message
stringlengths
2
23.8k
message_type
stringclasses
2 values
message_id
int64
0
1
conversation_id
int64
97
109k
cluster
float64
0
0
__index_level_0__
int64
194
217k
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Dr. Moriarty is about to send a message to Sherlock Holmes. He has a string s. String p is called a substring of string s if you can read it starting from some position in the string s. For example, string "aba" has six substrings: "a", "b", "a", "ab", "ba", "aba". Dr. Moriarty plans to take string s and cut out some substring from it, let's call it t. Then he needs to change the substring t zero or more times. As a result, he should obtain a fixed string u (which is the string that should be sent to Sherlock Holmes). One change is defined as making one of the following actions: * Insert one letter to any end of the string. * Delete one letter from any end of the string. * Change one letter into any other one. Moriarty is very smart and after he chooses some substring t, he always makes the minimal number of changes to obtain u. Help Moriarty choose the best substring t from all substrings of the string s. The substring t should minimize the number of changes Moriarty should make to obtain the string u from it. Input The first line contains a non-empty string s, consisting of lowercase Latin letters. The second line contains a non-empty string u, consisting of lowercase Latin letters. The lengths of both strings are in the range from 1 to 2000, inclusive. Output Print the only integer β€” the minimum number of changes that Dr. Moriarty has to make with the string that you choose. Examples Input aaaaa aaa Output 0 Input abcabc bcd Output 1 Input abcdef klmnopq Output 7 Note In the first sample Moriarty can take any substring of length 3, and it will be equal to the required message u, so Moriarty won't have to make any changes. In the second sample you should take a substring consisting of characters from second to fourth ("bca") or from fifth to sixth ("bc"). Then you will only have to make one change: to change or to add the last character. In the third sample the initial string s doesn't contain any character that the message should contain, so, whatever string you choose, you will have to make at least 7 changes to obtain the required message. Submitted Solution: ``` s= input() s1 = input() count =1 for i in range(len(s1)): if s1[:count] in s: count+=1 print(len(s1)-count+1) ```
instruction
0
98,140
0
196,280
No
output
1
98,140
0
196,281
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Dr. Moriarty is about to send a message to Sherlock Holmes. He has a string s. String p is called a substring of string s if you can read it starting from some position in the string s. For example, string "aba" has six substrings: "a", "b", "a", "ab", "ba", "aba". Dr. Moriarty plans to take string s and cut out some substring from it, let's call it t. Then he needs to change the substring t zero or more times. As a result, he should obtain a fixed string u (which is the string that should be sent to Sherlock Holmes). One change is defined as making one of the following actions: * Insert one letter to any end of the string. * Delete one letter from any end of the string. * Change one letter into any other one. Moriarty is very smart and after he chooses some substring t, he always makes the minimal number of changes to obtain u. Help Moriarty choose the best substring t from all substrings of the string s. The substring t should minimize the number of changes Moriarty should make to obtain the string u from it. Input The first line contains a non-empty string s, consisting of lowercase Latin letters. The second line contains a non-empty string u, consisting of lowercase Latin letters. The lengths of both strings are in the range from 1 to 2000, inclusive. Output Print the only integer β€” the minimum number of changes that Dr. Moriarty has to make with the string that you choose. Examples Input aaaaa aaa Output 0 Input abcabc bcd Output 1 Input abcdef klmnopq Output 7 Note In the first sample Moriarty can take any substring of length 3, and it will be equal to the required message u, so Moriarty won't have to make any changes. In the second sample you should take a substring consisting of characters from second to fourth ("bca") or from fifth to sixth ("bc"). Then you will only have to make one change: to change or to add the last character. In the third sample the initial string s doesn't contain any character that the message should contain, so, whatever string you choose, you will have to make at least 7 changes to obtain the required message. Submitted Solution: ``` #------------------------template--------------------------# import os import sys from math import * from collections import * from fractions import * from bisect import * from heapq import* from io import BytesIO, IOBase def vsInput(): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") ALPHA='abcdefghijklmnopqrstuvwxyz' M=10**9+7 EPS=1e-6 def value():return tuple(map(int,input().split())) def array():return [int(i) for i in input().split()] def Int():return int(input()) def Str():return input() def arrayS():return [i for i in input().split()] #-------------------------code---------------------------# # vsInput() def cost(x): temp=s[x:+len(t)] ans=len(t)-len(temp) for i in range(len(temp)): ans+=t[i]!=temp[i] return ans s=input() t=input() n=len(s) ans=len(t) for i in range(n): ans=min(ans,cost(i)) print(ans) ```
instruction
0
98,141
0
196,282
No
output
1
98,141
0
196,283
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,187
0
196,374
Tags: data structures, implementation Correct Solution: ``` from sys import stdin, stdout def readIn(): return ( map(int,input().split()) ) s = input() sz = len(s)+1 cnt = [ [0]*3 for _ in range(sz) ] for i in range(sz-1): for j in range(3): cnt[i+1][j] = cnt[i][j] if s[i] == 'x': cnt[i+1][0] += 1 elif s[i] == 'y': cnt[i+1][1] += 1 else : cnt[i+1][2] += 1 n = int(input()) res = [] for _ in range(n): l,r = readIn() tmp = [ cnt[r][i]-cnt[l-1][i] for i in range(3) ] res.append( 'YES' if r-l<2 or max(tmp)-min(tmp)<2 else 'NO' ) print('\n'.join(res)) ```
output
1
98,187
0
196,375
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,188
0
196,376
Tags: data structures, implementation Correct Solution: ``` #!/usr/bin/python3 def readln(): return tuple(map(int, input().split())) q = input() cnt = [[0] * 3 for _ in range(len(q) + 1)] for i, v in enumerate(list(q)): for j in range(3): cnt[i + 1][j] = cnt[i][j] if v == 'x': cnt[i + 1][0] += 1 elif v == 'y': cnt[i + 1][1] += 1 else: cnt[i + 1][2] += 1 ans = [] for _ in range(readln()[0]): l, r = readln() tmp = [cnt[r][i] - cnt[l - 1][i] for i in range(3)] ans.append('YES' if r - l < 2 or max(tmp) - min(tmp) < 2 else 'NO') print('\n'.join(ans)) ```
output
1
98,188
0
196,377
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,189
0
196,378
Tags: data structures, implementation Correct Solution: ``` import sys # sys.stdin = open('input.txt', 'r') # sys.stdout = open('output.txt', 'w') input = sys.stdin.readline s = input().strip() x_c, y_c, z_c = [0], [0], [0] for el in s: x_c.append(x_c[-1]+int(el=="x")) y_c.append(y_c[-1]+int(el=="y")) z_c.append(z_c[-1]+int(el=="z")) for _ in range(int(input())): l, r = map(int, input().split()) if r - l < 2: print("YES") continue #... x, y, z = x_c[r]-x_c[l-1], y_c[r]-y_c[l-1], z_c[r]-z_c[l-1] if max(x, y, z) - min(x, y, z) > 1: print("NO") else: print("YES") ```
output
1
98,189
0
196,379
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,190
0
196,380
Tags: data structures, implementation Correct Solution: ``` def f(t): return t[2] - t[0] > 1 t = input() n, m, p = len(t), int(input()), {'x': 0, 'y': 1, 'z': 2} s = [[0] * (n + 1) for i in range(3)] for i, c in enumerate(t, 1): s[p[c]][i] = 1 for i in range(3): for j in range(1, n): s[i][j + 1] += s[i][j] a, b, c = s q, d = [map(int, input().split()) for i in range(m)], ['YES'] * m for i, (l, r) in enumerate(q): if r - l > 1 and f(sorted([a[r] - a[l - 1], b[r] - b[l - 1], c[r] - c[l - 1]])): d[i] = 'NO' print('\n'.join(d)) # Made By Mostafa_Khaled ```
output
1
98,190
0
196,381
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,191
0
196,382
Tags: data structures, implementation Correct Solution: ``` import sys # sys.stdin = open('input.txt', 'r') # sys.stdout = open('output.txt', 'w') input = sys.stdin.readline s = input().strip() x_c, y_c, z_c = [0], [0], [0] for el in s: x_c.append(x_c[-1]+int(el=="x")) y_c.append(y_c[-1]+int(el=="y")) z_c.append(z_c[-1]+int(el=="z")) for _ in range(int(input())): l, r = map(int, input().split()) if r - l < 2: print("YES") continue x, y, z = x_c[r]-x_c[l-1], y_c[r]-y_c[l-1], z_c[r]-z_c[l-1] if max(x, y, z) - min(x, y, z) > 1: print("NO") else: print("YES") ```
output
1
98,191
0
196,383
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,192
0
196,384
Tags: data structures, implementation Correct Solution: ``` import sys input=sys.stdin.readline s=input().strip() xc=yc=zc=0 xlis,ylis,zlis=[0],[0],[0] for i in s: xlis.append(xlis[-1]+int(i=='x')) ylis.append(ylis[-1]+int(i=='y')) zlis.append(zlis[-1]+int(i=='z')) for __ in range(int(input())): l,r=map(int,input().split()) if r-l<2: print('YES') continue xc=xlis[r]-xlis[l-1] yc=ylis[r]-ylis[l-1] zc=zlis[r]-zlis[l-1] if max(xc,yc,zc)-min(xc,yc,zc)>1: print('NO') else: print('YES') ```
output
1
98,192
0
196,385
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,193
0
196,386
Tags: data structures, implementation Correct Solution: ``` def sum_chr(ch): tem, cur = [0], 0 for i in range(len(s)): if s[i] == ch: cur += 1 tem.append(cur) return tem s, m = input(), int(input()) xs, ys, zs, ans = sum_chr('x'), sum_chr('y'), sum_chr('z'), [] for i in range(m): l, r = map(int, input().split()) if r - l + 1 < 3: ans.append('YES') else: chrs = sorted([xs[r] - xs[l - 1], ys[r] - ys[l - 1], zs[r] - zs[l - 1]]) ans.append('YES' if chrs[-1] - chrs[0] <= 1 else 'NO') for i in range(m): print(ans[i]) ```
output
1
98,193
0
196,387
Provide tags and a correct Python 3 solution for this coding contest problem. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
instruction
0
98,194
0
196,388
Tags: data structures, implementation Correct Solution: ``` def f(x, y, z): return abs(y - x) > 1 or abs(z - x) > 1 or abs(y - z) > 1 t = input() n, p = len(t), {'x': 0, 'y': 1, 'z': 2} s = [[0] * (n + 1) for i in range(3)] for i, c in enumerate(t, 1): s[p[c]][i] = 1 for i in range(3): for j in range(1, n): s[i][j + 1] += s[i][j] a, b, c = s q = [map(int, input().split()) for i in range(int(input()))] d = ['YES'] * len(q) for i, (l, r) in enumerate(q): if r - l > 1 and f(a[r] - a[l - 1], b[r] - b[l - 1], c[r] - c[l - 1]): d[i] = 'NO' print('\n'.join(d)) ```
output
1
98,194
0
196,389
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` s=input() l=len(s) d={'x':0,'y':1,'z':2} cnt=[[0]*(l+1) for _ in range(3)] for i,c in enumerate(s,1): cnt[d[c]][i]+=1 for j in range(3): cnt[j][i]+=cnt[j][i-1] # import sys, io, os # try: # input=io.BytesIO(os.read(0,os.fstat(0).st_size)).readline # except: # input=lambda:sys.stdin.readline().encode() ans=[] m=int(input()) for _ in range(m): l,r=map(int,input().split()) if r-l+1<3: ans.append('YES') continue t=[] for i in range(3): t.append(cnt[i][r]-cnt[i][l-1]) if max(t)-min(t)<=1 and min(t)>=1: ans.append('YES') else: ans.append('NO') print('\n'.join(ans)) ```
instruction
0
98,195
0
196,390
Yes
output
1
98,195
0
196,391
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` s=input() d={'x':0,'y':1,'z':2} cnt=[[0]*(len(s)+1) for _ in range(3)] for i,c in enumerate(s,1): cnt[d[c]][i]+=1 for j in range(3): cnt[j][i]+=cnt[j][i-1] ans=[] m=int(input()) for _ in range(m): l,r=map(int,input().split()) if r-l+1<3: ans.append('YES') continue t=[] for i in range(3): t.append(cnt[i][r]-cnt[i][l-1]) if max(t)-min(t)<=1 and min(t)>=1: ans.append('YES') else: ans.append('NO') print('\n'.join(ans)) ```
instruction
0
98,196
0
196,392
Yes
output
1
98,196
0
196,393
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` def main(): l, xyz, res = [(0, 0, 0)], [0, 0, 0], [] for c in input(): xyz[ord(c) - 120] += 1 l.append(tuple(xyz)) for _ in range(int(input())): a, b = map(int, input().split()) if b - a > 1: xyz = [i - j for i, j in zip(l[b], l[a - 1])] res.append(("NO", "YES")[max(xyz) - min(xyz) < 2]) else: res.append("YES") print('\n'.join(res)) if __name__ == '__main__': main() ```
instruction
0
98,197
0
196,394
Yes
output
1
98,197
0
196,395
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` import sys from functools import lru_cache, cmp_to_key from heapq import merge, heapify, heappop, heappush from math import * from collections import defaultdict as dd, deque, Counter as C from itertools import combinations as comb, permutations as perm from bisect import bisect_left as bl, bisect_right as br, bisect, insort from time import perf_counter from fractions import Fraction import copy from copy import deepcopy import time starttime = time.time() mod = int(pow(10, 9) + 7) mod2 = 998244353 def data(): return sys.stdin.readline().strip() def out(*var, end="\n"): sys.stdout.write(' '.join(map(str, var))+end) def L(): return list(sp()) def sl(): return list(ssp()) def sp(): return map(int, data().split()) def ssp(): return map(str, data().split()) def l1d(n, val=0): return [val for i in range(n)] def l2d(n, m, val=0): return [l1d(n, val) for j in range(m)] try: # sys.setrecursionlimit(int(pow(10,6))) sys.stdin = open("input.txt", "r") # sys.stdout = open("../output.txt", "w") except: pass def pmat(A): for ele in A: print(*ele,end="\n") l, xyz, res = [(0, 0, 0)], [0, 0, 0], [] for c in input(): xyz[ord(c) - 120] += 1 l.append(tuple(xyz)) for _ in range(int(input())): a, b = map(int, input().split()) if b - a > 1: xyz = [i - j for i, j in zip(l[b], l[a - 1])] res.append(("NO", "YES")[max(xyz) - min(xyz) < 2]) else: res.append("YES") print('\n'.join(res)) endtime = time.time() # print(f"Runtime of the program is {endtime - starttime}") ```
instruction
0
98,198
0
196,396
Yes
output
1
98,198
0
196,397
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` s = input() m = int(input()) nX = [0]*len(s) nY = [0]*len(s) nZ = [0]*len(s) for i in range(len(s)): if i: nX[i] = nX[i-1] nY[i] = nY[i-1] nZ[i] = nZ[i-1] if s[i]=='x': nX[i] += 1 elif s[i]=='y': nY[i] += 1 else: nZ[i] += 1 for i in range(m): x, y = map(int, input().split()) x -= 1 y -= 1 numX = nX[y] numY = nY[y] numZ = nZ[y] if x: numX -= nX[x-1] numY -= nY[x-1] numZ -= nZ[x-1] if abs(numX-numZ)<=1 and abs(numX-numY)<=1 and abs(numY-numZ)<=1: print("YES") else: print("NO") ```
instruction
0
98,199
0
196,398
No
output
1
98,199
0
196,399
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` s = input() n = int(input()) tests = [] for _ in range(n): a, b = map(int, input().split()) a -= 1 b -= 1 tests.append((a, b)) count_left = {} count_left[-1] = (0, 0, 0) x, y, z = 0, 0, 0 for i, c in enumerate(s): if c == 'x': x += 1 elif c == 'y': y += 1 elif c == 'z': z += 1 count_left[i] = (x, y, z) def count(a, b): x2, y2, z2 = count_left[b] x1, y1, z1 = count_left[a - 1] x = x2 - x1 y = y2 - y1 z = z2 - z1 return x,y,z def is_valid(s, a, b): x,y,z = count(a, b) diffs = map(abs, [x-y, x-z, y-z]) return not any(d > 1 for d in diffs) for a, b in tests: print("YES" if is_valid(s, a, b) else "NO") ```
instruction
0
98,200
0
196,400
No
output
1
98,200
0
196,401
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` import os,sys from io import BytesIO, IOBase from collections import deque, Counter,defaultdict as dft from heapq import heappop ,heappush from math import log,sqrt,factorial,cos,tan,sin,radians,log2,ceil,floor from bisect import bisect,bisect_left,bisect_right from decimal import * import sys,threading from itertools import permutations, combinations from copy import deepcopy input = sys.stdin.readline ii = lambda: int(input()) si = lambda: input().rstrip() mp = lambda: map(int, input().split()) ms= lambda: map(str,input().strip().split(" ")) ml = lambda: list(mp()) mf = lambda: map(float, input().split()) alphs = "abcdefghijklmnopqrstuvwxyz" # stuff you should look for # int overflow, array bounds # special cases (n=1?) # do smth instead of nothing and stay organized # WRITE STUFF DOWN # DON'T GET STUCK ON ONE APPROACH # def solve(): s=input() n=len(s) dct={'x':0,'y':1,'z':2} ls=[[0,0,0] for i in range(n+1)] for i in range(n): idx=dct[s[i]] for j in range(3): ls[i+1][j]+=ls[i][j] ls[i+1][idx]+=1 #print(ls) m=ii() for _ in range(m): l,r=mp() if r-l+1<3: print("YES") continue x=ls[r][0]-ls[l-1][0] y=ls[r][1]-ls[l-1][1] z=ls[r][2]-ls[l-1][2] mx=max(x,y,z) l=[mx-x,mx-y,mx-z] l.sort() #print(l) if l==[0,1,1] or l==[0,0,0]: print("YES") else:print("NO") BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": tc=1 #tc = ii() for i in range(tc): solve() ```
instruction
0
98,201
0
196,402
No
output
1
98,201
0
196,403
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps: 1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2. 2. Rearrange the letters of the found subsequence randomly and go to step 1. Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string. Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 ≀ li ≀ ri ≀ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not. Input The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'. The second line contains integer m (1 ≀ m ≀ 105) β€” the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 ≀ li ≀ ri ≀ n). Output For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise. Examples Input zyxxxxxxyyz 5 5 5 1 3 1 11 1 4 3 6 Output YES YES NO YES NO Note In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly. Submitted Solution: ``` def f(x, y, z): return abs(y - x) > 1 or abs(z - x) > 1 t = input() n, p = len(t), {'x': 0, 'y': 1, 'z': 2} s = [[0] * (n + 1) for i in range(3)] for i, c in enumerate(t, 1): s[p[c]][i] = 1 for i in range(3): for j in range(1, n): s[i][j + 1] += s[i][j] a, b, c = s q = [map(int, input().split()) for i in range(int(input()))] d = ['YES'] * len(q) for i, (l, r) in enumerate(q): if r - l > 1 and f(a[r] - a[l - 1], b[r] - b[l - 1], c[r] - c[l - 1]): d[i] = 'NO' print('\n'.join(d)) ```
instruction
0
98,202
0
196,404
No
output
1
98,202
0
196,405
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,244
0
196,488
Tags: dp, greedy, math Correct Solution: ``` from collections import Counter _ = input() s = input().strip() sequences = Counter() cur_seq_len = 1 for p, n in zip(s, s[1:] + '*'): if p == n: cur_seq_len += 1 else: if cur_seq_len > 3: cur_seq_len = 3 sequences[cur_seq_len] += 1 cur_seq_len = 1 basic = sum(sequences.values()) if 3 in sequences or sequences[2] >= 2: print(basic + 2) elif sequences[2] == 1: print(basic + 1) else: print(basic) ```
output
1
98,244
0
196,489
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,245
0
196,490
Tags: dp, greedy, math Correct Solution: ``` if __name__ == "__main__": n = int( input().strip() ) s = input().strip() segs = [] start = 0 i = 1 while i <= n: if i == n or s[i] != s[start]: segs.append( i - start ) start = i i = start + 1 else: i += 1 res = len(segs) segs.sort() if segs[-1] >= 3: res += 2 elif len(segs) >= 2 and segs[-1] >= 2 and segs[-2] >= 2: res += 2 elif segs[-1] >= 2: res += 1 print( res ) ```
output
1
98,245
0
196,491
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,246
0
196,492
Tags: dp, greedy, math Correct Solution: ``` n = int(input()) s = input() dl = 1 now = s[0] k = 0 for i in range(1, n): if now != s[i]: now = s[i] dl += 1 for i in range(n - 1): if s[i] == s[i + 1] == '0' or s[i] == s[i + 1] == '1': k += 1 if k >= 2: print(dl + 2) elif k == 1: print(dl + 1) else: print(dl) ```
output
1
98,246
0
196,493
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,247
0
196,494
Tags: dp, greedy, math Correct Solution: ``` n = map(int, input()) s = input() l = [] cnt = 1 for i in range( 1, len(s)): if s[i] != s[i-1]: l.append(cnt) cnt = 1 else: cnt += 1 l.append(cnt) result = len(l) add = 0 if max(l) >= 3: add = 2 elif max(l) >= 2: add = 1 if len(l) > 1: for i in range( 1, len(l)): if l[i] >= 2 and l[i-1] >= 2: add = 2 if s[0] != s[len(s)-1] and l[0] >= 2 and l[len(l)-1] >= 2: add = 2 num = 0 for i in range( 0, len(l)): if l[i] >= 2: num += 1 if num >= 2: add = 2 if add == 0 and (l[0] >= 2 or l[len(l)-1] >= 2): add = 1 print(result + add) ```
output
1
98,247
0
196,495
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,248
0
196,496
Tags: dp, greedy, math Correct Solution: ``` n=int(input()) s=input() print(min(s.count('01')+s.count('10')+3,n)) ```
output
1
98,248
0
196,497
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,249
0
196,498
Tags: dp, greedy, math Correct Solution: ``` n=int(input()) s=input() c=1 seg=[] for i in range(1,n): if s[i]==s[i-1]: c+=1 else: seg.append(c) c=1 seg.append(c) f=0 for i in range(len(seg)): if seg[i]>=3: f=max(f,2) if seg[0]==1 and seg[len(seg)-1]==2 or seg[0]==2 and seg[len(seg)-1]==1: f=max(1,f) if seg[0]==seg[len(seg)-1]==2: f=max(f,2) print(min(n,len(seg)+2)) ```
output
1
98,249
0
196,499
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,250
0
196,500
Tags: dp, greedy, math Correct Solution: ``` n=int(input()) s=input().strip('\n') cur=s[0] l=1 for i in range(1,n): if s[i]!=cur: l+=1 cur=s[i] print(min(l+2,n)) ```
output
1
98,250
0
196,501
Provide tags and a correct Python 3 solution for this coding contest problem. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score.
instruction
0
98,251
0
196,502
Tags: dp, greedy, math Correct Solution: ``` n=int(input()) s=input() k=0 i=0 r=int(s[0]) while(i<n): if(int(s[i])==r): r=1-r k+=1 i+=1 print(min(k+2,n)) ```
output
1
98,251
0
196,503
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` n,line=int(input()),input() ans=1+sum(line[i]!=line[i-1] for i in range(1,n)) print(min(ans+2,n)) ```
instruction
0
98,252
0
196,504
Yes
output
1
98,252
0
196,505
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` n , s = int(input()), input() ans = 1 for i in range (1,n): ans += (s[i] != s[i-1]) print(min(ans+2,n)) ```
instruction
0
98,253
0
196,506
Yes
output
1
98,253
0
196,507
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` n = int(input()) s = input() print(min(n,s.count("01")+s.count("10")+3)) ```
instruction
0
98,254
0
196,508
Yes
output
1
98,254
0
196,509
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` n = int(input()) t = [int(i) for i in input()] ch = 0 sm = 0 for i in range(n-1): if t[i] == t[i+1]: sm+=1 else: ch+=1 print(ch + min(sm,2) + 1) ```
instruction
0
98,255
0
196,510
Yes
output
1
98,255
0
196,511
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` """ Codeforces Round #334 (Div. 2) Problem 604 C. @author yamaton @date 2015-12-01 """ import itertools as it import functools import operator import collections import math import sys def solve(s, n): if n == 1: return 1 alts = sum(a != b for (a, b) in zip(s, s[1:])) + 1 lens = [sum(1 for i in iterable) for (_, iterable) in it.groupby(s)] maxlen = max(lens) if maxlen == 1: return alts elif maxlen >= 3: return alts + 2 else: if len(lens) == 1: return alts + 1 if lens[0] == 2 and max(lens[1:]) == 1: return alts + 1 if lens[-1] == 2 and max(lens[:(n-1)]) == 1: return alts + 1 if any((a == b == 2) for (a, b) in zip(lens, lens[1:])): return alts + 2 else: return alts # def pp(*args, **kwargs): # return print(*args, file=sys.stderr, **kwargs) def main(): n = int(input()) s = input().strip() assert len(s) == n result = solve(s, n) print(result) if __name__ == '__main__': main() ```
instruction
0
98,256
0
196,512
No
output
1
98,256
0
196,513
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` n = map(int, input()) s = input() l = [] cnt = 1 for i in range( 1, len(s)): if s[i] != s[i-1]: l.append(cnt) cnt = 1 else: cnt += 1 l.append(cnt) result = len(l) add = 0 if len(l) > 1: for i in range( 1, len(l)): if l[i] >= 2 and l[i-1] >= 2: add = 2 if s[0] != s[len(s)-1] and l[0] >= 2 and l[len(l)-1] >= 2: add = 2 if max(l) >= 3: add = 2 if add == 0 and (l[0] >= 2 or l[len(l)-1] >= 2): add = 1 print(result + add) ```
instruction
0
98,257
0
196,514
No
output
1
98,257
0
196,515
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` n = int(input()) ch = str(input()) B = [0 for _ in range(n)] B[0] = 1 c = ch[0] for k in range(1,n): if ch[k] == c: B[k] = B[k-1] else: B[k] = B[k-1] + 1 c = ch[k] T = [[0 for _ in range(n)] for _ in range(n)] F = [[0 for _ in range(n)] for _ in range(n)] for i in range(n-1): T[i][i+1] = B[i]+1 for i in range(n-1): for j in range(i+2,n): c = 0 if ch[j] == ch[j-1] and not(F[i][j-1]): temp = max([T[i][j-1], B[j-1] + 1]) if temp == 1 + B[j-1]: c = 1 elif not(F[i][j-1]): temp = T[i][j-1] + 1 elif ch[j] == ch[j-1]: temp = T[i][j-1] + 1 else: temp = max([T[i][j-1], B[j-1] + 1]) T[i][j] = temp F[i][j] = c print(max([T[k][n-1] for k in range(n)])) """ B = [0 for _ in range(n)] B[0] = 1 c = ch[0] for k in range(1,n): if ch[k] == c: B[k] = B[k-1] else: B[k] = B[k-1] + 1 c = ch[k] T = [0 for _ in range(n)] F = [0 for _ in range(n)] T[1] = 2 if ch[0] == ch[1]: F[1] = 1 for k in range(2,n): c = 0 if ch[k] == ch[k-1]: temp = max([T[k-1], B[k-1] + 1]) if temp == 1 + B[k-1]: c = 1 elif not(F[k-1]): temp = T[k-1] + 1 elif ch[k] == ch[k-1]: temp = T[k-1] + 1 else: temp = max([T[k-1], B[k-1] + 1]) T[k] = temp F[k] = c print(B) print(T) print(F) print(T[n-1]) """ ```
instruction
0
98,258
0
196,516
No
output
1
98,258
0
196,517
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ€”'1' for a correctly identified cow and '0' otherwise. However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not. Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβ€”that is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have. Input The first line contains the number of questions on the olympiad n (1 ≀ n ≀ 100 000). The following line contains a binary string of length n representing Kevin's results on the USAICO. Output Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring. Examples Input 8 10000011 Output 5 Input 2 01 Output 2 Note In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'. In the second sample, Kevin can flip the entire string and still have the same score. Submitted Solution: ``` n = map(int, input()) s = input() l = [] cnt = 1 for i in range( 1, len(s)): if s[i] != s[i-1]: l.append(cnt) cnt = 1 else: cnt += 1 l.append(cnt) result = len(l) add = 0 if max(l) >= 3: add = 2 if len(l) > 1: for i in range( 1, len(l)): if l[i] >= 2 and l[i-1] >= 2: add = 2 if l[0] >= 2 and l[len(l)-1] >= 2: add = 2 if add == 0 and (l[0] >= 2 or l[len(l)-1] >= 2): add = 1 print(result + add) ```
instruction
0
98,259
0
196,518
No
output
1
98,259
0
196,519
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,367
0
196,734
Tags: brute force, implementation, strings Correct Solution: ``` s=input() res = 0 l = len(s) for i in range(l): for j in range(i + 1, l+1): t = s[i:j] tt = t[::-1] if t != tt: res = max(res, j - i) print(res) ```
output
1
98,367
0
196,735
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,368
0
196,736
Tags: brute force, implementation, strings Correct Solution: ``` ### @author egaeus ### @mail jsbeltran.valhalla@gmail.com ### @veredict ### @url https://codeforces.com/problemset/problem/981/A ### @category strings ### @date 02/12/2019 s = input() res = 0 for i in range(len(s)): for j in range(i+1, len(s) + 1): ws = True for k in range(0, j - i): if s[i+k] != s[j-k-1]: ws = False if not ws: res = max(res, j - i) print(res) ```
output
1
98,368
0
196,737
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,369
0
196,738
Tags: brute force, implementation, strings Correct Solution: ``` n = input() s = {x for x in n} r = n[::-1] print(0) if len(s) == 1 else print(len(n)-1) if r == n else print(len(n)) ```
output
1
98,369
0
196,739
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,370
0
196,740
Tags: brute force, implementation, strings Correct Solution: ``` def reverse(str): new_str = '' for i in range(len(str)-1, -1, -1): new_str += str[i] return new_str def is_palindrome(str): return str == reverse(str) s = input() if is_palindrome(s): if is_palindrome(s[:len(s)-1]): print(0) else: print(len(s)-1) else: print(len(s)) ```
output
1
98,370
0
196,741
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,371
0
196,742
Tags: brute force, implementation, strings Correct Solution: ``` s = input() if len(set(s))==1: print(0) elif s==s[::-1]: print(len(s)-1) else: print(len(s)) ```
output
1
98,371
0
196,743
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,372
0
196,744
Tags: brute force, implementation, strings Correct Solution: ``` s = input() t = s[::-1] if s == t: if len(set(s)) == 1: print("0") else: print(len(s)-1) else: print(len(s)) ```
output
1
98,372
0
196,745
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,373
0
196,746
Tags: brute force, implementation, strings Correct Solution: ``` def is_palindrome(word): return word == word[::-1] word = input() sem_palindromo = True for i in range(len(word)): temp = word[i:] temp2 = word[:len(word)-i] temp3 = word[i:len(word)-i] if not is_palindrome(temp): print(len(temp)) sem_palindromo = False break elif not is_palindrome(temp2): print(len(temp2)) sem_palindromo = False break elif not is_palindrome(temp3): print(len(temp3)) sem_palindromo = False break if sem_palindromo: print(0) ```
output
1
98,373
0
196,747
Provide tags and a correct Python 3 solution for this coding contest problem. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
instruction
0
98,374
0
196,748
Tags: brute force, implementation, strings Correct Solution: ``` import sys import math import bisect import itertools import random def main(): s = input() if len(set(list(s))) == 1: print(0) elif s == s[::-1]: print(len(s)-1) else: print(len(s)) if __name__ == "__main__": main() ```
output
1
98,374
0
196,749
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` x = input() y = x[::-1] def asd(x): a = x b = x[::-1] if a == b and x!= "": x = x[:len(x) - 1] asd(x) elif a!= b or x == "": print(len(x)) asd(x) ```
instruction
0
98,375
0
196,750
Yes
output
1
98,375
0
196,751
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` def reverse(s): return s[::-1] def pal(s): rev = reverse(s) if (s == rev): return 1 return 0 str = input() l = len(str) c=0 for i in range(0,l//2+1): sub = str[i:] if pal(sub)==0: print(len(sub)) c=1 break if c==0: print(0) ```
instruction
0
98,376
0
196,752
Yes
output
1
98,376
0
196,753
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` # -*- coding: utf-8 -*- """ Created on Wed Sep 9 21:00:18 2020 @author: MridulSachdeva """ s = input() def is_palindrome(x): n = len(x) // 2 for i in range(n): if x[i] != x[-i-1]: return False return True if len(set(s)) == 1: print(0) elif is_palindrome(s): print(len(s) - 1) else: print(len(s)) ```
instruction
0
98,377
0
196,754
Yes
output
1
98,377
0
196,755
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` s=input() if s!=s[::-1]: ans=len(s) elif len(set(s))<2: ans=0 else: ans=len(s)-1 print(ans) ```
instruction
0
98,378
0
196,756
Yes
output
1
98,378
0
196,757
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` def reverse(string): string1 = string[::-1] return string1 n = 0 fl = 0 string = input() s1 = reverse(string) if s1 == string: for e in string: for j in s1: if e == j: n=n+1 if n==len(string): break if n==len(string) and e==string[0]: print("0") else: y = len(string)-1 print(y) else: print(len(string)) ```
instruction
0
98,379
0
196,758
No
output
1
98,379
0
196,759
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` string = input() for i in range(len(string)): for j in range(len(string),i-1,-1): # print(string[i:j]) # print(string[j-len(string)-1:-len(string)+i-1:-1]) if string[i:j] == string[j-len(string)-1:-len(string)+i-1:-1]: continue else: print(len(string[i:j])) exit() ```
instruction
0
98,380
0
196,760
No
output
1
98,380
0
196,761
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` s=input() n=len(s) def ap(s): for i in range(n//2): if(s[i]!=s[n-i-1]): return False return True if(ap(s)): print(n-1) elif(s.count(s[0])==len(s)): print('0') else: print(n) ```
instruction
0
98,381
0
196,762
No
output
1
98,381
0
196,763
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring s[l … r] (1 ≀ l ≀ r ≀ |s|) of a string s = s_{1}s_{2} … s_{|s|} is the string s_{l}s_{l + 1} … s_{r}. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all. Some time ago Ann read the word s. What is the word she changed it into? Input The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only. Output If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Examples Input mew Output 3 Input wuffuw Output 5 Input qqqqqqqq Output 0 Note "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3. The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0. Submitted Solution: ``` import sys s=input() left=0 right=len(s)-1 temp=0 check=0 flag=0 while left<int(len(s)/2): if left+1==len(s)-right and s[left]!=s[right]: print(len(s)) sys.exit(0) if s[left]!=s[right] and check == 0: if len(s)-right>left+1: temp=right+1 check=1 else: temp=len(s)-left check=1 if int(len(s))%2!=0 and left ==int(len(s)/2)-1 and right == int(len(s)/2)+1 and check==0: if s[left]==s[right] and s[int(len(s)/2)]!=s[left]: print(len(s)-1) sys.exit(0) if flag==0: left+=1 else: right-=1 flag=~flag print(temp) ```
instruction
0
98,382
0
196,764
No
output
1
98,382
0
196,765