Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
4,908
null
Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo Languages
We introduce Wav2Seq, the first self-supervised approach to pre-train both parts of encoder-decoder models for speech data. We induce a pseudo language as a compact discrete representation, and formulate a self-supervised pseudo speech recognition task -- transcribing audio inputs into pseudo subword sequences. This process stands on its own, or can be applied as low-cost second-stage pre-training. We experiment with automatic speech recognition (ASR), spoken named entity recognition, and speech-to-text translation. We set new state-of-the-art results for end-to-end spoken named entity recognition, and show consistent improvements on 20 language pairs for speech-to-text translation, even when competing methods use additional text data for training. Finally, on ASR, our approach enables encoder-decoder methods to benefit from pre-training for all parts of the network, and shows comparable performance to highly optimized recent methods.
4,909
null
OPT: Open Pre-trained Transformer Language Models
Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models.
4,910
null
A Change Dynamic Model for the Online Detection of Gradual Change
Changes in the statistical properties of a stochastic process are typically assumed to occur via change-points, which demark instantaneous moments of complete and total change in process behavior. In cases where these transitions occur gradually, this assumption can result in a reduced ability to properly identify and respond to process change. With this observation in mind, we introduce a novel change-dynamic model for the online detection of gradual change in a Bayesian framework, in which change-points are used within a hierarchical model to indicate moments of gradual change onset or termination. We apply this model to synthetic data and EEG readings drawn during epileptic seizure, where we find our change-dynamic model can enable faster and more accurate identification of gradual change than traditional change-point models allow.
4,911
null
RANG: A Residual-based Adaptive Node Generation Method for Physics-Informed Neural Networks
Learning solutions of partial differential equations (PDEs) with Physics-Informed Neural Networks (PINNs) is an attractive alternative approach to traditional solvers due to its flexibility and ease of incorporating observed data. Despite the success of PINNs in accurately solving a wide variety of PDEs, the method still requires improvements in terms of computational efficiency. One possible improvement idea is to optimize the generation of training point sets. Residual-based adaptive sampling and quasi-uniform sampling approaches have been each applied to improve the training effects of PINNs, respectively. To benefit from both methods, we propose the Residual-based Adaptive Node Generation (RANG) approach for efficient training of PINNs, which is based on a variable density nodal distribution method for RBF-FD. The method is also enhanced by a memory mechanism to further improve training stability. We conduct experiments on three linear PDEs and three nonlinear PDEs with various node generation methods, through which the accuracy and efficiency of the proposed method compared to the predominant uniform sampling approach is verified numerically.
4,912
null
A Survey on Uncertainty Toolkits for Deep Learning
The success of deep learning (DL) fostered the creation of unifying frameworks such as tensorflow or pytorch as much as it was driven by their creation in return. Having common building blocks facilitates the exchange of, e.g., models or concepts and makes developments easier replicable. Nonetheless, robust and reliable evaluation and assessment of DL models has often proven challenging. This is at odds with their increasing safety relevance, which recently culminated in the field of "trustworthy ML". We believe that, among others, further unification of evaluation and safeguarding methodologies in terms of toolkits, i.e., small and specialized framework derivatives, might positively impact problems of trustworthiness as well as reproducibility. To this end, we present the first survey on toolkits for uncertainty estimation (UE) in DL, as UE forms a cornerstone in assessing model reliability. We investigate 11 toolkits with respect to modeling and evaluation capabilities, providing an in-depth comparison for the three most promising ones, namely Pyro, Tensorflow Probability, and Uncertainty Quantification 360. While the first two provide a large degree of flexibility and seamless integration into their respective framework, the last one has the larger methodological scope.
4,913
null
A walk through of time series analysis on quantum computers
Because of the rotational components on quantum circuits, some quantum neural networks based on variational circuits can be considered equivalent to the classical Fourier networks. In addition, they can be used to predict the Fourier coefficients of continuous functions. Time series data indicates a state of a variable in time. Since some time series data can be also considered as continuous functions, we can expect quantum machine learning models to do many data analysis tasks successfully on time series data. Therefore, it is important to investigate new quantum logics for temporal data processing and analyze intrinsic relationships of data on quantum computers. In this paper, we go through the quantum analogues of classical data preprocessing and forecasting with ARIMA models by using simple quantum operators requiring a few number of quantum gates. Then we discuss future directions and some of the tools/algorithms that can be used for temporal data analysis on quantum computers.
4,914
null
A Sharp Memory-Regret Trade-Off for Multi-Pass Streaming Bandits
The stochastic $K$-armed bandit problem has been studied extensively due to its applications in various domains ranging from online advertising to clinical trials. In practice however, the number of arms can be very large resulting in large memory requirements for simultaneously processing them. In this paper we consider a streaming setting where the arms are presented in a stream and the algorithm uses limited memory to process these arms. Here, the goal is not only to minimize regret, but also to do so in minimal memory. Previous algorithms for this problem operate in one of the two settings: they either use $\Omega(\log \log T)$ passes over the stream (Rathod, 2021; Chaudhuri and Kalyanakrishnan, 2020; Liau et al., 2018), or just a single pass (Maiti et al., 2021). In this paper we study the trade-off between memory and regret when $B$ passes over the stream are allowed, for any $B \geq 1$, and establish tight regret upper and lower bounds for any $B$-pass algorithm. Our results uncover a surprising *sharp transition phenomenon*: $O(1)$ memory is sufficient to achieve $\widetilde\Theta\Big(T^{\frac{1}{2} + \frac{1}{2^{B+2}-2}}\Big)$ regret in $B$ passes, and increasing the memory to any quantity that is $o(K)$ has almost no impact on further reducing this regret, unless we use $\Omega(K)$ memory. Our main technical contribution is our lower bound which requires the use of information-theoretic techniques as well as ideas from round elimination to show that the *residual problem* remains challenging over subsequent passes.
4,915
null
BERTops: Studying BERT Representations under a Topological Lens
Proposing scoring functions to effectively understand, analyze and learn various properties of high dimensional hidden representations of large-scale transformer models like BERT can be a challenging task. In this work, we explore a new direction by studying the topological features of BERT hidden representations using persistent homology (PH). We propose a novel scoring function named "persistence scoring function (PSF)" which: (i) accurately captures the homology of the high-dimensional hidden representations and correlates well with the test set accuracy of a wide range of datasets and outperforms existing scoring metrics, (ii) captures interesting post fine-tuning "per-class" level properties from both qualitative and quantitative viewpoints, (iii) is more stable to perturbations as compared to the baseline functions, which makes it a very robust proxy, and (iv) finally, also serves as a predictor of the attack success rates for a wide category of black-box and white-box adversarial attack methods. Our extensive correlation experiments demonstrate the practical utility of PSF on various NLP tasks relevant to BERT.
4,916
null
CCLF: A Contrastive-Curiosity-Driven Learning Framework for Sample-Efficient Reinforcement Learning
In reinforcement learning (RL), it is challenging to learn directly from high-dimensional observations, where data augmentation has recently been shown to remedy this via encoding invariances from raw pixels. Nevertheless, we empirically find that not all samples are equally important and hence simply injecting more augmented inputs may instead cause instability in Q-learning. In this paper, we approach this problem systematically by developing a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF), which can fully exploit sample importance and improve learning efficiency in a self-supervised manner. Facilitated by the proposed contrastive curiosity, CCLF is capable of prioritizing the experience replay, selecting the most informative augmented inputs, and more importantly regularizing the Q-function as well as the encoder to concentrate more on under-learned data. Moreover, it encourages the agent to explore with a curiosity-based reward. As a result, the agent can focus on more informative samples and learn representation invariances more efficiently, with significantly reduced augmented inputs. We apply CCLF to several base RL algorithms and evaluate on the DeepMind Control Suite, Atari, and MiniGrid benchmarks, where our approach demonstrates superior sample efficiency and learning performances compared with other state-of-the-art methods.
4,917
null
Understanding CNNs from excitations
For instance-level explanation, in order to reveal the relations between high-level semantics and detailed spatial information, this paper proposes a novel cognitive approach to neural networks, which named PANE. Under the guidance of PANE, a novel saliency map representation method, named IOM, is proposed for CNN-like models. We make the comparison with eight state-of-the-art saliency map representation methods. The experimental results show that IOM far outperforms baselines. The work of this paper may bring a new perspective to understand deep neural networks.
4,918
null
Revisiting Gaussian Neurons for Online Clustering with Unknown Number of Clusters
Despite the recent success of artificial neural networks, more biologically plausible learning methods may be needed to resolve the weaknesses of backpropagation trained models such as catastrophic forgetting and adversarial attacks. A novel local learning rule is presented that performs online clustering with a maximum limit of the number of cluster to be found rather than a fixed cluster count. Instead of using orthogonal weight or output activation constraints, activation sparsity is achieved by mutual repulsion of lateral Gaussian neurons ensuring that multiple neuron centers cannot occupy the same location in the input domain. An update method is also presented for adjusting the widths of the Gaussian neurons in cases where the data samples can be represented by means and variances. The algorithms were applied on the MNIST and CIFAR-10 datasets to create filters capturing the input patterns of pixel patches of various sizes. The experimental results demonstrate stability in the learned parameters across a large number of training samples.
4,919
null
FastGCL: Fast Self-Supervised Learning on Graphs via Contrastive Neighborhood Aggregation
Graph contrastive learning (GCL), as a popular approach to graph self-supervised learning, has recently achieved a non-negligible effect. To achieve superior performance, the majority of existing GCL methods elaborate on graph data augmentation to construct appropriate contrastive pairs. However, existing methods place more emphasis on the complex graph data augmentation which requires extra time overhead, and pay less attention to developing contrastive schemes specific to encoder characteristics. We argue that a better contrastive scheme should be tailored to the characteristics of graph neural networks (e.g., neighborhood aggregation) and propose a simple yet effective method named FastGCL. Specifically, by constructing weighted-aggregated and non-aggregated neighborhood information as positive and negative samples respectively, FastGCL identifies the potential semantic information of data without disturbing the graph topology and node attributes, resulting in faster training and convergence speeds. Extensive experiments have been conducted on node classification and graph classification tasks, showing that FastGCL has competitive classification performance and significant training speedup compared to existing state-of-the-art methods.
4,920
null
Positive-Unlabeled Learning with Adversarial Data Augmentation for Knowledge Graph Completion
Most real-world knowledge graphs (KG) are far from complete and comprehensive. This problem has motivated efforts in predicting the most plausible missing facts to complete a given KG, i.e., knowledge graph completion (KGC). However, existing KGC methods suffer from two main issues, 1) the false negative issue, i.e., the sampled negative training instances may include potential true facts; and 2) the data sparsity issue, i.e., true facts account for only a tiny part of all possible facts. To this end, we propose positive-unlabeled learning with adversarial data augmentation (PUDA) for KGC. In particular, PUDA tailors positive-unlabeled risk estimator for the KGC task to deal with the false negative issue. Furthermore, to address the data sparsity issue, PUDA achieves a data augmentation strategy by unifying adversarial training and positive-unlabeled learning under the positive-unlabeled minimax game. Extensive experimental results on real-world benchmark datasets demonstrate the effectiveness and compatibility of our proposed method.
4,921
null
Fast Continuous and Integer L-shaped Heuristics Through Supervised Learning
We propose a methodology at the nexus of operations research and machine learning (ML) leveraging generic approximators available from ML to accelerate the solution of mixed-integer linear two-stage stochastic programs. We aim at solving problems where the second stage is highly demanding. Our core idea is to gain large reductions in online solution time while incurring small reductions in first-stage solution accuracy by substituting the exact second-stage solutions with fast, yet accurate supervised ML predictions. This upfront investment in ML would be justified when similar problems are solved repeatedly over time, for example, in transport planning related to fleet management, routing and container yard management. Our numerical results focus on the problem class seminally addressed with the integer and continuous L-shaped cuts. Our extensive empirical analysis is grounded in standardized families of problems derived from stochastic server location (SSLP) and stochastic multi knapsack (SMKP) problems available in the literature. The proposed method can solve the hardest instances of SSLP in less than 9% of the time it takes the state-of-the-art exact method, and in the case of SMKP the same figure is 20%. Average optimality gaps are in most cases less than 0.1%.
4,922
null
Modeling and mitigation of occupational safety risks in dynamic industrial environments
Identifying and mitigating safety risks is paramount in a number of industries. In addition to guidelines and best practices, many industries already have safety management systems (SMSs) designed to monitor and reinforce good safety behaviors. The analytic capabilities to analyze the data acquired through such systems, however, are still lacking in terms of their ability to robustly quantify risks posed by various occupational hazards. Moreover, best practices and modern SMSs are unable to account for dynamically evolving environments/behavioral characteristics commonly found in many industrial settings. This article proposes a method to address these issues by enabling continuous and quantitative assessment of safety risks in a data-driven manner. The backbone of our method is an intuitive hierarchical probabilistic model that explains sparse and noisy safety data collected by a typical SMS. A fully Bayesian approach is developed to calibrate this model from safety data in an online fashion. Thereafter, the calibrated model holds necessary information that serves to characterize risk posed by different safety hazards. Additionally, the proposed model can be leveraged for automated decision making, for instance solving resource allocation problems -- targeted towards risk mitigation -- that are often encountered in resource-constrained industrial environments. The methodology is rigorously validated on a simulated test-bed and its scalability is demonstrated on real data from large maintenance projects at a petrochemical plant.
4,923
null
WeatherBench Probability: A benchmark dataset for probabilistic medium-range weather forecasting along with deep learning baseline models
WeatherBench is a benchmark dataset for medium-range weather forecasting of geopotential, temperature and precipitation, consisting of preprocessed data, predefined evaluation metrics and a number of baseline models. WeatherBench Probability extends this to probabilistic forecasting by adding a set of established probabilistic verification metrics (continuous ranked probability score, spread-skill ratio and rank histograms) and a state-of-the-art operational baseline using the ECWMF IFS ensemble forecast. In addition, we test three different probabilistic machine learning methods -- Monte Carlo dropout, parametric prediction and categorical prediction, in which the probability distribution is discretized. We find that plain Monte Carlo dropout severely underestimates uncertainty. The parametric and categorical models both produce fairly reliable forecasts of similar quality. The parametric models have fewer degrees of freedom while the categorical model is more flexible when it comes to predicting non-Gaussian distributions. None of the models are able to match the skill of the operational IFS model. We hope that this benchmark will enable other researchers to evaluate their probabilistic approaches.
4,924
null
Lightweight Image Enhancement Network for Mobile Devices Using Self-Feature Extraction and Dense Modulation
Convolutional neural network (CNN) based image enhancement methods such as super-resolution and detail enhancement have achieved remarkable performances. However, amounts of operations including convolution and parameters within the networks cost high computing power and need huge memory resource, which limits the applications with on-device requirements. Lightweight image enhancement network should restore details, texture, and structural information from low-resolution input images while keeping their fidelity. To address these issues, a lightweight image enhancement network is proposed. The proposed network include self-feature extraction module which produces modulation parameters from low-quality image itself, and provides them to modulate the features in the network. Also, dense modulation block is proposed for unit block of the proposed network, which uses dense connections of concatenated features applied in modulation layers. Experimental results demonstrate better performance over existing approaches in terms of both quantitative and qualitative evaluations.
4,925
null
Model-based Deep Learning Receiver Design for Rate-Splitting Multiple Access
Effective and adaptive interference management is required in next generation wireless communication systems. To address this challenge, Rate-Splitting Multiple Access (RSMA), relying on multi-antenna rate-splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been intensively studied in recent years, albeit mostly under the assumption of perfect Channel State Information at the Receiver (CSIR) and ideal capacity-achieving modulation and coding schemes. To assess its practical performance, benefits, and limits under more realistic conditions, this work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods, which aims to unite the simple structure of the conventional SIC receiver and the robustness and model agnosticism of deep learning techniques. The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS), and average training overhead. Also, a comparison with the SIC receiver, with perfect and imperfect CSIR, is given. Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR, due to its ability to generate on demand non-linear symbol detection boundaries in a pure data-driven manner.
4,926
null
Gradient Descent, Stochastic Optimization, and Other Tales
The goal of this paper is to debunk and dispel the magic behind black-box optimizers and stochastic optimizers. It aims to build a solid foundation on how and why the techniques work. This manuscript crystallizes this knowledge by deriving from simple intuitions, the mathematics behind the strategies. This tutorial doesn't shy away from addressing both the formal and informal aspects of gradient descent and stochastic optimization methods. By doing so, it hopes to provide readers with a deeper understanding of these techniques as well as the when, the how and the why of applying these algorithms. Gradient descent is one of the most popular algorithms to perform optimization and by far the most common way to optimize machine learning tasks. Its stochastic version receives attention in recent years, and this is particularly true for optimizing deep neural networks. In deep neural networks, the gradient followed by a single sample or a batch of samples is employed to save computational resources and escape from saddle points. In 1951, Robbins and Monro published \textit{A stochastic approximation method}, one of the first modern treatments on stochastic optimization that estimates local gradients with a new batch of samples. And now, stochastic optimization has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this article is to give a self-contained introduction to concepts and mathematical tools in gradient descent and stochastic optimization.
4,927
null
Exploration in Deep Reinforcement Learning: A Survey
This paper reviews exploration techniques in deep reinforcement learning. Exploration techniques are of primary importance when solving sparse reward problems. In sparse reward problems, the reward is rare, which means that the agent will not find the reward often by acting randomly. In such a scenario, it is challenging for reinforcement learning to learn rewards and actions association. Thus more sophisticated exploration methods need to be devised. This review provides a comprehensive overview of existing exploration approaches, which are categorized based on the key contributions as follows reward novel states, reward diverse behaviours, goal-based methods, probabilistic methods, imitation-based methods, safe exploration and random-based methods. Then, the unsolved challenges are discussed to provide valuable future research directions. Finally, the approaches of different categories are compared in terms of complexity, computational effort and overall performance.
4,928
null
Deep-Attack over the Deep Reinforcement Learning
Recent adversarial attack developments have made reinforcement learning more vulnerable, and different approaches exist to deploy attacks against it, where the key is how to choose the right timing of the attack. Some work tries to design an attack evaluation function to select critical points that will be attacked if the value is greater than a certain threshold. This approach makes it difficult to find the right place to deploy an attack without considering the long-term impact. In addition, there is a lack of appropriate indicators of assessment during attacks. To make the attacks more intelligent as well as to remedy the existing problems, we propose the reinforcement learning-based attacking framework by considering the effectiveness and stealthy spontaneously, while we also propose a new metric to evaluate the performance of the attack model in these two aspects. Experimental results show the effectiveness of our proposed model and the goodness of our proposed evaluation metric. Furthermore, we validate the transferability of the model, and also its robustness under the adversarial training.
4,929
null
Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs
Multi-hop reasoning over real-life knowledge graphs (KGs) is a highly challenging problem as traditional subgraph matching methods are not capable to deal with noise and missing information. To address this problem, it has been recently introduced a promising approach based on jointly embedding logical queries and KGs into a low-dimensional space to identify answer entities. However, existing proposals ignore critical semantic knowledge inherently available in KGs, such as type information. To leverage type information, we propose a novel TypE-aware Message Passing (TEMP) model, which enhances the entity and relation representations in queries, and simultaneously improves generalization, deductive and inductive reasoning. Remarkably, TEMP is a plug-and-play model that can be easily incorporated into existing embedding-based models to improve their performance. Extensive experiments on three real-world datasets demonstrate TEMP's effectiveness.
4,930
null
Efficient Accelerator for Dilated and Transposed Convolution with Decomposition
Hardware acceleration for dilated and transposed convolution enables real time execution of related tasks like segmentation, but current designs are specific for these convolutional types or suffer from complex control for reconfigurable designs. This paper presents a design that decomposes input or weight for dilated and transposed convolutions respectively to skip redundant computations and thus executes efficiently on existing dense CNN hardware as well. The proposed architecture can cut down 87.8\% of the cycle counts to achieve 8.2X speedup over a naive execution for the ENet case.
4,931
null
Real Time On Sensor Gait Phase Detection with 0.5KB Deep Learning Model
Gait phase detection with convolution neural network provides accurate classification but demands high computational cost, which inhibits real time low power on-sensor processing. This paper presents a segmentation based gait phase detection with a width and depth downscaled U-Net like model that only needs 0.5KB model size and 67K operations per second with 95.9% accuracy to be easily fitted into resource limited on sensor microcontroller.
4,932
null
Pre-RTL DNN Hardware Evaluator With Fused Layer Support
With the popularity of the deep neural network (DNN), hardware accelerators are demanded for real time execution. However, lengthy design process and fast evolving DNN models make hardware evaluation hard to meet the time to market need. This paper proposes a pre-RTL DNN hardware evaluator that supports conventional layer-by-layer processing as well as the fused layer processing for low external bandwidth requirement. The evaluator supports two state-of-the-art accelerator architectures and finds the best hardware and layer fusion group The experimental results show the layer fusion scheme can achieve 55.6% memory bandwidth reduction, 36.7% latency improvement and 49.2% energy reduction compared with layer-by-layer operation.
4,933
null
A Real Time 1280x720 Object Detection Chip With 585MB/s Memory Traffic
Memory bandwidth has become the real-time bottleneck of current deep learning accelerators (DLA), particularly for high definition (HD) object detection. Under resource constraints, this paper proposes a low memory traffic DLA chip with joint hardware and software optimization. To maximize hardware utilization under memory bandwidth, we morph and fuse the object detection model into a group fusion-ready model to reduce intermediate data access. This reduces the YOLOv2's feature memory traffic from 2.9 GB/s to 0.15 GB/s. To support group fusion, our previous DLA based hardware employes a unified buffer with write-masking for simple layer-by-layer processing in a fusion group. When compared to our previous DLA with the same PE numbers, the chip implemented in a TSMC 40nm process supports 1280x720@30FPS object detection and consumes 7.9X less external DRAM access energy, from 2607 mJ to 327.6 mJ.
4,934
null
PSCNN: A 885.86 TOPS/W Programmable SRAM-based Computing-In-Memory Processor for Keyword Spotting
Computing-in-memory (CIM) has attracted significant attentions in recent years due to its massive parallelism and low power consumption. However, current CIM designs suffer from large area overhead of small CIM macros and bad programmablity for model execution. This paper proposes a programmable CIM processor with a single large sized CIM macro instead of multiple smaller ones for power efficient computation and a flexible instruction set to support various binary 1-D convolution Neural Network (CNN) models in an easy way. Furthermore, the proposed architecture adopts the pooling write-back method to support fused or independent convolution/pooling operations to reduce 35.9\% of latency, and the flexible ping-pong feature SRAM to fit different feature map sizes during layer-by-layer execution.The design fabricated in TSMC 28nm technology achieves 150.8 GOPS throughput and 885.86 TOPS/W power efficiency at 10 MHz when executing our binary keyword spotting model, which has higher power efficiency and flexibility than previous designs.
4,935
null
RangeSeg: Range-Aware Real Time Segmentation of 3D LiDAR Point Clouds
Semantic outdoor scene understanding based on 3D LiDAR point clouds is a challenging task for autonomous driving due to the sparse and irregular data structure. This paper takes advantages of the uneven range distribution of different LiDAR laser beams to propose a range aware instance segmentation network, RangeSeg. RangeSeg uses a shared encoder backbone with two range dependent decoders. A heavy decoder only computes top of a range image where the far and small objects locate to improve small object detection accuracy, and a light decoder computes whole range image for low computational cost. The results are further clustered by the DBSCAN method with a resolution weighted distance function to get instance-level segmentation results. Experiments on the KITTI dataset show that RangeSeg outperforms the state-of-the-art semantic segmentation methods with enormous speedup and improves the instance-level segmentation performance on small and far objects. The whole RangeSeg pipeline meets the real time requirement on NVIDIA\textsuperscript{\textregistered} JETSON AGX Xavier with 19 frames per second in average.
4,936
null
Zebra: Memory Bandwidth Reduction for CNN Accelerators With Zero Block Regularization of Activation Maps
The large amount of memory bandwidth between local buffer and external DRAM has become the speedup bottleneck of CNN hardware accelerators, especially for activation maps. To reduce memory bandwidth, we propose to learn pruning unimportant blocks dynamically with zero block regularization of activation maps (Zebra). This strategy has low computational overhead and could easily integrate with other pruning methods for better performance. The experimental results show that the proposed method can reduce 70\% of memory bandwidth for Resnet-18 on Tiny-Imagenet within 1\% accuracy drops and 2\% accuracy gain with the combination of Network Slimming.
4,937
null
Sparse Compressed Spiking Neural Network Accelerator for Object Detection
Spiking neural networks (SNNs), which are inspired by the human brain, have recently gained popularity due to their relatively simple and low-power hardware for transmitting binary spikes and highly sparse activation maps. However, because SNNs contain extra time dimension information, the SNN accelerator will require more buffers and take longer to infer, especially for the more difficult high-resolution object detection task. As a result, this paper proposes a sparse compressed spiking neural network accelerator that takes advantage of the high sparsity of activation maps and weights by utilizing the proposed gated one-to-all product for low power and highly parallel model execution. The experimental result of the neural network shows 71.5$\%$ mAP with mixed (1,3) time steps on the IVS 3cls dataset. The accelerator with the TSMC 28nm CMOS process can achieve 1024$\times$576@29 frames per second processing when running at 500MHz with 35.88TOPS/W energy efficiency and 1.05mJ energy consumption per frame.
4,938
null
BSRA: Block-based Super Resolution Accelerator with Hardware Efficient Pixel Attention
Increasingly, convolution neural network (CNN) based super resolution models have been proposed for better reconstruction results, but their large model size and complicated structure inhibit their real-time hardware implementation. Current hardware designs are limited to a plain network and suffer from lower quality and high memory bandwidth requirements. This paper proposes a super resolution hardware accelerator with hardware efficient pixel attention that just needs 25.9K parameters and simple structure but achieves 0.38dB better reconstruction images than the widely used FSRCNN. The accelerator adopts full model block wise convolution for full model layer fusion to reduce external memory access to model input and output only. In addition, CNN and pixel attention are well supported by PE arrays with distributed weights. The final implementation can support full HD image reconstruction at 30 frames per second with TSMC 40nm CMOS process.
4,939
null
Large Neighborhood Search based on Neural Construction Heuristics
We propose a Large Neighborhood Search (LNS) approach utilizing a learned construction heuristic based on neural networks as repair operator to solve the vehicle routing problem with time windows (VRPTW). Our method uses graph neural networks to encode the problem and auto-regressively decodes a solution and is trained with reinforcement learning on the construction task without requiring any labels for supervision. The neural repair operator is combined with a local search routine, heuristic destruction operators and a selection procedure applied to a small population to arrive at a sophisticated solution approach. The key idea is to use the learned model to re-construct the partially destructed solution and to introduce randomness via the destruction heuristics (or the stochastic policy itself) to effectively explore a large neighborhood.
4,940
null
Data-driven emotional body language generation for social robotics
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration, since humans attribute, and perhaps subconsciously anticipate, such traces to perceive an agent as engaging, trustworthy, and socially present. Robotic emotional body language needs to be believable, nuanced and relevant to the context. We implemented a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions and can generate numerous new ones of similar believability and lifelikeness. The framework uses the Conditional Variational Autoencoder model and a sampling approach based on the geometric properties of the model's latent space to condition the generative process on targeted levels of valence and arousal. The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones, and the emotional conditioning was adequately differentiable between most levels except the pairs of neutral-positive valence and low-medium arousal. Furthermore, an exploratory analysis of the results reveals a possible impact of the conditioning on the perceived dominance of the robot, as well as on the participants' attention.
4,941
null
VICE: Variational Interpretable Concept Embeddings
A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate Bayesian method for embedding object concepts in a vector space using data collected from humans in an odd-one-out triplet task. VICE uses variational inference to obtain sparse, non-negative representations of object concepts with uncertainty estimates for the embedding values. These estimates are used to automatically select the dimensions that best explain the data. We derive a PAC learning bound for VICE that can be used to estimate generalization performance or determine sufficient sample size in experimental design. VICE rivals or outperforms its predecessor, SPoSE, at predicting human behavior in the odd-one-out triplet task. Furthermore, VICE's object representations are more reproducible and consistent across random initializations.
4,942
null
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor
In this paper, we investigate an online prediction strategy named as Discounted-Normal-Predictor (Kapralov and Panigrahy, 2010) for smoothed online convex optimization (SOCO), in which the learner needs to minimize not only the hitting cost but also the switching cost. In the setting of learning with expert advice, Daniely and Mansour (2019) demonstrate that Discounted-Normal-Predictor can be utilized to yield nearly optimal regret bounds over any interval, even in the presence of switching costs. Inspired by their results, we develop a simple algorithm for SOCO: Combining online gradient descent (OGD) with different step sizes sequentially by Discounted-Normal-Predictor. Despite its simplicity, we prove that it is able to minimize the adaptive regret with switching cost, i.e., attaining nearly optimal regret with switching cost on every interval. By exploiting the theoretical guarantee of OGD for dynamic regret, we further show that the proposed algorithm can minimize the dynamic regret with switching cost in every interval.
4,943
null
FedDKD: Federated Learning with Decentralized Knowledge Distillation
The performance of federated learning in neural networks is generally influenced by the heterogeneity of the data distribution. For a well-performing global model, taking a weighted average of the local models, as done by most existing federated learning algorithms, may not guarantee consistency with local models in the space of neural network maps. In this paper, we propose a novel framework of federated learning equipped with the process of decentralized knowledge distillation (FedDKD) (i.e., without data on the server). The FedDKD introduces a module of decentralized knowledge distillation (DKD) to distill the knowledge of the local models to train the global model by approaching the neural network map average based on the metric of divergence defined in the loss function, other than only averaging parameters as done in literature. Numeric experiments on various heterogeneous datasets reveal that FedDKD outperforms the state-of-the-art methods with more efficient communication and training in a few DKD steps, especially on some extremely heterogeneous datasets.
4,944
null
DeepGraviLens: a Multi-Modal Architecture for Classifying Gravitational Lensing Data
Gravitational lensing is the relativistic effect generated by massive bodies, which bend the space-time surrounding them. It is a deeply investigated topic in astrophysics and allows validating theoretical relativistic results and studying faint astrophysical objects that would not be visible otherwise. In recent years Machine Learning methods have been applied to support the analysis of the gravitational lensing phenomena by detecting lensing effects in data sets consisting of images associated with brightness variation time series. However, the state-of-art approaches either consider only images and neglect time-series data or achieve relatively low accuracy on the most difficult data sets. This paper introduces DeepGraviLens, a novel multi-modal network that classifies spatio-temporal data belonging to one non-lensed system type and three lensed system types. It surpasses the current state of the art accuracy results by $\approx$ 19% to $\approx$ 43%, depending on the considered data set. Such an improvement will enable the acceleration of the analysis of lensed objects in upcoming astrophysical surveys, which will exploit the petabytes of data collected, e.g., from the Vera C. Rubin Observatory.
4,945
null
Unsupervised Denoising of Optical Coherence Tomography Images with Dual_Merged CycleWGAN
Nosie is an important cause of low quality Optical coherence tomography (OCT) image. The neural network model based on Convolutional neural networks(CNNs) has demonstrated its excellent performance in image denoising. However, OCT image denoising still faces great challenges because many previous neural network algorithms required a large number of labeled data, which might cost much time or is expensive. Besides, these CNN-based algorithms need numerous parameters and good tuning techniques, which is hardware resources consuming. To solved above problems, We proposed a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing, which has remarkable performance with less unlabeled traning data. Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance. Using image merge technique between two Cycle-GAN networks, our model could obtain more detailed information and hence better training effect. The effectiveness and generality of our proposed network has been proved via ablation experiments and comparative experiments. Compared with other state-of-the-art methods, our unsupervised method obtains best subjective visual effect and higher evaluation objective indicators.
4,946
null
A Multi-stage deep architecture for summary generation of soccer videos
Video content is present in an ever-increasing number of fields, both scientific and commercial. Sports, particularly soccer, is one of the industries that has invested the most in the field of video analytics, due to the massive popularity of the game and the emergence of new markets. Previous state-of-the-art methods on soccer matches video summarization rely on handcrafted heuristics to generate summaries which are poorly generalizable, but these works have yet proven that multiple modalities help detect the best actions of the game. On the other hand, machine learning models with higher generalization potential have entered the field of summarization of general-purpose videos, offering several deep learning approaches. However, most of them exploit content specificities that are not appropriate for sport whole-match videos. Although video content has been for many years the main source for automatizing knowledge extraction in soccer, the data that records all the events happening on the field has become lately very important in sports analytics, since this event data provides richer context information and requires less processing. We propose a method to generate the summary of a soccer match exploiting both the audio and the event metadata. The results show that our method can detect the actions of the match, identify which of these actions should belong to the summary and then propose multiple candidate summaries which are similar enough but with relevant variability to provide different options to the final editor. Furthermore, we show the generalization capability of our work since it can transfer knowledge between datasets from different broadcasting companies, different competitions, acquired in different conditions, and corresponding to summaries of different lengths
4,947
null
From Noisy Prediction to True Label: Noisy Prediction Calibration via Generative Model
Noisy labels are inevitable yet problematic in machine learning society. It ruins the generalization of a classifier by making the classifier over-fitted to noisy labels. Existing methods on noisy label have focused on modifying the classifier during the training procedure. It has two potential problems. First, these methods are not applicable to a pre-trained classifier without further access to training. Second, it is not easy to train a classifier and regularize all negative effects from noisy labels, simultaneously. We suggest a new branch of method, Noisy Prediction Calibration (NPC) in learning with noisy labels. Through the introduction and estimation of a new type of transition matrix via generative model, NPC corrects the noisy prediction from the pre-trained classifier to the true label as a post-processing scheme. We prove that NPC theoretically aligns with the transition matrix based methods. Yet, NPC empirically provides more accurate pathway to estimate true label, even without involvement in classifier learning. Also, NPC is applicable to any classifier trained with noisy label methods, if training instances and its predictions are available. Our method, NPC, boosts the classification performances of all baseline models on both synthetic and real-world datasets. The implemented code is available at https://github.com/BaeHeeSun/NPC.
4,948
null
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)
Test Input Prioritizers (TIP) for Deep Neural Networks (DNN) are an important technique to handle the typically very large test datasets efficiently, saving computation and labeling costs. This is particularly true for large-scale, deployed systems, where inputs observed in production are recorded to serve as potential test or training data for the next versions of the system. Feng et. al. propose DeepGini, a very fast and simple TIP, and show that it outperforms more elaborate techniques such as neuron- and surprise coverage. In a large-scale study (4 case studies, 8 test datasets, 32'200 trained models) we verify their findings. However, we also find that other comparable or even simpler baselines from the field of uncertainty quantification, such as the predicted softmax likelihood or the entropy of the predicted softmax likelihoods perform equally well as DeepGini.
4,949
null
Skeptical binary inferences in multi-label problems with sets of probabilities
In this paper, we consider the problem of making distributionally robust, skeptical inferences for the multi-label problem, or more generally for Boolean vectors. By distributionally robust, we mean that we consider a set of possible probability distributions, and by skeptical we understand that we consider as valid only those inferences that are true for every distribution within this set. Such inferences will provide partial predictions whenever the considered set is sufficiently big. We study in particular the Hamming loss case, a common loss function in multi-label problems, showing how skeptical inferences can be made in this setting. Our experimental results are organised in three sections; (1) the first one indicates the gain computational obtained from our theoretical results by using synthetical data sets, (2) the second one indicates that our approaches produce relevant cautiousness on those hard-to-predict instances where its precise counterpart fails, and (3) the last one demonstrates experimentally how our approach copes with imperfect information (generated by a downsampling procedure) better than the partial abstention [31] and the rejection rules.
4,950
null
The Multivariate Community Hawkes Model for Dependent Relational Events in Continuous-time Networks
The stochastic block model (SBM) is one of the most widely used generative models for network data. Many continuous-time dynamic network models are built upon the same assumption as the SBM: edges or events between all pairs of nodes are conditionally independent given the block or community memberships, which prevents them from reproducing higher-order motifs such as triangles that are commonly observed in real networks. We propose the multivariate community Hawkes (MULCH) model, an extremely flexible community-based model for continuous-time networks that introduces dependence between node pairs using structured multivariate Hawkes processes. We fit the model using a spectral clustering and likelihood-based local refinement procedure. We find that our proposed MULCH model is far more accurate than existing models both for predictive and generative tasks.
4,951
null
PSI Draft Specification
This document presents the draft specification for delivering machine learning services over HTTP, developed as part of the Protocols and Structures for Inference project, which concluded in 2013. It presents the motivation for providing machine learning as a service, followed by a description of the essential and optional components of such a service.
4,952
null
Community detection in multiplex networks based on orthogonal nonnegative matrix tri-factorization
Networks provide a powerful tool to model complex systems where the different entities in the system are presented by nodes and their interactions by edges. Recently, there has been a growing interest in multiplex networks as they can represent the interactions between a pair of nodes through multiple types of links, each reflecting a distinct type of interaction. One of the important tools in understanding network topology is community detection. Although there are numerous works on community detection in single layer networks, existing work on multiplex community detection mostly focuses on learning a common community structure across layers without taking the heterogeneity of the different layers into account. In this paper, we introduce a new multiplex community detection approach that can identify communities that are common across layers as well as those that are unique to each layer. The proposed algorithm employs Orthogonal Nonnegative Matrix Tri-Factorization to model each layer's adjacency matrix as the sum of two low-rank matrix factorizations, corresponding to the common and private communities, respectively. The proposed algorithm is evaluated on both synthetic and real multiplex networks and compared to state-of-the-art techniques.
4,953
null
LoopStack: a Lightweight Tensor Algebra Compiler Stack
We present LoopStack, a domain specific compiler stack for tensor operations, composed of a frontend, LoopTool, and an efficient optimizing code generator, LoopNest. This stack enables us to compile entire neural networks and generate code targeting the AVX2, AVX512, NEON, and NEONfp16 instruction sets while incorporating optimizations often missing from other machine learning compiler backends. We evaluate our stack on a collection of full neural networks and commonly used network blocks as well as individual operators, and show that LoopStack generates machine code that matches and frequently exceeds the performance of in state-of-the-art machine learning frameworks in both cases. We also show that for a large collection of schedules LoopNest's compilation is orders of magnitude faster than LLVM, while resulting in equal or improved run time performance. Additionally, LoopStack has a very small memory footprint - a binary size of 245KB, and under 30K lines of effective code makes it ideal for use on mobile and embedded devices.
4,954
null
Physics-aware Reduced-order Modeling of Transonic Flow via $β$-Variational Autoencoder
Autoencoder-based reduced-order modeling (ROM) has recently attracted significant attention, owing to its ability to capture underlying nonlinear features. However, two critical drawbacks severely undermine its scalability to various physical applications: entangled and therefore uninterpretable latent variables (LVs) and the blindfold determination of latent space dimension. In this regard, this study proposes the physics-aware ROM using only interpretable and information-intensive LVs extracted by $\beta$-variational autoencoder, which are referred to as physics-aware LVs throughout this paper. To extract these LVs, their independence and information intensity are quantitatively scrutinized in a two-dimensional transonic flow benchmark problem. Then, the physical meanings of the physics-aware LVs are thoroughly investigated and we confirmed that with appropriate hyperparameter $\beta$, they actually correspond to the generating factors of the training dataset, Mach number and angle of attack. To the best of the authors' knowledge, our work is the first to practically confirm that $\beta$-variational autoencoder can automatically extract the physical generating factors in the field of applied physics. Finally, physics-aware ROM, which utilizes only physics-aware LVs, is compared with conventional ROMs, and its validity and efficiency are successfully verified.
4,955
null
Forecasting Market Changes using Variational Inference
Though various approaches have been considered, forecasting near-term market changes of equities and similar market data remains quite difficult. In this paper we introduce an approach to forecast near-term market changes for equity indices as well as portfolios using variational inference (VI). VI is a machine learning approach which uses optimization techniques to estimate complex probability densities. In the proposed approach, clusters of explanatory variables are identified and market changes are forecast based on cluster-specific linear regression. Apart from the expected value of changes, the proposed approach can also be used to obtain the distribution of possible outcomes, which can be used to estimate confidence levels of forecasts and risk measures such as VaR (Value at Risk) for the portfolio. Another advantage of the proposed approach is the clear model interpretation, as clusters of explanatory variables (or market regimes) are identified for which the future changes follow similar relationships. Knowledge about such clusters can provide useful insights about portfolio performance and identify the relative importance of variables in different market regimes. Illustrative examples of equity and bond indices are considered to demonstrate forecasts of the proposed approach during Covid-related volatility in early 2020 and subsequent benign market conditions. For the portfolios considered, it is shown that the proposed approach provides useful forecasts in both normal and volatile markets even with only a few explanatory variables. Additionally the predicted estimate and distribution adapt quickly to changing market conditions and thus may also be useful in obtaining better real-time estimates of risk measures such as VaR compared to traditional approaches.
4,956
null
Attention-wise masked graph contrastive learning for predicting molecular property
Accurate and efficient prediction of the molecular properties of drugs is one of the fundamental problems in drug research and development. Recent advancements in representation learning have been shown to greatly improve the performance of molecular property prediction. However, due to limited labeled data, supervised learning-based molecular representation algorithms can only search limited chemical space, which results in poor generalizability. In this work, we proposed a self-supervised representation learning framework for large-scale unlabeled molecules. We developed a novel molecular graph augmentation strategy, referred to as attention-wise graph mask, to generate challenging positive sample for contrastive learning. We adopted the graph attention network (GAT) as the molecular graph encoder, and leveraged the learned attention scores as masking guidance to generate molecular augmentation graphs. By minimization of the contrastive loss between original graph and masked graph, our model can capture important molecular structure and higher-order semantic information. Extensive experiments showed that our attention-wise graph mask contrastive learning exhibit state-of-the-art performance in a couple of downstream molecular property prediction tasks.
4,957
null
Using a novel fractional-order gradient method for CNN back-propagation
Computer-aided diagnosis tools have experienced rapid growth and development in recent years. Among all, deep learning is the most sophisticated and popular tool. In this paper, researchers propose a novel deep learning model and apply it to COVID-19 diagnosis. Our model uses the tool of fractional calculus, which has the potential to improve the performance of gradient methods. To this end, the researcher proposes a fractional-order gradient method for the back-propagation of convolutional neural networks based on the Caputo definition. However, if only the first term of the infinite series of the Caputo definition is used to approximate the fractional-order derivative, the length of the memory is truncated. Therefore, the fractional-order gradient (FGD) method with a fixed memory step and an adjustable number of terms is used to update the weights of the layers. Experiments were performed on the COVIDx dataset to demonstrate fast convergence, good accuracy, and the ability to bypass the local optimal point. We also compared the performance of the developed fractional-order neural networks and Integer-order neural networks. The results confirmed the effectiveness of our proposed model in the diagnosis of COVID-19.
4,958
null
Data-driven control of spatiotemporal chaos with reduced-order neural ODE-based models and reinforcement learning
Deep reinforcement learning (RL) is a data-driven method capable of discovering complex control strategies for high-dimensional systems, making it promising for flow control applications. In particular, the present work is motivated by the goal of reducing energy dissipation in turbulent flows, and the example considered is the spatiotemporally chaotic dynamics of the Kuramoto-Sivashinsky equation (KSE). A major challenge associated with RL is that substantial training data must be generated by repeatedly interacting with the target system, making it costly when the system is computationally or experimentally expensive. We mitigate this challenge in a data-driven manner by combining dimensionality reduction via an autoencoder with a neural ODE framework to obtain a low-dimensional dynamical model from just a limited data set. We substitute this data-driven reduced-order model (ROM) in place of the true system during RL training to efficiently estimate the optimal policy, which can then be deployed on the true system. For the KSE actuated with localized forcing ("jets") at four locations, we demonstrate that we are able to learn a ROM that accurately captures the actuated dynamics as well as the underlying natural dynamics just from snapshots of the KSE experiencing random actuations. Using this ROM and a control objective of minimizing dissipation and power cost, we extract a control policy from it using deep RL. We show that the ROM-based control strategy translates well to the true KSE and highlight that the RL agent discovers and stabilizes an underlying forced equilibrium solution of the KSE system. We show that this forced equilibrium captured in the ROM and discovered through RL is related to an existing known equilibrium solution of the natural KSE.
4,959
null
Thermodynamically Consistent Machine-Learned Internal State Variable Approach for Data-Driven Modeling of Path-Dependent Materials
Characterization and modeling of path-dependent behaviors of complex materials by phenomenological models remains challenging due to difficulties in formulating mathematical expressions and internal state variables (ISVs) governing path-dependent behaviors. Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives. However, pure black-box data-driven models mapping inputs to outputs without considering the underlying physics suffer from unstable and inaccurate generalization performance. This study proposes a machine-learned physics-informed data-driven constitutive modeling approach for path-dependent materials based on the measurable material states. The proposed data-driven constitutive model is designed with the consideration of universal thermodynamics principles, where the ISVs essential to the material path-dependency are inferred automatically from the hidden state of RNNs. The RNN describing the evolution of the data-driven machine-learned ISVs follows the thermodynamics second law. To enhance the robustness and accuracy of RNN models, stochasticity is introduced to model training. The effects of the number of RNN history steps, the internal state dimension, the model complexity, and the strain increment on model performances have been investigated. The effectiveness of the proposed method is evaluated by modeling soil material behaviors under cyclic shear loading using experimental stress-strain data.
4,960
null
Medical Coding with Biomedical Transformer Ensembles and Zero/Few-shot Learning
Medical coding (MC) is an essential pre-requisite for reliable data retrieval and reporting. Given a free-text reported term (RT) such as "pain of right thigh to the knee", the task is to identify the matching lowest-level term (LLT) - in this case "unilateral leg pain" - from a very large and continuously growing repository of standardized medical terms. However, automating this task is challenging due to a large number of LLT codes (as of writing over 80,000), limited availability of training data for long tail/emerging classes, and the general high accuracy demands of the medical domain. With this paper, we introduce the MC task, discuss its challenges, and present a novel approach called xTARS that combines traditional BERT-based classification with a recent zero/few-shot learning approach (TARS). We present extensive experiments that show that our combined approach outperforms strong baselines, especially in the few-shot regime. The approach is developed and deployed at Bayer, live since November 2021. As we believe our approach potentially promising beyond MC, and to ensure reproducibility, we release the code to the research community.
4,961
null
Experimental quantum pattern recognition in IBMQ and diamond NVs
One of the most promising applications of quantum computing is the processing of graphical data like images. Here, we investigate the possibility of realizing a quantum pattern recognition protocol based on swap test, and use the IBMQ noisy intermediate-scale quantum (NISQ) devices to verify the idea. We find that with a two-qubit protocol, swap test can efficiently detect the similarity between two patterns with good fidelity, though for three or more qubits the noise in the real devices becomes detrimental. To mitigate this noise effect, we resort to destructive swap test, which shows an improved performance for three-qubit states. Due to limited cloud access to larger IBMQ processors, we take a segment-wise approach to apply the destructive swap test on higher dimensional images. In this case, we define an average overlap measure which shows faithfulness to distinguish between two very different or very similar patterns when simulated on real IBMQ processors. As test images, we use binary images with simple patterns, greyscale MNIST numbers and MNIST fashion images, as well as binary images of human blood vessel obtained from magnetic resonance imaging (MRI). We also present an experimental set up for applying destructive swap test using the nitrogen vacancy centre (NVs) in diamond. Our experimental data show high fidelity for single qubit states. Lastly, we propose a protocol inspired from quantum associative memory, which works in an analogous way to supervised learning for performing quantum pattern recognition using destructive swap test.
4,962
null
Federated Semi-Supervised Classification of Multimedia Flows for 3D Networks
Automatic traffic classification is increasingly becoming important in traffic engineering, as the current trend of encrypting transport information (e.g., behind HTTP-encrypted tunnels) prevents intermediate nodes from accessing end-to-end packet headers. However, this information is crucial for traffic shaping, network slicing, and Quality of Service (QoS) management, for preventing network intrusion, and for anomaly detection. 3D networks offer multiple routes that can guarantee different levels of QoS. Therefore, service classification and separation are essential to guarantee the required QoS level to each traffic sub-flow through the appropriate network trunk. In this paper, a federated feature selection and feature reduction learning scheme is proposed to classify network traffic in a semi-supervised cooperative manner. The federated gateways of 3D network help to enhance the global knowledge of network traffic to improve the accuracy of anomaly and intrusion detection and service identification of a new traffic flow.
4,963
null
Can Information Behaviour Inform Machine Learning?
The objective of this paper is to explore the opportunities for human information behaviour research to inform and influence the field of machine learning and the resulting machine information behaviour. Using the development of foundation models in machine learning as an example, the paper illustrates how human information behaviour research can bring to machine learning a more nuanced view of information and informing, a better understanding of information need and how that affects the communication among people and systems, guidance on the nature of context and how to operationalize that in models and systems, and insights into bias, misinformation, and marginalization. Despite their clear differences, the fields of information behaviour and machine learning share many common objectives, paradigms, and key research questions. The example of foundation models illustrates that human information behaviour research has much to offer in addressing some of the challenges emerging in the nascent area of machine information behaviour.
4,964
null
Generalized Reference Kernel for One-class Classification
In this paper, we formulate a new generalized reference kernel hoping to improve the original base kernel using a set of reference vectors. Depending on the selected reference vectors, our formulation shows similarities to approximate kernels, random mappings, and Non-linear Projection Trick. Focusing on small-scale one-class classification, our analysis and experimental results show that the new formulation provides approaches to regularize, adjust the rank, and incorporate additional information into the kernel itself, leading to improved one-class classification accuracy.
4,965
null
Deep vs. Shallow Learning: A Benchmark Study in Low Magnitude Earthquake Detection
While deep learning models have seen recent high uptake in the geosciences, and are appealing in their ability to learn from minimally processed input data, as black box models they do not provide an easy means to understand how a decision is reached, which in safety-critical tasks especially can be problematical. An alternative route is to use simpler, more transparent white box models, in which task-specific feature construction replaces the more opaque feature discovery process performed automatically within deep learning models. Using data from the Groningen Gas Field in the Netherlands, we build on an existing logistic regression model by the addition of four further features discovered using elastic net driven data mining within the catch22 time series analysis package. We then evaluate the performance of the augmented logistic regression model relative to a deep (CNN) model, pre-trained on the Groningen data, on progressively increasing noise-to-signal ratios. We discover that, for each ratio, our logistic regression model correctly detects every earthquake, while the deep model fails to detect nearly 20 % of seismic events, thus justifying at least a degree of caution in the application of deep models, especially to data with higher noise-to-signal ratios.
4,966
null
Deep Learning with Logical Constraints
In recent years, there has been an increasing interest in exploiting logically specified background knowledge in order to obtain neural models (i) with a better performance, (ii) able to learn from less data, and/or (iii) guaranteed to be compliant with the background knowledge itself, e.g., for safety-critical applications. In this survey, we retrace such works and categorize them based on (i) the logical language that they use to express the background knowledge and (ii) the goals that they achieve.
4,967
null
Conditional $β$-VAE for De Novo Molecular Generation
Deep learning has significantly advanced and accelerated de novo molecular generation. Generative networks, namely Variational Autoencoders (VAEs) can not only randomly generate new molecules, but also alter molecular structures to optimize specific chemical properties which are pivotal for drug-discovery. While VAEs have been proposed and researched in the past for pharmaceutical applications, they possess deficiencies which limit their ability to both optimize properties and decode syntactically valid molecules. We present a recurrent, conditional $\beta$-VAE which disentangles the latent space to enhance post hoc molecule optimization. We create a mutual information driven training protocol and data augmentations to both increase molecular validity and promote longer sequence generation. We demonstrate the efficacy of our framework on the ZINC-250k dataset, achieving SOTA unconstrained optimization results on the penalized LogP (pLogP) and QED scores, while also matching current SOTA results for validity, novelty and uniqueness scores for random generation. We match the current SOTA on QED for top-3 molecules at 0.948, while setting a new SOTA for pLogP optimization at 104.29, 90.12, 69.68 and demonstrating improved results on the constrained optimization task.
4,968
null
Accurate non-stationary short-term traffic flow prediction method
Precise and timely traffic flow prediction plays a critical role in developing intelligent transportation systems and has attracted considerable attention in recent decades. Despite the significant progress in this area brought by deep learning, challenges remain. Traffic flows usually change dramatically in a short period, which prevents the current methods from accurately capturing the future trend and likely causes the over-fitting problem, leading to unsatisfied accuracy. To this end, this paper proposes a Long Short-Term Memory (LSTM) based method that can forecast the short-term traffic flow precisely and avoid local optimum problems during training. Specifically, instead of using the non-stationary raw traffic data directly, we first decompose them into sub-components, where each one is less noisy than the original input. Afterward, Sample Entropy (SE) is employed to merge similar components to reduce the computation cost. The merged features are fed into the LSTM, and we then introduce a spatiotemporal module to consider the neighboring relationships in the recombined signals to avoid strong autocorrelation. During training, we utilize the Grey Wolf Algorithm (GWO) to optimize the parameters of LSTM, which overcome the overfitting issue. We conduct the experiments on a UK public highway traffic flow dataset, and the results show that the proposed method performs favorably against other state-of-the-art methods with better adaption performance on extreme outliers, delay effects, and trend-changing responses.
4,969
null
An Early Fault Detection Method of Rotating Machines Based on Multiple Feature Fusion with Stacking Architecture
Early fault detection (EFD) of rotating machines is important to decrease the maintenance cost and improve the mechanical system stability. One of the key points of EFD is developing a generic model to extract robust and discriminative features from different equipment for early fault detection. Most existing EFD methods focus on learning fault representation by one type of feature. However, a combination of multiple features can capture a more comprehensive representation of system state. In this paper, we propose an EFD method based on multiple feature fusion with stacking architecture (M2FSA). The proposed method can extract generic and discriminiative features to detect early faults by combining time domain (TD), frequency domain (FD), and time-frequency domain (TFD) features. In order to unify the dimensions of the different domain features, Stacked Denoising Autoencoder (SDAE) is utilized to learn deep features in three domains. The architecture of the proposed M2FSA consists of two layers. The first layer contains three base models, whose corresponding inputs are different deep features. The outputs of the first layer are concatenated to generate the input to the second layer, which consists of a meta model. The proposed method is tested on three bearing datasets. The results demonstrate that the proposed method is better than existing methods both in sensibility and reliability.
4,970
null
Preserve Pre-trained Knowledge: Transfer Learning With Self-Distillation For Action Recognition
Video-based action recognition is one of the most popular topics in computer vision. With recent advances of selfsupervised video representation learning approaches, action recognition usually follows a two-stage training framework, i.e., self-supervised pre-training on large-scale unlabeled sets and transfer learning on a downstream labeled set. However, catastrophic forgetting of the pre-trained knowledge becomes the main issue in the downstream transfer learning of action recognition, resulting in a sub-optimal solution. In this paper, to alleviate the above issue, we propose a novel transfer learning approach that combines self-distillation in fine-tuning to preserve knowledge from the pre-trained model learned from the large-scale dataset. Specifically, we fix the encoder from the last epoch as the teacher model to guide the training of the encoder from the current epoch in the transfer learning. With such a simple yet effective learning strategy, we outperform state-of-the-art methods on widely used UCF101 and HMDB51 datasets in action recognition task.
4,971
null
Domain Adaptation meets Individual Fairness. And they get along
Many instances of algorithmic bias are caused by distributional shifts. For example, machine learning (ML) models often perform worse on demographic groups that are underrepresented in the training data. In this paper, we leverage this connection between algorithmic fairness and distribution shifts to show that algorithmic fairness interventions can help ML models overcome distribution shifts, and that domain adaptation methods (for overcoming distribution shifts) can mitigate algorithmic biases. In particular, we show that (i) enforcing suitable notions of individual fairness (IF) can improve the out-of-distribution accuracy of ML models, and that (ii) it is possible to adapt representation alignment methods for domain adaptation to enforce (individual) fairness. The former is unexpected because IF interventions were not developed with distribution shifts in mind. The latter is also unexpected because representation alignment is not a common approach in the IF literature.
4,972
null
Is Your Toxicity My Toxicity? Exploring the Impact of Rater Identity on Toxicity Annotation
Machine learning models are commonly used to detect toxicity in online conversations. These models are trained on datasets annotated by human raters. We explore how raters' self-described identities impact how they annotate toxicity in online comments. We first define the concept of specialized rater pools: rater pools formed based on raters' self-described identities, rather than at random. We formed three such rater pools for this study--specialized rater pools of raters from the U.S. who identify as African American, LGBTQ, and those who identify as neither. Each of these rater pools annotated the same set of comments, which contains many references to these identity groups. We found that rater identity is a statistically significant factor in how raters will annotate toxicity for identity-related annotations. Using preliminary content analysis, we examined the comments with the most disagreement between rater pools and found nuanced differences in the toxicity annotations. Next, we trained models on the annotations from each of the different rater pools, and compared the scores of these models on comments from several test sets. Finally, we discuss how using raters that self-identify with the subjects of comments can create more inclusive machine learning models, and provide more nuanced ratings than those by random raters.
4,973
null
On the speed of uniform convergence in Mercer's theorem
The classical Mercer's theorem claims that a continuous positive definite kernel $K({\mathbf x}, {\mathbf y})$ on a compact set can be represented as $\sum_{i=1}^\infty \lambda_i\phi_i({\mathbf x})\phi_i({\mathbf y})$ where $\{(\lambda_i,\phi_i)\}$ are eigenvalue-eigenvector pairs of the corresponding integral operator. This infinite representation is known to converge uniformly to the kernel $K$. We estimate the speed of this convergence in terms of the decay rate of eigenvalues and demonstrate that for $3m$ times differentiable kernels the first $N$ terms of the series approximate $K$ as $\mathcal{O}\big((\sum_{i=N+1}^\infty\lambda_i)^{\frac{m}{m+n}}\big)$ or $\mathcal{O}\big((\sum_{i=N+1}^\infty\lambda^2_i)^{\frac{m}{2m+n}}\big)$.
4,974
null
Dynamic Programming in Rank Space: Scaling Structured Inference with Low-Rank HMMs and PCFGs
Hidden Markov Models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) are widely used structured models, both of which can be represented as factor graph grammars (FGGs), a powerful formalism capable of describing a wide range of models. Recent research found it beneficial to use large state spaces for HMMs and PCFGs. However, inference with large state spaces is computationally demanding, especially for PCFGs. To tackle this challenge, we leverage tensor rank decomposition (aka.\ CPD) to decrease inference computational complexities for a subset of FGGs subsuming HMMs and PCFGs. We apply CPD on the factors of an FGG and then construct a new FGG defined in the rank space. Inference with the new FGG produces the same result but has a lower time complexity when the rank size is smaller than the state size. We conduct experiments on HMM language modeling and unsupervised PCFG parsing, showing better performance than previous work. Our code is publicly available at \url{https://github.com/VPeterV/RankSpace-Models}.
4,975
null
Ridgeless Regression with Random Features
Recent theoretical studies illustrated that kernel ridgeless regression can guarantee good generalization ability without an explicit regularization. In this paper, we investigate the statistical properties of ridgeless regression with random features and stochastic gradient descent. We explore the effect of factors in the stochastic gradient and random features, respectively. Specifically, random features error exhibits the double-descent curve. Motivated by the theoretical findings, we propose a tunable kernel algorithm that optimizes the spectral density of kernel during training. Our work bridges the interpolation theory and practical algorithm.
4,976
null
None Class Ranking Loss for Document-Level Relation Extraction
Document-level relation extraction (RE) aims at extracting relations among entities expressed across multiple sentences, which can be viewed as a multi-label classification problem. In a typical document, most entity pairs do not express any pre-defined relation and are labeled as "none" or "no relation". For good document-level RE performance, it is crucial to distinguish such none class instances (entity pairs) from those of pre-defined classes (relations). However, most existing methods only estimate the probability of pre-defined relations independently without considering the probability of "no relation". This ignores the context of entity pairs and the label correlations between the none class and pre-defined classes, leading to sub-optimal predictions. To address this problem, we propose a new multi-label loss that encourages large margins of label confidence scores between each pre-defined class and the none class, which enables captured label correlations and context-dependent thresholding for label prediction. To gain further robustness against positive-negative imbalance and mislabeled data that could appear in real-world RE datasets, we propose a margin regularization and a margin shifting technique. Experimental results demonstrate that our method significantly outperforms existing multi-label losses for document-level RE and works well in other multi-label tasks such as emotion classification when none class instances are available for training.
4,977
null
A Survey of Decentralized Online Learning
Decentralized online learning (DOL) has been increasingly researched in the last decade, mostly motivated by its wide applications in sensor networks, commercial buildings, robotics (e.g., decentralized target tracking and formation control), smart grids, deep learning, and so forth. In this problem, there are a network of agents who may be cooperative (i.e., decentralized online optimization) or noncooperative (i.e., online game) through local information exchanges, and the local cost function of each agent is often time-varying in dynamic and even adversarial environments. At each time, a decision must be made by each agent based on historical information at hand without knowing future information on cost functions. Although this problem has been extensively studied in the last decade, a comprehensive survey is lacking. Therefore, this paper provides a thorough overview of DOL from the perspective of problem settings, communication, computation, and performances. In addition, some potential future directions are also discussed in details.
4,978
null
Reward Systems for Trustworthy Medical Federated Learning
Federated learning (FL) has received high interest from researchers and practitioners to train machine learning (ML) models for healthcare. Ensuring the trustworthiness of these models is essential. Especially bias, defined as a disparity in the model's predictive performance across different subgroups, may cause unfairness against specific subgroups, which is an undesired phenomenon for trustworthy ML models. In this research, we address the question to which extent bias occurs in medical FL and how to prevent excessive bias through reward systems. We first evaluate how to measure the contributions of institutions toward predictive performance and bias in cross-silo medical FL with a Shapley value approximation method. In a second step, we design different reward systems incentivizing contributions toward high predictive performance or low bias. We then propose a combined reward system that incentivizes contributions toward both. We evaluate our work using multiple medical chest X-ray datasets focusing on patient subgroups defined by patient sex and age. Our results show that we can successfully measure contributions toward bias, and an integrated reward system successfully incentivizes contributions toward a well-performing model with low bias. While the partitioning of scans only slightly influences the overall bias, institutions with data predominantly from one subgroup introduce a favorable bias for this subgroup. Our results indicate that reward systems, which focus on predictive performance only, can transfer model bias against patients to an institutional level. Our work helps researchers and practitioners design reward systems for FL with well-aligned incentives for trustworthy ML.
4,979
null
Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs due to their non-differentiability. Most existing methods either suffer from high latency (i.e., long simulation time steps), or cannot achieve as high performance as Artificial Neural Networks (ANNs). In this paper, we propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance that is competitive to ANNs yet with low latency. First, we encode the spike trains into spike representation using (weighted) firing rate coding. Based on the spike representation, we systematically derive that the spiking dynamics with common neural models can be represented as some sub-differentiable mapping. With this viewpoint, our proposed DSR method trains SNNs through gradients of the mapping and avoids the common non-differentiability problem in SNN training. Then we analyze the error when representing the specific mapping with the forward computation of the SNN. To reduce such error, we propose to train the spike threshold in each layer, and to introduce a new hyperparameter for the neural models. With these components, the DSR method can achieve state-of-the-art SNN performance with low latency on both static and neuromorphic datasets, including CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10.
4,980
null
An Analysis of the Features Considerable for NFT Recommendations
This research explores the methods that NFTs can be recommended to people who interact with NFT-marketplaces to explore NFTs of preference and similarity to what they have been searching for. While exploring past methods that can be adopted for recommendations, the use of NFT traits for recommendations has been explored. The outcome of the research highlights the necessity of using multiple Recommender Systems to present the user with the best possible NFTs when interacting with decentralized systems.
4,981
null
Molecular Identification from AFM images using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks
Despite being the main tool to visualize molecules at the atomic scale, AFM with CO-functionalized metal tips is unable to chemically identify the observed molecules. Here we present a strategy to address this challenging task using deep learning techniques. Instead of identifying a finite number of molecules following a traditional classification approach, we define the molecular identification as an image captioning problem. We design an architecture, composed of two multimodal recurrent neural networks, capable of identifying the structure and composition of an unknown molecule using a 3D-AFM image stack as input. The neural network is trained to provide the name of each molecule according to the IUPAC nomenclature rules. To train and test this algorithm we use the novel QUAM-AFM dataset, which contains almost 700,000 molecules and 165 million AFM images. The accuracy of the predictions is remarkable, achieving a high score quantified by the cumulative BLEU 4-gram, a common metric in language recognition studies.
4,982
null
Adaptive Online Optimization with Predictions: Static and Dynamic Environments
In the past few years, Online Convex Optimization (OCO) has received notable attention in the control literature thanks to its flexible real-time nature and powerful performance guarantees. In this paper, we propose new step-size rules and OCO algorithms that simultaneously exploit gradient predictions, function predictions and dynamics, features particularly pertinent to control applications. The proposed algorithms enjoy static and dynamic regret bounds in terms of the dynamics of the reference action sequence, gradient prediction error and function prediction error, which are generalizations of known regularity measures from the literature. We present results for both convex and strongly convex costs. We validate the performance of the proposed algorithms in a trajectory tracking case study, as well as portfolio optimization using real-world datasets.
4,983
null
Differentially Private Multivariate Time Series Forecasting of Aggregated Human Mobility With Deep Learning: Input or Gradient Perturbation?
This paper investigates the problem of forecasting multivariate aggregated human mobility while preserving the privacy of the individuals concerned. Differential privacy, a state-of-the-art formal notion, has been used as the privacy guarantee in two different and independent steps when training deep learning models. On one hand, we considered \textit{gradient perturbation}, which uses the differentially private stochastic gradient descent algorithm to guarantee the privacy of each time series sample in the learning stage. On the other hand, we considered \textit{input perturbation}, which adds differential privacy guarantees in each sample of the series before applying any learning. We compared four state-of-the-art recurrent neural networks: Long Short-Term Memory, Gated Recurrent Unit, and their Bidirectional architectures, i.e., Bidirectional-LSTM and Bidirectional-GRU. Extensive experiments were conducted with a real-world multivariate mobility dataset, which we published openly along with this paper. As shown in the results, differentially private deep learning models trained under gradient or input perturbation achieve nearly the same performance as non-private deep learning models, with loss in performance varying between $0.57\%$ to $2.8\%$. The contribution of this paper is significant for those involved in urban planning and decision-making, providing a solution to the human mobility multivariate forecast problem through differentially private deep learning models.
4,984
null
TinyLight: Adaptive Traffic Signal Control on Devices with Extremely Limited Resources
Recent advances in deep reinforcement learning (DRL) have largely promoted the performance of adaptive traffic signal control (ATSC). Nevertheless, regarding the implementation, most works are cumbersome in terms of storage and computation. This hinders their deployment on scenarios where resources are limited. In this work, we propose TinyLight, the first DRL-based ATSC model that is designed for devices with extremely limited resources. TinyLight first constructs a super-graph to associate a rich set of candidate features with a group of light-weighted network blocks. Then, to diminish the model's resource consumption, we ablate edges in the super-graph automatically with a novel entropy-minimized objective function. This enables TinyLight to work on a standalone microcontroller with merely 2KB RAM and 32KB ROM. We evaluate TinyLight on multiple road networks with real-world traffic demands. Experiments show that even with extremely limited resources, TinyLight still achieves competitive performance. The source code and appendix of this work can be found at \url{https://bit.ly/38hH8t8}.
4,985
null
Branch & Learn for Recursively and Iteratively Solvable Problems in Predict+Optimize
This paper proposes Branch & Learn, a framework for Predict+Optimize to tackle optimization problems containing parameters that are unknown at the time of solving. Given an optimization problem solvable by a recursive algorithm satisfying simple conditions, we show how a corresponding learning algorithm can be constructed directly and methodically from the recursive algorithm. Our framework applies also to iterative algorithms by viewing them as a degenerate form of recursion. Extensive experimentation shows better performance for our proposal over classical and state-of-the-art approaches.
4,986
null
Uniform Manifold Approximation with Two-phase Optimization
We introduce Uniform Manifold Approximation with Two-phase Optimization (UMATO), a dimensionality reduction (DR) technique that improves UMAP to capture the global structure of high-dimensional data more accurately. In UMATO, optimization is divided into two phases so that the resulting embeddings can depict the global structure reliably while preserving the local structure with sufficient accuracy. As the first phase, hub points are identified and projected to construct a skeletal layout for the global structure. In the second phase, the remaining points are added to the embedding preserving the regional characteristics of local areas. Through quantitative experiments, we found that UMATO (1) outperformed widely used DR techniques in preserving the global structure while (2) producing competitive accuracy in representing the local structure. We also verified that UMATO is preferable in terms of robustness over diverse initialization methods, number of epochs, and subsampling techniques.
4,987
null
Don't Blame the Annotator: Bias Already Starts in the Annotation Instructions
In recent years, progress in NLU has been driven by benchmarks. These benchmarks are typically collected by crowdsourcing, where annotators write examples based on annotation instructions crafted by dataset creators. In this work, we hypothesize that annotators pick up on patterns in the crowdsourcing instructions, which bias them to write similar examples that are then over-represented in the collected data. We study this form of bias, termed instruction bias, in 14 recent NLU benchmarks, showing that instruction examples often exhibit concrete patterns, which are propagated by crowdworkers to the collected data. This extends previous work (Geva et al., 2019) and raises a new concern of whether we are modeling the dataset creator's instructions, rather than the task. Through a series of experiments, we show that, indeed, instruction bias can lead to overestimation of model performance, and that models struggle to generalize beyond biases originating in the crowdsourcing instructions. We further analyze the influence of instruction bias in terms of pattern frequency and model size, and derive concrete recommendations for creating future NLU benchmarks.
4,988
null
DDDM: a Brain-Inspired Framework for Robust Classification
Despite their outstanding performance in a broad spectrum of real-world tasks, deep artificial neural networks are sensitive to input noises, particularly adversarial perturbations. On the contrary, human and animal brains are much less vulnerable. In contrast to the one-shot inference performed by most deep neural networks, the brain often solves decision-making with an evidence accumulation mechanism that may trade time for accuracy when facing noisy inputs. The mechanism is well described by the Drift-Diffusion Model (DDM). In the DDM, decision-making is modeled as a process in which noisy evidence is accumulated toward a threshold. Drawing inspiration from the DDM, we propose the Dropout-based Drift-Diffusion Model (DDDM) that combines test-phase dropout and the DDM for improving the robustness for arbitrary neural networks. The dropouts create temporally uncorrelated noises in the network that counter perturbations, while the evidence accumulation mechanism guarantees a reasonable decision accuracy. Neural networks enhanced with the DDDM tested in image, speech, and text classification tasks all significantly outperform their native counterparts, demonstrating the DDDM as a task-agnostic defense against adversarial attacks.
4,989
null
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
4,990
null
Fine-Grained Address Segmentation for Attention-Based Variable-Degree Prefetching
Machine learning algorithms have shown potential to improve prefetching performance by accurately predicting future memory accesses. Existing approaches are based on the modeling of text prediction, considering prefetching as a classification problem for sequence prediction. However, the vast and sparse memory address space leads to large vocabulary, which makes this modeling impractical. The number and order of outputs for multiple cache line prefetching are also fundamentally different from text prediction. We propose TransFetch, a novel way to model prefetching. To reduce vocabulary size, we use fine-grained address segmentation as input. To predict unordered sets of future addresses, we use delta bitmaps for multiple outputs. We apply an attention-based network to learn the mapping between input and output. Prediction experiments demonstrate that address segmentation achieves 26% - 36% higher F1-score than delta inputs and 15% - 24% higher F1-score than page & offset inputs for SPEC 2006, SPEC 2017, and GAP benchmarks. Simulation results show that TransFetch achieves 38.75% IPC improvement compared with no prefetching, outperforming the best-performing rule-based prefetcher BOP by 10.44%, and ML-based prefetcher Voyager by 6.64%.
4,991
null
A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Prediction
More and more investors and machine learning models rely on social media (e.g., Twitter and Reddit) to gather real-time information and sentiment to predict stock price movements. Although text-based models are known to be vulnerable to adversarial attacks, whether stock prediction models have similar vulnerability is underexplored. In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models. We address the task of adversarial generation by solving combinatorial optimization problems with semantics and budget constraints. Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation by simply concatenating a perturbed but semantically similar tweet.
4,992
null
Processing Network Controls via Deep Reinforcement Learning
Novel advanced policy gradient (APG) algorithms, such as proximal policy optimization (PPO), trust region policy optimization, and their variations, have become the dominant reinforcement learning (RL) algorithms because of their ease of implementation and good practical performance. This dissertation is concerned with theoretical justification and practical application of the APG algorithms for solving processing network control optimization problems. Processing network control problems are typically formulated as Markov decision process (MDP) or semi-Markov decision process (SMDP) problems that have several unconventional for RL features: infinite state spaces, unbounded costs, long-run average cost objectives. Policy improvement bounds play a crucial role in the theoretical justification of the APG algorithms. In this thesis we refine existing bounds for MDPs with finite state spaces and prove novel policy improvement bounds for classes of MDPs and SMDPs used to model processing network operations. We consider two examples of processing network control problems and customize the PPO algorithm to solve them. First, we consider parallel-server and multiclass queueing networks controls. Second, we consider the drivers repositioning problem in a ride-hailing service system. For both examples the PPO algorithm with auxiliary modifications consistently generates control policies that outperform state-of-art heuristics.
4,993
null
Neural Network Optimal Feedback Control with Guaranteed Local Stability
Recent research shows that deep learning can be an effective tool for designing optimal feedback controllers for high-dimensional nonlinear dynamic systems. But the behavior of these neural network (NN) controllers is still not well understood. In particular, some NNs with high test accuracy can fail to even locally stabilize the dynamic system. To address this challenge we propose several novel NN architectures, which we show guarantee local stability while retaining the semi-global approximation capacity to learn the optimal feedback policy. The proposed architectures are compared against standard NN feedback controllers through numerical simulations of two high-dimensional nonlinear optimal control problems (OCPs): stabilization of an unstable Burgers-type partial differential equation (PDE), and altitude and course tracking for a six degree-of-freedom (6DoF) unmanned aerial vehicle (UAV). The simulations demonstrate that standard NNs can fail to stabilize the dynamics even when trained well, while the proposed architectures are always at least locally stable. Moreover, the proposed controllers are found to be near-optimal in testing.
4,994
null
Abnormal-aware Multi-person Evaluation System with Improved Fuzzy Weighting
There exists a phenomenon that subjectivity highly lies in the daily evaluation process. Our research primarily concentrates on a multi-person evaluation system with anomaly detection to minimize the possible inaccuracy that subjective assessment brings. We choose the two-stage screening method, which consists of rough screening and score-weighted Kendall-$\tau$ Distance to winnow out abnormal data, coupled with hypothesis testing to narrow global discrepancy. Then we use Fuzzy Synthetic Evaluation Method(FSE) to determine the significance of scores given by reviewers as well as their reliability, culminating in a more impartial weight for each reviewer in the final conclusion. The results demonstrate a clear and comprehensive ranking instead of unilateral scores, and we get to have an efficiency in filtering out abnormal data as well as a reasonably objective weight determination mechanism. We can sense that through our study, people will have a chance of modifying a multi-person evaluation system to attain both equity and a relatively superior competitive atmosphere.
4,995
null
Detecting COVID-19 Conspiracy Theories with Transformers and TF-IDF
The sharing of fake news and conspiracy theories on social media has wide-spread negative effects. By designing and applying different machine learning models, researchers have made progress in detecting fake news from text. However, existing research places a heavy emphasis on general, common-sense fake news, while in reality fake news often involves rapidly changing topics and domain-specific vocabulary. In this paper, we present our methods and results for three fake news detection tasks at MediaEval benchmark 2021 that specifically involve COVID-19 related topics. We experiment with a group of text-based models including Support Vector Machines, Random Forest, BERT, and RoBERTa. We find that a pre-trained transformer yields the best validation results, but a randomly initialized transformer with smart design can also be trained to reach accuracies close to that of the pre-trained transformer.
4,996
null
Fair Feature Subset Selection using Multiobjective Genetic Algorithm
The feature subset selection problem aims at selecting the relevant subset of features to improve the performance of a Machine Learning (ML) algorithm on training data. Some features in data can be inherently noisy, costly to compute, improperly scaled, or correlated to other features, and they can adversely affect the accuracy, cost, and complexity of the induced algorithm. The goal of traditional feature selection approaches has been to remove such irrelevant features. In recent years ML is making a noticeable impact on the decision-making processes of our everyday lives. We want to ensure that these decisions do not reflect biased behavior towards certain groups or individuals based on protected attributes such as age, sex, or race. In this paper, we present a feature subset selection approach that improves both fairness and accuracy objectives and computes Pareto-optimal solutions using the NSGA-II algorithm. We use statistical disparity as a fairness metric and F1-Score as a metric for model performance. Our experiments on the most commonly used fairness benchmark datasets with three different machine learning algorithms show that using the evolutionary algorithm we can effectively explore the trade-off between fairness and accuracy.
4,997
null
A Simple Duality Proof for Wasserstein Distributionally Robust Optimization
We present a short and elementary proof of the duality for Wasserstein distributionally robust optimization, which holds for any arbitrary Kantorovich transport distance, any arbitrary measurable loss function, and any arbitrary nominal probability distribution, as long as certain interchangeability principle holds.
4,998
null
Combined Learning of Neural Network Weights for Privacy in Collaborative Tasks
We introduce CoLN, Combined Learning of Neural network weights, a novel method to securely combine Machine Learning models over sensitive data with no sharing of data. With CoLN, local hosts use the same Neural Network architecture and base parameters to train a model using only locally available data. Locally trained models are then submitted to a combining agent, which produces a combined model. The new model's parameters can be sent back to hosts, and can then be used as initial parameters for a new training iteration. CoLN is capable of combining several distributed neural networks of the same kind but is not restricted to any single neural architecture. In this paper we detail the combination algorithm and present experiments with feed-forward, convolutional, and recurrent Neural Network architectures, showing that the CoLN combined model approximates the performance of a hypothetical ideal centralized model, trained using the combination of the local datasets. CoLN can contribute to secure collaborative research, as required in the medical area, where privacy issues preclude data sharing, but where the limitations of local data demand information derived from larger datasets.
4,999
null
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Influence estimation analyzes how changes to the training data can lead to different model predictions; this analysis can help us better understand these predictions, the models making those predictions, and the data sets they're trained on. However, most influence-estimation techniques are designed for deep learning models with continuous parameters. Gradient-boosted decision trees (GBDTs) are a powerful and widely-used class of models; however, these models are black boxes with opaque decision-making processes. In the pursuit of better understanding GBDT predictions and generally improving these models, we adapt recent and popular influence-estimation methods designed for deep learning models to GBDTs. Specifically, we adapt representer-point methods and TracIn, denoting our new methods TREX and BoostIn, respectively; source code is available at https://github.com/jjbrophy47/tree_influence. We compare these methods to LeafInfluence and other baselines using 5 different evaluation measures on 22 real-world data sets with 4 popular GBDT implementations. These experiments give us a comprehensive overview of how different approaches to influence estimation work in GBDT models. We find BoostIn is an efficient influence-estimation method for GBDTs that performs equally well or better than existing work while being four orders of magnitude faster. Our evaluation also suggests the gold-standard approach of leave-one-out~(LOO) retraining consistently identifies the single-most influential training example but performs poorly at finding the most influential set of training examples for a given target prediction.