id
stringlengths
14
17
text
stringlengths
42
2.1k
4e9727215e95-1400
ModulesData connectionVector storesIntegrationsFaissOn this pageFaissCompatibilityOnly available on Node.js.Faiss is a library for efficient similarity search and clustering of dense vectors.Langchainjs supports using Faiss as a vectorstore that can be saved to file.
4e9727215e95-1401
It also provides the ability to read the saved file from Python's implementation.Setup​Install the faiss-node, which is a Node.js bindings for Faiss.npmYarnpnpmnpm install -S faiss-nodeyarn add faiss-nodepnpm add faiss-nodeTo enable the ability to read the saved file from Python's implementation, the pickleparser also needs to install.npmYarnpnpmnpm install -S pickleparseryarn add pickleparserpnpm add pickleparserUsage​Create a new index from texts​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings() ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne);};API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await FaissStore.fromDocuments( docs, new OpenAIEmbeddings());// Search for the most similar
4e9727215e95-1402
documentconst resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/textMerging indexes and creating new index from another instance​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { // Create an initial vector store const vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings() ); // Create another vector store from texts const vectorStore2 = await FaissStore.fromTexts( ["Some text"], [{ id: 1 }], new OpenAIEmbeddings() ); // merge the first vector store into vectorStore2 await vectorStore2.mergeFrom(vectorStore); const resultOne = await vectorStore2.similaritySearch("hello world", 1); console.log(resultOne); // You can also create a new vector store from another FaissStore index const vectorStore3 = await FaissStore.fromIndex( vectorStore2, new OpenAIEmbeddings() ); const resultTwo = await vectorStore3.similaritySearch("Bye bye", 1); console.log(resultTwo);};API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiSave an index to file and load it again​import { FaissStore } from
4e9727215e95-1403
"langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await FaissStore.load( directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiLoad the saved file from Python's implementation​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// The directory of data saved from Pythonconst directory = "your/directory/here";// Load the vector store from the directoryconst loadedVectorStore = await FaissStore.loadFromPython( directory, new OpenAIEmbeddings());// Search for the most similar documentconst result = await loadedVectorStore.similaritySearch("test", 2);console.log("result", result);API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiPreviousElasticsearchNextHNSWLib FaissCompatibilityOnly available on Node.js.Faiss is a library for efficient similarity search and clustering of dense vectors.Langchainjs supports using Faiss as a vectorstore that can be saved to file.
4e9727215e95-1404
It also provides the ability to read the saved file from Python's implementation.Setup​Install the faiss-node, which is a Node.js bindings for Faiss.npmYarnpnpmnpm install -S faiss-nodeyarn add faiss-nodepnpm add faiss-nodeTo enable the ability to read the saved file from Python's implementation, the pickleparser also needs to install.npmYarnpnpmnpm install -S pickleparseryarn add pickleparserpnpm add pickleparserUsage​Create a new index from texts​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings() ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne);};API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await FaissStore.fromDocuments( docs, new OpenAIEmbeddings());// Search for the most similar
4e9727215e95-1405
documentconst resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/textMerging indexes and creating new index from another instance​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { // Create an initial vector store const vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings() ); // Create another vector store from texts const vectorStore2 = await FaissStore.fromTexts( ["Some text"], [{ id: 1 }], new OpenAIEmbeddings() ); // merge the first vector store into vectorStore2 await vectorStore2.mergeFrom(vectorStore); const resultOne = await vectorStore2.similaritySearch("hello world", 1); console.log(resultOne); // You can also create a new vector store from another FaissStore index const vectorStore3 = await FaissStore.fromIndex( vectorStore2, new OpenAIEmbeddings() ); const resultTwo = await vectorStore3.similaritySearch("Bye bye", 1); console.log(resultTwo);};API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiSave an index to file and load it again​import { FaissStore } from
4e9727215e95-1406
"langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await FaissStore.load( directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiLoad the saved file from Python's implementation​import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// The directory of data saved from Pythonconst directory = "your/directory/here";// Load the vector store from the directoryconst loadedVectorStore = await FaissStore.loadFromPython( directory, new OpenAIEmbeddings());// Search for the most similar documentconst result = await loadedVectorStore.similaritySearch("test", 2);console.log("result", result);API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openai Faiss is a library for efficient similarity search and clustering of dense vectors. Langchainjs supports using Faiss as a vectorstore that can be saved to file. It also provides the ability to read the saved file from Python's implementation.
4e9727215e95-1407
Install the faiss-node, which is a Node.js bindings for Faiss. npmYarnpnpmnpm install -S faiss-nodeyarn add faiss-nodepnpm add faiss-node npm install -S faiss-nodeyarn add faiss-nodepnpm add faiss-node npm install -S faiss-node yarn add faiss-node pnpm add faiss-node To enable the ability to read the saved file from Python's implementation, the pickleparser also needs to install. npmYarnpnpmnpm install -S pickleparseryarn add pickleparserpnpm add pickleparser npm install -S pickleparseryarn add pickleparserpnpm add pickleparser npm install -S pickleparser yarn add pickleparser pnpm add pickleparser import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { const vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings() ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne);}; API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openai
4e9727215e95-1408
import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await FaissStore.fromDocuments( docs, new OpenAIEmbeddings());// Search for the most similar documentconst resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne); API Reference:FaissStore from langchain/vectorstores/faissOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/text
4e9727215e95-1409
import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";export const run = async () => { // Create an initial vector store const vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings() ); // Create another vector store from texts const vectorStore2 = await FaissStore.fromTexts( ["Some text"], [{ id: 1 }], new OpenAIEmbeddings() ); // merge the first vector store into vectorStore2 await vectorStore2.mergeFrom(vectorStore); const resultOne = await vectorStore2.similaritySearch("hello world", 1); console.log(resultOne); // You can also create a new vector store from another FaissStore index const vectorStore3 = await FaissStore.fromIndex( vectorStore2, new OpenAIEmbeddings() ); const resultTwo = await vectorStore3.similaritySearch("Bye bye", 1); console.log(resultTwo);};
4e9727215e95-1410
import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await FaissStore.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await FaissStore.load( directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result); import { FaissStore } from "langchain/vectorstores/faiss";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// The directory of data saved from Pythonconst directory = "your/directory/here";// Load the vector store from the directoryconst loadedVectorStore = await FaissStore.loadFromPython( directory, new OpenAIEmbeddings());// Search for the most similar documentconst result = await loadedVectorStore.similaritySearch("test", 2);console.log("result", result); HNSWLib SetupUsageCreate a new index from textsCreate a new index from a loaderMerging indexes and creating new index from another instanceSave an index to file and load it againLoad the saved file from Python's implementation Page Title: HNSWLib | 🦜️🔗 Langchain Paragraphs:
4e9727215e95-1411
Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsHNSWLibOn this pageHNSWLibCompatibilityOnly available on Node.js.HNSWLib is an in-memory vectorstore that can be saved to a file.
4e9727215e95-1412
It uses HNSWLib.Setup​cautionOn Windows, you might need to install Visual Studio first in order to properly build the hnswlib-node package.You can install it withnpmYarnpnpmnpm install hnswlib-nodeyarn add hnswlib-nodepnpm add hnswlib-nodeUsage​Create a new index from texts​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());// Search for the most similar documentconst result = await vectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from
4e9727215e95-1413
langchain/document_loaders/fs/textSave an index to a file and load it again​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiFilter documents​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const result = await vectorStore.similaritySearch( "hello world", 10, (document) => document.metadata.id === 3);// only "hello nice world" will be returnedconsole.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiDelete
4e9727215e95-1414
index​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Save the vector store to a directoryconst directory = "your/directory/here";// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());await loadedVectorStore.delete({ directory });API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiPreviousFaissNextLanceDBSetupUsageCreate a new index from textsCreate a new index from a loaderSave an index to a file and load it againFilter documentsDelete indexCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsHNSWLibOn this pageHNSWLibCompatibilityOnly available on Node.js.HNSWLib is an in-memory vectorstore that can be saved to a file.
4e9727215e95-1415
It uses HNSWLib.Setup​cautionOn Windows, you might need to install Visual Studio first in order to properly build the hnswlib-node package.You can install it withnpmYarnpnpmnpm install hnswlib-nodeyarn add hnswlib-nodepnpm add hnswlib-nodeUsage​Create a new index from texts​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());// Search for the most similar documentconst result = await vectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from
4e9727215e95-1416
langchain/document_loaders/fs/textSave an index to a file and load it again​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiFilter documents​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const result = await vectorStore.similaritySearch( "hello world", 10, (document) => document.metadata.id === 3);// only "hello nice world" will be returnedconsole.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiDelete
4e9727215e95-1417
index​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Save the vector store to a directoryconst directory = "your/directory/here";// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());await loadedVectorStore.delete({ directory });API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiPreviousFaissNextLanceDBSetupUsageCreate a new index from textsCreate a new index from a loaderSave an index to a file and load it againFilter documentsDelete index ModulesData connectionVector storesIntegrationsHNSWLibOn this pageHNSWLibCompatibilityOnly available on Node.js.HNSWLib is an in-memory vectorstore that can be saved to a file.
4e9727215e95-1418
It uses HNSWLib.Setup​cautionOn Windows, you might need to install Visual Studio first in order to properly build the hnswlib-node package.You can install it withnpmYarnpnpmnpm install hnswlib-nodeyarn add hnswlib-nodepnpm add hnswlib-nodeUsage​Create a new index from texts​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());// Search for the most similar documentconst result = await vectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from
4e9727215e95-1419
langchain/document_loaders/fs/textSave an index to a file and load it again​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiFilter documents​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const result = await vectorStore.similaritySearch( "hello world", 10, (document) => document.metadata.id === 3);// only "hello nice world" will be returnedconsole.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiDelete
4e9727215e95-1420
index​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Save the vector store to a directoryconst directory = "your/directory/here";// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());await loadedVectorStore.delete({ directory });API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiPreviousFaissNextLanceDBSetupUsageCreate a new index from textsCreate a new index from a loaderSave an index to a file and load it againFilter documentsDelete index ModulesData connectionVector storesIntegrationsHNSWLibOn this pageHNSWLibCompatibilityOnly available on Node.js.HNSWLib is an in-memory vectorstore that can be saved to a file.
4e9727215e95-1421
It uses HNSWLib.Setup​cautionOn Windows, you might need to install Visual Studio first in order to properly build the hnswlib-node package.You can install it withnpmYarnpnpmnpm install hnswlib-nodeyarn add hnswlib-nodepnpm add hnswlib-nodeUsage​Create a new index from texts​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());// Search for the most similar documentconst result = await vectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from
4e9727215e95-1422
langchain/document_loaders/fs/textSave an index to a file and load it again​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiFilter documents​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const result = await vectorStore.similaritySearch( "hello world", 10, (document) => document.metadata.id === 3);// only "hello nice world" will be returnedconsole.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiDelete
4e9727215e95-1423
index​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Save the vector store to a directoryconst directory = "your/directory/here";// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());await loadedVectorStore.delete({ directory });API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiPreviousFaissNextLanceDB HNSWLibCompatibilityOnly available on Node.js.HNSWLib is an in-memory vectorstore that can be saved to a file.
4e9727215e95-1424
It uses HNSWLib.Setup​cautionOn Windows, you might need to install Visual Studio first in order to properly build the hnswlib-node package.You can install it withnpmYarnpnpmnpm install hnswlib-nodeyarn add hnswlib-nodepnpm add hnswlib-nodeUsage​Create a new index from texts​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());// Search for the most similar documentconst result = await vectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from
4e9727215e95-1425
langchain/document_loaders/fs/textSave an index to a file and load it again​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiFilter documents​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const result = await vectorStore.similaritySearch( "hello world", 10, (document) => document.metadata.id === 3);// only "hello nice world" will be returnedconsole.log(result);API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiDelete
4e9727215e95-1426
index​import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Save the vector store to a directoryconst directory = "your/directory/here";// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());await loadedVectorStore.delete({ directory });API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openai HNSWLib is an in-memory vectorstore that can be saved to a file. It uses HNSWLib. cautionOn Windows, you might need to install Visual Studio first in order to properly build the hnswlib-node package. caution On Windows, you might need to install Visual Studio first in order to properly build the hnswlib-node package. You can install it with npmYarnpnpmnpm install hnswlib-nodeyarn add hnswlib-nodepnpm add hnswlib-node npm install hnswlib-nodeyarn add hnswlib-nodepnpm add hnswlib-node npm install hnswlib-node yarn add hnswlib-node pnpm add hnswlib-node import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const resultOne = await vectorStore.similaritySearch("hello world", 1);console.log(resultOne);
4e9727215e95-1427
API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openai import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();// Load the docs into the vector storeconst vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());// Search for the most similar documentconst result = await vectorStore.similaritySearch("hello world", 1);console.log(result); API Reference:HNSWLib from langchain/vectorstores/hnswlibOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/text import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Create a vector store through any method, here from texts as an exampleconst vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());// Save the vector store to a directoryconst directory = "your/directory/here";await vectorStore.save(directory);// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());// vectorStore and loadedVectorStore are identicalconst result = await loadedVectorStore.similaritySearch("hello world", 1);console.log(result);
4e9727215e95-1428
import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await HNSWLib.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings());const result = await vectorStore.similaritySearch( "hello world", 10, (document) => document.metadata.id === 3);// only "hello nice world" will be returnedconsole.log(result); import { HNSWLib } from "langchain/vectorstores/hnswlib";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// Save the vector store to a directoryconst directory = "your/directory/here";// Load the vector store from the same directoryconst loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());await loadedVectorStore.delete({ directory }); LanceDB SetupUsageCreate a new index from textsCreate a new index from a loaderSave an index to a file and load it againFilter documentsDelete index Page Title: LanceDB | 🦜️🔗 Langchain Paragraphs:
4e9727215e95-1429
Page Title: LanceDB | 🦜️🔗 Langchain Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsLanceDBOn this pageLanceDBLanceDB is an embedded vector database for AI applications.
4e9727215e95-1430
It is open source and distributed with an Apache-2.0 license.LanceDB datasets are persisted to disk and can be shared between Node.js and Python.Setup​Install the LanceDB Node.js bindings:npmYarnpnpmnpm install -S vectordbyarn add vectordbpnpm add vectordbUsage​Create a new index from texts​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", id: 1 }, ]); const vectorStore = await LanceDB.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'hello nice world', metadata: { id: 3 } } ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader }
4e9727215e95-1431
{ OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";import fs from "node:fs/promises";import
4e9727215e95-1432
path from "node:path";import os from "node:os";import { connect } from "vectordb";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", source: "a" }, ]); const vectorStore = await LanceDB.fromDocuments( docs, new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ // Document { // pageContent: 'Foo\nBar\nBaz\n\n', // metadata: { source: 'src/document_loaders/example_data/example.txt' } // } // ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/textOpen an existing dataset​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";//// You can open a LanceDB dataset created elsewhere, such as LangChain Python, by opening// an existing table//export const run = async () => { const uri = await createdTestDb(); const db = await connect(uri); const table = await
4e9727215e95-1433
db.openTable("vectors"); const vectorStore = new LanceDB(new OpenAIEmbeddings(), { table }); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'Hello world', metadata: { id: 1 } } ]};async function createdTestDb(): Promise<string> { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); await db.createTable("vectors", [ { vector: Array(1536), text: "Hello world", id: 1 }, { vector: Array(1536), text: "Bye bye", id: 2 }, { vector: Array(1536), text: "hello nice world", id: 3 }, ]); return dir;}API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiPreviousHNSWLibNextMilvusSetupUsageCreate a new index from textsCreate a new index from a loaderOpen an existing datasetCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
4e9727215e95-1434
Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsLanceDBOn this pageLanceDBLanceDB is an embedded vector database for AI applications.
4e9727215e95-1435
It is open source and distributed with an Apache-2.0 license.LanceDB datasets are persisted to disk and can be shared between Node.js and Python.Setup​Install the LanceDB Node.js bindings:npmYarnpnpmnpm install -S vectordbyarn add vectordbpnpm add vectordbUsage​Create a new index from texts​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", id: 1 }, ]); const vectorStore = await LanceDB.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'hello nice world', metadata: { id: 3 } } ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader }
4e9727215e95-1436
{ OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";import fs from "node:fs/promises";import
4e9727215e95-1437
path from "node:path";import os from "node:os";import { connect } from "vectordb";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", source: "a" }, ]); const vectorStore = await LanceDB.fromDocuments( docs, new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ // Document { // pageContent: 'Foo\nBar\nBaz\n\n', // metadata: { source: 'src/document_loaders/example_data/example.txt' } // } // ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/textOpen an existing dataset​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";//// You can open a LanceDB dataset created elsewhere, such as LangChain Python, by opening// an existing table//export const run = async () => { const uri = await createdTestDb(); const db = await connect(uri); const table = await
4e9727215e95-1438
db.openTable("vectors"); const vectorStore = new LanceDB(new OpenAIEmbeddings(), { table }); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'Hello world', metadata: { id: 1 } } ]};async function createdTestDb(): Promise<string> { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); await db.createTable("vectors", [ { vector: Array(1536), text: "Hello world", id: 1 }, { vector: Array(1536), text: "Bye bye", id: 2 }, { vector: Array(1536), text: "hello nice world", id: 3 }, ]); return dir;}API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiPreviousHNSWLibNextMilvusSetupUsageCreate a new index from textsCreate a new index from a loaderOpen an existing dataset ModulesData connectionVector storesIntegrationsLanceDBOn this pageLanceDBLanceDB is an embedded vector database for AI applications.
4e9727215e95-1439
It is open source and distributed with an Apache-2.0 license.LanceDB datasets are persisted to disk and can be shared between Node.js and Python.Setup​Install the LanceDB Node.js bindings:npmYarnpnpmnpm install -S vectordbyarn add vectordbpnpm add vectordbUsage​Create a new index from texts​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", id: 1 }, ]); const vectorStore = await LanceDB.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'hello nice world', metadata: { id: 3 } } ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader }
4e9727215e95-1440
{ OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";import fs from "node:fs/promises";import
4e9727215e95-1441
path from "node:path";import os from "node:os";import { connect } from "vectordb";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", source: "a" }, ]); const vectorStore = await LanceDB.fromDocuments( docs, new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ // Document { // pageContent: 'Foo\nBar\nBaz\n\n', // metadata: { source: 'src/document_loaders/example_data/example.txt' } // } // ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/textOpen an existing dataset​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";//// You can open a LanceDB dataset created elsewhere, such as LangChain Python, by opening// an existing table//export const run = async () => { const uri = await createdTestDb(); const db = await connect(uri); const table = await
4e9727215e95-1442
db.openTable("vectors"); const vectorStore = new LanceDB(new OpenAIEmbeddings(), { table }); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'Hello world', metadata: { id: 1 } } ]};async function createdTestDb(): Promise<string> { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); await db.createTable("vectors", [ { vector: Array(1536), text: "Hello world", id: 1 }, { vector: Array(1536), text: "Bye bye", id: 2 }, { vector: Array(1536), text: "hello nice world", id: 3 }, ]); return dir;}API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiPreviousHNSWLibNextMilvusSetupUsageCreate a new index from textsCreate a new index from a loaderOpen an existing dataset ModulesData connectionVector storesIntegrationsLanceDBOn this pageLanceDBLanceDB is an embedded vector database for AI applications.
4e9727215e95-1443
It is open source and distributed with an Apache-2.0 license.LanceDB datasets are persisted to disk and can be shared between Node.js and Python.Setup​Install the LanceDB Node.js bindings:npmYarnpnpmnpm install -S vectordbyarn add vectordbpnpm add vectordbUsage​Create a new index from texts​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", id: 1 }, ]); const vectorStore = await LanceDB.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'hello nice world', metadata: { id: 3 } } ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader }
4e9727215e95-1444
{ OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";import fs from "node:fs/promises";import
4e9727215e95-1445
path from "node:path";import os from "node:os";import { connect } from "vectordb";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", source: "a" }, ]); const vectorStore = await LanceDB.fromDocuments( docs, new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ // Document { // pageContent: 'Foo\nBar\nBaz\n\n', // metadata: { source: 'src/document_loaders/example_data/example.txt' } // } // ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/textOpen an existing dataset​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";//// You can open a LanceDB dataset created elsewhere, such as LangChain Python, by opening// an existing table//export const run = async () => { const uri = await createdTestDb(); const db = await connect(uri); const table = await
4e9727215e95-1446
db.openTable("vectors"); const vectorStore = new LanceDB(new OpenAIEmbeddings(), { table }); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'Hello world', metadata: { id: 1 } } ]};async function createdTestDb(): Promise<string> { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); await db.createTable("vectors", [ { vector: Array(1536), text: "Hello world", id: 1 }, { vector: Array(1536), text: "Bye bye", id: 2 }, { vector: Array(1536), text: "hello nice world", id: 3 }, ]); return dir;}API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiPreviousHNSWLibNextMilvus LanceDBLanceDB is an embedded vector database for AI applications.
4e9727215e95-1447
It is open source and distributed with an Apache-2.0 license.LanceDB datasets are persisted to disk and can be shared between Node.js and Python.Setup​Install the LanceDB Node.js bindings:npmYarnpnpmnpm install -S vectordbyarn add vectordbpnpm add vectordbUsage​Create a new index from texts​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", id: 1 }, ]); const vectorStore = await LanceDB.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'hello nice world', metadata: { id: 3 } } ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiCreate a new index from a loader​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader }
4e9727215e95-1448
{ OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";import fs from "node:fs/promises";import
4e9727215e95-1449
path from "node:path";import os from "node:os";import { connect } from "vectordb";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", source: "a" }, ]); const vectorStore = await LanceDB.fromDocuments( docs, new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ // Document { // pageContent: 'Foo\nBar\nBaz\n\n', // metadata: { source: 'src/document_loaders/example_data/example.txt' } // } // ]};API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/textOpen an existing dataset​import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";//// You can open a LanceDB dataset created elsewhere, such as LangChain Python, by opening// an existing table//export const run = async () => { const uri = await createdTestDb(); const db = await connect(uri); const table = await
4e9727215e95-1450
db.openTable("vectors"); const vectorStore = new LanceDB(new OpenAIEmbeddings(), { table }); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'Hello world', metadata: { id: 1 } } ]};async function createdTestDb(): Promise<string> { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); await db.createTable("vectors", [ { vector: Array(1536), text: "Hello world", id: 1 }, { vector: Array(1536), text: "Bye bye", id: 2 }, { vector: Array(1536), text: "hello nice world", id: 3 }, ]); return dir;}API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openai LanceDB datasets are persisted to disk and can be shared between Node.js and Python. Install the LanceDB Node.js bindings: npmYarnpnpmnpm install -S vectordbyarn add vectordbpnpm add vectordb npm install -S vectordbyarn add vectordbpnpm add vectordb npm install -S vectordb yarn add vectordb pnpm add vectordb
4e9727215e95-1451
yarn add vectordb pnpm add vectordb import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", id: 1 }, ]); const vectorStore = await LanceDB.fromTexts( ["Hello world", "Bye bye", "hello nice world"], [{ id: 2 }, { id: 1 }, { id: 3 }], new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'hello nice world', metadata: { id: 3 } } ]}; API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openai
4e9727215e95-1452
import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { TextLoader } from "langchain/document_loaders/fs/text";import fs from "node:fs/promises";import path from "node:path";import os from "node:os";import { connect } from "vectordb";// Create docs with a loaderconst loader = new TextLoader("src/document_loaders/example_data/example.txt");const docs = await loader.load();export const run = async () => { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); const table = await db.createTable("vectors", [ { vector: Array(1536), text: "sample", source: "a" }, ]); const vectorStore = await LanceDB.fromDocuments( docs, new OpenAIEmbeddings(), { table } ); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ // Document { // pageContent: 'Foo\nBar\nBaz\n\n', // metadata: { source: 'src/document_loaders/example_data/example.txt' } // } // ]}; API Reference:LanceDB from langchain/vectorstores/lancedbOpenAIEmbeddings from langchain/embeddings/openaiTextLoader from langchain/document_loaders/fs/text
4e9727215e95-1453
import { LanceDB } from "langchain/vectorstores/lancedb";import { OpenAIEmbeddings } from "langchain/embeddings/openai";import { connect } from "vectordb";import * as fs from "node:fs/promises";import * as path from "node:path";import os from "node:os";//// You can open a LanceDB dataset created elsewhere, such as LangChain Python, by opening// an existing table//export const run = async () => { const uri = await createdTestDb(); const db = await connect(uri); const table = await db.openTable("vectors"); const vectorStore = new LanceDB(new OpenAIEmbeddings(), { table }); const resultOne = await vectorStore.similaritySearch("hello world", 1); console.log(resultOne); // [ Document { pageContent: 'Hello world', metadata: { id: 1 } } ]};async function createdTestDb(): Promise<string> { const dir = await fs.mkdtemp(path.join(os.tmpdir(), "lancedb-")); const db = await connect(dir); await db.createTable("vectors", [ { vector: Array(1536), text: "Hello world", id: 1 }, { vector: Array(1536), text: "Bye bye", id: 2 }, { vector: Array(1536), text: "hello nice world", id: 3 }, ]); return dir;} Milvus SetupUsageCreate a new index from textsCreate a new index from a loaderOpen an existing dataset Page Title: Milvus | 🦜️🔗 Langchain Paragraphs:
4e9727215e95-1454
Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsMilvusOn this pageMilvusMilvus is a vector database built for embeddings similarity search and AI applications.CompatibilityOnly available on Node.js.Setup​Run Milvus instance with Docker on your computer docsInstall the Milvus Node.js SDK.npmYarnpnpmnpm install -S @zilliz/milvus2-sdk-nodeyarn add @zilliz/milvus2-sdk-nodepnpm add @zilliz/milvus2-sdk-nodeSetup Env variables for Milvus before running the
4e9727215e95-1455
code3.1 OpenAIexport OPENAI_API_KEY=YOUR_OPENAI_API_KEY_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:195303.2 Azure OpenAIexport AZURE_OPENAI_API_KEY=YOUR_AZURE_OPENAI_API_KEY_HEREexport AZURE_OPENAI_API_INSTANCE_NAME=YOUR_AZURE_OPENAI_INSTANCE_NAME_HEREexport AZURE_OPENAI_API_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_COMPLETIONS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_VERSION=YOUR_AZURE_OPENAI_API_VERSION_HEREexport AZURE_OPENAI_BASE_PATH=YOUR_AZURE_OPENAI_BASE_PATH_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530Index and query docs​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// text sample from Godel, Escher, Bachconst vectorStore = await Milvus.fromTexts( [ "Tortoise: Labyrinth? Labyrinth? Could it Are we in the notorious Little\ Harmonic Labyrinth of the dreaded Majotaur? ", "Achilles: Yiikes! What is that?
4e9727215e95-1456
", "Tortoise: They say-although I person never believed it myself-that an I\ Majotaur has created a tiny labyrinth sits in a pit in the middle of\ it, waiting innocent victims to get lost in its fears complexity.\ Then, when they wander and dazed into the center, he laughs and\ laughs at them-so hard, that he laughs them to death! ", "Achilles: Oh, no! ", "Tortoise: But it's only a myth. Courage, Achilles. ", ], [{ id: 2 }, { id: 1 }, { id: 3 }, { id: 4 }, { id: 5 }], new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });// or alternatively from docsconst vectorStore = await Milvus.fromDocuments(docs, new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach",});const response = await vectorStore.similaritySearch("scared", 2);Query docs from existing collection​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await Milvus.fromExistingCollection( new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });const response = await vectorStore.similaritySearch("scared", 2);PreviousLanceDBNextMongoDB AtlasSetupIndex and query docsQuery docs from existing collectionCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc.
4e9727215e95-1457
Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsMilvusOn this pageMilvusMilvus is a vector database built for embeddings similarity search and AI applications.CompatibilityOnly available on Node.js.Setup​Run Milvus instance with Docker on your computer docsInstall the Milvus Node.js SDK.npmYarnpnpmnpm install -S @zilliz/milvus2-sdk-nodeyarn add @zilliz/milvus2-sdk-nodepnpm add @zilliz/milvus2-sdk-nodeSetup Env variables for Milvus before running the code3.1 OpenAIexport
4e9727215e95-1458
OPENAI_API_KEY=YOUR_OPENAI_API_KEY_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:195303.2 Azure OpenAIexport AZURE_OPENAI_API_KEY=YOUR_AZURE_OPENAI_API_KEY_HEREexport AZURE_OPENAI_API_INSTANCE_NAME=YOUR_AZURE_OPENAI_INSTANCE_NAME_HEREexport AZURE_OPENAI_API_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_COMPLETIONS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_VERSION=YOUR_AZURE_OPENAI_API_VERSION_HEREexport AZURE_OPENAI_BASE_PATH=YOUR_AZURE_OPENAI_BASE_PATH_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530Index and query docs​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// text sample from Godel, Escher, Bachconst vectorStore = await Milvus.fromTexts( [ "Tortoise: Labyrinth? Labyrinth? Could it Are we in the notorious Little\ Harmonic Labyrinth of the dreaded Majotaur? ", "Achilles: Yiikes! What is that?
4e9727215e95-1459
", "Tortoise: They say-although I person never believed it myself-that an I\ Majotaur has created a tiny labyrinth sits in a pit in the middle of\ it, waiting innocent victims to get lost in its fears complexity.\ Then, when they wander and dazed into the center, he laughs and\ laughs at them-so hard, that he laughs them to death! ", "Achilles: Oh, no! ", "Tortoise: But it's only a myth. Courage, Achilles. ", ], [{ id: 2 }, { id: 1 }, { id: 3 }, { id: 4 }, { id: 5 }], new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });// or alternatively from docsconst vectorStore = await Milvus.fromDocuments(docs, new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach",});const response = await vectorStore.similaritySearch("scared", 2);Query docs from existing collection​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await Milvus.fromExistingCollection( new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });const response = await vectorStore.similaritySearch("scared", 2);PreviousLanceDBNextMongoDB AtlasSetupIndex and query docsQuery docs from existing collection
4e9727215e95-1460
ModulesData connectionVector storesIntegrationsMilvusOn this pageMilvusMilvus is a vector database built for embeddings similarity search and AI applications.CompatibilityOnly available on Node.js.Setup​Run Milvus instance with Docker on your computer docsInstall the Milvus Node.js SDK.npmYarnpnpmnpm install -S @zilliz/milvus2-sdk-nodeyarn add @zilliz/milvus2-sdk-nodepnpm add @zilliz/milvus2-sdk-nodeSetup Env variables for Milvus before running the code3.1 OpenAIexport OPENAI_API_KEY=YOUR_OPENAI_API_KEY_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:195303.2 Azure OpenAIexport AZURE_OPENAI_API_KEY=YOUR_AZURE_OPENAI_API_KEY_HEREexport AZURE_OPENAI_API_INSTANCE_NAME=YOUR_AZURE_OPENAI_INSTANCE_NAME_HEREexport AZURE_OPENAI_API_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_COMPLETIONS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_VERSION=YOUR_AZURE_OPENAI_API_VERSION_HEREexport AZURE_OPENAI_BASE_PATH=YOUR_AZURE_OPENAI_BASE_PATH_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530Index and query docs​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// text sample from Godel, Escher, Bachconst vectorStore = await Milvus.fromTexts( [
4e9727215e95-1461
Escher, Bachconst vectorStore = await Milvus.fromTexts( [ "Tortoise: Labyrinth? Labyrinth?
4e9727215e95-1462
Could it Are we in the notorious Little\ Harmonic Labyrinth of the dreaded Majotaur? ", "Achilles: Yiikes! What is that? ", "Tortoise: They say-although I person never believed it myself-that an I\ Majotaur has created a tiny labyrinth sits in a pit in the middle of\ it, waiting innocent victims to get lost in its fears complexity.\ Then, when they wander and dazed into the center, he laughs and\ laughs at them-so hard, that he laughs them to death! ", "Achilles: Oh, no! ", "Tortoise: But it's only a myth. Courage, Achilles. ", ], [{ id: 2 }, { id: 1 }, { id: 3 }, { id: 4 }, { id: 5 }], new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });// or alternatively from docsconst vectorStore = await Milvus.fromDocuments(docs, new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach",});const response = await vectorStore.similaritySearch("scared", 2);Query docs from existing collection​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await Milvus.fromExistingCollection( new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });const response = await vectorStore.similaritySearch("scared", 2);PreviousLanceDBNextMongoDB AtlasSetupIndex and query docsQuery docs from existing collection
4e9727215e95-1463
ModulesData connectionVector storesIntegrationsMilvusOn this pageMilvusMilvus is a vector database built for embeddings similarity search and AI applications.CompatibilityOnly available on Node.js.Setup​Run Milvus instance with Docker on your computer docsInstall the Milvus Node.js SDK.npmYarnpnpmnpm install -S @zilliz/milvus2-sdk-nodeyarn add @zilliz/milvus2-sdk-nodepnpm add @zilliz/milvus2-sdk-nodeSetup Env variables for Milvus before running the code3.1 OpenAIexport OPENAI_API_KEY=YOUR_OPENAI_API_KEY_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:195303.2 Azure OpenAIexport AZURE_OPENAI_API_KEY=YOUR_AZURE_OPENAI_API_KEY_HEREexport AZURE_OPENAI_API_INSTANCE_NAME=YOUR_AZURE_OPENAI_INSTANCE_NAME_HEREexport AZURE_OPENAI_API_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_COMPLETIONS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_VERSION=YOUR_AZURE_OPENAI_API_VERSION_HEREexport AZURE_OPENAI_BASE_PATH=YOUR_AZURE_OPENAI_BASE_PATH_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530Index and query docs​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// text sample from Godel, Escher, Bachconst vectorStore = await Milvus.fromTexts( [
4e9727215e95-1464
Escher, Bachconst vectorStore = await Milvus.fromTexts( [ "Tortoise: Labyrinth? Labyrinth?
4e9727215e95-1465
Could it Are we in the notorious Little\ Harmonic Labyrinth of the dreaded Majotaur? ", "Achilles: Yiikes! What is that? ", "Tortoise: They say-although I person never believed it myself-that an I\ Majotaur has created a tiny labyrinth sits in a pit in the middle of\ it, waiting innocent victims to get lost in its fears complexity.\ Then, when they wander and dazed into the center, he laughs and\ laughs at them-so hard, that he laughs them to death! ", "Achilles: Oh, no! ", "Tortoise: But it's only a myth. Courage, Achilles. ", ], [{ id: 2 }, { id: 1 }, { id: 3 }, { id: 4 }, { id: 5 }], new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });// or alternatively from docsconst vectorStore = await Milvus.fromDocuments(docs, new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach",});const response = await vectorStore.similaritySearch("scared", 2);Query docs from existing collection​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await Milvus.fromExistingCollection( new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });const response = await vectorStore.similaritySearch("scared", 2);PreviousLanceDBNextMongoDB Atlas
4e9727215e95-1466
MilvusMilvus is a vector database built for embeddings similarity search and AI applications.CompatibilityOnly available on Node.js.Setup​Run Milvus instance with Docker on your computer docsInstall the Milvus Node.js SDK.npmYarnpnpmnpm install -S @zilliz/milvus2-sdk-nodeyarn add @zilliz/milvus2-sdk-nodepnpm add @zilliz/milvus2-sdk-nodeSetup Env variables for Milvus before running the code3.1 OpenAIexport OPENAI_API_KEY=YOUR_OPENAI_API_KEY_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:195303.2 Azure OpenAIexport AZURE_OPENAI_API_KEY=YOUR_AZURE_OPENAI_API_KEY_HEREexport AZURE_OPENAI_API_INSTANCE_NAME=YOUR_AZURE_OPENAI_INSTANCE_NAME_HEREexport AZURE_OPENAI_API_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_COMPLETIONS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_VERSION=YOUR_AZURE_OPENAI_API_VERSION_HEREexport AZURE_OPENAI_BASE_PATH=YOUR_AZURE_OPENAI_BASE_PATH_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530Index and query docs​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// text sample from Godel, Escher, Bachconst vectorStore = await Milvus.fromTexts( [ "Tortoise: Labyrinth? Labyrinth?
4e9727215e95-1467
Could it Are we in the notorious Little\ Harmonic Labyrinth of the dreaded Majotaur? ", "Achilles: Yiikes! What is that? ", "Tortoise: They say-although I person never believed it myself-that an I\ Majotaur has created a tiny labyrinth sits in a pit in the middle of\ it, waiting innocent victims to get lost in its fears complexity.\ Then, when they wander and dazed into the center, he laughs and\ laughs at them-so hard, that he laughs them to death! ", "Achilles: Oh, no! ", "Tortoise: But it's only a myth. Courage, Achilles. ", ], [{ id: 2 }, { id: 1 }, { id: 3 }, { id: 4 }, { id: 5 }], new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });// or alternatively from docsconst vectorStore = await Milvus.fromDocuments(docs, new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach",});const response = await vectorStore.similaritySearch("scared", 2);Query docs from existing collection​import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await Milvus.fromExistingCollection( new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });const response = await vectorStore.similaritySearch("scared", 2); Run Milvus instance with Docker on your computer docs Install the Milvus Node.js SDK.
4e9727215e95-1468
Install the Milvus Node.js SDK. npmYarnpnpmnpm install -S @zilliz/milvus2-sdk-nodeyarn add @zilliz/milvus2-sdk-nodepnpm add @zilliz/milvus2-sdk-node npm install -S @zilliz/milvus2-sdk-nodeyarn add @zilliz/milvus2-sdk-nodepnpm add @zilliz/milvus2-sdk-node npm install -S @zilliz/milvus2-sdk-node yarn add @zilliz/milvus2-sdk-node pnpm add @zilliz/milvus2-sdk-node Setup Env variables for Milvus before running the code 3.1 OpenAI export OPENAI_API_KEY=YOUR_OPENAI_API_KEY_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530 3.2 Azure OpenAI export AZURE_OPENAI_API_KEY=YOUR_AZURE_OPENAI_API_KEY_HEREexport AZURE_OPENAI_API_INSTANCE_NAME=YOUR_AZURE_OPENAI_INSTANCE_NAME_HEREexport AZURE_OPENAI_API_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_COMPLETIONS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_COMPLETIONS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME=YOUR_AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME_HEREexport AZURE_OPENAI_API_VERSION=YOUR_AZURE_OPENAI_API_VERSION_HEREexport AZURE_OPENAI_BASE_PATH=YOUR_AZURE_OPENAI_BASE_PATH_HEREexport MILVUS_URL=YOUR_MILVUS_URL_HERE # for example http://localhost:19530
4e9727215e95-1469
import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";// text sample from Godel, Escher, Bachconst vectorStore = await Milvus.fromTexts( [ "Tortoise: Labyrinth? Labyrinth? Could it Are we in the notorious Little\ Harmonic Labyrinth of the dreaded Majotaur? ", "Achilles: Yiikes! What is that? ", "Tortoise: They say-although I person never believed it myself-that an I\ Majotaur has created a tiny labyrinth sits in a pit in the middle of\ it, waiting innocent victims to get lost in its fears complexity.\ Then, when they wander and dazed into the center, he laughs and\ laughs at them-so hard, that he laughs them to death! ", "Achilles: Oh, no! ", "Tortoise: But it's only a myth. Courage, Achilles. ", ], [{ id: 2 }, { id: 1 }, { id: 3 }, { id: 4 }, { id: 5 }], new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });// or alternatively from docsconst vectorStore = await Milvus.fromDocuments(docs, new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach",});const response = await vectorStore.similaritySearch("scared", 2);
4e9727215e95-1470
import { Milvus } from "langchain/vectorstores/milvus";import { OpenAIEmbeddings } from "langchain/embeddings/openai";const vectorStore = await Milvus.fromExistingCollection( new OpenAIEmbeddings(), { collectionName: "goldel_escher_bach", });const response = await vectorStore.similaritySearch("scared", 2); MongoDB Atlas SetupIndex and query docsQuery docs from existing collection Page Title: MongoDB Atlas | 🦜️🔗 Langchain Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsMongoDB AtlasOn this pageMongoDB AtlasCompatibilityOnly available on Node.js.LangChain.js supports MongoDB Atlas as a vector store, and supports both standard similarity search and maximal marginal relevance search,
4e9727215e95-1471
which takes a combination of documents are most similar to the inputs, then reranks and optimizes for diversity.Setup​Installation​First, add the Node MongoDB SDK to your project:npmYarnpnpmnpm install -S mongodbyarn add mongodbpnpm add mongodbInitial Cluster Configuration​Next, you'll need create a MongoDB Atlas cluster. Navigate to the MongoDB Atlas website and create an account if you don't already have one.Create and name a cluster when prompted, then find it under Database. Select Collections and create either a blank collection or one from the provided sample data.Creating an Index​After configuring your cluster, you'll need to create an index on the collection field you want to search over.Go to the Search tab within your cluster, then select Create Search Index. Using the JSON editor option, add an index to the collection you wish to use. { "mappings": { "fields": { // Default value, should match the name of the field within your collection that contains embeddings "embedding": [ { "dimensions": 1024, "similarity": "euclidean", "type": "knnVector" } ] } }}The dimensions property should match the dimensionality of the embeddings you are using. For example, Cohere embeddings have 1024 dimensions, and OpenAI embeddings have 1536.Note: By default the vector store expects an index name of default, an indexed collection field name of embedding, and a raw text field name of text.
4e9727215e95-1472
You should initialize the vector store with field names matching your collection schema as shown below.Finally, proceed to build the index.Usage​Ingestion​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);await MongoDBAtlasVectorSearch.fromTexts( ["Hello world", "Bye bye", "What's this? "], [{ id: 2 }, { id: 1 }, { id: 3 }], new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1473
Defaults to "embedding" });await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereSearch​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1474
Defaults to "embedding"});const resultOne = await vectorStore.similaritySearch("Hello world", 1);console.log(resultOne);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereMaximal marginal relevance​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1475
Defaults to "embedding"});const resultOne = await vectorStore.maxMarginalRelevanceSearch("Hello world", { k: 4, fetchK: 20, // The number of documents to return on initial fetch});console.log(resultOne);// Using MMR in a vector store retrieverconst retriever = await vectorStore.asRetriever({ searchType: "mmr", searchKwargs: { fetchK: 20, lambda: 0.1, },});const retrieverOutput = await retriever.getRelevantDocuments("Hello world");console.log(retrieverOutput);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/coherePreviousMilvusNextMyScaleSetupInstallationInitial Cluster ConfigurationCreating an IndexUsageIngestionSearchMaximal marginal relevanceCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogCopyright © 2023 LangChain, Inc. Get startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsMongoDB AtlasOn this pageMongoDB AtlasCompatibilityOnly available on Node.js.LangChain.js supports MongoDB Atlas as a vector store, and supports both standard similarity search and maximal marginal relevance search,
4e9727215e95-1476
which takes a combination of documents are most similar to the inputs, then reranks and optimizes for diversity.Setup​Installation​First, add the Node MongoDB SDK to your project:npmYarnpnpmnpm install -S mongodbyarn add mongodbpnpm add mongodbInitial Cluster Configuration​Next, you'll need create a MongoDB Atlas cluster. Navigate to the MongoDB Atlas website and create an account if you don't already have one.Create and name a cluster when prompted, then find it under Database. Select Collections and create either a blank collection or one from the provided sample data.Creating an Index​After configuring your cluster, you'll need to create an index on the collection field you want to search over.Go to the Search tab within your cluster, then select Create Search Index. Using the JSON editor option, add an index to the collection you wish to use. { "mappings": { "fields": { // Default value, should match the name of the field within your collection that contains embeddings "embedding": [ { "dimensions": 1024, "similarity": "euclidean", "type": "knnVector" } ] } }}The dimensions property should match the dimensionality of the embeddings you are using. For example, Cohere embeddings have 1024 dimensions, and OpenAI embeddings have 1536.Note: By default the vector store expects an index name of default, an indexed collection field name of embedding, and a raw text field name of text.
4e9727215e95-1477
You should initialize the vector store with field names matching your collection schema as shown below.Finally, proceed to build the index.Usage​Ingestion​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);await MongoDBAtlasVectorSearch.fromTexts( ["Hello world", "Bye bye", "What's this? "], [{ id: 2 }, { id: 1 }, { id: 3 }], new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1478
Defaults to "embedding" });await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereSearch​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1479
Defaults to "embedding"});const resultOne = await vectorStore.similaritySearch("Hello world", 1);console.log(resultOne);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereMaximal marginal relevance​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1480
Defaults to "embedding"});const resultOne = await vectorStore.maxMarginalRelevanceSearch("Hello world", { k: 4, fetchK: 20, // The number of documents to return on initial fetch});console.log(resultOne);// Using MMR in a vector store retrieverconst retriever = await vectorStore.asRetriever({ searchType: "mmr", searchKwargs: { fetchK: 20, lambda: 0.1, },});const retrieverOutput = await retriever.getRelevantDocuments("Hello world");console.log(retrieverOutput);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/coherePreviousMilvusNextMyScaleSetupInstallationInitial Cluster ConfigurationCreating an IndexUsageIngestionSearchMaximal marginal relevance ModulesData connectionVector storesIntegrationsMongoDB AtlasOn this pageMongoDB AtlasCompatibilityOnly available on Node.js.LangChain.js supports MongoDB Atlas as a vector store, and supports both standard similarity search and maximal marginal relevance search,
4e9727215e95-1481
which takes a combination of documents are most similar to the inputs, then reranks and optimizes for diversity.Setup​Installation​First, add the Node MongoDB SDK to your project:npmYarnpnpmnpm install -S mongodbyarn add mongodbpnpm add mongodbInitial Cluster Configuration​Next, you'll need create a MongoDB Atlas cluster. Navigate to the MongoDB Atlas website and create an account if you don't already have one.Create and name a cluster when prompted, then find it under Database. Select Collections and create either a blank collection or one from the provided sample data.Creating an Index​After configuring your cluster, you'll need to create an index on the collection field you want to search over.Go to the Search tab within your cluster, then select Create Search Index. Using the JSON editor option, add an index to the collection you wish to use. { "mappings": { "fields": { // Default value, should match the name of the field within your collection that contains embeddings "embedding": [ { "dimensions": 1024, "similarity": "euclidean", "type": "knnVector" } ] } }}The dimensions property should match the dimensionality of the embeddings you are using. For example, Cohere embeddings have 1024 dimensions, and OpenAI embeddings have 1536.Note: By default the vector store expects an index name of default, an indexed collection field name of embedding, and a raw text field name of text.
4e9727215e95-1482
You should initialize the vector store with field names matching your collection schema as shown below.Finally, proceed to build the index.Usage​Ingestion​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);await MongoDBAtlasVectorSearch.fromTexts( ["Hello world", "Bye bye", "What's this? "], [{ id: 2 }, { id: 1 }, { id: 3 }], new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1483
Defaults to "embedding" });await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereSearch​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1484
Defaults to "embedding"});const resultOne = await vectorStore.similaritySearch("Hello world", 1);console.log(resultOne);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereMaximal marginal relevance​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1485
Defaults to "embedding"});const resultOne = await vectorStore.maxMarginalRelevanceSearch("Hello world", { k: 4, fetchK: 20, // The number of documents to return on initial fetch});console.log(resultOne);// Using MMR in a vector store retrieverconst retriever = await vectorStore.asRetriever({ searchType: "mmr", searchKwargs: { fetchK: 20, lambda: 0.1, },});const retrieverOutput = await retriever.getRelevantDocuments("Hello world");console.log(retrieverOutput);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/coherePreviousMilvusNextMyScaleSetupInstallationInitial Cluster ConfigurationCreating an IndexUsageIngestionSearchMaximal marginal relevance ModulesData connectionVector storesIntegrationsMongoDB AtlasOn this pageMongoDB AtlasCompatibilityOnly available on Node.js.LangChain.js supports MongoDB Atlas as a vector store, and supports both standard similarity search and maximal marginal relevance search,
4e9727215e95-1486
which takes a combination of documents are most similar to the inputs, then reranks and optimizes for diversity.Setup​Installation​First, add the Node MongoDB SDK to your project:npmYarnpnpmnpm install -S mongodbyarn add mongodbpnpm add mongodbInitial Cluster Configuration​Next, you'll need create a MongoDB Atlas cluster. Navigate to the MongoDB Atlas website and create an account if you don't already have one.Create and name a cluster when prompted, then find it under Database. Select Collections and create either a blank collection or one from the provided sample data.Creating an Index​After configuring your cluster, you'll need to create an index on the collection field you want to search over.Go to the Search tab within your cluster, then select Create Search Index. Using the JSON editor option, add an index to the collection you wish to use. { "mappings": { "fields": { // Default value, should match the name of the field within your collection that contains embeddings "embedding": [ { "dimensions": 1024, "similarity": "euclidean", "type": "knnVector" } ] } }}The dimensions property should match the dimensionality of the embeddings you are using. For example, Cohere embeddings have 1024 dimensions, and OpenAI embeddings have 1536.Note: By default the vector store expects an index name of default, an indexed collection field name of embedding, and a raw text field name of text.
4e9727215e95-1487
You should initialize the vector store with field names matching your collection schema as shown below.Finally, proceed to build the index.Usage​Ingestion​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);await MongoDBAtlasVectorSearch.fromTexts( ["Hello world", "Bye bye", "What's this? "], [{ id: 2 }, { id: 1 }, { id: 3 }], new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1488
Defaults to "embedding" });await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereSearch​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1489
Defaults to "embedding"});const resultOne = await vectorStore.similaritySearch("Hello world", 1);console.log(resultOne);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereMaximal marginal relevance​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1490
Defaults to "embedding"});const resultOne = await vectorStore.maxMarginalRelevanceSearch("Hello world", { k: 4, fetchK: 20, // The number of documents to return on initial fetch});console.log(resultOne);// Using MMR in a vector store retrieverconst retriever = await vectorStore.asRetriever({ searchType: "mmr", searchKwargs: { fetchK: 20, lambda: 0.1, },});const retrieverOutput = await retriever.getRelevantDocuments("Hello world");console.log(retrieverOutput);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/coherePreviousMilvusNextMyScale MongoDB AtlasCompatibilityOnly available on Node.js.LangChain.js supports MongoDB Atlas as a vector store, and supports both standard similarity search and maximal marginal relevance search,
4e9727215e95-1491
which takes a combination of documents are most similar to the inputs, then reranks and optimizes for diversity.Setup​Installation​First, add the Node MongoDB SDK to your project:npmYarnpnpmnpm install -S mongodbyarn add mongodbpnpm add mongodbInitial Cluster Configuration​Next, you'll need create a MongoDB Atlas cluster. Navigate to the MongoDB Atlas website and create an account if you don't already have one.Create and name a cluster when prompted, then find it under Database. Select Collections and create either a blank collection or one from the provided sample data.Creating an Index​After configuring your cluster, you'll need to create an index on the collection field you want to search over.Go to the Search tab within your cluster, then select Create Search Index. Using the JSON editor option, add an index to the collection you wish to use. { "mappings": { "fields": { // Default value, should match the name of the field within your collection that contains embeddings "embedding": [ { "dimensions": 1024, "similarity": "euclidean", "type": "knnVector" } ] } }}The dimensions property should match the dimensionality of the embeddings you are using. For example, Cohere embeddings have 1024 dimensions, and OpenAI embeddings have 1536.Note: By default the vector store expects an index name of default, an indexed collection field name of embedding, and a raw text field name of text.
4e9727215e95-1492
You should initialize the vector store with field names matching your collection schema as shown below.Finally, proceed to build the index.Usage​Ingestion​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);await MongoDBAtlasVectorSearch.fromTexts( ["Hello world", "Bye bye", "What's this? "], [{ id: 2 }, { id: 1 }, { id: 3 }], new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1493
Defaults to "embedding" });await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereSearch​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1494
Defaults to "embedding"});const resultOne = await vectorStore.similaritySearch("Hello world", 1);console.log(resultOne);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohereMaximal marginal relevance​import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text.
4e9727215e95-1495
Defaults to "embedding"});const resultOne = await vectorStore.maxMarginalRelevanceSearch("Hello world", { k: 4, fetchK: 20, // The number of documents to return on initial fetch});console.log(resultOne);// Using MMR in a vector store retrieverconst retriever = await vectorStore.asRetriever({ searchType: "mmr", searchKwargs: { fetchK: 20, lambda: 0.1, },});const retrieverOutput = await retriever.getRelevantDocuments("Hello world");console.log(retrieverOutput);await client.close();API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohere LangChain.js supports MongoDB Atlas as a vector store, and supports both standard similarity search and maximal marginal relevance search, which takes a combination of documents are most similar to the inputs, then reranks and optimizes for diversity. First, add the Node MongoDB SDK to your project: npmYarnpnpmnpm install -S mongodbyarn add mongodbpnpm add mongodb npm install -S mongodbyarn add mongodbpnpm add mongodb npm install -S mongodb yarn add mongodb pnpm add mongodb Next, you'll need create a MongoDB Atlas cluster. Navigate to the MongoDB Atlas website and create an account if you don't already have one. Create and name a cluster when prompted, then find it under Database. Select Collections and create either a blank collection or one from the provided sample data. After configuring your cluster, you'll need to create an index on the collection field you want to search over. Go to the Search tab within your cluster, then select Create Search Index. Using the JSON editor option, add an index to the collection you wish to use.
4e9727215e95-1496
{ "mappings": { "fields": { // Default value, should match the name of the field within your collection that contains embeddings "embedding": [ { "dimensions": 1024, "similarity": "euclidean", "type": "knnVector" } ] } }} The dimensions property should match the dimensionality of the embeddings you are using. For example, Cohere embeddings have 1024 dimensions, and OpenAI embeddings have 1536. Note: By default the vector store expects an index name of default, an indexed collection field name of embedding, and a raw text field name of text. You should initialize the vector store with field names matching your collection schema as shown below. Finally, proceed to build the index. import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);await MongoDBAtlasVectorSearch.fromTexts( ["Hello world", "Bye bye", "What's this? "], [{ id: 2 }, { id: 1 }, { id: 3 }], new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text. Defaults to "embedding" });await client.close();
4e9727215e95-1497
API Reference:MongoDBAtlasVectorSearch from langchain/vectorstores/mongodb_atlasCohereEmbeddings from langchain/embeddings/cohere import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text. Defaults to "embedding"});const resultOne = await vectorStore.similaritySearch("Hello world", 1);console.log(resultOne);await client.close();
4e9727215e95-1498
import { MongoDBAtlasVectorSearch } from "langchain/vectorstores/mongodb_atlas";import { CohereEmbeddings } from "langchain/embeddings/cohere";import { MongoClient } from "mongodb";const client = new MongoClient(process.env.MONGODB_ATLAS_URI || "");const namespace = "langchain.test";const [dbName, collectionName] = namespace.split(". ");const collection = client.db(dbName).collection(collectionName);const vectorStore = new MongoDBAtlasVectorSearch(new CohereEmbeddings(), { collection, indexName: "default", // The name of the Atlas search index. Defaults to "default" textKey: "text", // The name of the collection field containing the raw content. Defaults to "text" embeddingKey: "embedding", // The name of the collection field containing the embedded text. Defaults to "embedding"});const resultOne = await vectorStore.maxMarginalRelevanceSearch("Hello world", { k: 4, fetchK: 20, // The number of documents to return on initial fetch});console.log(resultOne);// Using MMR in a vector store retrieverconst retriever = await vectorStore.asRetriever({ searchType: "mmr", searchKwargs: { fetchK: 20, lambda: 0.1, },});const retrieverOutput = await retriever.getRelevantDocuments("Hello world");console.log(retrieverOutput);await client.close(); MyScale SetupInstallationInitial Cluster ConfigurationCreating an IndexUsageIngestionSearchMaximal marginal relevance Page Title: MyScale | 🦜️🔗 Langchain Paragraphs:
4e9727215e95-1499
Page Title: MyScale | 🦜️🔗 Langchain Paragraphs: Skip to main content🦜️🔗 LangChainDocsUse casesAPILangSmithPython DocsCTRLKGet startedIntroductionInstallationQuickstartModulesModel I/​OData connectionDocument loadersDocument transformersText embedding modelsVector storesIntegrationsMemoryAnalyticDBChromaElasticsearchFaissHNSWLibLanceDBMilvusMongoDB AtlasMyScaleOpenSearchPineconePrismaQdrantRedisSingleStoreSupabaseTigrisTypeORMTypesenseUSearchVectaraWeaviateXataZepRetrieversExperimentalCaching embeddingsChainsMemoryAgentsCallbacksModulesGuidesEcosystemAdditional resourcesCommunity navigatorAPI referenceModulesData connectionVector storesIntegrationsMyScaleOn this pageMyScaleCompatibilityOnly available on Node.js.MyScale is an emerging AI database that harmonizes the power of vector search and SQL analytics, providing a managed, efficient, and responsive experience.Setup​Launch a cluster through MyScale's Web Console. See MyScale's official documentation for more information.After launching a cluster, view your Connection Details from your cluster's Actions menu.