id
stringlengths
14
17
text
stringlengths
42
2.1k
4e9727215e95-1600
Redis SetupUsageCreate a new index from textsCreate a new index from docsQuery docs from existing collection Page Title: Redis | 🦜️🔗 Langchain Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsRedisOn this pageRedisRedis is a fast open source, in-memory data store. As part of the Redis Stack, RediSearch is the module that enables vector similarity semantic search, as well as many other types of searching.CompatibilityOnly available on Node.js.LangChain.js accepts node-redis as the client for Redis vectorstore.Setup​Run Redis with Docker on your computer following the docsInstall the node-redis JS clientnpmYarnpnpmnpm install -S redisyarn add redispnpm add redisIndex docs​import { createClient, createCluster } from "redis";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1601
"redis://localhost:6379",});await client.connect();const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "redis is fast", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "consectetur adipiscing elit", }),];const vectorStore = await RedisVectorStore.fromDocuments( docs, new OpenAIEmbeddings(), { redisClient: client, indexName: "docs", });await client.disconnect();API Reference:Document from langchain/documentOpenAIEmbeddings from langchain/embeddings/openaiRedisVectorStore from langchain/vectorstores/redisQuery docs​import { createClient } from "redis";import { OpenAI } from "langchain/llms/openai";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RetrievalQAChain } from "langchain/chains";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1602
"redis://localhost:6379",});await client.connect();const vectorStore = new RedisVectorStore(new OpenAIEmbeddings(), { redisClient: client, indexName: "docs",});/* Simple standalone search in the vector DB */const simpleRes = await vectorStore.similaritySearch("redis", 1);console.log(simpleRes);/*[ Document { pageContent: "redis is fast", metadata: { foo: "bar" } }]*//* Search in the vector DB using filters */const filterRes = await vectorStore.similaritySearch("redis", 3, ["qux"]);console.log(filterRes);/*[ Document { pageContent: "consectetur adipiscing elit", metadata: { baz: "qux" }, }, Document { pageContent: "lorem ipsum dolor sit amet", metadata: { baz: "qux" }, }]*//* Usage as part of a chain */const model = new OpenAI();const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(1), { returnSourceDocuments: true,});const chainRes = await chain.call({ query: "What did the fox do?" });console.log(chainRes);/*{ text: " The fox jumped over the lazy dog. ", sourceDocuments: [ Document { pageContent: "the quick brown fox jumped over the lazy dog", metadata: [Object] } ]}*/await client.disconnect();API Reference:OpenAI from langchain/llms/openaiOpenAIEmbeddings from langchain/embeddings/openaiRetrievalQAChain from langchain/chainsRedisVectorStore from langchain/vectorstores/redisPreviousQdrantNextSingleStoreSetupIndex docsQuery docsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
4e9727215e95-1603
Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsRedisOn this pageRedisRedis is a fast open source, in-memory data store. As part of the Redis Stack, RediSearch is the module that enables vector similarity semantic search, as well as many other types of searching.CompatibilityOnly available on Node.js.LangChain.js accepts node-redis as the client for Redis vectorstore.Setup​Run Redis with Docker on your computer following the docsInstall the node-redis JS clientnpmYarnpnpmnpm install -S redisyarn add redispnpm add redisIndex docs​import { createClient, createCluster } from "redis";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1604
"redis://localhost:6379",});await client.connect();const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "redis is fast", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "consectetur adipiscing elit", }),];const vectorStore = await RedisVectorStore.fromDocuments( docs, new OpenAIEmbeddings(), { redisClient: client, indexName: "docs", });await client.disconnect();API Reference:Document from langchain/documentOpenAIEmbeddings from langchain/embeddings/openaiRedisVectorStore from langchain/vectorstores/redisQuery docs​import { createClient } from "redis";import { OpenAI } from "langchain/llms/openai";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RetrievalQAChain } from "langchain/chains";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1605
"redis://localhost:6379",});await client.connect();const vectorStore = new RedisVectorStore(new OpenAIEmbeddings(), { redisClient: client, indexName: "docs",});/* Simple standalone search in the vector DB */const simpleRes = await vectorStore.similaritySearch("redis", 1);console.log(simpleRes);/*[ Document { pageContent: "redis is fast", metadata: { foo: "bar" } }]*//* Search in the vector DB using filters */const filterRes = await vectorStore.similaritySearch("redis", 3, ["qux"]);console.log(filterRes);/*[ Document { pageContent: "consectetur adipiscing elit", metadata: { baz: "qux" }, }, Document { pageContent: "lorem ipsum dolor sit amet", metadata: { baz: "qux" }, }]*//* Usage as part of a chain */const model = new OpenAI();const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(1), { returnSourceDocuments: true,});const chainRes = await chain.call({ query: "What did the fox do?" });console.log(chainRes);/*{ text: " The fox jumped over the lazy dog. ", sourceDocuments: [ Document { pageContent: "the quick brown fox jumped over the lazy dog", metadata: [Object] } ]}*/await client.disconnect();API Reference:OpenAI from langchain/llms/openaiOpenAIEmbeddings from langchain/embeddings/openaiRetrievalQAChain from langchain/chainsRedisVectorStore from langchain/vectorstores/redisPreviousQdrantNextSingleStoreSetupIndex docsQuery docs ModulesData connectionVector storesIntegrationsRedisOn this pageRedisRedis is a fast open source, in-memory data store.
4e9727215e95-1606
As part of the Redis Stack, RediSearch is the module that enables vector similarity semantic search, as well as many other types of searching.CompatibilityOnly available on Node.js.LangChain.js accepts node-redis as the client for Redis vectorstore.Setup​Run Redis with Docker on your computer following the docsInstall the node-redis JS clientnpmYarnpnpmnpm install -S redisyarn add redispnpm add redisIndex docs​import { createClient, createCluster } from "redis";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1607
"redis://localhost:6379",});await client.connect();const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "redis is fast", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "consectetur adipiscing elit", }),];const vectorStore = await RedisVectorStore.fromDocuments( docs, new OpenAIEmbeddings(), { redisClient: client, indexName: "docs", });await client.disconnect();API Reference:Document from langchain/documentOpenAIEmbeddings from langchain/embeddings/openaiRedisVectorStore from langchain/vectorstores/redisQuery docs​import { createClient } from "redis";import { OpenAI } from "langchain/llms/openai";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RetrievalQAChain } from "langchain/chains";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1608
"redis://localhost:6379",});await client.connect();const vectorStore = new RedisVectorStore(new OpenAIEmbeddings(), { redisClient: client, indexName: "docs",});/* Simple standalone search in the vector DB */const simpleRes = await vectorStore.similaritySearch("redis", 1);console.log(simpleRes);/*[ Document { pageContent: "redis is fast", metadata: { foo: "bar" } }]*//* Search in the vector DB using filters */const filterRes = await vectorStore.similaritySearch("redis", 3, ["qux"]);console.log(filterRes);/*[ Document { pageContent: "consectetur adipiscing elit", metadata: { baz: "qux" }, }, Document { pageContent: "lorem ipsum dolor sit amet", metadata: { baz: "qux" }, }]*//* Usage as part of a chain */const model = new OpenAI();const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(1), { returnSourceDocuments: true,});const chainRes = await chain.call({ query: "What did the fox do?" });console.log(chainRes);/*{ text: " The fox jumped over the lazy dog. ", sourceDocuments: [ Document { pageContent: "the quick brown fox jumped over the lazy dog", metadata: [Object] } ]}*/await client.disconnect();API Reference:OpenAI from langchain/llms/openaiOpenAIEmbeddings from langchain/embeddings/openaiRetrievalQAChain from langchain/chainsRedisVectorStore from langchain/vectorstores/redisPreviousQdrantNextSingleStoreSetupIndex docsQuery docs ModulesData connectionVector storesIntegrationsRedisOn this pageRedisRedis is a fast open source, in-memory data store.
4e9727215e95-1609
As part of the Redis Stack, RediSearch is the module that enables vector similarity semantic search, as well as many other types of searching.CompatibilityOnly available on Node.js.LangChain.js accepts node-redis as the client for Redis vectorstore.Setup​Run Redis with Docker on your computer following the docsInstall the node-redis JS clientnpmYarnpnpmnpm install -S redisyarn add redispnpm add redisIndex docs​import { createClient, createCluster } from "redis";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1610
"redis://localhost:6379",});await client.connect();const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "redis is fast", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "consectetur adipiscing elit", }),];const vectorStore = await RedisVectorStore.fromDocuments( docs, new OpenAIEmbeddings(), { redisClient: client, indexName: "docs", });await client.disconnect();API Reference:Document from langchain/documentOpenAIEmbeddings from langchain/embeddings/openaiRedisVectorStore from langchain/vectorstores/redisQuery docs​import { createClient } from "redis";import { OpenAI } from "langchain/llms/openai";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RetrievalQAChain } from "langchain/chains";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1611
"redis://localhost:6379",});await client.connect();const vectorStore = new RedisVectorStore(new OpenAIEmbeddings(), { redisClient: client, indexName: "docs",});/* Simple standalone search in the vector DB */const simpleRes = await vectorStore.similaritySearch("redis", 1);console.log(simpleRes);/*[ Document { pageContent: "redis is fast", metadata: { foo: "bar" } }]*//* Search in the vector DB using filters */const filterRes = await vectorStore.similaritySearch("redis", 3, ["qux"]);console.log(filterRes);/*[ Document { pageContent: "consectetur adipiscing elit", metadata: { baz: "qux" }, }, Document { pageContent: "lorem ipsum dolor sit amet", metadata: { baz: "qux" }, }]*//* Usage as part of a chain */const model = new OpenAI();const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(1), { returnSourceDocuments: true,});const chainRes = await chain.call({ query: "What did the fox do?" });console.log(chainRes);/*{ text: " The fox jumped over the lazy dog. ", sourceDocuments: [ Document { pageContent: "the quick brown fox jumped over the lazy dog", metadata: [Object] } ]}*/await client.disconnect();API Reference:OpenAI from langchain/llms/openaiOpenAIEmbeddings from langchain/embeddings/openaiRetrievalQAChain from langchain/chainsRedisVectorStore from langchain/vectorstores/redisPreviousQdrantNextSingleStore RedisRedis is a fast open source, in-memory data store.
4e9727215e95-1612
RedisRedis is a fast open source, in-memory data store. As part of the Redis Stack, RediSearch is the module that enables vector similarity semantic search, as well as many other types of searching.CompatibilityOnly available on Node.js.LangChain.js accepts node-redis as the client for Redis vectorstore.Setup​Run Redis with Docker on your computer following the docsInstall the node-redis JS clientnpmYarnpnpmnpm install -S redisyarn add redispnpm add redisIndex docs​import { createClient, createCluster } from "redis";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1613
"redis://localhost:6379",});await client.connect();const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "redis is fast", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "consectetur adipiscing elit", }),];const vectorStore = await RedisVectorStore.fromDocuments( docs, new OpenAIEmbeddings(), { redisClient: client, indexName: "docs", });await client.disconnect();API Reference:Document from langchain/documentOpenAIEmbeddings from langchain/embeddings/openaiRedisVectorStore from langchain/vectorstores/redisQuery docs​import { createClient } from "redis";import { OpenAI } from "langchain/llms/openai";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RetrievalQAChain } from "langchain/chains";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ?
4e9727215e95-1614
"redis://localhost:6379",});await client.connect();const vectorStore = new RedisVectorStore(new OpenAIEmbeddings(), { redisClient: client, indexName: "docs",});/* Simple standalone search in the vector DB */const simpleRes = await vectorStore.similaritySearch("redis", 1);console.log(simpleRes);/*[ Document { pageContent: "redis is fast", metadata: { foo: "bar" } }]*//* Search in the vector DB using filters */const filterRes = await vectorStore.similaritySearch("redis", 3, ["qux"]);console.log(filterRes);/*[ Document { pageContent: "consectetur adipiscing elit", metadata: { baz: "qux" }, }, Document { pageContent: "lorem ipsum dolor sit amet", metadata: { baz: "qux" }, }]*//* Usage as part of a chain */const model = new OpenAI();const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(1), { returnSourceDocuments: true,});const chainRes = await chain.call({ query: "What did the fox do?" });console.log(chainRes);/*{ text: " The fox jumped over the lazy dog. ", sourceDocuments: [ Document { pageContent: "the quick brown fox jumped over the lazy dog", metadata: [Object] } ]}*/await client.disconnect();API Reference:OpenAI from langchain/llms/openaiOpenAIEmbeddings from langchain/embeddings/openaiRetrievalQAChain from langchain/chainsRedisVectorStore from langchain/vectorstores/redis Redis is a fast open source, in-memory data store.
4e9727215e95-1615
Redis is a fast open source, in-memory data store. As part of the Redis Stack, RediSearch is the module that enables vector similarity semantic search, as well as many other types of searching. LangChain.js accepts node-redis as the client for Redis vectorstore. npmYarnpnpmnpm install -S redisyarn add redispnpm add redis npm install -S redisyarn add redispnpm add redis npm install -S redis yarn add redis pnpm add redis import { createClient, createCluster } from "redis";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ? "redis://localhost:6379",});await client.connect();const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "redis is fast", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "consectetur adipiscing elit", }),];const vectorStore = await RedisVectorStore.fromDocuments( docs, new OpenAIEmbeddings(), { redisClient: client, indexName: "docs", });await client.disconnect(); API Reference:Document from langchain/documentOpenAIEmbeddings from langchain/embeddings/openaiRedisVectorStore from langchain/vectorstores/redis
4e9727215e95-1616
import { createClient } from "redis";import { OpenAI } from "langchain/llms/openai";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { RetrievalQAChain } from "langchain/chains";import { RedisVectorStore } from "langchain/vectorstores/redis";const client = createClient({ url: process.env.REDIS_URL ? ? "redis://localhost:6379",});await client.connect();const vectorStore = new RedisVectorStore(new OpenAIEmbeddings(), { redisClient: client, indexName: "docs",});/* Simple standalone search in the vector DB */const simpleRes = await vectorStore.similaritySearch("redis", 1);console.log(simpleRes);/*[ Document { pageContent: "redis is fast", metadata: { foo: "bar" } }]*//* Search in the vector DB using filters */const filterRes = await vectorStore.similaritySearch("redis", 3, ["qux"]);console.log(filterRes);/*[ Document { pageContent: "consectetur adipiscing elit", metadata: { baz: "qux" }, }, Document { pageContent: "lorem ipsum dolor sit amet", metadata: { baz: "qux" }, }]*//* Usage as part of a chain */const model = new OpenAI();const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(1), { returnSourceDocuments: true,});const chainRes = await chain.call({ query: "What did the fox do?" });console.log(chainRes);/*{ text: " The fox jumped over the lazy dog. ", sourceDocuments: [ Document { pageContent: "the quick brown fox jumped over the lazy
4e9727215e95-1617
Document { pageContent: "the quick brown fox jumped over the lazy dog", metadata: [Object] } ]}*/await client.disconnect();
4e9727215e95-1618
API Reference:OpenAI from langchain/llms/openaiOpenAIEmbeddings from langchain/embeddings/openaiRetrievalQAChain from langchain/chainsRedisVectorStore from langchain/vectorstores/redis SingleStore Page Title: SingleStore | 🦜️🔗 Langchain Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsSingleStoreOn this pageSingleStoreSingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premise. It provides vector storage, as well as vector functions like dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching.CompatibilityOnly available on Node.js.LangChain.js requires the mysql2 library to create a connection to a SingleStoreDB instance.Setup​Establish a SingleStoreDB environment. You have the flexibility to choose between Cloud-based or On-Premise editions.Install the mysql2 JS clientnpmYarnpnpmnpm install -S mysql2yarn add mysql2pnpm add mysql2Usage​SingleStoreVectorStore manages a connection pool.
4e9727215e95-1619
It is recommended to call await store.end(); before terminating your application to assure all connections are appropriately closed and prevent any possible resource leaks.Standard usage​Below is a straightforward example showcasing how to import the relevant module and perform a base similarity search using the SingleStoreVectorStore:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​If it is needed to filter results based on specific metadata fields, you can pass a filter parameter to narrow down your search to the documents that match all specified fields in the filter object:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Good afternoon", "Bye bye", "Boa tarde! ", "Até logo!
4e9727215e95-1620
"], [ { id: 1, language: "English" }, { id: 2, language: "English" }, { id: 3, language: "Portugese" }, { id: 4, language: "Portugese" }, ], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, distanceMetric: "EUCLIDEAN_DISTANCE", } ); const resultOne = await vectorStore.similaritySearch("greetings", 1, { language: "Portugese", }); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiPreviousRedisNextSupabaseSetupUsageStandard usageMetadata FilteringCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
4e9727215e95-1621
Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsSingleStoreOn this pageSingleStoreSingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premise. It provides vector storage, as well as vector functions like dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching.CompatibilityOnly available on Node.js.LangChain.js requires the mysql2 library to create a connection to a SingleStoreDB instance.Setup​Establish a SingleStoreDB environment. You have the flexibility to choose between Cloud-based or On-Premise editions.Install the mysql2 JS clientnpmYarnpnpmnpm install -S mysql2yarn add mysql2pnpm add mysql2Usage​SingleStoreVectorStore manages a connection pool.
4e9727215e95-1622
It is recommended to call await store.end(); before terminating your application to assure all connections are appropriately closed and prevent any possible resource leaks.Standard usage​Below is a straightforward example showcasing how to import the relevant module and perform a base similarity search using the SingleStoreVectorStore:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​If it is needed to filter results based on specific metadata fields, you can pass a filter parameter to narrow down your search to the documents that match all specified fields in the filter object:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Good afternoon", "Bye bye", "Boa tarde! ", "Até logo!
4e9727215e95-1623
"], [ { id: 1, language: "English" }, { id: 2, language: "English" }, { id: 3, language: "Portugese" }, { id: 4, language: "Portugese" }, ], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, distanceMetric: "EUCLIDEAN_DISTANCE", } ); const resultOne = await vectorStore.similaritySearch("greetings", 1, { language: "Portugese", }); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiPreviousRedisNextSupabaseSetupUsageStandard usageMetadata Filtering ModulesData connectionVector storesIntegrationsSingleStoreOn this pageSingleStoreSingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premise. It provides vector storage, as well as vector functions like dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching.CompatibilityOnly available on Node.js.LangChain.js requires the mysql2 library to create a connection to a SingleStoreDB instance.Setup​Establish a SingleStoreDB environment. You have the flexibility to choose between Cloud-based or On-Premise editions.Install the mysql2 JS clientnpmYarnpnpmnpm install -S mysql2yarn add mysql2pnpm add mysql2Usage​SingleStoreVectorStore manages a connection pool.
4e9727215e95-1624
It is recommended to call await store.end(); before terminating your application to assure all connections are appropriately closed and prevent any possible resource leaks.Standard usage​Below is a straightforward example showcasing how to import the relevant module and perform a base similarity search using the SingleStoreVectorStore:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​If it is needed to filter results based on specific metadata fields, you can pass a filter parameter to narrow down your search to the documents that match all specified fields in the filter object:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Good afternoon", "Bye bye", "Boa tarde! ", "Até logo!
4e9727215e95-1625
"], [ { id: 1, language: "English" }, { id: 2, language: "English" }, { id: 3, language: "Portugese" }, { id: 4, language: "Portugese" }, ], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, distanceMetric: "EUCLIDEAN_DISTANCE", } ); const resultOne = await vectorStore.similaritySearch("greetings", 1, { language: "Portugese", }); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiPreviousRedisNextSupabaseSetupUsageStandard usageMetadata Filtering ModulesData connectionVector storesIntegrationsSingleStoreOn this pageSingleStoreSingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premise. It provides vector storage, as well as vector functions like dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching.CompatibilityOnly available on Node.js.LangChain.js requires the mysql2 library to create a connection to a SingleStoreDB instance.Setup​Establish a SingleStoreDB environment. You have the flexibility to choose between Cloud-based or On-Premise editions.Install the mysql2 JS clientnpmYarnpnpmnpm install -S mysql2yarn add mysql2pnpm add mysql2Usage​SingleStoreVectorStore manages a connection pool.
4e9727215e95-1626
It is recommended to call await store.end(); before terminating your application to assure all connections are appropriately closed and prevent any possible resource leaks.Standard usage​Below is a straightforward example showcasing how to import the relevant module and perform a base similarity search using the SingleStoreVectorStore:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​If it is needed to filter results based on specific metadata fields, you can pass a filter parameter to narrow down your search to the documents that match all specified fields in the filter object:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Good afternoon", "Bye bye", "Boa tarde! ", "Até logo!
4e9727215e95-1627
"], [ { id: 1, language: "English" }, { id: 2, language: "English" }, { id: 3, language: "Portugese" }, { id: 4, language: "Portugese" }, ], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, distanceMetric: "EUCLIDEAN_DISTANCE", } ); const resultOne = await vectorStore.similaritySearch("greetings", 1, { language: "Portugese", }); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiPreviousRedisNextSupabase SingleStoreSingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premise. It provides vector storage, as well as vector functions like dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching.CompatibilityOnly available on Node.js.LangChain.js requires the mysql2 library to create a connection to a SingleStoreDB instance.Setup​Establish a SingleStoreDB environment. You have the flexibility to choose between Cloud-based or On-Premise editions.Install the mysql2 JS clientnpmYarnpnpmnpm install -S mysql2yarn add mysql2pnpm add mysql2Usage​SingleStoreVectorStore manages a connection pool.
4e9727215e95-1628
It is recommended to call await store.end(); before terminating your application to assure all connections are appropriately closed and prevent any possible resource leaks.Standard usage​Below is a straightforward example showcasing how to import the relevant module and perform a base similarity search using the SingleStoreVectorStore:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​If it is needed to filter results based on specific metadata fields, you can pass a filter parameter to narrow down your search to the documents that match all specified fields in the filter object:import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Good afternoon", "Bye bye", "Boa tarde! ", "Até logo!
4e9727215e95-1629
"], [ { id: 1, language: "English" }, { id: 2, language: "English" }, { id: 3, language: "Portugese" }, { id: 4, language: "Portugese" }, ], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, distanceMetric: "EUCLIDEAN_DISTANCE", } ); const resultOne = await vectorStore.similaritySearch("greetings", 1, { language: "Portugese", }); console.log(resultOne); await vectorStore.end();};API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openai SingleStoreDB is a high-performance distributed SQL database that supports deployment both in the cloud and on-premise. It provides vector storage, as well as vector functions like dot_product and euclidean_distance, thereby supporting AI applications that require text similarity matching. LangChain.js requires the mysql2 library to create a connection to a SingleStoreDB instance. npmYarnpnpmnpm install -S mysql2yarn add mysql2pnpm add mysql2 npm install -S mysql2yarn add mysql2pnpm add mysql2 npm install -S mysql2 yarn add mysql2 pnpm add mysql2 SingleStoreVectorStore manages a connection pool. It is recommended to call await store.end(); before terminating your application to assure all connections are appropriately closed and prevent any possible resource leaks.
4e9727215e95-1630
Below is a straightforward example showcasing how to import the relevant module and perform a base similarity search using the SingleStoreVectorStore: import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); await vectorStore.end();}; API Reference:SingleStoreVectorStore from langchain/vectorstores/singlestoreOpenAIEmbeddings from langchain/embeddings/openai If it is needed to filter results based on specific metadata fields, you can pass a filter parameter to narrow down your search to the documents that match all specified fields in the filter object:
4e9727215e95-1631
import { SingleStoreVectorStore } from "langchain/vectorstores/singlestore";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await SingleStoreVectorStore.fromTexts( ["Good afternoon", "Bye bye", "Boa tarde! ", "Até logo! "], [ { id: 1, language: "English" }, { id: 2, language: "English" }, { id: 3, language: "Portugese" }, { id: 4, language: "Portugese" }, ], new OpenAIEmbeddings(), { connectionOptions: { host: process.env.SINGLESTORE_HOST, port: Number(process.env.SINGLESTORE_PORT), user: process.env.SINGLESTORE_USERNAME, password: process.env.SINGLESTORE_PASSWORD, database: process.env.SINGLESTORE_DATABASE, }, distanceMetric: "EUCLIDEAN_DISTANCE", } ); const resultOne = await vectorStore.similaritySearch("greetings", 1, { language: "Portugese", }); console.log(resultOne); await vectorStore.end();}; Supabase SetupUsageStandard usageMetadata Filtering Page Title: Supabase | 🦜️🔗 Langchain Paragraphs:
4e9727215e95-1632
Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsSupabaseOn this pageSupabaseLangchain supports using Supabase Postgres database as a vector store, using the pgvector postgres extension.
4e9727215e95-1633
Refer to the Supabase blog post for more information.Setup​Install the library with​npmYarnpnpmnpm install -S @supabase/supabase-jsyarn add @supabase/supabase-jspnpm add @supabase/supabase-jsCreate a table and search function in your database​Run this in your database:-- Enable the pgvector extension to work with embedding vectorscreate extension vector;-- Create a table to store your documentscreate table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed);-- Create a function to search for documentscreate function match_documents ( query_embedding vector(1536), match_count int DEFAULT null, filter jsonb DEFAULT '{}') returns table ( id bigint, content text, metadata jsonb, similarity float)language plpgsqlas $$#variable_conflict use_columnbegin return query select id, content, metadata,
4e9727215e95-1634
1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count;end;$$;Usage​Standard Usage​The below example shows how to perform a basic similarity search with Supabase:import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Bye bye", "What's this?
4e9727215e95-1635
"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const resultOne = await vectorStore.similaritySearch("Hello world", 1); console.log(resultOne);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​Given the above match_documents Postgres function, you can also pass a filter parameter to only documents with a specific metadata field value. This filter parameter is a JSON object, and the match_documents function will use the Postgres JSONB Containment operator @> to filter documents by the metadata field values you specify. See details on the Postgres JSONB Containment operator for more information.Note: If you've previously been using SupabaseVectorStore, you may need to drop and recreate the match_documents function per the updated SQL above to use this functionality.import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var
4e9727215e95-1636
SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Hello world", "Hello world"], [{ user_id: 2 }, { user_id: 1 }, { user_id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const result = await vectorStore.similaritySearch("Hello world", 1, { user_id: 3, }); console.log(result);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Query Builder Filtering​You can also use query builder-style filtering similar to how the Supabase JavaScript library works instead of passing an object. Note that since most of the filter properties are in the metadata column, you need to use arrow operators (-> for integer or ->> for text) as defined in Postgrest API documentation and specify the data type of the property (e.g.
4e9727215e95-1637
the column should look something like metadata->some_int_value::int).import { SupabaseFilterRPCCall, SupabaseVectorStore,} from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum. So I would need to expand upon the notion of quantum fluff, a theorectical concept where subatomic particles coalesce to form transient multidimensional spaces. Yet, this abstraction holds no real-world application or comprehensible meaning, reflecting a cosmic puzzle. ", metadata: { b: 1, c: 10, stuff: "right" }, }, { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum.
4e9727215e95-1638
So I would need to proceed by discussing the echo of virtual tweets in the binary corridors of the digital universe. Each tweet, like a pixelated canary, hums in an unseen frequency, a fascinatingly perplexing phenomenon that, while conjuring vivid imagery, lacks any concrete implication or real-world relevance, portraying a paradox of multidimensional spaces in the age of cyber folklore.
4e9727215e95-1639
", metadata: { b: 2, c: 9, stuff: "right" }, }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, { pageContent: "hi", metadata: { b: 2, c: 8, stuff: "right" } }, { pageContent: "bye", metadata: { b: 3, c: 7, stuff: "right" } }, { pageContent: "what's this", metadata: { b: 4, c: 6, stuff: "right" } }, ]; // Also supports an additional {ids: []} parameter for upsertion await store.addDocuments(docs); const funcFilterA: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7) .textSearch("content", `'multidimensional' & 'spaces'`, { config: "english", }); const resultA = await store.similaritySearch("quantum", 4, funcFilterA); const funcFilterB: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7)
4e9727215e95-1640
.filter("metadata->c::int", "gt", 7) .filter("metadata->>stuff", "eq", "right"); const resultB = await store.similaritySearch("hello", 2, funcFilterB); console.log(resultA, resultB);};API Reference:SupabaseFilterRPCCall from langchain/vectorstores/supabaseSupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiDocument deletion​import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from
4e9727215e95-1641
"@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ]; // Also takes an additional {ids: []} parameter for upsertion const ids = await store.addDocuments(docs); const resultA = await store.similaritySearch("hello", 2); console.log(resultA); /* [ Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ] */ await store.delete({ ids }); const resultB = await store.similaritySearch("hello", 2); console.log(resultB); /* [] */};API Reference:SupabaseVectorStore from
4e9727215e95-1642
/* [] */};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiPreviousSingleStoreNextTigrisSetupInstall the library withCreate a table and search function in your databaseUsageStandard
4e9727215e95-1643
UsageMetadata FilteringMetadata Query Builder FilteringDocument deletionCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsSupabaseOn this pageSupabaseLangchain supports using Supabase Postgres database as a vector store, using the pgvector postgres extension.
4e9727215e95-1644
Refer to the Supabase blog post for more information.Setup​Install the library with​npmYarnpnpmnpm install -S @supabase/supabase-jsyarn add @supabase/supabase-jspnpm add @supabase/supabase-jsCreate a table and search function in your database​Run this in your database:-- Enable the pgvector extension to work with embedding vectorscreate extension vector;-- Create a table to store your documentscreate table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed);-- Create a function to search for documentscreate function match_documents ( query_embedding vector(1536), match_count int DEFAULT null, filter jsonb DEFAULT '{}') returns table ( id bigint, content text, metadata jsonb, similarity float)language plpgsqlas $$#variable_conflict use_columnbegin return query select id, content, metadata,
4e9727215e95-1645
1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count;end;$$;Usage​Standard Usage​The below example shows how to perform a basic similarity search with Supabase:import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Bye bye", "What's this?
4e9727215e95-1646
"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const resultOne = await vectorStore.similaritySearch("Hello world", 1); console.log(resultOne);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​Given the above match_documents Postgres function, you can also pass a filter parameter to only documents with a specific metadata field value. This filter parameter is a JSON object, and the match_documents function will use the Postgres JSONB Containment operator @> to filter documents by the metadata field values you specify. See details on the Postgres JSONB Containment operator for more information.Note: If you've previously been using SupabaseVectorStore, you may need to drop and recreate the match_documents function per the updated SQL above to use this functionality.import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var
4e9727215e95-1647
SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Hello world", "Hello world"], [{ user_id: 2 }, { user_id: 1 }, { user_id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const result = await vectorStore.similaritySearch("Hello world", 1, { user_id: 3, }); console.log(result);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Query Builder Filtering​You can also use query builder-style filtering similar to how the Supabase JavaScript library works instead of passing an object. Note that since most of the filter properties are in the metadata column, you need to use arrow operators (-> for integer or ->> for text) as defined in Postgrest API documentation and specify the data type of the property (e.g.
4e9727215e95-1648
the column should look something like metadata->some_int_value::int).import { SupabaseFilterRPCCall, SupabaseVectorStore,} from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum. So I would need to expand upon the notion of quantum fluff, a theorectical concept where subatomic particles coalesce to form transient multidimensional spaces. Yet, this abstraction holds no real-world application or comprehensible meaning, reflecting a cosmic puzzle. ", metadata: { b: 1, c: 10, stuff: "right" }, }, { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum.
4e9727215e95-1649
So I would need to proceed by discussing the echo of virtual tweets in the binary corridors of the digital universe. Each tweet, like a pixelated canary, hums in an unseen frequency, a fascinatingly perplexing phenomenon that, while conjuring vivid imagery, lacks any concrete implication or real-world relevance, portraying a paradox of multidimensional spaces in the age of cyber folklore.
4e9727215e95-1650
", metadata: { b: 2, c: 9, stuff: "right" }, }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, { pageContent: "hi", metadata: { b: 2, c: 8, stuff: "right" } }, { pageContent: "bye", metadata: { b: 3, c: 7, stuff: "right" } }, { pageContent: "what's this", metadata: { b: 4, c: 6, stuff: "right" } }, ]; // Also supports an additional {ids: []} parameter for upsertion await store.addDocuments(docs); const funcFilterA: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7) .textSearch("content", `'multidimensional' & 'spaces'`, { config: "english", }); const resultA = await store.similaritySearch("quantum", 4, funcFilterA); const funcFilterB: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7)
4e9727215e95-1651
.filter("metadata->c::int", "gt", 7) .filter("metadata->>stuff", "eq", "right"); const resultB = await store.similaritySearch("hello", 2, funcFilterB); console.log(resultA, resultB);};API Reference:SupabaseFilterRPCCall from langchain/vectorstores/supabaseSupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiDocument deletion​import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from
4e9727215e95-1652
"@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ]; // Also takes an additional {ids: []} parameter for upsertion const ids = await store.addDocuments(docs); const resultA = await store.similaritySearch("hello", 2); console.log(resultA); /* [ Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ] */ await store.delete({ ids }); const resultB = await store.similaritySearch("hello", 2); console.log(resultB); /* [] */};API Reference:SupabaseVectorStore from
4e9727215e95-1653
/* [] */};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiPreviousSingleStoreNextTigrisSetupInstall the library withCreate a table and search function in your databaseUsageStandard
4e9727215e95-1654
UsageMetadata FilteringMetadata Query Builder FilteringDocument deletion ModulesData connectionVector storesIntegrationsSupabaseOn this pageSupabaseLangchain supports using Supabase Postgres database as a vector store, using the pgvector postgres extension. Refer to the Supabase blog post for more information.Setup​Install the library with​npmYarnpnpmnpm install -S @supabase/supabase-jsyarn add @supabase/supabase-jspnpm add @supabase/supabase-jsCreate a table and search function in your database​Run this in your database:-- Enable the pgvector extension to work with embedding vectorscreate extension vector;-- Create a table to store your documentscreate table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed);-- Create a function to search for documentscreate function match_documents ( query_embedding vector(1536), match_count int DEFAULT null, filter jsonb DEFAULT '{}') returns table ( id bigint, content text, metadata jsonb, similarity float)language plpgsqlas $$#variable_conflict use_columnbegin return query select id, content, metadata,
4e9727215e95-1655
1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count;end;$$;Usage​Standard Usage​The below example shows how to perform a basic similarity search with Supabase:import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Bye bye", "What's this?
4e9727215e95-1656
"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const resultOne = await vectorStore.similaritySearch("Hello world", 1); console.log(resultOne);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​Given the above match_documents Postgres function, you can also pass a filter parameter to only documents with a specific metadata field value. This filter parameter is a JSON object, and the match_documents function will use the Postgres JSONB Containment operator @> to filter documents by the metadata field values you specify. See details on the Postgres JSONB Containment operator for more information.Note: If you've previously been using SupabaseVectorStore, you may need to drop and recreate the match_documents function per the updated SQL above to use this functionality.import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var
4e9727215e95-1657
SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Hello world", "Hello world"], [{ user_id: 2 }, { user_id: 1 }, { user_id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const result = await vectorStore.similaritySearch("Hello world", 1, { user_id: 3, }); console.log(result);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Query Builder Filtering​You can also use query builder-style filtering similar to how the Supabase JavaScript library works instead of passing an object. Note that since most of the filter properties are in the metadata column, you need to use arrow operators (-> for integer or ->> for text) as defined in Postgrest API documentation and specify the data type of the property (e.g.
4e9727215e95-1658
the column should look something like metadata->some_int_value::int).import { SupabaseFilterRPCCall, SupabaseVectorStore,} from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum. So I would need to expand upon the notion of quantum fluff, a theorectical concept where subatomic particles coalesce to form transient multidimensional spaces. Yet, this abstraction holds no real-world application or comprehensible meaning, reflecting a cosmic puzzle. ", metadata: { b: 1, c: 10, stuff: "right" }, }, { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum.
4e9727215e95-1659
So I would need to proceed by discussing the echo of virtual tweets in the binary corridors of the digital universe. Each tweet, like a pixelated canary, hums in an unseen frequency, a fascinatingly perplexing phenomenon that, while conjuring vivid imagery, lacks any concrete implication or real-world relevance, portraying a paradox of multidimensional spaces in the age of cyber folklore.
4e9727215e95-1660
", metadata: { b: 2, c: 9, stuff: "right" }, }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, { pageContent: "hi", metadata: { b: 2, c: 8, stuff: "right" } }, { pageContent: "bye", metadata: { b: 3, c: 7, stuff: "right" } }, { pageContent: "what's this", metadata: { b: 4, c: 6, stuff: "right" } }, ]; // Also supports an additional {ids: []} parameter for upsertion await store.addDocuments(docs); const funcFilterA: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7) .textSearch("content", `'multidimensional' & 'spaces'`, { config: "english", }); const resultA = await store.similaritySearch("quantum", 4, funcFilterA); const funcFilterB: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7)
4e9727215e95-1661
.filter("metadata->c::int", "gt", 7) .filter("metadata->>stuff", "eq", "right"); const resultB = await store.similaritySearch("hello", 2, funcFilterB); console.log(resultA, resultB);};API Reference:SupabaseFilterRPCCall from langchain/vectorstores/supabaseSupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiDocument deletion​import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from
4e9727215e95-1662
"@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ]; // Also takes an additional {ids: []} parameter for upsertion const ids = await store.addDocuments(docs); const resultA = await store.similaritySearch("hello", 2); console.log(resultA); /* [ Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ] */ await store.delete({ ids }); const resultB = await store.similaritySearch("hello", 2); console.log(resultB); /* [] */};API Reference:SupabaseVectorStore from
4e9727215e95-1663
/* [] */};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiPreviousSingleStoreNextTigrisSetupInstall the library withCreate a table and search function in your databaseUsageStandard
4e9727215e95-1664
UsageMetadata FilteringMetadata Query Builder FilteringDocument deletion ModulesData connectionVector storesIntegrationsSupabaseOn this pageSupabaseLangchain supports using Supabase Postgres database as a vector store, using the pgvector postgres extension. Refer to the Supabase blog post for more information.Setup​Install the library with​npmYarnpnpmnpm install -S @supabase/supabase-jsyarn add @supabase/supabase-jspnpm add @supabase/supabase-jsCreate a table and search function in your database​Run this in your database:-- Enable the pgvector extension to work with embedding vectorscreate extension vector;-- Create a table to store your documentscreate table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed);-- Create a function to search for documentscreate function match_documents ( query_embedding vector(1536), match_count int DEFAULT null, filter jsonb DEFAULT '{}') returns table ( id bigint, content text, metadata jsonb, similarity float)language plpgsqlas $$#variable_conflict use_columnbegin return query select id, content, metadata,
4e9727215e95-1665
1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count;end;$$;Usage​Standard Usage​The below example shows how to perform a basic similarity search with Supabase:import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Bye bye", "What's this?
4e9727215e95-1666
"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const resultOne = await vectorStore.similaritySearch("Hello world", 1); console.log(resultOne);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​Given the above match_documents Postgres function, you can also pass a filter parameter to only documents with a specific metadata field value. This filter parameter is a JSON object, and the match_documents function will use the Postgres JSONB Containment operator @> to filter documents by the metadata field values you specify. See details on the Postgres JSONB Containment operator for more information.Note: If you've previously been using SupabaseVectorStore, you may need to drop and recreate the match_documents function per the updated SQL above to use this functionality.import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var
4e9727215e95-1667
SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Hello world", "Hello world"], [{ user_id: 2 }, { user_id: 1 }, { user_id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const result = await vectorStore.similaritySearch("Hello world", 1, { user_id: 3, }); console.log(result);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Query Builder Filtering​You can also use query builder-style filtering similar to how the Supabase JavaScript library works instead of passing an object. Note that since most of the filter properties are in the metadata column, you need to use arrow operators (-> for integer or ->> for text) as defined in Postgrest API documentation and specify the data type of the property (e.g.
4e9727215e95-1668
the column should look something like metadata->some_int_value::int).import { SupabaseFilterRPCCall, SupabaseVectorStore,} from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum. So I would need to expand upon the notion of quantum fluff, a theorectical concept where subatomic particles coalesce to form transient multidimensional spaces. Yet, this abstraction holds no real-world application or comprehensible meaning, reflecting a cosmic puzzle. ", metadata: { b: 1, c: 10, stuff: "right" }, }, { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum.
4e9727215e95-1669
So I would need to proceed by discussing the echo of virtual tweets in the binary corridors of the digital universe. Each tweet, like a pixelated canary, hums in an unseen frequency, a fascinatingly perplexing phenomenon that, while conjuring vivid imagery, lacks any concrete implication or real-world relevance, portraying a paradox of multidimensional spaces in the age of cyber folklore.
4e9727215e95-1670
", metadata: { b: 2, c: 9, stuff: "right" }, }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, { pageContent: "hi", metadata: { b: 2, c: 8, stuff: "right" } }, { pageContent: "bye", metadata: { b: 3, c: 7, stuff: "right" } }, { pageContent: "what's this", metadata: { b: 4, c: 6, stuff: "right" } }, ]; // Also supports an additional {ids: []} parameter for upsertion await store.addDocuments(docs); const funcFilterA: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7) .textSearch("content", `'multidimensional' & 'spaces'`, { config: "english", }); const resultA = await store.similaritySearch("quantum", 4, funcFilterA); const funcFilterB: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7)
4e9727215e95-1671
.filter("metadata->c::int", "gt", 7) .filter("metadata->>stuff", "eq", "right"); const resultB = await store.similaritySearch("hello", 2, funcFilterB); console.log(resultA, resultB);};API Reference:SupabaseFilterRPCCall from langchain/vectorstores/supabaseSupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiDocument deletion​import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from
4e9727215e95-1672
"langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ]; // Also takes an additional {ids: []} parameter for upsertion const ids = await store.addDocuments(docs); const resultA = await store.similaritySearch("hello", 2); console.log(resultA); /* [ Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ] */ await store.delete({ ids }); const resultB = await store.similaritySearch("hello", 2); console.log(resultB); /* [] */};API
4e9727215e95-1673
2); console.log(resultB); /* [] */};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiPreviousSingleStoreNextTigris
4e9727215e95-1674
SupabaseLangchain supports using Supabase Postgres database as a vector store, using the pgvector postgres extension. Refer to the Supabase blog post for more information.Setup​Install the library with​npmYarnpnpmnpm install -S @supabase/supabase-jsyarn add @supabase/supabase-jspnpm add @supabase/supabase-jsCreate a table and search function in your database​Run this in your database:-- Enable the pgvector extension to work with embedding vectorscreate extension vector;-- Create a table to store your documentscreate table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed);-- Create a function to search for documentscreate function match_documents ( query_embedding vector(1536), match_count int DEFAULT null, filter jsonb DEFAULT '{}') returns table ( id bigint, content text, metadata jsonb, similarity float)language plpgsqlas $$#variable_conflict use_columnbegin return query select id, content, metadata,
4e9727215e95-1675
1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count;end;$$;Usage​Standard Usage​The below example shows how to perform a basic similarity search with Supabase:import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Bye bye", "What's this?
4e9727215e95-1676
"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const resultOne = await vectorStore.similaritySearch("Hello world", 1); console.log(resultOne);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Filtering​Given the above match_documents Postgres function, you can also pass a filter parameter to only documents with a specific metadata field value. This filter parameter is a JSON object, and the match_documents function will use the Postgres JSONB Containment operator @> to filter documents by the metadata field values you specify. See details on the Postgres JSONB Containment operator for more information.Note: If you've previously been using SupabaseVectorStore, you may need to drop and recreate the match_documents function per the updated SQL above to use this functionality.import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var
4e9727215e95-1677
SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Hello world", "Hello world"], [{ user_id: 2 }, { user_id: 1 }, { user_id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const result = await vectorStore.similaritySearch("Hello world", 1, { user_id: 3, }); console.log(result);};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiMetadata Query Builder Filtering​You can also use query builder-style filtering similar to how the Supabase JavaScript library works instead of passing an object. Note that since most of the filter properties are in the metadata column, you need to use arrow operators (-> for integer or ->> for text) as defined in Postgrest API documentation and specify the data type of the property (e.g.
4e9727215e95-1678
the column should look something like metadata->some_int_value::int).import { SupabaseFilterRPCCall, SupabaseVectorStore,} from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum. So I would need to expand upon the notion of quantum fluff, a theorectical concept where subatomic particles coalesce to form transient multidimensional spaces. Yet, this abstraction holds no real-world application or comprehensible meaning, reflecting a cosmic puzzle. ", metadata: { b: 1, c: 10, stuff: "right" }, }, { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum.
4e9727215e95-1679
So I would need to proceed by discussing the echo of virtual tweets in the binary corridors of the digital universe. Each tweet, like a pixelated canary, hums in an unseen frequency, a fascinatingly perplexing phenomenon that, while conjuring vivid imagery, lacks any concrete implication or real-world relevance, portraying a paradox of multidimensional spaces in the age of cyber folklore.
4e9727215e95-1680
", metadata: { b: 2, c: 9, stuff: "right" }, }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, { pageContent: "hi", metadata: { b: 2, c: 8, stuff: "right" } }, { pageContent: "bye", metadata: { b: 3, c: 7, stuff: "right" } }, { pageContent: "what's this", metadata: { b: 4, c: 6, stuff: "right" } }, ]; // Also supports an additional {ids: []} parameter for upsertion await store.addDocuments(docs); const funcFilterA: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7) .textSearch("content", `'multidimensional' & 'spaces'`, { config: "english", }); const resultA = await store.similaritySearch("quantum", 4, funcFilterA); const funcFilterB: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7)
4e9727215e95-1681
.filter("metadata->c::int", "gt", 7) .filter("metadata->>stuff", "eq", "right"); const resultB = await store.similaritySearch("hello", 2, funcFilterB); console.log(resultA, resultB);};API Reference:SupabaseFilterRPCCall from langchain/vectorstores/supabaseSupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openaiDocument deletion​import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from
4e9727215e95-1682
"langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ]; // Also takes an additional {ids: []} parameter for upsertion const ids = await store.addDocuments(docs); const resultA = await store.similaritySearch("hello", 2); console.log(resultA); /* [ Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ] */ await store.delete({ ids }); const resultB = await store.similaritySearch("hello", 2); console.log(resultB); /* [] */};API
4e9727215e95-1683
2); console.log(resultB); /* [] */};API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openai
4e9727215e95-1684
npmYarnpnpmnpm install -S @supabase/supabase-jsyarn add @supabase/supabase-jspnpm add @supabase/supabase-js npm install -S @supabase/supabase-jsyarn add @supabase/supabase-jspnpm add @supabase/supabase-js npm install -S @supabase/supabase-js yarn add @supabase/supabase-js pnpm add @supabase/supabase-js Run this in your database: -- Enable the pgvector extension to work with embedding vectorscreate extension vector;-- Create a table to store your documentscreate table documents ( id bigserial primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed);-- Create a function to search for documentscreate function match_documents ( query_embedding vector(1536), match_count int DEFAULT null, filter jsonb DEFAULT '{}') returns table ( id bigint, content text, metadata jsonb, similarity float)language plpgsqlas $$#variable_conflict use_columnbegin return query select id, content, metadata, 1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding limit match_count;end;$$; The below example shows how to perform a basic similarity search with Supabase:
4e9727215e95-1685
The below example shows how to perform a basic similarity search with Supabase: import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Bye bye", "What's this? "], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const resultOne = await vectorStore.similaritySearch("Hello world", 1); console.log(resultOne);}; API Reference:SupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openai Given the above match_documents Postgres function, you can also pass a filter parameter to only documents with a specific metadata field value. This filter parameter is a JSON object, and the match_documents function will use the Postgres JSONB Containment operator @> to filter documents by the metadata field values you specify. See details on the Postgres JSONB Containment operator for more information.
4e9727215e95-1686
Note: If you've previously been using SupabaseVectorStore, you may need to drop and recreate the match_documents function per the updated SQL above to use this functionality. import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const vectorStore = await SupabaseVectorStore.fromTexts( ["Hello world", "Hello world", "Hello world"], [{ user_id: 2 }, { user_id: 1 }, { user_id: 3 }], new OpenAIEmbeddings(), { client, tableName: "documents", queryName: "match_documents", } ); const result = await vectorStore.similaritySearch("Hello world", 1, { user_id: 3, }); console.log(result);}; You can also use query builder-style filtering similar to how the Supabase JavaScript library works instead of passing an object. Note that since most of the filter properties are in the metadata column, you need to use arrow operators (-> for integer or ->> for text) as defined in Postgrest API documentation and specify the data type of the property (e.g. the column should look something like metadata->some_int_value::int).
4e9727215e95-1687
import { SupabaseFilterRPCCall, SupabaseVectorStore,} from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum. So I would need to expand upon the notion of quantum fluff, a theorectical concept where subatomic particles coalesce to form transient multidimensional spaces. Yet, this abstraction holds no real-world application or comprehensible meaning, reflecting a cosmic puzzle. ", metadata: { b: 1, c: 10, stuff: "right" }, }, { pageContent: "This is a long text, but it actually means something because vector database does not understand Lorem Ipsum.
4e9727215e95-1688
So I would need to proceed by discussing the echo of virtual tweets in the binary corridors of the digital universe. Each tweet, like a pixelated canary, hums in an unseen frequency, a fascinatingly perplexing phenomenon that, while conjuring vivid imagery, lacks any concrete implication or real-world relevance, portraying a paradox of multidimensional spaces in the age of cyber folklore.
4e9727215e95-1689
", metadata: { b: 2, c: 9, stuff: "right" }, }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, { pageContent: "hi", metadata: { b: 2, c: 8, stuff: "right" } }, { pageContent: "bye", metadata: { b: 3, c: 7, stuff: "right" } }, { pageContent: "what's this", metadata: { b: 4, c: 6, stuff: "right" } }, ]; // Also supports an additional {ids: []} parameter for upsertion await store.addDocuments(docs); const funcFilterA: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7) .textSearch("content", `'multidimensional' & 'spaces'`, { config: "english", }); const resultA = await store.similaritySearch("quantum", 4, funcFilterA); const funcFilterB: SupabaseFilterRPCCall = (rpc) => rpc .filter("metadata->b::int", "lt", 3) .filter("metadata->c::int", "gt", 7) .filter("metadata->>stuff", "eq", "right"); const resultB = await store.similaritySearch("hello", 2, funcFilterB); console.log(resultA, resultB);};
4e9727215e95-1690
API Reference:SupabaseFilterRPCCall from langchain/vectorstores/supabaseSupabaseVectorStore from langchain/vectorstores/supabaseOpenAIEmbeddings from langchain/embeddings/openai
4e9727215e95-1691
import { SupabaseVectorStore } from "langchain/vectorstores/supabase";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { createClient } from "@supabase/supabase-js";// First, follow set-up instructions at// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabaseconst privateKey = process.env.SUPABASE_PRIVATE_KEY;if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);const url = process.env.SUPABASE_URL;if (!url) throw new Error(`Expected env var SUPABASE_URL`);export const run = async () => { const client = createClient(url, privateKey); const embeddings = new OpenAIEmbeddings(); const store = new SupabaseVectorStore(embeddings, { client, tableName: "documents", }); const docs = [ { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ]; // Also takes an additional {ids: []} parameter for upsertion const ids = await store.addDocuments(docs); const resultA = await store.similaritySearch("hello", 2); console.log(resultA); /* [ Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "right" } }, Document { pageContent: "hello", metadata: { b: 1, c: 9, stuff: "wrong" } }, ] */ await store.delete({ ids }); const resultB = await
4e9727215e95-1692
}, ] */ await store.delete({ ids }); const resultB = await store.similaritySearch("hello", 2); console.log(resultB); /* [] */};
4e9727215e95-1693
Tigris SetupInstall the library withCreate a table and search function in your databaseUsageStandard UsageMetadata FilteringMetadata Query Builder FilteringDocument deletion Page Title: Tigris | 🦜️🔗 Langchain Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsTigrisOn this pageTigrisTigris makes it easy to build AI applications with vector embeddings. It is a fully managed cloud-native database that allows you store and index documents and vector embeddings for fast and scalable vector search.CompatibilityOnly available on Node.js.Setup​1. Install the Tigris SDK​Install the SDK as followsnpmYarnpnpmnpm install -S @tigrisdata/vectoryarn add @tigrisdata/vectorpnpm add @tigrisdata/vector2. Fetch Tigris API credentials​You can sign up for a free Tigris account here.Once you have signed up for the Tigris account, create a new project called vectordemo. Next, make a note of the clientId and clientSecret, which you can get from the
4e9727215e95-1694
Next, make a note of the clientId and clientSecret, which you can get from the Application Keys section of the project.Index docs​import { VectorDocumentStore } from "@tigrisdata/vector";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TigrisVectorStore } from "langchain/vectorstores/tigris";const index = new VectorDocumentStore({ connection: { serverUrl: "api.preview.tigrisdata.cloud", projectName: process.env.TIGRIS_PROJECT, clientId: process.env.TIGRIS_CLIENT_ID, clientSecret: process.env.TIGRIS_CLIENT_SECRET, }, indexName: "examples_index", numDimensions: 1536, // match the OpenAI embedding size});const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "tigris is a cloud-native vector db", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "tigris is a river", }),];await TigrisVectorStore.fromDocuments(docs, new OpenAIEmbeddings(), { index });API Reference:Document from langchain/documentOpenAIEmbeddings
4e9727215e95-1695
from langchain/embeddings/openaiTigrisVectorStore from langchain/vectorstores/tigrisQuery docs​import { VectorDocumentStore } from "@tigrisdata/vector";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TigrisVectorStore } from "langchain/vectorstores/tigris";const index = new VectorDocumentStore({ connection: { serverUrl: "api.preview.tigrisdata.cloud", projectName: process.env.TIGRIS_PROJECT, clientId: process.env.TIGRIS_CLIENT_ID, clientSecret: process.env.TIGRIS_CLIENT_SECRET, }, indexName: "examples_index", numDimensions: 1536, // match the OpenAI embedding size});const vectorStore = await TigrisVectorStore.fromExistingIndex( new OpenAIEmbeddings(), { index });/* Search the vector DB independently with metadata filters */const results = await vectorStore.similaritySearch("tigris", 1, { "metadata.foo": "bar",});console.log(JSON.stringify(results, null, 2));/*[ Document { pageContent: 'tigris is a cloud-native vector db', metadata: { foo: 'bar' } }]*/API Reference:OpenAIEmbeddings from langchain/embeddings/openaiTigrisVectorStore from langchain/vectorstores/tigrisPreviousSupabaseNextTypeORMSetup1. Install the Tigris SDK2. Fetch Tigris API credentialsIndex docsQuery docsCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
4e9727215e95-1696
Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsTigrisOn this pageTigrisTigris makes it easy to build AI applications with vector embeddings. It is a fully managed cloud-native database that allows you store and index documents and vector embeddings for fast and scalable vector search.CompatibilityOnly available on Node.js.Setup​1. Install the Tigris SDK​Install the SDK as followsnpmYarnpnpmnpm install -S @tigrisdata/vectoryarn add @tigrisdata/vectorpnpm add @tigrisdata/vector2. Fetch Tigris API credentials​You can sign up for a free Tigris account here.Once you have signed up for the Tigris account, create a new project called vectordemo. Next, make a note of the clientId and clientSecret, which you can get from the
4e9727215e95-1697
Next, make a note of the clientId and clientSecret, which you can get from the Application Keys section of the project.Index docs​import { VectorDocumentStore } from "@tigrisdata/vector";import { Document } from "langchain/document";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TigrisVectorStore } from "langchain/vectorstores/tigris";const index = new VectorDocumentStore({ connection: { serverUrl: "api.preview.tigrisdata.cloud", projectName: process.env.TIGRIS_PROJECT, clientId: process.env.TIGRIS_CLIENT_ID, clientSecret: process.env.TIGRIS_CLIENT_SECRET, }, indexName: "examples_index", numDimensions: 1536, // match the OpenAI embedding size});const docs = [ new Document({ metadata: { foo: "bar" }, pageContent: "tigris is a cloud-native vector db", }), new Document({ metadata: { foo: "bar" }, pageContent: "the quick brown fox jumped over the lazy dog", }), new Document({ metadata: { baz: "qux" }, pageContent: "lorem ipsum dolor sit amet", }), new Document({ metadata: { baz: "qux" }, pageContent: "tigris is a river", }),];await TigrisVectorStore.fromDocuments(docs, new OpenAIEmbeddings(), { index });API Reference:Document from langchain/documentOpenAIEmbeddings
4e9727215e95-1698
from langchain/embeddings/openaiTigrisVectorStore from langchain/vectorstores/tigrisQuery docs​import { VectorDocumentStore } from "@tigrisdata/vector";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TigrisVectorStore } from "langchain/vectorstores/tigris";const index = new VectorDocumentStore({ connection: { serverUrl: "api.preview.tigrisdata.cloud", projectName: process.env.TIGRIS_PROJECT, clientId: process.env.TIGRIS_CLIENT_ID, clientSecret: process.env.TIGRIS_CLIENT_SECRET, }, indexName: "examples_index", numDimensions: 1536, // match the OpenAI embedding size});const vectorStore = await TigrisVectorStore.fromExistingIndex( new OpenAIEmbeddings(), { index });/* Search the vector DB independently with metadata filters */const results = await vectorStore.similaritySearch("tigris", 1, { "metadata.foo": "bar",});console.log(JSON.stringify(results, null, 2));/*[ Document { pageContent: 'tigris is a cloud-native vector db', metadata: { foo: 'bar' } }]*/API Reference:OpenAIEmbeddings from langchain/embeddings/openaiTigrisVectorStore from langchain/vectorstores/tigrisPreviousSupabaseNextTypeORMSetup1. Install the Tigris SDK2. Fetch Tigris API credentialsIndex docsQuery docs ModulesData connectionVector storesIntegrationsTigrisOn this pageTigrisTigris makes it easy to build AI applications with vector embeddings. It is a fully managed cloud-native database that allows you store and
4e9727215e95-1699
It is a fully managed cloud-native database that allows you store and index documents and vector embeddings for fast and scalable vector search.CompatibilityOnly available on Node.js.Setup​1. Install the Tigris SDK​Install the SDK as followsnpmYarnpnpmnpm install -S @tigrisdata/vectoryarn add @tigrisdata/vectorpnpm add @tigrisdata/vector2. Fetch Tigris API credentials​You can sign up for a free Tigris account here.Once you have signed up for the Tigris account, create a new project called vectordemo. Next, make a note of the clientId and clientSecret, which you can get from the