function
stringlengths 34
1.22k
|
---|
np.mean(7.179933686884536-9.051635429228954*(np.dot(array_x, np.array([[0.6253178287578751, 0.3516873816251417], [0.19425583524638734, 0.0697875651939095]])))-np.cumsum(array_x, axis=1)/(np.array(range(1, array_x.shape[1]+1)))*array_x, axis=1) |
3.271441554545767+np.mean(5.247569164015661*array_x, axis=1)-1.437164009345353 |
np.mean(np.square(abs(5.432223036085585)+(np.dot(array_x, np.array([[0.060971469228440656, 0.5929760674066609], [0.8337960964526714, 0.6957998774688867]]))))+np.sqrt(abs((np.dot(array_x, np.array([[0.5417892160581779, 0.2973102427106973], [0.5076849191151017, 0.35308341934330667]])))*5.4552668698010995/1.0048778528451932*3.175245915890521)), axis=1) |
np.mean(5.240557972757241/(np.array(range(1, array_x.shape[1]+1)))*array_x*(np.array(range(1, array_x.shape[1]+1)))*array_x+(np.array(range(1, array_x.shape[1]+1)))*array_x-abs(np.cos(2*np.pi*np.exp((np.array(range(1, array_x.shape[1]+1)))*array_x)-7.527031731995777)), axis=1) |
np.mean(np.exp(abs((np.dot(array_x, np.array([[0.8275156467837572, 0.6358375580904471], [0.12139134231580107, 0.544717833852577]])))-4.4841273873927125-np.exp((np.array(range(1, array_x.shape[1]+1)))*array_x))), axis=1) |
np.mean(5.902346581377975*array_x+6.670290054964932-6.299875128870888-np.square(7.628399004151481), axis=1) |
np.mean(np.sqrt(abs(7.443092749403874-array_x))*6.261157159262431+array_x/np.cos(2*np.pi*3.7600959587813927), axis=1) |
np.mean(np.square(np.sin(2*np.pi*array_x)+7.7419355268171905+np.round(3.0419448545849948)), axis=1) |
np.mean(3.7713843481949922+array_x+1.34935163367373/np.cos(2*np.pi*2.7099060789578022)+np.sqrt(abs(array_x)), axis=1)+10*(np.sin(2*np.pi*np.mean(3.84924279934859+array_x+6.9146833739727285/np.cos(2*np.pi*3.592125990423815)+np.sqrt(abs(array_x)), axis=1))) |
np.mean(7.493871942362717+(np.array(range(1, array_x.shape[1]+1)))-1.9112389198147564-3.8781337789398416/-(1.053728029370179)*np.sqrt(abs((np.array(range(1, array_x.shape[1]+1)))*array_x*4.178689673234315-8.451446218040033)), axis=1) |
np.mean(10*(np.square(5.2154981528168545*array_x+np.square(array_x+np.sqrt(abs(5.349774295953071))))), axis=1) |
np.mean(9.52994329444933-np.round(array_x)+array_x*6.385482067773517*3.32966355452919, axis=1)+10*(np.sin(2*np.pi*np.mean(2.150910033020377-np.round(array_x)+array_x*3.5124723065852987*9.586054107331602, axis=1))) |
np.mean(np.sqrt(abs(2.216741995720712))*4.6080170244343375*array_x+abs(array_x-6.467105823808128), axis=1)+np.sin(2*np.pi*np.mean(np.sqrt(abs(1.8457529644653712))*5.6310333391834915*array_x+abs(array_x-2.706175665130587), axis=1)) |
np.mean(np.square(5.7639109465048+np.cos(2*np.pi*array_x)*np.log(abs(2.911502905076308))), axis=1) |
np.square(8.397163826795044-np.log(abs(np.sin(2*np.pi*np.cos(2*np.pi*np.mean(2.2488006926492936-(np.dot(array_x, np.array([[0.5497158729496224, 0.1379581324748833], [0.30506893568621096, 0.896479022616306]]))), axis=1)))))) |
np.mean(abs(8.523717414852012-np.sqrt(abs(array_x+array_x))*6.7752193162980285), axis=1) |
np.mean(np.log(abs(1/(9.094764880382792*(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+np.cos(2*np.pi*3.2894733550387727)-array_x-array_x+1.6619849960832913*np.exp(np.square(array_x+9.761855586936854-5.168195995106732))))), axis=1) |
np.mean(np.exp(np.sqrt(abs(array_x))-abs(array_x)/4.8328164822512925), axis=1)+10*(np.sin(2*np.pi*np.mean(np.exp(np.sqrt(abs(array_x))-abs(array_x)/5.9526625417029795), axis=1))) |
np.sum(np.exp(np.square(array_x+np.sqrt(abs((np.dot(array_x, np.array([[0.8076023198966376, 0.21765839775180207], [0.5197432468044668, 0.16612370059510861]]))))))*4.274699687830732+array_x-abs(5.380949670524553)), axis=1) |
np.mean(np.square(np.exp(np.sqrt(abs(-(np.exp(1.8212177854983402+np.sqrt(abs(array_x))-array_x)))))), axis=1) |
3.45519789786949+np.square(np.sin(2*np.pi*np.exp(np.amax(array_x, axis=1))))+10*(np.sin(2*np.pi*4.851652557069829+np.square(np.sin(2*np.pi*np.exp(np.amax(array_x, axis=1)))))) |
np.mean(np.square(array_x+9.778205541282798-array_x)/np.sqrt(abs(1.162296438951715))-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)*9.722035967180434, axis=1)+np.sin(2*np.pi*np.mean(np.square(array_x+6.1094714238428365-array_x)/np.sqrt(abs(3.2653810610273846))-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)*2.4043489249550447, axis=1)) |
np.mean(abs(np.sqrt(abs(array_x))*8.306312897712129-6.772217891411214), axis=1) |
np.mean(10*(2.9519654736982734-array_x*(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+4.613653153858229/4.582325414136488), axis=1) |
np.mean(np.square(np.square(np.square(1.3921140134192658-array_x+4.878027173912283))), axis=1)+10*(np.sin(2*np.pi*np.mean(np.square(np.square(np.square(2.4390247161459837-array_x+5.888505454110238))), axis=1))) |
np.mean(5.743221960308706*-(np.cos(2*np.pi*array_x-4.709303860776421))+10*(np.cos(2*np.pi*-(np.square(array_x))*2.4833085956167165-np.cos(2*np.pi*8.692515944381778)*array_x)), axis=1) |
np.mean(6.046465318520417-(np.array(range(1, array_x.shape[1]+1)))*array_x*-(5.76424948429165/(np.array(range(1, array_x.shape[1]+1)))*array_x)+abs(np.square(8.191617999412514)), axis=1) |
np.amax(np.exp(8.003505782213423-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-array_x), axis=1)+10*(np.sin(2*np.pi*np.amax(np.exp(4.677672740995802-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-array_x), axis=1))) |
np.mean(np.round(np.round(array_x-6.783239151830894)*6.877202756395549-array_x/8.200295679737906), axis=1) |
np.mean(np.square(7.558586492298845+abs(array_x)*np.sin(2*np.pi*1.3026624724819575+array_x)*7.9856265055029105-np.square(array_x)), axis=1) |
np.mean(np.sqrt(abs(np.sin(2*np.pi*(np.array(range(1, array_x.shape[1]+1)))*array_x/2.726727563378093)-8.096585435528109-np.round(3.6256194274747187+np.sqrt(abs((np.array(range(1, array_x.shape[1]+1)))*array_x))*np.exp((np.array(range(1, array_x.shape[1]+1)))*array_x+8.416611157579343)))), axis=1) |
np.log(abs(8.613519294967574*np.sum(np.square(np.cos(2*np.pi*array_x)), axis=1))) |
np.mean(array_x*8.380596211584631+3.0179571286302695*4.856819731204951, axis=1) |
abs(8.215289603029806-np.sum(np.round(np.sin(2*np.pi*np.exp((np.array(range(1, array_x.shape[1]+1)))*array_x))), axis=1)) |
np.cos(2*np.pi*9.752869766322265)+np.sum(5.163473668002788+array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)/np.cos(2*np.pi*6.277763397379035), axis=1) |
np.mean(np.sin(2*np.pi*array_x)+array_x*6.354292991057112*array_x*abs(8.288536963966333)-4.87186379455236, axis=1) |
np.mean(np.exp(9.881037567991903*(np.array(range(1, array_x.shape[1]+1)))*array_x+(np.array(range(1, array_x.shape[1]+1)))*array_x-4.555164694776201), axis=1) |
np.square(np.sum(-(np.square(array_x+3.399191425056463-9.42684508507824)), axis=1)) |
np.round(5.283865089679383-np.mean(10*(array_x)+8.254387885250704, axis=1)) |
np.mean(np.exp(np.round(np.sqrt(abs(7.498649628770845)))*np.exp(-(array_x))), axis=1) |
np.mean(9.309585502759143-np.sin(2*np.pi*array_x)*6.297337593714123+(np.dot(array_x, np.array([[0.037959080527601885, 0.5912399741204704], [0.8668716283953279, 0.10595176707278797]])))*np.sin(2*np.pi*array_x)+np.square(6.783049409498262+array_x), axis=1) |
np.mean(10*(array_x)+6.943643348065283+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+np.round((np.dot(array_x, np.array([[0.1341283214634642, 0.20303219043148912], [0.29464487518469784, 0.12386394548219981]])))*1.6298661060295165), axis=1)+np.sin(2*np.pi*np.mean(10*(array_x)+1.128968478274631+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)+np.round((np.dot(array_x, np.array([[0.8212063364535522, 0.2413013230591724], [0.9600396703610131, 0.7669835278098291]])))*2.6691608499644985), axis=1)) |
np.mean(np.square(7.421198388519706-array_x-array_x*4.850734578651789/6.34386210321604-4.837822099317835), axis=1)+np.sin(2*np.pi*np.mean(np.square(4.085183340022093-array_x-array_x*2.5495817784865515/9.10914505724277-6.968824775508287), axis=1)) |
np.mean(8.931744715249224*(np.dot(array_x, np.array([[0.33082546131701573, 0.9444393645473975], [0.37252598977345464, 0.1575327728708794]])))-4.205367388071542+np.sin(2*np.pi*2.7703254058529203), axis=1) |
np.mean(np.exp(1.7619947631947066+np.square(10*(1/(7.061951314405832))-array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)/3.9358806314686383)), axis=1) |
np.mean(6.686938868124384-np.sin(2*np.pi*np.log(abs(np.cumsum(np.sin(2*np.pi*np.cos(2*np.pi*(np.dot(array_x, np.array([[0.555647177435575, 0.8396530054094904], [0.23306488019542848, 0.1468107727278145]])))-array_x))*abs(7.639419354668025), axis=1)))), axis=1)+10*(np.sin(2*np.pi*np.mean(7.159312875086683-np.sin(2*np.pi*np.log(abs(np.cumsum(np.sin(2*np.pi*np.cos(2*np.pi*(np.dot(array_x, np.array([[0.8035115021158129, 0.23448626396852956], [0.9546195082566677, 0.028883562051696843]])))-array_x))*abs(4.461694456937547), axis=1)))), axis=1))) |
np.mean(np.cos(2*np.pi*array_x)*5.500934927697181+1.4485834472127324-2.432352555374931/np.cos(2*np.pi*np.exp(np.cumsum(6.87333561480154-array_x, axis=1))), axis=1) |
array_x[:,0]-9.019139694187709+np.square(9.41743312828483)-6.1036001715411645*np.mean(1/(4.784898950845017)+9.492598298251384-array_x/1.5317781782213578, axis=1) |
np.sum(np.log(abs(np.sin(2*np.pi*np.sin(2*np.pi*6.9508746988102805+array_x)))), axis=1) |
10*(np.sum(8.394109281947287+array_x, axis=1))+np.sin(2*np.pi*10*(np.sum(8.159773171573823+array_x, axis=1))) |
np.mean(1/(1.6048419824257483)+np.exp(7.46347120788791-array_x), axis=1)+10*(np.sin(2*np.pi*np.mean(1/(7.279097622736623)+np.exp(9.475266357310058-array_x), axis=1))) |
np.mean(np.square(abs(4.0861335454102345+np.sin(2*np.pi*np.square(array_x)))+6.399967720712263-(np.dot(array_x, np.array([[0.13063345501107082, 0.6288577660781514], [0.5550811559710231, 0.7882616720527884]])))), axis=1) |
np.mean(np.square(np.round(5.651713054241267)+array_x), axis=1) |
np.mean(10*(-(np.cos(2*np.pi*np.sin(2*np.pi*3.431194322151862))))+array_x*8.135206592765549, axis=1)+np.sin(2*np.pi*np.mean(10*(-(np.cos(2*np.pi*np.sin(2*np.pi*1.5449637655040225))))+array_x*9.104764427886941, axis=1)) |
np.mean(3.3881042814279-10*(array_x)-np.square(4.960637013239726), axis=1) |
abs(-(9.955734696632307)*4.890386843509949+array_x[:,0]*9.300158660602182+np.mean(abs((np.dot(array_x, np.array([[0.8491431574886301, 0.4232955303106656], [0.5491450675422734, 0.4234438692516266]])))), axis=1)) |
np.round(np.mean(np.exp(np.round(7.079606389772313+2.1385213585071936+array_x+np.square(array_x)/8.392447962744267)), axis=1)) |
np.square(np.log(abs(5.867663811877293))+np.mean(array_x+2.548657815833722, axis=1)) |
np.square(np.sum(np.log(abs(np.sin(2*np.pi*np.square(np.round(array_x*5.203286141320033)/9.770689623918377-1.8282521372662364)-9.857686100570838))), axis=1)) |
np.mean(array_x*9.327634756831651-np.sin(2*np.pi*array_x)+7.608496021284214, axis=1) |
np.mean(np.sin(2*np.pi*np.log(abs(4.021037633553277))+array_x-array_x-4.42645230925976-abs(array_x+6.564699298821926)), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sin(2*np.pi*np.log(abs(1.552968119898332))+array_x-array_x-3.5051541933272863-abs(array_x+5.476796863544634)), axis=1))) |
np.mean(np.round(10*(np.exp(np.sqrt(abs(4.721890236190582))*np.cos(2*np.pi*array_x+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-np.sqrt(abs(1.830511835855303))*1.1185410614372873)))), axis=1) |
np.mean(4.026298862741073+np.square(array_x+6.29468974177722)-5.578644140074431, axis=1)+np.sin(2*np.pi*np.mean(7.628045794089075+np.square(array_x+5.441255547826402)-1.751018471125577, axis=1)) |
np.mean((np.dot(array_x, np.array([[0.3234539367765157, 0.34684971000111964], [0.8393160986273922, 0.8429865385552063]])))*1.8616491963799648*9.577633316837568-(np.array(range(1, array_x.shape[1]+1)))*4.658103433301999-(np.dot(array_x, np.array([[0.7374863901602575, 0.493980264342042], [0.9851423765177946, 0.7012754601504168]])))+1.2098283096265625*(np.dot(array_x, np.array([[0.3616123024448371, 0.3842552507069211], [0.03576924137231707, 0.34258446448840396]])))-(np.dot(array_x, np.array([[0.7476966648816273, 0.7340663611479638], [0.899921938193343, 0.782477603353572]])))-9.395602975170247, axis=1) |
np.sum(10*(8.170071714895604+abs((np.dot(array_x, np.array([[0.7862443037023409, 0.2143523292026709], [0.39118052106774126, 0.19614273506062174]]))))+1.1467617035205488), axis=1) |
np.mean(3.150917251971361-np.cos(2*np.pi*np.cos(2*np.pi*array_x)-9.348280271722244-9.453107305326133)-10*(6.94881283702677-np.exp(array_x))*7.8167578483461035, axis=1) |
2.0121612378254374/np.cos(2*np.pi*8.518449419720588-np.exp(np.sum(array_x, axis=1))) |
np.log(abs(np.mean(10*(array_x)-7.023880938507009, axis=1)/8.996401924735192)) |
np.mean(np.sqrt(abs(9.612293423389502/1.4892768390144386-(np.dot(array_x, np.array([[0.023654954407858475, 0.4251213771670179], [0.8060289419417291, 0.03931996924023995]])))-np.sqrt(abs(3.7734593122890607))+array_x)), axis=1)+10*(np.sin(2*np.pi*np.mean(np.sqrt(abs(1.7033808783770568/9.904305513343532-(np.dot(array_x, np.array([[0.6736465362021147, 0.8955207946710028], [0.14794306279485292, 0.0901330035309802]])))-np.sqrt(abs(6.552931753394017))+array_x)), axis=1))) |
np.round(np.mean(10*(array_x)-7.378593412326612+4.0434529860235005+array_x+1.8379144207064977/np.exp(np.cos(2*np.pi*7.614168258148123)), axis=1)) |
np.mean(abs(np.cos(2*np.pi*1.0702829549126465)-np.square(np.sqrt(abs(array_x-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)))*5.24744985165224)), axis=1) |
np.sum(7.4805593491663736+np.cumsum(6.052370168437843*array_x-1.052470539965958, axis=1), axis=1) |
np.mean(5.22050942129249/(np.array(range(1, array_x.shape[1]+1)))*array_x+7.282558618784362-7.965229149606198-np.cos(2*np.pi*9.73919392150035)-(np.array(range(1, array_x.shape[1]+1)))*array_x*9.420733971078443+(np.array(range(1, array_x.shape[1]+1)))*array_x, axis=1) |
np.mean(np.cos(2*np.pi*1.8391509548701488)+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)/abs(np.cumsum(6.777308301746128+array_x-5.638207876923186, axis=1))+array_x+2.987968563237067-1.8646167861127774*np.round(9.980919960219962), axis=1)+10*(np.sin(2*np.pi*np.mean(np.cos(2*np.pi*3.6714640703286676)+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)/abs(np.cumsum(8.467487388299293+array_x-2.3307375575163456, axis=1))+array_x+3.679672250315675-3.70067771100621*np.round(2.224111547408585), axis=1))) |
np.mean(np.square(3.548018080425143*np.log(abs(np.exp(array_x)*4.908946243717359))+np.exp(8.774887526838489)), axis=1)+np.sin(2*np.pi*np.mean(np.square(3.9741244157324154*np.log(abs(np.exp(array_x)*5.116731499706997))+np.exp(1.6261769060271576)), axis=1)) |
np.mean(9.789918762669004+np.square(np.cumsum(2.8012965829219993-array_x, axis=1)), axis=1) |
np.mean(9.97189724209168/np.sqrt(abs(np.sin(2*np.pi*np.sin(2*np.pi*9.613850420584324-array_x)-array_x))), axis=1)+np.sin(2*np.pi*np.mean(1.7722378078812975/np.sqrt(abs(np.sin(2*np.pi*np.sin(2*np.pi*8.853142998512183-array_x)-array_x))), axis=1)) |
np.mean(np.square(6.927107982749507+np.log(abs(10*(2.354285092402793)))+array_x/3.5520583816797315), axis=1) |
np.mean(np.round(np.round(np.sin(2*np.pi*6.804519455762329))-array_x*6.779025758803156), axis=1) |
np.mean(2.36091022138097+-(np.sin(2*np.pi*1.6391591460878248))*(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)*10*(1.9106518020482433)*array_x, axis=1) |
np.mean(np.square(2.670806469738749-(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)/1.3717458143754993)-10*(8.589054528907432+(np.array(range(1, array_x.shape[1]+1)))*array_x*1.1635028855272551), axis=1) |
np.mean(6.509319389486215+np.square(3.8291340242560166-array_x)*(np.array(range(1, array_x.shape[1]+1)))*np.round(2.7863870575027736)/9.20268621929375*np.sin(2*np.pi*array_x), axis=1) |
np.exp(np.amax(np.square(np.sqrt(abs(array_x))-np.sin(2*np.pi*3.3105846496954516)-np.cos(2*np.pi*8.843898905946837+array_x)), axis=1)) |
np.round(np.mean((np.dot(array_x, np.array([[0.06389391220717067, 0.4229131196736745], [0.9076816638577678, 0.6227756005325462]])))+array_x--(7.94787984813421)*array_x+3.0203771892882054*3.224788273250596, axis=1)) |
np.sum(np.square(np.round(np.log(abs(8.233928216579002)))-8.406231525311263+(np.array(range(1, array_x.shape[1]+1)))*array_x*9.117533044457165), axis=1)+5.0893313837144545 |
np.mean(np.square(np.exp(10*(-(np.round(array_x+array_x))))*2.458614522248444-array_x-np.square(8.9089232722515)), axis=1) |
np.mean(np.sqrt(abs(array_x))-array_x*array_x-(np.dot(array_x, np.array([[0.6213367811396211, 0.12489002322103449], [0.8061796375549528, 0.08135518298020405]])))*5.679344032666446-2.0354883792066176-np.sqrt(abs(1.1959027132133344+array_x)), axis=1) |
np.mean(10*(7.716345741610737)+1.8747213897792747*np.sin(2*np.pi*array_x)-np.log(abs(5.484160498237888))*(np.array(range(1, array_x.shape[1]+1)))*array_x, axis=1) |
np.mean(10*(np.cos(2*np.pi*7.542432390510259)-(np.dot(array_x, np.array([[0.46194544600136545, 0.8962222818988717], [0.48930307559986974, 0.9289195745674923]])))*np.sqrt(abs(6.847445269471567))+10*(np.log(abs(6.5206137023021995)))+array_x/4.15408243932796), axis=1) |
np.mean(np.square(7.378623946613896+np.cos(2*np.pi*np.square(array_x)-8.393463441754168)), axis=1)+10*(np.sin(2*np.pi*np.mean(np.square(7.5896461392433965+np.cos(2*np.pi*np.square(array_x)-9.322584545026237)), axis=1))) |
np.mean(array_x+4.587113466517966+(np.dot(array_x, np.array([[0.999239538719103, 0.7226811967071423], [0.778290676177286, 0.7643474327705294]])))+1/(9.228783901694605), axis=1)+10*(np.sin(2*np.pi*np.mean(array_x+9.664943804339513+(np.dot(array_x, np.array([[0.31102836499984754, 0.34091777813908186], [0.7696228560635863, 0.7077725726017732]])))+1/(2.502677124653819), axis=1))) |
np.log(abs(np.sum(1.6423355424412125*np.exp(array_x), axis=1)))*np.exp(np.mean(2.742469269747705+array_x, axis=1)+5.049092061166768) |
np.mean(1.0238393927903198*np.log(abs(4.968880504510086))-(np.dot(array_x, np.array([[0.05666650777937421, 0.25196611342073694], [0.5680760171870093, 0.3949935558266444]])))*np.square((np.dot(array_x, np.array([[0.8166855533838798, 0.998947357662663], [0.21948512962059896, 0.8372125788650304]])))-7.647534518246375), axis=1) |
np.sum(np.cos(2*np.pi*np.sin(2*np.pi*np.round(5.747126126349914)-5.881225193512997*(np.array(range(1, array_x.shape[1]+1)))*array_x)), axis=1) |
np.square(np.sum(np.sin(2*np.pi*np.sqrt(abs(5.9876349122691686))-array_x), axis=1))+np.sin(2*np.pi*np.square(np.sum(np.sin(2*np.pi*np.sqrt(abs(5.922037334140015))-array_x), axis=1))) |
10*(-(np.square(1.9581359251837636-array_x[:,0])+1/(5.6649527839586)+np.sum(array_x, axis=1))) |
np.mean(np.square(np.cumsum((np.dot(array_x, np.array([[0.8955477442005739, 0.8290481659103931], [0.1581567704046749, 0.529448614148777]]))), axis=1)*np.exp(np.square(np.cumsum((np.dot(array_x, np.array([[0.17062595551366178, 0.49609664302028256], [0.7724499591076247, 0.29234689296353766]])))/6.9567376270656105/3.526768851831683, axis=1)))-4.715359070040131+(np.dot(array_x, np.array([[0.9741958768818111, 0.14593863250465855], [0.7396556815384617, 0.8639706009906784]])))*(np.dot(array_x, np.array([[0.593612150956993, 0.07106845840288023], [0.8359660397250808, 0.4828159574721457]])))/8.925907704189708*(np.dot(array_x, np.array([[0.30997467582238225, 0.811817577457891], [0.9535848022410809, 0.5902426841819073]])))), axis=1) |
np.mean(np.cos(2*np.pi*3.3387223699431723+np.square(array_x))+(np.array(range(1, array_x.shape[1]+1)))-3.8259515792032834*5.298280874818615/6.998744859511593+np.exp(2.3303110449664395-array_x)+array_x, axis=1) |
10*(3.031071799074447)-10*(np.mean(8.856713147836338-array_x, axis=1)) |
np.sum(np.sqrt(abs(4.189226730425675))/5.219817648756638+(np.vstack((array_x[:,1:].ravel(), np.zeros((len(array_x), 1)).ravel())).T)-array_x-4.753015851429767+array_x*7.994063745553445+np.cos(2*np.pi*np.sqrt(abs(6.820473835774785))-array_x-(np.array(range(1, array_x.shape[1]+1)))), axis=1) |