Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
4,500
Interpolating Compressed Parameter Subspaces
Inspired by recent work on neural subspaces and mode connectivity, we revisit parameter subspace sampling for shifted and/or interpolatable input distributions (instead of a single, unshifted distribution). We enforce a compressed geometric structure upon a set of trained parameters mapped to a set of train-time distributions, denoting the resulting subspaces as Compressed Parameter Subspaces (CPS). We show the success and failure modes of the types of shifted distributions whose optimal parameters reside in the CPS. We find that ensembling point-estimates within a CPS can yield a high average accuracy across a range of test-time distributions, including backdoor, adversarial, permutation, stylization and rotation perturbations. We also find that the CPS can contain low-loss point-estimates for various task shifts (albeit interpolated, perturbed, unseen or non-identical coarse labels). We further demonstrate this property in a continual learning setting with CIFAR100.
4,501
Time Series Anomaly Detection via Reinforcement Learning-Based Model Selection
Time series anomaly detection is of critical importance for the reliable and efficient operation of real-world systems. Many anomaly detection models have been developed throughout the years based on various assumptions regarding anomaly characteristics. However, due to the complex nature of real-world data, different anomalies within a time series usually have diverse profiles supporting different anomaly assumptions, making it difficult to find a single anomaly detector that can consistently beat all other models. In this work, to harness the benefits of different base models, we assume that a pool of anomaly detection models is accessible and propose to utilize reinforcement learning to dynamically select a candidate model from these base models. Experiments on real-world data have been implemented. It is demonstrated that the proposed strategy can outperforms all baseline models in terms of overall performance.
4,502
A Rule Search Framework for the Early Identification of Chronic Emergency Homeless Shelter Clients
This paper uses rule search techniques for the early identification of emergency homeless shelter clients who are at risk of becoming long term or chronic shelter users. Using a data set from a major North American shelter containing 12 years of service interactions with over 40,000 individuals, the optimized pruning for unordered search (OPUS) algorithm is used to develop rules that are both intuitive and effective. The rules are evaluated within a framework compatible with the real-time delivery of a housing program meant to transition high risk clients to supportive housing. Results demonstrate that the median time to identification of clients at risk of chronic shelter use drops from 297 days to 162 days when the methods in this paper are applied.
4,503
Beyond Labels: Visual Representations for Bone Marrow Cell Morphology Recognition
Analyzing and inspecting bone marrow cell cytomorphology is a critical but highly complex and time-consuming component of hematopathology diagnosis. Recent advancements in artificial intelligence have paved the way for the application of deep learning algorithms to complex medical tasks. Nevertheless, there are many challenges in applying effective learning algorithms to medical image analysis, such as the lack of sufficient and reliably annotated training datasets and the highly class-imbalanced nature of most medical data. Here, we improve on the state-of-the-art methodologies of bone marrow cell recognition by deviating from sole reliance on labeled data and leveraging self-supervision in training our learning models. We investigate our approach's effectiveness in identifying bone marrow cell types. Our experiments demonstrate significant performance improvements in conducting different bone marrow cell recognition tasks compared to the current state-of-the-art methodologies.
4,504
Real Time Multi-Object Detection for Helmet Safety
The National Football League and Amazon Web Services teamed up to develop the best sports injury surveillance and mitigation program via the Kaggle competition. Through which the NFL wants to assign specific players to each helmet, which would help accurately identify each player's "exposures" throughout a football play. We are trying to implement a computer vision based ML algorithms capable of assigning detected helmet impacts to correct players via tracking information. Our paper will explain the approach to automatically track player helmets and their collisions. This will also allow them to review previous plays and explore the trends in exposure over time.
4,505
Incremental Learning with Differentiable Architecture and Forgetting Search
As progress is made on training machine learning models on incrementally expanding classification tasks (i.e., incremental learning), a next step is to translate this progress to industry expectations. One technique missing from incremental learning is automatic architecture design via Neural Architecture Search (NAS). In this paper, we show that leveraging NAS for incremental learning results in strong performance gains for classification tasks. Specifically, we contribute the following: first, we create a strong baseline approach for incremental learning based on Differentiable Architecture Search (DARTS) and state-of-the-art incremental learning strategies, outperforming many existing strategies trained with similar-sized popular architectures; second, we extend the idea of architecture search to regularize architecture forgetting, boosting performance past our proposed baseline. We evaluate our method on both RF signal and image classification tasks, and demonstrate we can achieve up to a 10% performance increase over state-of-the-art methods. Most importantly, our contribution enables learning from continuous distributions on real-world application data for which the complexity of the data distribution is unknown, or the modality less explored (such as RF signal classification).
4,506
Content-Context Factorized Representations for Automated Speech Recognition
Deep neural networks have largely demonstrated their ability to perform automated speech recognition (ASR) by extracting meaningful features from input audio frames. Such features, however, may consist not only of information about the spoken language content, but also may contain information about unnecessary contexts such as background noise and sounds or speaker identity, accent, or protected attributes. Such information can directly harm generalization performance, by introducing spurious correlations between the spoken words and the context in which such words were spoken. In this work, we introduce an unsupervised, encoder-agnostic method for factoring speech-encoder representations into explicit content-encoding representations and spurious context-encoding representations. By doing so, we demonstrate improved performance on standard ASR benchmarks, as well as improved performance in both real-world and artificially noisy ASR scenarios.
4,507
Transformer with Memory Replay
Transformers achieve state-of-the-art performance for natural language processing tasks by pre-training on large-scale text corpora. They are extremely compute-intensive and have very high sample complexity. Memory replay is a mechanism that remembers and reuses past examples by saving to and replaying from a memory buffer. It has been successfully used in reinforcement learning and GANs due to better sample efficiency. In this paper, we propose \emph{Transformer with Memory Replay} (TMR), which integrates memory replay with transformer, making transformer more sample-efficient. Experiments on GLUE and SQuAD benchmark datasets show that Transformer with Memory Replay achieves at least $1\%$ point increase compared to the baseline transformer model when pretrained with the same number of examples. Further, by adopting a careful design that reduces the wall-clock time overhead of memory replay, we also empirically achieve a better runtime efficiency.
4,508
Service Delay Minimization for Federated Learning over Mobile Devices
Federated learning (FL) over mobile devices has fostered numerous intriguing applications/services, many of which are delay-sensitive. In this paper, we propose a service delay efficient FL (SDEFL) scheme over mobile devices. Unlike traditional communication efficient FL, which regards wireless communications as the bottleneck, we find that under many situations, the local computing delay is comparable to the communication delay during the FL training process, given the development of high-speed wireless transmission techniques. Thus, the service delay in FL should be computing delay + communication delay over training rounds. To minimize the service delay of FL, simply reducing local computing/communication delay independently is not enough. The delay trade-off between local computing and wireless communications must be considered. Besides, we empirically study the impacts of local computing control and compression strategies (i.e., the number of local updates, weight quantization, and gradient quantization) on computing, communication and service delays. Based on those trade-off observation and empirical studies, we develop an optimization scheme to minimize the service delay of FL over heterogeneous devices. We establish testbeds and conduct extensive emulations/experiments to verify our theoretical analysis. The results show that SDEFL reduces notable service delay with a small accuracy drop compared to peer designs.
4,509
Automated Scoring for Reading Comprehension via In-context BERT Tuning
Automated scoring of open-ended student responses has the potential to significantly reduce human grader effort. Recent advances in automated scoring often leverage textual representations based on pre-trained language models such as BERT and GPT as input to scoring models. Most existing approaches train a separate model for each item/question, which is suitable for scenarios such as essay scoring where items can be quite different from one another. However, these approaches have two limitations: 1) they fail to leverage item linkage for scenarios such as reading comprehension where multiple items may share a reading passage; 2) they are not scalable since storing one model per item becomes difficult when models have a large number of parameters. In this paper, we report our (grand prize-winning) solution to the National Assessment of Education Progress (NAEP) automated scoring challenge for reading comprehension. Our approach, in-context BERT fine-tuning, produces a single shared scoring model for all items with a carefully-designed input structure to provide contextual information on each item. We demonstrate the effectiveness of our approach via local evaluations using the training dataset provided by the challenge. We also discuss the biases, common error types, and limitations of our approach.
4,510
Recurrent segmentation meets block models in temporal networks
A popular approach to model interactions is to represent them as a network with nodes being the agents and the interactions being the edges. Interactions are often timestamped, which leads to having timestamped edges. Many real-world temporal networks have a recurrent or possibly cyclic behaviour. For example, social network activity may be heightened during certain hours of day. In this paper, our main interest is to model recurrent activity in such temporal networks. As a starting point we use stochastic block model, a popular choice for modelling static networks, where nodes are split into $R$ groups. We extend this model to temporal networks by modelling the edges with a Poisson process. We make the parameters of the process dependent on time by segmenting the time line into $K$ segments. To enforce the recurring activity we require that only $H < K$ different set of parameters can be used, that is, several, not necessarily consecutive, segments must share their parameters. We prove that the searching for optimal blocks and segmentation is an NP-hard problem. Consequently, we split the problem into 3 subproblems where we optimize blocks, model parameters, and segmentation in turn while keeping the remaining structures fixed. We propose an iterative algorithm that requires $O(KHm + Rn + R^2H)$ time per iteration, where $n$ and $m$ are the number of nodes and edges in the network. We demonstrate experimentally that the number of required iterations is typically low, the algorithm is able to discover the ground truth from synthetic datasets, and show that certain real-world networks exhibit recurrent behaviour as the likelihood does not deteriorate when $H$ is lowered.
4,511
Mean-Field Analysis of Two-Layer Neural Networks: Global Optimality with Linear Convergence Rates
We consider optimizing two-layer neural networks in the mean-field regime where the learning dynamics of network weights can be approximated by the evolution in the space of probability measures over the weight parameters associated with the neurons. The mean-field regime is a theoretically attractive alternative to the NTK (lazy training) regime which is only restricted locally in the so-called neural tangent kernel space around specialized initializations. Several prior works (\cite{mei2018mean, chizat2018global}) establish the asymptotic global optimality of the mean-field regime, but it is still challenging to obtain a quantitative convergence rate due to the complicated nonlinearity of the training dynamics. This work establishes a new linear convergence result for two-layer neural networks trained by continuous-time noisy gradient descent in the mean-field regime. Our result relies on a novelty logarithmic Sobolev inequality for two-layer neural networks, and uniform upper bounds on the logarithmic Sobolev constants for a family of measures determined by the evolving distribution of hidden neurons.
4,512
MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation
Video prediction is a challenging task. The quality of video frames from current state-of-the-art (SOTA) generative models tends to be poor and generalization beyond the training data is difficult. Furthermore, existing prediction frameworks are typically not capable of simultaneously handling other video-related tasks such as unconditional generation or interpolation. In this work, we devise a general-purpose framework called Masked Conditional Video Diffusion (MCVD) for all of these video synthesis tasks using a probabilistic conditional score-based denoising diffusion model, conditioned on past and/or future frames. We train the model in a manner where we randomly and independently mask all the past frames or all the future frames. This novel but straightforward setup allows us to train a single model that is capable of executing a broad range of video tasks, specifically: future/past prediction -- when only future/past frames are masked; unconditional generation -- when both past and future frames are masked; and interpolation -- when neither past nor future frames are masked. Our experiments show that this approach can generate high-quality frames for diverse types of videos. Our MCVD models are built from simple non-recurrent 2D-convolutional architectures, conditioning on blocks of frames and generating blocks of frames. We generate videos of arbitrary lengths autoregressively in a block-wise manner. Our approach yields SOTA results across standard video prediction and interpolation benchmarks, with computation times for training models measured in 1-12 days using $\le$ 4 GPUs. Project page: https://mask-cond-video-diffusion.github.io ; Code : https://github.com/voletiv/mcvd-pytorch
4,513
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Despite intense efforts in basic and clinical research, an individualized ventilation strategy for critically ill patients remains a major challenge. Recently, dynamic treatment regime (DTR) with reinforcement learning (RL) on electronic health records (EHR) has attracted interest from both the healthcare industry and machine learning research community. However, most learned DTR policies might be biased due to the existence of confounders. Although some treatment actions non-survivors received may be helpful, if confounders cause the mortality, the training of RL models guided by long-term outcomes (e.g., 90-day mortality) would punish those treatment actions causing the learned DTR policies to be suboptimal. In this study, we develop a new deconfounding actor-critic network (DAC) to learn optimal DTR policies for patients. To alleviate confounding issues, we incorporate a patient resampling module and a confounding balance module into our actor-critic framework. To avoid punishing the effective treatment actions non-survivors received, we design a short-term reward to capture patients' immediate health state changes. Combining short-term with long-term rewards could further improve the model performance. Moreover, we introduce a policy adaptation method to successfully transfer the learned model to new-source small-scale datasets. The experimental results on one semi-synthetic and two different real-world datasets show the proposed model outperforms the state-of-the-art models. The proposed model provides individualized treatment decisions for mechanical ventilation that could improve patient outcomes.
4,514
Confident Clustering via PCA Compression Ratio and Its Application to Single-cell RNA-seq Analysis
Unsupervised clustering algorithms for vectors has been widely used in the area of machine learning. Many applications, including the biological data we studied in this paper, contain some boundary datapoints which show combination properties of two underlying clusters and could lower the performance of the traditional clustering algorithms. We develop a confident clustering method aiming to diminish the influence of these datapoints and improve the clustering results. Concretely, for a list of datapoints, we give two clustering results. The first-round clustering attempts to classify only pure vectors with high confidence. Based on it, we classify more vectors with less confidence in the second round. We validate our algorithm on single-cell RNA-seq data, which is a powerful and widely used tool in biology area. Our confident clustering shows a high accuracy on our tested datasets. In addition, unlike traditional clustering methods in single-cell analysis, the confident clustering shows high stability under different choices of parameters.
4,515
A Hardware-Aware Framework for Accelerating Neural Architecture Search Across Modalities
Recent advances in Neural Architecture Search (NAS) such as one-shot NAS offer the ability to extract specialized hardware-aware sub-network configurations from a task-specific super-network. While considerable effort has been employed towards improving the first stage, namely, the training of the super-network, the search for derivative high-performing sub-networks is still under-explored. Popular methods decouple the super-network training from the sub-network search and use performance predictors to reduce the computational burden of searching on different hardware platforms. We propose a flexible search framework that automatically and efficiently finds optimal sub-networks that are optimized for different performance metrics and hardware configurations. Specifically, we show how evolutionary algorithms can be paired with lightly trained objective predictors in an iterative cycle to accelerate architecture search in a multi-objective setting for various modalities including machine translation and image classification.
4,516
Preliminary study on the impact of EEG density on TMS-EEG classification in Alzheimer's disease
Transcranial magnetic stimulation co-registered with electroencephalographic (TMS-EEG) has previously proven a helpful tool in the study of Alzheimer's disease (AD). In this work, we investigate the use of TMS-evoked EEG responses to classify AD patients from healthy controls (HC). By using a dataset containing 17AD and 17HC, we extract various time domain features from individual TMS responses and average them over a low, medium and high density EEG electrode set. Within a leave-one-subject-out validation scenario, the best classification performance for AD vs. HC was obtained using a high-density electrode with a Random Forest classifier. The accuracy, sensitivity and specificity were of 92.7%, 96.58% and 88.2% respectively.
4,517
A toolbox for idea generation and evaluation: Machine learning, data-driven, and contest-driven approaches to support idea generation
The significance and abundance of data are increasing due to the growing digital data generated from social media, sensors, scholarly literature, patents, different forms of documents published online, databases, product manuals, etc. Various data sources can be used to generate ideas, yet, in addition to bias, the size of the available digital data is a major challenge when it comes to manual analysis. Hence, human-machine interaction is essential for generating valuable ideas where machine learning and data-driven techniques generate patterns from data and serve human sense-making. However, the use of machine learning and data-driven approaches to generate ideas is a relatively new area. Moreover, it is also possible to stimulate innovation using contest-driven idea generation and evaluation. The results and contributions of this thesis can be viewed as a toolbox of idea-generation techniques, including a list of data-driven and machine learning techniques with corresponding data sources and models to support idea generation. In addition, the results include two models, one method and one framework, to better support data-driven and contest- driven idea generation. The beneficiaries of these artefacts are practitioners in data and knowledge engineering, data mining project managers, and innovation agents. Innovation agents include incubators, contest organizers, consultants, innovation accelerators, and industries. Since the proposed artefacts consist of process models augmented with AI techniques, human-centred AI is a promising area of research that can contribute to the artefacts' further development and promote creativity.
4,518
HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks
Binary Neural Networks (BNNs), neural networks with weights and activations constrained to -1(0) and +1, are an alternative to deep neural networks which offer faster training, lower memory consumption and lightweight models, ideal for use in resource constrained devices while being able to utilize the architecture of their deep neural network counterpart. However, the input binarization step used in BNNs causes a severe accuracy loss. In this paper, we introduce a novel hybrid neural network architecture, Hybrid Binary Neural Network (HyBNN), consisting of a task-independent, general, full-precision variational autoencoder with a binary latent space and a task specific binary neural network that is able to greatly limit the accuracy loss due to input binarization by using the full precision variational autoencoder as a feature extractor. We use it to combine the state-of-the-art accuracy of deep neural networks with the much faster training time, quicker test-time inference and power efficiency of binary neural networks. We show that our proposed system is able to very significantly outperform a vanilla binary neural network with input binarization. We also introduce FedHyBNN, a highly communication efficient federated counterpart to HyBNN and demonstrate that it is able to reach the same accuracy as its non-federated equivalent. We make our source code, experimental parameters and models available at: https://anonymous.4open.science/r/HyBNN.
4,519
Why GANs are overkill for NLP
This work offers a novel theoretical perspective on why, despite numerous attempts, adversarial approaches to generative modeling (e.g., GANs) have not been as popular for certain generation tasks, particularly sequential tasks such as Natural Language Generation, as they have in others, such as Computer Vision. In particular, on sequential data such as text, maximum-likelihood approaches are significantly more utilized than GANs. We show that, while it may seem that maximizing likelihood is inherently different than minimizing distinguishability, this distinction is largely artificial and only holds for limited models. We argue that minimizing KL-divergence (i.e., maximizing likelihood) is a more efficient approach to effectively minimizing the same distinguishability criteria that adversarial models seek to optimize. Reductions show that minimizing distinguishability can be seen as simply boosting likelihood for certain families of models including n-gram models and neural networks with a softmax output layer. To achieve a full polynomial-time reduction, a novel next-token distinguishability model is considered.
4,520
Summarization as Indirect Supervision for Relation Extraction
Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision to improve RE models.
4,521
Concurrent Policy Blending and System Identification for Generalized Assistive Control
In this work, we address the problem of solving complex collaborative robotic tasks subject to multiple varying parameters. Our approach combines simultaneous policy blending with system identification to create generalized policies that are robust to changes in system parameters. We employ a blending network whose state space relies solely on parameter estimates from a system identification technique. As a result, this blending network learns how to handle parameter changes instead of trying to learn how to solve the task for a generalized parameter set simultaneously. We demonstrate our scheme's ability on a collaborative robot and human itching task in which the human has motor impairments. We then showcase our approach's efficiency with a variety of system identification techniques when compared to standard domain randomization.
4,522
Classification of Intra-Pulse Modulation of Radar Signals by Feature Fusion Based Convolutional Neural Networks
Detection and classification of radars based on pulses they transmit is an important application in electronic warfare systems. In this work, we propose a novel deep-learning based technique that automatically recognizes intra-pulse modulation types of radar signals. Re-assigned spectrogram of measured radar signal and detected outliers of its instantaneous phases filtered by a special function are used for training multiple convolutional neural networks. Automatically extracted features from the networks are fused to distinguish frequency and phase modulated signals. Simulation results show that the proposed FF-CNN (Feature Fusion based Convolutional Neural Network) technique outperforms the current state-of-the-art alternatives and is easily scalable among broad range of modulation types.
4,523
Learning Interface Conditions in Domain Decomposition Solvers
Domain decomposition methods are widely used and effective in the approximation of solutions to partial differential equations. Yet the optimal construction of these methods requires tedious analysis and is often available only in simplified, structured-grid settings, limiting their use for more complex problems. In this work, we generalize optimized Schwarz domain decomposition methods to unstructured-grid problems, using Graph Convolutional Neural Networks (GCNNs) and unsupervised learning to learn optimal modifications at subdomain interfaces. A key ingredient in our approach is an improved loss function, enabling effective training on relatively small problems, but robust performance on arbitrarily large problems, with computational cost linear in problem size. The performance of the learned linear solvers is compared with both classical and optimized domain decomposition algorithms, for both structured- and unstructured-grid problems.
4,524
Capturing cross-session neural population variability through self-supervised identification of consistent neuron ensembles
Decoding stimuli or behaviour from recorded neural activity is a common approach to interrogate brain function in research, and an essential part of brain-computer and brain-machine interfaces. Reliable decoding even from small neural populations is possible because high dimensional neural population activity typically occupies low dimensional manifolds that are discoverable with suitable latent variable models. Over time however, drifts in activity of individual neurons and instabilities in neural recording devices can be substantial, making stable decoding over days and weeks impractical. While this drift cannot be predicted on an individual neuron level, population level variations over consecutive recording sessions such as differing sets of neurons and varying permutations of consistent neurons in recorded data may be learnable when the underlying manifold is stable over time. Classification of consistent versus unfamiliar neurons across sessions and accounting for deviations in the order of consistent recording neurons in recording datasets over sessions of recordings may then maintain decoding performance. In this work we show that self-supervised training of a deep neural network can be used to compensate for this inter-session variability. As a result, a sequential autoencoding model can maintain state-of-the-art behaviour decoding performance for completely unseen recording sessions several days into the future. Our approach only requires a single recording session for training the model, and is a step towards reliable, recalibration-free brain computer interfaces.
4,525
Algorithms for Weak Optimal Transport with an Application to Economics
The theory of weak optimal transport (WOT), introduced by [Gozlan et al., 2017], generalizes the classic Monge-Kantorovich framework by allowing the transport cost between one point and the points it is matched with to be nonlinear. In the so-called barycentric version of WOT, the cost for transporting a point $x$ only depends on $x$ and on the barycenter of the points it is matched with. This aggregation property of WOT is appealing in machine learning, economics and finance. Yet algorithms to compute WOT have only been developed for the special case of quadratic barycentric WOT, or depend on neural networks with no guarantee on the computed value and matching. The main difficulty lies in the transportation constraints which are costly to project onto. In this paper, we propose to use mirror descent algorithms to solve the primal and dual versions of the WOT problem. We also apply our algorithms to the variant of WOT introduced by [Chon\'e et al., 2022] where mass is distributed from one space to another through unnormalized kernels (WOTUK). We empirically compare the solutions of WOT and WOTUK with classical OT. We illustrate our numerical methods to the economic framework of [Chon\'e and Kramarz, 2021], namely the matching between workers and firms on labor markets.
4,526
Deep Learning Methods for Proximal Inference via Maximum Moment Restriction
The No Unmeasured Confounding Assumption is widely used to identify causal effects in observational studies. Recent work on proximal inference has provided alternative identification results that succeed even in the presence of unobserved confounders, provided that one has measured a sufficiently rich set of proxy variables, satisfying specific structural conditions. However, proximal inference requires solving an ill-posed integral equation. Previous approaches have used a variety of machine learning techniques to estimate a solution to this integral equation, commonly referred to as the bridge function. However, prior work has often been limited by relying on pre-specified kernel functions, which are not data adaptive and struggle to scale to large datasets. In this work, we introduce a flexible and scalable method based on a deep neural network to estimate causal effects in the presence of unmeasured confounding using proximal inference. Our method achieves state of the art performance on two well-established proximal inference benchmarks. Finally, we provide theoretical consistency guarantees for our method.
4,527
A Learning-Based Approach to Approximate Coded Computation
Lagrange coded computation (LCC) is essential to solving problems about matrix polynomials in a coded distributed fashion; nevertheless, it can only solve the problems that are representable as matrix polynomials. In this paper, we propose AICC, an AI-aided learning approach that is inspired by LCC but also uses deep neural networks (DNNs). It is appropriate for coded computation of more general functions. Numerical simulations demonstrate the suitability of the proposed approach for the coded computation of different matrix functions that are often utilized in digital signal processing.
4,528
MiDAS: Multi-integrated Domain Adaptive Supervision for Fake News Detection
COVID-19 related misinformation and fake news, coined an 'infodemic', has dramatically increased over the past few years. This misinformation exhibits concept drift, where the distribution of fake news changes over time, reducing effectiveness of previously trained models for fake news detection. Given a set of fake news models trained on multiple domains, we propose an adaptive decision module to select the best-fit model for a new sample. We propose MiDAS, a multi-domain adaptative approach for fake news detection that ranks relevancy of existing models to new samples. MiDAS contains 2 components: a doman-invariant encoder, and an adaptive model selector. MiDAS integrates multiple pre-trained and fine-tuned models with their training data to create a domain-invariant representation. Then, MiDAS uses local Lipschitz smoothness of the invariant embedding space to estimate each model's relevance to a new sample. Higher ranked models provide predictions, and lower ranked models abstain. We evaluate MiDAS on generalization to drifted data with 9 fake news datasets, each obtained from different domains and modalities. MiDAS achieves new state-of-the-art performance on multi-domain adaptation for out-of-distribution fake news classification.
4,529
A Novel Weighted Ensemble Learning Based Agent for the Werewolf Game
Werewolf is a popular party game throughout the world, and research on its significance has progressed in recent years. The Werewolf game is based on conversation, and in order to win, participants must use all of their cognitive abilities. This communication game requires the playing agents to be very sophisticated to win. In this research, we generated a sophisticated agent to play the Werewolf game using a complex weighted ensemble learning approach. This research work aimed to estimate what other agents/players think of us in the game. The agent was developed by aggregating strategies of different participants in the AI Wolf competition and thereby learning from them using machine learning. Moreover, the agent created was able to perform much better than other competitors using very basic strategies to show the approach's effectiveness in the Werewolf game. The machine learning technique used here is not restricted to the Werewolf game but may be extended to any game that requires communication and action depending on other participants.
4,530
Calibration Matters: Tackling Maximization Bias in Large-scale Advertising Recommendation Systems
Calibration is defined as the ratio of the average predicted click rate to the true click rate. The optimization of calibration is essential to many online advertising recommendation systems because it directly affects the downstream bids in ads auctions and the amount of money charged to advertisers. Despite its importance, calibration optimization often suffers from a problem called "maximization bias". Maximization bias refers to the phenomenon that the maximum of predicted values overestimates the true maximum. The problem is introduced because the calibration is computed on the set selected by the prediction model itself. It persists even if unbiased predictions can be achieved on every datapoint and worsens when covariate shifts exist between the training and test sets. To mitigate this problem, we theorize the quantification of maximization bias and propose a variance-adjusting debiasing (VAD) meta-algorithm in this paper. The algorithm is efficient, robust, and practical as it is able to mitigate maximization bias problems under covariate shifts, neither incurring additional online serving costs nor compromising the ranking performance. We demonstrate the effectiveness of the proposed algorithm using a state-of-the-art recommendation neural network model on a large-scale real-world dataset.
4,531
Estimation of Entropy in Constant Space with Improved Sample Complexity
Recent work of Acharya et al. (NeurIPS 2019) showed how to estimate the entropy of a distribution $\mathcal D$ over an alphabet of size $k$ up to $\pm\epsilon$ additive error by streaming over $(k/\epsilon^3) \cdot \text{polylog}(1/\epsilon)$ i.i.d. samples and using only $O(1)$ words of memory. In this work, we give a new constant memory scheme that reduces the sample complexity to $(k/\epsilon^2)\cdot \text{polylog}(1/\epsilon)$. We conjecture that this is optimal up to $\text{polylog}(1/\epsilon)$ factors.
4,532
Towards a Holistic View on Argument Quality Prediction
Argumentation is one of society's foundational pillars, and, sparked by advances in NLP and the vast availability of text data, automated mining of arguments receives increasing attention. A decisive property of arguments is their strength or quality. While there are works on the automated estimation of argument strength, their scope is narrow: they focus on isolated datasets and neglect the interactions with related argument mining tasks, such as argument identification, evidence detection, or emotional appeal. In this work, we close this gap by approaching argument quality estimation from multiple different angles: Grounded on rich results from thorough empirical evaluations, we assess the generalization capabilities of argument quality estimation across diverse domains, the interplay with related argument mining tasks, and the impact of emotions on perceived argument strength. We find that generalization depends on a sufficient representation of different domains in the training part. In zero-shot transfer and multi-task experiments, we reveal that argument quality is among the more challenging tasks but can improve others. Finally, we show that emotions play a minor role in argument quality than is often assumed.
4,533
Label-invariant Augmentation for Semi-Supervised Graph Classification
Recently, contrastiveness-based augmentation surges a new climax in the computer vision domain, where some operations, including rotation, crop, and flip, combined with dedicated algorithms, dramatically increase the model generalization and robustness. Following this trend, some pioneering attempts employ the similar idea to graph data. Nevertheless, unlike images, it is much more difficult to design reasonable augmentations without changing the nature of graphs. Although exciting, the current graph contrastive learning does not achieve as promising performance as visual contrastive learning. We conjecture the current performance of graph contrastive learning might be limited by the violation of the label-invariant augmentation assumption. In light of this, we propose a label-invariant augmentation for graph-structured data to address this challenge. Different from the node/edge modification and subgraph extraction, we conduct the augmentation in the representation space and generate the augmented samples in the most difficult direction while keeping the label of augmented data the same as the original samples. In the semi-supervised scenario, we demonstrate our proposed method outperforms the classical graph neural network based methods and recent graph contrastive learning on eight benchmark graph-structured data, followed by several in-depth experiments to further explore the label-invariant augmentation in several aspects.
4,534
Graph Neural Networks Are More Powerful Than we Think
Graph Neural Networks (GNNs) are powerful convolutional architectures that have shown remarkable performance in various node-level and graph-level tasks. Despite their success, the common belief is that the expressive power of GNNs is limited and that they are at most as discriminative as the Weisfeiler-Lehman (WL) algorithm. In this paper we argue the opposite and show that the WL algorithm is the upper bound only when the input to the GNN is the vector of all ones. In this direction, we derive an alternative analysis that employs linear algebraic tools and characterize the representational power of GNNs with respect to the eigenvalue decomposition of the graph operators. We show that GNNs can distinguish between any graphs that differ in at least one eigenvalue and design simple GNN architectures that are provably more expressive than the WL algorithm. Thorough experimental analysis on graph isomorphism and graph classification datasets corroborates our theoretical results and demonstrates the effectiveness of the proposed architectures.
4,535
Improving Multi-Task Generalization via Regularizing Spurious Correlation
Multi-Task Learning (MTL) is a powerful learning paradigm to improve generalization performance via knowledge sharing. However, existing studies find that MTL could sometimes hurt generalization, especially when two tasks are less correlated. One possible reason that hurts generalization is spurious correlation, i.e., some knowledge is spurious and not causally related to task labels, but the model could mistakenly utilize them and thus fail when such correlation changes. In MTL setup, there exist several unique challenges of spurious correlation. First, the risk of having non-causal knowledge is higher, as the shared MTL model needs to encode all knowledge from different tasks, and causal knowledge for one task could be potentially spurious to the other. Second, the confounder between task labels brings in a different type of spurious correlation to MTL. We theoretically prove that MTL is more prone to taking non-causal knowledge from other tasks than single-task learning, and thus generalize worse. To solve this problem, we propose Multi-Task Causal Representation Learning framework, aiming to represent multi-task knowledge via disentangled neural modules, and learn which module is causally related to each task via MTL-specific invariant regularization. Experiments show that it could enhance MTL model's performance by 5.5% on average over Multi-MNIST, MovieLens, Taskonomy, CityScape, and NYUv2, via alleviating spurious correlation problem.
4,536
Causal Discovery and Injection for Feed-Forward Neural Networks
Neural networks have proven to be effective at solving a wide range of problems but it is often unclear whether they learn any meaningful causal relationship: this poses a problem for the robustness of neural network models and their use for high-stakes decisions. We propose a novel method overcoming this issue by injecting knowledge in the form of (possibly partial) causal graphs into feed-forward neural networks, so that the learnt model is guaranteed to conform to the graph, hence adhering to expert knowledge. This knowledge may be given up-front or during the learning process, to improve the model through human-AI collaboration. We apply our method to synthetic and real (tabular) data showing that it is robust against noise and can improve causal discovery and prediction performance in low data regimes.
4,537
Residual Dynamic Mode Decomposition: Robust and verified Koopmanism
Dynamic Mode Decomposition (DMD) describes complex dynamic processes through a hierarchy of simpler coherent features. DMD is regularly used to understand the fundamental characteristics of turbulence and is closely related to Koopman operators. However, verifying the decomposition, equivalently the computed spectral features of Koopman operators, remains a major challenge due to the infinite-dimensional nature of Koopman operators. Challenges include spurious (unphysical) modes, and dealing with continuous spectra, both of which occur regularly in turbulent flows. Residual Dynamic Mode Decomposition (ResDMD), introduced by (Colbrook & Townsend 2021), overcomes some of these challenges through the data-driven computation of residuals associated with the full infinite-dimensional Koopman operator. ResDMD computes spectra and pseudospectra of general Koopman operators with error control, and computes smoothed approximations of spectral measures (including continuous spectra) with explicit high-order convergence theorems. ResDMD thus provides robust and verified Koopmanism. We implement ResDMD and demonstrate its application in a variety of fluid dynamic situations, at varying Reynolds numbers, arising from both numerical and experimental data. Examples include: vortex shedding behind a cylinder; hot-wire data acquired in a turbulent boundary layer; particle image velocimetry data focusing on a wall-jet flow; and acoustic pressure signals of laser-induced plasma. We present some advantages of ResDMD, namely, the ability to verifiably resolve non-linear, transient modes, and spectral calculation with reduced broadening effects. We also discuss how a new modal ordering based on residuals enables greater accuracy with a smaller dictionary than the traditional modulus ordering. This paves the way for greater dynamic compression of large datasets without sacrificing accuracy.
4,538
Understanding Gradient Descent on Edge of Stability in Deep Learning
Deep learning experiments by Cohen et al. [2021] using deterministic Gradient Descent (GD) revealed an Edge of Stability (EoS) phase when learning rate (LR) and sharpness (i.e., the largest eigenvalue of Hessian) no longer behave as in traditional optimization. Sharpness stabilizes around $2/$LR and loss goes up and down across iterations, yet still with an overall downward trend. The current paper mathematically analyzes a new mechanism of implicit regularization in the EoS phase, whereby GD updates due to non-smooth loss landscape turn out to evolve along some deterministic flow on the manifold of minimum loss. This is in contrast to many previous results about implicit bias either relying on infinitesimal updates or noise in gradient. Formally, for any smooth function $L$ with certain regularity condition, this effect is demonstrated for (1) Normalized GD, i.e., GD with a varying LR $\eta_t =\frac{\eta}{|| \nabla L(x(t)) ||}$ and loss $L$; (2) GD with constant LR and loss $\sqrt{L- \min_x L(x)}$. Both provably enter the Edge of Stability, with the associated flow on the manifold minimizing $\lambda_{1}(\nabla^2 L)$. The above theoretical results have been corroborated by an experimental study.
4,539
Overcoming Language Disparity in Online Content Classification with Multimodal Learning
Advances in Natural Language Processing (NLP) have revolutionized the way researchers and practitioners address crucial societal problems. Large language models are now the standard to develop state-of-the-art solutions for text detection and classification tasks. However, the development of advanced computational techniques and resources is disproportionately focused on the English language, sidelining a majority of the languages spoken globally. While existing research has developed better multilingual and monolingual language models to bridge this language disparity between English and non-English languages, we explore the promise of incorporating the information contained in images via multimodal machine learning. Our comparative analyses on three detection tasks focusing on crisis information, fake news, and emotion recognition, as well as five high-resource non-English languages, demonstrate that: (a) detection frameworks based on pre-trained large language models like BERT and multilingual-BERT systematically perform better on the English language compared against non-English languages, and (b) including images via multimodal learning bridges this performance gap. We situate our findings with respect to existing work on the pitfalls of large language models, and discuss their theoretical and practical implications. Resources for this paper are available at https://multimodality-language-disparity.github.io/.
4,540
Diverse Weight Averaging for Out-of-Distribution Generalization
Standard neural networks struggle to generalize under distribution shifts. For out-of-distribution generalization in computer vision, the best current approach averages the weights along a training run. In this paper, we propose Diverse Weight Averaging (DiWA) that makes a simple change to this strategy: DiWA averages the weights obtained from several independent training runs rather than from a single run. Perhaps surprisingly, averaging these weights performs well under soft constraints despite the network's nonlinearities. The main motivation behind DiWA is to increase the functional diversity across averaged models. Indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between DiWA and standard functional ensembling. Moreover, this decomposition highlights that DiWA succeeds when the variance term dominates, which we show happens when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on the competitive DomainBed benchmark without inference overhead.
4,541
Foundation Posteriors for Approximate Probabilistic Inference
Probabilistic programs provide an expressive representation language for generative models. Given a probabilistic program, we are interested in the task of posterior inference: estimating a latent variable given a set of observed variables. Existing techniques for inference in probabilistic programs often require choosing many hyper-parameters, are computationally expensive, and/or only work for restricted classes of programs. Here we formulate inference as masked language modeling: given a program, we generate a supervised dataset of variables and assignments, and randomly mask a subset of the assignments. We then train a neural network to unmask the random values, defining an approximate posterior distribution. By optimizing a single neural network across a range of programs we amortize the cost of training, yielding a ``foundation'' posterior able to do zero-shot inference for new programs. The foundation posterior can also be fine-tuned for a particular program and dataset by optimizing a variational inference objective. We show the efficacy of the approach, zero-shot and fine-tuned, on a benchmark of STAN programs.
4,542
RankGen: Improving Text Generation with Large Ranking Models
Given an input sequence (or prefix), modern language models often assign high probabilities to output sequences that are repetitive, incoherent, or irrelevant to the prefix; as such, model-generated text also contains such artifacts. To address these issues, we present RankGen, an encoder model (1.2B parameters) that scores model generations given a prefix. RankGen can be flexibly incorporated as a scoring function in beam search and used to decode from any pretrained language model. We train RankGen using large-scale contrastive learning to map a prefix close to the ground-truth sequence that follows it and far away from two types of negatives: (1) random sequences from the same document as the prefix, and, which discourage topically-similar but irrelevant generations; (2) sequences generated from a large language model conditioned on the prefix, which discourage repetition and hallucination. Experiments across four different language models (345M-11B parameters) and two domains show that RankGen significantly outperforms decoding algorithms like nucleus, top-k, and typical sampling on both automatic metrics (85.0 vs 77.3 MAUVE) as well as human evaluations with English writers (74.5% human preference over nucleus sampling). Analysis reveals that RankGen outputs are more relevant to the prefix and improve continuity and coherence compared to baselines. We open source our model checkpoints, code, and human preferences with detailed explanations for future research.
4,543
Robust and Efficient Medical Imaging with Self-Supervision
Recent progress in Medical Artificial Intelligence (AI) has delivered systems that can reach clinical expert level performance. However, such systems tend to demonstrate sub-optimal "out-of-distribution" performance when evaluated in clinical settings different from the training environment. A common mitigation strategy is to develop separate systems for each clinical setting using site-specific data [1]. However, this quickly becomes impractical as medical data is time-consuming to acquire and expensive to annotate [2]. Thus, the problem of "data-efficient generalization" presents an ongoing difficulty for Medical AI development. Although progress in representation learning shows promise, their benefits have not been rigorously studied, specifically for out-of-distribution settings. To meet these challenges, we present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI. REMEDIS uses a generic combination of large-scale supervised transfer learning with self-supervised learning and requires little task-specific customization. We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data. REMEDIS exhibits significantly improved in-distribution performance with up to 11.5% relative improvement in diagnostic accuracy over a strong supervised baseline. More importantly, our strategy leads to strong data-efficient generalization of medical imaging AI, matching strong supervised baselines using between 1% to 33% of retraining data across tasks. These results suggest that REMEDIS can significantly accelerate the life-cycle of medical imaging AI development thereby presenting an important step forward for medical imaging AI to deliver broad impact.
4,544
HyperAid: Denoising in hyperbolic spaces for tree-fitting and hierarchical clustering
The problem of fitting distances by tree-metrics has received significant attention in the theoretical computer science and machine learning communities alike, due to many applications in natural language processing, phylogeny, cancer genomics and a myriad of problem areas that involve hierarchical clustering. Despite the existence of several provably exact algorithms for tree-metric fitting of data that inherently obeys tree-metric constraints, much less is known about how to best fit tree-metrics for data whose structure moderately (or substantially) differs from a tree. For such noisy data, most available algorithms perform poorly and often produce negative edge weights in representative trees. Furthermore, it is currently not known how to choose the most suitable approximation objective for noisy fitting. Our contributions are as follows. First, we propose a new approach to tree-metric denoising (HyperAid) in hyperbolic spaces which transforms the original data into data that is ``more'' tree-like, when evaluated in terms of Gromov's $\delta$ hyperbolicity. Second, we perform an ablation study involving two choices for the approximation objective, $\ell_p$ norms and the Dasgupta loss. Third, we integrate HyperAid with schemes for enforcing nonnegative edge-weights. As a result, the HyperAid platform outperforms all other existing methods in the literature, including Neighbor Joining (NJ), TreeRep and T-REX, both on synthetic and real-world data. Synthetic data is represented by edge-augmented trees and shortest-distance metrics while the real-world datasets include Zoo, Iris, Glass, Segmentation and SpamBase; on these datasets, the average improvement with respect to NJ is $125.94\%$.
4,545
Flexible Modeling and Multitask Learning using Differentiable Tree Ensembles
Decision tree ensembles are widely used and competitive learning models. Despite their success, popular toolkits for learning tree ensembles have limited modeling capabilities. For instance, these toolkits support a limited number of loss functions and are restricted to single task learning. We propose a flexible framework for learning tree ensembles, which goes beyond existing toolkits to support arbitrary loss functions, missing responses, and multi-task learning. Our framework builds on differentiable (a.k.a. soft) tree ensembles, which can be trained using first-order methods. However, unlike classical trees, differentiable trees are difficult to scale. We therefore propose a novel tensor-based formulation of differentiable trees that allows for efficient vectorization on GPUs. We perform experiments on a collection of 28 real open-source and proprietary datasets, which demonstrate that our framework can lead to 100x more compact and 23% more expressive tree ensembles than those by popular toolkits.
4,546
Bi-LSTM Scoring Based Similarity Measurement with Agglomerative Hierarchical Clustering (AHC) for Speaker Diarization
Majority of speech signals across different scenarios are never available with well-defined audio segments containing only a single speaker. A typical conversation between two speakers consists of segments where their voices overlap, interrupt each other or halt their speech in between multiple sentences. Recent advancements in diarization technology leverage neural network-based approaches to improvise multiple subsystems of speaker diarization system comprising of extracting segment-wise embedding features and detecting changes in the speaker during conversation. However, to identify speaker through clustering, models depend on methodologies like PLDA to generate similarity measure between two extracted segments from a given conversational audio. Since these algorithms ignore the temporal structure of conversations, they tend to achieve a higher Diarization Error Rate (DER), thus leading to misdetections both in terms of speaker and change identification. Therefore, to compare similarity of two speech segments both independently and sequentially, we propose a Bi-directional Long Short-term Memory network for estimating the elements present in the similarity matrix. Once the similarity matrix is generated, Agglomerative Hierarchical Clustering (AHC) is applied to further identify speaker segments based on thresholding. To evaluate the performance, Diarization Error Rate (DER%) metric is used. The proposed model achieves a low DER of 34.80% on a test set of audio samples derived from ICSI Meeting Corpus as compared to traditional PLDA based similarity measurement mechanism which achieved a DER of 39.90%.
4,547
k-strip: A novel segmentation algorithm in k-space for the application of skull stripping
Objectives: Present a novel deep learning-based skull stripping algorithm for magnetic resonance imaging (MRI) that works directly in the information rich k-space. Materials and Methods: Using two datasets from different institutions with a total of 36,900 MRI slices, we trained a deep learning-based model to work directly with the complex raw k-space data. Skull stripping performed by HD-BET (Brain Extraction Tool) in the image domain were used as the ground truth. Results: Both datasets were very similar to the ground truth (DICE scores of 92\%-98\% and Hausdorff distances of under 5.5 mm). Results on slices above the eye-region reach DICE scores of up to 99\%, while the accuracy drops in regions around the eyes and below, with partially blurred output. The output of k-strip often smoothed edges at the demarcation to the skull. Binary masks are created with an appropriate threshold. Conclusion: With this proof-of-concept study, we were able to show the feasibility of working in the k-space frequency domain, preserving phase information, with consistent results. Future research should be dedicated to discovering additional ways the k-space can be used for innovative image analysis and further workflows.
4,548
Extract Dynamic Information To Improve Time Series Modeling: a Case Study with Scientific Workflow
In modeling time series data, we often need to augment the existing data records to increase the modeling accuracy. In this work, we describe a number of techniques to extract dynamic information about the current state of a large scientific workflow, which could be generalized to other types of applications. The specific task to be modeled is the time needed for transferring a file from an experimental facility to a data center. The key idea of our approach is to find recent past data transfer events that match the current event in some ways. Tests showed that we could identify recent events matching some recorded properties and reduce the prediction error by about 12% compared to the similar models with only static features. We additionally explored an application specific technique to extract information about the data production process, and was able to reduce the average prediction error by 44%.
4,549
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis
Graph neural networks (GNNs) are among the most powerful tools in deep learning. They routinely solve complex problems on unstructured networks, such as node classification, graph classification, or link prediction, with high accuracy. However, both inference and training of GNNs are complex, and they uniquely combine the features of irregular graph processing with dense and regular computations. This complexity makes it very challenging to execute GNNs efficiently on modern massively parallel architectures. To alleviate this, we first design a taxonomy of parallelism in GNNs, considering data and model parallelism, and different forms of pipelining. Then, we use this taxonomy to investigate the amount of parallelism in numerous GNN models, GNN-driven machine learning tasks, software frameworks, or hardware accelerators. We use the work-depth model, and we also assess communication volume and synchronization. We specifically focus on the sparsity/density of the associated tensors, in order to understand how to effectively apply techniques such as vectorization. We also formally analyze GNN pipelining, and we generalize the established Message-Passing class of GNN models to cover arbitrary pipeline depths, facilitating future optimizations. Finally, we investigate different forms of asynchronicity, navigating the path for future asynchronous parallel GNN pipelines. The outcomes of our analysis are synthesized in a set of insights that help to maximize GNN performance, and a comprehensive list of challenges and opportunities for further research into efficient GNN computations. Our work will help to advance the design of future GNNs.
4,550
Neural network topological snake models for locating general phase diagrams
Machine learning for locating phase diagram has received intensive research interest in recent years. However, its application in automatically locating phase diagram is limited to single closed phase boundary. In this paper, in order to locate phase diagrams with multiple phases and complex boundaries, we introduce (i) a network-shaped snake model and (ii) a topologically transformable snake with discriminative cooperative networks, respectively. The phase diagrams of both quantum and classical spin-1 model are obtained. Our method is flexible to determine the phase diagram with just snapshots of configurations from the cold-atom or other experiments.
4,551
ArabGlossBERT: Fine-Tuning BERT on Context-Gloss Pairs for WSD
Using pre-trained transformer models such as BERT has proven to be effective in many NLP tasks. This paper presents our work to fine-tune BERT models for Arabic Word Sense Disambiguation (WSD). We treated the WSD task as a sentence-pair binary classification task. First, we constructed a dataset of labeled Arabic context-gloss pairs (~167k pairs) we extracted from the Arabic Ontology and the large lexicographic database available at Birzeit University. Each pair was labeled as True or False and target words in each context were identified and annotated. Second, we used this dataset for fine-tuning three pre-trained Arabic BERT models. Third, we experimented the use of different supervised signals used to emphasize target words in context. Our experiments achieved promising results (accuracy of 84%) although we used a large set of senses in the experiment.
4,552
Dexterous Robotic Manipulation using Deep Reinforcement Learning and Knowledge Transfer for Complex Sparse Reward-based Tasks
This paper describes a deep reinforcement learning (DRL) approach that won Phase 1 of the Real Robot Challenge (RRC) 2021, and then extends this method to a more difficult manipulation task. The RRC consisted of using a TriFinger robot to manipulate a cube along a specified positional trajectory, but with no requirement for the cube to have any specific orientation. We used a relatively simple reward function, a combination of goal-based sparse reward and distance reward, in conjunction with Hindsight Experience Replay (HER) to guide the learning of the DRL agent (Deep Deterministic Policy Gradient (DDPG)). Our approach allowed our agents to acquire dexterous robotic manipulation strategies in simulation. These strategies were then applied to the real robot and outperformed all other competition submissions, including those using more traditional robotic control techniques, in the final evaluation stage of the RRC. Here we extend this method, by modifying the task of Phase 1 of the RRC to require the robot to maintain the cube in a particular orientation, while the cube is moved along the required positional trajectory. The requirement to also orient the cube makes the agent unable to learn the task through blind exploration due to increased problem complexity. To circumvent this issue, we make novel use of a Knowledge Transfer (KT) technique that allows the strategies learned by the agent in the original task (which was agnostic to cube orientation) to be transferred to this task (where orientation matters). KT allowed the agent to learn and perform the extended task in the simulator, which improved the average positional deviation from 0.134 m to 0.02 m, and average orientation deviation from 142{\deg} to 76{\deg} during evaluation. This KT concept shows good generalisation properties and could be applied to any actor-critic learning algorithm.
4,553
Metrics of calibration for probabilistic predictions
Predictions are often probabilities; e.g., a prediction could be for precipitation tomorrow, but with only a 30% chance. Given such probabilistic predictions together with the actual outcomes, "reliability diagrams" help detect and diagnose statistically significant discrepancies -- so-called "miscalibration" -- between the predictions and the outcomes. The canonical reliability diagrams histogram the observed and expected values of the predictions; replacing the hard histogram binning with soft kernel density estimation is another common practice. But, which widths of bins or kernels are best? Plots of the cumulative differences between the observed and expected values largely avoid this question, by displaying miscalibration directly as the slopes of secant lines for the graphs. Slope is easy to perceive with quantitative precision, even when the constant offsets of the secant lines are irrelevant; there is no need to bin or perform kernel density estimation. The existing standard metrics of miscalibration each summarize a reliability diagram as a single scalar statistic. The cumulative plots naturally lead to scalar metrics for the deviation of the graph of cumulative differences away from zero; good calibration corresponds to a horizontal, flat graph which deviates little from zero. The cumulative approach is currently unconventional, yet offers many favorable statistical properties, guaranteed via mathematical theory backed by rigorous proofs and illustrative numerical examples. In particular, metrics based on binning or kernel density estimation unavoidably must trade-off statistical confidence for the ability to resolve variations as a function of the predicted probability or vice versa. Widening the bins or kernels averages away random noise while giving up some resolving power. Narrowing the bins or kernels enhances resolving power while not averaging away as much noise.
4,554
Semi-Supervised Learning for Image Classification using Compact Networks in the BioMedical Context
The development of mobile and on the edge applications that embed deep convolutional neural models has the potential to revolutionise biomedicine. However, most deep learning models require computational resources that are not available in smartphones or edge devices; an issue that can be faced by means of compact models. The problem with such models is that they are, at least usually, less accurate than bigger models. In this work, we study how this limitation can be addressed with the application of semi-supervised learning techniques. We conduct several statistical analyses to compare performance of deep compact architectures when trained using semi-supervised learning methods for tackling image classification tasks in the biomedical context. In particular, we explore three families of compact networks, and two families of semi-supervised learning techniques for 10 biomedical tasks. By combining semi-supervised learning methods with compact networks, it is possible to obtain a similar performance to standard size networks. In general, the best results are obtained when combining data distillation with MixNet, and plain distillation with ResNet-18. Also, in general, NAS networks obtain better results than manually designed networks and quantized networks. The work presented in this paper shows the benefits of apply semi-supervised methods to compact networks; this allow us to create compact models that are not only as accurate as standard size models, but also faster and lighter. Finally, we have developed a library that simplifies the construction of compact models using semi-supervised learning methods.
4,555
Beyond Greedy Search: Tracking by Multi-Agent Reinforcement Learning-based Beam Search
To track the target in a video, current visual trackers usually adopt greedy search for target object localization in each frame, that is, the candidate region with the maximum response score will be selected as the tracking result of each frame. However, we found that this may be not an optimal choice, especially when encountering challenging tracking scenarios such as heavy occlusion and fast motion. To address this issue, we propose to maintain multiple tracking trajectories and apply beam search strategy for visual tracking, so that the trajectory with fewer accumulated errors can be identified. Accordingly, this paper introduces a novel multi-agent reinforcement learning based beam search tracking strategy, termed BeamTracking. It is mainly inspired by the image captioning task, which takes an image as input and generates diverse descriptions using beam search algorithm. Accordingly, we formulate the tracking as a sample selection problem fulfilled by multiple parallel decision-making processes, each of which aims at picking out one sample as their tracking result in each frame. Each maintained trajectory is associated with an agent to perform the decision-making and determine what actions should be taken to update related information. When all the frames are processed, we select the trajectory with the maximum accumulated score as the tracking result. Extensive experiments on seven popular tracking benchmark datasets validated the effectiveness of the proposed algorithm.
4,556
Disentangling Active and Passive Cosponsorship in the U.S. Congress
In the U.S. Congress, legislators can use active and passive cosponsorship to support bills. We show that these two types of cosponsorship are driven by two different motivations: the backing of political colleagues and the backing of the bill's content. To this end, we develop an Encoder+RGCN based model that learns legislator representations from bill texts and speech transcripts. These representations predict active and passive cosponsorship with an F1-score of 0.88. Applying our representations to predict voting decisions, we show that they are interpretable and generalize to unseen tasks.
4,557
Detect Professional Malicious User with Metric Learning in Recommender Systems
In e-commerce, online retailers are usually suffering from professional malicious users (PMUs), who utilize negative reviews and low ratings to their consumed products on purpose to threaten the retailers for illegal profits. Specifically, there are three challenges for PMU detection: 1) professional malicious users do not conduct any abnormal or illegal interactions (they never concurrently leave too many negative reviews and low ratings at the same time), and they conduct masking strategies to disguise themselves. Therefore, conventional outlier detection methods are confused by their masking strategies. 2) the PMU detection model should take both ratings and reviews into consideration, which makes PMU detection a multi-modal problem. 3) there are no datasets with labels for professional malicious users in public, which makes PMU detection an unsupervised learning problem. To this end, we propose an unsupervised multi-modal learning model: MMD, which employs Metric learning for professional Malicious users Detection with both ratings and reviews. MMD first utilizes a modified RNN to project the informational review into a sentiment score, which jointly considers the ratings and reviews. Then professional malicious user profiling (MUP) is proposed to catch the sentiment gap between sentiment scores and ratings. MUP filters the users and builds a candidate PMU set. We apply a metric learning-based clustering to learn a proper metric matrix for PMU detection. Finally, we can utilize this metric and labeled users to detect PMUs. Specifically, we apply the attention mechanism in metric learning to improve the model's performance. The extensive experiments in four datasets demonstrate that our proposed method can solve this unsupervised detection problem. Moreover, the performance of the state-of-the-art recommender models is enhanced by taking MMD as a preprocessing stage.
4,558
Semi-WTC: A Practical Semi-supervised Framework for Attack Categorization through Weight-Task Consistency
Supervised learning has been widely used for attack detection, which requires large amounts of high-quality data and labels. However, the data is often imbalanced and sufficient annotations are difficult to obtain. Moreover, these supervised models are subject to real-world deployment issues, such as defending against unseen artificial attacks. We propose a semi-supervised fine-grained attack categorization framework consisting of an encoder and a two-branch structure to integrate information from labeled and unlabeled data to tackle these practical challenges. This framework can be generalized to different supervised models. The multilayer perceptron with residual connection and batch normalization is used as the encoder to extract features and reduce the complexity. The Recurrent Prototype Module (RPM) is proposed to train the encoder effectively in a semi-supervised manner. To alleviate the problem of data imbalance, we introduce the Weight-Task Consistency (WTC) into the iterative process of RPM by assigning larger weights to classes with fewer samples in the loss function. In addition, to cope with new attacks in real-world deployment, we further propose an Active Adaption Resampling (AAR) method, which can better discover the distribution of the unseen sample data and adapt the parameters of the encoder. Experimental results show that our model outperforms the state-of-the-art semi-supervised attack detection methods with a general 5% improvement in classification accuracy and a 90% reduction in training time.
4,559
The AI Mechanic: Acoustic Vehicle Characterization Neural Networks
In a world increasingly dependent on road-based transportation, it is essential to understand vehicles. We introduce the AI mechanic, an acoustic vehicle characterization deep learning system, as an integrated approach using sound captured from mobile devices to enhance transparency and understanding of vehicles and their condition for non-expert users. We develop and implement novel cascading architectures for vehicle understanding, which we define as sequential, conditional, multi-level networks that process raw audio to extract highly-granular insights. To showcase the viability of cascading architectures, we build a multi-task convolutional neural network that predicts and cascades vehicle attributes to enhance fault detection. We train and test these models on a synthesized dataset reflecting more than 40 hours of augmented audio and achieve >92% validation set accuracy on attributes (fuel type, engine configuration, cylinder count and aspiration type). Our cascading architecture additionally achieved 93.6% validation and 86.8% test set accuracy on misfire fault prediction, demonstrating margins of 16.4% / 7.8% and 4.2% / 1.5% improvement over na\"ive and parallel baselines. We explore experimental studies focused on acoustic features, data augmentation, feature fusion, and data reliability. Finally, we conclude with a discussion of broader implications, future directions, and application areas for this work.
4,560
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
We analyze feature learning in infinite width neural networks trained with gradient flow through a self-consistent dynamical field theory. We construct a collection of deterministic dynamical order parameters which are inner-product kernels for hidden unit activations and gradients in each layer at pairs of time points, providing a reduced description of network activity through training. These kernel order parameters collectively define the hidden layer activation distribution, the evolution of the neural tangent kernel, and consequently output predictions. For deep linear networks, these kernels satisfy a set of algebraic matrix equations. For nonlinear networks, we provide an alternating sampling procedure to self-consistently solve for the kernel order parameters. We provide comparisons of the self-consistent solution to various approximation schemes including the static NTK approximation, gradient independence assumption, and leading order perturbation theory, showing that each of these approximations can break down in regimes where general self-consistent solutions still provide an accurate description. Lastly, we provide experiments in more realistic settings which demonstrate that the loss and kernel dynamics of CNNs at fixed feature learning strength is preserved across different widths on a CIFAR classification task.
4,561
Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT
This paper presents Wojood, a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. Wojood consists of about 550K Modern Standard Arabic (MSA) and dialect tokens that are manually annotated with 21 entity types including person, organization, location, event and date. More importantly, the corpus is annotated with nested entities instead of the more common flat annotations. The data contains about 75K entities and 22.5% of which are nested. The inter-annotator evaluation of the corpus demonstrated a strong agreement with Cohen's Kappa of 0.979 and an F1-score of 0.976. To validate our data, we used the corpus to train a nested NER model based on multi-task learning and AraBERT (Arabic BERT). The model achieved an overall micro F1-score of 0.884. Our corpus, the annotation guidelines, the source code and the pre-trained model are publicly available.
4,562
Are Graph Representation Learning Methods Robust to Graph Sparsity and Asymmetric Node Information?
The growing popularity of Graph Representation Learning (GRL) methods has resulted in the development of a large number of models applied to a miscellany of domains. Behind this diversity of domains, there is a strong heterogeneity of graphs, making it difficult to estimate the expected performance of a model on a new graph, especially when the graph has distinctive characteristics that have not been encountered in the benchmark yet. To address this, we have developed an experimental pipeline, to assess the impact of a given property on the models performances. In this paper, we use this pipeline to study the effect of two specificities encountered on banks transactional graphs resulting from the partial view a bank has on all the individuals and transactions carried out on the market. These specific features are graph sparsity and asymmetric node information. This study demonstrates the robustness of GRL methods to these distinctive characteristics. We believe that this work can ease the evaluation of GRL methods to specific characteristics and foster the development of such methods on transactional graphs.
4,563
The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization
In this paper, we study the fundamental open question of finding the optimal high-order algorithm for solving smooth convex minimization problems. Arjevani et al. (2019) established the lower bound $\Omega\left(\epsilon^{-2/(3p+1)}\right)$ on the number of the $p$-th order oracle calls required by an algorithm to find an $\epsilon$-accurate solution to the problem, where the $p$-th order oracle stands for the computation of the objective function value and the derivatives up to the order $p$. However, the existing state-of-the-art high-order methods of Gasnikov et al. (2019b); Bubeck et al. (2019); Jiang et al. (2019) achieve the oracle complexity $\mathcal{O}\left(\epsilon^{-2/(3p+1)} \log (1/\epsilon)\right)$, which does not match the lower bound. The reason for this is that these algorithms require performing a complex binary search procedure, which makes them neither optimal nor practical. We fix this fundamental issue by providing the first algorithm with $\mathcal{O}\left(\epsilon^{-2/(3p+1)}\right)$ $p$-th order oracle complexity.
4,564
Certified Error Control of Candidate Set Pruning for Two-Stage Relevance Ranking
In information retrieval (IR), candidate set pruning has been commonly used to speed up two-stage relevance ranking. However, such an approach lacks accurate error control and often trades accuracy off against computational efficiency in an empirical fashion, lacking theoretical guarantees. In this paper, we propose the concept of certified error control of candidate set pruning for relevance ranking, which means that the test error after pruning is guaranteed to be controlled under a user-specified threshold with high probability. Both in-domain and out-of-domain experiments show that our method successfully prunes the first-stage retrieved candidate sets to improve the second-stage reranking speed while satisfying the pre-specified accuracy constraints in both settings. For example, on MS MARCO Passage v1, our method yields an average candidate set size of 27 out of 1,000 which increases the reranking speed by about 37 times, while the MRR@10 is greater than a pre-specified value of 0.38 with about 90% empirical coverage and the empirical baselines fail to provide such guarantee. Code and data are available at: https://github.com/alexlimh/CEC-Ranking.
4,565
What killed the Convex Booster ?
A landmark negative result of Long and Servedio established a worst-case spectacular failure of a supervised learning trio (loss, algorithm, model) otherwise praised for its high precision machinery. Hundreds of papers followed up on the two suspected culprits: the loss (for being convex) and/or the algorithm (for fitting a classical boosting blueprint). Here, we call to the half-century+ founding theory of losses for class probability estimation (properness), an extension of Long and Servedio's results and a new general boosting algorithm to demonstrate that the real culprit in their specific context was in fact the (linear) model class. We advocate for a more general stanpoint on the problem as we argue that the source of the negative result lies in the dark side of a pervasive -- and otherwise prized -- aspect of ML: \textit{parameterisation}.
4,566
Focused Adversarial Attacks
Recent advances in machine learning show that neural models are vulnerable to minimally perturbed inputs, or adversarial examples. Adversarial algorithms are optimization problems that minimize the accuracy of ML models by perturbing inputs, often using a model's loss function to craft such perturbations. State-of-the-art object detection models are characterized by very large output manifolds due to the number of possible locations and sizes of objects in an image. This leads to their outputs being sparse and optimization problems that use them incur a lot of unnecessary computation. We propose to use a very limited subset of a model's learned manifold to compute adversarial examples. Our \textit{Focused Adversarial Attacks} (FA) algorithm identifies a small subset of sensitive regions to perform gradient-based adversarial attacks. FA is significantly faster than other gradient-based attacks when a model's manifold is sparsely activated. Also, its perturbations are more efficient than other methods under the same perturbation constraints. We evaluate FA on the COCO 2017 and Pascal VOC 2007 detection datasets.
4,567
What Is Fairness? Implications For FairML
A growing body of literature in fairness-aware ML (fairML) aspires to mitigate machine learning (ML)-related unfairness in automated decision making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods that ensure that trained ML models achieve low values in those measures. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a considerable gap between centuries of philosophical discussion and recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the evaluation of ML models in ADM systems. We derive that fairness problems can already arise without the presence of protected attributes, pointing out that fairness and predictive performance are not irreconcilable counterparts, but rather that the latter is necessary to achieve the former. Moreover, we argue why and how causal considerations are necessary when assessing fairness in the presence of protected attributes. Eventually, we achieve greater linguistic clarity for the discussion of fairML by clearly assigning responsibilities to stakeholders inside and outside ML.
4,568
Towards a Theory of Faithfulness: Faithful Explanations of Differentiable Classifiers over Continuous Data
There is broad agreement in the literature that explanation methods should be faithful to the model that they explain, but faithfulness remains a rather vague term. We revisit faithfulness in the context of continuous data and propose two formal definitions of faithfulness for feature attribution methods. Qualitative faithfulness demands that scores reflect the true qualitative effect (positive vs. negative) of the feature on the model and quanitative faithfulness that the magnitude of scores reflect the true quantitative effect. We discuss under which conditions these requirements can be satisfied to which extent (local vs global). As an application of the conceptual idea, we look at differentiable classifiers over continuous data and characterize Gradient-scores as follows: every qualitatively faithful feature attribution method is qualitatively equivalent to Gradient-scores. Furthermore, if an attribution method is quantitatively faithful in the sense that changes of the output of the classifier are proportional to the scores of features, then it is either equivalent to gradient-scoring or it is based on an inferior approximation of the classifier. To illustrate the practical relevance of the theory, we experimentally demonstrate that popular attribution methods can fail to give faithful explanations in the setting where the data is continuous and the classifier differentiable.
4,569
Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification
The reliability of neural networks is essential for their use in safety-critical applications. Existing approaches generally aim at improving the robustness of neural networks to either real-world distribution shifts (e.g., common corruptions and perturbations, spatial transformations, and natural adversarial examples) or worst-case distribution shifts (e.g., optimized adversarial examples). In this work, we propose the Decision Region Quantification (DRQ) algorithm to improve the robustness of any differentiable pre-trained model against both real-world and worst-case distribution shifts in the data. DRQ analyzes the robustness of local decision regions in the vicinity of a given data point to make more reliable predictions. We theoretically motivate the DRQ algorithm by showing that it effectively smooths spurious local extrema in the decision surface. Furthermore, we propose an implementation using targeted and untargeted adversarial attacks. An extensive empirical evaluation shows that DRQ increases the robustness of adversarially and non-adversarially trained models against real-world and worst-case distribution shifts on several computer vision benchmark datasets.
4,570
A Topological Approach for Semi-Supervised Learning
Nowadays, Machine Learning and Deep Learning methods have become the state-of-the-art approach to solve data classification tasks. In order to use those methods, it is necessary to acquire and label a considerable amount of data; however, this is not straightforward in some fields, since data annotation is time consuming and might require expert knowledge. This challenge can be tackled by means of semi-supervised learning methods that take advantage of both labelled and unlabelled data. In this work, we present new semi-supervised learning methods based on techniques from Topological Data Analysis (TDA), a field that is gaining importance for analysing large amounts of data with high variety and dimensionality. In particular, we have created two semi-supervised learning methods following two different topological approaches. In the former, we have used a homological approach that consists in studying the persistence diagrams associated with the data using the Bottleneck and Wasserstein distances. In the latter, we have taken into account the connectivity of the data. In addition, we have carried out a thorough analysis of the developed methods using 3 synthetic datasets, 5 structured datasets, and 2 datasets of images. The results show that the semi-supervised methods developed in this work outperform both the results obtained with models trained with only manually labelled data, and those obtained with classical semi-supervised learning methods, reaching improvements of up to a 16%.
4,571
Women, artificial intelligence, and key positions in collaboration networks: Towards a more equal scientific ecosystem
Scientific collaboration in almost every discipline is mainly driven by the need of sharing knowledge, expertise, and pooled resources. Science is becoming more complex which has encouraged scientists to involve more in collaborative research projects in order to better address the challenges. As a highly interdisciplinary field with a rapidly evolving scientific landscape, artificial intelligence calls for researchers with special profiles covering a diverse set of skills and expertise. Understanding gender aspects of scientific collaboration is of paramount importance, especially in a field such as artificial intelligence that has been attracting large investments. Using social network analysis, natural language processing, and machine learning and focusing on artificial intelligence publications for the period from 2000 to 2019, in this work, we comprehensively investigated the effects of several driving factors on acquiring key positions in scientific collaboration networks through a gender lens. It was found that, regardless of gender, scientific performance in terms of quantity and impact plays a crucial in possessing the "social researcher" in the network. However, subtle differences were observed between female and male researchers in acquiring the "local influencer" role.
4,572
EXACT: How to Train Your Accuracy
Classification tasks are usually evaluated in terms of accuracy. However, accuracy is discontinuous and cannot be directly optimized using gradient ascent. Popular methods minimize cross-entropy, Hinge loss, or other surrogate losses, which can lead to suboptimal results. In this paper, we propose a new optimization framework by introducing stochasticity to a model's output and optimizing expected accuracy, i.e. accuracy of the stochastic model. Extensive experiments on image classification show that the proposed optimization method is a powerful alternative to widely used classification losses.
4,573
CLCNet: Rethinking of Ensemble Modeling with Classification Confidence Network
In this paper, we propose a Classification Confidence Network (CLCNet) that can determine whether the classification model classifies input samples correctly. It can take a classification result in the form of vector in any dimension, and return a confidence score as output, which represents the probability of an instance being classified correctly. We can utilize CLCNet in a simple cascade structure system consisting of several SOTA (state-of-the-art) classification models, and our experiments show that the system can achieve the following advantages: 1. The system can customize the average computation requirement (FLOPs) per image while inference. 2. Under the same computation requirement, the performance of the system can exceed any model that has identical structure with the model in the system, but different in size. In fact, this is a new type of ensemble modeling. Like general ensemble modeling, it can achieve higher performance than single classification model, yet our system requires much less computation than general ensemble modeling. We have uploaded our code to a github repository: https://github.com/yaoching0/CLCNet-Rethinking-of-Ensemble-Modeling.
4,574
Learning Energy Networks with Generalized Fenchel-Young Losses
Energy-based models, a.k.a. energy networks, perform inference by optimizing an energy function, typically parametrized by a neural network. This allows one to capture potentially complex relationships between inputs and outputs. To learn the parameters of the energy function, the solution to that optimization problem is typically fed into a loss function. The key challenge for training energy networks lies in computing loss gradients, as this typically requires argmin/argmax differentiation. In this paper, building upon a generalized notion of conjugate function, which replaces the usual bilinear pairing with a general energy function, we propose generalized Fenchel-Young losses, a natural loss construction for learning energy networks. Our losses enjoy many desirable properties and their gradients can be computed efficiently without argmin/argmax differentiation. We also prove the calibration of their excess risk in the case of linear-concave energies. We demonstrate our losses on multilabel classification and imitation learning tasks.
4,575
How catastrophic can catastrophic forgetting be in linear regression?
To better understand catastrophic forgetting, we study fitting an overparameterized linear model to a sequence of tasks with different input distributions. We analyze how much the model forgets the true labels of earlier tasks after training on subsequent tasks, obtaining exact expressions and bounds. We establish connections between continual learning in the linear setting and two other research areas: alternating projections and the Kaczmarz method. In specific settings, we highlight differences between forgetting and convergence to the offline solution as studied in those areas. In particular, when T tasks in d dimensions are presented cyclically for k iterations, we prove an upper bound of T^2 * min{1/sqrt(k), d/k} on the forgetting. This stands in contrast to the convergence to the offline solution, which can be arbitrarily slow according to existing alternating projection results. We further show that the T^2 factor can be lifted when tasks are presented in a random ordering.
4,576
Discovering Dynamic Functional Brain Networks via Spatial and Channel-wise Attention
Using deep learning models to recognize functional brain networks (FBNs) in functional magnetic resonance imaging (fMRI) has been attracting increasing interest recently. However, most existing work focuses on detecting static FBNs from entire fMRI signals, such as correlation-based functional connectivity. Sliding-window is a widely used strategy to capture the dynamics of FBNs, but it is still limited in representing intrinsic functional interactive dynamics at each time step. And the number of FBNs usually need to be set manually. More over, due to the complexity of dynamic interactions in brain, traditional linear and shallow models are insufficient in identifying complex and spatially overlapped FBNs across each time step. In this paper, we propose a novel Spatial and Channel-wise Attention Autoencoder (SCAAE) for discovering FBNs dynamically. The core idea of SCAAE is to apply attention mechanism to FBNs construction. Specifically, we designed two attention modules: 1) spatial-wise attention (SA) module to discover FBNs in the spatial domain and 2) a channel-wise attention (CA) module to weigh the channels for selecting the FBNs automatically. We evaluated our approach on ADHD200 dataset and our results indicate that the proposed SCAAE method can effectively recover the dynamic changes of the FBNs at each fMRI time step, without using sliding windows. More importantly, our proposed hybrid attention modules (SA and CA) do not enforce assumptions of linearity and independence as previous methods, and thus provide a novel approach to better understanding dynamic functional brain networks.
4,577
Learning Graph Structure from Convolutional Mixtures
Machine learning frameworks such as graph neural networks typically rely on a given, fixed graph to exploit relational inductive biases and thus effectively learn from network data. However, when said graphs are (partially) unobserved, noisy, or dynamic, the problem of inferring graph structure from data becomes relevant. In this paper, we postulate a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem. In lieu of eigendecomposition-based spectral methods or iterative optimization solutions, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN). GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive. We corroborate GDN's superior graph recovery performance and its generalization to larger graphs using synthetic data in supervised settings. Furthermore, we demonstrate the robustness and representation power of GDNs on real world neuroimaging and social network datasets.
4,578
Jacobian Granger Causal Neural Networks for Analysis of Stationary and Nonstationary Data
Granger causality is a commonly used method for uncovering information flow and dependencies in a time series. Here we introduce JGC (Jacobian Granger Causality), a neural network-based approach to Granger causality using the Jacobian as a measure of variable importance, and propose a thresholding procedure for inferring Granger causal variables using this measure. The resulting approach performs consistently well compared to other approaches in identifying Granger causal variables, the associated time lags, as well as interaction signs. Lastly, through the inclusion of a time variable, we show that this approach is able to learn the temporal dependencies for nonstationary systems whose Granger causal structures change in time.
4,579
Provably Precise, Succinct and Efficient Explanations for Decision Trees
Decision trees (DTs) embody interpretable classifiers. DTs have been advocated for deployment in high-risk applications, but also for explaining other complex classifiers. Nevertheless, recent work has demonstrated that predictions in DTs ought to be explained with rigorous approaches. Although rigorous explanations can be computed in polynomial time for DTs, their size may be beyond the cognitive limits of human decision makers. This paper investigates the computation of {\delta}-relevant sets for DTs. {\delta}-relevant sets denote explanations that are succinct and provably precise. These sets represent generalizations of rigorous explanations, which are precise with probability one, and so they enable trading off explanation size for precision. The paper proposes two logic encodings for computing smallest {\delta}-relevant sets for DTs. The paper further devises a polynomial-time algorithm for computing {\delta}-relevant sets which are not guaranteed to be subset-minimal, but for which the experiments show to be most often subset-minimal in practice. The experimental results also demonstrate the practical efficiency of computing smallest {\delta}-relevant sets.
4,580
Automatic Spoken Language Identification using a Time-Delay Neural Network
Closed-set spoken language identification is the task of recognizing the language being spoken in a recorded audio clip from a set of known languages. In this study, a language identification system was built and trained to distinguish between Arabic, Spanish, French, and Turkish based on nothing more than recorded speech. A pre-existing multilingual dataset was used to train a series of acoustic models based on the Tedlium TDNN model to perform automatic speech recognition. The system was provided with a custom multilingual language model and a specialized pronunciation lexicon with language names prepended to phones. The trained model was used to generate phone alignments to test data from all four languages, and languages were predicted based on a voting scheme choosing the most common language prepend in an utterance. Accuracy was measured by comparing predicted languages to known languages, and was determined to be very high in identifying Spanish and Arabic, and somewhat lower in identifying Turkish and French.
4,581
Hybrid Intelligent Testing in Simulation-Based Verification
Efficient and effective testing for simulation-based hardware verification is challenging. Using constrained random test generation, several millions of tests may be required to achieve coverage goals. The vast majority of tests do not contribute to coverage progress, yet they consume verification resources. In this paper, we propose a hybrid intelligent testing approach combining two methods that have previously been treated separately, namely Coverage-Directed Test Selection and Novelty-Driven Verification. Coverage-Directed Test Selection learns from coverage feedback to bias testing towards the most effective tests. Novelty-Driven Verification learns to identify and simulate stimuli that differ from previous stimuli, thereby reducing the number of simulations and increasing testing efficiency. We discuss the strengths and limitations of each method, and we show how our approach addresses each method's limitations, leading to hardware testing that is both efficient and effective.
4,582
Data Valuation for Offline Reinforcement Learning
The success of deep reinforcement learning (DRL) hinges on the availability of training data, which is typically obtained via a large number of environment interactions. In many real-world scenarios, costs and risks are associated with gathering these data. The field of offline reinforcement learning addresses these issues through outsourcing the collection of data to a domain expert or a carefully monitored program and subsequently searching for a batch-constrained optimal policy. With the emergence of data markets, an alternative to constructing a dataset in-house is to purchase external data. However, while state-of-the-art offline reinforcement learning approaches have shown a lot of promise, they currently rely on carefully constructed datasets that are well aligned with the intended target domains. This raises questions regarding the transferability and robustness of an offline reinforcement learning agent trained on externally acquired data. In this paper, we empirically evaluate the ability of the current state-of-the-art offline reinforcement learning approaches to coping with the source-target domain mismatch within two MuJoCo environments, finding that current state-of-the-art offline reinforcement learning algorithms underperform in the target domain. To address this, we propose data valuation for offline reinforcement learning (DVORL), which allows us to identify relevant and high-quality transitions, improving the performance and transferability of policies learned by offline reinforcement learning algorithms. The results show that our method outperforms offline reinforcement learning baselines on two MuJoCo environments.
4,583
ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Directed evolution is a versatile technique in protein engineering that mimics the process of natural selection by iteratively alternating between mutagenesis and screening in order to search for sequences that optimize a given property of interest, such as catalytic activity and binding affinity to a specified target. However, the space of possible proteins is too large to search exhaustively in the laboratory, and functional proteins are scarce in the vast sequence space. Machine learning (ML) approaches can accelerate directed evolution by learning to map protein sequences to functions without building a detailed model of the underlying physics, chemistry and biological pathways. Despite the great potentials held by these ML methods, they encounter severe challenges in identifying the most suitable sequences for a targeted function. These failures can be attributed to the common practice of adopting a high-dimensional feature representation for protein sequences and inefficient search methods. To address these issues, we propose an efficient, experimental design-oriented closed-loop optimization framework for protein directed evolution, termed ODBO, which employs a combination of novel low-dimensional protein encoding strategy and Bayesian optimization enhanced with search space prescreening via outlier detection. We further design an initial sample selection strategy to minimize the number of experimental samples for training ML models. We conduct and report four protein directed evolution experiments that substantiate the capability of the proposed framework for finding of the variants with properties of interest. We expect the ODBO framework to greatly reduce the experimental cost and time cost of directed evolution, and can be further generalized as a powerful tool for adaptive experimental design in a broader context.
4,584
Closing the gap: Exact maximum likelihood training of generative autoencoders using invertible layers
In this work, we provide an exact likelihood alternative to the variational training of generative autoencoders. We show that VAE-style autoencoders can be constructed using invertible layers, which offer a tractable exact likelihood without the need for any regularization terms. This is achieved while leaving complete freedom in the choice of encoder, decoder and prior architectures, making our approach a drop-in replacement for the training of existing VAEs and VAE-style models. We refer to the resulting models as Autoencoders within Flows (AEF), since the encoder, decoder and prior are defined as individual layers of an overall invertible architecture. We show that the approach results in strikingly higher performance than architecturally equivalent VAEs in term of log-likelihood, sample quality and denoising performance. In a broad sense, the main ambition of this work is to close the gap between the normalizing flow and autoencoder literature under the common framework of invertibility and exact maximum likelihood.
4,585
Parallel bandit architecture based on laser chaos for reinforcement learning
Accelerating artificial intelligence by photonics is an active field of study aiming to exploit the unique properties of photons. Reinforcement learning is an important branch of machine learning, and photonic decision-making principles have been demonstrated with respect to the multi-armed bandit problems. However, reinforcement learning could involve a massive number of states, unlike previously demonstrated bandit problems where the number of states is only one. Q-learning is a well-known approach in reinforcement learning that can deal with many states. The architecture of Q-learning, however, does not fit well photonic implementations due to its separation of update rule and the action selection. In this study, we organize a new architecture for multi-state reinforcement learning as a parallel array of bandit problems in order to benefit from photonic decision-makers, which we call parallel bandit architecture for reinforcement learning or PBRL in short. Taking a cart-pole balancing problem as an instance, we demonstrate that PBRL adapts to the environment in fewer time steps than Q-learning. Furthermore, PBRL yields faster adaptation when operated with a chaotic laser time series than the case with uniformly distributed pseudorandom numbers where the autocorrelation inherent in the laser chaos provides a positive effect. We also find that the variety of states that the system undergoes during the learning phase exhibits completely different properties between PBRL and Q-learning. The insights obtained through the present study are also beneficial for existing computing platforms, not just photonic realizations, in accelerating performances by the PBRL algorithms and correlated random sequences.
4,586
Data-driven prediction of Air Traffic Controllers reactions to resolving conflicts
With the aim to enhance automation in conflict detection and resolution (CD&R) tasks in the Air Traffic Management domain, in this paper we propose deep learning techniques (DL) that can learn models of Air Traffic Controllers' (ATCO) reactions in resolving conflicts that can violate separation minimum constraints among aircraft trajectories: This implies learning when the ATCO will react towards resolving a conflict, and how he/she will react. Timely reactions, to which this paper aims, focus on when do reactions happen, aiming to predict the trajectory points, as the trajectory evolves, that the ATCO issues a conflict resolution action, while also predicting the type of resolution action (if any). Towards this goal, the paper formulates the ATCO reactions prediction problem for CD&R, and presents DL methods that can model ATCO timely reactions and evaluates these methods in real-world data sets, showing their efficacy in prediction with very high accuracy.
4,587
IFTT-PIN: A PIN-Entry Method Leveraging the Self-Calibration Paradigm
IFTT-PIN is a self-calibrating version of the PIN-entry method introduced in Roth et al. (2004) [1]. In [1], digits are split into two sets and assigned a color respectively. To communicate their digit, users press the button with the same color that is assigned to their digit, which can thus be identified by elimination after a few iterations. IFTT-PIN uses the same principle but does not pre-assign colors to each button. Instead, users are free to choose which button to use for each color. The button-to-color mapping only exists in the user's mind and is never directly communicated to the interface. In other words, IFTT-PIN infers both the user's PIN and their preferred button-to-color mapping at the same time, a process called self-calibration. In this paper, we present online interactive demonstrations of IFTT-PIN with and without self-calibration and introduce the key concepts and assumptions making self-calibration possible. IFTT-PIN can be tested at https://jgrizou.github.io/IFTT-PIN/ with a video introduction available at https://youtu.be/5I1ibPJdLHM. We review related work in the field of brain-computer interface and further propose self-calibration as a novel approach to protect users against shoulder surfing attacks. Finally, we introduce a vault cracking challenge as a test of usability and security that was informally tested at our institute. With IFTT-PIN, we wish to demonstrate a new interactive experience where users can decide actively and on-the-fly how to use an interface. The self-calibration paradigm might lead to novel opportunities for interaction in other applications or domains. We hope this work will inspire the community to invent them.
4,588
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Considering uncertainty estimation of modern neural networks (NNs) is one of the most important steps towards deploying machine learning systems to meaningful real-world applications such as in medicine, finance or autonomous systems. At the moment, ensembles of different NNs constitute the state-of-the-art in both accuracy and uncertainty estimation in different tasks. However, ensembles of NNs are unpractical under real-world constraints, since their computation and memory consumption scale linearly with the size of the ensemble, which increase their latency and deployment cost. In this work, we examine a simple regularisation approach for distribution-free knowledge distillation of ensemble of machine learning models into a single NN. The aim of the regularisation is to preserve the diversity, accuracy and uncertainty estimation characteristics of the original ensemble without any intricacies, such as fine-tuning. We demonstrate the generality of the approach on combinations of toy data, SVHN/CIFAR-10, simple to complex NN architectures and different tasks.
4,589
scICML: Information-theoretic Co-clustering-based Multi-view Learning for the Integrative Analysis of Single-cell Multi-omics data
Modern high-throughput sequencing technologies have enabled us to profile multiple molecular modalities from the same single cell, providing unprecedented opportunities to assay celluar heterogeneity from multiple biological layers. However, the datasets generated from these technologies tend to have high level of noise and are highly sparse, bringing challenges to data analysis. In this paper, we develop a novel information-theoretic co-clustering-based multi-view learning (scICML) method for multi-omics single-cell data integration. scICML utilizes co-clusterings to aggregate similar features for each view of data and uncover the common clustering pattern for cells. In addition, scICML automatically matches the clusters of the linked features across different data types for considering the biological dependency structure across different types of genomic features. Our experiments on four real-world datasets demonstrate that scICML improves the overall clustering performance and provides biological insights into the data analysis of peripheral blood mononuclear cells.
4,590
Variational Inference for Bayesian Bridge Regression
We study the implementation of Automatic Differentiation Variational inference (ADVI) for Bayesian inference on regression models with bridge penalization. The bridge approach uses $\ell_{\alpha}$ norm, with $\alpha \in (0, +\infty)$ to define a penalization on large values of the regression coefficients, which includes the Lasso ($\alpha = 1$) and ridge $(\alpha = 2)$ penalizations as special cases. Full Bayesian inference seamlessly provides joint uncertainty estimates for all model parameters. Although MCMC aproaches are available for bridge regression, it can be slow for large dataset, specially in high dimensions. The ADVI implementation allows the use of small batches of data at each iteration (due to stochastic gradient based algorithms), therefore speeding up computational time in comparison with MCMC. We illustrate the approach on non-parametric regression models with B-splines, although the method works seamlessly for other choices of basis functions. A simulation study shows the main properties of the proposed method.
4,591
The Impact of COVID-19 Pandemic on LGBTQ Online Communities
The COVID-19 pandemic has disproportionately impacted the lives of minorities, such as members of the LGBTQ community (lesbian, gay, bisexual, transgender, and queer) due to pre-existing social disadvantages and health disparities. Although extensive research has been carried out on the impact of the COVID-19 pandemic on different aspects of the general population's lives, few studies are focused on the LGBTQ population. In this paper, we identify a group of Twitter users who self-disclose to belong to the LGBTQ community. We develop and evaluate two sets of machine learning classifiers using a pre-pandemic and a during pandemic dataset to identify Twitter posts exhibiting minority stress, which is a unique pressure faced by the members of the LGBTQ population due to their sexual and gender identities. For this task, we collect a set of 20,593,823 posts by 7,241 self-disclosed LGBTQ users and annotate a randomly selected subset of 2800 posts. We demonstrate that our best pre-pandemic and during pandemic models show strong and stable performance for detecting posts that contain minority stress. We investigate the linguistic differences in minority stress posts across pre- and during-pandemic periods. We find that anger words are strongly associated with minority stress during the COVID-19 pandemic. We explore the impact of the pandemic on the emotional states of the LGBTQ population by conducting controlled comparisons with the general population. We adopt propensity score-based matching to perform a causal analysis. The results show that the LBGTQ population have a greater increase in the usage of cognitive words and worsened observable attribute in the usage of positive emotion words than the group of the general population with similar pre-pandemic behavioral attributes.
4,592
Differentially private Riemannian optimization
In this paper, we study the differentially private empirical risk minimization problem where the parameter is constrained to a Riemannian manifold. We introduce a framework of differentially private Riemannian optimization by adding noise to the Riemannian gradient on the tangent space. The noise follows a Gaussian distribution intrinsically defined with respect to the Riemannian metric. We adapt the Gaussian mechanism from the Euclidean space to the tangent space compatible to such generalized Gaussian distribution. We show that this strategy presents a simple analysis as compared to directly adding noise on the manifold. We further show privacy guarantees of the proposed differentially private Riemannian (stochastic) gradient descent using an extension of the moments accountant technique. Additionally, we prove utility guarantees under geodesic (strongly) convex, general nonconvex objectives as well as under the Riemannian Polyak-{\L}ojasiewicz condition. We show the efficacy of the proposed framework in several applications.
4,593
Spatial Autoregressive Coding for Graph Neural Recommendation
Graph embedding methods including traditional shallow models and deep Graph Neural Networks (GNNs) have led to promising applications in recommendation. Nevertheless, shallow models especially random-walk-based algorithms fail to adequately exploit neighbor proximity in sampled subgraphs or sequences due to their optimization paradigm. GNN-based algorithms suffer from the insufficient utilization of high-order information and easily cause over-smoothing problems when stacking too much layers, which may deteriorate the recommendations of low-degree (long-tail) items, limiting the expressiveness and scalability. In this paper, we propose a novel framework SAC, namely Spatial Autoregressive Coding, to solve the above problems in a unified way. To adequately leverage neighbor proximity and high-order information, we design a novel spatial autoregressive paradigm. Specifically, we first randomly mask multi-hop neighbors and embed the target node by integrating all other surrounding neighbors with an explicit multi-hop attention. Then we reinforce the model to learn a neighbor-predictive coding for the target node by contrasting the coding and the masked neighbors' embedding, equipped with a new hard negative sampling strategy. To learn the minimal sufficient representation for the target-to-neighbor prediction task and remove the redundancy of neighbors, we devise Neighbor Information Bottleneck by maximizing the mutual information between target predictive coding and the masked neighbors' embedding, and simultaneously constraining those between the coding and surrounding neighbors' embedding. Experimental results on both public recommendation datasets and a real scenario web-scale dataset Douyin-Friend-Recommendation demonstrate the superiority of SAC compared with state-of-the-art methods.
4,594
A Boosting Algorithm for Positive-Unlabeled Learning
Positive-unlabeled (PU) learning deals with binary classification problems when only positive (P) and unlabeled (U) data are available. A lot of PU methods based on linear models and neural networks have been proposed; however, there still lacks study on how the theoretically sound boosting-style algorithms could work with P and U data. Considering that in some scenarios when neural networks cannot perform as good as boosting algorithms even with fully-supervised data, we propose a novel boosting algorithm for PU learning: Ada-PU, which compares against neural networks. Ada-PU follows the general procedure of AdaBoost while two different distributions of P data are maintained and updated. After a weak classifier is learned on the newly updated distribution, the corresponding combining weight for the final ensemble is estimated using only PU data. We demonstrated that with a smaller set of base classifiers, the proposed method is guaranteed to keep the theoretical properties of boosting algorithms. In experiments, we showed that Ada-PU outperforms neural networks on benchmark PU datasets. We also study a real-world dataset UNSW-NB15 in cyber security and demonstrated that Ada-PU has superior performance for malicious activity detection.
4,595
Neural ODEs with Irregular and Noisy Data
Measurement noise is an integral part while collecting data of a physical process. Thus, noise removal is necessary to draw conclusions from these data, and it often becomes essential to construct dynamical models using these data. We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements. In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach. Precisely, we aim at learning a neural network that provides (approximately) an implicit representation of the data and an additional neural network that models the vector fields of the dependent variables. We combine these two networks by constraining using neural ODEs. The proposed framework to learn a model describing the vector field is highly effective under noisy measurements. The approach can handle scenarios where dependent variables are not available at the same temporal grid. Moreover, a particular structure, e.g., second-order with respect to time, can easily be incorporated. We demonstrate the effectiveness of the proposed method for learning models using data obtained from various differential equations and present a comparison with the neural ODE method that does not make any special treatment to noise.
4,596
Nebula-I: A General Framework for Collaboratively Training Deep Learning Models on Low-Bandwidth Cloud Clusters
The ever-growing model size and scale of compute have attracted increasing interests in training deep learning models over multiple nodes. However, when it comes to training on cloud clusters, especially across remote clusters, huge challenges are faced. In this work, we introduce a general framework, Nebula-I, for collaboratively training deep learning models over remote heterogeneous clusters, the connections between which are low-bandwidth wide area networks (WANs). We took natural language processing (NLP) as an example to show how Nebula-I works in different training phases that include: a) pre-training a multilingual language model using two remote clusters; and b) fine-tuning a machine translation model using knowledge distilled from pre-trained models, which run through the most popular paradigm of recent deep learning. To balance the accuracy and communication efficiency, in Nebula-I, parameter-efficient training strategies, hybrid parallel computing methods and adaptive communication acceleration techniques are jointly applied. Meanwhile, security strategies are employed to guarantee the safety, reliability and privacy in intra-cluster computation and inter-cluster communication. Nebula-I is implemented with the PaddlePaddle deep learning framework, which can support collaborative training over heterogeneous hardware, e.g. GPU and NPU. Experiments demonstrate that the proposed framework could substantially maximize the training efficiency while preserving satisfactory NLP performance. By using Nebula-I, users can run large-scale training tasks over cloud clusters with minimum developments, and the utility of existed large pre-trained models could be further promoted. We also introduced new state-of-the-art results on cross-lingual natural language inference tasks, which are generated based upon a novel learning framework and Nebula-I.
4,597
Personalized Interventions for Online Moderation
Current online moderation follows a one-size-fits-all approach, where each intervention is applied in the same way to all users. This naive approach is challenged by established socio-behavioral theories and by recent empirical results that showed the limited effectiveness of such interventions. We propose a paradigm-shift in online moderation by moving towards a personalized and user-centered approach. Our multidisciplinary vision combines state-of-the-art theories and practices in diverse fields such as computer science, sociology and psychology, to design personalized moderation interventions (PMIs). In outlining the path leading to the next-generation of moderation interventions, we also discuss the most prominent challenges introduced by such a disruptive change.
4,598
Why only Micro-F1? Class Weighting of Measures for Relation Classification
Relation classification models are conventionally evaluated using only a single measure, e.g., micro-F1, macro-F1 or AUC. In this work, we analyze weighting schemes, such as micro and macro, for imbalanced datasets. We introduce a framework for weighting schemes, where existing schemes are extremes, and two new intermediate schemes. We show that reporting results of different weighting schemes better highlights strengths and weaknesses of a model.
4,599
Neural Network Architecture Beyond Width and Depth
This paper proposes a new neural network architecture by introducing an additional dimension called height beyond width and depth. Neural network architectures with height, width, and depth as hyperparameters are called three-dimensional architectures. It is shown that neural networks with three-dimensional architectures are significantly more expressive than the ones with two-dimensional architectures (those with only width and depth as hyperparameters), e.g., standard fully connected networks. The new network architecture is constructed recursively via a nested structure, and hence we call a network with the new architecture nested network (NestNet). A NestNet of height $s$ is built with each hidden neuron activated by a NestNet of height $\le s-1$. When $s=1$, a NestNet degenerates to a standard network with a two-dimensional architecture. It is proved by construction that height-$s$ ReLU NestNets with $\mathcal{O}(n)$ parameters can approximate Lipschitz continuous functions on $[0,1]^d$ with an error $\mathcal{O}(n^{-(s+1)/d})$, while the optimal approximation error of standard ReLU networks with $\mathcal{O}(n)$ parameters is $\mathcal{O}(n^{-2/d})$. Furthermore, such a result is extended to generic continuous functions on $[0,1]^d$ with the approximation error characterized by the modulus of continuity. Finally, a numerical example is provided to explore the advantages of the super approximation power of ReLU NestNets.