message
stringlengths
2
16.2k
message_type
stringclasses
2 values
message_id
int64
0
1
conversation_id
int64
575
109k
cluster
float64
16
16
__index_level_0__
int64
1.15k
217k
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N Snukes lining up in a row. You are given a string S of length N. The i-th Snuke from the front has two red balls if the i-th character in S is `0`; one red ball and one blue ball if the i-th character in S is `1`; two blue balls if the i-th character in S is `2`. Takahashi has a sequence that is initially empty. Find the number of the possible sequences he may have after repeating the following procedure 2N times, modulo 998244353: * Each Snuke who has one or more balls simultaneously chooses one of his balls and hand it to the Snuke in front of him, or hand it to Takahashi if he is the first Snuke in the row. * Takahashi receives the ball and put it to the end of his sequence. Constraints * 1 \leq |S| \leq 2000 * S consists of `0`,`1` and `2`. Note that the integer N is not directly given in input; it is given indirectly as the length of the string S. Input Input is given from Standard Input in the following format: S Output Print the number of the possible sequences Takahashi may have after repeating the procedure 2N times, modulo 998244353. Examples Input 02 Output 3 Input 1210 Output 55 Input 12001021211100201020 Output 543589959 Submitted Solution: ``` from collections import defaultdict def inpl(): return list(map(int, input().split())) MOD = 998244353 S = input() N = len(S) B = [0]*(2*N+1) R = [0]*(2*N+1) for i in range(N): b = int(S[i]) B[i] = b R[i] = 2 - b DP = defaultdict(int) DP[(B[0], R[0])] = 1 for i in range(1, 2*N+1): DP2 = defaultdict(int) b1, r1 = B[i], R[i] for (b0, r0), v in DP.items(): b2, r2 = b0+b1, r0+r1 if b0: DP2[(b2-1, r2)] = (DP2[(b2-1, r2)] + v)%MOD if r0: DP2[(b2, r2-1)] = (DP2[(b2, r2-1)] + v)%MOD DP = DP2 print(sum(DP.values())) ```
instruction
0
8,903
16
17,806
Yes
output
1
8,903
16
17,807
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N Snukes lining up in a row. You are given a string S of length N. The i-th Snuke from the front has two red balls if the i-th character in S is `0`; one red ball and one blue ball if the i-th character in S is `1`; two blue balls if the i-th character in S is `2`. Takahashi has a sequence that is initially empty. Find the number of the possible sequences he may have after repeating the following procedure 2N times, modulo 998244353: * Each Snuke who has one or more balls simultaneously chooses one of his balls and hand it to the Snuke in front of him, or hand it to Takahashi if he is the first Snuke in the row. * Takahashi receives the ball and put it to the end of his sequence. Constraints * 1 \leq |S| \leq 2000 * S consists of `0`,`1` and `2`. Note that the integer N is not directly given in input; it is given indirectly as the length of the string S. Input Input is given from Standard Input in the following format: S Output Print the number of the possible sequences Takahashi may have after repeating the procedure 2N times, modulo 998244353. Examples Input 02 Output 3 Input 1210 Output 55 Input 12001021211100201020 Output 543589959 Submitted Solution: ``` s = input() n = len(s) mod = 998244353 R = [0] * n B = [0] * n for i in range(n): if s[i] == '0': R[i] = 2 elif s[i] == '1': R[i] = 1 B[i] = 1 else: B[i] = 2 for i in range(n-1): R[i+1] += R[i] B[i+1] += B[i] dp = [[0] * (2*n+10) for _ in range(2*n+10)] if R[0] > 0: dp[0][1] = 1 if B[0] > 0: dp[0][0] = 1 for i in range(n-1): for r in range(2*n+1): if R[i+1] >= r+1: dp[i+1][r+1] += dp[i][r] dp[i+1][r+1] %= mod if i+2-r < 0: break if B[i+1] >= i+2-r: dp[i+1][r] += dp[i][r] dp[i+1][r] %= mod for i in range(n-1, 2*n-1): for r in range(2*n+1): if R[n-1] >= r+1: dp[i + 1][r + 1] += dp[i][r] dp[i + 1][r + 1] %= mod if i+2-r < 0: break if B[n-1] >= i+2-r: dp[i+1][r] += dp[i][r] dp[i+1][r] %= mod ans = 0 for r in range(2*n+1): ans += dp[2*n-1][r] ans %= mod print(ans) ```
instruction
0
8,904
16
17,808
No
output
1
8,904
16
17,809
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N Snukes lining up in a row. You are given a string S of length N. The i-th Snuke from the front has two red balls if the i-th character in S is `0`; one red ball and one blue ball if the i-th character in S is `1`; two blue balls if the i-th character in S is `2`. Takahashi has a sequence that is initially empty. Find the number of the possible sequences he may have after repeating the following procedure 2N times, modulo 998244353: * Each Snuke who has one or more balls simultaneously chooses one of his balls and hand it to the Snuke in front of him, or hand it to Takahashi if he is the first Snuke in the row. * Takahashi receives the ball and put it to the end of his sequence. Constraints * 1 \leq |S| \leq 2000 * S consists of `0`,`1` and `2`. Note that the integer N is not directly given in input; it is given indirectly as the length of the string S. Input Input is given from Standard Input in the following format: S Output Print the number of the possible sequences Takahashi may have after repeating the procedure 2N times, modulo 998244353. Examples Input 02 Output 3 Input 1210 Output 55 Input 12001021211100201020 Output 543589959 Submitted Solution: ``` from collections import defaultdict def tqdm(iterable): return iterable def inpl(): return list(map(int, input().split())) MOD = 998244353 S = input() N = len(S) B = [0]*N R = [0]*N for i in range(N): b = int(S[i]) B[i] = b R[i] = 2 - b DP = defaultdict(int) DP[(B[0], R[0])] = 1 for i in tqdm(range(1, N)): DP2 = defaultdict(int) b1, r1 = B[i], R[i] for (b0, r0), v in DP.items(): b2, r2 = b0+b1, r0+r1 if b0: DP2[(b2-1, r2)] = (DP2[(b2-1, r2)] + v)%MOD if r0: DP2[(b2, r2-1)] = (DP2[(b2, r2-1)] + v)%MOD DP = DP2 for _ in tqdm(range(N+1)): DP2 = defaultdict(int) for (b, r), v in DP.items(): if b: DP2[(b-1, r)] = (DP2[(b-1, r)] + v)%MOD if r: DP2[(b, r-1)] = (DP2[(b, r-1)] + v)%MOD DP = DP2 print(sum(DP.values())) ```
instruction
0
8,905
16
17,810
No
output
1
8,905
16
17,811
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N Snukes lining up in a row. You are given a string S of length N. The i-th Snuke from the front has two red balls if the i-th character in S is `0`; one red ball and one blue ball if the i-th character in S is `1`; two blue balls if the i-th character in S is `2`. Takahashi has a sequence that is initially empty. Find the number of the possible sequences he may have after repeating the following procedure 2N times, modulo 998244353: * Each Snuke who has one or more balls simultaneously chooses one of his balls and hand it to the Snuke in front of him, or hand it to Takahashi if he is the first Snuke in the row. * Takahashi receives the ball and put it to the end of his sequence. Constraints * 1 \leq |S| \leq 2000 * S consists of `0`,`1` and `2`. Note that the integer N is not directly given in input; it is given indirectly as the length of the string S. Input Input is given from Standard Input in the following format: S Output Print the number of the possible sequences Takahashi may have after repeating the procedure 2N times, modulo 998244353. Examples Input 02 Output 3 Input 1210 Output 55 Input 12001021211100201020 Output 543589959 Submitted Solution: ``` mod = 998244353 s = list(map(int, list(input()))) n = len(s) dp = [[0]*(sum(s)+1) for _ in range(2*n+1)] dp[0][0] = 1 curr = curb = 0 for i in range(2*n): if i < n: curb += s[i] curr += 2 - s[i] for j in range(min(i, curb)+1): if dp[i][j]: dp[i][j] %= mod if i - j < curr: dp[i+1][j] += dp[i][j] if j < curb: dp[i+1][j+1] += dp[i][j] print(dp[2*n][curb]) ```
instruction
0
8,906
16
17,812
No
output
1
8,906
16
17,813
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N Snukes lining up in a row. You are given a string S of length N. The i-th Snuke from the front has two red balls if the i-th character in S is `0`; one red ball and one blue ball if the i-th character in S is `1`; two blue balls if the i-th character in S is `2`. Takahashi has a sequence that is initially empty. Find the number of the possible sequences he may have after repeating the following procedure 2N times, modulo 998244353: * Each Snuke who has one or more balls simultaneously chooses one of his balls and hand it to the Snuke in front of him, or hand it to Takahashi if he is the first Snuke in the row. * Takahashi receives the ball and put it to the end of his sequence. Constraints * 1 \leq |S| \leq 2000 * S consists of `0`,`1` and `2`. Note that the integer N is not directly given in input; it is given indirectly as the length of the string S. Input Input is given from Standard Input in the following format: S Output Print the number of the possible sequences Takahashi may have after repeating the procedure 2N times, modulo 998244353. Examples Input 02 Output 3 Input 1210 Output 55 Input 12001021211100201020 Output 543589959 Submitted Solution: ``` mod = 998244353 import sys sys.setrecursionlimit(10**9) S = input() N = len(S) Sum = [0]*(N+1) for i in range(1, N+1): Sum[i] = Sum[i-1]+int(S[i-1]) from functools import lru_cache @lru_cache(maxsize=10**8) def dp(i, j): n = min(i+j+1, N) if i+j == N*2: return 1 res = 0 s = Sum[n] if i<s: res+=dp(i+1, j) if j<2*n-s: res+=dp(i, j+1) return res%mod print(dp(0, 0)) ```
instruction
0
8,907
16
17,814
No
output
1
8,907
16
17,815
Provide a correct Python 3 solution for this coding contest problem. There are N robots and M exits on a number line. The N + M coordinates of these are all integers and all distinct. For each i (1 \leq i \leq N), the coordinate of the i-th robot from the left is x_i. Also, for each j (1 \leq j \leq M), the coordinate of the j-th exit from the left is y_j. Snuke can repeatedly perform the following two kinds of operations in any order to move all the robots simultaneously: * Increment the coordinates of all the robots on the number line by 1. * Decrement the coordinates of all the robots on the number line by 1. Each robot will disappear from the number line when its position coincides with that of an exit, going through that exit. Snuke will continue performing operations until all the robots disappear. When all the robots disappear, how many combinations of exits can be used by the robots? Find the count modulo 10^9 + 7. Here, two combinations of exits are considered different when there is a robot that used different exits in those two combinations. Constraints * 1 \leq N, M \leq 10^5 * 1 \leq x_1 < x_2 < ... < x_N \leq 10^9 * 1 \leq y_1 < y_2 < ... < y_M \leq 10^9 * All given coordinates are integers. * All given coordinates are distinct. Input Input is given from Standard Input in the following format: N M x_1 x_2 ... x_N y_1 y_2 ... y_M Output Print the number of the combinations of exits that can be used by the robots when all the robots disappear, modulo 10^9 + 7. Examples Input 2 2 2 3 1 4 Output 3 Input 3 4 2 5 10 1 3 7 13 Output 8 Input 4 1 1 2 4 5 3 Output 1 Input 4 5 2 5 7 11 1 3 6 9 13 Output 6 Input 10 10 4 13 15 18 19 20 21 22 25 27 1 5 11 12 14 16 23 26 29 30 Output 22
instruction
0
8,908
16
17,816
"Correct Solution: ``` import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines from bisect import bisect_left MOD = 10**9 + 7 N,M = map(int,readline().split()) X = list(map(int,readline().split())) Y = list(map(int,readline().split())) L = []; R = [] for x in X: i = bisect_left(Y,x) # 右出口 if i in [0,M]: continue y0,y1 = Y[i-1:i+1] L.append(y0-x); R.append(y1-x) # 座圧 Rtoi = {x:i for i,x in enumerate(sorted(set(R)),1)} R = [Rtoi[r] for r in R] if len(R) == 0: print(1) exit() """ ・計算方法 ・これをやるために実際にはBITを使う dp = [0] * (max(R)+1) for _,r in sorted(set(zip(L,R)),reverse=True): dp[r] += 1 + sum(dp[1:r]) #これをやるために BIT で dp を持つ answer=1+sum(dp) print(answer) """ class BIT(): def __init__(self, max_n): self.size = max_n + 1 self.tree = [0] * self.size def get_sum(self,i): s = 0 while i: s += self.tree[i] i -= i & -i return s def add(self, i, x): while i < self.size: self.tree[i] += x i += i & -i dp = BIT(max_n=max(R)) for _,r in sorted(set(zip(L,R)),reverse=True): x = dp.get_sum(r-1) + 1; x %= MOD dp.add(r,x) answer=1+dp.get_sum(max(R)) answer %= MOD print(answer) ```
output
1
8,908
16
17,817
Provide a correct Python 3 solution for this coding contest problem. There are N robots and M exits on a number line. The N + M coordinates of these are all integers and all distinct. For each i (1 \leq i \leq N), the coordinate of the i-th robot from the left is x_i. Also, for each j (1 \leq j \leq M), the coordinate of the j-th exit from the left is y_j. Snuke can repeatedly perform the following two kinds of operations in any order to move all the robots simultaneously: * Increment the coordinates of all the robots on the number line by 1. * Decrement the coordinates of all the robots on the number line by 1. Each robot will disappear from the number line when its position coincides with that of an exit, going through that exit. Snuke will continue performing operations until all the robots disappear. When all the robots disappear, how many combinations of exits can be used by the robots? Find the count modulo 10^9 + 7. Here, two combinations of exits are considered different when there is a robot that used different exits in those two combinations. Constraints * 1 \leq N, M \leq 10^5 * 1 \leq x_1 < x_2 < ... < x_N \leq 10^9 * 1 \leq y_1 < y_2 < ... < y_M \leq 10^9 * All given coordinates are integers. * All given coordinates are distinct. Input Input is given from Standard Input in the following format: N M x_1 x_2 ... x_N y_1 y_2 ... y_M Output Print the number of the combinations of exits that can be used by the robots when all the robots disappear, modulo 10^9 + 7. Examples Input 2 2 2 3 1 4 Output 3 Input 3 4 2 5 10 1 3 7 13 Output 8 Input 4 1 1 2 4 5 3 Output 1 Input 4 5 2 5 7 11 1 3 6 9 13 Output 6 Input 10 10 4 13 15 18 19 20 21 22 25 27 1 5 11 12 14 16 23 26 29 30 Output 22
instruction
0
8,909
16
17,818
"Correct Solution: ``` from bisect import bisect from collections import defaultdict class Bit: def __init__(self, n, MOD): self.size = n self.tree = [0] * (n + 1) self.depth = n.bit_length() self.mod = MOD def sum(self, i): s = 0 while i > 0: s += self.tree[i] i -= i & -i return s % self.mod def add(self, i, x): while i <= self.size: self.tree[i] = (self.tree[i] + x) % self.mod i += i & -i def debug_print(self): for i in range(1, self.size + 1): j = (i & -i).bit_length() print(' ' * j, self.tree[i]) def lower_bound(self, x): sum_ = 0 pos = 0 for i in range(self.depth, -1, -1): k = pos + (1 << i) if k <= self.size and sum_ + self.tree[k] < x: sum_ += self.tree[k] pos += 1 << i return pos + 1, sum_ n, m = map(int, input().split()) xxx = list(map(int, input().split())) yyy = list(map(int, input().split())) ab = defaultdict(set) coordinates = set() for x in xxx: if x < yyy[0] or yyy[-1] < x: continue i = bisect(yyy, x) a = x - yyy[i - 1] b = yyy[i] - x ab[a].add(b) coordinates.add(b) # Bitのindexは1から始まるように作っているが、"0"を取れるようにするため、全体を1ずらす cor_dict = {b: i for i, b in enumerate(sorted(coordinates), start=2)} cdg = cor_dict.get MOD = 10 ** 9 + 7 bit = Bit(len(coordinates) + 1, MOD) bit.add(1, 1) for a in sorted(ab): bbb = sorted(map(cdg, ab[a]), reverse=True) for b in bbb: bit.add(b, bit.sum(b - 1)) print(bit.sum(bit.size)) ```
output
1
8,909
16
17,819
Provide a correct Python 3 solution for this coding contest problem. There are N robots and M exits on a number line. The N + M coordinates of these are all integers and all distinct. For each i (1 \leq i \leq N), the coordinate of the i-th robot from the left is x_i. Also, for each j (1 \leq j \leq M), the coordinate of the j-th exit from the left is y_j. Snuke can repeatedly perform the following two kinds of operations in any order to move all the robots simultaneously: * Increment the coordinates of all the robots on the number line by 1. * Decrement the coordinates of all the robots on the number line by 1. Each robot will disappear from the number line when its position coincides with that of an exit, going through that exit. Snuke will continue performing operations until all the robots disappear. When all the robots disappear, how many combinations of exits can be used by the robots? Find the count modulo 10^9 + 7. Here, two combinations of exits are considered different when there is a robot that used different exits in those two combinations. Constraints * 1 \leq N, M \leq 10^5 * 1 \leq x_1 < x_2 < ... < x_N \leq 10^9 * 1 \leq y_1 < y_2 < ... < y_M \leq 10^9 * All given coordinates are integers. * All given coordinates are distinct. Input Input is given from Standard Input in the following format: N M x_1 x_2 ... x_N y_1 y_2 ... y_M Output Print the number of the combinations of exits that can be used by the robots when all the robots disappear, modulo 10^9 + 7. Examples Input 2 2 2 3 1 4 Output 3 Input 3 4 2 5 10 1 3 7 13 Output 8 Input 4 1 1 2 4 5 3 Output 1 Input 4 5 2 5 7 11 1 3 6 9 13 Output 6 Input 10 10 4 13 15 18 19 20 21 22 25 27 1 5 11 12 14 16 23 26 29 30 Output 22
instruction
0
8,910
16
17,820
"Correct Solution: ``` from bisect import bisect from collections import defaultdict class Bit: def __init__(self, n, MOD): self.size = n self.tree = [0] * (n + 1) self.depth = n.bit_length() self.mod = MOD def sum(self, i): s = 0 while i > 0: s = (s + self.tree[i]) % self.mod i -= i & -i return s def add(self, i, x): while i <= self.size: self.tree[i] = (self.tree[i] + x) % self.mod i += i & -i def debug_print(self): for i in range(1, self.size + 1): j = (i & -i).bit_length() print(' ' * j, self.tree[i]) def lower_bound(self, x): sum_ = 0 pos = 0 for i in range(self.depth, -1, -1): k = pos + (1 << i) if k <= self.size and sum_ + self.tree[k] < x: sum_ += self.tree[k] pos += 1 << i return pos + 1, sum_ n, m = map(int, input().split()) xxx = list(map(int, input().split())) yyy = list(map(int, input().split())) ab = defaultdict(set) coordinates = set() for x in xxx: if x < yyy[0] or yyy[-1] < x: continue i = bisect(yyy, x) a = x - yyy[i - 1] b = yyy[i] - x ab[a].add(b) coordinates.add(b) # Bitのindexは1から始まるように作っているが、"0"を取れるようにするため、全体を1ずらす cor_dict = {b: i for i, b in enumerate(sorted(coordinates), start=2)} cdg = cor_dict.get MOD = 10 ** 9 + 7 bit = Bit(len(coordinates) + 1, MOD) bit.add(1, 1) for a in sorted(ab): bbb = sorted(map(cdg, ab[a]), reverse=True) for b in bbb: bit.add(b, bit.sum(b - 1)) print(bit.sum(bit.size)) ```
output
1
8,910
16
17,821
Provide a correct Python 3 solution for this coding contest problem. There are N robots and M exits on a number line. The N + M coordinates of these are all integers and all distinct. For each i (1 \leq i \leq N), the coordinate of the i-th robot from the left is x_i. Also, for each j (1 \leq j \leq M), the coordinate of the j-th exit from the left is y_j. Snuke can repeatedly perform the following two kinds of operations in any order to move all the robots simultaneously: * Increment the coordinates of all the robots on the number line by 1. * Decrement the coordinates of all the robots on the number line by 1. Each robot will disappear from the number line when its position coincides with that of an exit, going through that exit. Snuke will continue performing operations until all the robots disappear. When all the robots disappear, how many combinations of exits can be used by the robots? Find the count modulo 10^9 + 7. Here, two combinations of exits are considered different when there is a robot that used different exits in those two combinations. Constraints * 1 \leq N, M \leq 10^5 * 1 \leq x_1 < x_2 < ... < x_N \leq 10^9 * 1 \leq y_1 < y_2 < ... < y_M \leq 10^9 * All given coordinates are integers. * All given coordinates are distinct. Input Input is given from Standard Input in the following format: N M x_1 x_2 ... x_N y_1 y_2 ... y_M Output Print the number of the combinations of exits that can be used by the robots when all the robots disappear, modulo 10^9 + 7. Examples Input 2 2 2 3 1 4 Output 3 Input 3 4 2 5 10 1 3 7 13 Output 8 Input 4 1 1 2 4 5 3 Output 1 Input 4 5 2 5 7 11 1 3 6 9 13 Output 6 Input 10 10 4 13 15 18 19 20 21 22 25 27 1 5 11 12 14 16 23 26 29 30 Output 22
instruction
0
8,911
16
17,822
"Correct Solution: ``` from bisect import bisect from collections import defaultdict class Bit: def __init__(self, n): self.size = n self.tree = [0] * (n + 1) self.depth = n.bit_length() def sum(self, i): s = 0 while i > 0: s += self.tree[i] i -= i & -i return s def add(self, i, x): while i <= self.size: self.tree[i] += x i += i & -i def debug_print(self): for i in range(1, self.size + 1): j = (i & -i).bit_length() print(' ' * j, self.tree[i]) def lower_bound(self, x): sum_ = 0 pos = 0 for i in range(self.depth, -1, -1): k = pos + (1 << i) if k <= self.size and sum_ + self.tree[k] < x: sum_ += self.tree[k] pos += 1 << i return pos + 1, sum_ n, m = map(int, input().split()) xxx = list(map(int, input().split())) yyy = list(map(int, input().split())) ab = defaultdict(set) coordinates = set() for x in xxx: if x < yyy[0] or yyy[-1] < x: continue i = bisect(yyy, x) a = x - yyy[i - 1] b = yyy[i] - x ab[a].add(b) coordinates.add(b) # Bitのindexは1から始まるように作っているが、"0"を取れるようにするため、全体を1ずらす cor_dict = {b: i for i, b in enumerate(sorted(coordinates), start=2)} cdg = cor_dict.get bit = Bit(len(coordinates) + 1) bit.add(1, 1) for a in sorted(ab): bbb = sorted(map(cdg, ab[a]), reverse=True) for b in bbb: bit.add(b, bit.sum(b - 1)) print(bit.sum(bit.size) % (10 ** 9 + 7)) ```
output
1
8,911
16
17,823
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N robots and M exits on a number line. The N + M coordinates of these are all integers and all distinct. For each i (1 \leq i \leq N), the coordinate of the i-th robot from the left is x_i. Also, for each j (1 \leq j \leq M), the coordinate of the j-th exit from the left is y_j. Snuke can repeatedly perform the following two kinds of operations in any order to move all the robots simultaneously: * Increment the coordinates of all the robots on the number line by 1. * Decrement the coordinates of all the robots on the number line by 1. Each robot will disappear from the number line when its position coincides with that of an exit, going through that exit. Snuke will continue performing operations until all the robots disappear. When all the robots disappear, how many combinations of exits can be used by the robots? Find the count modulo 10^9 + 7. Here, two combinations of exits are considered different when there is a robot that used different exits in those two combinations. Constraints * 1 \leq N, M \leq 10^5 * 1 \leq x_1 < x_2 < ... < x_N \leq 10^9 * 1 \leq y_1 < y_2 < ... < y_M \leq 10^9 * All given coordinates are integers. * All given coordinates are distinct. Input Input is given from Standard Input in the following format: N M x_1 x_2 ... x_N y_1 y_2 ... y_M Output Print the number of the combinations of exits that can be used by the robots when all the robots disappear, modulo 10^9 + 7. Examples Input 2 2 2 3 1 4 Output 3 Input 3 4 2 5 10 1 3 7 13 Output 8 Input 4 1 1 2 4 5 3 Output 1 Input 4 5 2 5 7 11 1 3 6 9 13 Output 6 Input 10 10 4 13 15 18 19 20 21 22 25 27 1 5 11 12 14 16 23 26 29 30 Output 22 Submitted Solution: ``` import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines from bisect import bisect_left MOD = 10**9 + 7 N,M = map(int,readline().split()) X = list(map(int,readline().split())) Y = list(map(int,readline().split())) L = []; R = [] for x in X: i = bisect_left(Y,x) # 右出口 if i in [0,M]: continue y0,y1 = Y[i-1:i+1] L.append(y0-x); R.append(y1-x) # 座圧 Rtoi = {x:i for i,x in enumerate(sorted(set(R)),1)} R = [Rtoi[r] for r in R] if len(R) == 0: print(1) exit() """ ・計算方法 ・これをやるために実際にはBITを使う dp = [0] * (max(R)+1) for _,r in sorted(set(zip(L,R)),reverse=True): dp[r] += 1 + sum(dp[1:r]) #これをやるために BIT で dp を持つ answer=1+sum(dp) print(answer) """ class BIT(): def __init__(self, max_n): self.size = max_n + 1 self.tree = [0] * self.size def get_sum(self,i): s = 0 while i: s += self.tree[i] i -= i & -i return s def add(self, i, x): while i < self.size: self.tree[i] += x i += i & -i dp = BIT(max_n=max(R)) for _,r in sorted(set(zip(L,R)),reverse=True): x = dp.get_sum(r-1) + 1; x %= MOD dp.add(r,x) answer=1+dp.get_sum(max(R)) print(answer) ```
instruction
0
8,912
16
17,824
No
output
1
8,912
16
17,825
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N robots and M exits on a number line. The N + M coordinates of these are all integers and all distinct. For each i (1 \leq i \leq N), the coordinate of the i-th robot from the left is x_i. Also, for each j (1 \leq j \leq M), the coordinate of the j-th exit from the left is y_j. Snuke can repeatedly perform the following two kinds of operations in any order to move all the robots simultaneously: * Increment the coordinates of all the robots on the number line by 1. * Decrement the coordinates of all the robots on the number line by 1. Each robot will disappear from the number line when its position coincides with that of an exit, going through that exit. Snuke will continue performing operations until all the robots disappear. When all the robots disappear, how many combinations of exits can be used by the robots? Find the count modulo 10^9 + 7. Here, two combinations of exits are considered different when there is a robot that used different exits in those two combinations. Constraints * 1 \leq N, M \leq 10^5 * 1 \leq x_1 < x_2 < ... < x_N \leq 10^9 * 1 \leq y_1 < y_2 < ... < y_M \leq 10^9 * All given coordinates are integers. * All given coordinates are distinct. Input Input is given from Standard Input in the following format: N M x_1 x_2 ... x_N y_1 y_2 ... y_M Output Print the number of the combinations of exits that can be used by the robots when all the robots disappear, modulo 10^9 + 7. Examples Input 2 2 2 3 1 4 Output 3 Input 3 4 2 5 10 1 3 7 13 Output 8 Input 4 1 1 2 4 5 3 Output 1 Input 4 5 2 5 7 11 1 3 6 9 13 Output 6 Input 10 10 4 13 15 18 19 20 21 22 25 27 1 5 11 12 14 16 23 26 29 30 Output 22 Submitted Solution: ``` from bisect import bisect from collections import defaultdict class Bit: def __init__(self, n): self.size = n self.tree = [0] * (n + 1) self.depth = n.bit_length() def sum(self, i): s = 0 while i > 0: s += self.tree[i] i -= i & -i return s def add(self, i, x): while i <= self.size: self.tree[i] += x i += i & -i def debug_print(self): for i in range(1, self.size + 1): j = (i & -i).bit_length() print(' ' * j, self.tree[i]) def lower_bound(self, x): sum_ = 0 pos = 0 for i in range(self.depth, -1, -1): k = pos + (1 << i) if k <= self.size and sum_ + self.tree[k] < x: sum_ += self.tree[k] pos += 1 << i return pos + 1, sum_ n, m = map(int, input().split()) xxx = list(map(int, input().split())) yyy = list(map(int, input().split())) ab = defaultdict(set) coordinates = set() for x in xxx: if x < yyy[0] or yyy[-1] < x: continue i = bisect(yyy, x) a = x - yyy[i - 1] b = yyy[i] - x ab[a].add(b) coordinates.add(b) # Bitのindexは1から始まるように作っているが、"0"を取れるようにするため、全体を1ずらす cor_dict = {b: i for i, b in enumerate(sorted(coordinates), start=2)} cdg = cor_dict.get bit = Bit(len(coordinates) + 1) bit.add(1, 1) for a in sorted(ab): bbb = sorted(map(cdg, ab[a]), reverse=True) for b in bbb: bit.add(b, bit.sum(b - 1)) print(bit.sum(bit.size)) ```
instruction
0
8,913
16
17,826
No
output
1
8,913
16
17,827
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There are N robots and M exits on a number line. The N + M coordinates of these are all integers and all distinct. For each i (1 \leq i \leq N), the coordinate of the i-th robot from the left is x_i. Also, for each j (1 \leq j \leq M), the coordinate of the j-th exit from the left is y_j. Snuke can repeatedly perform the following two kinds of operations in any order to move all the robots simultaneously: * Increment the coordinates of all the robots on the number line by 1. * Decrement the coordinates of all the robots on the number line by 1. Each robot will disappear from the number line when its position coincides with that of an exit, going through that exit. Snuke will continue performing operations until all the robots disappear. When all the robots disappear, how many combinations of exits can be used by the robots? Find the count modulo 10^9 + 7. Here, two combinations of exits are considered different when there is a robot that used different exits in those two combinations. Constraints * 1 \leq N, M \leq 10^5 * 1 \leq x_1 < x_2 < ... < x_N \leq 10^9 * 1 \leq y_1 < y_2 < ... < y_M \leq 10^9 * All given coordinates are integers. * All given coordinates are distinct. Input Input is given from Standard Input in the following format: N M x_1 x_2 ... x_N y_1 y_2 ... y_M Output Print the number of the combinations of exits that can be used by the robots when all the robots disappear, modulo 10^9 + 7. Examples Input 2 2 2 3 1 4 Output 3 Input 3 4 2 5 10 1 3 7 13 Output 8 Input 4 1 1 2 4 5 3 Output 1 Input 4 5 2 5 7 11 1 3 6 9 13 Output 6 Input 10 10 4 13 15 18 19 20 21 22 25 27 1 5 11 12 14 16 23 26 29 30 Output 22 Submitted Solution: ``` import bisect r_n, e_n = map(int,input().split()) robot = list(map(int,input().split())) exit = list(map(int,input().split())) dict = [] for r in robot: i = bisect.bisect(exit,r) if i == 0 or i == e_n: continue left = exit[i - 1] right = exit[i] dict.append([r - left, right - r]) dict.sort() def check(dict): if len(dict) <= 1: if len(dict) == 0: return 1 else: return 2 result = 0 left = dict[0][0] count = 1 while True: if count == len(dict) or dict[count][0] > left: break else: count += 1 result += check(dict[count:]) right = dict[0][1] new_dict = [] for d in dict: if d[1] > right: new_dict.append(d) result += check(new_dict) return result print(check(dict)) ```
instruction
0
8,914
16
17,828
No
output
1
8,914
16
17,829
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,931
16
17,862
"Correct Solution: ``` import sys from collections import Counter stdin = sys.stdin ri = lambda: int(rs()) rl = lambda: list(map(int, stdin.readline().split())) # applies to only numbers rs = lambda: stdin.readline().rstrip() # ignores trailing space H, W = rl() l = [] for _ in range(H): l.extend(list(rs())) c = Counter(l) count = W//2 * H pair = 0 four = 0 for x in c.values(): four += x // 4 pair += x // 2 f = H // 2 * (W // 2) if f > four: print('No') exit() pair -= f * 2 #残りのペア p = W // 2 if H&1 else 0 p += H // 2 if W&1 else 0 if p > pair: print('No') exit() print('Yes') # 16 ```
output
1
8,931
16
17,863
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,932
16
17,864
"Correct Solution: ``` H,W = map(int,input().split()) A = [input() for i in range(H)] from collections import Counter ctr = Counter() for row in A: ctr.update(row) if H%2==0 and W%2==0: print('Yes' if all(v%4==0 for v in ctr.values()) else 'No') elif H%2 and W%2: odd = 0 for k,v in ctr.items(): if v%2: odd += 1 ctr[k] -= 1 if odd != 1: print('No') exit() four = 0 for v in ctr.values(): four += (v//4)*4 want = (H-H%2)*(W-W%2) print('Yes' if four >= want else 'No') else: if any(v%2 for v in ctr.values()): print('No') exit() four = 0 for v in ctr.values(): four += (v//4)*4 want = (H-H%2)*(W-W%2) print('Yes' if four >= want else 'No') ```
output
1
8,932
16
17,865
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,933
16
17,866
"Correct Solution: ``` import string string.ascii_lowercase H,W = map(int,input().split()) A = '' for i in range(H): A += input() #print(A) S = {} for s in string.ascii_lowercase: if A.count(s) > 0: S[s] = A.count(s) #print(S) h1 = H//2 w1 = W//2 h2 = H - h1*2 w2 = W - w1*2 for i in range(h1*w1): flag = True for s in S.keys(): if S[s] >= 4: S[s] -= 4 flag = False break if flag: print('No') exit() for i in range(h1*w2+w1*h2): flag = True for s in S.keys(): if S[s] >= 2: S[s] -= 2 flag = False break if flag: print('No') exit() print('Yes') ```
output
1
8,933
16
17,867
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,934
16
17,868
"Correct Solution: ``` t,_,s=open(0).read().partition('\n') h,w=map(int,t.split()) a=b=c=0 if h%2and w%2: a=h//2*(w//2) c=1 b=(h*w-a*4-c)//2 elif h%2or w%2: a=h//2*(w//2) b=(h*w-a*4)//2 else: a=h*w//4 l=[] for i in set(s.replace('\n','')): l.append(s.count(i)) for i in l: if i>3: while i>3and a: i-=4 a-=1 if i>1: while i>1and b: i-=2 b-=1 if i and c: i-=1 c-=1 if all(not t for t in(a,b,c)): print('Yes') else: print('No') ```
output
1
8,934
16
17,869
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,935
16
17,870
"Correct Solution: ``` h, w = map(int, input().split()) a = {} for i in range(h): s = input() for i in s: a.setdefault(i, 0) a[i] += 1 a2 = 0 a1 = 0 for i in a.values(): if i % 2 == 1: a1 += 1 elif i % 4 == 2: a2 += 2 if h % 2 == 1: if w % 2 == 1: b1 = 1 b2 = h + w - 2 else: b1 = 0 b2 = w else: if w % 2 == 1: b1 = 0 b2 = h else: b1 = 0 b2 = 0 if a1 > b1 or a2 > b2: print("No") else: print("Yes") ```
output
1
8,935
16
17,871
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,936
16
17,872
"Correct Solution: ``` #!/usr/bin/env python3 from collections import Counter def check(): h, w = map(int, input().split()) c = Counter() for i in range(h): c.update(input()) cc = {} cc[4] = (h >> 1) * (w >> 1) cc[2] = (h & 1) * (w >> 1) + (w & 1) * (h >> 1) cc[1] = (h & 1) * (w & 1) tt = list(c.values()) for v in [4, 2, 1]: for i in range(len(tt)): k = min(cc[v], tt[i] // v) tt[i] -= k * v cc[v] -= k return sum(tt) == 0 print(["No", "Yes"][check()]) ```
output
1
8,936
16
17,873
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,937
16
17,874
"Correct Solution: ``` h,w = map(int, input().split()) a = [input() for i in range(h)] cnt = [0] * 26 for i in a: for j in i: cnt[ord(j)-ord("a")] += 1 two,no = 0,0 for i in cnt: if i % 2: no += 1 elif i % 4: two += 1 if (h % 2) and (w % 2): if no <= 1 and two <= h//2 + w//2: print("Yes") else: print("No") elif (h % 2): if no == 0 and two <= w//2: print("Yes") else: print("No") elif (w % 2): if no == 0 and two <= h//2: print("Yes") else: print("No") else: if no == 0 and two == 0: print("Yes") else: print("No") ```
output
1
8,937
16
17,875
Provide a correct Python 3 solution for this coding contest problem. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes
instruction
0
8,938
16
17,876
"Correct Solution: ``` import heapq from collections import defaultdict def main(): h, w = map(int, input().split()) d = defaultdict(int) for _ in range(h): for i in input(): d[i] -= 1 char = list(d.values()) heapq.heapify(char) hd, hm = divmod(h, 2) wd, wm = divmod(w, 2) pair = [-2] * hd + [-1] * hm pair = [i * 2 for i in pair]*wd + pair*wm heapq.heapify(pair) while char: tmp = heapq.heappop(char) - heapq.heappop(pair) if tmp > 0: return "No" if tmp == 0: continue heapq.heappush(char, tmp) return "Yes" if __name__ == "__main__": ans = main() print(ans) ```
output
1
8,938
16
17,877
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` h,w = map(int, input().split()) b = [0]*26 for i in range(h): a=input() for j in range(w): b[ord(a[j])-97]+=1 c = [0]*4 for i in range(len(b)): c[b[i] % 4] += 1 d = 1 if h%2==1 and w%2==1: if c[1]+c[3]!=1: d = 0 elif c[2]+c[3]>h//2+w//2: d = 0 elif h%2==1: if c[1]+c[3]>0: d = 0 elif c[2]>w//2: d = 0 elif w%2==1: if c[1]+c[3]>0: d = 0 elif c[2]>h//2: d = 0 else: if c[1]+c[2]+c[3]>0: d = 0 print('Yes' if d else 'No') ```
instruction
0
8,939
16
17,878
Yes
output
1
8,939
16
17,879
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` from collections import Counter h, w, *s = open(0).read().split() h = int(h) w = int(w) s = Counter(''.join(s)) odd = 0 two = 0 four = 0 for k, v in s.items(): four += v // 4 v %= 4 if v % 2 == 0: two += v // 2 else: odd += 1 if h % 2 == 1 and w % 2 == 1: if odd == 1 and two <= h // 2 + w // 2: print('Yes') else: print('No') elif h % 2 == 1: if odd == 0 and two <= w // 2: print('Yes') else: print('No') elif w % 2 == 1: if odd == 0 and two <= h // 2: print('Yes') else: print('No') else: if odd == 0 and two == 0: print('Yes') else: print('No') ```
instruction
0
8,940
16
17,880
Yes
output
1
8,940
16
17,881
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` H,W=list(map(int,input().split())) l=[] for i in range(H): l.append(list(input())) from collections import Counter l=sum(l,[]) l=Counter(l) one=(H%2)*(W%2) two=(H%2)*(W//2)+(W%2)*(H//2) four=(H//2)*(W//2) for i in l.values(): j=i//4 i=i%4 four-=j if i==1: one-=1 elif i==2: two-=1 elif i==3: one-=1;two-=1 if set([0]) == set([one,two,four]): print("Yes") else: if four<0: two+=four*2 four=0 if set([0]) == set([one,two,four]): print("Yes") else: print("No") ```
instruction
0
8,941
16
17,882
Yes
output
1
8,941
16
17,883
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` # coding: utf-8 import collections def main(): H, W = map(int, input().split()) cnt = collections.Counter() for i in range(H): for c in input().strip(): cnt[c] += 1 cnts = list(cnt.values()) l = len(cnts) if H % 2 and W % 2: for i in range(l): if cnts[i] % 2 != 0: cnts[i] -= 1 break d = 0 if H % 2: d += (W // 2) * 2 if W % 2: d += (H // 2) * 2 i = 0 while d > 0 and i < l: if cnts[i] % 4 != 0: cnts[i] -= 2 d -= 2 i += 1 for k in cnts: if k % 4 != 0: return "No" return "Yes" print(main()) ```
instruction
0
8,942
16
17,884
Yes
output
1
8,942
16
17,885
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` H, W = map(int,input().split()) S = [] for _ in range(H): S.append(input()) # check palindrome def main(): oddnum = (H*W) % 2 d = {} for i in range(H): for j in range(W): ch = S[i][j] if ch in d: d[ch] += 1 else: d[ch] = 1 check = sum([val % 2 for key,val in d.items()]) if check != oddnum: return False return True ans = main() if ans: print("Yes") else: print("No") ```
instruction
0
8,943
16
17,886
No
output
1
8,943
16
17,887
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` # import bisect from collections import Counter, deque # https://note.nkmk.me/python-scipy-connected-components/ # from copy import copy, deepcopy # from functools import reduce # from heapq import heapify, heappop, heappush # from itertools import accumulate, permutations, combinations, combinations_with_replacement, groupby, product # import math # import numpy as np # Pythonのみ! # from operator import xor # import re # from scipy.sparse.csgraph import connected_components # Pythonのみ! # ↑cf. https://note.nkmk.me/python-scipy-connected-components/ # from scipy.sparse import csr_matrix # import string import sys sys.setrecursionlimit(10 ** 5 + 10) def input(): return sys.stdin.readline().strip() def resolve(): def main(): gg = Counter([]) H, W = map(int, input().split()) grid = [[_ for _ in input()] for _ in range(H)] for g in grid: gg.update(Counter(g)) if H % 2 == 0 and W % 2 == 0: for i in gg.values(): if i % 4 != 0: return 'No' return 'Yes' elif H % 2 == 0 and W % 2 == 1: cnt = 0 for i in gg.values(): if i % 4 == 2: cnt += 2 elif i % 4 == 1 or i % 4 == 3: return 'No' if cnt <= H and cnt % 2 == 0: return 'Yes' else: return 'No' elif H % 2 == 1 and W % 2 == 0: cnt = 0 for i in gg.values(): if i % 4 == 2: cnt += 2 elif i % 4 == 1 or i % 4 == 3: return 'No' if cnt <= W and cnt % 2 == 0: return 'Yes' else: return 'No' else: cnt0 = 0 cnt1 = 0 cnt2 = 0 for i in gg.values(): if i % 4 == 1: cnt1 += 1 elif i % 4 == 2: cnt2 += 2 elif i % 4 == 3: cnt2 += 2 cnt1 += 1 else: cnt0 += 1 if cnt1 == 1 and (cnt2 <= (H + W - 2) and cnt2 % 2 == 0 and cnt0 % 4 == 0): return 'Yes' else: return 'No' print(main()) resolve() ```
instruction
0
8,944
16
17,888
No
output
1
8,944
16
17,889
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` from collections import Counter h,w=map(int,input().split()) s="" for i in range(h): s+=input() sc=Counter(s) d=[0,0,0] for v in sc.values(): d[0]+=(v//4)*4 d[1]+=2 if v%4>=2 else 0 d[2]+=v%2 if w%2==0 and h%2==0: print("Yes" if d[0]==h*w else "No") elif (w%2)*(h%2)==1: print("Yes" if d[1]<=(w-1)+(h-1) and d[2]==1 else "No") elif w%2==0: print("Yes" if d[1]<=w and d[2]==0 else "No") elif h%2==0: print("Yes" if d[1]<=h and d[2]==0 else "No") from collections import Counter h,w=map(int,input().split()) s="" for i in range(h): s+=input() sc=Counter(s) d=[0,0,0] for v in sc.values(): d[0]+=(v//4)*4 d[1]+=2 if v%4>=2 else 0 d[2]+=v%2 if w%2==0 and h%2==0: print("Yes" if d[0]==h*w else "No") elif (w%2)*(h%2)==1: print("Yes" if d[1]<=(w-1)+(h-1) and d[2]==1 else "No") elif w%2==0: print("Yes" if d[1]<=w and d[2]==0 else "No") elif h%2==0: print("Yes" if d[1]<=h and d[2]==0 else "No") ```
instruction
0
8,945
16
17,890
No
output
1
8,945
16
17,891
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have an H-by-W matrix. Let a_{ij} be the element at the i-th row from the top and j-th column from the left. In this matrix, each a_{ij} is a lowercase English letter. Snuke is creating another H-by-W matrix, A', by freely rearranging the elements in A. Here, he wants to satisfy the following condition: * Every row and column in A' can be read as a palindrome. Determine whether he can create a matrix satisfying the condition. Constraints * 1 ≤ H, W ≤ 100 * a_{ij} is a lowercase English letter. Input Input is given from Standard Input in the following format: H W a_{11}a_{12}...a_{1W} : a_{H1}a_{H2}...a_{HW} Output If Snuke can create a matrix satisfying the condition, print `Yes`; otherwise, print `No`. Examples Input 3 4 aabb aabb aacc Output Yes Input 2 2 aa bb Output No Input 5 1 t w e e t Output Yes Input 2 5 abxba abyba Output No Input 1 1 z Output Yes Submitted Solution: ``` from collections import Counter def solve(h, w, a): c = Counter(list("".join(a))) d = Counter(list(map(lambda num: num % 4, c.values()))) if (h % 2 == 0) and (w % 2 == 0): return "Yes" if list(d.keys()) == [4] else "No" if 3 in d: return "No" if (h % 2 == 1) and (w % 2 == 1): if (1 in d) and (d[1] != 1): return "No" if (2 in d) and d[2] > sum(x // 2 for x in [h,w]): return "No" else: if 1 in d: return "No" if (2 in d) and d[2] > sum((x % 2 == 0) * (x // 2) for x in [h,w]): return "No" return "Yes" h, w = map(int, input().split()) a = [input() for r in range(h)] print(solve(h, w, a)) ```
instruction
0
8,946
16
17,892
No
output
1
8,946
16
17,893
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,686
16
19,372
"Correct Solution: ``` import collections n,k=map(int,input().split()) arr=list(map(int,input().split())) pos=[[] for _ in range(max(arr)+1)] for i in range(2*n): pos[arr[i%n]].append(i) edge=[[] for _ in range(n)] cnt=collections.defaultdict(int) for i in range(n): s=pos[arr[i]][cnt[arr[i]]] g=pos[arr[i]][cnt[arr[i]]+1] edge[s].append((g+1)%n) edge[s].append((g+1)//n) cnt[arr[i]]+=1 start=0 loop=0 for _ in range(n): loop+=edge[start][1] start=edge[start][0] if start==0: break k%=loop if k==0: print('') else: k-=1 start=0 loop=0 for _ in range(n): if loop==k: break loop+=edge[start][1] start=edge[start][0] s=set() q=collections.deque() for i in range(start,n): if arr[i] not in s: s.add(arr[i]) q.append(arr[i]) else: while 1: tmp=q.pop() s.discard(tmp) if tmp==arr[i]: break print(*list(q)) ```
output
1
9,686
16
19,373
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,687
16
19,374
"Correct Solution: ``` N,K = map(int,input().split()) A = list(map(int,input().split())) hoge = [[]for i in range(200001)] for i in range(N): hoge[A[i]].append(i) NEXT = [-1]*N for i in hoge: for j in range(-len(i),0): NEXT[i[j]] = i[j+1] i = 1 p = 0 while i < K: #print(i,p) if NEXT[p] <= p: i += 1 if NEXT[p] == N-1: i += 1 p = (NEXT[p]+1)%N if p == 0: i = ((K-1)//(i-1))*(i-1)+1 while p < N: if NEXT[p] <= p: print(A[p],end = " ") p += 1 else: p = NEXT[p]+1 print() ```
output
1
9,687
16
19,375
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,688
16
19,376
"Correct Solution: ``` from collections import defaultdict from bisect import bisect_right N, K = map(int, input().split()) *A, = map(int, input().split()) dd = defaultdict(list) for i, j in enumerate(A): dd[j].append(i) pos = 0 loop = 1 # l = [] cic = defaultdict(list) while pos < N: num = A[pos] pp = bisect_right(dd[num], pos) if pp < len(dd[num]): pos = dd[num][pp]+1 else: pos = dd[num][0]+1 loop += 1 cic[loop].append(pos) pos = cic[K%loop][0] if cic[K%loop] else 0 ans = [] while pos < N: num = A[pos] pp = bisect_right(dd[num], pos) if pp < len(dd[num]): pos = dd[num][pp]+1 else: ans.append(num) pos += 1 print(*ans) ```
output
1
9,688
16
19,377
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,689
16
19,378
"Correct Solution: ``` N,K = map(int,input().split()) A = list(map(int,input().split())) A += A d = {} da = {} for i in range(2*N): a = A[i] if a in da: d[da[a]] = i da[a] = i for i in range(N): if d[i] >= N: d[i] %= N s = 0 k = K while k > 1: if d[s]<=s: k -= 1 if d[s] == N-1: k = K%(K-k+1) s = (d[s]+1)%N if k == 0: print('') else: ans = [] while s <= N-1: if s < d[s]: s = d[s]+1 else: ans.append(str(A[s])) s += 1 print(' '.join(ans)) ```
output
1
9,689
16
19,379
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,690
16
19,380
"Correct Solution: ``` from bisect import* from collections import* n,k,*a=map(int,open(0).read().split()) b=defaultdict(list) for i,v in enumerate(a):b[v]+=i, s=a[0] i=c=0 while 1: t=b[s] m=len(t) j=bisect(t,i) c+=j==m i=t[j%m]+1 if i==n:break s=a[i] k%=c+1 s=a[0] i=c=0 while c<k-1: t=b[s] m=len(t) j=bisect(t,i) c+=j==m i=t[j%m]+1 s=a[i] r=[] while 1: t=b[s] m=len(t) j=bisect(t,i) if j==m: r+=s, i+=1 else: i=t[j]+1 if i==n: break s=a[i] print(*r) ```
output
1
9,690
16
19,381
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,691
16
19,382
"Correct Solution: ``` N, K = map(int, input().split()) A = list(map(int, input().split())) first = [0] * (N+1) follow_idx = [-1] * (N+1) d = {} for i, a in enumerate(A[::-1]): j = N - 1 - i if a in d: idx = d[a][-1] d[a].append(j) if first[idx + 1] < 0: first[j] = first[idx + 1] follow_idx[j] = follow_idx[idx + 1] else: first[j] = -first[idx + 1] follow_idx[j] = idx + 1 else: first[j] = a d[a] = [j] follow_idx[j] = j + 1 indices = [-1] s0 = first[0] if s0 >= 0: indices.append(0) else: s0 = -s0 indices.append(follow_idx[0]) if s0 == 0: print('') quit() d2 = {0:0, s0:1} for k in range(2, K+1): idx = d[s0][-1] + 1 s0 = first[idx] if s0 >= 0: indices.append(idx) else: s0 = -s0 indices.append(follow_idx[idx]) if s0 in d2: break d2[s0] = k if len(indices) < K: K = d2[s0] + (K - d2[s0]) % (k - d2[s0]) if K == 0: print('') quit() ans = [] idx = indices[K] while idx < N: s = first[idx] if s > 0: ans.append(s) idx = follow_idx[idx] print(*ans) ```
output
1
9,691
16
19,383
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,692
16
19,384
"Correct Solution: ``` import os import sys if os.getenv("LOCAL"): sys.stdin = open("_in.txt", "r") sys.setrecursionlimit(2147483647) INF = float("inf") IINF = 10 ** 18 MOD = 10 ** 9 + 7 N, K = list(map(int, sys.stdin.readline().split())) A = list(map(int, sys.stdin.readline().split())) # 次 A[j] が取り除かれるまでの操作回数 counts = [0] * N D = {} for i, a in enumerate(A + A): if a not in D: D[a] = i else: if D[a] < N: counts[D[a]] = i - D[a] D[a] = i circle = counts[0] + 1 i = (counts[0] + 1) % N while i != 0: circle += counts[i] + 1 i = (i + counts[i] + 1) % N rem = N * K % circle ans = [] i = 0 while rem > 0: while rem - counts[i] > 0: rem -= counts[i] + 1 i = (i + counts[i] + 1) % N if rem: ans.append(A[i]) rem -= 1 i = (i + 1) % N if ans: print(*ans) # hist = [] # stack = [] # for _ in range(K): # for a in A: # if a in stack: # while a in stack: # stack.pop() # else: # stack.append(a) # # hist.append(a) # print(hist) # print('', stack) # print() ```
output
1
9,692
16
19,385
Provide a correct Python 3 solution for this coding contest problem. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6
instruction
0
9,693
16
19,386
"Correct Solution: ``` n, k = map(int, input().split()) a = list(map(int, input().split())) b = a + a to = [-1] * n num = [-1] * (2 * 10 ** 5 + 1) for i, x in enumerate(b): if 0 <= num[x] < n: to[num[x]] = i + 1 num[x] = i c, now = 1, 0 check = 0 while now != n: v = to[now] if v > n: c += 1 v -= n now = v k %= c now = 0 while k > 1: v = to[now] if v > n: k -= 1 v -= n now = v ans = [] while now < n: if to[now] < n: now = to[now] elif to[now] == n: break else: ans.append(a[now]) now += 1 print(*ans) ```
output
1
9,693
16
19,387
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` import sys def input(): return sys.stdin.readline().strip() def mapint(): return map(int, input().split()) sys.setrecursionlimit(10**9) N, K = mapint() As = list(mapint()) double_As = As*2 idx_dic = {} idx_lis = [N+1]*(2*N) for i in range(N*2-1, -1, -1): a = double_As[i] if a in idx_dic: idx_lis[i] = idx_dic[a]+1 idx_dic[a] = i doubling = [[0]*N for _ in range(60)] accum = [[0]*N for _ in range(60)] doubling[0] = [i%N for i in idx_lis[:N]] accum[0] = [a-i for i, a in enumerate(idx_lis[:N])] for i in range(1, 60): for j in range(N): doubling[i][j] = doubling[i-1][doubling[i-1][j]] accum[i][j] = accum[i-1][j] + accum[i-1][doubling[i-1][j]] now = 0 cum = 0 cnt = 0 for i in range(59, -1, -1): if cum + accum[i][now]>N*K: continue else: cum += accum[i][now] now = doubling[i][now] ans = [] while cum<N*K: if cum+accum[0][now]<=N*K: cum += accum[0][now] now = doubling[0][now] else: ans.append(As[now]) now += 1 cum += 1 print(*ans) ```
instruction
0
9,694
16
19,388
Yes
output
1
9,694
16
19,389
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` import sys input = sys.stdin.readline from collections import * N, K = map(int, input().split()) A = list(map(int, input().split())) log_size = 65 #行き先ではなく移動量をダブリングする dp = [[-1]*N for _ in range(log_size)] idx = defaultdict(int) for i in range(2*N): if A[i%N] in idx and idx[A[i%N]]<N: dp[0][idx[A[i%N]]] = i+1-idx[A[i%N]] idx[A[i%N]] = i for i in range(1, log_size): for j in range(N): #値が大きくなりすぎるとTLEする dp[i][j] = min(10**18, dp[i-1][j]+dp[i-1][(j+dp[i-1][j])%N]) now = 0 NK = N*K for i in range(log_size-1, -1, -1): if NK-dp[i][now]>=0: NK -= dp[i][now] now = (now+dp[i][now])%N if NK==0: print() exit() q = deque([]) cnt = defaultdict(int) for i in range(now, N): if cnt[A[i]]>0: while cnt[A[i]]>0: rem = q.pop() cnt[rem] -= 1 else: cnt[A[i]] += 1 q.append(A[i]) print(*q) ```
instruction
0
9,695
16
19,390
Yes
output
1
9,695
16
19,391
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` import sys readline = sys.stdin.readline MOD = 10 ** 9 + 7 INF = float('INF') sys.setrecursionlimit(10 ** 5) def main(): from collections import defaultdict N, K = map(int, readline().split()) A = list(map(int, readline().split())) c = N * K b = 0 while 2 ** b < c: b += 1 doubling = [[0] * N for _ in range(b + 1)] idx = defaultdict(list) for i, x in enumerate(A): idx[x].append(i) for i in range(1, 200001): d = idx[i] l = len(d) for j in range(l): cur = d[j] nx = d[(j + 1) % l] if nx <= cur: doubling[0][cur] = N - (cur - nx) + 1 else: doubling[0][cur] = nx - cur + 1 for i in range(1, b + 1): for j in range(N): p = doubling[i - 1][j] doubling[i][j] = p + doubling[i - 1][(j + p) % N] cnt = 0 cur = 0 while c - cnt > 200000: for i in range(b, -1, -1): if cnt + doubling[i][cur] < c: cnt += doubling[i][cur] cur = cnt % N break rem = c - cnt res = [] res_set = set() while rem > 0: num = A[cur] if num in res_set: while True: back = res[-1] res.pop() res_set.discard(back) if back == num: break else: res.append(num) res_set.add(num) rem -= 1 cur += 1 cur %= N print(*res) if __name__ == '__main__': main() ```
instruction
0
9,696
16
19,392
Yes
output
1
9,696
16
19,393
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` import bisect N,K=map(int,input().split()) A=list(map(int,input().split())) dic={} for i in range(N): if A[i] not in dic: dic[A[i]]=[] dic[A[i]].append(i) check={} for ai in dic: check[ai]=0 check[ai]=max(dic[ai]) front=[-1] pos=0 visit=set([-1]) while True: val=A[pos] if pos>=check[val]: front.append(pos) if pos in visit: break else: visit.add(pos) pos=dic[val][0]+1 if pos==N: front.append(-1) break else: index=bisect.bisect_right(dic[val],pos) pos=dic[val][index]+1 if pos==N: front.append(-1) break last=front[-1] i=front.index(last) period=len(front)-i-1 const=i K-=const K-=1 r=K%period fff=front[r] if fff!=-1: import heapq que=[] check={A[i]:0 for i in range(N)} index=0 flag=True while N>index: if A[index]!=A[fff] and flag: index+=1 elif A[index]==A[fff] and flag: index+=1 flag=False else: if check[A[index]]==0: heapq.heappush(que,(-index,A[index])) check[A[index]]=1 index+=1 else: while True: test,a=heapq.heappop(que) check[a]=0 if a==A[index]: break check[A[index]]=0 index+=1 que.sort(reverse=True) que=[que[i][1] for i in range(len(que))] print(*que) else: import heapq que=[] check={A[i]:0 for i in range(N)} index=0 while N>index: if check[A[index]]==0: heapq.heappush(que,(-index,A[index])) check[A[index]]=0 check[A[index]]=1 index+=1 else: while True: test,a=heapq.heappop(que) check[a]=0 if a==A[index]: break check[A[index]]=0 index+=1 que.sort(reverse=True) que=[que[i][1] for i in range(len(que))] print(*que) ```
instruction
0
9,697
16
19,394
Yes
output
1
9,697
16
19,395
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` N, K = map(int, input().split()) A = list(map(int, input().split())) def add(S, A): for Ai in A: try: S = S[:S.index(Ai)] except ValueError as _: S.append(Ai) return S ok = False S = [] for i in range(K): S = add(S, A) if len(S) == 0: break else: ok = True print(" ".join(map(str, S))) if not ok: for i in range(K%(i+1)): S = add(S, A) print(" ".join(map(str, S))) ```
instruction
0
9,698
16
19,396
No
output
1
9,698
16
19,397
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` n,k=map(int,input().split()) A=list(map(int,input().split())) s=[] m=k%(n+1) for i in range(0,m+1): if s.count(A[i%n])==0: s.append(A[i%n]) else: while s.count(A[i%n])!=0: del s[-1] for j in range(0,len(s)): s[j]=str(s[j]) print(" ".join(s)) ```
instruction
0
9,699
16
19,398
No
output
1
9,699
16
19,399
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` n, k = map(int, input().split()) a = list(map(int, input().split())) s = [] for i in a: if i in s: while i ! s.pop(-1): break else : s.append(i) print(s) ```
instruction
0
9,700
16
19,400
No
output
1
9,700
16
19,401
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. We have a sequence of N \times K integers: X=(X_0,X_1,\cdots,X_{N \times K-1}). Its elements are represented by another sequence of N integers: A=(A_0,A_1,\cdots,A_{N-1}). For each pair i, j (0 \leq i \leq K-1,\ 0 \leq j \leq N-1), X_{i \times N + j}=A_j holds. Snuke has an integer sequence s, which is initially empty. For each i=0,1,2,\cdots,N \times K-1, in this order, he will perform the following operation: * If s does not contain X_i: add X_i to the end of s. * If s does contain X_i: repeatedly delete the element at the end of s until s no longer contains X_i. Note that, in this case, we do not add X_i to the end of s. Find the elements of s after Snuke finished the operations. Constraints * 1 \leq N \leq 2 \times 10^5 * 1 \leq K \leq 10^{12} * 1 \leq A_i \leq 2 \times 10^5 * All values in input are integers. Input Input is given from Standard Input in the following format: N K A_0 A_1 \cdots A_{N-1} Output Print the elements of s after Snuke finished the operations, in order from beginning to end, with spaces in between. Examples Input 3 2 1 2 3 Output 2 3 Input 5 10 1 2 3 2 3 Output 3 Input 6 1000000000000 1 1 2 2 3 3 Output Input 11 97 3 1 4 1 5 9 2 6 5 3 5 Output 9 2 6 Submitted Solution: ``` import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,queue,copy sys.setrecursionlimit(10**7) inf=10**20 mod=10**9+7 dd=[(-1,0),(0,1),(1,0),(0,-1)] ddn=[(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)] def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()] def I(): return int(sys.stdin.readline()) def LS(): return sys.stdin.readline().split() def S(): return input() def main(): n,k=LI() l=LI() l=l+l a=[] for x in l: y=a.count(x) if y>0: while True: if y==0: break p=a.pop() if p==x: y-=1 else: a.append(x) return ' '.join([str(x) for x in a]) # main() print(main()) ```
instruction
0
9,701
16
19,402
No
output
1
9,701
16
19,403
Provide a correct Python 3 solution for this coding contest problem. A museum exhibits N jewels, Jewel 1, 2, ..., N. The coordinates of Jewel i are (x_i, y_i) (the museum can be regarded as a two-dimensional plane), and the value of that jewel is v_i. Snuke the thief will steal some of these jewels. There are M conditions, Condition 1, 2, ..., M, that must be met when stealing jewels, or he will be caught by the detective. Each condition has one of the following four forms: * (t_i =`L`, a_i, b_i) : Snuke can only steal at most b_i jewels whose x coordinates are a_i or smaller. * (t_i =`R`, a_i, b_i) : Snuke can only steal at most b_i jewels whose x coordinates are a_i or larger. * (t_i =`D`, a_i, b_i) : Snuke can only steal at most b_i jewels whose y coordinates are a_i or smaller. * (t_i =`U`, a_i, b_i) : Snuke can only steal at most b_i jewels whose y coordinates are a_i or larger. Find the maximum sum of values of jewels that Snuke the thief can steal. Constraints * 1 \leq N \leq 80 * 1 \leq x_i, y_i \leq 100 * 1 \leq v_i \leq 10^{15} * 1 \leq M \leq 320 * t_i is `L`, `R`, `U` or `D`. * 1 \leq a_i \leq 100 * 0 \leq b_i \leq N - 1 * (x_i, y_i) are pairwise distinct. * (t_i, a_i) are pairwise distinct. * (t_i, b_i) are pairwise distinct. Input Input is given from Standard Input in the following format: N x_1 y_1 v_1 x_2 y_2 v_2 : x_N y_N v_N M t_1 a_1 b_1 t_2 a_2 b_2 : t_M a_M b_M Output Print the maximum sum of values of jewels that Snuke the thief can steal. Examples Input 7 1 3 6 1 5 9 3 1 8 4 3 8 6 2 9 5 4 11 5 7 10 4 L 3 1 R 2 3 D 5 3 U 4 2 Output 36 Input 3 1 2 3 4 5 6 7 8 9 1 L 100 0 Output 0 Input 4 1 1 10 1 2 11 2 1 12 2 2 13 3 L 8 3 L 9 2 L 10 1 Output 13 Input 10 66 47 71040136000 65 77 74799603000 80 53 91192869000 24 34 24931901000 91 78 49867703000 68 71 46108236000 46 73 74799603000 56 63 93122668000 32 51 71030136000 51 26 70912345000 21 L 51 1 L 7 0 U 47 4 R 92 0 R 91 1 D 53 2 R 65 3 D 13 0 U 63 3 L 68 3 D 47 1 L 91 5 R 32 4 L 66 2 L 80 4 D 77 4 U 73 1 D 78 5 U 26 5 R 80 2 R 24 5 Output 305223377000
instruction
0
9,702
16
19,404
"Correct Solution: ``` import sys input=sys.stdin.readline sys.setrecursionlimit(10**9) from collections import deque from bisect import bisect_left,bisect_right class MinCostFlow: def __init__(self,n): self.n=n self.edges=[[] for i in range(n)] def add_edge(self,fr,to,cap,cost): self.edges[fr].append([to,cap,cost,len(self.edges[to])]) self.edges[to].append([fr,0,-cost,len(self.edges[fr])-1]) def MinCost(self,source,sink,flow): inf=10**15+1 n=self.n; E=self.edges mincost=0 prev_v=[0]*n; prev_e=[0]*n while flow: dist=[inf]*n dist[source]=0 q=deque([source]) Flag=[False]*n Flag[source]=True while q: v=q.popleft() if not Flag[v]: continue Flag[v]=False for i,(to,cap,cost,_) in enumerate(E[v]): if cap>0 and dist[to]>dist[v]+cost: dist[to]=dist[v]+cost prev_v[to],prev_e[to]=v,i q.append(to) Flag[to]=True if dist[sink]==inf: return 1 f,v=flow,sink while v!=source: f=min(f,E[prev_v[v]][prev_e[v]][1]) v=prev_v[v] flow-=f mincost+=f*dist[sink] v=sink while v!=source: E[prev_v[v]][prev_e[v]][1]-=f rev=E[prev_v[v]][prev_e[v]][3] E[v][rev][1]+=f v=prev_v[v] return mincost n=int(input()) J=[] L_org,D_org=[1]*n,[1]*n for _ in range(n): x,y,v=map(int,input().split()) J.append((x,y,v)) m=int(input()) T=[] for _ in range(m): t,a,b=input().split() a,b=int(a),int(b) T.append((t,a,b)) if t=='L': L_org[b]=a+1 elif t=='D': D_org[b]=a+1 for i in range(1,n): L_org[i]=max(L_org[i-1],L_org[i]) D_org[i]=max(D_org[i-1],D_org[i]) def solve(k): L,D=L_org[:k],D_org[:k] R,U=[100]*k,[100]*k for t,a,b in T: if k-b-1>=0: if t=='R': R[k-b-1]=a-1 elif t=='U': U[k-b-1]=a-1 for i in range(k-2,-1,-1): R[i]=min(R[i],R[i+1]) U[i]=min(U[i],U[i+1]) solver=MinCostFlow(2*n+2*k+2) for i in range(1,k+1): solver.add_edge(0,i,1,0) solver.add_edge(2*n+k+i,2*n+2*k+1,1,0) for i in range(n): v=J[i][2] solver.add_edge(k+i+1,n+k+i+1,1,-v) for i in range(n): x,y=J[i][0],J[i][1] l=bisect_right(L,x) r=bisect_left(R,x)+1 d=bisect_right(D,y) u=bisect_left(U,y)+1 for j in range(r,l+1): solver.add_edge(j,k+i+1,1,0) for j in range(u,d+1): solver.add_edge(n+k+i+1,2*n+k+j,1,0) return -solver.MinCost(0,2*n+2*k+1,k) ans=0 k=1 while True: tmp=solve(k) ans=max(ans,tmp) if tmp==-1 or k==n: break k+=1 print(ans) ```
output
1
9,702
16
19,405
Provide a correct Python 3 solution for this coding contest problem. A museum exhibits N jewels, Jewel 1, 2, ..., N. The coordinates of Jewel i are (x_i, y_i) (the museum can be regarded as a two-dimensional plane), and the value of that jewel is v_i. Snuke the thief will steal some of these jewels. There are M conditions, Condition 1, 2, ..., M, that must be met when stealing jewels, or he will be caught by the detective. Each condition has one of the following four forms: * (t_i =`L`, a_i, b_i) : Snuke can only steal at most b_i jewels whose x coordinates are a_i or smaller. * (t_i =`R`, a_i, b_i) : Snuke can only steal at most b_i jewels whose x coordinates are a_i or larger. * (t_i =`D`, a_i, b_i) : Snuke can only steal at most b_i jewels whose y coordinates are a_i or smaller. * (t_i =`U`, a_i, b_i) : Snuke can only steal at most b_i jewels whose y coordinates are a_i or larger. Find the maximum sum of values of jewels that Snuke the thief can steal. Constraints * 1 \leq N \leq 80 * 1 \leq x_i, y_i \leq 100 * 1 \leq v_i \leq 10^{15} * 1 \leq M \leq 320 * t_i is `L`, `R`, `U` or `D`. * 1 \leq a_i \leq 100 * 0 \leq b_i \leq N - 1 * (x_i, y_i) are pairwise distinct. * (t_i, a_i) are pairwise distinct. * (t_i, b_i) are pairwise distinct. Input Input is given from Standard Input in the following format: N x_1 y_1 v_1 x_2 y_2 v_2 : x_N y_N v_N M t_1 a_1 b_1 t_2 a_2 b_2 : t_M a_M b_M Output Print the maximum sum of values of jewels that Snuke the thief can steal. Examples Input 7 1 3 6 1 5 9 3 1 8 4 3 8 6 2 9 5 4 11 5 7 10 4 L 3 1 R 2 3 D 5 3 U 4 2 Output 36 Input 3 1 2 3 4 5 6 7 8 9 1 L 100 0 Output 0 Input 4 1 1 10 1 2 11 2 1 12 2 2 13 3 L 8 3 L 9 2 L 10 1 Output 13 Input 10 66 47 71040136000 65 77 74799603000 80 53 91192869000 24 34 24931901000 91 78 49867703000 68 71 46108236000 46 73 74799603000 56 63 93122668000 32 51 71030136000 51 26 70912345000 21 L 51 1 L 7 0 U 47 4 R 92 0 R 91 1 D 53 2 R 65 3 D 13 0 U 63 3 L 68 3 D 47 1 L 91 5 R 32 4 L 66 2 L 80 4 D 77 4 U 73 1 D 78 5 U 26 5 R 80 2 R 24 5 Output 305223377000
instruction
0
9,703
16
19,406
"Correct Solution: ``` import sys input=sys.stdin.readline sys.setrecursionlimit(10**9) from bisect import bisect_left,bisect_right class MinCostFlow: def __init__(self,n): self.n=n self.edges=[[] for i in range(n)] def add_edge(self,fr,to,cap,cost): self.edges[fr].append([to,cap,cost,len(self.edges[to])]) self.edges[to].append([fr,0,-cost,len(self.edges[fr])-1]) def MinCost(self,source,sink,flow): inf=10**15+1 n,E=self.n,self.edges prev_v,prev_e=[0]*n,[0]*n mincost=0 while flow: dist=[inf]*n dist[source]=0 flag=True while flag: flag=False for v in range(n): if dist[v]==inf: continue Ev=E[v] for i in range(len(Ev)): to,cap,cost,rev=Ev[i] if cap>0 and dist[v]+cost<dist[to]: dist[to]=dist[v]+cost prev_v[to],prev_e[to]=v,i flag=True if dist[sink]==inf: return 1 f=flow v=sink while v!=source: f=min(f,E[prev_v[v]][prev_e[v]][1]) v=prev_v[v] flow-=f mincost+=f*dist[sink] v=sink while v!=source: E[prev_v[v]][prev_e[v]][1]-=f rev=E[prev_v[v]][prev_e[v]][3] E[v][rev][1]+=f v=prev_v[v] return mincost n=int(input()) J=[] L_org,D_org=[1]*n,[1]*n for _ in range(n): x,y,v=map(int,input().split()) J.append((x,y,v)) m=int(input()) T=[] for _ in range(m): t,a,b=input().split() a,b=int(a),int(b) T.append((t,a,b)) if t=='L': L_org[b]=a+1 elif t=='D': D_org[b]=a+1 for i in range(1,n): L_org[i]=max(L_org[i-1],L_org[i]) D_org[i]=max(D_org[i-1],D_org[i]) def solve(k): L,D=L_org[:k],D_org[:k] R,U=[100]*k,[100]*k for t,a,b in T: if k-b-1>=0: if t=='R': R[k-b-1]=a-1 elif t=='U': U[k-b-1]=a-1 for i in range(k-2,-1,-1): R[i]=min(R[i],R[i+1]) U[i]=min(U[i],U[i+1]) solver=MinCostFlow(2*n+2*k+2) for i in range(1,k+1): solver.add_edge(0,i,1,0) solver.add_edge(2*n+k+i,2*n+2*k+1,1,0) for i in range(n): v=J[i][2] solver.add_edge(k+i+1,n+k+i+1,1,-v) for i in range(n): x,y=J[i][0],J[i][1] l=bisect_right(L,x) r=bisect_left(R,x)+1 d=bisect_right(D,y) u=bisect_left(U,y)+1 for j in range(r,l+1): solver.add_edge(j,k+i+1,1,0) for j in range(u,d+1): solver.add_edge(n+k+i+1,2*n+k+j,1,0) return -solver.MinCost(0,2*n+2*k+1,k) ans=0 k=1 while True: tmp=solve(k) ans=max(ans,tmp) if tmp==-1 or k==n: break k+=1 print(ans) ```
output
1
9,703
16
19,407
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A museum exhibits N jewels, Jewel 1, 2, ..., N. The coordinates of Jewel i are (x_i, y_i) (the museum can be regarded as a two-dimensional plane), and the value of that jewel is v_i. Snuke the thief will steal some of these jewels. There are M conditions, Condition 1, 2, ..., M, that must be met when stealing jewels, or he will be caught by the detective. Each condition has one of the following four forms: * (t_i =`L`, a_i, b_i) : Snuke can only steal at most b_i jewels whose x coordinates are a_i or smaller. * (t_i =`R`, a_i, b_i) : Snuke can only steal at most b_i jewels whose x coordinates are a_i or larger. * (t_i =`D`, a_i, b_i) : Snuke can only steal at most b_i jewels whose y coordinates are a_i or smaller. * (t_i =`U`, a_i, b_i) : Snuke can only steal at most b_i jewels whose y coordinates are a_i or larger. Find the maximum sum of values of jewels that Snuke the thief can steal. Constraints * 1 \leq N \leq 80 * 1 \leq x_i, y_i \leq 100 * 1 \leq v_i \leq 10^{15} * 1 \leq M \leq 320 * t_i is `L`, `R`, `U` or `D`. * 1 \leq a_i \leq 100 * 0 \leq b_i \leq N - 1 * (x_i, y_i) are pairwise distinct. * (t_i, a_i) are pairwise distinct. * (t_i, b_i) are pairwise distinct. Input Input is given from Standard Input in the following format: N x_1 y_1 v_1 x_2 y_2 v_2 : x_N y_N v_N M t_1 a_1 b_1 t_2 a_2 b_2 : t_M a_M b_M Output Print the maximum sum of values of jewels that Snuke the thief can steal. Examples Input 7 1 3 6 1 5 9 3 1 8 4 3 8 6 2 9 5 4 11 5 7 10 4 L 3 1 R 2 3 D 5 3 U 4 2 Output 36 Input 3 1 2 3 4 5 6 7 8 9 1 L 100 0 Output 0 Input 4 1 1 10 1 2 11 2 1 12 2 2 13 3 L 8 3 L 9 2 L 10 1 Output 13 Input 10 66 47 71040136000 65 77 74799603000 80 53 91192869000 24 34 24931901000 91 78 49867703000 68 71 46108236000 46 73 74799603000 56 63 93122668000 32 51 71030136000 51 26 70912345000 21 L 51 1 L 7 0 U 47 4 R 92 0 R 91 1 D 53 2 R 65 3 D 13 0 U 63 3 L 68 3 D 47 1 L 91 5 R 32 4 L 66 2 L 80 4 D 77 4 U 73 1 D 78 5 U 26 5 R 80 2 R 24 5 Output 305223377000 Submitted Solution: ``` import sys input=sys.stdin.readline sys.setrecursionlimit(10**9) from bisect import bisect_left,bisect_right class MinCostFlow: def __init__(self,n): self.n=n self.edges=[[] for i in range(n)] def add_edge(self,fr,to,cap,cost): self.edges[fr].append([to,cap,cost,len(self.edges[to])]) self.edges[to].append([fr,0,-cost,len(self.edges[fr])-1]) def MinCost(self,source,sink,flow): inf=10**15+1 n,E=self.n,self.edges prev_v,prev_e=[0]*n,[0]*n mincost=0 while flow: dist=[inf]*n dist[source]=0 flag=True while flag: flag=False for v in range(n): if dist[v]==inf: continue Ev=E[v] for i in range(len(Ev)): to,cap,cost,rev=Ev[i] if cap>0 and dist[v]+cost<dist[to]: dist[to]=dist[v]+cost prev_v[to],prev_e[to]=v,i flag=True if dist[sink]==inf: return -1 f=flow v=sink while v!=source: f=min(f,E[prev_v[v]][prev_e[v]][1]) v=prev_v[v] flow-=f mincost+=f*dist[sink] v=sink while v!=source: E[prev_v[v]][prev_e[v]][1]-=f rev=E[prev_v[v]][prev_e[v]][3] E[v][rev][1]+=f v=prev_v[v] return mincost n=int(input()) J=[] L_org,D_org=[1]*n,[1]*n for _ in range(n): x,y,v=map(int,input().split()) J.append((x,y,v)) m=int(input()) T=[] for _ in range(m): t,a,b=input().split() a,b=int(a),int(b) T.append((t,a,b)) if t=='L': L_org[b]=a+1 elif t=='D': D_org[b]=a+1 for i in range(1,n): L_org[i]=max(L_org[i-1],L_org[i]) D_org[i]=max(D_org[i-1],D_org[i]) def solve(k): L,D=L_org[:k],D_org[:k] R,U=[100]*k,[100]*k for t,a,b in T: if k-b-1>=0: if t=='R': R[k-b-1]=a-1 elif t=='U': U[k-b-1]=a-1 for i in range(k-2,-1,-1): R[i]=min(R[i],R[i+1]) U[i]=min(U[i],U[i+1]) solver=MinCostFlow(2*n+2*k+2) for i in range(1,k+1): solver.add_edge(0,i,1,0) solver.add_edge(2*n+k+i,2*n+2*k+1,1,0) for i in range(n): v=J[i][2] solver.add_edge(k+i+1,n+k+i+1,1,-v) for i in range(n): x,y=J[i][0],J[i][1] l=bisect_right(L,x) r=bisect_left(R,x)+1 d=bisect_right(D,y) u=bisect_left(U,y)+1 for j in range(r,l+1): solver.add_edge(j,k+i+1,1,0) for j in range(u,d+1): solver.add_edge(n+k+i+1,2*n+k+j,1,0) return -solver.MinCost(0,2*n+2*k+1,k) ans=0 k=1 while True: tmp=solve(k) ans=max(ans,tmp) if tmp==-1 or k==n: break k+=1 print(ans) ```
instruction
0
9,704
16
19,408
No
output
1
9,704
16
19,409
Provide a correct Python 3 solution for this coding contest problem. Snuke is introducing a robot arm with the following properties to his factory: * The robot arm consists of m sections and m+1 joints. The sections are numbered 1, 2, ..., m, and the joints are numbered 0, 1, ..., m. Section i connects Joint i-1 and Joint i. The length of Section i is d_i. * For each section, its mode can be specified individually. There are four modes: `L`, `R`, `D` and `U`. The mode of a section decides the direction of that section. If we consider the factory as a coordinate plane, the position of Joint i will be determined as follows (we denote its coordinates as (x_i, y_i)): * (x_0, y_0) = (0, 0). * If the mode of Section i is `L`, (x_{i}, y_{i}) = (x_{i-1} - d_{i}, y_{i-1}). * If the mode of Section i is `R`, (x_{i}, y_{i}) = (x_{i-1} + d_{i}, y_{i-1}). * If the mode of Section i is `D`, (x_{i}, y_{i}) = (x_{i-1}, y_{i-1} - d_{i}). * If the mode of Section i is `U`, (x_{i}, y_{i}) = (x_{i-1}, y_{i-1} + d_{i}). Snuke would like to introduce a robot arm so that the position of Joint m can be matched with all of the N points (X_1, Y_1), (X_2, Y_2), ..., (X_N, Y_N) by properly specifying the modes of the sections. Is this possible? If so, find such a robot arm and how to bring Joint m to each point (X_j, Y_j). Constraints * All values in input are integers. * 1 \leq N \leq 1000 * -10^9 \leq X_i \leq 10^9 * -10^9 \leq Y_i \leq 10^9 Input Input is given from Standard Input in the following format: N X_1 Y_1 X_2 Y_2 : X_N Y_N Output If the condition can be satisfied, follow the following format. If the condition cannot be satisfied, print `-1`. m d_1 d_2 ... d_m w_1 w_2 : w_N m and d_i are the configurations of the robot arm. Refer to the problem statement for what each of them means. Here, 1 \leq m \leq 40 and 1 \leq d_i \leq 10^{12} must hold. Also, m and d_i must all be integers. w_j is a string of length m that represents the way to bring Joint m of the robot arm to point (X_j, Y_j). The i-th character of w_j should be one of the letters `L`, `R`, `D` and `U`, representing the mode of Section i. Examples Input 3 -1 0 0 3 2 -1 Output 2 1 2 RL UU DR Input 5 0 0 1 0 2 0 3 0 4 0 Output -1 Input 2 1 1 1 1 Output 2 1 1 RU UR Input 3 -7 -3 7 3 -3 -7 Output 5 3 1 4 1 5 LRDUL RDULR DULRD
instruction
0
9,705
16
19,410
"Correct Solution: ``` N = int(input()) XY = [list(map(int, input().split())) for _ in range(N)] MOD = sum(XY[0]) % 2 for x, y in XY: if MOD != (x + y) % 2: print(-1) exit() m = 33 - MOD print(m) D = [2 ** i for i in range(31, -1, -1)] if MOD == 0: D.append(1) print(" ".join(map(str, D))) for x, y in XY: w = "" for d in D: if x + y >= 0 and x - y >= 0: w += "R" x -= d elif x + y < 0 and x - y >= 0: w += "D" y += d elif x + y >= 0 and x - y < 0: w += "U" y -= d else: w += "L" x += d print(w) ```
output
1
9,705
16
19,411
Provide a correct Python 3 solution for this coding contest problem. Snuke is introducing a robot arm with the following properties to his factory: * The robot arm consists of m sections and m+1 joints. The sections are numbered 1, 2, ..., m, and the joints are numbered 0, 1, ..., m. Section i connects Joint i-1 and Joint i. The length of Section i is d_i. * For each section, its mode can be specified individually. There are four modes: `L`, `R`, `D` and `U`. The mode of a section decides the direction of that section. If we consider the factory as a coordinate plane, the position of Joint i will be determined as follows (we denote its coordinates as (x_i, y_i)): * (x_0, y_0) = (0, 0). * If the mode of Section i is `L`, (x_{i}, y_{i}) = (x_{i-1} - d_{i}, y_{i-1}). * If the mode of Section i is `R`, (x_{i}, y_{i}) = (x_{i-1} + d_{i}, y_{i-1}). * If the mode of Section i is `D`, (x_{i}, y_{i}) = (x_{i-1}, y_{i-1} - d_{i}). * If the mode of Section i is `U`, (x_{i}, y_{i}) = (x_{i-1}, y_{i-1} + d_{i}). Snuke would like to introduce a robot arm so that the position of Joint m can be matched with all of the N points (X_1, Y_1), (X_2, Y_2), ..., (X_N, Y_N) by properly specifying the modes of the sections. Is this possible? If so, find such a robot arm and how to bring Joint m to each point (X_j, Y_j). Constraints * All values in input are integers. * 1 \leq N \leq 1000 * -10^9 \leq X_i \leq 10^9 * -10^9 \leq Y_i \leq 10^9 Input Input is given from Standard Input in the following format: N X_1 Y_1 X_2 Y_2 : X_N Y_N Output If the condition can be satisfied, follow the following format. If the condition cannot be satisfied, print `-1`. m d_1 d_2 ... d_m w_1 w_2 : w_N m and d_i are the configurations of the robot arm. Refer to the problem statement for what each of them means. Here, 1 \leq m \leq 40 and 1 \leq d_i \leq 10^{12} must hold. Also, m and d_i must all be integers. w_j is a string of length m that represents the way to bring Joint m of the robot arm to point (X_j, Y_j). The i-th character of w_j should be one of the letters `L`, `R`, `D` and `U`, representing the mode of Section i. Examples Input 3 -1 0 0 3 2 -1 Output 2 1 2 RL UU DR Input 5 0 0 1 0 2 0 3 0 4 0 Output -1 Input 2 1 1 1 1 Output 2 1 1 RU UR Input 3 -7 -3 7 3 -3 -7 Output 5 3 1 4 1 5 LRDUL RDULR DULRD
instruction
0
9,706
16
19,412
"Correct Solution: ``` # -*- coding: utf-8 -*- def solve(): D = list(map((2).__pow__, range(31)[::-1])) wdict = {(True, True):('R',-1,-1), (True, False):('U',-1,1), (False, False):('L',1,1), (False, True):('D',1,-1)} mode = None for _ in [None]*int(input()): x, y = map(int, input().split()) u = x+y if mode is None: mode = 1-u%2 res = str(31+mode) + '\n' + ' '.join(map(str, [1]*mode+D)) W0 = '\n'+'R'*mode elif mode != 1-u%2: return('-1') res += W0 u -= mode v = x-y-mode for d in D: w, a, b = wdict[u>0, v>0] res += w u += a*d v += b*d return str(res) if __name__ == '__main__': print(solve()) ```
output
1
9,706
16
19,413
Provide a correct Python 3 solution for this coding contest problem. Snuke is introducing a robot arm with the following properties to his factory: * The robot arm consists of m sections and m+1 joints. The sections are numbered 1, 2, ..., m, and the joints are numbered 0, 1, ..., m. Section i connects Joint i-1 and Joint i. The length of Section i is d_i. * For each section, its mode can be specified individually. There are four modes: `L`, `R`, `D` and `U`. The mode of a section decides the direction of that section. If we consider the factory as a coordinate plane, the position of Joint i will be determined as follows (we denote its coordinates as (x_i, y_i)): * (x_0, y_0) = (0, 0). * If the mode of Section i is `L`, (x_{i}, y_{i}) = (x_{i-1} - d_{i}, y_{i-1}). * If the mode of Section i is `R`, (x_{i}, y_{i}) = (x_{i-1} + d_{i}, y_{i-1}). * If the mode of Section i is `D`, (x_{i}, y_{i}) = (x_{i-1}, y_{i-1} - d_{i}). * If the mode of Section i is `U`, (x_{i}, y_{i}) = (x_{i-1}, y_{i-1} + d_{i}). Snuke would like to introduce a robot arm so that the position of Joint m can be matched with all of the N points (X_1, Y_1), (X_2, Y_2), ..., (X_N, Y_N) by properly specifying the modes of the sections. Is this possible? If so, find such a robot arm and how to bring Joint m to each point (X_j, Y_j). Constraints * All values in input are integers. * 1 \leq N \leq 1000 * -10^9 \leq X_i \leq 10^9 * -10^9 \leq Y_i \leq 10^9 Input Input is given from Standard Input in the following format: N X_1 Y_1 X_2 Y_2 : X_N Y_N Output If the condition can be satisfied, follow the following format. If the condition cannot be satisfied, print `-1`. m d_1 d_2 ... d_m w_1 w_2 : w_N m and d_i are the configurations of the robot arm. Refer to the problem statement for what each of them means. Here, 1 \leq m \leq 40 and 1 \leq d_i \leq 10^{12} must hold. Also, m and d_i must all be integers. w_j is a string of length m that represents the way to bring Joint m of the robot arm to point (X_j, Y_j). The i-th character of w_j should be one of the letters `L`, `R`, `D` and `U`, representing the mode of Section i. Examples Input 3 -1 0 0 3 2 -1 Output 2 1 2 RL UU DR Input 5 0 0 1 0 2 0 3 0 4 0 Output -1 Input 2 1 1 1 1 Output 2 1 1 RU UR Input 3 -7 -3 7 3 -3 -7 Output 5 3 1 4 1 5 LRDUL RDULR DULRD
instruction
0
9,707
16
19,414
"Correct Solution: ``` n = int(input()) place = [tuple(map(int, input().split())) for _ in range(n)] m = 0 def bitlist(x): ret = [0] * 31 for i in reversed(range(31)): if x > 0: x -= 1 << i ret[i] = 1 else: x += 1 << i ret[i] = -1 return ret pre = (place[0][0] + place[0][1] + 1) % 2 for x, y in place: if (x + y + 1) % 2 != pre: print(-1) exit() print(31 + pre) if pre: print(1, end = ' ') for i in reversed(range(31)): print(1 << i, end = ' ') print() for x, y in place: u = x + y v = x - y if pre: u -= 1 v -= 1 ubit = bitlist(u) vbit = bitlist(v) if pre: print('R', end = '') for i in reversed(range(31)): if ubit[i] == 1 and vbit[i] == 1: print('R', end = '') elif ubit[i] == 1 and vbit[i] == -1: print('U', end = '') elif ubit[i] == -1 and vbit[i] == -1: print('L', end = '') else: print('D', end = '') print() ```
output
1
9,707
16
19,415