message
stringlengths
2
16.2k
message_type
stringclasses
2 values
message_id
int64
0
1
conversation_id
int64
575
109k
cluster
float64
16
16
__index_level_0__
int64
1.15k
217k
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There is an H \times W grid (H vertical, W horizontal), where each square contains a lowercase English letter. Specifically, the letter in the square at the i-th row and j-th column is equal to the j-th character in the string S_i. Snuke can apply the following operation to this grid any number of times: * Choose two different rows and swap them. Or, choose two different columns and swap them. Snuke wants this grid to be symmetric. That is, for any 1 \leq i \leq H and 1 \leq j \leq W, the letter in the square at the i-th row and j-th column and the letter in the square at the (H + 1 - i)-th row and (W + 1 - j)-th column should be equal. Determine if Snuke can achieve this objective. Constraints * 1 \leq H \leq 12 * 1 \leq W \leq 12 * |S_i| = W * S_i consists of lowercase English letters. Input Input is given from Standard Input in the following format: H W S_1 S_2 : S_H Output If Snuke can make the grid symmetric, print `YES`; if he cannot, print `NO`. Examples Input 2 3 arc rac Output YES Input 3 7 atcoder regular contest Output NO Input 12 12 bimonigaloaf faurwlkbleht dexwimqxzxbb lxdgyoifcxid ydxiliocfdgx nfoabgilamoi ibxbdqmzxxwe pqirylfrcrnf wtehfkllbura yfrnpflcrirq wvcclwgiubrk lkbrwgwuiccv Output YES Submitted Solution: ``` from collections import defaultdict def main(): h, w = map(int, input().split()) s = [] for _ in range(h): row = [] s.append(row) for c in input().strip(): row.append(ord(c)) c_row = defaultdict(int) for row in s: c_row[tuple(sorted(row))] += 1 if sum(c % 2 for c in c_row.values()) > h % 2: print('NO') return c_col = defaultdict(int) for col in zip(*s): c_col[tuple(sorted(col))] += 1 if sum(c % 2 for c in c_col.values()) > w % 2: print('NO') return print('YES') main() ```
instruction
0
1,533
16
3,066
No
output
1
1,533
16
3,067
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There is an H \times W grid (H vertical, W horizontal), where each square contains a lowercase English letter. Specifically, the letter in the square at the i-th row and j-th column is equal to the j-th character in the string S_i. Snuke can apply the following operation to this grid any number of times: * Choose two different rows and swap them. Or, choose two different columns and swap them. Snuke wants this grid to be symmetric. That is, for any 1 \leq i \leq H and 1 \leq j \leq W, the letter in the square at the i-th row and j-th column and the letter in the square at the (H + 1 - i)-th row and (W + 1 - j)-th column should be equal. Determine if Snuke can achieve this objective. Constraints * 1 \leq H \leq 12 * 1 \leq W \leq 12 * |S_i| = W * S_i consists of lowercase English letters. Input Input is given from Standard Input in the following format: H W S_1 S_2 : S_H Output If Snuke can make the grid symmetric, print `YES`; if he cannot, print `NO`. Examples Input 2 3 arc rac Output YES Input 3 7 atcoder regular contest Output NO Input 12 12 bimonigaloaf faurwlkbleht dexwimqxzxbb lxdgyoifcxid ydxiliocfdgx nfoabgilamoi ibxbdqmzxxwe pqirylfrcrnf wtehfkllbura yfrnpflcrirq wvcclwgiubrk lkbrwgwuiccv Output YES Submitted Solution: ``` import sys import itertools H,W=map(int,input().split()) mat=[] for i in range(H): s=list(input()) mat.append(s) #print(mat) perm_h_list=list(itertools.permutations(range(H))) perm_w_list=list(itertools.permutations(range(W))) #print(perm_h_list) #print(perm_w_list) for perm_h in perm_h_list: for perm_w in perm_w_list: sym=True for i in range(H): for j in range(W): if mat[perm_h[i]][perm_w[j]] != mat[perm_h[H-1-i]][perm_w[W-1-j]]: sym=False break if not sym: break else: print("YES") sys.exit() else: print("NO") ```
instruction
0
1,534
16
3,068
No
output
1
1,534
16
3,069
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There is an H \times W grid (H vertical, W horizontal), where each square contains a lowercase English letter. Specifically, the letter in the square at the i-th row and j-th column is equal to the j-th character in the string S_i. Snuke can apply the following operation to this grid any number of times: * Choose two different rows and swap them. Or, choose two different columns and swap them. Snuke wants this grid to be symmetric. That is, for any 1 \leq i \leq H and 1 \leq j \leq W, the letter in the square at the i-th row and j-th column and the letter in the square at the (H + 1 - i)-th row and (W + 1 - j)-th column should be equal. Determine if Snuke can achieve this objective. Constraints * 1 \leq H \leq 12 * 1 \leq W \leq 12 * |S_i| = W * S_i consists of lowercase English letters. Input Input is given from Standard Input in the following format: H W S_1 S_2 : S_H Output If Snuke can make the grid symmetric, print `YES`; if he cannot, print `NO`. Examples Input 2 3 arc rac Output YES Input 3 7 atcoder regular contest Output NO Input 12 12 bimonigaloaf faurwlkbleht dexwimqxzxbb lxdgyoifcxid ydxiliocfdgx nfoabgilamoi ibxbdqmzxxwe pqirylfrcrnf wtehfkllbura yfrnpflcrirq wvcclwgiubrk lkbrwgwuiccv Output YES Submitted Solution: ``` from collections import Counter def check(field): center = None prev = None for i, row in enumerate(field): if prev is None: prev = row continue if prev == row: prev = None continue if center is not None: return False center = prev prev = row if center is not None: cnt = Counter(center) cntcnt = Counter(c % 2 for c in cnt.values()) if cntcnt[1] > 1: return False return True h, w = map(int, input().split()) field = [] for i in range(h): field.append(list(map(ord, input()))) field1 = sorted(sorted(row) for row in field) field2 = sorted(sorted(col) for col in zip(*field)) print('YES' if check(field1) and check(field2) else 'NO') ```
instruction
0
1,535
16
3,070
No
output
1
1,535
16
3,071
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. There is an H \times W grid (H vertical, W horizontal), where each square contains a lowercase English letter. Specifically, the letter in the square at the i-th row and j-th column is equal to the j-th character in the string S_i. Snuke can apply the following operation to this grid any number of times: * Choose two different rows and swap them. Or, choose two different columns and swap them. Snuke wants this grid to be symmetric. That is, for any 1 \leq i \leq H and 1 \leq j \leq W, the letter in the square at the i-th row and j-th column and the letter in the square at the (H + 1 - i)-th row and (W + 1 - j)-th column should be equal. Determine if Snuke can achieve this objective. Constraints * 1 \leq H \leq 12 * 1 \leq W \leq 12 * |S_i| = W * S_i consists of lowercase English letters. Input Input is given from Standard Input in the following format: H W S_1 S_2 : S_H Output If Snuke can make the grid symmetric, print `YES`; if he cannot, print `NO`. Examples Input 2 3 arc rac Output YES Input 3 7 atcoder regular contest Output NO Input 12 12 bimonigaloaf faurwlkbleht dexwimqxzxbb lxdgyoifcxid ydxiliocfdgx nfoabgilamoi ibxbdqmzxxwe pqirylfrcrnf wtehfkllbura yfrnpflcrirq wvcclwgiubrk lkbrwgwuiccv Output YES Submitted Solution: ``` n, m = map(int,input().split()) d = {i: {chr(i): 0 for i in range(ord('a'), ord('z')+1)} for i in range(n)} d2 = {i: {chr(i): 0 for i in range(ord('a'), ord('z')+1)} for i in range(m)} for i in range(n): s = input() for j in s: d[i][j] += 1 for j in range(len(s)): d2[j][s[j]] += 1 k = [0 for i in range(n)] k2 = [0 for i in range(m)] f = True for i in range(n): for j in range(n): if d[i] == d[j]: k[i] += 1 for i in range(m): for j in range(m): if d2[i] == d2[j]: k2[i] += 1 k2 = sorted(k2) k = sorted(k) if n % 2: if len(k) > 1: if k[1] < 2: f = False else: if k[0] < 2: f = False if m % 2: if len(k2) > 1: if k2[1] < 2: f = False else: if k2[0] < 2: f = False if f: print('YES') else: print('NO') ```
instruction
0
1,536
16
3,072
No
output
1
1,536
16
3,073
Provide a correct Python 3 solution for this coding contest problem. Snuke got an integer sequence from his mother, as a birthday present. The sequence has N elements, and the i-th of them is i. Snuke performs the following Q operations on this sequence. The i-th operation, described by a parameter q_i, is as follows: * Take the first q_i elements from the sequence obtained by concatenating infinitely many copy of the current sequence, then replace the current sequence with those q_i elements. After these Q operations, find how many times each of the integers 1 through N appears in the final sequence. Constraints * 1 ≦ N ≦ 10^5 * 0 ≦ Q ≦ 10^5 * 1 ≦ q_i ≦ 10^{18} * All input values are integers. Input The input is given from Standard Input in the following format: N Q q_1 : q_Q Output Print N lines. The i-th line (1 ≦ i ≦ N) should contain the number of times integer i appears in the final sequence after the Q operations. Examples Input 5 3 6 4 11 Output 3 3 3 2 0 Input 10 10 9 13 18 8 10 10 9 19 22 27 Output 7 4 4 3 3 2 2 2 0 0
instruction
0
1,576
16
3,152
"Correct Solution: ``` import bisect,sys input=sys.stdin.readline N,Q=map(int,input().split()) que=[(N,0)] for i in range(Q): q=int(input()) que.append((q,i+1)) que.sort(reverse=True) ext=[] while que: q,id=que.pop() if not ext: ext.append((q,id)) else: if ext[-1][1]<id: if ext[-1][0]==q: ext.pop() ext.append((q,id)) Q=len(ext) data=[1]*Q data[0]=ext[0][0] edge=[[] for i in range(Q)] nowext=[ext[0][0]] for i in range(1,Q): q=ext[i][0] rest=q while True: id=bisect.bisect_right(nowext,rest) if id==0: break else: edge[id-1].append((i,rest//nowext[id-1])) rest%=nowext[id-1] nowext.append(ext[i][0]) data[i]=rest #print(edge) dp=[1]*Q for i in range(Q-2,-1,-1): temp=0 for nv,c in edge[i]: temp+=dp[nv]*c dp[i]=temp #print(dp) #print(data) minus=[0]*(ext[0][0]+1) for i in range(Q): minus[data[i]]+=dp[i] base=sum(dp) for i in range(1,N+1): if i-1<=ext[0][0]: base-=minus[i-1] print(base) ```
output
1
1,576
16
3,153
Provide a correct Python 3 solution for this coding contest problem. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524
instruction
0
3,092
16
6,184
"Correct Solution: ``` MOD = 10 ** 9 + 7 n, a, b = map(int, input().split()) if a > b: a, b = b, a dp_1s = [0] * b for l in range(a + 2, b): dp = [[0, 0] for _ in range(l + 1)] # at i, 0/1 precedes dp[1][1] = 1 for i in range(1, l): dp[i + 1][0] = (dp[i + 1][0] + dp[i][0]) % MOD dp[i + 1][1] = (dp[i + 1][1] + dp[i][0] + dp[i][1]) % MOD if i + a < l: dp[i + a][0] = (dp[i + a][0] + dp[i][1]) % MOD dp_1s[l] = dp[l][1] - 1 dp_0s_edge = [0] * b for l in range(a + 1, b): dp = [[0, 0] for _ in range(l + 1)] dp[a][0] = 1 for i in range(1, l): dp[i + 1][0] = (dp[i + 1][0] + dp[i][0]) % MOD dp[i + 1][1] = (dp[i + 1][1] + dp[i][0] + dp[i][1]) % MOD if i + a < l: dp[i + a][0] = (dp[i + a][0] + dp[i][1]) % MOD dp_0s_edge[l] = dp[l][1] # starting at i, 0s/1s precede, i.e., 1s/0s follow # when 0s precede, len of preceding 0s is lt a dp = [[0, 0] for _ in range(n + 1)] dp[0] = [1, 1] # starting with 0s whose len is gt or eq to a for l in range(a + 1, b): dp[l][1] = dp_0s_edge[l] for i in range(n): for j in range(i + 1, min(n + 1, i + b)): dp[j][1] = (dp[j][1] + dp[i][0]) % MOD for j in range(i + 1, min(n + 1, i + a)): dp[j][0] = (dp[j][0] + dp[i][1]) % MOD for l in range(a + 2, b): if i + l <= n: dp[i + l][1] = (dp[i + l][1] + dp[i][0] * dp_1s[l]) % MOD # ending with 0s whose len is gt or eq to a for l in range(a + 1, b): dp[n][0] = (dp[n][0] + dp[n - l][0] * dp_0s_edge[l]) % MOD print((pow(2, n, MOD) - sum(dp[n])) % MOD) ```
output
1
3,092
16
6,185
Provide a correct Python 3 solution for this coding contest problem. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524
instruction
0
3,093
16
6,186
"Correct Solution: ``` n,aa,bb = list(map(int, input().split())) a = max(aa,bb) b = min(aa,bb) p = 1000000007 xs0 = [0]*(n+1) os0 = [0]*(n+1) os0[0] = 1 for i in range(b,a-1): for j in range(b,i+1): xs0[i] += os0[i-j] xs0[i] %= p for j in range(1,i+1): os0[i] += xs0[i-j] os0[i] %= p #print(xs0[:50]) #print(os0[:50]) os = [0]*a for i in range(b,a-2): #number-x for j in range(2,a-i): # adding o os[i+j] += xs0[i] * (j-1) x = [0]*(n+1) o = [0]*(n+1) for i in range(b+1,a): # adding distination for j in range(b,i): # length of xs o[i] += xs0[j] o[i] %= p x[0] = 1 o[0] = 1 for i in range(1,n+1): for j in range(1,min(b,i+1)): x[i] += o[i-j] for j in range(1,min(a,i+1)): o[i] += x[i-j] for j in range(b+2,min(a,i+1)): o[i] += x[i-j]*os[j] x[i] %= p o[i] %= p for i in range(b+1,a): for j in range(b,i): o[n] += xs0[j] * x[n-i] o[i]%=p ans = o[n] + x[n] ans %= p #print(ans) beki2 = [1]*5001 for i in range(5000): beki2[i+1] = beki2[i]*2 beki2[i+1] %= p ans = beki2[n] - ans ans += p ans %= p print(ans) ```
output
1
3,093
16
6,187
Provide a correct Python 3 solution for this coding contest problem. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524
instruction
0
3,094
16
6,188
"Correct Solution: ``` import math #import sys #input = sys.stdin.readline def make_divisors(n): divisors = [] for i in range(1, int(n**0.5)+1): if n % i == 0: divisors.append(i) if i != n // i: divisors.append(n//i) # divisors.sort() return divisors def ValueToBits(x,digit): res = [0 for i in range(digit)] now = x for i in range(digit): res[i]=now%2 now = now >> 1 return res def BitsToValue(arr): n = len(arr) ans = 0 for i in range(n): ans+= arr[i] * 2**i return ans def ZipArray(a): aa = [[a[i],i]for i in range(n)] aa.sort(key = lambda x : x[0]) for i in range(n): aa[i][0]=i+1 aa.sort(key = lambda x : x[1]) b=[aa[i][0] for i in range(len(a))] return b def ValueToArray10(x, digit): ans = [0 for i in range(digit)] now = x for i in range(digit): ans[digit-i-1] = now%10 now = now //10 return ans def Zeros(a,b): if(b<=-1): return [0 for i in range(a)] else: return [[0 for i in range(b)] for i in range(a)] def AddV2(v,w): return [v[0]+w[0],v[1]+w[1]] dir4 = [[1,0],[0,1],[-1,0],[0,-1]] def clamp(x,y,z): return max(y,min(z,x)) class Bit: def __init__(self, n): self.size = n self.tree = [0] * (n + 1) def sum(self, i): s = 0 while i > 0: s += self.tree[i] i -= i & -i return s def add(self, i, x): while i <= self.size: self.tree[i] += x i += i & -i # def Zaatsu(a): a.sort() now = a[0][0] od = 0 for i in range(n): if(now==a[i][0]): a[i][0]=od else: now = a[i][0] od+=1 a[i][0] = od a.sort(key = lambda x : x[1]) return a class UnionFind: def __init__(self, n): self.par = [i for i in range(n+1)] self.rank = [0] * (n+1) # 検索 def find(self, x): if self.par[x] == x: return x else: self.par[x] = self.find(self.par[x]) return self.par[x] # 併合 def union(self, x, y): x = self.find(x) y = self.find(y) if self.rank[x] < self.rank[y]: self.par[x] = y else: self.par[y] = x if self.rank[x] == self.rank[y]: self.rank[x] += 1 # 同じ集合に属するか判定 def same_check(self, x, y): return self.find(x) == self.find(y) ''' def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 2 N = 10 ** 6 + 2 fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, N + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) ''' def rl(x): return range(len(x)) # a = list(map(int, input().split())) ################################################# ################################################# ################################################# ################################################# #11- n,aa,bb = list(map(int, input().split())) a = max(aa,bb) b = min(aa,bb) p = 1000000007 xs0 = [0]*(n+1) os0 = [0]*(n+1) os0[0] = 1 for i in range(b,a-1): for j in range(b,i+1): xs0[i] += os0[i-j] xs0[i] %= p for j in range(1,i+1): os0[i] += xs0[i-j] os0[i] %= p #print(xs0[:50]) #print(os0[:50]) os = [0]*a for i in range(b,a-2): #number-x for j in range(2,a-i): # adding o os[i+j] += xs0[i] * (j-1) x = [0]*(n+1) o = [0]*(n+1) for i in range(b+1,a): # adding distination for j in range(b,i): # length of xs o[i] += xs0[j] o[i] %= p x[0] = 1 o[0] = 1 for i in range(1,n+1): for j in range(1,min(b,i+1)): x[i] += o[i-j] for j in range(1,min(a,i+1)): o[i] += x[i-j] for j in range(b+2,min(a,i+1)): o[i] += x[i-j]*os[j] x[i] %= p o[i] %= p for i in range(b+1,a): for j in range(b,i): o[n] += xs0[j] * x[n-i] o[i]%=p ans = o[n] + x[n] ans %= p #print(ans) beki2 = [1]*5001 for i in range(5000): beki2[i+1] = beki2[i]*2 beki2[i+1] %= p ans = beki2[n] - ans ans += p ans %= p print(ans) ```
output
1
3,094
16
6,189
Provide a correct Python 3 solution for this coding contest problem. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524
instruction
0
3,095
16
6,190
"Correct Solution: ``` N,A,B=map(int,input().split()) mod=10**9+7 A,B=min(A,B),max(A,B) data=[0]*B data[0]=1 for i in range(1,B): data[i]=(data[i-1]+sum(data[i-1-k] for k in range(A,i)))%mod #print(data) dp=[0]*(N+1) dp[0]=1 imos=[0]*(N+1) imos[0]=1 for i in range(1,N+1): if i!=N: for j in range(1,min(i,B)): #dp[i]+=sum(dp[i-j-k]*data[j-1] for k in range(1,min(A,i-j+1))) R=i-j-1 L=i-j-min(A,i-j+1) if R>L: if L>-1: dp[i]+=(imos[R]-imos[L])*data[j-1] else: dp[i]+=imos[R]*data[j-1] dp[i]%=mod if B>i: dp[i]+=data[i] dp[i]%=mod else: for j in range(B): #dp[i]+=sum(dp[i-j-k]*data[j] for k in range(1,min(A,i-j+1))) R=i-j-1 L=i-j-min(A,i-j+1) if R>L: if L>-1: dp[i]+=(imos[R]-imos[L])*data[j] else: dp[i]+=imos[R]*data[j] dp[i]%=mod #print(dp[i]) #dp[i]+=sum(dp[i-k] for k in range(1,A)) imos[i]=dp[i] imos[i]+=imos[i-1] imos[i]%=mod #print(dp) print((pow(2,N,mod)-dp[N])%mod) ```
output
1
3,095
16
6,191
Provide a correct Python 3 solution for this coding contest problem. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524
instruction
0
3,096
16
6,192
"Correct Solution: ``` def solve(n, a, b): MOD = 10 ** 9 + 7 if a > b: a, b = b, a if a == 1: return pow(2, n, MOD) # 長さ i の区間であり、右端が '1' であり、 # はじめ '1' で塗りつぶされていたのを、 # 長さ a 以上の '0' で0回以上上書きすることで実現できる並びの個数 dp1 = [0] * (b + 1) dp1_acc = [0] * (b + 1) dp1[0] = 1 dp1_acc[0] = 1 for i in range(1, b + 1): tmp = dp1[i - 1] # 末尾に1を付ける if i - a - 1 >= 0: tmp = (tmp + dp1_acc[i - a - 1]) % MOD # 末尾に 00..01 を付ける dp1[i] = tmp dp1_acc[i] = (dp1_acc[i - 1] + tmp) % MOD # 派生情報 # dp1[i-1]: 長さ i の区間であり、「両端」が'1'であるものの個数 # dp1[i] - dp1[i-1]: 長さ i の区間であり、左端が'0'、右端が'1'(またはその逆)のものの個数 # dp2x[i] # 長さ i の区間であり、末尾が x であり、 # 長さa以上の'0'も、長さb以上の'1'も含まない01の並びの個数 # ただし'1'は、dp1で求めたように、その内部をa個以上の'0'で置きかえたものも含む dp20 = [0] * (n + 1) dp21 = [0] * (n + 1) dp21_acc = [0] * (n + 1) dp20[0] = dp21[0] = dp21_acc[0] = 1 for i in range(1, n + 1): t0 = dp21_acc[i - 1] if i >= a: t0 -= dp21_acc[i - a] dp20[i] = t0 % MOD t1 = 0 for j in range(1, min(i + 1, b)): t1 += dp20[i - j] * dp1[j - 1] # 左端が '111...' でb個以上取れないもので、さらに'0'で置きかえられた結果、最左端が'0'のもの if i < b: t1 += dp1[i] - dp1[i - 1] t1 %= MOD dp21[i] = t1 dp21_acc[i] = (dp21_acc[i - 1] + t1) % MOD disable = dp20[n] + dp21[n] # 最後が'111..'でb個以上取れないもので、 # さらに'0'で置きかえられた結果、右端が'0'のものが数えられていない for i in range(1, b): disable += dp20[n - i] * (dp1[i] - dp1[i - 1]) return (pow(2, n, MOD) - disable) % MOD n, a, b = map(int, input().split()) print(solve(n, a, b)) ```
output
1
3,096
16
6,193
Provide a correct Python 3 solution for this coding contest problem. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524
instruction
0
3,097
16
6,194
"Correct Solution: ``` """ Writer: SPD_9X2 すべて0にする、すべて1にするは自明に可能 なので A >= B としてよい(A<Bの時は01を入れ替えて考えればよい) 最後に置いた場所の周囲がどんな状況か考える 0*Aがある場合、その周囲はすべての場合構成可能 ない場合は…? 1*Bがある場合を考える。長さB以上の1列は後からおけるからおkだが… 長さB以上の1をすべて0に変えたときに、長さA以上の0があればおk どう数え上げる? ダメな場合を引くのがよさそう? →dp[i][last][num] = i番目まで見て、lastを現在num個連続しておいている場合の通り数 ただし、dp[?][1][B-1]はdp[?][0][B]に伝播する これまずいか ブロックで考えるやり方はどうなんだろう つまり、連鎖を断ち切れるのは長さB以下の1列だけ 0 or B以上連続する1の列のみで構成されたブロックX(Yに隣接する端は0である必要あり) B未満の1列であるブロックYを交互に置いていく dp[i][XorY] = i番目の文字を次に置けるとき、最後に置いたブロックがXorYの時の通り数 初期値は dp[0][X] = 1 dp[0][Y] = 1 ←これ、かなり注意する必要がある左端が1でもいいから 同様に、Nに移行する時にXを置くときも右端を1にできるのに注意 B以上連続する1を0に変えるとすべて0になる文字列の数をまず求める 上と同様にブロックdp? 0のブロックは,1以上のどんな長さでも置ける 1のブロックは,B以上の長さ置ける dp[0][Z] = 1 dp[0][O] = 1 """ N,A,B = map(int,input().split()) fdp = [[0,0] for i in range(N+1)] fdp[0] = [1,1] mod = 10**9+7 if A < B: tmp = B B = A A = tmp for i in range(N): for j in range(i+1,N+1): fdp[j][0] += fdp[i][1] fdp[j][0] %= mod for j in range(i+B,N+1): fdp[j][1] += fdp[i][0] fdp[j][1] %= mod #print (fdp) dp = [[0,0] for i in range(N+1)] dp[0] = [1,1] for i in range(N): for j in range(i+1,min(N+1,i+B)): dp[j][1] += dp[i][0] dp[j][1] %= mod #ここかなり注意 for j in range(i+1,min(N+1,i+A)): l = j-i if i == 0 or j == N: if l == 1: dp[j][0] += dp[i][1] dp[j][0] %= mod else: dp[j][0] += dp[i][1] * sum(fdp[l-1]) dp[j][0] %= mod else: if l <= 2: dp[j][0] += dp[i][1] dp[j][0] %= mod else: dp[j][0] += dp[i][1] * sum(fdp[l-2]) dp[j][0] %= mod #print (dp) print ((pow(2,N,mod)-sum(dp[N])) % mod) ```
output
1
3,097
16
6,195
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524 Submitted Solution: ``` def combination_mod(n, r, mod): # フェルマーの小定理 # nCr=n!(r!)^p-2((n-r)!)^p-2 n_ = 1 for i in range(1, n + 1): n_ = (n_ * i) % mod r_ = 1 for i in range(1, r + 1): r_ = (r_ * i) % mod nr_ = 1 for i in range(1, n - r + 1): nr_ = (nr_ * i) % mod power_r = pow(r_, mod - 2, mod) power_nr = pow(nr_, mod - 2, mod) return (n_ * power_r * power_nr) % mod def main(): N,A,B=map(int,input().split()) mod=pow(10,9)+7 PatternA=0 PatternB=0 #PatternA for a in range(N-(A-1)): PatternA+=combination_mod(N-(A-1),a,mod) #PatternB for b in range(N-(B-1)): PatternB+=combination_mod(N-(B-1),b,mod) res=PatternA+PatternB print(res+1) if __name__=="__main__": main() ```
instruction
0
3,098
16
6,196
No
output
1
3,098
16
6,197
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524 Submitted Solution: ``` def combination_mod(n, r, mod): # フェルマーの小定理 # nCr=n!(r!)^p-2((n-r)!)^p-2 n_ = 1 for i in range(1, n + 1): n_ = (n_ * i) % mod r_ = 1 for i in range(1, r + 1): r_ = (r_ * i) % mod nr_ = 1 for i in range(1, n - r + 1): nr_ = (nr_ * i) % mod power_r = pow(r_, mod - 2, mod) power_nr = pow(nr_, mod - 2, mod) return (n_ * power_r * power_nr) % mod def main(): N,A,B=map(int,input().split()) mod=pow(10,9)+7 PatternA=0 PatternB=0 #PatternA for a in range(1,N-A+2): PatternA+=combination_mod(N-(A-1),a,mod) #PatternB for b in range(1,N-B+2): PatternB+=combination_mod(N-(B-1),b,mod) res=PatternA+PatternB print(res+1) if __name__=="__main__": main() ```
instruction
0
3,099
16
6,198
No
output
1
3,099
16
6,199
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524 Submitted Solution: ``` import math #import sys #input = sys.stdin.readline def make_divisors(n): divisors = [] for i in range(1, int(n**0.5)+1): if n % i == 0: divisors.append(i) if i != n // i: divisors.append(n//i) # divisors.sort() return divisors def ValueToBits(x,digit): res = [0 for i in range(digit)] now = x for i in range(digit): res[i]=now%2 now = now >> 1 return res def BitsToValue(arr): n = len(arr) ans = 0 for i in range(n): ans+= arr[i] * 2**i return ans def ZipArray(a): aa = [[a[i],i]for i in range(n)] aa.sort(key = lambda x : x[0]) for i in range(n): aa[i][0]=i+1 aa.sort(key = lambda x : x[1]) b=[aa[i][0] for i in range(len(a))] return b def ValueToArray10(x, digit): ans = [0 for i in range(digit)] now = x for i in range(digit): ans[digit-i-1] = now%10 now = now //10 return ans def Zeros(a,b): if(b<=-1): return [0 for i in range(a)] else: return [[0 for i in range(b)] for i in range(a)] def AddV2(v,w): return [v[0]+w[0],v[1]+w[1]] dir4 = [[1,0],[0,1],[-1,0],[0,-1]] def clamp(x,y,z): return max(y,min(z,x)) class Bit: def __init__(self, n): self.size = n self.tree = [0] * (n + 1) def sum(self, i): s = 0 while i > 0: s += self.tree[i] i -= i & -i return s def add(self, i, x): while i <= self.size: self.tree[i] += x i += i & -i # def Zaatsu(a): a.sort() now = a[0][0] od = 0 for i in range(n): if(now==a[i][0]): a[i][0]=od else: now = a[i][0] od+=1 a[i][0] = od a.sort(key = lambda x : x[1]) return a class UnionFind: def __init__(self, n): self.par = [i for i in range(n+1)] self.rank = [0] * (n+1) # 検索 def find(self, x): if self.par[x] == x: return x else: self.par[x] = self.find(self.par[x]) return self.par[x] # 併合 def union(self, x, y): x = self.find(x) y = self.find(y) if self.rank[x] < self.rank[y]: self.par[x] = y else: self.par[y] = x if self.rank[x] == self.rank[y]: self.rank[x] += 1 # 同じ集合に属するか判定 def same_check(self, x, y): return self.find(x) == self.find(y) ''' def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 2 N = 10 ** 6 + 2 fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, N + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) ''' def rl(x): return range(len(x)) # a = list(map(int, input().split())) ################################################# ################################################# ################################################# ################################################# #11- n,aa,bb = list(map(int, input().split())) a = max(aa,bb) b = min(aa,bb) p = 1000000007 xs0 = [0]*(n+1) os0 = [0]*(n+1) os0[0] = 1 for i in range(b,a-1): for j in range(b,i+1): xs0[i] += os0[i-j] xs0[i] %= p for j in range(1,i+1): os0[i] += xs0[i-j] os0[i] %= p #print(xs0[:50]) #print(os0[:50]) os = [0]*a for i in range(b,a-2): #number-x for j in range(2,a-i): # adding o os[i+j] += xs0[i] * (j-1) x = [0]*(n+1) o = [0]*(n+1) for i in range(b+1,a-1): # adding distination for j in range(b,i): # length of xs o[i] += xs0[j] o[i] %= p x[0] = 1 o[0] = 1 for i in range(1,n+1): for j in range(1,min(b,i+1)): x[i] += o[i-j] for j in range(1,min(a,i+1)): o[i] += x[i-j] for j in range(b+2,min(a,i+1)): o[i] += x[i-j]*os[j] x[i] %= p o[i] %= p for i in range(b+1,a-1): for j in range(b,i): o[n] += xs0[j] * x[n-i] o[i]%=p ans = o[n] + x[n] ans %= p #print(ans) beki2 = [1]*5001 for i in range(5000): beki2[i+1] = beki2[i]*2 beki2[i+1] %= p ans = beki2[n] - ans ans += p ans %= p print(ans) ```
instruction
0
3,100
16
6,200
No
output
1
3,100
16
6,201
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke has a string x of length N. Initially, every character in x is `0`. Snuke can do the following two operations any number of times in any order: * Choose A consecutive characters in x and replace each of them with `0`. * Choose B consecutive characters in x and replace each of them with `1`. Find the number of different strings that x can be after Snuke finishes doing operations. This count can be enormous, so compute it modulo (10^9+7). Constraints * 1 \leq N \leq 5000 * 1 \leq A,B \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A B Output Print the number of different strings that x can be after Snuke finishes doing operations, modulo (10^9+7). Examples Input 4 2 3 Output 11 Input 10 7 2 Output 533 Input 1000 100 10 Output 828178524 Submitted Solution: ``` n,aa,bb = list(map(int, input().split())) a = max(aa,bb) b = min(aa,bb) p = 1000000007 def calc(a,b,p): xs0 = [0]*(n+1) os0 = [0]*(n+1) os0[0] = 1 for i in range(b,a-1): for j in range(b,i+1): xs0[i] += os0[i-j] xs0[i] %= p for j in range(1,i+1): os0[i] += xs0[i-j] os0[i] %= p #print(xs0[:50]) #print(os0[:50]) os = [0]*a for i in range(b,a-2): #number-x for j in range(2,a-i): # adding o os[i+j] += xs0[i] * (j-1) x = [0]*(n+1) o = [0]*(n+1) for i in range(b+1,a): # adding distination for j in range(b,i): # length of xs o[i] += xs0[j] o[i] %= p x[0] = 1 o[0] = 1 for i in range(1,n+1): for j in range(1,min(b,i+1)): x[i] += o[i-j] for j in range(1,min(a,i+1)): o[i] += x[i-j] for j in range(b+2,min(a,i+1)): o[i] += x[i-j]*os[j] x[i] %= p o[i] %= p for i in range(b+1,a): for j in range(b,i): o[n] += xs0[j] * x[n-i] o[i]%=p ans = o[n] + x[n] ans %= p #print(ans) beki2 = [1]*5001 for i in range(5000): beki2[i+1] = beki2[i]*2 beki2[i+1] %= p ans = beki2[n] - ans ans += p ans %= p return ans print(calc(a,b,p)) ```
instruction
0
3,101
16
6,202
No
output
1
3,101
16
6,203
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,102
16
6,204
"Correct Solution: ``` def solve(): r1, c1, r2, c2 = map(int, input().split()) MOD = 10**9+7 n = r2+c2+2 fac = [1]*(n+1) rev = [1]*(n+1) for i in range(1,n+1): fac[i] = i*fac[i-1]%MOD rev[i] = pow(fac[i], MOD-2, MOD) comb = lambda a,b:(fac[a]*rev[a-b]*rev[b])%MOD f = lambda r,c:comb(r+c+2, c+1) ans = (f(r2, c2)-f(r2, c1-1)-f(r1-1, c2)+f(r1-1, c1-1))%MOD print(ans) if __name__ == "__main__": solve() ```
output
1
3,102
16
6,205
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,103
16
6,206
"Correct Solution: ``` class Factorial: def __init__(self,n,mod): self.f=f=[0]*(n+1) f[0]=b=1 self.mod=mod for i in range(1,n+1):f[i]=b=b*i%mod self.inv=inv=[0]*(n+1) inv[0]=b=pow(self.f[n],mod-2,mod) for i in range(1,n+1):inv[i]=b=b*(n+1-i)%mod self.inv.reverse() def factorial(self,i): return self.f[i] def ifactorial(self,i): return self.inv[i] def comb(self,n,k): return self.f[n]*self.inv[n-k]%self.mod*self.inv[k]%self.mod if n>=k else 0 M=10**9+7 a,b,c,d=map(int,input().split()) comb=Factorial(c+d+2,M).comb f=lambda r,c:comb(c+r+2,r+1)-c-r-2 print((f(c,d)-f(c,b-1)-f(a-1,d)+f(a-1,b-1))%M) ```
output
1
3,103
16
6,207
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,104
16
6,208
"Correct Solution: ``` r1, c1, r2, c2 = list(map(int, input().split())) MOD = 10 ** 9 + 7 def modInverse(x, p): # Fermat's little theorem return pow(x, p - 2, p) def nCr(n, r, p): num = den = 1 for i in range(r): num = (num * (n - i)) % p den = (den * (i + 1)) % p return num * modInverse(den, p) % p def hockey(n, m): # sum i=0 to m of nCr(n + i, i) == nCr(n + m + 1, m) return nCr(n + m + 1, m, MOD) tot1 = hockey(c2, r2 + 1) - hockey(c2, r1) tot2 = hockey(c1 - 1, r2 + 1) - hockey(c1 - 1, r1) print((tot1 - tot2) % MOD) ```
output
1
3,104
16
6,209
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,105
16
6,210
"Correct Solution: ``` a1,b1,a2,b2=map(int,input().split()) import sys sys.setrecursionlimit(2000000000) p = 10 ** 9 + 7 N = a2+b2+2 # N は必要分だけ用意する R = max(a2+1,b2+1) fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, N + 1): fact.append((fact[-1] * i) % p) for i in range(2, R + 1): inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) def comb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p score=comb(a2+b2+2,a2+1,p)-comb(a2+b1+1,a2+1,p)-comb(a1+b2+1,a1,p)+comb(a1+b1,a1,p) print(score%(10**9+7)) ```
output
1
3,105
16
6,211
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,106
16
6,212
"Correct Solution: ``` mod = 10**9+7 def comb_mod(n,r,mod,invs): ans = 1 for i in range(r): ans *= n-i ans %= mod ans *= invs[r] ans %= mod return ans A, B, C, D = map(int, input().split()) invs = [1]*(C+2) for i in range(1,C+2): invs[i] = invs[i-1]*pow(i,mod-2,mod) invs[i] %= mod ans = comb_mod(C+D+2,C+1,mod,invs)-comb_mod(B+C+1,B,mod,invs)-comb_mod(A+D+1,A,mod,invs)+comb_mod(A+B,A,mod,invs) print(ans%mod) ```
output
1
3,106
16
6,213
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,107
16
6,214
"Correct Solution: ``` r1, c1, r2, c2 = map(int, input().split()) L = 10 ** 9 + 7 # 互除法 def get_euclidian (A, B): if B == 1: return (1) else: return (int((1 - A * get_euclidian (B, A % B)) / B)) # 階乗計算 F = [1] for i in range(1, r2 + c2 + 3): F.append((F[i - 1] * i) % L) # 組み合わせ計算 def get_combi (n, r): Euc = get_euclidian(L, (F[r] * F[n - r]) % L) return ((F[n] * Euc) % L) combi1 = get_combi(r2 + c2 + 2, r2 + 1) combi2 = get_combi(r2 + c1 + 1, c1) combi3 = get_combi(r1 + c2 + 1, r1) combi4 = get_combi(r1 + c1, r1) print ((int(combi1 - combi2 - combi3 + combi4) + L) % L) ```
output
1
3,107
16
6,215
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,108
16
6,216
"Correct Solution: ``` r1,c1,r2,c2=map(int,input().split()) MOD=10**9+7 idx=r2+c2+3 perm=[1]*(idx+1) for i in range(1,idx+1): perm[i]=perm[i-1]*i perm[i]%=MOD def inv_mod(a): return pow(a,MOD-2,MOD) def comb(n,m,p=10**9+7): if n < m : return 0 if n < 0 or m < 0:return 0 m = min(m, n-m) top = bot = 1 for i in range(m): top = top*(n-i) % p bot = bot*(i+1) % p bot = pow(bot, p-2, p) return top*bot % p def g(i,j): return comb(i+j+2,i+1,MOD) def s(n,m): return comb(n+m+2, m+1, MOD) res=g(r2,c2)-g(r2,c1-1)-g(r1-1,c2)+g(r1-1,c1-1) res%=MOD ans = s(r2,c2) - s(r2, c1-1) - s(r1-1, c2) + s(r1-1, c1-1) ans %= MOD print(res) ```
output
1
3,108
16
6,217
Provide a correct Python 3 solution for this coding contest problem. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194
instruction
0
3,109
16
6,218
"Correct Solution: ``` def main(): M=10**9+7 a,b,c,d=map(int,input().split()) n=c+d+2 fac=[0]*(n+1) fac[0]=lt=1 for i in range(1,n+1):fac[i]=lt=lt*i%M inv=lambda n:pow(fac[n],M-2,M) f=lambda r,c:fac[r+c+2]*inv(c+1)*inv(r+1)-c-r-2 print((f(c,d)-f(c,b-1)-f(a-1,d)+f(a-1,b-1))%M) main() ```
output
1
3,109
16
6,219
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` def main(): M=10**9+7 r1,c1,r2,c2=map(int,input().split()) n=r2+c2+2 val=1 fac=[val] append=fac.append for i in range(1,n+1): val=val*i%M append(val) pr1=pow(fac[r1],M-2,M) pc1=pow(fac[c1],M-2,M) pr2=pow(fac[r2+1],M-2,M) pc2=pow(fac[c2+1],M-2,M) a=fac[r2+c2+2]*pr2*pc2 a-=fac[r2+c1+1]*pr2*pc1 a-=fac[r1+c2+1]*pr1*pc2 a+=fac[r1+c1]*pr1*pc1 print(a%M) main() ```
instruction
0
3,110
16
6,220
Yes
output
1
3,110
16
6,221
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` m=10**9+7 def f(r,c): s=t=1 for i in range(c):s=s*(r+c-i)%m;t=t*-~i%m return s*pow(t,m-2,m)%m a,b,c,d=map(int,input().split()) print((f(a,b)-f(c+1,b)-f(a,d+1)+f(c+1,d+1))%m) ```
instruction
0
3,111
16
6,222
Yes
output
1
3,111
16
6,223
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` r1,c1,r2,c2 = map(int,input().split()) MOD = 10**9+7 MAXN = r2+c2+5 fac = [1,1] + [0]*MAXN for i in range(2,MAXN+2): fac[i] = fac[i-1] * i % MOD def inv(n): return pow(n,MOD-2,MOD) def comb(n,r): if n < r: return 0 if n < 0 or r < 0: return 0 return fac[n] * inv(fac[r]) * inv(fac[n-r]) % MOD ans = comb(r2+c2+2,r2+1) - comb(r2+c1+1,c1) - comb(r1+c2+1,r1) + comb(r1+c1,r1) ans %= MOD print(ans) ```
instruction
0
3,112
16
6,224
Yes
output
1
3,112
16
6,225
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` r1, c1, r2, c2 = map(int, input().split()) M = r2+c2+10#1000010 mod = 10**9+7 f = [1]*M p = 1 for i in range(1, M): p = p*i%mod f[i] = p #finv[i] = pow(p, mod-2, mod) finv = [1]*M p = finv[-1] = pow(f[-1], mod-2, mod) for i in range(M-2, 0, -1): p = p*(i+1)%mod finv[i] = p g = [0]*M p = 0 for i in range(1, M): g[i] = p = ((p+1)*2-1)%mod def comb(n, k): return f[n] * finv[n-k] * finv[k] % mod def count(R,C): ret = g[R+C+1] % mod for c in range(C): x1 = comb(R+c, c) x2 = g[C-c] ret = (ret-x1*x2) % mod for r in range(R): x1 = comb(C+r, r) x2 = g[R-r] ret = (ret-x1*x2) % mod return ret ans = count(r2, c2) + count(r1-1, c1-1) - count(r2, c1-1) - count(r1-1, c2) ans %= mod print(ans) ```
instruction
0
3,113
16
6,226
Yes
output
1
3,113
16
6,227
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` MOD = 1000000007 r1, c1, r2, c2 = map(int, input().split()) dp = [[1 for _ in range(r2+1)] for _ in range(c2+1)] for j in range(c2): for i in range(r2): dp[j+1][i+1] = dp[j+1][i] + dp[j][i+1] ans = 0 for j in range(c1, c2+1): ans += sum(dp[j][r1:r2+1]) % MOD ans = ans % MOD print(ans) ```
instruction
0
3,114
16
6,228
No
output
1
3,114
16
6,229
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` import sys import socket hostnames = ['N551J', 'F551C', 'X553M'] input_file = 'f1.in' if socket.gethostname() in hostnames: sys.stdin = open(input_file) def read_int_list(): return list(map(int, input().split())) def read_int(): return int(input()) def read_str_list(): return input().split() def read_str(): return input() M = 10 ** 9 + 7 MAX = 10 ** 6 + 2 inv = [0] * MAX inv[1] = 1 for i in range(2, MAX): inv[i] = - inv[M % i] * (M // i) inv[i] %= M def f(r, c): res = 1 for k in range(c + 1): res *= r + c + 2 - k res %= M res *= inv[k + 1] res %= M res -= 1 res %= M return res N = 3 b = [[1] * N for _ in range(N)] for i in range(1, N): for j in range(1, N): b[i][j] = (b[i - 1][j - 1] + b[i - 1][j]) % M def f_exact_but_slow(r, c): res = 0 for i in range(r + 1): for j in range(c + 1): res += b[i][j] res %= M return res def solve(): r1, c1, r2, c2 = read_int_list() res = f(r2, c2) res -= f(r1 - 1, c2) res -= f(r2, c1 - 1) res += f(r1 - 1, c1 - 1) res %= M return res def main(): res = solve() print(res) def find_mismatch(): for r in range(20): for c in range(20): expected = f_exact_but_slow(r, c) output = f(r, c) if output == expected: continue print('r, c, expected, output:', end=' ') print(r, c, expected, output) if __name__ == '__main__': main() # find_mismatch() ```
instruction
0
3,115
16
6,230
No
output
1
3,115
16
6,231
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` import math r1,c1,r2,c2=map(int,input().split()) div=10**9+7 def g(r,c): sum=0 for i in range(c+1): sum+= f(r,i) for j in range(r+1): sum+= f(j,c) return int(sum)%div def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 N = 10 ** 6 # N は必要分だけ用意する fact = [1, 1] factinv = [1, 1] inv = [0, 1] for i in range(2, N+100): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) def f(r,c): return cmb(r+c,c,p) #def f(r,c): # RC=math.factorial(r+c) # R=math.factorial(r) # C=math.factorial(c) # ans=int(RC//(R*C))%div # return ans print(g(r2,c2)-g(r1-1,c2)-g(r2,c1-1)+g(r1-1,c1-1)) ```
instruction
0
3,116
16
6,232
No
output
1
3,116
16
6,233
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke is standing on a two-dimensional plane. In one operation, he can move by 1 in the positive x-direction, or move by 1 in the positive y-direction. Let us define a function f(r, c) as follows: * f(r,c) := (The number of paths from the point (0, 0) to the point (r, c) that Snuke can trace by repeating the operation above) Given are integers r_1, r_2, c_1, and c_2. Find the sum of f(i, j) over all pair of integers (i, j) such that r_1 ≤ i ≤ r_2 and c_1 ≤ j ≤ c_2, and compute this value modulo (10^9+7). Constraints * 1 ≤ r_1 ≤ r_2 ≤ 10^6 * 1 ≤ c_1 ≤ c_2 ≤ 10^6 * All values in input are integers. Input Input is given from Standard Input in the following format: r_1 c_1 r_2 c_2 Output Print the sum of f(i, j) modulo (10^9+7). Examples Input 1 1 2 2 Output 14 Input 314 159 2653 589 Output 602215194 Submitted Solution: ``` import sys input = sys.stdin.buffer.readline def main(): a,b,c,d = map(int,input().split()) MOD = 10**9+7 N = c+d+5 fac = [0 for _ in range(N+1)] fac[0],fac[1] = 1,1 for i in range(2,N+1): fac[i] = (fac[i-1]*i)%MOD def comb(x,y): return (fac[x+y]*pow(fac[x],MOD-2,MOD)*pow(fac[y],MOD-2,MOD))%MOD print(comb(c+1,d+1)-comb(c+1,b)-comb(d+1,a)+comb(a,b)) if __name__ == "__main__": main() ```
instruction
0
3,117
16
6,234
No
output
1
3,117
16
6,235
Provide a correct Python 3 solution for this coding contest problem. Snuke has decided to play with N cards and a deque (that is, a double-ended queue). Each card shows an integer from 1 through N, and the deque is initially empty. Snuke will insert the cards at the beginning or the end of the deque one at a time, in order from 1 to N. Then, he will perform the following action N times: take out the card from the beginning or the end of the deque and eat it. Afterwards, we will construct an integer sequence by arranging the integers written on the eaten cards, in the order they are eaten. Among the sequences that can be obtained in this way, find the number of the sequences such that the K-th element is 1. Print the answer modulo 10^{9} + 7. Constraints * 1 ≦ K ≦ N ≦ 2{,}000 Input The input is given from Standard Input in the following format: N K Output Print the answer modulo 10^{9} + 7. Examples Input 2 1 Output 1 Input 17 2 Output 262144 Input 2000 1000 Output 674286644
instruction
0
3,205
16
6,410
"Correct Solution: ``` def cmb(n, r, mod):#コンビネーションの高速計算  if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 N = 5000 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) N,K=map(int,input().split()) if N==1: print(1) elif K==1: print(pow(2,N-2,mod)) elif K==N: dp=[[0 for i in range(K+1)] for j in range(K)] imos=[0]*(K+1) dp[0][K]=1 imos[K]=1 for i in range(1,K): for j in range(K-i,K+1): if j==K-i: dp[i][j]=(imos[K]-imos[j])%mod else: dp[i][j]=(dp[i-1][j]+imos[K]-imos[j])%mod imos=[dp[i][j] for j in range(K+1)] for j in range(1,K+1): imos[j]+=imos[j-1] imos[j]%=mod print(dp[N-1][1]) else: dp=[[0 for i in range(K+1)] for j in range(K)] imos=[0]*(K+1) dp[0][K]=1 imos[K]=1 for i in range(1,K): for j in range(K-i,K+1): if j==K-i: dp[i][j]=(imos[K]-imos[j])%mod else: dp[i][j]=(dp[i-1][j]+imos[K]-imos[j])%mod imos=[dp[i][j] for j in range(K+1)] for j in range(1,K+1): imos[j]+=imos[j-1] imos[j]%=mod ans=0 for M in range(N-K+1,N+1): id=M-N+K ans+=dp[K-1][id]*cmb(M-2,N-K-1,mod) ans*=pow(2,N-K-1,mod) print(ans%mod) ```
output
1
3,205
16
6,411
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Snuke has decided to play with N cards and a deque (that is, a double-ended queue). Each card shows an integer from 1 through N, and the deque is initially empty. Snuke will insert the cards at the beginning or the end of the deque one at a time, in order from 1 to N. Then, he will perform the following action N times: take out the card from the beginning or the end of the deque and eat it. Afterwards, we will construct an integer sequence by arranging the integers written on the eaten cards, in the order they are eaten. Among the sequences that can be obtained in this way, find the number of the sequences such that the K-th element is 1. Print the answer modulo 10^{9} + 7. Constraints * 1 ≦ K ≦ N ≦ 2{,}000 Input The input is given from Standard Input in the following format: N K Output Print the answer modulo 10^{9} + 7. Examples Input 2 1 Output 1 Input 17 2 Output 262144 Input 2000 1000 Output 674286644 Submitted Solution: ``` import sys import numpy as np import numba from numba import njit, b1, i4, i8 from numba.types import Omitted read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines MOD = 1_000_000_007 @njit((i8, i8), cache=True) def main(N, K): K -= 1 U = 5000 C = np.zeros((U, U), np.int64) C[0, 0] = 1 for n in range(1, U): C[n] += C[n - 1] C[n, 1:] += C[n - 1, :-1] C[n] %= MOD dp = np.zeros((N + 10, N + 10), np.int64) dp[0, 0] = 1 for n in range(1, N + 10): dp[n, n] = (dp[n - 1, n - 1] + dp[n - 1, n]) % MOD for m in range(n + 1, N + 10): dp[n, m] = (dp[n - 1, m] + dp[n, m - 1]) % MOD for n in range(N + 9, 0, -1): dp[n] -= dp[n - 1] dp[n] %= MOD ans = 0 if K == N - 1: return dp[:N, N - 1].sum() % MOD for r in range(N - K, N + 1): x = C[r - 2, N - K - 2] a = N - r b = K - a if b == 0: x = x * (dp[:a + 1, a].sum() % MOD) % MOD else: x *= (dp[1:a + 2, a + 1] * C[b - 1:a + b, b - 1][::-1] % MOD).sum() % MOD x %= MOD ans += x ans %= MOD for i in range(N - K - 2): ans = ans * 2 % MOD return ans % MOD N, K = map(int, read().split()) print(main(N, K)) ```
instruction
0
3,206
16
6,412
No
output
1
3,206
16
6,413
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,207
16
6,414
"Correct Solution: ``` class BIT: "0-indexed apparently" def __init__(self, n): self.n = n self.data = [0] * (n+1) def point_add(self, index, value): index += 1 while index <= self.n: self.data[index] += value index += index & -index def folded(self, r): "[0, r)" ret = 0 while r > 0: ret += self.data[r] r -= r & -r return ret def bisect_left(self, value): index = 0 k = 1 << ((self.n + 1).bit_length() - 1) while k > 0: if index + k <= self.n and self.data[index + k] < value: value -= self.data[index + k] index += k k >>= 1 return index + 1 N = int(input()) As = list(map(int, input().split())) A_inv = [0] * N for i, A in enumerate(As): A_inv[A-1] = i bit = BIT(N + 2) bit.point_add(0, 1) bit.point_add(N+1, 1) ans = 0 for A, index in enumerate(A_inv): A += 1 index += 1 v = bit.folded(index) ans += A * (bit.bisect_left(v+1) - index - 1) * (index - bit.bisect_left(v) + 1) #print(A, ans) bit.point_add(index, 1) print(ans) ```
output
1
3,207
16
6,415
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,208
16
6,416
"Correct Solution: ``` n = int(input()) a = list(map(int, input().split())) l = [] r = [] s = [] for i, x in enumerate(a): left = i while len(s) > 0 and x < s[-1][0]: left = s[-1][1] s.pop() l.append(left) s.append([x, left]) s = [] for i in range(n-1, -1, -1): right = i x = a[i] while len(s) > 0 and x < s[-1][0]: right = s[-1][1] s.pop() r.append(right) s.append([x, right]) r = r[::-1] ans = 0 for i, (x, left, right) in enumerate(zip(a,l,r)): ans += x * (right+1-i) * (i+1-left) print(ans) ```
output
1
3,208
16
6,417
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,209
16
6,418
"Correct Solution: ``` from bisect import* class BTreeNode: def __init__(self):self.key,self.child=[],[] class BTree: def __init__(self):self.root=BTreeNode() def search_higher(self,key): ptr=self.root ret=None while ptr.child: i=bisect(ptr.key,key) if i!=len(ptr.key):ret=ptr.key[i] ptr=ptr.child[i] i=bisect(ptr.key,key) if i!=len(ptr.key):ret=ptr.key[i] return ret def search_lower(self,key): ptr=self.root ret=None while ptr.child: i=bisect_left(ptr.key,key) if i:ret=ptr.key[i-1] ptr=ptr.child[i] i=bisect_left(ptr.key,key) if i:ret=ptr.key[i-1] return ret def insert(self,key): def insert_rec(ptr,key): b_size=512 if not ptr.child: insort(ptr.key,key) if len(ptr.key)==b_size*2-1: ret=BTreeNode() ret.key=ptr.key[:b_size] ptr.key=ptr.key[b_size:] return ret else: i=bisect(ptr.key,key) tmp=insert_rec(ptr.child[i],key) if tmp: ptr.key.insert(i,tmp.key.pop()) ptr.child.insert(i,tmp) if len(ptr.child)==b_size*2: ret=BTreeNode() ret.child=ptr.child[:b_size] ptr.child=ptr.child[b_size:] ret.key=ptr.key[:b_size] ptr.key=ptr.key[b_size:] return ret tmp=insert_rec(self.root,key) if tmp: root=BTreeNode() root.key=[tmp.key.pop()] root.child=[tmp,self.root] self.root=root def main(): n,*a=map(int,open(0).read().split()) l=[0]*n for i,v in enumerate(a,1):l[v-1]=i t=BTree() t.insert(0) t.insert(n+1) c=0 for i,v in enumerate(l,1): c+=(t.search_higher(v)-v)*(v-t.search_lower(v))*i t.insert(v) print(c) main() ```
output
1
3,209
16
6,419
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,210
16
6,420
"Correct Solution: ``` N = int(input()) A = [int(x) for x in input().split()] B = [0] * (N + 1) for i in range(N): B[A[i]] = i + 1 L = list(range(N + 2)) R = list(range(N + 2)) cnt = 0 for i in range(N, 0, -1): l = L[B[i]] r = R[B[i]] cnt += i * (B[i] - l + 1) * (r - B[i] + 1) L[r + 1] = l R[l - 1] = r print(cnt) ```
output
1
3,210
16
6,421
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,211
16
6,422
"Correct Solution: ``` N = int(input()) A = list(map(int, input().split())) idx = {A[i]: i for i in range(N)} ans = 0 idx_l, idx_r = list(range(N + 2)), list(range(N + 2)) for a in range(N, 0, -1): i = idx[a] l, r = idx_l[i], idx_r[i] ans += a * (i - l + 1) * (r - i + 1) idx_l[r + 1], idx_r[l - 1] = l, r print(ans) ```
output
1
3,211
16
6,423
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,212
16
6,424
"Correct Solution: ``` N = int(input()) a = list(map(int, input().split())) left = [0] * (N + 1) right = [0] * (N + 1) # 左から buf = list() for i in range(N): while len(buf) > 0 and a[buf[-1]] > a[i]: buf.pop() if len(buf) > 0: left[i] = buf[-1] else: left[i] = -1 buf.append(i) # 右から buf = list() for i in reversed(range(N)): while len(buf) > 0 and a[buf[-1]] > a[i]: buf.pop() if len(buf) > 0: right[i] = buf[-1] else: right[i] = N buf.append(i) ans = 0 for i in range(N): ans += a[i] * (i - left[i]) * (right[i] - i) print(ans) ```
output
1
3,212
16
6,425
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,213
16
6,426
"Correct Solution: ``` import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines """ ・大きい数から挿入していく ・連結成分の両端を管理する """ N,*A = map(int,read().split()) A = [0] + A + [0] ind = [0] * (N+1) for i,x in enumerate(A): ind[x] = i left = list(range(1,len(A)+1)) right = list(range(-1,len(A)-1)) answer = 0 for i in ind[:0:-1]: # i番目に数を挿入 l = left[i-1]; r = right[i+1] left[r] = l; right[l] = r x = i - l + 1; y = r - i + 1 answer += A[i] * (x * y) print(answer) ```
output
1
3,213
16
6,427
Provide a correct Python 3 solution for this coding contest problem. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85
instruction
0
3,214
16
6,428
"Correct Solution: ``` import sys class Node: def __init__(self, key, height): self.key = key #ノードの木 self.height = height #このノードを根とする部分木の高さ self.left = None self.right = None def size(self, n): return 0 if n is None else n.height def bias(self): #左の方が高いと正、右が高いと負の値を返す return self.size(self.left) - self.size(self.right) #木の高さの計算 def calcSize(self): self.height = 1 + max(self.size(self.left), self.size(self.right)) class AVLTree: def __init__(self): self.root = None #根 self.change = False #修正フラグ self.lmax = None #左部分木のキーの最大値 ############### #回転操作, 修正操作 ############### def rotateL(self, n): #ノードnの左回転 r = n.right; rl = r.left r.left = n; n.right = rl r.left.calcSize() r.calcSize() return r def rotateR(self, n): l = n.left; lr = l.right l.right = n; n.left = lr l.right.calcSize() l.calcSize() return l def rotateLR(self, n): #二重回転;左回転→右回転 n.left = self.rotateL(n.left) return self.rotateR(n) def rotateRL(self, n): n.right = self.rotateR(n.right) return self.rotateL(n) def balanceL(self, n): if not self.change: return n h = n.height if n.bias() == 2: if n.left.bias() >= 0: n = self.rotateR(n) else: n = self.rotateLR(n) else: n.calcSize() self.change = (h != n.height) return n def balanceR(self, n): if not self.change: return n h = n.height if n.bias() == -2: if n.right.bias() <= 0: n = self.rotateL(n) else: n = self.rotateRL(n) else: n.calcSize() self.change = (h != n.height) return n ############### #Nodeの追加 ############### def insert(self, key): self.root = self.insert_sub(self.root, key) def insert_sub(self, t, key): #新たなノードの挿入。初期位置は根。 if t is None: self.change = True return Node(key, 1) if key < t.key: t.left = self.insert_sub(t.left, key) return self.balanceL(t) elif key > t.key: t.right = self.insert_sub(t.right, key) return self.balanceR(t) else: self.change = False t.value = value return t ############### #Nodeの削除 ############### def delete(self, key): self.root = self.delete_sub(self.root, key) def delete_sub(self, t, key): if t is None: self.change = False return None if key < t.key: t.left = self.delete_sub(t.left, key) return self.balanceR(t) elif key > t.key: t.right - self.delete_sub(t.right, key) return self.balanceL(t) else: if t.left is None: self.change = True return t.right else: t.left = self.delete_max(t.left) t.key = self.lmax t.value = self.value return self.balanceR(t) def delete_max(self, n): if n.right is None: #nの右部分木が存在しない場合は左部分木を昇格させる self.change = True self.lmax = n.key self.value = n.value return n.left else: n.right = self.delete_max(n.right) return self.balanceL(n) ############### #Nodeの探索 ############### def search(self, key, lower, higher): t = self.root lb, hb = lower, higher while t: if key < t.key: hb = t.key t = t.left else: lb = t.key t = t.right return lb, hb def solve(): #デバッグ用コード N = int(input()) A = [int(a) for a in input().split()] Ai = dict() for i, a in enumerate(A): Ai[a] = i Tree = AVLTree() ini = Ai[1] Ans = 1 * (ini + 1) * (N - ini) Tree.insert(ini) for i in range(2, N + 1): ai = Ai[i] l, r = Tree.search(ai, -1, N) Ans += i * (ai - l) * (r - ai) Tree.insert(ai) print(Ans) return 0 if __name__ == "__main__": solve() ```
output
1
3,214
16
6,429
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` N = int(input()) a = list(map(int, input().split())) # indexをソート b = [0] * N for i in range(N): b[a[i] - 1] = i # 初期化 端っこ対策としてひとつ余計に取っている left = [0] * (N + 1) right = [0] * (N + 1) for i in range(N + 1): left[i] = i-1 right[i] = i+1 # 更新 for idx in reversed(b): left[right[idx]] = left[idx] right[left[idx]] = right[idx] ans = 0 for i in range(N): ans += a[i] * (i - left[i]) * (right[i] - i) print(ans) ```
instruction
0
3,215
16
6,430
Yes
output
1
3,215
16
6,431
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` n = int(input()) a = list(map(int, input().split())) l = [0] * (n + 1) l2 = list(range(n + 2)) l3 = list(range(n + 2)) ans = 0 for i in range(n): l[a[i]] = i for i in range(1, n + 1)[::-1]: x, y = l2[l[i]], l3[l[i]] ans += (l[i] - x + 1) * (y - l[i] + 1) * i l2[y + 1], l3[x - 1] = x, y print(ans) ```
instruction
0
3,216
16
6,432
Yes
output
1
3,216
16
6,433
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` from bisect import* class BTreeNode: def __init__(self):self.key,self.child=[],[] class BTree: def __init__(self):self.root=BTreeNode() def search_higher(self,key): ptr=self.root ret=None while ptr.child: i=bisect(ptr.key,key) if i!=len(ptr.key):ret=ptr.key[i] ptr=ptr.child[i] i=bisect(ptr.key,key) if i!=len(ptr.key):ret=ptr.key[i] return ret def search_lower(self,key): ptr=self.root ret=None while ptr.child: i=bisect_left(ptr.key,key) if i:ret=ptr.key[i-1] ptr=ptr.child[i] i=bisect_left(ptr.key,key) if i:ret=ptr.key[i-1] return ret def insert(self,key): def insert_rec(ptr): b_size=256 if not ptr.child: insort(ptr.key,key) if len(ptr.key)==b_size*2-1: ret=BTreeNode() ret.key=ptr.key[:b_size] ptr.key=ptr.key[b_size:] return ret else: i=bisect(ptr.key,key) tmp=insert_rec(ptr.child[i]) if tmp: ptr.key.insert(i,tmp.key.pop()) ptr.child.insert(i,tmp) if len(ptr.child)==b_size*2: ret=BTreeNode() ret.child=ptr.child[:b_size] ptr.child=ptr.child[b_size:] ret.key=ptr.key[:b_size] ptr.key=ptr.key[b_size:] return ret tmp=insert_rec(self.root) if tmp: root=BTreeNode() root.key=[tmp.key.pop()] root.child=[tmp,self.root] self.root=root def main(): n,*a=map(int,open(0).read().split()) l=[0]*n for i,v in enumerate(a,1):l[v-1]=i t=BTree() t.insert(0) t.insert(n+1) c=0 for i,v in enumerate(l,1): c+=(t.search_higher(v)-v)*(v-t.search_lower(v))*i t.insert(v) print(c) main() ```
instruction
0
3,217
16
6,434
Yes
output
1
3,217
16
6,435
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` # でつoO(YOU PLAY WITH THE CARDS YOU'RE DEALT..) import sys def main(N, A): ans = 0 Ai = [(a, i + 1) for i, a in enumerate(A)] Ai.sort(key=lambda x: x[0]) st = SegmentTree(n=N + 2, f=lambda x, y: x + y) st.set_val(0, 1) st.set_val(N + 1, 1) for a, i in Ai: lc = st.query(0, i) l = st.bisect_left(lambda x: x < lc) r = st.bisect_left(lambda x: x < lc + 1) ans += a * (i - l) * (r - i) st.set_val(i, 1) print(ans) class SegmentTree: def __init__(self, n=None, f=max, identity_factory=int, initial_values=None): assert(n or initial_values) size = n if n else len(initial_values) d = [identity_factory() for _ in range(2 * size + 1)] self.__n, self.__d, self.__f, self.__e = size, d, f, identity_factory if initial_values: for i, v in enumerate(initial_values): d[size + i] = v for i in range(size - 1, 0, -1): d[i] = f(d[i << 1], d[i << 1 | 1]) def get_val(self, index): return self.__d[index + self.__n] def set_val(self, index, new_value): i, d, f = index + self.__n, self.__d, self.__f if d[i] == new_value: return d[i], i = new_value, i >> 1 while i: d[i], i = f(d[i << 1], d[i << 1 | 1]), i >> 1 def modify(self, index, value): self.set_val(index, self.__f(self.__d[index + self.__n], value)) def query(self, from_inclusive, to_exclusive): ans = self.__e() if to_exclusive <= from_inclusive: return ans l, r, d, f = from_inclusive + self.__n, to_exclusive + self.__n, self.__d, self.__f while l < r: if l & 1: ans, l = f(ans, d[l]), l + 1 if r & 1: ans, r = f(d[r - 1], ans), r - 1 l, r = l >> 1, r >> 1 return ans def bisect_left(self, func): '''func()がFalseになるもっとも左のindexを探す ''' i, j, n, f, d, v = self.__n, self.__n + self.__n, self.__n, self.__f, self.__d, self.__e() while i < j: if i & 1: nv = f(v, d[i]) if not func(nv): break v, i = nv, i + 1 i, j = i >> 1, j >> 1 while i < n: nv = f(v, d[i << 1]) if func(nv): v, i = nv, i << 1 | 1 else: i = i << 1 return i - n if __name__ == '__main__': input = sys.stdin.readline N = int(input()) *A, = map(int, input().split()) main(N, A) ```
instruction
0
3,218
16
6,436
Yes
output
1
3,218
16
6,437
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` # -*- coding: utf-8 -*- import bisect import heapq import math import random import sys from collections import Counter, defaultdict, deque from decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal from functools import lru_cache, reduce from itertools import combinations, combinations_with_replacement, product, permutations from operator import add, mul, sub sys.setrecursionlimit(10000) def read_int(): return int(input()) def read_int_n(): return list(map(int, input().split())) def read_float(): return float(input()) def read_float_n(): return list(map(float, input().split())) def read_str(): return input().strip() def read_str_n(): return list(map(str, input().split())) def error_print(*args): print(*args, file=sys.stderr) def mt(f): import time def wrap(*args, **kwargs): s = time.time() ret = f(*args, **kwargs) e = time.time() error_print(e - s, 'sec') return ret return wrap @mt def slv(N, A): def f(A): n = len(A) if not n: return 0 if n == 1: return A[0] i = A.index(min(A)) return A[i]*(i+1)*(n-i) + f(A[:i]) + f(A[i+1:]) return f(A) def main(): N = read_int() A = read_int_n() print(slv(N, A)) if __name__ == '__main__': main() ```
instruction
0
3,219
16
6,438
No
output
1
3,219
16
6,439
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` def inpl(): return [int(i) for i in input().split()] def minisum(x): if not x: return 0 mini = x.index(min(x)) d = len(x) if d == 1: return x[0] result = 0 if mini > 0: result += minisum(x[:mini]) if mini < d-1: result += minisum(x[mini+1:]) return result + (d-mini)*(mini+1)*x[mini] N = input() a = inpl() print(minisum(a)) ```
instruction
0
3,220
16
6,440
No
output
1
3,220
16
6,441
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` import sys sys.setrecursionlimit(10**7) INF = 10 ** 18 MOD = 10 ** 9 + 7 def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI_(): return [int(x) - 1 for x in sys.stdin.readline().split()] def LF(): return [float(x) for x in sys.stdin.readline().split()] def LS(): return sys.stdin.readline().split() def II(): return int(sys.stdin.readline()) def SI(): return input() from collections import Counter from bisect import bisect_right def main(): N = II() A = LI() idxs = [0] * (N + 1) for i, a in enumerate(A, 1): idxs[a] = i lowers = [0, N + 1] ans = 0 for a, i in enumerate(idxs[1:], 1): j = bisect_right(lowers, i) l, r = lowers[j - 1], lowers[j] lowers.insert(j, i) ans += (i - l) * (r - i) * a return ans print(main()) ```
instruction
0
3,221
16
6,442
No
output
1
3,221
16
6,443
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. One day, Snuke was given a permutation of length N, a_1, a_2, ..., a_N, from his friend. Find the following: <image> Constraints * 1 ≦ N ≦ 200,000 * (a_1, a_2, ..., a_N) is a permutation of (1, 2, ..., N). Input The input is given from Standard Input in the following format: N a_1 a_2 ... a_N Output Print the answer. Note that the answer may not fit into a 32-bit integer. Examples Input 3 2 1 3 Output 9 Input 4 1 3 2 4 Output 19 Input 8 5 4 8 1 2 6 7 3 Output 85 Submitted Solution: ``` from bisect import bisect_left, insort_left N = int(input()) A = list(map(int, input().split())) # 各数の出現場所を持ってソート: 1-indexed A_with_position = sorted([[a, i] for i, a in enumerate(A, start=1)]) # 出現したもののindex appeared_index = [0, N + 1] ans = 0 for a, i in A_with_position: li = bisect_left(appeared_index, i) - 1 ri = bisect_left(appeared_index, i) lx, rx = appeared_index[li], appeared_index[ri] ans += a * (i - lx) * (rx - i) insort_left(appeared_index, i) print(ans) ```
instruction
0
3,222
16
6,444
No
output
1
3,222
16
6,445
Provide a correct Python 3 solution for this coding contest problem. There is a sequence of length N: A_1, A_2, ..., A_N. Initially, this sequence is a permutation of 1, 2, ..., N. On this sequence, Snuke can perform the following operation: * Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements. Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, Under the constraints of this problem, this objective is always achievable. Constraints * 2 \leq K \leq N \leq 100000 * A_1, A_2, ..., A_N is a permutation of 1, 2, ..., N. Input Input is given from Standard Input in the following format: N K A_1 A_2 ... A_N Output Print the minimum number of operations required. Examples Input 4 3 2 3 1 4 Output 2 Input 3 3 1 2 3 Output 1 Input 8 3 7 3 1 8 4 6 2 5 Output 4
instruction
0
5,645
16
11,290
"Correct Solution: ``` import math n,k=map(int,input().split());input();print(math.ceil((n-1)/(k-1))) ```
output
1
5,645
16
11,291