%s:%s,exon:%s'%(dstChromosome,dstRegion,bedRow[3].strip()+'CDS')) elif mark =='INTRON': exonFileDataSet[row][exonColumn] = 'INTRON' print('pos:%s:%s,exon:%s'%(dstChromosome,dstRegion,bedRow[3].strip()+'INTRON')) elif mark == 'UTR': utr = bedRow[6].strip().upper() if utr in ['UTR5','UTR3']: exonFileDataSet[row][exonColumn] = utr print('pos:%s:%s,exon:%s'%(dstChromosome,dstRegion,bedRow[3].strip()+utr)) if exonFileDataSet[row][exonColumn] !='': break ### saveDataToCSV([],exonFileDataSet,resultFilePath) print("action is end") def readyBedFileData(bedFilePath): if os.path.exists(bedFilePath): bedFileData = getDataFromCSV(False,'\t',bedFilePath) bedFileDataDictionaryByCHR = {} for row in bedFileData: chrKey=str(row[0]) if chrKey not in bedFileDataDictionaryByCHR: bedFileDataDictionaryByCHR[chrKey] = [] bedFileDataDictionaryByCHR[chrKey].append(row) print("converted successfully") return bedFileDataDictionaryByCHR else: print('bed file not exist!') sys.exit() def actDataFile(genome,settings,dataFilePath,profileSourceData): dbProfile = settings['profile'] if (genome=='GRCm38' and dbProfile=='RepeatMasker'): _actDataFile_GRCm38_RepeatMasker(dataFilePath,profileSourceData) elif (genome=='GRCm38' and dbProfile=='strand'): _actDataFile_GRCm38_strand(dataFilePath,profileSourceData) elif (genome=='GRCm38' and dbProfile=='snp142Common'): _actDataFile_GRCm38_snp142Common(dataFilePath,profileSourceData) def _actDataFile_GRCm38_RepeatMasker(dataFilePath,profileSourceData): print("acting input data file") if os.path.isdir(dataFilePath): print("data file is a directory:%s" % dataFilePath) for root,dirs,files in os.walk(os.path.abspath(dataFilePath)): for file in files: filename,fileext=os.path.splitext(file) if fileext=='.xlsx': datafileabspath = root+os.sep+file _actSingleDataFile_GRCm38_RepeatMasker(datafileabspath,profileSourceData) elif os.path.isfile(dataFilePath): print("data file is a single file:%s" % dataFilePath) datafileabspath = os.path.abspath(dataFilePath) _actSingleDataFile_GRCm38_RepeatMasker(datafileabspath,profileSourceData) print("action is end") def _actDataFile_GRCm38_strand(dataFilePath,profileSourceData): print("acting input data file") if os.path.isdir(dataFilePath): print("data file is a directory:%s" % dataFilePath) for root,dirs,files in os.walk(os.path.abspath(dataFilePath)): for file in files: filename,fileext=os.path.splitext(file) if fileext=='.xlsx': datafileabspath = root+os.sep+file _actSingleDataFile_GRCm38_strand(datafileabspath,profileSourceData) elif os.path.isfile(dataFilePath): print("data file is a single file:%s" % dataFilePath) datafileabspath = os.path.abspath(dataFilePath) _actSingleDataFile_GRCm38_strand(datafileabspath,profileSourceData) print("action is end") def _actDataFile_GRCm38_snp142Common(dataFilePath,profileSourceData): print("acting input data file") if os.path.isdir(dataFilePath): print("data file is a directory:%s" % dataFilePath) for root,dirs,files in os.walk(os.path.abspath(dataFilePath)): for file in files: filename,fileext=os.path.splitext(file) if fileext=='.xlsx': datafileabspath = root+os.sep+file _actSingleDataFile_GRCm38_snp142Common(datafileabspath,profileSourceData) elif os.path.isfile(dataFilePath): print("data file is a single file:%s" % dataFilePath) datafileabspath = os.path.abspath(dataFilePath) _actSingleDataFile_GRCm38_snp142Common(datafileabspath,profileSourceData) print("action is end") def _actSingleDataFile_GRCm38_strand(datafileabspath,profileSourceData): print("dealing data file :%s" % datafileabspath) if not os.path.isfile(datafileabspath): print("data file :%s is not exist!" % datafileabspath) sys.exit() #DEAL resultFilePath = generateResultFilePath(datafileabspath) if os.path.isfile(resultFilePath): print("delete old result file :%s" % resultFilePath) os.remove(resultFilePath) print("loading data file") wb=load_workbook(filename=datafileabspath,data_only=True,read_only=True)##fast mode ws=wb.active dataFileDataSet=[] chromosomeColumn = -1 regionColumn=-1 ##insert column index defintion i=0 print("generating data set from data file") for row in ws.rows:##first row 标题行 dataFileRow = [] ##insert 1 columns for insertItem in range(0,1): ##repClass-mode ##此处变更时,下面chromosomeColumn,regionColumn 相应变更 dataFileRow.insert(0,'') for cell in row: dataFileRow.append(cell.value) if(chromosomeColumn==-1 and cell.value.lower()=='chromosome'): chromosomeColumn=i+1 ##repClass-mode ## insertItem : 1 0=>1 print("found Chromosome Column index is:%s" % chromosomeColumn) if(regionColumn==-1 and cell.value.lower()=='region'): regionColumn=i+1 ##repClass-mode ## insertItem : 1 0=>1 print("found Region Column index is:%s" % regionColumn) i=i+1 dataFileDataSet.append(dataFileRow) ###save all cell.vaule to[[],[],...,[]] print("generated end") ##insert repClass column and repFamily column after region's column ##keep insert order ##repClass-mode print("insert title column") dataFileDataSet[0][0]='strand' strandCol = 0 rowMaxCount = len(dataFileDataSet) print("calculating") for row in range(1,rowMaxCount):###第0行为标题行 dstChromosome = dataFileDataSet[row][chromosomeColumn] dstRegion = int(dataFileDataSet[row][regionColumn]) ## geneName !== '' dstGeneName = dataFileDataSet[row][chromosomeColumn+8] print(dstGeneName) print("current Chromosome:Region is : %s:%s" %(dstChromosome,dstRegion)) chrKey = 'chr'+str(dstChromosome) if chrKey in list(profileSourceData.keys()): ## ['chrom','txStart','txEnd','strand'] ## only search one time for sourceItem in profileSourceData[chrKey]:###[[],[],...,[]] if (dstRegion>=int(sourceItem[1]) and dstRegion<=int(sourceItem[2])): strandVal = sourceItem[3] if strandVal in ['-','+']: print("found target :%s" %sourceItem) dataFileDataSet[row][strandCol]=strandVal break print("calculated end") saveDataToCSV([],dataFileDataSet,resultFilePath) def _actSingleDataFile_GRCm38_snp142Common(datafileabspath,profileSourceData): print("dealing data file :%s" % datafileabspath) if not os.path.isfile(datafileabspath): print("data file :%s is not exist!" % datafileabspath) sys.exit() #DEAL resultFilePath = generateResultFilePath(datafileabspath) if os.path.isfile(resultFilePath): print("delete old result file :%s" % resultFilePath) os.remove(resultFilePath) print("loading data file") wb=load_workbook(filename=datafileabspath,data_only=True,read_only=True)##fast mode ws=wb.active dataFileDataSet=[] chromosomeColumn = -1 regionColumn=-1 ##insert column index defintion i=0 print("generating data set from data file") for row in ws.rows:##first row 标题行 dataFileRow = [] ##insert 1 columns for insertItem in range(0,1): ##repClass-mode ##此处变更时,下面chromosomeColumn,regionColumn 相应变更 dataFileRow.insert(0,'') for cell in row: dataFileRow.append(cell.value) if(chromosomeColumn==-1 and cell.value.lower()=='chromosome'): chromosomeColumn=i+1 ##repClass-mode ## insertItem : 1 0=>1 print("found Chromosome Column index is:%s" % chromosomeColumn) if(regionColumn==-1 and cell.value.lower()=='region'): regionColumn=i+1 ##repClass-mode ## insertItem : 1 0=>1 print("found Region Column index is:%s" % regionColumn) i=i+1 dataFileDataSet.append(dataFileRow) ###save all cell.vaule to[[],[],...,[]] print("generated end") ##insert repClass column and repFamily column after region's column ##keep insert order ##repClass-mode print("insert title column") dataFileDataSet[0][0]='snp142Common' snp142CommonCol = 0 rowMaxCount = len(dataFileDataSet) print("calculating") for row in range(1,rowMaxCount):###第0行为标题行 dstChromosome = dataFileDataSet[row][chromosomeColumn] dstRegion = int(dataFileDataSet[row][regionColumn]) ## geneName !== '' #dstGeneName = dataFileDataSet[row][chromosomeColumn+8] #print(dstGeneName) print("current Chromosome:Region is : %s:%s" %(dstChromosome,dstRegion)) chrKey = 'chr'+str(dstChromosome) if chrKey in list(profileSourceData.keys()): ## ['chrom','chromStart','chromEnd','name'] ## only search one time for sourceItem in profileSourceData[chrKey]:###[[],[],...,[]] if (dstRegion>=int(sourceItem[1]) and dstRegion<=int(sourceItem[2])): snp142CommonVal = sourceItem[3] if snp142CommonVal != '': print("found target :%s" %sourceItem) dataFileDataSet[row][snp142CommonCol]=snp142CommonVal break print("calculated end") saveDataToCSV([],dataFileDataSet,resultFilePath) def _actSingleDataFile_GRCm38_RepeatMasker(datafileabspath,profileSourceData): print("dealing data file :%s" % datafileabspath) if not os.path.isfile(datafileabspath): print("data file :%s is not exist!" % datafileabspath) sys.exit() #DEAL resultFilePath = generateResultFilePath(datafileabspath) if os.path.isfile(resultFilePath): print("delete old result file :%s" % resultFilePath) os.remove(resultFilePath) print("loading data file") wb=load_workbook(filename=datafileabspath,data_only=True,read_only=True)##fast mode ws=wb.active dataFileDataSet=[] chromosomeColumn = -1 regionColumn=-1 ##insert column index defintion i=0 print("generating data set from data file") for row in ws.rows:##first row 标题行 dataFileRow = [] ##insert 8 columns for 4(sine,line,ltr,dna)x2(repclass,repfamily) for insertItem in range(0,8): ##repClass-mode ##此处变更时,下面chromosomeColumn,regionColumn 相应变更 dataFileRow.insert(0,'') for cell in row: dataFileRow.append(cell.value) if(chromosomeColumn==-1 and cell.value.lower()=='chromosome'): chromosomeColumn=i+8 ##repClass-mode ## insertItem : 8 0=>8 print("found Chromosome Column index is:%s" % chromosomeColumn) if(regionColumn==-1 and cell.value.lower()=='region'): regionColumn=i+8 ##repClass-mode ## insertItem : 8 0=>8 print("found Region Column index is:%s" % regionColumn) i=i+1 dataFileDataSet.append(dataFileRow) ###save all cell.vaule to[[],[],...,[]] print("generated end") ##insert repClass column and repFamily column after region's column ##keep insert order ##repClass-mode print("insert title column") dataFileDataSet[0][0]='repClassSINE' dataFileDataSet[0][1]='repFamilySINE' dataFileDataSet[0][2]='repClassLINE' dataFileDataSet[0][3]='repFamilyLINE' dataFileDataSet[0][4]='repClassLTR' dataFileDataSet[0][5]='repFamilyLTR' dataFileDataSet[0][6]='repClassDNA' dataFileDataSet[0][7]='repFamilyDNA' rowMaxCount = len(dataFileDataSet) print("calculating") for row in range(1,rowMaxCount):###第0行为标题行 dstChromosome = dataFileDataSet[row][chromosomeColumn] dstRegion = int(dataFileDataSet[row][regionColumn]) print("current Chromosome:Region is : %s:%s" %(dstChromosome,dstRegion)) chrKey = 'chr'+str(dstChromosome) if chrKey in list(profileSourceData.keys()): ##sourceItem:['genoName','genoStart','genoEnd','repClass','repFamily'] for sourceItem in profileSourceData[chrKey]:###[[],[],...,[]] if (dstRegion>=int(sourceItem[1]) and dstRegion<=int(sourceItem[2])): ##repClass:sourceItem[3] repFamily:sourceItem[4] #set repClass column and repFamily column value repClassVal = sourceItem[3] repFamilyVal = sourceItem[4] ##repClass-mode ##todo,trim space,upper if repClassVal=='SINE': repClassCol=0 repFamilyCol=1 dataFileDataSet[row][repClassCol]=repClassVal dataFileDataSet[row][repFamilyCol]=repFamilyVal if repClassVal=='LINE': repClassCol=2 repFamilyCol=3 dataFileDataSet[row][repClassCol]=repClassVal dataFileDataSet[row][repFamilyCol]=repFamilyVal if repClassVal=='LTR': repClassCol=4 repFamilyCol=5 dataFileDataSet[row][repClassCol]=repClassVal dataFileDataSet[row][repFamilyCol]=repFamilyVal if repClassVal=='DNA': repClassCol=6 repFamilyCol=7 dataFileDataSet[row][repClassCol]=repClassVal dataFileDataSet[row][repFamilyCol]=repFamilyVal print("found target :%s" %sourceItem) ##todo , sine,line and so on same line ## 考虑注释break 因为sine,line,ltr,dna 可能不是相斥的 ##break print("calculated end") saveDataToCSV([],dataFileDataSet,resultFilePath) ###query source data#### def readyProfileSourceData(genome,settings): dbProfile = settings['profile'] if (genome=='GRCm38' and dbProfile=='RepeatMasker'): return _readyProfileSourceData_GRCm38_RepeatMasker(genome,settings) elif (genome=='GRCm38' and dbProfile=='strand'): return _readyProfileSourceData_GRCm38_strand(genome,settings) elif (genome=='GRCm38' and dbProfile=='snp142Common'): return _readyProfileSourceData_GRCm38_snp142Common(genome,settings) def _loadProfileSourceData_GRCm38_RepeatMasker(genome,settings): print("loading profile source data") dbProfile = settings['profile'] profileSourceDataPath = setProfileSourceDataPath(genome,dbProfile) if not os.path.exists(profileSourceDataPath): print("connected to remote mysql database online") dbType = settings['type'] dbConfig = { 'user':settings['user'], 'host':settings['host'], 'database':settings['database'], 'raise_on_warnings':True } dbConn = dbConnector(dbType,dbConfig) querySourceData(genome,dbProfile,dbConn)##save to profileSourceDataPath dbConn.close() profileSourceData = getDataFromCSV(True,',',profileSourceDataPath) print("loaded successfully") return profileSourceData def _loadProfileSourceData_GRCm38_strand(genome,settings): print("loading profile source data") dbProfile = settings['profile'] profileSourceDataPath = setProfileSourceDataPath(genome,dbProfile) if not os.path.exists(profileSourceDataPath): print("connected to remote mysql database online") dbType = settings['type'] dbConfig = { 'user':settings['user'], 'host':settings['host'], 'database':settings['database'], 'raise_on_warnings':True } dbConn = dbConnector(dbType,dbConfig) querySourceData(genome,dbProfile,dbConn)##save to profileSourceDataPath dbConn.close() profileSourceData = getDataFromCSV(True,',',profileSourceDataPath) print("loaded successfully") return profileSourceData def _loadProfileSourceData_GRCm38_snp142Common(genome,settings): print("loading profile source data") dbProfile = settings['profile'] profileSourceDataPath = setProfileSourceDataPath(genome,dbProfile) if not os.path.exists(profileSourceDataPath): print("connected to remote mysql database online") dbType = settings['type'] dbConfig = { 'user':settings['user'], 'host':settings['host'], 'database':settings['database'], 'raise_on_warnings':True } dbConn = dbConnector(dbType,dbConfig) querySourceData(genome,dbProfile,dbConn)##save to profileSourceDataPath dbConn.close() profileSourceData = getDataFromCSV(True,',',profileSourceDataPath) print("loaded successfully") return profileSourceData def _readyProfileSourceData_GRCm38_RepeatMasker(genome,settings): print("converting profile source data to dict") profileSourceData = _loadProfileSourceData_GRCm38_RepeatMasker(genome,settings) profileSourceDataDictionaryByCHR = {} #profile csv file : column : ['genoName','genoStart','genoEnd','repClass','repFamily'] for row in profileSourceData: chrKey=str(row[0]) if chrKey not in list(profileSourceDataDictionaryByCHR.keys()): profileSourceDataDictionaryByCHR[chrKey] = [] profileSourceDataDictionaryByCHR[chrKey].append(row) print("converted successfully") return profileSourceDataDictionaryByCHR def _readyProfileSourceData_GRCm38_snp142Common(genome,settings): print("converting profile source data to dict") profileSourceData = _loadProfileSourceData_GRCm38_snp142Common(genome,settings) profileSourceDataDictionaryByCHR = {} ## ['chrom','chromStart','chromEnd','name'] for row in profileSourceData: chrKey=str(row[0]) if chrKey not in list(profileSourceDataDictionaryByCHR.keys()): profileSourceDataDictionaryByCHR[chrKey] = [] profileSourceDataDictionaryByCHR[chrKey].append(row) print("converted successfully") return profileSourceDataDictionaryByCHR def _readyProfileSourceData_GRCm38_strand(genome,settings): print("converting profile source data to dict") profileSourceData = _loadProfileSourceData_GRCm38_strand(genome,settings) profileSourceDataDictionaryByCHR = {} #profile csv file : column : ['genoName','genoStart','genoEnd','repClass','repFamily'] ## ['chrom','strand','txStart','txEnd'] for row in profileSourceData: chrKey=str(row[0]) if chrKey not in list(profileSourceDataDictionaryByCHR.keys()): profileSourceDataDictionaryByCHR[chrKey] = [] profileSourceDataDictionaryByCHR[chrKey].append(row) print("converted successfully") return profileSourceDataDictionaryByCHR def querySourceData(genome,dbProfile,dbConn): print("current source data about genome is :%s,profile is :%s" % (genome,dbProfile)) if (genome=='GRCm38' and dbProfile=='RepeatMasker'): profileSourceDataPath = setProfileSourceDataPath(genome,dbProfile) _query_source_data_GRCm38_RepeatMasker(dbConn,profileSourceDataPath) elif (genome=='GRCm38' and dbProfile=='strand'): profileSourceDataPath = setProfileSourceDataPath(genome,dbProfile) _query_source_data_GRCm38_strand(dbConn,profileSourceDataPath) elif (genome=='GRCm38' and dbProfile=='snp142Common'): profileSourceDataPath = setProfileSourceDataPath(genome,dbProfile) _query_source_data_GRCm38_snp142Common(dbConn,profileSourceDataPath) def _query_source_data_GRCm38_RepeatMasker(dbConn,profileSourceDataPath): print("querying source data online") cursor = dbConn.cursor() column=['genoName','genoStart','genoEnd','repClass','repFamily'] ##repClass-mode query = "select genoName,genoStart,genoEnd,repClass,repFamily from rmsk where repClass in ('SINE','LINE','LTR','DNA')" cursor.execute(query) data = [] for (genoName,genoStart,genoEnd,repClass,repFamily) in cursor: data.append([genoName,genoStart,genoEnd,repClass,repFamily]) print("query successfully") ## todo , saveDataToCSV(column,data,profileSourceDataPath) cursor.close() def _query_source_data_GRCm38_strand(dbConn,profileSourceDataPath): print("querying source data online") cursor = dbConn.cursor() ## todo txStart,txEnd 和genoStart,genoEnd 是否相等 ##### chr table # 此些表加入会出错 ## in fact : _est,_intronEst,_mrna ## mgcFullMrna,orfeomeMrna ## nestedRepeats #g=list(range(1,20))+['X','Y'] #column=['tName','tStart','tEnd','strand'] #tables=[('chr'+str(x)+'_est') for x in g]+[('chr'+str(x)+'_mrna') for x in g]+['mgcFullMrna','orfeomeMrna'] ######################################## #[('chr'+str(x)+'_intronEst') for x in g] data = [] #for tb in tables: ### ################# # query = "select tName,tStart,tEnd,strand from %s where 1 " % tb # cursor.execute(query) # for (chrom,txStart,txEnd,strand) in cursor: # data.append([chrom,txStart,txEnd,strand]) ### geneName column=['chrom','txStart','txEnd','strand'] ## genscan,knownGeneOld8,wgEncodeGencode2wayConsPseudoVM11,wgEncodeGencode2wayConsPseudoVM9,wgEncodeGencodeBasicVM9 ## wgEncodeGencodeCompVM11,wgEncodeGencodeCompVM9,wgEncodeGencodePolyaVM11,wgEncodeGencodePolyaVM9 ## wgEncodeGencodePseudoGeneVM11,wgEncodeGencodePseudoGeneVM9 tables_gene=['augustusGene','ccdsGene','geneid','knownGene','mgcGenes','orfeomeGenes','refGene','sgpGene','wgEncodeGencodePseudoGeneVM11','xenoRefGene','wgEncodeGencodeBasicVM11','genscan','knownGeneOld8','wgEncodeGencode2wayConsPseudoVM11','wgEncodeGencodeCompVM11','wgEncodeGencodePolyaVM11'] for tb_g in tables_gene: query = "select chrom,txStart,txEnd,strand from %s where 1 " % tb_g cursor.execute(query) for (chrom,txStart,txEnd,strand) in cursor: data.append([chrom,txStart,txEnd,strand]) print("query successfully") saveDataToCSV(column,data,profileSourceDataPath,',') cursor.close() ###query end#### def _query_source_data_GRCm38_snp142Common(dbConn,profileSourceDataPath): print("querying source data online") cursor = dbConn.cursor() column=['chrom','chromStart','chromEnd','name'] ##repClass-mode query = "select chrom,chromStart,chromEnd,name from snp142Common where 1" cursor.execute(query) data = [] for (chrom,chromStart,chromEnd,name) in cursor: data.append([chrom,chromStart,chromEnd,name]) print("query successfully") ## todo , saveDataToCSV(column,data,profileSourceDataPath) cursor.close() ###query end#### def main(): try: opts,args = getopt.getopt(sys.argv[1:],"hs:g:d:r:c:e:t:o:f:b:x:",["help","setting=","genome=","data=","result=","cluster=","record=","threshold=",'coverage=','frequency=','bed=','exon=',"intersectClusterName=","repeatClusterName=","gene=","clusterPrefix="]) except getopt.GetoptError as err: print(err) usage() sys.exit(2) settingsVar={ 'filePath':'', 'section':'' } genome = '' ##mark repclass,repfamily dataFilePath = '' ##statistic repfamily resultFilePath = '' ##统计每一列repfamily上有多少不同的clustername ##intersectClusterName intersectClusterName = '' repeatClusterName = 0 ##0,1 ##cluster file clusterFilePath = '' clusterConfigs={ 'record':'',#3 'threshold':'',#2500 'coverage':'',#5 'frequency':'',#5 'bayes':1,#disabled 1:enabled 'clusterPrefix':'' } ##mark cds,5utr,3utr,intron bedFilePath ='' exonDataFilePath = '' geneFilePath = '' for opt,arg in opts: if opt in ('-h',"--help"): usage() sys.exit() elif opt in ('-s','--setting'): settingsVar['filePath']=arg elif opt in ('-g','--genome'): settingsVar['section']=arg genome
<reponame>androm3da/clang_sles #!/usr/bin/python #===-- x86_64_target_definition.py -----------------------------*- C++ -*-===// # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===----------------------------------------------------------------------===// #---------------------------------------------------------------------- # DESCRIPTION # # This file can be used with the following setting: # plugin.process.gdb-remote.target-definition-file # This setting should be used when you are trying to connect to a # remote GDB server that doesn't support any of the register discovery # packets that LLDB normally uses. # # Why is this necessary? LLDB doesn't require a new build of LLDB that # targets each new architecture you will debug with. Instead, all # architectures are supported and LLDB relies on extra GDB server # packets to discover the target we are connecting to so that is can # show the right registers for each target. This allows the GDB server # to change and add new registers without requiring a new LLDB build # just so we can see new registers. # # This file implements the x86_64 registers for the darwin version of # GDB and allows you to connect to servers that use this register set. # # USAGE # # (lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/x86_64_target_definition.py # (lldb) gdb-remote other.baz.com:1234 # # The target definition file will get used if and only if the # qRegisterInfo packets are not supported when connecting to a remote # GDB server. #---------------------------------------------------------------------- from lldb import * # Compiler and DWARF register numbers name_to_gcc_dwarf_regnum = { 'rax' : 0 , 'rdx' : 1 , 'rcx' : 2 , 'rbx' : 3 , 'rsi' : 4 , 'rdi' : 5 , 'rbp' : 6 , 'rsp' : 7 , 'r8' : 8 , 'r9' : 9 , 'r10' : 10, 'r11' : 11, 'r12' : 12, 'r13' : 13, 'r14' : 14, 'r15' : 15, 'rip' : 16, 'xmm0' : 17, 'xmm1' : 18, 'xmm2' : 19, 'xmm3' : 20, 'xmm4' : 21, 'xmm5' : 22, 'xmm6' : 23, 'xmm7' : 24, 'xmm8' : 25, 'xmm9' : 26, 'xmm10' : 27, 'xmm11' : 28, 'xmm12' : 29, 'xmm13' : 30, 'xmm14' : 31, 'xmm15' : 32, 'stmm0' : 33, 'stmm1' : 34, 'stmm2' : 35, 'stmm3' : 36, 'stmm4' : 37, 'stmm5' : 38, 'stmm6' : 39, 'stmm7' : 30, 'ymm0' : 41, 'ymm1' : 42, 'ymm2' : 43, 'ymm3' : 44, 'ymm4' : 45, 'ymm5' : 46, 'ymm6' : 47, 'ymm7' : 48, 'ymm8' : 49, 'ymm9' : 40, 'ymm10' : 41, 'ymm11' : 42, 'ymm12' : 43, 'ymm13' : 44, 'ymm14' : 45, 'ymm15' : 46 }; name_to_gdb_regnum = { 'rax' : 0, 'rbx' : 1, 'rcx' : 2, 'rdx' : 3, 'rsi' : 4, 'rdi' : 5, 'rbp' : 6, 'rsp' : 7, 'r8' : 8, 'r9' : 9, 'r10' : 10, 'r11' : 11, 'r12' : 12, 'r13' : 13, 'r14' : 14, 'r15' : 15, 'rip' : 16, 'rflags': 17, 'cs' : 18, 'ss' : 19, 'ds' : 20, 'es' : 21, 'fs' : 22, 'gs' : 23, 'stmm0' : 24, 'stmm1' : 25, 'stmm2' : 26, 'stmm3' : 27, 'stmm4' : 28, 'stmm5' : 29, 'stmm6' : 30, 'stmm7' : 31, 'fctrl' : 32, 'fstat' : 33, 'ftag' : 34, 'fiseg' : 35, 'fioff' : 36, 'foseg' : 37, 'fooff' : 38, 'fop' : 39, 'xmm0' : 40, 'xmm1' : 41, 'xmm2' : 42, 'xmm3' : 43, 'xmm4' : 44, 'xmm5' : 45, 'xmm6' : 46, 'xmm7' : 47, 'xmm8' : 48, 'xmm9' : 49, 'xmm10' : 50, 'xmm11' : 51, 'xmm12' : 52, 'xmm13' : 53, 'xmm14' : 54, 'xmm15' : 55, 'mxcsr' : 56, 'ymm0' : 57, 'ymm1' : 58, 'ymm2' : 59, 'ymm3' : 60, 'ymm4' : 61, 'ymm5' : 62, 'ymm6' : 63, 'ymm7' : 64, 'ymm8' : 65, 'ymm9' : 66, 'ymm10' : 67, 'ymm11' : 68, 'ymm12' : 69, 'ymm13' : 70, 'ymm14' : 71, 'ymm15' : 72 }; name_to_generic_regnum = { 'rip' : LLDB_REGNUM_GENERIC_PC, 'rsp' : LLDB_REGNUM_GENERIC_SP, 'rbp' : LLDB_REGNUM_GENERIC_FP, 'rdi' : LLDB_REGNUM_GENERIC_ARG1, 'rsi' : LLDB_REGNUM_GENERIC_ARG2, 'rdx' : LLDB_REGNUM_GENERIC_ARG3, 'rcx' : LLDB_REGNUM_GENERIC_ARG4, 'r8' : LLDB_REGNUM_GENERIC_ARG5, 'r9' : LLDB_REGNUM_GENERIC_ARG6 }; def get_reg_num (reg_num_dict, reg_name): if reg_name in reg_num_dict: return reg_num_dict[reg_name] return LLDB_INVALID_REGNUM def get_reg_num (reg_num_dict, reg_name): if reg_name in reg_num_dict: return reg_num_dict[reg_name] return LLDB_INVALID_REGNUM x86_64_register_infos = [ { 'name':'rax' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'rbx' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'rcx' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'arg4' }, { 'name':'rdx' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'arg3' }, { 'name':'rsi' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'arg2' }, { 'name':'rdi' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'arg1' }, { 'name':'rbp' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'fp' }, { 'name':'rsp' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'sp' }, { 'name':'r8' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'arg5' }, { 'name':'r9' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'arg6' }, { 'name':'r10' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'r11' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'r12' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'r13' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'r14' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'r15' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo }, { 'name':'rip' , 'set':0, 'bitsize':64 , 'encoding':eEncodingUint , 'format':eFormatAddressInfo, 'alt-name':'pc' }, { 'name':'rflags', 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'cs' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'ss' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'ds' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'es' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'fs' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'gs' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'stmm0' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'stmm1' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'stmm2' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'stmm3' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'stmm4' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'stmm5' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'stmm6' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'stmm7' , 'set':1, 'bitsize':80 , 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'fctrl' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'fstat' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'ftag' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'fiseg' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'fioff' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'foseg' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'fooff' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'fop' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, { 'name':'xmm0' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm1' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm2' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm3' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm4' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm5' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm6' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm7' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm8' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm9' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm10' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm11' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm12' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm13' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm14' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'xmm15' , 'set':1, 'bitsize':128, 'encoding':eEncodingVector, 'format':eFormatVectorOfUInt8 }, { 'name':'mxcsr' , 'set':1, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex }, # Registers that are contained in or composed of one of more other registers { 'name':'eax' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rax[31:0]' }, { 'name':'ebx' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rbx[31:0]' }, { 'name':'ecx' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rcx[31:0]' }, { 'name':'edx' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rdx[31:0]' }, { 'name':'edi' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rdi[31:0]' }, { 'name':'esi' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rsi[31:0]' }, { 'name':'ebp' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rbp[31:0]' }, { 'name':'esp' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'rsp[31:0]' }, { 'name':'r8d' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint , 'format':eFormatHex , 'slice': 'r8[31:0]' }, { 'name':'r9d' , 'set':0, 'bitsize':32 , 'encoding':eEncodingUint ,
import base64 import logging import os import typing as t from dataclasses import dataclass from functools import partial from inspect import isfunction import click from flask import Blueprint as FlaskBlueprint from flask import Flask from flask import Response from flask import abort from flask import current_app from flask.blueprints import BlueprintSetupState from flask.ctx import RequestContext from flask.testing import FlaskClient from werkzeug.datastructures import WWWAuthenticate from werkzeug.exceptions import HTTPException, Unauthorized from werkzeug.exceptions import InternalServerError from werkzeug.routing import Rule from .config import Config from .config import DEFAULT_DEV_WORKSPACE from .config import DEFAULT_LOCAL_WORKSPACE from .config import DevConfig from .config import LocalConfig from .config import ProdConfig from .globals import request from .utils import HTTP_METHODS from .utils import add_coworks_routes from .utils import trim_underscores from .wrappers import ApiResponse from .wrappers import Request from .wrappers import TokenResponse # # Decorators # def entry(fun: t.Callable = None, binary: bool = False, content_type: str = None, no_auth: bool = False) -> t.Callable: """Decorator to create a microservice entry point from function name. :param fun: the entry function. :param binary: allow payload without transformation. :param content_type: force default content-type. :param no_auth: set authorizer. """ if fun is None: if binary and not content_type: content_type = 'application/octet-stream' return partial(entry, binary=binary, content_type=content_type, no_auth=no_auth) def get_path(start): name_ = fun.__name__[start:] name_ = trim_underscores(name_) # to allow several functions with different args return name_.replace('_', '/') name = fun.__name__.upper() for method in HTTP_METHODS: if name == method: path = '' break if name.startswith(f'{method}_'): path = get_path(len(f'{method}_')) break else: method = 'POST' path = get_path(0) fun.__CWS_METHOD = method fun.__CWS_PATH = path fun.__CWS_BINARY = binary fun.__CWS_CONTENT_TYPE = content_type fun.__CWS_NO_AUTH = no_auth return fun def hide(fun: t.Callable) -> t.Callable: """Hide a route of the microservice. May be used as a decorator. Usefull when creating inherited microservice. """ setattr(fun, '__cws_hidden', True) return fun # # Classes # @dataclass class ScheduleEntry: """An schedule entry is an EventBridge entry defined on a microservice, with the schedule expression, its description and its response function.""" name: str exp: str desc: str fun: t.Callable class CoworksClient(FlaskClient): """Redefined to force mimetype to be 'text/plain' in case of string return. """ def __init__(self, *args: t.Any, aws_event=None, aws_context=None, **kwargs: t.Any) -> None: super().__init__(*args, **kwargs) self.environ_base.update({ "aws_event": aws_event, "aws_context": aws_context, }) class Blueprint(FlaskBlueprint): """ Represents a blueprint, list of routes that will be added to microservice when registered. See :ref:`Blueprint <blueprint>` for more information. """ def __init__(self, name: str = None, **kwargs): """Initialize a blueprint. :param kwargs: Other Flask blueprint parameters. """ import_name = self.__class__.__name__.lower() super().__init__(name or import_name, import_name, **kwargs) @property def logger(self) -> logging.Logger: return current_app.logger def make_setup_state(self, app: "TechMicroService", options: t.Dict, *args) -> BlueprintSetupState: """Stores creation state for deferred initialization.""" state = super().make_setup_state(app, options, *args) # Defer blueprint route initialization. if not options.get('hide_routes', False): app.deferred_init_routes_functions.append(partial(add_coworks_routes, state.app, state)) return state class TechMicroService(Flask): """Simple tech microservice. See :ref:`tech` for more information. """ def __init__(self, name: str = None, *, configs: t.Union[Config, t.List[Config]] = None, **kwargs) -> None: """ Initialize a technical microservice. :param name: Name used to identify the microservice. :param configs: Deployment configurations. :param kwargs: Other Chalice parameters. """ name = name or self.__class__.__name__.lower() self.configs = configs or [LocalConfig(), DevConfig(), ProdConfig()] if type(self.configs) is not list: self.configs = [configs] super().__init__(import_name=name, static_folder=None, **kwargs) self.test_client_class = CoworksClient self.request_class = Request self.response_class = ApiResponse self.deferred_init_routes_functions: t.List[t.Callable] = [] self._cws_app_initialized = False self._cws_conf_updated = False @self.before_request def before(): self._check_token() rp = request.path if rp != '/' and rp.endswith('/'): abort(Response("Trailing slash avalaible only on deployed version")) def app_context(self): """Override to initialize coworks microservice.""" if not self._cws_app_initialized: add_coworks_routes(self) for fun in self.deferred_init_routes_functions: fun() self._cws_app_initialized = True return super().app_context() def request_context(self, environ: dict) -> RequestContext: """Redefined to : - initialize the environment - add Lambda event and context in globals. """ ctx = super().request_context(environ) ctx.aws_event = environ.get('aws_event') ctx.aws_context = environ.get('aws_context') return ctx def cws_client(self, event, context): """CoWorks client with new globals.""" return super().test_client(aws_event=event, aws_context=context) def test_client(self, *args, **kwargs): """This client must be used only for testing.""" self.testing = True self._update_config(load_env=True, workspace=DEFAULT_LOCAL_WORKSPACE) return super().test_client(*args, **kwargs) @property def ms_type(self) -> str: return 'tech' @property def routes(self) -> t.List[Rule]: """Returns the list of routes defined in the microservice.""" return [r.rule for r in self.url_map.iter_rules()] def get_config(self, workspace) -> Config: """Returns the configuration corresponding to the workspace.""" for conf in self.configs: if conf.is_valid_for(workspace): return conf return Config() def token_authorizer(self, token: str) -> t.Union[bool, str]: """Defined the authorization process. If the returned value is False, all routes for all stages are denied. If the returned value is True, all routes for all stages are accepted. If the returned value is a string, then it must be a stage name and all routes are accepted for this stage. By default no entry are accepted for security reason. """ workspace = self.config['WORKSPACE'] if workspace == DEFAULT_LOCAL_WORKSPACE: return True return token == os.getenv('TOKEN') def base64decode(self, data): """Base64 decode function used for lambda interaction.""" if not isinstance(data, bytes): data = data.encode('ascii') output = base64.b64decode(data) return output def base64encode(self, data): """Base64 encode function used for lambda interaction.""" if not isinstance(data, bytes): msg = f'Expected bytes type for body with binary Content-Type. Got {type(data)} type body instead.' raise ValueError(msg) data = base64.b64encode(data).decode('ascii') return data def __call__(self, arg1, arg2) -> dict: """Main microservice entry point.""" # Lambda event call or Flask call if isfunction(arg2): res = self._flask_handler(arg1, arg2) else: res = self._lambda_handler(arg1, arg2) # res['headers']['x-cws-workspace'] = os.getenv('WORKSPACE') return res def _lambda_handler(self, event: t.Dict[str, t.Any], context: t.Dict[str, t.Any]): """Lambda handler. """ self.logger.debug(f"Event: {event}") self.logger.debug(f"Context: {context}") self._update_config(load_env=False) if event.get('type') == 'TOKEN': return self._token_handler(event, context) return self._api_handler(event, context) def _token_handler(self, event: t.Dict[str, t.Any], context: t.Dict[str, t.Any]) -> dict: """Authorization token handler. """ self.logger.debug(f"Calling {self.name} for authorization : {event}") try: res = self.token_authorizer(event['authorizationToken']) return TokenResponse(res, event['methodArn']).json except Exception as e: self.logger.debug(f"Error in token handler for {self.name} : {e}") return TokenResponse(False, event['methodArn']).json def _api_handler(self, event: t.Dict[str, t.Any], context: t.Dict[str, t.Any]) -> dict: """API handler. """ self.logger.debug(f"Calling {self.name} by api : {event}") def full_path(): url = event['path'] # Replaces route parameters url = url.format(url, **event['params']['path']) # Adds query parameters params = event['multiValueQueryStringParameters'] if params: url += '?' for i, (k, v) in enumerate(params.items()): if i: url += '&' for j, vl in enumerate(v): if j: url += '&' url += f"{k}={vl}" return url # Transform as simple client call and manage exception if needed try: with self.cws_client(event, context) as c: method = event['httpMethod'] kwargs = self._get_kwargs(event) resp = getattr(c, method.lower())(full_path(), **kwargs) return self._convert_to_lambda_response(resp) except Exception as e: error = e if isinstance(e, HTTPException) else InternalServerError(original_exception=e) return self._structured_error(error) def _flask_handler(self, environ: t.Dict[str, t.Any], start_response: t.Callable[[t.Any], None]): """Flask handler. """ self._update_config(load_env=True) return self.wsgi_app(environ, start_response) def _update_config(self, *, load_env: bool, workspace: str = None): if not self._cws_conf_updated: workspace = workspace or os.environ.get('WORKSPACE', DEFAULT_DEV_WORKSPACE) if workspace == DEFAULT_LOCAL_WORKSPACE: click.echo(f" * Workspace: {workspace}") config = self.get_config(workspace) self.config['WORKSPACE'] = config.workspace if load_env: config.load_environment_variables(self.root_path) self._cws_conf_updated = True def _check_token(self): if not request.in_lambda_context: # Get no_auth option for this entry no_auth = False if request.url_rule: view_function = self.view_functions.get(request.url_rule.endpoint, None) if view_function: no_auth = getattr(view_function, '__CWS_NO_AUTH', False) # Checks token if authorization needed if not no_auth: token = request.headers.get('Authorization', self.config.get('DEFAULT_TOKEN')) if token is None: raise Unauthorized(www_authenticate=WWWAuthenticate(auth_type="basic")) valid = self.token_authorizer(token) if not valid: abort(403) def _get_kwargs(self, event): def is_json(mt): return ( mt == "application/json" or type(mt) is str and mt.startswith("application/") and mt.endswith("+json") ) kwargs = {} content_type = event['headers'].get('content-type') if content_type: kwargs['content_type'] = content_type method = event['httpMethod'] if method not in ['PUT', 'POST']: return kwargs is_encoded = event.get('isBase64Encoded', False) body = event['body'] if body and is_encoded: body = self.base64decode(body) self.logger.debug(f"Body: {body}") if is_json(content_type): kwargs['json'] = body return kwargs kwargs['data'] = body return kwargs def _convert_to_lambda_response(self, resp): """Convert Lambda response.""" # returns JSON structure if resp.is_json: try: return self._structured_payload(resp.json, resp.status_code, resp.headers) except (Exception,): resp.mimetype = "text/plain" # returns simple string JSON structure if resp.mimetype.startswith('text'): try: return self._structured_payload(resp.get_data(True), resp.status_code, resp.headers) except ValueError: pass # returns direct payload return self.base64encode(resp.get_data()) def _structured_payload(self, body, status_code, headers): return { "statusCode": status_code, "headers": {k: v for k, v in headers.items()}, "body": body, "isBase64Encoded": False, } def _structured_error(self, e: HTTPException): headers = {'content_type': "application/json"} return self._structured_payload(e.description, e.code, headers) def schedule(self, *args, **kwargs): raise Exception("Schedule decorator is defined on BizMicroService, not on TechMicroService") class BizMicroService(TechMicroService): """Biz composed microservice activated
__createSvgTable__(tempData) root.appendChild(headerGroup) root.appendChild(alternativeTableHeaderBackgroundGround) root.appendChild(alternativeTableDataBackgrounGroup) root.appendChild(alternativeNewWordGroup) root.appendChild(xmlAlternativeTable) return xmlDoc.toxml('utf-8') # meanData, rangeData and stdData should be objects of the resultRatingWeightTableData class def convertRatingWeightSessionResultToSvg(meanData, rangeData, stdData): ###########settings########### fontSize = 30 headerFontSize = 45 f = ImageFont.truetype(DENDROGRAM_FONT_LOCATION, fontSize) fHeader = ImageFont.truetype(DENDROGRAM_FONT_LOCATION, headerFontSize) fontName = 'arial' meanTableYOffset = 5 # offset from the button of the header. In pixels rangeTableYOffset = 5 # offset from the button of the header. In pixels stdTableYOffset = 5 # offset from the button of the header. In pixels meanTableXOffset = 5 # offset from the biggest left concern to the table and the offset from the table to the right concern. In pixels rangeTableXOffset = 5 # offset from the biggest left concern to the table and the offset from the table to the right concern. In pixels stdTableXOffset = 5 # offset from the biggest left concern to the table and the offset from the table to the right concern. In pixels tableHeaderLinearColor1 = (141, 179, 235) tableHeaderLinearColor2 = (95, 144, 227) xWordCellSpace = 5 # space between a word and the right and left line of the cell (in pixels) yWordCellSpace = 5 # space between the biggest word and the top and bottom line of the cell (in pixels) meanHeaderYOffset = 10 # offset from the top of the header to the bottom of the element above it. In pixels rangeHeaderYOffset = 10 # offset from the top of the header to the bottom of the element above it. In pixels stdHeaderYOffset = 10 # offset from the top of the header to the bottom of the element above it. In pixels meanLeftConcernWordOffset = 5 rangeLeftConcernWordOffset = 5 stdLeftConcernWordOffset = 5 meanRightConcernWordOffset = 5 rangeRightConcernWordOffset = 5 stdRightConcernWordOffset = 5 tableLineThickness = 1 # in pixels tableLineColor = (60, 179, 113) # value in rbg tableCellWordColor = (60, 179, 113) # value in rbg tableHeaderCellWordColor = (255, 255, 255) # value in rbg ##############end############## tempData = __TableData___() rangeTableData = [] meanTableData = [] stdTableData = [] tempData.nRows = len(meanData.tableData) + 1 # it is + 1 for the table header tempData.nCols = len(meanData.tableHeader) rangeColWidths = [0 for x in xrange(tempData.nCols)] # @UnusedVariable meanColWidths = [0 for x in xrange(tempData.nCols)] # @UnusedVariable stdColWidths = [0 for x in xrange(tempData.nCols)] # @UnusedVariable rangeCellHeight = 0 meanCellHeight = 0 stdCellHeight = 0 meanTableYTotalOffset = 0 # @UnusedVariable rangeTableYTotalOffset = 0 # @UnusedVariable stdTableYTotalOffset = 0 # @UnusedVariable meanTableXTotalOffset = 0 # @UnusedVariable rangeTableXTotalOffset = 0 # @UnusedVariable stdTableXTotalOffset = 0 # @UnusedVariable meanHeaderSize = None # @UnusedVariable rangeHeaderSize = None # @UnusedVariable stdHeaderSize = None # @UnusedVariable meanTablesize = None # tulip (width, height) #@UnusedVariable rangeTablesize = None # tulip (width, height) #@UnusedVariable stdTablesize = None # tulip (width, height) #@UnusedVariable meanLeftConcernWordMaxWidth = 0 rangeLeftConcernWordMaxWidth = 0 stdLeftConcernWordMaxWidth = 0 tempData.tableLineColor = tableLineColor tempData.lineThickness = tableLineThickness tempData.tableCellWordColor = tableCellWordColor tempData.tableHeaderCellWordColor = tableHeaderCellWordColor tempData.fontName = fontName tempData.fontObject = f tempData.fontSize = fontSize ####################Pre-processing#################### # create the correct format for the __createSvgTable__ of the tables data i = 0 j = 0 while i < tempData.nRows - 1: rowMean = [] rowRange = [] rowStd = [] while j < tempData.nCols: rowMean.append(meanData.tableData[i][j][0]) rowRange.append(rangeData.tableData[i][j][0]) rowStd.append(stdData.tableData[i][j][0]) size = None if type(rowMean[j]) != StringType or type(rowMean[j]) != UnicodeType: size = f.getsize(str(rowMean[j])) else: size = f.getsize(rowMean[j]) if size[0] > meanColWidths[j]: meanColWidths[j] = size[0] if size[1] > meanCellHeight: meanCellHeight = size[1] if type(rowRange[j]) != StringType or type(rowRange[j]) != UnicodeType: size = f.getsize(str(rowRange[j])) else: size = f.getsize(rowRange[j]) if size[0] > rangeColWidths[j]: rangeColWidths[j] = size[0] if size[1] > rangeCellHeight: rangeCellHeight = size[1] if type(rowStd[j]) != StringType or type(rowStd[j]) != UnicodeType: size = f.getsize(str(rowStd[j])) else: size = f.getsize(rowStd[j]) if size[0] > stdColWidths[j]: stdColWidths[j] = size[0] if size[1] > stdCellHeight: stdCellHeight = size[1] j += 1 rangeTableData.append(rowRange) meanTableData.append(rowMean) stdTableData.append(rowStd) j = 0 i += 1 # add the table header to the table data and check the sizes i = 0 while i < tempData.nCols: size = f.getsize(meanData.tableHeader[i]) if size[0] > meanColWidths[i]: meanColWidths[i] = size[0] if size[1] > meanCellHeight: meanCellHeight = size[1] size = f.getsize(rangeData.tableHeader[i]) if size[0] > rangeColWidths[i]: rangeColWidths[i] = size[0] if size[1] > rangeCellHeight: rangeCellHeight = size[1] size = f.getsize(stdData.tableHeader[i]) if size[0] > stdColWidths[i]: stdColWidths[i] = size[0] if size[1] > stdCellHeight: stdCellHeight = size[1] i += 1 # add xWordCellSpace * 2 to each position of the array (in place) meanColWidths[:] = [x + (xWordCellSpace * 2) for x in meanColWidths] rangeColWidths[:] = [x + (xWordCellSpace * 2) for x in rangeColWidths] stdColWidths[:] = [x + (xWordCellSpace * 2) for x in stdColWidths] # add the extra space to the cell height meanCellHeight += 2 * yWordCellSpace rangeCellHeight += 2 * yWordCellSpace stdCellHeight += 2 * yWordCellSpace # calculate the size of the hear words meanHeaderSize = fHeader.getsize(meanData.header) rangeHeaderSize = fHeader.getsize(rangeData.header) stdHeaderSize = fHeader.getsize(stdData.header) # calculate the height and width of the tables height = (tempData.nRows + 1) * tableLineThickness + (tempData.nRows * meanCellHeight) width = (tempData.nCols + 1) * tableLineThickness + sum(meanColWidths) meanTablesize = (width, height) height = 0 width = 0 height = (tempData.nRows + 1) * tableLineThickness + (tempData.nRows * rangeCellHeight) width = (tempData.nCols + 1) * tableLineThickness + sum(rangeColWidths) rangeTablesize = (width, height) height = 0 width = 0 height = (tempData.nRows + 1) * tableLineThickness + (tempData.nRows * stdCellHeight) width = (tempData.nCols + 1) * tableLineThickness + sum(stdColWidths) stdTablesize = (width, height) # calculate max width of the left concern i = 0 while i < len(meanData.concerns): size = f.getsize(meanData.concerns[i][0]) if size[0] > meanLeftConcernWordMaxWidth: meanLeftConcernWordMaxWidth = size[0] size = f.getsize(rangeData.concerns[i][0]) if size[0] > rangeLeftConcernWordMaxWidth: rangeLeftConcernWordMaxWidth = size[0] size = f.getsize(stdData.concerns[i][0]) if size[0] > stdLeftConcernWordMaxWidth: stdLeftConcernWordMaxWidth = size[0] i += 1 # calculate the offset of each table # y offset meanTableYTotalOffset = meanHeaderSize[1] + meanHeaderYOffset + meanTableYOffset rangeTableYTotalOffset = rangeHeaderSize[1] + rangeHeaderYOffset + rangeTableYOffset rangeTableYTotalOffset += meanTableYTotalOffset + meanTablesize[1] stdTableYTotalOffset = stdHeaderSize[1] + stdHeaderYOffset + stdTableYOffset stdTableYTotalOffset += rangeTableYTotalOffset + rangeTablesize[1] # x offset meanTableXTotalOffset = meanLeftConcernWordMaxWidth + meanTableXOffset + meanLeftConcernWordOffset rangeTableXTotalOffset = rangeLeftConcernWordMaxWidth + rangeTableXOffset + rangeLeftConcernWordOffset stdTableXTotalOffset = stdLeftConcernWordMaxWidth + stdTableXOffset + stdLeftConcernWordOffset ####################End pre-processing#################### # add the table header meanTableData.insert(0, meanData.tableHeader) rangeTableData.insert(0, rangeData.tableHeader) stdTableData.insert(0, stdData.tableHeader) # create xml doc imp = SvgDOMImplementation() xmlDoc = imp.createSvgDocument() root = xmlDoc.documentElement root.setXmlns('http://www.w3.org/2000/svg') root.setVersion('1.1') tempNode = None # @UnusedVariable globalDefNode = xmlDoc.createDefsNode() root.appendChild(globalDefNode) meanTableDataGroup = xmlDoc.createGNode() meanTableDataGroup.setId('meanTableDataGroup') rangeTableDataGroup = xmlDoc.createGNode() rangeTableDataGroup.setId('rangeTableDataGroup') stdTableDataGroup = xmlDoc.createGNode() stdTableDataGroup.setId('stdTableDataGroup') ########## create first row (header) linear gradient ########## tempNode = xmlDoc.createLinearGradientNode('0%', '0%', '0%', '100%') tempNode.appendChild(xmlDoc.createStopNode('0%', createColorRGBString(tableHeaderLinearColor1), 1)) tempNode.appendChild(xmlDoc.createStopNode('100%', createColorRGBString(tableHeaderLinearColor2), 1)) tempNode.setId('tableHeaderGradient') globalDefNode.appendChild(tempNode) ########## end create first row (header) linear gradient ########## ########## create the svg tables########## tempData.tableData = meanTableData tempData.cellHeight = meanCellHeight tempData.cellWidths = meanColWidths tempData.yTableOffSet = meanTableYTotalOffset tempData.xTableOffSet = meanTableXTotalOffset xmlTableMean = __createSvgTable__(tempData) tempData.tableData = rangeTableData tempData.cellHeight = rangeCellHeight tempData.cellWidths = rangeColWidths tempData.yTableOffSet = rangeTableYTotalOffset tempData.xTableOffSet = rangeTableXTotalOffset xmlTableRange = __createSvgTable__(tempData) tempData.tableData = stdTableData tempData.cellHeight = stdCellHeight tempData.cellWidths = stdColWidths tempData.yTableOffSet = stdTableYTotalOffset tempData.xTableOffSet = stdTableXTotalOffset xmlTableStd = __createSvgTable__(tempData) ########## end create the svg tables ########## ########## create the background of the table headers ########## meanTableHeaderBackgroundGroup = xmlDoc.createGNode() meanTableHeaderBackgroundGroup.setId('meanTableHeaderBackgroundGroup') rangeTableHeaderBackgroundGroup = xmlDoc.createGNode() rangeTableHeaderBackgroundGroup.setId('rangeTableHeaderBackgroundGroup') stdTableHeaderBackgroundGroup = xmlDoc.createGNode() stdTableHeaderBackgroundGroup.setId('stdTableHeaderBackgroundGroup') i = 0 while i < len(meanData.tableHeader): # calculate the total length of cols from 0 to i for all 3 tables n1 = 0 n2 = 0 n3 = 0 j = 0 while j < i: n1 += meanColWidths[j] n2 += rangeColWidths[j] n3 += stdColWidths[j] j += 1 # mean x = meanTableXTotalOffset + (tableLineThickness / 2) + n1 + i * tableLineThickness y = meanTableYTotalOffset + (tableLineThickness / 2) tempNode = xmlDoc.createRectNode(x, y, meanCellHeight + tableLineThickness, meanColWidths[i] + tableLineThickness) tempNode.setFill('url(#tableHeaderGradient)') meanTableHeaderBackgroundGroup.appendChild(tempNode) # range x = rangeTableXTotalOffset + (tableLineThickness / 2) + n2 + i * tableLineThickness y = rangeTableYTotalOffset + (tableLineThickness / 2) tempNode = xmlDoc.createRectNode(x, y, rangeCellHeight + tableLineThickness, rangeColWidths[i] + tableLineThickness) tempNode.setFill('url(#tableHeaderGradient)') rangeTableHeaderBackgroundGroup.appendChild(tempNode) # std x
<gh_stars>1-10 # GameHelper.py # Class implementation for 'GameHelper' import sys import json import struct import msgpack from game.Map import Map from game.Command import Command from game.Coordinate import Coordinate, direction_deltas from game.params import ( MOVE_COMMAND, BUILD_COMMAND, MINE_COMMAND, HIVE_COST, PLAYER_LOG_FN, LOG_FE, Direction ) from game.ObstacleMapProblem import ObstacleMapProblem from game.Bot import read, write from game.astar_search import astar_search # ------------------------------------------------------------------------------ # GameHelper # A GameHelper instance wraps all of the game logic functionality into # a convenient package to aid users in bot development. class GameHelper: def __init__(self): # first thing the game server sends us through STDIN is our player id self.myId = read(sys.stdin.buffer) # second thing is number of players self.numPlayers = read(sys.stdin.buffer) self.params = {} # default the params to an empty dict self.load_params() # then load in the params (3rd thing sent to a bot) self.map = None # list of enemy IDs self.eIds = list(range(self.numPlayers)) self.eIds.remove(self.myId) self.me = {"resources": 0} self.turn_handler = None self.player_log_fp = open(PLAYER_LOG_FN + str(self.myId) + LOG_FE, "w") self.move_dict = {} self.command_queue = [] def __del__(self): self.player_log_fp.close() # -------------------------------------------------------------------------- # BOT PARAMETERS # Reads bot parameters over stdin and sets them in parameter dictionary def load_params(self): params = read(sys.stdin.buffer) if not params: return # for each param, parse it into the correct type for p in params: if p['type'] == 'INT': self.params[p['name']] = int(p['value']) elif p['type'] == 'FLOAT': self.params[p['name']] = float(p['value']) else: self.params[p['name']] = p['value'] def set_default_params(self, params): for (val, key) in enumerate(params): if key not in self.params: self.params[key] = val # Get the value for a parameter specified externally (via the web UI) # Return: # value, or None if nonexistent param def param(self, param_name): if param_name in self.params: return self.params[param_name] return None # -------------------------------------------------------------------------- # TODO: fix def get_movement_directions(self): return [ Direction.EAST, Direction.WEST, Direction.NORTHEAST, Direction.NORTHWEST, Direction.SOUTHEAST, Direction.SOUTHWEST, Direction.NONE ] # -------------------------------------------------------------------------- # COMMAND CREATION # Create a move command and append it to the command queue. # Return: (None) def move(self, position_from, num_units, direction): command = Command(self.myId, Coordinate(position_from), MOVE_COMMAND, num_units, direction) if command: self.command_queue.append(command) # Create a move command and append it to the command queue, # this time with an additional layer of abstraction to aid development. # Return: (None) def move_towards(self, position_from, position_to, num_units=None): position_to = Coordinate(position_to) position_from = Coordinate(position_from) if position_from == position_to: return None if position_from.x < position_to.x: d = Direction.EAST elif position_from.x > position_to.x: d = Direction.WEST elif position_from.y < position_to.y: d = Direction.SOUTHWEST elif position_from.y > position_to.y: d = Direction.NORTHEAST n = num_units if num_units else self.get_unit_count_by_position(position_from.x, position_from.y) self.move(position_from, n, d) # Create a build command and append it to the command queue. # Return: (None) def build(self, position): # TODO: track concurrent mine and build commands: # right now, hive simply requires a single unit in a cell # do we care though that this unit will also be able to mine as well? # the difference is small, but it will be more realistic in some sense # if we have this logic. command = Command(self.myId, Coordinate(position), BUILD_COMMAND, 1, Direction.NONE) if command: self.command_queue.append(command) # Create a mine command and append it to the command queue. # Return: (None) def mine(self, position, num_units): command = Command(self.myId, Coordinate(position), MINE_COMMAND, num_units, Direction.NONE) if command: self.command_queue.append(command) # -------------------------------------------------------------------------- # CELL GETTERS # Get map cell at specified (x, y) coordinate. # Return: (Cell) # Cell at <position> if <position> is valid, else None def get_cell(self, x, y=None): if type(x) == Coordinate: return self.map.get_cell(x) # map handles validity check return self.map.get_cell(Coordinate(x, y)) # Get count of all of my cells on the map. # Return: (number) # the number of cells on the map that I control. def get_my_cell_count(self): return len(self.get_my_cells()) # Get count of all of enemy cells on the map. # Return: (number) # the number of cells on the map that are enemy controlled. def get_enemy_cell_count(self): return len(self.get_enemy_cells()) # Get count of all cells controlled by player with playerId on the map. # Return: (number) # the number of cells on the map that are controlled by player with playerId def get_player_cell_count(self, playerId): return len(self.get_player_cells(playerId)) # Get a list of all my cells on the map. # Return: (list of Cell) # list of all my cells def get_my_cells(self): return self.get_occupied_cells(self.myId) # Get a list of all enemy cells on the map. # Return: (list of Cell) # list of all enemy cells def get_enemy_cells(self): enemy_cells = [] for eId in self.eIds: single_enemy_cells = self.get_occupied_cells(eId) for single_enemy_cell in single_enemy_cells: enemy_cells.append(single_enemy_cell) return enemy_cells # Get a list of all cells controlled by player with playerId on the map. # Return: (list of Cell) # list of all cells controlled by player with playerId def get_player_cells(self, playerId): return self.get_occupied_cells(playerId) # Get a list of all cells in which I have a hive. # Return: (list of Cell) # list of all my hive-occupied cells def get_my_hive_sites(self): cells = [] for col in self.map.cells: for cell in col: if cell.hive and cell.hive.ownerId == self.myId: cells.append(cell) return cells # Get a list of all cells in which enemy has a hive. # Return: (list of Cell) # list of all enemy hive-occupied cells def get_enemy_hive_sites(self): cells = [] for col in self.map.cells: for cell in col: if cell.hive and cell.hive.ownerId != self.myId: cells.append(cell) return cells # Get a list of all cells in which player specified by <playerId> # has at least one unit - this is equivalent to control of this cell. # Return: (list of Cell) # list of all cells occupied by player with <playerId> def get_occupied_cells(self, playerId): cells = [] for col in self.map.cells: for cell in col: if cell.units[playerId] > 0: cells.append(cell) return cells # -------------------------------------------------------------------------- # HIVE DATA GETTERS # Get a count of all hives on the map that I control. # Return: (number) # the number of hives on the map that I control def get_my_hive_count(self): return len(self.get_my_hives()) # Get a count of all hives on the map that are enemy controlled. # Return: (number) # the number of hives on the map that are enemy controlled def get_enemy_hive_count(self): return len(self.get_enemy_hives()) # Get a count of all hives on the map controlled by player with playerId # Return: (number) # the number of hives on the map controlled by player with playerId def get_player_hive_count(self, playerId): return len(self.get_player_hives(playerId)) # Get a list of all my hives on the map. # Return: (list of Hive) # list of hives on the map that I control def get_my_hives(self): return self.get_player_hives(self.myId) # Get a list of all enemy hives on the map. # Return: (list of Hive) # list of hives on the map that the enemy players control def get_enemy_hives(self): blds = [] for col in self.map.cells: for cell in col: if cell.hive and cell.hive.ownerId != self.myId: blds.append(cell.hive) return blds # Get a list of all hives controlled by a certain player # Return: (list of hive) # list of hive instances controlled by <playerId> def get_player_hives(self, playerId): hives = [] for col in self.map.cells: for cell in col: if cell.hive and (cell.hive.ownerId == playerId): hives.append(cell.hive) return hives # Get a list of all hives on the map # Return: (list of hives) # flat list of all hives on the map, regardless of player def get_all_hives(self): all_hives = [] for player_id in range(self.map.num_players): for hive in self.get_player_hives(player_id): all_hives.append(hive) return all_hives # Get a list of all my hives' positions on the map. # Return: (list of positions) # list of positions of hives on the map that I control def get_my_hive_positions(self): return self.get_player_hive_positions(self.myId) # Get a list of all enemy hives on the map. # Return: (list of Hive) # list of hives on the map that the enemy players control def get_enemy_hive_positions(self): positions = [] for col in self.map.cells: for cell in col: if cell.hive and cell.hive.ownerId != self.myId: positions.append(cell.positions) return positions # Get a list of all hives controlled by a certain player
HEAVY BARB ARROW': 129154, 'WIDE-HEADED SOUTH EAST BARB ARROW': 129134, 'WIDE-HEADED SOUTH EAST HEAVY BARB ARROW': 129150, 'WIDE-HEADED SOUTH EAST LIGHT BARB ARROW': 129126, 'WIDE-HEADED SOUTH EAST MEDIUM BARB ARROW': 129142, 'WIDE-HEADED SOUTH EAST VERY HEAVY BARB ARROW': 129158, 'WIDE-HEADED SOUTH WEST BARB ARROW': 129135, 'WIDE-HEADED SOUTH WEST HEAVY BARB ARROW': 129151, 'WIDE-HEADED SOUTH WEST LIGHT BARB ARROW': 129127, 'WIDE-HEADED SOUTH WEST MEDIUM BARB ARROW': 129143, 'WIDE-HEADED SOUTH WEST VERY HEAVY BARB ARROW': 129159, 'WIDE-HEADED UPWARDS BARB ARROW': 129129, 'WIDE-HEADED UPWARDS HEAVY BARB ARROW': 129145, 'WIDE-HEADED UPWARDS LIGHT BARB ARROW': 129121, 'WIDE-HEADED UPWARDS MEDIUM BARB ARROW': 129137, 'WIDE-HEADED UPWARDS VERY HEAVY BARB ARROW': 129153, 'WIGGLY VERTICAL LINE': 11838, 'WIND BLOWING FACE': 127788, 'WIND CHIME': 127888, 'WINE GLASS': 127863, 'WINKING FACE': 128521, 'WIRED KEYBOARD': 128430, 'WJ': 983225, 'WOLF FACE': 128058, 'WOMAN': 128105, 'WOMAN WITH BUNNY EARS': 128111, 'WOMANS BOOTS': 128098, 'WOMANS CLOTHES': 128090, 'WOMANS HAT': 128082, 'WOMANS SANDAL': 128097, 'WOMENS SYMBOL': 128698, 'WORLD MAP': 128506, 'WORRIED FACE': 128543, 'WRAPPED PRESENT': 127873, 'WRENCH': 128295, 'YELLOW HEART': 128155, 'YI SYLLABLE ITERATION MARK': 983235, 'ZIPPER-MOUTH FACE': 129296, 'ZWJ': 983215, 'ZWNBSP': 983255, 'ZWNJ': 983214, 'ZWSP': 983213, } _code_by_name_corrected = { } _cjk_prefix = "CJK UNIFIED IDEOGRAPH-" _hangul_prefix = 'HANGUL SYLLABLE ' _hangul_L = ['G', 'GG', 'N', 'D', 'DD', 'R', 'M', 'B', 'BB', 'S', 'SS', '', 'J', 'JJ', 'C', 'K', 'T', 'P', 'H'] _hangul_V = ['A', 'AE', 'YA', 'YAE', 'EO', 'E', 'YEO', 'YE', 'O', 'WA', 'WAE', 'OE', 'YO', 'U', 'WEO', 'WE', 'WI', 'YU', 'EU', 'YI', 'I'] _hangul_T = ['', 'G', 'GG', 'GS', 'N', 'NJ', 'NH', 'D', 'L', 'LG', 'LM', 'LB', 'LS', 'LT', 'LP', 'LH', 'M', 'B', 'BS', 'S', 'SS', 'NG', 'J', 'C', 'K', 'T', 'P', 'H'] def _lookup_hangul(syllables): l_code = v_code = t_code = -1 for i in range(len(_hangul_L)): jamo = _hangul_L[i] if (syllables[:len(jamo)] == jamo and (l_code < 0 or len(jamo) > len(_hangul_L[l_code]))): l_code = i if l_code < 0: raise KeyError start = len(_hangul_L[l_code]) for i in range(len(_hangul_V)): jamo = _hangul_V[i] if (syllables[start:start + len(jamo)] == jamo and (v_code < 0 or len(jamo) > len(_hangul_V[v_code]))): v_code = i if v_code < 0: raise KeyError start += len(_hangul_V[v_code]) for i in range(len(_hangul_T)): jamo = _hangul_T[i] if (syllables[start:start + len(jamo)] == jamo and (t_code < 0 or len(jamo) > len(_hangul_T[t_code]))): t_code = i if t_code < 0: raise KeyError start += len(_hangul_T[t_code]) if len(syllables[start:]): raise KeyError return 0xAC00 + (l_code * 21 + v_code) * 28 + t_code def _lookup_cjk(cjk_code): if len(cjk_code) != 4 and len(cjk_code) != 5: raise KeyError for c in cjk_code: if not ('0' <= c <= '9' or 'A' <= c <= 'F'): raise KeyError code = int(cjk_code, 16) if (0x3400 <= code <= 0x4DB5 or 0x4E00 <= code <= 0x9FD5 or 0x20000 <= code <= 0x2A6D6 or 0x2A700 <= code <= 0x2B734 or 0x2B740 <= code <= 0x2B81D or 0x2B820 <= code <= 0x2CEA1): return code raise KeyError def lookup(name, with_named_sequence=False): if name[:len(_cjk_prefix)] == _cjk_prefix: return _lookup_cjk(name[len(_cjk_prefix):]) if name[:len(_hangul_prefix)] == _hangul_prefix: return _lookup_hangul(name[len(_hangul_prefix):]) if not base_mod: code = trie_lookup(name) else: try: code = _code_by_name[name] except KeyError: if name not in _code_by_name_corrected: code = base_mod.trie_lookup(name) else: raise if not with_named_sequence and 0xF0200 <= code < 0xF0400: raise KeyError return code def name(code): if (0x3400 <= code <= 0x4DB5 or 0x4E00 <= code <= 0x9FD5 or 0x20000 <= code <= 0x2A6D6 or 0x2A700 <= code <= 0x2B734 or 0x2B740 <= code <= 0x2B81D or 0x2B820 <= code <= 0x2CEA1): return "CJK UNIFIED IDEOGRAPH-" + hex(code)[2:].upper() if 0xAC00 <= code <= 0xD7A3: # vl_code, t_code = divmod(code - 0xAC00, len(_hangul_T)) vl_code = (code - 0xAC00) // len(_hangul_T) t_code = (code - 0xAC00) % len(_hangul_T) # l_code, v_code = divmod(vl_code, len(_hangul_V)) l_code = vl_code // len(_hangul_V) v_code = vl_code % len(_hangul_V) return ("HANGUL SYLLABLE " + _hangul_L[l_code] + _hangul_V[v_code] + _hangul_T[t_code]) if 0xF0000 <= code < 0xF0400: raise KeyError if not base_mod: return lookup_charcode(code) else: try: return _names[code] except KeyError: if code not in _names_corrected: return base_mod.lookup_charcode(code) else: raise _db_records = [ ('Cc', 'B', 'N', 5), ('Cc', 'BN', 'N', 0), ('Cc', 'S', 'N', 1), ('Cc', 'S', 'N', 5), ('Cc', 'WS', 'N', 5), ('Cf', 'AL', 'N', 8192), ('Cf', 'AN', 'N', 8192), ('Cf', 'BN', 'A', 8192), ('Cf', 'BN', 'N', 8192), ('Cf', 'FSI', 'N', 8192), ('Cf', 'L', 'N', 8192), ('Cf', 'LRE', 'N', 8192), ('Cf', 'LRI', 'N', 8192), ('Cf', 'LRO', 'N', 8192), ('Cf', 'ON', 'N', 8192), ('Cf', 'PDF', 'N', 8192), ('Cf', 'PDI', 'N', 8192), ('Cf', 'R', 'N', 8192), ('Cf', 'RLE', 'N', 8192), ('Cf', 'RLI', 'N', 8192), ('Cf', 'RLO', 'N', 8192), ('Cn', '', 'N', 0), ('Cn', '', 'W', 0), ('Co', 'L', 'A', 0), ('Cs', 'L', 'N', 0), ('Ll', 'L', 'A', 7202), ('Ll', 'L', 'F', 7202), ('Ll', 'L', 'N', 7202), ('Ll', 'L', 'Na', 7202), ('Ll', 'R', 'N', 7202), ('Lm', 'AL', 'N', 15362), ('Lm', 'L', 'A', 15362), ('Lm', 'L', 'A', 15394), ('Lm', 'L', 'H', 14338), ('Lm', 'L', 'H', 15362), ('Lm', 'L', 'N', 12322), ('Lm', 'L', 'N', 15362), ('Lm', 'L', 'N', 15394), ('Lm', 'L', 'W', 15362), ('Lm', 'ON', 'A', 15362), ('Lm', 'ON', 'N', 12290), ('Lm', 'ON', 'N', 15362), ('Lm', 'R', 'N', 15362), ('Lo', 'AL', 'N', 4098), ('Lo', 'AL', 'N', 7170), ('Lo', 'L', 'A', 7202), ('Lo', 'L', 'H', 7170), ('Lo', 'L', 'N', 6146), ('Lo', 'L', 'N', 7170), ('Lo', 'L', 'W', 7170), ('Lo', 'L', 'W', 7234), ('Lo', 'R', 'N', 7170), ('Lt', 'L', 'N', 7186), ('Lu', 'L', 'A', 7178), ('Lu', 'L', 'F', 7178), ('Lu', 'L', 'N', 7178), ('Lu', 'L', 'Na', 7178), ('Lu', 'R', 'N', 7178), ('Mc', 'L', 'N', 6144), ('Mc', 'L', 'W', 6144), ('Me', 'NSM', 'N', 12288), ('Mn', 'L', 'N', 14336), ('Mn', 'NSM', 'A', 14336), ('Mn', 'NSM', 'A', 14368), ('Mn', 'NSM', 'N', 14336), ('Mn', 'NSM', 'W', 14336), ('Nd', 'AN', 'N', 6592), ('Nd', 'EN', 'F', 6592), ('Nd', 'EN', 'N', 6592), ('Nd', 'EN', 'Na', 6592), ('Nd', 'L', 'N', 6592), ('Nd', 'R', 'N', 6592), ('Nl', 'L', 'A', 7240), ('Nl', 'L', 'A', 7264), ('Nl', 'L', 'N', 7232), ('Nl', 'L', 'N', 7240), ('Nl', 'L', 'N', 7264), ('Nl', 'L', 'W', 7232), ('Nl', 'ON', 'N', 7232), ('No', 'AN', 'N', 4160), ('No', 'AN', 'N', 4288), ('No', 'EN', 'A', 4160), ('No', 'EN', 'A', 4288), ('No', 'EN', 'N', 4160), ('No', 'EN', 'N', 4288), ('No', 'L', 'A', 4160), ('No', 'L', 'N', 4160), ('No', 'L', 'N', 6336), ('No', 'L', 'W', 4160), ('No', 'ON', 'A', 4160), ('No', 'ON', 'A', 4288), ('No', 'ON', 'N', 4160), ('No', 'ON', 'N', 4288), ('No', 'ON', 'W', 4160), ('No', 'R', 'N', 4160), ('No', 'R', 'N', 4288), ('Pc', 'ON', 'F', 6144), ('Pc', 'ON', 'N', 6144), ('Pc', 'ON', 'Na', 6144), ('Pc', 'ON', 'W', 6144), ('Pd', 'ES', 'F', 4096), ('Pd', 'ES', 'Na', 4096), ('Pd', 'ES', 'W', 4096), ('Pd', 'ON', 'A', 4096), ('Pd', 'ON', 'N', 4096), ('Pd', 'ON', 'W', 4096), ('Pd', 'R', 'N', 4096), ('Pe', 'ON', 'F', 4608), ('Pe', 'ON', 'H', 4608), ('Pe', 'ON', 'N', 4096), ('Pe', 'ON', 'N', 4608), ('Pe', 'ON', 'Na', 4608), ('Pe', 'ON', 'W', 4096), ('Pe', 'ON', 'W', 4608), ('Pf', 'ON', 'A', 4096), ('Pf', 'ON', 'A', 12288), ('Pf', 'ON', 'N', 4608), ('Pi', 'ON', 'A', 4096), ('Pi', 'ON', 'A', 12288), ('Pi', 'ON', 'N', 4096), ('Pi', 'ON', 'N', 4608), ('Po', 'AL', 'N', 4096), ('Po', 'AN', 'N', 4096), ('Po', 'CS', 'F', 4096), ('Po', 'CS', 'F', 12288), ('Po', 'CS', 'N', 4096), ('Po', 'CS', 'Na', 4096), ('Po', 'CS', 'Na', 12288), ('Po', 'CS', 'W', 4096), ('Po', 'CS', 'W', 12288), ('Po', 'ET', 'A', 4096), ('Po', 'ET', 'F', 4096), ('Po', 'ET', 'N', 4096), ('Po', 'ET', 'Na', 4096), ('Po', 'ET', 'W', 4096), ('Po', 'L', 'N', 4096), ('Po', 'ON', 'A', 4096), ('Po', 'ON', 'A', 12288), ('Po', 'ON', 'A', 14336), ('Po', 'ON', 'F', 4096), ('Po', 'ON', 'F', 12288), ('Po', 'ON', 'H', 4096), ('Po', 'ON', 'N', 4096), ('Po', 'ON', 'N', 14336), ('Po', 'ON', 'Na', 4096), ('Po', 'ON', 'Na', 12288), ('Po', 'ON', 'W', 4096), ('Po', 'ON', 'W', 12288), ('Po', 'R', 'N', 4096), ('Po', 'R', 'N', 12288), ('Ps', 'ON', 'F', 4608), ('Ps', 'ON', 'H', 4608), ('Ps', 'ON', 'N', 4096), ('Ps', 'ON', 'N', 4608), ('Ps', 'ON', 'Na', 4608), ('Ps', 'ON', 'W', 4096), ('Ps', 'ON', 'W', 4608), ('Sc', 'AL', 'N', 4096), ('Sc', 'ET', 'A', 4096), ('Sc', 'ET', 'F', 4096), ('Sc', 'ET', 'H', 4096), ('Sc', 'ET', 'N', 4096), ('Sc', 'ET', 'Na', 4096), ('Sc', 'ET', 'W', 4096), ('Sk', 'AL', 'N', 12288), ('Sk', 'L', 'N', 12288), ('Sk', 'ON', 'A', 12288), ('Sk', 'ON', 'F', 12288), ('Sk', 'ON', 'N', 12288), ('Sk', 'ON', 'Na', 12288), ('Sk', 'ON', 'W', 12288), ('Sm', 'AL', 'N', 4096), ('Sm', 'CS', 'N', 4096), ('Sm', 'ES', 'F', 4096), ('Sm', 'ES', 'N', 4096), ('Sm', 'ES', 'Na', 4096), ('Sm', 'ES', 'W', 4096), ('Sm', 'ET', 'A', 4096), ('Sm', 'ET', 'N', 4096), ('Sm', 'L', 'N', 4096), ('Sm', 'ON', 'A', 4096), ('Sm', 'ON', 'A', 4608), ('Sm', 'ON', 'F', 4096), ('Sm', 'ON', 'F', 4608), ('Sm', 'ON', 'H', 4096), ('Sm', 'ON', 'N', 4096), ('Sm', 'ON', 'N', 4608), ('Sm', 'ON', 'N', 7168), ('Sm', 'ON', 'Na', 4096), ('Sm', 'ON', 'Na', 4608), ('Sm', 'ON', 'W', 4096), ('Sm', 'ON', 'W', 4608), ('So', 'AL', 'N', 4096), ('So', 'ET', 'A', 4096), ('So', 'ET', 'N', 4096), ('So', 'ET', 'N', 7168), ('So', 'L', 'A', 4096), ('So', 'L', 'A', 4104), ('So', 'L', 'A', 4128), ('So', 'L', 'N', 4096), ('So', 'L', 'W', 4096), ('So', 'ON', 'A', 4096), ('So', 'ON', 'F', 4096), ('So', 'ON', 'H', 4096), ('So', 'ON', 'N', 4096), ('So', 'ON', 'Na', 4096), ('So', 'ON', 'W', 4096), ('So', 'R', 'N', 4096), ('Zl', 'WS', 'N', 5), ('Zp', 'B', 'N', 5), ('Zs', 'CS', 'N', 1), ('Zs', 'WS', 'F', 1), ('Zs', 'WS', 'N', 1), ('Zs', 'WS', 'Na', 4097), ] _db_pgtbl = ( '\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./0123455565575555' '555555555555589:5;5<55=5>55555?@55AB555C5555555D555E55F555555555' 'G555H5555555IJ55555555K55555555LM555N\x15OPQRST55555555555555555555' '55555555555555555555555UVVVVVVVVWWWWWWWWWWWWWWWWWWWWWWWWWXYZ[\\]^' '_`abcd\x15efghijklkmnopqrstukvkkkkk\x15\x15\x15wxykkkkkkkkkk\x15\x15\x15\x15zkkkkkkkkkkk' 'kkkk\x15\x15{kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk\x15\x15|}kkk~kkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk\x7fkkkkkkkkkkk\x80kkk' 'kkkkkkkkkkkkkkkk\x81\x82\x83\x84\x85\x86\x87\x88((\x89kkkkkkkkkkkkk\x8akkkkk\x8bk\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95kkkkkk' '\x96\x975555555\x98\x99\x9a55555555555555555555555\x9b55555\x9c55555555555555555\x9d5555' '5555555555555555555555555555555555\x9e55555555555555555555555555555' '55555555555555555555555555555555555555\x9f5555555555555555\xa0\xa15555555' '55555555555555\xa2\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\x9b5\xa4\xa3\xa3\xa3\xa3\xa5' '\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3' '\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3' '\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3' '\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa3\xa5' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' '\xa6\xa7kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW\xa8' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW' 'WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW\xa8' ) _db_pages = ( '\x01\x01\x01\x01\x01\x01\x01\x01\x01\x02\x00\x03\x04\x00\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x00\x00\x00\x02\xd5\x90\x90\x85\xa2\x85\x90\x91\x9ao\x90\xaf~e\x7f~EEEEEEEEEE\x7f\x90\xbd\xbc\xbd\x90' '\x9088888888888888888888888888\x9a\x90o\xa9b\xa9\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x1c\x9a\xbco\xbc\x01' '\x01\x01\x01\x01\x01\x00\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\xd2\x88\xa2\xa2\x9e\xa2\xcd\x88\xa6\xcc-x\xbc\x07\xc9\xa9\xc1\xb1RR\xa6\x1b\x88\x8a\xa6R-tYYY\x88' '77777757777777775777777\xb45777775\x19\x19\x19\x1b\x1b\x1b\x1b\x19\x1b\x19\x19\x19\x1b\x19\x19\x1b\x1b\x19\x1b\x19\x19\x1b\x1b\x1b\xb4\x19\x19\x19\x1b\x19\x1b\x19\x1b' '7\x197\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x197\x197\x1b7\x1b7\x1b7\x197\x1b7\x1b7\x1b7\x1b7\x1b5\x197\x1b7\x197\x1b7\x1b7\x195\x197\x1b7\x1b\x197\x1b7\x1b7\x1b5' '\x195\x197\x197\x1b7\x19\x195\x197\x197\x1b7\x1b5\x197\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b5\x197\x1b7\x197\x1b7\x1b7\x1b7\x1b7\x1b7\x1b77\x1b7\x1b7\x1b\x1b' '\x1b77\x1b7\x1b77\x1b777\x1b\x1b7777\x1b77\x1b777\x1b\x1b\x1b77\x1b77\x1b7\x1b7\x1b77\x1b7\x1b\x1b7\x1b77\x1b777\x1b7\x1b77\x1b\x1b07\x1b\x1b\x1b' '<KEY>' '7\<KEY>' '\<KEY>' '\<KEY>%%%%%%%%%))$$$$$' "%%\xa8\xa8\xa6\xa8)')''')'))\x1f$\xa8\xa8\xa8\xa8\xa8\xa8\xa6\xa6\xa6\xa6\xa8\xa6\xa8\xa6%%%%%\xa8\xa8\xa8\xa8\xa8\xa8\xa8)\xa8$\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8" '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>' '>>>>>?>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>7\x1b7\x1b)\xa87\x1b\x15\x15#\x1b\x1b\x1b\x8e7' '\x15\x15\x15\x15\xa8\xa87\x8f777\x157\x1577\x1b55555555555555555\x15555555577\x1b\x1b\x1b\x1b\x1b\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19' '\x19\x19\x1b\x19\x19\x19\x19\x19\x19\x19\x1b\x1b\x1b\x1b\x1b7\x1b\x1b777\x1b\x1b\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b\x1b\x1b\x1b\x1b7\x1b\xb97\x1b77\x1b\x1b777' '757777777777777755555555555555555555555555555555\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19' '\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x19\x1b\x19\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b' '7\x1b\xc7@@@@@<<7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b' '77\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b' '7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b\x15777777777777777' '77777777777777777777777\x15\x15$\x87\x87\x87\x87\x87\x87\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x15\x87h\x15\x15\xcc\xcc\xa1\x15@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@j@' '\x94@@\x94@@\x94@\x15\x15\x15\x15\x15\x15\x15\x15333333333333333333333333333\x15\x15\x15\x15\x15333\x94\x95\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x06\x06\x06\x06\x06\x06\xb9\xb9\xab\x84\x84\x9d}y\xcc\xcc@@@@@@@@@@@y\x05\x15yy,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' '\x1e,,,,,,,,,,@@@@@@@@@@@@@@@@@@@@@BBBBBBBBBB\x84zzy,,@,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,y,@@@@@@@\x06\xcc@@@@@@\x1e\x1e@@\xcc@@@@,,DDDDDDDDDD,,,\xc0\xc0,' 'yyyyyyyyyyyyyy\x15\x05,@,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,@@@@@@@@@@@@@@@@' '@@@@@@@@@@@\x15\x15,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,@@@@@@@@@@@,\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' 'GGGGGGGGGG333333333333333333333333333333333@@@@@@@@@**\xcc\x8e\x8e\x8e*\x15\x15\x15\x15\x15' '3333333333333333333333@@@@*@@@@@@@@@*@@@*@@@@@\x15\x15\x94\x94\x94\x94\x94\x94\x94\x94\x94\x94\x94\x94\x94\x94\x94\x15' '3333333333333333333333333@@@\x15\x15\x94\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15,,,,,,,,,,,,,,,,,,,,,\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15@@@@@@@@@@@@@@@@@@@@@@@@@@@@@' '@@@:000000000000000000000000000000000000000000000000000000@:@0::' ':@@@@@@@@::::@::0@@@@@@@0000000000@@\x87\x87FFFFFFFFFF\x87$00000000000000' '0@::\x1500000000\x15\x1500\x15\x150000000000000000000000\x150000000\x150\x15\x15\x150000\x15\x15@0::' ':@@@@\x15\x15::\x15\x15::@0\x15\x15\x15\x15\x15\x15\x15\x15:\x15\x15\x15\x1500\x15000@@\x15\x15FFFFFFFFFF00\xa1\xa1VVVVVV\xc7\xa1\x15\x15\x15\x15' '\x15@@:\x15000000\x15\x15\x15\x1500\x15\x150000000000000000000000\x150000000\x1500\x1500\x1500\x15\x15@\x15::' ':@@\x15\x15\x15\x15@@\x15\x15@@@\x15\x15\x15@\x15\x15\x15\x15\x15\x15\x150000\x150\x15\x15\x15\x15\x15\x15\x15FFFFFFFFFF@@000@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15@@:\x15000000000\x15000\x150000000000000000000000\x150000000\x1500\x1500000\x15\x15@0::' ':@@@@@\x15@@:\x15::@\x15\x150\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x1500@@\x15\x15FFFFFFFFFF\x87\xa1\x15\x15\x15\x15\x15\x15\x150\x15\x15\x15\x15\x15\x15' '\x15@::\x1500000000\x15\x1500\x15\x150000000000000000000000\x150000000\x1500\x1500000\x15\x15@0:@' ':@@@@\x15\x15::\x15\x15::@\x15\x15\x15\x15\x15\x15\x15\x15@:\x15\x15\x15\x1500\x15000@@\x15\x15FFFFFFFFFF\xc70VVVVVV\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15@0\x15000000\x15\x15\x15000\x150000\x15\x15\x1500\x150\x1500\x15\x15\x1500\x15\x15\x15000\x15\x15\x15000000000000\x15\x15\x15\x15::' '@::\x15\x15\x15:::\x15:::@\x15\x150\x15\x15\x15\x15\x15\x15:\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15FFFFFFFFFFVVV\xcc\xcc\xcc\xcc\xcc\xcc\xa1\xcc\x15\x15\x15\x15\x15' '@:::\x1500000000\x15000\x1500000000000000000000000\x150000000000000000\x15\x15\x150@@' '@::::\x15@@@\x15@@@@\x15\x15\x15\x15\x15\x15\x15@@\x15000\x15\x15\x15\x15\x1500@@\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15\x15\x15[[[[[[[\xc7' '\x15@::\x1500000000\x15000\x1500000000000000000000000\x150000000000\x1500000\x15\x15@0:=' ':::::\x15=::\x15::@@\x15\x15\x15\x15\x15\x15\x15::\x15\x15\x15\x15\x15\x15\x150\x1500@@\x15\x15FFFFFFFFFF\x1500\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15@::\x1500000000\x15000\x1500000000000000000000000000000000000000000\x15\x150::' ':@@@@\x15:::\x15:::@0\x15\x15\x15\x15\x15\x15\x15\x15:\x15\x15\x15\x15\x15\x15\x15000@@\x15\x15FFFFFFFFFFVVVVVV\x15\x15\x15\xc7000000' '\x15\x15::\x15000000000000000000\x15\x15\x15000000000000000000000000\x15000000000\x150\x15\x15' '0000000\x15\x15\x15@\x15\x15\x15\x15:::@@@\x15@\x15::::::::\x15\x15\x15\x15\x15\x15FFFFFFFFFF\x15\x15::\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15000000000000000000000000000000000000000000000000@0/@@@@@@@\x15\x15\x15\x15\xa1' '000000$@@@@@@@@\x87FFFFFFFFFF\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x1500\x150\x15\x1500\x150\x15\x150\x15\x15\x15\x15\x15\x150000\x150000000\x15000\x150\x150\x15\x1500\x150000@0/@@@@@@\x15@@0\x15\x15' '00000\x15$\x15@@@@@@\x15\x15FFFFFFFFFF\x15\x150000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0\xc7\xc7\xc7\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\xc7\x87\xc7\xc7\xc7@@\xc7\xc7\xc7\xc7\xc7\xc7FFFFFFFFFFVVVVVVVVVV\xc7@\xc7@\xc7@\x99n\x99n::' '00000000\x15000000000000000000000000000000000000\x15\x15\x15\x15@@@@@@@@@@@@@@:' '@@@@@\x87@@00000@@@@@@@@@@@\x15@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\x15\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7@\xc7\xc7\xc7\xc7\xc7\xc7\x15\xc7\xc7\x87\x87\x87\x87\x87\xc7\xc7\xc7\xc7\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000::@@@@:@@@@@@:@@::@@0' 'FFFFFFFFFF\x87\x87\x87\x87\x87\x87000000::@@0000@@@0:::00:::::::000@@@@00000000000' '00@::@@::::::@0:FFFFFFFFFF:::@\xc7\xc777777777777777777777777777777777' '777777\x157\x15\x15\x15\x15\x157\x15\x150000000000000000000000000000000000000000000\x87$000' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111100000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '000000000\x150000\x15\x150000000\x150\x150000\x15\x1500000000000000000000000000000000' '000000000\x150000\x15\x15000000000000000000000000000000000\x150000\x15\x150000000\x15' '0\x150000\x15\x15000000000000000\x150000000000000000000000000000000000000000' '00000000000000000\x150000\x15\x150000000000000000000000000000000000000000' '000000000000000000000000000\x15\x15@@@\x87\x87\x87\x87\x87\x87\x87\x87\x87WWWWWWWWWVVVVVVVVVVV\x15\x15\x15' '0000000000000000\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x1577777777777777777777777777777777' '777777777777777777777777777777777777777777777777777777\x15\x15\x1b\x1b\x1b\x1b\x1b\x1b\x15\x15' 'h000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '000000000000000000000000000000000000000000000\x87\x8700000000000000000' '\xd400000000000000000000000000\x99n\x15\x15\x1500000000000000000000000000000000' '0000000000000000000000000000000000000000000\x87\x87\x87JJJ00000000\x15\x15\x15\x15\x15\x15\x15' '0000000000000\x150000@@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15000000000000000000@@@\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000000000000000000@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x150000000000000\x15000\x15@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000@@:@@@@@@@::' '::::::@::@@@@@@@@@@@\x87\x87\x87$\x87\x87\x87\xa10@\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15[[[[[[[[[[\x15\x15\x15\x15\x15\x15' '\x8e\x8e\x8e\x8e\x8e\x8eh\x8e\x8e\x8e\x8e@@@\x08\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x1500000000000000000000000000000000' '000$0000000000000000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15' '00000000000000000000000000000000000000000@0\x15\x15\x15\x15\x150000000000000000' '000000000000000000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000\x15@@@::::@@:::\x15\x15\x15\x15::@::::::@@@\x15\x15\x15\x15' '\xcc\x15\x15\x15\x8e\x8eFFFFFFFFFF000000000000000000000000000000\x15\x1500000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '00000000000000000000000000000000000000000000\x15\x15\x15\x150000000000000000' '0000000000\x15\x15\x15\x15\x15\x15FFFFFFFFFFW\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '00000000000000000000000@@::@\x15\x15\x87\x8700000000000000000000000000000000' '000000000000000000000:@:@@@@@@@\x15@:@::@@@@@@@@::::::@@@@@@@@@@\x15\x15@' 'FFFFFFFFFF\x15\x15\x15\x15\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15\x87\x87\x87\x87\x87\x87\x87$\x87\x87\x87\x87\x87\x87\x15\x15@@@@@@@@@@@@@@<\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '@@@@:00000000000000000000000000000000000000000000000@:@@@@@:@:::' '::@::0000000\x15\x15\x15\x15FFFFFFFFFF\x87\x87\x87\x87\x87\x87\x87\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7@@@@@@@@@\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\x15\x15\x15' '@@:000000000000000000000000000000:@@@@::@@:@@@00FFFFFFFFFF000000' '00000000000000000000000000000000000000@:@@:::@:@@@::\x15\x15\x15\x15\x15\x15\x15\x15\x87\x87\x87\x87' '000000000000000000000000000000000000::::::::@@@@@@@@::@@\x15\x15\x15\x87\x87\x87\x87\x87' 'FFFFFFFFFF\x15\x15\x15000FFFFFFFFFF000000000000000000000000000000$$$$$$\x87\x87' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x87\x87\x87\x87\x87\x87\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15@@@\x87@@@@@@@@@@@@@:@@@@@@@0000@0000::@00\x15@@\x15\x15\x15\x15\x15\x15' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b%%%%%%%%%%%%%%%%%%%%' '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b%\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%' '@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\x15\x15\x15\x15\x15\x15@@@@' '7\<KEY>' '7\<KEY>' '7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b' '7\<KEY>' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b77777777\x1b\x1b\x1b\x1b\x1b\x1b\x15\x15777777\x15\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b77777777\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b77777777' '\x1b\x1b\x1b\x1b\x1b\x1b\x15\x15777777\x15\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x157\x157\x157\x157\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b77777777\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x15\x15' '\<KEY>' '\xa8\xa8\x1b\x1b\x1b\x15\x1b\x1b77774\xa8\xa8\xa8\x1b\x1b\x1b\x1b\x15\x15\x1b\x1b7777\x15\xa8\xa8\xa8\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b77777\xa8\xa8\xa8\x15\x15\x1b\x1b\x1b\x15\x1b\x1b77774\xa8\xa8\x15' '\xd4\xd4\xd4\xd4\xd4\xd4\xd4\xd4\xd4\xd4\xd4\x08\x08\x08\n\x11ghhggg\x88\x8evs\x98wur\x98w\x88\x88\x88\x8e\x89\x88\x88\x89\xd0\xd1\x0b\x12\x0f\r\x14\xd2\x82\x84\x82\x82\x84\x88\x8e\x8e\x8ext\x88\x8e\x8e\x88a' 'a\x8e\x8e\x8e\xac\x99n\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\xb9\x8ea\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\xd4\x08\x08\x08\x08\x08\x15\x0c\x13\t\x10\x08\x08\x08\x08\x08\x08T%\x15\x15RTTTTT\xae\xae\xb9\x99n ' 'TRRRRTTTTT\xae\xae\xb9\x99n\x15%%%%%%%%%%%%%\x15\x15\x15\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa0\xa1\xa1\x9e\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\xa1\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15@@@@@@@@@@@@@<<<<@<<<@@@@@@@@@@@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc7\xc9\xcc\xc9\xcc7\xcc\xc9\x1b777\x1b\x1b777\x19\xcc7\xc9\xcc\xbb77777\xcc\xcc\xcc\xc9\xc9\xcc7\xcc5\xcc7\xcc7577\xc3\x1b7777\x1b0000\x1b\xcc\xcc\x1b\x1b77' '\xba\xb9\xb9\xb9\xb97\x1b\x1b\x1b\x1b\xcc\xb9\xcc\xcc\x1b\xc7[[[YY[[[[[[YYYY[HHHHHHHHHHHHKKKKIIIIIIIIIILLLLLL' 'JJJ7\x1bJJJJY\xcc\xcc\x15\x15\x15\x15\xb4\xb4\xb4\xb4\xb4\xc9\xc9\xc9\xc9\xc9\xb9\xb9\xcc\xcc\xcc\xcc\xb9\xcc\xcc\xb9\xcc\xcc\xb9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xb9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xb9\xb9\xcc\xcc\xb4\xcc\xb4\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9' '\xb4\xba\xb5\xb5\xba\xb9\xb9\xb4\xb5\xba\xba\xb5\xba\xba\xb9\xb4\xb9\xb5\xae\xb2\xb9\xb5\xba\xb9\xb9\xb9\xb5\xba\xba\xb5\xb4\xb5\xb5\xba\xba\xb4\xba\xb4\xba\xb4\xb4\xb4\xb4\xb5\xb5\xba\xb5\xba\xba\xba\xba\xba\xb4\xb4\xb4\xb4\xb9\xba\xb9\xba\xb5\xb5\xba\xba' '\xba\xba\xba\xba\xba\xba\xba\xba\xb5\xba\xba\xba\xb5\xb9\xb9\xb9\xb9\xb9\xb5\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xb5\xb4\xba\xb9\xb5\xb5\xb5\xb5\xba\xba\xb5\xb5\xb9\xb9\xb5\xb5\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba' '\xba\xba\xb5\xb5\xba\xba\xb5\xb5\xba\xba\xba\xba\xba\xb9\xb9\xba\xba\xba\xba\xb9\xb9\xb4\xb9\xb9\xba\xb4\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xba\xb9\xb4\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xba\xb5' '\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xba\xb9\xb9\xba\xba\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xb9\xb9\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x99n\x99n\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xba\xba\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x9cq\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xcc\xb9\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc7\xcc\xcc\xcc\xcc\xcc\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xb9\xb9\xb9\xb9\xb9\xb9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15ZZZZZZZZZYYYYYYYYYYYZZZZZZZZZYYY' 'YYYYYYYYRRRRRRRRRQQQQQQQQQQQ\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5' '\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\\YYYYYYYYYYZZZZZZZZZYZ' '\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9' '\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xcc\xcc\xcc\xcc\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xcc\xcc\xc9\xc9\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xcc\xc9\xb4\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xcc' '\xc9\xb4\xcc\xcc\xcc\xcc\xc9\xc9\xc9\xcc\xcc\xc9\xcc\xcc\xc9\xc9\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9' '\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xcc\xc9\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xcc\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xc9\xcc\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xc9\xc9\xc9\xcc\xc9\xc9\xc9\xc9\xcc\xc9\xc9\xcc\xb4\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc7\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9' '\xcc\xcc\xcc\xcc\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xcc\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xcc\xc9\xcc\xcc\xcc\xcc\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x99n\x99n\x99n\x99n\x99n\x99n\x99nZZZZZZZZZY' '\\\\\\\\\\\\\\\\\\[\\\\\\\\\\\\\\\\\\[\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xba\xb9\xb9\xba\xba\x99n\xb9\xba\xba\xb9\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xba\xba\xba\xb9\xb9\xb9\xba\xba\xba\xba\x9ao\x9ao\x9ao\x9ao\x99n\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9' '\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9' '\xb9\xb9\xb9\x99n\x9ao\x99n\x99n\x99n\x99n\x99n\x99n\x99n\x99n\x99n\xb9\xb9\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xb9\xb9\xb9\xb9\xb9\xb9\xb9' '\xba\xba\xba\xba\xba\xba\xb9\xb9\xb9\xba\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xba\xb9\xba\xba\xb9\xb9\x99n\x99n\xba\xb9\xb9\xb9\xb9\xba\xb9\xba\xba\xba\xb9\xb9\xba\xba\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xba\xba\xb9\xb9\x99n\xb9\xb9' '\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xb9\xba\xba\xba\xba\xb9\xb9\xba\xb9\xba\xb9\xb9\xba\xb9\xba\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xba\xba\xb9\xb9\xb9\xb9\xb9\xb9\xba\xba\xba\xb9' '\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xba\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xba\xba\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xb9\xba\xba\xb9\xb9\xba\xba\xb9\xb9\xb9\xb9\xba\xba\xba\xba\xba\xba\xba' '\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xb9\xb9\xba\xba\xba\xba\xba\xba\xba\xba\xb9\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba' '\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xba\xb9\xba\xb9\xb9\xb9\xba\xba\xba\xba\xba\xb9\xb9\xb9\xb9\xb9\xba\xba\xba\xb9\xb9\xb9\xb9\xba\xb9\xb9\xb9\xba\xba\xba\xba\xba\xb9\xba\xb9\xb9' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9\xb9' '\xb9\xb9\xb9\xb9\xb9\xcc\xcc\xb9\xb9\xb9\xb9\xb9\xb9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xc9\xc9\xc9\xc9\xc9\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '77777777777777777777777777777777777777777777777\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\<KEY>' '<KEY>' '7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b\x1b\xcc\xcc\xcc\xcc\xcc\xcc7\x1b7\x1b@@@7\x1b\x15\x15\x15\x15\x15\x8e\x8e\x8e\x8e[\x8e\x8e' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x15\x1b\x15\x15\x15\x15\x15\x1b\x15\x150000000000000000' '0000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15$\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15@' '00000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x150000000\x150000000\x150000000\x150000000\x15' '0000000\x150000000\x150000000\x150000000\x15@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@' '\x8e\x8extxt\x8e\x8e\x8ext\x8ext\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8eh\x8e\x8eh\x8ext\x8e\x8ext\x99n\x99n\x99n\x99n\x8e\x8e\x8e\x8e\x8e(\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8e\x8ehh\x8e\x8e\x8e\x8e' 'h\x8e\x98\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\x15\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce' '\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce' '\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce' '\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce' '\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\x15\x15\x15\x15' '\xd3\x92\x92\x92\xce&1M\x9cq\x9cq\x9cq\x9cq\x9cq\xce\xce\x9cq\x9cq\x9cq\x9cqi\x9bpp\xceMMMMMMMMMAAAA;;i&&&&&\xce\xceMMM&1\x92\xce\xcc' '\x15111111111111111111111111111111111111111111111111111111111111111' '11111111111111111111111\x15\x15AA\xaa\xaa&&1i1111111111111111111111111111111' '11111111111111111111111111111111111111111111111111111111111\x92&&&1' '\x15\x15\x15\x15\x1511111111111111111111111111111111111111111\x15\x15\x15111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '111111111111111\x15\xc8\xc8XXXX\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8111111111111111111111111111\x15\x15\x15\x15\x15' '\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x151111111111111111' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xce\xce\x15XXXXXXXXXX\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8UUUUUUUU\xce]]]]]]]]]]]]]]]\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xce\xce\xce\xc8' 'XXXXXXXXXX\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8]]]]]]]]]]]]]]]' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xce\xce\xce\xce\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\x15' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xce\xce\xce\xce\xc8\xc8\xc8\xc8\xc8' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xce\xce\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xce' '1111121111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1112111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111112111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111211111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111111111111111111111\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '2112111212111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111121111111111111111111111111111111111' '1111111111112111111121211111111111111111111111111111111111111112' '2111111111111111111111111111111211111111211111111111111111111111' '1111111111111211111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111112111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111211111111111111111111111111111111111111111111111111111111111' '1111112111111111111111111111111111111111121212111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1212221111112111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1222211111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111112111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111211111112111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111211111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111122' '1111111111112221211111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111121' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111112111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111112111111111111111111111111111111111111111111111' '1111112111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111211111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111121' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111112111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111121111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111211112111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111112111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111112111111111111111111111111111111' '1111112111112111111111111111111111111111111111111111111121111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111112111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '111111111111111111111&111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111\x15\x15\x15\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce\xce' '\xce\xce\xce\xce\xce\xce\xce\x15\x15\x15\x15\x15\x15\x15\x15\x150000000000000000000000000000000000000000$$$$$$\x87\x87' '000000000000$\x8e\x8e\x8e0000000000000000FFFFFFFFFF00\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b0@<<<\x8e@@@@@@@@@@\x8e)' '7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b%%@@00000000000000000000000000000000' '00000000000000000000000000000000000000JJJJJJJJJJ@@\x87\x87\x87\x87\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15' '\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8\xa8)))))))))\xa8\xa87\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b\x1b\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b' '7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b%\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b7\x1b7\x1b77\x1b' '7\x1b7\x1b7\x1b7\x1b)\xa5\xa57\x1b7\x1b07\x1b7\x1b\x1b\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7\x1b7777\x15\x1577777\x1b7\x1b\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x150%%\x1b00000' '00@000@0000@00000000000000000000000::@@:\xcc\xcc\xcc\xcc\x15\x15\x15\x15VVVVVV\xc7\xc7\xa1\xc2\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000\x8e\x8e\x8e\x8e\x15\x15\x15\x15\x15\x15\x15\x15' '::00000000000000000000000000000000000000000000000000::::::::::::' '::::@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x87\x87FFFFFFFFFF\x15\x15\x15\x15\x15\x15@@@@@@@@@@@@@@@@@@000000\x87\x87\x870\x870\x15\x15' 'FFFFFFFFFF0000000000000000000000000000@@@@@@@@\x87\x870000000000000000' '0000000@@@@@@@@@@@::\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x8711111111111111111111111111111\x15\x15\x15' '@@@:00000000000000000000000000000000000000000000000@::@@@@::@:::' ':\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x15$FFFFFFFFFF\x15\x15\x15\x15\x87\x8700000@$000000000FFFFFFFFFF00000\x15' '00000000000000000000000000000000000000000@@@@@@::@@::@@\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000@00000000@:\x15\x15FFFFFFFFFF\x15\x15\x87\x87\x87\x870000000000000000$000000\xc7\xc7\xc70:@:00' '000000000000000000000000000000000000000000000000@0@@@00@@00000@@' '0@0\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x1500$\x87\x8700000000000:@@::\x87\x870$$:@\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15000000\x15\x15000000\x15\x15000000\x15\x15\x15\x15\x15\x15\x15\x15\x150000000\x150000000\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\xa5%%%%\x1b\x1b\x1b\x1b\x1b\x1b\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '00000000000000000000000000000000000::@::@::\x87:@\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111111111\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x150000000000000000' '0000000\x15\x15\x15\x150000000000000000000000000000000000000000000000000\x15\x15\x15\x15' '\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18' '\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18' '\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18' '\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111211111112111121111111' '1111111111111111111111111111111111111111111111111121111111111111' '1111111111111111121211111111111111111111111111111111111111111211' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111\x16\x161111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '11111111111111111111111111\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x1b\x1b\x1b\x1b\x1b\x15\x15\x15\x15\x153@3333333333\xae3333333333333\x1533333\x153\x15' '33\x1533\x153333333333,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,\xa4\xa4\xa4\xa4\xa4\xa4\xa4\xa4\xa4\xa4\xa4\xa4\xa4\xa4' '\xa4\xa4\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,++++++,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,m\x98' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,\x15\x15,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15,,,,,,,,,,++\x9d\xcc\x15\x15' '>>>>>>>>>>>>>>>>\x92\x92\x92\x93\x92\x92\x92\x9bp\x92\x15\x15\x15\x15\x15\x15@@@@@@@@@@@@@@@@\x92iicc\x9bp\x9bp\x9bp\x9bp\x9bp\x9b' 'p\x9bp\x9bp\x92\x92\x9bp\x92\x92\x92\x92ccc\x80\x92\x81\x15\x92\x81\x92\x92i\x9cq\x9cq\x9cq\x86\x92\x92\xb0f\xbf\xbf\xbe\x15\x92\xa3\x86\x92\x15\x15\x15\x15+,+,+\x15+,+,+,+,+,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,\x15\x15\x08' '\x15\x8b\x8b\x83\x9f\x83\x8b\x8c\x96k\x8b\xad{d|{CCCCCCCCCC|\x8b\xb7\xb6\xb7\x8b\x8b66666666666666666666666666\x96\x8bk\xa7`' '\xa7\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x1a\x96\xb6k\xb6\x96k\x8d\x97l\x8d\x8d.........."...............' '..............................!!...............................\x15' '\x15\x15......\x15\x15......\x15\x15......\x15\x15...\x15\x15\x15\x9f\x9f\xb6\xa7\xca\x9f\x9f\x15\xcb\xb8\xb8\xb8\xb8\xcb\xcb\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x0e\x0e\x0e\xcc\xc9\x15\x15' '000000000000\x1500000000000000000000000000\x150000000000000000000\x1500\x150' '00000000000000\x15\x1500000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000000000000000' '00000000000000000000000000000000000000000000000000000000000\x15\x15\x15\x15\x15' '\x87\x8e\x87\x15\x15\x15\x15VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV\x15\x15\x15\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' 'NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN[[[[\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc[[\xcc\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7@\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '00000000000000000000000000000\x15\x15\x1500000000000000000000000000000000' '00000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15@SSSSSSSSSSSSSSSSSSSSSSSSSSS\x15\x15\x15\x15' '00000000000000000000000000000000VVVV\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x150000000000000000' '0J00000000J\x15\x15\x15\x15\x1500000000000000000000000000000000000000@@@@@\x15\x15\x15\x15\x15' '000000000000000000000000000000\x15\x8700000000000000000000000000000000' '0000\x15\x15\x15\x1500000000\x87JJJJJ\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '7777777777777777777777777777777777777777\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b000000000000000000000000000000000000000000000000' '000000000000000000000000000000\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x150000000000000000' '000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x1500000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '333333\x15\x153\x1533333333333333333333333333333333333333333333\x1533\x15\x15\x153\x15\x153' '3333333333333333333333\x15\x94^^^^^^^^33333333333333333333333\xcf\xcf^^^^^^^' '3333333333333333333333333333333\x15\x15\x15\x15\x15\x15\x15\x15^^^^^^^^^\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x153333333333333333333\x1533\x15\x15\x15\x15\x15^^^^^' '3333333333333333333333^^^^^^\x15\x15\x15\x8e33333333333333333333333333\x15\x15\x15\x15\x15\x94' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '33333333333333333333333333333333333333333333333333333333\x15\x15\x15\x15^^33' '^^^^^^^^^^^^^^^^\x15\x15^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^' '3@@@\x15@@\x15\x15\x15\x15\x15@@@@3333\x15333\x15333333333333333333333333333\x15\x15\x15\x15@@@\x15\x15\x15\x15@' '____^^^^\x15\x15\x15\x15\x15\x15\x15\x15\x94\x94\x94\x94\x94\x94\x94\x94\x94\x15\x15\x15\x15\x15\x15\x1533333333333333333333333333333^^\x94' '33333333333333333333333333333^^^\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '33333333\xcf3333333333333333333333333333@@\x15\x15\x15\x15^^^^^\x94\x94\x94\x94\x94\x94\x94\x15\x15\x15\x15\x15\x15\x15\x15\x15' '333333333333333333333333333333333333333333333333333333\x15\x15\x15\x8e\x8e\x8e\x8e\x8e\x8e\x8e' '3333333333333333333333\x15\x15^^^^^^^^3333333333333333333\x15\x15\x15\x15\x15^^^^^^^^' '333333333333333333\x15\x15\x15\x15\x15\x15\x15\x94\x94\x94\x94\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15^^^^^^^\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '3333333333333333333333333333333333333333333333333333333333333333' '333333333\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '999999999999999999999999999999999999999999999999999\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x1d\x15\x15\x15\x15\x15\x15\x15^^^^^^' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15PPPPPPPPPOOOOOOOOOOOOOOOOOOOOOO\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' ':@:00000000000000000000000000000000000000000000000000000@@@@@@@@' '@@@@@@@\x87\x87\x87\x87\x87\x87\x87\x15\x15\x15\x15\\\\\\\\\\\\\\\\\\[[[[[[[[[[[FFFFFFFFFF\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15@' '@@:000000000000000000000000000000000000000000000:::@@@@::@@\x87\x87\n\x87\x87' '\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x150000000000000000000000000\x15\x15\x15\x15\x15\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15' '@@@000000000000000000000000000000000000@@@@@:@@@@@@@@\x15FFFFFFFFFF' '\x87\x87\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x1500000000000000000000000000000000000@\x87\x870\x15\x15\x15\x15\x15\x15\x15\x15\x15' '@@:000000000000000000000000000000000000000000000000:::@@@@@@@@@:' ':0000\x87\x87\x87\x87\x87@@@\x87\x15\x15FFFFFFFFFF0\x870\x87\x87\x87\x15VVVVVVVVVVVVVVVVVVVV\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000000000000000000\x150000000000000000000000000:::@@@::@:@@\x87\x87\x87\x87\x87\x87\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000\x150\x150000\x15000000000000000\x150000000000\x87\x15\x15\x15\x15\x15\x150000000000000000' '0000000000000000000000000000000@:::@@@@@@@@\x15\x15\x15\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15' '@@::\x1500000000\x15\x1500\x15\x150000000000000000000000\x150000000\x1500\x1500000\x15\x15@0::' '@::::\x15\x15::\x15\x15:::\x15\x150\x15\x15\x15\x15\x15\x15:\x15\x15\x15\x15\x1500000::\x15\x15@@@@@@@\x15\x15\x15@@@@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000000000000000000000000000000000000000000000000:::@@@@@@:@::::@' '@:@@00\x870\x15\x15\x15\x15\x15\x15\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '00000000000000000000000000000000000000000000000:::@@@@\x15\x15::::@@:@' '@\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x87\x870000@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000000000000000000000000000000000000000000000000:::@@@@@@@@::@:@' '@\x87\x87\x870\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15FFFFFFFFFF\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000@:@::@@@@@@:@\x15\x15\x15\x15\x15\x15\x15\x15' 'FFFFFFFFFF\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '00000000000000000000000000\x15\x15\x15@@@::@@@@:@@@@@\x15\x15\x15\x15FFFFFFFFFFVV\x87\x87\x87\xc7' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x1577777777777777777777777777777777' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1bFFFFFFFFFFVVVVVVVVV\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x150' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000000000000000000000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '00000000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' 'JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ' 'JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ\x15\x87\x87\x87\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000000000000000000000000' '0000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '00000000000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000000000000000' '0000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000000000000000000000000000000000000000000000000000000000\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000\x15FFFFFFFFFF\x15\x15\x15\x15\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15000000000000000000000000000000\x15\x15@@@@@\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '000000000000000000000000000000000000000000000000@@@@@@@\x87\x87\x87\x87\x87\xc7\xc7\xc7\xc7' '$$$$\x87\xc7\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15FFFFFFFFFF\x15VVVVVVV\x15000000000000000000000\x15\x15\x15\x15\x15000' '0000000000000000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000000000000000' '00000\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x150::::::::::::::::::::::::::::::::::::::::::::::\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15@@@@$$$$$$$$$$$$$\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '11\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '0000000000000000000000000000000000000000000000000000000000000000' '0000000000000000000000000000000000000000000\x15\x15\x15\x15\x150000000000000\x15\x15\x15' '000000000\x15\x15\x15\x15\x15\x15\x150000000000\x15\x15\xc7@@\x87\x08\x08\x08\x08\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\x15\x15\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7::@@@\xc7\xc7\xc7::::::\x08\x08\x08\x08\x08\x08\x08\x08@@@@@' '@@@\xc7\xc7@@@@@@@\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7@@@@\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc@@@\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15VVVVVVVVVVVVVVVVVV\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '77777777777777777777777777\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b777777777777' '77777777777777\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b777777777777777777777777' '77\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b7\x1577\x15\x157\x15\x1577\x15\x157777\x1577777777\x1b\x1b\x1b\x1b\x15\x1b\x15\x1b\x1b\x1b' '\<KEY>' '\x1b\x1b\x1b\x1b77\x157777\x15\x1577777777\x157777777\x15\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b77\x157777\x15' '77777\x157\x15\x15\x157777777\x15\x1b\x1b\x1b\x1b\<KEY>' '<KEY>' '\<KEY>' '\<KEY>' '<KEY>' '<KEY>' '<KEY>' '\<KEY>' '\<KEY>' '\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\xba\x1b\x1b\x1b\x1b\x1b\x1b7777777777777777777777777\xb3\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b' '\x1b\x1b\x1b\xba\x1b\x1b\x1b\x1b\x1b\x1b7\x1b\x15\x15DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD' '@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\xc7\xc7\xc7\xc7@@@@@' '@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7@\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc7\xc7\xc7\xc7@\xc7\xc7\x87\x87\x87\x87\x87\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15@@@@@\x15@@@@@@@@@@@@@@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '3333333333333333333333333333333333333333333333333333333333333333' '3333333333333333333333333333333333333333333333333333333333333333' '3333333333333333333333333333333333333333333333333333333333333333' '33333\x15\x15^^^^^^^^^@@@@@@@\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' ',,,,\x15,,,,,,,,,,,,,,,,,,,,,,,,,,,\x15,,\x15,\x15\x15,\x15,,,,,,,,,,\x15,,,,\x15,\x15,\x15\x15\x15\x15' '\x15\x15,\x15\x15\x15\x15,\x15,\x15,\x15,,,\x15,,\x15,\x15\x15,\x15,\x15,\x15,\x15,\x15,,\x15,\x15\x15,,,,\x15,,,,,,,\x15,,,,\x15,,,,\x15,\x15' ',,,,,,,,,,\x15,,,,,,,,,,,,,,,,,\x15\x15\x15\x15\x15,,,\x15,,,,,\x15,,,,,,,,,,,,,,,,,\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xb9\xb9\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' 'RRRRRRRRRRR[[\x15\x15\x15\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc7\x15\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5' '\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc4\xc4\xc4\xc4\xc4\xc4\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xcc\xcc\x15\x15\x15\x15\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5' '\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc5\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\xc4\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7\xc7' '\xc8\xc8\xc8\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\x15\x15\x15\x15\x15' '\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\xc8\x15\x15\x15\x15\x15\x15\x15\xc8\xc8\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xa8\xa8\xa8\xa8\xa8' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc' '\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\xcc\xcc\xcc\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\xcc\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '1211111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111112111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111211111111111111111111111111111' '1111111111111111111111111111111112111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111112111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1112111111112111111111111111211111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111112111111111111111111211' '1111111111111111111111111211111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111211111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111112111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111112111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111112111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '11111111111111111111111\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '11111111111111111111111111111111111111111111111111111\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '111111111111111111111111111111\x16\x1611111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111111111111111111111111111111111' '1111111111111111111111111111111111\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '111111111111111111111111111111\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16' '\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x16\x15\x15' '\x15\x08\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08' '\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>' '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>' '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>' '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15\x15' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17' '\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x17\x15\x15' ) def _get_record(code): return _db_records[ord(_db_pages[(ord(_db_pgtbl[code >> 8]) << 8) + (code & 255)])] def category(code): return _get_record(code)[0] def bidirectional(code): return _get_record(code)[1] def east_asian_width(code): return _get_record(code)[2] def isspace(code): return _get_record(code)[3] & 1 != 0 def isalpha(code): return _get_record(code)[3] & 2 != 0 def islinebreak(code): return _get_record(code)[3] &
' + str(launch_args)) d.launch_args = launch_args d.load_preferences() cache = d.cache_load() prompt = d.prefs['prompt'] out = d.menu(cache,prompt).strip() aliased = False if len(out) > 0: if d.debug: print("First menu closed with user input: " + out) # Check if the action relates to a plugin plugins = load_plugins(d.debug) plugin_hook = False for plugin in plugins: if hasattr(plugin['plugin'], 'is_submenu') and plugin['plugin'].is_submenu == True: pluginTitle = d.prefs['indicator_submenu'] + ' ' + plugin['plugin'].title.strip() else: pluginTitle = plugin['plugin'].title.strip() if out[:len(pluginTitle)] == pluginTitle: plugin_hook = (plugin["plugin"], pluginTitle) # Check for plugin call if plugin_hook != False: plugin_hook[0].load_preferences() plugin_hook[0].run(out[len(plugin_hook[1]):].strip()) if d.debug: print("This command refers to a plugin") else: if d.debug: print("This command is not related to a plugin") # Check to see if the command is an alias for something if d.retrieve_aliased_command(out) is not None: # If the user wants frequently used items, store this execution (before de-aliasing) if d.prefs['frequently_used'] > 0: frequent_commands_store(out) out = d.retrieve_aliased_command(out) aliased = True else: # Check for store modifications # Dont allow command aliases that add new commands if out[0] in "+-": if d.debug: print("Detected command as an attempt to modify the cache") action = out[0] out = out[1:] # tmp is used to split the input into a command and alias (if any) tmp = out.split('#') command = tmp[0] if len(tmp) > 1: alias = ' '.join(tmp[1:]).lstrip().rstrip() else: alias = None if d.debug: print("out = '" + str(out) + "'") print("tmp = '" + str(tmp) + "'") print("action = '" + str(action) + "'") print("command = '" + str(command) + "'") print("alias '= " + str(alias) + "'") # Check to see if the item is in the include_items list found_in_store = False if d.debug: print("Command = '" + str(command) + "', alias = '" + str(alias) + "'") print("Starting to match given command with store elements") for item in d.prefs['include_items']: if action == '+' and type(item) == list: if d.debug: print("Is (+) " + str(item[0]) + " == " + str(alias) + "?") if alias == item[0]: if d.debug: print("Yes") found_in_store = True break elif d.debug: print("No") # If removing a command - an alias would be detected as a command if action == '-' and type(item) == list: if d.debug: print("Is (-) " + str(d.format_alias(item[0], item[1])) + " == " + str(command) + "?") if command == d.format_alias(item[0], item[1]): found_in_store = True alias = command if d.prefs['indicator_alias'] != '': alias = alias[len(d.prefs['indicator_alias'])+1:] command = item[1] if d.debug: print("Yes") print("Command is now: " + str(command)) print("Alias is now: " + str(alias)) break elif d.debug: print("No") if d.debug: print("Is (-) " + str(d.format_alias(item[0], item[1])) + " == " + str(out) + "?") if out == d.format_alias(item[0], item[1]): found_in_store = True alias = item[0] if d.prefs['indicator_alias'] != '': alias = alias[len(d.prefs['indicator_alias'])+1:] command = item[1] if d.debug: print("Yes") print("Command is now: " + str(command)) print("Alias is now: " + str(alias)) break elif d.debug: print("No") if d.debug: print("Is (-) " + str(item[0]) + " == " + str(command) + "?") if command == item[0]: found_in_store = True alias = item[0] if d.prefs['indicator_alias'] != '': alias = alias[len(d.prefs['indicator_alias'])+1:] command = item[1] if d.debug: print("Yes") print("Command is now: " + str(command)) print("Alias is now: " + str(alias)) break elif d.debug: print("No") if type(item) != list: if d.debug: print("Is " + str(item) + " == " + str(command) + "?") if command == item: if d.debug: print("Yes") found_in_store = True break elif d.debug: print("No") if action == '+' and found_in_store == True: option = d.prefs['indicator_submenu'] + " Remove from store" if alias is None: answer = d.menu("Command '" + str(command) + "' already in store\n"+option) else: answer = d.menu("Alias '" + str(alias) + "' already in store\n"+option) if answer != option: sys.exit() action = '-' elif action == '-' and found_in_store == False: option = d.prefs['indicator_submenu'] + " Add to store" if alias is None: answer = d.menu("Command '" + str(command) + "' was not found in store\n"+option) else: answer = d.menu("Alias '" + str(alias) + "' was not found in store\n"+option) if answer != option: sys.exit() action = '+' cache_scanned = d.cache_open(file_cache)[:-1] if cache_scanned == False: d.cache_regenerate() d.message_close() sys.exit() else: cache_scanned = cache_scanned.split("\n") if action == '+': if alias is None: if d.debug: print("Adding '" + str(command) + "' to store") d.prefs['include_items'].append(command) d.message_open("Adding item to store: " + str(command)) cache_scanned = [command] + cache_scanned else: if d.debug: print("Adding aliased command '" + str([alias, command]) + "' to store") d.prefs['include_items'].append([alias, command]) # And add the item to the alias lookup file aliases = d.load_json(file_cache_aliasesLookup) if [alias, command] not in aliases: aliases.append([alias, command]) d.save_json(file_cache_aliasesLookup, aliases) d.message_open("Adding aliased item item to store: " + str(d.format_alias(alias, command))) cache_scanned = [d.format_alias(alias, command)] + cache_scanned cache_scanned.sort(key=len) elif action == '-': if alias is None: if d.debug: print("Will try to remove command: '" + str(command) + "' from the included items") d.prefs['include_items'].remove(command) d.message_open("Removing item from store: " + str(command)) try: cache_scanned.remove(command) except ValueError: if d.debug: print("Couldnt remove item from the cache") else: pass else: to_remove = None for item in d.prefs['include_items']: if item[0] == alias: to_remove = item if to_remove is not None: if d.debug: print("Item found and is") print(to_remove) d.prefs['include_items'].remove(to_remove) else: if d.debug: print("Couldn't remove the item (item could not be located)") d.message_open("Removing aliased item from store: " + str(d.format_alias(alias, command))) try: cache_scanned.remove(d.format_alias(alias, command)) except ValueError: if d.debug: print("Couldnt remove item from the cache") else: pass else: d.message_close() d.menu("An error occured while servicing your request.\nYou may need to delete your configuration file.") sys.exit() d.save_preferences() d.cache_save(cache_scanned, file_cache) d.message_close() # Give the user some feedback if action == '+': if alias is None: message = "New item (" + command + ") added to cache." else: message = "New item (" + command + " aliased as '" + alias + "') added to cache." else: if alias is None: message = "Existing item (" + command + ") removed from cache." else: message = "Existing alias (" + alias + ") removed from cache." d.menu(message) sys.exit() else: # If the user wants frequently used items, store this execution if d.prefs['frequently_used'] > 0: frequent_commands_store(out) # Detect if the command is a web address and pass to handle_command if out[:7] == 'http://' or out[:8] == 'https://' or aliased == True: handle_command(d, out) elif out.find(':') != -1: if d.debug: print("Colon detected in command, could be a path or attempt to open something with something") print(out) tmp = out.split(':') cmds = list(map(lambda x: x.strip(), tmp)) run_withshell = False shell_hold = False if len(cmds[0]) > 0 and cmds[0][-1] == ';': if cmds[0][-2] == ';': shell_hold = True if d.debug: print('Will hold') else: if d.debug: print('Wont hold') cmds[0] = cmds[0].replace(';','') run_withshell = True if cmds[0] == '': if d.debug: print("No program specified, issuing program options to user") items = list(filter(lambda x: x.find(cmds[1]) != -1, cache.split('\n'))) item = d.menu(items) handle_command(d, item) elif cmds[0] in d.scan_binaries(): if d.debug: print('Item[0] (' + cmds[0] + ') found in binaries so will use this') # Get paths from cache items = list(filter(lambda x: x.find('/') != -1, cache.split('\n'))) # If extension passed, filter by this if cmds[1] != '': items = list(filter(lambda x: x.find(cmds[1]) != -1, items)) filename = d.menu(items) filename = os.path.expanduser(filename) if filename.find(' ') != -1: filename = '"' + filename + '"' command = cmds[0] + " " + filename if run_withshell: d.open_terminal(command, shell_hold) else: d.execute(command) elif os.path.exists(out): if d.debug: print("The whole thing is a path, just open it with file_handler") handle_command(d, out) elif cmds[0].find('/') != -1: if d.debug: print("First item is a path") if out[-1] == ':': if d.debug: print("User wants to be prompted with options for opening passed item") binary = d.menu(d.scan_binaries()) command = binary + " '" + os.path.expanduser(out[:-1]) + "'" elif cmds[1] != '': # Check that the whole thing isn't just a path with a colon in it command = cmds[1] + " '" + os.path.expanduser(cmds[0]) +
str(today.month) + "/" + str(today.day) + "/" + str(today.year) self.visdatev.set(tstr) self.visitdate.grid(row=8, column=3) #prepopulate volunteer self.volv.set(self.volunteerName) ###############self.visv.set(self....?) #prepopulate visitor (add test to see if this exists, in case of newclient) self.notescv.config(state='normal') self.notescv.delete('1.0', END) self.saveVisit.grid(row=8, column=8, sticky=W) self.cancelVisit.grid(row=9, column=8, sticky=W) def editvisitf(self): """This function sets up a display identical to the "new visit" display, but the date, visitor, notes, and volunteer are all prepopulated with information from the database. """ #gridding self.visit_listbox.grid_forget() self.visit_scroll.grid_forget() self.newVisit.grid_forget() self.editVisit.grid_forget() self.deleteVisit.grid_forget() #set volunteer from database self.volv.set(self.visitDict['volunteers'][self.selectedVisit]) #set visitor from database self.visv.set(self.visitDict['visitors'][self.selectedVisit]) #set visdatev to Visit Date from database vdate = self.visitDict['dates'][self.selectedVisit] self.visdatev.set(vdate) self.visitdate.grid(row=8, column=3) self.notescv.config(state='normal') self.saveVisitE.grid(row=8, column=8, sticky=W) self.cancelVisit.grid(row=9, column=8, sticky=W) def cancelvisitf(self): """This function will cancel a visit/changes to a visit, and return to the normal visit display. """ self.clearVisits() d = self.visitDict["dates"] for i in range(0, len(d)): self.visit_listbox.insert(i, d[i]) self.visit_listbox.selection_set(0) self.displayVisit() def savevisitf(self): """This will connect to Update Visit. """ try: notes = str(self.notescv.get('1.0', END)) d = str(self.visdatev.get()) da = d.split('/') dat = date(month=int(da[0]), day=int(da[1]), year=int(da[2])) except: self.error_popup("Check the visit date!") idlist = self.visitDict['ids'] vid = idlist[self.selectedVisit] update_vis(vid, dat, notes) #refresh screen self.clearVisits() pid = self.cursel info = select_client(pid) self.displayVisitInfo(info) def deletevisitf(self): """This function will delete the selected visit, first asking the user to confirm the action, and will update the visit display to reflect the change. This function connects to the "delete visit" button. """ conf = messagebox.askquestion( title='Confirm Delete', message='Are you sure you want to delete this visit?') if conf == 'yes': idlist = self.visitDict['ids'] vid = idlist[self.selectedVisit] remove_visit(vid) #refresh screen self.clearVisits() pid = self.cursel info = select_client(pid) self.displayVisitInfo(info) return else: return def cancel_changes(self): """This function will clear the display and refill it with the selected client's information from the database. """ self.updateClientDisplay() self.displayInfo() return def quitprogram(self): """This function safely closes the database and interface window. """ quit_session() self.ciGui.destroy() return def logoff(self): """This function closes the database and interface window, and returns to the volunteer login page. """ quit_session() self.ciGui.destroy() vo = cdbvolunteer.VolunteerDisplay() return def monthlyReport(self): generate_monthly_report() conf = messagebox.showinfo(title='Info', message='Your report has been generated!') return def yearlyReport(self): generate_yearly_report() conf = messagebox.showinfo(title='Info', message='Your report has been generated!') return def weeklyReport(self): generate_weekly_report() conf = messagebox.showinfo(title='Info', message='Your report has been generated!') return def customReport(self): """This function allows the user to enter a start and end date for generating the report. """ cw = cdbcustom.customwindow() return def error_popup(self, errmessage): """This function implements a simple pop-up window to warn user about bad data entry. """ conf = messagebox.showerror(title='Error', message=errmessage) def recordVisit(self): """This function will insert a new visit, clear old visit display info, and reset the visit display. """ #inserts new visit try: vol_id = self.volID #int(self.volv.get()) except ValueError: self.error_popup("Check volunteer id") return #get visit date try: dv = (str(self.visdatev.get())).split('/') dvm = int(dv[0]) dvd = int(dv[1]) dvy = int(dv[2]) vdate = date(year=dvy, month=dvm, day=dvd) except ValueError: self.error_popup("Check visit date field!\n Enter: MM/DD/YYYY") return #get visit notes try: note = self.notescv.get("1.0", END) except ValueError: self.error_popup("Uh, oh! Better check the visit info!") return #create visitData object, and call function to record new visit visitInfo = visitData(vol_id, visitDate=vdate, notes=note) new_visit(self.cursel, visitInfo) #clears old visit notes self.clearVisits() #refreshes visit note display info = select_client(self.cursel) self.displayVisitInfo(info) #"Get All Input and Test It" functions def getVisitorInput(self, ctype, cID=None): """This function tests all of the data for the visitor entry boxes and returns an object. """ #Error checking for visitor's name and phone try: fname = str(self.fnv.get()) except ValueError: self.error_popup("Check visitor's first name!") return try: lname = str(self.lnv.get()) except ValueError: self.error_popup("Check visitor's last name!") return try: phnum = str(self.phv.get()) except ValueError: self.error_popup("Check visitor's phone number!") return #Error checking for visitor's DOB try: month = str(self.mv.get()) dm = self.int_month[month] except ValueError and KeyError: self.error_popup("Check visitor's month of birth!") return try: dd = int(self.dv.get()) except ValueError: self.error_popup("Check visitor's day of birth!") return try: dy = int(self.yv.get()) except ValueError: self.error_popup("Check visitor's year of birth!") return try: DOB = date(year=dy, month=dm, day=dd) except ValueError: self.error_popup("Was an invalid day of birth chosen?") return #Error checking for datejoined try: dj = (str(self.datejoinv.get())).split('/') djm = int(dj[0]) djd = int(dj[1]) djy = int(dj[2]) datejoined = date(year=djy, month=djm, day=djd) except ValueError: self.error_popup("Check Date Joined field!\n Enter: MM/DD/YYYY") return if ctype == "old": cd = oldClientData(cID, firstname=fname, lastname=lname, dob=DOB, phone=phnum, dateJoined=datejoined) elif ctype == "new": cd = newClientData(firstname=fname, lastname=lname, dob=DOB, phone=phnum, dateJoined=datejoined) return cd def getMemberInput(self, clist): """This function tests all of the input data for members entry boxes and returns a data object. """ #Error checking for datejoined try: dj = (str(self.datejoinv.get())).split('/') djm = int(dj[0]) djd = int(dj[1]) djy = int(dj[2]) datejoined = date(year=djy, month=djm, day=djd) except ValueError: self.error_popup("Check Date Joined field!\n Enter: MM/DD/YYYY") return #Check to see if any if self.memDict != {}: mfname = self.memDict["first"] mlname = self.memDict["last"] mm = self.memDict["mm"] dd = self.memDict["dd"] yy = self.memDict["yy"] phnum = self.memDict["phone"] for i in range(0, len(mfname)): try: fname = str(mfname[i].get()) except ValueError: self.error_popup("Check family member "+str(i)+"'s first name!") return try: lname = str(mlname[i].get()) except ValueError: self.error_popup("Check family member "+str(i)+"'s last name!") return try: phn = str(phnum[i].get()) except ValueError: self.error_popup("Check family member "+str(i)+"'s phone!") return try: month = str(mm[i].get()) dm = self.int_month[month] except ValueError and KeyError: self.error_popup("Check family member "+str(i)\ +"'s month of birth!") return try: dday = int(dd[i].get()) except ValueError: self.error_popup("Check family member "+str(i)\ +"'s day of birth!") return try: dy = int(yy[i].get()) except ValueError: self.error_popup("Check family member "+str(i)\ +"'s year of birth!") return try: DOB = date(year=dy, month=dm, day=dday) except ValueError: self.error_popup("Was an invalid day of birth chosen for"\ " family member "+str(i)+"?") return ncd = newClientData(firstname=fname, lastname=lname, dob=DOB, phone=phn, dateJoined=datejoined) clist.append(ncd) return clist def getHouseholdInput(self): """This function tests all input for households in the household entry boxes, and returns a data object. """ #get street address try: streeta = str(self.adv.get()) except ValueError: self.error_popup("Check street address!") return #get city try: citya = str(self.ctyv.get()) except ValueError: self.error_popup("Check city!") return #get state try: statea = str(self.stav.get()) except ValueError: self.error_popup("Check state!") return #get zip code try: zipa = int(self.zpv.get()) except ValueError: self.error_popup("Check zip code!") return #get apartment number try: apta = str(self.apv.get()) except ValueError: self.error_popup("Check apartment number!") return #get date verified if self.mvv.get() == self.dvv.get() == self.yvv.get() == "": datev = None else: #get month try: month = str(self.mvv.get()) vm = self.int_month[month] except ValueError and KeyError: self.error_popup("Check month of date verified!") return #get day try: vd = int(self.dvv.get()) except ValueError: self.error_popup("Check day of date verified!") return #get year try: vy = int(self.yvv.get()) except ValueError: self.error_popup("Check day of date verified!") return #final date testing try: datev = date(year=vy, month=vm, day=vd) except ValueError: self.error_popup("Was an invalid day for date"\ +" verified chosen?") return houseInfo = houseData(street=streeta, city=citya, state=statea, zip=zipa, apt=apta, dateVerified=datev) return houseInfo def getVisitInput(self): """This function tests all visit input and returns an object. """ #IMPLEMENT get volunteer id try: v = str(self.visdatev.get()) vd = v.split('/') vdate = date(year=int(vd[2]), month=int(vd[0]), day=int(vd[1])) except ValueError: self.error_popup("Check the visit date!") #get visit notes try: note = self.notescv.get("1.0", END) except ValueError: note = None visitInfo = visitData(Vol_ID=self.volID, visitDate=vdate, notes=note) return visitInfo def addNew(self): """This function adds a new household to the database. #NOTE: we need to check checkboxes for dummy addresses #(domestic violence address, and homeless address) """ #What if one of our "gets" fail? #Test all input and create newClientData object for visitor cd = self.getVisitorInput("new") clist = [cd] newClientInfo_list = self.getMemberInput(clist) houseInfo = self.getHouseholdInput() visitInfo = self.getVisitInput() #send all objects to new_household function client_id = new_household(houseInfo, visitInfo, newClientInfo_list) self.cursel = client_id #refresh list of clients self.clientlist = list_people() #refresh screen self.displayNewInfo(client_id) def updateInfo(self, *args): """This function will update the visitor's information, the household information, and the visit information. It will also add family members, but it will NOT
cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_4.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_4_r(self): cname = "reds_4_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_4.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_5(self): cname = "reds_5" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_5.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_5_r(self): cname = "reds_5_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_5.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_6(self): cname = "reds_6" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_6.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_6_r(self): cname = "reds_6_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_6.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_7(self): cname = "reds_7" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_7.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_7_r(self): cname = "reds_7_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_7.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_8(self): cname = "reds_8" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_8.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_8_r(self): cname = "reds_8_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_8.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_9(self): cname = "reds_9" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_9.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def reds_9_r(self): cname = "reds_9_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "reds_9.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1(self): cname = "set1" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_r(self): cname = "set1_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_3(self): cname = "set1_3" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_3.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_3_r(self): cname = "set1_3_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_3.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_4(self): cname = "set1_4" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_4.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_4_r(self): cname = "set1_4_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_4.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_5(self): cname = "set1_5" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_5.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_5_r(self): cname = "set1_5_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_5.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_6(self): cname = "set1_6" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_6.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_6_r(self): cname = "set1_6_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_6.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_7(self): cname = "set1_7" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_7.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_7_r(self): cname = "set1_7_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_7.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_8(self): cname = "set1_8" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_8.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_8_r(self): cname = "set1_8_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_8.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_9(self): cname = "set1_9" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_9.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set1_9_r(self): cname = "set1_9_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set1_9.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2(self): cname = "set2" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_r(self): cname = "set2_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_3(self): cname = "set2_3" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_3.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_3_r(self): cname = "set2_3_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_3.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_4(self): cname = "set2_4" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_4.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_4_r(self): cname = "set2_4_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_4.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_5(self): cname = "set2_5" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_5.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_5_r(self): cname = "set2_5_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_5.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_6(self): cname = "set2_6" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_6.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_6_r(self): cname = "set2_6_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_6.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_7(self): cname = "set2_7" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_7.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_7_r(self): cname = "set2_7_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_7.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_8(self): cname = "set2_8" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_8.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set2_8_r(self): cname = "set2_8_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set2_8.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3(self): cname = "set3" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_r(self): cname = "set3_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_10(self): cname = "set3_10" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3_10.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_10_r(self): cname = "set3_10_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3_10.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_11(self): cname = "set3_11" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3_11.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_11_r(self): cname = "set3_11_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3_11.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_12(self): cname = "set3_12" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3_12.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_12_r(self): cname = "set3_12_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3_12.rgb") cmap = Colormap(self._coltbl(cmap_file)[::-1], name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_3(self): cname = "set3_3" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname) cmap_file = os.path.join(CMAPSFILE_DIR, "colorbrewer", "set3_3.rgb") cmap = Colormap(self._coltbl(cmap_file), name=cname) matplotlib.cm.register_cmap(name=cname, cmap=cmap) return cmap @property def set3_3_r(self): cname = "set3_3_r" if cname in matplotlib.cm._cmap_registry: return matplotlib.cm.get_cmap(cname)
var_name, ax, u, colorbar_index): ax.clear() ax.set_xlabel('$\\phi$') ax.set_ylabel('$\\theta$') ax.set_title(f'{var_name} averaged across $r$') if self.contour_plot_available: # matplotlib has problems plotting repeatedly `contourf` until version 3.3 # see https://github.com/matplotlib/matplotlib/issues/15986 theta = self.theta_label.reshape(*self.shape)[0, :, 0] phi = self.phi_label.reshape(*self.shape)[0, 0, :] cax = ax.contourf(phi, theta, u, cmap='magma') ax.xaxis.set_major_locator(plt.MultipleLocator(math.pi / 6)) ax.xaxis.set_minor_locator(plt.MultipleLocator(math.pi / 12)) ax.xaxis.set_major_formatter(plt.FuncFormatter(self._longitude_formatter)) ax.yaxis.set_major_locator(plt.MultipleLocator(math.pi / 6)) ax.yaxis.set_minor_locator(plt.MultipleLocator(math.pi / 12)) ax.yaxis.set_major_formatter(plt.FuncFormatter(self._latitude_formatter)) ax.grid(which='major', linestyle='--', linewidth=0.5) ax.grid(which='minor', linestyle=':', linewidth=0.5) else: # use matshow() to plot a heatmap instead cax = ax.matshow(u, cmap='magma', interpolation='nearest') if self.cbs[colorbar_index]: self.cbs[colorbar_index].remove() self.cbs[colorbar_index] = self.fig.colorbar(cax, ax=ax) @staticmethod def _refresh_history(ax, history, x_label='Epochs', y_label=None, title=None): ax.clear() ax.set_title(title) ax.set_xlabel(x_label) ax.set_ylabel(y_label) for metric in history: ax.plot(history[metric], label=metric) # By default, metrics are plotted using log-scale # If there are negative values in metrics, override `self.customization()` to change to linear-scale ax.set_yscale('log') ax.legend() def new(self): self.fig = None self.axs = [] self.cbs = [] self.ax_metrics = None self.ax_loss = None return self def set_variable_count(self, n): r"""Manually set the number of scalar fields to be visualized; If not set, defaults to length of ``nets`` passed to ``self.check()`` every time ``self.check()`` is called. :param n: number of scalar fields to overwrite default :type n: int :return: self """ self.n_vars = n return self def unset_variable_count(self): r"""Manually unset the number of scalar fields to be visualized; Once unset, the number defaults to length of ``nets`` passed to ``self.check()`` every time ``self.check()`` is called. :return: self """ self.n_vars = None return self class MonitorSphericalHarmonics(MonitorSpherical): r"""A monitor for checking the status of the neural network during training. :param r_min: The lower bound of radius, i.e., radius of interior boundary. :type r_min: float :param r_max: The upper bound of radius, i.e., radius of exterior boundary. :type r_max: float :param check_every: The frequency of checking the neural network represented by the number of epochs between two checks. Defaults to 100. :type check_every: int, optional :param var_names: The names of dependent variables; if provided, shall be used for plot titles. Defaults to None :type var_names: list[str] :param shape: Shape of mesh for visualizing the solution. Defaults to (10, 10, 10). :type shape: tuple[int] :param r_scale: 'linear' or 'log'. Controls the grid point in the :math:`r` direction. Defaults to 'linear'. :type r_scale: str :param harmonics_fn: A mapping from :math:`\theta` and :math:`\phi` to basis functions, e.g., spherical harmonics. :type harmonics_fn: callable :param theta_min: The lower bound of polar angle. Defaults to :math:`0` :type theta_min: float :param theta_max: The upper bound of polar angle. Defaults to :math:`\pi`. :type theta_max: float :param phi_min: The lower bound of azimuthal angle. Defaults to :math:`0`. :type phi_min: float :param phi_max: The upper bound of azimuthal angle. Defaults to :math:`2\pi`. :type phi_max: float :param max_degree: **DEPRECATED and SUPERSEDED** by ``harmonics_fn``. Highest used for the harmonic basis. :type max_degree: int """ def __init__(self, r_min, r_max, check_every=None, var_names=None, shape=(10, 10, 10), r_scale='linear', harmonics_fn=None, theta_min=0.0, theta_max=math.pi, phi_min=0.0, phi_max=math.pi * 2, # DEPRECATED max_degree=None): super(MonitorSphericalHarmonics, self).__init__( r_min, r_max, check_every=check_every, var_names=var_names, shape=shape, r_scale=r_scale, theta_min=theta_min, theta_max=theta_max, phi_min=phi_min, phi_max=phi_max, ) if (harmonics_fn is None) and (max_degree is None): raise ValueError("harmonics_fn should be specified") if max_degree is not None: warnings.warn("`max_degree` is DEPRECATED; pass `harmonics_fn` instead, which takes precedence") self.harmonics_fn = _RealSphericalHarmonics(max_degree=max_degree) if harmonics_fn is not None: self.harmonics_fn = harmonics_fn def _compute_us(self, nets, conditions): r, theta, phi = self.r_tensor, self.theta_tensor, self.phi_tensor us = [] for net, cond in zip(nets, conditions): products = cond.enforce(net, r) * self.harmonics_fn(theta, phi) u = torch.sum(products, dim=1, keepdim=True).detach().cpu().numpy() us.append(u) return us @property def max_degree(self): try: ret = self.harmonics_fn.max_degree except AttributeError as e: warnings.warn(f"Error caught when accessing {self.__class__.__name__}, returning None:\n{e}") ret = None return ret class Monitor1D(BaseMonitor): """A monitor for checking the status of the neural network during training. :param t_min: The lower bound of time domain that we want to monitor. :type t_min: float :param t_max: The upper bound of time domain that we want to monitor. :type t_max: float :param check_every: The frequency of checking the neural network represented by the number of epochs between two checks. Defaults to 100. :type check_every: int, optional """ def __init__(self, t_min, t_max, check_every=None): """Initializer method """ super(Monitor1D, self).__init__(check_every=check_every) self.fig = plt.figure(figsize=(30, 8)) self.ax1 = self.fig.add_subplot(131) self.ax2 = self.fig.add_subplot(132) self.ax3 = self.fig.add_subplot(133) # input for plotting self.ts_plt = np.linspace(t_min, t_max, 100) # input for neural network self.ts_ann = torch.linspace(t_min, t_max, 100, requires_grad=True).reshape((-1, 1)) def check(self, nets, conditions, history): r"""Draw 2 plots: One shows the shape of the current solution. The other shows the history training loss and validation loss. :param nets: The neural networks that approximates the ODE (system). :type nets: list[`torch.nn.Module`] :param conditions: The initial/boundary conditions of the ODE (system). :type conditions: list[`neurodiffeq.ode.BaseCondition`] :param history: The history of training loss and validation loss. The 'train_loss' entry is a list of training loss and 'valid_loss' entry is a list of validation loss. :type history: dict['train': list[float], 'valid': list[float]] .. note:: `check` is meant to be called by the function `solve` and `solve_system`. """ us = [ cond.enforce(net, self.ts_ann).detach().cpu().numpy() for cond, net in zip(conditions, nets) ] self.ax1.clear() for i, u in enumerate(us): self.ax1.plot(self.ts_plt, u, label=f'variable {i}') self.ax1.legend() self.ax1.set_title('solutions') self.ax2.clear() self.ax2.plot(history['train_loss'], label='training loss') self.ax2.plot(history['valid_loss'], label='validation loss') self.ax2.set_title('loss during training') self.ax2.set_ylabel('loss') self.ax2.set_xlabel('epochs') self.ax2.set_yscale('log') self.ax2.legend() self.ax3.clear() for metric_name, metric_values in history.items(): if metric_name == 'train_loss' or metric_name == 'valid_loss': continue self.ax3.plot(metric_values, label=metric_name) self.ax3.set_title('metrics during training') self.ax3.set_ylabel('metrics') self.ax3.set_xlabel('epochs') self.ax3.set_yscale('log') # if there's not custom metrics, then there won't be any labels in this axis if len(history) > 2: self.ax3.legend() self.fig.canvas.draw() if not self.using_non_gui_backend: plt.pause(0.05) class Monitor2D(BaseMonitor): r"""A monitor for checking the status of the neural network during training. The number and layout of subplots (matplotlib axes) will be finalized after the first ``.check()`` call. :param xy_min: The lower bound of 2 dimensions. If we only care about :math:`x \geq x_0` and :math:`y \geq y_0`, then `xy_min` is `(x_0, y_0)`. :type xy_min: tuple[float, float], optional :param xy_max: The upper bound of 2 dimensions. If we only care about :math:`x \leq x_1` and :math:`y \leq y_1`, then `xy_min` is `(x_1, y_1)`. :type xy_max: tuple[float, float], optional :param check_every: The frequency of checking the neural network represented by the number of epochs between two checks. Defaults to 100. :type check_every: int, optional :param valid_generator: The generator used to sample points from the domain when visualizing the solution. The generator is only called once (during instantiating the generator), and its outputs are stored. Defaults to a 32x32 ``Generator2D`` with method 'equally-spaced'. :type valid_generator: neurodiffeq.generators.BaseGenerator :param solution_style: - If set to 'heatmap', solution visualization will be a contour heat map of :math:`u` w.r.t. :math:`x` and :math:`y`. Useful when visualizing a 2-D spatial solution. - If set to 'curves', solution visualization will be :math:`u`-:math:`x` curves instead of a 2d heat map. Each curve corresponds to a :math:`t` value. Useful when visualizing 1D spatio-temporal solution. The first coordinate is interpreted as :math:`x` and the second as :math:`t`. Defaults to 'heatmap'. :type solution_style: str :param equal_aspect: Whether to set aspect ratio to 1:1 for heatmap. Defaults to True. Ignored if `solutions_style` is 'curves'. :type equal_aspect: bool :param ax_width: Width for each solution visualization. Note that this is different from width for metrics history, which is equal to ``ax_width`` :math:`\times` ``n_cols``. :type ax_width: float :param ax_height: Height for each solution visualization and metrics history plot. :type ax_height: float :param n_col: Number of solution visualizations to plot in each row. Note there is always only 1 plot for metrics history plot per row. :type n_col: int """ def __init__(self, xy_min, xy_max, check_every=None, valid_generator=None, solution_style='heatmap', equal_aspect=True, ax_width=5.0, ax_height=4.0, n_col=2): """Initializer method """ super(Monitor2D, self).__init__(check_every=check_every) if solution_style not in ['heatmap', 'curves']: raise ValueError(f"Unsupported 'solution_style' = {solution_style}") if not _updatable_contour_plot_available() and solution_style == 'heatmap': warnings.warn("Heatmap-style solution does not work with your matplotlib version. " "Please upgrade matplotlib to v3.3.0 or higher. " "Otherwise you may experience buggy behavior.", UserWarning) self.solution_style = solution_style self.fig = None self.ax_width = ax_width self.ax_height = ax_height self.n_col = n_col self.equal_aspect = equal_aspect self.axs = [] # subplots # self.caxs
''' Name: color_segmentation.py Version: 1.0 Summary: K-means color clustering based segmentation. This is achieved by converting the source image to a desired color space and running K-means clustering on only the desired channels, with the pixels being grouped into a desired number of clusters. Author: <NAME> Author-email: <EMAIL> Created: 2018-05-29 USAGE: python3 demo_color_seg.py -p ~/plant-image-analysis/test/ -ft JPG ''' # import the necessary packages import os import glob import argparse from sklearn.cluster import KMeans from skimage.feature import peak_local_max from skimage.morphology import watershed, medial_axis from skimage import img_as_float, img_as_ubyte, img_as_bool, img_as_int from skimage import measure from skimage.segmentation import clear_border from scipy.spatial import distance as dist from scipy import optimize from scipy import ndimage import math import numpy as np import argparse import cv2 import matplotlib.pyplot as plt import matplotlib.patches as mpatches import warnings warnings.filterwarnings("ignore") import concurrent.futures import multiprocessing from multiprocessing import Pool from contextlib import closing MBFACTOR = float(1<<20) # generate foloder to store the output results def mkdir(path): # import module import os # remove space at the beginning path=path.strip() # remove slash at the end path=path.rstrip("\\") # path exist? # True # False isExists=os.path.exists(path) # process if not isExists: # construct the path and folder #print path + ' folder constructed!' # make dir os.makedirs(path) return True else: # if exists, return #print path+' path exists!' return False def color_cluster_seg(image, args_colorspace, args_channels, args_num_clusters, min_size): # Change image color space, if necessary. colorSpace = args_colorspace.lower() if colorSpace == 'hsv': image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) elif colorSpace == 'ycrcb' or colorSpace == 'ycc': image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb) elif colorSpace == 'lab': image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB) else: colorSpace = 'bgr' # set for file naming purposes # Keep only the selected channels for K-means clustering. if args_channels != 'all': channels = cv2.split(image) channelIndices = [] for char in args_channels: channelIndices.append(int(char)) image = image[:,:,channelIndices] if len(image.shape) == 2: image.reshape(image.shape[0], image.shape[1], 1) (width, height, n_channel) = image.shape #print("image shape: \n") #print(width, height, n_channel) # Flatten the 2D image array into an MxN feature vector, where M is the number of pixels and N is the dimension (number of channels). reshaped = image.reshape(image.shape[0] * image.shape[1], image.shape[2]) # Perform K-means clustering. if args_num_clusters < 2: print('Warning: num-clusters < 2 invalid. Using num-clusters = 2') #define number of cluster numClusters = max(2, args_num_clusters) # clustering method kmeans = KMeans(n_clusters = numClusters, n_init = 40, max_iter = 500).fit(reshaped) # get lables pred_label = kmeans.labels_ # Reshape result back into a 2D array, where each element represents the corresponding pixel's cluster index (0 to K - 1). clustering = np.reshape(np.array(pred_label, dtype=np.uint8), (image.shape[0], image.shape[1])) # Sort the cluster labels in order of the frequency with which they occur. sortedLabels = sorted([n for n in range(numClusters)],key = lambda x: -np.sum(clustering == x)) # Initialize K-means grayscale image; set pixel colors based on clustering. kmeansImage = np.zeros(image.shape[:2], dtype=np.uint8) for i, label in enumerate(sortedLabels): kmeansImage[clustering == label] = int(255 / (numClusters - 1)) * i ret, thresh = cv2.threshold(kmeansImage,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU) thresh_cleaned = clear_border(thresh) if np.count_nonzero(thresh) > 0: thresh_cleaned_bw = clear_border(thresh) else: thresh_cleaned_bw = thresh nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(thresh_cleaned, connectivity = 8) # stats[0], centroids[0] are for the background label. ignore # cv2.CC_STAT_LEFT, cv2.CC_STAT_TOP, cv2.CC_STAT_WIDTH, cv2.CC_STAT_HEIGHT sizes = stats[1:, cv2.CC_STAT_AREA] Coord_left = stats[1:, cv2.CC_STAT_LEFT] Coord_top = stats[1:, cv2.CC_STAT_TOP] Coord_width = stats[1:, cv2.CC_STAT_WIDTH] Coord_height = stats[1:, cv2.CC_STAT_HEIGHT] Coord_centroids = centroids #print("Coord_centroids {}\n".format(centroids[1][1])) #print("[width, height] {} {}\n".format(width, height)) nb_components = nb_components - 1 #min_size = 70 max_size = width*height*0.1 img_thresh = np.zeros([width, height], dtype=np.uint8) #for every component in the image, keep it only if it's above min_size for i in range(0, nb_components): ''' #print("{} nb_components found".format(i)) if (sizes[i] >= min_size) and (Coord_left[i] > 1) and (Coord_top[i] > 1) and (Coord_width[i] - Coord_left[i] > 0) and (Coord_height[i] - Coord_top[i] > 0) and (centroids[i][0] - width*0.5 < 10) and ((centroids[i][1] - height*0.5 < 10)) and ((sizes[i] <= max_size)): img_thresh[output == i + 1] = 255 print("Foreground center found ") elif ((Coord_width[i] - Coord_left[i])*0.5 - width < 15) and (centroids[i][0] - width*0.5 < 15) and (centroids[i][1] - height*0.5 < 15) and ((sizes[i] <= max_size)): imax = max(enumerate(sizes), key=(lambda x: x[1]))[0] + 1 img_thresh[output == imax] = 255 print("Foreground max found ") ''' if (sizes[i] >= min_size): img_thresh[output == i + 1] = 255 #from skimage import img_as_ubyte #img_thresh = img_as_ubyte(img_thresh) #print("img_thresh.dtype") #print(img_thresh.dtype) #return img_thresh return img_thresh ''' def medial_axis_image(thresh): #convert an image from OpenCV to skimage thresh_sk = img_as_float(thresh) image_bw = img_as_bool((thresh_sk)) image_medial_axis = medial_axis(image_bw) return image_medial_axis ''' class clockwise_angle_and_distance(): ''' A class to tell if point is clockwise from origin or not. This helps if one wants to use sorted() on a list of points. Parameters ---------- point : ndarray or list, like [x, y]. The point "to where" we g0 self.origin : ndarray or list, like [x, y]. The center around which we go refvec : ndarray or list, like [x, y]. The direction of reference use: instantiate with an origin, then call the instance during sort reference: https://stackoverflow.com/questions/41855695/sorting-list-of-two-dimensional-coordinates-by-clockwise-angle-using-python Returns ------- angle distance ''' def __init__(self, origin): self.origin = origin def __call__(self, point, refvec = [0, 1]): if self.origin is None: raise NameError("clockwise sorting needs an origin. Please set origin.") # Vector between point and the origin: v = p - o vector = [point[0]-self.origin[0], point[1]-self.origin[1]] # Length of vector: ||v|| lenvector = np.linalg.norm(vector[0] - vector[1]) # If length is zero there is no angle if lenvector == 0: return -pi, 0 # Normalize vector: v/||v|| normalized = [vector[0]/lenvector, vector[1]/lenvector] dotprod = normalized[0]*refvec[0] + normalized[1]*refvec[1] # x1*x2 + y1*y2 diffprod = refvec[1]*normalized[0] - refvec[0]*normalized[1] # x1*y2 - y1*x2 angle = math.atan2(diffprod, dotprod) # Negative angles represent counter-clockwise angles so we need to # subtract them from 2*pi (360 degrees) if angle < 0: return 2*math.pi+angle, lenvector # I return first the angle because that's the primary sorting criterium # but if two vectors have the same angle then the shorter distance # should come first. return angle, lenvector # Detect stickers in the image def sticker_detect(img_ori, save_path): ''' image_file_name = Path(image_file).name abs_path = os.path.abspath(image_file) filename, file_extension = os.path.splitext(abs_path) base_name = os.path.splitext(os.path.basename(filename))[0] print("Processing image : {0}\n".format(str(image_file))) # save folder construction mkpath = os.path.dirname(abs_path) +'/cropped' mkdir(mkpath) save_path = mkpath + '/' print ("results_folder: " + save_path) ''' # load the image, clone it for output, and then convert it to grayscale #img_ori = cv2.imread(image_file) img_rgb = img_ori.copy() # Convert it to grayscale img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) # Store width and height of template in w and h w, h = template.shape[::-1] # Perform match operations. res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) #(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(res) # Specify a threshold threshold = 0.8 # Store the coordinates of matched area in a numpy array loc = np.where( res >= threshold) if len(loc): (y,x) = np.unravel_index(res.argmax(), res.shape) (min_val, max_val, min_loc, max_loc) = cv2.minMaxLoc(res) #print(y,x) print(min_val, max_val, min_loc, max_loc) (startX, startY) = max_loc endX = startX + template.shape[1] endY = startY + template.shape[0] # Draw a rectangle around the matched region. for pt in zip(*loc[::-1]): sticker_overlay = cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,255,0), 1) sticker_crop_img = img_rgb[startY:endY, startX:endX] return sticker_crop_img, sticker_overlay def comp_external_contour(orig, thresh, save_path): #find contours and get the external one #find contours and get the external one contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) img_height, img_width, img_channels = orig.shape index = 1 print("contour length {}".format(len(contours))) list_of_pts = [] if len(contours) > 1: ''' for ctr in contours: list_of_pts
import abc import inspect import json import os import multiprocessing import time import numpy as np import pandas as pd import tensorflow as tf2 from tqdm import tqdm from ..feature import features_from_batch_data from ..utils.tf_ops import modify_variable_names from ..utils.misc import time_block, colorize from ..utils.exception import NotSamplingError tf = tf2.compat.v1 tf.disable_v2_behavior() class Base(abc.ABC): """Base class for all recommendation models. Parameters ---------- task : str Specific task, either rating or ranking. data_info : `DataInfo` object Object that contains useful information for training and predicting. lower_upper_bound : list or tuple, optional Lower and upper score bound for rating task. """ def __init__(self, task, data_info, lower_upper_bound=None): self.task = task self.model_built = False if task == "rating": self.global_mean = data_info.global_mean if lower_upper_bound is not None: assert isinstance(lower_upper_bound, (list, tuple)), ( "must contain both lower and upper bound if provided") self.lower_bound = lower_upper_bound[0] self.upper_bound = lower_upper_bound[1] else: self.lower_bound, self.upper_bound = data_info.min_max_rating elif task != "ranking": raise ValueError("task must either be rating or ranking") self.default_prediction = ( data_info.global_mean if task == "rating" else 0.0 ) @abc.abstractmethod def fit(self, train_data, **kwargs): """Train model on the training data. Parameters ---------- train_data : `TransformedSet` object Data object used for training. """ raise NotImplementedError @abc.abstractmethod def predict(self, user, item, **kwargs): """Predict score for given user and item. Parameters ---------- user : int or array_like User id or batch of user ids. item : int or array_like Item id or batch of item ids. Returns ------- prediction : int or array_like Predicted scores for each user-item pair. """ raise NotImplementedError @abc.abstractmethod def recommend_user(self, user, n_rec, **kwargs): """Recommend a list of items for given user. Parameters ---------- user : int User id to recommend. n_rec : int number of recommendations to return. Returns ------- result : list of tuples A recommendation list, each recommendation contains an (item_id, score) tuple. """ raise NotImplementedError @abc.abstractmethod def save(self, path, model_name, **kwargs): """save model for inference or retraining. Parameters ---------- path : str file folder path to save model. model_name : str name of the saved model file. """ raise NotImplementedError @classmethod @abc.abstractmethod def load(cls, path, model_name, data_info, **kwargs): """load saved model for inference. Parameters ---------- path : str file folder path to save model. model_name : str name of the saved model file. data_info : `DataInfo` object Object that contains some useful information. """ raise NotImplementedError def convert_id(self, user, item, inner_id=False): if not isinstance(user, (list, tuple, np.ndarray, pd.Series)): user = [user] if not isinstance(item, (list, tuple, np.ndarray, pd.Series)): item = [item] if not inner_id: user = [self.data_info.user2id.get(u, self.n_users) for u in user] item = [self.data_info.item2id.get(i, self.n_items) for i in item] return np.array(user), np.array(item) def _check_unknown(self, user, item): # unknown_user_indices = list(np.where(np.logical_or(user >= self.n_users, user < 0))[0]) # unknown_item_indices = list(np.where(np.logical_or(item >= self.n_items, item < 0))[0]) unknown_user_indices = list(np.where(user == self.n_users)[0]) unknown_item_indices = list(np.where(item == self.n_items)[0]) # unknown_user = (list(user[unknown_user_indices]) # if unknown_user_indices # else None) # unknown_item = (list(item[unknown_item_indices]) # if unknown_item_indices # else None) unknown_index = list( set(unknown_user_indices) | set(unknown_item_indices) ) unknown_num = len(unknown_index) if unknown_num > 0: # temp conversion, will convert back in the main model # user[unknown_index] = 0 # item[unknown_index] = 0 unknown_str = (f"Detect {unknown_num} unknown interaction(s), " # f"including user: {unknown_user}, " # f"item: {unknown_item}, " # f"will be handled as default prediction" f"position: {unknown_index}") print(f"{colorize(unknown_str, 'red')}") return unknown_num, unknown_index, user, item def _check_unknown_user(self, user, inner_id=False): user_id = ( self.data_info.user2id.get(user, -1) if not inner_id else user ) if 0 <= user_id < self.n_users: return user_id else: if not inner_id: unknown_str = f"detect unknown user: {user}" print(f"{colorize(unknown_str, 'red')}") return @staticmethod def _check_has_sampled(data, verbose): if not data.has_sampled and verbose > 1: exception_str = (f"During training, " f"one must do whole data sampling " f"before evaluating on epochs.") raise NotSamplingError(f"{colorize(exception_str, 'red')}") @staticmethod def _check_interaction_mode(recent_num, random_num): if recent_num is not None: assert isinstance(recent_num, int), "recent_num must be integer" mode = "recent" num = recent_num elif random_num is not None: assert isinstance(random_num, int), "random_num must be integer" mode = "random" num = random_num else: mode = "recent" num = 10 # by default choose 10 recent interactions return mode, num @staticmethod def _decide_sparse_indices(data_info): return False if not data_info.sparse_col.name else True @staticmethod def _decide_dense_values(data_info): return False if not data_info.dense_col.name else True @staticmethod def _sparse_feat_size(data_info): if (data_info.user_sparse_unique is not None and data_info.item_sparse_unique is not None): return max(np.max(data_info.user_sparse_unique), np.max(data_info.item_sparse_unique)) + 1 elif data_info.user_sparse_unique is not None: return np.max(data_info.user_sparse_unique) + 1 elif data_info.item_sparse_unique is not None: return np.max(data_info.item_sparse_unique) + 1 @staticmethod def _sparse_field_size(data_info): return len(data_info.sparse_col.name) @staticmethod def _dense_field_size(data_info): return len(data_info.dense_col.name) @staticmethod def show_start_time(): start_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) print(f"Training start time: {colorize(start_time, 'magenta')}") def save_params(self, path): hparams = dict() arg_names = list(inspect.signature(self.__init__).parameters.keys()) arg_names.remove("data_info") for p in arg_names: hparams[p] = self.all_args[p] param_path = os.path.join(path, "hyper_parameters.json") with open(param_path, 'w') as f: json.dump(hparams, f, separators=(",", ":"), indent=4) @classmethod def load_params(cls, path, data_info): if not os.path.exists(path): raise OSError(f"file folder {path} doesn't exists...") param_path = os.path.join(path, "hyper_parameters.json") with open(param_path, 'r') as f: hparams = json.load(f) hparams.update({"data_info": data_info}) return hparams class TfMixin(object): def __init__(self, tf_sess_config=None): self.cpu_num = multiprocessing.cpu_count() self.sess = self._sess_config(tf_sess_config) self.graph_built = False self.vector_infer = False def _sess_config(self, tf_sess_config=None): if not tf_sess_config: # Session config based on: # https://software.intel.com/content/www/us/en/develop/articles/tips-to-improve-performance-for-popular-deep-learning-frameworks-on-multi-core-cpus.html tf_sess_config = { "intra_op_parallelism_threads": 0, "inter_op_parallelism_threads": 0, "allow_soft_placement": True, "device_count": {"CPU": self.cpu_num} } # os.environ["OMP_NUM_THREADS"] = f"{self.cpu_num}" config = tf.ConfigProto(**tf_sess_config) return tf.Session(config=config) def train_pure(self, data_generator, verbose, shuffle, eval_data, metrics, **kwargs): for epoch in range(1, self.n_epochs + 1): with time_block(f"Epoch {epoch}", verbose): train_total_loss = [] for user, item, label, _, _ in data_generator( shuffle, self.batch_size ): feed_dict = {self.user_indices: user, self.item_indices: item, self.labels: label} if hasattr(self, "is_training"): feed_dict.update({self.is_training: True}) train_loss, _ = self.sess.run( [self.loss, self.training_op], feed_dict=feed_dict) train_total_loss.append(train_loss) if verbose > 1: train_loss_str = "train_loss: " + str( round(float(np.mean(train_total_loss)), 4) ) print(f"\t {colorize(train_loss_str, 'green')}") class_name = self.__class__.__name__.lower() if class_name.startswith("svd"): # set up parameters for prediction evaluation self._set_latent_factors() self.print_metrics(eval_data=eval_data, metrics=metrics, **kwargs) print("="*30) def train_feat(self, data_generator, verbose, shuffle, eval_data, metrics, **kwargs): for epoch in range(1, self.n_epochs + 1): if self.lr_decay: print(f"With lr_decay, epoch {epoch} learning rate: " f"{self.sess.run(self.lr)}") with time_block(f"Epoch {epoch}", verbose): train_total_loss = [] for u, i, label, si, dv in data_generator( shuffle, self.batch_size ): feed_dict = self._get_feed_dict(u, i, si, dv, label, True) train_loss, _ = self.sess.run( [self.loss, self.training_op], feed_dict) train_total_loss.append(train_loss) if verbose > 1: train_loss_str = "train_loss: " + str( round(float(np.mean(train_total_loss)), 4) ) print(f"\t {colorize(train_loss_str, 'green')}") self.print_metrics(eval_data=eval_data, metrics=metrics, **kwargs) print("="*30) def train_seq(self): pass # TODO: combine train_feat and train_seq def _get_feed_dict(self, user_indices, item_indices, sparse_indices, dense_values, label, is_training): feed_dict = { self.user_indices: user_indices, self.item_indices: item_indices, self.is_training: is_training } if self.sparse: feed_dict.update({self.sparse_indices: sparse_indices}) if self.dense: feed_dict.update({self.dense_values: dense_values}) if label is not None: feed_dict.update({self.labels: label}) return feed_dict def _get_seq_feed_dict(self, u_interacted_seq, u_interacted_len, user_indices, item_indices, label, sparse_indices, dense_values, is_training): feed_dict = { self.user_interacted_seq: u_interacted_seq, self.user_interacted_len: u_interacted_len, self.user_indices: user_indices, self.item_indices: item_indices, self.is_training: is_training } if self.sparse: feed_dict.update({self.sparse_indices: sparse_indices}) if self.dense: feed_dict.update({self.dense_values: dense_values}) if label is not None: feed_dict.update({self.labels: label}) return feed_dict def predict_data_with_feats(self, data, batch_size=None, cold_start="average", inner_id=False): assert isinstance(data, pd.DataFrame), "data must be pandas DataFrame" user, item = self.convert_id(data.user, data.item, inner_id) unknown_num, unknown_index, user, item = self._check_unknown(user, item) if batch_size is not None: preds = np.zeros(len(data), dtype=np.float32) for index in tqdm(range(0, len(data), batch_size), "pred_data"): batch_slice = slice(index, index + batch_size) batch_data = data.iloc[batch_slice] user_indices = user[batch_slice] item_indices = item[batch_slice] sparse_indices, dense_values = features_from_batch_data( self.data_info, self.sparse, self.dense, batch_data) if hasattr(self, "user_last_interacted"): feed_dict = self._get_seq_feed_dict( self.user_last_interacted[user_indices], self.last_interacted_len[user_indices], user_indices, item_indices, None, sparse_indices, dense_values, False) else: feed_dict = self._get_feed_dict( user_indices, item_indices, sparse_indices, dense_values, None, False) preds[batch_slice] = self.sess.run(self.output, feed_dict) else: sparse_indices, dense_values = features_from_batch_data( self.data_info, self.sparse, self.dense, data) if hasattr(self, "user_last_interacted"): feed_dict = self._get_seq_feed_dict( self.user_last_interacted[user], self.last_interacted_len[user], user, item, None, sparse_indices, dense_values, False) else: feed_dict = self._get_feed_dict( user, item, sparse_indices, dense_values, None, False) preds = self.sess.run(self.output, feed_dict) if self.task == "rating": preds = np.clip(preds, self.lower_bound, self.upper_bound) elif self.task == "ranking": preds = 1 / (1 + np.exp(-preds)) if unknown_num > 0 and cold_start == "popular": preds[unknown_index] = self.default_prediction return preds def assign_oov(self): ( user_variables, item_variables, sparse_variables, dense_variables, _ ) = modify_variable_names(self, trainable=True) update_ops = [] for v in tf.trainable_variables(): if user_variables is not None and
pattern @time_measure def quantstrategies(context: DataContext): global lock_qm totalresultdata = {} transientresult100 = context.totalresult[DataContext.strategy100] for sector_usd in context.markets: resultdata = {} sector_tmp = stock_group[sector_usd] for symbol_tmp in context.symbols[sector_tmp]: results = {} try: runStrategies(transientresult100, symbol_tmp, sector_tmp, context, resultdata, results) except BaseException as be: logger.debug("runStrategies is failed, symbol is {}".format(symbol_tmp)) logger.error("runStrategies is failed, symbol is {}".format(symbol_tmp), be) totalresultdata[sector_tmp] = resultdata return totalresultdata def runStrategies(transientresult100, symbol_tmp, sector_tmp, context, resultdata, results): with lock_qm: length_totalresult100 = len(transientresult100) issymbolintotalresult100 = symbol_tmp in transientresult100 if length_totalresult100 > 0: if not issymbolintotalresult100: return False else: dataset_240 = context.data240mins[sector_tmp].get(symbol_tmp) if len(dataset_240) == 0: return False strategy_dayk = StrategyBasedOnDayKAction(dataset_240) valid_240_amplitude, result_amplitude_240 = strategy_dayk.executeaction(operation='amplitude_avg') if valid_240_amplitude: if len(result_amplitude_240) > 0: results[DataContext.strategy100] = result_amplitude_240 resultdata[symbol_tmp] = results else: return False else: logger.error("strategy_amplitude_avg_240 is failed on {}".format(symbol_tmp)) return False dataset_240 = context.data240mins[sector_tmp].get(symbol_tmp) expma_cross_240 = EXPMACrossAction(dataset_240) valid_expma_240, value_240_expma = expma_cross_240.executeaction() if valid_expma_240: if len(value_240_expma) > 0: results[DataContext.strategy8] = value_240_expma resultdata[symbol_tmp] = results else: logger.error("strategy_expma_cross_240 is failed on {}".format(symbol_tmp)) dataset_30 = context.data30mins[sector_tmp].get(symbol_tmp) expma_cross_30 = EXPMACrossAction(dataset_30) valid_expma_30, value_30_expma = expma_cross_30.executeaction() if valid_expma_30: if len(value_30_expma) > 0: results[DataContext.strategy9] = value_30_expma resultdata[symbol_tmp] = results else: logger.error("strategy_expma_cross_30 is failed on {}".format(symbol_tmp)) dataset_60 = context.data60mins[sector_tmp].get(symbol_tmp) if len(dataset_60) == 0: return False expma_cross_60 = EXPMACrossAction(dataset_60) valid_expma_60, value_60_expma = expma_cross_60.executeaction() if valid_expma_60: if len(value_60_expma) > 0: results[DataContext.strategy10] = value_60_expma resultdata[symbol_tmp] = results else: logger.error("strategy_expma_cross_60 is failed on {}".format(symbol_tmp)) kd_60 = StrategyBasedOnKDAction(dataset_60) valid_60_kd_cross, result_kd_cross_60 = kd_60. \ executeaction(occurrence_time=[dataset_60.index[-1]], operation='cross_up') if valid_60_kd_cross: if len(result_kd_cross_60) > 0: macd_cross_60 = StrategyBasedonMACDAction(dataset_60, 2) valid_60_macd_cross, result_macd_cross_60 = macd_cross_60.executeaction(operation='cross_up') if valid_60_macd_cross: if len(result_macd_cross_60) > 0: results[DataContext.strategy11] = result_macd_cross_60 resultdata[symbol_tmp] = results else: logger.error("strategy_macd_cross_up_60 is failed on {}".format(symbol_tmp)) else: logger.error("strategy_kd_cross_up_60 is failed on {}".format(symbol_tmp)) # FIXME ''' valid_60_kd_deviate, result_kd_deviate_60 = kd_60. \ executeaction(occurrence_time=[dataset_60.index[-1]], operation='divergence_price_lower_and_k_higher') if valid_60_kd_deviate: if len(result_kd_deviate_60) > 0: results[DataContext.strategyx] = result_kd_deviate_60 resultdata[symbol_tmp] = results else: logger.error("strategy_kd_deviate_60 is failed on {}".format(symbol_tmp)) ''' valid_60_kd_deviate, result_kd_deviate_60 = kd_60. \ executeaction(occurrence_time=[dataset_60.index[-1]], operation='divergence_price_lower_and_k_higher_simple', duration=20) if valid_60_kd_deviate: if len(result_kd_deviate_60) > 0: results[DataContext.strategy12] = result_kd_deviate_60 resultdata[symbol_tmp] = results else: logger.error("strategy_kd_deviate_60 is failed on {}".format(symbol_tmp)) price_kavg_60 = StrategyBasedOnDayKAction(dataset_60) valid_60_price_ma, result_price_ma_60 = price_kavg_60.executeaction(operation='price_k_avg') if valid_60_price_ma: if len(result_price_ma_60) > 0: valid_60_entangle_crossup_period, result_entangle_crossup_period_60 = \ kd_60.executeaction(occurrence_time=[dataset_60.index[-1]], operation='entangle_and_cross_up_within_period', periods=4, duration=40) if valid_60_entangle_crossup_period: if len(result_entangle_crossup_period_60) > 0: results[DataContext.strategy13] = result_entangle_crossup_period_60 resultdata[symbol_tmp] = results else: logger.error("strategy_kd_entangle_and_cross_up_60 is failed on {}".format(symbol_tmp)) valid_60_entangle_period, result_entangle_period_60 = \ kd_60.executeaction(occurrence_time=[dataset_60.index[-1]], operation='entangle_within_period', periods=4, duration=40) if valid_60_entangle_period: if len(result_entangle_period_60) > 0: valid_30_crossup, result_crossup_30 = \ StrategyBasedOnKDAction(dataset_30).executeaction( occurrence_time=[dataset_30.index[-1]], operation='cross_up') if valid_30_crossup: if len(result_crossup_30) > 0: results[DataContext.strategy14] = result_crossup_30 resultdata[symbol_tmp] = results else: logger.error("strategy_kd_cross_up_30 is failed on {}".format(symbol_tmp)) else: logger.error("strategy_kd_entangle_60 is failed on {}".format(symbol_tmp)) else: logger.error("strategy_price_ma_60 is failed on {}".format(symbol_tmp)) ma_go_60 = StrategyBasedOnDayKAction(dataset_60) valid_60_ma, result_ma_60 = ma_go_60.executeaction(operation='avg_k_go') if valid_60_ma: if len(result_ma_60) > 0: results[DataContext.strategy102] = result_ma_60 resultdata[symbol_tmp] = results else: return False else: logger.error("strategy_ma_avg_60 is failed on {}".format(symbol_tmp)) return False expma_go_60 = StrategyBasedOnDayKAction(dataset_60) valid_60_expema_dif, result_expema_dif_60 = expma_go_60.executeaction(operation='expma_dif_go') if valid_60_expema_dif: if len(result_expema_dif_60) > 0: results[DataContext.strategy104] = result_expema_dif_60 resultdata[symbol_tmp] = results else: return False else: logger.error("strategy_expma_dif_go_60 is failed on {}".format(symbol_tmp)) return False macd_go_60 = StrategyBasedonMACDAction(dataset_60, 2) ismacd_strcit = False ismacd_diff = False valid_60_macd_strict, result_macd_strict_60 = macd_go_60.executeaction(operation='strict') if valid_60_macd_strict: if len(result_macd_strict_60) > 0: results[DataContext.strategy101] = result_macd_strict_60 resultdata[symbol_tmp] = results ismacd_strcit = True else: logger.error("strategy_macd_strict_60 is failed on {}".format(symbol_tmp)) if not ismacd_strcit: valid_60_macd_dif, result_macd_dif_60 = macd_go_60.executeaction(operation='dif') if valid_60_macd_dif: if len(result_macd_dif_60) > 0: results[DataContext.strategy103] = result_macd_dif_60 resultdata[symbol_tmp] = results ismacd_diff = True else: logger.error("strategy_macd_diff_60 is failed on {}".format(symbol_tmp)) if not ismacd_strcit and not ismacd_diff: return False ''' dataset_30 = context.data30mins[sector_tmp].get(symbol_tmp) kd_cross_30 = StrategyBasedOnKDAction(dataset_30) kd_indicator_30 = KDAction(dataset_30, context.rsv_period, context.k_period, context.d_period) valid_kd_30, k_v_30, d_v_30 = kd_indicator_30.executeaction() ma_cross = CROSSUpMAAction(context.data15mins[sector_tmp].get(symbol_tmp)) valid, result_tmp = ma_cross.executeaction(startindex=context.start_i, endindex=context.end_i, cross_period=context.cross_sma_period, greater_period=context.greater_than_sma_period) if valid: if len(result_tmp) > 0: time_sequence = [] for time_stamp_original in result_tmp['time'].array: tmp_date = datetime.date(year=time_stamp_original.year, month=time_stamp_original.month, day=time_stamp_original.day) if time_stamp_original.minute == 0: time_stamp = time_stamp_original elif time_stamp_original.minute <= 30: time_stamp = pd.Timestamp(datetime.datetime.combine(tmp_date, datetime.time( hour=time_stamp_original.hour, minute=30))) else: time_stamp = pd.Timestamp(datetime.datetime.combine(tmp_date, datetime.time( hour=time_stamp_original.hour + 1))) time_sequence.append(time_stamp) if not valid_kd_30: logger.error("strategy_cross_kd_30 is failed on {}".format(symbol_tmp)) else: valid, result_tmp = kd_cross_30.executeaction(occurrence_time=time_sequence, operation='cross_up', KValues=k_v_30, DValues=d_v_30, crossvalue=(False, 0)) if valid: # FIXME if len(result_tmp) > 0: obv_up = OBVUpACTION(context.data30mins[sector_tmp].get(symbol_tmp)) valid, result_tmp = obv_up.executeaction(occurrence_time=result_tmp['time'], obv_period=context.obv_period, obv_a_period=context.obv_a_period) if valid: if len(result_tmp) > 0: results[DataContext.strategy1] = result_tmp resultdata[symbol_tmp] = results else: logger.error("strategy_obv_up_30 is failed on {}".format(symbol_tmp)) if len(result_tmp) > 0: results[DataContext.strategy1] = result_tmp resultdata[symbol_tmp] = results else: logger.error("strategy_cross_kd_30 is failed on {}".format(symbol_tmp)) else: logger.error("strategy_cross_70 is failed on {}".format(symbol_tmp)) if not valid_kd_30: logger.error("strategy_entangle_crossup_kd_30 is failed on {}".format(symbol_tmp)) else: valid_30_entangle_crossup_period, result_entangle_crossup_period_30 = \ kd_cross_30.executeaction(occurrence_time=[dataset_30.index[-1]], operation='entangle_and_cross_up_within_period', KValues=k_v_30, DValues=d_v_30, periods=4, duration=80, crossvalue=(False, 0)) if valid_30_entangle_crossup_period: if len(result_entangle_crossup_period_30) > 0: results[DataContext.strategy6] = result_entangle_crossup_period_30 resultdata[symbol_tmp] = results else: logger.error("strategy_entangle_crossup_kd_30 is failed on {}".format(symbol_tmp)) valid_60, result_tmp_60 = kd_60.executeaction(occurrence_time=[dataset_60.index[-1]], operation='cross_up', crossvalue=(True, 30)) if valid_60: if len(result_tmp_60) > 0: results[DataContext.strategy2] = result_tmp_60 resultdata[symbol_tmp] = results else: logger.error("strategy_cross_kd_60 is failed on {}".format(symbol_tmp)) valid_60_entangle, result_entangle_60 = kd_60.executeaction(occurrence_time=[dataset_60.index[-1]], operation='entangle', crossvalue=(True, 30), periods=4) if valid_60_entangle: if len(result_entangle_60) > 0: results[DataContext.strategy3] = result_entangle_60 resultdata[symbol_tmp] = results else: logger.error("strategy_entangle_kd_60 is failed on {}".format(symbol_tmp)) ''' valid_60_entangle_crossup_period, result_entangle_crossup_period_60 = \ kd_60.executeaction(occurrence_time=[dataset_60.index[-1]], operation='entangle_and_cross_up_within_period', periods=4, duration=40) if valid_60_entangle_crossup_period: if len(result_entangle_crossup_period_60) > 0: if ismacd_diff: results[DataContext.strategy7] = result_entangle_crossup_period_60 elif ismacd_strcit: results[DataContext.strategy5] = result_entangle_crossup_period_60 resultdata[symbol_tmp] = results else: logger.error("strategy_entangle_crossup_period_kd_60 is failed on {}".format(symbol_tmp)) if not ismacd_strcit: return False valid_60_entangle_crossup, result_entangle_crossup_60 = \ kd_60.executeaction(occurrence_time=[dataset_60.index[-1]], operation='entangle_and_cross_up', periods=4) if valid_60_entangle_crossup: if len(result_entangle_crossup_60) > 0: results[DataContext.strategy4] = result_entangle_crossup_60 resultdata[symbol_tmp] = results else: logger.error("strategy_entangle_crossup_kd_60 is failed on {}".format(symbol_tmp)) return True # FIXME because EM has been obsoleted. def calcrankofchange(): if DataContext.iscountryChina(): prefix = "B_" current_date = datetime.datetime.now().strftime("%Y-%m-%d") # 偏移N天交易日 date_offset = c.getdate(current_date, -11, "Market=CNSESH") if date_offset.ErrorCode != 0: logger.error("ErrorCode is %d and ErrorMsg is %s" % (date_offset.ErrorCode, date_offset.ErrorMsg)) return False # 区间涨跌幅(流通市值加权平均):CPPCTCHANGEFMWAVG 区间资金净流入:PNETINFLOWSUM sectors_q = list(sectors_CN.keys()) i = 1 sectors_length = len(sectors_q) - 6 sectors_v = [] while i < sectors_length: j = i + 6 if j > sectors_length: j = sectors_length sectors_g = ",".join(map(lambda x: prefix + x, sectors_q[i:j])) sector_data = c.cses(sectors_g, "CPPCTCHANGEFMWAVG,PNETINFLOWSUM", "StartDate={},EndDate={}, IsHistory=0, Ispandas=1, ShowBlank=0".format( date_offset.Data[0], current_date)) sectors_v.append(sector_data) i += 6 logger.debug("%d sectors has been scanned" % (sectors_length - 1)) sectors_df = pd.concat(sectors_v) sectors_df_change_d = sectors_df.sort_values(by='CPPCTCHANGEFMWAVG', ascending=False) sectors_df_mf_d = sectors_df.sort_values(by='PNETINFLOWSUM', ascending=False) sectors_list_change_d = sectors_df_change_d.index.tolist() sectors_list_mf_d = sectors_df_mf_d.index.tolist() if len(sectors_df) > 50: list_sectors_change = sectors_list_change_d[:50] list_sectors_change_r = sectors_list_change_d[:-51:-1] list_sectors_mf = sectors_list_mf_d[:50] list_sectors_mf_r = sectors_list_mf_d[:-51:-1] else: list_sectors_change = sectors_list_change_d list_sectors_change_r = sectors_list_change_d[::-1] list_sectors_mf = sectors_list_mf_d list_sectors_mf_r = sectors_list_mf_d[::-1] e_subject = "版块排名_" + datetime.datetime.now().strftime("%Y%m%d") e_content = "" filepath = os.path.join(DataContext.dir_name, e_subject) with open(filepath, 'w+') as file: tmp_str = "涨幅版块排名\r\n" file.write(tmp_str) e_content += tmp_str for index in list_sectors_change: column = sectors_df_change_d['CPPCTCHANGEFMWAVG'] sector_name = sectors_CN[index.lstrip(prefix)] tmp_str = "版块名称: {} -- 幅度: {}% \r\n".format(sector_name, column[index]) file.write(tmp_str) e_content += tmp_str tmp_str = "\r\n跌幅版块排名\r\n" file.write(tmp_str) e_content += tmp_str for index in list_sectors_change_r: column = sectors_df_change_d['CPPCTCHANGEFMWAVG'] sector_name = sectors_CN[index.lstrip(prefix)] tmp_str = "版块名称: {} -- 幅度: {}% \r\n".format(sector_name, column[index]) file.write(tmp_str) e_content += tmp_str tmp_str = "\r\n资金净流入版块排名 - 从高到低\r\n" file.write(tmp_str) e_content += tmp_str for index in list_sectors_mf: column = sectors_df_mf_d['PNETINFLOWSUM'] sector_name = sectors_CN[index.lstrip(prefix)] tmp_str = "版块名称: {} -- 资金: {} \r\n".format(sector_name, column[index]) file.write(tmp_str) e_content += tmp_str tmp_str = "\r\n资金净流入版块排名 - 从低到高\r\n" file.write(tmp_str) e_content += tmp_str for index in list_sectors_mf_r: column = sectors_df_mf_d['PNETINFLOWSUM'] sector_name = sectors_CN[index.lstrip(prefix)] tmp_str = "版块名称: {} -- 资金: {} \r\n".format(sector_name, column[index]) file.write(tmp_str) e_content += tmp_str sendemail(e_subject, e_content, DataContext.email_recipient) sendemail(e_subject, e_content, DataContext.email_other1_recipient) sendemail(e_subject, e_content, DataContext.email_other2_recipient) def summarytotalresult(context: DataContext): e_subject = "预警汇总_" + datetime.datetime.now().strftime("%Y%m%d") e_content = "" filepath = os.path.join(DataContext.dir_name, e_subject) with open(filepath, 'w+') as file: for strategy_t, symbols in context.totalresult.items(): str101 = "" if strategy_t == DataContext.strategy6: str101 = "\r\n\r\n\r\n\r\n\r\n策略6 - 30分钟周期\r\n" elif strategy_t == DataContext.strategy14: str101 = "\r\n\r\n\r\n\r\n\r\n策略14 - 30分钟周期:\r\n" elif strategy_t == DataContext.strategy13: str101 = "\r\n\r\n\r\n\r\n\r\n策略13 - 60分钟周期:\r\n" elif strategy_t == DataContext.strategy12: str101 = "\r\n\r\n\r\n\r\n\r\n策略12 - 日周期:\r\n" elif strategy_t == DataContext.strategy11: str101 = "\r\n\r\n\r\n\r\n\r\n策略11 - 60分钟周期:\r\n" elif strategy_t == DataContext.strategy10: str101 = "\r\n\r\n\r\n\r\n\r\n策略10 - 60分钟周期:\r\n" elif strategy_t == DataContext.strategy9: str101 = "\r\n\r\n\r\n\r\n\r\n策略9 - 30分钟周期:\r\n" elif strategy_t == DataContext.strategy8: str101 = "\r\n\r\n\r\n\r\n\r\n策略8 - 日周期:\r\n" elif strategy_t == DataContext.strategy7: str101 = "\r\n\r\n\r\n\r\n\r\n策略7 - 60分钟周期:\r\n" elif strategy_t == DataContext.strategy5: str101 = "\r\n\r\n\r\n\r\n\r\n策略5 - 60分钟周期:\r\n" elif strategy_t == DataContext.strategy4: str101 = "\r\n\r\n\r\n\r\n\r\n策略4 - 60分钟周期:\r\n" elif strategy_t == DataContext.strategy3: str101 = "\r\n\r\n\r\n\r\n\r\n策略3 - 60分钟周期:\r\n" elif strategy_t == DataContext.strategy1: str101 = "\r\n\r\n\r\n\r\n\r\n策略1 -
<filename>wordvecs/wordvecs.py #!/usr/bin/env python # coding=utf-8 # Author: <NAME> <<EMAIL>> KTH 2018 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import division, absolute_import, print_function from fastText import train_unsupervised from fastText import load_model import os import gensim, logging from gensim.scripts.glove2word2vec import glove2word2vec import errno from glove import Corpus, Glove from datetime import datetime import sys from copy import deepcopy import re """ Script for training and evaluating word vectors. Non-distributed training """ WORD2VEC_ANALOGIES = "eval/questions-words.txt" WORDSIM353 = "eval/wordsim353.tsv" FASHION_WORDSIM = "eval/fashion_wordsim.tsv" SIMLEX99 = 'eval/simlex999.txt' reload(sys) sys.setdefaultencoding('utf-8') isNumber = re.compile(r'\d+.*') def readCorpus(): """Reads input corpus, assumes it is already cleaned""" with open("data/clean2_corpus.txt", 'r') as datafile: return datafile.read() def corpus_stats(corpus_file): """Computes some stats of the corpus""" vocab = set() total_count = 0 with open(corpus_file, 'r') as corpusFile: text = corpusFile.read() lines = text.split("\n") lines = map(lambda x: x.split(" "), lines) for line in lines: for word in line: total_count += 1 vocab.add(word.lower()) vocab_size = len(vocab) return total_count, vocab_size def accuracy_percentage(acc): """Utility function for pretty-printing evaluation results""" num_questions = len(acc) semantic_questions = range(5) syntactic_questions = range(5, num_questions) overall_nr_correct_answers = sum(len(acc[i]["correct"]) for i in range(num_questions)) overall_nr_incorrect_answers = sum(len(acc[i]["incorrect"]) for i in range(num_questions)) if (overall_nr_correct_answers + overall_nr_incorrect_answers) > 0: overall_acc_percent = 100 * float( overall_nr_correct_answers / (overall_nr_correct_answers + overall_nr_incorrect_answers)) else: overall_acc_percent = 0 sem_nr_correct_answers = sum(len(acc[i]["correct"]) for i in semantic_questions) sem_nr_incorrect_answers = sum(len(acc[i]["incorrect"]) for i in semantic_questions) if (sem_nr_correct_answers + sem_nr_incorrect_answers) > 0: sem_acc_percent = 100 * float(sem_nr_correct_answers / (sem_nr_correct_answers + sem_nr_incorrect_answers)) else: sem_acc_percent = 0 syn_nr_correct_answers = sum(len(acc[i]["correct"]) for i in syntactic_questions) syn_nr_incorrect_answers = sum(len(acc[i]["incorrect"]) for i in syntactic_questions) if (syn_nr_correct_answers + syn_nr_incorrect_answers) > 0: syn_acc_percent = 100 * float(syn_nr_correct_answers / (syn_nr_correct_answers + syn_nr_incorrect_answers)) else: syn_acc_percent = 0 frac = "sem: {0}/{1}, syn: {2}/{3}".format(sem_nr_correct_answers, (sem_nr_correct_answers + sem_nr_incorrect_answers), syn_nr_correct_answers, (syn_nr_correct_answers + syn_nr_incorrect_answers)) return overall_acc_percent, sem_acc_percent, syn_acc_percent, frac def save_results(model, dim, context, train_model, algorithm, data, name): """Save evaluation results to CSV file""" acc = model.accuracy(WORD2VEC_ANALOGIES) overall_acc_percent, sem_acc_percent, syn_acc_percent, frac = accuracy_percentage(acc) pearson, spearman, oov_ration = model.evaluate_word_pairs(WORDSIM353) pearson2, spearman2, oov_ration2 = model.evaluate_word_pairs(SIMLEX99) pearson3, spearman3, oov_ration3 = model.evaluate_word_pairs(FASHION_WORDSIM) fields = [ str(syn_acc_percent), str(sem_acc_percent), str(overall_acc_percent), str(pearson[0]), str(pearson[1]), str(spearman[0]), str(spearman[1]), str(oov_ration), str(pearson2[0]), str(pearson2[1]), str(spearman2[0]), str(spearman2[1]), str(oov_ration2), str(pearson3[0]), str(pearson3[1]), str(spearman3[0]), str(spearman3[1]), str(oov_ration3), str(dim), str(context), str(train_model), str(algorithm), str(data), str(name) ] strFields = ",".join(fields) strFields = strFields + "\n" append_to_file("results/eval/results.csv", strFields) def test_word2vec_google_news_300(): """ Evaluate word2vec pretrained on google news""" model = gensim.models.KeyedVectors.load_word2vec_format('pretrained/googlenews_negative_300d_100B.bin', binary=True) name = "googlenews_negative_300d_100B" save_results(model, 300, 5, "skipgram", "word2vec", "100billion_googlenews_en", name) def test_fasttext_wiki_300(): """ Evaluate fastttext pretrained on Eng Wikipedia""" model = gensim.models.KeyedVectors.load_word2vec_format("pretrained/fasttext_wiki_300d_en.vec") name = "fasttext_wiki_300d_en" save_results(model, 300, 5, "skipgram", "fasttext", "wiki_en", name) def test_glove_wiki_300(): """ Evaluate Glove pretrained on Eng wikipedia""" model = gensim.models.KeyedVectors.load_word2vec_format('pretrained/glove_wiki_6B_300d.vec', binary=False) name = "glove_wiki_6B_300d" save_results(model, 300, "?", "-", "glove", "6billion_wiki", name) def test_glove_twitter_200(): """ Evaluate Glove pretrained on google Twitter""" model = gensim.models.KeyedVectors.load_word2vec_format('pretrained/twitter_glove_27B_200d.vec', binary=False) name = "twitter_glove_27B_200d" save_results(model, 200, "?", "-", "glove", "27billion_twitter", name) def test_glove_commoncrawl_300(): """ Evaluate Glove pretrained on common crawl corpora""" model = gensim.models.KeyedVectors.load_word2vec_format('pretrained/commoncrawl_glove_840B_300d.vec', binary=False) name = "commoncrawl_glove_840B_300d" save_results(model, 300, "?", "-", "glove", "840billion_commoncrawl", name) def test_fashion_retrofitted(): """ Evaluate retrofitted fashion vectors""" vectorFile = "retrofitted/test.vec" model = gensim.models.KeyedVectors.load_word2vec_format(vectorFile, binary=False) save_results(model, 300, 3, "?", "glove", "74million_fashion", "test") def test_fashion(dim, context, train_model, algorithm, binary): """ Evaluate our own vectors trained on IG corpora """ vectorFile = "trained/" + str(algorithm) + "_fashion_dim" + str(dim) + "_c" + str(context) + "_" + str( train_model) + ".vec" name = str(algorithm) + "_fashion_dim" + str(dim) + "_c" + str(context) + "_" + str(train_model) model = gensim.models.KeyedVectors.load_word2vec_format(vectorFile, binary=binary) save_results(model, dim, context, train_model, algorithm, "74million_fashion", name) def convert_gensim_to_word2vec_format(fileName): """Converts gensim exportation format to word2vec format""" model = gensim.models.KeyedVectors.load(fileName) word_vectors = model.wv word_vectors.save_word2vec_format(fileName) def convert_glove_to_word2vec_format(): """ Converts Glove format to Word2Vec format""" glove2word2vec(glove_input_file="pretrained/glove_wiki_6B_300d.txt", word2vec_output_file="pretrained/glove_wiki_6B_300d.vec") glove2word2vec(glove_input_file="pretrained/glove_wiki_6B_200d.txt", word2vec_output_file="pretrained/glove_wiki_6B_200d.vec") glove2word2vec(glove_input_file="pretrained/glove_wiki_6B_100d.txt", word2vec_output_file="pretrained/glove_wiki_6B_100d.vec") glove2word2vec(glove_input_file="pretrained/glove_wiki_6B_50d.txt", word2vec_output_file="pretrained/glove_wiki_6B_50d.vec") glove2word2vec(glove_input_file="pretrained/twitter_glove_27B_25d.txt", word2vec_output_file="pretrained/twitter_glove_27B_25d.vec") glove2word2vec(glove_input_file="pretrained/twitter_glove_27B_50d.txt", word2vec_output_file="pretrained/twitter_glove_27B_50d.vec") glove2word2vec(glove_input_file="pretrained/twitter_glove_27B_100d.txt", word2vec_output_file="pretrained/twitter_glove_27B_100d.vec") glove2word2vec(glove_input_file="pretrained/twitter_glove_27B_200d.txt", word2vec_output_file="pretrained/twitter_glove_27B_200d.vec") def save_fasttext_bin_to_vec(model, output_path): """Converts FastText binary format to word2vec format""" words = model.get_words() with open(output_path, 'w+') as vecFile: vecFile.write((str(len(words)) + " " + str(model.get_dimension())) + "\n") for w in words: v = model.get_word_vector(w) vstr = "" for vi in v: vstr += " " + str(vi) try: vecFile.write((w + vstr + "\n")) except IOError as e: if e.errno == errno.EPIPE: pass def save_glove_bin_to_vec(model, output_path): """Converts Glove binary format to word2vec format""" with open(output_path, 'w+') as vecFile: (rows, cols) = model.word_vectors.shape vecFile.write(str(rows) + " " + str(cols) + "\n") for word, idx in model.dictionary.iteritems(): v = model.word_vectors[idx] vstr = "" for vi in v: vstr += " " + str(vi) try: vecFile.write((word + vstr + "\n")) except IOError as e: if e.errno == errno.EPIPE: pass def save_retrofitted_to_vec(wordVecs, output_path): """ Save retrofitted vectors to word2vec format""" with open(output_path, 'w+') as vecFile: rows = len(wordVecs.keys()) cols = len(wordVecs.itervalues().next()) vecFile.write(str(rows) + " " + str(cols) + "\n") for word, v in wordVecs.iteritems(): vstr = "" for vi in v: vstr += " " + str(vi) try: vecFile.write((word + vstr + "\n")) except IOError as e: if e.errno == errno.EPIPE: pass # Default params # epochs:15 # threads:8 # minCount:5 # learning rate: 0.05 # learning rate update reate: 100 # wordNgrams: 1 # minn: 3 # maxn: 6 # neg: 5 # t= 1e-4 def train_fasttext_fashionrec(dimensionality, context, train_model, epochs): """ Train with FastText on IG corpora""" total_count, vocab_size = corpus_stats("data/clean2_corpus.txt") print("total word count: {}, vocabulary size: {}".format(total_count, vocab_size)) start_time = datetime.now() model = train_unsupervised( input=os.path.join("data/clean2_corpus.txt"), dim=dimensionality, ws=context, model=train_model, epoch=15 ) time_elapsed = datetime.now() - start_time output_path = "trained/fasttext_fashion_dim" + str(dimensionality) + "_c" + str(context) + "_" + str(train_model) model.save_model(output_path + ".bin") save_fasttext_bin_to_vec(load_model(output_path + ".bin"), output_path + ".vec") fileName = "results/training/fasttext_fashion_epoch" + str(epochs) + "_d" + str(dimensionality) + "_c" + str( context) + "_" + str(train_model) + ".txt" notes = "FastText FashionData, " + str(epochs) + " epochs, " + str(dimensionality) + " dim, " + str( context) + " context, " + str(train_model) + " train mode\n" + "Training time: " + str(time_elapsed) save_to_file(fileName, notes) # Default params: # epochs: 15 # threads: 8 # alpha (learning rate):0.025 # min_count=5 # seed=1 # negative=5 (number of negative samples) # cbow_mean=1 def train_word2vec_fashionrec(dimensionality, context, train_model, epochs): """ Train with Word2Vec on IG corpora""" total_count, vocab_size = corpus_stats("data/clean2_corpus.txt") print("total word count: {}, vocabulary size: {}".format(total_count, vocab_size)) sentences = gensim.models.word2vec.LineSentence("data/clean2_corpus.txt") start_time = datetime.now() # sg = 1 => skip-gram, sg = 0 => CBOW model = gensim.models.Word2Vec(sentences, size=dimensionality, window=context, workers=8, sg=train_model, iter=15) time_elapsed = datetime.now() - start_time word_vectors = model.wv output_path = "trained/word2vec_fashion_dim" + str(dimensionality) + "_c" + str(context) + "_" + str(train_model) word_vectors.save(output_path + ".vec") fileName = "results/training/word2vec_fashion_epoch" + str(epochs) + "_d" + str(dimensionality) + "_c" + str( context) + "_" + str(train_model) + ".txt" notes = "Word2Vec Fashion Data, " + str(epochs) + " epochs, " + str(dimensionality) + " dim, " + str( context) + " context, " + str(train_model) + " train mode\n" + "Training time: " + str(time_elapsed) save_to_file(fileName, notes) def train_word2vec_wordrank(dimensionality, context, train_model, epochs): """ Train with Word2vec on IG corpora""" total_count, vocab_size = corpus_stats("data/clean2_corpus.txt") print("total word count: {}, vocabulary size: {}".format(total_count, vocab_size)) sentences = gensim.models.word2vec.LineSentence("data/clean2_corpus.txt") start_time = datetime.now() # sg = 1 => skip-gram, sg = 0 => CBOW model = gensim.models.Word2Vec(sentences, size=dimensionality, window=context, workers=8, sg=train_model, iter=15) time_elapsed = datetime.now() - start_time word_vectors = model.wv output_path = "trained/word2vec_fashion_dim" + str(dimensionality) + "_c" + str(context) + "_" + str(train_model) word_vectors.save(output_path + ".vec") fileName = "results/training/word2vec_fashion_epoch" + str(epochs) + "_d" + str(dimensionality) + "_c" + str( context) + "_" + str(train_model) + ".txt" notes = "Word2Vec Fashion Data, " + str(epochs) + " epochs, " + str(dimensionality) + " dim, " + str( context) + " context, " + str(train_model) + " train mode\n" + "Training time: " + str(time_elapsed) save_to_file(fileName, notes) # Default params: # epochs: 15 # threads: 8 # learning-rate:0.05 # alpha:0.75 # max_count:100 # max_loss: 10 # no_components:30 # symmetric context def train_glove_fashionrec(dimensionality, context, epochs): """ Train with Glove on IG corpora""" total_count, vocab_size = corpus_stats("data/clean2_corpus.txt") print("total word count: {}, vocabulary size: {}".format(total_count, vocab_size)) fileName = "results/training/glove_fashion_epochs" + str(epochs) + "_d" + str(dimensionality) + "_c" + str( context) + "_" + ".txt" corpus = readCorpus() lines = corpus.split("\n") linessplit = map(lambda x: x.split(" "), lines) corpus_model = Corpus() start_time = datetime.now() corpus_model.fit(linessplit, window=context) corpusModelFile = "trained/glove_fashion_epochs" + str(epochs) + "_d" + str(dimensionality) + "_c" + str( context) + "_corpus" + ".model" corpus_model.save(corpusModelFile) glove = Glove(no_components=dimensionality, learning_rate=0.05) glove.fit(corpus_model.matrix, epochs=int(epochs), no_threads=8,
import numpy as np import matplotlib.pyplot as plt import hrgames as hrg import sys def classic_pd(R=None, tf=None, xini=None): """Plays a classic prisoner's dilemma between two players""" # Two connected players A = np.zeros([2, 2]) A[0, 1] = 1 A[1, 0] = 1 # Classic positive prisoner's dilemma B = np.zeros([2, 2]) B[0, 0] = 3 # R B[0, 1] = 1 # S B[1, 0] = 4 # T B[1, 1] = 2 # P # Relationship matrix if R is None or R.shape != (2, 2): R = np.zeros([2, 2], dtype='double') R[0, 0] = 2/3 + 0.05 R[0, 1] = 1/3 - 0.05 R[1, 1] = 2/3 - 0.05 R[1, 0] = 1/3 + 0.05 # Initial Condition, 0.5 in all strategies for all players if xini is None or xini.shape != (6, 2): xini = np.divide(np.ones([2, 2], dtype='double'), 2) # Time interval and number of steps t0 = 0 if tf is None: tf = 150 n = (tf-t0)*10 h = (tf-t0)/n x = hrg.hr_game(t0, tf, n, A, B, R, xini) # Plot results xaxis = np.arange(t0, tf+h, h) plt.plot(xaxis, x[0, 0, :], 'r', label='Player 1') plt.plot(xaxis, x[1, 0, :], 'b', label='Player 2', alpha=0.7) plt.ylim([-0.05, 1.05]) plt.legend(['Player 1', 'Player 2']) plt.title("Cooperation probability") plt.show() plt.close() return None def classic_pd_negative(R=None, tf=None, xini=None): """Plays a classic prisoner's dilemma between two players""" # Two connected players A = np.zeros([2, 2]) A[0, 1] = 1 A[1, 0] = 1 # Classic negative prisoner's dilemma B = np.zeros([2, 2]) B[0, 0] = -2 # R B[0, 1] = -7 # S B[1, 0] = 0 # T B[1, 1] = -5 # P # Relationship matrix if R is None or R.shape != (2, 2): R = np.zeros([2, 2], dtype='double') R[0, 0] = 5/7 - 0.05 R[0, 1] = 2/7 + 0.05 R[1, 1] = 5/7 + 0.05 R[1, 0] = 2/7 - 0.05 # Initial Condition, 0.5 in all strategies for all players if xini is None or xini.shape != (2, 2): xini = np.divide(np.ones([2, 2], dtype='double'), 2) # Time interval and number of steps t0 = 0 if tf is None: tf = 150 n = (tf-t0)*10 h = (tf-t0)/n x = hrg.hr_game(t0, tf, n, A, B, R, xini) # Plot results xaxis = np.arange(t0, tf+h, h) plt.plot(xaxis, x[0, 0, :], 'r', label='Player 1') plt.plot(xaxis, x[1, 0, :], 'b', label='Player 2', alpha=0.7) plt.ylim([-0.05, 1.05]) plt.legend(['Player 1', 'Player 2']) plt.title("Cooperation probability") plt.show() plt.close() return None def hinge_love_triangle(R=None, tf=None, xini=None): """Plays a love triangle game in a 'hinge' graph, a path with 3 nodes""" # A hinge, path with 3 nodes A = np.zeros([3, 3]) A[0, 1] = 1 A[1, 0] = 1 A[1, 2] = 1 A[2, 1] = 1 # Payoff matrices # Person 1 wants to play s1 against Person 2 # Person 2 only benefits when playing s2 against Person 1 # Person 2 has no benefit from playing with Person 3 B = np.zeros([2, 2, 3]) # Player 1 payoff matrix B[0, 0, 0] = 0 B[0, 1, 0] = 1 B[1, 0, 0] = 0 B[1, 1, 0] = 0 # Player 2 payoff matrix B[0, 0, 1] = 0 B[0, 1, 1] = 0 B[1, 0, 1] = 1 B[1, 1, 1] = 0 # Player 3 payoff matrix B[0, 0, 2] = 1 B[0, 1, 2] = 0 B[1, 0, 2] = 0 B[1, 1, 2] = 0 # Relationship matrix if R is None or R.shape != (3, 3): R = np.zeros([3, 3], dtype='double') # Person 1 cares equally about itself and it's partner R[0, 0] = 1/2 R[0, 1] = 1/2 # Person 2 cares about itself and Person 3 R[1, 1] = 1/2 + 0.05 R[1, 2] = 1/2 - 0.05 # Person cares only about itself R[2, 2] = 1 # Initial Condition, 0.5 in all strategies for all players if xini is None or xini.shape != (3, 2): xini = np.divide(np.ones([3, 2], dtype='double'), 2) # Time interval and number of steps t0 = 0 if tf is None: tf = 150 n = (tf - t0) * 10 h = (tf - t0) / n x = hrg.hr_game(t0, tf, n, A, B, R, xini) # Plot results xaxis = np.arange(t0, tf + h, h) plt.plot(xaxis, x[0, 0, :], 'r', label='Player 1') plt.plot(xaxis, x[1, 0, :], 'b', label='Player 2', alpha=0.7) plt.plot(xaxis, x[2, 0, :], 'g', label='Player 2', alpha=0.7) plt.ylim([-0.05, 1.05]) plt.legend(['Player 1', 'Player 2', 'Player 3']) plt.title("Probability of using strategy 1") plt.show() plt.close() return None def k3_love_triangle(R=None, tf=None, xini=None): """Plays a love triangle game in a k3 graph, a complete graph with 3 nodes""" # A k3, a complete graph with 3 nodes A = np.subtract(np.ones([3, 3]), np.eye(3)) # Payoff matrices # Person 1 wants to play s1 against Person 2 # Person 2 only benefits when playing s2 against Person 1 # Person 2 has no benefit from playing with Person 3 B = np.zeros([2, 2, 3]) # Player 1 payoff matrix B[0, 0, 0] = 0 B[0, 1, 0] = 1 B[1, 0, 0] = 0 B[1, 1, 0] = 0 # Player 2 payoff matrix B[0, 0, 1] = 0 B[0, 1, 1] = 0 B[1, 0, 1] = 1 B[1, 1, 1] = 0 # Player 3 payoff matrix B[0, 0, 2] = 1 B[0, 1, 2] = 0 B[1, 0, 2] = 0 B[1, 1, 2] = 0 # Relationship matrix if R is None or R.shape != (3, 3): R = np.zeros([3, 3], dtype='double') # Person 1 cares equally about itself and it's partner, but dislikes Person 3 R[0, 0] = 2/5 R[0, 1] = 2/5 R[0, 2] = -1/5 # Person 2 cares about itself and Person 3 R[1, 1] = 1/2 - 0.05 R[1, 2] = 1/2 + 0.05 # Person cares only about itself R[2, 2] = 1 # Initial Condition, 0.5 in all strategies for all players if xini is None or xini.shape != (3, 2): xini = np.divide(np.ones([3, 2], dtype='double'), 2) # Time interval and number of steps t0 = 0 if tf is None: tf = 150 n = (tf - t0) * 10 h = (tf - t0) / n x = hrg.hr_game(t0, tf, n, A, B, R, xini) # Plot results xaxis = np.arange(t0, tf + h, h) plt.plot(xaxis, x[0, 0, :], 'r', label='Player 1') plt.plot(xaxis, x[1, 0, :], 'b', label='Player 2', alpha=0.7) plt.plot(xaxis, x[2, 0, :], 'g', label='Player 2', alpha=0.7) plt.ylim([-0.05, 1.05]) plt.legend(['Player 1', 'Player 2', 'Player 3']) plt.title("Probability of using strategy 1") plt.show() plt.close() return None def closed_star_pd(R=None, tf=None, xini=None): """Plays a prisoner's dilemma on a closed star with 6 vertices""" # Closed star, it's easier to erase connections A = np.subtract(np.ones([6, 6]), np.eye(6)) A[1, 3] = 0 A[1, 4] = 0 A[2, 4] = 0 A[2, 5] = 0 A[3, 5] = 0 A[3, 1] = 0 A[4, 1] = 0 A[4, 2] = 0 A[5, 2] = 0 A[5, 3] = 0 # Classic positive prisoner's dilemma B = np.zeros([2, 2]) B[0, 0] = 3 # R B[0, 1] = 1 # S B[1, 0] = 4 # T B[1, 1] = 2 # P # Relationship matrix, everyone's selfish if R is None or R.shape != (6, 6): R = np.eye(6) # Initial Condition if xini is None or xini.shape != (6, 2): xini = np.zeros([6, 2], dtype='double') # Natural cooperators xini[0, 0] = 0.99 xini[1, 0] = 0.99 xini[3, 0] = 0.99 xini[5, 0] = 0.99 # Natural defectors xini[2, 0] = 0.01 xini[4, 0] = 0.01 # Iterate to complete assignments for i in range(6): xini[i, 1] = np.subtract(1, xini[i, 0]) # Time interval and number of steps t0 = 0 if tf is None: tf = 150 n = (tf-t0)*10 h = (tf-t0)/n x = hrg.hr_game(t0, tf, n,
<reponame>imaginaryusername/Electron-Cash # # This file is: # Copyright (C) 2018 <NAME> <<EMAIL>> # # MIT License # from . import utils from . import gui from .history import HistoryEntry from . import txdetail from . import contacts from electroncash import WalletStorage, Wallet from electroncash.util import timestamp_to_datetime, NotEnoughFunds, ExcessiveFee from electroncash.transaction import Transaction from electroncash.i18n import _ from .custom_objc import * from .uikit_bindings import * from electroncash import networks from electroncash.address import Address, ScriptOutput from electroncash.paymentrequest import PaymentRequest from electroncash import bitcoin from .feeslider import FeeSlider from .amountedit import BTCAmountEdit from electroncash.plugins import run_hook import time, html, re, sys, traceback from decimal import Decimal RE_ALIAS = '^(.*?)\s*\<([1-9A-Za-z]{26,})\>$' def parent(): return gui.ElectrumGui.gui def config(): return parent().config def wallet(): return parent().wallet def fx(): p = parent() if p and p.daemon and p.daemon.fx: return p.daemon.fx return None _CellIdentifier = "SpendFromCell" _TableHeaderHeight = 25 _TableCellHeight = 20 _TableHeightRows = 4.45 class SendVC(SendBase): qr = objc_property() qrvc = objc_property() qrScanErr = objc_property() amountSats = objc_property() feeSats = objc_property() isMax = objc_property() notEnoughFunds = objc_property() excessiveFee = objc_property() timer = objc_property() dismissOnAppear = objc_property() kbas = objc_property() queuedPayTo = objc_property() @objc_method def init(self): self = ObjCInstance(send_super(__class__, self, 'init')) self.title = _("Send") self.qrScanErr = False self.amountSats = None # None ok on this one self.feeSats = None # None ok on this one too self.isMax = False # should always be defined self.notEnoughFunds = False self.excessiveFee = False self.timer = None self.dismissOnAppear = False self.kbas = None self.queuedPayTo = None self.navigationItem.leftItemsSupplementBackButton = True bb = UIBarButtonItem.new().autorelease() bb.title = _("Back") self.navigationItem.backBarButtonItem = bb return self @objc_method def dealloc(self) -> None: self.qrScanErr = None self.amountSats = None self.feeSats = None self.isMax = None self.notEnoughFunds = None self.qr = None self.qrvc = None self.dismissOnAppear = None if self.timer: self.timer.invalidate() # kill a timer if it hasn't fired yet self.timer = None self.excessiveFee = None self.kbas = None self.queuedPayTo = None utils.nspy_pop(self) for e in [self.amt, self.fiat, self.payTo]: if e: utils.nspy_pop(e) send_super(__class__, self, 'dealloc') @objc_method def didRotateFromInterfaceOrientation_(self, o : int) -> None: pass @objc_method def reader_didScanResult_(self, reader, result) -> None: utils.NSLog("Reader data = '%s'",str(result)) self.checkQRData_(result) if self.qrScanErr: if type(self.qrScanErr) is int and self.qrScanErr == 2: title = _("Unsupported QR Code") message = _("The QR code contains multiple outputs. At this time only a single output is supported.\nPlease try again.") else: title = _("Invalid QR Code") message = _("The QR code does not appear to be a valid BCH address or payment request.\nPlease try again.") reader.stopScanning() parent().show_error( title = title, message = message, onOk = lambda: reader.startScanning() ) self.qrScanErr = False else: self.readerDidCancel_(reader) @objc_method def readerDidCancel_(self, reader) -> None: if reader is not None: reader.stopScanning() self.dismissViewControllerAnimated_completion_(True, None) self.qr = None self.qrvc = None @objc_method def loadView(self) -> None: objs = NSBundle.mainBundle.loadNibNamed_owner_options_("Send",self,None) assert objs is not None and len(objs) # Apply translations and other stuff to UI text... self.payToTit.setText_withKerning_(_("Pay to"), utils._kern) # Input amount text field btcedit = self.amt fiatedit = self.fiat def onAmount(t : ObjCInstance) -> None: #print("On Amount %s, %s satoshis"%(str(t.text),str(t.getAmount()))) self.amountSats = t.getAmount() fiatModified = False if fx() and fx().is_enabled(): rate = fx().exchange_rate() if rate: amtfiat = int(round(float((Decimal(self.amountSats) * Decimal(100.0) * Decimal(rate)) / Decimal(1e8)))) if self.amountSats is not None else None fiatModified = fiatedit.isModified() fiatedit.setAmount_(amtfiat) utils.uitf_redo_attrs(fiatedit) if fiatModified or t.isModified(): #print ("updating fee...") self.updateFee() else: self.chkOk() utils.add_callback(btcedit, 'textChanged', onAmount) def onEdit(t : ObjCInstance) -> None: self.isMax = False utils.add_callback(btcedit, 'edited', onEdit) btcedit.setUseUnitLabel_(True) btcedit.fixedUnitLabelWidth = 50.0 # Amount (Fiat) label # Input Fiat text field def onAmountFiat(t : ObjCInstance) -> None: #print("On Fiat Amount %s, %s %s"%(str(t.text),str(t.getAmount()),str(t.baseUnit()))) if not t.isModified() or not fx() or not fx().is_enabled(): return rate = fx().exchange_rate() if not rate: return amtSats = int(round(float( (Decimal(t.getAmount())*Decimal(1e6)) / Decimal(rate) ))) if t.getAmount() is not None else None btcedit.setAmount_(amtSats) utils.uitf_redo_attrs(btcedit) utils.add_callback(fiatedit, 'textChanged', onAmountFiat) def onEditFiat(t : ObjCInstance) -> None: self.isMax = False utils.add_callback(fiatedit, 'edited', onEditFiat) fiatedit.setUseUnitLabel_(True) fiatedit.fixedUnitLabelWidth = 50.0 self.descTit.setText_withKerning_( _("Description"), utils._kern ) but = self.maxBut but.setTitle_forState_(_("Max"), UIControlStateNormal) # Fee Label self.feeTit.setText_withKerning_( _("Fee"), utils._kern ) tedit = self.feeTf fee_e = tedit tedit.placeholder = _("Fee manual edit") def onManualFee(t : ObjCInstance) -> None: #print("On Manual fee %s, %s satoshis"%(str(t.text),str(t.getAmount()))) self.feeSats = t.getAmount() if t.isModified(): self.updateFee() else: self.chkOk() utils.add_callback(fee_e, 'textChanged', onManualFee) fee_e.setUseUnitLabel_(True) fee_e.fixedUnitLabelWidth = 50.0 # Error Label self.message.text = "" self.descDel.placeholderFont = UIFont.italicSystemFontOfSize_(14.0) self.descDel.tv = self.desc self.descDel.text = "" self.descDel.placeholderText = _("Description of the transaction (not mandatory).") feelbl = self.feeLbl slider = self.feeSlider def sliderCB(dyn : bool, pos : int, fee_rate : int) -> None: txt = " ".join(str(slider.getToolTip(pos,fee_rate)).split("\n")) feelbl.text = txt fee_e.modified = False # force unfreeze fee if dyn: config().set_key('fee_level', pos, False) else: config().set_key('fee_per_kb', fee_rate, False) self.spendMax() if self.isMax else self.updateFee() #print("testcb: %d %d %d.. tt='%s'"%(int(dyn), pos, fee_rate,txt)) utils.add_callback(slider, 'callback', sliderCB) utils.nspy_put_byname(self, 'dummy', '_last_spend_from') # trigger the clear # set up navigation bar items... self.clearBut.title = _("Clear") but = self.sendBut but.setTitle_forState_(_("Send"), UIControlStateNormal) barButPreview = self.previewBut barButPreview.title = _("Preview") self.navigationItem.rightBarButtonItems = [barButPreview] extra = self.navigationItem.leftBarButtonItems if self.navigationItem.leftBarButtonItems else [] self.navigationItem.leftBarButtonItems = [*extra, self.clearBut] @objc_method def viewDidLoad(self) -> None: uinib = UINib.nibWithNibName_bundle_("SpendFromCell", None) self.tv.registerNib_forCellReuseIdentifier_(uinib, _CellIdentifier) self.clearAllExceptSpendFrom() @objc_method def viewWillAppear_(self, animated : bool) -> None: send_super(__class__, self, 'viewWillAppear:', animated, argtypes=[c_bool]) if self.dismissOnAppear and self.presentingViewController and not self.isBeingDismissed(): self.presentingViewController.dismissViewControllerAnimated_completion_(animated, None) return if self.queuedPayTo: try: qpt = list(self.queuedPayTo) self.queuedPayTo = None self.onPayTo_message_amount_(qpt[0],qpt[1],qpt[2]) except: utils.NSLog("queuedPayTo.. failed with exception: %s",str(sys.exc_info()[1])) self.kbas = utils.register_keyboard_autoscroll(self.view.viewWithTag_(54321)) # redo amount label if prefs changed lbl = self.amtTit tedit = self.amt lbl.setText_withKerning_( _("Amount") , utils._kern ) # Placeholder for amount tedit.placeholder = _("Input amount") wasModified = tedit.isModified() tedit.setAmount_(self.amountSats) # in case unit changed in prefs tedit.modified = wasModified # fee amount label lbl = self.feeLbl lbl.text = self.feeSlider.getToolTip(-1,-1) # Manual edit .. re-set the amount in satoshis from our cached value, in case they changed units in the prefs screen tedit = self.feeTf wasModified = tedit.isModified() tedit.setAmount_(self.feeSats) tedit.modified = wasModified # set manual fee edit to be enabled/disabled based on prefs settings if parent().prefs_get_show_fee(): tedit.userInteractionEnabled = True tedit.alpha = 1.0 else: tedit.userInteractionEnabled = False tedit.alpha = .5 # set fiat lbl/tedit based on prefs settings doFX = fx() and fx().is_enabled() ccy = fx().get_currency() if doFX else None fiatte = self.fiat fiatte.setHidden_(not doFX) if doFX: fiatte.placeholder = _("Fiat amount") feelbl = self.feeTit c = self.csFeeTop if c is not None: c.constant = 25.0 if doFX else -28.0 parent().cash_addr_sig.connect(lambda: self.reformatSpendFrom(), self) self.reformatSpendFrom() pay_to = utils.nspy_get_byname(self, 'pay_to') if pay_to is not None: if isinstance(pay_to, str): self.payTo.text = pay_to utils.nspy_pop_byname(self, 'pay_to') utils.uitf_redo_attrs(self.payTo) utils.uitf_redo_attrs(self.amt) utils.uitf_redo_attrs(self.fiat) utils.uitf_redo_attrs(self.feeTf) self.chkOk() @objc_method def viewDidAppear_(self, animated : bool) -> None: send_super(__class__, self, 'viewDidAppear:', animated, argtypes=[c_bool]) parent().show_warning_if_watching_only(vc = self, onOk = lambda: self.presentingViewController.dismissViewControllerAnimated_completion_(True, None)) if not self.tv.isHidden(): self.tv.flashScrollIndicators() @objc_method def reformatSpendFrom(self) -> None: # Do the "spend from" stuff self.tv.reloadData() coins = utils.nspy_get_byname(self, 'spend_from') if utils.nspy_get_byname(self, '_last_spend_from') == coins: return utils.nspy_put_byname(self, coins, '_last_spend_from') self.updateFee() @objc_method def viewWillDisappear_(self, animated: bool) -> None: send_super(__class__, self, 'viewWillDisappear:', animated, argtypes=[c_bool]) # Manual edit .. cache the feeSats in case they change stuff in prefs affecting this tedit = self.feeTf self.feeSats = tedit.getAmount() # Amount edit -- cache the amountSats in case they change stuff in the prefs affecting this tedit = self.amt self.amountSats = tedit.getAmount() parent().cash_addr_sig.disconnect(self) if self.kbas: utils.unregister_keyboard_autoscroll(int(self.kbas)) self.kbas = None @objc_method def onQRBut_(self, but) -> None: def DoIt() -> None: if not QRCodeReader.isAvailable: utils.show_alert(self, _("QR Not Avilable"), _("The camera is not available for reading QR codes")) else: self.qr = QRCodeReader.new().autorelease() self.qrvc = QRCodeReaderViewController.readerWithCancelButtonTitle_codeReader_startScanningAtLoad_showSwitchCameraButton_showTorchButton_("Cancel",self.qr,True,False,False) self.qrvc.modalPresentationStyle = UIModalPresentationFormSheet self.qrvc.delegate = self self.presentViewController_animated_completion_(self.qrvc, True, None) self.qrScanErr = False utils.boilerplate.vc_highlight_button_then_do(self, but, DoIt) @objc_method def onContactBut_(self, but) -> None: def DoIt() -> None: def onPayTo(addys : list) -> None: if contacts.pay_to(addys): self.dismissViewControllerAnimated_completion_(True, None) vc = contacts.ContactsVC.alloc().initWithMode_(contacts.ModePicker).autorelease() nav = utils.tintify(UINavigationController.alloc().initWithRootViewController_(vc).autorelease()) utils.add_callback(vc, 'on_pay_to', onPayTo) if self.payTo and self.payTo.text: utils.nspy_put_byname(vc, self.payTo.text, 'preselected') self.presentViewController_animated_completion_(nav, True, None) utils.boilerplate.vc_highlight_button_then_do(self, but, DoIt) @objc_method def onMaxBut_(self, but) -> None: utils.boilerplate.vc_highlight_button_then_do(self, but, lambda:self.spendMax()) @objc_method def textFieldShouldEndEditing_(self, tf : ObjCInstance) -> bool: #print('textFieldShouldEndEditing %d'%tf.tag) if tf.tag in [115,230]: tf.text = tf.text.strip() # strip leading/training spaces in description and address text fields if tf.tag in
detected. link_aggregation: This field indicates if this is a link aggregation interface. mac: The MAC address of the interface. ms_ad_user_data: The Microsoft Active Directory user related information. name: The interface system name. network_view: Th name of the network view. oper_status: Operating state of the interface. port_fast: The Port Fast status of the interface. reserved_object: The reference to object(Host/FixedAddress/GridMember) to which this port is reserved. speed: The interface speed in bps. trunk_status: Indicates if the interface is tagged as a VLAN trunk or not. type: The type of interface. vlan_info_task_info: The configured VLAN status task info of the interface. vlan_infos: The list of VLAN information associated with the interface. vrf_description: The description of the Virtual Routing and Forwarding (VRF) associated with the interface. vrf_name: The name of the Virtual Routing and Forwarding (VRF) associated with the interface. vrf_rd: The route distinguisher of the Virtual Routing and Forwarding (VRF) associated with the interface. """ _infoblox_type = 'discovery:deviceinterface' _fields = ['admin_status', 'admin_status_task_info', 'cap_if_admin_status_ind', 'cap_if_admin_status_na_reason', 'cap_if_description_ind', 'cap_if_description_na_reason', 'cap_if_net_deprovisioning_ipv4_ind', 'cap_if_net_deprovisioning_ipv4_na_reason', 'cap_if_net_deprovisioning_ipv6_ind', 'cap_if_net_deprovisioning_ipv6_na_reason', 'cap_if_net_provisioning_ipv4_ind', 'cap_if_net_provisioning_ipv4_na_reason', 'cap_if_net_provisioning_ipv6_ind', 'cap_if_net_provisioning_ipv6_na_reason', 'cap_if_vlan_assignment_ind', 'cap_if_vlan_assignment_na_reason', 'cap_if_voice_vlan_ind', 'cap_if_voice_vlan_na_reason', 'description', 'description_task_info', 'device', 'duplex', 'extattrs', 'ifaddr_infos', 'index', 'last_change', 'link_aggregation', 'mac', 'ms_ad_user_data', 'name', 'network_view', 'oper_status', 'port_fast', 'reserved_object', 'speed', 'trunk_status', 'type', 'vlan_info_task_info', 'vlan_infos', 'vrf_description', 'vrf_name', 'vrf_rd'] _search_for_update_fields = ['name', 'type'] _updateable_search_fields = [] _all_searchable_fields = ['description', 'mac', 'name', 'network_view', 'oper_status', 'speed', 'type', 'vrf_description', 'vrf_name', 'vrf_rd'] _return_fields = ['extattrs', 'name', 'type'] _remap = {} _shadow_fields = ['_ref'] _custom_field_processing = { 'ifaddr_infos': DiscoveryIfaddrinfo.from_dict, 'vlan_infos': DiscoveryVlaninfo.from_dict, } class DiscoveryDeviceneighbor(InfobloxObject): """ DiscoveryDeviceneighbor: Device Neighbor object. Corresponds to WAPI object 'discovery:deviceneighbor' The neighbor associated with the device discovered by Network Automation. Fields: address: The IPv4 Address or IPv6 Address of the device neighbor. address_ref: The ref to the management IP address of the device neighbor. device: The ref to the device to which the device neighbor belongs. interface: The ref to the interface to which the device neighbor belongs. mac: The MAC address of the device neighbor. name: The name of the device neighbor. vlan_infos: The list of VLAN information associated with the device neighbor. """ _infoblox_type = 'discovery:deviceneighbor' _fields = ['address', 'address_ref', 'device', 'interface', 'mac', 'name', 'vlan_infos'] _search_for_update_fields = [] _updateable_search_fields = [] _all_searchable_fields = ['device'] _return_fields = ['address', 'address_ref', 'mac', 'name'] _remap = {} _shadow_fields = ['_ref'] _custom_field_processing = { 'vlan_infos': DiscoveryVlaninfo.from_dict, } class DiscoveryDevicesupportbundle(InfobloxObject): """ DiscoveryDevicesupportbundle: Device support bundle object. Corresponds to WAPI object 'discovery:devicesupportbundle' Infoblox frequently provides support files for additional network devices that may not have previously been supported by discovery, and updates to support new operating system versions of existing devices. The device support bundle represents the entity for displaying and managing device support files. Fields: author: The developer of the device support bundle. integrated_ind: Determines whether the device support bundle is integrated or imported. Note that integrated support bundles cannot be removed. name: The descriptive device name for the device support bundle. version: The version of the currently active device support bundle. """ _infoblox_type = 'discovery:devicesupportbundle' _fields = ['author', 'integrated_ind', 'name', 'version'] _search_for_update_fields = ['name'] _updateable_search_fields = [] _all_searchable_fields = ['name'] _return_fields = ['author', 'integrated_ind', 'name', 'version'] _remap = {} _shadow_fields = ['_ref'] class DiscoveryDiagnostictask(InfobloxObject): """ DiscoveryDiagnostictask: The discovery diagnostic task object. Corresponds to WAPI object 'discovery:diagnostictask' The object provides information about the discovery diagnostic task. Fields: community_string: The SNMP community string of the discovery diagnostic task. debug_snmp: The SNMP debug flag of the discovery diagnostic task. force_test: The force test flag of the discovery diagnostic task. ip_address: The IP address of the discovery diagnostic task. network_view: The network view name of the discovery diagnostic task. start_time: The time when the discovery diagnostic task was started. task_id: The ID of the discovery diagnostic task. """ _infoblox_type = 'discovery:diagnostictask' _fields = ['community_string', 'debug_snmp', 'force_test', 'ip_address', 'network_view', 'start_time', 'task_id'] _search_for_update_fields = ['ip_address', 'network_view', 'task_id'] _updateable_search_fields = ['ip_address', 'network_view', 'task_id'] _all_searchable_fields = ['ip_address', 'network_view', 'task_id'] _return_fields = ['ip_address', 'network_view', 'task_id'] _remap = {} _shadow_fields = ['_ref'] class DiscoveryGridproperties(InfobloxObject): """ DiscoveryGridproperties: The Grid discovery properties object. Corresponds to WAPI object 'discovery:gridproperties' The object provides information about the Grid discovery properties. Fields: advanced_polling_settings: Discovery advanced polling settings. advisor_settings: Advisor settings. auto_conversion_settings: Automatic conversion settings. basic_polling_settings: Discovery basic polling settings. cli_credentials: Discovery CLI credentials. discovery_blackout_setting: Discovery blackout setting. dns_lookup_option: The type of the devices the DNS processor operates on. dns_lookup_throttle: The percentage of available capacity the DNS processor operates at.Valid values are unsigned integer between 1 and 100, inclusive. enable_advisor: Advisor application enabled/disabled. enable_auto_conversion: The flag that enables automatic conversion of discovered data. enable_auto_updates: The flag that enables updating discovered data for managed objects. grid_name: The Grid name. ignore_conflict_duration: Determines the timeout to ignore the discovery conflict duration (in seconds). port_control_blackout_setting: Port control blackout setting. ports: Ports to scan. same_port_control_discovery_blackout: Determines if the same port control is used for discovery blackout. snmpv1v2_credentials: Discovery SNMP v1 and v2 credentials. snmpv3_credentials: Discovery SNMP v3 credentials. unmanaged_ips_limit: Limit of discovered unmanaged IP address which determines how frequently the user is notified about the new unmanaged IP address in a particular network. unmanaged_ips_timeout: Determines the timeout between two notifications (in seconds) about the new unmanaged IP address in a particular network. The value must be between 60 seconds and the number of seconds remaining to Jan 2038. vrf_mapping_policy: The policy type used to define the behavior of the VRF mapping. vrf_mapping_rules: VRF mapping rules. """ _infoblox_type = 'discovery:gridproperties' _fields = ['advanced_polling_settings', 'advisor_settings', 'auto_conversion_settings', 'basic_polling_settings', 'cli_credentials', 'discovery_blackout_setting', 'dns_lookup_option', 'dns_lookup_throttle', 'enable_advisor', 'enable_auto_conversion', 'enable_auto_updates', 'grid_name', 'ignore_conflict_duration', 'port_control_blackout_setting', 'ports', 'same_port_control_discovery_blackout', 'snmpv1v2_credentials', 'snmpv3_credentials', 'unmanaged_ips_limit', 'unmanaged_ips_timeout', 'vrf_mapping_policy', 'vrf_mapping_rules'] _search_for_update_fields = [] _updateable_search_fields = [] _all_searchable_fields = [] _return_fields = ['grid_name'] _remap = {} _shadow_fields = ['_ref'] _custom_field_processing = { 'auto_conversion_settings': DiscoveryAutoconversionsetting.from_dict, 'cli_credentials': DiscoveryClicredential.from_dict, 'ports': DiscoveryPort.from_dict, 'snmpv1v2_credentials': DiscoverySnmpcredential.from_dict, 'snmpv3_credentials': DiscoverySnmp3Credential.from_dict, 'vrf_mapping_rules': DiscoveryVrfmappingrule.from_dict, } def advisor_run_now(self, *args, **kwargs): return self._call_func("advisor_run_now", *args, **kwargs) def advisor_test_connection(self, *args, **kwargs): return self._call_func("advisor_test_connection", *args, **kwargs) def diagnostic(self, *args, **kwargs): return self._call_func("diagnostic", *args, **kwargs) def diagnostic_status(self, *args, **kwargs): return self._call_func("diagnostic_status", *args, **kwargs) class DiscoveryMemberproperties(InfobloxObject): """ DiscoveryMemberproperties: The Grid discovery member properties object. Corresponds to WAPI object 'discovery:memberproperties' The object provides information about the Grid member discovery properties. Fields: address: The Grid member address IP address. cisco_apic_configurations: Cisco APIC configurations. cli_credentials: Discovery CLI credentials. default_seed_routers: Default seed routers. discovery_member: The name of the network discovery Grid member. enable_service: Determines if the discovery service is enabled. gateway_seed_routers: Gateway seed routers. is_sa: Determines if the standalone mode for discovery network monitor is enabled or not. role: Discovery member role. scan_interfaces: Discovery networks to which the member is assigned. seed_routers: Seed routers. snmpv1v2_credentials: Discovery SNMP v1 and v2 credentials. snmpv3_credentials: Discovery SNMP v3 credentials. use_cli_credentials: Use flag for: cli_credentials use_snmpv1v2_credentials: Use flag for: snmpv1v2_credentials use_snmpv3_credentials: Use flag for: snmpv3_credentials """ _infoblox_type = 'discovery:memberproperties' _fields = ['address', 'cisco_apic_configurations', 'cli_credentials', 'default_seed_routers', 'discovery_member', 'enable_service', 'gateway_seed_routers', 'is_sa', 'role', 'scan_interfaces', 'seed_routers', 'snmpv1v2_credentials', 'snmpv3_credentials', 'use_cli_credentials', 'use_snmpv1v2_credentials', 'use_snmpv3_credentials'] _search_for_update_fields = ['discovery_member'] _updateable_search_fields = ['enable_service', 'is_sa', 'role'] _all_searchable_fields = ['discovery_member', 'enable_service', 'is_sa', 'role'] _return_fields = ['discovery_member'] _remap = {} _shadow_fields = ['_ref'] _custom_field_processing = { 'cisco_apic_configurations': DiscoveryCiscoapicconfiguration.from_dict, 'cli_credentials': DiscoveryClicredential.from_dict, 'default_seed_routers': DiscoverySeedrouter.from_dict, 'gateway_seed_routers': DiscoverySeedrouter.from_dict, 'scan_interfaces': DiscoveryScaninterface.from_dict, 'seed_routers': DiscoverySeedrouter.from_dict, 'snmpv1v2_credentials': DiscoverySnmpcredential.from_dict, 'snmpv3_credentials': DiscoverySnmp3Credential.from_dict, } class DiscoveryStatus(InfobloxObject): """ DiscoveryStatus: Discovery Status object. Corresponds to WAPI object 'discovery:status' The discovery status of discovered data Fields: address: The IPv4 Address or IPv6 Address of the device. cli_collection_enabled: Indicates if CLI collection is enabled. cli_credential_info: The CLI credential status information of the device. existence_info: The existence status information of the device. fingerprint_enabled: Indicates if DHCP finterprinting is enabled. fingerprint_info: This DHCP finterprinting status information of the device. first_seen: The timestamp when the device was first discovered. last_action: The timestamp of the last detected interface property change. last_seen: The timestamp when the device was last discovered. last_timestamp: The timestamp of the last executed action for the device. name: The name of the device. network_view: The name of the network view in which this device resides. reachable_info: The reachable status information of the device. snmp_collection_enabled:
ctx, cc_toolchain = cc_toolchain, requested_features = ctx.features, unsupported_features = ctx.disabled_features, ) library_to_link = cc_common.create_library_to_link( actions = ctx.actions, feature_configuration = feature_configuration, dynamic_library = dynamic_library, dynamic_library_symlink_path = _shorten_library_symlink(dynamic_library) if dynamic_library and ctx.attr.unique_name else "", static_library = static_library, cc_toolchain = cc_toolchain, ) compilation_context = cc_common.create_compilation_context() linking_context = cc_common.create_linking_context( libraries_to_link = [library_to_link], ) cc_info = cc_common.merge_cc_infos( cc_infos = [ CcInfo( compilation_context = compilation_context, linking_context = linking_context, ), cc_info, ], ) output_group_info = OutputGroupInfo(**library_info_output_groups( name = ctx.label.name, hs = hs, hs_info = hs_info, lib_info = lib_info, )) result = [default_info, hs_info, cc_info, lib_info, output_group_info] if ctx.attr.haddock: result.append(doc_info) return result haskell_cabal_library = rule( _haskell_cabal_library_impl, attrs = { "package_name": attr.string( doc = "Cabal package name. Defaults to name attribute.", ), "version": attr.string( doc = "Version of the Cabal package.", mandatory = True, ), "haddock": attr.bool( default = True, doc = "Whether to generate haddock documentation.", ), "srcs": attr.label_list( allow_files = True, doc = "All files required to build the package, including the Cabal file.", ), "deps": attr.label_list( aspects = [haskell_cc_libraries_aspect], doc = "Package build dependencies. Note, setup dependencies need to be declared separately using `setup_deps`.", ), "setup_deps": attr.label_list( aspects = [haskell_cc_libraries_aspect], doc = "Dependencies for custom setup Setup.hs.", ), "compiler_flags": attr.string_list( doc = """Flags to pass to Haskell compiler, in addition to those defined the cabal file. Subject to Make variable substitution.""", ), "tools": attr.label_list( cfg = "host", allow_files = True, doc = """Tool dependencies. They are built using the host configuration, since the tools are executed as part of the build.""", ), "flags": attr.string_list( doc = "List of Cabal flags, will be passed to `Setup.hs configure --flags=...`.", ), "_cabal_wrapper": attr.label( executable = True, cfg = "host", default = Label("@rules_haskell//haskell:cabal_wrapper"), ), "_cc_toolchain": attr.label( default = Label("@bazel_tools//tools/cpp:current_cc_toolchain"), ), "verbose": attr.bool( default = True, doc = "Whether to show the output of the build", ), "unique_name": attr.bool( default = False, doc = """Whether the library name is known to be unique within the workspace. This is used by `stack_snapshot` where library names are known to be unique within the snapshot. If true, then the dynamic library symlink underneath `_solib_<cpu>` will be shortened to avoid exceeding the MACH-O header size limit on MacOS.""", ), }, toolchains = [ "@bazel_tools//tools/cpp:toolchain_type", "@rules_haskell//haskell:toolchain", "@rules_sh//sh/posix:toolchain_type", ], fragments = ["cpp"], doc = """\ Use Cabal to build a library. ### Examples ```bzl haskell_cabal_library( name = "lib-0.1.0.0", srcs = ["lib.cabal", "Lib.hs", "Setup.hs"], ) haskell_toolchain_library(name = "base") haskell_binary( name = "bin", deps = [":base", ":lib-0.1.0.0"], srcs = ["Main.hs"], ) ``` This rule does not use `cabal-install`. It calls the package's `Setup.hs` script directly if one exists, or the default one if not. All sources files that would have been part of a Cabal sdist need to be listed in `srcs` (crucially, including the `.cabal` file). A `haskell_cabal_library` can be substituted for any `haskell_library`. The two are interchangeable in most contexts. However, using a plain `haskell_library` sometimes leads to better build times, and does not require drafting a `.cabal` file. """, ) def _haskell_cabal_binary_impl(ctx): hs = haskell_context(ctx) dep_info = gather_dep_info(ctx, ctx.attr.deps) setup_dep_info = gather_dep_info(ctx, ctx.attr.setup_deps) setup_deps = all_dependencies_package_ids(ctx.attr.setup_deps) cc = cc_interop_info(ctx) # All C and Haskell library dependencies. cc_info = cc_common.merge_cc_infos( cc_infos = [dep[CcInfo] for dep in ctx.attr.deps if CcInfo in dep], ) # Separate direct C library dependencies. direct_cc_info = cc_common.merge_cc_infos( cc_infos = [ dep[CcInfo] for dep in ctx.attr.deps if CcInfo in dep and not HaskellInfo in dep ], ) posix = ctx.toolchains["@rules_sh//sh/posix:toolchain_type"] exe_name = ctx.attr.exe_name if ctx.attr.exe_name else hs.label.name user_compile_flags = _expand_make_variables("compiler_flags", ctx, ctx.attr.compiler_flags) cabal = _find_cabal(hs, ctx.files.srcs) setup = _find_setup(hs, cabal, ctx.files.srcs) package_database = hs.actions.declare_file( "_install/{}.conf.d/package.cache".format(hs.label.name), sibling = cabal, ) binary = hs.actions.declare_file( "_install/bin/{name}{ext}".format( name = exe_name, ext = ".exe" if hs.toolchain.is_windows else "", ), sibling = cabal, ) data_dir = hs.actions.declare_directory( "_install/{}_data".format(hs.label.name), sibling = cabal, ) (tool_inputs, tool_input_manifests) = ctx.resolve_tools(tools = ctx.attr.tools) c = _prepare_cabal_inputs( hs, cc, posix, dep_info, cc_info, direct_cc_info, component = "exe:{}".format(exe_name), package_id = hs.label.name, tool_inputs = tool_inputs, tool_input_manifests = tool_input_manifests, cabal = cabal, setup = setup, setup_deps = setup_deps, setup_dep_info = setup_dep_info, srcs = ctx.files.srcs, compiler_flags = user_compile_flags, flags = ctx.attr.flags, generate_haddock = False, cabal_wrapper = ctx.executable._cabal_wrapper, package_database = package_database, verbose = ctx.attr.verbose, dynamic_binary = binary, transitive_haddocks = _gather_transitive_haddocks(ctx.attr.deps), ) ctx.actions.run( executable = c.cabal_wrapper, arguments = [c.args], inputs = c.inputs, input_manifests = c.input_manifests, outputs = [ package_database, binary, data_dir, ], tools = [c.cabal_wrapper], env = c.env, mnemonic = "HaskellCabalBinary", progress_message = "HaskellCabalBinary {}".format(hs.label), ) hs_info = HaskellInfo( package_databases = dep_info.package_databases, version_macros = set.empty(), source_files = depset(), extra_source_files = depset(), import_dirs = set.empty(), hs_libraries = dep_info.hs_libraries, interface_dirs = dep_info.interface_dirs, compile_flags = [], ) default_info = DefaultInfo( files = depset([binary]), executable = binary, runfiles = ctx.runfiles( files = [data_dir], transitive_files = c.runfiles, collect_default = True, ), ) return [hs_info, cc_info, default_info] haskell_cabal_binary = rule( _haskell_cabal_binary_impl, executable = True, attrs = { "exe_name": attr.string( doc = "Cabal executable component name. Defaults to the value of the name attribute.", ), "srcs": attr.label_list( allow_files = True, doc = "All files required to build the package, including the Cabal file.", ), "deps": attr.label_list( aspects = [haskell_cc_libraries_aspect], doc = "Package build dependencies. Note, setup dependencies need to be declared separately using `setup_deps`.", ), "setup_deps": attr.label_list( aspects = [haskell_cc_libraries_aspect], doc = "Dependencies for custom setup Setup.hs.", ), "compiler_flags": attr.string_list( doc = """Flags to pass to Haskell compiler, in addition to those defined the cabal file. Subject to Make variable substitution.""", ), "tools": attr.label_list( cfg = "host", doc = """Tool dependencies. They are built using the host configuration, since the tools are executed as part of the build.""", ), "flags": attr.string_list( doc = "List of Cabal flags, will be passed to `Setup.hs configure --flags=...`.", ), "_cabal_wrapper": attr.label( executable = True, cfg = "host", default = Label("@rules_haskell//haskell:cabal_wrapper"), ), "_cc_toolchain": attr.label( default = Label("@bazel_tools//tools/cpp:current_cc_toolchain"), ), "verbose": attr.bool( default = True, doc = "Whether to show the output of the build", ), }, toolchains = [ "@bazel_tools//tools/cpp:toolchain_type", "@rules_haskell//haskell:toolchain", "@rules_sh//sh/posix:toolchain_type", ], fragments = ["cpp"], doc = """\ Use Cabal to build a binary. ### Examples ```bzl haskell_cabal_binary( name = "happy", srcs = glob(["**"]), ) ``` This rule assumes that the .cabal file defines a single executable with the same name as the package. This rule does not use `cabal-install`. It calls the package's `Setup.hs` script directly if one exists, or the default one if not. All sources files that would have been part of a Cabal sdist need to be listed in `srcs` (crucially, including the `.cabal` file). """, ) # Temporary hardcoded list of core libraries. This will no longer be # necessary once Stack 2.0 is released. # # TODO remove this list and replace it with Stack's --global-hints # mechanism. _CORE_PACKAGES = [ "Cabal", "array", "base", "binary", "bytestring", "containers", "deepseq", "directory", "filepath", "ghc", "ghc-boot", "ghc-boot-th", "ghc-compact", "ghc-heap", "ghc-prim", "ghci", "haskeline", "hpc", "integer-gmp", "integer-simple", "libiserv", "mtl", "parsec", "pretty", "process", "rts", "stm", "template-haskell", "terminfo", "text", "time", "transformers", "unix", "Win32", "xhtml", ] _STACK_DEFAULT_VERSION = "2.3.1" # Only ever need one version, but use same structure as for GHC bindists. _STACK_BINDISTS = \ { "2.3.1": { "linux-x86_64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.3.1/stack-2.3.1-linux-x86_64-static.tar.gz", "4bae8830b2614dddf3638a6d1a7bbbc3a5a833d05b2128eae37467841ac30e47", ), "osx-x86_64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.3.1/stack-2.3.1-osx-x86_64.tar.gz", "73eee7e5f24d11fd0af00cb05f16119e86be5d578c35083250e6b85ed1ca3621", ), "windows-x86_64": ( "https://github.com/commercialhaskell/stack/releases/download/v2.3.1/stack-2.3.1-windows-x86_64.tar.gz", "440588c92ffcb42b88fd6455dc68728dae9b08bdd1a683d1cf5f80aa9aa8b014", ), }, } def _stack_version_check(repository_ctx, stack_cmd): """Returns False if version not recent enough.""" exec_result = _execute_or_fail_loudly(repository_ctx, [stack_cmd, "--numeric-version"]) stack_major_version = int(exec_result.stdout.split(".")[0]) return stack_major_version >= 2 def _parse_components(package, components): """Parse and validate a list of Cabal components. Components take the following shape: * `lib`: The library component. * `lib:<package>`: The library component. * `exe`: The executable component `exe:<package>`. * `exe:<name>`: An executable component. Args: package: string, The package name. components: list of string, The Cabal components Returns: struct(lib, exe): lib: bool, Whether the package has a library component. exe: list of string, List of executables. """ lib = False exe = [] for component in components: if component == "lib": lib = True elif component.startswith("lib:"): if component == "lib:%s" % package: lib = True else: fail("Sublibrary components are not supported: %s in %s" % (component, package), "components") elif component == "exe": exe.append(package) elif component.startswith("exe:"): exe.append(component[4:]) elif component.startswith("test"): fail("Cabal test components are not supported: %s in %s" % (component, package), "components") else: fail("Invalid Cabal
~ ('callcode', :gas, :addr, :wei, :fname, :fparams): fname = pretty_fname(fname, add_color=add_color) if type(addr) == int: addr = hex(addr) addr = prettify(addr, add_color = add_color) gas = prettify(gas, parentheses = False, add_color = add_color) fparams = pretty_memory(fparams, add_color = add_color) if fname is not None: if type(fname) == str: fname = pretty_fname(fname, add_color = add_color) yield f"{COLOR_WARNING}codecall{ENDC} {addr}.{fname} with:" else: yield f"{COLOR_WARNING}codecall{ENDC} {addr} with:" yield " funct " + prettify(fname, add_color=add_color) else: yield f"{COLOR_WARNING}codecall{ENDC} {addr} with:" if wei != 0: wei = prettify(wei, parentheses=False, add_color=add_color) yield f" value {wei} {COLOR_GRAY}wei{ENDC}" yield f" gas {gas} {COLOR_GRAY}wei{ENDC}" if fparams is not None: yield " args {}".format(', '.join(fparams)) elif r ~ ('delegatecall', :gas, :addr, :fname, :fparams): fname = pretty_fname(fname, add_color=add_color) if type(addr) == int: addr = hex(addr) addr = prettify(addr, add_color = add_color) gas = prettify(gas, parentheses = False, add_color = add_color) fparams = pretty_memory(fparams, add_color = add_color) if fname is not None: if type(fname) == str: fname = pretty_fname(fname, add_color = add_color) yield f"{COLOR_WARNING}delegate{ENDC} {addr}.{fname} with:" else: yield f"{COLOR_WARNING}delegate{ENDC} {addr} with:" yield " funct " + prettify(fname, add_color=add_color) else: yield f"{COLOR_WARNING}delegate{ENDC} {addr} with:" yield f" gas {gas} {COLOR_GRAY}wei{ENDC}" if fparams is not None: yield " args {}".format(', '.join(fparams)) elif r ~ ('selfdestruct', :addr): yield col('selfdestruct(', COLOR_WARNING)+col(pret(addr, add_color=False, parentheses=False), FAIL)+col(')', COLOR_WARNING) elif r ~ ('precompiled', :var_name, :func_name, :params): yield "{} = {}({}) {}".format(col(var_name, COLOR_BLUE), func_name, prettify(params, add_color=add_color, parentheses=False), COLOR_GRAY+'# precompiled'+ENDC) elif r ~ ('create', :wei, :code): yield f"create contract with {wei} wei" yield f" code: {prettify(code)}" elif r ~ ('create2', :wei, :code, :salt): yield f"create2 contract with {wei} wei" yield f" salt: {prettify(salt)}" yield f" code: {prettify(code)}" elif r ~ ('call', :gas, :addr, :wei, :fname, :fparams): if type(addr) == int: if len(hex(addr)) > 22+2: addr = padded_hex(addr, 40) # todo: padded hex else: addr = hex(addr) # if it's longer, padded hex returns '???' addr = pret(addr) gas = pretty_gas(gas, wei, add_color) if fname is None: yield f"call {addr} with:" else: fname = pretty_fname(fname, add_color=add_color) if fname == '0x0': yield f"call {addr} with:" elif type(fname) == str: yield f"call {addr}.{pret(fname)} with:" else: yield f"call {addr} with:" yield f" funct {pret(fname)}" if wei != 0: wei = prettify(wei, parentheses=False, add_color=add_color) yield f" value {wei} {COLOR_GRAY}wei{ENDC}" yield f" gas {gas} {COLOR_GRAY}wei{ENDC}" if fparams is not None: fparams = pretty_memory(fparams, add_color=add_color) yield " args {}".format(', '.join(fparams)) elif r ~ ('staticcall', :gas, :addr, :wei, :fname, :fparams): if type(addr) == int: addr = hex(addr) addr = prettify(addr, add_color=add_color, parentheses=False) gas = pretty_gas(gas, wei, add_color) if fname is not None: fanme = fname fname = pretty_fname(fname, add_color=add_color) if fname == '0x0': yield f"static call {addr} with:" elif type(fname) == str and fname != '0x0': yield f"static call {addr}.{pret(fname)} with:" else: yield f"static call {addr} with:" yield f" funct {pret(fname)}" else: yield f"static call {addr} with:" yield f" gas {gas} {COLOR_GRAY}wei{ENDC}" if fparams is not None: fparams = pretty_memory(fparams, add_color=add_color) yield " args {}".format(', '.join(fparams)) elif r ~ ('label', :name, :setvars): yield COLOR_GREEN + f'loop {str(name)} setvars: {str(setvars)}' + ENDC elif r ~ ('goto', *rest): yield COLOR_GREEN + f'continue {str(rest)}'+ENDC elif r ~ ('continue', :jd, :setvars): for v in setvars: yield str(list(pretty_line(v, add_color=True))[0]) yield COLOR_GREEN + 'continue ' + ENDC # +str(jd)+ENDC elif r ~ ('setvar', ...): yield prettify(r, add_color=add_color) elif r ~ ('setmem', ...): yield prettify(r, add_color=add_color) elif r ~ ('set', :idx, :val): if val ~ ('add', int:v, idx): assert v != 0 if v == -1: yield prettify(idx, add_color=add_color) + '--' elif v == 1: yield prettify(idx, add_color=add_color) + '++' elif v < 0: yield prettify(idx, add_color=add_color) + ' -= ' + prettify(-v, add_color=add_color, parentheses=False) else: yield prettify(idx, add_color=add_color) + ' += ' + prettify(v, add_color=add_color, parentheses=False) elif val ~ ('add', idx, ('mul', -1, :v)): yield prettify(idx, add_color=add_color) + ' -= ' + prettify(v, add_color=add_color, parentheses=False) elif val ~ ('add', idx, :v): yield prettify(idx, add_color=add_color) + ' += ' + prettify(v, add_color=add_color, parentheses=False) elif val ~ ('add', ('mul', -1, :v), idx): yield prettify(idx, add_color=add_color) + ' -= ' + prettify(v, add_color=add_color, parentheses=False) elif val ~ ('add', :v, idx): yield prettify(idx, add_color=add_color) + ' += ' + prettify(v, add_color=add_color, parentheses=False) else: yield prettify(idx, add_color=add_color) + ' = ' + prettify(val, add_color=add_color, parentheses=False) elif r ~ ('stop', ...): yield 'stop' elif r ~ ('undefined', *params): yield COLOR_WARNING + '...' + ENDC + COLOR_GRAY + f' # unusual jump {params}, couldn\'t decompile, sorry' + ENDC elif r ~ ('invalid', *rest): if len(rest) > 0: yield "revert "# + COLOR_GRAY + f"# {rest}" + ENDC else: yield "revert" elif r ~ ('invalid', ...): yield "revert " + (COLOR_GRAY + f"# {rest}" + ENDC) elif (r ~ ('revert', 0)) or \ (r ~ ('revert', ('mem', 0, 0))): yield "revert" elif r ~ (:op, ('mem', ('range', :mem_idx, :mem_len))) and \ op in ('revert', 'return'): if op == 'revert': yield 'revert with memory' else: yield op + ' memory' if len ~ ('sub', :mem_until, mem_idx): yield f" from {pret(mem_idx)}" yield f" to {pret(mem_until)}" else: yield " from " + pret(mem_idx) yield " " + col('len', COLOR_WARNING) + " " + pret(mem_len) elif r ~ (:op, :param) and op in ('return', 'revert'): if op == 'revert': op = 'revert with' res_mem = pretty_memory(param, add_color=True) ret_val = ', '.join(res_mem) if len(clean_color(ret_val)) < 120 or opcode(param) != 'data': yield f'{op} {ret_val}' else: # split long returns into lines. e.g. kitties.getKitten, or kitties.tokenMetadata # yield str(len(ret_val)) res_mem = list(res_mem) if res_mem[0] == '32': res_mem.pop(0) res_mem[0] = '32, ' + res_mem[0] # happens often, this is probably an array structure, # and sole `32` in first line looks ugly yield f'{op} {res_mem[0]}, ' for idx, l in enumerate(res_mem[1:]): yield ' '*len(op) + ' ' + l + (',' if idx != len(res_mem) - 2 else '') # assert op == 'revert' # yield "{} with {}".format(op, ret_val) # adding 'with' to make it more readable elif r ~ ('store', :size, :off, :idx, :val): stor_addr = prettify(('stor', size, off, idx), add_color=add_color) stor_val = prettify(val, add_color=add_color, parentheses=False) yield "{} = {}".format(stor_addr, stor_val) elif type(r) == list and len(r) > 1: yield "{} {}".format(r[0], ', '.join([prettify(x, True, False, add_color = add_color) for x in r[1:]])) elif type(r) == list: yield str(r[0]) else: yield str(r) def pretty_type(t): if t ~ ('def', :name, :loc, ('mask', :size, :off)): return pretty_type(('def', name, loc, size)) + COLOR_GRAY + (f' offset {off}' if off > 0 else '') + ENDC elif t ~ ('def', :name, :loc, :bts): if type(loc) == int and loc > 1000: loc = hex(loc) return f' {COLOR_GREEN}{name}{ENDC} is {pretty_type(bts)} {COLOR_GRAY}at storage {loc}{ENDC}' elif t ~ ('struct', 1): return 'struct' elif t == 'struct': return 'struct' elif t ~ ('struct', int:num): return f'struct {num} bytes' elif t ~ ('array', :bts): return f'array of '+pretty_type(bts) elif t ~ ('mapping', :bts): return f'mapping of '+pretty_type(bts) elif type(t) == int: return mask_to_type(t, force=True) else: assert False, f'unknown type {t}' def pretty_stor(exp, add_color=True): col = partial(colorize, color=COLOR_GREEN, add_color=add_color) stor = partial(pretty_stor, add_color=add_color) pret = partial(prettify, parentheses=False, add_color=add_color) if exp ~ ('stor', ('length', :idx)): return stor(idx) + col('.length') if exp ~ ('loc', :loc): return col(f'stor_l{loc}') if exp ~ ('name', :name, :loc): return col(name) # if exp ~ ('stor', (:op, :param)) and op in ('loc', 'name'): # with top-level fields, it's just a different stor # variable. with lower-level we treat it as a struct # return stor((op, param)) if exp ~ ('stor', :loc): # with top-level fields, it's just a different stor # variable. with lower-level we treat it as a struct return stor(loc) if exp ~ ('field', :off, :loc): return stor(loc) + col(f'.field_{pret(off, add_color=False)}') if exp ~ ('type', :size, :loc): if size == 256: # prettify removes 256 masks by default, force it return col('uint256(', color=COLOR_GRAY) + stor(loc) + col(')', color=COLOR_GRAY) else: return pret(('mask', size, 0, stor(loc))) def pr_idx(idx): if idx ~ ('data', *terms): return col('][').join([pret(t) for t in terms]) else: return pret(idx) if exp ~ ('map', :idx,
from directory_constants.constants import cms from django.forms import Textarea, CheckboxSelectMultiple from django.utils.text import slugify from modelcluster.fields import ParentalManyToManyField from wagtail.admin.edit_handlers import ( HelpPanel, FieldPanel, FieldRowPanel, MultiFieldPanel, PageChooserPanel ) from wagtail.images.edit_handlers import ImageChooserPanel from django.db import models from core.model_fields import MarkdownField from core.models import ( BasePage, ExclusivePageMixin, ServiceMixin, ) from core.panels import SearchEngineOptimisationPanel from export_readiness.models import Tag class GreatInternationalApp(ExclusivePageMixin, ServiceMixin, BasePage): slug_identity = 'great-international-app' service_name_value = cms.GREAT_INTERNATIONAL @classmethod def get_required_translatable_fields(cls): return [] @classmethod def allowed_subpage_models(cls): return [InternationalArticleListingPage, InternationalTopicLandingPage, InternationalCuratedTopicLandingPage, InternationalRegionPage, InternationalHomePage] class InternationalSectorPage(BasePage): service_name_value = cms.GREAT_INTERNATIONAL parent_page_types = ['great_international.InternationalTopicLandingPage'] subpage_types = [] tags = ParentalManyToManyField(Tag, blank=True) heading = models.CharField(max_length=255, verbose_name='Sector name') sub_heading = models.CharField(max_length=255, blank=True) hero_image = models.ForeignKey( 'wagtailimages.Image', null=True, on_delete=models.SET_NULL, related_name='+' ) heading_teaser = models.TextField(blank=True, verbose_name='Introduction') section_one_body = MarkdownField( null=True, verbose_name='3 unique selling points markdown' ) section_one_image = models.ForeignKey( 'wagtailimages.Image', null=True, on_delete=models.SET_NULL, related_name='+', verbose_name='Image for unique selling points' ) section_one_image_caption = models.CharField( max_length=255, blank=True, verbose_name='Image caption') section_one_image_caption_company = models.CharField( max_length=255, blank=True, verbose_name='Image caption attribution') statistic_1_number = models.CharField(max_length=255) statistic_1_heading = models.CharField(max_length=255) statistic_1_smallprint = models.CharField(max_length=255, blank=True) statistic_2_number = models.CharField(max_length=255) statistic_2_heading = models.CharField(max_length=255) statistic_2_smallprint = models.CharField(max_length=255, blank=True) statistic_3_number = models.CharField(max_length=255, blank=True) statistic_3_heading = models.CharField(max_length=255, blank=True) statistic_3_smallprint = models.CharField(max_length=255, blank=True) statistic_4_number = models.CharField(max_length=255, blank=True) statistic_4_heading = models.CharField(max_length=255, blank=True) statistic_4_smallprint = models.CharField(max_length=255, blank=True) statistic_5_number = models.CharField(max_length=255, blank=True) statistic_5_heading = models.CharField(max_length=255, blank=True) statistic_5_smallprint = models.CharField(max_length=255, blank=True) statistic_6_number = models.CharField(max_length=255, blank=True) statistic_6_heading = models.CharField(max_length=255, blank=True) statistic_6_smallprint = models.CharField(max_length=255, blank=True) section_two_heading = models.CharField( max_length=255, verbose_name='Spotlight' ) section_two_teaser = models.TextField( verbose_name='Spotlight summary' ) section_two_subsection_one_icon = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', verbose_name='Spotlight 1 icon' ) section_two_subsection_one_heading = models.CharField( max_length=255, verbose_name='Spotlight 1 heading' ) section_two_subsection_one_body = models.TextField( verbose_name='Spotlight 1 body' ) section_two_subsection_two_icon = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', verbose_name='Spotlight 2 icon' ) section_two_subsection_two_heading = models.CharField( max_length=255, verbose_name='Spotlight 2 heading' ) section_two_subsection_two_body = models.TextField( verbose_name='Spotlight 2 body' ) section_two_subsection_three_icon = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', verbose_name='Spotlight 3 icon' ) section_two_subsection_three_heading = models.CharField( max_length=255, verbose_name='Spotlight 3 heading' ) section_two_subsection_three_body = models.TextField( verbose_name='Spotlight 3 body' ) case_study_title = models.CharField(max_length=255, blank=True) case_study_description = models.CharField(max_length=255, blank=True) case_study_cta_text = models.TextField( blank=True, verbose_name='Case study link text' ) case_study_cta_page = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', verbose_name='Case study link URL' ) case_study_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) section_three_heading = models.CharField( max_length=255, blank=True, verbose_name='Fact sheets heading' ) section_three_teaser = models.TextField( blank=True, verbose_name='Fact sheets teaser' ) section_three_subsection_one_heading = models.CharField( max_length=255, blank=True, verbose_name='Fact sheet 1 heading' ) section_three_subsection_one_teaser = models.TextField( blank=True, verbose_name='Fact sheet 1 teaser' ) section_three_subsection_one_body = MarkdownField( blank=True, null=True, verbose_name='Fact sheet 1 body' ) section_three_subsection_two_heading = models.CharField( max_length=255, blank=True, verbose_name='Fact sheet 2 heading' ) section_three_subsection_two_teaser = models.TextField( blank=True, verbose_name='Fact sheet 2 teaser' ) section_three_subsection_two_body = MarkdownField( blank=True, null=True, verbose_name='Fact sheet 2 body' ) related_page_one = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) related_page_two = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) related_page_three = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) content_panels = [ MultiFieldPanel( heading='Heading', children=[ FieldPanel('heading'), FieldPanel('sub_heading'), ImageChooserPanel('hero_image'), FieldPanel('heading_teaser') ] ), MultiFieldPanel( heading='Unique selling points', children=[ HelpPanel( 'Use H2 (##) markdown for the three subheadings'), FieldRowPanel( [ FieldPanel('section_one_body'), MultiFieldPanel( [ ImageChooserPanel('section_one_image'), FieldPanel('section_one_image_caption'), FieldPanel('section_one_image_caption_company') ] ) ] ) ] ), MultiFieldPanel( heading='Statistics', children=[ FieldRowPanel( [ MultiFieldPanel( [ FieldPanel('statistic_1_number'), FieldPanel('statistic_1_heading'), FieldPanel('statistic_1_smallprint') ] ), MultiFieldPanel( [ FieldPanel('statistic_2_number'), FieldPanel('statistic_2_heading'), FieldPanel('statistic_2_smallprint') ] ), MultiFieldPanel( [ FieldPanel('statistic_3_number'), FieldPanel('statistic_3_heading'), FieldPanel('statistic_3_smallprint') ] ), MultiFieldPanel( [ FieldPanel('statistic_4_number'), FieldPanel('statistic_4_heading'), FieldPanel('statistic_4_smallprint') ] ), MultiFieldPanel( [ FieldPanel('statistic_5_number'), FieldPanel('statistic_5_heading'), FieldPanel('statistic_5_smallprint') ] ), MultiFieldPanel( [ FieldPanel('statistic_6_number'), FieldPanel('statistic_6_heading'), FieldPanel('statistic_6_smallprint') ] ), ] ) ] ), MultiFieldPanel( heading='Spotlight', children=[ FieldPanel('section_two_heading'), FieldPanel('section_two_teaser'), FieldRowPanel( [ MultiFieldPanel( [ ImageChooserPanel( 'section_two_subsection_one_icon'), FieldPanel( 'section_two_subsection_one_heading'), FieldPanel( 'section_two_subsection_one_body') ] ), MultiFieldPanel( [ ImageChooserPanel( 'section_two_subsection_two_icon'), FieldPanel( 'section_two_subsection_two_heading'), FieldPanel( 'section_two_subsection_two_body') ] ), MultiFieldPanel( [ ImageChooserPanel( 'section_two_subsection_three_icon'), FieldPanel( 'section_two_subsection_three_heading'), FieldPanel( 'section_two_subsection_three_body') ] ) ] ) ] ), MultiFieldPanel( heading='Case Study', classname='collapsible', children=[ FieldPanel('case_study_title'), FieldPanel('case_study_description'), FieldPanel('case_study_cta_text'), PageChooserPanel( 'case_study_cta_page', [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ]), ImageChooserPanel('case_study_image') ] ), MultiFieldPanel( heading='Fact Sheets', classname='collapsible collapsed', children=[ FieldPanel('section_three_heading'), FieldPanel('section_three_teaser'), FieldRowPanel( [ MultiFieldPanel( [ FieldPanel( 'section_three_subsection_one_heading'), FieldPanel( 'section_three_subsection_one_teaser'), HelpPanel( 'For accessibility reasons, use only ' '"#### [Your text here]" for subheadings ' 'in this markdown field'), FieldPanel( 'section_three_subsection_one_body') ] ), MultiFieldPanel( [ FieldPanel( 'section_three_subsection_two_heading'), FieldPanel( 'section_three_subsection_two_teaser'), HelpPanel( 'For accessibility reasons, use only ' '"#### [Your text here]" for subheadings ' 'in this markdown field'), FieldPanel( 'section_three_subsection_two_body') ] ) ] ) ] ), MultiFieldPanel( heading='Related articles', children=[ FieldRowPanel([ PageChooserPanel( 'related_page_one', [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ]), PageChooserPanel( 'related_page_two', [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ]), PageChooserPanel( 'related_page_three', [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ]), ]) ] ), SearchEngineOptimisationPanel() ] settings_panels = [ FieldPanel('title_en_gb'), FieldPanel('slug'), FieldPanel('tags', widget=CheckboxSelectMultiple) ] class InternationalHomePage(ExclusivePageMixin, BasePage): service_name_value = cms.GREAT_INTERNATIONAL slug_identity = cms.GREAT_HOME_INTERNATIONAL_SLUG subpage_types = [] tariffs_title = models.CharField(max_length=255) tariffs_description = MarkdownField() tariffs_link = models.URLField() tariffs_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) news_title = models.CharField(max_length=255) related_page_one = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) related_page_two = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) related_page_three = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) content_panels = [ MultiFieldPanel( heading='Tariffs', children=[ FieldPanel('tariffs_title'), FieldPanel('tariffs_description'), FieldPanel('tariffs_link'), ImageChooserPanel('tariffs_image') ] ), MultiFieldPanel( heading='News section', children=[ FieldPanel('news_title'), FieldRowPanel([ PageChooserPanel( 'related_page_one', [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ]), PageChooserPanel( 'related_page_two', [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ]), PageChooserPanel( 'related_page_three', [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ]), ]) ] ), SearchEngineOptimisationPanel(), ] settings_panels = [ FieldPanel('title_en_gb'), FieldPanel('slug'), ] class InternationalRegionPage(BasePage): service_name_value = cms.GREAT_INTERNATIONAL parent_page_types = ['great_international.GreatInternationalApp'] subpage_types = [ 'great_international.InternationalLocalisedFolderPage' ] tags = ParentalManyToManyField(Tag, blank=True) settings_panels = [ FieldPanel('title_en_gb'), FieldPanel('slug'), FieldPanel('tags', widget=CheckboxSelectMultiple) ] def save(self, *args, **kwargs): return super().save(*args, **kwargs) class InternationalLocalisedFolderPage(BasePage): service_name_value = cms.GREAT_INTERNATIONAL parent_page_types = ['great_international.InternationalRegionPage'] subpage_types = [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage' ] settings_panels = [ FieldPanel('title_en_gb'), FieldPanel('slug'), ] def save(self, *args, **kwargs): if self.pk is None: self.slug = slugify(f'{self.slug}-{self.get_parent().slug}') return super().save(*args, **kwargs) class InternationalArticlePage(BasePage): service_name_value = cms.GREAT_INTERNATIONAL parent_page_types = [ 'great_international.InternationalArticleListingPage', 'great_international.InternationalCampaignPage', 'great_international.InternationalLocalisedFolderPage', 'great_international.InternationalCuratedTopicLandingPage', 'great_international.InternationalGuideLandingPage', ] subpage_types = [] article_title = models.CharField(max_length=255) article_teaser = models.CharField(max_length=255) article_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) article_body_text = MarkdownField() related_page_one = models.ForeignKey( 'great_international.InternationalArticlePage', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) related_page_two = models.ForeignKey( 'great_international.InternationalArticlePage', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) related_page_three = models.ForeignKey( 'great_international.InternationalArticlePage', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) tags = ParentalManyToManyField(Tag, blank=True) content_panels = [ FieldPanel('article_title'), MultiFieldPanel( heading='Article content', children=[ FieldPanel('article_teaser'), ImageChooserPanel('article_image'), FieldPanel('article_body_text') ] ), MultiFieldPanel( heading='Related articles', children=[ FieldRowPanel([ PageChooserPanel( 'related_page_one', 'great_international.InternationalArticlePage'), PageChooserPanel( 'related_page_two', 'great_international.InternationalArticlePage'), PageChooserPanel( 'related_page_three', 'great_international.InternationalArticlePage'), ]), ] ), SearchEngineOptimisationPanel(), ] settings_panels = [ FieldPanel('title_en_gb'), FieldPanel('slug'), FieldPanel('tags', widget=CheckboxSelectMultiple) ] class InternationalArticleListingPage(BasePage): service_name_value = cms.GREAT_INTERNATIONAL parent_page_types = [ 'great_international.GreatInternationalApp', 'great_international.InternationalTopicLandingPage' ] subpage_types = [ 'great_international.InternationalArticlePage', 'great_international.InternationalCampaignPage', ] landing_page_title = models.CharField(max_length=255) hero_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) hero_teaser = models.CharField(max_length=255, null=True, blank=True) list_teaser = MarkdownField(null=True, blank=True) tags = ParentalManyToManyField(Tag, blank=True) @property def articles_count(self): return self.get_descendants().type( InternationalArticlePage ).live().count() content_panels = [ FieldPanel('landing_page_title'), MultiFieldPanel( heading='Hero', children=[ ImageChooserPanel('hero_image'), FieldPanel('hero_teaser') ] ), FieldPanel('list_teaser'), SearchEngineOptimisationPanel(), ] settings_panels = [ FieldPanel('title_en_gb'), FieldPanel('slug'), FieldPanel('tags', widget=CheckboxSelectMultiple) ] class InternationalCampaignPage(BasePage): service_name_value = cms.GREAT_INTERNATIONAL parent_page_types = [ 'great_international.InternationalArticleListingPage', 'great_international.InternationalTopicLandingPage', 'great_international.InternationalLocalisedFolderPage' ] subpage_types = [ 'great_international.InternationalArticlePage' ] view_path = 'campaigns/' campaign_teaser = models.CharField(max_length=255, null=True, blank=True) campaign_heading = models.CharField(max_length=255) campaign_hero_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) section_one_heading = models.CharField(max_length=255) section_one_intro = MarkdownField() section_one_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) selling_point_one_icon = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) selling_point_one_heading = models.CharField(max_length=255) selling_point_one_content = MarkdownField() selling_point_two_icon = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) selling_point_two_heading = models.CharField( max_length=255, null=True, blank=True, ) selling_point_two_content = MarkdownField(null=True, blank=True) selling_point_three_icon = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) selling_point_three_heading = models.CharField( max_length=255, null=True, blank=True ) selling_point_three_content = MarkdownField(null=True, blank=True) section_one_contact_button_url = models.CharField( max_length=255, null=True, blank=True ) section_one_contact_button_text = models.CharField( max_length=255, null=True, blank=True ) section_two_heading = models.CharField(max_length=255) section_two_intro = MarkdownField() section_two_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) section_two_contact_button_url = models.CharField( max_length=255, null=True, blank=True ) section_two_contact_button_text = models.CharField( max_length=255, null=True, blank=True ) related_content_heading = models.CharField(max_length=255) related_content_intro = MarkdownField() related_page_one = models.ForeignKey( 'great_international.InternationalArticlePage', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) related_page_two = models.ForeignKey( 'great_international.InternationalArticlePage', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) related_page_three = models.ForeignKey( 'great_international.InternationalArticlePage', null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) cta_box_message = models.CharField(max_length=255) cta_box_button_url = models.CharField(max_length=255) cta_box_button_text = models.CharField(max_length=255) tags = ParentalManyToManyField(Tag, blank=True) content_panels = [ MultiFieldPanel( heading='Hero section', children=[ FieldPanel('campaign_heading'), FieldPanel('campaign_teaser'), ImageChooserPanel('campaign_hero_image'), ] ), MultiFieldPanel( heading='Section one', children=[ FieldPanel('section_one_heading'), FieldPanel('section_one_intro'), ImageChooserPanel('section_one_image'), FieldRowPanel([ MultiFieldPanel( children=[ ImageChooserPanel('selling_point_one_icon'), FieldPanel('selling_point_one_heading'), FieldPanel('selling_point_one_content'), ] ), MultiFieldPanel( children=[ ImageChooserPanel('selling_point_two_icon'), FieldPanel('selling_point_two_heading'), FieldPanel('selling_point_two_content'), ] ), MultiFieldPanel( children=[ ImageChooserPanel('selling_point_three_icon'), FieldPanel('selling_point_three_heading'), FieldPanel('selling_point_three_content'), ] ), ]), FieldRowPanel([ FieldPanel('section_one_contact_button_text'),
graphical simulation interface ######################################################### def draw(self,dc,transform,px,py): c = self.properties.get('color','blue') dc.SetPen(wx.Pen(c,1,wx.SOLID)) dc.SetBrush(wx.Brush(c)) radius = transform[0]/16 dc.DrawCircle(px,py,radius) def draw_on_link(self,dc,transform,n1,n2): px = n1[0] + int(0.2*(n2[0] - n1[0])) py = n1[1] + int(0.2*(n2[1] - n1[1])) self.draw(dc,transform,px,py) def nearby(self,pos,n1,n2): px = n1[0] + 0.2*(n2[0] - n1[0]) py = n1[1] + 0.2*(n2[1] - n1[1]) dx = px - pos[0] dy = py - pos[1] if abs(dx) < .1 and abs(dy) < .1: return self.status() else: return None def status(self): return self.__repr__() ################################################################################ # # Network -- a collection of network nodes, links and packets # # Network.make_node(loc,address=None) -- make a new network node # Network.add_node(x,y,address=None) -- add a new node at specified location # Network.find_node(x,y) -- return node at given location # Network.map_node(f,default=0) -- see below # Network.make_link(n1,n2) -- make a new link between n1 and n2 # Network.add_link(x1,y2,x2,y2) -- add link between specified nodes # # Network.make_packet(src,dst,type,start,**props) -- make a new packet # Network.duplicate_packet(p) -- duplicate a packet # # Network.reset() -- initialize network state # Network.step(count=1) -- simulate count timesteps # ################################################################################ class Network: def __init__(self,simtime): self.nodes = {} self.addresses = {} self.nlist = [] self.links = [] self.time = 0 self.pending = 0 self.packets = [] self.npackets = 0 self.max_x = 0 self.max_y = 0 self.simtime = simtime self.playstep = 1.0 # 1 second play step by default self.numnodes = 0 # TBD # override to make your own type of node def make_node(self,loc,address=None): return Node(loc,address=address) # add a node to the network def add_node(self,x,y,address=None): n = self.find_node(x,y) if n is None: n = self.make_node((x,y),address=address) n.network = self if address is not None: self.addresses[address] = n self.nlist.append(n) ynodes = self.nodes.get(x,{}) ynodes[y] = n self.nodes[x] = ynodes self.max_x = max(self.max_x,x) self.max_y = max(self.max_y,y) return n def set_nodes(self,n): self.numnodes = n # locate a node given its location def find_node(self,x,y): ynodes = self.nodes.get(x,None) if ynodes is not None: return ynodes.get(y,None) return None # apply f to each network node in top-to-bottom, left-to-right # order. Returns list of return values (default value is used # if a particular grid point doesn't contain a node). Useful # for gathering statistical data that can be processed by Matlab. def map_node(self,f,default=0): result = [] for row in xrange(self.max_y+1): for col in xrange(self.max_x+1): node = self.find_node(row,col) if node: result.append(f(node)) else: result.append(default) return result # override to make your own type of link def make_link(self,n1,n2): return Link(n1,n2) # add a link between nodes at the specified locations def add_link(self,x1,y1,x2,y2): n1 = self.find_node(x1,y1) n2 = self.find_node(x2,y2) if n1 is not None and n2 is not None: link = self.make_link(n1,n2) link.network = self self.links.append(link) # override to make your own type of packet def make_packet(self,src,dest,type,start,**props): p = Packet(src,dest,type,start,**props) p.network = self self.packets.append(p) self.npackets += 1 return p # duplicate existing packet def duplicate_packet(self,old): return self.make_packet(old.source,old.destination,old.type,self.time, **old.properties) # compute manhattan distance between two nodes def manhattan_distance(self,n1,n2): dx = n1[0] - n2[0] dy = n1[1] - n2[1] return abs(dx) + abs(dy) # return network to initial state def reset(self): for n in self.nlist: n.reset() self.time = 0 self.pending = 0 self.packets = [] self.npackets = 0 self.pending = 1 # ensure at least simulation step # simulate network one timestep at a time. At each timestep # each node processes one packet from each of its incoming links def step(self,count=1): stop_time = self.time + count while self.time < stop_time and self.pending > 0: # phase 1: nodes collect one packet from each link for n in self.nlist: n.phase1() # phase 2: nodes process collected packets, perhaps sending # some to outgoing links. Also nodes can originate packets # of their own. self.pending = 0 for n in self.nlist: self.pending += n.phase2(self.time) # increment time self.time += 1 return self.pending ######################################################### # support for graphical simulation interface ######################################################### def draw(self,dc,transform): # draw links for link in self.links: link.draw(dc,transform) # draw nodes for node in self.nlist: node.draw(dc,transform) def click(self,pos,which): for node in self.nlist: if node.click(pos,which): return True else: for link in self.links: if link.click(pos,which): return True return False def status(self,statusbar,pos): for node in self.nlist: msg = node.nearby(pos) if msg: break else: for link in self.links: msg = link.nearby(pos) if msg: break else: msg = '' statusbar.SetFieldsCount(4) statusbar.SetStatusWidths([80,80,80,-1]) statusbar.SetStatusText('Time: %d' % self.time, 0) statusbar.SetStatusText('Pending: %s' % self.pending, 1) statusbar.SetStatusText('Total: %s' % self.npackets, 2) statusbar.SetStatusText('Status: %s' % msg, 3) grid_node_names = ['alpha', 'bravo', 'charlie', 'delta', 'echo', 'foxtrot', 'golf', 'hotel', 'india', 'juliet', 'kilo', 'lima', 'mike', 'november', 'oscar', 'papa', 'quebec', 'romeo', 'sierra', 'tango', 'uniform', 'victor', 'whiskey', 'xray', 'yankee', 'zulu'] class GridNetwork(Network): # make a grid network of specified size def __init__(self,nrows,ncols): Network.__init__(self) # make a manhattan grid of nodes for r in xrange(nrows): for c in xrange(ncols): index = r*ncols + c addr = grid_node_names[index % len(grid_node_names)] if index >= len(grid_node_names): addr += str(index / len(grid_node_names)) self.add_node(r,c,address=addr) for r in xrange(nrows): # horizontal links first for c in xrange(ncols): if c > 0: self.add_link(r,c,r,c-1) # then vertical links for c in xrange(ncols): if r > 0: self.add_link(r,c,r-1,c) ################################################################################ # # NetSim -- a graphical front end for network simulations # ################################################################################ # convert from network to screen coords # transform = (scale,(xoffset,yoffset)) def net2screen(loc,transform): return (transform[1][0]+loc[0]*transform[0], transform[1][1]+loc[1]*transform[0]) # convert from screen to network coords # transform = (scale,(xoffset,yoffset)) def screen2net(loc,transform): return (float(loc[0]-transform[1][0])/transform[0], float(loc[1]-transform[1][1])/transform[0]) # is pt within distance of line between end1 and end2? def nearby(pt,end1,end2,distance): if end1[0] == end2[0]: # vertical wire if abs(pt[0] - end1[0]) > distance: return False y1 = min(end1[1],end2[1]) y2 = max(end1[1],end2[1]) return pt[1] >= y1 - distance and pt[1] <= y2 + distance elif end1[1] == end2[1]: # horizontal wire if abs(pt[1] - end1[1]) > distance: return False x1 = min(end1[0],end2[0]) x2 = max(end1[0],end2[0]) return pt[0] >= x1 - distance and pt[0] <= x2 + distance else: # non-manhattan wire # slope and intercept for line between end1 and end2 slope1 = float(end1[1] - end2[1])/(end1[0] - end2[0]) intercept1 = float(end1[1]) - slope1*end1[0] # slope and intercept for perpendicular line passing through pt slope2 = -1/slope1 intercept2 = float(pt[1]) - slope2*pt[0] # x coordinate of intersection of those two lines xi = (intercept2 - intercept1)/(slope1 - slope2) if xi < min(end1[0],end2[0]) or xi > max(end1[0],end2[0]): return False dx = pt[0] - xi; dy = pt[1] - (slope2*xi + intercept2) return (dx*dx) + (dy*dy) <= distance*distance # A panel that displays a network class NetPanel(wx.Panel): def __init__(self,parent,statusbar): wx.Panel.__init__(self,parent,-1,wx.DefaultPosition,(10,10)) self.SetBackgroundColour('white') self.SetMinSize((100,100)) self.statusbar = statusbar self.network = None self.setupBuffer = False self.redraw = False self.playmode = False self.lastplaytime = 0 self.transform = (2,(0,0)) self.SetupBuffer() self.Bind(wx.EVT_PAINT,self.OnPaint) self.Bind(wx.EVT_SIZE,self.OnSize) self.Bind(wx.EVT_IDLE,self.OnIdle) self.Bind(wx.EVT_MOTION,self.OnMotion) self.Bind(wx.EVT_LEFT_DOWN,self.OnLeftClick) def SetupBuffer(self): # use an off-screen drawing buffer to reduce flicker size = self.GetClientSize() self.buffer = wx.EmptyBitmap(size.width,size.height) self.setupBuffer = False self.redraw = True # fill up new buffer def OnSize(self,event): # wait until IDLE to actually do refresh just in case there # are multiple SIZE events in a row that we can roll into one self.setupBuffer = True def OnClick(self,event,which): pos = screen2net(event.GetPositionTuple(),self.transform) if self.network.click(pos,which): self.redraw = True def OnLeftClick(self,event): self.OnClick(event,'left') def OnMotion(self,event): pos = screen2net(event.GetPositionTuple(),self.transform) self.network.status(self.statusbar,pos) def OnIdle(self,event): if self.setupBuffer: # create a new drawing buffer self.SetupBuffer() if self.redraw: self.DrawNetwork() self.Refresh(False) self.redraw = False self.network.status(self.statusbar,(-10,-10)) if self.playmode == True: self.redraw = True curtime = time.clock() delta = curtime - self.lastplaytime if delta > self.network.playstep: if self.network.simtime > self.network.time: self.network.step(1) self.lastplaytime = curtime else: self.playmode = False event.RequestMore() def OnPaint(self,event): # just refresh the screen from our buffer dc = wx.BufferedPaintDC(self,self.buffer) def OnReset(self,event): self.network.reset() self.network.status(self.statusbar,(-10,-10)) self.redraw = True def OnStep(self,event): button = event.GetEventObject().GetLabel() arg = button[button.find(' '):] if arg == ' all': count = self.network.simtime-self.network.time else: count = int(arg) self.network.step(count=count) self.network.status(self.statusbar,(-10,-10)) self.redraw = True def OnPlay(self,event): self.playmode = True def OnPause(self,event): self.playmode = False def OnNNodes(self,event): nnodes = event.GetEventObject().GetValue() self.network.set_nodes(nnodes) self.redraw = True def OnExit(self,event): self.network.status(self.statusbar,(-10,-10)) self.redraw = True sys.exit(1) def DrawNetwork(self): # erase buffer dc = wx.BufferedDC(None,self.buffer) dc.SetBackground(wx.Brush(self.GetBackgroundColour())) dc.Clear() # compute grid size for network size = self.GetClientSize() netsize = (self.network.max_x+1,self.network.max_y+1) grid = min(size[0]/netsize[0],size[1]/netsize[1]) xoffset = (size[0] - (netsize[0]-1)*grid)/2 yoffset = (size[1] - (netsize[1]-1)*grid)/2 self.transform = (grid, (xoffset,yoffset)) self.network.draw(dc,self.transform) def SetNetwork(self,network): self.network = network self.network.reset() self.redraw = True class NetFrame(wx.Frame): def __init__(self,parent=None,id=-1,size=(1000,500), pos=wx.DefaultPosition,title='NetSim'): wx.Frame.__init__(self,parent,id,title,pos,size)
# This file contains methods to deal with criu images. # # According to http://criu.org/Images, criu images can be described # with such IOW: # # IMAGE_FILE ::= MAGIC { ENTRY } # ENTRY ::= SIZE PAYLOAD [ EXTRA ] # PAYLOAD ::= "message encoded in ProtocolBuffer format" # EXTRA ::= "arbitrary blob, depends on the PAYLOAD contents" # # MAGIC ::= "32 bit integer" # SIZE ::= "32 bit integer, equals the PAYLOAD length" # # Images v1.1 NOTE: MAGIC now consist of 2 32 bit integers, first one is # MAGIC_COMMON or MAGIC_SERVICE and the second one is same as MAGIC # in images V1.0. We don't keep "first" magic in json images. # # In order to convert images to human-readable format, we use dict(json). # Using json not only allows us to easily read\write images, but also # to use a great variety of tools out there to manipulate them. # It also allows us to clearly describe criu images structure. # # Using dict(json) format, criu images can be described like: # # { # 'magic' : 'FOO', # 'entries' : [ # entry, # ... # ] # } # # Entry, in its turn, could be described as: # # { # pb_msg, # 'extra' : extra_msg # } # import io import base64 import struct import os import array from . import magic from . import pb from . import pb2dict if "encodebytes" not in dir(base64): base64.encodebytes = base64.encodestring base64.decodebytes = base64.decodestring # # Predefined hardcoded constants sizeof_u16 = 2 sizeof_u32 = 4 sizeof_u64 = 8 # A helper for rounding def round_up(x, y): return (((x - 1) | (y - 1)) + 1) class MagicException(Exception): def __init__(self, magic): self.magic = magic # Generic class to handle loading/dumping criu images entries from/to bin # format to/from dict(json). class entry_handler: """ Generic class to handle loading/dumping criu images entries from/to bin format to/from dict(json). """ def __init__(self, payload, extra_handler=None): """ Sets payload class and extra handler class. """ self.payload = payload self.extra_handler = extra_handler def load(self, f, pretty=False, no_payload=False): """ Convert criu image entries from binary format to dict(json). Takes a file-like object and returnes a list with entries in dict(json) format. """ entries = [] while True: entry = {} # Read payload pbuff = self.payload() buf = f.read(4) if buf == b'': break size, = struct.unpack('i', buf) pbuff.ParseFromString(f.read(size)) entry = pb2dict.pb2dict(pbuff, pretty) # Read extra if self.extra_handler: if no_payload: def human_readable(num): for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: if num < 1024.0: if int(num) == num: return "%d%sB" % (num, unit) else: return "%.1f%sB" % (num, unit) num /= 1024.0 return "%.1fYB" % num pl_size = self.extra_handler.skip(f, pbuff) entry['extra'] = '... <%s>' % human_readable(pl_size) else: entry['extra'] = self.extra_handler.load(f, pbuff) entries.append(entry) return entries def loads(self, s, pretty=False): """ Same as load(), but takes a string as an argument. """ f = io.BytesIO(s) return self.load(f, pretty) def dump(self, entries, f): """ Convert criu image entries from dict(json) format to binary. Takes a list of entries and a file-like object to write entries in binary format to. """ for entry in entries: extra = entry.pop('extra', None) # Write payload pbuff = self.payload() pb2dict.dict2pb(entry, pbuff) pb_str = pbuff.SerializeToString() size = len(pb_str) f.write(struct.pack('i', size)) f.write(pb_str) # Write extra if self.extra_handler and extra: self.extra_handler.dump(extra, f, pbuff) def dumps(self, entries): """ Same as dump(), but doesn't take file-like object and just returns a string. """ f = io.BytesIO('') self.dump(entries, f) return f.read() def count(self, f): """ Counts the number of top-level object in the image file """ entries = 0 while True: buf = f.read(4) if buf == '': break size, = struct.unpack('i', buf) f.seek(size, 1) entries += 1 return entries # Special handler for pagemap.img class pagemap_handler: """ Special entry handler for pagemap.img, which is unique in a way that it has a header of pagemap_head type followed by entries of pagemap_entry type. """ def load(self, f, pretty=False, no_payload=False): entries = [] pbuff = pb.pagemap_head() while True: buf = f.read(4) if buf == b'': break size, = struct.unpack('i', buf) pbuff.ParseFromString(f.read(size)) entries.append(pb2dict.pb2dict(pbuff, pretty)) pbuff = pb.pagemap_entry() return entries def loads(self, s, pretty=False): f = io.BytesIO(s) return self.load(f, pretty) def dump(self, entries, f): pbuff = pb.pagemap_head() for item in entries: pb2dict.dict2pb(item, pbuff) pb_str = pbuff.SerializeToString() size = len(pb_str) f.write(struct.pack('i', size)) f.write(pb_str) pbuff = pb.pagemap_entry() def dumps(self, entries): f = io.BytesIO('') self.dump(entries, f) return f.read() def count(self, f): return entry_handler(None).count(f) - 1 # Special handler for ghost-file.img class ghost_file_handler: def load(self, f, pretty=False, no_payload=False): entries = [] gf = pb.ghost_file_entry() buf = f.read(4) size, = struct.unpack('i', buf) gf.ParseFromString(f.read(size)) g_entry = pb2dict.pb2dict(gf, pretty) if gf.chunks: entries.append(g_entry) while True: gc = pb.ghost_chunk_entry() buf = f.read(4) if len(buf) == 0: break size, = struct.unpack('i', buf) gc.ParseFromString(f.read(size)) entry = pb2dict.pb2dict(gc, pretty) if no_payload: f.seek(gc.len, os.SEEK_CUR) else: entry['extra'] = base64.encodebytes(f.read(gc.len)).decode('utf-8') entries.append(entry) else: if no_payload: f.seek(0, os.SEEK_END) else: g_entry['extra'] = base64.encodebytes(f.read()).decode('utf-8') entries.append(g_entry) return entries def loads(self, s, pretty=False): f = io.BytesIO(s) return self.load(f, pretty) def dump(self, entries, f): pbuff = pb.ghost_file_entry() item = entries.pop(0) pb2dict.dict2pb(item, pbuff) pb_str = pbuff.SerializeToString() size = len(pb_str) f.write(struct.pack('i', size)) f.write(pb_str) if pbuff.chunks: for item in entries: pbuff = pb.ghost_chunk_entry() pb2dict.dict2pb(item, pbuff) pb_str = pbuff.SerializeToString() size = len(pb_str) f.write(struct.pack('i', size)) f.write(pb_str) f.write(base64.decodebytes(item['extra'])) else: f.write(base64.decodebytes(item['extra'])) def dumps(self, entries): f = io.BytesIO('') self.dump(entries, f) return f.read() # In following extra handlers we use base64 encoding # to store binary data. Even though, the nature # of base64 is that it increases the total size, # it doesn't really matter, because our images # do not store big amounts of binary data. They # are negligible comparing to pages size. class pipes_data_extra_handler: def load(self, f, pload): size = pload.bytes data = f.read(size) return base64.encodebytes(data) def dump(self, extra, f, pload): data = base64.decodebytes(extra) f.write(data) def skip(self, f, pload): f.seek(pload.bytes, os.SEEK_CUR) return pload.bytes class sk_queues_extra_handler: def load(self, f, pload): size = pload.length data = f.read(size) return base64.encodebytes(data) def dump(self, extra, f, _unused): data = base64.decodebytes(extra) f.write(data) def skip(self, f, pload): f.seek(pload.length, os.SEEK_CUR) return pload.length class tcp_stream_extra_handler: def load(self, f, pbuff): d = {} inq = f.read(pbuff.inq_len) outq = f.read(pbuff.outq_len) d['inq'] = base64.encodebytes(inq) d['outq'] = base64.encodebytes(outq) return d def dump(self, extra, f, _unused): inq = base64.decodebytes(extra['inq']) outq = base64.decodebytes(extra['outq']) f.write(inq) f.write(outq) def skip(self, f, pbuff): f.seek(0, os.SEEK_END) return pbuff.inq_len + pbuff.outq_len class ipc_sem_set_handler: def load(self, f, pbuff): entry = pb2dict.pb2dict(pbuff) size = sizeof_u16 * entry['nsems'] rounded = round_up(size, sizeof_u64) s = array.array('H') if s.itemsize != sizeof_u16: raise Exception("Array size mismatch") s.fromstring(f.read(size)) f.seek(rounded - size, 1) return s.tolist() def dump(self, extra, f, pbuff): entry = pb2dict.pb2dict(pbuff) size = sizeof_u16 * entry['nsems'] rounded = round_up(size, sizeof_u64) s = array.array('H') if s.itemsize != sizeof_u16: raise Exception("Array size mismatch") s.fromlist(extra) if len(s) != entry['nsems']: raise Exception("Number of semaphores mismatch") f.write(s.tostring()) f.write('\0' * (rounded - size)) def skip(self, f, pbuff): entry = pb2dict.pb2dict(pbuff) size = sizeof_u16 * entry['nsems'] f.seek(round_up(size, sizeof_u64), os.SEEK_CUR) return size class ipc_msg_queue_handler: def load(self, f, pbuff): entry = pb2dict.pb2dict(pbuff) messages = [] for x in range(0, entry['qnum']): buf = f.read(4) if buf == '': break size, = struct.unpack('i', buf) msg = pb.ipc_msg() msg.ParseFromString(f.read(size)) rounded = round_up(msg.msize, sizeof_u64) data = f.read(msg.msize) f.seek(rounded - msg.msize, 1) messages.append(pb2dict.pb2dict(msg)) messages.append(base64.encodebytes(data)) return messages def dump(self, extra, f, pbuff): entry = pb2dict.pb2dict(pbuff) for i in range(0, len(extra), 2): msg = pb.ipc_msg() pb2dict.dict2pb(extra[i], msg) msg_str = msg.SerializeToString() size = len(msg_str) f.write(struct.pack('i', size)) f.write(msg_str) rounded = round_up(msg.msize, sizeof_u64) data = base64.decodebytes(extra[i + 1]) f.write(data[:msg.msize]) f.write('\0' * (rounded - msg.msize)) def skip(self, f, pbuff): entry = pb2dict.pb2dict(pbuff) pl_len = 0 for x in range(0, entry['qnum']): buf = f.read(4) if buf == '': break size, = struct.unpack('i', buf) msg = pb.ipc_msg() msg.ParseFromString(f.read(size)) rounded = round_up(msg.msize, sizeof_u64) f.seek(rounded, os.SEEK_CUR) pl_len += size + msg.msize return pl_len class ipc_shm_handler: def load(self, f, pbuff): entry = pb2dict.pb2dict(pbuff) size = entry['size'] data = f.read(size) rounded = round_up(size, sizeof_u32) f.seek(rounded - size, 1) return base64.encodebytes(data) def dump(self, extra, f, pbuff): entry = pb2dict.pb2dict(pbuff) size = entry['size'] data = base64.decodebytes(extra) rounded = round_up(size, sizeof_u32) f.write(data[:size]) f.write('\0' * (rounded - size)) def skip(self, f, pbuff): entry = pb2dict.pb2dict(pbuff) size = entry['size'] rounded = round_up(size, sizeof_u32) f.seek(rounded, os.SEEK_CUR) return size handlers = { 'INVENTORY': entry_handler(pb.inventory_entry), 'CORE': entry_handler(pb.core_entry), 'IDS': entry_handler(pb.task_kobj_ids_entry), 'CREDS': entry_handler(pb.creds_entry), 'UTSNS': entry_handler(pb.utsns_entry), 'TIMENS': entry_handler(pb.timens_entry), 'IPC_VAR': entry_handler(pb.ipc_var_entry), 'FS': entry_handler(pb.fs_entry),
<filename>experiments/smal_shape.py """ Example usage: python -m smalst.experiments.smal_shape --zebra_dir='smalst/zebra_no_toys_wtex_1000_0' --num_epochs=100000 --save_epoch_freq=20 --name=smal_net_600 --save_training_imgs=True --num_images=20000 --do_validation=True """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import os.path as osp import numpy as np import torch import torchvision from torch.autograd import Variable import scipy.io as sio import scipy import scipy.misc from collections import OrderedDict import pickle as pkl from ..data import zebra as zebra_data from ..utils import visutil from ..utils import smal_vis from ..utils import image as image_utils from ..nnutils import train_utils from ..nnutils import loss_utils from ..nnutils import smal_mesh_net from ..nnutils.nmr import NeuralRenderer from ..nnutils import geom_utils flags.DEFINE_string('dataset', 'zebra', 'zebra') # Weights: flags.DEFINE_float('kp_loss_wt', 10., 'keypoint loss weight') flags.DEFINE_float('kp_2D_loss_wt', 10., 'loss weight for the 2D keypoints predicted by the network') flags.DEFINE_float('mask_loss_wt', 30., 'mask loss weight') flags.DEFINE_float('cam_loss_wt', 10000., 'weights to camera loss') flags.DEFINE_float('deform_reg_wt', 100., 'reg to deformation') flags.DEFINE_float('triangle_reg_wt', 100., 'weights to triangle smoothness prior') flags.DEFINE_float('vert2kp_loss_wt', .16, 'reg to vertex assignment') flags.DEFINE_float('tex_loss_wt', 10., 'weights to tex loss') flags.DEFINE_boolean('grad_v_in_tex_loss', False, '') flags.DEFINE_boolean('use_keypoints', True, 'use keypoints loss') flags.DEFINE_boolean('use_mask', True, 'use mask loss') flags.DEFINE_boolean('use_shape_reg', False, 'use shape regularizers') flags.DEFINE_float('tex_map_loss_wt', 10., 'weights to tex map loss') flags.DEFINE_float('tex_dt_loss_wt', .5, 'weights to tex dt loss') flags.DEFINE_float('mod_trans_loss_wt', 4000., 'weights for model translation loss') flags.DEFINE_float('mod_pose_loss_wt', 200000., 'weights for model pose loss') flags.DEFINE_float('betas_reg_wt', 100000., 'weights for betas prior loss') flags.DEFINE_float('delta_v_loss_wt', 100000., 'weights for model delta_v') flags.DEFINE_float('occ_loss_wt', 100., 'weights for occlusion loss') flags.DEFINE_boolean('infer_vert2kp', False, 'estimate keypoints on the 3D model instead of using predefined values.') flags.DEFINE_boolean('no_delta_v', False, 'set predicted deformations to zero') flags.DEFINE_boolean('use_gtpose', False, 'if true uses gt pose for projection, but trans still gets trained.') flags.DEFINE_boolean('use_gttrans', False, 'if true uses gt trans for projection, but pose still gets trained.') flags.DEFINE_boolean('use_gtcam', False, 'if true uses gt cam for projection, but cam still gets trained.') flags.DEFINE_boolean('use_gtbetas', False, 'if true uses gt betas for projection, but betas still gets trained.') flags.DEFINE_boolean('use_gtdeltav', False, '') flags.DEFINE_boolean('use_gttexture', False, '') flags.DEFINE_boolean('use_camera_loss', True, 'if train with gt camera') flags.DEFINE_boolean('random_bkg', False, 'if using a random background rather than black in the pred image') flags.DEFINE_boolean('use_perceptual_loss', True, '') flags.DEFINE_boolean('uv_flow', True, '') flags.DEFINE_float('uv_flow_loss_wt', 100000., 'weights for uv_flow loss') flags.DEFINE_boolean('use_pose_geodesic_loss', True, '') flags.DEFINE_boolean('use_loss_on_whole_image', False, 'if compose the predicted animal with the image background') flags.DEFINE_boolean('use_tex_dt', True, 'if use loss (4) in the birds paper') flags.DEFINE_boolean('white_balance_for_texture_map', False, '') flags.DEFINE_boolean('use_img_as_background', False, 'if to use the input image as background for the optimization') flags.DEFINE_boolean('use_gtmask_for_background', False, 'if to use the input image as background for the optimization') flags.DEFINE_boolean('use_per_image_rgb_bg', False, 'if to compute per-imag rgb colors for background in optimization') opts = flags.FLAGS curr_path = osp.dirname(osp.abspath(__file__)) cache_path = osp.join(curr_path, '..', 'cachedir') class ShapeTrainer(train_utils.Trainer): def define_model(self): opts = self.opts self.symmetric = opts.symmetric img_size = (opts.img_size, opts.img_size) texture_mask_path = 'smalst/'+opts.dataset+'_data/texture_maps/my_smpl_00781_4_all_template_w_tex_uv_001_mask_small.png' self.texture_map_mask = torch.Tensor(scipy.misc.imread(texture_mask_path) / 255.0).cuda(device=opts.gpu_id) tex_masks = None data_path = 'smalst/smpl_models/my_smpl_data_00781_4_all.pkl' data = pkl.load(open(data_path)) pca_var = data['eigenvalues'][:opts.num_betas] self.betas_prec = torch.Tensor(pca_var).cuda(device=opts.gpu_id).expand(opts.batch_size, opts.num_betas) self.model = smal_mesh_net.MeshNet( img_size, opts, nz_feat=opts.nz_feat, num_kps=opts.num_kps, tex_masks=tex_masks) if opts.num_pretrain_epochs > 0: self.load_network(self.model, 'pred', opts.num_pretrain_epochs) self.model = self.model.cuda(device=opts.gpu_id) if not opts.infer_vert2kp: self.vert2kp = torch.Tensor(pkl.load(open('smalst/'+opts.dataset+'_data/verts2kp.pkl'))).cuda(device=opts.gpu_id) # Data structures to use for triangle priors. edges2verts = self.model.edges2verts # B x E x 4 edges2verts = np.tile(np.expand_dims(edges2verts, 0), (opts.batch_size, 1, 1)) self.edges2verts = Variable(torch.LongTensor(edges2verts).cuda(device=opts.gpu_id), requires_grad=False) # For renderering. faces = self.model.faces.view(1, -1, 3) self.faces = faces.repeat(opts.batch_size, 1, 1) self.renderer = NeuralRenderer(opts.img_size, opts.projection_type, opts.norm_f, opts.norm_z, opts.norm_f0) if opts.texture: self.tex_renderer = NeuralRenderer(opts.img_size, opts.projection_type, opts.norm_f, opts.norm_z, opts.norm_f0) # Only use ambient light for tex renderer if opts.use_directional_light: self.tex_renderer.directional_light_only() else: self.tex_renderer.ambient_light_only() # For visualization self.vis_rend = smal_vis.VisRenderer(opts.img_size, faces.data.cpu().numpy(), opts.projection_type, opts.norm_f, opts.norm_z, opts.norm_f0) self.background_imgs = None return def init_dataset(self): opts = self.opts if opts.dataset == 'zebra': self.data_module = zebra_data else: print('Unknown dataset %d!' % opts.dataset) self.dataloader = self.data_module.data_loader(opts) self.resnet_transform = torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def define_criterion(self): if opts.use_keypoints: self.projection_loss = loss_utils.kp_l2_loss if opts.use_mask: self.mask_loss_fn = loss_utils.mask_loss if opts.infer_vert2kp: self.entropy_loss = loss_utils.entropy_loss if self.opts.use_camera_loss: self.camera_loss = loss_utils.camera_loss if opts.use_smal_betas: self.betas_loss_fn = loss_utils.betas_loss self.delta_v_loss_fn = loss_utils.delta_v_loss if self.opts.texture: if self.opts.use_perceptual_loss: if False: self.texture_loss = loss_utils.MSE_texture_loss else: self.texture_loss = loss_utils.PerceptualTextureLoss() else: self.texture_loss = loss_utils.texture_loss self.texture_dt_loss_fn = loss_utils.texture_dt_loss if opts.texture_map: self.texture_map_loss = loss_utils.texture_map_loss if opts.uv_flow: self.uv_flow_loss = loss_utils.uv_flow_loss self.model_trans_loss_fn = loss_utils.model_trans_loss self.model_pose_loss_fn = loss_utils.model_pose_loss def set_optimization_input(self): opts = self.opts cams = np.zeros((self.scale_pred.shape[0], 3)) cams[:,0] = self.scale_pred.data cams[:,1:] = 128 self.cams = Variable(torch.FloatTensor(cams).cuda(device=opts.gpu_id), requires_grad=False) self.model_trans = Variable(self.trans_pred.cuda(device=opts.gpu_id), requires_grad=False) def set_optimization_variables(self): ''' Sets as optimization variables those obtained as prediction from the network ''' opts = self.opts cams = np.zeros((self.scale_pred.shape[0], 3)) cams[:,0] = self.scale_pred.data cams[:,1:] = 128 # Prediction is gt self.cams = Variable(torch.FloatTensor(cams).cuda(device=opts.gpu_id), requires_grad=False) self.model_pose = Variable(self.pose_pred.cuda(device=opts.gpu_id), requires_grad=False) self.model_trans = Variable(self.trans_pred.cuda(device=opts.gpu_id), requires_grad=False) self.delta_v= Variable(self.delta_v.cuda(device=opts.gpu_id), requires_grad=False) def set_input(self, batch): opts = self.opts # Image with annotations. input_img_tensor = batch['img'].type(torch.FloatTensor) for b in range(input_img_tensor.size(0)): input_img_tensor[b] = self.resnet_transform(input_img_tensor[b]) img_tensor = batch['img'].type(torch.FloatTensor) self.input_imgs = Variable( input_img_tensor.cuda(device=opts.gpu_id), requires_grad=False) self.imgs = Variable( img_tensor.cuda(device=opts.gpu_id), requires_grad=False) #if opts.use_mask and 'mask' in batch.keys(): if 'mask' in batch.keys(): mask_tensor = batch['mask'].type(torch.FloatTensor) self.masks = Variable( mask_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.masks = None if opts.use_keypoints and 'kp' in batch.keys(): kp_tensor = batch['kp'].type(torch.FloatTensor) self.kps = Variable( kp_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.kps = None self.img_paths = batch['img_path'] if 'camera_params' in batch.keys(): cam_tensor = batch['camera_params'].type(torch.FloatTensor) if opts.use_norm_f_and_z: cam_tensor[:,0] = (cam_tensor[:,0]-opts.norm_f0)/opts.norm_f self.cams = Variable( cam_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.cams = None cam_c_tensor = batch['camera_params_c'].type(torch.FloatTensor) self.cams_center = Variable(cam_c_tensor.cuda(device=opts.gpu_id), requires_grad=False) if 'model_trans' in batch.keys(): model_trans_tensor = batch['model_trans'].type(torch.FloatTensor) if opts.use_norm_f_and_z: model_trans_tensor[:,2] = model_trans_tensor[:,2]-opts.norm_z +1. self.model_trans = Variable( model_trans_tensor.cuda(device=opts.gpu_id), requires_grad=False) if 'model_pose' in batch.keys(): model_pose_tensor = batch['model_pose'].type(torch.FloatTensor) self.model_pose = Variable( model_pose_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.model_trans = None self.model_pose = None if 'model_betas' in batch.keys(): model_betas_tensor = batch['model_betas'][:,:self.opts.num_betas].type(torch.FloatTensor) self.model_betas = Variable( model_betas_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.model_betas = None if 'model_delta_v' in batch.keys(): model_delta_v_tensor = batch['model_delta_v'].type(torch.FloatTensor) self.model_delta_v = Variable( model_delta_v_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.model_delta_v = None if opts.texture_map: assert('texture_map' in batch.keys()) texture_map_tensor = batch['texture_map'].type(torch.FloatTensor) self.texture_map = Variable(texture_map_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.texture_map = None if 'uv_flow' in batch.keys(): uv_flow_tensor = batch['uv_flow'].type(torch.FloatTensor).permute(0,3,1,2) self.uv_flow_gt = Variable(uv_flow_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.uv_flow_gt = None # Compute barrier distance transform. #if opts.use_mask and self.masks is not None: if self.masks is not None: mask_dts = np.stack([image_utils.compute_dt_barrier(m) for m in batch['mask']]) dt_tensor = torch.FloatTensor(mask_dts).cuda(device=opts.gpu_id) # B x 1 x N x N self.dts_barrier = Variable(dt_tensor, requires_grad=False).unsqueeze(1) def forward(self, opts_scale=None, opts_pose=None, opts_trans=None, opts_delta_v=None): opts = self.opts if opts.use_double_input: masks = self.input_imgs*self.masks else: masks = None if opts.texture: pred_codes, self.textures = self.model.forward(self.input_imgs, masks) else: pred_codes = self.model.forward(self.input_imgs, masks) self.delta_v, self.scale_pred, self.trans_pred, self.pose_pred, self.betas_pred, self.kp_2D_pred = pred_codes if opts.fix_trans: self.trans_pred[:,2] = self.model_trans[:,2] if opts.use_gttrans: print('Using gt trans') self.trans_pred = self.model_trans if opts.use_gtpose: print('Using gt pose') self.pose_pred = self.model_pose if opts.use_gtcam: print('Using gt cam') self.scale_pred = self.cams[:,0,None] if opts.use_gtbetas: print('Using gt betas') self.betas_pred = self.model_betas if opts.use_gtdeltav: print('Using gt delta_v') self.delta_v = self.model_delta_v if self.cams is not None: # The camera center does not change; here we predicting flength self.cam_pred = torch.cat([self.scale_pred, self.cams[:,1:]], 1) else: self.cam_pred = torch.cat([self.scale_pred, self.cams_center], 1) if opts.only_mean_sym: del_v = self.delta_v else: del_v = self.model.symmetrize(self.delta_v) if opts.no_delta_v: del_v[:] = 0 if opts.use_smal_pose: self.pred_v = self.model.get_smal_verts(self.pose_pred, self.betas_pred, self.trans_pred, del_v) else: # TODO self.mean_shape = self.model.get_mean_shape() self.pred_v = self.mean_shape + del_v + self.trans_pred # Compute keypoints. if opts.infer_vert2kp: self.vert2kp = torch.nn.functional.softmax(self.model.vert2kp, dim=1) self.kp_verts = torch.matmul(self.vert2kp, self.pred_v) # Set projection camera proj_cam = self.cam_pred # Project keypoints if opts.use_keypoints: self.kp_pred = self.renderer.project_points(self.kp_verts, proj_cam) # Render mask. self.mask_pred = self.renderer.forward(self.pred_v, self.faces, proj_cam) if opts.texture: self.texture_flow = self.textures self.textures = geom_utils.sample_textures(self.texture_flow, self.imgs) tex_size = self.textures.size(2) self.textures = self.textures.unsqueeze(4).repeat(1, 1, 1, 1, tex_size, 1) if opts.use_gttexture: idx=0 from ..utils.obj2nmr import obj2nmr_uvmap uv_map = obj2nmr_uvmap(self.model.ft, self.model.vt, tex_size=tex_size) uv_img = self.texture_map[idx,:,:,:] uv_img = uv_img.permute(1,2,0) texture_t = sample_texture(uv_map, uv_img) self.textures[0,:,:,:,:,:] = texture_t[0,:,:,:,:,:] if opts.grad_v_in_tex_loss: self.texture_pred = self.tex_renderer.forward(self.pred_v, self.faces, proj_cam.detach(), textures=self.textures) else: self.texture_pred = self.tex_renderer.forward(self.pred_v.detach(), self.faces, proj_cam.detach(), textures=self.textures) else: self.textures = None if opts.save_training_imgs and opts.use_mask and self.masks is not None: T = 255*self.mask_pred.cpu().detach().numpy()[0,:,:] scipy.misc.imsave(opts.name + '_mask_pred.png', T) T = 255*self.masks.cpu().detach().numpy()[0,:,:,:] T = np.transpose(T,(1,2,0))[:,:,0] scipy.misc.imsave(opts.name + '_mask_gt.png', T) # Compute losses for this instance. if self.opts.use_keypoints and self.kps is not None: self.kp_loss = self.projection_loss(self.kp_pred, self.kps) if self.opts.use_mask and self.masks is not None: self.mask_loss = self.mask_loss_fn(self.mask_pred, self.masks[:,0,:,:]) if self.opts.use_camera_loss and self.cams is not None: self.cam_loss = self.camera_loss(self.cam_pred, self.cams, 0, self.opts.use_norm_f_and_z) if self.model_trans is not None: self.mod_trans_loss = self.model_trans_loss_fn(self.trans_pred, self.model_trans) if self.model_pose is not None: self.mod_pose_loss = self.model_pose_loss_fn(self.pose_pred, self.model_pose, self.opts) if opts.texture: if opts.use_loss_on_whole_image: if self.background_imgs is None: print("SETTING BACKGROUND MODEL") self.background_imgs = np.zeros(self.imgs.shape) fg_mask = self.mask_pred.detach().cpu().numpy() I = self.imgs.detach().cpu().numpy() bg_mask = np.abs(fg_mask-1) rgb = np.zeros((3)) n = np.sum(bg_mask) for c
""" A resource API for WAF and WAF-regional """ from enum import Enum, auto from typing import Iterable, Dict, Container, Union, Generator, Optional, List import boto3 from .basic import scroll import abc import logging import json import collections from .cleaning import clean_up_stack logger = logging.getLogger(__name__) class Kind(Enum): policy = 'policy' # generated via # for xx in [x[7:] for x in dir(waf_regional) if x.startswith('update')]: # print('{} = \'{}\''.format(xx, xx)) byte_match_set = 'byte_match_set' geo_match_set = 'geo_match_set' ip_set = 'ip_set' rate_based_rule = 'rate_based_rule' regex_match_set = 'regex_match_set' regex_pattern_set = 'regex_pattern_set' rule = 'rule' rule_group = 'rule_group' size_constraint_set = 'size_constraint_set' sql_injection_match_set = 'sql_injection_match_set' web_acl = 'web_acl' xss_match_set = 'xss_match_set' match_type_to_kind = {'IPMatch': Kind.ip_set, 'ByteMatch': Kind.byte_match_set, 'SqlInjectionMatch': Kind.sql_injection_match_set, 'GeoMatch': Kind.geo_match_set, 'SizeConstraint': Kind.size_constraint_set, 'XssMatch': Kind.xss_match_set, 'RegexMatch': Kind.regex_match_set, } kind_to_match_type = {v: k for k, v in match_type_to_kind.items()} def list_resources(client, kind: Kind) -> Iterable[Dict]: if kind == Kind.policy: return scroll(client.list_policies, MaxResults=100) else: fn = getattr(client, 'list_{}s'.format(kind.value)) return scroll(fn) def create_resource(client, change_token, kind: Kind, name, **kwargs): fn = getattr(client, 'create_{}'.format(kind.value)) metric_name = name.replace('-', '').replace('_', '') if kind in [Kind.rule, Kind.rule_group]: return fn(Name=name, MetricName=metric_name, ChangeToken=change_token) elif kind in [Kind.rate_based_rule]: _kwargs = dict(RateKey='IP', RateLimit=2000) _kwargs.update(kwargs) return fn(Name=name, MetricName=metric_name, ChangeToken=change_token, **_kwargs) elif kind == Kind.web_acl: _kwargs = dict(DefaultAction={'Type': 'ALLOW'}) return fn(Name=name, MetricName=metric_name, ChangeToken=change_token, **_kwargs) else: return fn(Name=name, ChangeToken=change_token) def get_service_name(kind: Kind, region_name): if kind in {Kind.policy}: return 'fms' elif region_name == 'global': return 'waf' else: return 'waf-regional' class WAFResource(abc.ABC): top_key: str id_key: str kind: Kind name_key: str = 'Name' session: boto3.Session region_name: str def __init__(self, session, region_name=None, name=None, id_=None, ensure_exists=True, old_names=(), creation_kwargs={}): """ service_client could be waf, waf-regional, or fms WARNING: if given, name is assumed to identify the condition set, although this is not always true Caveat: do not use ensure_exists with FMS policy. """ self.session = session self.region_name = region_name self.service_client = session.client(get_service_name(self.kind, region_name), region_name=region_name if region_name != 'global' else 'us-east-1') self.old_versions = [ self.__class__(session, region_name=region_name, name=old_name, ensure_exists=False) for old_name in old_names] clean_up_stack.append(self.clean_old_versions) assert name or id_ if name: self.name = name maybe_id = self.get_id(name) if maybe_id: self.id_ = maybe_id self.exists = True elif ensure_exists: if self.kind == Kind.policy: raise NotImplementedError logger.info('{} "{}" does not exist. Creating.'.format(self.top_key, name)) while True: try: resp = create_resource(self.service_client, change_token=self.service_client.get_change_token()['ChangeToken'], kind=self.kind, name = self.name, **creation_kwargs) break except self.service_client.exceptions.WAFStaleDataException: logger.info("Got WAFStaleDataException; retrying ...") continue self.id_ = resp[self.top_key][self.id_key] self.exists = True else: self.exists = False elif id_: self.id_ = id_ self.name = self.describe()[self.name_key] self.exists = True def get_id(self, name): # name is assumed to be unique # find ID for item in list_resources(self.service_client, self.kind): if item[self.name_key] == name: return item[self.id_key] else: return None def describe(self): fn = getattr(self.service_client, 'get_{}'.format(self.kind.value)) return fn(**{self.id_key: self.id_})[self.top_key] def __eq__(self, other): return isinstance(other, self.__class__) and self.id_ == other.id_ @abc.abstractmethod def delete(self, **kwargs): pass def clean_old_versions(self): for old_version in self.old_versions: old_version.delete() class UpdateableWAFResource(WAFResource, Iterable, metaclass=abc.ABCMeta): descriptor_key: str descriptors_key: str @abc.abstractmethod def __iter__(self): pass def update(self, insertions=(), deletions=(), **kwargs): # descriptor structure for Kind.ip: # { # "Type": "IPV4"|"IPV6", # "Value": "string" # } updates = ( [{'Action': 'DELETE', self.descriptor_key: dd} for dd in deletions] + [{'Action': 'INSERT', self.descriptor_key: dd} for dd in insertions] ) specific_update_fn_kwargs = { self.id_key: self.id_, 'Updates': updates} specific_update_fn_kwargs.update(kwargs) specific_update_fn = getattr(self.service_client, 'update_' + self.kind.value) while True: try: return specific_update_fn(ChangeToken=self.service_client.get_change_token()['ChangeToken'], **specific_update_fn_kwargs) except self.service_client.exceptions.WAFStaleDataException: logger.info("Got WAFStaleDataException; retrying ...") continue def put(self, descriptors, **kwargs): """Idempotent -- make the live descriptors the same as the descriptors argument :param descriptors: the `update` method may have more help on descriptor structure :param kwargs: passes kwargs through to update :return: None """ extants = list(self) insertions = [descriptor for descriptor in descriptors if descriptor not in extants ] deletions = [descriptor for descriptor in extants if descriptor not in descriptors ] if insertions or deletions: self.update(insertions, deletions, **kwargs) def delete(self): if self.exists: self.put(()) delete_method = getattr(self.service_client, 'delete_{}'.format(self.kind.value)) while True: try: delete_method(ChangeToken=self.service_client.get_change_token()['ChangeToken'], **{self.id_key: self.id_}) break except self.service_client.exceptions.WAFStaleDataException: logger.info("Got WAFStaleDataException; retrying ...") continue self.exists = False class ConditionSet(UpdateableWAFResource, Container, Iterable, metaclass=abc.ABCMeta): def __iter__(self): yield from self.descriptors() def __contains__(self, element): return element in self.descriptors() def descriptors(self): return self.describe()[self.descriptors_key] @property def base_condition_set(self): return self class IPSet(ConditionSet): top_key = 'IPSet' id_key = 'IPSetId' descriptor_key = 'IPSetDescriptor' descriptors_key = 'IPSetDescriptors' kind = Kind.ip_set class GeoMatchSet(ConditionSet): top_key = 'GeoMatchSet' id_key = 'GeoMatchSetId' descriptor_key = 'GeoMatchConstraint' descriptors_key = 'GeoMatchConstraints' kind = Kind.geo_match_set class ByteMatchSet(ConditionSet): top_key = 'ByteMatchSet' id_key = 'ByteMatchSetId' descriptor_key = 'ByteMatchTuple' descriptors_key = 'ByteMatchTuples' kind = Kind.byte_match_set class RegexMatchSet(ConditionSet): """ put args: { 'FieldToMatch': { 'Type': 'URI'|'QUERY_STRING'|'HEADER'|'METHOD'|'BODY'|'SINGLE_QUERY_ARG'|'ALL_QUERY_ARGS', 'Data': 'string' }, 'TextTransformation': 'NONE'|'COMPRESS_WHITE_SPACE'|'HTML_ENTITY_DECODE'|'LOWERCASE'|'CMD_LINE'|'URL_DECODE', 'RegexPatternSetId': regex_pattern_set.id_ } See waf-regional `update_regex_match_set`. """ top_key = 'RegexMatchSet' id_key = 'RegexMatchSetId' descriptor_key = 'RegexMatchTuple' descriptors_key = 'RegexMatchTuples' kind = Kind.regex_match_set class RegexPatternSet(ConditionSet): """ Does not fit in a Rule, but otherwise is just like any other ConditionSet. Instead, put it in a RegexMatchSet. """ top_key = 'RegexPatternSet' id_key = 'RegexPatternSetId' descriptor_key = 'RegexPatternString' descriptors_key = 'RegexPatternStrings' kind = Kind.regex_pattern_set #def __iter__(self): # yield from self.describe()[self.descriptors_key] class RuleGroup(UpdateableWAFResource): top_key = 'RuleGroup' id_key = 'RuleGroupId' descriptor_key = 'ActivatedRule' descriptors_key = 'ActivatedRules' kind = Kind.rule_group def list_activated_rules(self): return scroll(self.service_client.list_activated_rules_in_rule_group, RuleGroupId=self.id_) def rules(self): for item in scroll(self.service_client.list_activated_rules_in_rule_group, RuleGroupId=self.id_): yield Rule(self.session, self.region_name, id_=item[Rule.id_key]) def __iter__(self): yield from self.list_activated_rules() def update(self, insertions=(), deletions=(), **kwargs): """ Descriptor structure: { 'Priority': 123, 'RuleId': 'string', 'Action': { 'Type': 'BLOCK'|'ALLOW'|'COUNT' }, 'OverrideAction': { 'Type': 'NONE'|'COUNT' }, 'Type': 'REGULAR'|'RATE_BASED'|'GROUP', 'ExcludedRules': [ { 'RuleId': 'string' }, ] } """ assert not kwargs super().update(insertions, deletions) class RuleElement: Negated: bool condition_set: ConditionSet def __init__(self, condition_set: ConditionSet, Negated: bool = False): self.condition_set = condition_set self.Negated = Negated def translate_to_aws(self): match_type = kind_to_match_type[self.condition_set.kind] return { 'Negated': self.Negated, 'Type': match_type, 'DataId': self.condition_set.id_, } def __eq__(self, other): return isinstance(other, self.__class__) and self.translate_to_aws() == other.translate_to_aws() def __neg__(self): return RuleElement(self.condition_set, Negated=not self.Negated) class Rule(UpdateableWAFResource, Iterable): top_key = 'Rule' id_key = 'RuleId' kind = Kind.rule descriptor_key = 'Predicate' descriptors_key = 'Predicates' def __iter__(self) -> Generator[RuleElement, None, None]: for pred in self.describe()[self.descriptors_key]: _kind = match_type_to_kind[pred['Type']] cls = kind_to_type[_kind] _id = pred['DataId'] condition_set = cls(self.session, self.region_name, id_=_id) yield RuleElement(condition_set, pred['Negated']) def update(self, insertions: Iterable[RuleElement]=(), deletions: Iterable[RuleElement]=(), **kwargs): _insertions = [xx.translate_to_aws() for xx in insertions] _deletions = [xx.translate_to_aws() for xx in deletions] super().update(insertions=_insertions, deletions=_deletions) class RateBasedRule(UpdateableWAFResource, Iterable): """ Note: RateBasedRule's naming conventions are odd After initialization, please call `put` with your RateLimit, to ensure idempotency. """ top_key = 'Rule' id_key = 'RuleId' kind = Kind.rate_based_rule descriptor_key = 'Predicate' descriptors_key = 'MatchPredicates' def __iter__(self) -> Generator[RuleElement, None, None]: for pred in self.describe()[self.descriptors_key]: _kind = match_type_to_kind[pred['Type']] cls = kind_to_type[_kind] _id = pred['DataId'] condition_set = cls(self.session, self.region_name, id_=_id) yield RuleElement(condition_set, pred['Negated']) def update(self, insertions: Iterable[RuleElement]=(), deletions: Iterable[RuleElement]=(), RateLimit=2000): _insertions = [xx.translate_to_aws() for xx in insertions] _deletions = [xx.translate_to_aws() for xx in deletions] super().update(insertions=_insertions, deletions=_deletions, RateLimit=RateLimit) class WebACL(UpdateableWAFResource): top_key = 'WebACL' id_key = 'WebACLId' descriptor_key = 'ActivatedRule' descriptors_key = 'Rules' kind = Kind.web_acl def rules(self): for item in self: yield Rule(self.session, self.region_name, id_=item[Rule.id_key]) def __iter__(self): yield from self.service_client.get_web_acl(WebACLId=self.id_)[self.top_key][self.descriptors_key] def update(self, insertions=(), deletions=(), **kwargs): """ Descriptor structure: { 'Priority': 123, 'RuleId': 'string', 'Action': { 'Type': 'BLOCK'|'ALLOW'|'COUNT' }, 'OverrideAction': { 'Type': 'NONE'|'COUNT' }, 'Type': 'REGULAR'|'RATE_BASED'|'GROUP', 'ExcludedRules': [ { 'RuleId': 'string' }, ] } """ assert not kwargs super().update(insertions, deletions) def list_resources_arns(self) -> Iterable[dict]: if self.region_name == 'global': from .cloudfront import cloudfront_distributions for dist in cloudfront_distributions(self.session): associated_webacl = dist['WebACLId'] if associated_webacl == self.id_: yield dist['DistributionId'] else: yield from self.service_client.list_resources_for_web_acl(WebACLId=self.id_)['ResourceArns'] class Policy(WAFResource): top_key = 'Policy' id_key = 'PolicyId' kind = Kind.policy name_key = 'PolicyName' fms_shield_supported_resource_types = ['AWS::ElasticLoadBalancingV2::LoadBalancer', 'AWS::ElasticLoadBalancing::LoadBalancer', 'AWS::EC2::EIP'] def subtype(self): return self.describe()['SecurityServicePolicyData']['Type'] def __iter__(self): desc = self.describe() policy_data = desc['SecurityServicePolicyData'] if policy_data['Type'] == 'WAF': service_data = json.loads(policy_data['ManagedServiceData']) for rule_group in service_data['ruleGroups']: yield RuleGroup(self.session, self.region_name, id_=rule_group['id']) def put(self, managed_service_data, policy_type: Optional[str] = None, resource_tags: Optional[List[Dict]] = None, resource_type: Optional[str] = None, resource_type_list: Optional[List[str]] = None, include_map: Iterable = (), exclude_map: Iterable = ()): """ resource_tags structure: [ { 'Key': 'string', 'Value': 'string' }, ] managed_service_data: see ManagedServiceData in fms `put_policy` examples: { 'type': 'WAF', 'ruleGroups': [{'id': rule_group.id_, 'overrideAction': {'type': 'COUNT'}}], 'defaultAction': {'type': 'BLOCK'} } { "type":"SHIELD_ADVANCED" } include_map: if empty, equivalent to listing all accounts """ if policy_type is None: policy_type = managed_service_data['type'] if resource_type is None: if policy_type == 'WAF': if self.region_name == 'global': resource_type = 'AWS::CloudFront::Distribution' else: resource_type = 'AWS::ElasticLoadBalancingV2::LoadBalancer'
""" if addr is None: raise TypeError('Address can not be set to None') self._addr = addr def get_scope(self): """ Get the subnet scope :returns: The subnet scope as a string """ return self._scope def set_scope(self, scope): """ Set the subnet address :param scope: The subnet scope. It can be either "public", "private" or "shared". """ if scope is None: raise TypeError('Scope can not be set to None') self._scope = scope def get_json(self): """ Returns json representation of the subnet :returns: json dictionary of subnet """ attributes = self._generate_attributes() if self.get_addr() is None: raise ValueError('Subnet address is not set') attributes['ip'] = self.get_addr() if self.get_scope() is not None: attributes['scope'] = self.get_scope() return super(Subnet, self).get_json('fvSubnet', attributes=attributes) def _populate_from_attributes(self, attributes): """ Sets the attributes when creating objects from the APIC. Called from the base object when calling the classmethod get() """ self.set_addr(str(attributes.get('ip'))) @classmethod def get(cls, session, bridgedomain, tenant): """ Gets all of the Subnets from the APIC for a particular tenant and bridgedomain. :param session: the instance of Session used for APIC communication :param bridgedomain: the instance of BridgeDomain used to limit the\ Subnet instances retreived from the APIC :param tenant: the instance of Tenant used to limit the Subnet\ instances retreived from the APIC :returns: List of Subnet objects """ return BaseACIObject.get(session, cls, 'fvSubnet', parent=bridgedomain, tenant=tenant) class Context(BaseACIObject): """ Context : roughly equivalent to fvCtx """ def __init__(self, context_name, parent=None): """ :param context_name: String containing the Context name :param parent: An instance of Tenant class representing the Tenant\ which contains this Context. """ super(Context, self).__init__(context_name, parent) self.allow_all = False @classmethod def _get_apic_classes(cls): """ Get the APIC classes used by this acitoolkit class. :returns: list of strings containing APIC class names """ resp = [] resp.append('fvCtx') return resp @classmethod def _get_toolkit_to_apic_classmap(cls): """ Gets the APIC class to an acitoolkit class mapping dictionary :returns: dict of APIC class names to acitoolkit classes """ return {} @staticmethod def _get_parent_class(): """ Gets the class of the parent object :returns: class of parent object """ return Tenant @staticmethod def _get_parent_dn(dn): return dn.split('/ctx-')[0] @staticmethod def _get_name_from_dn(dn): return dn.split('/ctx-')[1].split('/')[0] @staticmethod def _get_tenant_from_dn(dn): """ Get the tenant name from the DN :param dn: String containing the DN :return: string containing the tenant name """ return dn.split('/tn-')[1].split('/')[0] def _populate_from_attributes(self, attributes): """ Sets the attributes when creating objects from the APIC. Called from the base object when calling the classmethod get() """ self.descr = attributes.get('descr') self.known_mcast = attributes.get('knwMcastAct') self.modified_time = attributes.get('modTs') self.name = attributes.get('name') self.class_id = attributes.get('pcTag') self.scope = attributes.get('scope') self.vnid = attributes.get('seg') dn = attributes.get('dn') if dn is not None: self.tenant = self._get_tenant_from_dn(dn) else: self.tenant = None if attributes.get('pcEnfPref') == 'unenforced': allow_all = True else: allow_all = False self.set_allow_all(allow_all) def set_allow_all(self, value=True): """ Set the allow_all value. When set, contracts will not be enforced\ in this context. :param value: True or False. Default is True. """ self.allow_all = value def get_allow_all(self): """ Returns the allow_all value from this Context. When set, contracts\ will not be enforced in this context. :returns: True or False. """ return self.allow_all def get_json(self): """ Returns json representation of fvCtx object :returns: json dictionary of fvCtx object """ attributes = self._generate_attributes() if self.get_allow_all(): attributes['pcEnfPref'] = 'unenforced' else: attributes['pcEnfPref'] = 'enforced' return super(Context, self).get_json(self._get_apic_classes()[0], attributes=attributes) @classmethod def get(cls, session, tenant=None): """ Gets all of the Contexts from the APIC. :param session: the instance of Session used for APIC communication :param tenant: the instance of Tenant used to limit the Contexts\ retreived from the APIC :returns: List of Context objects """ return BaseACIObject.get(session, cls, cls._get_apic_classes()[0], tenant, tenant) @staticmethod def get_table(contexts, title=''): """ Will create table of context information :param title: :param contexts: """ headers = ['Tenant', 'Context', 'VNID', 'Scope', 'Class ID', 'Allow All', 'Known MCST', 'Modified Time', ] data = [] for context in sorted(contexts): data.append([ context.get_parent().name, context.name, context.vnid, context.scope, context.class_id, context.allow_all, context.known_mcast, context.modified_time ]) data = sorted(data) table = Table(data, headers, title=title + 'Context') return [table, ] class BaseContract(BaseACIObject): """ BaseContract : Base class for Contracts and Taboos """ def __init__(self, contract_name, parent=None): super(BaseContract, self).__init__(contract_name, parent) self._scope = 'context' @staticmethod def _get_contract_code(): """ Returns the APIC class name for this contract. Meant to be overridden by inheriting classes. """ raise NotImplementedError @staticmethod def _get_subject_code(): """ Get the subject code :return: None """ raise NotImplementedError @staticmethod def _get_subject_relation_code(): """ Get the subject relation code :return: None """ raise NotImplementedError @classmethod def _get_apic_classes(cls): """ Get the APIC classes used by this acitoolkit class. :returns: list of strings containing APIC class names """ resp = [] resp.append(cls._get_contract_code()) return resp @staticmethod def _get_parent_class(): """ Gets the class of the parent object :returns: class of parent object """ return Tenant def set_scope(self, scope): """Set the scope of this contract. Valid values are 'context', 'global', 'tenant', and 'application-profile' """ if scope not in ('context', 'global', 'tenant', 'application-profile'): raise ValueError self._scope = scope def get_scope(self): """Get the scope of this contract. Valid values are 'context', 'global', 'tenant', and 'application-profile' """ return self._scope @classmethod def _get_toolkit_to_apic_classmap(cls): """ Gets the APIC class to an acitoolkit class mapping dictionary :returns: dict of APIC class names to acitoolkit classes """ return {} def get_json(self): """ Returns json representation of the contract :returns: json dictionary of the contract """ resp_json = [] subj_code = self._get_subject_code() subj_relation_code = self._get_subject_relation_code() attributes = self._generate_attributes() contract_code = self._get_contract_code() contract = super(BaseContract, self).get_json(contract_code, attributes=attributes, get_children=False) # Create a subject for every entry with a relation to the filter subjects = [] for entry in self.get_children(): subject_name = self.name + entry.name subject = {subj_code: {'attributes': {'name': subject_name}}} filt_name = subject_name filt = {subj_relation_code: {'attributes': {'tnVzFilterName': filt_name}}} subject[subj_code]['children'] = [filt] subjects.append(subject) contract[self._get_contract_code()]['children'] = subjects resp_json.append(contract) for entry in self.get_children(): entry_json = entry.get_json() if entry_json is not None: resp_json.append(entry_json) return resp_json class Contract(BaseContract): """ Contract : Class for Contracts """ def __init__(self, contract_name, parent=None): super(Contract, self).__init__(contract_name, parent) @staticmethod def _get_contract_code(): """ Returns the APIC class name for this type of contract. :returns: String containing APIC class name for this type of contract. """ return 'vzBrCP' @staticmethod def _get_subject_code(): return 'vzSubj' @staticmethod def _get_subject_relation_code(): return 'vzRsSubjFiltAtt' @staticmethod def _get_parent_dn(dn): return dn.split('/brc-')[0] @staticmethod def _get_name_from_dn(dn): name = dn.split('/brc-')[1].split('/')[0] return name def _generate_attributes(self): attributes = super(Contract, self)._generate_attributes() attributes['scope'] = self.get_scope() return attributes @classmethod def get_deep(cls, full_data, working_data, parent=None, limit_to=[], subtree='full', config_only=False): contract_data = working_data[0]['vzBrCP'] contract = Contract(str(contract_data['attributes']['name']), parent) if 'children' not in contract_data: return for child in contract_data['children']: if 'vzSubj' in child: subject = child['vzSubj'] if 'children' not in subject: continue for subj_child in subject['children']: if 'vzRsSubjFiltAtt' in subj_child: filter_attributes = subj_child['vzRsSubjFiltAtt']['attributes'] filter_name = filter_attributes['tnVzFilterName'] for filter in full_data[0]['fvTenant']['children']: if 'vzFilter' in filter: match_name = filter['vzFilter']['attributes']['name'] if match_name == filter_name: for entry in filter['vzFilter']['children']: if 'vzEntry' in entry: entry_obj = FilterEntry.create_from_apic_json(entry, contract) @classmethod def get(cls, session, tenant): """Gets all of the Contracts from the APIC for a particular tenant. """ return BaseACIObject.get(session, cls, cls._get_contract_code(), tenant, tenant) @staticmethod def get_table(contracts, title=''): """ Will create of each contract :param title: :param contracts: """ result = [] headers = ['Tenant', 'Contract', 'Scope', 'Filter'] for contract in sorted(contracts, key=lambda x: (x.name)): data = [] for filter in contract.get_children(FilterEntry): data.append([ contract.get_parent().name, contract.name, contract.get_scope(), filter.name, ]) result.append(Table(data, headers, title=title + 'Contract:{0}'.format(contract.name))) return result class Taboo(BaseContract): """ Taboo : Class for Taboos """ def __init__(self, contract_name, parent=None): super(Taboo, self).__init__(contract_name, parent) @staticmethod def _get_contract_code(): """ Returns the APIC class name for this type of contract. :returns: String containing APIC class name for this type of contract. """ return 'vzTaboo' @staticmethod def _get_subject_code(): return 'vzTSubj' @staticmethod def _get_subject_relation_code(): return 'vzRsDenyRule' @staticmethod def _get_parent_dn(dn): return dn.split('/taboo-')[0] @staticmethod def _get_name_from_dn(dn): name = dn.split('/taboo-')[1].split('/')[0] return name @staticmethod def get_table(taboos, title=''): """ Will create table of taboo information for a given tenant :param title: :param taboos: """ result = [] headers = ['Tenant', 'Taboo', 'Scope'] data = [] for taboo in sorted(taboos, key=lambda x: (x.name)): data.append([ taboo.get_parent().name, taboo.name, taboo.get_scope(), ]) result.append(Table(data, headers, title=title + 'Taboo:{0}'.format(taboo.name))) return result class FilterEntry(BaseACIObject): """
""" Aggregate tools =============== """ import sys import numpy from .._lib.hashmap import factorize from ..compat import tqdm from ..ds.scaling import linearscaling from .arrays import first, lexsort_uint32_pair, to_structured def igroupby(ids, values, n=None, logging_prefix=None, assume_sorted=False, find_next_hint=512): """ Efficiently converts two arrays representing a relation (the ``ids`` and the associated ``values``) to an iterable ``(id, values_associated)``. The ``values`` are grouped by ``ids`` and a sequence of tuples is generated. The ``i`` th tuple generated is ``(id_i, values[ids == id_i])``, ``id_i`` being the ``i`` th element of the ``ids`` array, once sorted in ascending order. :param array ids: ``(>=n,) dtype array`` :param array values: ``(>=n, *shape) uint32 array`` :param int? n: length of array to consider, applying igroupby to ``(ids[:n], values[:n])``. Uses full array when not set. :param string? logging_prefix: prefix to include while logging progress. ``(default:`` Does not log``)``. :param bool? assume_sorted: whether ids is sorted. ``(default: False)`` :param int? find_next_hint: hint for find_next_lookup. ``(default: 512)`` :generates: tuple(id:int, values_associated:``(m, *shape) array slice``) Example _______ >>> ids = numpy.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 3, 3]) >>> values = numpy.array([0, 1, 2, 3, 4, 0, 2, 4, 6, 0, 4, 6]) >>> gen = igroupby(ids, values) >>> next(gen) (0, array([0, 1, 2, 3, 4])) >>> next(gen) (1, array([0, 2, 4, 6])) >>> next(gen) (3, array([0, 4, 6])) Example with strings as ids: >>> ids = numpy.array(["alpha", "alpha", "beta", "omega", "alpha", "gamma", "beta"]) >>> values = numpy.array([1, 2, 10, 100, 3, 1000, 20]) >>> gen = igroupby(ids, values) >>> next(gen) ('alpha', array([1, 2, 3])) >>> next(gen) ('beta', array([10, 20])) >>> next(gen) ('gamma', array([1000])) >>> next(gen) ('omega', array([100])) """ # convert to numpy arrays ids = numpy.asarray(ids) values = numpy.asarray(values) # check input shape assert len(ids.shape) == 1 if n is None: n = ids.shape[0] assert ids.shape[0] >= n and values.shape[0] >= n, values.shape # sort if needed if not assume_sorted: ids = ids[:n] values = values[:n] asort = numpy.argsort(ids) ids = ids[asort] values = values[asort] # init start_block = 0 find_next_lookup = find_next_hint # search next change block by block disable = logging_prefix is None with tqdm(total=n, desc=logging_prefix, disable=disable, file=sys.stdout) as pbar: while start_block < n: # find all items having id by block boundaries current_id = ids[start_block] try: end_block = first(ids, lambda x: x != current_id, offset=start_block, batch_size=find_next_lookup) find_next_lookup = max( find_next_hint, 2 * (end_block - start_block)) except StopIteration: end_block = n current_id_values = values[start_block:end_block] assert (ids[start_block:end_block] == current_id).all() pbar.update(end_block - start_block) start_block = end_block yield current_id, current_id_values def ufunc_group_by_idx(idx, values, ufunc, init, minlength=None): """ Abstract wrapper to compute ufunc grouped by values in array ``idx``. Return an array containing the results of ``ufunc`` applied to ``values`` grouped by the indexes in array ``idx``. (See available ufuncs `here <https://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_). Warning: the ``init`` parameter is not a filling value for missing indexes. If index ``i`` is missing, then ``out[i] = init`` but this value also serves as the initialization of ``ufunc`` on all the groups of ``values``. For example, if ``ufunc`` is ``numpy.add`` and ``init = -1`` then for each index, the sum of the corresponding values will be decreased by one. :param array idx: ``(n,) int array`` :param array values: ``(n,) dtype array`` :param numpy.ufunc ufunc: universal function applied to the groups of ``values`` :param dtype init: initialization value :param int? minlength: ``(default: idx.max() + 1)`` :returns: (min-length,) dtype array, such that ``out[i] = ufunc(values[idx==i])`` Example _______ >>> idx = numpy.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 3, 3]) >>> values = numpy.array([0, 1, 2, 3, 4, 0, 2, 4, 6, 0, 4, 6]) >>> ufunc_group_by_idx(idx, values, numpy.maximum, -1) array([ 4, 6, -1, 6]) >>> ufunc_group_by_idx(idx, values, numpy.add, -1) array([ 9, 11, -1, 9]) >>> ufunc_group_by_idx(idx, values, numpy.add, 0) array([ 10, 12, -0, 10]) """ length = max(idx.max() + 1, minlength or 0) out = numpy.full(length, init) ufunc.at(out, idx, values) return out def min_by_idx(idx, values, minlength=None, fill=None): """ Given array of indexes ``idx`` and array ``values``, outputs the max value by idx, aligned on ``arange(idx.max() + 1)``. See also ``argmin_by_idx`` and ``value_at_argmin_by_idx``. :param array idx: (n,) int array :param array values: (n,) float array :param int? minlength: (default: idx.max() + 1) :param float? fill: filling value for missing idx (default: +inf) :returns: (min-length,) float array, such that out[i] = min(values[idx==i]) Example _______ >>> idx = numpy.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 3, 3]) >>> values = numpy.array([1, 1, 2, 3, 4, 0, 2, 4, 6, 0, 4, 6]) >>> min_by_idx(idx, values, fill=100) array([ 1, 0, 100, 0]) >>> min_by_idx(idx, values) array([1, 0, 9223372036854775807, 0]) """ assert idx.dtype.kind == 'u' or (idx.dtype.kind == 'i' and (idx >= 0).all()), ( 'Can only use get_xx_by_idx with integer idx, where (idx >= 0).all()') if fill is None: fill = numpy.inf if values.dtype.kind == 'f' else numpy.iinfo(values.dtype).max else: assert fill >= values.max() return ufunc_group_by_idx(idx, values, numpy.minimum, fill, minlength=minlength) def max_by_idx(idx, values, minlength=None, fill=None): """ Given array of indexes ``idx`` and array ``values``, outputs the max value by idx, aligned on ``arange(idx.max() + 1)``. See also ``argmax_by_idx`` and ``value_at_argmax_by_idx``. :param array idx: (n,) int array :param array values: (n,) float array :param int? minlength: (default: idx.max() + 1) :param float? fill: filling value for missing idx (default: -inf) :returns: (min-length,) float array, such that out[i] = max(values[idx==i]) Example _______ >>> idx = numpy.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 3, 3]) >>> values = numpy.array([0, 1, 2, 3, 4, 0, 2, 4, 6, 0, 4, 6]) >>> max_by_idx(idx, values, fill=-1) array([ 4, 6, -1, 6]) >>> max_by_idx(idx, values, minlength=10, fill=-1) array([ 4, 6, -1, 6, -1, -1, -1, -1, -1, -1]) >>> max_by_idx(idx, values) array([ 4, 6, -9223372036854775808, 6]) """ assert idx.dtype.kind == 'u' or (idx.dtype.kind == 'i' and (idx >= 0).all()), ( 'Can only use get_xx_by_idx with integer idx, where all idx >= 0') if fill is None: fill = - numpy.inf if values.dtype.kind == 'f' else numpy.iinfo(values.dtype).min else: assert fill <= values.min() return ufunc_group_by_idx(idx, values, numpy.maximum, fill, minlength=minlength) def argmin_by_idx(idx, values, minlength=None, fill=None): """ Given array of indexes ``idx`` and array ``values``, outputs the argmin of the values by idx, aligned on ``arange(idx.max() + 1)``. See also ``min_by_idx`` and ``value_at_argmin_by_idx``. :param array idx: (n,) int array :param array values: (n,) float array :param int? minlength: (default: idx.max() + 1) :param float? fill: filling value for missing idx (default: -1) :returns: (min-length,) int32 array, such that out[i] = argmin_{idx}(values[idx] : idx[idx] == i) Example _______ >>> idx = numpy.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 3, 3]) >>> values = numpy.array([0, 1, 2, 3, 4, 0, 2, 4, 6, 0, 4, 6]) >>> argmin_by_idx(idx, values, fill=-1) array([ 0, 5, -1, 9]) >>> argmin_by_idx(idx, values, minlength=10, fill=-1) array([ 0, 5, -1, 9, -1, -1, -1, -1, -1, -1]) """ assert idx.dtype.kind == 'u' or (idx.dtype.kind == 'i' and (idx >= 0).all()), ( 'Can only use get_xx_by_idx with integer idx, where all idx >= 0') if fill is None: fill = -1 min_values_by_idx = min_by_idx(idx, values, minlength) # (n-idx,) is_min = values == min_values_by_idx[idx] out = numpy.full(min_values_by_idx.size, fill) out[idx[is_min]] = numpy.where(is_min)[0] return out # TODO: improve test def value_at_argmin_by_idx(idx, sorting_values, fill, output_values=None, minlength=None): """ Wrapper around argmin_by_idx and get_value_by_idx. Allows to use a different value for the output and for detecting the minimum Allows to set a specific fill value that is not compared with the sorting_values :param array idx: (n,) uint array with values < max_idx :param array values: (n,) array :param fill: filling value for output[i] if there is no idx == i :param array? output_values: (n,) dtype array Useful if you want to select the min based on one array, and get the value on another array :param int? minlength: minimum shape for the output array. :returns array: (max_idx+1,), dtype array such that out[i] = min(values[idx==i]) Example _______ >>> idx = numpy.array([0, 0, 0, 0, 0, 1,
import torch import numpy as np import pandas as pd import scipy.stats as stats import sys import os import time from collections import OrderedDict sys.path.insert(1, os.path.dirname(__file__)) import genotypeio, eigenmt from core import * import imp import core imp.reload(core) from core import * imp.reload(eigenmt) def calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=None, return_af=True): """ Calculate nominal associations genotypes_t: genotypes x samples phenotype_t: single phenotype residualizer: Residualizer object (see core.py) """ p = phenotype_t.reshape(1,-1) r_nominal_t, genotype_var_t, phenotype_var_t = calculate_corr(genotypes_t, p, residualizer=residualizer, return_var=True) std_ratio_t = torch.sqrt(phenotype_var_t.reshape(1,-1) / genotype_var_t.reshape(-1,1)) r_nominal_t = r_nominal_t.squeeze() r2_nominal_t = r_nominal_t.double().pow(2) if residualizer is not None: dof = residualizer.dof else: dof = p.shape[1] - 2 slope_t = r_nominal_t * std_ratio_t.squeeze() tstat_t = r_nominal_t * torch.sqrt(dof / (1 - r2_nominal_t)) slope_se_t = (slope_t.double() / tstat_t).float() # tdist = tfp.distributions.StudentT(np.float64(dof), loc=np.float64(0.0), scale=np.float64(1.0)) # pval_t = tf.scalar_mul(2, tdist.cdf(-tf.abs(tstat))) if return_af: af_t, ma_samples_t, ma_count_t = get_allele_stats(genotypes_t) return tstat_t, slope_t, slope_se_t, af_t, ma_samples_t, ma_count_t else: return tstat_t, slope_t, slope_se_t def calculate_cis_permutations(genotypes_t, phenotype_t, permutation_ix_t, residualizer=None, random_tiebreak=False): """Calculate nominal and empirical correlations""" permutations_t = phenotype_t[permutation_ix_t] r_nominal_t, genotype_var_t, phenotype_var_t = calculate_corr(genotypes_t, phenotype_t.reshape(1,-1), residualizer=residualizer, return_var=True) std_ratio_t = torch.sqrt(phenotype_var_t.reshape(1,-1) / genotype_var_t.reshape(-1,1)) r_nominal_t = r_nominal_t.squeeze(dim=-1) std_ratio_t = std_ratio_t.squeeze(dim=-1) corr_t = calculate_corr(genotypes_t, permutations_t, residualizer=residualizer).pow(2) # genotypes x permutations corr_t = corr_t[~torch.isnan(corr_t).any(1),:] if corr_t.shape[0] == 0: raise ValueError('All correlations resulted in NaN. Please check phenotype values.') r2_perm_t,_ = corr_t.max(0) # maximum correlation across permutations r2_nominal_t = r_nominal_t.pow(2) r2_nominal_t[torch.isnan(r2_nominal_t)] = -1 # workaround for nanargmax() if not random_tiebreak: ix = r2_nominal_t.argmax() else: ix = torch.nonzero(r2_nominal_t == r2_nominal_t.max(), as_tuple=True)[0] ix = ix[torch.randint(0, len(ix), [1])[0]] return r_nominal_t[ix], std_ratio_t[ix], ix, r2_perm_t, genotypes_t[ix] def calculate_association(genotype_df, phenotype_s, covariates_df=None, interaction_s=None, maf_threshold_interaction=0.05, window=1000000, verbose=True): """ Standalone helper function for computing the association between a set of genotypes and a single phenotype. """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") assert genotype_df.columns.equals(phenotype_s.index) # copy to GPU phenotype_t = torch.tensor(phenotype_s.values, dtype=torch.float).to(device) genotypes_t = torch.tensor(genotype_df.values, dtype=torch.float).to(device) impute_mean(genotypes_t) dof = phenotype_s.shape[0] - 2 if covariates_df is not None: assert phenotype_s.index.equals(covariates_df.index) residualizer = Residualizer(torch.tensor(covariates_df.values, dtype=torch.float32).to(device)) dof -= covariates_df.shape[1] else: residualizer = None if interaction_s is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer) tstat, slope, slope_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] df = pd.DataFrame({ 'pval_nominal':2*stats.t.cdf(-np.abs(tstat), dof), 'slope':slope, 'slope_se':slope_se, 'tstat':tstat, 'af':af, 'ma_samples':ma_samples, 'ma_count':ma_count, }, index=genotype_df.index) else: interaction_t = torch.tensor(interaction_s.values.reshape(1,-1), dtype=torch.float32).to(device) if maf_threshold_interaction > 0: mask_s = pd.Series(True, index=interaction_s.index) mask_s[interaction_s.sort_values(kind='mergesort').index[:interaction_s.shape[0]//2]] = False interaction_mask_t = torch.BoolTensor(mask_s).to(device) else: interaction_mask_t = None genotypes_t, mask_t = filter_maf_interaction(genotypes_t, interaction_mask_t=interaction_mask_t, maf_threshold_interaction=maf_threshold_interaction) res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer, return_sparse=False) tstat, b, b_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] mask = mask_t.cpu().numpy() dof -= 2 df = pd.DataFrame({ 'pval_g':2*stats.t.cdf(-np.abs(tstat[:,0]), dof), 'b_g':b[:,0], 'b_g_se':b_se[:,0], 'pval_i':2*stats.t.cdf(-np.abs(tstat[:,1]), dof), 'b_i':b[:,1], 'b_i_se':b_se[:,1], 'pval_gi':2*stats.t.cdf(-np.abs(tstat[:,2]), dof), 'b_gi':b[:,2], 'b_gi_se':b_se[:,2], 'af':af, 'ma_samples':ma_samples, 'ma_count':ma_count, }, index=genotype_df.index[mask]) if df.index.str.startswith('chr').all(): # assume chr_pos_ref_alt_build format df['position'] = df.index.map(lambda x: int(x.split('_')[1])) return df def map_nominal(genotype_df, variant_df, phenotype_df, phenotype_pos_df, prefix, covariates_df=None, maf_threshold=0, interaction_df=None, maf_threshold_interaction=0.05, group_s=None, window=1000000, run_eigenmt=False, output_dir='.', write_top=True, write_stats=True, logger=None, verbose=True): """ cis-QTL mapping: nominal associations for all variant-phenotype pairs Association results for each chromosome are written to parquet files in the format <output_dir>/<prefix>.cis_qtl_pairs.<chr>.parquet If interaction_df is provided, the top association per phenotype is written to <output_dir>/<prefix>.cis_qtl_top_assoc.txt.gz unless write_top is set to False, in which case it is returned as a DataFrame """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if logger is None: logger = SimpleLogger() if group_s is not None: group_dict = group_s.to_dict() logger.write('cis-QTL mapping: nominal associations for all variant-phenotype pairs') logger.write(f' * {phenotype_df.shape[1]} samples') logger.write(f' * {phenotype_df.shape[0]} phenotypes') if covariates_df is not None: assert np.all(phenotype_df.columns==covariates_df.index) logger.write(f' * {covariates_df.shape[1]} covariates') residualizer = Residualizer(torch.tensor(covariates_df.values, dtype=torch.float32).to(device)) dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] else: residualizer = None dof = phenotype_df.shape[1] - 2 logger.write(f' * {variant_df.shape[0]} variants') if interaction_df is not None: assert interaction_df.index.equals(phenotype_df.columns) logger.write(f" * including {interaction_df.shape[1]} interaction term(s)") if maf_threshold_interaction > 0: logger.write(f' * using {maf_threshold_interaction:.2f} MAF threshold') elif maf_threshold > 0: logger.write(f' * applying in-sample {maf_threshold} MAF filter') genotype_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype_df.columns]) genotype_ix_t = torch.from_numpy(genotype_ix).to(device) if interaction_df is not None: ni = interaction_df.shape[1] dof -= 2 * ni interaction_t = torch.tensor(interaction_df.values, dtype=torch.float32).to(device) if maf_threshold_interaction > 0 and ni == 1: mask_s = pd.Series(True, index=interaction_df.index) mask_s[interaction_df[interaction_df.columns[0]].sort_values(kind='mergesort').index[:interaction_df.shape[0]//2]] = False interaction_mask_t = torch.BoolTensor(mask_s).to(device) else: # TODO: implement filtering for multiple interactions? interaction_mask_t = None if ni == 1: col_order = ['phenotype_id', 'variant_id', 'tss_distance', 'af', 'ma_samples', 'ma_count', 'pval_g', 'b_g', 'b_g_se', 'pval_i', 'b_i', 'b_i_se', 'pval_gi', 'b_gi', 'b_gi_se'] else: col_order = (['phenotype_id', 'variant_id', 'tss_distance', 'af', 'ma_samples', 'ma_count', 'pval_g', 'b_g', 'b_g_se'] + [k.replace('i', f"i{i+1}") for i in range(0,ni) for k in ['pval_i', 'b_i', 'b_i_se', 'pval_gi', 'b_gi', 'b_gi_se']]) # use column names instead of numbered interaction variables in output files var_dict = [] for i,v in enumerate(interaction_df.columns, 1): for c in ['pval_i', 'b_i', 'b_i_se']: var_dict.append((c.replace('_i', f'_i{i}'), c.replace('_i', f'_{v}'))) for c in ['pval_gi', 'b_gi', 'b_gi_se']: var_dict.append((c.replace('_gi', f'_gi{i}'), c.replace('_gi', f'_g-{v}'))) var_dict = dict(var_dict) igc = genotypeio.InputGeneratorCis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, group_s=group_s, window=window) # iterate over chromosomes best_assoc = [] start_time = time.time() k = 0 logger.write(' * Computing associations') for chrom in igc.chrs: logger.write(f' Mapping chromosome {chrom}') # allocate arrays n = 0 # number of pairs if group_s is None: for i in igc.phenotype_pos_df[igc.phenotype_pos_df['chr'] == chrom].index: j = igc.cis_ranges[i] n += j[1] - j[0] + 1 else: for i in igc.group_s[igc.phenotype_pos_df['chr'] == chrom].drop_duplicates().index: j = igc.cis_ranges[i] n += j[1] - j[0] + 1 chr_res = OrderedDict() chr_res['phenotype_id'] = [] chr_res['variant_id'] = [] chr_res['tss_distance'] = np.empty(n, dtype=np.int32) chr_res['af'] = np.empty(n, dtype=np.float32) chr_res['ma_samples'] = np.empty(n, dtype=np.int32) chr_res['ma_count'] = np.empty(n, dtype=np.int32) if interaction_df is None: chr_res['pval_nominal'] = np.empty(n, dtype=np.float64) chr_res['slope'] = np.empty(n, dtype=np.float32) chr_res['slope_se'] = np.empty(n, dtype=np.float32) else: chr_res['pval_g'] = np.empty(n, dtype=np.float64) chr_res['b_g'] = np.empty(n, dtype=np.float32) chr_res['b_g_se'] = np.empty(n, dtype=np.float32) chr_res['pval_i'] = np.empty([n, ni], dtype=np.float64) chr_res['b_i'] = np.empty([n, ni], dtype=np.float32) chr_res['b_i_se'] = np.empty([n, ni], dtype=np.float32) chr_res['pval_gi'] = np.empty([n, ni], dtype=np.float64) chr_res['b_gi'] = np.empty([n, ni], dtype=np.float32) chr_res['b_gi_se'] = np.empty([n, ni], dtype=np.float32) start = 0 if group_s is None: for k, (phenotype, genotypes, genotype_range, phenotype_id) in enumerate(igc.generate_data(chrom=chrom, verbose=verbose), k+1): # copy genotypes to GPU phenotype_t = torch.tensor(phenotype, dtype=torch.float).to(device) genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) variant_ids = variant_df.index[genotype_range[0]:genotype_range[-1]+1] tss_distance = np.int32(variant_df['pos'].values[genotype_range[0]:genotype_range[-1]+1] - igc.phenotype_tss[phenotype_id]) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) variant_ids = variant_ids[mask] tss_distance = tss_distance[mask] if interaction_df is None: res = calculate_cis_nominal(genotypes_t, phenotype_t, residualizer=residualizer) tstat, slope, slope_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] n = len(variant_ids) else: genotypes_t, mask_t = filter_maf_interaction(genotypes_t, interaction_mask_t=interaction_mask_t, maf_threshold_interaction=maf_threshold_interaction) if genotypes_t.shape[0] > 0: mask = mask_t.cpu().numpy() variant_ids = variant_ids[mask] res = calculate_interaction_nominal(genotypes_t, phenotype_t.unsqueeze(0), interaction_t, residualizer=residualizer, return_sparse=False, variant_ids=variant_ids) tstat, b, b_se, af, ma_samples, ma_count = [i.cpu().numpy() for i in res] tss_distance = tss_distance[mask] n = len(variant_ids) # top association ix = np.nanargmax(np.abs(tstat[:,1+ni:]).max(1)) # top association among all interactions tested # index order: 0, 1, 1+ni, 2, 2+ni, 3, 3+ni, ... order = [0] + [i if j % 2 == 0 else i+ni for i in range(1,ni+1) for j in range(2)] top_s = [phenotype_id, variant_ids[ix], tss_distance[ix], af[ix], ma_samples[ix], ma_count[ix]] for i in order: top_s += [tstat[ix,i], b[ix,i], b_se[ix,i]] top_s = pd.Series(top_s, index=col_order) if run_eigenmt: # compute eigenMT correction top_s['tests_emt'] = eigenmt.compute_tests(genotypes_t, var_thresh=0.99, variant_window=200) best_assoc.append(top_s) else: # all genotypes in window were filtered out n = 0 if n > 0: chr_res['phenotype_id'].extend([phenotype_id]*n) chr_res['variant_id'].extend(variant_ids) chr_res['tss_distance'][start:start+n] = tss_distance chr_res['af'][start:start+n] = af chr_res['ma_samples'][start:start+n] = ma_samples chr_res['ma_count'][start:start+n] = ma_count if interaction_df is None: chr_res['pval_nominal'][start:start+n] = tstat chr_res['slope'][start:start+n] = slope chr_res['slope_se'][start:start+n] = slope_se else: # columns: [g, i_1 ... i_n, gi_1, ... gi_n] --> 0, 1:1+ni, 1+ni:1+2*ni chr_res['pval_g'][start:start+n] = tstat[:,0] chr_res['b_g'][start:start+n] = b[:,0] chr_res['b_g_se'][start:start+n] = b_se[:,0] chr_res['pval_i'][start:start+n] = tstat[:,1:1+ni] chr_res['b_i'][start:start+n] = b[:,1:1+ni] chr_res['b_i_se'][start:start+n] = b_se[:,1:1+ni] chr_res['pval_gi'][start:start+n] = tstat[:,1+ni:] chr_res['b_gi'][start:start+n] = b[:,1+ni:] chr_res['b_gi_se'][start:start+n] = b_se[:,1+ni:] start += n # update pointer else: # groups for k, (phenotypes, genotypes, genotype_range, phenotype_ids, group_id) in enumerate(igc.generate_data(chrom=chrom, verbose=verbose), k+1): # copy genotypes to GPU genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes_t = genotypes_t[:,genotype_ix_t] impute_mean(genotypes_t) variant_ids = variant_df.index[genotype_range[0]:genotype_range[-1]+1] # assuming that the TSS for all grouped phenotypes is the same tss_distance = np.int32(variant_df['pos'].values[genotype_range[0]:genotype_range[-1]+1] - igc.phenotype_tss[phenotype_ids[0]]) if maf_threshold > 0: maf_t = calculate_maf(genotypes_t) mask_t = maf_t >= maf_threshold genotypes_t = genotypes_t[mask_t] mask = mask_t.cpu().numpy().astype(bool) variant_ids
cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) if not external_cursor: cursor.close() connection.commit() connection.close() return engine_temp def _check_transfer(self, connection, cursor, transfer_id, user_id): try: sel = cursor.execute( '''SELECT id FROM transfers WHERE id=? and user_id=? LIMIT 1''', [transfer_id, user_id]) except Exception as e: cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) try: six.next(sel) except StopIteration: six.reraise( UnknownObjectError, UnknownObjectError("The transfer " + repr(transfer_id) + " is not valid or does not belong to " "user " + repr(user_id)), sys.exc_info[2]) def _check_temporary(self, connection, cursor, temp_path_id, user_id): try: sel = cursor.execute( '''SELECT temp_path_id FROM temporary_paths WHERE temp_path_id=? and user_id=? LIMIT 1''', [temp_path_id, user_id]) except Exception as e: cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) try: six.next(sel) except StopIteration: six.reraise( UnknownObjectError, UnknownObjectError("The temporary path " + repr(temp_path_id) + " is not valid or does not belong to " "user " + repr(user_id)), sys.exc_info[2]) def remove_transfer(self, transfer_id, user_id): ''' Set the expiration date of the transfer associated to the engine file path to today (yesterday?). That way it will be disposed as soon as no job will need it. Parameters ---------- transfer_id: int transfer identifier record to delete. user_id: int user identifier ''' self.logger.debug("=> remove_transfer") with self._lock: connection = self._connect() cursor = connection.cursor() self._check_transfer(connection, cursor, transfer_id, user_id) yesterday = date.today() - timedelta(days=1) try: cursor.execute( 'UPDATE transfers SET expiration_date=? WHERE id=?', (yesterday, transfer_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() self.clean() def remove_temporary(self, temp_path_id, user_id): ''' Set the expiration date of the temporary_paths associated to the engine file path to today (yesterday?). That way it will be disposed as soon as no job will need it. Parameters ---------- temp_path_id: int identifying the temporary path record to delete. user_id: int user identifier ''' self.logger.debug("=> remove_temporary") with self._lock: connection = self._connect() cursor = connection.cursor() self._check_temporary(connection, cursor, temp_path_id, user_id) yesterday = date.today() - timedelta(days=1) try: cursor.execute( 'UPDATE temporary_paths SET expiration_date=? WHERE temp_path_id=?', (yesterday, temp_path_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() self.clean() def get_transfer_information(self, transfer_id, user_id): ''' Returns the information related to the transfer associated to the engine file path. The transfer_id must be associated to a transfer. Returns (None, None, None, -1, None) if the transfer_id is not associated to a transfer. Parameters ---------- transfer_id: int identier user_id: int user identifier Returns ------- info: tuple (tranfer_id, engine_file_path, client_file_path, expiration_date, workflow_id, client_paths, transfer_type, status) ''' self.logger.debug("=> get_transfer_information") with self._lock: connection = self._connect() cursor = connection.cursor() self._check_transfer(connection, cursor, transfer_id, user_id) try: (engine_file_path, client_file_path, expiration_date, workflow_id, client_paths, transfer_type, status) = six.next(cursor.execute( '''SELECT engine_file_path, client_file_path, expiration_date, workflow_id, client_paths, transfer_type, status FROM transfers WHERE id=?''', [transfer_id])) except Exception as e: cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) engine_file_path = self._string_conversion(engine_file_path) client_file_path = self._string_conversion(client_file_path) expiration_date = self._str_to_date_conversion(expiration_date) if client_paths: client_paths = self._string_conversion( client_paths).split(file_separator) else: client_path = None transfer_type = self._string_conversion(transfer_type) status = self._string_conversion(status) cursor.close() connection.close() return (transfer_id, engine_file_path, client_file_path, expiration_date, workflow_id, client_paths, transfer_type, status) def get_temporary_information(self, temp_path_id, user_id): ''' Returns the information related to the temporary path associated to the id. The temp_path_id must be associated to a TemporaryPath. Returns (None, None, None, None, None) if the temp_path_id is not associated to a temporary path. Parameters ---------- temp_path_id: int identifier Returns ------- info: tuple (temp_path_id, engine_file_path, expiration_date, workflow_id, status) ''' self.logger.debug("=> get_temporary_information") with self._lock: connection = self._connect() cursor = connection.cursor() self._check_temporary(connection, cursor, temp_path_id, user_id) try: (engine_file_path, expiration_date, workflow_id, status) = six.next(cursor.execute( '''SELECT engine_file_path, expiration_date, workflow_id, status FROM temporary_paths WHERE temp_path_id=?''', [temp_path_id])) except Exception as e: cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) engine_file_path = self._string_conversion(engine_file_path) expiration_date = self._str_to_date_conversion(expiration_date) status = self._string_conversion(status) cursor.close() connection.close() return (temp_path_id, engine_file_path, expiration_date, workflow_id, status) def get_transfer_status(self, transfer_id, user_id): ''' Returns the transfer status stored in the database. ''' self.logger.debug("=> get_transfer_status") with self._lock: connection = self._connect() cursor = connection.cursor() self._check_transfer(connection, cursor, transfer_id, user_id) try: status = six.next(cursor.execute( 'SELECT status FROM transfers WHERE id=?', [transfer_id]))[0] except Exception as e: cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) status = self._string_conversion(status) cursor.close() connection.close() return status def get_temporary_status(self, temp_path_id, user_id): ''' Returns the temporary path status stored in the database. ''' self.logger.debug("=> get_temporary_status") with self._lock: connection = self._connect() cursor = connection.cursor() self._check_temporary(connection, cursor, temp_path_id, user_id) try: status = six.next(cursor.execute( 'SELECT status FROM temporary_paths WHERE temp_path_id=?', [temp_path_id]))[0] except Exception as e: cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) status = self._string_conversion(status) cursor.close() connection.close() return status def set_transfer_status(self, transfer_id, status): ''' Updates the transfer status in the database. The status must be valid (ie a string among the transfer status string defined in constants.FILE_TRANSFER_STATUS Parameters ---------- transfer_id: int transfer identifier status: string transfer status as defined in constants.FILE_TRANSFER_STATUS ''' # if type(engine_file_path) is int: # return self.set_temporary_status(engine_file_path, status) self.logger.debug("=> set_transfer_status") with self._lock: # TBI if the status is not valid raise an exception ?? connection = self._connect() cursor = connection.cursor() try: cursor.execute( 'UPDATE transfers SET status=? WHERE id=?', (status, transfer_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() def set_transfer_paths(self, transfer_id, engine_path, client_path, client_paths): ''' Updates the transfer paths in the database. Parameters ---------- transfer_id: int transfer identifier engine_path: str path on engine side client_path: str path on client side client_paths: list filenames on client side ''' # if type(engine_file_path) is int: # return self.set_temporary_status(engine_file_path, status) self.logger.debug("=> set_transfer_paths") with self._lock: # TBI if the status is not valid raise an exception ?? connection = self._connect() cursor = connection.cursor() if client_paths: client_paths = file_separator.join(client_paths) try: cursor.execute( '''UPDATE transfers SET engine_file_path=?, client_file_path=?, client_paths=? WHERE id=?''', (engine_path, client_path, client_paths, transfer_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() def set_temporary_status(self, temp_path_id, status): ''' Updates the temporary path status in the database. The status must be valid (ie a string among the transfer status string defined in constants.FILE_TRANSFER_STATUS @type status: string @param status: transfer status as defined in constants.FILE_TRANSFER_STATUS ''' self.logger.debug("=> set_temporary_status") with self._lock: # TBI if the status is not valid raise an exception ?? connection = self._connect() cursor = connection.cursor() try: cursor.execute( 'UPDATE temporary_paths SET status=? WHERE temp_path_id=?', (status, temp_path_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() def set_transfer_type(self, transfer_id, transfer_type, user_id): self.logger.debug("=> set_transfer_type") with self._lock: connection = self._connect() cursor = connection.cursor() try: cursor.execute( 'UPDATE transfers SET transfer_type=? WHERE id=?', (transfer_type, transfer_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() def add_workflow_ended_transfer(self, workflow_id, transfer_id): ''' To signal that a transfer belonging to a workflow finished. ''' self.logger.debug("=> add_workflow_ended_transfer") separator = ", " with self._lock: connection = self._connect() cursor = connection.cursor() try: str_ended_transfers = six.next(cursor.execute( 'SELECT ended_transfers FROM workflows WHERE id=?', [workflow_id]))[0] if str_ended_transfers != None: ended_transfers = self._string_conversion( str_ended_transfers).split(separator) ended_transfers.append(str(transfer_id)) str_ended_transfers = separator.join(ended_transfers) else: str_ended_transfers = transfer_id cursor.execute( 'UPDATE workflows SET ended_transfers=? WHERE id=?', (str_ended_transfers, workflow_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() def pop_workflow_ended_transfer(self, workflow_id): ''' Returns the ended transfers for a workflow and clear the ended transfer list. ''' self.logger.debug("=> pop_workflow_ended_transfer") separator = ", " ended_transfers = [] with self._lock: connection = self._connect() cursor = connection.cursor() try: str_ended_transfers = six.next(cursor.execute( 'SELECT ended_transfers FROM workflows WHERE id=?', [workflow_id]))[0] if str_ended_transfers != None: ended_transfers = self._string_conversion( str_ended_transfers).split(separator) cursor.execute( 'UPDATE workflows SET ended_transfers=? WHERE id=?', (None, workflow_id)) except Exception as e: connection.rollback() cursor.close() connection.close() six.reraise(DatabaseError, DatabaseError(e), sys.exc_info()[2]) connection.commit() cursor.close() connection.close() return ended_transfers # # WORKFLOWS def add_workflow(self, user_id, engine_workflow, login=None): ''' Register a workflow to the database and returns identifiers for every workflow element. * user_id *string* User identifier * engine_workflow *EngineWorkflow* * returns: * tuple(string, dictionary, dictionary)* * workflow identifier * dictionary tr_id -> EngineTransfer * dictionary job_id -> EngineJob ''' # get back the workflow id first self.logger.debug("=> add_workflow") with self._lock: # try to allocate enough file counters before opening a new cursor needed_files = len(engine_workflow.transfer_mapping) \ + len(engine_workflow.job_mapping) * 2 self.ensure_file_numbers_available(needed_files) connection = self._connect() cursor = connection.cursor() name = None if engine_workflow.name != None: name = six.ensure_text(engine_workflow.name, 'utf8') try: cursor.execute('''INSERT INTO workflows (user_id, pickled_engine_workflow, expiration_date, name, status, last_status_update, queue) VALUES (?, ?, ?, ?,
from xapi import success, Rpc_light_failure, InternalError, UnmarshalException, TypeError, is_long, UnknownMethod import xapi import sys import json import argparse import traceback import logging class Unimplemented(Rpc_light_failure): def __init__(self, arg_0): Rpc_light_failure.__init__(self, "Unimplemented", [ arg_0 ]) if not isinstance(arg_0, str) and not isinstance(arg_0, unicode): raise (TypeError("string", repr(arg_0))) self.arg_0 = arg_0 class Datapath_server_dispatcher: """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" def __init__(self, impl): """impl is a proxy object whose methods contain the implementation""" self._impl = impl def open(self, args): """type-check inputs, call implementation, type-check outputs and return""" if not isinstance(args, dict): raise (UnmarshalException('arguments', 'dict', repr(args))) if not('dbg' in args): raise UnmarshalException('argument missing', 'dbg', '') dbg = args["dbg"] if not isinstance(dbg, str) and not isinstance(dbg, unicode): raise (TypeError("string", repr(dbg))) if not('uri' in args): raise UnmarshalException('argument missing', 'uri', '') uri = args["uri"] if not isinstance(uri, str) and not isinstance(uri, unicode): raise (TypeError("string", repr(uri))) if not('persistent' in args): raise UnmarshalException('argument missing', 'persistent', '') persistent = args["persistent"] if not isinstance(persistent, bool): raise (TypeError("bool", repr(persistent))) results = self._impl.open(dbg, uri, persistent) return results def attach(self, args): """type-check inputs, call implementation, type-check outputs and return""" if not isinstance(args, dict): raise (UnmarshalException('arguments', 'dict', repr(args))) if not('dbg' in args): raise UnmarshalException('argument missing', 'dbg', '') dbg = args["dbg"] if not isinstance(dbg, str) and not isinstance(dbg, unicode): raise (TypeError("string", repr(dbg))) if not('uri' in args): raise UnmarshalException('argument missing', 'uri', '') uri = args["uri"] if not isinstance(uri, str) and not isinstance(uri, unicode): raise (TypeError("string", repr(uri))) if not('domain' in args): raise UnmarshalException('argument missing', 'domain', '') domain = args["domain"] if not isinstance(domain, str) and not isinstance(domain, unicode): raise (TypeError("string", repr(domain))) results = self._impl.attach(dbg, uri, domain) if not isinstance(results['domain_uuid'], str) and not isinstance(results['domain_uuid'], unicode): raise (TypeError("string", repr(results['domain_uuid']))) if results['implementation'][0] == 'Blkback': if not isinstance(results['implementation'][1], str) and not isinstance(results['implementation'][1], unicode): raise (TypeError("string", repr(results['implementation'][1]))) elif results['implementation'][0] == 'Tapdisk3': if not isinstance(results['implementation'][1], str) and not isinstance(results['implementation'][1], unicode): raise (TypeError("string", repr(results['implementation'][1]))) elif results['implementation'][0] == 'Qdisk': if not isinstance(results['implementation'][1], str) and not isinstance(results['implementation'][1], unicode): raise (TypeError("string", repr(results['implementation'][1]))) return results def activate(self, args): """type-check inputs, call implementation, type-check outputs and return""" if not isinstance(args, dict): raise (UnmarshalException('arguments', 'dict', repr(args))) if not('dbg' in args): raise UnmarshalException('argument missing', 'dbg', '') dbg = args["dbg"] if not isinstance(dbg, str) and not isinstance(dbg, unicode): raise (TypeError("string", repr(dbg))) if not('uri' in args): raise UnmarshalException('argument missing', 'uri', '') uri = args["uri"] if not isinstance(uri, str) and not isinstance(uri, unicode): raise (TypeError("string", repr(uri))) if not('domain' in args): raise UnmarshalException('argument missing', 'domain', '') domain = args["domain"] if not isinstance(domain, str) and not isinstance(domain, unicode): raise (TypeError("string", repr(domain))) results = self._impl.activate(dbg, uri, domain) return results def deactivate(self, args): """type-check inputs, call implementation, type-check outputs and return""" if not isinstance(args, dict): raise (UnmarshalException('arguments', 'dict', repr(args))) if not('dbg' in args): raise UnmarshalException('argument missing', 'dbg', '') dbg = args["dbg"] if not isinstance(dbg, str) and not isinstance(dbg, unicode): raise (TypeError("string", repr(dbg))) if not('uri' in args): raise UnmarshalException('argument missing', 'uri', '') uri = args["uri"] if not isinstance(uri, str) and not isinstance(uri, unicode): raise (TypeError("string", repr(uri))) if not('domain' in args): raise UnmarshalException('argument missing', 'domain', '') domain = args["domain"] if not isinstance(domain, str) and not isinstance(domain, unicode): raise (TypeError("string", repr(domain))) results = self._impl.deactivate(dbg, uri, domain) return results def detach(self, args): """type-check inputs, call implementation, type-check outputs and return""" if not isinstance(args, dict): raise (UnmarshalException('arguments', 'dict', repr(args))) if not('dbg' in args): raise UnmarshalException('argument missing', 'dbg', '') dbg = args["dbg"] if not isinstance(dbg, str) and not isinstance(dbg, unicode): raise (TypeError("string", repr(dbg))) if not('uri' in args): raise UnmarshalException('argument missing', 'uri', '') uri = args["uri"] if not isinstance(uri, str) and not isinstance(uri, unicode): raise (TypeError("string", repr(uri))) if not('domain' in args): raise UnmarshalException('argument missing', 'domain', '') domain = args["domain"] if not isinstance(domain, str) and not isinstance(domain, unicode): raise (TypeError("string", repr(domain))) results = self._impl.detach(dbg, uri, domain) return results def close(self, args): """type-check inputs, call implementation, type-check outputs and return""" if not isinstance(args, dict): raise (UnmarshalException('arguments', 'dict', repr(args))) if not('dbg' in args): raise UnmarshalException('argument missing', 'dbg', '') dbg = args["dbg"] if not isinstance(dbg, str) and not isinstance(dbg, unicode): raise (TypeError("string", repr(dbg))) if not('uri' in args): raise UnmarshalException('argument missing', 'uri', '') uri = args["uri"] if not isinstance(uri, str) and not isinstance(uri, unicode): raise (TypeError("string", repr(uri))) results = self._impl.close(dbg, uri) return results def _dispatch(self, method, params): """type check inputs, call implementation, type check outputs and return""" args = params[0] if method == "Datapath.open": return success(self.open(args)) elif method == "Datapath.attach": return success(self.attach(args)) elif method == "Datapath.activate": return success(self.activate(args)) elif method == "Datapath.deactivate": return success(self.deactivate(args)) elif method == "Datapath.detach": return success(self.detach(args)) elif method == "Datapath.close": return success(self.close(args)) class Datapath_skeleton: """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" def __init__(self): pass def open(self, dbg, uri, persistent): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" raise Unimplemented("Datapath.open") def attach(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" raise Unimplemented("Datapath.attach") def activate(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" raise Unimplemented("Datapath.activate") def deactivate(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" raise Unimplemented("Datapath.deactivate") def detach(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" raise Unimplemented("Datapath.detach") def close(self, dbg, uri): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" raise Unimplemented("Datapath.close") class Datapath_test: """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" def __init__(self): pass def open(self, dbg, uri, persistent): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" result = {} return result def attach(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" result = {} result["backend"] = { "domain_uuid": "string", "implementation": None } return result def activate(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" result = {} return result def deactivate(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" result = {} return result def detach(self, dbg, uri, domain): """Xapi will call the functions here on VM start/shutdown/suspend/resume/migrate. Every function is idempotent. Every function takes a domain parameter which allows the implementation to track how many domains are currently using the volume.""" result = {} return result def close(self, dbg, uri):
= self.api_client.call_api(resource_path, method, path_params, query_params, header_params, body=body_params, post_params=form_params, files=files, response_type='str', auth_settings=auth_settings, callback=params.get('callback')) return response def proxy_delete_namespaced_service(self, namespace, name, **kwargs): """ proxy DELETE requests to Service This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.proxy_delete_namespaced_service(namespace, name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str name: name of the Service (required) :return: str If the method is called asynchronously, returns the request thread. """ all_params = ['namespace', 'name'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method proxy_delete_namespaced_service" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'namespace' is set if ('namespace' not in params) or (params['namespace'] is None): raise ValueError("Missing the required parameter `namespace` when calling `proxy_delete_namespaced_service`") # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `proxy_delete_namespaced_service`") resource_path = '/api/v1/proxy/namespaces/{namespace}/services/{name}'.replace('{format}', 'json') method = 'DELETE' path_params = {} if 'namespace' in params: path_params['namespace'] = params['namespace'] if 'name' in params: path_params['name'] = params['name'] query_params = {} header_params = {} form_params = {} files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['*/*']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = [] response = self.api_client.call_api(resource_path, method, path_params, query_params, header_params, body=body_params, post_params=form_params, files=files, response_type='str', auth_settings=auth_settings, callback=params.get('callback')) return response def proxy_options_namespaced_service(self, namespace, name, **kwargs): """ proxy OPTIONS requests to Service This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.proxy_options_namespaced_service(namespace, name, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str name: name of the Service (required) :return: str If the method is called asynchronously, returns the request thread. """ all_params = ['namespace', 'name'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method proxy_options_namespaced_service" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'namespace' is set if ('namespace' not in params) or (params['namespace'] is None): raise ValueError("Missing the required parameter `namespace` when calling `proxy_options_namespaced_service`") # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `proxy_options_namespaced_service`") resource_path = '/api/v1/proxy/namespaces/{namespace}/services/{name}'.replace('{format}', 'json') method = 'OPTIONS' path_params = {} if 'namespace' in params: path_params['namespace'] = params['namespace'] if 'name' in params: path_params['name'] = params['name'] query_params = {} header_params = {} form_params = {} files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['*/*']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = [] response = self.api_client.call_api(resource_path, method, path_params, query_params, header_params, body=body_params, post_params=form_params, files=files, response_type='str', auth_settings=auth_settings, callback=params.get('callback')) return response def proxy_get_namespaced_service_13(self, namespace, name, path, **kwargs): """ proxy GET requests to Service This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.proxy_get_namespaced_service_13(namespace, name, path, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str name: name of the Service (required) :param str path: path to the resource (required) :return: str If the method is called asynchronously, returns the request thread. """ all_params = ['namespace', 'name', 'path'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method proxy_get_namespaced_service_13" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'namespace' is set if ('namespace' not in params) or (params['namespace'] is None): raise ValueError("Missing the required parameter `namespace` when calling `proxy_get_namespaced_service_13`") # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `proxy_get_namespaced_service_13`") # verify the required parameter 'path' is set if ('path' not in params) or (params['path'] is None): raise ValueError("Missing the required parameter `path` when calling `proxy_get_namespaced_service_13`") resource_path = '/api/v1/proxy/namespaces/{namespace}/services/{name}/{path}'.replace('{format}', 'json') method = 'GET' path_params = {} if 'namespace' in params: path_params['namespace'] = params['namespace'] if 'name' in params: path_params['name'] = params['name'] if 'path' in params: path_params['path'] = params['path'] query_params = {} header_params = {} form_params = {} files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['*/*']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = [] response = self.api_client.call_api(resource_path, method, path_params, query_params, header_params, body=body_params, post_params=form_params, files=files, response_type='str', auth_settings=auth_settings, callback=params.get('callback')) return response def proxy_head_namespaced_service_14(self, namespace, name, path, **kwargs): """ proxy HEAD requests to Service This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.proxy_head_namespaced_service_14(namespace, name, path, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str name: name of the Service (required) :param str path: path to the resource (required) :return: str If the method is called asynchronously, returns the request thread. """ all_params = ['namespace', 'name', 'path'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method proxy_head_namespaced_service_14" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'namespace' is set if ('namespace' not in params) or (params['namespace'] is None): raise ValueError("Missing the required parameter `namespace` when calling `proxy_head_namespaced_service_14`") # verify the required parameter 'name' is set if ('name' not in params) or (params['name'] is None): raise ValueError("Missing the required parameter `name` when calling `proxy_head_namespaced_service_14`") # verify the required parameter 'path' is set if ('path' not in params) or (params['path'] is None): raise ValueError("Missing the required parameter `path` when calling `proxy_head_namespaced_service_14`") resource_path = '/api/v1/proxy/namespaces/{namespace}/services/{name}/{path}'.replace('{format}', 'json') method = 'HEAD' path_params = {} if 'namespace' in params: path_params['namespace'] = params['namespace'] if 'name' in params: path_params['name'] = params['name'] if 'path' in params: path_params['path'] = params['path'] query_params = {} header_params = {} form_params = {} files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['*/*']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = [] response = self.api_client.call_api(resource_path, method, path_params, query_params, header_params, body=body_params, post_params=form_params, files=files, response_type='str', auth_settings=auth_settings, callback=params.get('callback')) return response def proxy_put_namespaced_service_15(self, namespace, name, path, **kwargs): """ proxy PUT requests to Service This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.proxy_put_namespaced_service_15(namespace, name, path, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str name: name of the Service (required) :param str path: path to the resource (required) :return: str If the method is called asynchronously, returns the request thread.
<reponame>murthyn/composer # Copyright 2021 MosaicML. All Rights Reserved. """Callback to save checkpoints during training.""" from __future__ import annotations import logging import os import textwrap from typing import Callable, Optional, Union from composer.core import Event, State from composer.core.callback import Callback from composer.core.time import Time, TimeUnit from composer.loggers import Logger from composer.utils import checkpoint, dist, run_directory log = logging.getLogger(__name__) __all__ = ["CheckpointSaver", "checkpoint_periodically"] def checkpoint_periodically(interval: Union[str, int, Time]) -> Callable[[State, Event], bool]: """Helper function to create a checkpoint scheduler according to a specified interval. Args: interval (Union[str, int, Time]): The interval describing how often checkpoints should be saved. If an integer, it will be assumed to be in :attr:`~TimeUnit.EPOCH`\\s. Otherwise, the unit must be either :attr:`TimeUnit.EPOCH` or :attr:`TimeUnit.BATCH`. Checkpoints will be saved every ``n`` batches or epochs (depending on the unit), and at the end of training. Returns: Callable[[State, Event], bool]: A function that can be passed as the ``save_interval`` argument into the :class:`CheckpointSaver`. """ if isinstance(interval, str): interval = Time.from_timestring(interval) if isinstance(interval, int): interval = Time(interval, TimeUnit.EPOCH) if interval.unit == TimeUnit.EPOCH: save_event = Event.EPOCH_CHECKPOINT elif interval.unit == TimeUnit.BATCH: save_event = Event.BATCH_CHECKPOINT else: raise NotImplementedError( f"Unknown checkpointing interval: {interval.unit}. Must be TimeUnit.EPOCH or TimeUnit.BATCH.") last_checkpoint_batch = None def save_interval(state: State, event: Event): nonlocal last_checkpoint_batch if state.get_elapsed_duration() >= 1.0: # if doing batch-wise checkpointing, and we saved a checkpoint at the batch_checkpoint event # right before the epoch_checkpoint event, do not save another checkpoint at the epoch_checkpoint # event if the batch count didn't increase. if state.timer.batch != last_checkpoint_batch: last_checkpoint_batch = state.timer.batch return True if save_event == Event.EPOCH_CHECKPOINT: count = state.timer.epoch elif save_event == Event.BATCH_CHECKPOINT: count = state.timer.batch else: raise RuntimeError(f"Invalid save_event: {save_event}") if event == save_event and int(count) % int(interval) == 0: last_checkpoint_batch = state.timer.batch return True return False return save_interval class CheckpointSaver(Callback): """Callback to save checkpoints. .. note:: If the ``save_folder`` argument is specified constructing the :class:`~composer.trainer.trainer.Trainer`, then the :class:`.CheckpointSaver` callback need not be constructed manually. However, for advanced checkpointing use cases (such as saving a weights-only checkpoint at one interval and the full training state at another interval), instance(s) of this :class:`.CheckpointSaver` callback can be specified in the ``callbacks`` argument of the :class:`~composer.trainer.trainer.Trainer`, as shown in the example below. Example .. testsetup:: from composer.callbacks.checkpoint_saver import CheckpointSaver .. doctest:: >>> trainer = Trainer(..., callbacks=[ ... CheckpointSaver( ... save_folder='checkpoints', ... name_format="ep{epoch}-ba{batch}/rank_{rank}", ... save_latest_format="latest/rank_{rank}", ... save_interval="1ep", ... weights_only=False, ... ) ... ]) Args: save_folder (str): Folder where checkpoints are saved. If an absolute path is specified, then that path will be used. Otherwise, the ``save_folder`` will be relative to the folder returned by :meth:`~.run_directory.get_run_directory`. If the ``save_folder`` does not exist, it will be created. name_format (str, optional): A format string describing how to name checkpoints. (default: ``'ep{epoch}-ba{batch}/rank_{rank}'``) Checkpoints will be saved approximately to ``{save_folder}/{name_format.format(...)}``. See :func:`.format_name` for the available format variables. .. note:: * By default, only the rank zero process will save a checkpoint file. * When using DeepSpeed, each rank will save a checkpoint file in tarball format. DeepSpeed requires tarball format, as it saves model and optimizer states in separate files. Ensure that ``'{rank}'`` appears within the ``name_format_string``. Otherwise, multiple ranks may attempt to write to the same file(s), leading to corrupted checkpoints. If no tarball file extension is specified, ``'.tar'`` will be used. * To use compression (regardless of whether DeepSpeed is enabled), set the file extension to ``'.tar.gz'``, ``'.tgz'``, ``'.tar.bzip'``, or ``'.tar.lzma'`` (depending on the desired compression algorithm). .. warning:: Using compression will block the training loop while checkpoints are being compressed. As such, we recommend saving checkpoints without compression. Consider the following scenario, where: * The default ``save_folder='checkpoints'`` is used. * The default ``name_format='ep{epoch}-ba{batch}/rank_{rank}'`` is used. * The current epoch count is ``1``. * The current batch count is ``42``. When DeepSpeed is not being used, the rank zero process will save the checkpoint to ``"checkpoints/ep1-ba42/rank_0"``. When DeepSpeed is being used, each rank (process) will save checkpoints to:: checkpoints/ep1-ba42/rank_0.tar checkpoints/ep1-ba42/rank_1.tar checkpoints/ep1-ba42/rank_2.tar ... save_latest_format (str, optional): A format string for a symlink which points to the last saved checkpoint. (default: ``'latest/rank_{rank}'``) Symlinks will be created approximately at ``{save_folder}/{save_latest_format.format(...)}``. See :func:`.format_name` for the available format variables. To disable symlinks, set this parameter to ``None``. Consider the following scenario, where: * The default ``save_folder='checkpoints'`` is used. * The default ``name_format='ep{epoch}-ba{batch}/rank_{rank}'`` is used. * The default ``save_latest_format='latest/rank_{rank}'`` is used. * The current epoch count is ``1``. * The current batch count is ``42``. When DeepSpeed is not being used, the rank zero process will save the checkpoint to ``'checkpoints/ep1-ba42/rank_0'``, and a symlink will be created at ``'checkpoints/latest/rank_0' -> 'checkpoints/ep1-ba42/rank_0'`` When DeepSpeed is being used, each rank (process) will save checkpoints to:: checkpoints/ep1-ba42/rank_0.tar checkpoints/ep1-ba42/rank_1.tar checkpoints/ep1-ba42/rank_2.tar ... Corresponding symlinks will be created at:: checkpoints/latest/rank_0.tar -> checkpoints/ep1-ba42/rank_0.tar checkpoints/latest/rank_1.tar -> checkpoints/ep1-ba42/rank_1.tar checkpoints/latest/rank_2.tar -> checkpoints/ep1-ba42/rank_2.tar ... overwrite (bool, optional): Whether existing checkpoints should be overridden. If ``False`` (the default), then the ``checkpoint_folder`` must not exist or be empty. (default: ``False``) save_interval (Time | str | int | (State, Event) -> bool): A :class:`Time`, time-string, integer (in epochs), or a function that takes (state, event) and returns a boolean whether a checkpoint should be saved. If an integer, checkpoints will be saved every n epochs. If :class:`Time` or a time-string, checkpoints will be saved according to this interval. .. seealso:: :func:`.checkpoint_periodically` If a function, then this function should take two arguments (:class:`State`, :class:`Event`). The first argument will be the current state of the trainer, and the second argument will be be :attr:`.Event.BATCH_CHECKPOINT` or :attr:`.EPOCH_CHECKPOINT` (depending on the current training progress). It should return ``True`` if a checkpoint should be saved given the current state and event. weights_only (bool): If ``True``, save only the model weights instead of the entire training state. This parmeter must be ``False`` when using DeepSpeed. (default: ``False``) Attributes: checkpoint_folder (str): The folder in which checkpoints are stored. If an absolute path was specified for ``save_folder`` upon instantiation, then that path will be used. Otherwise, this folder is relative to the run directory of the training run (e.g. ``{run_directory}/{save_folder}``). If no run directory is provided, then by default, it is of the form ``runs/<timestamp>/rank_<GLOBAL_RANK>/<save_folder>`` where ``timestamp`` is the start time of the run in iso-format, ``GLOBAL_RANK`` is the global rank of the process, and ``save_folder`` is the save_folder argument provided upon construction. .. seealso:: :mod:`~.run_directory` for details on the format of the run directory and how to customize it. saved_checkpoints (Dict[Timestamp, List[str]]): A dictionary mapping a save timestamp to a list of filepaths corresponding to the checkpoints saved at that time. .. note:: When using DeepSpeed, the index of a filepath in each list corresponds to the global rank of the process that wrote that file. These filepaths are valid only on the global rank's node. Otherwise, when not using DeepSpeed, this list will contain only one filepath since only rank zero saves checkpoints. """ def __init__( self, save_folder: str = "checkpoints", name_format: str = "ep{epoch}-ba{batch}/rank_{rank}", save_latest_format: Optional[str] = "latest/rank_{rank}", overwrite: bool = False, save_interval: Union[Time, str, int, Callable[[State, Event], bool]] = "1ep", weights_only: bool = False, ): if not callable(save_interval): save_interval = checkpoint_periodically(save_interval) self.checkpoint_folder = os.path.join(run_directory.get_run_directory(), save_folder) self.name_format = name_format self.save_latest_format = save_latest_format self.overwrite = overwrite self.save_interval = save_interval self.saved_checkpoints = {} self.weights_only = weights_only def init(self, state: State, logger: Logger) -> None: # Each rank will attempt to create the checkpoint folder. # If the folder is not parameterized by rank, then exist_ok must be True, as the folder will be the same on all ranks. os.makedirs(self.checkpoint_folder, mode=0o775, exist_ok=True) if not self.overwrite: if any(x.startswith(".") for x in os.listdir(self.checkpoint_folder)): raise RuntimeError( textwrap.dedent(f"""\ Checkpoint folder {self.checkpoint_folder} is not empty. When using {type(self).__name__}(overwrite=True, ...), the checkpoint folder must not contain any existing checkpoints.""")) # Ensure no rank proceeds (and potentially attempts to write to the folder), until all ranks have validated that the folder is empty. dist.barrier() def fit_start(self, state: State, logger: Logger) -> None: if state.is_model_deepspeed:
that the resource was updated. An `RFC3339`__ formatted datetime string. __ https://tools.ietf.org/html/rfc3339 :param str created_by_id: (optional) OCID of the user who created the resource. :param str updated_by_id: (optional) OCID of the user who updated the resource. :param list[str] fields: (optional) Specifies the fields to return in a glossary summary response. Allowed values are: "key", "displayName", "description", "catalogId", "lifecycleState", "timeCreated", "uri", "workflowStatus" :param str sort_by: (optional) The field to sort by. Only one sort order may be provided. Default order for TIMECREATED is descending. Default order for DISPLAYNAME is ascending. If no value is specified TIMECREATED is default. Allowed values are: "TIMECREATED", "DISPLAYNAME" :param str sort_order: (optional) The sort order to use, either 'asc' or 'desc'. Allowed values are: "ASC", "DESC" :param int limit: (optional) The maximum number of items to return. :param str page: (optional) The page token representing the page at which to start retrieving results. This is usually retrieved from a previous list call. :param str opc_request_id: (optional) The client request ID for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.data_catalog.models.GlossaryCollection` :rtype: :class:`~oci.response.Response` """ resource_path = "/catalogs/{catalogId}/glossaries" method = "GET" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "display_name", "lifecycle_state", "time_created", "time_updated", "created_by_id", "updated_by_id", "fields", "sort_by", "sort_order", "limit", "page", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "list_glossaries got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "catalogId": catalog_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) if 'fields' in kwargs: fields_allowed_values = ["key", "displayName", "description", "catalogId", "lifecycleState", "timeCreated", "uri", "workflowStatus"] for fields_item in kwargs['fields']: if fields_item not in fields_allowed_values: raise ValueError( "Invalid value for `fields`, must be one of {0}".format(fields_allowed_values) ) if 'sort_by' in kwargs: sort_by_allowed_values = ["TIMECREATED", "DISPLAYNAME"] if kwargs['sort_by'] not in sort_by_allowed_values: raise ValueError( "Invalid value for `sort_by`, must be one of {0}".format(sort_by_allowed_values) ) if 'sort_order' in kwargs: sort_order_allowed_values = ["ASC", "DESC"] if kwargs['sort_order'] not in sort_order_allowed_values: raise ValueError( "Invalid value for `sort_order`, must be one of {0}".format(sort_order_allowed_values) ) query_params = { "displayName": kwargs.get("display_name", missing), "lifecycleState": kwargs.get("lifecycle_state", missing), "timeCreated": kwargs.get("time_created", missing), "timeUpdated": kwargs.get("time_updated", missing), "createdById": kwargs.get("created_by_id", missing), "updatedById": kwargs.get("updated_by_id", missing), "fields": self.base_client.generate_collection_format_param(kwargs.get("fields", missing), 'multi'), "sortBy": kwargs.get("sort_by", missing), "sortOrder": kwargs.get("sort_order", missing), "limit": kwargs.get("limit", missing), "page": kwargs.get("page", missing) } query_params = {k: v for (k, v) in six.iteritems(query_params) if v is not missing and v is not None} header_params = { "accept": "application/json", "content-type": "application/json", "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, query_params=query_params, header_params=header_params, response_type="GlossaryCollection") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, query_params=query_params, header_params=header_params, response_type="GlossaryCollection") def list_job_definitions(self, catalog_id, **kwargs): """ Returns a list of job definitions within a data catalog. :param str catalog_id: (required) Unique catalog identifier. :param str display_name: (optional) A filter to return only resources that match the entire display name given. The match is not case sensitive. :param str lifecycle_state: (optional) A filter to return only resources that match the specified lifecycle state. The value is case insensitive. :param str job_type: (optional) Job type. :param bool is_incremental: (optional) Whether job definition is an incremental harvest (true) or a full harvest (false). :param str data_asset_key: (optional) Unique data asset key. :param str connection_key: (optional) Unique connection key. :param datetime time_created: (optional) Time that the resource was created. An `RFC3339`__ formatted datetime string. __ https://tools.ietf.org/html/rfc3339 :param datetime time_updated: (optional) Time that the resource was updated. An `RFC3339`__ formatted datetime string. __ https://tools.ietf.org/html/rfc3339 :param str created_by_id: (optional) OCID of the user who created the resource. :param str updated_by_id: (optional) OCID of the user who updated the resource. :param str sample_data_size_in_mbs: (optional) The sample data size in MB, specified as number of rows, for a metadata harvest. :param list[str] fields: (optional) Specifies the fields to return in a job definition summary response. Allowed values are: "key", "displayName", "description", "catalogId", "jobType", "lifecycleState", "timeCreated", "isSampleDataExtracted", "uri" :param str sort_by: (optional) The field to sort by. Only one sort order may be provided. Default order for TIMECREATED is descending. Default order for DISPLAYNAME is ascending. If no value is specified TIMECREATED is default. Allowed values are: "TIMECREATED", "DISPLAYNAME" :param str sort_order: (optional) The sort order to use, either 'asc' or 'desc'. Allowed values are: "ASC", "DESC" :param int limit: (optional) The maximum number of items to return. :param str page: (optional) The page token representing the page at which to start retrieving results. This is usually retrieved from a previous list call. :param str opc_request_id: (optional) The client request ID for tracing. :param obj retry_strategy: (optional) A retry strategy to apply to this specific operation/call. This will override any retry strategy set at the client-level. This should be one of the strategies available in the :py:mod:`~oci.retry` module. A convenience :py:data:`~oci.retry.DEFAULT_RETRY_STRATEGY` is also available. The specifics of the default retry strategy are described `here <https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/sdk_behaviors/retries.html>`__. To have this operation explicitly not perform any retries, pass an instance of :py:class:`~oci.retry.NoneRetryStrategy`. :return: A :class:`~oci.response.Response` object with data of type :class:`~oci.data_catalog.models.JobDefinitionCollection` :rtype: :class:`~oci.response.Response` """ resource_path = "/catalogs/{catalogId}/jobDefinitions" method = "GET" # Don't accept unknown kwargs expected_kwargs = [ "retry_strategy", "display_name", "lifecycle_state", "job_type", "is_incremental", "data_asset_key", "connection_key", "time_created", "time_updated", "created_by_id", "updated_by_id", "sample_data_size_in_mbs", "fields", "sort_by", "sort_order", "limit", "page", "opc_request_id" ] extra_kwargs = [_key for _key in six.iterkeys(kwargs) if _key not in expected_kwargs] if extra_kwargs: raise ValueError( "list_job_definitions got unknown kwargs: {!r}".format(extra_kwargs)) path_params = { "catalogId": catalog_id } path_params = {k: v for (k, v) in six.iteritems(path_params) if v is not missing} for (k, v) in six.iteritems(path_params): if v is None or (isinstance(v, six.string_types) and len(v.strip()) == 0): raise ValueError('Parameter {} cannot be None, whitespace or empty string'.format(k)) if 'fields' in kwargs: fields_allowed_values = ["key", "displayName", "description", "catalogId", "jobType", "lifecycleState", "timeCreated", "isSampleDataExtracted", "uri"] for fields_item in kwargs['fields']: if fields_item not in fields_allowed_values: raise ValueError( "Invalid value for `fields`, must be one of {0}".format(fields_allowed_values) ) if 'sort_by' in kwargs: sort_by_allowed_values = ["TIMECREATED", "DISPLAYNAME"] if kwargs['sort_by'] not in sort_by_allowed_values: raise ValueError( "Invalid value for `sort_by`, must be one of {0}".format(sort_by_allowed_values) ) if 'sort_order' in kwargs: sort_order_allowed_values = ["ASC", "DESC"] if kwargs['sort_order'] not in sort_order_allowed_values: raise ValueError( "Invalid value for `sort_order`, must be one of {0}".format(sort_order_allowed_values) ) query_params = { "displayName": kwargs.get("display_name", missing), "lifecycleState": kwargs.get("lifecycle_state", missing), "jobType": kwargs.get("job_type", missing), "isIncremental": kwargs.get("is_incremental", missing), "dataAssetKey": kwargs.get("data_asset_key", missing), "connectionKey": kwargs.get("connection_key", missing), "timeCreated": kwargs.get("time_created", missing), "timeUpdated": kwargs.get("time_updated", missing), "createdById": kwargs.get("created_by_id", missing), "updatedById": kwargs.get("updated_by_id", missing), "sampleDataSizeInMBs": kwargs.get("sample_data_size_in_mbs", missing), "fields": self.base_client.generate_collection_format_param(kwargs.get("fields", missing), 'multi'), "sortBy": kwargs.get("sort_by", missing), "sortOrder": kwargs.get("sort_order", missing), "limit": kwargs.get("limit", missing), "page": kwargs.get("page", missing) } query_params = {k: v for (k, v) in six.iteritems(query_params) if v is not missing and v is not None} header_params = { "accept": "application/json", "content-type": "application/json", "opc-request-id": kwargs.get("opc_request_id", missing) } header_params = {k: v for (k, v) in six.iteritems(header_params) if v is not missing and v is not None} retry_strategy = self.retry_strategy if kwargs.get('retry_strategy'): retry_strategy = kwargs.get('retry_strategy') if retry_strategy: return retry_strategy.make_retrying_call( self.base_client.call_api, resource_path=resource_path, method=method, path_params=path_params, query_params=query_params, header_params=header_params, response_type="JobDefinitionCollection") else: return self.base_client.call_api( resource_path=resource_path, method=method, path_params=path_params, query_params=query_params, header_params=header_params, response_type="JobDefinitionCollection") def list_job_executions(self, catalog_id, job_key, **kwargs): """ Returns a list of job executions for a job. :param str catalog_id: (required) Unique catalog identifier. :param str job_key: (required) Unique job key. :param str lifecycle_state: (optional) Job
# Copyright 2014 Google Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The main OpenHTF entry point.""" import argparse import collections import copy import functools import inspect import itertools import json import logging import signal import socket import sys import textwrap import threading import uuid import weakref from types import LambdaType import mutablerecords from enum import Enum from openhtf import core from openhtf import plugs from openhtf import util from openhtf.core.measurements import Dimension, Measurement, measures from openhtf.core.monitors import monitors from openhtf.core import phase_executor from openhtf.core import station_api from openhtf.core import test_record from openhtf.plugs import plug from openhtf.util import conf from openhtf.util import data from openhtf.util import functions from openhtf.util import logs from openhtf.util import units __version__ = util.get_version() _LOG = logging.getLogger(__name__) conf.declare('capture_source', description=textwrap.dedent( '''Whether to capture the source of phases and the test module. This defaults to False since this potentially reads many files and makes large string copies. Set to 'true' if you want to capture your test's source.'''), default_value=False) class UnrecognizedTestUidError(Exception): """Raised when information is requested about an unknown Test UID.""" class InvalidTestPhaseError(Exception): """Raised when an invalid method is decorated.""" class InvalidTestStateError(Exception): """Raised when an operation is attempted in an invalid state.""" class Test(object): """An object that represents an OpenHTF test. Example: def PhaseOne(test): # Integrate more widgets def PhaseTwo(test): # Analyze widget integration status Test(PhaseOne, PhaseTwo).execute() Note that Test() objects *must* be created in the main thread, but can be .execute()'d in a separate thread. """ TEST_INSTANCES = weakref.WeakValueDictionary() def __init__(self, *phases, **metadata): # Some sanity checks on special metadata keys we automatically fill in. if 'config' in metadata: raise KeyError( 'Invalid metadata key "config", it will be automatically populated.') self.created_time_millis = util.time_millis() self.last_run_time_millis = None self._test_options = TestOptions() self._lock = threading.Lock() self._executor = None self._test_desc = TestDescriptor( phases, test_record.CodeInfo.uncaptured(), metadata) if conf.capture_source: # First, we copy the phases with the real CodeInfo for them. phases = [ mutablerecords.CopyRecord( phase, code_info=test_record.CodeInfo.for_function(phase.func)) for phase in self._test_desc.phases] # Then we replace the TestDescriptor with one that stores the test # module's CodeInfo as well as our newly copied phases. code_info = test_record.CodeInfo.for_module_from_stack(levels_up=2) self._test_desc = self._test_desc._replace( code_info=code_info, phases=phases) # Make sure configure() gets called at least once before Execute(). The # user might call configure() again to override options, but we don't want # to force them to if they want to use defaults. For default values, see # the class definition of TestOptions. if 'test_name' in metadata: # Allow legacy metadata key for specifying test name. self.configure(name=metadata['test_name']) else: self.configure() # This is a noop if the server is already running, otherwise start it now # that we have at least one Test instance. station_api.start_server() @classmethod def from_uid(cls, test_uid): """Get Test by UID. Returns: Test object, given by UID. Raises: UnrecognizedTestUidError: If the test_uid is not recognized. """ test = cls.TEST_INSTANCES.get(test_uid) if not test: raise UnrecognizedTestUidError('Test UID %s not recognized' % test_uid) return test @property def uid(self): if self._executor is not None: return self._executor.uid def make_uid(self): """Returns the next test execution's UID. This identifier must be unique but trackable across invocations of execute(). Therefore, it's made of three parts separated by ':' * Process-specific (decided on process start up) * Test descriptor-specific (decided on descriptor creation) * Execution-specific (decided on test start) """ return ':'.join([ station_api.STATION_API.UID, self.descriptor.uid, uuid.uuid4().hex[:16]]) @property def descriptor(self): """Static data about this test, does not change across Execute() calls.""" return self._test_desc @property def state(self): """Transient state info about the currently executing test, or None.""" with self._lock: if self._executor: return self._executor.test_state def get_option(self, option): return getattr(self._test_options, option) def add_output_callbacks(self, *callbacks): """Add the given function as an output module to this test.""" self._test_options.output_callbacks.extend(callbacks) def configure(self, **kwargs): """Update test-wide configuration options. See TestOptions for docs.""" # These internally ensure they are safe to call multiple times with no weird # side effects. known_args, _ = create_arg_parser(add_help=True).parse_known_args() if known_args.config_help: sys.stdout.write(conf.help_text) sys.exit(0) logs.setup_logger() for key, value in kwargs.items(): setattr(self._test_options, key, value) @classmethod def handle_sig_int(cls, *_): if cls.TEST_INSTANCES: _LOG.error('Received SIGINT, stopping all tests.') for test in cls.TEST_INSTANCES.values(): test.stop_from_sig_int() station_api.stop_server() # The default SIGINT handler does this. If we don't, then nobody above # us is notified of the event. This will raise this exception in the main # thread. raise KeyboardInterrupt() def stop_from_sig_int(self): """Stop test execution as abruptly as we can, only in response to SIGINT.""" with self._lock: _LOG.error('Stopping %s due to SIGINT', self) if self._executor: # TestState str()'s nicely to a descriptive string, so let's log that # just for good measure. _LOG.error('Test state: %s', self._executor.test_state) self._executor.stop() def execute(self, test_start=None): """Starts the framework and executes the given test. Args: test_start: Either a trigger phase for starting the test, or a function that returns a DUT ID. If neither is provided, defaults to not setting the DUT ID. """ # Lock this section so we don't .stop() the executor between instantiating # it and .Start()'ing it, doing so does weird things to the executor state. with self._lock: # Sanity check to make sure someone isn't doing something weird like # trying to Execute() the same test twice in two separate threads. We # hold the lock between here and Start()'ing the executor to guarantee # that only one thread is successfully executing the test. if self._executor: raise InvalidTestStateError('Test already running', self._executor) # Snapshot some things we care about and store them. self._test_desc.metadata['test_name'] = self._test_options.name self._test_desc.metadata['config'] = conf._asdict() self.last_run_time_millis = util.time_millis() if isinstance(test_start, LambdaType): @TestPhase() def trigger_phase(test): test.test_record.dut_id = test_start() trigger = trigger_phase else: trigger = test_start if conf.capture_source: trigger.code_info = test_record.CodeInfo.for_function(trigger.func) self._executor = core.TestExecutor( self._test_desc, self.make_uid(), trigger, self._test_options.teardown_function, self._test_options.failure_exceptions) _LOG.info('Executing test: %s', self.descriptor.code_info.name) self.TEST_INSTANCES[self.uid] = self self._executor.start() try: self._executor.wait() finally: try: final_state = self._executor.finalize() _LOG.debug('Test completed for %s, outputting now.', final_state.test_record.metadata['test_name']) for output_cb in self._test_options.output_callbacks: try: output_cb(final_state.test_record) except Exception: # pylint: disable=broad-except _LOG.exception( 'Output callback %s raised; continuing anyway', output_cb) finally: del self.TEST_INSTANCES[self.uid] self._executor = None return final_state.test_record.outcome == test_record.Outcome.PASS class TestOptions(mutablerecords.Record('TestOptions', [], { 'name': 'OpenHTF Test', 'output_callbacks': list, 'teardown_function': None, 'failure_exceptions': list, })): """Class encapsulating various tunable knobs for Tests and their defaults. name: The name of the test to be put into the metadata. output_callbacks: List of output callbacks to run, typically it's better to use add_output_callbacks(), but you can pass [] here to reset them. teardown_function: Function to run at teardown. We pass the same arguments to it as a phase. failure_exceptions: Exceptions to cause a test FAIL instead of ERROR. When a test run exits early due to an exception, the run will be marked as a FAIL if the raised exception matches one of the types in this list. Otherwise, the run is marked as ERROR. """ class TestDescriptor(collections.namedtuple( 'TestDescriptor', ['phases', 'code_info', 'metadata', 'uid'])): """An object that represents the reusable portions of an OpenHTF test. This object encapsulates the static test information that is set once and used by the framework along the way. Attributes: phases: The phases to execute for this Test. metadata: Any metadata that should be associated with test records. code_info: Information about the module that created the Test. uid: UID for this test. """ def __new__(cls, phases, code_info, metadata): phases = [PhaseDescriptor.wrap_or_copy(phase) for phase in phases] return super(TestDescriptor, cls).__new__( cls, phases, code_info, metadata, uid=uuid.uuid4().hex[:16]) @property def plug_types(self): """Returns set of plug types required by this test.""" return {plug.cls for phase in self.phases for plug in phase.plugs} def create_arg_parser(add_help=False): """Creates an argparse.ArgumentParser for parsing command line flags. If you want to add arguments, create your own with this as a parent: >>> parser = argparse.ArgumentParser( 'My args title', parents=[openhtf.create_arg_parser()]) >>> parser.parse_args() """ parser = argparse.ArgumentParser('OpenHTF-based testing', parents=[ conf.ARG_PARSER, phase_executor.ARG_PARSER, logs.ARG_PARSER], add_help=add_help) parser.add_argument( '--config-help', action='store_true', help='Instead of executing the test, simply print all available config '
<reponame>gr4viton/kivent-robotic-visualizer<filename>py/surface.py from random import randint, choice, randrange from math import radians, pi, sin, cos from kivy.core.window import Window import logging from logging import info as prinf from logging import debug as prind from logging import warning as prinw from logging import error as prine import time import random as rnd from random import randint, choice, randrange import svgwrite as svg import glob import json import os class Map2D: def __init__(self, root): self.root = root self.__svg_map_dir__ = "../assets/maps/svg/" self.clear_maps() self.cts = self.root.collision_types self.draw_walls() # self.draw_some_stuff() self.draw_obstacles() def clear_maps(self): prinf("Deleting maps in " + self.__svg_map_dir__) # shutil.rmtree(self.__svg_map_dir__) files = glob.glob(self.__svg_map_dir__ + "*") for f in files: os.remove(f) def draw_walls(self): Ww, Wh = Wsize = Window.size prinw(Wsize) self.root.info(Wsize) self.wall_id = 0 # thickness t = 125 txu = "warning" x0, y0 = 30, 30 # w0, h0 = Ww-2*x0, Wh-2*y0 w0, h0 = self.root.field_size sizes = [(w0, t), (t, h0 + 2 * t), (w0, t), (t, h0 + 2 * t)] poss = [[0, -t], [w0, -t], [0, h0], [-t, -t]] poss = [[pos[0] + x0, pos[1] + y0] for pos in poss] for pos, size in zip(poss, sizes): self.create_wall(pos, size, txu) def create_wall(self, pos_lf, size, txu, name="wall"): w, h = size cat = "wall" pos = [pos_lf[i] + size[i] / 2 for i in range(2)] model_key = cat + str(self.wall_id) self.root.gameworld.model_manager.load_textured_rectangle( "vertex_format_4f", w, h, txu, model_key ) mass = 0 shape_dict = {"width": w, "height": h, "mass": mass} col_shape = { "shape_type": "box", "elasticity": 1.0, "collision_type": self.cts[cat], "shape_info": shape_dict, "friction": 1.0, } col_shapes = [col_shape] physics_component = { "main_shape": "box", "velocity": (0, 0), "position": pos, "angle": 0, "angular_velocity": 0, "vel_limit": 0, "ang_vel_limit": 0, "mass": mass, "col_shapes": col_shapes, } create_component_dict = { "cymunk_physics": physics_component, "rotate_renderer": {"texture": txu, "model_key": model_key}, "position": pos, "rotate": 0, } name = cat + str(randint(0, 100000)) object_info = {"name": name, "category": cat} component_order = [ "position", "rotate", "rotate_renderer", "cymunk_physics", ] self.wall_id += 1 return self.root.init_entity( create_component_dict, component_order, object_info=object_info ) def draw_rect_obstacles(self, count=10): fname = self.create_rect_obstacles(count) self.root.fl.load_svg(fname, self.root.gameworld) def draw_obstacles(self, count=10): self.create_obstacles(count) # self.draw_rect_obstacles() # def draw_stuff(self): # self.draw_obstacles() # self.draw_rect_obstacles() # pass def create_obstacles(self, count): self.color = "#42ACDC" self.stroke_color = "#000000" Fw, Fh = self.root.field_size w, h = Fw, Fh siz = (str(w), str(h)) print(siz) dens_interval = (900, 1000) # mass_interval = (1000, 5000) smaller = h if h <= w else w siz_min, siz_max = one_siz_interval = 0.01 * smaller, 0.08 * smaller siz_interval = [one_siz_interval, one_siz_interval] model_manager = self.root.gameworld.model_manager start = int(time.time()) for i in range(count): group = start - i print(group) rnd.seed(time.time()) siz = [randint(*siz_interval[i]) for i in range(2)] pos_lf_interval = ((0, w - siz[0]), (0, h - siz[1])) pos_of_shape = [ randint(*pos_lf_interval[i]) + siz[i] / 2 for i in range(2) ] pos = (0, 0) # mass = randint(*mass_interval) dens = randint(*dens_interval) mass = siz[0] * siz[1] * dens / 1000 cat = "obstacle" name = cat + str(i) info_dict = { "mass": mass, "object_info": {"name": name, "category": cat}, } color = (0, 128, 255, 255) v_count = randint(3, 5) + randint(0, 5) model_data = self.get_polyobstacle(pos, siz, v_count, color) # self.root.pprint(model_data) model_name = ( "poly_obstacle" + str(v_count) + "v" + str(time.time()) ) model = model_manager.load_model( "vertex_format_2f4ub", model_data["vertex_count"], model_data["index_count"], model_name, indices=model_data["indices"], vertices=model_data["vertices"], ) col_shapes = [] for tri_verts in model_data["tri_list"]: col_shape = { "shape_type": "poly", "elasticity": 0.6, "collision_type": self.cts[cat], "friction": 1.0, "group": group, "shape_info": { "mass": mass, "offset": (0, 0), "vertices": tri_verts, }, } col_shapes.append(col_shape) physics = { "main_shape": "poly", "velocity": (0, 0), "position": pos_of_shape, "angle": 0, "angular_velocity": radians(0), "ang_vel_limit": radians(0), "mass": mass, "col_shapes": col_shapes, } component_dict = { "position": pos_of_shape, "rotate_poly_renderer": {"model_key": model}, "cymunk_physics": physics, "rotate": radians(0), } cat = "obstacle" info_dict = { "mass": mass, "object_info": {"name": name, "category": cat}, } info_str = json.dumps(info_dict) object_info = info_dict["object_info"] print("robot component creation") component_order = [ "position", "rotate", "rotate_poly_renderer", "cymunk_physics", ] # self.root.init_entity(component_dict, component_order, object_info=object_info) self.ent = self.root.gameworld.init_entity( component_dict, component_order ) self.root.add_entity(self.ent, cat) print(">>>>>>", self.ent) # kivy - 12_drawing_shapes def create_rect_obstacles(self, count): self.color = "#42ACDC" self.stroke_color = "#000000" self.path = self.__svg_map_dir__ + "map{}.svg" Fw, Fh = self.root.field_size w, h = Fw, Fh siz = (str(w), str(h)) print(siz) self.dwg = None fname = self.path.format(time.time()) self.dwg = svg.Drawing( fname, size=siz, baseProfile="full", debug=False ) # group = self.dwg.add(self.dwg.g(id='obstacles', fill=self.color)) dens_interval = (900, 1000) # mass_interval = (1000, 5000) smaller = h if h <= w else w siz_min, siz_max = one_siz_interval = 0.01 * smaller, 0.1 * smaller siz_interval = [one_siz_interval, one_siz_interval] for i in range(count): rnd.seed(time.time()) # pos = siz = (100,100) # rnd.seed(time.time()) siz = [randint(*siz_interval[i]) for i in range(2)] pos_lf_interval = ((0, w - siz[0]), (0, h - siz[1])) pos = [randint(*pos_lf_interval[i]) + siz[i] / 2 for i in range(2)] # mass = randint(*mass_interval) dens = randrange(*dens_interval) mass = siz[0] * siz[1] * dens / 1000 cat = "obstacle_rect" name = cat + str(i) info_dict = { "mass": mass, "collision_type": self.cts[cat], "object_info": {"name": name, "category": cat}, } # id is necessary attribut for the kivent svg loader!, also I use it for sharing info about the obstacle info_str = json.dumps(info_dict) desc = name id_str = name color = self.color stroke_color = self.stroke_color rect = self.dwg.rect( id=id_str, insert=pos, size=siz, fill=color, stroke=stroke_color, description=info_str, ) if i == 0: print(siz, pos, mass) print(">>>>>>>>>>>>>>>>>>>>>>>>>>>ww") # print(inspect.getfullargspec()) # group.add(rect) self.dwg.add(rect) self.root.info("saving: " + self.dwg.filename) self.dwg.save() return fname # kivy - 12_drawing_shapes def get_layered_regular_polygon( levels, sides, middle_color, radius_color_dict, pos=(0.0, 0.0) ): """ radius_color_dict = {level#: (r, (r,g,b,a))} """ x, y = pos angle = 2 * pi / sides all_verts = {} all_verts[0] = {"pos": pos, "v_color": middle_color} r_total = 0 i = 0 indices = [] vert_count = 1 ind_count = 0 ind_ext = indices.extend for count in range(levels): level = i + 1 r, color = radius_color_dict[level] for s in range(sides): new_pos = list( ( x + (r + r_total) * sin(s * angle), y + (r + r_total) * cos(s * angle), ) ) all_verts[vert_count] = {"pos": new_pos, "v_color": color} vert_count += 1 r_total += r c = 1 # side number we are on in loop if level == 1: for each in range(sides): if c < sides: ind_ext((c, 0, c + 1)) else: ind_ext((c, 0, 1)) ind_count += 3 c += 1 else: for each in range(sides): offset = sides * (i - 1) if c < sides: ind_ext( ( c + sides + offset, c + sides + 1 + offset, c + offset, ) ) ind_ext( ( c + offset, c + 1 + offset, c + sides + 1 + offset, ) ) else: ind_ext( ( c + sides + offset, sides + 1 + offset, sides + offset, ) ) ind_ext( (sides + offset, 1 + offset, sides + 1 + offset) ) ind_count += 6 c += 1 i += 1 return { "indices": indices, "vertices": all_verts, "vertex_count": vert_count, "index_count": ind_count, } @staticmethod def get_polyobstacle(pos, siz, v_count, color): rnd.seed(time.time()) vert_count = 0 ind_count = 0 angles = [radians(randint(0, 360)) for i in range(v_count)] angles = sorted(angles) indices = [] vert_positions = [(0.0, 0.0)] rad_range = sorted(siz) all_verts = {} tri_list = [] angles = [radians(360 * i / v_count) for i in range(v_count)] def get_randomized_angle(j, k, k_angle_offset=0): a_1 = angles[j] a_2 = angles[k] + k_angle_offset a_min = a_1 a_max = a_1 + (a_2 - a_1) * 0.8 # to not make it too convex return randint(int(a_min * 100), int(a_max * 100)) / 100 angles = [ get_randomized_angle(i, i + 1) for i in range(len(angles) - 1) ] angles.append(get_randomized_angle(len(angles) - 1, 0, radians(360))) print(angles) for ang in angles: radius = randint(*rad_range) rand_siz = [ randint(int(s * 1000 / 2), int(s * 1000)) / 1000 / s for s in siz ] pos = ( radius * cos(ang) * rand_siz[0], radius * sin(ang) * rand_siz[1], ) vert_positions.append(pos) for i, v_pos in enumerate(vert_positions): all_verts.update({i: {"pos": v_pos, "v_color": color}}) if i > 1: inds = (0, i - 1, i) indices.extend(inds) tri_list.append([vert_positions[ind]
import re import collections from enum import Enum from ydk._core._dm_meta_info import _MetaInfoClassMember, _MetaInfoClass, _MetaInfoEnum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk._core._dm_meta_info import ATTRIBUTE, REFERENCE_CLASS, REFERENCE_LIST, REFERENCE_LEAFLIST, REFERENCE_IDENTITY_CLASS, REFERENCE_ENUM_CLASS, REFERENCE_BITS, REFERENCE_UNION from ydk.errors import YPYError, YPYModelError from ydk.providers._importer import _yang_ns _meta_table = { 'Radius.Nodes.Node.Client' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.Client', False, [ _MetaInfoClassMember('authentication-nas-id', ATTRIBUTE, 'str' , None, None, [], [], ''' NAS-Identifier of the RADIUS authentication client ''', 'authentication_nas_id', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('unknown-accounting-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of RADIUS accounting responses packets received from unknown addresses ''', 'unknown_accounting_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('unknown-authentication-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of RADIUS access responses packets received from unknown addresses ''', 'unknown_authentication_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'client', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.DeadCriteria.Hosts.Host.Time' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.DeadCriteria.Hosts.Host.Time', False, [ _MetaInfoClassMember('is-computed', ATTRIBUTE, 'bool' , None, None, [], [], ''' True if computed; false if not ''', 'is_computed', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('value', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Value for time or tries ''', 'value', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'time', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.DeadCriteria.Hosts.Host.Tries' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.DeadCriteria.Hosts.Host.Tries', False, [ _MetaInfoClassMember('is-computed', ATTRIBUTE, 'bool' , None, None, [], [], ''' True if computed; false if not ''', 'is_computed', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('value', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Value for time or tries ''', 'value', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'tries', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.DeadCriteria.Hosts.Host' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.DeadCriteria.Hosts.Host', False, [ _MetaInfoClassMember('acct-port-number', ATTRIBUTE, 'int' , None, None, [('1', '65535')], [], ''' Accounting Port number (standard port 1646) ''', 'acct_port_number', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('auth-port-number', ATTRIBUTE, 'int' , None, None, [('1', '65535')], [], ''' Authentication Port number (standard port 1645) ''', 'auth_port_number', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('ip-address', REFERENCE_UNION, 'str' , None, None, [], [], ''' IP address of RADIUS server ''', 'ip_address', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False, [ _MetaInfoClassMember('ip-address', ATTRIBUTE, 'str' , None, None, [], ['(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'], ''' IP address of RADIUS server ''', 'ip_address', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('ip-address', ATTRIBUTE, 'str' , None, None, [], ['((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'], ''' IP address of RADIUS server ''', 'ip_address', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ]), _MetaInfoClassMember('time', REFERENCE_CLASS, 'Time' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper', 'Radius.Nodes.Node.DeadCriteria.Hosts.Host.Time', [], [], ''' Time in seconds ''', 'time', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('tries', REFERENCE_CLASS, 'Tries' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper', 'Radius.Nodes.Node.DeadCriteria.Hosts.Host.Tries', [], [], ''' Number of tries ''', 'tries', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'host', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.DeadCriteria.Hosts' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.DeadCriteria.Hosts', False, [ _MetaInfoClassMember('host', REFERENCE_LIST, 'Host' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper', 'Radius.Nodes.Node.DeadCriteria.Hosts.Host', [], [], ''' RADIUS Server ''', 'host', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'hosts', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.DeadCriteria' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.DeadCriteria', False, [ _MetaInfoClassMember('hosts', REFERENCE_CLASS, 'Hosts' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper', 'Radius.Nodes.Node.DeadCriteria.Hosts', [], [], ''' RADIUS server dead criteria host table ''', 'hosts', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'dead-criteria', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.Authentication.AuthenticationGroup.Authentication_' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.Authentication.AuthenticationGroup.Authentication_', False, [ _MetaInfoClassMember('access-accepts', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of access accepts ''', 'access_accepts', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('access-challenges', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of access challenges ''', 'access_challenges', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('access-rejects', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of access rejects ''', 'access_rejects', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('access-request-retransmits', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of retransmitted access requests ''', 'access_request_retransmits', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('access-requests', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of access requests ''', 'access_requests', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('access-timeouts', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of access packets timed out ''', 'access_timeouts', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('authen-incorrect-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of incorrect authentication responses ''', 'authen_incorrect_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('authen-response-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Average response time for authentication requests ''', 'authen_response_time', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('authen-server-error-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of server error authentication responses ''', 'authen_server_error_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('authen-transaction-failure', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of failed authentication transactions ''', 'authen_transaction_failure', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('authen-transaction-successess', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of succeeded authentication transactions ''', 'authen_transaction_successess', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('authen-unexpected-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of unexpected authentication responses ''', 'authen_unexpected_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('bad-access-authenticators', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of bad access authenticators ''', 'bad_access_authenticators', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('bad-access-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of bad access responses ''', 'bad_access_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('dropped-access-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of access responses dropped ''', 'dropped_access_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('pending-access-requests', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of pending access requests ''', 'pending_access_requests', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('rtt', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Round trip time for authentication in milliseconds ''', 'rtt', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('unknown-access-types', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets received with unknown type from authentication server ''', 'unknown_access_types', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'authentication', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.Authentication.AuthenticationGroup' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.Authentication.AuthenticationGroup', False, [ _MetaInfoClassMember('authentication', REFERENCE_CLASS, 'Authentication_' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper', 'Radius.Nodes.Node.Authentication.AuthenticationGroup.Authentication_', [], [], ''' Authentication data ''', 'authentication', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('family', ATTRIBUTE, 'str' , None, None, [], [], ''' IP address Family ''', 'family', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('ip-address', ATTRIBUTE, 'str' , None, None, [], [], ''' IP address buffer ''', 'ip_address', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('port', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Authentication port number ''', 'port', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('server-address', ATTRIBUTE, 'str' , None, None, [], ['(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'], ''' IP address of RADIUS server ''', 'server_address', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'authentication-group', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.Authentication' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.Authentication', False, [ _MetaInfoClassMember('authentication-group', REFERENCE_LIST, 'AuthenticationGroup' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper', 'Radius.Nodes.Node.Authentication.AuthenticationGroup', [], [], ''' List of authentication groups ''', 'authentication_group', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), ], 'Cisco-IOS-XR-aaa-protocol-radius-oper', 'authentication', _yang_ns._namespaces['Cisco-IOS-XR-aaa-protocol-radius-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_aaa_protocol_radius_oper' ), }, 'Radius.Nodes.Node.Accounting.AccountingGroup.Accounting_' : { 'meta_info' : _MetaInfoClass('Radius.Nodes.Node.Accounting.AccountingGroup.Accounting_', False, [ _MetaInfoClassMember('acct-incorrect-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of incorrect accounting responses ''', 'acct_incorrect_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('acct-response-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Average response time for authentication requests ''', 'acct_response_time', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('acct-server-error-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of server error accounting responses ''', 'acct_server_error_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('acct-transaction-failure', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of failed authentication transactions ''', 'acct_transaction_failure', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('acct-transaction-successess', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of succeeded authentication transactions ''', 'acct_transaction_successess', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('acct-unexpected-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of unexpected accounting responses ''', 'acct_unexpected_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('bad-authenticators', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of bad accounting authenticators ''', 'bad_authenticators', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('bad-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of bad accounting responses ''', 'bad_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('dropped-responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of accounting responses dropped ''', 'dropped_responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('pending-requests', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of pending accounting requests ''', 'pending_requests', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('requests', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of accounting requests ''', 'requests', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('responses', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of accounting responses ''', 'responses', 'Cisco-IOS-XR-aaa-protocol-radius-oper', False), _MetaInfoClassMember('retransmits', ATTRIBUTE, 'int' , None,
<reponame>ravithanneeru/azure-cli-extensions<gh_stars>1000+ # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import Dict, List, Optional, Union from azure.core.exceptions import HttpResponseError import msrest.serialization from ._source_control_configuration_client_enums import * class Resource(msrest.serialization.Model): """Common fields that are returned in the response for all Azure Resource Manager resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class ProxyResource(Resource): """The resource model definition for a Azure Resource Manager proxy resource. It will not have tags and a location. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(ProxyResource, self).__init__(**kwargs) class ClusterScopeSettings(ProxyResource): """Extension scope settings. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str :param allow_multiple_instances: Describes if multiple instances of the extension are allowed. :type allow_multiple_instances: bool :param default_release_namespace: Default extension release namespace. :type default_release_namespace: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'allow_multiple_instances': {'key': 'properties.allowMultipleInstances', 'type': 'bool'}, 'default_release_namespace': {'key': 'properties.defaultReleaseNamespace', 'type': 'str'}, } def __init__( self, *, allow_multiple_instances: Optional[bool] = None, default_release_namespace: Optional[str] = None, **kwargs ): super(ClusterScopeSettings, self).__init__(**kwargs) self.allow_multiple_instances = allow_multiple_instances self.default_release_namespace = default_release_namespace class ComplianceStatus(msrest.serialization.Model): """Compliance Status details. Variables are only populated by the server, and will be ignored when sending a request. :ivar compliance_state: The compliance state of the configuration. Possible values include: "Pending", "Compliant", "Noncompliant", "Installed", "Failed". :vartype compliance_state: str or ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.ComplianceStateType :param last_config_applied: Datetime the configuration was last applied. :type last_config_applied: ~datetime.datetime :param message: Message from when the configuration was applied. :type message: str :param message_level: Level of the message. Possible values include: "Error", "Warning", "Information". :type message_level: str or ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.MessageLevelType """ _validation = { 'compliance_state': {'readonly': True}, } _attribute_map = { 'compliance_state': {'key': 'complianceState', 'type': 'str'}, 'last_config_applied': {'key': 'lastConfigApplied', 'type': 'iso-8601'}, 'message': {'key': 'message', 'type': 'str'}, 'message_level': {'key': 'messageLevel', 'type': 'str'}, } def __init__( self, *, last_config_applied: Optional[datetime.datetime] = None, message: Optional[str] = None, message_level: Optional[Union[str, "MessageLevelType"]] = None, **kwargs ): super(ComplianceStatus, self).__init__(**kwargs) self.compliance_state = None self.last_config_applied = last_config_applied self.message = message self.message_level = message_level class ErrorAdditionalInfo(msrest.serialization.Model): """The resource management error additional info. Variables are only populated by the server, and will be ignored when sending a request. :ivar type: The additional info type. :vartype type: str :ivar info: The additional info. :vartype info: any """ _validation = { 'type': {'readonly': True}, 'info': {'readonly': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'info': {'key': 'info', 'type': 'object'}, } def __init__( self, **kwargs ): super(ErrorAdditionalInfo, self).__init__(**kwargs) self.type = None self.info = None class ErrorDetail(msrest.serialization.Model): """The error detail. Variables are only populated by the server, and will be ignored when sending a request. :ivar code: The error code. :vartype code: str :ivar message: The error message. :vartype message: str :ivar target: The error target. :vartype target: str :ivar details: The error details. :vartype details: list[~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.ErrorDetail] :ivar additional_info: The error additional info. :vartype additional_info: list[~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.ErrorAdditionalInfo] """ _validation = { 'code': {'readonly': True}, 'message': {'readonly': True}, 'target': {'readonly': True}, 'details': {'readonly': True}, 'additional_info': {'readonly': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[ErrorDetail]'}, 'additional_info': {'key': 'additionalInfo', 'type': '[ErrorAdditionalInfo]'}, } def __init__( self, **kwargs ): super(ErrorDetail, self).__init__(**kwargs) self.code = None self.message = None self.target = None self.details = None self.additional_info = None class ErrorResponse(msrest.serialization.Model): """Common error response for all Azure Resource Manager APIs to return error details for failed operations. (This also follows the OData error response format.). :param error: The error object. :type error: ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.ErrorDetail """ _attribute_map = { 'error': {'key': 'error', 'type': 'ErrorDetail'}, } def __init__( self, *, error: Optional["ErrorDetail"] = None, **kwargs ): super(ErrorResponse, self).__init__(**kwargs) self.error = error class Extension(ProxyResource): """The Extension object. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts". :vartype type: str :param identity: Identity of the Extension resource. :type identity: ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.Identity :ivar system_data: Top level metadata https://github.com/Azure/azure-resource-manager-rpc/blob/master/v1.0/common-api-contracts.md#system-metadata-for-all-azure-resources. :vartype system_data: ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.SystemData :param extension_type: Type of the Extension, of which this resource is an instance of. It must be one of the Extension Types registered with Microsoft.KubernetesConfiguration by the Extension publisher. :type extension_type: str :param auto_upgrade_minor_version: Flag to note if this extension participates in auto upgrade of minor version, or not. :type auto_upgrade_minor_version: bool :param release_train: ReleaseTrain this extension participates in for auto-upgrade (e.g. Stable, Preview, etc.) - only if autoUpgradeMinorVersion is 'true'. :type release_train: str :param version: Version of the extension for this extension, if it is 'pinned' to a specific version. autoUpgradeMinorVersion must be 'false'. :type version: str :param scope: Scope at which the extension is installed. :type scope: ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.Scope :param configuration_settings: Configuration settings, as name-value pairs for configuring this extension. :type configuration_settings: dict[str, str] :param configuration_protected_settings: Configuration settings that are sensitive, as name-value pairs for configuring this extension. :type configuration_protected_settings: dict[str, str] :ivar provisioning_state: Status of installation of this extension. Possible values include: "Succeeded", "Failed", "Canceled", "Creating", "Updating", "Deleting". :vartype provisioning_state: str or ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.ProvisioningState :param statuses: Status from this extension. :type statuses: list[~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.ExtensionStatus] :ivar error_info: Error information from the Agent - e.g. errors during installation. :vartype error_info: ~azure.mgmt.kubernetesconfiguration.v2021_05_01_preview.models.ErrorDetail :ivar custom_location_settings: Custom Location settings properties. :vartype custom_location_settings: dict[str, str] :ivar package_uri: Uri of the Helm package. :vartype package_uri: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'error_info': {'readonly': True}, 'custom_location_settings': {'readonly': True}, 'package_uri': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'identity': {'key': 'identity', 'type': 'Identity'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'extension_type': {'key': 'properties.extensionType', 'type': 'str'}, 'auto_upgrade_minor_version': {'key': 'properties.autoUpgradeMinorVersion', 'type': 'bool'}, 'release_train': {'key': 'properties.releaseTrain', 'type': 'str'}, 'version': {'key': 'properties.version', 'type': 'str'}, 'scope': {'key': 'properties.scope', 'type': 'Scope'}, 'configuration_settings': {'key': 'properties.configurationSettings', 'type': '{str}'}, 'configuration_protected_settings': {'key': 'properties.configurationProtectedSettings', 'type': '{str}'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'statuses': {'key': 'properties.statuses', 'type': '[ExtensionStatus]'}, 'error_info': {'key': 'properties.errorInfo', 'type': 'ErrorDetail'}, 'custom_location_settings': {'key': 'properties.customLocationSettings', 'type': '{str}'}, 'package_uri': {'key': 'properties.packageUri', 'type': 'str'}, } def __init__( self, *, identity: Optional["Identity"] = None, extension_type: Optional[str] = None, auto_upgrade_minor_version: Optional[bool] = True, release_train: Optional[str] = "Stable", version: Optional[str] = None, scope: Optional["Scope"]
lineage_probability_color=lineage_probability_color, abs_prob_cmap=abs_prob_cmap, lineage_probability=show_prob, ylabel=ylabel, **kwargs, ) if sharey in ("row", "all", True) and not ylabel_shown: plt.setp(ax.get_yticklabels(), visible=True) if show_xticks_and_label[i]: plt.setp(ax.get_xticklabels(), visible=True) else: ax.set_xlabel(None) last_ax = ax ylabel_shown = True cells_shown = True key, color, typp, mapper = model._get_colors(cell_color, same_plot=same_plot) if typp == ColorType.CAT: if not hide_cells: model._maybe_add_legend( fig, ax, mapper=mapper, title=key, loc=obs_legend_loc, is_line=False ) elif typp == ColorType.CONT: if same_perc and show_cbar and not hide_cells: if isinstance(color, np.ndarray): # plotting cont. observation other than lin. probs as a color vmin = np.min(color) vmax = np.max(color) else: vmin = np.min([model.w_all for model in successful_models.values()]) vmax = np.max([model.w_all for model in successful_models.values()]) norm = mcolors.Normalize(vmin=vmin, vmax=vmax) for ax in axes: children = [ c for c in ax.get_children() if isinstance(c, mpl.collections.PathCollection) ] if len(children): children[0].set_norm(norm) divider = make_axes_locatable(last_ax) cax = divider.append_axes("right", size="2%", pad=0.1) _ = mpl.colorbar.ColorbarBase( cax, norm=norm, cmap=abs_prob_cmap, label=key, ticks=np.linspace(norm.vmin, norm.vmax, 5), ) if same_plot and lineage_names != [None]: model._maybe_add_legend( fig, ax, mapper={ln: lineage_color_mapper[ln] for ln in successful_models.keys()}, loc=legend_loc, ) def _position_legend(ax: mpl.axes.Axes, legend_loc: str, **kwargs) -> mpl.legend.Legend: """ Position legend in- or outside the figure. Parameters ---------- ax Ax where to position the legend. legend_loc Position of legend. kwargs Keyword arguments for :func:`matplotlib.pyplot.legend`. Returns ------- The created legend. """ if legend_loc == "center center out": raise ValueError("Invalid option: `'center center out'`.") if legend_loc == "best": return ax.legend(loc="best", **kwargs) tmp, loc = legend_loc.split(" "), "" if len(tmp) == 1: height, rest = tmp[0], [] width = "right" if height in ("upper", "top", "center") else "left" else: height, width, *rest = legend_loc.split(" ") if rest: if len(rest) != 1: raise ValueError( f"Expected only 1 additional modifier ('in' or 'out'), found `{list(rest)}`." ) elif rest[0] not in ("in", "out"): raise ValueError( f"Invalid modifier `{rest[0]!r}`. Valid options are: `'in', 'out'`." ) if rest[0] == "in": # ignore in, it's default rest = [] if height in ("upper", "top"): y = 1.55 if width == "center" else 1.025 loc += "upper" elif height == "center": y = 0.5 loc += "center" elif height in ("lower", "bottom"): y = -0.55 if width == "center" else -0.025 loc += "lower" else: raise ValueError( f"Invalid legend position on y-axis: `{height!r}`. " f"Valid options are: `'upper', 'top', 'center', 'lower', 'bottom'`." ) if width == "left": x = -0.05 loc += " right" if rest else " left" elif width == "center": x = 0.5 if height != "center": # causes to be like top center loc += " center" elif width == "right": x = 1.05 loc += " left" if rest else " right" else: raise ValueError( f"Invalid legend position on x-axis: `{width!r}`. " f"Valid options are: `'left', 'center', 'right'`." ) if rest: kwargs["bbox_to_anchor"] = (x, y) return ax.legend(loc=loc, **kwargs) def _get_backend(model, backend: str) -> str: return _DEFAULT_BACKEND if _is_any_gam_mgcv(model) else backend @d.dedent def _create_callbacks( adata: AnnData, callback: Optional[Callable], obs: Sequence[str], lineages: Sequence[Optional[str]], perform_sanity_check: Optional[bool] = None, **kwargs, ) -> Dict[str, Dict[str, Callable]]: """ Create models for each gene and lineage. Parameters ---------- %(adata)s callback Gene and lineage specific prepare callbacks. obs Sequence of observations, such as genes. lineages Sequence of genes. perform_sanity_check Whether to check if all callbacks have the correct signature. This is done by instantiating dummy model and running the function. We're assuming that the callback isn't really a pricey operation. If `None`, it is only performed for non-default callbacks. kwargs Keyword arguments for ``callback`` when performing the sanity check. Returns ------- The created callbacks. """ def process_lineages( obs_name: str, lin_names: Optional[Union[Callable, Dict[Optional[str], Any]]] ) -> None: if lin_names is None: lin_names = _default_model_callback if callable(lin_names): # sharing the same models for all lineages for lin_name in lineages: callbacks[obs_name][lin_name] = lin_names return elif not isinstance(lin_names, dict): raise TypeError( f"Expected the lineage callback to be either `callable` or a dictionary of callables, " f"found `{type(lin_names).__name__!r}`." ) lin_rest_callback = ( lin_names.get("*", _default_model_callback) or _default_model_callback ) # do not pop if not callable(lin_rest_callback): raise TypeError( f"Expected the lineage fallback callback for gene `{obs_name!r}` to be `callable`, " f"found `{type(lin_rest_callback).__name__!r}`." ) for lin_name, cb in lin_names.items(): if lin_name == "*": continue if not callable(cb): raise TypeError( f"Expected the callback for gene `{obs_name!r}` and lineage `{lin_name!r}` " f"to be `callable`, found `{type(cb).__name__!r}`." ) callbacks[obs_name][lin_name] = cb for lin_name in lineages - set(callbacks[obs_name].keys()): callbacks[obs_name][lin_name] = lin_rest_callback def maybe_sanity_check(callbacks: Dict[str, Dict[str, Callable]]) -> None: if not perform_sanity_check: return from sklearn.svm import SVR logg.debug("Performing callback sanity checks") for gene in callbacks.keys(): for lineage, cb in callbacks[gene].items(): # create the model here because the callback can search the attribute dummy_model = SKLearnModel(adata, model=SVR()) try: model = cb(dummy_model, gene=gene, lineage=lineage, **kwargs) assert model is dummy_model, ( "Creation of new models is not allowed. " "Ensure that callback returns the same model." ) assert ( model.prepared ), "Model is not prepared. Ensure that callback calls `.prepare()`." assert ( model._gene == gene ), f"Callback modified the gene from `{gene!r}` to `{model._gene!r}`." assert ( model._lineage == lineage ), f"Callback modified the lineage from `{lineage!r}` to `{model._lineage!r}`." if isinstance(model, FailedModel): model.reraise() except Exception as e: # noqa: B902 raise RuntimeError( f"Callback validation failed for gene `{gene!r}` and lineage `{lineage!r}`." ) from e def all_callbacks_are_default(cbs: dict) -> bool: # this correctly implicitly handles '*': None for vs in cbs.values(): if isinstance(vs, dict): for cb in vs.values(): if callable(cb) and cb is not _default_model_callback: return False elif callable(vs) and vs is not _default_model_callback: return False return True if not len(lineages): raise ValueError("No lineages have been selected.") if not len(obs): raise ValueError("No genes have been selected.") if callback is None: callback = _default_model_callback if perform_sanity_check is None: perform_sanity_check = ( not all_callbacks_are_default(callback) if isinstance(callback, dict) else callback is not _default_model_callback ) if callable(callback): callbacks = {o: {lin: callback for lin in lineages} for o in obs} maybe_sanity_check(callbacks) return callbacks lineages, obs = ( set(_unique_order_preserving(lineages)), set(_unique_order_preserving(obs)), ) callbacks = defaultdict(dict) if isinstance(callback, dict): # can be specified as None obs_rest_callback = ( callback.pop("*", _default_model_callback) or _default_model_callback ) for obs_name, lin_names in callback.items(): process_lineages(obs_name, lin_names) if callable(obs_rest_callback): for obs_name in obs - set(callback.keys()): process_lineages(obs_name, callback.get(obs_name, obs_rest_callback)) else: raise TypeError( f"Expected the gene fallback callback to be `callable`, " f"found `{type(obs_rest_callback).__name__!r}`." ) else: raise TypeError( f"Class `{type(callback).__name__!r}` must be `callable` or " f"a gene and lineage specific `dict` of `callables`." ) if set(callbacks.keys()) & obs != obs: raise ValueError( f"Missing gene callbacks for the following genes: `{list(obs - set(callbacks.keys()))}`." ) for gene, vs in callbacks.items(): if set(vs.keys()) & lineages != lineages: raise ValueError( f"Missing lineage callbacks for gene `{gene!r}`: `{list(lineages - set(vs.keys()))}`." ) maybe_sanity_check(callbacks) return callbacks def _default_model_callback(model: BaseModel, **kwargs) -> BaseModel: # we could filter kwargs, but it's better not to - this will detect if we pass useless stuff return model.prepare(**kwargs) @d.dedent def composition( adata: AnnData, key: str, fontsize: Optional[str] = None, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[float] = None, save: Optional[Union[str, Path]] = None, **kwargs: Any, ) -> None: """ Plot a pie chart for categorical annotation. Parameters ---------- %(adata)s key Key in :attr:`anndata.AnnData.obs` containing categorical observation. fontsize Font size for the pie chart labels. %(plotting)s kwargs Keyword arguments for :func:`matplotlib.pyplot.pie`. Returns ------- %(just_plots)s """ if key not in adata.obs: raise KeyError(f"Data not found in `adata.obs[{key!r}]`.") if not is_categorical_dtype(adata.obs[key]): raise TypeError( f"Expected `adata.obs[{key!r}]` is not `categorical`, " f"found `{infer_dtype(adata.obs[key])}`." ) colors = adata.uns.get(f"{key}_colors", None) x = adata.obs[key].value_counts() # plot these fractions in a pie plot fig, ax = plt.subplots(figsize=figsize, dpi=dpi) ax.pie( x=x, labels=x.index, colors=colors, textprops={"fontsize": fontsize}, **kwargs, ) ax.set_title(f"composition by {key}") if save is not None: save_fig(fig, save) # modified from: https://github.com/CarlEkerot/held-karp def _held_karp(dists: np.ndarray) -> Tuple[float, np.ndarray]: """ Held-Karp algorithm solves the Traveling Salesman Problem. This algorithm uses dynamic programming with memoization. Parameters ---------- dists Distance matrix. Returns ------- The cost and the path. """ n = len(dists) # Maps each subset of the nodes to the cost to reach that subset, as well # as what node it passed before reaching this subset. # Node subsets are represented as set
- 30: o0oOOo0O0Ooo % OoOoOO00 * IiII % iIii1I11I1II1 % O0 elif ( IIiiIiIIiI1 . type == LISP_ECM ) : lisp_process_ecm ( lisp_sockets , packet , source , udp_sport ) if 76 - 76: II111iiii * I11i else : lprint ( "Invalid LISP control packet type {}" . format ( IIiiIiIIiI1 . type ) ) if 29 - 29: OoooooooOO . i1IIi return ( oooOOOOO0Oo ) if 46 - 46: I11i if 92 - 92: IiII * OoO0O00 . OoOoOO00 + iII111i - I1IiiI if 15 - 15: OoO0O00 / OoO0O00 * o0oOOo0O0Ooo * I1ii11iIi11i - o0oOOo0O0Ooo if 47 - 47: I1IiiI / OoOoOO00 / II111iiii if 7 - 7: oO0o . ooOoO0o if 73 - 73: i1IIi % I1Ii111 * ooOoO0o % OoO0O00 if 70 - 70: ooOoO0o * I1ii11iIi11i def lisp_process_rloc_probe_request ( lisp_sockets , map_request , source , port , ttl ) : if 26 - 26: i11iIiiIii - II111iiii . II111iiii * oO0o / Ii1I + I1IiiI o0O0o = bold ( "RLOC-probe" , False ) if 12 - 12: OoO0O00 * iIii1I11I1II1 % I1Ii111 . O0 * OoOoOO00 * OOooOOo if ( lisp_i_am_etr ) : lprint ( "Received {} Map-Request, send RLOC-probe Map-Reply" . format ( o0O0o ) ) lisp_etr_process_map_request ( lisp_sockets , map_request , source , port , ttl ) return if 34 - 34: I1IiiI . i1IIi if 38 - 38: iIii1I11I1II1 if ( lisp_i_am_rtr ) : lprint ( "Received {} Map-Request, send RLOC-probe Map-Reply" . format ( o0O0o ) ) lisp_rtr_process_map_request ( lisp_sockets , map_request , source , port , ttl ) return if 64 - 64: i1IIi / OoO0O00 if 68 - 68: I11i * O0 * oO0o + OoOoOO00 / IiII lprint ( "Ignoring received {} Map-Request, not an ETR or RTR" . format ( o0O0o ) ) return if 42 - 42: iIii1I11I1II1 % i1IIi - OoOoOO00 % I1ii11iIi11i * Ii1I + i11iIiiIii if 40 - 40: OOooOOo if 30 - 30: o0oOOo0O0Ooo - Oo0Ooo + iII111i / O0 if 94 - 94: IiII if 69 - 69: I1Ii111 . I1Ii111 def lisp_process_smr ( map_request ) : lprint ( "Received SMR-based Map-Request" ) return if 53 - 53: i11iIiiIii + iII111i * Oo0Ooo - I1Ii111 if 61 - 61: o0oOOo0O0Ooo / OOooOOo . II111iiii - I1IiiI * i11iIiiIii if 8 - 8: iII111i % o0oOOo0O0Ooo if 87 - 87: Ii1I % I11i / I1Ii111 if 21 - 21: OoO0O00 + Ii1I / I1Ii111 def lisp_process_smr_invoked_request ( map_request ) : lprint ( "Received SMR-invoked Map-Request" ) return if 75 - 75: I1Ii111 . Ii1I % iIii1I11I1II1 / OoOoOO00 if 38 - 38: i1IIi if 1 - 1: I1ii11iIi11i + OoO0O00 % I11i . OOooOOo + i1IIi / oO0o if 35 - 35: ooOoO0o % OoOoOO00 % OoO0O00 + OOooOOo / IiII * OoOoOO00 if 65 - 65: I1IiiI . Oo0Ooo + i1IIi - Ii1I * i1IIi if 64 - 64: I1IiiI / OoO0O00 * I1IiiI * II111iiii . Ii1I if 98 - 98: I1Ii111 + o0oOOo0O0Ooo def lisp_build_map_reply ( eid , group , rloc_set , nonce , action , ttl , rloc_probe , keys , enc , auth , mr_ttl = - 1 ) : OOO0iI1 = lisp_map_reply ( ) OOO0iI1 . rloc_probe = rloc_probe OOO0iI1 . echo_nonce_capable = enc OOO0iI1 . hop_count = 0 if ( mr_ttl == - 1 ) else mr_ttl OOO0iI1 . record_count = 1 OOO0iI1 . nonce = nonce iI1IIII1ii1 = OOO0iI1 . encode ( ) OOO0iI1 . print_map_reply ( ) if 54 - 54: I1ii11iIi11i + IiII - oO0o + Oo0Ooo / IiII % Oo0Ooo I111IoOo0oOOO0o = lisp_eid_record ( ) I111IoOo0oOOO0o . rloc_count = len ( rloc_set ) I111IoOo0oOOO0o . authoritative = auth I111IoOo0oOOO0o . record_ttl = ttl I111IoOo0oOOO0o . action = action I111IoOo0oOOO0o . eid = eid I111IoOo0oOOO0o . group = group if 66 - 66: OOooOOo . I1IiiI / iII111i iI1IIII1ii1 += I111IoOo0oOOO0o . encode ( ) I111IoOo0oOOO0o . print_record ( " " , False ) if 68 - 68: II111iiii . OoOoOO00 Iii1i = lisp_get_all_addresses ( ) + lisp_get_all_translated_rlocs ( ) if 96 - 96: iIii1I11I1II1 . o0oOOo0O0Ooo % Ii1I . iIii1I11I1II1 for ii1I1i11 in rloc_set : i1iIiII = lisp_rloc_record ( ) OoOOoooO000 = ii1I1i11 . rloc . print_address_no_iid ( ) if ( OoOOoooO000 in Iii1i ) : i1iIiII . local_bit = True i1iIiII . probe_bit = rloc_probe i1iIiII . keys = keys if ( ii1I1i11 . priority == 254 and lisp_i_am_rtr ) : i1iIiII . rloc_name = "RTR" if 17 - 17: I1IiiI . oO0o + Oo0Ooo - I1ii11iIi11i % IiII if 36 - 36: oO0o - Oo0Ooo + IiII i1iIiII . store_rloc_entry ( ii1I1i11 ) i1iIiII . reach_bit = True i1iIiII . print_record ( " " ) iI1IIII1ii1 += i1iIiII . encode ( ) if 33 - 33: Oo0Ooo % oO0o - I1IiiI + Oo0Ooo return ( iI1IIII1ii1 ) if 90 - 90: I1ii11iIi11i * I1Ii111 - iIii1I11I1II1 % IiII * I1Ii111 . I1Ii111 if 90 - 90: o0oOOo0O0Ooo - O0 % O0 - oO0o . OoooooooOO if 30 - 30: I11i + O0 / Ii1I / OoOoOO00 - oO0o + II111iiii if 21 - 21: iIii1I11I1II1 % OoooooooOO * OOooOOo % i1IIi if 73 - 73: OoooooooOO if 100 - 100: I11i / i1IIi / i1IIi % Ii1I - II111iiii . OoooooooOO if 72 - 72: Oo0Ooo * OoooooooOO % I1IiiI + I11i - II111iiii def lisp_build_map_referral ( eid , group , ddt_entry , action , ttl , nonce ) : Oo0oo = lisp_map_referral ( ) Oo0oo . record_count = 1 Oo0oo . nonce = nonce iI1IIII1ii1 = Oo0oo . encode ( ) Oo0oo . print_map_referral ( ) if 31 - 31: I1ii11iIi11i I111IoOo0oOOO0o = lisp_eid_record ( ) if 60 - 60: i1IIi % ooOoO0o / II111iiii * Oo0Ooo - i1IIi . Ii1I OOOoo0ooooo0 = 0 if ( ddt_entry == None ) : I111IoOo0oOOO0o . eid = eid I111IoOo0oOOO0o . group = group else : OOOoo0ooooo0 = len ( ddt_entry . delegation_set ) I111IoOo0oOOO0o . eid = ddt_entry . eid I111IoOo0oOOO0o . group = ddt_entry . group ddt_entry . map_referrals_sent += 1 if 21 - 21: i1IIi I111IoOo0oOOO0o . rloc_count = OOOoo0ooooo0 I111IoOo0oOOO0o . authoritative = True if 10 - 10: i11iIiiIii / ooOoO0o - o0oOOo0O0Ooo . o0oOOo0O0Ooo if 8 - 8: iII111i + iIii1I11I1II1 . I1ii11iIi11i if 68 - 68: OoooooooOO . OoooooooOO % I1ii11iIi11i + i1IIi % OoooooooOO + Ii1I if 89 - 89: ooOoO0o + I11i * O0 % OoOoOO00 if 2 - 2: I1Ii111 % iIii1I11I1II1 . Ii1I - II111iiii O0oOo00O = False if ( action == LISP_DDT_ACTION_NULL ) : if ( OOOoo0ooooo0 == 0 ) : action = LISP_DDT_ACTION_NODE_REFERRAL else : ooOiiI1Ii11 = ddt_entry . delegation_set [ 0 ] if ( ooOiiI1Ii11 . is_ddt_child ( ) ) : action = LISP_DDT_ACTION_NODE_REFERRAL if 33 - 33: I11i . i11iIiiIii % i1IIi * II111iiii * i11iIiiIii + OoOoOO00 if ( ooOiiI1Ii11 . is_ms_child ( ) ) : action = LISP_DDT_ACTION_MS_REFERRAL if 26 - 26: I1IiiI % OoOoOO00 % I11i + Oo0Ooo if 86 - 86: iII111i / i1IIi % Oo0Ooo if 84 - 84: o0oOOo0O0Ooo * OOooOOo . I11i * Ii1I if 32 - 32: ooOoO0o % ooOoO0o * I1ii11iIi11i % Ii1I + Oo0Ooo . OoOoOO00 if 2 - 2: I1Ii111 / ooOoO0o * oO0o + IiII if 14 - 14: OoOoOO00 / iIii1I11I1II1 . o0oOOo0O0Ooo % i11iIiiIii . OoOoOO00 if 92 - 92: OoO0O00 . i1IIi if ( action == LISP_DDT_ACTION_NOT_AUTH ) : O0oOo00O = True if ( action in ( LISP_DDT_ACTION_MS_REFERRAL , LISP_DDT_ACTION_MS_ACK ) ) : O0oOo00O = ( lisp_i_am_ms and ooOiiI1Ii11 . is_ms_peer ( ) == False ) if 22 - 22: Ii1I . I1IiiI if 54 - 54: OOooOOo / I1ii11iIi11i % oO0o I111IoOo0oOOO0o . action = action I111IoOo0oOOO0o . ddt_incomplete = O0oOo00O I111IoOo0oOOO0o . record_ttl = ttl
<filename>CartPole.py #!/usr/bin/env python3 import numpy as np from scipy.stats.mstats import gmean import theano.tensor as T from ilqr import iLQR from ilqr.cost import QRCost from ilqr.dynamics import constrain from ilqr.dynamics import AutoDiffDynamics ''' Author: Sameer Date: May 2019 ''' class CartPole(object): ''' __init__: in this method we store all the variables required for formulating the Cart Pole iLQR problem. ''' def __init__(self, delta_t, traj_steps, state_dynamics, initial_state, goal, cost_state, cost_action, terminal_cost): self.dt = delta_t self.N = traj_steps self.xd = state_dynamics self.x0 = initial_state self.x_goal = goal self.Q = cost_state self.R = cost_action self.Q_terminal = terminal_cost self.J_hist = [] ''' state_inputs: in this method we generate the state and control vector. State for the give system are 1 - Position == x 2 - Linear velocity (of the cart) == x_dot 3 - Sine component of the angular position == sin_theta 4 - Cosine component of the angular position == cos_theta 5 - Angular velocity == theta_dot. We use sine and cosine component of the angular position instead of the angular position because we can having issue regarding angular wrap around issues, when solving the optimization problem. Control for the system is given by 1 - Horizontal force on the cart == F_x ''' def state_inputs(self): x_input = [ T.dscalar("x"), T.dscalar("x_dot"), T.dscalar("sin_theta"), T.dscalar("cos_theta"), T.dscalar("theta_dot") ] u_input = [ T.dscalar("F_x") ] return x_input, u_input ''' augment_state: in this method we change the state vector which is of the form [pos, vel, angular_pos, angular_vel] to [pos, vel, sin(angular_pos), cos(angular_pos), angular_vel]. ''' def augment_state(self, X): if X.ndim == 1: x, x_dot, theta, theta_dot = X else: x = X[..., 0].reshape(-1, 1) x_dot = X[..., 1].reshape(-1, 1) theta = X[..., 2].reshape(-1, 1) theta_dot = X[..., 3].reshape(-1, 1) return np.hstack([x, x_dot, np.sin(theta), np.cos(theta), theta_dot]) ''' deaugment_state: in this method we change the state vector which is of the form [pos, vel, sin(angular_pos), cos(angular_pos), angular_vel] to [pos, vel, angular_pos, angular_vel]. ''' def deaugment_state(self, X): if X.ndim == 1: x, x_dot, sin_theta, cos_theta, theta_dot = X else: x = X[..., 0].reshape(-1, 1) x_dot = X[..., 1].reshape(-1, 1) sin_theta = X[..., 2].reshape(-1, 1) cos_theta = X[..., 3].reshape(-1, 1) theta_dot = X[..., 4].reshape(-1, 1) theta = np.arctan2(sin_theta, cos_theta) return np.hstack([x, x_dot, theta, theta_dot]) ''' accel: this method is used for generating the linear acceleration, angular acceleration and next angle. All these values are used for calculating the next states. Accelerations will be used to calculate the next time step velocities, linear velocitiy will be used to calculate the next time step positions and angular velocity will be used to calculate the next theta. For calculating the accelerations we follow the non-linear system dynamics of the cart-pole problem. Equation are given here: https://pdfs.semanticscholar.org/f665/cfa1143e6414cdcb459c5d84796908af4727.pdf?_ga=2.177173158.203278840.1548098392562587694.1548098392 ''' def accel(self, X, u, Xd): temp = (u[0] + Xd[0] * Xd[2] * X[4]**2 * X[2])/(Xd[1] + Xd[0]) num = Xd[3] * X[2] - X[3] * temp den = Xd[2] * (4/3 - (Xd[0] * X[3]**2)/(Xd[1] + Xd[0])) ang_acc = num/den lin_acc = temp - (Xd[0] * Xd[2] * ang_acc * X[3])/(Xd[1] + Xd[0]) theta = T.arctan2(X[2], X[3]) next_theta = theta + X[4] * self.dt return lin_acc, ang_acc, next_theta ''' next_states: this method calculates the next time step states based on accelerations as described above. ''' def next_states(self, X, lin_acc, ang_acc, next_theta): f = T.stack([ X[0] + X[1] * self.dt, X[1] + lin_acc * self.dt, T.sin(next_theta), T.cos(next_theta), X[4] + ang_acc * self.dt, ]).T return f ''' on_iteration: this method will help print useful information that is required so that we can keep track about what is happening. ''' def on_iteration(self, iteration_count, xs, us, J_opt, accepted, converged): self.J_hist.append(J_opt) info = "converged" if converged else ("accepted" if accepted else "failed") final_state = self.deaugment_state(xs[-1]) print("iteration", iteration_count, info, J_opt, final_state) ''' run_IterLinQuadReg: this method is the main function which will run the iLQR on the Cart Pole problem. Steps that are happening 1 - Calculate the state vectors (Symbolic vector) 2 - Calculate the accelerations (Symbolic vector) 3 - Generate the next state (Symbolic vector) 4 - Differentiate the states and generate the dynamics 5 - Set the goal 6 - Set cost based on if the termial cost is provided or not 7 - Set the initial state 8 - Guess some control action 9 - Run iLQR ''' def run_IterLinQuadReg(self, us_init=None): x_input, u_input = self.state_inputs() x_dot_dot, theta_dot_dot, theta_prime = self.accel(x_input, u_input, self.xd) f = self.next_states(x_input, x_dot_dot, theta_dot_dot, theta_prime) dynamics = AutoDiffDynamics(f, x_input, u_input,hessians=False) x_goal = self.augment_state(self.x_goal) if self.Q_terminal.all() == None: cost = QRCost(self.Q, self.R) else: cost = QRCost(self.Q, self.R, Q_terminal=self.Q_terminal, x_goal=x_goal) x0 = self.augment_state(self.x0) if us_init == None: us_init = np.random.uniform(-1, 1, (self.N, dynamics.action_size)) ilqr = iLQR(dynamics, cost, self.N,hessians=False) xs, us = ilqr.fit(x0, us_init, on_iteration=self.on_iteration, n_iterations=1000) # print(ilqr._K,'this is capital K') return xs, us, ilqr._k, ilqr._K ''' next_states_matrix: this method will work same as next_state except that it will take A, B state-space matrices as input ''' def next_states_matrix(self, X, U, A, B, C): theta = T.arctan2(X[2], X[3]) next_theta = theta + X[4] * self.dt f = T.stack([ X[0] * A[0][0] + X[1] * A[0][1] + X[2] * A[0][2] + X[3] * A[0][3] + X[4] * A[0][4] + U[0] * A[0][5] + B[0][0], X[0] * A[1][0] + X[1] * A[1][1] + X[2] * A[1][2] + X[3] * A[1][3] + X[4] * A[1][4] + U[0] * A[1][5] + B[1][0], T.sin(next_theta), T.cos(next_theta), X[0] * A[4][0] + X[1] * A[4][1] + X[2] * A[4][2] + X[3] * A[4][3] + X[4] * A[4][4] + U[0] * A[4][5] + B[4][0] ]) return f ''' run_IterLinQuadReg_matrix: this method will run iLQR when we are given A, B, C state-space matrices X(k+1) = A * [X(k) U(k)].T + B ---- Evolution of state over time is governed by this equation ''' def run_IterLinQuadReg_matrix(self, A, B, C, dist_info_sharing='AM', us_init=None): x_input, u_input = self.state_inputs() if np.ndim(A) != 2: if dist_info_sharing == 'GM': A = gmean(A, axis=0) B = gmean(B, axis=0) C = gmean(C, axis=0) print(A.shape,'A', B.shape,'B',C.shape,'C') elif dist_info_sharing == 'AM': A = np.sum(A, axis=0)/A.shape[0] B = np.sum(B, axis=0, keepdims=True)/B.shape[0] B = B.T C = np.sum(C, axis=0)/C.shape[0] else: pass f = self.next_states_matrix(x_input, u_input, A, B, C) dynamics = AutoDiffDynamics(f, x_input, u_input) x_goal = self.augment_state(self.x_goal) if self.Q_terminal.all() == None: cost = QRCost(self.Q, self.R) else: cost = QRCost(self.Q, self.R, Q_terminal=self.Q_terminal, x_goal=x_goal) x0 = self.augment_state(self.x0) if us_init == None: us_init = np.random.uniform(-1, 1, (self.N, dynamics.action_size)) ilqr = iLQR(dynamics, cost, self.N) xs, us = ilqr.fit(x0, us_init, on_iteration=self.on_iteration) return xs, us ''' control_pattern: This modify the control actions based on the user input. 1 - Normal: based on the correction/mixing parameter gamma generate control (gamma controls how much noise we want). 2 - MissingValue: based on the given percentage, set those many values to zero (it is implicitly it uses "Normal" generated control is used). 3 - Shuffle: shuffles the entire "Normal" generated control sequence. 4 - TimeDelay: takes the "Normal" generated control and shifts it by 1 index i.e. one unit time delay. 5 - Extreme: sets gamma as zeros and generates control based on only noise. ''' def control_pattern(self, u, pattern, mean, var, gamma, percent): if pattern == 'Normal': u = gamma * u + (1 - gamma) * np.random.normal(mean, var, u.shape) elif pattern == 'MissingValue': n = int(u.shape[0] * percent * 0.01) index = np.random.randint(0, u.shape[0], n) u = gamma * u + (1 - gamma) * np.random.normal(mean, var, u.shape) u[index, :] = 0 elif pattern == 'Shuffle': u = gamma * u + (1 - gamma) * np.random.normal(mean, var, u.shape) np.random.shuffle(u) elif pattern == 'TimeDelay': u = gamma * u + (1 - gamma) * np.random.normal(mean, var, u.shape) u = np.roll(u, 1, axis=0) u[0, :] = 0 elif pattern == 'Extreme': u = np.random.normal(mean, var, u.shape) return u ''' noise_traj_generator: In this method we generate trajectories based on some inital condition and noisy
bits, static_row + 1, bcol) header_offset = static_row + 1 __writeAnchorListData(sheet, seq_ref[seq], bits, row + header_offset, bcol, data_func = lambda data, test: data[test][_KB], data_format = __S_BIT_FORMAT, abs_format = __S_BIT_ABS_FORMAT) # Write sequence sheet.cell(row = row + header_offset, column = bcol - 1).value = __AL_SEQ_FORMAT.format(seq) # write psnr tests if psnr: if 'pcol' not in locals(): pcol = sheet.max_column + 3 sheet.cell(row = static_row, column = pcol - 1).value = __AL_PSNR_HEADER sheet.cell(row = static_row + 1, column = pcol - 1).value = __AL_TEST sheet.cell(row = static_row + 2, column = pcol - 1).value = __AL_ANCHOR #sheet.cell(row = static_row + 3, column = pcol - 1).value = __AL_SEQ pcol_end = __writeAnchorListHeader(sheet, psnr, static_row + 1, pcol) header_offset = static_row + 1 __writeAnchorListData(sheet, seq_ref[seq], psnr, row + header_offset, pcol, data_func = lambda data, test: data[test][_PSNR], data_format = __S_PSNR_FORMAT, abs_format = __S_PSNR_ABS_FORMAT) # Write sequence sheet.cell(row = row + header_offset, column = pcol - 1).value = __AL_SEQ_FORMAT.format(seq) # write time matrix if time: if 'tcol' not in locals(): tcol = sheet.max_column + 3 sheet.cell(row = static_row, column = tcol - 1).value = __AL_TIME_HEADER sheet.cell(row = static_row + 1, column = tcol - 1).value = __AL_TEST sheet.cell(row = static_row + 2, column = tcol - 1).value = __AL_ANCHOR #sheet.cell(row = static_row + 3, column = tcol - 1).value = __AL_SEQ tcol_end = __writeAnchorListHeader(sheet, time, static_row + 1, tcol) header_offset = static_row + 1 __writeAnchorListData(sheet, seq_ref[seq], time, row + header_offset, tcol, data_func = lambda data, test: data[test][_TIME], data_format = __S_TIME_FORMAT, abs_format = __S_TIME_ABS_FORMAT) # Write sequence sheet.cell(row = row + header_offset, column = tcol - 1).value = __AL_SEQ_FORMAT.format(seq) # Make columns wider for column in range(sheet.max_column): sheet.column_dimensions[get_column_letter(column+1)].width = getMaxLength(list(data_refs.keys()) + list(order)) #Add conditional formatting form_ranges = [] color_rules = [] #BDRATE if bdbr: form_ranges.append("{}:{}".format(get_column_letter(bdcol)+str(first_row),get_column_letter(bdcol_end)+str(row))) color_rules.append(ColorScaleRule(start_type='percentile', start_value=90, start_color='63BE7B', mid_type='num', mid_value=0, mid_color='FFFFFF', end_type='percentile', end_value=10, end_color='F8696B' )) if bits: form_ranges.append("{}:{}".format(get_column_letter(bcol)+str(first_row),get_column_letter(bcol_end)+str(row))) color_rules.append(ColorScaleRule(start_type='min', start_color='4F81BD', mid_type='num', mid_value=1, mid_color='FFFFFF', end_type='percentile', end_value=80, end_color='F8696B' )) if psnr: form_ranges.append("{}:{}".format(get_column_letter(pcol)+str(first_row),get_column_letter(pcol_end)+str(row))) color_rules.append(ColorScaleRule(start_type='percentile', start_value=90, start_color='63BE7B', mid_type='num', mid_value=0, mid_color='FFFFFF', end_type='percentile', end_value=10, end_color='F8696B' )) if time: form_ranges.append("{}:{}".format(get_column_letter(tcol)+str(first_row),get_column_letter(tcol_end)+str(row))) color_rules.append(ColorScaleRule(end_type='min', start_color='9BDE55',#'63BE7B', mid_type='num', mid_value=1, mid_color='FFFFFF', start_type='percentile', end_value=80, end_color='00BBEF')) for (f_range, c_rule) in zip(form_ranges, color_rules): sheet.conditional_formatting.add(f_range, c_rule) def __writeAnchorListHeader(sheet: Worksheet, sub_def: AnchorSubType, row: int, col: int, allow_none: bool = True) -> None: #Write horizontal headers/test names tmp_col = col for (test,anchors) in sub_def.items(): for anchor in anchors: if not allow_none and not anchor: continue sheet.cell(row = row, column = tmp_col).value = test sheet.cell(row = row + 1, column = tmp_col).value = anchor tmp_col += 1 return tmp_col - 1 def __writeAnchorListData(sheet: Worksheet, ref: Dict[str, dict], sub_def: AnchorSubType, row: int, col: int, *, data_func: Callable[[Dict[str, dict], str], Union[float,int]], data_format: str, number_format: Union[None, str] = None, number_style: str = 'Percent', abs_format: Union[None, str] = None, abs_style: str = 'Comma') -> None: from .TestSuite import parseSheetLayer #final_r = row+len(data.keys()) #final_c = col+len(data.keys()) c = col for (test, anchors) in sub_def.items(): for anchor in anchors: value_format = data_format value_style = number_style anchor_res = [] if not anchor: if abs_format: value_format = abs_format if abs_style: value_style = abs_style else: continue else: anchor_res =[__SR_FORMAT.format(sheet=parseSheetLayer(anchor)[0],cell=cl) for cl in data_func(ref, anchor)] test_res =[__SR_FORMAT.format(sheet=parseSheetLayer(test)[0],cell=cl) for cl in data_func(ref, test)] sheet.cell(row = row, column = c).value = value_format.format(*(anchor_res + test_res)) sheet.cell(row = row, column = c).style = value_style if number_format: sheet.cell(row = row, column = c).number_format = number_format sheet.cell(row= row, column= c).alignment = xl.styles.Alignment(horizontal='center') c += 1 # Set conditional coloring #form_range = "{}:{}".format(get_column_letter(col)+str(row),get_column_letter(final_c)+str(final_r)) #sheet.conditional_formatting.add(form_range, color_scale_rule) ####################################### # BDBRMatrix summary type definitions # ####################################### __S_SEQ_HEADER = "Sequence {} results" __S_BIT_HEADER = r"Bit comparisons" __S_PSNR_HEADER = r"PSNR comparisons (dB)" __S_TIME_HEADER = r"Encoding time comparisons" __S_HEADER = "Result summary matrix (bdrate, bit, PSNR, Time comparisons)" """ Handle writing the BDBRMatrix summary sheet """ def __writeBDBRMatrix(sheet: Worksheet, data_refs: SummaryRefType, order: List[str] = None, *, write_bdbr: bool, write_bits:bool, write_psnr: bool, write_time: bool, **other: dict): from .TestSuite import _PSNR, _KBS, _KB, _TIME seq_ref = __flip_dict(data_refs) # transform data_refs to seq_ref[<seq>][<test_name>] order order = order if order else list(seq_ref.keys()) #print(seq_ref) # For each sequence generate the comparison matrix sheet.cell(row = 1, column = 1).value = __S_HEADER #for (seq,ref) in sorted(seq_ref.items()): for seq in order: ref = seq_ref[seq] tests = sorted(ref.keys()) row = sheet.max_row + 2 brow = row prow = row trow = row col = 1 #sheet.max_column + 1 sheet.cell(row = row, column = col).value = __S_SEQ_HEADER.format(seq) #Write sequence header # write bdrate matrix if write_bdbr: sheet.merge_cells(start_column=col,start_row=row,end_column=col+len(tests),end_row=row) (row, col) = __writeSummaryMatrixHeader(sheet, tests, row+1, col) __writeSummaryDataMatrix(sheet, ref, row, col, data_func = lambda data, test: data[test][_KBS] + data[test][_PSNR], data_format = __S_BDRATE_FORMAT, number_format = '0.00%', color_scale_rule = ColorScaleRule(start_type='percentile', start_value=90, start_color='63BE7B', mid_type='num', mid_value=0, mid_color='FFFFFF', end_type='percentile', end_value=10, end_color='F8696B' )) # write bit matrix if write_bits: if 'bcol' not in locals(): bcol = sheet.max_column + 2 sheet.cell(row = brow, column = bcol).value = __S_BIT_HEADER sheet.merge_cells(start_column=bcol,start_row=brow,end_column=bcol+len(tests),end_row=brow) (brow, col) = __writeSummaryMatrixHeader(sheet, tests, brow+1, bcol) __writeSummaryDataMatrix(sheet, ref, brow, colb, data_func = lambda data, test: data[test][_KB], data_format = __S_BIT_FORMAT, color_scale_rule = ColorScaleRule(start_type='min', start_color='4F81BD', mid_type='num', mid_value=1, mid_color='FFFFFF', end_type='percentile', end_value=80, end_color='F8696B' )) # write psnr matrix if write_psnr: if 'pcol' not in locals(): pcol = sheet.max_column + 2 sheet.cell(row = prow, column = pcol).value = __S_PSNR_HEADER sheet.merge_cells(start_column=pcol,start_row=prow,end_column=pcol+len(tests),end_row=prow) (prow, col) = __writeSummaryMatrixHeader(sheet, tests, prow+1, pcol) __writeSummaryDataMatrix(sheet, ref, prow, colb, data_func = lambda data, test: data[test][_PSNR], data_format = __S_PSNR_FORMAT, number_style = 'Comma', def_val = 0, color_scale_rule = ColorScaleRule(start_type='percentile', start_value=90, start_color='63BE7B', mid_type='num', mid_value=0, mid_color='FFFFFF', end_type='percentile', end_value=10, end_color='F8696B' )) # write time matrix if write_time: if 'tcol' not in locals(): tcol = sheet.max_column + 2 sheet.cell(row = trow, column = tcol).value = __S_TIME_HEADER sheet.merge_cells(start_column=tcol,start_row=trow,end_column=tcol+len(tests),end_row=trow) (trow, col) = __writeSummaryMatrixHeader(sheet, tests, trow+1, tcol) __writeSummaryDataMatrix(sheet, ref, trow, col, data_func = lambda data, test: data[test][_TIME], data_format = __S_TIME_FORMAT, color_scale_rule = ColorScaleRule(start_type='min', start_color='9BDE55',#'63BE7B', mid_type='num', mid_value=1, mid_color='FFFFFF', end_type='percentile', end_value=80, end_color='00BBEF')) # Make columns wider for col in range(sheet.max_column): sheet.column_dimensions[get_column_letter(col+1)].width = getMaxLength(list(data_refs.keys())) """ Write summary base header @return row and col of start of data field """ def __writeSummaryMatrixHeader(sheet: Worksheet, tests: List[str], row: int, col: int) -> Tuple[int,int]: d_row = row + 1 d_col = col + 1 #Write horizontal headers/test names tmp_col = col + 1 for test in tests: sheet.cell(row = row, column = tmp_col).value = test tmp_col += 1 #Write vertical tmp_row = row + 1 for test in tests: sheet.cell(row = tmp_row, column = col).value = test tmp_row += 1 return d_row, d_col """ Write summary matrix data array """ def __writeSummaryDataMatrix(sheet: Worksheet, data: Dict[str, dict], row: int, col: int, *, data_func: Callable[[Dict[str, dict], str], Union[float,int]], data_format: str, number_format: Union[str, None] = None, number_style: str = 'Percent', def_val: str = '-', color_scale_rule: Rule): from .TestSuite import parseSheetLayer test_col = col - 1 test_row = row - 1 final_r = row+len(data.keys()) final_c = col+len(data.keys()) for r in range(row,row+len(data.keys())): for c in range(col,col+len(data.keys())): t2 = sheet.cell(row = r, column = test_col).value t1 = sheet.cell(row = test_row, column = c).value if t1 == t2: sheet.cell(row = r, column = c).value = def_val else: r1 =[__SR_FORMAT.format(sheet=parseSheetLayer(t1)[0],cell=cl) for cl in data_func(data, t1)] r2 =[__SR_FORMAT.format(sheet=parseSheetLayer(t2)[0],cell=cl) for cl in data_func(data, t2)] sheet.cell(row = r, column = c).value = data_format.format(*(r1+r2)) sheet.cell(row = r, column = c).style = number_style if number_format: sheet.cell(row = r, column = c).number_format = number_format sheet.cell(row=r,column=c).alignment = xl.styles.Alignment(horizontal='center') # Set conditional coloring form_range = "{}:{}".format(get_column_letter(col)+str(row),get_column_letter(final_c)+str(final_r)) sheet.conditional_formatting.add(form_range, color_scale_rule) ####################################### # curve_chart summary type definitions # ####################################### __DATA = "data" def __writeCurveChart(sheet: Worksheet, data_refs: SummaryRefType, order: List[str] = None, *, tests: Iterable[Union[str]], charts: Iterable[Tuple[str,str]], **other: dict) -> None: refs = __writeCurveChartData(sheet, tests, order, data_refs) __writeCharts(sheet, tests, order, charts, refs) # Write data used by charts and return per test Reference ranges def __writeCurveChartData(sheet: Worksheet, tests: Iterable[str], order: Iterable[str], data: Dict[str, dict]) -> dict: from .TestSuite import _PSNR, _KBS, _TIME, parseSheetLayer to_write_data = [] out_ref = {} col = 2 ref_len = 4 def toRefFunc(sheet, cells): return ["=" + __SR_FORMAT.format(sheet=parseSheetLayer(sheet)[0], cell = cell) for cell in cells] for seq in order: to_write_data.append([seq,]) out_ref[seq] = {} to_write_data.append(["Data Type", "Test", "Data Point 1", "Data Point 2", "Data Point 3", "Data Point 4"]) for test in tests: out_ref[seq][test] = {} to_write_data.append([_KBS, test, *toRefFunc(test, data[test][seq][_KBS])]) to_write_data.append([_PSNR, test, *toRefFunc(test, data[test][seq][_PSNR])]) to_write_data.append([_TIME,
<reponame>agentdavidjoseph/slycat # Copyright (c) 2013, 2018 National Technology and Engineering Solutions of Sandia, LLC . Under the terms of Contract # DE-NA0003525 with National Technology and Engineering Solutions of Sandia, LLC, the U.S. Government # retains certain rights in this software. """Functions for managing cached remote ssh sessions. Slycat makes extensive use of ssh and the `Slycat Agent` to access remote resources located on the high performance computing platforms used to generate ensembles. This module provides functionality to create cached remote ssh / agent sessions that can be used to retrieve data from remote hosts. This functionality is used in a variety of ways: * Web clients can browse the filesystem of a remote host. * Web clients can create a Slycat model using data stored on a remote host. * Web clients can retrieve images on a remote host (an essential part of the parameter-image-model). * Web clients can retrieve video compressed from still images on a remote host. When a remote session is created, a connection to the remote host over ssh is created, an agent is started (only if the required configuration is present), and a unique session identifier is returned. Callers use the session id to retrieve the cached session and communicate with the remote host / agent. A "last access" time for each session is maintained and updated whenever the cached session is accessed. If a session times-out (a threshold amount of time has elapsed since the last access) it is automatically deleted, and subsequent use of the expired session id will fail. Each session is bound to the IP address of the client that created it - only the same client IP address is allowed to access the session. """ import datetime import json import os import base64 import stat import sys import threading import time import uuid import cherrypy import paramiko import socket import slycat.mime_type import slycat.web.server.authentication import slycat.web.server.database import slycat.web.server.streaming import slycat.web.server def cache_object(pid, key, content_type, content): cherrypy.log.error("cache_object %s %s %s" % (pid, key, content_type)) database = slycat.web.server.database.couchdb.connect() project = database.get("project", pid) slycat.web.server.authentication.require_project_reader(project) lookup = pid + "-" + key for cache_object in database.scan("slycat/project-key-cache-objects", startkey=lookup, endkey=lookup): database.put_attachment(cache_object, filename="content", content_type=content_type, content=content) return cache_object = { "_id": uuid.uuid4().hex, "type": "cache-object", "project": pid, "key": key, "created": datetime.datetime.utcnow().isoformat(), "creator": cherrypy.request.login, } database.save(cache_object) database.put_attachment(cache_object, filename="content", content_type=content_type, content=content) session_cache = {} session_cache_lock = threading.Lock() class Session(object): """Encapsulates an open session connected to a remote host. Examples -------- Calling threads must serialize access to the Session object. To facilitate this, a Session is a context manager - callers should always use a `with statement` when accessing a session: >>> with slycat.web.server.remote.get_session(sid) as session: ... print session.username """ def __init__(self, sid, client, username, hostname, ssh, sftp, agent=None): now = datetime.datetime.utcnow() self._client = client self._sid = sid self._username = username self._hostname = hostname self._ssh = ssh self._sftp = sftp self._agent = agent self._created = now self._accessed = now self._lock = threading.Lock() def __enter__(self): self._lock.__enter__() return self def __exit__(self, exc_type, exc_value, traceback): return self._lock.__exit__(exc_type, exc_value, traceback) @property def client(self): """Return the IP address of the client that created the session.""" return self._client @property def username(self): """Return the username used to create the session.""" return self._username @property def hostname(self): """Return the remote hostname accessed by the session.""" return self._hostname @property def sftp(self): return self._sftp @property def accessed(self): """Return the time the session was last accessed.""" return self._accessed def close(self): if self._agent is not None: cherrypy.log.error( "Instructing remote agent for %s@%s from %s to shutdown." % (self.username, self.hostname, self.client)) stdin, stdout, stderr = self._agent command = {"action": "exit"} stdin.write("%s\n" % json.dumps(command)) stdin.flush() self._sftp.close() self._ssh.close() def submit_batch(self, filename): """ Submits a command to the slycat-agent to start an input batch file on a cluster running SLURM. Parameters ---------- filename : string Name of the batch file Returns ------- response : dict A dictionary with the following keys: filename, jid, errors """ if self._agent is not None: stdin, stdout, stderr = self._agent payload = {"action": "submit-batch", "command": filename} stdin.write("%s\n" % json.dumps(payload)) stdin.flush() response = json.loads(stdout.readline()) if not response["ok"]: cherrypy.response.headers["x-slycat-message"] = response["message"] cherrypy.log.error("slycat.web.server.remote.py submit_batch", "cherrypy.HTTPError 400 %s" % response["message"]) raise cherrypy.HTTPError(400) # parses out the job ID jid = [int(s) for s in response["output"].split() if s.isdigit()][0] return {"filename": response["filename"], "jid": jid, "errors": response["errors"]} else: cherrypy.response.headers["x-slycat-message"] = "No Slycat agent present on remote host." cherrypy.log.error("slycat.web.server.remote.py submit_batch", "cherrypy.HTTPError 500 no Slycat agent present on remote host.") raise cherrypy.HTTPError(500) def checkjob(self, jid): """ Submits a command to the slycat-agent to check the status of a submitted job to a cluster running SLURM. Parameters ---------- jid : int Job ID Returns ------- response : dict A dictionary with the following keys: jid, status, errors """ cherrypy.log.error('calling checkjob in remote') if self._agent is not None: stdin, stdout, stderr = self._agent payload = {"action": "checkjob", "command": jid} try: stdin.write("%s\n" % json.dumps(payload)) stdin.flush() except socket.error as e: delete_session(self._sid) raise socket.error('Socket is closed') response = json.loads(stdout.readline()) if not response["ok"]: cherrypy.response.headers["x-slycat-message"] = response["message"] cherrypy.log.error("slycat.web.server.remote.py checkjob", "cherrypy.HTTPError 400 %s" % response["message"]) raise cherrypy.HTTPError(400) # parses the useful information from job status #cherrypy.log.error("response state:%s" % response["output"]) status = { "state": response["output"] } return {"jid": response["jid"], "status": status, "errors": response["errors"], "logFile":response["logFile"]} else: cherrypy.response.headers["x-slycat-message"] = "No Slycat agent present on remote host." cherrypy.log.error("slycat.web.server.remote.py checkjob", "cherrypy.HTTPError 500 no Slycat agent present on remote host.") raise cherrypy.HTTPError(500) def cancel_job(self, jid): """ Submits a command to the slycat-agent to cancel a running job on a cluster running SLURM. Parameters ---------- jid : int Job ID Returns ------- response : dict A dictionary with the following keys: jid, output, errors """ if self._agent is not None: stdin, stdout, stderr = self._agent payload = {"action": "cancel-job", "command": jid} stdin.write("%s\n" % json.dumps(payload)) stdin.flush() response = json.loads(stdout.readline()) if not response["ok"]: cherrypy.response.headers["x-slycat-message"] = response["message"] cherrypy.log.error("slycat.web.server.remote.py cancel_job", "cherrypy.HTTPError 400 %s" % response["message"]) raise cherrypy.HTTPError(400) return {"jid": response["jid"], "output": response["output"], "errors": response["errors"]} else: cherrypy.response.headers["x-slycat-message"] = "No Slycat agent present on remote host." cherrypy.log.error("slycat.web.server.remote.py cancel_job", "cherrypy.HTTPError 500 no Slycat agent present on remote host.") raise cherrypy.HTTPError(500) def get_job_output(self, jid, path): """ Submits a command to the slycat-agent to fetch the content of the a job's output file from a cluster running SLURM. Note that the expected format for the output file is slurm-[jid].out. Parameters ---------- jid : int Job ID Returns ------- response : dict A dictionary with the following keys: jid, output, errors """ if self._agent is not None: stdin, stdout, stderr = self._agent payload = {"action": "get-job-output", "command": {"jid": jid, "path": path}} stdin.write("%s\n" % json.dumps(payload)) stdin.flush() response = json.loads(stdout.readline()) if not response["ok"]: cherrypy.response.headers["x-slycat-message"] = response["message"] cherrypy.log.error("slycat.web.server.remote.py get_job_output", "cherrypy.HTTPError 400 %s" % response["message"]) raise cherrypy.HTTPError(400) return {"jid": response["jid"], "output": response["output"], "errors": response["errors"]} else: cherrypy.response.headers["x-slycat-message"] = "No Slycat agent present on remote host." cherrypy.log.error("slycat.web.server.remote.py get_job_output", "cherrypy.HTTPError 500 no Slycat agent present on remote host.") raise cherrypy.HTTPError(500) def get_user_config(self): """ Submits a command to the slycat-agent to fetch the content of a user's .slycatrc file in their home directory. Returns ------- response : dict A dictionary with the configuration values """ if self._agent is not None: stdin, stdout, stderr = self._agent payload = {"action": "get-user-config"} stdin.write("%s\n" % json.dumps(payload)) stdin.flush() response = json.loads(stdout.readline()) if not response["ok"]: cherrypy.response.headers["x-slycat-message"] = response["message"] cherrypy.log.error("slycat.web.server.remote.py get_user_config", "cherrypy.HTTPError 400 %s" % response["message"]) raise cherrypy.HTTPError(400) return {"config": response["config"], "errors": response["errors"]} else: cherrypy.response.headers["x-slycat-message"] = "No Slycat agent present on remote host." cherrypy.log.error("slycat.web.server.remote.py get_user_config", "cherrypy.HTTPError 500 no Slycat agent present on remote host.") raise cherrypy.HTTPError(500) def set_user_config(self, config): """ Submits a command to the slycat-agent to set the content of a user's .slycatrc file in their home directory. Returns ------- response : dict """ if self._agent is not None: stdin, stdout, stderr = self._agent payload = {"action": "set-user-config", "command": {"config": config}} stdin.write("%s\n" % json.dumps(payload)) stdin.flush() response = json.loads(stdout.readline()) if not response["ok"]: cherrypy.response.headers["x-slycat-message"] = response["message"] cherrypy.log.error("slycat.web.server.remote.py set_user_config", "cherrypy.HTTPError 400 %s" % response["message"]) raise cherrypy.HTTPError(400) return {"errors": response["errors"]} else: cherrypy.response.headers["x-slycat-message"] = "No Slycat agent present on remote host." cherrypy.log.error("slycat.web.server.remote.py set_user_config", "cherrypy.HTTPError 500 no Slycat agent present on remote host.") raise cherrypy.HTTPError(500) def run_remote_command(self, command): """ run a remote command from an HPC source running a slycat agent. the command could be things such as starting an hpc script
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 """ Example: Hilbert space approximation for Gaussian processes. ============================================================ This example replicates a few of the models in the excellent case study by <NAME> [1] (originally written using R and Stan). The case study uses approximate Gaussian processes [2] to model the relative number of births per day in the US from 1969 to 1988. The Hilbert space approximation is way faster than the exact Gaussian processes because it circumvents the need for inverting the covariance matrix. The original case study presented by Aki also emphasizes the iterative process of building a Bayesian model, which is excellent as a pedagogical resource. Here, however, we replicate only 4 out of all the models available in [1]. There are a few minor differences in the mathematical details of our models, which we had to make in order for the chains to mix properly. We have clearly commented on the places where our models are different. **References:** 1. <NAME>, Simpson, et al (2020), `"Bayesian workflow book - Birthdays" <https://avehtari.github.io/casestudies/Birthdays/birthdays.html>`. 2. <NAME>, Bürkner PC, Andersen MR, et al (2020), "Practical hilbert space approximate bayesian gaussian processes for probabilistic programming". .. image:: ../_static/img/examples/hsgp.png :align: center """ import argparse import functools import operator import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import jax import jax.numpy as jnp from tensorflow_probability.substrates import jax as tfp import numpyro from numpyro import deterministic, plate, sample import numpyro.distributions as dist from numpyro.infer import MCMC, NUTS # --- utility functions def load_data(): URL = "https://raw.githubusercontent.com/avehtari/casestudies/master/Birthdays/data/births_usa_1969.csv" data = pd.read_csv(URL, sep=",") day0 = pd.to_datetime("31-Dec-1968") dates = [day0 + pd.Timedelta(f"{i}d") for i in data["id"]] data["date"] = dates data["births_relative"] = data["births"] / data["births"].mean() return data def save_samples(out_path, samples): """ Save dictionary of arrays using numpys compressed binary format Fast reading and writing and efficient storage """ np.savez_compressed(out_path, **samples) class UnivariateScaler: """ Standardizes the data to have mean 0 and unit standard deviation. """ def __init__(self): self._mean = None self._std = None def fit(self, x): self._mean = np.mean(x) self._std = np.std(x) return self def transform(self, x): return (x - self._mean) / self._std def inverse_transform(self, x): return x * self._std + self._mean def _agg(*args, scaler=None): """ Custom function for aggregating the samples and transforming back to the desired scale. """ total = functools.reduce(operator.add, args) return (100 * scaler.inverse_transform(total)).mean(axis=0) # --- modelling functions def modified_bessel_first_kind(v, z): v = jnp.asarray(v, dtype=float) return jnp.exp(jnp.abs(z)) * tfp.math.bessel_ive(v, z) def spectral_density(w, alpha, length): c = alpha * jnp.sqrt(2 * jnp.pi) * length e = jnp.exp(-0.5 * (length ** 2) * (w ** 2)) return c * e def diag_spectral_density(alpha, length, L, M): """spd for squared exponential kernel""" sqrt_eigenvalues = jnp.arange(1, 1 + M) * jnp.pi / 2 / L return spectral_density(sqrt_eigenvalues, alpha, length) def phi(x, L, M): """ The first `M` eigenfunctions of the laplacian operator in `[-L, L]` evaluated at `x`. These are used for the approximation of the squared exponential kernel. """ m1 = (jnp.pi / (2 * L)) * jnp.tile(L + x[:, None], M) m2 = jnp.diag(jnp.linspace(1, M, num=M)) num = jnp.sin(m1 @ m2) den = jnp.sqrt(L) return num / den def diag_spectral_density_periodic(alpha, length, M): """ Not actually a spectral density but these are used in the same way. These are simply the first `M` coefficients of the Taylor expansion approximation for the periodic kernel. """ a = length ** (-2) J = jnp.arange(1, M + 1) q2 = (2 * alpha ** 2 / jnp.exp(a)) * modified_bessel_first_kind(J, a) return q2 def phi_periodic(x, w0, M): """ Basis functions for the approximation of the periodic kernel. """ m1 = jnp.tile(w0 * x[:, None], M) m2 = jnp.diag(jnp.linspace(1, M, num=M)) mw0x = m1 @ m2 return jnp.cos(mw0x), jnp.sin(mw0x) # --- models class GP1: """ Long term trend Gaussian process """ def __init__(self): self.x_scaler = UnivariateScaler() self.y_scaler = UnivariateScaler() def model(self, x, L, M, y=None): # intercept intercept = sample("intercept", dist.Normal(0, 1)) # long term trend ρ = sample("ρ", dist.LogNormal(-1.0, 1.0)) α = sample("α", dist.HalfNormal(1.0)) eigenfunctions = phi(x, L, M) spd = jnp.sqrt(diag_spectral_density(α, ρ, L, M)) with plate("basis1", M): β1 = sample("β1", dist.Normal(0, 1)) f1 = deterministic("f1", eigenfunctions @ (spd * β1)) μ = deterministic("μ", intercept + f1) σ = sample("σ", dist.HalfNormal(0.5)) with plate("n_obs", x.shape[0]): sample("y", dist.Normal(μ, σ), obs=y) def get_data(self): data = load_data() x = data["id"].values y = data["births_relative"].values self.x_scaler.fit(x) self.y_scaler.fit(y) xsd = jnp.array(self.x_scaler.transform(x)) ysd = jnp.array(self.y_scaler.transform(y)) return dict( x=xsd, y=ysd, L=1.5 * max(xsd), M=10, ) def make_figure(self, samples): data = load_data() dates = data["date"] y = 100 * data["births_relative"] μ = 100 * self.y_scaler.inverse_transform(samples["μ"]).mean(axis=0) f = plt.figure(figsize=(15, 5)) plt.axhline(100, color="k", lw=1, alpha=0.8) plt.plot(dates, y, marker=".", lw=0, alpha=0.3) plt.plot(dates, μ, color="r", lw=2) plt.ylabel("Relative number of births") plt.xlabel("") return f class GP2: """ Long term trend with year seasonality component. """ def __init__(self): self.x_scaler = UnivariateScaler() self.y_scaler = UnivariateScaler() def model(self, x, w0, J, L, M, y=None): intercept = sample("intercept", dist.Normal(0, 1)) # long term trend ρ1 = sample("ρ1", dist.LogNormal(-1.0, 1.0)) α1 = sample("α1", dist.HalfNormal(1.0)) eigenfunctions = phi(x, L, M) spd = jnp.sqrt(diag_spectral_density(α1, ρ1, L, M)) with plate("basis", M): β1 = sample("β1", dist.Normal(0, 1)) # year-periodic component ρ2 = sample("ρ2", dist.HalfNormal(0.1)) α2 = sample("α2", dist.HalfNormal(1.0)) cosines, sines = phi_periodic(x, w0, J) spd_periodic = jnp.sqrt(diag_spectral_density_periodic(α2, ρ2, J)) with plate("periodic_basis", J): β2_cos = sample("β2_cos", dist.Normal(0, 1)) β2_sin = sample("β2_sin", dist.Normal(0, 1)) f1 = deterministic("f1", eigenfunctions @ (spd * β1)) f2 = deterministic( "f2", cosines @ (spd_periodic * β2_cos) + sines @ (spd_periodic * β2_sin) ) μ = deterministic("μ", intercept + f1 + f2) σ = sample("σ", dist.HalfNormal(0.5)) with plate("n_obs", x.shape[0]): sample("y", dist.Normal(μ, σ), obs=y) def get_data(self): data = load_data() x = data["id"].values y = data["births_relative"].values self.x_scaler.fit(x) self.y_scaler.fit(y) xsd = jnp.array(self.x_scaler.transform(x)) ysd = jnp.array(self.y_scaler.transform(y)) w0 = 2 * jnp.pi / (365.25 / self.x_scaler._std) return dict( x=xsd, y=ysd, w0=w0, J=20, L=1.5 * max(xsd), M=10, ) def make_figure(self, samples): data = load_data() dates = data["date"] y = 100 * data["births_relative"] y_by_day_of_year = 100 * data.groupby("day_of_year2")["births_relative"].mean() μ = 100 * self.y_scaler.inverse_transform(samples["μ"]).mean(axis=0) f1 = 100 * self.y_scaler.inverse_transform(samples["f1"]).mean(axis=0) f2 = 100 * self.y_scaler.inverse_transform(samples["f2"]).mean(axis=0) fig, axes = plt.subplots(1, 2, figsize=(15, 5)) axes[0].plot(dates, y, marker=".", lw=0, alpha=0.3) axes[0].plot(dates, μ, color="r", lw=2, alpha=1, label="Total") axes[0].plot(dates, f1, color="C2", lw=3, alpha=1, label="Trend") axes[0].set_ylabel("Relative number of births") axes[0].set_title("All time") axes[1].plot( y_by_day_of_year.index, y_by_day_of_year, marker=".", lw=0, alpha=0.5 ) axes[1].plot( y_by_day_of_year.index, f2[:366], color="r", lw=2, label="Year seaonality" ) axes[1].set_ylabel("Relative number of births") axes[1].set_xlabel("Day of year") for ax in axes: ax.axhline(100, color="k", lw=1, alpha=0.8) ax.legend() return fig class GP3: """ Long term trend with yearly seasonaly and slowly varying day-of-week effect. """ def __init__(self): self.x_scaler = UnivariateScaler() self.y_scaler = UnivariateScaler() def model(self, x, day_of_week, w0, J, L, M, L3, M3, y=None): intercept = sample("intercept", dist.Normal(0, 1)) # long term trend ρ1 = sample("ρ1", dist.LogNormal(-1.0, 1.0)) α1 = sample("α1", dist.HalfNormal(1.0)) eigenfunctions = phi(x, L, M) spd = jnp.sqrt(diag_spectral_density(α1, ρ1, L, M)) with plate("basis", M): β1 = sample("β1", dist.Normal(0, 1)) # year-periodic component ρ2 = sample("ρ2", dist.HalfNormal(0.1)) α2 = sample("α2", dist.HalfNormal(1.0)) cosines, sines = phi_periodic(x, w0, J) spd_periodic = jnp.sqrt(diag_spectral_density_periodic(α2, ρ2, J)) with plate("periodic_basis", J): β2_cos = sample("β2_cos", dist.Normal(0, 1)) β2_sin = sample("β2_sin", dist.Normal(0, 1)) # day of week effect with plate("plate_day_of_week", 6): β_week = sample("β_week", dist.Normal(0, 1)) # next enforce sum-to-zero -- this is slightly different from Aki's model, # which instead imposes Monday's effect to be zero. β_week = jnp.concatenate([jnp.array([-jnp.sum(β_week)]), β_week]) # long term variation of week effect α3 = sample("α3", dist.HalfNormal(0.1)) ρ3 = sample("ρ3", dist.LogNormal(1.0, 1.0)) # prior: very long-term effect eigenfunctions_3 = phi(x, L3, M3) spd_3 = jnp.sqrt(diag_spectral_density(α3, ρ3, L3, M3)) with plate("week_trend", M3): β3 = sample("β3", dist.Normal(0, 1)) # combine f1 = deterministic("f1", eigenfunctions @ (spd * β1)) f2 = deterministic( "f2", cosines @ (spd_periodic * β2_cos) + sines @ (spd_periodic * β2_sin) ) g3 = deterministic("g3", eigenfunctions_3 @ (spd_3 * β3)) μ = deterministic("μ", intercept + f1 + f2 + jnp.exp(g3) * β_week[day_of_week]) σ = sample("σ", dist.HalfNormal(0.5)) with plate("n_obs", x.shape[0]): sample("y", dist.Normal(μ, σ), obs=y) def get_data(self): data = load_data() x = data["id"].values y = data["births_relative"].values self.x_scaler.fit(x) self.y_scaler.fit(y) xsd = jnp.array(self.x_scaler.transform(x)) ysd = jnp.array(self.y_scaler.transform(y)) w0 = 2 * jnp.pi / (365.25 / self.x_scaler._std) dow = jnp.array(data["day_of_week"].values) - 1 return dict( x=xsd, day_of_week=dow, w0=w0,
#!/usr/bin/env python2 # -*- coding: utf-8 -*- #--------------------------------------------------------------------------- #Global mathematical model of SAC-A with 31 nodes and according to design # status of March 3, 1997. Orbit of 51.6 degrees of inclination in winter # solstice (beta=15), at 205 mn (380 km). Attitude: panels always deployed # and directed towards the sun, satellite main axis perpendicular to the # ecliptic plane. # NOMINAL HOT CASE WITH 23W (INTERNAL) #---------------------------------------------------------------------------- import tkinter from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from solver import Node, ThermalModel, FDMExplicit from matplotlib.figure import Figure import datetime inicio = datetime.datetime.now() # Tiempo de Compilación #HEADER CONTROL DATA EMLI = 0.01 # MLI effective emissivity PINF = 9.0 # Internal power dissipated at lower platform PSUP = 14.00 # Internal power dissipated at upper platform F_AREA = 0.31 # Area correction for radiator # Tiempo de Simulación t_start = 0.0 t_end = 16579.8 #12000 #55266.0 # Tiempos en los que cambia las potencias power_times1 = [ 0.0, 16580.0, 16580.0, 17300.0, 17300.0, 55266.0,] power_Low= [1.0, 1.0, 1.0, 1.0, 1.0, 1.0,] power_Upp= [1.0, 1.0, 4.429, 4.429, 1.0, 1.0,] for index in range(len(power_Low)): power_Low[index] = power_Low[index]*PINF for index in range(len(power_Upp)): power_Upp[index]=power_Upp[index]*PSUP def generate_power_function(time, power): from bisect import bisect power_array = power power_times1 = time def get_power_X(time): return power_array[bisect(power_times1, time)-1] return get_power_X power_L= generate_power_function(power_times1, power_Low) power_U = generate_power_function(power_times1, power_Upp) power_times = [ 0.0, 230.4, 460.8, 690.6, 921.0, 1151.4, 1381.8, 1611.6, 1842.0, 2072.4, 2302.8, 2532.6, 2763.0, 2993.4, 3223.8, 3454.2, 3684.0, 3914.4, 4144.8, 4375.2, 4605.0, 4835.0, 5065.8, 5296.2, 5526.6, 5526.6, 5757.0, 5987.4, 6217.2, 6447.6, # 2da orbita 6678.0, 6908.4, 7138.2, 7368.6, 7599.0, 7829.4, 8059.2, 8289.6, 8520.0, 8750.4, 8980.8, 9210.6, 9441.0, 9671.4, 9901.8, 10131.6,10361.6,10592.4,10822.8,11053.2, 11053.2,11283.6,11514.0,11743.8,11974.2, # 3ra orbita 12204.6,12435.0,12664.8,12895.2,13125.6, 13356.0,13585.8,13816.2,14046.6,14277.0, 14507.4,14737.2,14967.6,15198.0,15428.4, 15658.2,15888.2,16119.0,16349.4,16579.8,] power_node_103 = [ 7.64, 7.30, 6.92, 6.52, 6.17, 5.96, 5.89, 5.96, 6.17, 6.52, 6.92, 7.30, 7.64, 8.03, 8.46, 8.88, 9.25, 9.51, 9.60, 9.51, 9.25, 8.88, 8.46, 8.03, 7.64,] power_node_103 = power_node_103*3 power_node_104 = [14.16, 13.95, 13.68, 13.41, 13.17, 13.02, 12.97, 13.02, 13.17, 13.41, 13.68, 13.95, 14.16, 14.34, 14.49, 14.60, 14.69, 14.75, 14.77, 14.75, 14.69, 14.60, 14.48, 14.34, 14.16,] power_node_104 = power_node_104*3 power_node_105 = [73.27, 73.22, 73.11, 72.96, 72.81, 72.70, 72.67, 72.70, 72.81, 72.96, 73.11, 73.22, 73.27, 73.36, 73.64, 73.96, 74.25, 74.43, 74.49, 74.43, 74.25, 73.96, 73.64, 73.36, 73.27,] power_node_105 = power_node_105*3 power_node_106 = [ 4.31, 4.87, 5.69, 6.55, 7.29, 7.78, 7.95, 7.78, 7.28, 6.54, 5.69, 4.87, 4.31, 3.88, 3.49, 3.17, 2.93, 2.78, 2.73, 2.78, 2.93, 3.17, 3.50, 3.88, 4.31,] power_node_106 = power_node_106*3 power_node_107 = [74.76, 75.19, 75.83, 76.65, 77.60, 78.59, 79.50, 80.20, 80.57, 80.55, 80.19, 79.62, 79.05, 78.59, 78.35, 78.19, 78.01, 77.73, 77.34, 76.82, 76.21, 75.54, 74.96, 74.64, 74.76,] power_node_107 = power_node_107*3 power_node_108 = [79.05, 79.63, 80.20, 80.55, 80.57, 80.20, 79.50, 78.58, 77.60, 76.65, 75.83, 75.18, 74.76, 74.64, 74.96, 75.54, 76.21, 76.82, 77.34, 77.73, 78.01, 78.19, 78.35, 78.59, 79.05,] power_node_108 = power_node_108*3 power_node_109 = [ 6.82, 6.81, 6.73, 6.60, 6.42, 6.23, 6.04, 5.87, 5.74, 5.64, 5.58, 5.56, 5.57, 5.60, 5.68, 5.79, 5.94, 6.10, 6.27, 6.43, 6.58, 6.69, 6.76, 6.80, 6.82,] power_node_109 = power_node_109*3 power_node_110 = [ 5.57, 5.56, 5.58, 5.64, 5.74, 5.87, 6.04, 6.23, 6.42, 6.60, 6.73, 6.81, 6.82, 6.80, 6.76, 6.69, 6.58, 6.43, 6.27, 6.10, 5.94, 5.79, 5.68, 5.60, 5.57,] power_node_110 = power_node_110*3 # power_node_111= [ 1.58, 1.71, 1.83, 1.91, 1.95, 1.96, 1.96, 1.96, 1.95, 1.91, 1.83, 1.71, 1.58, 1.46, 1.34, 1.20, 1.06, 0.95, 0.90, 0.95, 1.06, 1.20, 1.34, 1.46, 1.58,] power_node_111 = power_node_111*3 # power_node_112= [2.47, 2.61, 2.75, 2.85, 2.92, 2.96, 2.98, 2.96, 2.92, 2.85, 2.75, 2.61, 2.47, 2.34, 2.21, 2.10, 1.99, 1.91, 1.88, 1.91, 1.99, 2.10, 2.21, 2.34, 2.47,] power_node_112 = power_node_112*3 power_node_113= [0.21, 0.15, 0.09, 0.04, 0.01, 0.00, 0.00, 0.00, 0.01, 0.04, 0.09, 0.15, 0.21, 0.29, 0.37, 0.45, 0.52, 0.58, 0.60, 0.58, 0.52, 0.45, 0.37, 0.29, 0.21, ] power_node_113 = power_node_113*3 # power_node_114= [ 7.43, 10.01, 13.15, 16.40, 19.29, 21.34, 22.10, 21.33, 19.29, 16.40, 13.15, 10.00, 7.43, 5.56, 4.16, 3.18, 2.63, 2.39, 2.32, 2.39, 2.63, 3.18, 4.16, 5.56, 7.43,] power_node_114 = power_node_114*3 # power_node_115= [ 7.43, 10.01, 13.15, 16.40, 19.29, 21.34, 22.10, 21.33, 19.29, 16.40, 13.15, 10.00, 7.43, 5.56, 4.16, 3.18, 2.63, 2.39, 2.32, 2.39, 2.63, 3.18, 4.16, 5.56, 7.43,] power_node_115 = power_node_115*3 # power_node_116= [ 8.64, 6.56, 4.74, 3.36, 2.55, 2.27, 2.24, 2.27, 2.55, 3.36, 4.74, 6.56, 8.64, 11.08, 13.72, 16.27, 18.47, 20.02, 20.60, 20.02, 18.47, 16.27, 13.72, 11.08, 8.64,] power_node_116 = power_node_116*3 # power_node_117= [ 5.76, 5.95, 5.85, 5.47, 4.82, 3.94, 2.94, 1.95, 1.09, 0.47, 0.14, 0.07, 0.05, 0.05, 0.08, 0.27, 0.63, 1.12, 1.74, 2.48, 3.27, 4.07, 4.82, 5.43, 5.76,] power_node_117 = power_node_117*3 # power_node_118= [ 0.05, 0.07, 0.14, 0.47, 1.10, 1.95, 2.94, 3.94, 4.82, 5.47, 5.85, 5.95, 5.76, 5.43, 4.82, 4.07, 3.27, 2.48, 1.74, 1.12, 0.63, 0.27, 0.08, 0.05, 0.05,] power_node_118 = power_node_118*3 # power_node_119= [ 0.04, 0.05, 0.13, 0.51, 1.23, 2.27, 3.51, 4.81, 5.92, 6.73, 7.17, 7.22, 6.93, 6.55, 5.86, 4.98, 4.01, 3.06, 2.17, 1.40, 0.77, 0.33, 0.08, 0.03, 0.04,] power_node_119 = power_node_119*3 # power_node_120= [ 1.13, 1.55, 2.03, 2.54, 3.02, 3.40, 3.60, 3.60, 3.45, 3.15, 2.74, 2.29, 1.87, 1.50, 1.16, 0.87, 0.62, 0.43, 0.29, 0.21, 0.23, 0.36, 0.55, 0.80, 1.13,] power_node_120 = power_node_120*3 # power_node_121= [1.27, 1.68, 2.15, 2.60, 2.94, 3.13, 3.17, 3.02, 2.66, 2.22, 1.74, 1.29, 0.89, 0.59, 0.37, 0.20, 0.07, 0.04, 0.07, 0.12, 0.22, 0.39, 0.63, 0.93, 1.27,] power_node_121 = power_node_121*3 # power_node_122= [ 1.87, 2.30, 2.75, 3.15, 3.45, 3.60, 3.60, 3.40, 3.02, 2.54, 2.03, 1.55, 1.13, 0.80, 0.55, 0.36, 0.23, 0.21, 0.29, 0.43, 0.62, 0.87, 1.16, 1.50, 1.87,] power_node_122 = power_node_122*3 # power_node_123= [ 0.89, 1.29, 1.74, 2.22, 2.66, 3.02, 3.17, 3.13, 2.94, 2.60, 2.15, 1.68, 1.27, 0.93, 0.63, 0.39, 0.22, 0.12, 0.07, 0.04, 0.07, 0.20, 0.37, 0.59, 0.89,] power_node_123 = power_node_123*3 # power_node_126= [ 3.33, 3.67, 3.97, 4.04, 3.83, 3.37, 2.74, 2.05, 1.40, 0.86, 0.49, 0.28, 0.18, 0.16, 0.19, 0.29, 0.47, 0.74, 1.08, 1.48, 1.91, 2.35, 2.75, 3.08, 3.33,] power_node_126 = power_node_126*3 for index in range(len(power_node_126)): power_node_126[index] = power_node_126[index]*F_AREA # power_node_127= [ 0.18, 0.28, 0.49, 0.86, 1.40, 2.05, 2.74, 3.37, 3.83, 4.04, 3.97, 3.67, 3.33, 3.08, 2.75, 2.35, 1.91, 1.48, 1.08, 0.74, 0.47, 0.29, 0.19, 0.16, 0.18,] power_node_127 = power_node_127*3 for index in range(len(power_node_127)): power_node_127[index] = power_node_127[index]*F_AREA # power_node_129= [ 1.86, 2.14, 2.42, 2.67, 2.87, 2.99, 3.04, 2.99, 2.87, 2.67, 2.42, 2.14, 1.86, 1.61, 1.38, 1.15, 0.93, 0.78, 0.73, 0.78, 0.93, 1.15, 1.38, 1.61, 1.86,] power_node_129 = power_node_129*3 def generate_power_function(time, power): from bisect import bisect power_array = power power_times = time def get_power_X(time): return power_array[bisect(power_times, time)-1] return get_power_X power_103 = generate_power_function(power_times, power_node_103) power_104 = generate_power_function(power_times, power_node_104) power_105 = generate_power_function(power_times, power_node_105) power_106 = generate_power_function(power_times, power_node_106) power_107 = generate_power_function(power_times, power_node_107) power_108 = generate_power_function(power_times, power_node_108) power_109 = generate_power_function(power_times, power_node_109) power_110 = generate_power_function(power_times, power_node_110) power_111 = generate_power_function(power_times, power_node_111) power_112 = generate_power_function(power_times, power_node_112) power_113 = generate_power_function(power_times, power_node_113) power_114 = generate_power_function(power_times, power_node_114) power_115 = generate_power_function(power_times, power_node_115) power_116 = generate_power_function(power_times, power_node_116) power_117 = generate_power_function(power_times, power_node_117) power_118 = generate_power_function(power_times, power_node_118) power_119 = generate_power_function(power_times, power_node_119) power_120 = generate_power_function(power_times, power_node_120) power_121 = generate_power_function(power_times, power_node_121) power_122 = generate_power_function(power_times, power_node_122) power_123 = generate_power_function(power_times, power_node_123) power_126 = generate_power_function(power_times, power_node_126) power_127 = generate_power_function(power_times, power_node_127) power_129 = generate_power_function(power_times, power_node_129) def power_mtr(time): # Variación de Potencia en MTR if time == 0.0: return 0.0 elif time >= 100.0 and time <= 600.0: return 200.0 #elif time >= 700.0 and time =< 899.0: # return 0.0 elif time >= 900.0 and time <= 1400.0: return 200.0 else: return 0.0 model = ThermalModel() #HEADER NODE DATA model.addNode(Node(1, 14400.0, 297.98277018, power_L, 'Lower platform')) model.addNode(Node(2, 22400.0, 298.24525503, power_U, 'Upper platform')) model.addNode(Node(3, 1600.0, 296.06883956, power_103, 'Interface ring')) model.addNode(Node(4, 400.0,329.76981036, power_104, 'Front panel radiator')) model.addNode(Node(5, 450.0,352.92355844, power_105, 'Front solar panel')) model.addNode(Node(6, 450.0,287.98149354, power_106, 'Rear solar panel')) model.addNode(Node(7, 450.0,326.16023767, power_107, 'Lateral solar panel _1')) model.addNode(Node(8, 450.0,326.16113637, power_108, 'Lateral solar panel _2')) model.addNode(Node(9, 150.0,334.52013919, power_109, 'Silicon cell SiCELL_2')) model.addNode(Node(10, 150.0,334.28346766, power_110, 'Silicon cell SiCELL_1')) model.addNode(Node(11, 200.0,272.24511844, power_111, 'RF antena')) model.addNode(Node(12, 300.0,278.89073804, power_112, 'Upper microSwitch')) model.addNode(Node(13, 300.0, 289.79374615, power_113, 'Lower microSwitch')) model.addNode(Node(14, 0.1,230.57181926, power_114, 'MLI-Upper platform')) model.addNode(Node(15, 0.1,231.29593541, power_115, 'MLI-lateral_2')) model.addNode(Node(16, 0.1, 230.27827859, power_116, 'MLI-Lower platform')) model.addNode(Node(17, 0.1,246.37801687,power_117, 'Shunt_2')) model.addNode(Node(18, 0.1,246.37762173, power_118, 'Shunt_1')) model.addNode(Node(19, 0.1,231.29564763, power_119, 'MLI-lateral_1')) model.addNode(Node(20, 100.0, 238.06403638, power_120, 'GPS_1 Antenna')) model.addNode(Node(21, 100.0,240.55841625, power_121, 'GPS_2 Antenna')) model.addNode(Node(22, 100.0, 238.06404797, power_122, 'GPS_3 Antenna')) model.addNode(Node(23, 100.0,240.5584162, power_123, 'GPS_4 Antenna')) model.addNode(Node(24, 250.0, 299.55312394, lambda x: 0.0, 'Structure - lateral_1')) model.addNode(Node(25, 250.0, 296.43180947, lambda x: 0.0, 'Structure - rear')) model.addNode(Node(26, 450.0,295.62728453, power_126, 'Radiator_2')) model.addNode(Node(27, 450.0,295.62727054, power_127, 'Radiator_1')) model.addNode(Node(28, 250.0, 299.55318916, lambda x: 0.0, 'Structure - lateral_2')) model.addNode(Node(29, 3.0, 231.75567726, power_129, 'MLI - magnetometer')) model.addNode(Node(30, 300.0, 287.14924544, lambda x: 0.0,'Magnetometer')) model.addNode(Node(31, 1100.0,301.97360573, lambda x: 0.0, 'Structure - front')) model.addNode(Node(32, 3.0,339.90875354, lambda x: 0.0, 'Mathematical node')) model.addNode(Node(-99, 0.10, 0.0, lambda x: 0.0, 'Space')) #HEADER CONDUCTOR DATA # CONDUCTANCIAS model.addConductance(1, 31, 1.10)
import torch import warnings from torch.optim.optimizer import Optimizer, required import math import itertools as it import torch.optim as optim warnings.filterwarnings("once") def get_optimizer(optimizer: str = 'Adam', lookahead: bool = False, model=None, separate_decoder: bool = True, lr: float = 1e-3, lr_e: float = 1e-3): """ # https://github.com/lonePatient/lookahead_pytorch/blob/master/run.py :param optimizer: :param lookahead: :param model: :param separate_decoder: :param lr: :param lr_e: :return: """ if separate_decoder: params = [ {'params': model.cls_head.parameters(), 'lr': lr }, {'params': model.encoder.parameters(), 'lr': lr_e}, ] else: params = [{'params': model.parameters(), 'lr': lr}] if optimizer == 'Adam': optimizer = optim.Adam(params, lr=lr) elif optimizer == 'RAdam': optimizer = RAdam(params, lr=lr) elif optimizer == 'Ralamb': optimizer = Ralamb(params, lr=lr) elif optimizer == 'AdamW': optimizer = AdamW(params, lr=lr) elif optimizer == 'diffGrad': optimizer = diffGrad(params, lr=lr) elif optimizer == 'diffRGrad': optimizer = diffRGrad(params, lr=lr) else: raise ValueError('unknown base optimizer type') if lookahead: optimizer = Lookahead(base_optimizer=optimizer, k=5, alpha=0.5) return optimizer class diffGrad(Optimizer): r"""Implements diffGrad algorithm. It is modified from the pytorch implementation of Adam. It has been proposed in `diffGrad: An Optimization Method for Convolutional Neural Networks`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _diffGrad: An Optimization Method for Convolutional Neural Networks: https://arxiv.org/abs/1909.11015 .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, version=0, weight_decay=0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults) #save version self.version = version def __setstate__(self, state): super().__setstate__(state) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('diffGrad does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) # Previous gradient state['previous_grad'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq, previous_grad = state['exp_avg'], state['exp_avg_sq'], state['previous_grad'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad.add_(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] # compute diffgrad coefficient (dfc) if self.version==0: diff = abs(previous_grad - grad) elif self.version ==1: diff = previous_grad-grad elif self.version ==2: diff = .5*abs(previous_grad - grad) if self.version==0 or self.version==1: dfc = 1. / (1. + torch.exp(-diff)) elif self.version==2: dfc = 9. / (1. + torch.exp(-diff))-4 #DFC2 = 9/(1+e-(.5/g/)-4 #range .5,5 state['previous_grad'] = grad # update momentum with dfc exp_avg1 = exp_avg * dfc step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(-step_size, exp_avg1, denom) return loss class diffRGrad(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, version=0, weight_decay=0, degenerated_to_sgd=True): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) self.degenerated_to_sgd = degenerated_to_sgd self.version = version if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): for param in params: if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): param['buffer'] = [[None, None, None] for _ in range(10)] defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) super(diffRGrad, self).__init__(params, defaults) def __setstate__(self, state): super(diffRGrad, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('diffGRad does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) # Previous gradient state['previous_grad'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) state['previous_grad'] = state['previous_grad'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] previous_grad = state['previous_grad'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 # compute diffgrad coefficient (dfc) #print("grad = ",grad.size()) #print("prev_grad = ",previous_grad.size()) if self.version==0: diff = abs(previous_grad - grad) elif self.version ==1: diff = previous_grad-grad elif self.version ==2: diff = .5*abs(previous_grad - grad) if self.version==0 or self.version==1: dfc = 1. / (1. + torch.exp(-diff)) elif self.version==2: dfc = 9. / (1. + torch.exp(-diff))-4 #DFC2 = 9/(1+e-(.5/g/)-4 #range .5,5 state['previous_grad'] = grad buffered = group['buffer'][int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) elif self.degenerated_to_sgd: step_size = 1.0 / (1 - beta1 ** state['step']) else: step_size = -1 buffered[2] = step_size # more conservative since it's an approximated value if N_sma >= 5: if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) denom = exp_avg_sq.sqrt().add_(group['eps']) # update momentum with dfc #print("dfc ",dfc.size()) #print("exp_avg ",exp_avg.size()) exp_avg1 = exp_avg * dfc.float() p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg1, denom) p.data.copy_(p_data_fp32) elif step_size > 0: #print("exp_avg in elif",exp_avg.size()) if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) p_data_fp32.add_(-step_size * group['lr'], exp_avg) p.data.copy_(p_data_fp32) return loss class RAdam(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.buffer = [[None, None, None] for ind in range(10)] super(RAdam, self).__init__(params, defaults) def __setstate__(self, state): super(RAdam, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 buffered = self.buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an
"full".') return None if df is None: self._logger.warning('Return df format not provided. Default is "pred".') return None if svd == True: # update SVD for dimensionality reducation self.svd() data = self.data else: data = self.UI gmm = GaussianMixture(n_components=n, n_init=10, covariance_type=covariance_type, tol=1e-3, max_iter=500) self.gmm_pred = gmm.fit_predict(data) self.gmm_pred = pd.DataFrame(self.gmm_pred, columns = ['cluster']) # Return new dataframe with clusters, and probability of belonging to a cluster if df == 'pred': self.gmm_pred.index += 1 return self.gmm_pred elif df == 'proba': cols = ['proba_C'+str(int) for int in range(n)] proba = self.gmm_pred.join(pd.DataFrame(gmm.predict_proba(data), columns = cols)) proba.index += 1 # adjust index to match user return proba elif df == 'all': cols = ['proba_C'+str(int) for int in range(n)] proba = self.gmm_pred.join(pd.DataFrame(gmm.predict_proba(data), columns = cols)) proba.index += 1 # adjust index to match user return [data, proba] else: self._logger.error("Invalid input. Enter 'all', 'pred' or 'proba'.") return None # print graphs to evaluate kmeans clustering from 2 to n clusters using def gmm_eval(self, n, covariance_type="full"): if n is None: self._logger.error('Number of maximum clusters not provided') return None if covariance_type is None: self._logger.warning('Covariance Type for Gaussian Mixture Model not provided. Default is "full"') return None # update SVD for dimensionality reducation self.svd() # variable scope limited to function gmm_aic = [] gmm_bic = [] gmm_scores = [] # calculate scores for i in range(2,n+1): gmm = GaussianMixture(n_components=i,n_init=10, covariance_type = covariance_type, tol=1e-3,max_iter=500).fit(self.data) # Akaike Information Criterion gmm_aic.append(gmm.aic(self.data)) # Bayesian Information Criterion gmm_bic.append(gmm.bic(self.data)) gmm_scores.append(gmm.score(self.data)) # Plot the scores plt.figure(figsize=(14,21)) plt.subplot(3,1,1) #plt.title("The Gaussian Mixture model AIC for determining number of clusters, CT = "+covariance_type,fontsize=16) plt.scatter(x=[i for i in range(2,n+1)],y=np.log(gmm_aic),s=150,edgecolor='k') plt.grid(True) plt.xlabel("Number of clusters",fontsize=14) plt.ylabel("Log of Gaussian mixture AIC score",fontsize=15) plt.xticks([i for i in range(2,n+1)],fontsize=14) plt.yticks(fontsize=15) plt.subplot(3,1,2) #plt.title("The Gaussian Mixture model BIC for determining number of clusters, CT = "+covariance_type,fontsize=16) plt.scatter(x=[i for i in range(2,n+1)],y=np.log(gmm_bic),s=150,edgecolor='k') plt.grid(True) plt.xlabel("Number of clusters",fontsize=14) plt.ylabel("Log of Gaussian mixture BIC score",fontsize=15) plt.xticks([i for i in range(2,n+1)],fontsize=14) plt.yticks(fontsize=15) plt.subplot(3,1,3) #plt.title("The Gaussian Mixture model scores for determining number of clusters, CT = "+covariance_type,fontsize=16) plt.scatter(x=[i for i in range(2,n+1)],y=gmm_scores,s=150,edgecolor='k') plt.grid(True) plt.xlabel("Number of clusters",fontsize=14) plt.ylabel("Gaussian mixture score",fontsize=15) plt.xticks([i for i in range(2,n+1)],fontsize=14) plt.yticks(fontsize=15) plt.show() return None def plot_scatter(self, show_cluster, model): # logger warning if no clusters to plot/colour if show_cluster: if model == 'gmm': if self.gmm_pred is None: self._logger.error("Gaussian Mixture Model not trained. Use data.gmm(n, covariance_type, df) to train before plotting") return None clusters = self.gmm_pred elif model == 'kmeans': if self.km_pred is None: self._logger.error("K-Means Model not trained. Use data.kmeans(n) to train before plotting") return None clusters = self.km_pred marker = {'size': 3,'opacity': 0.8,'color':clusters['cluster'],'colorscale':'Viridis'} else: marker = {'size': 3,'opacity': 0.8,'colorscale':'Viridis'} # check input dataset to plot if len(self.data.columns) >= 3: if len(self.data.columns) > 3: self._logger.warning("Input dataset contains more than 3 features. 3D scatter plot will only plot first 3 features.") # plot 3D scatter plot # Configure Plotly to be rendered inline in the notebook. py.init_notebook_mode() # Configure the trace. trace = go.Scatter3d( x=self.data[0], # <-- Put your data instead y=self.data[1], # <-- Put your data instead z=self.data[2], # <-- Put your data instead mode='markers', marker=marker ) # Configure the layout. layout = go.Layout( margin={'l': 0, 'r': 0, 'b': 0, 't': 0} ) data = [trace] plot_figure = go.Figure(data=data, layout=layout) # Render the plot. py.iplot(plot_figure) return None elif len(self.data.columns) == 2: self._logger.warning("Input dataset contains only 2 features. 2D scatter plot will be created.") # plot 2D scatter plot fig = go.Figure(data=go.Scatter( x=self.data[0], y=self.data[1], mode='markers', marker=marker)) fig.show() return None else: self._logger.error("Input dataset contains less than 2 features. Insufficient data to plot.") return None #CLASS ANALYSIS TO PROCESS POST-SIMULATION DATA class analysis: # constructor taking in dataset (UI matrix), number of maximum clusters def __init__(self, probas): # assign list of proba dataframes self.probas = probas # Enable logging self._logger = logging.getLogger(__name__) self.clusters = self.probas[0]['cluster'].unique().tolist() self.cluster_pop = pd.DataFrame() def __str__(self): return 'Analysis Object' def rename_cluster(self): # l and r are indexes of extreme left and extreme right users in synthetic dataset # for each iteration i for i in range(len(self.probas)): # identify cluster names groupA = int(self.probas[i][0:99].mode().cluster[0]) #print(groupA) groupB = int(self.probas[i][900:999].mode().cluster[0]) #print(groupB) #groupA = self.probas[i].loc[left_id,'cluster'] #groupB = self.probas[i].loc[right_id,'cluster'] if len(self.probas[i].cluster.unique()) == 3: if groupA == groupB: self._logger.warning("Left and Right Users are in the same cluster. They are both in cluster '1'. Cluster 0 and -1 are both random neutrals now") #groupA = self.probas[i].loc[left_id,'cluster'] if (3-groupA) == 3: #groupA is 0 groupB = 1 groupC = 2 else: #groupA is 1 or 2 groupB = 3-groupA groupC = 0 else: groupC = 3-(groupA+groupB) #check if it is just predictions or predictions and probabilities if len(self.probas[i].columns) > 2: # rename columns self.probas[i].rename(columns={'proba_C'+str(groupA):1,'proba_C'+str(groupB):-1, 'proba_C'+str(groupC):0},inplace = True) # rename clusters self.probas[i]['cluster'] = self.probas[i]['cluster'].replace([groupA,groupB,groupC],[1,-1,0]) self.clusters = [-1,0,1] elif len(self.probas[i].cluster.unique()) == 2: if groupA == groupB: self._logger.warning("Left and Right Users are in the same cluster. They are both in cluster '1'. Cluster 0 is random neutrals now") #groupA = self.probas[i].loc[left_id,'cluster'] groupB = 1-groupA #check if it is just predictions or predictions and probabilities if len(self.probas[i].columns) > 2: # rename columns self.probas[i].rename(columns={'proba_C'+str(groupA):1,'proba_C'+str(groupB):0},inplace = True) # rename clusters self.probas[i]['cluster'] = self.probas[i]['cluster'].replace([groupA,groupB],[1,0]) self.clusters = [0,1] return self.probas # Function to calculate cluster composition def cluster_populations(self): if self.probas == None: self._logger.error("List of probabilities is empty.") return None else: self.cluster_pop = pd.DataFrame(index=range(1,len(self.probas)+1), columns=(self.clusters + ['total'])) for t in range(1,len(self.probas)+1): for c in self.clusters: self.cluster_pop.loc[t,c] = len(self.probas[t-1].loc[self.probas[t-1]['cluster']==c]) self.cluster_pop.loc[t,'total'] = len(self.probas[t-1]) return self.cluster_pop def plot_counts(self, show=True, loc=None): if self.cluster_pop.empty: self.cluster_populations() plt.clf() for i in self.cluster_pop.columns: plt.plot(self.cluster_pop.index,self.cluster_pop[i], label = i) plt.xlabel('iteration') # Set the y axis label of the current axis. plt.ylabel('#users') # Set a title of the current axes. plt.title('Number of Users in each cluster over the simulation') # show a legend on the plot plt.legend() if show: # Display a figure. plt.show(block=True) else: #save plt to loc plt.savefig(loc) def plot_percent(self, show=True, loc=None): if self.cluster_pop.empty: self.cluster_populations() plt.clf() for i in self.cluster_pop.columns[:-1]: plt.plot(self.cluster_pop.index,(self.cluster_pop[i]/self.cluster_pop['total']), label = i) plt.gca plt.xlabel('iteration') # Set the y axis label of the current axis. plt.ylabel('#users') # Set a title of the current axes. plt.title('Fraction of Users in each cluster over the simulation') # show a legend on the plot plt.legend() if show: # Display a figure. plt.show(block=True) else: #save plt to loc plt.savefig(loc) ''' # Function to calculate adjacency matrix of weighted graph of users. Default similarity algorithm is Jaccard def adj_matrix(self, sim = "cosin"): # calculate similarity matrix if sim == "cosin": print("cosin") else: self._logger.error("Invalid input for sim. Enter 'cosin' or 'euclidean'.") return None ''' class post_process(): # constructor taking in dataset (UI matrix), number of maximum clusters def __init__(self, latent_list, results_list, UI): assert len(latent_list) == len(results_list), "Length of latents and results does not match" assert len(results_list[len(results_list)-1]) == len(UI[len(UI)-1]), "Number of users in final cluster results does not match the number of users in the final user-item interaction matrix" # assign input list of DFs self.latents = latent_list self.results = results_list self.UI = UI # Enable logging self._logger = logging.getLogger(__name__) # Create Analysis Object for Clustering Probabilities self.analysis_obj = analysis(self.results) def __str__(self): return 'Post Processing Object' def rename_cluster(self,l,r): # l and r are indexes of extreme left and extreme right users in synthetic dataset return self.analysis_obj.rename_cluster() # Function to calculate cluster composition def cluster_populations(self): return self.analysis_obj.cluster_populations() def plot_counts(self, show=True, loc=None): self.analysis_obj.plot_counts(show=show, loc=loc) def plot_percent(self, show=True, loc=None): self.analysis_obj.plot_percent(show=show, loc=loc) def examine(self, i, algo): # n is the number of clusters # ensure number of if i >= len(self.latents): self._logger.error("Argument 'i' is out of bounds. It needs to be between 0 and %d" % (len(self.latents)-1)) return None if not((algo == 'gmm') or (algo == 'kmeans')): self._logger.error("Argument
with corporate actions information **Usage** Retrieve corporate actions for a basket across a date range **Examples** Retrieve historical acquisition corporate actions for a basket >>> from gs_quant.markets.baskets import Basket >>> from gs_quant.markets.indices_utils import CorporateActionType >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_corporate_actions(ca_type=[CorporateActionType.ACQUISITION]) **See also** :func:`get_fundamentals` """ where = dict(assetId=self.id, corporateActionType=ca_type) query = DataQuery(where=where, start_date=start, end_date=end) response = GsDataApi.query_data(query=query, dataset_id=IndicesDatasets.CORPORATE_ACTIONS.value) return pd.DataFrame(response) @_validate(ErrorMessage.UNINITIALIZED) def get_fundamentals(self, start: dt.date = DateLimit.LOW_LIMIT.value, end: dt.date = dt.date.today(), period: DataMeasure = DataMeasure.ONE_YEAR.value, direction: DataMeasure = DataMeasure.FORWARD.value, metrics: List[DataMeasure] = DataMeasure.list_fundamentals()) -> pd.DataFrame: """ Retrieve fundamentals data for a basket across a date range :param start: start date (default minimum date value) :param end: end date (default is today) :param period: period for the relevant metric (default is 1y) :param direction: direction of the outlook period (default is forward) :param metrics: list of fundamentals metrics (default is all) :return: dataframe with fundamentals information **Usage** Retrieve fundamentals data for a basket across a date range **Examples** Retrieve historical dividend yield data for a basket >>> from gs_quant.data.fields import DataMeasure >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_fundamentals(metrics=[DataMeasure.DIVIDEND_YIELD]) **See also** :func:`get_corporate_actions` """ where = dict(assetId=self.id, period=period, periodDirection=direction, metric=metrics) query = DataQuery(where=where, start_date=start, end_date=end) response = GsDataApi.query_data(query=query, dataset_id=IndicesDatasets.BASKET_FUNDAMENTALS.value) return pd.DataFrame(response) @_validate(ErrorMessage.UNINITIALIZED) def get_live_date(self) -> Optional[dt.date]: """ Retrieve basket's live date **Usage** Retrieve basket's live date **Examples** >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_live_date() """ return self.__live_date def get_type(self) -> Optional[SecAssetType]: """ Retrieve basket type **Usage** Retrieve basket type **Examples** >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_type() """ if self.__gs_asset_type: return SecAssetType[self.__gs_asset_type.name.upper()] @_validate(ErrorMessage.UNINITIALIZED) def get_url(self) -> str: """ Retrieve url to basket's product page in Marquee **Usage** Retrieve url to basket's product page in Marquee **Examples** >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_url() """ env = '-dev' if 'dev' in get(GsSession, 'current.domain', '') else '' env = '-qa' if 'qa' in get(GsSession, 'current.domain', '') else env return f'https://marquee{env}.gs.com/s/products/{self.id}/summary' @_validate(ErrorMessage.UNINITIALIZED, ErrorMessage.NON_ADMIN) def add_factor_risk_report(self, risk_model_id: str, fx_hedged: bool): """ Create and schedule a new factor risk report for your basket :param risk_model_id: risk model identifier :param fx_hedged: Assume basket is FX hedged **Usage** Create and schedule a new factor risk report for your basket **Examples** >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.add_factor_risk_report('AXUS4M', True) **See also** :func:`delete_factor_risk_report` """ payload = CustomBasketRiskParams(risk_model=risk_model_id, fx_hedged=fx_hedged) return GsIndexApi.update_risk_reports(payload) @_validate(ErrorMessage.UNINITIALIZED, ErrorMessage.NON_ADMIN) def delete_factor_risk_report(self, risk_model_id: str): """ Delete an existing factor risk report for your basket :param risk_model_id: risk model identifier for the report you'd like to delete **Usage** Delete an existing factor risk report for your basket **Examples** >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.delete_factor_risk_report('AXUS4M') **See also** :func:`add_factor_risk_report` """ payload = CustomBasketRiskParams(risk_model=risk_model_id, delete=True) return GsIndexApi.update_risk_reports(payload) @property def allow_ca_restricted_assets(self) -> Optional[bool]: """ Allow basket to have constituents that will not be corporate action adjusted in the future """ return self.__allow_ca_restricted_assets @allow_ca_restricted_assets.setter @_validate(ErrorMessage.NON_ADMIN) def allow_ca_restricted_assets(self, value: bool): self.__allow_ca_restricted_assets = value @property def allow_limited_access_assets(self) -> Optional[bool]: """ Allow basket to have constituents that GS has limited access to """ return self.__allow_limited_access_assets @allow_limited_access_assets.setter @_validate(ErrorMessage.NON_ADMIN) def allow_limited_access_assets(self, value: bool): self.__allow_limited_access_assets = value @property def clone_parent_id(self) -> Optional[str]: """ Marquee Id of the source basket, in case basket composition is sourced from another marquee basket """ return self.__clone_parent_id @property def currency(self) -> Optional[IndicesCurrency]: """ Denomination of the basket """ return self.__currency @currency.setter @_validate(ErrorMessage.UNMODIFIABLE) def currency(self, value: IndicesCurrency): self.__currency = value @property def default_backcast(self) -> Optional[bool]: """ If basket should be backcasted using the current composition """ return self.__default_backcast @default_backcast.setter @_validate(ErrorMessage.UNMODIFIABLE) def default_backcast(self, value: bool): self.__default_backcast = value @property def description(self) -> Optional[str]: """ Free text description of basket """ return self.__description @description.setter @_validate(ErrorMessage.NON_ADMIN) def description(self, value: str): self.__description = value @property @_validate() def divisor(self) -> Optional[float]: """ Divisor to be applied to the overall position set """ return self.__divisor @divisor.setter @_validate(ErrorMessage.NON_ADMIN) def divisor(self, value: float): self.__initial_price = None self.__divisor = value @property @_validate() def entitlements(self) -> Optional[BasketEntitlements]: """ Basket entitlements """ return self.__entitlements @entitlements.setter @_validate(ErrorMessage.NON_ADMIN) def entitlements(self, value: BasketEntitlements): self.__entitlements = value @property @_validate(ErrorMessage.NON_INTERNAL) def flagship(self) -> Optional[bool]: """ If the basket is flagship (internal only) """ return self.__flagship @flagship.setter @_validate(ErrorMessage.NON_INTERNAL) def flagship(self, value: bool): self.__flagship = value @property def hedge_id(self) -> Optional[str]: """ Marquee Id of the source hedge, in case current basket composition is sourced from marquee hedge """ return self.__hedge_id @property def include_price_history(self) -> Optional[bool]: """ Include full price history when publishing to Bloomberg """ return self.__include_price_history @include_price_history.setter @_validate(ErrorMessage.NON_ADMIN) def include_price_history(self, value: bool): self.__include_price_history = value @property @_validate() def initial_price(self) -> Optional[float]: """ Initial price the basket it should start ticking at """ return self.__initial_price @initial_price.setter @_validate(ErrorMessage.NON_ADMIN) def initial_price(self, value: float): self.__divisor = None self.__initial_price = value @property def name(self) -> Optional[str]: """ Display name of the basket (must be <= 24 characters)""" return self.__name @name.setter @_validate(ErrorMessage.NON_ADMIN) def name(self, value: str): if len(value) > 24: raise MqValueError(f'Basket name of {len(value)} characters is too long (must be <= 24 characters).') self.__name = value @property def parent_basket(self) -> Optional[str]: """ Ticker of the source basket, in case current basket composition is sourced from another marquee basket """ if has(self, '__clone_parent_id') and not has(self, '__parent_basket'): self.__parent_basket = get(GsAssetApi.get_asset(self.__clone_parent_id), 'id') return self.__parent_basket @parent_basket.setter @_validate(ErrorMessage.UNMODIFIABLE) def parent_basket(self, value: str): self.__clone_parent_id = get(__get_gs_asset(value), 'id') self.__parent_basket = value @property @_validate() def position_set(self) -> Optional[PositionSet]: """ Information of constituents associated with the basket """ return self.__position_set @position_set.setter @_validate(ErrorMessage.NON_ADMIN) def position_set(self, value: PositionSet): self.__position_set = value @property @_validate() def publish_to_bloomberg(self) -> Optional[bool]: """ If the basket should be published to Bloomberg """ return self.__publish_to_bloomberg @publish_to_bloomberg.setter @_validate(ErrorMessage.NON_ADMIN) def publish_to_bloomberg(self, value: bool): self.__publish_to_bloomberg = value @property @_validate() def publish_to_factset(self) -> Optional[bool]: """ If the basket should be published to Factset """ return self.__publish_to_factset @publish_to_factset.setter @_validate(ErrorMessage.NON_ADMIN) def publish_to_factset(self, value: bool): self.__publish_to_factset = value @property def publish_to_reuters(self) -> Optional[bool]: """ If the basket should be published to Reuters """ return self.__publish_to_reuters @publish_to_reuters.setter @_validate(ErrorMessage.NON_ADMIN) def publish_to_reuters(self, value: bool): self.__publish_to_reuters = value @property def return_type(self) -> Optional[ReturnType]: """ Determines the index calculation methodology with respect to dividend reinvestment """ return self.__return_type @return_type.setter @_validate(ErrorMessage.NON_ADMIN) def return_type(self, value: ReturnType): self.__return_type = value @property def reweight(self) -> Optional[bool]: """ To reweight positions if input weights don't add up to 1 """ return self.__reweight @reweight.setter @_validate(ErrorMessage.NON_ADMIN) def reweight(self, value: bool): self.__reweight = value @property def target_notional(self) -> Optional[float]: """ Target notional for the position set """ return self.__target_notional @target_notional.setter @_validate(ErrorMessage.NON_ADMIN) def target_notional(self, value: float): self.__target_notional = value @property def ticker(self) -> Optional[str]: """ Associated 8-character basket identifier """ return self.__ticker @ticker.setter @_validate(ErrorMessage.UNMODIFIABLE) def ticker(self, value: str): self.__validate_ticker(value) self.__ticker = value @property def weighting_strategy(self) -> Optional[WeightingStrategy]: """ Strategy used to price the position set """ return self.__weighting_strategy @weighting_strategy.setter @_validate(ErrorMessage.NON_ADMIN) def weighting_strategy(self, value: WeightingStrategy): self.__weighting_strategy = value def __edit_and_rebalance(self, edit_inputs: CustomBasketsEditInputs, rebal_inputs: CustomBasketsRebalanceInputs) -> CustomBasketsResponse: """ If updates require edit and rebalance, rebal will not be scheduled until/if edit report succeeds """ _logger.info('Current update request requires multiple reports. Your rebalance request will be submitted \ once the edit report has completed. Submitting basket edits now...') response = GsIndexApi.edit(self.id, edit_inputs) report_id = response.report_id self.__latest_create_report = GsReportApi.get_report(response.report_id) report_status = self.poll_report(report_id, timeout=600, step=15) if report_status != ReportStatus.done: raise MqError(f'The basket edit report\'s status is {status}. The current rebalance request will \ not be submitted in the meantime.') _logger.info('Your basket edits have completed successfuly. Submitting rebalance request now...') response = GsIndexApi.rebalance(self.id, rebal_inputs) return response def __finish_initialization(self): """ Fetches remaining data not retrieved during basket initialization """ if has(self, 'id'): if not has(self, '__initial_positions'): position_set = GsAssetApi.get_latest_positions(self.id, PositionType.ANY) position_set = PositionSet.from_target(position_set) self.__position_set = position_set self.__divisor = get(position_set, 'divisor') self.__initial_positions = set(deepcopy(self.__position_set.positions)) set_(self.__initial_state, 'divisor', self.__divisor) set_(self.__initial_state, 'position_set', self.__position_set) if not has(self.__initial_state, 'initial_price'): initial_price = GsIndexApi.initial_price(self.id, dt.date.today()) self.__initial_price = get(initial_price, 'price') set_(self.__initial_state, 'initial_price', self.__initial_price) if not has(self.__initial_state, 'publish_to_bloomberg'): report = get(self, '__latest_create_report', self.__get_latest_create_report()) self.__publish_to_bloomberg = get(report, 'parameters.publish_to_bloomberg') self.__publish_to_factset = get(report, 'parameters.publish_to_factset') self.__publish_to_reuters
"""Supporting functions for the 'fix' command.""" import logging import numpy as np import pandas as pd from . import descriptives, params, smoothing def do_fix(target_raw, antitarget_raw, reference, do_gc=True, do_edge=True, do_rmask=True, do_cluster=False): """Combine target and antitarget coverages and correct for biases.""" # Load, recenter and GC-correct target & antitarget probes separately logging.info("Processing target: %s", target_raw.sample_id) cnarr, ref_matched = load_adjust_coverages(target_raw, reference, True, do_gc, do_edge, False) logging.info("Processing antitarget: %s", antitarget_raw.sample_id) anti_cnarr, ref_anti = load_adjust_coverages(antitarget_raw, reference, False, do_gc, False, do_rmask) if len(anti_cnarr): # Combine target and antitarget bins cnarr.add(anti_cnarr) ref_matched.add(ref_anti) # Find reference clusters, if requested log2_key = 'log2' spread_key = 'spread' if do_cluster: ref_log2_cols = [col for col in ref_matched.data.columns if col == "log2" or col.startswith("log2")] if len(ref_log2_cols) == 1: logging.info("Reference does not contain any sub-clusters; " "using %s", log2_key) else: # Get correlations between test sample and each reference cluster corr_coefs = np.array([cnarr.log2.corr(ref_matched[ref_col]) for ref_col in ref_log2_cols]) ordered = [(k, r) for r, k in sorted(zip(corr_coefs, ref_log2_cols), reverse=True)] logging.info("Correlations with each cluster:\n\t%s", "\n\t".join(["{}\t: {}".format(k, r) for k, r in ordered])) log2_key = ordered[0][0] if log2_key.startswith('log2_'): suffix = log2_key.split('_', 1)[1] spread_key = 'spread_' + suffix logging.info(" -> Choosing columns %r and %r", log2_key, spread_key) # Normalize coverages according to the reference # (Subtract the reference log2 copy number to get the log2 ratio) cnarr.data['log2'] -= ref_matched[log2_key] cnarr = apply_weights(cnarr, ref_matched, log2_key, spread_key) cnarr.center_all(skip_low=True) return cnarr def load_adjust_coverages(cnarr, ref_cnarr, skip_low, fix_gc, fix_edge, fix_rmask): """Load and filter probe coverages; correct using reference and GC.""" if 'gc' in cnarr: # Don't choke on Picard-derived files that have the GC column cnarr = cnarr.keep_columns(cnarr._required_columns + ('depth',)) # No corrections needed if there are no data rows (e.g. no antitargets) if not len(cnarr): return cnarr, ref_cnarr[:0] ref_matched = match_ref_to_sample(ref_cnarr, cnarr) # Drop bins that had poor coverage in the pooled reference ok_cvg_indices = ~mask_bad_bins(ref_matched) logging.info("Keeping %d of %d bins", sum(ok_cvg_indices), len(ref_matched)) cnarr = cnarr[ok_cvg_indices] ref_matched = ref_matched[ok_cvg_indices] # Apply corrections for known systematic biases in coverage cnarr.center_all(skip_low=skip_low) # Skip bias corrections if most bins have no coverage (e.g. user error) if (cnarr['log2'] > params.NULL_LOG2_COVERAGE - params.MIN_REF_COVERAGE ).sum() <= len(cnarr) // 2: logging.warning("WARNING: most bins have no or very low coverage; " "check that the right BED file was used") else: cnarr_index_reset = False if fix_gc: if 'gc' in ref_matched: logging.info("Correcting for GC bias...") cnarr = center_by_window(cnarr, .1, ref_matched['gc']) cnarr_index_reset = True else: logging.warning("WARNING: Skipping correction for GC bias") if fix_edge: logging.info("Correcting for density bias...") edge_bias = get_edge_bias(cnarr, params.INSERT_SIZE) cnarr = center_by_window(cnarr, .1, edge_bias) cnarr_index_reset = True if fix_rmask: if 'rmask' in ref_matched: logging.info("Correcting for RepeatMasker bias...") cnarr = center_by_window(cnarr, .1, ref_matched['rmask']) cnarr_index_reset = True else: logging.warning("WARNING: Skipping correction for " "RepeatMasker bias") if cnarr_index_reset: ref_matched.data.reset_index(drop=True, inplace=True) return cnarr, ref_matched def mask_bad_bins(cnarr): """Flag the bins with excessively low or inconsistent coverage. Returns ------- np.array A boolean array where True indicates bins that failed the checks. """ mask = ((cnarr['log2'] < params.MIN_REF_COVERAGE) | (cnarr['log2'] > -params.MIN_REF_COVERAGE) | (cnarr['spread'] > params.MAX_REF_SPREAD)) if 'depth' in cnarr: mask |= cnarr['depth'] == 0 if 'gc' in cnarr: mask |= (cnarr['gc'] > .7) | (cnarr['gc'] < .3) return mask def match_ref_to_sample(ref_cnarr, samp_cnarr): """Filter the reference bins to match the sample (target or antitarget).""" # Assign each bin a unique string ID based on genomic coordinates samp_labeled = samp_cnarr.data.set_index(pd.Index(samp_cnarr.coords())) ref_labeled = ref_cnarr.data.set_index(pd.Index(ref_cnarr.coords())) for dset, name in ((samp_labeled, "sample"), (ref_labeled, "reference")): dupes = dset.index.duplicated() if dupes.any(): raise ValueError(("Duplicated genomic coordinates in {} set. Total duplicated regions: {}, starting with:\n" "{}.").format(name, len(dset.index[dupes]), "\n".join(map(str, dset.index[dupes][:10])))) # Take the reference bins with IDs identical to those in the sample ref_matched = ref_labeled.reindex(index=samp_labeled.index) # Check for signs that the wrong reference was used num_missing = pd.isnull(ref_matched.start).sum() if num_missing > 0: raise ValueError("Reference is missing %d bins found in %s" % (num_missing, samp_cnarr.sample_id)) x = ref_cnarr.as_dataframe(ref_matched.reset_index(drop=True) .set_index(samp_cnarr.data.index)) return x def center_by_window(cnarr, fraction, sort_key): """Smooth out biases according to the trait specified by sort_key. E.g. correct GC-biased bins by windowed averaging across similar-GC bins; or for similar interval sizes. """ # Separate neighboring bins that could have the same key # (to avoid re-centering actual CNV regions -- only want an independently # sampled subset of presumably overall-CN-neutral bins) df = cnarr.data.reset_index(drop=True) np.random.seed(0xA5EED) shuffle_order = np.random.permutation(df.index) #df = df.reindex(shuffle_order) df = df.iloc[shuffle_order] # Apply the same shuffling to the key array as to the target probe set if isinstance(sort_key, pd.Series): # XXX why sort_key = sort_key.values sort_key = sort_key[shuffle_order] # Sort the data according to the specified parameter order = np.argsort(sort_key, kind='mergesort') df = df.iloc[order] biases = smoothing.rolling_median(df['log2'], fraction) # biases = smoothing.savgol(df['log2'], fraction) df['log2'] -= biases fixarr = cnarr.as_dataframe(df) fixarr.sort() return fixarr def get_edge_bias(cnarr, margin): """Quantify the "edge effect" of the target tile and its neighbors. The result is proportional to the change in the target's coverage due to these edge effects, i.e. the expected loss of coverage near the target edges and, if there are close neighboring tiles, gain of coverage due to "spill over" reads from the neighbor tiles. (This is not the actual change in coverage. This is just a tribute.) """ output_by_chrom = [] for _chrom, subarr in cnarr.by_chromosome(): tile_starts = subarr['start'].values tile_ends = subarr['end'].values tgt_sizes = tile_ends - tile_starts # Calculate coverage loss at (both edges of) each tile losses = edge_losses(tgt_sizes, margin) # Find tiled intervals within a margin (+/- bp) of the given probe # (excluding the probe itself), then calculate the relative coverage # "gain" due to the neighbors, if any gap_sizes = tile_starts[1:] - tile_ends[:-1] ok_gaps_mask = (gap_sizes < margin) ok_gaps = gap_sizes[ok_gaps_mask] left_gains = edge_gains(tgt_sizes[1:][ok_gaps_mask], ok_gaps, margin) right_gains = edge_gains(tgt_sizes[:-1][ok_gaps_mask], ok_gaps, margin) gains = np.zeros(len(subarr)) gains[np.concatenate([[False], ok_gaps_mask])] += left_gains gains[np.concatenate([ok_gaps_mask, [False]])] += right_gains output_by_chrom.append(gains - losses) return pd.Series(np.concatenate(output_by_chrom), index=cnarr.data.index) def edge_losses(target_sizes, insert_size): """Calculate coverage losses at the edges of baited regions. Letting i = insert size and t = target size, the proportional loss of coverage near the two edges of the baited region (combined) is: .. math :: i/2t If the "shoulders" extend outside the bait $(t < i), reduce by: .. math :: (i-t)^2 / 4it on each side, or (i-t)^2 / 2it total. """ losses = insert_size / (2 * target_sizes) # Drop the shoulder part that would extend past the bait small_mask = (target_sizes < insert_size) t_small = target_sizes[small_mask] losses[small_mask] -= ((insert_size - t_small)**2 / (2 * insert_size * t_small)) return losses def edge_gains(target_sizes, gap_sizes, insert_size): """Calculate coverage gain from neighboring baits' flanking reads. Letting i = insert size, t = target size, g = gap to neighboring bait, the gain of coverage due to a nearby bait, if g < i, is:: .. math :: (i-g)^2 / 4it If the neighbor flank extends beyond the target (t+g < i), reduce by:: .. math :: (i-t-g)^2 / 4it If a neighbor overlaps the target, treat it as adjacent (gap size 0). """ if not (gap_sizes <= insert_size).all(): raise ValueError("Gaps greater than insert size:\n" + gap_sizes[gap_sizes > insert_size].head()) gap_sizes = np.maximum(0, gap_sizes) gains = ((insert_size - gap_sizes)**2 / (4 * insert_size * target_sizes)) # Drop the flank part that extends past this baited region past_other_side_mask = (target_sizes + gap_sizes < insert_size) g_past = gap_sizes[past_other_side_mask] t_past = target_sizes[past_other_side_mask] gains[past_other_side_mask] -= ((insert_size - t_past - g_past)**2 / (4 * insert_size * t_past)) return gains def apply_weights(cnarr, ref_matched, log2_key, spread_key, epsilon=1e-4): """Calculate weights for each bin. Bin weight is an estimate of (1 - variance) and within the range ``(0, 1]``. Weights are derived from: - Each bin's size - Sample's genome-wide average (on/off-target) coverage depth - Sample's genome-wide observed (on/off-target) bin variances And with a pooled reference: - Each bin's coverage depth in the reference - The "spread" column of the reference (approx. stdev) These estimates of variance assume the number of aligned reads per bin follows a Poisson distribution, approximately log-normal. Parameters ---------- cnarr : CopyNumArray Sample bins. ref_match : CopyNumArray Reference bins. log2_key : string The 'log2' column name in the reference to
import time import logging import json import copy import math import base64 import grpc from grpc._cython import cygrpc from ..grpc_gen import milvus_pb2_grpc from ..grpc_gen import milvus_pb2 as milvus_types from ..grpc_gen import common_pb2 from .abstract import CollectionSchema, ChunkedQueryResult, MutationResult from .check import ( is_legal_host, is_legal_port, check_pass_param, is_legal_index_metric_type, is_legal_binary_index_metric_type, ) from .prepare import Prepare from .types import ( Status, ErrorCode, IndexState, DataType, CompactionState, State, CompactionPlans, Plan, get_consistency_level, Replica, Shard, Group, BulkLoadState, ) from .utils import ( valid_index_types, valid_binary_index_types, valid_index_params_keys, check_invalid_binary_vector, len_of ) from ..settings import DefaultConfig as config from .configs import DefaultConfigs from . import ts_utils from . import interceptor from .asynch import ( SearchFuture, MutationFuture, CreateIndexFuture, CreateFlatIndexFuture, FlushFuture, LoadPartitionsFuture, ChunkedSearchFuture ) from ..exceptions import ( ParamError, CollectionNotExistException, DescribeCollectionException, MilvusException, ) from ..decorators import retry_on_rpc_failure, error_handler LOGGER = logging.getLogger(__name__) class GrpcHandler: def __init__(self, uri=config.GRPC_ADDRESS, host=None, port=None, channel=None, **kwargs): self._stub = None self._channel = channel if host is not None and port is not None \ and is_legal_host(host) and is_legal_port(port): self._uri = f"{host}:{port}" else: self._uri = uri self._max_retry = kwargs.get("max_retry", 5) self._secure = kwargs.get("secure", False) self._client_pem_path = kwargs.get("client_pem_path", "") self._client_key_path = kwargs.get("client_key_path", "") self._ca_pem_path = kwargs.get("ca_pem_path", "") self._server_name = kwargs.get("server_name", "") self._authorization_interceptor = None self._setup_authorization_interceptor(kwargs.get("user", None), kwargs.get("password", None)) self._setup_grpc_channel() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass def _wait_for_channel_ready(self): if self._channel is not None: try: grpc.channel_ready_future(self._channel).result(timeout=3) return except grpc.FutureTimeoutError: raise MilvusException(Status.CONNECT_FAILED, f'Fail connecting to server on {self._uri}. Timeout') raise MilvusException(Status.CONNECT_FAILED, 'No channel in handler, please setup grpc channel first') def close(self): self._channel.close() def _setup_authorization_interceptor(self, user, password): if user and password: authorization = base64.b64encode(f"{user}:{password}".encode('utf-8')) key = "authorization" self._authorization_interceptor = interceptor.header_adder_interceptor(key, authorization) def _setup_grpc_channel(self): """ Create a ddl grpc channel """ if self._channel is None: if not self._secure: self._channel = grpc.insecure_channel( self._uri, options=[(cygrpc.ChannelArgKey.max_send_message_length, -1), (cygrpc.ChannelArgKey.max_receive_message_length, -1), ('grpc.enable_retries', 1), ('grpc.keepalive_time_ms', 55000)] ) else: opts = [(cygrpc.ChannelArgKey.max_send_message_length, -1), (cygrpc.ChannelArgKey.max_receive_message_length, -1), ('grpc.enable_retries', 1), ('grpc.keepalive_time_ms', 55000)] if self._client_pem_path != "" and self._client_key_path != "" and self._ca_pem_path != "" \ and self._server_name != "": opts.append(('grpc.ssl_target_name_override', self._server_name, ),) with open(self._client_pem_path, 'rb') as f: certificate_chain = f.read() with open(self._client_key_path, 'rb') as f: private_key = f.read() with open(self._ca_pem_path, 'rb') as f: root_certificates = f.read() creds = grpc.ssl_channel_credentials(root_certificates, private_key, certificate_chain) else: creds = grpc.ssl_channel_credentials(root_certificates=None, private_key=None, certificate_chain=None) self._channel = grpc.secure_channel( self._uri, creds, options=opts ) # avoid to add duplicate headers. self._final_channel = self._channel if self._authorization_interceptor: self._final_channel = grpc.intercept_channel(self._channel, self._authorization_interceptor) self._stub = milvus_pb2_grpc.MilvusServiceStub(self._final_channel) @property def server_address(self): """ Server network address """ return self._uri def reset_password(self, user, old_password, new_password): """ reset password and then setup the grpc channel. """ self.update_credential(user, old_password, new_password) self._setup_authorization_interceptor(user, new_password) self._setup_grpc_channel() @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def create_collection(self, collection_name, fields, shards_num=2, timeout=None, **kwargs): request = Prepare.create_collection_request(collection_name, fields, shards_num=shards_num, **kwargs) # TODO(wxyu): In grpcio==1.37.1, `wait_for_ready` is an EXPERIMENTAL argument, while it's not supported in # grpcio-testing==1.37.1 . So that we remove the argument in order to using grpc-testing in unittests. # rf = self._stub.CreateCollection.future(request, wait_for_ready=True, timeout=timeout) rf = self._stub.CreateCollection.future(request, timeout=timeout) if kwargs.get("_async", False): return rf status = rf.result() if status.error_code != 0: LOGGER.error(status) raise MilvusException(status.error_code, status.reason) @retry_on_rpc_failure(retry_times=10, wait=1, retry_on_deadline=False) @error_handler def drop_collection(self, collection_name, timeout=None): check_pass_param(collection_name=collection_name) request = Prepare.drop_collection_request(collection_name) rf = self._stub.DropCollection.future(request, wait_for_ready=True, timeout=timeout) status = rf.result() if status.error_code != 0: raise MilvusException(status.error_code, status.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def has_collection(self, collection_name, timeout=None, **kwargs): check_pass_param(collection_name=collection_name) request = Prepare.has_collection_request(collection_name) rf = self._stub.HasCollection.future(request, timeout=timeout) reply = rf.result() if reply.status.error_code == common_pb2.Success: return reply.value raise MilvusException(reply.status.error_code, reply.status.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def describe_collection(self, collection_name, timeout=None, **kwargs): check_pass_param(collection_name=collection_name) request = Prepare.describe_collection_request(collection_name) rf = self._stub.DescribeCollection.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() status = response.status if status.error_code == 0: return CollectionSchema(raw=response).dict() raise DescribeCollectionException(status.error_code, status.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def list_collections(self, timeout=None): request = Prepare.show_collections_request() rf = self._stub.ShowCollections.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() status = response.status if response.status.error_code == 0: return list(response.collection_names) raise MilvusException(status.error_code, status.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def create_partition(self, collection_name, partition_name, timeout=None): check_pass_param(collection_name=collection_name, partition_name=partition_name) request = Prepare.create_partition_request(collection_name, partition_name) rf = self._stub.CreatePartition.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() if response.error_code != 0: raise MilvusException(response.error_code, response.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def drop_partition(self, collection_name, partition_name, timeout=None): check_pass_param(collection_name=collection_name, partition_name=partition_name) request = Prepare.drop_partition_request(collection_name, partition_name) rf = self._stub.DropPartition.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() if response.error_code != 0: raise MilvusException(response.error_code, response.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def has_partition(self, collection_name, partition_name, timeout=None): check_pass_param(collection_name=collection_name, partition_name=partition_name) request = Prepare.has_partition_request(collection_name, partition_name) rf = self._stub.HasPartition.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() status = response.status if status.error_code == 0: return response.value raise MilvusException(status.error_code, status.reason) # TODO: this is not inuse @error_handler def get_partition_info(self, collection_name, partition_name, timeout=None): request = Prepare.partition_stats_request(collection_name, partition_name) rf = self._stub.DescribePartition.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() status = response.status if status.error_code == 0: statistics = response.statistics info_dict = dict() for kv in statistics: info_dict[kv.key] = kv.value return info_dict raise MilvusException(status.error_code, status.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def list_partitions(self, collection_name, timeout=None): check_pass_param(collection_name=collection_name) request = Prepare.show_partitions_request(collection_name) rf = self._stub.ShowPartitions.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() status = response.status if status.error_code == 0: return list(response.partition_names) raise MilvusException(status.error_code, status.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def get_partition_stats(self, collection_name, partition_name, timeout=None, **kwargs): check_pass_param(collection_name=collection_name) index_param = Prepare.get_partition_stats_request(collection_name, partition_name) future = self._stub.GetPartitionStatistics.future(index_param, wait_for_ready=True, timeout=timeout) response = future.result() status = response.status if status.error_code == 0: return response.stats raise MilvusException(status.error_code, status.reason) def _prepare_bulk_insert_request(self, collection_name, entities, partition_name=None, timeout=None, **kwargs): insert_param = kwargs.get('insert_param', None) if insert_param and not isinstance(insert_param, milvus_types.RowBatch): raise ParamError("The value of key 'insert_param' is invalid") if not isinstance(entities, list): raise ParamError("None entities, please provide valid entities.") collection_schema = self.describe_collection(collection_name, timeout=timeout, **kwargs) fields_info = collection_schema["fields"] request = insert_param if insert_param \ else Prepare.bulk_insert_param(collection_name, entities, partition_name, fields_info) return request @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def bulk_insert(self, collection_name, entities, partition_name=None, timeout=None, **kwargs): if not check_invalid_binary_vector(entities): raise ParamError("Invalid binary vector data exists") try: request = self._prepare_bulk_insert_request(collection_name, entities, partition_name, timeout, **kwargs) rf = self._stub.Insert.future(request, wait_for_ready=True, timeout=timeout) if kwargs.get("_async", False) is True: cb = kwargs.get("_callback", None) f = MutationFuture(rf, cb, timeout=timeout, **kwargs) f.add_callback(ts_utils.update_ts_on_mutation(collection_name)) return f response = rf.result() if response.status.error_code == 0: m = MutationResult(response) ts_utils.update_collection_ts(collection_name, m.timestamp) return m raise MilvusException(response.status.error_code, response.status.reason) except Exception as err: if kwargs.get("_async", False): return MutationFuture(None, None, err) raise err @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def delete(self, collection_name, expression, partition_name=None, timeout=None, **kwargs): check_pass_param(collection_name=collection_name) try: req = Prepare.delete_request(collection_name, partition_name, expression) future = self._stub.Delete.future(req, wait_for_ready=True, timeout=timeout) response = future.result() if response.status.error_code == 0: m = MutationResult(response) ts_utils.update_collection_ts(collection_name, m.timestamp) return m raise MilvusException(response.status.error_code, response.status.reason) except Exception as err: if kwargs.get("_async", False): return MutationFuture(None, None, err) raise err @error_handler def _execute_search_requests(self, requests, timeout=None, **kwargs): auto_id = kwargs.get("auto_id", True) try: raws = [] futures = [] # step 1: get future object for request in requests: ft = self._stub.Search.future(request, wait_for_ready=True, timeout=timeout) futures.append(ft) if kwargs.get("_async", False): func = kwargs.get("_callback", None) return ChunkedSearchFuture(futures, func, auto_id) # step2: get results for ft in futures: response = ft.result() if response.status.error_code != 0: raise MilvusException(response.status.error_code, response.status.reason) raws.append(response) round_decimal = kwargs.get("round_decimal", -1) return ChunkedQueryResult(raws, auto_id, round_decimal) except Exception as pre_err: if kwargs.get("_async", False): return SearchFuture(None, None, True, pre_err) raise pre_err @retry_on_rpc_failure(retry_times=10, wait=1, retry_on_deadline=False) @error_handler def search(self, collection_name, data, anns_field, param, limit, expression=None, partition_names=None, output_fields=None, round_decimal=-1, timeout=None, **kwargs): check_pass_param( limit=limit, round_decimal=round_decimal, anns_field=anns_field, search_data=data, partition_name_array=partition_names, output_fields=output_fields, travel_timestamp=kwargs.get("travel_timestamp", 0), guarantee_timestamp=kwargs.get("guarantee_timestamp", 0) ) if not self.has_collection(collection_name, timeout): raise CollectionNotExistException(ErrorCode.CollectionNotExists, f"collection {collection_name} doesn't exist!") _kwargs = copy.deepcopy(kwargs) collection_schema = self.describe_collection(collection_name, timeout) auto_id = collection_schema["auto_id"] consistency_level = collection_schema["consistency_level"] # overwrite the consistency level defined when user created the collection consistency_level = get_consistency_level(_kwargs.get("consistency_level", consistency_level)) _kwargs["schema"] = collection_schema ts_utils.construct_guarantee_ts(consistency_level, collection_name, _kwargs) requests = Prepare.search_requests_with_expr(collection_name, data, anns_field, param, limit, expression, partition_names, output_fields, round_decimal, **_kwargs) _kwargs.pop("schema") _kwargs["auto_id"] = auto_id _kwargs["round_decimal"] = round_decimal return self._execute_search_requests(requests, timeout, **_kwargs) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def get_query_segment_info(self, collection_name, timeout=30, **kwargs): req = Prepare.get_query_segment_info_request(collection_name) future = self._stub.GetQuerySegmentInfo.future(req, wait_for_ready=True, timeout=timeout) response = future.result() status = response.status if status.error_code == 0: return response.infos # todo: A wrapper class of QuerySegmentInfo raise MilvusException(status.error_code, status.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def create_alias(self, collection_name, alias, timeout=None, **kwargs): check_pass_param(collection_name=collection_name) request = Prepare.create_alias_request(collection_name, alias) rf = self._stub.CreateAlias.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() if response.error_code != 0: raise MilvusException(response.error_code, response.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def drop_alias(self, alias, timeout=None, **kwargs): request = Prepare.drop_alias_request(alias) rf = self._stub.DropAlias.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() if response.error_code != 0: raise MilvusException(response.error_code, response.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def alter_alias(self, collection_name, alias, timeout=None, **kwargs): check_pass_param(collection_name=collection_name) request = Prepare.alter_alias_request(collection_name, alias) rf = self._stub.AlterAlias.future(request, wait_for_ready=True, timeout=timeout) response = rf.result() if response.error_code != 0: raise MilvusException(response.error_code, response.reason) @retry_on_rpc_failure(retry_times=10, wait=1) @error_handler def create_index(self, collection_name, field_name, params, timeout=None, **kwargs): # for historical
<reponame>dbmi-bgm/cgap-portal import json import mock import pytest import webtest from datetime import datetime, timedelta from dcicutils.misc_utils import Retry, ignored from dcicutils.qa_utils import notice_pytest_fixtures, local_attrs from pyramid.httpexceptions import HTTPBadRequest from snovault import TYPES, COLLECTIONS from snovault.elasticsearch import create_mapping from snovault.elasticsearch.indexer_utils import get_namespaced_index from snovault.schema_utils import load_schema from snovault.util import add_default_embeds from webtest import AppError from ..search.lucene_builder import LuceneBuilder from ..search.search_utils import find_nested_path pytestmark = [pytest.mark.working, pytest.mark.schema, pytest.mark.search, pytest.mark.workbook] ### IMPORTANT # uses the inserts in ./data/workbook_inserts # design your tests accordingly # just a little helper function def recursively_find_uuids(json, uuids): for key, val in json.items(): if key == 'uuid': uuids.add(val) elif isinstance(val, list): for item in val: if isinstance(item, dict): uuids = recursively_find_uuids(item, uuids) elif isinstance(val, dict): uuids = recursively_find_uuids(val, uuids) return uuids def test_search_view(workbook, es_testapp): """ Test basic things about search view """ notice_pytest_fixtures(workbook) res = es_testapp.get('/search/?type=Item').json assert res['@type'] == ['ItemSearchResults', 'Search'] assert res['@id'] == '/search/?type=Item' assert res['@context'] == '/terms/' assert res['notification'] == 'Success' assert res['title'] == 'Search' assert res['total'] > 0 assert 'facets' in res # type facet should always have > 1 option here, even when it is selected for facet in res['facets']: if facet['field'] == 'type': assert len(facet['terms']) > 1 break assert 'filters' in res assert '@graph' in res def test_search_with_no_query(workbook, es_testapp): """ using /search/ (with no query) should default to /search/?type=Item thus, should satisfy same assertions as test_search_view """ notice_pytest_fixtures(workbook) res = es_testapp.get('/search/').follow(status=200) assert res.json['@type'] == ['ItemSearchResults', 'Search'] assert res.json['@id'] == '/search/?type=Item' assert res.json['@context'] == '/terms/' assert res.json['notification'] == 'Success' assert res.json['title'] == 'Search' assert res.json['total'] > 0 assert 'facets' in res # test default facets (data type) default_facets = [facet['field'] for facet in res.json['facets']] assert 'type' in default_facets # assert 'status' in default_facets uncomment this if status is added back -Will 5/13/2020 assert 'filters' in res assert '@graph' in res def test_collections_redirect_to_search(workbook, es_testapp): """ we removed the collections page and redirect to search of that type redirected_from is not used for search """ res = es_testapp.get('/user/', status=301).follow(status=200) assert res.json['@type'] == ['UserSearchResults', 'ItemSearchResults', 'Search'] assert res.json['@id'] == '/search/?type=User' assert 'redirected_from' not in res.json['@id'] assert res.json['@context'] == '/terms/' assert res.json['notification'] == 'Success' assert res.json['title'] == 'Search' assert res.json['total'] > 0 assert 'facets' in res assert 'filters' in res assert '@graph' in res def test_search_with_embedding(workbook, es_testapp): """ Searches for a family and checks members.*, an embedded field, is properly resolved """ res = es_testapp.get('/search/?type=Family&limit=all').json embed = res['@graph'][0]['members'] assert embed[0]['father']['display_title'] == 'GAPID3PW26SK' # all are same so order does not matter assert embed[0]['mother']['display_title'] == 'GAPIDISC7R73' assert embed[1]['father']['display_title'] == 'GAPID3PW26SK' assert embed[1]['mother']['display_title'] == 'GAPIDISC7R73' def test_search_with_simple_query(workbook, es_testapp): """ Tests simple query string searches on CGAP using type-based q= and generic q= """ # run a simple query with type=Disorder and q=Dummy res = es_testapp.get('/search/?type=Disorder&q=Dummy').json assert len(res['@graph']) == 3 # get the uuids from the results dummy_uuids = [org['uuid'] for org in res['@graph'] if 'uuid' in org] # run the same search with type=Item res = es_testapp.get('/search/?type=Item&q=Dummy').json assert len(res['@graph']) >= 3 all_uuids = [item['uuid'] for item in res['@graph'] if 'uuid' in item] # make sure all uuids found in the first search are present in the second assert set(dummy_uuids).issubset(set(all_uuids)) # run with q=Dum returns the same hits... res = es_testapp.get('/search/?type=Item&q=Dum').json dum_uuids = [item['uuid'] for item in res['@graph'] if 'uuid' in item] # make sure all uuids found in the first search are present in the second assert set(dummy_uuids).issubset(set(dum_uuids)) # should eliminate first and third level disorders res = es_testapp.get('/search/?type=Disorder&q=Sub+-Second').json assert len(res['@graph']) == 1 # include first level res = es_testapp.get('/search/?type=Disorder&q=(Sub+-Second) | oranges').follow().json assert len(res['@graph']) == 2 # exclude all res = es_testapp.get('/search/?type=Disorder&q=(oranges)+(apples)+(bananas)', status=404) def test_search_ngram(workbook, es_testapp): """ Tests edge-ngram related behavior with simple query string """ # test search beyond max-ngram, should still give one result res = es_testapp.get('/search/?type=Item&q=Second+Dummy+Sub+Disorder').json assert len(res['@graph']) == 1 # run search with q=Du (should get nothing since max_ngram=3) es_testapp.get('/search/?type=Item&q=D', status=404) # run search with q=ummy (should get nothing since we are using edge ngrams) es_testapp.get('/search/?type=Item&q=ummy', status=404) # test ngram on upper bound res1 = es_testapp.get('/search/?type=Item&q=information').json assert len(res1['@graph']) > 0 # should get same results res2 = es_testapp.get('/search/?type=Item&q=informatio').json # should have same results in res1 assert len(res1['@graph']) == len(res2['@graph']) # should get nothing es_testapp.get('/search/?type=Item&q=informatix', status=404) # will get same results as res1 and res2 res3 = es_testapp.get('/search/?type=Item&q=informatioabd').json assert len(res2['@graph']) == len(res3['@graph']) # search for part of uuid common, should get all 3 res4 = es_testapp.get('/search/?type=Disorder&q=231111bc').json assert len(res4['@graph']) == 3 # search for full uuid res5 = es_testapp.get('/search/?type=Disorder&q=231111bc-8535-4448-903e-854af460b25').json assert len(res4['@graph']) == 3 # uuid difference beyond 10 res6 = es_testapp.get('/search/?type=Disorder&q=231111bc-89').json assert len(res4['@graph']) == 3 # uuid difference at 10 (should get no results) es_testapp.get('/search/?type=Disorder&q=231111bc-9', status=404) @pytest.mark.skip # XXX: What is this really testing? def test_search_facets_and_columns_order(workbook, es_testapp): # TODO: Adjust ordering of mixed-in facets, perhaps sort by lookup or something, in order to un-xfail. test_type = 'experiment_set_replicate' type_info = es_testapp.app.registry[TYPES].by_item_type[test_type] schema = type_info.schema schema_facets = [('type', {'title': 'Data Type'})] schema_facets.extend(schema['facets'].items()) # the following facets are added after schema facets schema_facets.append(('status', {'title': 'Status'})) # remove any disabled facets schema_facets = [fct for fct in schema_facets if not fct[1].get('disabled', False)] sort_facets = sorted(schema_facets, key=lambda fct: fct[1].get('order', 0)) res = es_testapp.get('/search/?type=ExperimentSetReplicate&limit=all').json for i,val in enumerate(sort_facets): assert res['facets'][i]['field'] == val[0] # assert order of columns when we officially upgrade to python 3.6 (ordered dicts) for key,val in schema.get('columns', {}).items(): assert res['columns'][key]['title'] == val['title'] @pytest.fixture def dd_dts(es_testapp, workbook): # returns a dictionary of strings of various date and datetimes # relative to the creation date of the mboI one object in test inserts enz = es_testapp.get('/search/?type=Disorder&disorder_name=Dummy+Disorder').json['@graph'][0] cdate = enz['date_created'] _date, _time = cdate.split('T') yr, mo, day = [int(i) for i in _date.split('-')] hr, mi, _ = _time.split(':', 2) hr = int(hr) mi = int(mi) createdate = datetime(yr, mo, day, hr, mi) return { 'creationdatetime': ':'.join(str(createdate).replace(' ', '+').split(':')[:-1]), 'creationdate': str(createdate.date()) + '+00:00', 'daybefore': ':'.join(str(createdate - timedelta(days=1)).replace(' ', '+').split(':')[:-1]), 'dayafter': ':'.join(str(createdate + timedelta(days=1)).replace(' ', '+').split(':')[:-1]), 'hourbefore': ':'.join(str(createdate - timedelta(hours=1)).replace(' ', '+').split(':')[:-1]), 'hourafter': ':'.join(str(createdate + timedelta(hours=1)).replace(' ', '+').split(':')[:-1]) } def test_search_date_range_find_within(dd_dts, es_testapp, workbook): notice_pytest_fixtures(workbook) # the MboI enzyme should be returned with all the provided pairs gres = es_testapp.get('/search/?type=Disorder&disorder_name=Dummy+Disorder').json g_uuids = [item['uuid'] for item in gres['@graph'] if 'uuid' in item] dts = {k: v.replace(':', '%3A') for k, v in dd_dts.items()} datepairs = [ (dts['daybefore'], dts['dayafter']), (dts['creationdatetime'], dts['dayafter']), (dts['daybefore'], dts['creationdatetime']), (dts['creationdate'], dts['dayafter']), (dts['hourbefore'], dts['hourafter']) ] for dp in datepairs: search = '/search/?type=Disorder&date_created.from=%s&date_created.to=%s' % dp sres = es_testapp.get(search).json s_uuids = [item['uuid'] for item in sres['@graph'] if 'uuid' in item] assert set(g_uuids).issubset(set(s_uuids)) @pytest.mark.skip # XXX: how to best port? def test_search_with_nested_integer(es_testapp, workbook): notice_pytest_fixtures(workbook) search0 = '/search/?type=ExperimentHiC' s0res = es_testapp.get(search0).json s0_uuids = [item['uuid'] for item in s0res['@graph'] if 'uuid' in item] search1 = '/search/?type=ExperimentHiC&files.file_size.to=1500' s1res = es_testapp.get(search1).json s1_uuids = [item['uuid'] for item in s1res['@graph'] if 'uuid' in item] assert len(s1_uuids) > 0 search2 = '/search/?type=ExperimentHiC&files.file_size.from=1501' s2res = es_testapp.get(search2).json s2_uuids = [item['uuid'] for item in s2res['@graph'] if 'uuid' in item] assert len(s2_uuids) > 0 # make sure there is no intersection of the uuids assert not set(s1_uuids) & set(s2_uuids) assert set(s1_uuids) | set(s2_uuids) == set(s0_uuids) def test_search_date_range_dontfind_without(dd_dts, es_testapp, workbook): notice_pytest_fixtures(workbook) # the MboI enzyme should be returned with all the provided pairs dts = {k: v.replace(':', '%3A') for k, v in dd_dts.items()} datepairs = [ (dts['daybefore'], dts['creationdate']), (dts['hourafter'], dts['dayafter']), (dts['daybefore'], dts['hourbefore']) ] for dp in datepairs: search = '/search/?type=Disorder&date_created.from=%s&date_created.to=%s' % dp assert es_testapp.get(search, status=404) def test_search_query_string_AND_NOT_cancel_out(workbook, es_testapp): """ Tests if you use + and - with same field you should get no result """ search = '/search/?q=cell+-cell&type=Family' assert es_testapp.get(search, status=404) def test_search_query_string_with_booleans(workbook, es_testapp): """ Tests some search queries involving booleans on users """ search = '/search/?type=User&q=HMS' res_stem = es_testapp.get(search).json assert len(res_stem['@graph']) > 1 uuids = [r['uuid'] for r in res_stem['@graph'] if 'uuid' in r] wrangler_uuid = "986b362f-4eb6-4a9c-8173-3ab267307e3b" tester_uuid = "986b362f-4eb6-4a9c-8173-3ab267307e4c" # assert induced_stem_uuid not in not_induced_uuids # now search for stem +induced (AND is now "+") search_and = '/search/?type=User&q=scientist+%2Bcurrent' res_both = es_testapp.get(search_and).json both_uuids = [r['uuid'] for r in res_both['@graph'] if 'uuid' in r] assert len(both_uuids) == 2 assert wrangler_uuid in both_uuids assert tester_uuid in both_uuids # search with OR ("|") search_or = '/search/?type=User&q=scientist+%7Ctesting' res_or = es_testapp.get(search_or).json or_uuids = [r['uuid'] for r in res_or['@graph'] if 'uuid' in r] assert wrangler_uuid in
<filename>Traclus_DL.py<gh_stars>1-10 from Trajectory import * from ClusterQ import * import sys import datetime from collections import defaultdict from numpy import arange from itertools import count import math """This is a collection of methods to read in a set of 2 dimensional desire lines trajectories, and create segmented Trajectory data structures, run our adapted angle-based DBScan using each segment as a "seed", putting those that respect the minimum sum of weight (density) requirement in a priority queue. Clusters are then popped from the queue, the average X and Y of their starts and ends taken, and these output to a file for visualization in the QVis program. """ #data structures to avoid having to recalculate distances between segments and lines segment_to_line_dist = defaultdict(lambda : defaultdict(float)) segment_to_line_closest_seg = defaultdict(lambda : defaultdict(Trajectory.TrajectorySegment)) def round_to(n, precision): correction = precision/2.0 if n >= 0 else -precision/2.0 return int(n/precision+correction)*precision def point_segment_distance(px, py, x1, y1, x2, y2): """ returns the distance from a point in 2-D (px,py) to a line segment going from (x1, y1) to (x12, y12), and also returns the x and y coordinates of the closest point in the line segment to (px,py) This function is adapted from a stackoverflow.com answer provided by user "<NAME>" at http://stackoverflow.com/questions/2824478/shortest-distance-between-two-line-segments (last accessed November 6, 2014) and is under the Creative Commons License http://creativecommons.org/licenses/by-sa/3.0/ """ # print("called with ", px, py, x1, y1, x2, y2) dx = x2 - x1 dy = y2 - y1 if dx == dy == 0: # the segment's just a point return math.hypot(px - x1, py - y1) # Calculate the t that minimizes the distance. t = ((px - x1) * dx + (py - y1) * dy) / (dx * dx + dy * dy) # See if this represents one of the segment's # end points or a point in the middle. near_x = 0 near_y = 0 if t < 0: dx = px - x1 dy = py - y1 near_x = x1 near_y = y1 elif t > 1: dx = px - x2 dy = py - y2 near_x = x2 near_y = y2 else: near_x = x1 + t * dx near_y = y1 + t * dy dx = px - near_x dy = py - near_y #if math.hypot(dx,dy) < 101: # print "came up with ", math.hypot(dx,dy), near_x, near_y return (math.hypot(dx, dy), near_x, near_y) def reachable(seg1, seg_angle, traj_angles, max_dist, max_angle, segment_to_line_dist, segment_to_line_closest_seg): """For a given segment and other parameters (the maximum angle, maximum distance), find all other segments reachable from that segment""" reachable_segs = [] sumweight = 0. for angle in traj_angles: #go through the dictionary of angles, only consider those that are less than max_angle from the seg_angle if abs(angle - seg_angle) > max_angle: continue for line2 in traj_angles[angle]: #go through the lines for that angle, calculate distance of that line to that segment if not already done, and then check if less than max dist if(line2.name not in segment_to_line_dist[seg1.id]): #segment_to_line_dist keeps track of distances already calculated, avoid more than once segment_to_line_dist[seg1.id][line2.name], closest_x, closest_y = point_segment_distance((seg1.startx+seg1.endx)/2, (seg1.starty+seg1.endy)/2, line2.startx, line2.starty, line2.endx, line2.endy) if segment_to_line_dist[seg1.id][line2.name] > max_dist: segment_to_line_closest_seg[seg1.id][line2.name] = max_dist + 1; else: segment_to_line_closest_seg[seg1.id][line2.name] = line2.get_segment_at(closest_x, closest_y) if segment_to_line_dist[seg1.id][line2.name] <= max_dist: #Respects both angle and distance limits! add to list of reachable segments and increment weight reachable_segs.append(segment_to_line_closest_seg[seg1.id][line2.name]) sumweight = sumweight + line2.weight return sumweight, reachable_segs def DBScan(seg1, traj_angles, max_dist, min_weight, max_angle, segment_to_line_dist, segment_to_line_closest_seg): """implementation of DBScan with an angle twist. Find segments reachable from seg1 that respect both angle and distance criteria. Then expands cluster as done in classic DBScan, but angles are not allowed to expand, i.e. all final members of the cluster have an angle less than max_angle with the original seg1""" reachable_segs = set() #keep track of those reachable from set1 sumweight, reachable_segs = reachable(seg1, seg1.parent.angle, traj_angles, max_dist, max_angle, segment_to_line_dist, segment_to_line_closest_seg); #add those reachable based on the maximum angle and maximum distance (epsilon) if sumweight < min_weight: return (-1, []) else: return expand_cluster(seg1, traj_angles, reachable_segs, max_dist, min_weight, max_angle, segment_to_line_dist, segment_to_line_closest_seg) def expand_cluster(seg1, traj_angles, reachable_segs, max_dist, min_weight, max_angle, segment_to_line_dist, segment_to_line_closest_seg): """ Expansion of cluster from seg1 as in classic DBScan but angles are not allowed to expand, i.e. all final members of the cluster have an angle less than max_angle with the original seg1""" corridor_assignment = set() represented_lines = set() # for a given line, only one representative segment per cluster/corridor represented_lines.add(seg1.parent) expanded_sum_weight = seg1.parent.weight corridor_assignment.add(seg1) #this will definitely be in the corridor, and does not need to be expanded as we have found everything reachable from seg1 while len(reachable_segs) > 0: new_candidates = [] #this is the list of segments that we continue to expand for seg2 in reachable_segs: if seg2 not in corridor_assignment and seg2.parent not in represented_lines: represented_lines.add(seg2.parent) corridor_assignment.add(seg2) expanded_sum_weight += seg2.parent.weight seg2_sum_weight, new_reachable = reachable(seg2, seg1.parent.angle, traj_angles, max_dist, max_angle, segment_to_line_dist, segment_to_line_closest_seg); #add those reachable based on the maximum angle and maximum distance (epsilon). Note that the second argument is not a typo as the angles are kept close to those of the original "seed" segment (seg1) if seg2_sum_weight >= min_weight: for seg3 in new_reachable: if seg3 not in reachable_segs and seg3.parent not in represented_lines: new_candidates.append(seg3) reachable_segs = new_candidates return (expanded_sum_weight, corridor_assignment) def print_weighted_averages(cluster_segments, corr_number, oh): """File output method for printing weighted average of start and ends for the segments assigned to that cluster. File format is designed for visualization with QVis""" weightsum = 0. x1sum = 0. y1sum = 0. x2sum = 0. y2sum = 0. for segment in cluster_segments: weightsum += segment.parent.weight x1sum += segment.startx * segment.parent.weight x2sum += segment.endx * segment.parent.weight y1sum += segment.starty * segment.parent.weight y2sum += segment.endy * segment.parent.weight oh.write(str(corr_number) + "\t"+ str(weightsum) + "\tLINESTRING(" + str(x1sum/weightsum) + " "+ str(y1sum/weightsum) + ", " + str(x2sum/weightsum) + " " + str(y2sum/weightsum) + ")\n") def get_traj_by_name(trajectories, name): """Search for particular trajectory name, used mostly for testing purposes""" print trajectories for traj in trajectories: if traj.name == name: return traj def read_file(infile, segment_size, traj_angles, trajectories): """File input, one row per desire line with columns corresponding to line name, line weight, start x, start y, end x and end y, with comment lines (not to be included as desire lines starting with #""" fh = open (infile, 'r') for line in fh: if line.startswith("#"): continue linelist = line.split(); traj = Trajectory(name=linelist[0], weight = float(linelist[1]), startx=float(linelist[2]), starty=float(linelist[3]), endx=float(linelist[4]), endy=float(linelist[5])) traj.make_segments(segment_size) rounded_angle = round_to(traj.angle, 0.5); traj_angles[rounded_angle].append(traj) #add the trajectory to a list in the dictionary of angles trajectories.append(traj) def build_DB_queue(trajectories, traj_angles, max_dist, min_density, max_angle, segment_to_line_dist, segment_to_line_closest_seg): """Create empty ClusterQ, call DBScan with each segment in the set of all desire lines. Add those to the queue that respect minimum weight, return the ClusterQ of all segments after DBScan run for all""" Q = ClusterQ(min_density) for line in trajectories: for segment in line.segments: sumweight, segments = DBScan(segment, traj_angles, max_dist, min_density, max_angle, segment_to_line_dist, segment_to_line_closest_seg) if sumweight >= min_density: Q.add_cluster(segment, segments, int(sumweight*100)) return Q if __name__ == '__main__': infile = sys.argv[1] max_dist = float(sys.argv[2]) min_density = float(sys.argv[3]) max_angle = float(sys.argv[4]) segment_size = float(sys.argv[5]) # For each line, get candidate lines from angle dictionary, find within distance traj_angles = defaultdict(list) #look up angles fast, each angle (in degrees) will have a list of Trajectory objects trajectories = [] # list of trajectories, keep it? read_file(infile, segment_size, traj_angles, trajectories) segment_list_oh = open(infile + "." + str(max_dist) + "." + str(min_density) + "." + str(max_angle) + "." + str(segment_size) + ".segmentlist.txt", "w") corridor_list_oh = open (infile + "." + str(max_dist) + "." + str(min_density) + "." + str(max_angle) + "." + str(segment_size) + ".corridorlist.txt", "w") corridor_list_oh.write("name\tweight\tcoordinates\n"); segment_list_oh.write("line_id\tweight\tangle\tcorridor_id\tcoordinates\n"); build_DB_queue(trajectories, traj_angles, max_dist, min_density, max_angle, segment_to_line_dist, segment_to_line_closest_seg) #To do, move segment file output to a separate function corridor = 0 assigned = set() while True: try: cluster_segments = pop_cluster() print_weighted_averages(cluster_segments, corridor, corridor_list_oh) for segment in cluster_segments: segment_list_oh.write(segment.parent.name +
list of genome_servers. Use reset argument to overwrite the current list. Otherwise the current one will be appended to. :param list[str] | str url: url(s) to update the genome_servers list with :param bool reset: whether the current list should be overwritten """ urls = _make_list_of_str(url) if CFG_SERVERS_KEY in self: if reset: self[CFG_SERVERS_KEY] = _extend_unique([], urls) else: self[CFG_SERVERS_KEY] = _extend_unique(self[CFG_SERVERS_KEY], urls) else: raise GenomeConfigFormatError("The '{}' is missing. Can't update the server list".format(CFG_SERVERS_KEY)) def subscribe(self, urls, reset=False): """ Add URLs the list of genome_servers. Use reset argument to overwrite the current list. Otherwise the current one will be appended to. :param list[str] | str urls: urls to update the genome_servers list with :param bool reset: whether the current list should be overwritten """ if self.file_path: with self as r: r._update_genome_servers(url=urls, reset=reset) else: self._update_genome_servers(url=urls, reset=reset) _LOGGER.info("Subscribed to: {}".format(", ".join(urls))) def unsubscribe(self, urls): """ Remove URLs the list of genome_servers. :param list[str] | str urls: urls to update the genome_servers list with """ unsub_list = [] ori_servers = self[CFG_SERVERS_KEY] for s in urls: try: ori_servers.remove(s) unsub_list.append(s) except ValueError: _LOGGER.warning("URL '{}' not in genome_servers list: {}".format(s, ori_servers)) if self.file_path: with self as r: r._update_genome_servers(ori_servers, reset=True) else: self._update_genome_servers(ori_servers, reset=True) if unsub_list: _LOGGER.info("Unsubscribed from: {}".format(", ".join(unsub_list))) def getseq(self, genome, locus, as_str=False): """ Return the sequence found in a selected range and chromosome. Something like the refget protocol. :param str genome: name of the sequence identifier :param str locus: coordinates of desired sequence, e.g. 'chr1:1-10' :param bool as_str: whether to convert the resurned object to string and return just the sequence :return str | pyfaidx.FastaRecord | pyfaidx.Sequence: selected sequence """ import pyfaidx fa = pyfaidx.Fasta(self.seek(genome, "fasta", strict_exists=True)) locus_split = locus.split(":") chr = fa[locus_split[0]] if len(locus_split) == 1: return str(chr) if as_str else chr start, end = locus_split[1].split("-") _LOGGER.debug("chr: '{}', start: '{}', end: '{}'". format(locus_split[0], start, end)) return str(chr[int(start):int(end)]) \ if as_str else chr[int(start):int(end)] def get_genome_attributes(self, genome): """ Get the dictionary attributes, like checksum, contents, description. Does not return the assets. :param str genome: genome to get the attributes dict for :return Mapping[str, str]: available genome attributes """ return {k: self[CFG_GENOMES_KEY][genome][k] for k in CFG_GENOME_ATTRS_KEYS if k in self[CFG_GENOMES_KEY][genome]} def is_asset_complete(self, genome, asset, tag): """ Check whether all required tag attributes are defined in the RefGenConf object. This is the way we determine tag completeness. :param str genome: genome to be checked :param str asset: asset package to be checked :param str tag: tag to be checked :return bool: the decision """ tag_data = self[CFG_GENOMES_KEY][genome][CFG_ASSETS_KEY][asset][CFG_ASSET_TAGS_KEY][tag] return all([r in tag_data for r in REQ_TAG_ATTRS]) def _invert_genomes(self, order=None): """ Map each asset type/kind/name to a collection of assemblies. A configuration file encodes assets by genome, but in some use cases it's helpful to invert the direction of this mapping. The value of the asset key/name may differ by genome, so that information is necessarily lost in this inversion, but we can collect genome IDs by asset ID. :param function(str) -> object order: how to key genome IDs and asset names for sort :return OrderedDict[str, Iterable[str]] binding between asset kind/key/name and collection of reference genome assembly names for which the asset type is available """ genomes = {} for g, am in self[CFG_GENOMES_KEY].items(): for a in am[CFG_ASSETS_KEY].keys(): genomes.setdefault(a, []).append(g) assets = sorted(genomes.keys(), key=order) return OrderedDict([(a, sorted(genomes[a], key=order)) for a in assets]) def _chk_digest_if_avail(self, genome, remote_asset_name, server_url): """ Check local asset digest against the remote one and populate children of the asset with the provided asset:tag. In case the local asset does not exist, the config is populated with the remote asset digest and children data :param str genome: name of the genome to check the asset digests for :param str remote_asset_name: asset and tag names, formatted like: asset:tag :param str server_url: addres of the server to query for the digests :raise RefgenconfError: if the local digest does not match its remote counterpart """ remote_asset_data = prp(remote_asset_name) asset = remote_asset_data["item"] tag = remote_asset_data["tag"] asset_digest_url = construct_request_url(server_url, API_ID_DIGEST).\ format(genome=genome, asset=asset, tag=tag) try: remote_digest = _download_json(asset_digest_url) except DownloadJsonError: _LOGGER.warning("Parent asset ({}/{}:{}) not found on the server. The asset provenance was not verified.". format(genome, asset, tag)) return try: local_digest = self.id(genome, asset, tag) if remote_digest != local_digest: raise RemoteDigestMismatchError(asset, local_digest, remote_digest) except RefgenconfError: _LOGGER.debug("Could not find '{}/{}:{}' digest. Digest for this parent will be populated " "with the server one after the pull".format(genome, asset, tag)) return def chk_digest_update_child(self, genome, remote_asset_name, child_name, server_url): """ Check local asset digest against the remote one and populate children of the asset with the provided asset:tag. In case the local asset does not exist, the config is populated with the remote asset digest and children data :param str genome: name of the genome to check the asset digests for :param str remote_asset_name: asset and tag names, formatted like: asset:tag :param str child_name: name to be appended to the children of the parent :param str server_url: address of the server to query for the digests :raise RefgenconfError: if the local digest does not match its remote counterpart """ remote_asset_data = prp(remote_asset_name) asset = remote_asset_data["item"] tag = remote_asset_data["tag"] asset_digest_url = construct_request_url(server_url, API_ID_DIGEST).\ format(genome=genome, asset=asset, tag=tag) try: remote_digest = _download_json(asset_digest_url) except DownloadJsonError: return try: # we need to allow for missing seek_keys section so that the digest is respected even from the previously # populated 'incomplete asset' from the server _assert_gat_exists(self[CFG_GENOMES_KEY], genome, asset, tag, allow_incomplete=not self.is_asset_complete(genome, asset, tag)) except (KeyError, MissingAssetError, MissingGenomeError, MissingSeekKeyError): self.update_tags(genome, asset, tag, {CFG_ASSET_CHECKSUM_KEY: remote_digest}) _LOGGER.info("Could not find '{}/{}:{}' digest. Populating with server data".format(genome, asset, tag)) else: local_digest = self[CFG_GENOMES_KEY][genome][CFG_ASSETS_KEY][asset][CFG_ASSET_TAGS_KEY] \ [tag][CFG_ASSET_CHECKSUM_KEY] if remote_digest != local_digest: raise RemoteDigestMismatchError(asset, local_digest, remote_digest) finally: self.update_relatives_assets(genome, asset, tag, [child_name], children=True) def id(self, genome, asset, tag=None): """ Returns the digest for the specified asset. The defined default tag will be used if not provided as an argument :param str genome: genome identifier :param str asset: asset identifier :param str tag: tag identifier :return str: asset digest for the tag """ _assert_gat_exists(self[CFG_GENOMES_KEY], genome, asset, tag) tag = tag or self.get_default_tag(genome, asset) a = self[CFG_GENOMES_KEY][genome][CFG_ASSETS_KEY][asset] if CFG_ASSET_CHECKSUM_KEY in a[CFG_ASSET_TAGS_KEY][tag]: return a[CFG_ASSET_TAGS_KEY][tag][CFG_ASSET_CHECKSUM_KEY] raise MissingConfigDataError("Digest does not exist for: {}/{}:{}". format(genome, asset, tag)) def run_plugins(self, hook): """ Runs all installed plugins for the specified hook. :param str hook: hook identifier """ for name, func in self.plugins[hook].items(): _LOGGER.debug("Running {} plugin: {}".format(hook, name)) func(self) def write(self, filepath=None): """ Write the contents to a file. If pre- and post-update plugins are defined, they will be executed automatically :param str filepath: a file path to write to :raise OSError: when the object has been created in a read only mode or other process has locked the file :raise TypeError: when the filepath cannot be determined. This takes place only if YacAttMap initialized with a Mapping as an input, not read from file. :raise OSError: when the write is called on an object with no write capabilities or when writing to a file that is locked by a different object :return str: the path to the created files """ self.run_plugins(PRE_UPDATE_HOOK) path = super(RefGenConf, self).write(filepath=filepath) self.run_plugins(POST_UPDATE_HOOK) return path class DownloadProgressBar(tqdm): """ from: https://github.com/tqdm/tqdm#hooks-and-callbacks """ def update_to(self, b=1, bsize=1, tsize=None): """ Update the progress bar :param int b: number of blocks transferred so far :param int bsize: size of each block (in tqdm units) :param int tsize: total size (in tqdm units) """ if tsize is not None: self.total = tsize self.update(b * bsize - self.n) def _download_json(url, params=None): """ Safely connect to the provided API endpoint and download JSON data. :param str url: server API endpoint :param dict params: query parameters :return dict: served data """ import requests _LOGGER.debug("Downloading JSON data; querying URL: '{}'".format(url)) resp = requests.get(url, params=params) if resp.ok: return resp.json() elif resp.status_code == 404: resp = None raise DownloadJsonError(resp) def _download_url_progress(url, output_path, name, params=None): """ Download asset at given URL to given filepath, show progress along the way. :param str url: server API endpoint :param str output_path:
the self.image_info list. # this happens in place, and returns None shuffle(self.image_info) # add all the class info for category in updated_category_dict: # self.add_class(dataset_name, category['id'], category['name']) self.add_class(dataset_name, updated_category_dict[category], category) print(len(updated_category_dict)) print(updated_category_dict) print(skip_classes) print(len(self.image_info)) print('\t'*3 + "#"*20 + '\n'*2) print('\t'*3 + "CONFIG Daset" + '\n'*2) print(len(self.class_info)) print('\t'*3 + "#"*20 + '\n'*2) def visualize(self, image_id): tmp_dir = './tmp' if not os.path.isdir(tmp_dir): os.makedirs(tmp_dir) img = self.load_image(image_id) mask, class_id = self.load_mask(image_id) color_set = [np.array([0, 0, 255]), np.array([0, 255, 0]), np.array([255, 0, 0]), np.array([255, 255, 0]), np.array([0, 255, 255]), np.array([255, 0, 255]) ] total_color_number = len(color_set) alpha = 0.6 print(mask.shape) fontFace = cv2.FONT_HERSHEY_SIMPLEX fontScale = 0.5 for idx, single_mask in enumerate(mask.transpose(2, 0, 1)): index = np.where(single_mask.astype(float)>0.5) color_index = np.random.randint(total_color_number) img[index] = img[index] * alpha + (1-alpha) * color_set[color_index] # attach class name for visualization at top left corner of mask try: min_row = min(index[0]) min_col = min(index[1]) except ValueError: continue cv2.putText(img, self.idx_to_name_map[class_id[idx]], (min_col, min_row), fontFace, fontScale, color_set[color_index].tolist(), lineType=cv2.LINE_AA) # convert rgb to bgr img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) cv2.imwrite(os.path.join(tmp_dir, str(image_id)+'.png'), img) # color_set = [[0, 0, 255], # [0, 255, 0], # [255, 0, 0], # [255, 255, 0], # [0, 255, 255], # [255, 0, 255] # ] # # directly use polygon to for visluation # img = self.load_image(image_id) # for polygon in self.image_info[image_id]['polygon_list']: # color_index = np.random.randint(total_color_number) # cv2.fillPoly(img, np.array([polygon]).astype(int), color_set[color_index]) cv2.imwrite(str(image_id)+'_fill_' + '.png', img) def load_image(self, image_id): if self.image_info[image_id]['image_type'] == 'patch': image = super(SatelliteDataset, self).load_image(image_id) elif self.image_info[image_id]['image_type'] == 'big': # only pick small patch at specified location big_image_id = self.image_info[image_id]['big_image_id'] # '001', '002', .... big_image = self.image_dict[big_image_id] # numpy array for big image start_h = self.image_info[image_id]['start_h'] start_w = self.image_info[image_id]['start_w'] patch_height = self.image_info[image_id]['height'] patch_width = self.image_info[image_id]['width'] image = big_image[start_h:start_h+patch_height, start_w:start_w+patch_width] # resize the image for preprocessing # print(image.shape) # image = skimage.transform.resize(image, (256, 256)) # print(image.shape) return image def load_mask(self, image_id): """ ============================================================ For this preliminary task, we only work on three classes Tree, Vehicles, Buildings, =========================================================== """ object_list = self.image_info[image_id]['object_list'] polygon_list = self.image_info[image_id]['polygon_list'] width = self.image_info[image_id]['width'] height = self.image_info[image_id]['height'] # print(self.image_info[image_id]['path']) assert len(object_list) == len(polygon_list), "object number and ploy number doesn't match" mask_array = [] class_id_array = [] object_number_threshold = 1e8 for idx, (label, polygon) in enumerate(zip(object_list, polygon_list)): if idx >= object_number_threshold: # Too many objects would be out of memory break black_ground = np.zeros((height, width)) cv2.fillPoly(black_ground, np.array([polygon]).astype(int), (1.,)) # cv2.fillConvexPoly(black_ground, np.array([polygon]).astype(int), (1.,)) black_ground = black_ground.astype(bool) mask_array.append(black_ground) class_id_array.append(object_list[idx]) # mask_array = np.stack(mask_array, axis=0).transpose(1, 2, 0).astype(bool) mask_array = np.stack(mask_array, axis=2) class_id_array = np.array(class_id_array) # print(mask_array.shape) return mask_array, class_id_array def config_dataset_with_big_image(self, dataset_name, root_dir): """ Args: root_dir: string. The directory saving all the big images and annotations. """ # read the ground truth category information category_map, super_category_set = category_map_name_to_super("../data/complete.json") # add all the class info name_to_idx_map = dict() self.idx_to_name_map = dict() for idx, category in enumerate(super_category_set): # self.add_class(dataset_name, category['id'], category['name']) name_to_idx_map[category] = idx+1 self.idx_to_name_map[idx+1] = category self.add_class(dataset_name, idx+1, category) if self.mode == 'evaluation': return def calculate_intersection_over_poly1(poly1, poly2): """ It is not the iou on usual, the iou is the value of intersection over poly1 """ # Get the intersection of two polygons. inter_poly = poly1.intersection(poly2) # area inter_area = inter_poly.area poly1_area = poly1.area half_iou = inter_area / poly1_area # the area of inter-poly over the poly1_area. return half_iou, inter_poly def convert_poly_2_numpy(polygon): """ Args: polygon: shapely.geometric object Returns: :params numpy """ #pdb.set_trace() try: polygon = mapping(polygon)['coordinates'] except KeyError: polygon = mapping(polygon)['geometries'] for instance in polygon: if instance['type'] == 'Polygon': polygon = instance['coordinates'] break polygon = polygon[0] polygon = np.stack(polygon, axis=0) return polygon def get_class_id_and_polygon(start_point=None, patch_size=None, annotation_dict=None, category_map=None, name_to_idx_map=None ): """ Args: start_point: (y, x) steps: (step_y, step_x) annotation_set: polygon and labels category_map: map_dict {name: super_category} skip_classes: Llist[supercategory_name] Returns: object_list and polygon_list """ def convert_polygon_to_box(polygon, box_format='yxyx'): """ Args: polygon: [[x, y], [x, y], [x, y], ...] Returns box: [y1, x1, y2, x2] """ xy_min = np.amin(polygon, axis=0) xy_max = np.amax(polygon, axis=0) if box_format == 'xyxy': return np.concatenate([xy_min, xy_max]) elif box_format == 'yxyx': return np.concatenate([xy_min[::-1], xy_max[::-1]]) def truncate_polygon(polygon, patch_box): """ Truncate the polygon, to make it inside the images Args: polygon: [[x,y], [x,y], ...] patch_box: [y1, x1, y2, x2] Args: polygon: [[x, y], [x, y], ...] ... x1 <= x <= x2, y1 <= y <= y2 """ # check the x_min patch_width = patch_box[3] - patch_box[1] patch_height = patch_box[2] - patch_box[0] polygon[:, 0] = np.minimum(np.maximum(polygon[:, 0] - patch_box[1], 0), patch_width) polygon[:, 1] = np.minimum(np.maximum(polygon[:, 1] - patch_box[0], 0), patch_height) return polygon def computer_intersection_over_box2(box1, box2): """Computer intersection area over the second box.""" # box1: The patch image location, format (y1, x1, y2, x2) # box2: the bbox of polygon, format (x1, y1, x2, y2) y1 = max(box1[0], box2[0]) x1 = max(box1[1], box2[1]) y2 = min(box1[2], box2[2]) x2 = min(box1[3], box2[3]) intersection_area = max(y2-y1, 0) * max(x2-x1, 0) box2_area = max(box2[2]-box2[0], 0) * max(box2[3]-box2[1], 0) area_theshold = 1e-3 # if the polgon is too small, we will ignore it. if box2_area < area_theshold: iou = 0 else: iou = intersection_area / box2_area # convert polygon into box by choosing the x_min, y_min, x_max, y_max return iou # print("len(annotation_dict['objects'])", len(annotation_dict['objects'])) def check_if_center_inside_patch(center, patch_box): """ check if the center point is inside the patch Args: center: [x, y] patch_box: [y_min, x1, y2, x2] Returs: flag: True for inside, False for outside """ # to make sure the object is completely inside the slack = 0 flag = (center[0] >= (patch_box[1]+slack)) and \ (center[0] <= (patch_box[3]-slack)) and \ (center[1] >= (patch_box[0]+slack)) and \ (center[1] <= (patch_box[2]-slack)) return flag threshold = 1e-3 patch_box = start_point + [x+y for x, y in zip(start_point, patch_size)] object_list = [] polygon_list = [] threshold_area = 0.1 for index, obj in enumerate(annotation_dict['objects']): label = obj['label'] if label not in category_map: # we should skip this class continue else: #pdb.set_trace() # check if the center of polygon is inside the patch flag = check_if_center_inside_patch(obj['center'], patch_box) if not flag: # print("Object is not inside the patch") continue polygon = np.array(obj['polygon']) # convert box to polygon shape_polygon_patch = Polygon([[patch_box[1], patch_box[0]], [patch_box[3], patch_box[0]], [patch_box[3], patch_box[2]], [patch_box[1], patch_box[2]] ] ) # calculate the intersection area over the ground truth annotation # check annotation poly is valid or not. try: shape_polygon_annotation = Polygon(polygon) part_iou, inter_poly = calculate_intersection_over_poly1(shape_polygon_annotation, shape_polygon_patch) # except shapely.errors.TopologicalError, ValueError: except: part_iou, interpoly = 1, None # pdb.set_trace() if part_iou < threshold_area: continue elif part_iou < 0.95: polygon = convert_poly_2_numpy(inter_poly) else: polygon = polygon polygon = truncate_polygon(polygon, patch_box) super_name = category_map[label] super_id = name_to_idx_map[super_name] object_list.append(super_id) polygon_list.append(polygon) return object_list, polygon_list # read ground truth list json_list = glob(os.path.join(root_dir, "*/*.json")) tif_list = glob(os.path.join(root_dir, "*/*.tif")) # create dictionary for ground true list json_dict = {json_file.split('/')[-2]: json_file for json_file in json_list} tif_dict = {tif_file.split('/')[-2]: tif_file for tif_file in tif_list} # read all the big images into memory image_dict = {tif_file.split('/')[-2]: cv2.imread(tif_file) for tif_file in tif_list} for key in image_dict: print("Read the {} big image".format(key)) image_dict[key] = cv2.cvtColor(image_dict[key], cv2.COLOR_BGR2RGB) # self.image_dict = {key: cv2.cvtColor(image_dict[key], cv2.COLOR_BGR2RGB) for key in image_dict} self.image_dict = image_dict # get GT dict gt_dict = dict() for key in json_dict: with open(json_dict[key]) as fid: gt_dict[key] = json.load(fid) # add center point for polygon for key in gt_dict: # key: '001', '002'.... # update object annotation with center coordination for i, anno in enumerate(gt_dict[key]['objects']): # this happens as a references. anno['center'] = np.mean(anno['polygon'], axis=0) patch_height = 1024 patch_width = 1024 step_height = 500 step_width = 500 counter = 0 for big_image_id in json_dict: # The shape of the big image # if big_image_id != '002': # continue print("Processing: ", big_image_id) height, width = image_dict[big_image_id].shape[:2]
import json import argparse import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset import os import random import numpy as np import requests import logging import math import copy import wandb import string import re from time import time from tqdm import tqdm, trange from densephrases.models import DensePhrases, MIPS, MIPSLight from densephrases.utils.single_utils import set_seed, to_list, to_numpy, backward_compat from densephrases.utils.squad_utils import get_question_dataloader, TrueCaser import densephrases.utils.squad_utils as squad_utils from densephrases.utils.embed_utils import get_question_results from densephrases.utils.eval_utils import normalize_answer, f1_score, exact_match_score, drqa_exact_match_score, \ drqa_regex_match_score, drqa_metric_max_over_ground_truths, drqa_normalize from densephrases.utils.kilt.eval import evaluate as kilt_evaluate from densephrases.utils.kilt.kilt_utils import store_data as kilt_store_data from densephrases.experiments.run_single import load_and_cache_examples from transformers import ( MODEL_MAPPING, AutoConfig, AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, AdamW, get_linear_schedule_with_warmup, ) from reader import Reader from reranker import Reranker from utils import process_sample, process_reranker_input, process_reader_input logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def load_query_encoder(device, args): assert args.query_encoder_path # Configure paths for query encoder serving args.model_type = args.model_type.lower() config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.pretrained_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.pretrained_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) # Pre-trained DensePhrases model = DensePhrases( config=config, tokenizer=tokenizer, transformer_cls=MODEL_MAPPING[config.__class__], ) try: model.load_state_dict(backward_compat( torch.load(os.path.join(args.query_encoder_path, 'pytorch_model.bin'), map_location=torch.device('cpu')) )) except Exception as e: print(e) model.load_state_dict(torch.load(os.path.join(args.query_encoder_path, 'pytorch_model.bin')), strict=False) model.to(device) logger.info(f'DensePhrases loaded from {args.query_encoder_path} having {MODEL_MAPPING[config.__class__]}') logger.info('Number of model parameters: {:,}'.format(sum(p.numel() for p in model.parameters()))) return model, tokenizer def get_query2vec(query_encoder, tokenizer, args, batch_size=64): device = 'cuda' if args.cuda else 'cpu' def query2vec(queries): question_dataloader, question_examples, query_features = get_question_dataloader( queries, tokenizer, args.max_query_length, batch_size=batch_size ) question_results = get_question_results( question_examples, query_features, question_dataloader, device, query_encoder, batch_size=batch_size ) if args.debug: logger.info(f"{len(query_features)} queries: {' '.join(query_features[0].tokens_)}") outs = [] for qr_idx, question_result in enumerate(question_results): out = ( question_result.start_vec.tolist(), question_result.end_vec.tolist(), query_features[qr_idx].tokens_ ) outs.append(out) return outs return query2vec def load_phrase_index(args, load_light=False): # Configure paths for index serving phrase_dump_dir = os.path.join(args.dump_dir, args.phrase_dir) index_dir = os.path.join(args.dump_dir, args.index_dir) index_path = os.path.join(index_dir, args.index_name) idx2id_path = os.path.join(index_dir, args.idx2id_name) # Load mips mips_class = MIPS if not load_light else MIPSLight mips = mips_class( phrase_dump_dir=phrase_dump_dir, index_path=index_path, idx2id_path=idx2id_path, cuda=args.cuda, logging_level=logging.DEBUG if args.debug else logging.INFO ) return mips def embed_all_query(questions, args, query_encoder, tokenizer, batch_size=48): query2vec = get_query2vec( query_encoder=query_encoder, tokenizer=tokenizer, args=args, batch_size=batch_size ) all_outs = [] for q_idx in tqdm(range(0, len(questions), batch_size)): outs = query2vec(questions[q_idx:q_idx+batch_size]) all_outs += outs start = np.concatenate([out[0] for out in all_outs], 0) end = np.concatenate([out[1] for out in all_outs], 0) query_vec = np.concatenate([start, end], 1) logger.info(f'Query reps: {query_vec.shape}') return query_vec def load_qa_pairs(data_path, args, draft_num_examples=1000, shuffle=False): q_ids = [] questions = [] answers = [] data = json.load(open(data_path))['data'] for item in data: q_id = item['id'] question = item['question'] answer = item['answers'] if len(answer) == 0: continue q_ids.append(q_id) questions.append(question) answers.append(answer) questions = [query[:-1] if query.endswith('?') else query for query in questions] if args.truecase: try: logger.info('Loading truecaser for queries') truecase = TrueCaser(os.path.join(os.environ['DPH_DATA_DIR'], args.truecase_path)) questions = [truecase.get_true_case(query) if query == query.lower() else query for query in questions] except Exception as e: print(e) if args.do_lower_case: logger.info(f'Lowercasing queries') questions = [query.lower() for query in questions] if args.draft: q_ids = np.array(q_ids)[:draft_num_examples].tolist() questions = np.array(questions)[:draft_num_examples].tolist() answers = np.array(answers)[:draft_num_examples].tolist() if shuffle: qa_pairs = list(zip(q_ids, questions, answers)) random.shuffle(qa_pairs) q_ids, questions, answers = zip(*qa_pairs) logger.info(f'Shuffling QA pairs') logger.info(f'Loading {len(questions)} questions from {data_path}') logger.info(f'Sample Q ({q_ids[0]}): {questions[0]}, A: {answers[0]}') return q_ids, questions, answers def eval_inmemory(args, mips=None, query_encoder=None, tokenizer=None): # Load dataset and encode queries qids, questions, answers = load_qa_pairs(args.test_path, args) if query_encoder is None: print(f'Query encoder will be loaded from {args.query_encoder_path}') device = 'cuda' if args.cuda else 'cpu' query_encoder, tokenizer = load_query_encoder(device, args) query_vec = embed_all_query(questions, args, query_encoder, tokenizer) # Load MIPS if mips is None: mips = load_phrase_index(args) # Search step = args.eval_batch_size predictions = [] evidences = [] titles = [] scores = [] for q_idx in tqdm(range(0, len(questions), step)): result = mips.search( query_vec[q_idx:q_idx+step], q_texts=questions[q_idx:q_idx+step], nprobe=args.nprobe, top_k=args.top_k, max_answer_length=args.max_answer_length, ) prediction = [[ret['answer'] for ret in out] if len(out) > 0 else [''] for out in result] evidence = [[ret['context'] for ret in out] if len(out) > 0 else [''] for out in result] title = [[ret['title'] for ret in out] if len(out) > 0 else [['']] for out in result] score = [[ret['score'] for ret in out] if len(out) > 0 else [-1e10] for out in result] predictions += prediction evidences += evidence titles += title scores += score logger.info(f"Avg. {sum(mips.num_docs_list)/len(mips.num_docs_list):.2f} number of docs per query") eval_fn = evaluate_results if not args.is_kilt else evaluate_results_kilt return eval_fn(predictions, qids, questions, answers, args, evidences, scores, titles) def evaluate_results(predictions, qids, questions, answers, args, evidences, scores, titles, q_tokens=None, save_predictions=True): wandb.init(project="DensePhrases", entity="howard-yen", mode="online" if args.wandb else "disabled") wandb.config.update(args) # Filter if there's candidate if args.candidate_path is not None: candidates = set() with open(args.candidate_path) as f: for line in f: line = line.strip().lower() candidates.add(line) logger.info(f'{len(candidates)} candidates are loaded from {args.candidate_path}') topk_preds = [list(filter(lambda x: (x in candidates) or (x.lower() in candidates), a)) for a in predictions] topk_preds = [a[:args.top_k] if len(a) > 0 else [''] for a in topk_preds] predictions = topk_preds[:] top1_preds = [a[0] for a in topk_preds] else: predictions = [a[:args.top_k] if len(a) > 0 else [''] for a in predictions] top1_preds = [a[0] for a in predictions] no_ans = sum([a == '' for a in top1_preds]) logger.info(f'no_ans/all: {no_ans}, {len(top1_preds)}') logger.info(f'Evaluating {len(top1_preds)} answers.') # Get em/f1 f1s, ems = [], [] for prediction, groundtruth in zip(top1_preds, answers): if len(groundtruth)==0: f1s.append(0) ems.append(0) continue f1s.append(max([f1_score(prediction, gt)[0] for gt in groundtruth])) ems.append(max([exact_match_score(prediction, gt) for gt in groundtruth])) final_f1, final_em = np.mean(f1s), np.mean(ems) logger.info('EM: %.2f, F1: %.2f'%(final_em * 100, final_f1 * 100)) # Top 1/k em (or regex em) exact_match_topk = 0 exact_match_top1 = 0 f1_score_topk = 0 f1_score_top1 = 0 pred_out = {} for i in range(len(predictions)): # For debugging if i < 3: logger.info(f'{i+1}) {questions[i]}') logger.info(f'=> groundtruths: {answers[i]}, top 5 prediction: {predictions[i][:5]}') match_fn = drqa_regex_match_score if args.regex else drqa_exact_match_score em_topk = max([drqa_metric_max_over_ground_truths( match_fn, prediction, answers[i] ) for prediction in predictions[i][:args.top_k]]) em_top1 = drqa_metric_max_over_ground_truths( match_fn, top1_preds[i], answers[i] ) exact_match_topk += em_topk exact_match_top1 += em_top1 f1_topk = 0 f1_top1 = 0 if not args.regex: match_fn = lambda x, y: f1_score(x, y)[0] f1_topk = max([drqa_metric_max_over_ground_truths( match_fn, prediction, answers[i] ) for prediction in predictions[i][:args.top_k]]) f1_top1 = drqa_metric_max_over_ground_truths( match_fn, top1_preds[i], answers[i] ) f1_score_topk += f1_topk f1_score_top1 += f1_top1 pred_out[qids[i]] = { 'question': questions[i], 'answer': answers[i], 'prediction': predictions[i], 'score': scores[i], 'title': titles[i], 'evidence': evidences[i] if evidences is not None else '', 'em_top1': bool(em_top1), f'em_top{args.top_k}': bool(em_topk), 'f1_top1': f1_top1, f'f1_top{args.top_k}': f1_topk, 'q_tokens': q_tokens[i] if q_tokens is not None else [''] } total = len(predictions) exact_match_top1 = 100.0 * exact_match_top1 / total f1_score_top1 = 100.0 * f1_score_top1 / total logger.info({'exact_match_top1': exact_match_top1, 'f1_score_top1': f1_score_top1}) exact_match_topk = 100.0 * exact_match_topk / total f1_score_topk = 100.0 * f1_score_topk / total logger.info({f'exact_match_top{args.top_k}': exact_match_topk, f'f1_score_top{args.top_k}': f1_score_topk}) wandb.log( {"Top1 EM": exact_match_top1, "Top1 F1": f1_score_top1, "Topk EM": exact_match_topk, "Topk F1": f1_score_topk} ) # Dump predictions if len(args.query_encoder_path) == 0: pred_dir = os.path.join(os.environ['DPH_SAVE_DIR'], 'pred') else: pred_dir = os.path.join(args.query_encoder_path, 'pred') if not os.path.exists(pred_dir): os.makedirs(pred_dir) pred_path = os.path.join( pred_dir, os.path.splitext(os.path.basename(args.test_path))[0] + f'_{total}.pred' ) if save_predictions: logger.info(f'Saving prediction file to {pred_path}') with open(pred_path, 'w') as f: json.dump(pred_out, f) return exact_match_top1 def evaluate_results_kilt(predictions, qids, questions, answers, args, evidences, scores, titles): #wandb.init(project="DensePhrases (KILT)", mode="online" if args.wandb else "disabled") #wandb.config.update(args) total=len(predictions) # load title2id dict and convert predicted titles into wikipedia_ids with open(args.title2wikiid_path) as f: title2wikiid = json.load(f) pred_wikipedia_ids = [[[title2wikiid[t] for t in title_] for title_ in title] for title in titles] # dump official predictions if len(args.query_encoder_path) == 0: pred_dir = os.path.join(os.environ['DPH_SAVE_DIR'], 'pred-kilt') else: pred_dir = os.path.join(args.query_encoder_path, 'pred-kilt') if not os.path.exists(pred_dir): os.makedirs(pred_dir) pred_official_path = os.path.join( pred_dir, f'{args.query_encoder_path.split("/")[-1]}_' + os.path.splitext(os.path.basename(args.test_path))[0] + f'_{total}.jsonl' ) official_preds_to_save = [] for prediction, question, pred_wikipedia_id, qid in zip(predictions, questions, pred_wikipedia_ids, qids): outputs = [] for pred, pred_wid in zip(prediction, pred_wikipedia_id): outputs.append({ 'answer': pred, 'provenance':[{'wikipedia_id':pred_wid_} for pred_wid_ in pred_wid] }) official_preds_to_save.append({ 'id': qid, 'input': question, 'output': [outputs[0]] }) logger.info(f'Saving official prediction file to {pred_official_path}') kilt_store_data(pred_official_path, official_preds_to_save) assert '.jsonl' in args.kilt_gold_path, "kilt_gold_path should be .jsonl" result = kilt_evaluate( gold=args.kilt_gold_path, guess=pred_official_path) # logging results result_to_logging = { 'accuracy':result['downstream']['accuracy'], 'f1':result['downstream']['f1'], 'KILT-accuracy':result['kilt']['KILT-accuracy'], 'KILT-f1':result['kilt']['KILT-f1'], 'Rprec':result['retrieval']['Rprec'], 'recall@5':result['retrieval']['recall@5'] } logger.info(result_to_logging) #wandb.log(result_to_logging) # make custom predictions pred_out = {} for i in range(len(predictions)): # For debugging if i < 3: logger.info(f'{i+1}) {questions[i]}') logger.info(f'=> groundtruths: {answers[i]}, top 5 prediction: {predictions[i][:5]}') guess_answer = predictions[i][0] gold_candidate_answers
<gh_stars>0 """ Tools for converting CPAN packages to conda recipes. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import json import subprocess import sys from distutils.version import LooseVersion from glob import glob from io import open from os import makedirs from os.path import basename, dirname, join, exists from conda.api import get_index from conda.fetch import TmpDownload from conda.resolve import MatchSpec, Resolve from conda.utils import memoized from conda_build.config import config # Python 2.x backward compatibility if sys.version_info < (3, 0): str = unicode CPAN_META = """\ package: name: {packagename} version: !!str {version} source: {useurl}fn: {filename} {useurl}url: {cpanurl} {usemd5}md5: {md5} # patches: # List any patch files here # - fix.patch {build_comment}build: # If this is a new build for the same version, increment the build # number. If you do not include this key, it defaults to 0. {build_comment}number: 1 requirements: build: - perl{build_depends} run: - perl{run_depends} test: # Perl 'use' tests {import_comment}imports:{import_tests} # You can also put a file called run_test.pl (or run_test.py) in the recipe # that will be run at test time. # requires: # Put any additional test requirements here. For example # - nose about: home: {homeurl} license: {license} summary: {summary} # See # http://docs.continuum.io/conda/build.html for # more information about meta.yaml """ CPAN_BUILD_SH = """\ #!/bin/bash # If it has Build.PL use that, otherwise use Makefile.PL if [ -f Build.PL ]; then perl Build.PL ./Build ./Build test # Make sure this goes in site ./Build install --installdirs site elif [ -f Makefile.PL ]; then # Make sure this goes in site perl Makefile.PL INSTALLDIRS=site make make test make install else echo 'Unable to find Build.PL or Makefile.PL. You need to modify build.sh.' exit 1 fi # Add more build steps here, if they are necessary. # See # http://docs.continuum.io/conda/build.html # for a list of environment variables that are set during the build process. """ CPAN_BLD_BAT = """\ :: If it has Build.PL use that, otherwise use Makefile.PL IF exist Build.PL ( perl Build.PL IF errorlevel 1 exit 1 Build IF errorlevel 1 exit 1 Build test :: Make sure this goes in site Build install --installdirs site IF errorlevel 1 exit 1 ) ELSE IF exist Makefile.PL ( :: Make sure this goes in site perl Makefile.PL INSTALLDIRS=site IF errorlevel 1 exit 1 make IF errorlevel 1 exit 1 make test IF errorlevel 1 exit 1 make install ) ELSE ( ECHO 'Unable to find Build.PL or Makefile.PL. You need to modify bld.bat.' exit 1 ) :: Add more build steps here, if they are necessary. :: See :: http://docs.continuum.io/conda/build.html :: for a list of environment variables that are set during the build process. """ class InvalidReleaseError(RuntimeError): ''' An exception that is raised when a release is not available on MetaCPAN. ''' pass def main(args, parser): ''' Creates a bunch of CPAN conda recipes. ''' perl_version = config.CONDA_PERL package_dicts = {} [output_dir] = args.output_dir indent = '\n - ' args.packages = list(reversed(args.packages)) processed_packages = set() orig_version = args.version while args.packages: package = args.packages.pop() # If we're passed version in the same format as `PACKAGE=VERSION` # update version if '=' in package: package, __, args.version = package.partition('=') else: args.version = orig_version # Skip duplicates if package in processed_packages: continue processed_packages.add(package) # Convert modules into distributions orig_package = package package = dist_for_module(args.meta_cpan_url, package, perl_version) if package == 'perl': print(("WARNING: {0} is a Perl core module that is not developed " + "outside of Perl, so we are skipping creating a recipe " + "for it.").format(orig_package)) continue elif package not in {orig_package, orig_package.replace('::', '-')}: print(("WARNING: {0} was part of the {1} distribution, so we are " + "making a recipe for {1} instead.").format(orig_package, package)) latest_release_data = get_release_info(args.meta_cpan_url, package, None, perl_version) packagename = perl_to_conda(package) # Skip duplicates if ((args.version is not None and ((packagename + '-' + args.version) in processed_packages)) or ((packagename + '-' + latest_release_data['version']) in processed_packages)): continue d = package_dicts.setdefault(package, {'packagename': packagename, 'run_depends': '', 'build_depends': '', 'build_comment': '# ', 'test_commands': '', 'usemd5': '', 'useurl': '', 'summary': "''", 'import_tests': ''}) # Fetch all metadata from CPAN core_version = core_module_version(package, perl_version) release_data = get_release_info(args.meta_cpan_url, package, (LooseVersion(args.version) if args.version is not None else core_version), perl_version) # Check if versioned recipe directory already exists dir_path = join(output_dir, '-'.join((packagename, release_data['version']))) if exists(dir_path): raise RuntimeError("directory already exists: %s" % dir_path) # If this is something we're downloading, get MD5 if release_data['download_url']: d['cpanurl'] = release_data['download_url'] d['md5'], size = get_checksum_and_size(release_data['download_url']) d['filename'] = basename(release_data['archive']) print("Using url %s (%s) for %s." % (d['cpanurl'], size, package)) else: d['useurl'] = '#' d['usemd5'] = '#' d['cpanurl'] = '' d['filename'] = '' d['md5'] = '' try: d['homeurl'] = release_data['resources']['homepage'] except KeyError: d['homeurl'] = 'http://metacpan.org/pod/' + package if 'abstract' in release_data: d['summary'] = repr(release_data['abstract']).lstrip('u') d['license'] = (release_data['license'][0] if isinstance(release_data['license'], list) else release_data['license']) d['version'] = release_data['version'] processed_packages.add(packagename + '-' + d['version']) # Add Perl version to core module requirements, since these are empty # packages, unless we're newer than what's in core if core_version is not None and ((args.version is None) or (core_version >= LooseVersion(args.version))): d['useurl'] = '#' d['usemd5'] = '#' empty_recipe = True # Add dependencies to d if not in core, or newer than what's in core else: build_deps, run_deps, packages_to_append = deps_for_package( package, release_data, perl_version, args, output_dir, processed_packages) d['build_depends'] += indent.join([''] + list(build_deps | run_deps)) d['run_depends'] += indent.join([''] + list(run_deps)) args.packages.extend(packages_to_append) empty_recipe = False # Create import tests module_prefix = package.replace('::', '-').split('-')[0] if 'provides' in release_data: for provided_mod in sorted(set(release_data['provides'])): # Filter out weird modules that don't belong if (provided_mod.startswith(module_prefix) and '::_' not in provided_mod): d['import_tests'] += indent + provided_mod if d['import_tests']: d['import_comment'] = '' else: d['import_comment'] = '# ' # Write recipe files to a versioned directory makedirs(dir_path) print("Writing recipe for %s-%s" % (packagename, d['version'])) with open(join(dir_path, 'meta.yaml'), 'w') as f: f.write(CPAN_META.format(**d)) with open(join(dir_path, 'build.sh'), 'w') as f: if empty_recipe: f.write('#!/bin/bash\necho "Nothing to do."\n') else: f.write(CPAN_BUILD_SH.format(**d)) with open(join(dir_path, 'bld.bat'), 'w') as f: if empty_recipe: f.write('echo "Nothing to do."\n') else: f.write(CPAN_BLD_BAT.format(**d)) print("Done") @memoized def latest_pkg_version(pkg): ''' :returns: the latest version of the specified conda package available ''' r = Resolve(get_index()) try: pkg_list = sorted(r.get_pkgs(MatchSpec(pkg))) except RuntimeError: pkg_list = None if pkg_list: pkg_version = LooseVersion(pkg_list[-1].version) else: pkg_version = None return pkg_version @memoized def core_module_version(module, version): ''' :param module: Name of a Perl core module :type module: str :returns: The version of the specified module that is currently available in the specified version of Perl. If the version is `undef`, but the module is actually part of the Perl core, the version of Perl passed in will be used as the module version. ''' # In case we were given a dist, convert to module module = module.replace('-', '::') if version is None: version = LooseVersion(config.CONDA_PERL) else: version = LooseVersion(version) cmd = ['corelist', '-v', str(version), module] try: output = subprocess.check_output(cmd).decode('utf-8') except subprocess.CalledProcessError: sys.exit(('Error: command failed: %s\nPlease make sure you have ' + 'the perl conda package installed in your default ' + 'environment.') % ' '.join(cmd)) mod_version = output.split()[1] # If undefined, that could either mean it's versionless or not in core if mod_version == 'undef': # Check if it's actually in core cmd = ['corelist', module] output = subprocess.check_output(cmd).decode('utf-8') # If it's in core... if 'perl v' in output: first_version = output.partition('perl v')[2].strip() first_version = LooseVersion(first_version) # If it's newer than the specified version, return None if LooseVersion(first_version) > LooseVersion(version): mod_version = None else: mod_version = version # If it's not, return None else: mod_version = None else: mod_version = LooseVersion(mod_version) return mod_version def deps_for_package(package, release_data, perl_version, args, output_dir, processed_packages): ''' Build the sets of dependencies and packages we need recipes for. This should only be called for non-core modules/distributions, as dependencies are ignored for core modules. :param package: Perl distribution we're checking dependencies of. :type package: str :param release_data: The metadata about the current release of the package. :type release_data: dict :param perl_version: The target version of Perl we're building this for. This only really matters for core modules. :type perl_version: str :param args: The command-line arguments passed to the skeleton command. :type args: Namespace :param output_dir: The output directory to write recipes to :type output_dir: str :param processed_packages: The set of packages we have built recipes for already. :type processed_packages: set of
<filename>lightweight_mmm/plot.py # Copyright 2022 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plotting functions pre and post model fitting.""" import functools from typing import Any, List, Optional, Sequence, Tuple import arviz import jax import jax.numpy as jnp import matplotlib import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn import metrics from lightweight_mmm import lightweight_mmm from lightweight_mmm import preprocessing @functools.partial(jax.jit, static_argnames=("media_mix_model")) def _make_single_prediction(media_mix_model: lightweight_mmm.LightweightMMM, mock_media: jnp.ndarray, extra_features: Optional[jnp.ndarray], seed: Optional[int] ) -> jnp.ndarray: """Makes a prediction of a single row. Serves as a helper function for making predictions individually for each media channel and one row at a time. It is meant to be used vmaped otherwise it can be slow as it's meant to be used for plotting curve responses only. Use lightweight_mmm.LightweightMMM for regular predict functionality. Args: media_mix_model: Media mix model to use for getting the predictions. mock_media: Mock media for this iteration of predictions. extra_features: Extra features to use for predictions. seed: Seed to use for PRNGKey during sampling. For replicability run this function and any other function that gets predictions with the same seed. Returns: A point estimate for the given data. """ return media_mix_model.predict( media=jnp.expand_dims(mock_media, axis=0), extra_features=extra_features, seed=seed).mean(axis=0) @functools.partial( jax.jit, static_argnames=("media_mix_model", "target_scaler")) def _generate_diagonal_predictions( media_mix_model: lightweight_mmm.LightweightMMM, media_values: jnp.ndarray, extra_features: Optional[jnp.ndarray], target_scaler: Optional[preprocessing.CustomScaler], prediction_offset: jnp.ndarray, seed: Optional[int]): """Generates predictions for one value per channel leaving the rest to zero. This function does the following steps: - Vmaps the single prediction function on axis=0 of the media arg. - Diagonalizes the media input values so that each value is represented along side zeros on for the rest of the channels. - Generate predictions. - Unscale prediction if target_scaler is given. Args: media_mix_model: Media mix model to use for plotting the response curves. media_values: Media values. extra_features: Extra features values. target_scaler: Scaler used for scaling the target, to unscaled values and plot in the original scale. prediction_offset: The value of a prediction of an all zero media input. seed: Seed to use for PRNGKey during sampling. For replicability run this function and any other function that gets predictions with the same seed. Returns: The predictions for the given data. """ make_predictions = jax.vmap(fun=_make_single_prediction, in_axes=(None, 0, None, None)) diagonal = jnp.eye(media_values.shape[0]) if media_values.ndim == 2: # Only two since we only provide one row diagonal = jnp.expand_dims(diagonal, axis=-1) media_values = jnp.expand_dims(media_values, axis=0) diag_media_values = diagonal * media_values predictions = make_predictions( media_mix_model, diag_media_values, extra_features, seed) - prediction_offset predictions = jnp.squeeze(predictions) if target_scaler: predictions = target_scaler.inverse_transform(predictions) if predictions.ndim == 2: predictions = jnp.sum(predictions, axis=-1) return predictions def _calculate_number_rows_plot(n_media_channels: int, n_columns: int): """Calculates the number of rows of plots needed to fit n + 1 plots in n_cols. Args: n_media_channels: Number of media channels. The total of plots needed is n_media_channels + 1. n_columns: Number of columns in the plot grid. Returns: The number of rows of plots needed to fit n + 1 plots in n cols """ if n_media_channels % n_columns == 0: return n_media_channels // n_columns + 1 return n_media_channels // n_columns + 2 def plot_response_curves( media_mix_model: lightweight_mmm.LightweightMMM, media_scaler: Optional[preprocessing.CustomScaler] = None, target_scaler: Optional[preprocessing.CustomScaler] = None, prices: jnp.ndarray = None, optimal_allocation_per_timeunit: Optional[jnp.ndarray] = None, steps: int = 50, percentage_add: float = 0.2, apply_log_scale: bool = False, figure_size: Tuple[int, int] = (10, 14), n_columns: int = 3, marker_size: int = 8, legend_fontsize: int = 8, seed: Optional[int] = None) -> matplotlib.figure.Figure: """Plots the response curves of each media channel based on the model. It plots an individual subplot for each media channel. If ' optimal_allocation_per_timeunit is given it uses it to add markers based on historic average spend and the given optimal one on each of the individual subplots. It then plots a combined plot with all the response curves which can be changed to log scale if apply_log_scale is True. Args: media_mix_model: Media mix model to use for plotting the response curves. media_scaler: Scaler that was used to scale the media data before training. target_scaler: Scaler used for scaling the target, to unscaled values and plot in the original scale. prices: Prices to translate the media units to spend. If all your data is already in spend numbers you can leave this as None. If some of your data is media spend and others is media unit, leave the media spend with price 1 and add the price to the media unit channels. optimal_allocation_per_timeunit: Optimal allocation per time unit per media channel. This can be obtained by running the optimization provided by LightweightMMM. steps: Number of steps to simulate. percentage_add: Percentage too exceed the maximum historic spend for the simulation of the response curve. apply_log_scale: Whether to apply the log scale to the predictions (Y axis). When some media channels have very large scale compare to others it might be useful to use apply_log_scale=True. Default is False. figure_size: Size of the plot figure. n_columns: Number of columns to display in the subplots grid. Modifying this parameter might require to adjust figure_size accordingly for the plot to still have reasonable structure. marker_size: Size of the marker for the optimization annotations. Only useful if optimal_allocation_per_timeunit is not None. Default is 8. legend_fontsize: Legend font size for individual subplots. seed: Seed to use for PRNGKey during sampling. For replicability run this function and any other function that gets predictions with the same seed. Returns: Plots of response curves. """ if not hasattr(media_mix_model, "trace"): raise lightweight_mmm.NotFittedModelError( "Model needs to be fit first before attempting to plot its response " "curves.") media = media_mix_model.media media_maxes = media.max(axis=0) * (1 + percentage_add) if media_mix_model._extra_features is not None: extra_features = jnp.expand_dims( media_mix_model._extra_features.mean(axis=0), axis=0) else: extra_features = None media_ranges = jnp.expand_dims( jnp.linspace(start=0, stop=media_maxes, num=steps), axis=0) make_predictions = jax.vmap( jax.vmap(_make_single_prediction, in_axes=(None, 0, None, None), out_axes=0), in_axes=(None, 0, None, None), out_axes=1) diagonal = jnp.repeat( jnp.eye(media_mix_model.n_media_channels), steps, axis=0).reshape(media_mix_model.n_media_channels, steps, media_mix_model.n_media_channels) prediction_offset = media_mix_model.predict( media=jnp.zeros((1, *media.shape[1:])), extra_features=extra_features).mean(axis=0) if media.ndim == 3: diagonal = jnp.expand_dims(diagonal, axis=-1) prediction_offset = jnp.expand_dims(prediction_offset, axis=0) mock_media = media_ranges * diagonal predictions = jnp.squeeze(a=make_predictions(media_mix_model, mock_media, extra_features, seed)) predictions = predictions - prediction_offset media_ranges = jnp.squeeze(media_ranges) if target_scaler: predictions = target_scaler.inverse_transform(predictions) if media_scaler: media_ranges = media_scaler.inverse_transform(media_ranges) if prices is not None: if media.ndim == 3: prices = jnp.expand_dims(prices, axis=-1) media_ranges *= prices if predictions.ndim == 3: media_ranges = jnp.sum(media_ranges, axis=-1) predictions = jnp.sum(predictions, axis=-1) if optimal_allocation_per_timeunit is not None: average_allocation = media_mix_model.media.mean(axis=0) average_allocation_predictions = _generate_diagonal_predictions( media_mix_model=media_mix_model, media_values=average_allocation, extra_features=extra_features, target_scaler=target_scaler, prediction_offset=prediction_offset, seed=seed) optimal_allocation_predictions = _generate_diagonal_predictions( media_mix_model=media_mix_model, media_values=optimal_allocation_per_timeunit, extra_features=extra_features, target_scaler=target_scaler, prediction_offset=prediction_offset, seed=seed) if media_scaler: average_allocation = media_scaler.inverse_transform(average_allocation) optimal_allocation_per_timeunit = media_scaler.inverse_transform( optimal_allocation_per_timeunit) if prices is not None: optimal_allocation_per_timeunit *= prices average_allocation *= prices if media.ndim == 3: average_allocation = jnp.sum(average_allocation, axis=-1) optimal_allocation_per_timeunit = jnp.sum( optimal_allocation_per_timeunit, axis=-1) kpi_label = "KPI" if target_scaler else "Normalized KPI" fig = plt.figure(media_mix_model.n_media_channels + 1, figsize=figure_size, tight_layout=True) n_rows = _calculate_number_rows_plot( n_media_channels=media_mix_model.n_media_channels, n_columns=n_columns) last_ax = fig.add_subplot(n_rows, 1, n_rows) for i in range(media_mix_model.n_media_channels): ax = fig.add_subplot(n_rows, n_columns, i + 1) sns.lineplot( x=media_ranges[:, i], y=predictions[:, i], label=media_mix_model.media_names[i], color=sns.color_palette()[i], ax=ax) sns.lineplot( x=media_ranges[:, i], y=jnp.log(predictions[:, i]) if apply_log_scale else predictions[:, i], label=media_mix_model.media_names[i], color=sns.color_palette()[i], ax=last_ax) if optimal_allocation_per_timeunit is not None: ax.plot( average_allocation[i], average_allocation_predictions[i], marker="o", markersize=marker_size, label="avg_spend", color=sns.color_palette()[i]) ax.plot( optimal_allocation_per_timeunit[i], optimal_allocation_predictions[i], marker="x", markersize=marker_size + 2, label="optimal_spend", color=sns.color_palette()[i]) ax.set_ylabel(kpi_label) ax.set_xlabel("Normalized Spend" if not media_scaler else "Spend") ax.legend(fontsize=legend_fontsize) fig.suptitle("Response curves", fontsize=20) last_ax.set_ylabel(kpi_label if not apply_log_scale else f"log({kpi_label})") last_ax.set_xlabel("Normalized spend per channel" if not media_scaler else "Spend per channel") plt.close() return fig def plot_cross_correlate(feature: jnp.ndarray, target: jnp.ndarray, maxlags: int = 10) -> Tuple[int, float]: """Plots the cross correlation coefficients between 2 vectors. In the chart look for positive peaks, this shows how the
or int(isValue) == 0) : # сохраним заголовок, если он определен для ЭТОГО класса объектов. sqlStr = "INSERT INTO " + self._headStruct.getTableName() +" ( " + headParamsObj.strListAttrNames + ") VALUES " +\ "( " + headParamsObj.strListAttrValues + " ) returning " + self._headStruct.getIdFieldName() + "; " headValue = self.getToInsertValue( self._headStruct.getLisAttr()) _loDb.execute(sqlStr, tuple(headValue) ) # 'dt_header_type','public_key' sourse = _loDb.fetchone() self.__dict__[self._headStruct.getIdFieldName()] = sourse[self._headStruct.getIdFieldName()] elif self._isHeaderEdit and self.getValueIdFieldName(self._headStruct) > 0 : # Заголовок Объекта поменялся! - его надо сохранить! if self._headStruct.getLisAttr() != None: listSet = self.splitAttributes2Update (self._headStruct.getLisAttr()) listWhere = self.splitAttributes2Update (self._headStruct.getMainPrimaryList()) # mainPrimaryList if len(listSet.listAttrValues) > 0 and len(listWhere.listAttrValues) > 0: whereStr = ' AND '.join(listWhere.listSetAttrNames) strSet = ' , '.join(listSet.listSetAttrNames) sqlStr = "UPDATE " + self._headStruct.getTableName() + " SET " + strSet + " WHERE " + whereStr toValueList = [] toValueList.extend(listSet.listAttrValues) toValueList.extend(listWhere.listAttrValues) _loDb.execute(sqlStr, tuple(toValueList)) if isValue != None and int(isValue) > 0 : list = [] if self._dataStruct.getMainPrimaryList() != None: # Надо построить слварь из всех полей, записанных в mainPrimaryList list = self.getList2Update (self._dataStruct.getMainPrimaryList()) dataParamseObj = self.splitAttributes(self._dataStruct.getLisAttr()) if len(list) > 0: whtreStr = ' AND '.join(list) # Все ревизии ЭТОЙ записи - устарели!!!! - проабдейтим список ревизий sqlStr = "UPDATE " + self._dataStruct.getTableName() + " SET actual_flag = 'O' WHERE " + whtreStr logging.info(' SAVE:: sqlStr = ' + str(sqlStr)) _loDb.execute(sqlStr) operation_timestamp = datetime.now() sha_hash = hashlib.sha256( tornado.escape.utf8(revisions_sha_hash_source + str(operation_timestamp) ) ).hexdigest() returningStr = '' if self._dataStruct.getIdFieldName() != None: returningStr = " returning " + self._dataStruct.getIdFieldName() # Теперь можно записать новые данные в ревизии. dataParamseObj = self.splitAttributes(self._dataStruct.getLisAttr()) dataParamseObj.strListAttrNames += ', actual_flag, revision_author_id, operation_flag, sha_hash, operation_timestamp ' dataParamseObj.strListAttrValues += ", %s, %s, %s, %s, %s " sqlStr = "INSERT INTO " + self._dataStruct.getTableName() +" ( " + dataParamseObj.strListAttrNames + ") VALUES " +\ "( " + dataParamseObj.strListAttrValues + " ) " +\ " ON CONFLICT (sha_hash) DO UPDATE SET actual_flag = 'A' " + returningStr + ' ;' dataValue = self.getToInsertValue( self._dataStruct.getLisAttr()) dataValue += ['A', autorId, operationFlag, sha_hash, operation_timestamp] logging.info(' SAVE:: 2 sqlStr = ' + str(sqlStr)) logging.info(' SAVE:: 2 dataValue = ' + str(dataValue)) _loDb.execute(sqlStr, tuple(dataValue)) # logging.error(' save AFTER SAVE self:: ' + str (self) ) # если Это статьи, тогда нам нужнео сохранить статью, и получить ее ИД! if returningStr != '': sourse = _loDb.fetchone() self.__dict__[self._dataStruct.getIdFieldName()] = sourse[self._dataStruct.getIdFieldName()] # self.commit() self.commit() # logging.info(' SAVE:: 2 self._dataStruct.getIdFieldName() = ' + str(self._dataStruct.getIdFieldName())) # logging.info(' SAVE:: 2 self._headStruct.getIdFieldName() = ' + str(self._headStruct.getIdFieldName())) if self._dataStruct.getIdFieldName(): return self.__dict__[self._dataStruct.getIdFieldName()] elif self._headStruct.getIdFieldName(): return self.__dict__[self._headStruct.getIdFieldName()] except psycopg2.Error as error: logging.error(' save exception:: ' + str (error) ) logging.error(' save exception:: sqlStr = ' + sqlStr ) logging.error("Exception occurred", exc_info=True) # _loDb.rollback() self.rollback() raise WikiException(error) def select(self, selectStr, # строка - чего хотим получить из селекта addTables, # строка - список ДОПОЛНИТЕЛЬНЫХ таблиц (основную таблизу для объекта указываем при инициализации) anyParams = {} # все остальные секции селекта ): """ получить данные (select) - ну, вынести его - и делать его из нескольких секций: - селект (набор полей, котрые хотим получить из выборки) - фром (набор дополнительных (кроме основной) таблиц для выборк) anyParams = { 'joinStr': '', # строка - список присоединенных таблиц 'whereStr': '', # строка набор условий для выбора строк 'groupStr': '', # строка группировка 'orderStr': '', # строка порядок строк 'limitStr': '' # строка страница выборки } - жоин - веа - ордер - групп - лимит вот как то так, общий вид селекта, может выглядеть примерно так: SELECT users.author_id, users.author_login, users.author_name, users.author_role, users.author_phon, users.author_email, users.author_external FROM users WHERE (author_login = "login" OR author_email = "login" ) AND author_pass = <PASSWORD>9t2DJ7rqm1bwB/PrsH0." """ try: _loDb = self.cursor() sqlStr = 'SELECT '+ selectStr if addTables != None: sqlStr += ' FROM ' + self._dataStruct.getTableName() if addTables != '': sqlStr += ', ' + str(addTables) if str(anyParams.get('joinStr', '')) != '': sqlStr += ' ' + str(anyParams.get('joinStr')) if str(anyParams.get('whereStr', '')) != '': sqlStr += ' WHERE ' + str(anyParams.get('whereStr')) if str(anyParams.get('groupStr', '')) != '': sqlStr += ' GROUP BY ' + str(anyParams.get('groupStr')) if str(anyParams.get('orderStr', '')) != '': sqlStr += ' ORDER BY ' + str(anyParams.get('orderStr')) if str(anyParams.get('limitStr', '')) != '': sqlStr += ' LIMIT ' + str(anyParams.get('limitStr')) logging.error(' select :: sqlStr = ' + str (sqlStr) ) _loDb.execute(sqlStr) sourse = _loDb.fetchall() outListObj = self.dict2obj(sourse) return outListObj except psycopg2.Error as error: logging.error(' select exception:: sqlStr = ' + sqlStr ) self.rollback() raise WikiException(error) def rowSelect(self, selectRow, # строка - селект ): """ получить данные (select) - из просто самого обычного селекта, - СТРОКИ """ try: _loDb = self.cursor() logging.info('select:: list:: selectRow = ' + str (selectRow) ) _loDb.execute(selectRow) sourse = _loDb.fetchall() outListObj = self.dict2obj(sourse) return outListObj except psycopg2.Error as error: logging.error(' rowSelect exception:: sqlStr = ' + sqlStr ) self.rollback() raise WikiException(error) def getToInsertValue(self, listTableFields): """ получить списокреальных значений атрибутов класса в момент исполнения метода отдать кортежем """ objValuesNameList = list(self.__dict__.keys()) listAttrValues = [] for objValue in objValuesNameList: if objValue.find('_') != 0 and (objValue) in listTableFields : listAttrValues.append(self.__getattribute__(objValue)) return listAttrValues def getList2Update(self, mainPrimaryList): """ получить набор параметров для абдейтов значений """ listAttrValues = [] for objValue in mainPrimaryList: listAttrValues.append(objValue + ' = ' + str(self.__getattribute__(objValue)) ) return listAttrValues def splitAttributes(self, listTableFields): """ разделить собственные параметры (без параметров с подчеркиваниями ) на 2 списка - 1 - список имен параметров 2 - значений параметров это нужно для того, что бы использовать все параметры в операции добавления или изменения данных в базе данных. На входе - список полей таблицы, и мы из полного набора всех атрибутов в объкте, выберем только те, что есть во входном списке. На выходе получим словарь из двух списков """ # objDict = self.__dict__ objValuesNameList = list(self.__dict__.keys()) class Out: pass out = Out() out.listAttrNames = [] out.listAttrValues = [] for objValue in objValuesNameList: if objValue.find('_') != 0 and (objValue) in listTableFields : out.listAttrNames.append(objValue) out.listAttrValues.append(self.__getattribute__(objValue)) out.strListAttrNames = ", ".join(out.listAttrNames) out.strListAttrValues = ", ".join([ '%s' for row in out.listAttrNames]) # "'" + "', '".join(map(str,listAttrValues)) + "'" return out def splitAttributes2Update(self, listTableFields): """ Для генерации Апдейта разделить собственные параметры (без параметров с подчеркиваниями ) на 2 списка - 1 - список имен параметров 2 - значений параметров это нужно для того, что бы использовать все параметры в операции добавления или изменения данных в базе данных. На входе - список полей таблицы, и мы из полного набора всех атрибутов в объкте, выберем только те, что есть во входном списке. На выходе получим объект из двух списков """ objValuesNameList = list(self.__dict__.keys()) class Out: pass out = Out() out.listAttrValues = list() out.listSetAttrNames = list() for objValue in objValuesNameList: if objValue.find('_') != 0 and (objValue) in listTableFields : out.listAttrValues.append(self.__getattribute__(objValue)) out.listSetAttrNames.append( ' ' + objValue + ' = %s' ) return out def dict2obj(self, dictSou): """ преобразовать словарь (допустим, кортеж данных из селекта) в объект """ oList = [] if len(dictSou) == 0: return oList for row in dictSou: # logging.info(' dict2obj:: row = ' + str(row)) # logging.info(' dict2obj:: type(row) = ' + str(type(row))) rowDict = dict(row) # logging.info(' dict2obj:: rowDict = ' + str(rowDict)) oneObj = self.__class__() for key in rowDict.items(): #.__getattribute__(name): # logging.info(' dict2obj:: key = ' + str(key)) oneObj.__setattr__(key[0], key[1]) oList.append(oneObj) return oList def getValueIdFieldName (self, vStruct): try: idName = vStruct.getIdFieldName() if idName != None: return self.__dict__[idName] except: return None def splitAttributes2Str(self): """ разделить собственные параметры (без параметров с подчеркиваниями ) на 2 списка - 1 - список имен параметров 2 - значений параметров это нужно для того, что бы использовать все параметры в операции добавления или изменения
== flop[2]+1 and x[1] == flop[2]-1) or (x[0] == flop[2]+2 and x[1] == flop[2]+1))] if board_type == "two-tone": my_hands_s_3_to_straight_low_end_bdfd = [(x, 1) for x in my_hands[1] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] my_hands_o_3_to_straight_low_end_bdfd = [(x, 6) for x in my_hands[2] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] elif board_type == "rainbow": my_hands_s_3_to_straight_low_end_bdfd = [(x, 3) for x in my_hands[1] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] my_hands_o_3_to_straight_low_end_bdfd = [] else: my_hands_s_3_to_straight_low_end_bdfd = [] my_hands_o_3_to_straight_low_end_bdfd = [] if board_type == "two-tone": my_hands_s_3_to_straight_low_end = [(x, 4) for x in my_hands[1] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] my_hands_o_3_to_straight_low_end = [(x, 12) for x in my_hands[2] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] elif board_type == "rainbow": my_hands_s_3_to_straight_low_end = [(x, 4) for x in my_hands[1] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] my_hands_o_3_to_straight_low_end = [(x, 12) for x in my_hands[2] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] else: my_hands_s_3_to_straight_low_end = [(x, 4) for x in my_hands[1] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] my_hands_o_3_to_straight_low_end = [(x, 12) for x in my_hands[2] if x[0] != 13 and (x[0] not in flop and x[1] not in flop) and ((x[0] == flop[0]-1 and x[1] == flop[0]-2) or (x[0] == flop[1]-1 and x[1] == flop[1]-2) or (x[0] == flop[2]-1 and x[1] == flop[2]-2))] if board_type == "two-tone": my_hands_s_5_unique_cards_within_7_values_bdfd = [(x, 1) for x in my_hands[1] if (x[0] not in flop and x[1] not in flop) and max(flop+x) - min(flop+x) <= 7] my_hands_o_5_unique_cards_within_7_values_bdfd = [(x, 6) for x in my_hands[2] if (x[0] not in flop and x[1] not in flop) and max(flop+x) - min(flop+x) <= 7] elif board_type == "rainbow": my_hands_s_5_unique_cards_within_7_values_bdfd = [(x, 3) for x in my_hands[1] if (x[0] not in flop and x[1] not in flop) and max(flop+x) - min(flop+x) <= 7] my_hands_o_5_unique_cards_within_7_values_bdfd = [] else: my_hands_s_5_unique_cards_within_7_values_bdfd = [] my_hands_o_5_unique_cards_within_7_values_bdfd = [] if board_type == "two-tone": my_hands_pp_q_minus_bdfd = [(x, 3) for x in my_hands[0] if (x[0] not in flop) and x[0] <= 12] my_hands_s_q_minus_bdfd = [(x, 1) for x in my_hands[1] if (x[0] not in flop and x[1] not in flop) and x[0] <= 12] my_hands_o_q_minus_bdfd = [(x, 6) for x in my_hands[2] if (x[0] not in flop and x[1] not in flop) and x[0] <= 12] elif board_type == "rainbow": my_hands_pp_q_minus_bdfd = [] my_hands_s_q_minus_bdfd = [(x, 3) for x in my_hands[1] if (x[0] not in flop and x[1] not in flop) and x[0] <= 12] my_hands_o_q_minus_bdfd = [] else: my_hands_pp_q_minus_bdfd = [] my_hands_s_q_minus_bdfd = [] my_hands_o_q_minus_bdfd = [] #### 3 cards within 4 values with two overcards my_hands_s_lowest_card_is_one_of_3_cards_within_4_values_and_two_overcards = [(x, 4) for x in my_hands[1] if x[1] > flop[0] and ((max(flop + [x[1]]) - sorted(set(flop + [x[1]] + [-20,-19,-18]))[-3] <= 3) or (max(flop + x) - sorted(set(flop + x + [-20,-19,-18]))[-3] <= 3))] my_hands_o_lowest_card_is_one_of_3_cards_within_4_values_and_two_overcards = [(x, 12) for x in my_hands[2] if x[1] > flop[0] and ((max(flop + [x[1]]) - sorted(set(flop + [x[1]] + [-20,-19,-18]))[-3] <= 3) or (max(flop + x) - sorted(set(flop + x + [-20,-19,-18]))[-3] <= 3))] if board_type == "two-tone": my_hands_pp_a_minus_bdfd = [(x, 3) for x in my_hands[0] if (x[0] not in flop) and x[0] > 12 and x[0] <= 14] my_hands_s_a_minus_bdfd = [(x, 1) for x in my_hands[1] if (x[0] not in flop and x[1] not in flop) and x[0] > 12 and x[0] <= 14] my_hands_o_a_minus_bdfd = [(x, 6) for x in my_hands[2] if (x[0] not in flop and x[1] not in flop) and x[0] > 12 and x[0] <= 14] elif board_type == "rainbow": my_hands_pp_a_minus_bdfd = [] my_hands_s_a_minus_bdfd = [(x, 3) for x in my_hands[1] if (x[0] not in flop and x[1] not in flop) and x[0] > 12 and x[0] <= 14] my_hands_o_a_minus_bdfd = [] else: my_hands_pp_a_minus_bdfd = [] my_hands_s_a_minus_bdfd = [] my_hands_o_a_minus_bdfd = [] # Important note: lower ranked rules may include higher ranked hands # Also tp_j_kicker includes trips because it's okay that it does because of the theory: # actions taken by one hand are taken by all better hands within the cat # ! Just be careful that you remove cat1 hands from final cat2, same with cat3 with both cat1 & 2 # Might want to QA with a hand matrix coloring compare with the existing matrix based on default rules # Cat1 #### Assuming no flushes (monotone boards) for simplicity opponents_hands_s_straight = [] if is_paired else [(x, 4) for x in opponents_hands[1] if max(x + flop) - min(x + flop) == 4 or max([1 if y == 14 else y for y in (x + flop)]) - min([1 if y == 14 else y for y in (x + flop)]) == 4] opponents_hands_o_straight = [] if is_paired else [(x, 12) for x in opponents_hands[2] if max(x + flop) - min(x + flop) == 4 or max([1 if y == 14 else y for y in (x + flop)]) - min([1 if y == 14 else y for y in (x + flop)]) == 4] opponents_hands_pp_sets = [(x, 3) for x in opponents_hands[0] if x[0] in flop] opponents_hands_s_trips = [] if not is_paired else [(x, 2) for x in opponents_hands[1] if x[0] == paired_value or x[1] == paired_value] opponents_hands_o_trips = [] if not is_paired else [(x, 6) for x in opponents_hands[2] if x[0] == paired_value or x[1] == paired_value] # 2 combos most times, not 3; 7 more often than 6 opponents_hands_s_two_pair = [] if is_paired else [(x, 2) for x in opponents_hands[1] if x[0] in flop and x[1] in flop] opponents_hands_o_two_pair = [] if is_paired else [(x, 7) for x in opponents_hands[2] if x[0] in flop and x[1] in flop] opponents_hands_pp_overpair_9plus = [(x, 6) for x in opponents_hands[0] if x[0] > flop[0] and x[0] >= 9] opponents_hands_pp_any_overpair = [(x, 6) for x in opponents_hands[0] if x[0] > flop[0]] opponents_hands_s_tp_k_kicker = [(x, 3) for x in opponents_hands[1] if (x[0] == flop[0] and x[1] >= 13) or (x[1] == flop[0] and x[0] >= 13)] opponents_hands_o_tp_k_kicker = [(x, 9) for x in opponents_hands[2] if (x[0] == flop[0] and x[1] >= 13) or (x[1] == flop[0] and x[0] >= 13)] opponents_hands_s_tp_j_kicker = [(x, 3) for x in opponents_hands[1] if (x[0] == flop[0] and x[1] >= 11 and x[1] <= 12 and x[1] not in flop) or (x[1] == flop[0] and x[0] >= 11 and x[0] <= 12 and x[0] not in flop)] opponents_hands_o_tp_j_kicker = [(x, 9) for
*args) -> "void": r""" *Overload 1:* 获取椭圆属性 | *Overload 2:* 设置椭圆属性 | *Overload 3:* 设置椭圆属性 """ return _gskernel.GsArcPointSymbol_EllipseParameter(self, *args) def LongAxis(self, *args) -> "void": r""" *Overload 1:* 获取长轴长度 | *Overload 2:* 设置长轴长度 """ return _gskernel.GsArcPointSymbol_LongAxis(self, *args) def ShortAxis(self, *args) -> "void": r""" *Overload 1:* 获取短轴长度 | *Overload 2:* 设置短轴长度 """ return _gskernel.GsArcPointSymbol_ShortAxis(self, *args) def Size(self, *args) -> "void": r""" *Overload 1:* 获取符号大小 | *Overload 2:* 设置符号大小 """ return _gskernel.GsArcPointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 点符号的矩形范围""" return _gskernel.GsArcPointSymbol_Envelope(self) def __init__(self, *args): _gskernel.GsArcPointSymbol_swiginit(self, _gskernel.new_GsArcPointSymbol(*args)) __swig_destroy__ = _gskernel.delete_GsArcPointSymbol def StartAngle(self, *args) -> "void": r""" *Overload 1:* 截取圆中arc的起始角度 | *Overload 2:* 设置截取圆中arc的起始角度 """ return _gskernel.GsArcPointSymbol_StartAngle(self, *args) def EndAngle(self, *args) -> "void": r""" *Overload 1:* 截取圆中arc的终止角度 | *Overload 2:* 设置截取圆中arc的终止角度 """ return _gskernel.GsArcPointSymbol_EndAngle(self, *args) def LineWidth(self, *args) -> "void": r""" *Overload 1:* 符号的线宽 | *Overload 2:* 设置符号的线宽 """ return _gskernel.GsArcPointSymbol_LineWidth(self, *args) # Register GsArcPointSymbol in _gskernel: _gskernel.GsArcPointSymbol_swigregister(GsArcPointSymbol) class GsLinePointSymbol(GsPointSymbol): r""" 线的点符号。""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): r""" *Overload 1:* 默认构造函数 | *Overload 2:* 从颜色和线宽构造 """ _gskernel.GsLinePointSymbol_swiginit(self, _gskernel.new_GsLinePointSymbol(*args)) __swig_destroy__ = _gskernel.delete_GsLinePointSymbol def StartPoint(self, *args) -> "GsRawPoint": r""" *Overload 1:* 设置LinePoint的起点坐标 | *Overload 2:* 获取LinePoint的起点 """ return _gskernel.GsLinePointSymbol_StartPoint(self, *args) def EndPoint(self, *args) -> "GsRawPoint": r""" *Overload 1:* 设置LinePoint的终点坐标 | *Overload 2:* 获取LinePoint的终点 """ return _gskernel.GsLinePointSymbol_EndPoint(self, *args) def Width(self, *args) -> "double": r""" *Overload 1:* 设置线宽度 | *Overload 2:* 获取线宽度 """ return _gskernel.GsLinePointSymbol_Width(self, *args) def Size(self, *args) -> "void": r""" *Overload 1:* 符号大小 | *Overload 2:* 设置符号大小 """ return _gskernel.GsLinePointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 点符号的矩形范围""" return _gskernel.GsLinePointSymbol_Envelope(self) # Register GsLinePointSymbol in _gskernel: _gskernel.GsLinePointSymbol_swigregister(GsLinePointSymbol) class GsCurvelinePointSymbol(GsPointSymbol): r""" 曲线点符号""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def CurvePoints(self, *args) -> "void": r""" *Overload 1:* 获取节点类型数组 | *Overload 2:* 获取的节点类型数组 | *Overload 3:* 设置点 """ return _gskernel.GsCurvelinePointSymbol_CurvePoints(self, *args) def Size(self, *args) -> "double": r""" *Overload 1:* 设置符号大小 | *Overload 2:* 设置符号大小 """ return _gskernel.GsCurvelinePointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 符号的矩形范围""" return _gskernel.GsCurvelinePointSymbol_Envelope(self) def __init__(self, *args): _gskernel.GsCurvelinePointSymbol_swiginit(self, _gskernel.new_GsCurvelinePointSymbol(*args)) __swig_destroy__ = _gskernel.delete_GsCurvelinePointSymbol def Width(self, *args) -> "void": r""" *Overload 1:* 获取线宽度 | *Overload 2:* 设置线宽度 """ return _gskernel.GsCurvelinePointSymbol_Width(self, *args) # Register GsCurvelinePointSymbol in _gskernel: _gskernel.GsCurvelinePointSymbol_swigregister(GsCurvelinePointSymbol) class GsPolygonPointSymbol(GsSurfacePointSymbol): r""" 面点符号""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def CurvePoints(self, *args) -> "void": r""" *Overload 1:* 获取节点类型数组 | *Overload 2:* 获取的节点类型数组 | *Overload 3:* 设置点 """ return _gskernel.GsPolygonPointSymbol_CurvePoints(self, *args) def Size(self, *args) -> "double": r""" *Overload 1:* 设置符号大小 | *Overload 2:* 设置符号大小 """ return _gskernel.GsPolygonPointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 符号的矩形范围""" return _gskernel.GsPolygonPointSymbol_Envelope(self) def __init__(self, *args): _gskernel.GsPolygonPointSymbol_swiginit(self, _gskernel.new_GsPolygonPointSymbol(*args)) __swig_destroy__ = _gskernel.delete_GsPolygonPointSymbol # Register GsPolygonPointSymbol in _gskernel: _gskernel.GsPolygonPointSymbol_swigregister(GsPolygonPointSymbol) eAsteristkOrdination = _gskernel.eAsteristkOrdination r""" 普通型""" eAsteristkCross = _gskernel.eAsteristkCross r""" 交叉型""" eAsteristkInternal = _gskernel.eAsteristkInternal r""" 内接型""" eAsteristkRadiation = _gskernel.eAsteristkRadiation r""" 辐射型""" class GsEllipseSurfacePointSymbol(GsSurfacePointSymbol): r""" 类椭圆点符号基类""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr __swig_destroy__ = _gskernel.delete_GsEllipseSurfacePointSymbol def EllipseParameter(self, *args) -> "void": r""" *Overload 1:* 获取椭圆属性 | *Overload 2:* 设置椭圆属性 | *Overload 3:* 设置椭圆属性 """ return _gskernel.GsEllipseSurfacePointSymbol_EllipseParameter(self, *args) def LongAxis(self, *args) -> "void": r""" *Overload 1:* 获取长轴长度 | *Overload 2:* 设置长轴长度 """ return _gskernel.GsEllipseSurfacePointSymbol_LongAxis(self, *args) def ShortAxis(self, *args) -> "void": r""" *Overload 1:* 获取短轴长度 | *Overload 2:* 设置短轴长度 """ return _gskernel.GsEllipseSurfacePointSymbol_ShortAxis(self, *args) def Size(self, *args) -> "void": r""" *Overload 1:* 获取符号大小 | *Overload 2:* 设置符号大小 """ return _gskernel.GsEllipseSurfacePointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 点符号的矩形范围""" return _gskernel.GsEllipseSurfacePointSymbol_Envelope(self) # Register GsEllipseSurfacePointSymbol in _gskernel: _gskernel.GsEllipseSurfacePointSymbol_swigregister(GsEllipseSurfacePointSymbol) class GsAsteriskPointSymbol(GsEllipseSurfacePointSymbol): r""" 星形点符号""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def EllipseParameter(self, *args) -> "void": r""" *Overload 1:* 获取椭圆属性 | *Overload 2:* 设置椭圆属性 | *Overload 3:* 设置椭圆属性 """ return _gskernel.GsAsteriskPointSymbol_EllipseParameter(self, *args) def LongAxis(self, *args) -> "void": r""" *Overload 1:* 获取长轴长度 | *Overload 2:* 设置长轴长度 """ return _gskernel.GsAsteriskPointSymbol_LongAxis(self, *args) def ShortAxis(self, *args) -> "void": r""" *Overload 1:* 获取短轴长度 | *Overload 2:* 设置短轴长度 """ return _gskernel.GsAsteriskPointSymbol_ShortAxis(self, *args) def Size(self, *args) -> "void": r""" *Overload 1:* 获取符号大小 | *Overload 2:* 设置符号大小 """ return _gskernel.GsAsteriskPointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 点符号的矩形范围""" return _gskernel.GsAsteriskPointSymbol_Envelope(self) def __init__(self): _gskernel.GsAsteriskPointSymbol_swiginit(self, _gskernel.new_GsAsteriskPointSymbol()) __swig_destroy__ = _gskernel.delete_GsAsteriskPointSymbol def Rate(self, *args) -> "void": r""" *Overload 1:* 比例 | *Overload 2:* 设置比例 """ return _gskernel.GsAsteriskPointSymbol_Rate(self, *args) def AsterType(self, *args) -> "void": r""" *Overload 1:* 获取星型的类型 | *Overload 2:* 设置星型的类型 """ return _gskernel.GsAsteriskPointSymbol_AsterType(self, *args) def Corners(self, *args) -> "void": r""" *Overload 1:* 获取星型角的数量 | *Overload 2:* 设置星型角的数量 """ return _gskernel.GsAsteriskPointSymbol_Corners(self, *args) def InterStartAngle(self, *args) -> "void": r""" *Overload 1:* 获取外角的开始角度 | *Overload 2:* 设置外角的开始角度 """ return _gskernel.GsAsteriskPointSymbol_InterStartAngle(self, *args) def InnerStartAngle(self, *args) -> "void": r""" *Overload 1:* 获取内角的开始角度 | *Overload 2:* 设置内角的开始角度 """ return _gskernel.GsAsteriskPointSymbol_InnerStartAngle(self, *args) # Register GsAsteriskPointSymbol in _gskernel: _gskernel.GsAsteriskPointSymbol_swigregister(GsAsteriskPointSymbol) class GsChordPointSymbol(GsSurfacePointSymbol): r""" 弦点符号""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def EllipseParameter(self, *args) -> "void": r""" *Overload 1:* 获取椭圆属性 | *Overload 2:* 设置椭圆属性 | *Overload 3:* 设置椭圆属性 """ return _gskernel.GsChordPointSymbol_EllipseParameter(self, *args) def LongAxis(self, *args) -> "void": r""" *Overload 1:* 获取长轴长度 | *Overload 2:* 设置长轴长度 """ return _gskernel.GsChordPointSymbol_LongAxis(self, *args) def ShortAxis(self, *args) -> "void": r""" *Overload 1:* 获取短轴长度 | *Overload 2:* 设置短轴长度 """ return _gskernel.GsChordPointSymbol_ShortAxis(self, *args) def Envelope(self) -> "GsBox": r""" 设置符号大小 点符号的矩形范围""" return _gskernel.GsChordPointSymbol_Envelope(self) def __init__(self, *args): _gskernel.GsChordPointSymbol_swiginit(self, _gskernel.new_GsChordPointSymbol(*args)) __swig_destroy__ = _gskernel.delete_GsChordPointSymbol def StartAngle(self, *args) -> "void": r""" *Overload 1:* 截取圆中arc的起始角度 | *Overload 2:* 设置开始角度 """ return _gskernel.GsChordPointSymbol_StartAngle(self, *args) def EndAngle(self, *args) -> "void": r""" *Overload 1:* 获取结束角度 | *Overload 2:* 设置结束角度 """ return _gskernel.GsChordPointSymbol_EndAngle(self, *args) def Size(self, dblSize: 'double') -> "void": r""" 获取符号大小 设置符号大小,跟据设置的大小,调整长短轴""" return _gskernel.GsChordPointSymbol_Size(self, dblSize) # Register GsChordPointSymbol in _gskernel: _gskernel.GsChordPointSymbol_swigregister(GsChordPointSymbol) class GsCurvegonPointSymbol(GsSurfacePointSymbol): r""" 由贝塞尔曲线构成的面点符号""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def CurvePoints(self, *args) -> "void": r""" *Overload 1:* 获取节点类型数组 | *Overload 2:* 获取的节点类型数组 | *Overload 3:* 设置点 """ return _gskernel.GsCurvegonPointSymbol_CurvePoints(self, *args) def Size(self, *args) -> "double": r""" *Overload 1:* 设置符号大小 | *Overload 2:* 设置符号大小 """ return _gskernel.GsCurvegonPointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 符号的矩形范围""" return _gskernel.GsCurvegonPointSymbol_Envelope(self) def __init__(self, *args): _gskernel.GsCurvegonPointSymbol_swiginit(self, _gskernel.new_GsCurvegonPointSymbol(*args)) __swig_destroy__ = _gskernel.delete_GsCurvegonPointSymbol # Register GsCurvegonPointSymbol in _gskernel: _gskernel.GsCurvegonPointSymbol_swigregister(GsCurvegonPointSymbol) ePictureNoKeep = _gskernel.ePictureNoKeep ePictureKeepWidth = _gskernel.ePictureKeepWidth ePictureKeepHeight = _gskernel.ePictureKeepHeight ePictureKeepAll = _gskernel.ePictureKeepAll class GsPicturePointSymbol(GsPointSymbol): r""" 图片点符号""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): r""" *Overload 1:* 无参构造函数 | *Overload 2:* 路径导入图片构造函数 """ _gskernel.GsPicturePointSymbol_swiginit(self, _gskernel.new_GsPicturePointSymbol(*args)) def Transparent(self, *args) -> "void": r""" *Overload 1:* 获取是否使用透明色 | *Overload 2:* 设置是否使用透明色 """ return _gskernel.GsPicturePointSymbol_Transparent(self, *args) def TransparentColor(self, *args) -> "void": r""" *Overload 1:* 获取要透明的颜色 | *Overload 2:* 设置要透明的颜色 """ return _gskernel.GsPicturePointSymbol_TransparentColor(self, *args) def UseBackColor(self, *args) -> "void": r""" *Overload 1:* 获取是否使用背景色 | *Overload 2:* 设置是否使用背景色 """ return _gskernel.GsPicturePointSymbol_UseBackColor(self, *args) def BackColor(self, *args) -> "void": r""" *Overload 1:* 获取背景色 | *Overload 2:* 设置背景色 """ return _gskernel.GsPicturePointSymbol_BackColor(self, *args) def PictureData(self) -> "GsGrowByteBuffer *": r""" 获取图片的数据""" return _gskernel.GsPicturePointSymbol_PictureData(self) def Picture(self, *args) -> "void": r""" *Overload 1:* 获取图片对象 | *Overload 2:* 设置图片对象 """ return _gskernel.GsPicturePointSymbol_Picture(self, *args) def Width(self, *args) -> "void": r""" *Overload 1:* 获取图片宽度(单位毫米) | *Overload 2:* 设置图片宽度(单位毫米) """ return _gskernel.GsPicturePointSymbol_Width(self, *args) def Height(self, *args) -> "void": r""" *Overload 1:* 获取图片高度(单位毫米) | *Overload 2:* 设置图片高度(单位毫米) """ return _gskernel.GsPicturePointSymbol_Height(self, *args) def OriginalState(self, *args) -> "void": r""" *Overload 1:* 获取图片锁定状态 | *Overload 2:* 设置图片锁定状态 """ return _gskernel.GsPicturePointSymbol_OriginalState(self, *args) def LoadPicture(self, *args) -> "bool": r""" *Overload 1:* 从文件载入图片 | *Overload 2:* 从内存块载入图片。 """ return _gskernel.GsPicturePointSymbol_LoadPicture(self, *args) __swig_destroy__ = _gskernel.delete_GsPicturePointSymbol # Register GsPicturePointSymbol in _gskernel: _gskernel.GsPicturePointSymbol_swigregister(GsPicturePointSymbol) class GsCurvePointSymbol(GsPointSymbol): r""" 支持多个点构成曲线、曲线面的点符号模板基类""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def CurvePoints(self, *args) -> "void": r""" *Overload 1:* 获取节点类型数组 | *Overload 2:* 获取的节点类型数组 | *Overload 3:* 设置点 """ return _gskernel.GsCurvePointSymbol_CurvePoints(self, *args) def Size(self, *args) -> "double": r""" *Overload 1:* 设置符号大小 | *Overload 2:* 获取符号大小 """ return _gskernel.GsCurvePointSymbol_Size(self, *args) def Envelope(self) -> "GsBox": r""" 符号的矩形范围""" return _gskernel.GsCurvePointSymbol_Envelope(self) __swig_destroy__ = _gskernel.delete_GsCurvePointSymbol # Register GsCurvePointSymbol in _gskernel: _gskernel.GsCurvePointSymbol_swigregister(GsCurvePointSymbol) class GsPolylinePointSymbol(GsCurvePointSymbol): r""" 折线点符号""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def CurvePoints(self, *args) -> "void": r""" *Overload 1:* 获取节点类型数组 | *Overload 2:* 获取的节点类型数组 |
# coding:utf-8 # Author: 阿财(<EMAIL>)(<EMAIL>) # Created date: 2020-02-27 # # The MIT License (MIT) # # Copyright (c) 2016-2019 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import pandas as pd from QUANTAXIS.QAIndicator.base import * try: import talib except: pass #print('PLEASE install TALIB to call these methods') """ 完全用nparray传递参数的talib库,原因是用nparray因为没有 Series MultiIndex 的问题。 处理和补完速度都比pandas更快,转 pd.DataFrame/pd.Series 只需要一个构造函数。 我还引入了一些talib没有,但是写出来不超过10行代码,很容易实现好指标,源自外网(TradingView或者MQ4/5)找到的。 例如 Moving Average ADX Hull Moving Average Volume HMA(完成) """ # 定义MACD函数 def TA_MACD(prices:np.ndarray, fastperiod:int=12, slowperiod:int=26, signalperiod:int=9) -> np.ndarray: ''' 参数设置: fastperiod = 12 slowperiod = 26 signalperiod = 9 返回: macd - dif, signal - dea, hist * 2 - bar, delta ''' macd, signal, hist = talib.MACD(prices, fastperiod=fastperiod, slowperiod=slowperiod, signalperiod=signalperiod) hist = (macd - signal) * 2 delta = np.r_[np.nan, np.diff(hist)] return np.c_[macd, signal, hist, delta] # 定义RSI函数 def TA_RSI(prices:np.ndarray, timeperiod:int=12) -> np.ndarray: ''' 参数设置: timeperiod = 12 返回: ma ''' rsi = talib.RSI(prices, timeperiod=timeperiod) delta = np.r_[np.nan, np.diff(rsi)] return np.c_[rsi, delta] # 定义RSI函数 def TA_BBANDS(prices:np.ndarray, timeperiod:int=5, nbdevup:int=2, nbdevdn:int=2, matype:int=0) -> np.ndarray: ''' 参数设置: timeperiod = 5 nbdevup = 2 nbdevdn = 2 返回: up, middle, low ''' up, middle, low = talib.BBANDS(prices, timeperiod, nbdevup, nbdevdn, matype) ch = (up - low) / middle delta = np.r_[np.nan, np.diff(ch)] return np.c_[up, middle, low, ch, delta] def TA_KDJ(high:np.ndarray, low:np.ndarray, close:np.ndarray, fastk_period:int=9, slowk_matype:int=0, slowk_period:int=3, slowd_period:int=3) -> np.ndarray: ''' 参数设置: fastk_period = 9 lowk_matype = 0, slowk_period = 3, slowd_period = 3 返回: K, D, J ''' K, D = talib.STOCH(high, low, close, fastk_period=fastk_period, slowk_matype=slowk_matype, slowk_period=slowk_period, slowd_period=slowd_period) J = 3 * K - 2 * D delta = np.r_[np.nan, np.diff(J)] return np.c_[K, D, J, delta] def TA_ADX(high, low, close, timeperiod=14) -> np.ndarray: """ ADX - Average Directional Movement Index """ real = talib.ADX(high, low, close, timeperiod=timeperiod) return np.c_[real] def TA_ADXR(high, low, close, timeperiod=14) -> np.ndarray: """ 名称:平均趋向指数的趋向指数 简介:使用ADXR指标,指标判断ADX趋势。 ADXR - Average Directional Movement Index Rating """ real = talib.ADXR(high, low, close, timeperiod=timeperiod) return np.c_[real] def TA_CCI(high:np.ndarray, low:np.ndarray, close:np.ndarray, timeperiod:int=14) -> np.ndarray: """ 名称:平均趋向指数的趋向指数 简介:使用CCI指标,指标判断CCI趋势。 CCI - Commodity Channel Index """ real = talib.CCI(high, low, close, timeperiod=timeperiod) delta = np.r_[np.nan, np.diff(real)] return np.c_[real, delta] def TA_KAMA(close, timeperiod=30): """ 请直接用 talib.KAMA(close, timeperiod) KAMA - Kaufman Adaptive Moving Average """ real = talib.KAMA(close, timeperiod=timeperiod) return np.c_[real] def TA_HMA(close, period): """ 赫尔移动平均线(HMA) Hull Moving Average. Formula: HMA = WMA(2*WMA(n/2) - WMA(n)), sqrt(n) """ hma = talib.WMA(2 * talib.WMA(close, int(period / 2)) - talib.WMA(close, period), int(np.sqrt(period))) return hma def ADX_MA(data, period=14, smooth=14, limit=18): """ Moving Average ADX ADX Smoothing Trend Color Change on Moving Average and ADX Cross. Use on Hourly Charts - Green UpTrend - Red DownTrend - Black Choppy No Trend Source: https://www.tradingview.com/script/owwws7dM-Moving-Average-ADX/ Translator: 阿财(<EMAIL>)(<EMAIL>) Parameters ---------- data : (N,) array_like 传入 OHLC Kline 序列。 The OHLC Kline. period : int or None, optional DI 统计周期 默认值为 14 DI Length period. Default value is 10. smooth : int or None, optional ADX 平滑周期 默认值为 14 ADX smoothing length period. Default value is 10. limit : int or None, optional ADX 限制阈值 默认值为 18 ADX MA Active limit threshold. Default value is 18. Returns ------- adx, ADXm : ndarray ADXm 指标和趋势指示方向 (-1, 0, 1) 分别代表 (下跌, 无明显趋势, 上涨) ADXm indicator and thread directions sequence. (-1, 0, 1) means for (Neagtive, No Trend, Positive) """ up = data.high.pct_change() down = data.low.pct_change() * -1 trur = TA_HMA(talib.TRANGE(data.high.values, data.low.values, data.close.values) , period) plus = 100 * TA_HMA(np.where(((up > down) & (up > 0)), up, 0), period) / trur minus = 100 * TA_HMA(np.where(((down > up) & (down > 0)), down, 0), period) / trur # 这里是dropna的替代解决办法,因为我觉得nparray的传递方式如果随便drop了可能会跟 data.index # 对不上,所以我选择补零替代dropna plus = np.r_[np.zeros(period + 2), plus[(period + 2):]] minus = np.r_[np.zeros(period + 2), minus[(period + 2):]] sum = plus + minus adx = 100 * TA_HMA(abs(plus - minus) / (np.where((sum == 0), 1, sum)), smooth) adx = np.r_[np.zeros(smooth + 2), adx[(smooth + 2):]] ADXm = np.where(((adx > limit) & (plus > minus)), 1, np.where(((adx > limit) & (plus < minus)), -1, 0)) return adx, ADXm def ATR_RSI_Stops(data, period=10): """ ATR 趋势判断指标 RSI在40~60区间实现牛熊趋势变化指示 This simple indicator gives you a bias on the market that can be used as a filter, an entry indicator for pullbacks,... It shows the special relationship I discovered between the rsi and the 27 period ema and the relation between the 40/60 levels of the rsi and the atr offset of the 27 ema line Source: https://cn.tradingview.com/script/rqzryhZ2-Rsi-Stops-JD/ Translator: 阿财(<EMAIL>)(4910163#qq.<EMAIL>) Parameters ---------- data : (N,) array_like 传入 OHLC Kline 序列。 The OHLC Kline. period : int or None, optional DI 统计周期 默认值为 10 DI Length period. Default value is 10. Returns ------- rsi_ma, stop_line, directions : ndarray rsi_ma, stop_line 指标和 directions 趋势指示方向 (-1, 0, 1) 分别代表 (下跌, 无明显趋势, 上涨) rsi_ma, stop_line indicator and thread directions sequence. (-1, 0, 1) means for (Neagtive, No Trend, Positive) """ rsi_ma = talib.EMA((data.open + data.high + data.low + data.close) / 4, 10) ATR = talib.ATR(data.high, data.low, data.close, 10) top_line = rsi_ma + ATR bottom_line = rsi_ma - ATR rsi_ma = pd.Series(rsi_ma, index=data.index) PRICE_PREDICT = pd.DataFrame(columns=['POSITION'], index=data.index) PREDICT_JX = (CROSS(data.close, top_line) == 1) PREDICT_SX = (CROSS(bottom_line, data.close) == 1) PREDICT_JX = PREDICT_JX[PREDICT_JX.apply(lambda x: x == True)] # eqv. Trim(x == False) PREDICT_SX = PREDICT_SX[PREDICT_SX.apply(lambda x: x == True)] # eqv. Trim(x == False) PRICE_PREDICT.loc[PREDICT_JX.index, 'POSITION'] = 1 PRICE_PREDICT.loc[PREDICT_SX.index, 'POSITION'] = -1 PRICE_PREDICT['POSITION'] = PRICE_PREDICT['POSITION'].ffill() stop_line = rsi_ma - PRICE_PREDICT['POSITION'] * ATR return rsi_ma, stop_line, PRICE_PREDICT['POSITION'].values def ATR_SuperTrend_cross(klines, length=12, Factor=3): """ ATR 趋势判断指标,可以实现快速而精准的牛熊趋势判断 the Super Trend ATR allows you to quickly identify trends and the acceleration phase and accumulation Source: https://cn.tradingview.com/script/alvd6EHP-Bollinger-Bands-V2-Super-Trend/ Translator: 阿财(<EMAIL>)(<EMAIL>) Parameters ---------- data : (N,) array_like 传入 OHLC Kline 序列。 The OHLC Kline. period : int or None, optional DI 统计周期 默认值为 10 DI Length period. Default value is 10. Returns ------- Tsl, Trend : ndarray Tsl 指标和 Trend 趋势指示方向 (-1, 0, 1) 分别代表 (下跌, 无明显趋势, 上涨) the Tsl indicator and thread directions sequence. (-1, 0, 1) means for (Neagtive, No Trend, Positive) """ src = klines.close.values Factor = 3 # Factor of Super Trend ATR_period = 12 # ATR period Up = (klines.high + klines.low) / 2 - (Factor * talib.ATR(klines.high, klines.low, klines.close, ATR_period)) Dn = (klines.high + klines.low) / 2 + (Factor * talib.ATR(klines.high, klines.low, klines.close, ATR_period)) TUp = np.full([len(src)], np.nan) for i in np.arange(1, len(src)): TUp[i] = max(Up[i], TUp[i - 1]) if (src[i - 1] > TUp[i - 1]) else Up[i] TDown = np.full([len(src)], np.nan) for i in np.arange(1, len(src)): TDown[i] = min(Dn[i], TDown[i - 1]) if (src[i - 1] < TDown[i - 1]) else Dn[i] Trend = np.full([len(src)], np.nan) for i in np.arange(1, len(src)): Trend[i] = 1 if (src[i] > TDown[i - 1]) else (-1 if (src[i] < TUp[i - 1]) else Trend[i - 1]) Tsl = np.where(Trend == 1, TUp, TDown) return Tsl, Trend def Volume_HMA(klines, period=5): """ 交易量加权船型移动平均线 HMA,方向指示性类似于 Moving Average ADX,但它们通过不同的指标实现。 Hull Moving Average with Volume
statistics' + suffix logger.info ( title + "\n%s" % self.table ( title = title , prefix = "# " ) ) ## standard printout as table def table ( self , title = 'Jobs execution statistics' , prefix = '' ) : text = [ (' #jobs ' , '%' , ' total time' , 'time/job' , 'job server') ] njobs = self.njobs keys = self.__merged.keys() for host in sorted ( keys ) : se = self.__merged [ host ] nj = se.njobs time = se.time mean = time / nj if 1 <= nj else 0.0 if 1 <= nj : line = ( "%6d " % nj , " %5.1f " % ( 100. * nj / njobs ) , " %10.4g " % time , " %10.4g " % mean , " %-s" % host ) else : line = "%6d "% nj , '', '' , '' , " %-s" % host text.append ( line ) import ostap.logger.table as T return T.table ( text , title = title , prefix = prefix ) ## standard printout def __str__ ( self ) : return self.table ( title = "Job execution statistics" ) @property def njobs ( self ) : """``njobs'' : total number of jobs""" return sum ( s.njobs for s in self.__merged.values() ) __repr__ = __str__ # ============================================================================= ## Merge/combine task results # @code # merger = TaskMerger() # jobs = pool.uimap ( .... ) # for result , stat in jobs : # merger += result # merged = merger.result # @encode class TaskMerger(object) : """Merge task resuls >>> merger = TaskMerger() >>> jobs = pool.uimap ( .... ) >>> for result , stat in jobs : ... merger += result ... merged = merger.result """ def __init__ ( self , merger = operator.add , init = None ) : self.__merger = merger self.__result = init self.__nmerged = 0 # ========================================================================= ## Merge/combine task results # @code # merger = TaskMerger() # jobs = pool.uimap ( .... ) # for result , stat in jobs : # merger += result # merged = merger.result # @encode def __iadd__ ( self , result ) : """Merge task resuls >>> merger = TaskMerger() >>> jobs = pool.uimap ( .... ) >>> for result , stat in jobs : ... merger += result ... merged = merger.result """ self.merge ( result ) return self # ========================================================================= ## Merge task resuls # @code # merger = TaskMerger() # jobs = pool.uimap ( .... ) # for result , stat in jobs : # merger.merge ( result ) # merged = merger.result # @encode def merge ( self , result ) : """Merge task results >>> merger = TaskMerger() >>> jobs = pool.uimap ( .... ) >>> for result , stat in jobs : ... merger.merge ( result ) ... merged = merger.result """ if self.__result is None : self.__result = result elif self.__merger : self.__result = self.__merger ( self.__result , result ) elif hasattr ( self.__result , '__iadd__' ) : self.__result += result elif hasattr ( self.__result , '__add__' ) or hasattr ( result , '__radd__' ) : self.__result = self.__result + result elif hasattr ( self.__result , 'append' ) : self.__result.append ( result ) elif hasattr ( self.__result , 'add' ) : self.__result.add ( result ) else : raise TypeError ( 'TaskMerger: no merge is defined for %s and %s' % ( type ( self.__result ) , type ( result ) ) ) self.__nmerged += 1 return self @property def result ( self ) : """``result'' : the merged results""" return self.__result @property def nmerged ( self ) : """``nmerged'' : number of merged results""" return self.__nmerged def __nonzero__ ( self ) : return 0 < self.__nmerged def __bool__ ( self ) : return 0 < self.__nmerged def __len__ ( self ) : return self.__nmerged # ============================================================================= ## helper function to execute the task and collect statistic # (unfortunately due to limitation of <code>parallel python</code> one cannot # use decorators here :-( # @see Task def task_executor ( item ) : """Helper function to execute the task and collect job execution statistic - unfortunately due to limitation of ``parallel python'' one cannot use python decorators here :-( - see Task """ ## unpack task = item [ 0 ] jobid = item [ 1 ] args = item [ 2: ] import os, re, sys what = r'(?<!\\)\$[A-Za-z_][A-Za-z0-9_]*' expandvars = lambda item : re.sub ( what , '' , os.path.expandvars ( item ) ) ## change the current working directory if task.directory : directory = expandvars ( task.directory ) if os.path.exists ( directory ) and os.path.isdir( directory ) : logger.debug ( 'Task %s: change the current directory to %s' % ( jobid , directory ) ) os.chdir ( directory ) ## modify/update environment variables, if needed for key in task.environment : item = expandvars ( task.environment [ key ] ) logger.debug ( 'Task %s: modify the environment variable %s : %s ' % ( jobid , key , item ) ) os.environ [ key ] = item ## 2. prepend paths for key in task.prepend_to : item = expandvars ( task.prepend_to [ key ] ) ncmps = item.split ( os.pathsep ) hask = os.environ.get ( key , None ) if hask is None : cmps = ncmps else : cmps = hask.split ( os.pathsep ) + ncpms # path = os.pathsep.join ( cmps ) os.environ [ key ] = path logger.debug ( 'Task %s: prepend path %s : %s ' % ( jobid , key , path ) ) ## 3. append paths for key in task.append_to : item = expandvars ( task.append_to [ key ] ) ncmps = item.split ( os.pathsep ) hask = os.environ.get ( key , None ) if hask is None : cmps = ncmps else : cmps = ncmps + hask.split ( os.pathsep ) # path = os.pathsep.join ( cmps ) os.environ [ key ] = path logger.debug ( 'Task %s: append path %s : %s ' % ( jobid , key , path ) ) ## 4. Is current directory in the path? if task.dot_in_path and not '.' in sys.path : sys.path = ['.'] + sys.path logger.debug ( "Task %s: '.' is added to sys.path" % jobid ) if task.batch_set : from ostap.utils.utils import Batch as batch_context else : from ostap.utils.utils import NoContext as batch_context if task.build_set : from ostap.core.build_dir import UseBuildDir as build_context else : from ostap.utils.utils import NoContext as build_context ## if task.cleanup : from ostap.utils.cleanup import CleanUpPID as clean_context else : from ostap.utils.utils import NoContext as clean_context ## use clean, build & batch context with clean_context (), build_context ( task.build ), batch_context ( task.batch ) : ## perform remote inialization (if needed) task.initialize_remote ( jobid ) with Statistics () as stat : result = task.process ( jobid , *args ) return jobid , result , stat # ============================================================================= ## helper function to execute the function and collect statisticc # (unfornately due to limitation of <code>parallel python</code> one cannot # use decorators here :-( def func_executor ( item ) : """Helper function to execute the task and collect job execution statistic - unfornately due to limitation of ``parallel python'' one cannot use python decorators here :-( """ ## unpack fun = item [ 0 ] jobid = item [ 1 ] args = item [ 2: ] ## from ostap.utils.cleanup import CleanUpPID as clean_context from ostap.utils.utils import batch with
_general.PyNode) return res @_factories.addCmdDocs def polyCut(*args, **kwargs): res = cmds.polyCut(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyCylinder(*args, **kwargs): res = cmds.polyCylinder(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyCylindricalProjection = _factories.getCmdFunc('polyCylindricalProjection') @_factories.addCmdDocs def polyDelEdge(*args, **kwargs): res = cmds.polyDelEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyDelFacet(*args, **kwargs): res = cmds.polyDelFacet(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyDelVertex(*args, **kwargs): res = cmds.polyDelVertex(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyDuplicateAndConnect = _factories.getCmdFunc('polyDuplicateAndConnect') @_factories.addCmdDocs def polyDuplicateEdge(*args, **kwargs): res = cmds.polyDuplicateEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyEditEdgeFlow(*args, **kwargs): res = cmds.polyEditEdgeFlow(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyEditUV = _factories.getCmdFunc('polyEditUV') polyEditUVShell = _factories.getCmdFunc('polyEditUVShell') polyEvaluate = _factories.getCmdFunc('polyEvaluate') @_factories.addCmdDocs def polyExtrudeEdge(*args, **kwargs): res = cmds.polyExtrudeEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyExtrudeFacet = _factories.getCmdFunc('polyExtrudeFacet') @_factories.addCmdDocs def polyExtrudeVertex(*args, **kwargs): res = cmds.polyExtrudeVertex(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyFlipEdge(*args, **kwargs): res = cmds.polyFlipEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyFlipUV(*args, **kwargs): res = cmds.polyFlipUV(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyForceUV = _factories.getCmdFunc('polyForceUV') polyGeoSampler = _factories.getCmdFunc('polyGeoSampler') @_factories.addCmdDocs def polyHelix(*args, **kwargs): res = cmds.polyHelix(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyHole = _factories.getCmdFunc('polyHole') polyInfo = _factories.getCmdFunc('polyInfo') @_factories.addCmdDocs def polyInstallAction(*args, **kwargs): if len(args): doPassSelf = kwargs.pop('passSelf', False) else: doPassSelf = False for key in ['cn', 'commandName']: try: cb = kwargs[key] if callable(cb): kwargs[key] = _factories.makeUICallback(cb, args, doPassSelf) except KeyError: pass res = cmds.polyInstallAction(*args, **kwargs) return res @_factories.addCmdDocs def polyLayoutUV(*args, **kwargs): res = cmds.polyLayoutUV(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyListComponentConversion = _factories.getCmdFunc('polyListComponentConversion') @_factories.addCmdDocs def polyMapCut(*args, **kwargs): res = cmds.polyMapCut(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyMapDel(*args, **kwargs): res = cmds.polyMapDel(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyMapSew(*args, **kwargs): res = cmds.polyMapSew(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyMapSewMove(*args, **kwargs): res = cmds.polyMapSewMove(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyMergeEdge(*args, **kwargs): res = cmds.polyMergeEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyMergeFacet = _factories.getCmdFunc('polyMergeFacet') @_factories.addCmdDocs def polyMergeUV(*args, **kwargs): res = cmds.polyMergeUV(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyMergeVertex = _factories.getCmdFunc('polyMergeVertex') polyMirrorFace = _factories.getCmdFunc('polyMirrorFace') @_factories.addCmdDocs def polyMoveEdge(*args, **kwargs): res = cmds.polyMoveEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyMoveFacet = _factories.getCmdFunc('polyMoveFacet') @_factories.addCmdDocs def polyMoveFacetUV(*args, **kwargs): res = cmds.polyMoveFacetUV(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyMoveUV(*args, **kwargs): res = cmds.polyMoveUV(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyMoveVertex(*args, **kwargs): res = cmds.polyMoveVertex(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyMultiLayoutUV = _factories.getCmdFunc('polyMultiLayoutUV') @_factories.addCmdDocs def polyNormal(*args, **kwargs): res = cmds.polyNormal(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyNormalPerVertex(*args, **kwargs): res = cmds.polyNormalPerVertex(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyNormalizeUV(*args, **kwargs): res = cmds.polyNormalizeUV(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyOptUvs(*args, **kwargs): res = cmds.polyOptUvs(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyOptions = _factories.getCmdFunc('polyOptions') polyOutput = _factories.getCmdFunc('polyOutput') @_factories.addCmdDocs def polyPinUV(*args, **kwargs): res = cmds.polyPinUV(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyPipe(*args, **kwargs): res = cmds.polyPipe(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyPlanarProjection = _factories.getCmdFunc('polyPlanarProjection') @_factories.addCmdDocs def polyPlane(*args, **kwargs): res = cmds.polyPlane(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyPlatonicSolid(*args, **kwargs): res = cmds.polyPlatonicSolid(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyPoke(*args, **kwargs): res = cmds.polyPoke(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyPrimitive(*args, **kwargs): res = cmds.polyPrimitive(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyPrism(*args, **kwargs): res = cmds.polyPrism(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyProjectCurve(*args, **kwargs): res = cmds.polyProjectCurve(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyProjection = _factories.getCmdFunc('polyProjection') @_factories.addCmdDocs def polyPyramid(*args, **kwargs): res = cmds.polyPyramid(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyQuad(*args, **kwargs): res = cmds.polyQuad(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyQueryBlindData = _factories.getCmdFunc('polyQueryBlindData') @_factories.addCmdDocs def polyReduce(*args, **kwargs): res = cmds.polyReduce(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyRemesh(*args, **kwargs): res = cmds.polyRemesh(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyRetopo(*args, **kwargs): res = cmds.polyRetopo(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polySelect = _factories.getCmdFunc('polySelect') polySelectConstraint = _factories.getCmdFunc('polySelectConstraint') @_factories.addCmdDocs def polySelectConstraintMonitor(*args, **kwargs): if len(args): doPassSelf = kwargs.pop('passSelf', False) else: doPassSelf = False for key in ['cc', 'changeCommand']: try: cb = kwargs[key] if callable(cb): kwargs[key] = _factories.makeUICallback(cb, args, doPassSelf) except KeyError: pass res = cmds.polySelectConstraintMonitor(*args, **kwargs) return res @_factories.addCmdDocs def polySeparate(*args, **kwargs): res = cmds.polySeparate(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polySetToFaceNormal = _factories.getCmdFunc('polySetToFaceNormal') @_factories.addCmdDocs def polySewEdge(*args, **kwargs): res = cmds.polySewEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polySlideEdge = _factories.getCmdFunc('polySlideEdge') @_factories.addCmdDocs def polySmooth(*args, **kwargs): res = cmds.polySmooth(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polySoftEdge(*args, **kwargs): res = cmds.polySoftEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polySphere(*args, **kwargs): res = cmds.polySphere(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polySphericalProjection = _factories.getCmdFunc('polySphericalProjection') @_factories.addCmdDocs def polySplit(*args, **kwargs): res = cmds.polySplit(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polySplitEdge(*args, **kwargs): res = cmds.polySplitEdge(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polySplitRing(*args, **kwargs): res = cmds.polySplitRing(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polySplitVertex = _factories.getCmdFunc('polySplitVertex') @_factories.addCmdDocs def polyStraightenUVBorder(*args, **kwargs): res = cmds.polyStraightenUVBorder(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polySubdivideEdge = _factories.getCmdFunc('polySubdivideEdge') polySubdivideFacet = _factories.getCmdFunc('polySubdivideFacet') @_factories.addCmdDocs def polyToSubdiv(*args, **kwargs): res = cmds.polyToSubdiv(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyTorus(*args, **kwargs): res = cmds.polyTorus(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyTransfer(*args, **kwargs): res = cmds.polyTransfer(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyTriangulate(*args, **kwargs): res = cmds.polyTriangulate(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyUVCoverage = _factories.getCmdFunc('polyUVCoverage') polyUVOverlap = _factories.getCmdFunc('polyUVOverlap') @_factories.addCmdDocs def polyUVRectangle(*args, **kwargs): res = cmds.polyUVRectangle(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res polyUVSet = _factories.getCmdFunc('polyUVSet') polyUVStackSimilarShells = _factories.getCmdFunc('polyUVStackSimilarShells') @_factories.addCmdDocs def polyUnite(*args, **kwargs): res = cmds.polyUnite(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def polyWedgeFace(*args, **kwargs): res = cmds.polyWedgeFace(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def projectCurve(*args, **kwargs): res = cmds.projectCurve(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def projectTangent(*args, **kwargs): res = cmds.projectTangent(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res propMove = _factories.getCmdFunc('propMove') querySubdiv = _factories.getCmdFunc('querySubdiv') @_factories.addCmdDocs def rebuildCurve(*args, **kwargs): res = cmds.rebuildCurve(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def rebuildSurface(*args, **kwargs): res = cmds.rebuildSurface(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res refineSubdivSelectionList = _factories.getCmdFunc('refineSubdivSelectionList') @_factories.addCmdDocs def reverseCurve(*args, **kwargs): res = cmds.reverseCurve(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def reverseSurface(*args, **kwargs): res = cmds.reverseSurface(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def revolve(*args, **kwargs): res = cmds.revolve(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res @_factories.addCmdDocs def roundConstantRadius(*args, **kwargs): res = cmds.roundConstantRadius(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res setXformManip = _factories.getCmdFunc('setXformManip') showMetadata = _factories.getCmdFunc('showMetadata') singleProfileBirailSurface = _factories.getCmdFunc('singleProfileBirailSurface') @_factories.addCmdDocs def smoothCurve(*args, **kwargs): res = cmds.smoothCurve(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res smoothTangentSurface = _factories.getCmdFunc('smoothTangentSurface') @_factories.addCmdDocs def sphere(*args, **kwargs): res = cmds.sphere(*args, **kwargs) if not kwargs.get('query', kwargs.get('q', False)): res = _factories.maybeConvert(res, _general.PyNode) return res squareSurface =
<filename>functions_for_AirBnB.py # The collection of functions for the Boston AirBnB dataset # import necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from pandas.tseries.holiday import USFederalHolidayCalendar as calendar #To check holidays in the U.S import time import copy def load_bnb_files(): '''Load AirBnB files''' df_listing = pd.read_csv('./data/listings.csv') df_calendar = pd.read_csv('./data/calendar.csv') return df_listing, df_calendar # Modify df_calendar for future work # Special event : marathon, new academic season def modify_calendar(df_calendar): ''' This function creates 'year', 'month', 'day', 'weekday', and 'week_number' columns from 'date' coulmn of df_calendar and remove '$' string from 'price' coulmn. Input : a Pandas dataframe having a date data column Output : a Pandas dataframe having year, month, day, weekday, us_holiday columns ''' # Split date column into year, month,day, weekday columns # The day of the week with Monday=0, Sunday=6 # Set the range of weekends from Friday to Sunday df_calendar['year'] = pd.DatetimeIndex(df_calendar['date']).year df_calendar['month'] = pd.DatetimeIndex(df_calendar['date']).month df_calendar['day'] = pd.DatetimeIndex(df_calendar['date']).day df_calendar['weekday'] = pd.DatetimeIndex(df_calendar['date']).weekday df_calendar['week_number'] = pd.DatetimeIndex(df_calendar['date']).week df_calendar['price']= df_calendar['price'].str.replace('$','') df_calendar['price']=df_calendar['price'].str.replace(',','') df_calendar['price'] = df_calendar['price'].astype(float) # Add us_holiday column cal = calendar() holidays = cal.holidays(start=df_calendar.date.min(), end=df_calendar.date.max()) df_calendar['us_holiday'] = df_calendar.date.astype('datetime64').isin(holidays) # Add weekend column #Friday, Saturday weekend = [4,5] df_calendar['weekend'] = df_calendar.weekday.isin(weekend) # Replace values in weekday column df_calendar['weekday'].replace({0:'Monday', 1:'Tuesday', 2:'Wednesday', 3:'Thursday',4:'Friday', 5:'Saturday', 6:'Sunday'}, inplace=True) return df_calendar def add_availabledays_price(df_listing, df_cal_modified): ''' This function creates the columns of 'unavail_days', 'avail_days_weekends', 'avail_days_weekdays', 'price_weekend', and 'price_weekday' where calculated from df_cal_modified on df_listing. Input : - A Pandas dataframe made from 'listings.csv' : df_listing - A pandas dataframe modified by modify_calendar() : df_cal_modified Output : - The modified df_listing dataframe with new 'unavail_days', 'avail_days_weekends', 'avail_days_weekdays', 'price_weekend', and 'price_weekday' columns ''' id_list = df_listing.id[:] unavailable_days_array = np.array([]) avail_days_weekends_array = np.array([]) avail_days_weekdays_array = np.array([]) price_weekend_array = np.array([]) price_weekday_array = np.array([]) for i in np.nditer(id_list): tmp = df_cal_modified[(df_cal_modified.listing_id == i)] # Make a dataframe coming from df_listing with a certain id available_dict = tmp.available.value_counts().to_dict() if 'f' in available_dict: unavailable_days = tmp[tmp.available == 'f'].shape[0] else: unavailable_days = 0 if 't' in available_dict: available_weekends = tmp[(tmp.available == 't') & (tmp.weekend == True)].shape[0] available_weekdays = tmp[(tmp.available == 't') & (tmp.weekend == False)].shape[0] price_weekend = tmp[(tmp.weekend == True) & (tmp.available == 't')].price.astype(float).describe()['mean'] price_weekday = tmp[(tmp.weekend == False) & (tmp.available == 't')].price.astype(float).describe()['mean'] else: available_weekends = 0 available_weekdays = 0 price_weekend = np.nan price_weekday = np.nan unavailable_days_array = np.append(unavailable_days_array, unavailable_days) avail_days_weekends_array = np.append(avail_days_weekends_array, available_weekends) avail_days_weekdays_array = np.append(avail_days_weekdays_array, available_weekdays) price_weekend_array = np.append(price_weekend_array, price_weekend) price_weekday_array = np.append(price_weekday_array, price_weekday) df_listing['unavail_days'] = pd.Series(unavailable_days_array) df_listing['avail_days_weekends'] = pd.Series(avail_days_weekends_array) df_listing['avail_days_weekdays'] = pd.Series(avail_days_weekdays_array) df_listing['price_weekend'] = pd.Series(price_weekend_array) df_listing['price_weekday'] = pd.Series(price_weekday_array) return df_listing def clean_listing_df(df_listing): ''' This function aims to make the df_listing dataframe for data analysis by - removing irrelevant columns - changing object type columns to numeric columns or manipulating them using one hot encoding - filling NaN values - creating an integrated_score_log column by the natural log of the result from 'review_scores_rating' times 'number_of_reviews' +1 Input : - A Pandas dataframe made from 'listings.csv' : df_listing Output : - Cleaned df_listing ''' # Drop columns having 50% of nan value. There were reasons that I decided 50% the threshold for dropping columns. # 1. Easy to see the dataframe and to check the meaning of the columns. # 2. Decide which ones have to be dropped. # The candidates columns to be dropped are 'notes', 'neighbourhood_group_cleansed', 'square_feet', 'weekly_price', 'monthly_price', 'security_deposit', 'has_availability', 'license', 'jurisdiction_names'. Most of them are duplicated to other columns or irrelavant except 'security_deposit' column. I didn't do imputing by the mean or mode of the column because it can distort real shape. I didn't do one-hot-encoding to make the dataframe straightforward. 'security_deposit' has 55 unique values. df_missing = df_listing.isna().mean() df_listing_modi1 = df_listing.drop(df_missing[df_missing>0.5].index.to_list(), axis=1) # Drop columns related with urls and other irrelevant columns. # url and othe columns are all unique or useless. remove_list1 = ['listing_url', 'scrape_id', 'last_scraped', 'thumbnail_url', 'medium_url', 'picture_url', 'xl_picture_url', 'host_url', 'host_thumbnail_url', 'host_picture_url', 'country_code', 'country'] df_listing_modi1.drop(remove_list1, axis=1, inplace=True) # Drop the columns because of data overlap [city, smart_location], Only one value [state], # Drop the wrong data [market, calendar_last_scraped] remove_list2 = ['smart_location', 'state', 'name', 'summary', 'space', 'description','neighborhood_overview', 'transit','access','market','calendar_last_scraped'] df_listing_modi1.drop(remove_list2, axis=1, inplace=True) # Modify 'house_rules' column to 'house_rules_exist_tf' having True value if there is a rule. # False value, if there is no rule. # Houes_rules are different for every host. So it is not practical to use one-hot-encoding. Instead of that, # It is changed to binary type, which is there is rule in a house, True, otherwise, False. # This can save some information, which is better than just dropping. df_listing_modi1['house_rules_exist_tf']= pd.notna(df_listing_modi1.house_rules) df_listing_modi1.drop(['house_rules'], axis=1, inplace=True) # Remove columns having 1000 unique string valuses and irrelevant data remove_list3 = ['interaction', 'host_name', 'host_since', 'host_about', 'street','first_review','experiences_offered','requires_license', 'last_review','host_location','neighbourhood_cleansed','experiences_offered','requires_license'] df_listing_modi2 = df_listing_modi1.drop(remove_list3, axis=1) # Change the columns 'host_response_rate', 'host_acceptance_rate' to float type columns_change_type = ['host_response_rate','host_acceptance_rate', 'price', 'cleaning_fee'] for i in columns_change_type: df_listing_modi2[i] = df_listing_modi2[i].str.replace('%','') df_listing_modi2[i] = df_listing_modi2[i].str.replace('$','') df_listing_modi2[i] = df_listing_modi2[i].str.replace(',','') df_listing_modi2[i] = df_listing_modi2[i].astype(float) # Modify and Split values in 'amenities' column # Amenities can be one of reason that potential candidate might consider. df_listing_modi2.amenities = df_listing_modi2.amenities.str.replace("[{}]", "") df_amenities = df_listing_modi2.amenities.str.get_dummies(sep = ",") df_amenities = df_amenities.add_prefix('amenities_') df_listing_modi2 = pd.concat([df_listing_modi2, df_amenities], axis=1) df_listing_modi2 = df_listing_modi2.drop('amenities', axis=1) # Use get_dummies for columns having unique values less then 10 # It is reasonable to use one-hot-encoding if the nunber of unique values are less then 10. # It doesn't lose information, and keep the dataframe simple. columns_of_object_less10 =[] for i,j in zip(df_listing_modi2.columns.to_list(), df_listing_modi2.dtypes.to_list()): if j == object and len(df_listing_modi2[i].value_counts()) < 10 : columns_of_object_less10.append(i) df_listing_modi2 = pd.get_dummies(df_listing_modi2, columns=columns_of_object_less10, prefix=columns_of_object_less10, dummy_na=True) # Modify 'extra_people' coulmn to get boolean type of 'extra_people_fee_tf' # Instead of dropping, I decided to change 'extra_people' coulmn to binary type to save some information df_listing_modi2['extra_people'] = df_listing_modi2['extra_people'].astype(str) df_listing_modi2['extra_people']= df_listing_modi2['extra_people'].str.replace('$','') df_listing_modi2['extra_people']=df_listing_modi2['extra_people'].str.replace(',','') df_listing_modi2['extra_people'] = df_listing_modi2['extra_people'].astype(float) df_listing_modi2['extra_people'] = df_listing_modi2['extra_people'].replace(to_replace=0, value=np.nan) df_listing_modi2['extra_people_fee_tf']= pd.notna(df_listing_modi2.extra_people) df_listing_modi2 = df_listing_modi2.drop('extra_people', axis=1) # Modify and Split values in 'host_verifications' column df_listing_modi2.host_verifications = df_listing_modi2.host_verifications.str.replace("[", "") df_listing_modi2.host_verifications = df_listing_modi2.host_verifications.str.replace("]", "") df_host_verifications = df_listing_modi2.host_verifications.str.get_dummies(sep = ",") df_host_verifications = df_host_verifications.add_prefix('host_verification_') df_listing_modi2 = pd.concat([df_listing_modi2, df_host_verifications], axis=1) df_listing_modi2 = df_listing_modi2.drop(['host_verifications'], axis=1) df_listing_modi2 = df_listing_modi2.drop(['host_neighbourhood'], axis=1) # Modify 'calendar_updated' column # Instead of dropping, I decided to change 'calendar_updated' coulmn to binary type (updated within a week or not) # to save some information df_listing_modi2["calendar_updated_1weekago"] = np.where(df_listing_modi2['calendar_updated'].str.contains( "days|yesterday|today|a week ago")==True, 'yes', 'more_than_1week') df_listing_modi2 = df_listing_modi2.drop(['calendar_updated'], axis=1) # Use get_dummies for the columns 'neighbourhood', 'city', 'zipcode', 'property_type' tmp = df_listing_modi2.columns.to_list() tmp1 = df_listing_modi2.dtypes.to_list() columns_of_object_over10 =[] for i,j in zip(tmp,tmp1): if j == object and len(df_listing_modi2[i].value_counts()) > 10 : columns_of_object_over10.append(i) df_listing_modi2 = pd.get_dummies(df_listing_modi2, columns=columns_of_object_over10, prefix=columns_of_object_over10, dummy_na=True) df_listing_modi2 = pd.get_dummies(df_listing_modi2, columns=['calendar_updated_1weekago','house_rules_exist_tf','extra_people_fee_tf'], prefix=['calendar_updated_1weekago','house_rules_exist_tf','extra_people_fee_tf'], dummy_na=True) df_listing_modi2["host_response_rate_100"] = np.where(df_listing_modi2['host_response_rate'] ==100, True, False) df_listing_modi2["host_acceptance_rate_100"] = np.where(df_listing_modi2['host_acceptance_rate'] ==100, True, False) df_listing_modi2 = df_listing_modi2.drop(['host_response_rate','host_acceptance_rate','reviews_per_month'], axis=1) # bathrooms, bedrooms, beds, cleaning_fee, review_scores_rating, review_... : : fillna with mean value # The empty cell are filled with mean values of corresponding columns. Because these are numerical type, # I thought imputing with mean values is better than dropping or one-hot-encoding columns1 = ['bathrooms','bedrooms','beds','cleaning_fee','review_scores_rating','review_scores_accuracy','review_scores_cleanliness','review_scores_checkin', 'review_scores_communication','review_scores_location','review_scores_value'] df_listing_modi2[columns1] = df_listing_modi2[columns1].fillna(df_listing_modi2.mean()) df_listing_modi2.price_weekend.fillna(df_listing_modi2.price, inplace=True) df_listing_modi2.price_weekday.fillna(df_listing_modi2.price, inplace=True) df_listing_modi2['integrated_score_log'] = np.log(df_listing_modi2['review_scores_rating']*df_listing_modi2['number_of_reviews']+1) df_listing_modi2 = pd.get_dummies(df_listing_modi2, columns=['host_response_rate_100','host_acceptance_rate_100'], prefix=['host_response_rate_100','host_acceptance_rate_100']) df_listing_modi2 = df_listing_modi2.drop(['id', 'host_id', 'latitude', 'longitude','price','host_listings_count','host_total_listings_count','maximum_nights'], axis=1) return df_listing_modi2 def conditioning_listing_df(df_listing_modi2): ''' This function is for conditioning a dataframe returned by the funtion 'clean_listing_df(df_listing)'' Input : - A Pandas dataframe came from the function 'clean_listing_df(df_listing)'' Output : - Cleaned df_listing_modi2 : df_listing_modi3 ''' threshold_80 = df_listing_modi2.integrated_score_log.quantile(0.8) condition = [df_listing_modi2['integrated_score_log'] == 0, df_listing_modi2['integrated_score_log'] >= threshold_80] label_list = ['poor','high'] df_listing_modi2['y_label'] = np.select(condition, label_list, default='normal') # Drop columns related to 'y_label' column # Without dropping, the remained columns affect model's prediction df_listing_modi3 = df_listing_modi2.drop(['integrated_score_log','number_of_reviews','review_scores_rating', 'review_scores_value', 'review_scores_communication','review_scores_accuracy','review_scores_checkin','review_scores_cleanliness', 'review_scores_location', 'availability_30','availability_60', 'availability_90','availability_365','calculated_host_listings_count'], axis=1) return df_listing_modi3 def investigate(df_listing_scaled, pca, i): ''' This function checks pca components that which original features are storngly related to a pca
of each tensor in `outputs`. name: A name for the operation (optional). Returns: A list of `Tensor` objects of type `dtypes`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "InfeedDequeueTuple", name, tld.op_callbacks, "dtypes", dtypes, "shapes", shapes) return _result except _core._FallbackException: try: return infeed_dequeue_tuple_eager_fallback( dtypes=dtypes, shapes=shapes, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'infeed_dequeue_tuple' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_dequeue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedDequeueTuple", dtypes=dtypes, shapes=shapes, name=name) _result = _outputs[:] if not _result: return _op if _execute.must_record_gradient(): _attrs = ("dtypes", _op.get_attr("dtypes"), "shapes", _op.get_attr("shapes")) _inputs_flat = _op.inputs _execute.record_gradient( "InfeedDequeueTuple", _inputs_flat, _attrs, _result) return _result InfeedDequeueTuple = tf_export("raw_ops.InfeedDequeueTuple")(_ops.to_raw_op(infeed_dequeue_tuple)) def infeed_dequeue_tuple_eager_fallback(dtypes, shapes, name, ctx): if not isinstance(dtypes, (list, tuple)): raise TypeError( "Expected list for 'dtypes' argument to " "'infeed_dequeue_tuple' Op, not %r." % dtypes) dtypes = [_execute.make_type(_t, "dtypes") for _t in dtypes] if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_dequeue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] _inputs_flat = [] _attrs = ("dtypes", dtypes, "shapes", shapes) _result = _execute.execute(b"InfeedDequeueTuple", len(dtypes), inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "InfeedDequeueTuple", _inputs_flat, _attrs, _result) return _result def infeed_enqueue(input, shape=[], layout=[], device_ordinal=-1, name=None): r"""An op which feeds a single Tensor value into the computation. Args: input: A `Tensor`. A tensor that will be provided using the infeed mechanism. shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `[]`. The shape of the tensor. layout: An optional list of `ints`. Defaults to `[]`. A vector holding the requested layout in minor-to-major sequence. If a layout attribute is passed, but its values are all -1, the layout will be computed by the infeed operation. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "InfeedEnqueue", name, tld.op_callbacks, input, "shape", shape, "layout", layout, "device_ordinal", device_ordinal) return _result except _core._FallbackException: try: return infeed_enqueue_eager_fallback( input, shape=shape, layout=layout, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. if shape is None: shape = [] shape = _execute.make_shape(shape, "shape") if layout is None: layout = [] if not isinstance(layout, (list, tuple)): raise TypeError( "Expected list for 'layout' argument to " "'infeed_enqueue' Op, not %r." % layout) layout = [_execute.make_int(_i, "layout") for _i in layout] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedEnqueue", input=input, shape=shape, layout=layout, device_ordinal=device_ordinal, name=name) return _op InfeedEnqueue = tf_export("raw_ops.InfeedEnqueue")(_ops.to_raw_op(infeed_enqueue)) def infeed_enqueue_eager_fallback(input, shape, layout, device_ordinal, name, ctx): if shape is None: shape = [] shape = _execute.make_shape(shape, "shape") if layout is None: layout = [] if not isinstance(layout, (list, tuple)): raise TypeError( "Expected list for 'layout' argument to " "'infeed_enqueue' Op, not %r." % layout) layout = [_execute.make_int(_i, "layout") for _i in layout] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _attr_dtype, (input,) = _execute.args_to_matching_eager([input], ctx) _inputs_flat = [input] _attrs = ("dtype", _attr_dtype, "shape", shape, "layout", layout, "device_ordinal", device_ordinal) _result = _execute.execute(b"InfeedEnqueue", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def infeed_enqueue_prelinearized_buffer(input, device_ordinal=-1, name=None): r"""An op which enqueues prelinearized buffer into TPU infeed. Args: input: A `Tensor` of type `variant`. A variant tensor representing linearized output. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device and = 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "InfeedEnqueuePrelinearizedBuffer", name, tld.op_callbacks, input, "device_ordinal", device_ordinal) return _result except _core._FallbackException: try: return infeed_enqueue_prelinearized_buffer_eager_fallback( input, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedEnqueuePrelinearizedBuffer", input=input, device_ordinal=device_ordinal, name=name) return _op InfeedEnqueuePrelinearizedBuffer = tf_export("raw_ops.InfeedEnqueuePrelinearizedBuffer")(_ops.to_raw_op(infeed_enqueue_prelinearized_buffer)) def infeed_enqueue_prelinearized_buffer_eager_fallback(input, device_ordinal, name, ctx): if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") input = _ops.convert_to_tensor(input, _dtypes.variant) _inputs_flat = [input] _attrs = ("device_ordinal", device_ordinal) _result = _execute.execute(b"InfeedEnqueuePrelinearizedBuffer", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def infeed_enqueue_tuple(inputs, shapes, layouts=[], device_ordinal=-1, name=None): r"""Feeds multiple Tensor values into the computation as an XLA tuple. Args: inputs: A list of `Tensor` objects. A list of tensors that will be provided using the infeed mechanism. shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`). The shapes of each tensor in `inputs`. layouts: An optional list of `ints`. Defaults to `[]`. A vector holding the requested layout in minor-to-major sequence for all the tuple shapes, in the order the shapes appear in the "shapes" input. The layout elements for a sub-shape can be set to -1, in which case the corresponding layout will be computed by the infeed operation. device_ordinal: An optional `int`. Defaults to `-1`. The TPU device to use. This should be -1 when the Op is running on a TPU device, and >= 0 when the Op is running on the CPU device. name: A name for the operation (optional). Returns: The created Operation. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "InfeedEnqueueTuple", name, tld.op_callbacks, inputs, "shapes", shapes, "layouts", layouts, "device_ordinal", device_ordinal) return _result except _core._FallbackException: try: return infeed_enqueue_tuple_eager_fallback( inputs, shapes=shapes, layouts=layouts, device_ordinal=device_ordinal, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_enqueue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if layouts is None: layouts = [] if not isinstance(layouts, (list, tuple)): raise TypeError( "Expected list for 'layouts' argument to " "'infeed_enqueue_tuple' Op, not %r." % layouts) layouts = [_execute.make_int(_i, "layouts") for _i in layouts] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _, _, _op, _outputs = _op_def_library._apply_op_helper( "InfeedEnqueueTuple", inputs=inputs, shapes=shapes, layouts=layouts, device_ordinal=device_ordinal, name=name) return _op InfeedEnqueueTuple = tf_export("raw_ops.InfeedEnqueueTuple")(_ops.to_raw_op(infeed_enqueue_tuple)) def infeed_enqueue_tuple_eager_fallback(inputs, shapes, layouts, device_ordinal, name, ctx): if not isinstance(shapes, (list, tuple)): raise TypeError( "Expected list for 'shapes' argument to " "'infeed_enqueue_tuple' Op, not %r." % shapes) shapes = [_execute.make_shape(_s, "shapes") for _s in shapes] if layouts is None: layouts = [] if not isinstance(layouts, (list, tuple)): raise TypeError( "Expected list for 'layouts' argument to " "'infeed_enqueue_tuple' Op, not %r." % layouts) layouts = [_execute.make_int(_i, "layouts") for _i in layouts] if device_ordinal is None: device_ordinal = -1 device_ordinal = _execute.make_int(device_ordinal, "device_ordinal") _attr_dtypes, inputs = _execute.convert_to_mixed_eager_tensors(inputs, ctx) _inputs_flat = list(inputs) _attrs = ("dtypes", _attr_dtypes, "shapes", shapes, "layouts", layouts, "device_ordinal", device_ordinal) _result = _execute.execute(b"InfeedEnqueueTuple", 0, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) _result = None return _result def load_tpu_embedding_adam_parameters(parameters, momenta, velocities, num_shards, shard_id, table_id=-1, table_name="", config="", name=None): r"""Load ADAM embedding parameters. An op that loads optimization parameters into HBM for embedding. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up the correct embedding table configuration. For example, this
<filename>fourInARowWrapper.py import numpy as np from gym import spaces import gym import fourInARow import copy class ActionSpace(spaces.Discrete): def __init__(self, size): self.high = fourInARow.width self.low = 0 super().__init__(size) class FourInARowWrapper(gym.Env): def __init__(self, player): self.player = player self.action_space = ActionSpace(fourInARow.width) #self.action_space = ActionSpace([0], [8]) fourInARow.init(player) self.state = self.getHotEncodedState2d() def ansi(self, style): return "\033[{0}m".format(style) def seed(self, seed=None): if seed is not None: np.random.seed(seed) return np.random.random_sample() def reset(self, player): fourInARow.init(player) self.player = player return self.getHotEncodedState2d() def step(self, action): fourInARow.drop_disc(int(action)) reward = 0 if fourInARow.state != "Playing": if fourInARow.winner == fourInARow.player: reward = -1 elif fourInARow.winner == (fourInARow.player ^ 3): reward = 1 else: reward = 0.5 done = True else: done = False stateOneHotEncoded = self.getHotEncodedState2d() self.state = stateOneHotEncoded return (stateOneHotEncoded, reward, done, None) def robotStep(self, level): action = self.getRobotAction(level) #print("Robot action:", action+1) stateOneHotEncoded, reward, done, _ = self.step(action) return (stateOneHotEncoded, reward, done, action) def getRobotAction(self, level): import random rules = [self.ruleIsWinHyper(1), self.ruleIsLoseHyper(1), self.ruleIsWinHyper(2), self.ruleIsLoseHyper(2)] if level > len(rules): print("Error! Level can't be bigger than", len(rules)) raise Exception rules = rules[:level] col_points = [0 for _ in range(fourInARow.width)] candidates = list(range(fourInARow.width)) # for col in columns: # #l = [x for rule in rules for x in rule] # col_points[col] = sum(rules[x](col) << (len(rules)-x) for x in range(len(rules))) for rule in rules: new_candidates = [] for column in candidates: if not self.ruleIsAvaliable(column): col_points[column] -= 1e3 continue col_points[column] += rule(column) max_points = max(col_points) min_points = min(col_points) #print("Rule", rules.index(rule), "Column points:", col_points) for column in candidates: if col_points[column] == max_points: new_candidates.append(column) candidates = new_candidates if len(candidates) == 1: break candidates = [i for i in range(len(col_points)) if col_points[i] == max_points] ret_col = random.choice(candidates) #print("Cadidates:", candidates) #print("Column points:", col_points) return ret_col def ruleIsAvaliable(self, column): return fourInARow.get_available_cols()[column] def recTheoreticalPlaying(self, depth, board, player, next_player): str = "" for c in range(depth): str += "-" ret = False if depth == 0: return self.checkWin(board, player) for column in range(fourInARow.width): newBoard = copy.deepcopy(board) col_height = sum([1 for x in newBoard[column] if x > 0]) # Check if column is full if col_height == fourInARow.height: continue newBoard[column][col_height] = next_player #self.renderBoardPlayer(newBoard, next_player) #print(str, "column:", column, "player:", next_player, "depth:", depth, "checking win for player:", player) if depth > 1: ret += self.recTheoreticalPlaying(depth-1, newBoard, player, next_player ^ 3)/(depth**fourInARow.width) else: ret += self.checkWin(newBoard, player) #if self.checkWin(newBoard, player): #print(str, "win:", self.checkWin(newBoard, player), "---------------------------------------------------------------") #print(str, "loop return:", ret) return ret def ruleIsWinHyper(self, drops): def ruleIsWinN(column): board = copy.deepcopy(fourInARow.board) col_height = sum([1 for x in board[column] if x > 0]) if col_height == fourInARow.height: return False mePlayer = fourInARow.player opponent = mePlayer ^ 3 # Drop disc board[column][col_height] = fourInARow.player #print("player", fourInARow.player, "tries column", column) ret = self.recTheoreticalPlaying(depth=(drops-1)*2, board=board, player=mePlayer, next_player=opponent) #print("points:", ret) return ret return ruleIsWinN def ruleIsLoseHyper(self, drops): def ruleIsLoseN(column): board = copy.deepcopy(fourInARow.board) col_height = sum([1 for x in board[column] if x > 0]) if col_height == fourInARow.height: return False mePlayer = fourInARow.player opponent = mePlayer ^ 3 # Drop disc board[column][col_height] = fourInARow.player #print("player", fourInARow.player, "tries column", column) ret = self.recTheoreticalPlaying(depth=drops*2-1, board=board, player=mePlayer ^ 3, next_player=opponent) #print("Points:", ret) return -ret return ruleIsLoseN def ruleIsWin(self, column): #print("rule1:", column) # Check if dropping in column is a winning turn board = copy.deepcopy(fourInARow.board) col_height = sum([1 for x in board[column] if x > 0]) if col_height == fourInARow.height: return False # Drop disc board[column][col_height] = fourInARow.player return self.checkWin(board, fourInARow.player) def ruleIsBlockLose(self, column): # Check if opponent wins if I don't drop in a column board = copy.deepcopy(fourInARow.board) col_height = sum([1 for x in board[column] if x > 0]) if col_height == fourInARow.height: return False # Inverse player, drop disc board[column][col_height] = fourInARow.player^3 return self.checkWin(board, fourInARow.player) def ruleIsBlockLoseTwoStepsAhead(self, column): # Check if column is already full col_height = sum([1 for x in fourInARow.board[column] if x > 0]) if col_height == fourInARow.height: return False for opponentColumn in range(fourInARow.width): board = copy.deepcopy(fourInARow.board) def checkWin(self, board, player): deltas = [1, 2, 3] winner = 0 for x in range(fourInARow.width): right = x < fourInARow.width - 3 for y in range(fourInARow.height): upper = y < fourInARow.height - 3 lower = y > 2 if board[x][y] > 0 and \ ((upper and 3 == sum(1 for d in deltas if board[x][y] == board[x][y + d])) or \ (right and 3 == sum(1 for d in deltas if board[x][y] == board[x + d][y])) or \ (right and upper and 3 == sum(1 for d in deltas if board[x][y] == board[x + d][y + d])) or \ (right and lower and 3 == sum(1 for d in deltas if board[x][y] == board[x + d][y - d]))): winner = board[x][y] if player == winner: return True else: return False def getAvaliableColumns(self): return np.reshape(np.array(fourInARow.get_available_cols()).astype(np.float32), (fourInARow.width)) def render(self, mode='human'): self.renderBoardPlayer(fourInARow.board, fourInARow.player) # if fourInARow.player == 1: # player = "X" # else: # player = "O" # # print("Player:", player, "\n") # row = " " # for n in range(fourInARow.width): # row += str(n+1) + " " # print(row) # # row = "|" # for _ in range(fourInARow.width): # row += "---|" # print(row) # # for y in range(fourInARow.height): # row = "|" # for x in range(fourInARow.width): # color = 30 + fourInARow.board[x][fourInARow.height-y-1] # character = " " # # if fourInARow.board[x][fourInARow.height - y - 1] == 1: # character = " X " # elif fourInARow.board[x][fourInARow.height - y - 1] == 2: # character = " O " # # if fourInARow.latest == (x, fourInARow.height-y-1): # color += 10 # row += self.ansi(color) + character + self.ansi(0) + "|" # # print(row) # # row = "|" # for _ in range(fourInARow.width): # row += "---|" # print(row) #print("\n") def renderBoardPlayer(self, board, player): if player == 1: player = "X" else: player = "O" print("Player:", player, "\n") row = " " for n in range(fourInARow.width): row += str(n+1) + " " print(row) row = "|" for _ in range(fourInARow.width): row += "---|" print(row) for y in range(fourInARow.height): row = "|" for x in range(fourInARow.width): color = 30 + board[x][fourInARow.height-y-1] character = " " if board[x][fourInARow.height - y - 1] == 1: character = " X " elif board[x][fourInARow.height - y - 1] == 2: character = " O " if fourInARow.latest == (x, fourInARow.height-y-1): color += 10 row += self.ansi(color) + character + self.ansi(0) + "|" print(row) row = "|" for _ in range(fourInARow.width): row += "---|" print(row) #print("\n") def close(self): pass def getHotEncodedState(self): board = np.reshape(np.array(fourInARow.board), fourInARow.height * fourInARow.width) boardOneHotEncoded = np.zeros(fourInARow.height * fourInARow.width * 2) player = fourInARow.player playerOneHotEncoded = np.zeros(2) if player == 1: playerOneHotEncoded[0] = 1 playerOneHotEncoded[1] = 0 elif player == 2: playerOneHotEncoded[0] = 0 playerOneHotEncoded[1] = 1 for i in range(board.size): if board[i] == 1: boardOneHotEncoded[2 * i] = 1 boardOneHotEncoded[2 * i + 1] = 0 elif board[i] == 2: boardOneHotEncoded[2 * i] = 0 boardOneHotEncoded[2 * i + 1] = 1 else: boardOneHotEncoded[2 * i] = 0 boardOneHotEncoded[2 * i + 1] = 0 return np.concatenate([playerOneHotEncoded, boardOneHotEncoded]) def getHotEncodedState2d(self): board = np.array(fourInARow.board) boardOneHotEncoded = np.resize(np.expand_dims(np.zeros(board.shape), axis=2), (7,6,2)) player = fourInARow.player playerOneHotEncoded = np.zeros(2) if player == 1: playerOneHotEncoded[0] = 1 playerOneHotEncoded[1] = 0 elif player == 2: playerOneHotEncoded[0] = 0 playerOneHotEncoded[1] = 1 for x in range(board.shape[0]): for y in range(board.shape[1]): if board[x][y] == 1: boardOneHotEncoded[x][y][0] = 1 boardOneHotEncoded[x][y][1] = 0 elif board[x][y] == 2: boardOneHotEncoded[x][y][0] = 0 boardOneHotEncoded[x][y][1] = 1 else: boardOneHotEncoded[x][y][0] = 0 boardOneHotEncoded[x][y][1] = 0 return (playerOneHotEncoded, boardOneHotEncoded) def getCurrentPlayer(self): return fourInARow.player def renderHotEncodedState(self, hotEncodedState): hotEncodedPlayer = hotEncodedState[0] hotEncodedBoard = hotEncodedState[1] print(hotEncodedPlayer) if hotEncodedPlayer[0] == 1: player = "X" elif hotEncodedPlayer[1] == 1: player = "O" else: print("No player in state") print("Player:", player, "\n") row = " " for n in range(fourInARow.width): row += str(n+1) + " " print(row) row = "|" for _ in range(fourInARow.width): row += "---|" print(row) for y in range(fourInARow.height): row = "|" for x in range(fourInARow.width): color = 30# + hotEncodedBoard[2*x + (fourInARow.height-2*y)*fourInARow.width-1] character = "
# coding=utf-8 from __future__ import absolute_import, division, print_function, unicode_literals from builtins import str from io import open from dynet import * import dynet from utils import read_conll, read_conll_predict, write_conll, load_embeddings_file from operator import itemgetter import utils, time, random, decoder import numpy as np from mnnl import FFSequencePredictor, Layer, RNNSequencePredictor, BiRNNSequencePredictor class OldSlavDep: def __init__(self, vocab, pos, rels, w2i, c2i, options): self.model = ParameterCollection() random.seed(1) self.trainer = RMSPropTrainer(self.model) #if options.learning_rate is not None: #Uncomment if model is used to train new parser or update OldSlavNet # self.trainer = RMSPropTrainer(self.model, options.learning_rate) #print("RMSPropTrainer initial learning rate:", options.learning_rate) self.activations = {'tanh': tanh, 'sigmoid': logistic, 'relu': rectify, 'tanh3': (lambda x: tanh(cwise_multiply(cwise_multiply(x, x), x))) } self.activation = self.activations[options.activation] self.blstmFlag = options.blstmFlag self.labelsFlag = options.labelsFlag self.costaugFlag = options.costaugFlag self.bibiFlag = options.bibiFlag self.ldims = options.lstm_dims #because it is a bi-lstm (NP) self.wdims = options.wembedding_dims self.cdims = options.cembedding_dims self.layers = options.lstm_layers self.wordsCount = vocab self.vocab = {word: ind + 3 for word, ind in w2i.items()} self.pos = {word: ind for ind, word in enumerate(pos)} self.id2pos = {ind: word for ind, word in enumerate(pos)} self.c2i = c2i self.rels = {word: ind for ind, word in enumerate(rels)} self.irels = rels self.pdims = options.pembedding_dims self.vocab['*PAD*'] = 1 self.vocab['*INITIAL*'] = 2 self.wlookup = self.model.add_lookup_parameters((len(vocab) + 3, self.wdims)) self.clookup = self.model.add_lookup_parameters((len(c2i), self.cdims)) self.plookup = self.model.add_lookup_parameters((len(pos), self.pdims)) if options.external_embedding is not None: ext_embeddings, ext_emb_dim = load_embeddings_file(options.external_embedding, lower=True) assert (ext_emb_dim == self.wdims) print("Initializing word embeddings by pre-trained vectors") count = 0 for word in self.vocab: _word = str(word, "utf-8") if _word in ext_embeddings: count += 1 self.wlookup.init_row(self.vocab[word], ext_embeddings[_word]) print(("Vocab size: %d; #words having pretrained vectors: %d" % (len(self.vocab), count))) self.pos_builders = [VanillaLSTMBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model), VanillaLSTMBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model)] self.pos_bbuilders = [VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model), VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model)] if self.bibiFlag: self.builders = [VanillaLSTMBuilder(1, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model), VanillaLSTMBuilder(1, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model)] self.bbuilders = [VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model), VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model)] elif self.layers > 0: self.builders = [VanillaLSTMBuilder(self.layers, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model), VanillaLSTMBuilder(self.layers, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model)] else: self.builders = [SimpleRNNBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model), SimpleRNNBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model)] self.ffSeqPredictor = FFSequencePredictor(Layer(self.model, self.ldims * 2, len(self.pos), softmax)) self.hidden_units = options.hidden_units self.hidBias = self.model.add_parameters((self.ldims * 8)) self.hidLayer = self.model.add_parameters((self.hidden_units, self.ldims * 8)) self.hid2Bias = self.model.add_parameters((self.hidden_units)) self.outLayer = self.model.add_parameters((1, self.hidden_units if self.hidden_units > 0 else self.ldims * 8)) if self.labelsFlag: self.rhidBias = self.model.add_parameters((self.ldims * 8)) self.rhidLayer = self.model.add_parameters((self.hidden_units, self.ldims * 8)) self.rhid2Bias = self.model.add_parameters((self.hidden_units)) self.routLayer = self.model.add_parameters( (len(self.irels), self.hidden_units if self.hidden_units > 0 else self.ldims * 8)) self.routBias = self.model.add_parameters((len(self.irels))) self.ffRelPredictor = FFSequencePredictor( Layer(self.model, self.hidden_units if self.hidden_units > 0 else self.ldims * 8, len(self.irels), softmax)) self.char_rnn = RNNSequencePredictor(LSTMBuilder(1, self.cdims, self.cdims, self.model)) def __getExpr(self, sentence, i, j): if sentence[i].headfov is None: sentence[i].headfov = concatenate([sentence[i].lstms[0], sentence[i].lstms[1]]) if sentence[j].modfov is None: sentence[j].modfov = concatenate([sentence[j].lstms[0], sentence[j].lstms[1]]) _inputVector = concatenate( [sentence[i].headfov, sentence[j].modfov, dynet.abs(sentence[i].headfov - sentence[j].modfov), dynet.cmult(sentence[i].headfov, sentence[j].modfov)]) if self.hidden_units > 0: output = self.outLayer.expr() * self.activation( self.hid2Bias.expr() + self.hidLayer.expr() * self.activation( _inputVector + self.hidBias.expr())) else: output = self.outLayer.expr() * self.activation(_inputVector + self.hidBias.expr()) return output def __evaluate(self, sentence): exprs = [[self.__getExpr(sentence, i, j) for j in range(len(sentence))] for i in range(len(sentence))] scores = np.array([[output.scalar_value() for output in exprsRow] for exprsRow in exprs]) return scores, exprs def pick_neg_log(self, pred, gold): return -dynet.log(dynet.pick(pred, gold)) def __getRelVector(self, sentence, i, j): if sentence[i].rheadfov is None: sentence[i].rheadfov = concatenate([sentence[i].lstms[0], sentence[i].lstms[1]]) if sentence[j].rmodfov is None: sentence[j].rmodfov = concatenate([sentence[j].lstms[0], sentence[j].lstms[1]]) _outputVector = concatenate( [sentence[i].rheadfov, sentence[j].rmodfov, abs(sentence[i].rheadfov - sentence[j].rmodfov), cmult(sentence[i].rheadfov, sentence[j].rmodfov)]) if self.hidden_units > 0: return self.rhid2Bias.expr() + self.rhidLayer.expr() * self.activation( _outputVector + self.rhidBias.expr()) else: return _outputVector def Save(self, filename): self.model.save(filename) def Load(self, filename): self.model.populate(filename) def Predict(self, conll_path): with open(conll_path) as conllFP: for iSentence, sentence in enumerate(read_conll_predict(conllFP, self.c2i, self.wordsCount)): conll_sentence = [entry for entry in sentence if isinstance(entry, utils.ConllEntry)] for entry in conll_sentence: wordvec = self.wlookup[int(self.vocab.get(entry.norm, 0))] if self.wdims > 0 else None last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in entry.idChars])[-1] rev_last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in reversed(entry.idChars)])[ -1] entry.vec = concatenate([_f for _f in [wordvec, last_state, rev_last_state] if _f]) entry.pos_lstms = [entry.vec, entry.vec] entry.headfov = None entry.modfov = None entry.rheadfov = None entry.rmodfov = None #Predicted pos tags lstm_forward = self.pos_builders[0].initial_state() lstm_backward = self.pos_builders[1].initial_state() for entry, rentry in zip(conll_sentence, reversed(conll_sentence)): lstm_forward = lstm_forward.add_input(entry.vec) lstm_backward = lstm_backward.add_input(rentry.vec) entry.pos_lstms[1] = lstm_forward.output() rentry.pos_lstms[0] = lstm_backward.output() for entry in conll_sentence: entry.pos_vec = concatenate(entry.pos_lstms) blstm_forward = self.pos_bbuilders[0].initial_state() blstm_backward = self.pos_bbuilders[1].initial_state() for entry, rentry in zip(conll_sentence, reversed(conll_sentence)): blstm_forward = blstm_forward.add_input(entry.pos_vec) blstm_backward = blstm_backward.add_input(rentry.pos_vec) entry.pos_lstms[1] = blstm_forward.output() rentry.pos_lstms[0] = blstm_backward.output() concat_layer = [concatenate(entry.pos_lstms) for entry in conll_sentence] outputFFlayer = self.ffSeqPredictor.predict_sequence(concat_layer) predicted_pos_indices = [np.argmax(o.value()) for o in outputFFlayer] predicted_postags = [self.id2pos[idx] for idx in predicted_pos_indices] # Add predicted pos tags for parsing prediction for entry, posid in zip(conll_sentence, predicted_pos_indices): entry.vec = concatenate([entry.vec, self.plookup[posid]]) entry.lstms = [entry.vec, entry.vec] if self.blstmFlag: lstm_forward = self.builders[0].initial_state() lstm_backward = self.builders[1].initial_state() for entry, rentry in zip(conll_sentence, reversed(conll_sentence)): lstm_forward = lstm_forward.add_input(entry.vec) lstm_backward = lstm_backward.add_input(rentry.vec) entry.lstms[1] = lstm_forward.output() rentry.lstms[0] = lstm_backward.output() if self.bibiFlag: for entry in conll_sentence: entry.vec = concatenate(entry.lstms) blstm_forward = self.bbuilders[0].initial_state() blstm_backward = self.bbuilders[1].initial_state() for entry, rentry in zip(conll_sentence, reversed(conll_sentence)): blstm_forward = blstm_forward.add_input(entry.vec) blstm_backward = blstm_backward.add_input(rentry.vec) entry.lstms[1] = blstm_forward.output() rentry.lstms[0] = blstm_backward.output() scores, exprs = self.__evaluate(conll_sentence) heads = decoder.parse_proj(scores) # Multiple roots: heading to the previous "rooted" one rootCount = 0 rootWid = -1 for index, head in enumerate(heads): if head == 0: rootCount += 1 if rootCount == 1: rootWid = index if rootCount > 1: heads[index] = rootWid rootWid = index for entry, head, pos in zip(conll_sentence, heads, predicted_postags): entry.pred_parent_id = head entry.pred_relation = '_' entry.pred_pos = pos dump = False if self.labelsFlag: concat_layer = [self.__getRelVector(conll_sentence, head, modifier + 1) for modifier, head in enumerate(heads[1:])] outputFFlayer = self.ffRelPredictor.predict_sequence(concat_layer) predicted_rel_indices = [np.argmax(o.value()) for o in outputFFlayer] predicted_rels = [self.irels[idx] for idx in predicted_rel_indices] for modifier, head in enumerate(heads[1:]): conll_sentence[modifier + 1].pred_relation = predicted_rels[modifier] renew_cg() if not dump: yield sentence def Train(self, conll_path): eloss = 0.0 mloss = 0.0 eerrors = 0 etotal = 0 start = time.time() with open(conll_path) as conllFP: shuffledData = list(read_conll(conllFP, self.c2i)) random.shuffle(shuffledData) errs = [] lerrs = [] posErrs = [] for iSentence, sentence in enumerate(shuffledData): if iSentence % 500 == 0 and iSentence != 0: print("Processing sentence number: %d" % iSentence, ", Loss: %.4f" % ( eloss / etotal), ", Time: %.2f" % (time.time() - start)) start = time.time() eerrors = 0 eloss = 0.0 etotal = 0 conll_sentence = [entry for entry in sentence if isinstance(entry, utils.ConllEntry)] for entry in conll_sentence: c = float(self.wordsCount.get(entry.norm, 0)) dropFlag = (random.random() < (c / (0.25 + c))) wordvec = self.wlookup[ int(self.vocab.get(entry.norm, 0)) if dropFlag else 0] if self.wdims > 0 else None last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in entry.idChars])[-1] rev_last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in reversed(entry.idChars)])[ -1] entry.vec = dynet.dropout(concatenate([_f for _f in [wordvec, last_state, rev_last_state] if _f]), 0.33) entry.pos_lstms = [entry.vec, entry.vec] entry.headfov = None entry.modfov = None entry.rheadfov = None entry.rmodfov = None #POS tagging loss lstm_forward = self.pos_builders[0].initial_state() lstm_backward = self.pos_builders[1].initial_state() for entry, rentry in zip(conll_sentence, reversed(conll_sentence)): lstm_forward = lstm_forward.add_input(entry.vec) lstm_backward = lstm_backward.add_input(rentry.vec) entry.pos_lstms[1] = lstm_forward.output() rentry.pos_lstms[0] = lstm_backward.output() for entry in conll_sentence: entry.pos_vec = concatenate(entry.pos_lstms) blstm_forward = self.pos_bbuilders[0].initial_state() blstm_backward = self.pos_bbuilders[1].initial_state() for entry, rentry in zip(conll_sentence, reversed(conll_sentence)): blstm_forward = blstm_forward.add_input(entry.pos_vec) blstm_backward = blstm_backward.add_input(rentry.pos_vec) entry.pos_lstms[1] = blstm_forward.output() rentry.pos_lstms[0] = blstm_backward.output() concat_layer = [dynet.dropout(concatenate(entry.pos_lstms), 0.33) for entry in conll_sentence] outputFFlayer = self.ffSeqPredictor.predict_sequence(concat_layer) posIDs = [self.pos.get(entry.pos) for entry in conll_sentence] for pred, gold in zip(outputFFlayer, posIDs): posErrs.append(self.pick_neg_log(pred, gold)) # Add predicted pos tags for entry, poses in zip(conll_sentence, outputFFlayer): entry.vec = concatenate([entry.vec, dynet.dropout(self.plookup[np.argmax(poses.value())], 0.33)]) entry.lstms = [entry.vec, entry.vec] #Parsing losses if self.blstmFlag: lstm_forward = self.builders[0].initial_state() lstm_backward = self.builders[1].initial_state() for entry, rentry in zip(conll_sentence, reversed(conll_sentence)): lstm_forward = lstm_forward.add_input(entry.vec) lstm_backward = lstm_backward.add_input(rentry.vec) entry.lstms[1] = lstm_forward.output() rentry.lstms[0] = lstm_backward.output() if self.bibiFlag: for entry in conll_sentence: entry.vec =
"object dependencies.", req.status_code, nb_id ) log.debug("NetBox %s status body: %s", req.status_code, req.json()) else: raise SystemExit( log.critical( "Well this in unexpected. Please report this. " "%s request received %s status with body '%s' and response " "'%s'.", req_type.upper(), req.status_code, data, req.json() ) ) return result def obj_exists(self, nb_obj_type, vc_data): """ Checks whether a NetBox object exists and matches the vCenter object. If object does not exist or does not match the vCenter object it will be created or updated. nb_obj_type: String NetBox object type to query for and compare against vc_data: Dictionary of vCenter object key value pairs pre-formatted for NetBox """ # NetBox Device Types objects do not have names to query; we catch # and use the model instead query_key = self.obj_map[nb_obj_type]["key"] # Create a query specific to the device parent/child relationship when # working with interfaces if nb_obj_type == "interfaces": query = "?device={}&{}={}".format( vc_data["device"]["name"], query_key, vc_data[query_key] ) elif nb_obj_type == "virtual_interfaces": query = "?virtual_machine={}&{}={}".format( vc_data["virtual_machine"]["name"], query_key, vc_data[query_key] ) else: query = "?{}={}".format(query_key, vc_data[query_key]) req = self.request( req_type="get", nb_obj_type=nb_obj_type, query=query ) # A single matching object is found so we compare its values to the new # object if req["count"] == 1: log.debug( "NetBox %s object '%s' already exists. Comparing values.", nb_obj_type, vc_data[query_key] ) nb_data = req["results"][0] # Objects that have been previously tagged as orphaned but then # reappear in vCenter need to be stripped of their orphaned status if "tags" in vc_data and "Orphaned" in nb_data["tags"]: log.info( "NetBox %s object '%s' is currently marked as orphaned " "but has reappeared in vCenter. Updating NetBox.", nb_obj_type, vc_data[query_key] ) self.request( req_type="put", nb_obj_type=nb_obj_type, data=vc_data, nb_id=nb_data["id"] ) elif compare_dicts( vc_data, nb_data, dict1_name="vc_data", dict2_name="nb_data"): log.info( "NetBox %s object '%s' match current values. Moving on.", nb_obj_type, vc_data[query_key] ) else: log.info( "NetBox %s object '%s' do not match current values.", nb_obj_type, vc_data[query_key] ) # Issue #1: Ensure existing and new tags are merged together # This allows users to add alternative tags or sync from # multiple vCenter instances if "tags" in vc_data: log.debug("Merging tags between vCenter and NetBox object.") vc_data["tags"] = list( set(vc_data["tags"] + nb_data["tags"]) ) self.request( req_type="put", nb_obj_type=nb_obj_type, data=vc_data, nb_id=nb_data["id"] ) elif req["count"] > 1: log.warning( "Search for NetBox %s object '%s' returned %s results but " "should have only returned 1. Please manually review and " "report this if the data is accurate. Skipping for safety.", nb_obj_type, vc_data[query_key], req["count"] ) else: log.info( "Netbox %s '%s' object not found. Requesting creation.", nb_obj_type, vc_data[query_key], ) self.request( req_type="post", nb_obj_type=nb_obj_type, data=vc_data ) def sync_objects(self, vc_obj_type): """ Collects objects from vCenter and syncs them to NetBox. Some object types do not support tags so they will be a one-way sync meaning orphaned objects will not be removed from NetBox. """ # Collect data from vCenter log.info( "Initiated sync of vCenter %s objects to NetBox.", vc_obj_type[:-1] ) vc_objects = self.vc.get_objects(vc_obj_type=vc_obj_type) # Determine each NetBox object type collected from vCenter nb_obj_types = list(vc_objects.keys()) for nb_obj_type in nb_obj_types: log.info( "Starting sync of %s vCenter %s object%s to NetBox %s " "object%s.", len(vc_objects[nb_obj_type]), vc_obj_type, "s" if len(vc_objects[nb_obj_type]) != 1 else "", nb_obj_type, "s" if len(vc_objects[nb_obj_type]) != 1 else "", ) for obj in vc_objects[nb_obj_type]: # Check to ensure IP addresses pass all checks before syncing # to NetBox if nb_obj_type == "ip_addresses": ip_addr = obj["address"] if verify_ip(ip_addr): log.debug( "IP %s has passed necessary pre-checks.", ip_addr ) # Update IP address to CIDR notation for comparsion # with existing NetBox objects obj["address"] = format_ip(ip_addr) # Search for parent prefix to assign VRF and tenancy prefix = self.search_prefix(obj["address"]) # Update placeholder values with matched values obj["vrf"] = prefix["vrf"] obj["tenant"] = prefix["tenant"] else: log.debug( "IP %s has failed necessary pre-checks. Skipping " "sync to NetBox.", ip_addr, ) continue self.obj_exists(nb_obj_type=nb_obj_type, vc_data=obj) log.info( "Finished sync of %s vCenter %s object%s to NetBox %s " "object%s.", len(vc_objects[nb_obj_type]), vc_obj_type, "s" if len(vc_objects[nb_obj_type]) != 1 else "", nb_obj_type, "s" if len(vc_objects[nb_obj_type]) != 1 else "", ) # Send vCenter objects to the pruner if settings.NB_PRUNE_ENABLED: self.prune_objects(vc_objects, vc_obj_type) def prune_objects(self, vc_objects, vc_obj_type): """ Collects NetBox objects and checks if they still exist in vCenter. If NetBox objects are not found in the supplied vc_objects data then they will go through a pruning process. vc_objects: Dictionary of VC object types and list of their objects vc_obj_type: The parent object type called during the synce. This is used to determine whether special filtering needs to be applied. """ # Determine qualifying object types based on object map nb_obj_types = [t for t in vc_objects if self.obj_map[t]["prune"]] # Sort qualify NetBox object types by prune priority. This ensures # we do not have issues with deleting due to orphaned dependencies. nb_obj_types = sorted( nb_obj_types, key=lambda t: self.obj_map[t]["prune_pref"], reverse=True ) for nb_obj_type in nb_obj_types: log.info( "Comparing existing NetBox %s objects to current vCenter " "objects for pruning eligibility.", nb_obj_type ) nb_objects = self.request( req_type="get", nb_obj_type=nb_obj_type, # For tags we cannot search strings containing a period as of # NetBox 2.6.7 so we search on the slug to be safe query="?tag={}".format(format_slug(self.vc_tag)) )["results"] # Certain NetBox object types overlap between vCenter object types # When pruning, we must differentiate so as not to compare against # the wrong objects if vc_obj_type == "hosts" and nb_obj_type == "interfaces": nb_objects = [ obj for obj in nb_objects if obj["device"] is not None ] elif vc_obj_type == "hosts" and nb_obj_type == "ip_addresses": nb_objects = [ obj for obj in nb_objects if obj["interface"]["device"] is not None ] elif vc_obj_type == "virtual_machines" and \ nb_obj_type == "interfaces": nb_objects = [ obj for obj in nb_objects if obj["virtual_machine"] is not None ] elif vc_obj_type == "virtual_machines" and \ nb_obj_type == "ip_addresses": nb_objects = [ obj for obj in nb_objects if obj["interface"]["virtual_machine"] is not None ] # From the vCenter objects provided collect only the names/models of # each object from the current type we're comparing against query_key = self.obj_map[nb_obj_type]["key"] vc_obj_values = [obj[query_key] for obj in vc_objects[nb_obj_type]] orphans = [ obj for obj in nb_objects if obj[query_key] not in vc_obj_values ] log.info( "Comparison completed. %s %s orphaned NetBox object%s did not " "match.", len(orphans), nb_obj_type, "s" if len(orphans) != 1 else "" ) log.debug("The following objects did not match: %s", orphans) # Pruned items are checked against the prune timer # All pruned items are first tagged so it is clear why they were # deleted, and then those items which are greater than the max age # will be deleted permanently for orphan in orphans: log.info( "Processing orphaned NetBox %s '%s' object.", nb_obj_type, orphan[query_key] ) if "Orphaned" not in orphan["tags"]: log.info( "No tag found. Adding 'Orphaned' tag to %s '%s' " "object.", nb_obj_type, orphan[query_key] ) tags = { "tags": ["Synced", "vCenter", self.vc_tag, "Orphaned"] } self.request( req_type="patch", nb_obj_type=nb_obj_type, nb_id=orphan["id"], data=tags ) # Check if the orphan has gone past the max prune timer and # needs to be deleted # Dates are in YY, MM, DD format current_date = date.today() # Some objects do not have a last_updated field so we must # handle that gracefully and send for deletion del_obj = False try: modified_date = date( int(orphan["last_updated"][:4]), # Year int(orphan["last_updated"][5:7]), # Month int(orphan["last_updated"][8:10]) # Day ) # Calculated timedelta then converts it to the days integer days_orphaned = (current_date - modified_date).days if days_orphaned >= settings.NB_PRUNE_DELAY_DAYS: log.info( "The %s '%s' object has exceeded the %s day max " "for orphaned objects. Sending it for deletion.", nb_obj_type, orphan[query_key], settings.NB_PRUNE_DELAY_DAYS ) del_obj = True else: log.info( "The %s '%s' object has been orphaned for %s of %s " "max days. Proceeding to next object.", nb_obj_type, orphan[query_key], days_orphaned, settings.NB_PRUNE_DELAY_DAYS ) except KeyError as err: log.debug( "The %s '%s' object does not have a %s " "field. Sending it for deletion.", nb_obj_type, orphan[query_key], err ) del_obj = True if del_obj: self.request( req_type="delete", nb_obj_type=nb_obj_type, nb_id=orphan["id"], ) def search_prefix(self, ip_addr): """ Queries Netbox for the parent prefix of
<reponame>jacer2020/ui2 # coding: utf-8 # from __future__ import absolute_import, print_function import base64 import io import logging import re import time import warnings import xml.dom.minidom import requests import six from retry import retry from uiautomator2.exceptions import (RetryError, NullPointerExceptionError, UiObjectNotFoundError, UiautomatorQuitError) from uiautomator2.utils import Exists, U, check_alive, hooks_wrap, intersect, cache_return from uiautomator2.swipe import SwipeExt _INPUT_METHOD_RE = re.compile(r'mCurMethodId=([-_./\w]+)') _fail_prompt_enabled = False def set_fail_prompt(enable=True): """ When Element click through Exception, Prompt user to decide """ global _fail_prompt_enabled _fail_prompt_enabled = enable def _failprompt(fn): def _inner(self, *args, **kwargs): if not _fail_prompt_enabled: return fn(self, *args, **kwargs) from uiautomator2 import messagebox try: return fn(self, *args, **kwargs) except UiObjectNotFoundError as e: result = messagebox.retryskipabort(str(e), 30) if result == 'retry': return _inner(self, *args, **kwargs) elif result == 'skip': return True else: raise return _inner class Session(object): __orientation = ( # device orientation (0, "natural", "n", 0), (1, "left", "l", 90), (2, "upsidedown", "u", 180), (3, "right", "r", 270)) def __init__(self, server, pkg_name=None, pid=None): self.server = server self._pkg_name = pkg_name self._pid = pid self._jsonrpc = server.jsonrpc if pid and pkg_name: jsonrpc_url = server.path2url('/session/%d:%s/jsonrpc/0' % (pid, pkg_name)) self._jsonrpc = server.setup_jsonrpc(jsonrpc_url) def __repr__(self): if self._pid and self._pkg_name: return "<uiautomator2.Session pid:%d pkgname:%s>" % ( self._pid, self._pkg_name) return super(Session, self).__repr__() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def _update_pid(self, pid: int): """ Update package running pid """ self._pid = pid jsonrpc_url = self.server.path2url('/session/%d:%s/jsonrpc/0' % (pid, self._pkg_name)) self._jsonrpc = self.server.setup_jsonrpc(jsonrpc_url) @property @cache_return def widget(self): from uiautomator2.widget import Widget return Widget(self) @property @cache_return def swipe_ext(self): return SwipeExt(self.server) def _find_element(self, xpath: str, _class=None, pos=None, activity=None, package=None): raise NotImplementedError() def implicitly_wait(self, seconds=None): """set default wait timeout Args: seconds(float): to wait element show up Deprecated: recommend use: d.settings['wait_timeout'] = 10 """ if seconds is None: return self.server.settings['wait_timeout'] else: self.server.settings["wait_timeout"] = seconds # if seconds is not None: # self.server.wait_timeout = seconds # return self.server.wait_timeout def close(self): """ close app """ if self._pkg_name: self.server.app_stop(self._pkg_name) def restart(self, use_monkey=False): """ Stop app and start Raises: RuntimeError """ self.close() self.server.app_start(self._pkg_name, use_monkey=use_monkey) pid = self.server.app_wait(self._pkg_name, timeout=3) if not pid: raise RuntimeError("app start failed") self._update_pid(pid) def running(self): """ Check is session is running. return bool """ if self._pid and self._pkg_name: ping_url = self.server.path2url('/session/%d:%s/ping' % (self._pid, self._pkg_name)) return self.server._reqsess.get(ping_url).text.strip() == 'pong' # warnings.warn("pid and pkg_name is not set, ping will always return True", Warning, stacklevel=1) return True @property def jsonrpc(self): return self._jsonrpc @property def pos_rel2abs(self): size = [] def convert(x, y): assert x >= 0 assert y >= 0 if (x < 1 or y < 1) and not size: size.extend( self.server.window_size()) # size will be [width, height] if x < 1: x = int(size[0] * x) if y < 1: y = int(size[1] * y) return x, y return convert def make_toast(self, text, duration=1.0): """ Show toast Args: text (str): text to show duration (float): seconds of display """ warnings.warn("Use d.toast.show(text, duration) instead.", DeprecationWarning, stacklevel=2) return self.jsonrpc.makeToast(text, duration * 1000) @property def toast(self): obj = self class Toast(object): def get_message(self, wait_timeout=10, cache_timeout=10, default=None): """ Args: wait_timeout: seconds of max wait time if toast now show right now cache_timeout: return immediately if toast showed in recent $cache_timeout default: default messsage to return when no toast show up Returns: None or toast message """ deadline = time.time() + wait_timeout while 1: message = obj.jsonrpc.getLastToast(cache_timeout * 1000) if message: return message if time.time() > deadline: return default time.sleep(.5) def reset(self): return obj.jsonrpc.clearLastToast() def show(self, text, duration=1.0): return obj.jsonrpc.makeToast(text, duration * 1000) return Toast() @check_alive def set_fastinput_ime(self, enable=True): """ Enable of Disable FastInputIME """ fast_ime = 'com.github.uiautomator/.FastInputIME' if enable: self.server.shell(['ime', 'enable', fast_ime]) self.server.shell(['ime', 'set', fast_ime]) else: self.server.shell(['ime', 'disable', fast_ime]) @check_alive def send_keys(self, text: str, clear: bool = False): """ Args: text (str): text to set clear (bool): clear before set text Raises: EnvironmentError """ try: self.wait_fastinput_ime() btext = U(text).encode('utf-8') base64text = base64.b64encode(btext).decode() cmd = "ADB_SET_TEXT" if clear else "ADB_INPUT_TEXT" self.server.shell( ['am', 'broadcast', '-a', cmd, '--es', 'text', base64text]) return True except EnvironmentError: warnings.warn( "set FastInputIME failed. use \"d(focused=True).set_text instead\"", Warning) return self(focused=True).set_text(text) # warnings.warn("set FastInputIME failed. use \"adb shell input text\" instead", Warning) # self.server.shell(["input", "text", text.replace(" ", "%s")]) @check_alive def send_action(self, code): """ Simulate input method edito code Args: code (str or int): input method editor code Examples: send_action("search"), send_action(3) Refs: https://developer.android.com/reference/android/view/inputmethod/EditorInfo """ self.wait_fastinput_ime() __alias = { "go": 2, "search": 3, "send": 4, "next": 5, "done": 6, "previous": 7, } if isinstance(code, six.string_types): code = __alias.get(code, code) self.server.shell([ 'am', 'broadcast', '-a', 'ADB_EDITOR_CODE', '--ei', 'code', str(code) ]) @check_alive def clear_text(self): """ clear text Raises: EnvironmentError """ try: self.wait_fastinput_ime() self.server.shell(['am', 'broadcast', '-a', 'ADB_CLEAR_TEXT']) except EnvironmentError: # for Android simulator self(focused=True).clear_text() def wait_fastinput_ime(self, timeout=5.0): """ wait FastInputIME is ready Args: timeout(float): maxium wait time Raises: EnvironmentError """ if not self.server.serial: # maybe simulator eg: genymotion, 海马玩模拟器 raise EnvironmentError("Android simulator is not supported.") deadline = time.time() + timeout while time.time() < deadline: ime_id, shown = self.current_ime() if ime_id != "com.github.uiautomator/.FastInputIME": self.set_fastinput_ime(True) time.sleep(0.5) continue if shown: return True time.sleep(0.2) raise EnvironmentError("FastInputIME started failed") def current_ime(self): """ Current input method Returns: (method_id(str), shown(bool) Example output: ("com.github.uiautomator/.FastInputIME", True) """ dim, _ = self.server.shell(['dumpsys', 'input_method']) m = _INPUT_METHOD_RE.search(dim) method_id = None if not m else m.group(1) shown = "mInputShown=true" in dim return (method_id, shown) def tap(self, x, y): """ alias of click """ self.click(x, y) @property def touch(self): """ ACTION_DOWN: 0 ACTION_MOVE: 2 touch.down(x, y) touch.move(x, y) touch.up() """ ACTION_DOWN = 0 ACTION_MOVE = 2 ACTION_UP = 1 obj = self class _Touch(object): def down(self, x, y): obj.jsonrpc.injectInputEvent(ACTION_DOWN, x, y, 0) return self def move(self, x, y): obj.jsonrpc.injectInputEvent(ACTION_MOVE, x, y, 0) return self def up(self, x, y): """ ACTION_UP x, y """ obj.jsonrpc.injectInputEvent(ACTION_UP, x, y, 0) return self def sleep(self, seconds: float): time.sleep(seconds) return self return _Touch() def click(self, x, y): """ click position """ x, y = self.pos_rel2abs(x, y) self._click(x, y) @hooks_wrap def _click(self, x, y): self.jsonrpc.click(x, y) if self.server.click_post_delay: # click code delay time.sleep(self.server.click_post_delay) def double_click(self, x, y, duration=0.1): """ double click position """ x, y = self.pos_rel2abs(x, y) self.touch.down(x, y) self.touch.up(x, y) time.sleep(duration) self.click(x, y) # use click last is for htmlreport def long_click(self, x, y, duration=None): '''long click at arbitrary coordinates. Args: duration (float): seconds of pressed ''' if not duration: duration = 0.5 x, y = self.pos_rel2abs(x, y) return self._long_click(x, y, duration) @hooks_wrap def _long_click(self, x, y, duration): self.touch.down(x, y) # self.touch.move(x, y) # maybe can fix time.sleep(duration) self.touch.up(x, y) return self def swipe(self, fx, fy, tx, ty, duration=0.1, steps=None): """ Args: fx, fy: from position tx, ty: to position duration (float): duration steps: 1 steps is about 5ms, if set, duration will be ignore Documents: uiautomator use steps instead of duration As the document say: Each step execution is throttled to 5ms per step. Links: https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#swipe%28int,%20int,%20int,%20int,%20int%29 """ rel2abs = self.pos_rel2abs fx, fy = rel2abs(fx, fy) tx, ty = rel2abs(tx, ty) if not steps: steps = int(duration * 200) self._swipe(fx, fy, tx, ty, steps) @hooks_wrap def _swipe(self, fx, fy, tx, ty, steps): return self.jsonrpc.swipe(fx, fy, tx, ty, steps) def swipe_points(self, points, duration=0.5): """ Args: points: is point array containg at least one point object. eg [[200, 300], [210, 320]] duration: duration to inject between two points Links: https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html#swipe(android.graphics.Point[], int) """ ppoints = [] rel2abs = self.pos_rel2abs for p in points: x, y = rel2abs(p[0], p[1]) ppoints.append(x) ppoints.append(y) return self.jsonrpc.swipePoints(ppoints, int(duration * 200)) def drag(self, sx, sy, ex, ey, duration=0.5): '''Swipe from one point to another point.''' rel2abs = self.pos_rel2abs sx, sy = rel2abs(sx, sy) ex, ey = rel2abs(ex, ey) return self.jsonrpc.drag(sx, sy, ex, ey, int(duration * 200)) @retry((IOError, SyntaxError), delay=.5, tries=5, jitter=0.1, max_delay=1) # delay .5, .6, .7, .8 ... def screenshot(self, filename=None, format='pillow'): """ Image format is JPEG Args: filename (str): saved filename format (string): used when filename is empty. one of "pillow" or "opencv" Raises: IOError, SyntaxError Examples: screenshot("saved.jpg") screenshot().save("saved.png") cv2.imwrite('saved.jpg', screenshot(format='opencv')) """ # Another way to take screenshot is use jsonrpc # self.jsonrpc.takeScreenshot(1.0, 70) # scale, quality -> base64 r = requests.get(self.server.screenshot_uri, timeout=10) if filename: with open(filename, 'wb') as f: f.write(r.content) return
(left_index and right_index): left_on = right_on = list(same_named_columns) return left_on, right_on @staticmethod def _get_left_right_indices(lhs, rhs, left_on, right_on, left_index, right_index): """ Calculate left and right column indices to perform shuffle on this is based on the "join" function in cudf file: cudf/_lib/join.pyx """ if left_on is None: left_on = [] if right_on is None: right_on = [] left_on_ind = [] right_on_ind = [] if left_index or right_index: # If either true, we need to process both indices as columns left_join_cols = list(lhs._index_names) + list(lhs._column_names) right_join_cols = list(rhs._index_names) + list(rhs._column_names) if left_index and right_index: # Both dataframes must take index column indices left_on_indices = right_on_indices = range(lhs._num_indices) elif left_index: # Joins left index columns with right 'on' columns left_on_indices = range(lhs._num_indices) right_on_indices = [ right_join_cols.index(on_col) for on_col in right_on ] elif right_index: # Joins right index columns with left 'on' columns right_on_indices = range(rhs._num_indices) left_on_indices = [ left_join_cols.index(on_col) for on_col in left_on ] for i_l, i_r in zip(left_on_indices, right_on_indices): left_on_ind.append(i_l) right_on_ind.append(i_r) else: left_join_cols = list(lhs._index_names) + list(lhs._column_names) right_join_cols = list(rhs._index_names) + list(rhs._column_names) # If both left/right_index, joining on indices plus additional cols # If neither, joining on just cols, not indices # In both cases, must match up additional column indices in lhs/rhs if left_index == right_index: for name in left_on: left_on_ind.append(left_join_cols.index(name)) for name in right_on: right_on_ind.append(right_join_cols.index(name)) return left_on_ind, right_on_ind def _get_column_indices(self) -> List[int]: """ Get the column indices excluding index columns :return: list of ints """ lists = DataFrame._get_all_column_indices([self]) return lists[0] @staticmethod def _get_all_column_indices(dfs) -> List[List[int]]: """ Get indices of all DataFrames excluding index columns This is to calculate indices of columns that will be used to perform partitioning/shuffling on the dataframe :param dfs: list of DataFrame objects :return: list of list of column indices """ all_df_indices = []; for cdf in dfs: df_indices = [*range(cdf._cdf._num_indices, cdf._cdf._num_indices + cdf._cdf._num_columns)] all_df_indices.append(df_indices) return all_df_indices @staticmethod def _get_all_common_indices(dfs) -> List[List[int]]: """ Get indices of all columns common in all DataFrames Columns might be in different indices in different DataFrames This is to calculate indices of columns that will be used to perform partitioning/shuffling on the dataframe :param dfs: list of DataFrame objects :return: list of list of column indices """ # get the inersection of all column names common_columns_names = DataFrame._get_common_column_names(dfs) if len(common_columns_names) == 0: raise ValueError("There is no common column names among the provided DataFrame objects") all_df_indices = []; for cdf in dfs: df_indices = [] col_names = list(cdf._cdf._index_names) + list(cdf._cdf._column_names) for name in common_columns_names: df_indices.append(col_names.index(name)) all_df_indices.append(df_indices) return all_df_indices @staticmethod def _get_common_column_names(dfs) -> List[str]: """ Get common column names in the proved DataFrames :param dfs: list of DataFrame objects :return: list of column names that are common to all DataFrames """ column_name_lists = [list(obj._cdf._column_names) for obj in dfs] common_column_names = set(column_name_lists[0]) for column_names in column_name_lists[1:]: common_column_names = common_column_names & set(column_names) return common_column_names def drop_duplicates( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", inplace: bool = False, ignore_index: bool = False, env: CylonEnv = None) -> Union[DataFrame or None]: """ Remove duplicate rows from the DataFrame. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False: Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. inplace is supported only in local mode when there are multiple workers in the computation, inplace is disabled ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. env: CylonEnv object Returns ------- DataFrame or None DataFrame with duplicates removed or None if ``inplace=True`` and in the local mode with no distributed workers. """ subset = self._convert_subset(subset=subset, ignore_len_check=True) if env is None or env.world_size == 1: dropped_df = self._cdf.drop_duplicates(subset=subset, keep=keep, inplace=inplace, ignore_index=ignore_index) return DataFrame.from_cudf(dropped_df) if not inplace else None shuffle_column_indices = [] for name in subset: shuffle_column_indices.append(self._cdf._num_indices + self._cdf._column_names.index(name)) shuffled_df = _shuffle(self._cdf, hash_columns=shuffle_column_indices, env=env) dropped_df = shuffled_df.drop_duplicates(subset=subset, keep=keep, inplace=inplace, ignore_index=ignore_index) return DataFrame.from_cudf(shuffled_df) if inplace else DataFrame.from_cudf(dropped_df) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False, ) -> Union[DataFrame or None]: """Return a new DataFrame with a new index Parameters ---------- keys : Index, Series-convertible, label-like, or list Index : the new index. Series-convertible : values for the new index. Label-like : Label of column to be used as index. List : List of items from above. drop : boolean, default True Whether to drop corresponding column for str index argument append : boolean, default True Whether to append columns to the existing index, resulting in a MultiIndex. inplace : boolean, default False Modify the DataFrame in place (do not create a new object). verify_integrity : boolean, default False Check for duplicates in the new index. Returns ------- DataFrame or None DataFrame with a new index or None if ``inplace=True`` Examples -------- >>> df = cudf.DataFrame({ ... "a": [1, 2, 3, 4, 5], ... "b": ["a", "b", "c", "d","e"], ... "c": [1.0, 2.0, 3.0, 4.0, 5.0] ... }) >>> df a b c 0 1 a 1.0 1 2 b 2.0 2 3 c 3.0 3 4 d 4.0 4 5 e 5.0 Set the index to become the ‘b’ column: >>> df.set_index('b') a c b a 1 1.0 b 2 2.0 c 3 3.0 d 4 4.0 e 5 5.0 Create a MultiIndex using columns ‘a’ and ‘b’: >>> df.set_index(["a", "b"]) c a b 1 a 1.0 2 b 2.0 3 c 3.0 4 d 4.0 5 e 5.0 Set new Index instance as index: >>> df.set_index(cudf.RangeIndex(10, 15)) a b c 10 1 a 1.0 11 2 b 2.0 12 3 c 3.0 13 4 d 4.0 14 5 e 5.0 Setting `append=True` will combine current index with column `a`: >>> df.set_index("a", append=True) b c a 0 1 a 1.0 1 2 b 2.0 2 3 c 3.0 3 4 d 4.0 4 5 e 5.0 `set_index` supports `inplace` parameter too: >>> df.set_index("a", inplace=True) >>> df b c a 1 a 1.0 2 b 2.0 3 c 3.0 4 d 4.0 5 e 5.0 """ indexed_df = self._cdf.set_index(keys=keys, drop=drop, append=append, inplace=inplace, verify_integrity=verify_integrity) return DataFrame.from_cudf(indexed_df) if indexed_df else None def reset_index( self, level=None, drop=False, inplace=False, col_level=0, col_fill="" ) -> Union[DataFrame or None]: """ Reset the index. Reset the index of the DataFrame, and use the default one instead. Parameters ---------- drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. Examples -------- >>> df = cudf.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal <NA> >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal <NA> >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal <NA> """ indexed_df = self._cdf.reset_index(level=level, drop=drop, inplace=inplace, col_level=col_level, col_fill=col_fill) return DataFrame.from_cudf(indexed_df) if indexed_df else None def _convert_subset(self, subset: Union[Hashable, Sequence[Hashable]], ignore_len_check: bool = False) -> Iterable[Hashable]: """ convert the subset to Iterable[Hashable] if the any value in subset does not exist in column names, raise an error based on: cudf.core.frame.Frame.drop_duplicates Returns ------- List/Tuple of column names """ if subset is None: subset = self._cdf._column_names elif ( not np.iterable(subset)
<filename>examples/seismic/skew_self_adjoint/wavesolver.py from devito import Function, TimeFunction from examples.seismic import PointSource, Receiver from examples.seismic.skew_self_adjoint.utils import setup_w_over_q, compute_critical_dt from examples.seismic.skew_self_adjoint.operators import IsoFwdOperator, IsoAdjOperator, \ IsoJacobianFwdOperator, IsoJacobianAdjOperator class SsaIsoAcousticWaveSolver(object): """ Solver object for a scalar isotropic variable density visco- acoustic skew self adjoint wave equation that provides operators for seismic inversion problems and encapsulates the time and space discretization for a given problem setup. Parameters ---------- npad : int, required Number of points in the absorbing boundary. Typically set to 50. omega : float, required Center circular frequency for dissipation only attenuation. qmin : float, required Minimum Q value on the exterior of the absorbing boundary. Typically set to 0.1. qmax : float, required Maximum Q value in the interior of the model. Typically set to 100.0. b : Function, required Physical model with buoyancy (m^3/kg). v : Function, required Physical model with velocity (m/msec). src : SparseTimeFunction (PointSource) Source position and time signature. rec : SparseTimeFunction (PointSource) Receiver positions and time signature. time_axis : TimeAxis Defines temporal sampling. space_order: int, optional Order of the spatial stencil discretisation. Defaults to 8. """ def __init__(self, npad, qmin, qmax, omega, b, v, src_coords, rec_coords, time_axis, space_order=8, **kwargs): self.npad = npad self.qmin = qmin self.qmax = qmax self.omega = omega self.b = b self.v = v self.src_coords = src_coords self.rec_coords = rec_coords self.time_axis = time_axis self.space_order = space_order # Determine temporal sampling using compute_critical_dt in utils.py self.dt = compute_critical_dt(v) # Cache compiler options self._kwargs = kwargs # Create the wOverQ Function wOverQ = Function(name='wOverQ', grid=v.grid, space_order=v.space_order) setup_w_over_q(wOverQ, omega, qmin, qmax, npad) self.wOverQ = wOverQ def forward(self, src, rec=None, b=None, v=None, wOverQ=None, u=None, save=None, **kwargs): """ Forward modeling function that creates the necessary data objects for running a forward modeling operator. No required parameters. Parameters ---------- src : SparseTimeFunction, required Time series data for the injected source term. rec : SparseTimeFunction, optional, defaults to new rec The interpolated receiver data. b : Function or float, optional, defaults to b at construction The time-constant buoyancy. v : Function or float, optional, defaults to v at construction The time-constant velocity. wOverQ : Function or float, optional, defaults to wOverQ at construction The time-constant dissipation only attenuation w/Q field. u : Function or float, optional, defaults to new TimeFunction Stores the computed wavefield. save : int or Buffer, optional The entire (unrolled) wavefield. Returns ---------- Receiver time series data, TimeFunction wavefield u, and performance summary """ # src is required # Get rec: rec can change, create new if not passed rec = rec or Receiver(name='rec', grid=self.v.grid, time_range=self.time_axis, coordinates=self.rec_coords) # Get (b, v, wOverQ) from passed arguments or from (b, v, wOverQ) at construction b = b or self.b v = v or self.v wOverQ = wOverQ or self.wOverQ # ensure src, rec, b, v, wOverQ all share the same underlying grid assert src.grid == rec.grid == b.grid == v.grid == wOverQ.grid # Make dictionary of the physical model properties model = {'b': b, 'v': v, 'wOverQ': wOverQ} # Create the wavefield if not provided u = u or TimeFunction(name='u', grid=self.v.grid, save=self.time_axis.num if save else None, time_order=2, space_order=self.space_order) # Build the operator and execute op = IsoFwdOperator(model, src, rec, self.time_axis, space_order=self.space_order, save=self.time_axis.num if save else None, **self._kwargs) rec.data[:] = 0 u.data[:] = 0 summary = op.apply(u=u, **kwargs) return rec, u, summary def adjoint(self, rec, src=None, b=None, v=None, wOverQ=None, u=None, save=None, **kwargs): """ Adjoint modeling function that creates the necessary data objects for running a adjoint modeling operator. Required parameters: rec. Parameters ---------- rec : SparseTimeFunction, required The interpolated receiver data to be injected. src : SparseTimeFunction, optional, defaults to new src Time series data for the adjoint source term. b : Function or float, optional, defaults to b at construction The time-constant buoyancy. v : Function or float, optional, defaults to v at construction The time-constant velocity. wOverQ : Function or float, optional, defaults to wOverQ at construction The time-constant dissipation only attenuation w/Q field. ua : Function or float, optional, defaults to new TimeFunction Stores the computed adjoint wavefield. save : int or Buffer, optional The entire (unrolled) wavefield. Returns ---------- Adjoint source time series data, wavefield TimeFunction ua, and performance summary """ # rec is required # Get src: src can change, create new if not passed src = src or PointSource(name='src', grid=self.v.grid, time_range=self.time_axis, coordinates=self.src_coords) # Get (b, v, wOverQ) from passed arguments or from (b, v, wOverQ) at construction b = b or self.b v = v or self.v wOverQ = wOverQ or self.wOverQ # ensure src, rec, b, v, wOverQ all share the same underlying grid assert src.grid == rec.grid == b.grid == v.grid == wOverQ.grid # Make dictionary of the physical model properties model = {'b': b, 'v': v, 'wOverQ': wOverQ} # Create the adjoint wavefield if not provided u = u or TimeFunction(name='u', grid=self.v.grid, save=self.time_axis.num if save else None, time_order=2, space_order=self.space_order) # Build the operator and execute op = IsoAdjOperator(model, src, rec, self.time_axis, space_order=self.space_order, save=self.time_axis.num if save else None, **self._kwargs) src.data[:] = 0 u.data[:] = 0 summary = op.apply(u=u, **kwargs) return src, u, summary def jacobian_forward(self, dm, src, rec=None, b=None, v=None, wOverQ=None, u0=None, du=None, save=None, **kwargs): """ Linearized JacobianForward modeling function that creates the necessary data objects for running a Jacobian forward modeling operator. Required parameters: dm. Parameters ---------- dm : Function or float, required The perturbation to the velocity model. src : SparseTimeFunction, required Time series data for the injected source term. rec : SparseTimeFunction, optional, defaults to new rec The interpolated receiver data. b : Function or float, optional, defaults to b at construction The time-constant buoyancy. v : Function or float, optional, defaults to v at construction The time-constant velocity. wOverQ : Function or float, optional, defaults to wOverQ at construction The time-constant dissipation only attenuation w/Q field. u0 : Function or float, optional, defaults to new TimeFunction Stores the computed background wavefield. du : Function or float, optional, defaults to new TimeFunction Stores the computed perturbed wavefield. save : int or Buffer, optional The entire (unrolled) wavefield. Returns ---------- Receiver time series data rec, TimeFunction background wavefield u0, TimeFunction perturbation wavefield du, and performance summary """ # src is required # Get rec: rec can change, create new if not passed rec = rec or Receiver(name='rec', grid=self.v.grid, time_range=self.time_axis, coordinates=self.rec_coords) # Get (b, v, wOverQ) from passed arguments or from (b, v, wOverQ) at construction b = b or self.b v = v or self.v wOverQ = wOverQ or self.wOverQ # ensure src, rec, b, v, wOverQ all share the same underlying grid assert src.grid == rec.grid == b.grid == v.grid == wOverQ.grid # Make dictionary of the physical model properties model = {'b': b, 'v': v, 'wOverQ': wOverQ} # Create the wavefields if not provided u0 = u0 or TimeFunction(name='u0', grid=self.v.grid, save=self.time_axis.num if save else None, time_order=2, space_order=self.space_order) du = du or TimeFunction(name='du', grid=self.v.grid, time_order=2, space_order=self.space_order) # Build the operator and execute op = IsoJacobianFwdOperator(model, src, rec, self.time_axis, space_order=self.space_order, save=self.time_axis.num if save else None, **self._kwargs) rec.data[:] = 0 u0.data[:] = 0 du.data[:] = 0 summary = op.apply(dm=dm, u0=u0, du=du, **kwargs) return rec, u0, du, summary def jacobian_adjoint(self, rec, u0, b=None, v=None, wOverQ=None, dm=None, du=None, save=None, **kwargs): """ Linearized JacobianForward modeling function that creates the necessary data objects for running a Jacobian forward modeling operator. Required parameters: rec, u0. Parameters ---------- rec : SparseTimeFunction, required The interpolated receiver data to be injected. u0 : Function or float, required, (created with save=True) Stores the computed background wavefield. b : Function or float, optional, defaults to b at construction The time-constant buoyancy. v : Function or float, optional, defaults to v at construction The time-constant velocity. wOverQ : Function or float, optional, defaults to wOverQ at construction The time-constant dissipation only attenuation w/Q field. dm : Function or float, optional, defaults to new Function The perturbation to the
<reponame>LaudateCorpus1/ppo-ewma<gh_stars>10-100 """ Mostly copied from ppo.py but with some extra options added that are relevant to phasic """ import numpy as np import torch as th from queue import Queue from mpi4py import MPI from functools import partial from .tree_util import tree_map, tree_multimap from . import torch_util as tu from .log_save_helper import LogSaveHelper from .minibatch_optimize import minibatch_optimize from .roller import Roller from .reward_normalizer import RewardNormalizer import math from . import logger INPUT_KEYS = {"ob", "ac", "first", "logp", "rec_logp", "vtarg", "adv", "state_in"} def compute_gae( *, vpred: "(th.Tensor[1, float]) value predictions", reward: "(th.Tensor[1, float]) rewards", first: "(th.Tensor[1, bool]) mark beginning of episodes", γ: "(float)", λ: "(float)" ): orig_device = vpred.device assert orig_device == reward.device == first.device vpred, reward, first = (x.cpu() for x in (vpred, reward, first)) first = first.to(dtype=th.float32) assert first.dim() == 2 nenv, nstep = reward.shape assert vpred.shape == first.shape == (nenv, nstep + 1) adv = th.zeros(nenv, nstep, dtype=th.float32) lastgaelam = 0 for t in reversed(range(nstep)): notlast = 1.0 - first[:, t + 1] nextvalue = vpred[:, t + 1] # notlast: whether next timestep is from the same episode delta = reward[:, t] + notlast * γ * nextvalue - vpred[:, t] adv[:, t] = lastgaelam = delta + notlast * γ * λ * lastgaelam vtarg = vpred[:, :-1] + adv return adv.to(device=orig_device), vtarg.to(device=orig_device) def log_vf_stats(comm, **kwargs): logger.logkv( "VFStats/EV", tu.explained_variance(kwargs["vpred"], kwargs["vtarg"], comm) ) for key in ["vpred", "vtarg", "adv"]: logger.logkv_mean(f"VFStats/{key.capitalize()}Mean", kwargs[key].mean()) logger.logkv_mean(f"VFStats/{key.capitalize()}Std", kwargs[key].std()) def compute_advantage(model, seg, γ, λ, comm=None, adv_moments=None): comm = comm or MPI.COMM_WORLD finalob, finalfirst = seg["finalob"], seg["finalfirst"] vpredfinal = model.v(finalob, finalfirst, seg["finalstate"]) reward = seg["reward"] logger.logkv("Misc/FrameRewMean", reward.mean()) adv, vtarg = compute_gae( γ=γ, λ=λ, reward=reward, vpred=th.cat([seg["vpred"], vpredfinal[:, None]], dim=1), first=th.cat([seg["first"], finalfirst[:, None]], dim=1), ) log_vf_stats(comm, adv=adv, vtarg=vtarg, vpred=seg["vpred"]) seg["vtarg"] = vtarg adv_mean, adv_var = tu.mpi_moments(comm, adv) if adv_moments is not None: adv_moments.update(adv_mean, adv_var, adv.numel() * comm.size) adv_mean, adv_var = adv_moments.moments() logger.logkv_mean("VFStats/AdvEwmaMean", adv_mean) logger.logkv_mean("VFStats/AdvEwmaStd", math.sqrt(adv_var)) seg["adv"] = (adv - adv_mean) / (math.sqrt(adv_var) + 1e-8) def tree_cat(trees): return tree_multimap(lambda *xs: th.cat(xs, dim=0), *trees) def recompute_logp(*, model, seg, mbsize): b = tu.batch_len(seg) with th.no_grad(): logps = [] for inds in th.arange(b).split(mbsize): mb = tu.tree_slice(seg, inds) pd, _, _, _ = model(mb["ob"], mb["first"], mb["state_in"]) logp = tu.sum_nonbatch(pd.log_prob(mb["ac"])) logps.append(logp) seg["rec_logp"] = tree_cat(logps) def compute_losses( model, model_ewma, ob, ac, first, logp, rec_logp, vtarg, adv, state_in, clip_param, vfcoef, entcoef, kl_penalty, imp_samp_max, ): losses = {} diags = {} pd, vpred, aux, _state_out = model(ob=ob, first=first, state_in=state_in) newlogp = tu.sum_nonbatch(pd.log_prob(ac)) if model_ewma is not None: pd_ewma, _vpred_ewma, _, _state_out_ewma = model_ewma( ob=ob, first=first, state_in=state_in ) rec_logp = tu.sum_nonbatch(pd_ewma.log_prob(ac)) # prob ratio for KL / clipping based on a (possibly) recomputed logp logratio = newlogp - rec_logp # stale data can give rise to very large importance sampling ratios, # especially when using the wrong behavior policy, # so we need to clip them for numerical stability. # this can introduce bias, but by default we only clip extreme ratios # to minimize this effect logp_adj = logp if imp_samp_max > 0: logp_adj = th.max(logp, newlogp.detach() - math.log(imp_samp_max)) # because of the large importance sampling ratios again, # we need to handle the ratios in log space for numerical stability pg_losses = -adv * th.exp(newlogp - logp_adj) if clip_param > 0: clipped_logratio = th.clamp(logratio, math.log(1.0 - clip_param), math.log(1.0 + clip_param)) pg_losses2 = -adv * th.exp(clipped_logratio + rec_logp - logp_adj) pg_losses = th.max(pg_losses, pg_losses2) diags["entropy"] = entropy = tu.sum_nonbatch(pd.entropy()).mean() diags["negent"] = -entropy * entcoef diags["pg"] = pg_losses.mean() diags["pi_kl"] = kl_penalty * 0.5 * (logratio ** 2).mean() losses["pi"] = diags["negent"] + diags["pg"] + diags["pi_kl"] losses["vf"] = vfcoef * ((vpred - vtarg) ** 2).mean() with th.no_grad(): if clip_param > 0: diags["clipfrac"] = th.logical_or( logratio < math.log(1.0 - clip_param), logratio > math.log(1.0 + clip_param), ).float().mean() diags["approxkl"] = 0.5 * (logratio ** 2).mean() if imp_samp_max > 0: diags["imp_samp_clipfrac"] = (newlogp - logp > math.log(imp_samp_max)).float().mean() return losses, diags class EwmaMoments: """ Calculate rolling moments using EWMAs. """ def __init__(self, ewma_decay): self.ewma_decay = ewma_decay self.w = 0.0 self.ww = 0.0 # sum of squared weights self.wsum = 0.0 self.wsumsq = 0.0 def update(self, mean, var, count, *, ddof=0): self.w *= self.ewma_decay self.ww *= self.ewma_decay ** 2 self.wsum *= self.ewma_decay self.wsumsq *= self.ewma_decay self.w += count self.ww += count self.wsum += mean * count self.wsumsq += (count - ddof) * var + count * mean ** 2 def moments(self, *, ddof=0): mean = self.wsum / self.w # unbiased weighted sample variance: # https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Reliability_weights var = (self.wsumsq - self.wsum ** 2 / self.w) / (self.w - ddof * self.ww / self.w) return mean, var def learn( *, venv: "(VecEnv) vectorized environment", model: "(ppo.PpoModel)", model_ewma: "(ppg.EwmaModel) alternate model used for clipping or the KL penalty", interacts_total: "(float) total timesteps of interaction" = float("inf"), nstep: "(int) number of serial timesteps" = 256, γ: "(float) discount" = 0.99, λ: "(float) GAE parameter" = 0.95, clip_param: "(float) PPO parameter for clipping prob ratio" = 0.2, vfcoef: "(float) value function coefficient" = 0.5, entcoef: "(float) entropy coefficient" = 0.01, nminibatch: "(int) number of minibatches to break epoch of data into" = 4, n_epoch_vf: "(int) number of epochs to use when training the value function" = 1, n_epoch_pi: "(int) number of epochs to use when training the policy" = 1, lr: "(float) Adam learning rate" = 5e-4, beta1: "(float) Adam beta1" = 0.9, beta2: "(float) Adam beta2" = 0.999, default_loss_weights: "(dict) default_loss_weights" = {}, store_segs: "(bool) whether or not to store segments in a buffer" = True, verbose: "(bool) print per-epoch loss stats" = True, log_save_opts: "(dict) passed into LogSaveHelper" = {}, rnorm: "(bool) reward normalization" = True, kl_penalty: "(int) weight of the KL penalty, which can be used in place of clipping" = 0, adv_ewma_decay: "(float) EWMA decay for advantage normalization" = 0.0, grad_weight: "(float) relative weight of this worker's gradients" = 1, comm: "(MPI.Comm) MPI communicator" = None, callbacks: "(seq of function(dict)->bool) to run each update" = (), learn_state: "dict with optional keys {'opts', 'roller', 'lsh', 'reward_normalizer', 'curr_interact_count', 'seg_buf', 'segs_delayed', 'adv_moments'}" = None, staleness: "(int) number of iterations by which to make data artificially stale, for experimentation" = 0, staleness_loss: "(str) one of 'decoupled', 'behavior' or 'proximal', only used if staleness > 0" = "decoupled", imp_samp_max: "(float) value at which to clip importance sampling ratio" = 100.0, ): if comm is None: comm = MPI.COMM_WORLD learn_state = learn_state or {} ic_per_step = venv.num * comm.size * nstep opt_keys = ( ["pi", "vf"] if (n_epoch_pi != n_epoch_vf) else ["pi"] ) # use separate optimizers when n_epoch_pi != n_epoch_vf params = list(model.parameters()) opts = learn_state.get("opts") or { k: th.optim.Adam(params, lr=lr, betas=(beta1, beta2)) for k in opt_keys } tu.sync_params(params) if rnorm: reward_normalizer = learn_state.get("reward_normalizer") or RewardNormalizer(venv.num) else: reward_normalizer = None def get_weight(k): return default_loss_weights[k] if k in default_loss_weights else 1.0 def train_with_losses_and_opt(loss_keys, opt, **arrays): losses, diags = compute_losses( model, model_ewma=model_ewma, entcoef=entcoef, kl_penalty=kl_penalty, clip_param=clip_param, vfcoef=vfcoef, imp_samp_max=imp_samp_max, **arrays, ) loss = sum([losses[k] * get_weight(k) for k in loss_keys]) opt.zero_grad() loss.backward() tu.warn_no_gradient(model, "PPO") tu.sync_grads(params, grad_weight=grad_weight) diags = {k: v.detach() for (k, v) in diags.items()} opt.step() if "pi" in loss_keys and model_ewma is not None: model_ewma.update() diags.update({f"loss_{k}": v.detach() for (k, v) in losses.items()}) return diags def train_pi(**arrays): return train_with_losses_and_opt(["pi"], opts["pi"], **arrays) def train_vf(**arrays): return train_with_losses_and_opt(["vf"], opts["vf"], **arrays) def train_pi_and_vf(**arrays): return train_with_losses_and_opt(["pi", "vf"], opts["pi"], **arrays) roller = learn_state.get("roller") or Roller( act_fn=model.act, venv=venv, initial_state=model.initial_state(venv.num), keep_buf=100, keep_non_rolling=log_save_opts.get("log_new_eps", False), ) lsh = learn_state.get("lsh") or LogSaveHelper( ic_per_step=ic_per_step, model=model, comm=comm, **log_save_opts ) callback_exit = False # Does callback say to exit loop? curr_interact_count = learn_state.get("curr_interact_count") or 0 curr_iteration = 0 seg_buf = learn_state.get("seg_buf") or [] segs_delayed = learn_state.get("segs_delayed") or Queue(maxsize=staleness + 1) adv_moments = learn_state.get("adv_moments") or EwmaMoments(adv_ewma_decay) while curr_interact_count < interacts_total and not callback_exit: seg = roller.multi_step(nstep) lsh.gather_roller_stats(roller) if staleness > 0: segs_delayed.put(seg) if not segs_delayed.full(): continue seg = segs_delayed.get() if staleness_loss == "behavior": seg["rec_logp"] = seg["logp"] else: recompute_logp(model=model, seg=seg, mbsize=4) if staleness_loss == "proximal": seg["logp"] = seg["rec_logp"] else: seg["rec_logp"] = seg["logp"] if rnorm: seg["reward"] = reward_normalizer(seg["reward"], seg["first"]) compute_advantage(model, seg, γ, λ, comm=comm, adv_moments=adv_moments) if store_segs: seg_buf.append(tree_map(lambda x: x.cpu(), seg)) with logger.profile_kv("optimization"): # when n_epoch_pi != n_epoch_vf, we
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This combines configurable build-time constants (documented on REPO_CFG # below), and non-configurable constants that are currently not namespaced. # # Note that there's no deep reason for this struct / non-struct split, so we # could easily move everything into the struct. # load("//antlir/bzl:oss_shim.bzl", "config", "do_not_use_repo_cfg") load("//antlir/bzl:sha256.bzl", "sha256_b64") load("//antlir/bzl:shape.bzl", "shape") load(":snapshot_install_dir.bzl", "RPM_DEFAULT_SNAPSHOT_FOR_INSTALLER_DIR", "snapshot_install_dir") load(":target_helpers.bzl", "normalize_target") # A label for non image feature targets to mirror the behaviour of `type = "image_feature"` in # `private_do_not_use_feature_json_genrule` which allows the target to be queried. ANTLIR_INTERNAL_TREAT_AS_IMAGE_FEATURE_LABEL = "antlir_internal__treat_as_image_feature_for_deps" DO_NOT_USE_BUILD_APPLIANCE = "__DO_NOT_USE_BUILD_APPLIANCE__" CONFIG_KEY = "antlir" BZL_CONST = shape.new( shape.shape( layer_feature_suffix = str, PRIVATE_feature_suffix = str, version_set_allow_all_versions = str, ), layer_feature_suffix = "__layer-feature", # Do NOT use this outside of Antlir internals. See "Why are `feature`s # forbidden as dependencies?" in `bzl/image/feature/new.bzl` for a # detailed explanation. PRIVATE_feature_suffix = "_IF_YOU_REFER_TO_THIS_RULE_YOUR_DEPENDENCIES_WILL_BE_BROKEN", version_set_allow_all_versions = "__VERSION_SET_ALLOW_ALL_VERSIONS__", ) def version_set_override_name(current_target): return "vset-override-" + sha256_b64(current_target) # Use `_get_str_cfg` or `_get_str_list_cfg` instead. def _do_not_use_directly_get_cfg(name, default = None): # Allow `buck -c` overrides from the command-line val = native.read_config(CONFIG_KEY, name) if val != None: return val val = do_not_use_repo_cfg.get(name) if val != None: return val return default # We don't have "globally required" configs because code that requires a # config will generally loudly fail on a config value that is None. def _get_str_cfg(name, default = None, allow_none = False): ret = _do_not_use_directly_get_cfg(name, default = default) if not allow_none and ret == None: fail("Repo config must set key {}".format(name)) return ret # Defaults to the empty list if the config is not set. # # We use space to separate plurals because spaces are not allowed in target # paths, and also because that's what `.buckconfig` is supposed to support # for list configs (but does not, due to bugs). def _get_str_list_cfg(name, separator = " ", default = None): s = _do_not_use_directly_get_cfg(name) return s.split(separator) if s else (default or []) # Defaults to the empty list if the config is not set def _get_version_set_to_path(): lst = _get_str_list_cfg("version_set_to_path") vs_to_path = dict(zip(lst[::2], lst[1::2])) if 2 * len(vs_to_path) != len(lst): fail("antlir.version_set_to_path is a space-separated dict: k1 v1 k2 v2") # A layer can turn off version locking # via `version_set = BZL_CONST.version_set_allow_all_versions`. vs_to_path[BZL_CONST.version_set_allow_all_versions] = "TROLLING TROLLING TROLLING" return vs_to_path # Defaults to the empty list if the config is not set def _get_artifact_key_to_path(): lst = _get_str_list_cfg("artifact_key_to_path") key_to_path = dict(zip(lst[::2], lst[1::2])) if 2 * len(key_to_path) != len(lst): fail("antlir.artifact_key_to_path is a space-separated dict: k1 v1 k2 v2") return key_to_path _nevra_t = shape.shape( name = shape.field(str), # TODO: Codemod all callsites and update this to be `int`. epoch = shape.field(str), version = shape.field(str), release = shape.field(str), arch = shape.field(str), ) def new_nevra(**kwargs): return shape.new(_nevra_t, **kwargs) # These are configuration keys that can be grouped under a specific common # name called flavor. This way, during run-time, we can choose default # values for set of configuration keys based on selected flavor name. _flavor_config_t = shape.shape( name = shape.field(str), # FIXME: Ideally, remove `optional = True`. This field is not optional, # per `new_flavor_config` below, but expressing that requires changing # the wire format for `DO_NOT_USE_BUILD_APPLIANCE` to be a string # instead of `None` -- see `new_flavor_config`. This needs a Python fix. build_appliance = shape.field(str, optional = True), rpm_installer = shape.field(str, optional = True), rpm_repo_snapshot = shape.field(str, optional = True), version_set_path = shape.field(str, optional = True), rpm_version_set_overrides = shape.list(_nevra_t, optional = True), unsafe_bypass_flavor_check = shape.field(bool, optional = True), ) # This keeps the type private, so one cannot instantiate unvalidated flavors. def flavor_config_t_shape_loader(): shape.loader( name = "flavor_config_t", shape = _flavor_config_t, classname = "flavor_config_t", visibility = ["//antlir/...", "//tupperware/cm/antlir/..."], ) def new_flavor_config( name, build_appliance, rpm_installer, rpm_repo_snapshot = None, rpm_version_set_overrides = None, version_set_path = BZL_CONST.version_set_allow_all_versions, unsafe_bypass_flavor_check = False): """ Arguments - `name`: The name of the flavor - `build_appliance`: Path to a layer target of a build appliance, containing an installed `rpm_repo_snapshot()`, plus an OS image with other image build tools like `btrfs`, `dnf`, `yum`, `tar`, `ln`, ... - `rpm_installer`: The build appliance currently does not set a default package manager -- in non-default settings, this has to be chosen per image, since a BA can support multiple package managers. In the future, if specifying a non-default installer per image proves onerous when using non-default BAs, we could support a `default` symlink under `RPM_DEFAULT_SNAPSHOT_FOR_INSTALLER_DIR`. - `rpm_repo_snapshot`: List of target or `/__antlir__` paths, see `snapshot_install_dir` doc. `None` uses the default determined by looking up `rpm_installer` in `RPM_DEFAULT_SNAPSHOT_FOR_INSTALLER_DIR`. - `rpm_version_set_overrides`: List of `nevra` objects (see antlir/bzl/constants.bzl for definition). If rpm with given name to be installed, the `nevra` defines its version. - `unsafe_bypass_flavor_check`: Do NOT use. """ if build_appliance == None: fail( "Must be a target path, or a value from `constants.bzl`", "build_appliance", ) if rpm_installer != "yum" and rpm_installer != "dnf": fail("Unsupported rpm_installer supplied in build_opts") # When building the BA itself, we need this constant to avoid a circular # dependency. # # This feature is exposed a non-`None` magic constant so that callers # cannot get confused whether `None` refers to "no BA" or "default BA". if build_appliance == DO_NOT_USE_BUILD_APPLIANCE: build_appliance = None if build_appliance: build_appliance = normalize_target(build_appliance) return shape.new( _flavor_config_t, name = name, build_appliance = build_appliance, rpm_installer = rpm_installer, rpm_repo_snapshot = ( snapshot_install_dir(rpm_repo_snapshot) if rpm_repo_snapshot else "{}/{}".format( RPM_DEFAULT_SNAPSHOT_FOR_INSTALLER_DIR, rpm_installer, ) ), rpm_version_set_overrides = rpm_version_set_overrides, version_set_path = version_set_path, unsafe_bypass_flavor_check = unsafe_bypass_flavor_check, ) def _get_flavor_to_config(): flavor_to_config = {} for flavor, orig_flavor_config in do_not_use_repo_cfg.get("flavor_to_config", {}).items(): flavor_config = {"name": flavor} flavor_config.update(orig_flavor_config) # we'll mutate a copy # Apply `buck -c` overrides. # # Buck has a notion of flavors that is separate from Antlir's but # similar in spirit. It uses # as the delimiter for per-flavor # config options, so we follow that pattern. config_key = CONFIG_KEY + "#" + flavor for key, v in flavor_config.items(): val = native.read_config(config_key, key, None) if val != None: flavor_config[key] = val flavor_to_config[flavor] = new_flavor_config(**flavor_config) return flavor_to_config # # These are repo-specific configuration keys, which can be overridden via # the Buck CLI for debugging / development purposes. # # We do not want to simply use `.buckconfig` for these, because in FBCode, # the CI cost to updating `.buckconfig` is quite high (every project # potentially needs to be tested and rebuilt). # # Instead, we keep the per-repo configuration in `oss_shim_impl.bzl`, and # the global defaults here, in `constants.bzl`. # # Our underlying configs use the simple type signature of `Mapping[str, # str]` because we want to support overrides via `buck -c`. So, some very # simple parsing of structured configuration keys happens in this file. # # Configuration sources have the following precedence order: # - `buck -c antlir.CONFIG_NAME='foo bar'` -- note that our lists are # generally space-separated, so you'll want to bash quote those. # - `.buckconfig` -- DO NOT PUT OUR CONFIGS THERE! # - `do_not_use_repo_cfg` loaded via `oss_shim.bzl` # - the defaults below -- these have to be reasonable since this is what a # clean open-source install will use # # A note on naming: please put the "topic" of the constant before the # details, so that buildifier-required lexicographic ordering of dictionary # keys results in related keys being grouped together. # # # DANGER! ACHTUNG! PELIGRO! PERICRLRM! # Modifications to this shape's attributes or the values in the instance # of it below (`REPO_CFG`) could (and likely will) cause excessive # rebuilding and incur significant build cost. These attributes and values # are effectively global and should be treated with extreme caution. # Don't be careless. repo_config_t = shape.shape( artifacts_require_repo = bool, artifact = shape.dict(str, str), host_mounts_allowed_in_targets = shape.list(shape.path()), host_mounts_for_repo_artifacts = shape.list(shape.path()), # This holds the default flavors that a feature should cover. # Compared to `flavor_to_config`, it does not contain the # `antlir_test` flavor, which shouldn't be always defined. flavor_available = shape.list(str), flavor_default = str, flavor_to_config = shape.dict(str, _flavor_config_t), antlir_linux_flavor = str, antlir_cell_name = str, ) REPO_CFG = shape.new( repo_config_t, # This one is not using the access methods to provide the precedence order # because the way this is determined is *always* based on the build mode # provided, ie `@mode/opt` vs `@mode/dev`. And the build mode provided
# Author: <NAME> # E-mail: <EMAIL> # Author: <NAME> # E-mail: <EMAIL> # Author: <NAME> # E-mail: <EMAIL> from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import accuracy_score from tqdm import tqdm import numpy as np import torch from torch import nn from tqdm import tqdm from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder class MLPModel(torch.nn.Module): @staticmethod def actFunct(af_type: str): """ Returns the specified activation type from torch.nn ______________________________________________________________ Parameters: af_type: str The Activation function to return ______________________________________________________________ Returns: af: torch.nn.function The specified activation function """ if af_type == "relu": return torch.nn.ReLU() if af_type == "sigmoid": return torch.nn.Sigmoid() elif af_type == "tanh": return torch.nn.Tanh() elif af_type == "softmax": return torch.nn.Softmax(dim=1) @staticmethod def lossFunct(lf_type: str): """ Returns the specified loss function from torch.nn ______________________________________________________________ Parameters: lf_type: str The loss function to return ______________________________________________________________ Returns: lf: torch.nn.function The specified loss function """ if lf_type == "cross-entropy": # needs squeezed target return torch.nn.CrossEntropyLoss() # I:(N,C) O:(N) elif lf_type == "hinge-embedding": # needs plain target (no squeeze) return torch.nn.HingeEmbeddingLoss() elif lf_type == "bce" or \ lf_type == 'binary-cross-entropy': # needs squeezed target return torch.nn.BCELoss() # I:(N,C) O:(N, C) elif lf_type == "bce-logit": # needs squeezed target return torch.nn.BCEWithLogitsLoss() # I:(N,C) O:(N, C) elif lf_type == "soft-margin": # target .1 and 1 # check target structure return torch.nn.SoftMarginLoss() @staticmethod def transform_target_for_loss(target, loss_funct_str): """fix target to match what loss needs.""" need_encode = ['cross-entropy'] if loss_funct_str in need_encode: target = target.squeeze(1) return target def __init__(self, emb, n_hl: int = 1, num_features: int = 10, n_classes: int = 2, dropout: float = 0.2, epochs: int = 5, units: int = 25, bias: float = 0.1, lr: float = 0.01, momentum: float = 0.9, device: torch.device = torch.device("cpu"), weights_init: str = "xavier_normal", hl_actfunct: str = "tanh", out_actfunct: str = "relu", loss_funct: str = "cross-entropy", random_state: int = None, verbose: bool = False, embedding_type: str = "mean", freeze: bool = False) -> None: """ Creates a multilayer perceptron object with the specified parameters using the pytorch framework. ______________________________________________________________ Parameters: n_hl: int = 1 Number of hidden layers, defaults to 1 num_features: int = 10 Number of features, defaults to 10 n_classes: int = 10 Number of classes, defaults to 10 dropout: float = 0.2 Dropout value, defaults to 0.2 epochs: int = 50 Number of epochs to run, defaults to 20 units: int = 25 Number of units per hidden layer, defaults to 25 bias: float = 0.1 Bias value, defaults to 0.1 lr: float = 0.01 Learning rate, defaults to 0.01 momentum: float = 0.9 Momentum value, defaults to 0.9 device: torch.device = torch.device("cpu") Specifies how the model is run, defaults to "cpu" weights_init: str = "xavier_normal" Specifies how the weights are initialized, defaults to "xavier_normal" hl_actfunct: str = "tanh" Hidden layer activation function, defaults to "tahn" out_actfunct: str = "relu" Output activation function, defaults to "relu" loss_funct: str = "cross-entropy" Loss function, defaults to "cross-entropy" random_state: int = None The seed for the random state verbose: bool = False If True: prints out progressive output, defaults to False ______________________________________________________________ Returns: None """ super().__init__() # seeding if random_state is not None: print(f'Setting torch random_state to {random_state}...') \ if verbose else None torch.manual_seed(random_state) np.random.seed(random_state) # parameters self.device = device self.epochs = epochs self.verbose = verbose self.hl_actfunct = self.actFunct(af_type=hl_actfunct) self.out_actfunct = self.actFunct(af_type=out_actfunct) self.out_actfunct_str = out_actfunct self.loss_funct_str = loss_funct self.loss_funct = self.lossFunct(lf_type=loss_funct) self.freeze = freeze if n_hl == 0: self.model = torch.nn.Sequential( torch.nn.Dropout(dropout), torch.nn.Linear(num_features, n_classes), self.out_actfunct, ) elif n_hl == 1: self.model = torch.nn.Sequential( torch.nn.Dropout(dropout), torch.nn.Linear(num_features, units), self.hl_actfunct, torch.nn.Dropout(dropout), torch.nn.Linear(units, n_classes), self.out_actfunct, ) elif n_hl >= 2: self.model = torch.nn.Sequential( torch.nn.Dropout(dropout), torch.nn.Linear(num_features, units), self.hl_actfunct ) for i in range(1, n_hl): self.model.add_module( name=f"HL{i + 1}-Dropout", module=torch.nn.Dropout(dropout) ) self.model.add_module( name=f"HL{i + 1}-Linear", module=torch.nn.Linear(units, units), ) self.model.add_module( name=f"HL{i + 1}-ActFunction", module=self.hl_actfunct, ) self.model.add_module( name="Output-Linear", module=torch.nn.Linear(units, n_classes), ) self.model.add_module( name="Output-ActFunction", module=self.out_actfunct, ) for m in self.model: if isinstance(m, torch.nn.Linear): # initializing bias torch.nn.init.constant_(m.bias, val=bias) # initializing weights if weights_init == "xavier_normal": torch.nn.init.xavier_normal_(m.weight, gain=1.0) self.model.to(device) self.opt = torch.optim.SGD( params=self.model.parameters(), lr=lr, momentum=momentum ) self.losses = None vectors = torch.FloatTensor(emb.vectors) if device == torch.device("cuda"): vectors = vectors.to(device) self.word_embeddings = torch.nn.Embedding.from_pretrained( vectors, freeze=self.freeze) self.embedding_type = embedding_type def forward(self, batch): """ Performs a forward step on the model. ______________________________________________________________ Parameters: batch: torch.nn.tensor The mini-batch input tensor to update ______________________________________________________________ Returns: self.model: MLPModel The updated model """ x = None if self.embedding_type == "mean": x = torch.mean(self.word_embeddings(batch), dim=1) elif self.embedding_type == "sum": x = torch.sum(self.word_embeddings(batch), dim=1) elif self.embedding_type == "max": x = torch.max(self.word_embeddings(batch), dim=1) # TODO: Combine to tensor 3x as long for input # NOTE: I think this can really help us return self.model(x) def predict_classes(self, input_tensor): """ Makes predictions from a test tensor using the model. ______________________________________________________________ Parameters: input_tensor: torch.nn.tensor The tensor to make predictions on. ______________________________________________________________ Returns: y_pred: np.array An array containing the predicted classes of the input tensors. """ x = None # TODO: Why not just send this through forward and call detatch? if self.embedding_type == "mean": # NOTE: If this is the same as above, this should be a method x = torch.mean(self.word_embeddings(input_tensor), dim=1) elif self.embedding_type == "sum": x = torch.sum(self.word_embeddings(input_tensor), dim=1) elif self.embedding_type == "max": x = torch.max(self.word_embeddings(input_tensor), dim=1) y_pred = self.model(x) return y_pred.max(dim=1)[1] def backward(self, output, target): """ Performs a backpropogation step computing the loss. ______________________________________________________________ Parameters: output: The output after forward with shape (batch_size, num_classes). target: The target it is optimizing towards ______________________________________________________________ Returns: loss: float How close the estimate was to the gold standard. """ target = self.transform_target_for_loss(target, self.loss_funct_str) if self.loss_funct_str == "bce" or \ self.loss_funct_str == 'binary-cross-entropy': encoder = OneHotEncoder(sparse=False) # NOTE: Shouldn't this encoding be outside of a function thats called for every data point? target = encoder.fit_transform(target) target = torch.FloatTensor(target) # normalizing between 0 and 1 min_ = output.min(dim=1, keepdim=True)[0] max_ = output.max(dim=1, keepdim=True)[0] output = (output - min_) / (max_ - min_) # output = sigmoid(output) # -> the same as bce-logit elif self.loss_funct_str == "bce-logit": encoder = OneHotEncoder(sparse=False) target = encoder.fit_transform(target) target = torch.FloatTensor(target) # BUG output is never generated when bce-logit is called # calculating the loss loss = self.loss_funct(output, target) # resetting the gradients from the optimizer # more info: https://pytorch.org/docs/stable/optim.html self.opt.zero_grad() # calculating gradients loss.backward() # updating weights from the model by calling optimizer.step() self.opt.step() return loss def fit(self, loader=None, verbose=False) -> None: """ Fits the model to the training data using the models initialized values. Runs for the models number of epochs. ______________________________________________________________ Parameters: laoder: torch.nn.Dataloader=None Dataloader object to load the batches, defaults to None verbose: bool=False If True: prints out progressive output, defaults to False ______________________________________________________________ Returns: None """ self.losses = np.empty(shape=self.epochs, dtype=float) iterator = tqdm(range(self.epochs)) if verbose else range(self.epochs) for i in iterator: _loss = [] for n, batch in enumerate(loader): text, source = batch text = text.to(self.device) source = source.to(self.device) output = self.forward(text) loss = self.backward(output, source) _loss.append(loss.item()) self.losses[i] = np.mean(_loss) print(f'Epoch: {i} loss:', np.mean(_loss)) class RNNModel(torch.nn.Module): @staticmethod def lossFunct(lf_type: str): """ Returns the specified loss function from torch.nn ______________________________________________________________ Parameters: lf_type: str The loss function to return ______________________________________________________________ Returns: lf: torch.nn.function The specified loss function """ if lf_type == "cross-entropy": return torch.nn.CrossEntropyLoss() # I:(N,C) O:(N) # NOTE we should definately still check everything, right? (will studies have to be changed?) elif lf_type == "hinge-embedding": # needs plain target (no squeeze) return torch.nn.HingeEmbeddingLoss() elif lf_type == "bce" or \ lf_type == 'binary-cross-entropy': # needs squeezed target return torch.nn.BCELoss() # I:(N,C) O:(N, C) elif lf_type == "bce-logit": # needs squeezed target return torch.nn.BCEWithLogitsLoss() # I:(N,C) O:(N, C) elif lf_type == "soft-margin": # target .1 and 1 # check target structure return torch.nn.SoftMarginLoss() @staticmethod def model_constructor(n_hl, units, dropout, num_features, rnn_type, nonlinearity, bidirectional): model = None if rnn_type == "rnn": model = torch.nn.RNN( input_size=num_features, hidden_size=units, num_layers=n_hl, nonlinearity=nonlinearity, # -> 'tanh' or 'relu' batch_first=True, # -> (batch, seq, feature) dropout=dropout, bidirectional=bidirectional ) elif rnn_type == "lstm": model = torch.nn.LSTM( input_size=num_features, hidden_size=units, num_layers=n_hl, batch_first=True, dropout=dropout, bidirectional=bidirectional ) elif rnn_type == "gru":