Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
4,700
TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision
Nowadays, deep neural networks outperform humans in many tasks. However, if the input distribution drifts away from the one used in training, their performance drops significantly. Recently published research has shown that adapting the model parameters to the test sample can mitigate this performance degradation. In this paper, we therefore propose a novel modification of the self-supervised training algorithm SwAV that adds the ability to adapt to single test samples. Using the provided prototypes of SwAV and our derived test-time loss, we align the representation of unseen test samples with the self-supervised learned prototypes. We show the success of our method on the common benchmark dataset CIFAR10-C.
4,701
A Regression Approach to Learning-Augmented Online Algorithms
The emerging field of learning-augmented online algorithms uses ML techniques to predict future input parameters and thereby improve the performance of online algorithms. Since these parameters are, in general, real-valued functions, a natural approach is to use regression techniques to make these predictions. We introduce this approach in this paper, and explore it in the context of a general online search framework that captures classic problems like (generalized) ski rental, bin packing, minimum makespan scheduling, etc. We show nearly tight bounds on the sample complexity of this regression problem, and extend our results to the agnostic setting. From a technical standpoint, we show that the key is to incorporate online optimization benchmarks in the design of the loss function for the regression problem, thereby diverging from the use of off-the-shelf regression tools with standard bounds on statistical error.
4,702
No More Pesky Hyperparameters: Offline Hyperparameter Tuning for RL
The performance of reinforcement learning (RL) agents is sensitive to the choice of hyperparameters. In real-world settings like robotics or industrial control systems, however, testing different hyperparameter configurations directly on the environment can be financially prohibitive, dangerous, or time consuming. We propose a new approach to tune hyperparameters from offline logs of data, to fully specify the hyperparameters for an RL agent that learns online in the real world. The approach is conceptually simple: we first learn a model of the environment from the offline data, which we call a calibration model, and then simulate learning in the calibration model to identify promising hyperparameters. We identify several criteria to make this strategy effective, and develop an approach that satisfies these criteria. We empirically investigate the method in a variety of settings to identify when it is effective and when it fails.
4,703
Customizing ML Predictions for Online Algorithms
A popular line of recent research incorporates ML advice in the design of online algorithms to improve their performance in typical instances. These papers treat the ML algorithm as a black-box, and redesign online algorithms to take advantage of ML predictions. In this paper, we ask the complementary question: can we redesign ML algorithms to provide better predictions for online algorithms? We explore this question in the context of the classic rent-or-buy problem, and show that incorporating optimization benchmarks in ML loss functions leads to significantly better performance, while maintaining a worst-case adversarial result when the advice is completely wrong. We support this finding both through theoretical bounds and numerical simulations.
4,704
CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous Driving Tasks
Autonomous driving has received a lot of attention in the automotive industry and is often seen as the future of transportation. Passenger vehicles equipped with a wide array of sensors (e.g., cameras, front-facing radars, LiDARs, and IMUs) capable of continuous perception of the environment are becoming increasingly prevalent. These sensors provide a stream of high-dimensional, temporally correlated data that is essential for reliable autonomous driving. An autonomous driving system should effectively use the information collected from the various sensors in order to form an abstract description of the world and maintain situational awareness. Deep learning models, such as autoencoders, can be used for that purpose, as they can learn compact latent representations from a stream of incoming data. However, most autoencoder models process the data independently, without assuming any temporal interdependencies. Thus, there is a need for deep learning models that explicitly consider the temporal dependence of the data in their architecture. This work proposes CARNet, a Combined dynAmic autoencodeR NETwork architecture that utilizes an autoencoder combined with a recurrent neural network to learn the current latent representation and, in addition, also predict future latent representations in the context of autonomous driving. We demonstrate the efficacy of the proposed model in both imitation and reinforcement learning settings using both simulated and real datasets. Our results show that the proposed model outperforms the baseline state-of-the-art model, while having significantly fewer trainable parameters.
4,705
It Isn't Sh!tposting, It's My CAT Posting
In this paper, we describe a novel architecture which can generate hilarious captions for a given input image. The architecture is split into two halves, i.e. image captioning and hilarious text conversion. The architecture starts with a pre-trained CNN model, VGG16 in this implementation, and applies attention LSTM on it to generate normal caption. These normal captions then are fed forward to our hilarious text conversion transformer which converts this text into something hilarious while maintaining the context of the input image. The architecture can also be split into two halves and only the seq2seq transformer can be used to generate hilarious caption by inputting a sentence.This paper aims to help everyday user to be more lazy and hilarious at the same time by generating captions using CATNet.
4,706
Practical Skills Demand Forecasting via Representation Learning of Temporal Dynamics
Rapid technological innovation threatens to leave much of the global workforce behind. Today's economy juxtaposes white-hot demand for skilled labor against stagnant employment prospects for workers unprepared to participate in a digital economy. It is a moment of peril and opportunity for every country, with outcomes measured in long-term capital allocation and the life satisfaction of billions of workers. To meet the moment, governments and markets must find ways to quicken the rate at which the supply of skills reacts to changes in demand. More fully and quickly understanding labor market intelligence is one route. In this work, we explore the utility of time series forecasts to enhance the value of skill demand data gathered from online job advertisements. This paper presents a pipeline which makes one-shot multi-step forecasts into the future using a decade of monthly skill demand observations based on a set of recurrent neural network methods. We compare the performance of a multivariate model versus a univariate one, analyze how correlation between skills can influence multivariate model results, and present predictions of demand for a selection of skills practiced by workers in the information technology industry.
4,707
Accurate Fairness: Improving Individual Fairness without Trading Accuracy
Accuracy and fairness are both crucial aspects for trustworthy machine learning. However, in practice, enhancing one aspect may sacrifice the other inevitably. We propose in this paper a new fairness criterion, accurate fairness, to assess whether an individual is treated both accurately and fairly regardless of protected attributes. We further propose new fairness metrics, fair-precision, fair-recall and fair-F1 score, to evaluate the reliability of a machine learning model from the perspective of accurate fairness. Thus, the side effects of enhancing just one of the two aspects, i.e., true bias and false fairness, can be effectively identified with our criterion. We then present a fair Siamese approach for accurate fairness training. To the best of our knowledge, this is the first time that a Siamese approach is adapted for bias mitigation. Case studies with typical fairness benchmarks demonstrate that our fair Siamese approach can, on average, promote the 17.4% higher individual fairness, the 11.5% higher fair-F1 score, and the 4.7% higher accuracy of a machine learning model than the state-of-the-art bias mitigation techniques. Finally, our approach is applied to mitigate the possible service discrimination with a real Ctrip dataset, by fairly serving on average 97.9% customers with different consumption habits who pay the same prices for the same rooms (20.7% more than original models).
4,708
Optimal Adaptive Prediction Intervals for Electricity Load Forecasting in Distribution Systems via Reinforcement Learning
Prediction intervals offer an effective tool for quantifying the uncertainty of loads in distribution systems. The traditional central PIs cannot adapt well to skewed distributions, and their offline training fashion is vulnerable to unforeseen changes in future load patterns. Therefore, we propose an optimal PI estimation approach, which is online and adaptive to different data distributions by adaptively determining symmetric or asymmetric probability proportion pairs for quantiles. It relies on the online learning ability of reinforcement learning to integrate the two online tasks, i.e., the adaptive selection of probability proportion pairs and quantile predictions, both of which are modeled by neural networks. As such, the quality of quantiles-formed PI can guide the selection process of optimal probability proportion pairs, which forms a closed loop to improve the quality of PIs. Furthermore, to improve the learning efficiency of quantile forecasts, a prioritized experience replay strategy is proposed for online quantile regression processes. Case studies on both load and net load demonstrate that the proposed method can better adapt to data distribution compared with online central PIs method. Compared with offline-trained methods, it obtains PIs with better quality and is more robust against concept drift.
4,709
The Solvability of Interpretability Evaluation Metrics
Feature attribution methods are popular for explaining neural network predictions, and they are often evaluated on metrics such as comprehensiveness and sufficiency, which are motivated by the principle that more important features -- as judged by the explanation -- should have larger impacts on model prediction. In this paper, we highlight an intriguing property of these metrics: their solvability. Concretely, we can define the problem of optimizing an explanation for a metric and solve it using beam search. This brings up the obvious question: given such solvability, why do we still develop other explainers and then evaluate them on the metric? We present a series of investigations showing that this beam search explainer is generally comparable or favorable to current choices such as LIME and SHAP, suggest rethinking the goals of model interpretability, and identify several directions towards better evaluations of new method proposals.
4,710
Hyperparameter Optimization with Neural Network Pruning
Since the deep learning model is highly dependent on hyperparameters, hyperparameter optimization is essential in developing deep learning model-based applications, even if it takes a long time. As service development using deep learning models has gradually become competitive, many developers highly demand rapid hyperparameter optimization algorithms. In order to keep pace with the needs of faster hyperparameter optimization algorithms, researchers are focusing on improving the speed of hyperparameter optimization algorithm. However, the huge time consumption of hyperparameter optimization due to the high computational cost of the deep learning model itself has not been dealt with in-depth. Like using surrogate model in Bayesian optimization, to solve this problem, it is necessary to consider proxy model for a neural network (N_B) to be used for hyperparameter optimization. Inspired by the main goal of neural network pruning, i.e., high computational cost reduction and performance preservation, we presumed that the neural network (N_P) obtained through neural network pruning would be a good proxy model of N_B. In order to verify our idea, we performed extensive experiments by using CIFAR10, CFIAR100, and TinyImageNet datasets and three generally-used neural networks and three representative hyperparameter optmization methods. Through these experiments, we verified that N_P can be a good proxy model of N_B for rapid hyperparameter optimization. The proposed hyperparameter optimization framework can reduce the amount of time up to 37%.
4,711
Neighborhood Mixup Experience Replay: Local Convex Interpolation for Improved Sample Efficiency in Continuous Control Tasks
Experience replay plays a crucial role in improving the sample efficiency of deep reinforcement learning agents. Recent advances in experience replay propose using Mixup (Zhang et al., 2018) to further improve sample efficiency via synthetic sample generation. We build upon this technique with Neighborhood Mixup Experience Replay (NMER), a geometrically-grounded replay buffer that interpolates transitions with their closest neighbors in state-action space. NMER preserves a locally linear approximation of the transition manifold by only applying Mixup between transitions with vicinal state-action features. Under NMER, a given transition's set of state action neighbors is dynamic and episode agnostic, in turn encouraging greater policy generalizability via inter-episode interpolation. We combine our approach with recent off-policy deep reinforcement learning algorithms and evaluate on continuous control environments. We observe that NMER improves sample efficiency by an average 94% (TD3) and 29% (SAC) over baseline replay buffers, enabling agents to effectively recombine previous experiences and learn from limited data.
4,712
Spatial-Temporal Interactive Dynamic Graph Convolution Network for Traffic Forecasting
Accurate traffic forecasting is essential for smart cities to achieve traffic control, route planning, and flow detection. Although many spatial-temporal methods are currently proposed, these methods are deficient in capturing the spatial-temporal dependence of traffic data synchronously. In addition, most of the methods ignore the dynamically changing correlations between road network nodes that arise as traffic data changes. We propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) to address the above challenges for traffic forecasting. Specifically, we propose an interactive dynamic graph convolution structure, which divides the sequences at intervals and synchronously captures the traffic data's spatial-temporal dependence through an interactive learning strategy. The interactive learning strategy makes STIDGCN effective for long-term prediction. We also propose a novel dynamic graph convolution module to capture the dynamically changing correlations in the traffic network, consisting of a graph generator and fusion graph convolution. The dynamic graph convolution module can use the input traffic data and pre-defined graph structure to generate a graph structure. It is then fused with the defined adaptive adjacency matrix to generate a dynamic adjacency matrix, which fills the pre-defined graph structure and simulates the generation of dynamic associations between nodes in the road network. Extensive experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.
4,713
Policy Distillation with Selective Input Gradient Regularization for Efficient Interpretability
Although deep Reinforcement Learning (RL) has proven successful in a wide range of tasks, one challenge it faces is interpretability when applied to real-world problems. Saliency maps are frequently used to provide interpretability for deep neural networks. However, in the RL domain, existing saliency map approaches are either computationally expensive and thus cannot satisfy the real-time requirement of real-world scenarios or cannot produce interpretable saliency maps for RL policies. In this work, we propose an approach of Distillation with selective Input Gradient Regularization (DIGR) which uses policy distillation and input gradient regularization to produce new policies that achieve both high interpretability and computation efficiency in generating saliency maps. Our approach is also found to improve the robustness of RL policies to multiple adversarial attacks. We conduct experiments on three tasks, MiniGrid (Fetch Object), Atari (Breakout) and CARLA Autonomous Driving, to demonstrate the importance and effectiveness of our approach.
4,714
QAPPA: Quantization-Aware Power, Performance, and Area Modeling of DNN Accelerators
As the machine learning and systems community strives to achieve higher energy-efficiency through custom DNN accelerators and model compression techniques, there is a need for a design space exploration framework that incorporates quantization-aware processing elements into the accelerator design space while having accurate and fast power, performance, and area models. In this work, we present QAPPA, a highly parameterized quantization-aware power, performance, and area modeling framework for DNN accelerators. Our framework can facilitate the future research on design space exploration of DNN accelerators for various design choices such as bit precision, processing element type, scratchpad sizes of processing elements, global buffer size, device bandwidth, number of total processing elements in the the design, and DNN workloads. Our results show that different bit precisions and processing element types lead to significant differences in terms of performance per area and energy. Specifically, our proposed lightweight processing elements achieve up to 4.9x more performance per area and energy improvement when compared to INT16 based implementation.
4,715
Need is All You Need: Homeostatic Neural Networks Adapt to Concept Shift
In living organisms, homeostasis is the natural regulation of internal states aimed at maintaining conditions compatible with life. Typical artificial systems are not equipped with comparable regulatory features. Here, we introduce an artificial neural network that incorporates homeostatic features. Its own computing substrate is placed in a needful and vulnerable relation to the very objects over which it computes. For example, artificial neurons performing classification of MNIST digits or Fashion-MNIST articles of clothing may receive excitatory or inhibitory effects, which alter their own learning rate as a direct result of perceiving and classifying the digits. In this scenario, accurate recognition is desirable to the agent itself because it guides decisions to regulate its vulnerable internal states and functionality. Counterintuitively, the addition of vulnerability to a learner does not necessarily impair its performance. On the contrary, self-regulation in response to vulnerability confers benefits under certain conditions. We show that homeostatic design confers increased adaptability under concept shift, in which the relationships between labels and data change over time, and that the greatest advantages are obtained under the highest rates of shift. This necessitates the rapid un-learning of past associations and the re-learning of new ones. We also demonstrate the superior abilities of homeostatic learners in environments with dynamically changing rates of concept shift. Our homeostatic design exposes the artificial neural network's thinking machinery to the consequences of its own "thoughts", illustrating the advantage of putting one's own "skin in the game" to improve fluid intelligence.
4,716
Frank Wolfe Meets Metric Entropy
The Frank-Wolfe algorithm has seen a resurgence in popularity due to its ability to efficiently solve constrained optimization problems in machine learning and high-dimensional statistics. As such, there is much interest in establishing when the algorithm may possess a "linear" $O(\log(1/\epsilon))$ dimension-free iteration complexity comparable to projected gradient descent. In this paper, we provide a general technique for establishing domain specific and easy-to-estimate lower bounds for Frank-Wolfe and its variants using the metric entropy of the domain. Most notably, we show that a dimension-free linear upper bound must fail not only in the worst case, but in the \emph{average case}: for a Gaussian or spherical random polytope in $\mathbb{R}^d$ with $\mathrm{poly}(d)$ vertices, Frank-Wolfe requires up to $\tilde\Omega(d)$ iterations to achieve a $O(1/d)$ error bound, with high probability. We also establish this phenomenon for the nuclear norm ball. The link with metric entropy also has interesting positive implications for conditional gradient algorithms in statistics, such as gradient boosting and matching pursuit. In particular, we show that it is possible to extract fast-decaying upper bounds on the excess risk directly from an analysis of the underlying optimization procedure.
4,717
Classification as Direction Recovery: Improved Guarantees via Scale Invariance
Modern algorithms for binary classification rely on an intermediate regression problem for computational tractability. In this paper, we establish a geometric distinction between classification and regression that allows risk in these two settings to be more precisely related. In particular, we note that classification risk depends only on the direction of the regressor, and we take advantage of this scale invariance to improve existing guarantees for how classification risk is bounded by the risk in the intermediate regression problem. Building on these guarantees, our analysis makes it possible to compare algorithms more accurately against each other and suggests viewing classification as unique from regression rather than a byproduct of it. While regression aims to converge toward the conditional expectation function in location, we propose that classification should instead aim to recover its direction.
4,718
Generic and Trend-aware Curriculum Learning for Relation Extraction in Graph Neural Networks
We present a generic and trend-aware curriculum learning approach for graph neural networks. It extends existing approaches by incorporating sample-level loss trends to better discriminate easier from harder samples and schedule them for training. The model effectively integrates textual and structural information for relation extraction in text graphs. Experimental results show that the model provides robust estimations of sample difficulty and shows sizable improvement over the state-of-the-art approaches across several datasets.
4,719
A graph representation of molecular ensembles for polymer property prediction
Synthetic polymers are versatile and widely used materials. Similar to small organic molecules, a large chemical space of such materials is hypothetically accessible. Computational property prediction and virtual screening can accelerate polymer design by prioritizing candidates expected to have favorable properties. However, in contrast to organic molecules, polymers are often not well-defined single structures but an ensemble of similar molecules, which poses unique challenges to traditional chemical representations and machine learning approaches. Here, we introduce a graph representation of molecular ensembles and an associated graph neural network architecture that is tailored to polymer property prediction. We demonstrate that this approach captures critical features of polymeric materials, like chain architecture, monomer stoichiometry, and degree of polymerization, and achieves superior accuracy to off-the-shelf cheminformatics methodologies. While doing so, we built a dataset of simulated electron affinity and ionization potential values for >40k polymers with varying monomer composition, stoichiometry, and chain architecture, which may be used in the development of other tailored machine learning approaches. The dataset and machine learning models presented in this work pave the path toward new classes of algorithms for polymer informatics and, more broadly, introduce a framework for the modeling of molecular ensembles.
4,720
Learning to Learn Quantum Turbo Detection
This paper investigates a turbo receiver employing a variational quantum circuit (VQC). The VQC is configured with an ansatz of the quantum approximate optimization algorithm (QAOA). We propose a 'learning to learn' (L2L) framework to optimize the turbo VQC decoder such that high fidelity soft-decision output is generated. Besides demonstrating the proposed algorithm's computational complexity, we show that the L2L VQC turbo decoder can achieve an excellent performance close to the optimal maximum-likelihood performance in a multiple-input multiple-output system.
4,721
Bagged Polynomial Regression and Neural Networks
Series and polynomial regression are able to approximate the same function classes as neural networks. However, these methods are rarely used in practice, although they offer more interpretability than neural networks. In this paper, we show that a potential reason for this is the slow convergence rate of polynomial regression estimators and propose the use of bagged polynomial regression (BPR) as an attractive alternative to neural networks. Theoretically, we derive new finite sample and asymptotic $L^2$ convergence rates for series estimators. We show that the rates can be improved in smooth settings by splitting the feature space and generating polynomial features separately for each partition. Empirically, we show that our proposed estimator, the BPR, can perform as well as more complex models with more parameters. Our estimator also performs close to state-of-the-art prediction methods in the benchmark MNIST handwritten digit dataset.
4,722
All-Photonic Artificial Neural Network Processor Via Non-linear Optics
Optics and photonics has recently captured interest as a platform to accelerate linear matrix processing, that has been deemed as a bottleneck in traditional digital electronic architectures. In this paper, we propose an all-photonic artificial neural network processor wherein information is encoded in the amplitudes of frequency modes that act as neurons. The weights among connected layers are encoded in the amplitude of controlled frequency modes that act as pumps. Interaction among these modes for information processing is enabled by non-linear optical processes. Both the matrix multiplication and element-wise activation functions are performed through coherent processes, enabling the direct representation of negative and complex numbers without the use of detectors or digital electronics. Via numerical simulations, we show that our design achieves a performance commensurate with present-day state-of-the-art computational networks on image-classification benchmarks. Our architecture is unique in providing a completely unitary, reversible mode of computation. Additionally, the computational speed increases with the power of the pumps to arbitrarily high rates, as long as the circuitry can sustain the higher optical power.
4,723
Multibit Tries Packet Classification with Deep Reinforcement Learning
High performance packet classification is a key component to support scalable network applications like firewalls, intrusion detection, and differentiated services. With ever increasing in the line-rate in core networks, it becomes a great challenge to design a scalable and high performance packet classification solution using hand-tuned heuristics approaches. In this paper, we present a scalable learning-based packet classification engine and its performance evaluation. By exploiting the sparsity of ruleset, our algorithm uses a few effective bits (EBs) to extract a large number of candidate rules with just a few of memory access. These effective bits are learned with deep reinforcement learning and they are used to create a bitmap to filter out the majority of rules which do not need to be full-matched to improve the online system performance. Moreover, our EBs learning-based selection method is independent of the ruleset, which can be applied to varying rulesets. Our multibit tries classification engine outperforms lookup time both in worst and average case by 55% and reduce memory footprint, compared to traditional decision tree without EBs.
4,724
OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource Language Pair for Low-Resource Sentence Retrieval
Aligning parallel sentences in multilingual corpora is essential to curating data for downstream applications such as Machine Translation. In this work, we present OneAligner, an alignment model specially designed for sentence retrieval tasks. This model is able to train on only one language pair and transfers, in a cross-lingual fashion, to low-resource language pairs with negligible degradation in performance. When trained with all language pairs of a large-scale parallel multilingual corpus (OPUS-100), this model achieves the state-of-the-art result on the Tateoba dataset, outperforming an equally-sized previous model by 8.0 points in accuracy while using less than 0.6% of their parallel data. When finetuned on a single rich-resource language pair, be it English-centered or not, our model is able to match the performance of the ones finetuned on all language pairs under the same data budget with less than 2.0 points decrease in accuracy. Furthermore, with the same setup, scaling up the number of rich-resource language pairs monotonically improves the performance, reaching a minimum of 0.4 points discrepancy in accuracy, making it less mandatory to collect any low-resource parallel data. Finally, we conclude through empirical results and analyses that the performance of the sentence alignment task depends mostly on the monolingual and parallel data size, up to a certain size threshold, rather than on what language pairs are used for training or evaluation.
4,725
Variational Quantum Compressed Sensing for Joint User and Channel State Acquisition in Grant-Free Device Access Systems
This paper introduces a new quantum computing framework integrated with a two-step compressed sensing technique, applied to a joint channel estimation and user identification problem. We propose a variational quantum circuit (VQC) design as a new denoising solution. For a practical grant-free communications system having correlated device activities, variational quantum parameters for Pauli rotation gates in the proposed VQC system are optimized to facilitate to the non-linear estimation. Numerical results show that the VQC method can outperform modern compressed sensing techniques using an element-wise denoiser.
4,726
Universal characteristics of deep neural network loss surfaces from random matrix theory
This paper considers several aspects of random matrix universality in deep neural networks. Motivated by recent experimental work, we use universal properties of random matrices related to local statistics to derive practical implications for deep neural networks based on a realistic model of their Hessians. In particular we derive universal aspects of outliers in the spectra of deep neural networks and demonstrate the important role of random matrix local laws in popular pre-conditioning gradient descent algorithms. We also present insights into deep neural network loss surfaces from quite general arguments based on tools from statistical physics and random matrix theory.
4,727
AutoQML: Automated Quantum Machine Learning for Wi-Fi Integrated Sensing and Communications
Commercial Wi-Fi devices can be used for integrated sensing and communications (ISAC) to jointly exchange data and monitor indoor environment. In this paper, we investigate a proof-of-concept approach using automated quantum machine learning (AutoQML) framework called AutoAnsatz to recognize human gesture. We address how to efficiently design quantum circuits to configure quantum neural networks (QNN). The effectiveness of AutoQML is validated by an in-house experiment for human pose recognition, achieving state-of-the-art performance greater than 80% accuracy for a limited data size with a significantly small number of trainable parameters.
4,728
Deep Neural Network Classifier for Multi-dimensional Functional Data
We propose a new approach, called as functional deep neural network (FDNN), for classifying multi-dimensional functional data. Specifically, a deep neural network is trained based on the principle components of the training data which shall be used to predict the class label of a future data function. Unlike the popular functional discriminant analysis approaches which rely on Gaussian assumption, the proposed FDNN approach applies to general non-Gaussian multi-dimensional functional data. Moreover, when the log density ratio possesses a locally connected functional modular structure, we show that FDNN achieves minimax optimality. The superiority of our approach is demonstrated through both simulated and real-world datasets.
4,729
Quantum Transfer Learning for Wi-Fi Sensing
Beyond data communications, commercial-off-the-shelf Wi-Fi devices can be used to monitor human activities, track device locomotion, and sense the ambient environment. In particular, spatial beam attributes that are inherently available in the 60-GHz IEEE 802.11ad/ay standards have shown to be effective in terms of overhead and channel measurement granularity for these indoor sensing tasks. In this paper, we investigate transfer learning to mitigate domain shift in human monitoring tasks when Wi-Fi settings and environments change over time. As a proof-of-concept study, we consider quantum neural networks (QNN) as well as classical deep neural networks (DNN) for the future quantum-ready society. The effectiveness of both DNN and QNN is validated by an in-house experiment for human pose recognition, achieving greater than 90% accuracy with a limited data size.
4,730
Mobility, Communication and Computation Aware Federated Learning for Internet of Vehicles
While privacy concerns entice connected and automated vehicles to incorporate on-board federated learning (FL) solutions, an integrated vehicle-to-everything communication with heterogeneous computation power aware learning platform is urgently necessary to make it a reality. Motivated by this, we propose a novel mobility, communication and computation aware online FL platform that uses on-road vehicles as learning agents. Thanks to the advanced features of modern vehicles, the on-board sensors can collect data as vehicles travel along their trajectories, while the on-board processors can train machine learning models using the collected data. To take the high mobility of vehicles into account, we consider the delay as a learning parameter and restrict it to be less than a tolerable threshold. To satisfy this threshold, the central server accepts partially trained models, the distributed roadside units (a) perform downlink multicast beamforming to minimize global model distribution delay and (b) allocate optimal uplink radio resources to minimize local model offloading delay, and the vehicle agents conduct heterogeneous local model training. Using real-world vehicle trace datasets, we validate our FL solutions. Simulation shows that the proposed integrated FL platform is robust and outperforms baseline models. With reasonable local training episodes, it can effectively satisfy all constraints and deliver near ground truth multi-horizon velocity and vehicle-specific power predictions.
4,731
Hierarchical Distribution-Aware Testing of Deep Learning
With its growing use in safety/security-critical applications, Deep Learning (DL) has raised increasing concerns regarding its dependability. In particular, DL has a notorious problem of lacking robustness. Despite recent efforts made in detecting Adversarial Examples (AEs) via state-of-the-art attacking and testing methods, they are normally input distribution agnostic and/or disregard the perception quality of AEs. Consequently, the detected AEs are irrelevant inputs in the application context or unnatural/unrealistic that can be easily noticed by humans. This may lead to a limited effect on improving the DL model's dependability, as the testing budget is likely to be wasted on detecting AEs that are encountered very rarely in its real-life operations. In this paper, we propose a new robustness testing approach for detecting AEs that considers both the input distribution and the perceptual quality of inputs. The two considerations are encoded by a novel hierarchical mechanism. First, at the feature level, the input data distribution is extracted and approximated by data compression techniques and probability density estimators. Such quantified feature level distribution, together with indicators that are highly correlated with local robustness, are considered in selecting test seeds. Given a test seed, we then develop a two-step genetic algorithm for local test case generation at the pixel level, in which two fitness functions work alternatively to control the quality of detected AEs. Finally, extensive experiments confirm that our holistic approach considering hierarchical distributions at feature and pixel levels is superior to state-of-the-arts that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms of not only the quality of detected AEs but also improving the overall robustness of the DL model under testing.
4,732
The Power of Reuse: A Multi-Scale Transformer Model for Structural Dynamic Segmentation in Symbolic Music Generation
Symbolic Music Generation relies on the contextual representation capabilities of the generative model, where the most prevalent approach is the Transformer-based model. Not only that, the learning of long-term context is also related to the dynamic segmentation of musical structures, i.e. intro, verse and chorus, which is currently overlooked by the research community. In this paper, we propose a multi-scale Transformer, which uses coarse-decoder and fine-decoders to model the contexts at the global and section-level, respectively. Concretely, we designed a Fragment Scope Localization layer to syncopate the music into sections, which were later used to pre-train fine-decoders. After that, we designed a Music Style Normalization layer to transfer the style information from the original sections to the generated sections to achieve consistency in music style. The generated sections are combined in the aggregation layer and fine-tuned by the coarse decoder. Our model is evaluated on two open MIDI datasets, and experiments show that our model outperforms the best contemporary symbolic music generative models. More excitingly, visual evaluation shows that our model is superior in melody reuse, resulting in more realistic music.
4,733
Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging
The curation of large-scale medical datasets from multiple institutions necessary for training deep learning models is challenged by the difficulty in sharing patient data with privacy-preserving. Federated learning (FL), a paradigm that enables privacy-protected collaborative learning among different institutions, is a promising solution to this challenge. However, FL generally suffers from performance deterioration due to heterogeneous data distributions across institutions and the lack of quality labeled data. In this paper, we present a robust and label-efficient self-supervised FL framework for medical image analysis. Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline (i.e., pre-training the models directly on the decentralized target task datasets). Built upon the recent success of Vision Transformers, we employ masked image encoding tasks for self-supervised pre-training, to facilitate more effective knowledge transfer to downstream federated models. Extensive empirical results on simulated and real-world medical imaging federated datasets show that self-supervised pre-training largely benefits the robustness of federated models against various degrees of data heterogeneity. Notably, under severe data heterogeneity, our method, without relying on any additional pre-training data, achieves an improvement of 5.06%, 1.53% and 4.58% in test accuracy on retinal, dermatology and chest X-ray classification compared with the supervised baseline with ImageNet pre-training. Moreover, we show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios, surpassing the supervised baseline by 10.36% and the semi-supervised FL method by 8.3% in test accuracy.
4,734
Strategizing against Learners in Bayesian Games
We study repeated two-player games where one of the players, the learner, employs a no-regret learning strategy, while the other, the optimizer, is a rational utility maximizer. We consider general Bayesian games, where the payoffs of both the optimizer and the learner could depend on the type, which is drawn from a publicly known distribution, but revealed privately to the learner. We address the following questions: (a) what is the bare minimum that the optimizer can guarantee to obtain regardless of the no-regret learning algorithm employed by the learner? (b) are there learning algorithms that cap the optimizer payoff at this minimum? (c) can these algorithms be implemented efficiently? While building this theory of optimizer-learner interactions, we define a new combinatorial notion of regret called polytope swap regret, that could be of independent interest in other settings.
4,735
Learning Quantum Entanglement Distillation with Noisy Classical Communications
Quantum networking relies on the management and exploitation of entanglement. Practical sources of entangled qubits are imperfect, producing mixed quantum state with reduced fidelity with respect to ideal Bell pairs. Therefore, an important primitive for quantum networking is entanglement distillation, whose goal is to enhance the fidelity of entangled qubits through local operations and classical communication (LOCC). Existing distillation protocols assume the availability of ideal, noiseless, communication channels. In this paper, we study the case in which communication takes place over noisy binary symmetric channels. We propose to implement local processing through parameterized quantum circuits (PQCs) that are optimized to maximize the average fidelity, while accounting for communication errors. The introduced approach, Noise Aware-LOCCNet (NA-LOCCNet), is shown to have significant advantages over existing protocols designed for noiseless communications.
4,736
Disentangling Visual Embeddings for Attributes and Objects
We study the problem of compositional zero-shot learning for object-attribute recognition. Prior works use visual features extracted with a backbone network, pre-trained for object classification and thus do not capture the subtly distinct features associated with attributes. To overcome this challenge, these studies employ supervision from the linguistic space, and use pre-trained word embeddings to better separate and compose attribute-object pairs for recognition. Analogous to linguistic embedding space, which already has unique and agnostic embeddings for object and attribute, we shift the focus back to the visual space and propose a novel architecture that can disentangle attribute and object features in the visual space. We use visual decomposed features to hallucinate embeddings that are representative for the seen and novel compositions to better regularize the learning of our model. Extensive experiments show that our method outperforms existing work with significant margin on three datasets: MIT-States, UT-Zappos, and a new benchmark created based on VAW. The code, models, and dataset splits are publicly available at https://github.com/nirat1606/OADis.
4,737
High-resolution landscape-scale biomass mapping using a spatiotemporal patchwork of LiDAR coverages
Estimating forest aboveground biomass at fine spatial scales has become increasingly important for greenhouse gas estimation, monitoring, and verification efforts to mitigate climate change. Airborne LiDAR continues to be a valuable source of remote sensing data for estimating aboveground biomass. However airborne LiDAR collections may take place at local or regional scales covering irregular, non-contiguous footprints, resulting in a 'patchwork' of different landscape segments at different points in time. Here we addressed common obstacles including selection of training data, the investigation of regional or coverage specific patterns in bias and error, and map agreement, and model-based precision assessments at multiple scales. Three machine learning algorithms and an ensemble model were trained using field inventory data (FIA), airborne LiDAR, and topographic, climatic and cadastral geodata. Using strict selection criteria, 801 FIA plots were selected with co-located point clouds drawn from a patchwork of 17 leaf-off LiDAR coverages 2014-2019). Our ensemble model created 30m AGB prediction surfaces within a predictor-defined area of applicability (98% of LiDAR coverage) and resulting AGB predictions were compared with FIA plot-level and areal estimates at multiple scales of aggregation. Our model was overall accurate (% RMSE 13-33%), had very low bias (MBE $\leq$ $\pm$5 Mg ha$^{-1}$), explained most field-observed variation (R$^2$ 0.74-0.93), produced estimates that were both largely consistent with FIA's aggregate summaries (86% of estimates within 95% CI), as well as precise when aggregated to arbitrary small-areas (mean bootstrap standard error 0.37 Mg ha$^{-1}$). We share practical solutions to challenges faced when using spatiotemporal patchworks of LiDAR to meet growing needs for biomass prediction and mapping, and applications in carbon accounting and ecosystem stewardship.
4,738
High-dimensional additive Gaussian processes under monotonicity constraints
We introduce an additive Gaussian process framework accounting for monotonicity constraints and scalable to high dimensions. Our contributions are threefold. First, we show that our framework enables to satisfy the constraints everywhere in the input space. We also show that more general componentwise linear inequality constraints can be handled similarly, such as componentwise convexity. Second, we propose the additive MaxMod algorithm for sequential dimension reduction. By sequentially maximizing a squared-norm criterion, MaxMod identifies the active input dimensions and refines the most important ones. This criterion can be computed explicitly at a linear cost. Finally, we provide open-source codes for our full framework. We demonstrate the performance and scalability of the methodology in several synthetic examples with hundreds of dimensions under monotonicity constraints as well as on a real-world flood application.
4,739
Supervised Learning for Coverage-Directed Test Selection in Simulation-Based Verification
Constrained random test generation is one of the most widely adopted methods for generating stimuli for simulation-based verification. Randomness leads to test diversity, but tests tend to repeatedly exercise the same design logic. Constraints are written (typically manually) to bias random tests towards interesting, hard-to-reach, and yet-untested logic. However, as verification progresses, most constrained random tests yield little to no effect on functional coverage. If stimuli generation consumes significantly less resources than simulation, then a better approach involves randomly generating a large number of tests, selecting the most effective subset, and only simulating that subset. In this paper, we introduce a novel method for automatic constraint extraction and test selection. This method, which we call coverage-directed test selection, is based on supervised learning from coverage feedback. Our method biases selection towards tests that have a high probability of increasing functional coverage, and prioritises them for simulation. We show how coverage-directed test selection can reduce manual constraint writing, prioritise effective tests, reduce verification resource consumption, and accelerate coverage closure on a large, real-life industrial hardware design.
4,740
Do Neural Networks Compress Manifolds Optimally?
Artificial Neural-Network-based (ANN-based) lossy compressors have recently obtained striking results on several sources. Their success may be ascribed to an ability to identify the structure of low-dimensional manifolds in high-dimensional ambient spaces. Indeed, prior work has shown that ANN-based compressors can achieve the optimal entropy-distortion curve for some such sources. In contrast, we determine the optimal entropy-distortion tradeoffs for two low-dimensional manifolds with circular structure and show that state-of-the-art ANN-based compressors fail to optimally compress the sources, especially at high rates.
4,741
Recovering Private Text in Federated Learning of Language Models
Federated learning allows distributed users to collaboratively train a model while keeping each user's data private. Recently, a growing body of work has demonstrated that an eavesdropping attacker can effectively recover image data from gradients transmitted during federated learning. However, little progress has been made in recovering text data. In this paper, we present a novel attack method FILM for federated learning of language models -- for the first time, we show the feasibility of recovering text from large batch sizes of up to 128 sentences. Different from image-recovery methods which are optimized to match gradients, we take a distinct approach that first identifies a set of words from gradients and then directly reconstructs sentences based on beam search and a prior-based reordering strategy. The key insight of our attack is to leverage either prior knowledge in pre-trained language models or memorization during training. Despite its simplicity, we demonstrate that FILM can work well with several large-scale datasets -- it can extract single sentences with high fidelity even for large batch sizes and recover multiple sentences from the batch successfully if the attack is applied iteratively. We hope our results can motivate future work in developing stronger attacks as well as new defense methods for training language models in federated learning. Our code is publicly available at https://github.com/Princeton-SysML/FILM.
4,742
Experimentally realized in situ backpropagation for deep learning in nanophotonic neural networks
Neural networks are widely deployed models across many scientific disciplines and commercial endeavors ranging from edge computing and sensing to large-scale signal processing in data centers. The most efficient and well-entrenched method to train such networks is backpropagation, or reverse-mode automatic differentiation. To counter an exponentially increasing energy budget in the artificial intelligence sector, there has been recent interest in analog implementations of neural networks, specifically nanophotonic neural networks for which no analog backpropagation demonstration exists. We design mass-manufacturable silicon photonic neural networks that alternately cascade our custom designed "photonic mesh" accelerator with digitally implemented nonlinearities. These reconfigurable photonic meshes program computationally intensive arbitrary matrix multiplication by setting physical voltages that tune the interference of optically encoded input data propagating through integrated Mach-Zehnder interferometer networks. Here, using our packaged photonic chip, we demonstrate in situ backpropagation for the first time to solve classification tasks and evaluate a new protocol to keep the entire gradient measurement and update of physical device voltages in the analog domain, improving on past theoretical proposals. Our method is made possible by introducing three changes to typical photonic meshes: (1) measurements at optical "grating tap" monitors, (2) bidirectional optical signal propagation automated by fiber switch, and (3) universal generation and readout of optical amplitude and phase. After training, our classification achieves accuracies similar to digital equivalents even in presence of systematic error. Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
4,743
An Evaluation Framework for Legal Document Summarization
A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github.
4,744
Application of Graph Based Features in Computer Aided Diagnosis for Histopathological Image Classification of Gastric Cancer
The gold standard for gastric cancer detection is gastric histopathological image analysis, but there are certain drawbacks in the existing histopathological detection and diagnosis. In this paper, based on the study of computer aided diagnosis system, graph based features are applied to gastric cancer histopathology microscopic image analysis, and a classifier is used to classify gastric cancer cells from benign cells. Firstly, image segmentation is performed, and after finding the region, cell nuclei are extracted using the k-means method, the minimum spanning tree (MST) is drawn, and graph based features of the MST are extracted. The graph based features are then put into the classifier for classification. In this study, different segmentation methods are compared in the tissue segmentation stage, among which are Level-Set, Otsu thresholding, watershed, SegNet, U-Net and Trans-U-Net segmentation; Graph based features, Red, Green, Blue features, Grey-Level Co-occurrence Matrix features, Histograms of Oriented Gradient features and Local Binary Patterns features are compared in the feature extraction stage; Radial Basis Function (RBF) Support Vector Machine (SVM), Linear SVM, Artificial Neural Network, Random Forests, k-NearestNeighbor, VGG16, and Inception-V3 are compared in the classifier stage. It is found that using U-Net to segment tissue areas, then extracting graph based features, and finally using RBF SVM classifier gives the optimal results with 94.29%.
4,745
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
4,746
Dynamic Recognition of Speakers for Consent Management by Contrastive Embedding Replay
Voice assistants record sound and can overhear conversations. Thus, a consent management mechanism is desirable such that users can express their wish to be recorded or not. Consent management can be implemented using speaker recognition; users that do not give consent enrol their voice and all further recordings of these users is subsequently not processed. Building speaker recognition based consent management is challenging due to the dynamic nature of the problem, required scalability for large number of speakers, and need for fast speaker recognition with high accuracy. This paper describes a speaker recognition based consent management system addressing the aforementioned challenges. A fully supervised batch contrastive learning is applied to learn the underlying speaker equivariance inductive bias during the training on the set of speakers noting recording dissent. Speakers that do not provide consent are grouped in buckets which are trained continuously. The embeddings are contrastively learned for speakers in their buckets during training and act later as a replay buffer for classification. The buckets are progressively registered during training and a novel multi-strided random sampling of the contrastive embedding replay buffer is proposed. Buckets are contrastively trained for a few steps only in each iteration and replayed for classification progressively leading to fast convergence. An algorithm for fast and dynamic registration and removal of speakers in buckets is described. The evaluation results show that the proposed approach provides the desired fast and dynamic solution for consent management and outperforms existing approaches in terms of convergence speed and adaptive capabilities as well as verification performance during inference.
4,747
Utterance Weighted Multi-Dilation Temporal Convolutional Networks for Monaural Speech Dereverberation
Speech dereverberation is an important stage in many speech technology applications. Recent work in this area has been dominated by deep neural network models. Temporal convolutional networks (TCNs) are deep learning models that have been proposed for sequence modelling in the task of dereverberating speech. In this work a weighted multi-dilation depthwise-separable convolution is proposed to replace standard depthwise-separable convolutions in TCN models. This proposed convolution enables the TCN to dynamically focus on more or less local information in its receptive field at each convolutional block in the network. It is shown that this weighted multi-dilation temporal convolutional network (WD-TCN) consistently outperforms the TCN across various model configurations and using the WD-TCN model is a more parameter efficient method to improve the performance of the model than increasing the number of convolutional blocks. The best performance improvement over the baseline TCN is 0.55 dB scale-invariant signal-to-distortion ratio (SISDR) and the best performing WD-TCN model attains 12.26 dB SISDR on the WHAMR dataset.
4,748
A Psychological Theory of Explainability
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
4,749
On the Privacy of Decentralized Machine Learning
In this work, we carry out the first, in-depth, privacy analysis of Decentralized Learning -- a collaborative machine learning framework aimed at circumventing the main limitations of federated learning. We identify the decentralized learning properties that affect users' privacy and we introduce a suite of novel attacks for both passive and active decentralized adversaries. We demonstrate that, contrary to what is claimed by decentralized learning proposers, decentralized learning does not offer any security advantages over more practical approaches such as federated learning. Rather, it tends to degrade users' privacy by increasing the attack surface and enabling any user in the system to perform powerful privacy attacks such as gradient inversion, and even gain full control over honest users' local model. We also reveal that, given the state of the art in protections, privacy-preserving configurations of decentralized learning require abandoning any possible advantage over the federated setup, completely defeating the objective of the decentralized approach.
4,750
Conditional Visual Servoing for Multi-Step Tasks
Visual Servoing has been effectively used to move a robot into specific target locations or to track a recorded demonstration. It does not require manual programming, but it is typically limited to settings where one demonstration maps to one environment state. We propose a modular approach to extend visual servoing to scenarios with multiple demonstration sequences. We call this conditional servoing, as we choose the next demonstration conditioned on the observation of the robot. This method presents an appealing strategy to tackle multi-step problems, as individual demonstrations can be combined flexibly into a control policy. We propose different selection functions and compare them on a shape-sorting task in simulation. With the reprojection error yielding the best overall results, we implement this selection function on a real robot and show the efficacy of the proposed conditional servoing. For videos of our experiments, please check out our project page: https://lmb.informatik.uni-freiburg.de/projects/conditional_servoing/
4,751
DNNR: Differential Nearest Neighbors Regression
K-nearest neighbors (KNN) is one of the earliest and most established algorithms in machine learning. For regression tasks, KNN averages the targets within a neighborhood which poses a number of challenges: the neighborhood definition is crucial for the predictive performance as neighbors might be selected based on uninformative features, and averaging does not account for how the function changes locally. We propose a novel method called Differential Nearest Neighbors Regression (DNNR) that addresses both issues simultaneously: during training, DNNR estimates local gradients to scale the features; during inference, it performs an n-th order Taylor approximation using estimated gradients. In a large-scale evaluation on over 250 datasets, we find that DNNR performs comparably to state-of-the-art gradient boosting methods and MLPs while maintaining the simplicity and transparency of KNN. This allows us to derive theoretical error bounds and inspect failures. In times that call for transparency of ML models, DNNR provides a good balance between performance and interpretability.
4,752
Function Regression using Spiking DeepONet
One of the main broad applications of deep learning is function regression. However, despite their demonstrated accuracy and robustness, modern neural network architectures require heavy computational resources to train. One method to mitigate or even resolve this inefficiency has been to draw further inspiration from the brain and reformulate the learning process in a more biologically-plausible way, developing what are known as Spiking Neural Networks (SNNs), which have been gaining traction in recent years. In this paper we present an SNN-based method to perform regression, which has been a challenge due to the inherent difficulty in representing a function's input domain and continuous output values as spikes. We use a DeepONet - neural network designed to learn operators - to learn the behavior of spikes. Then, we use this approach to do function regression. We propose several methods to use a DeepONet in the spiking framework, and present accuracy and training time for different benchmarks.
4,753
Can You Still See Me?: Reconstructing Robot Operations Over End-to-End Encrypted Channels
Connected robots play a key role in Industry 4.0, providing automation and higher efficiency for many industrial workflows. Unfortunately, these robots can leak sensitive information regarding these operational workflows to remote adversaries. While there exists mandates for the use of end-to-end encryption for data transmission in such settings, it is entirely possible for passive adversaries to fingerprint and reconstruct entire workflows being carried out -- establishing an understanding of how facilities operate. In this paper, we investigate whether a remote attacker can accurately fingerprint robot movements and ultimately reconstruct operational workflows. Using a neural network approach to traffic analysis, we find that one can predict TLS-encrypted movements with around \textasciitilde60\% accuracy, increasing to near-perfect accuracy under realistic network conditions. Further, we also find that attackers can reconstruct warehousing workflows with similar success. Ultimately, simply adopting best cybersecurity practices is clearly not enough to stop even weak (passive) adversaries.
4,754
How do Variational Autoencoders Learn? Insights from Representational Similarity
The ability of Variational Autoencoders (VAEs) to learn disentangled representations has made them popular for practical applications. However, their behaviour is not yet fully understood. For example, the questions of when they can provide disentangled representations, or suffer from posterior collapse are still areas of active research. Despite this, there are no layerwise comparisons of the representations learned by VAEs, which would further our understanding of these models. In this paper, we thus look into the internal behaviour of VAEs using representational similarity techniques. Specifically, using the CKA and Procrustes similarities, we found that the encoders' representations are learned long before the decoders', and this behaviour is independent of hyperparameters, learning objectives, and datasets. Moreover, the encoders' representations up to the mean and variance layers are similar across hyperparameters and learning objectives.
4,755
Unsupervised Features Ranking via Coalitional Game Theory for Categorical Data
Not all real-world data are labeled, and when labels are not available, it is often costly to obtain them. Moreover, as many algorithms suffer from the curse of dimensionality, reducing the features in the data to a smaller set is often of great utility. Unsupervised feature selection aims to reduce the number of features, often using feature importance scores to quantify the relevancy of single features to the task at hand. These scores can be based only on the distribution of variables and the quantification of their interactions. The previous literature, mainly investigating anomaly detection and clusters, fails to address the redundancy-elimination issue. We propose an evaluation of correlations among features to compute feature importance scores representing the contribution of single features in explaining the dataset's structure. Based on Coalitional Game Theory, our feature importance scores include a notion of redundancy awareness making them a tool to achieve redundancy-free feature selection. We show that the deriving features' selection outperforms competing methods in lowering the redundancy rate while maximizing the information contained in the data. We also introduce an approximated version of the algorithm to reduce the complexity of Shapley values' computations.
4,756
Perturbation of Deep Autoencoder Weights for Model Compression and Classification of Tabular Data
Fully connected deep neural networks (DNN) often include redundant weights leading to overfitting and high memory requirements. Additionally, the performance of DNN is often challenged by traditional machine learning models in tabular data classification. In this paper, we propose periodical perturbations (prune and regrow) of DNN weights, especially at the self-supervised pre-training stage of deep autoencoders. The proposed weight perturbation strategy outperforms dropout learning in four out of six tabular data sets in downstream classification tasks. The L1 or L2 regularization of weights at the same pretraining stage results in inferior classification performance compared to dropout or our weight perturbation routine. Unlike dropout learning, the proposed weight perturbation routine additionally achieves 15% to 40% sparsity across six tabular data sets for the compression of deep pretrained models. Our experiments reveal that a pretrained deep autoencoder with weight perturbation or dropout can outperform traditional machine learning in tabular data classification when fully connected DNN fails miserably. However, traditional machine learning models appear superior to any deep models when a tabular data set contains uncorrelated variables. Therefore, the success of deep models can be attributed to the inevitable presence of correlated variables in real-world data sets.
4,757
A unified framework for dataset shift diagnostics
Most machine learning (ML) methods assume that the data used in the training phase comes from the distribution of the target population. However, in practice one often faces dataset shift, which, if not properly taken into account, may decrease the predictive performance of the ML models. In general, if the practitioner knows which type of shift is taking place - e.g., covariate shift or label shift - they may apply transfer learning methods to obtain better predictions. Unfortunately, current methods for detecting shift are only designed to detect specific types of shift or cannot formally test their presence. We introduce a general framework that gives insights on how to improve prediction methods by detecting the presence of different types of shift and quantifying how strong they are. Our approach can be used for any data type (tabular/image/text) and both for classification and regression tasks. Moreover, it uses formal hypotheses tests that controls false alarms. We illustrate how our framework is useful in practice using both artificial and real datasets. Our package for dataset shift detection can be found in https://github.com/felipemaiapolo/detectshift.
4,758
Finite Element Method-enhanced Neural Network for Forward and Inverse Problems
We introduce a novel hybrid methodology combining classical finite element methods (FEM) with neural networks to create a well-performing and generalizable surrogate model for forward and inverse problems. The residual from finite element methods and custom loss functions from neural networks are merged to form the algorithm. The Finite Element Method-enhanced Neural Network hybrid model (FEM-NN hybrid) is data-efficient and physics conforming. The proposed methodology can be used for surrogate models in real-time simulation, uncertainty quantification, and optimization in the case of forward problems. It can be used for updating the models in the case of inverse problems. The method is demonstrated with examples, and the accuracy of the results and performance is compared against the conventional way of network training and the classical finite element method. An application of the forward-solving algorithm is demonstrated for the uncertainty quantification of wind effects on a high-rise buildings. The inverse algorithm is demonstrated in the speed-dependent bearing coefficient identification of fluid bearings. The hybrid methodology of this kind will serve as a paradigm shift in the simulation methods currently used.
4,759
Global Contentious Politics Database (GLOCON) Annotation Manuals
The database creation utilized automated text processing tools that detect if a news article contains a protest event, locate protest information within the article, and extract pieces of information regarding the detected protest events. The basis of training and testing the automated tools is the GLOCON Gold Standard Corpus (GSC), which contains news articles from multiple sources from each focus country. The articles in the GSC were manually coded by skilled annotators in both classification and extraction tasks with the utmost accuracy and consistency that automated tool development demands. In order to assure these, the annotation manuals in this document lay out the rules according to which annotators code the news articles. Annotators refer to the manuals at all times for all annotation tasks and apply the rules that they contain. The content of the annotation manual is built on the general principles and standards of linguistic annotation laid out in other prominent annotation manuals such as ACE, CAMEO, and TimeML. These principles, however, have been adapted or rather modified heavily to accommodate the social scientific concepts and variables employed in the EMW project. The manual has been molded throughout a long trial and error process that accompanied the annotation of the GSC. It owes much of its current shape to the meticulous work and invaluable feedback provided by highly specialized teams of annotators, whose diligence and expertise greatly increased the quality of the corpus.
4,760
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes. Accurate MD simulations require computationally demanding quantum-mechanical calculations, being practically limited to short timescales and few atoms. For larger systems, efficient, but much less reliable empirical force fields are used. Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations, offering similar accuracy as ab initio methods at orders-of-magnitude speedup. Until now, MLFFs mainly capture short-range interactions in small molecules or periodic materials, due to the increased complexity of constructing models and obtaining reliable reference data for large molecules, where long-ranged many-body effects become important. This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations (GEMS) by training on "bottom-up" and "top-down" molecular fragments of varying size, from which the relevant physicochemical interactions can be learned. GEMS is applied to study the dynamics of alanine-based peptides and the 46-residue protein crambin in aqueous solution, allowing nanosecond-scale MD simulations of >25k atoms at essentially ab initio quality. Our findings suggest that structural motifs in peptides and proteins are more flexible than previously thought, indicating that simulations at ab initio accuracy might be necessary to understand dynamic biomolecular processes such as protein (mis)folding, drug-protein binding, or allosteric regulation.
4,761
Semi-Parametric Contextual Bandits with Graph-Laplacian Regularization
Non-stationarity is ubiquitous in human behavior and addressing it in the contextual bandits is challenging. Several works have addressed the problem by investigating semi-parametric contextual bandits and warned that ignoring non-stationarity could harm performances. Another prevalent human behavior is social interaction which has become available in a form of a social network or graph structure. As a result, graph-based contextual bandits have received much attention. In this paper, we propose "SemiGraphTS," a novel contextual Thompson-sampling algorithm for a graph-based semi-parametric reward model. Our algorithm is the first to be proposed in this setting. We derive an upper bound of the cumulative regret that can be expressed as a multiple of a factor depending on the graph structure and the order for the semi-parametric model without a graph. We evaluate the proposed and existing algorithms via simulation and real data example.
4,762
Measuring Alignment Bias in Neural Seq2Seq Semantic Parsers
Prior to deep learning the semantic parsing community has been interested in understanding and modeling the range of possible word alignments between natural language sentences and their corresponding meaning representations. Sequence-to-sequence models changed the research landscape suggesting that we no longer need to worry about alignments since they can be learned automatically by means of an attention mechanism. More recently, researchers have started to question such premise. In this work we investigate whether seq2seq models can handle both simple and complex alignments. To answer this question we augment the popular Geo semantic parsing dataset with alignment annotations and create Geo-Aligned. We then study the performance of standard seq2seq models on the examples that can be aligned monotonically versus examples that require more complex alignments. Our empirical study shows that performance is significantly better over monotonic alignments.
4,763
KGNN: Distributed Framework for Graph Neural Knowledge Representation
Knowledge representation learning has been commonly adopted to incorporate knowledge graph (KG) into various online services. Although existing knowledge representation learning methods have achieved considerable performance improvement, they ignore high-order structure and abundant attribute information, resulting unsatisfactory performance on semantics-rich KGs. Moreover, they fail to make prediction in an inductive manner and cannot scale to large industrial graphs. To address these issues, we develop a novel framework called KGNN to take full advantage of knowledge data for representation learning in the distributed learning system. KGNN is equipped with GNN based encoder and knowledge aware decoder, which aim to jointly explore high-order structure and attribute information together in a fine-grained fashion and preserve the relation patterns in KGs, respectively. Extensive experiments on three datasets for link prediction and triplet classification task demonstrate the effectiveness and scalability of KGNN framework.
4,764
Adaptive Momentum-Based Policy Gradient with Second-Order Information
The variance reduced gradient estimators for policy gradient methods has been one of the main focus of research in the reinforcement learning in recent years as they allow acceleration of the estimation process. We propose a variance reduced policy gradient method, called SGDHess-PG, which incorporates second-order information into stochastic gradient descent (SGD) using momentum with an adaptive learning rate. SGDHess-PG algorithm can achieve $\epsilon$-approximate first-order stationary point with $\tilde{O}(\epsilon^{-3})$ number of trajectories, while using a batch size of $O(1)$ at each iteration. Unlike most previous work, our proposed algorithm does not require importance sampling techniques which can compromise the advantage of variance reduction process. Our extensive experimental results show the effectiveness of the proposed algorithm on various control tasks and its advantage over the state of the art in practice.
4,765
Monotonicity Regularization: Improved Penalties and Novel Applications to Disentangled Representation Learning and Robust Classification
We study settings where gradient penalties are used alongside risk minimization with the goal of obtaining predictors satisfying different notions of monotonicity. Specifically, we present two sets of contributions. In the first part of the paper, we show that different choices of penalties define the regions of the input space where the property is observed. As such, previous methods result in models that are monotonic only in a small volume of the input space. We thus propose an approach that uses mixtures of training instances and random points to populate the space and enforce the penalty in a much larger region. As a second set of contributions, we introduce regularization strategies that enforce other notions of monotonicity in different settings. In this case, we consider applications, such as image classification and generative modeling, where monotonicity is not a hard constraint but can help improve some aspects of the model. Namely, we show that inducing monotonicity can be beneficial in applications such as: (1) allowing for controllable data generation, (2) defining strategies to detect anomalous data, and (3) generating explanations for predictions. Our proposed approaches do not introduce relevant computational overhead while leading to efficient procedures that provide extra benefits over baseline models.
4,766
IIsy: Practical In-Network Classification
The rat race between user-generated data and data-processing systems is currently won by data. The increased use of machine learning leads to further increase in processing requirements, while data volume keeps growing. To win the race, machine learning needs to be applied to the data as it goes through the network. In-network classification of data can reduce the load on servers, reduce response time and increase scalability. In this paper, we introduce IIsy, implementing machine learning classification models in a hybrid fashion using off-the-shelf network devices. IIsy targets three main challenges of in-network classification: (i) mapping classification models to network devices (ii) extracting the required features and (iii) addressing resource and functionality constraints. IIsy supports a range of traditional and ensemble machine learning models, scaling independently of the number of stages in a switch pipeline. Moreover, we demonstrate the use of IIsy for hybrid classification, where a small model is implemented on a switch and a large model at the backend, achieving near optimal classification results, while significantly reducing latency and load on the servers.
4,767
Delaytron: Efficient Learning of Multiclass Classifiers with Delayed Bandit Feedbacks
In this paper, we present online algorithm called {\it Delaytron} for learning multi class classifiers using delayed bandit feedbacks. The sequence of feedback delays $\{d_t\}_{t=1}^T$ is unknown to the algorithm. At the $t$-th round, the algorithm observes an example $\mathbf{x}_t$ and predicts a label $\tilde{y}_t$ and receives the bandit feedback $\mathbb{I}[\tilde{y}_t=y_t]$ only $d_t$ rounds later. When $t+d_t>T$, we consider that the feedback for the $t$-th round is missing. We show that the proposed algorithm achieves regret of $\mathcal{O}\left(\sqrt{\frac{2 K}{\gamma}\left[\frac{T}{2}+\left(2+\frac{L^2}{R^2\Vert \W\Vert_F^2}\right)\sum_{t=1}^Td_t\right]}\right)$ when the loss for each missing sample is upper bounded by $L$. In the case when the loss for missing samples is not upper bounded, the regret achieved by Delaytron is $\mathcal{O}\left(\sqrt{\frac{2 K}{\gamma}\left[\frac{T}{2}+2\sum_{t=1}^Td_t+\vert \mathcal{M}\vert T\right]}\right)$ where $\mathcal{M}$ is the set of missing samples in $T$ rounds. These bounds were achieved with a constant step size which requires the knowledge of $T$ and $\sum_{t=1}^Td_t$. For the case when $T$ and $\sum_{t=1}^Td_t$ are unknown, we use a doubling trick for online learning and proposed Adaptive Delaytron. We show that Adaptive Delaytron achieves a regret bound of $\mathcal{O}\left(\sqrt{T+\sum_{t=1}^Td_t}\right)$. We show the effectiveness of our approach by experimenting on various datasets and comparing with state-of-the-art approaches.
4,768
Hyper-Learning for Gradient-Based Batch Size Adaptation
Scheduling the batch size to increase is an effective strategy to control gradient noise when training deep neural networks. Current approaches implement scheduling heuristics that neglect structure within the optimization procedure, limiting their flexibility to the training dynamics and capacity to discern the impact of their adaptations on generalization. We introduce Arbiter as a new hyperparameter optimization algorithm to perform batch size adaptations for learnable scheduling heuristics using gradients from a meta-objective function, which overcomes previous heuristic constraints by enforcing a novel learning process called hyper-learning. With hyper-learning, Arbiter formulates a neural network agent to generate optimal batch size samples for an inner deep network by learning an adaptive heuristic through observing concomitant responses over T inner descent steps. Arbiter avoids unrolled optimization, and does not require hypernetworks to facilitate gradients, making it reasonably cheap, simple to implement, and versatile to different tasks. We demonstrate Arbiter's effectiveness in several illustrative experiments: to act as a stand-alone batch size scheduler; to complement fixed batch size schedules with greater flexibility; and to promote variance reduction during stochastic meta-optimization of the learning rate.
4,769
ROP inception: signal estimation with quadratic random sketching
Rank-one projections (ROP) of matrices and quadratic random sketching of signals support several data processing and machine learning methods, as well as recent imaging applications, such as phase retrieval or optical processing units. In this paper, we demonstrate how signal estimation can be operated directly through such quadratic sketches--equivalent to the ROPs of the "lifted signal" obtained as its outer product with itself--without explicitly reconstructing that signal. Our analysis relies on showing that, up to a minor debiasing trick, the ROP measurement operator satisfies a generalised sign product embedding (SPE) property. In a nutshell, the SPE shows that the scalar product of a signal sketch with the "sign" of the sketch of a given pattern approximates the square of the projection of that signal on this pattern. This thus amounts to an insertion (an "inception") of a ROP model inside a ROP sketch. The effectiveness of our approach is evaluated in several synthetic experiments.
4,770
Attention-aware contrastive learning for predicting T cell receptor-antigen binding specificity
It has been verified that only a small fraction of the neoantigens presented by MHC class I molecules on the cell surface can elicit T cells. The limitation can be attributed to the binding specificity of T cell receptor (TCR) to peptide-MHC complex (pMHC). Computational prediction of T cell binding to neoantigens is an challenging and unresolved task. In this paper, we propose an attentive-mask contrastive learning model, ATMTCR, for inferring TCR-antigen binding specificity. For each input TCR sequence, we used Transformer encoder to transform it to latent representation, and then masked a proportion of residues guided by attention weights to generate its contrastive view. Pretraining on large-scale TCR CDR3 sequences, we verified that contrastive learning significantly improved the prediction performance of TCR binding to peptide-MHC complex (pMHC). Beyond the detection of important amino acids and their locations in the TCR sequence, our model can also extracted high-order semantic information underlying the TCR-antigen binding specificity. Comparison experiments were conducted on two independent datasets, our method achieved better performance than other existing algorithms. Moreover, we effectively identified important amino acids and their positional preferences through attention weights, which indicated the interpretability of our proposed model.
4,771
Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.
4,772
blob loss: instance imbalance aware loss functions for semantic segmentation
Deep convolutional neural networks have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Sorensen Dice coefficient. By design, DSC can tackle class imbalance; however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory Sorensen Dice coefficient. Nevertheless, missing out on instances will lead to poor detection performance. This represents a critical issue in applications such as disease progression monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, nicknamed blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems in which the instances are the connected components within a class. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5 percent improvement for MS lesions, 3 percent improvement for liver tumor, and an average 2 percent improvement for Microscopy segmentation tasks considering F1 score.
4,773
Is explainable AI a race against model complexity?
Explaining the behaviour of intelligent systems will get increasingly and perhaps intractably challenging as models grow in size and complexity. We may not be able to expect an explanation for every prediction made by a brain-scale model, nor can we expect explanations to remain objective or apolitical. Our functionalist understanding of these models is of less advantage than we might assume. Models precede explanations, and can be useful even when both model and explanation are incorrect. Explainability may never win the race against complexity, but this is less problematic than it seems.
4,774
Dark Solitons in Bose-Einstein Condensates: A Dataset for Many-body Physics Research
We establish a dataset of over $1.6\times10^4$ experimental images of Bose-Einstein condensates containing solitonic excitations to enable machine learning (ML) for many-body physics research. About 33 % of this dataset has manually assigned and carefully curated labels. The remainder is automatically labeled using SolDet -- an implementation of a physics-informed ML data analysis framework -- consisting of a convolutional-neural-network-based classifier and object detector as well as a statistically motivated physics-informed classifier and a quality metric. This technical note constitutes the definitive reference of the dataset, providing an opportunity for the data science community to develop more sophisticated analysis tools, to further understand nonlinear many-body physics, and even advance cold atom experiments.
4,775
An Application of Scenario Exploration to Find New Scenarios for the Development and Testing of Automated Driving Systems in Urban Scenarios
Verification and validation are major challenges for developing automated driving systems. A concept that gets more and more recognized for testing in automated driving is scenario-based testing. However, it introduces the problem of what scenarios are relevant for testing and which are not. This work aims to find relevant, interesting, or critical parameter sets within logical scenarios by utilizing Bayes optimization and Gaussian processes. The parameter optimization is done by comparing and evaluating six different metrics in two urban intersection scenarios. Finally, a list of ideas this work leads to and should be investigated further is presented.
4,776
Sharp asymptotics on the compression of two-layer neural networks
In this paper, we study the compression of a target two-layer neural network with N nodes into a compressed network with M < N nodes. More precisely, we consider the setting in which the weights of the target network are i.i.d. sub-Gaussian, and we minimize the population L2 loss between the outputs of the target and of the compressed network, under the assumption of Gaussian inputs. By using tools from high-dimensional probability, we show that this non-convex problem can be simplified when the target network is sufficiently over-parameterized, and provide the error rate of this approximation as a function of the input dimension and N . For a ReLU activation function, we conjecture that the optimum of the simplified optimization problem is achieved by taking weights on the Equiangular Tight Frame (ETF), while the scaling of the weights and the orientation of the ETF depend on the parameters of the target network. Numerical evidence is provided to support this conjecture.
4,777
User Localization using RF Sensing: A Performance comparison between LIS and mmWave Radars
Since electromagnetic signals are omnipresent, Radio Frequency (RF)-sensing has the potential to become a universal sensing mechanism with applications in localization, smart-home, retail, gesture recognition, intrusion detection, etc. Two emerging technologies in RF-sensing, namely sensing through Large Intelligent Surfaces (LISs) and mmWave Frequency-Modulated Continuous-Wave (FMCW) radars, have been successfully applied to a wide range of applications. In this work, we compare LIS and mmWave radars for localization in real-world and simulated environments. In our experiments, the mmWave radar achieves 0.71 Intersection Over Union (IOU) and 3cm error for bounding boxes, while LIS has 0.56 IOU and 10cm distance error. Although the radar outperforms the LIS in terms of accuracy, LIS features additional applications in communication in addition to sensing scenarios.
4,778
Moral reinforcement learning using actual causation
Reinforcement learning systems will to a greater and greater extent make decisions that significantly impact the well-being of humans, and it is therefore essential that these systems make decisions that conform to our expectations of morally good behavior. The morally good is often defined in causal terms, as in whether one's actions have in fact caused a particular outcome, and whether the outcome could have been anticipated. We propose an online reinforcement learning method that learns a policy under the constraint that the agent should not be the cause of harm. This is accomplished by defining cause using the theory of actual causation and assigning blame to the agent when its actions are the actual cause of an undesirable outcome. We conduct experiments on a toy ethical dilemma in which a natural choice of reward function leads to clearly undesirable behavior, but our method learns a policy that avoids being the cause of harmful behavior, demonstrating the soundness of our approach. Allowing an agent to learn while observing causal moral distinctions such as blame, opens the possibility to learning policies that better conform to our moral judgments.
4,779
Automatic Acquisition of a Repertoire of Diverse Grasping Trajectories through Behavior Shaping and Novelty Search
Grasping a particular object may require a dedicated grasping movement that may also be specific to the robot end-effector. No generic and autonomous method does exist to generate these movements without making hypotheses on the robot or on the object. Learning methods could help to autonomously discover relevant grasping movements, but they face an important issue: grasping movements are so rare that a learning method based on exploration has little chance to ever observe an interesting movement, thus creating a bootstrap issue. We introduce an approach to generate diverse grasping movements in order to solve this problem. The movements are generated in simulation, for particular object positions. We test it on several simulated robots: Baxter, Pepper and a Kuka Iiwa arm. Although we show that generated movements actually work on a real Baxter robot, the aim is to use this method to create a large dataset to bootstrap deep learning methods.
4,780
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
This article studies the infinite-width limit of deep feedforward neural networks whose weights are dependent, and modelled via a mixture of Gaussian distributions. Each hidden node of the network is assigned a nonnegative random variable that controls the variance of the outgoing weights of that node. We make minimal assumptions on these per-node random variables: they are iid and their sum, in each layer, converges to some finite random variable in the infinite-width limit. Under this model, we show that each layer of the infinite-width neural network can be characterised by two simple quantities: a non-negative scalar parameter and a L\'evy measure on the positive reals. If the scalar parameters are strictly positive and the L\'evy measures are trivial at all hidden layers, then one recovers the classical Gaussian process (GP) limit, obtained with iid Gaussian weights. More interestingly, if the L\'evy measure of at least one layer is non-trivial, we obtain a mixture of Gaussian processes (MoGP) in the large-width limit. The behaviour of the neural network in this regime is very different from the GP regime. One obtains correlated outputs, with non-Gaussian distributions, possibly with heavy tails. Additionally, we show that, in this regime, the weights are compressible, and feature learning is possible. Many sparsity-promoting neural network models can be recast as special cases of our approach, and we discuss their infinite-width limits; we also present an asymptotic analysis of the pruning error. We illustrate some of the benefits of the MoGP regime over the GP regime in terms of representation learning and compressibility on simulated, MNIST and Fashion MNIST datasets.
4,781
SKILL: Structured Knowledge Infusion for Large Language Models
Large language models (LLMs) have demonstrated human-level performance on a vast spectrum of natural language tasks. However, it is largely unexplored whether they can better internalize knowledge from a structured data, such as a knowledge graph, or from text. In this work, we propose a method to infuse structured knowledge into LLMs, by directly training T5 models on factual triples of knowledge graphs (KGs). We show that models pre-trained on Wikidata KG with our method outperform the T5 baselines on FreebaseQA and WikiHop, as well as the Wikidata-answerable subset of TriviaQA and NaturalQuestions. The models pre-trained on factual triples compare competitively with the ones on natural language sentences that contain the same knowledge. Trained on a smaller size KG, WikiMovies, we saw 3x improvement of exact match score on MetaQA task compared to T5 baseline. The proposed method has an advantage that no alignment between the knowledge graph and text corpus is required in curating training data. This makes our method particularly useful when working with industry-scale knowledge graphs.
4,782
SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation
We propose the SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation learning framework. Unlike previous works on speech representation learning, which learns multilingual contextual speech embedding at the resolution of an acoustic frame (10-20ms), this work focuses on learning multimodal (speech-text) multilingual speech embedding at the resolution of a sentence (5-10s) such that the embedding vector space is semantically aligned across different languages. We combine state-of-the-art multilingual acoustic frame-level speech representation learning model XLS-R with the Language Agnostic BERT Sentence Embedding (LaBSE) model to create an utterance-level multimodal multilingual speech encoder SAMU-XLSR. Although we train SAMU-XLSR with only multilingual transcribed speech data, cross-lingual speech-text and speech-speech associations emerge in its learned representation space. To substantiate our claims, we use SAMU-XLSR speech encoder in combination with a pre-trained LaBSE text sentence encoder for cross-lingual speech-to-text translation retrieval, and SAMU-XLSR alone for cross-lingual speech-to-speech translation retrieval. We highlight these applications by performing several cross-lingual text and speech translation retrieval tasks across several datasets.
4,783
Active learning of causal probability trees
The past two decades have seen a growing interest in combining causal information, commonly represented using causal graphs, with machine learning models. Probability trees provide a simple yet powerful alternative representation of causal information. They enable both computation of intervention and counterfactuals, and are strictly more general, since they allow context-dependent causal dependencies. Here we present a Bayesian method for learning probability trees from a combination of interventional and observational data. The method quantifies the expected information gain from an intervention, and selects the interventions with the largest gain. We demonstrate the efficiency of the method on simulated and real data. An effective method for learning probability trees on a limited interventional budget will greatly expand their applicability.
4,784
On the Convergence of Policy in Unregularized Policy Mirror Descent
In this short note, we give the convergence analysis of the policy in the recent famous policy mirror descent (PMD). We mainly consider the unregularized setting following [11] with generalized Bregman divergence. The difference is that we directly give the convergence rates of policy under generalized Bregman divergence. Our results are inspired by the convergence of value function in previous works and are an extension study of policy mirror descent. Though some results have already appeared in previous work, we further discover a large body of Bregman divergences could give finite-step convergence to an optimal policy, such as the classical Euclidean distance.
4,785
CellTypeGraph: A New Geometric Computer Vision Benchmark
Classifying all cells in an organ is a relevant and difficult problem from plant developmental biology. We here abstract the problem into a new benchmark for node classification in a geo-referenced graph. Solving it requires learning the spatial layout of the organ including symmetries. To allow the convenient testing of new geometrical learning methods, the benchmark of Arabidopsis thaliana ovules is made available as a PyTorch data loader, along with a large number of precomputed features. Finally, we benchmark eight recent graph neural network architectures, finding that DeeperGCN currently works best on this problem.
4,786
Uncertainty-based Network for Few-shot Image Classification
The transductive inference is an effective technique in the few-shot learning task, where query sets update prototypes to improve themselves. However, these methods optimize the model by considering only the classification scores of the query instances as confidence while ignoring the uncertainty of these classification scores. In this paper, we propose a novel method called Uncertainty-Based Network, which models the uncertainty of classification results with the help of mutual information. Specifically, we first data augment and classify the query instance and calculate the mutual information of these classification scores. Then, mutual information is used as uncertainty to assign weights to classification scores, and the iterative update strategy based on classification scores and uncertainties assigns the optimal weights to query instances in prototype optimization. Extensive results on four benchmarks show that Uncertainty-Based Network achieves comparable performance in classification accuracy compared to state-of-the-art method.
4,787
Multilayer Perceptron Based Stress Evolution Analysis under DC Current Stressing for Multi-segment Wires
Electromigration (EM) is one of the major concerns in the reliability analysis of very large scale integration (VLSI) systems due to the continuous technology scaling. Accurately predicting the time-to-failure of integrated circuits (IC) becomes increasingly important for modern IC design. However, traditional methods are often not sufficiently accurate, leading to undesirable over-design especially in advanced technology nodes. In this paper, we propose an approach using multilayer perceptrons (MLP) to compute stress evolution in the interconnect trees during the void nucleation phase. The availability of a customized trial function for neural network training holds the promise of finding dynamic mesh-free stress evolution on complex interconnect trees under time-varying temperatures. Specifically, we formulate a new objective function considering the EM-induced coupled partial differential equations (PDEs), boundary conditions (BCs), and initial conditions to enforce the physics-based constraints in the spatial-temporal domain. The proposed model avoids meshing and reduces temporal iterations compared with conventional numerical approaches like FEM. Numerical results confirm its advantages on accuracy and computational performance.
4,788
Federated learning for violence incident prediction in a simulated cross-institutional psychiatric setting
Inpatient violence is a common and severe problem within psychiatry. Knowing who might become violent can influence staffing levels and mitigate severity. Predictive machine learning models can assess each patient's likelihood of becoming violent based on clinical notes. Yet, while machine learning models benefit from having more data, data availability is limited as hospitals typically do not share their data for privacy preservation. Federated Learning (FL) can overcome the problem of data limitation by training models in a decentralised manner, without disclosing data between collaborators. However, although several FL approaches exist, none of these train Natural Language Processing models on clinical notes. In this work, we investigate the application of Federated Learning to clinical Natural Language Processing, applied to the task of Violence Risk Assessment by simulating a cross-institutional psychiatric setting. We train and compare four models: two local models, a federated model and a data-centralised model. Our results indicate that the federated model outperforms the local models and has similar performance as the data-centralised model. These findings suggest that Federated Learning can be used successfully in a cross-institutional setting and is a step towards new applications of Federated Learning based on clinical notes
4,789
Brachial Plexus Nerve Trunk Segmentation Using Deep Learning: A Comparative Study with Doctors' Manual Segmentation
Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can observe the target nerve and its surrounding structures, the puncture needle's advancement, and local anesthetics spread in real-time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. Here, we establish a public dataset containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produce the BP segmentation ground truth and label brachial plexus trunks. We design a brachial plexus segmentation system (BPSegSys) based on deep learning. BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluate BPSegSys' performance in terms of intersection-over-union (IoU), a commonly used performance measure for segmentation experiments. Considering three dataset groups in our established public dataset, the IoU of BPSegSys are 0.5238, 0.4715, and 0.5029, respectively, which exceed the IoU 0.5205, 0.4704, and 0.4979 of experienced doctors. In addition, we show that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value.
4,790
Latent Variable Method Demonstrator -- Software for Understanding Multivariate Data Analytics Algorithms
The ever-increasing quantity of multivariate process data is driving a need for skilled engineers to analyze, interpret, and build models from such data. Multivariate data analytics relies heavily on linear algebra, optimization, and statistics and can be challenging for students to understand given that most curricula do not have strong coverage in the latter three topics. This article describes interactive software -- the Latent Variable Demonstrator (LAVADE) -- for teaching, learning, and understanding latent variable methods. In this software, users can interactively compare latent variable methods such as Partial Least Squares (PLS), and Principal Component Regression (PCR) with other regression methods such as Least Absolute Shrinkage and Selection Operator (lasso), Ridge Regression (RR), and Elastic Net (EN). LAVADE helps to build intuition on choosing appropriate methods, hyperparameter tuning, and model coefficient interpretation, fostering a conceptual understanding of the algorithms' differences. The software contains a data generation method and three chemical process datasets, allowing for comparing results of datasets with different levels of complexity. LAVADE is released as open-source software so that others can apply and advance the tool for use in teaching or research.
4,791
Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in Latent Space
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments. To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach configurable goals for a wide range of tasks on command. However, such goal-conditioned policies are notoriously difficult and time-consuming to train from scratch. In this paper, we propose Planning to Practice (PTP), a method that makes it practical to train goal-conditioned policies for long-horizon tasks that require multiple distinct types of interactions to solve. Our approach is based on two key ideas. First, we decompose the goal-reaching problem hierarchically, with a high-level planner that sets intermediate subgoals using conditional subgoal generators in the latent space for a low-level model-free policy. Second, we propose a hybrid approach which first pre-trains both the conditional subgoal generator and the policy on previously collected data through offline reinforcement learning, and then fine-tunes the policy via online exploration. This fine-tuning process is itself facilitated by the planned subgoals, which breaks down the original target task into short-horizon goal-reaching tasks that are significantly easier to learn. We conduct experiments in both the simulation and real world, in which the policy is pre-trained on demonstrations of short primitive behaviors and fine-tuned for temporally extended tasks that are unseen in the offline data. Our experimental results show that PTP can generate feasible sequences of subgoals that enable the policy to efficiently solve the target tasks.
4,792
ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks
Neural networks (NNs) with intensive multiplications (e.g., convolutions and transformers) are capable yet power hungry, impeding their more extensive deployment into resource-constrained devices. As such, multiplication-free networks, which follow a common practice in energy-efficient hardware implementation to parameterize NNs with more efficient operators (e.g., bitwise shifts and additions), have gained growing attention. However, multiplication-free networks usually under-perform their vanilla counterparts in terms of the achieved accuracy. To this end, this work advocates hybrid NNs that consist of both powerful yet costly multiplications and efficient yet less powerful operators for marrying the best of both worlds, and proposes ShiftAddNAS, which can automatically search for more accurate and more efficient NNs. Our ShiftAddNAS highlights two enablers. Specifically, it integrates (1) the first hybrid search space that incorporates both multiplication-based and multiplication-free operators for facilitating the development of both accurate and efficient hybrid NNs; and (2) a novel weight sharing strategy that enables effective weight sharing among different operators that follow heterogeneous distributions (e.g., Gaussian for convolutions vs. Laplacian for add operators) and simultaneously leads to a largely reduced supernet size and much better searched networks. Extensive experiments and ablation studies on various models, datasets, and tasks consistently validate the efficacy of ShiftAddNAS, e.g., achieving up to a +7.7% higher accuracy or a +4.9 better BLEU score compared to state-of-the-art NN, while leading to up to 93% or 69% energy and latency savings, respectively. Codes and pretrained models are available at https://github.com/RICE-EIC/ShiftAddNAS.
4,793
Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph Learning
In this paper, we study the design and analysis of a class of efficient algorithms for computing the Gromov-Wasserstein (GW) distance tailored to large-scale graph learning tasks. Armed with the Luo-Tseng error bound condition~\cite{luo1992error}, two proposed algorithms, called Bregman Alternating Projected Gradient (BAPG) and hybrid Bregman Proximal Gradient (hBPG) are proven to be (linearly) convergent. Upon task-specific properties, our analysis further provides novel theoretical insights to guide how to select the best fit method. As a result, we are able to provide comprehensive experiments to validate the effectiveness of our methods on a host of tasks, including graph alignment, graph partition, and shape matching. In terms of both wall-clock time and modeling performance, the proposed methods achieve state-of-the-art results.
4,794
Forecasting Solar Power Generation on the basis of Predictive and Corrective Maintenance Activities
Solar energy forecasting has seen tremendous growth in the last decade using historical time series collected from a weather station, such as weather variables wind speed and direction, solar radiance, and temperature. It helps in the overall management of solar power plants. However, the solar power plant regularly requires preventive and corrective maintenance activities that further impact energy production. This paper presents a novel work for forecasting solar power energy production based on maintenance activities, problems observed at a power plant, and weather data. The results accomplished on the datasets obtained from the 1MW solar power plant of PDEU (our university) that has generated data set with 13 columns as daily entries from 2012 to 2020. There are 12 structured columns and one unstructured column with manual text entries about different maintenance activities, problems observed, and weather conditions daily. The unstructured column is used to create a new feature column vector using Hash Map, flag words, and stop words. The final dataset comprises five important feature vector columns based on correlation and causality analysis.
4,795
Computerized Tomography Pulmonary Angiography Image Simulation using Cycle Generative Adversarial Network from Chest CT imaging in Pulmonary Embolism Patients
The purpose of this research is to develop a system that generates simulated computed tomography pulmonary angiography (CTPA) images clinically for pulmonary embolism diagnoses. Nowadays, CTPA images are the gold standard computerized detection method to determine and identify the symptoms of pulmonary embolism (PE), although performing CTPA is harmful for patients and also expensive. Therefore, we aim to detect possible PE patients through CT images. The system will simulate CTPA images with deep learning models for the identification of PE patients' symptoms, providing physicians with another reference for determining PE patients. In this study, the simulated CTPA image generation system uses a generative antagonistic network to enhance the features of pulmonary vessels in the CT images to strengthen the reference value of the images and provide a basis for hospitals to judge PE patients. We used the CT images of 22 patients from National Cheng Kung University Hospital and the corresponding CTPA images as the training data for the task of simulating CTPA images and generated them using two sets of generative countermeasure networks. This study is expected to propose a new approach to the clinical diagnosis of pulmonary embolism, in which a deep learning network is used to assist in the complex screening process and to review the generated simulated CTPA images, allowing physicians to assess whether a patient needs to undergo detailed testing for CTPA, improving the speed of detection of pulmonary embolism and significantly reducing the number of undetected patients.
4,796
Predicting failure characteristics of structural materials via deep learning based on nondestructive void topology
Accurate predictions of the failure progression of structural materials is critical for preventing failure-induced accidents. Despite considerable mechanics modeling-based efforts, accurate prediction remains a challenging task in real-world environments due to unexpected damage factors and defect evolutions. Here, we report a novel method for predicting material failure characteristics that uniquely combines nondestructive X-ray computed tomography (X-CT), persistent homology (PH), and deep multimodal learning (DML). The combined method exploits the microstructural defect state at the time of material examination as an input, and outputs the failure-related properties. Our method is demonstrated to be effective using two types of fracture datasets (tensile and fatigue datasets) with ferritic low alloy steel as a representative structural material. The method achieves a mean absolute error (MAE) of 0.09 in predicting the local strain with the tensile dataset and an MAE of 0.14 in predicting the fracture progress with the fatigue dataset. These high accuracies are mainly due to PH processing of the X-CT images, which transforms complex and noisy three-dimensional X-CT images into compact two-dimensional persistence diagrams that preserve key topological features such as the internal void size, density, and distribution. The combined PH and DML processing of 3D X-CT data is our unique approach enabling reliable failure predictions at the time of material examination based on void topology progressions, and the method can be extended to various nondestructive failure tests for practical use.
4,797
Dimensionality Reduced Training by Pruning and Freezing Parts of a Deep Neural Network, a Survey
State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model's optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods.
4,798
Can We Do Better Than Random Start? The Power of Data Outsourcing
Many organizations have access to abundant data but lack the computational power to process the data. While they can outsource the computational task to other facilities, there are various constraints on the amount of data that can be shared. It is natural to ask what can data outsourcing accomplish under such constraints. We address this question from a machine learning perspective. When training a model with optimization algorithms, the quality of the results often relies heavily on the points where the algorithms are initialized. Random start is one of the most popular methods to tackle this issue, but it can be computationally expensive and not feasible for organizations lacking computing resources. Based on three different scenarios, we propose simulation-based algorithms that can utilize a small amount of outsourced data to find good initial points accordingly. Under suitable regularity conditions, we provide theoretical guarantees showing the algorithms can find good initial points with high probability. We also conduct numerical experiments to demonstrate that our algorithms perform significantly better than the random start approach.
4,799
Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks using an Incompetent Teacher
Machine unlearning has become an important field of research due to an increasing focus on addressing the evolving data privacy rules and regulations into the machine learning (ML) applications. It facilitates the request for removal of certain set or class of data from the already trained ML model without retraining from scratch. Recently, several efforts have been made to perform unlearning in an effective and efficient manner. We propose a novel machine unlearning method by exploring the utility of competent and incompetent teachers in a student-teacher framework to induce forgetfulness. The knowledge from the competent and incompetent teachers is selectively transferred to the student to obtain a model that doesn't contain any information about the forget data. We experimentally show that this method is well generalized, fast, and effective. Furthermore, we introduce a zero retrain forgetting (ZRF) metric to evaluate the unlearning method. Unlike the existing unlearning metrics, the ZRF score does not depend on the availability of the expensive retrained model. This makes it useful for analysis of the unlearned model after deployment as well. The experiments are conducted for random subset forgetting and class forgetting on various deep networks and across different application domains. A use case of forgetting information about the patients' medical records is also presented.