message
stringlengths 2
23.8k
| message_type
stringclasses 2
values | message_id
int64 0
1
| conversation_id
int64 97
109k
| cluster
float64 0
0
| __index_level_0__
int64 194
217k
|
|---|---|---|---|---|---|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Dr. Moriarty is about to send a message to Sherlock Holmes. He has a string s.
String p is called a substring of string s if you can read it starting from some position in the string s. For example, string "aba" has six substrings: "a", "b", "a", "ab", "ba", "aba".
Dr. Moriarty plans to take string s and cut out some substring from it, let's call it t. Then he needs to change the substring t zero or more times. As a result, he should obtain a fixed string u (which is the string that should be sent to Sherlock Holmes). One change is defined as making one of the following actions:
* Insert one letter to any end of the string.
* Delete one letter from any end of the string.
* Change one letter into any other one.
Moriarty is very smart and after he chooses some substring t, he always makes the minimal number of changes to obtain u.
Help Moriarty choose the best substring t from all substrings of the string s. The substring t should minimize the number of changes Moriarty should make to obtain the string u from it.
Input
The first line contains a non-empty string s, consisting of lowercase Latin letters. The second line contains a non-empty string u, consisting of lowercase Latin letters. The lengths of both strings are in the range from 1 to 2000, inclusive.
Output
Print the only integer β the minimum number of changes that Dr. Moriarty has to make with the string that you choose.
Examples
Input
aaaaa
aaa
Output
0
Input
abcabc
bcd
Output
1
Input
abcdef
klmnopq
Output
7
Note
In the first sample Moriarty can take any substring of length 3, and it will be equal to the required message u, so Moriarty won't have to make any changes.
In the second sample you should take a substring consisting of characters from second to fourth ("bca") or from fifth to sixth ("bc"). Then you will only have to make one change: to change or to add the last character.
In the third sample the initial string s doesn't contain any character that the message should contain, so, whatever string you choose, you will have to make at least 7 changes to obtain the required message.
Submitted Solution:
```
s= input()
s1 = input()
count =1
for i in range(len(s1)):
if s1[:count] in s:
count+=1
print(len(s1)-count+1)
```
|
instruction
| 0
| 98,140
| 0
| 196,280
|
No
|
output
| 1
| 98,140
| 0
| 196,281
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Dr. Moriarty is about to send a message to Sherlock Holmes. He has a string s.
String p is called a substring of string s if you can read it starting from some position in the string s. For example, string "aba" has six substrings: "a", "b", "a", "ab", "ba", "aba".
Dr. Moriarty plans to take string s and cut out some substring from it, let's call it t. Then he needs to change the substring t zero or more times. As a result, he should obtain a fixed string u (which is the string that should be sent to Sherlock Holmes). One change is defined as making one of the following actions:
* Insert one letter to any end of the string.
* Delete one letter from any end of the string.
* Change one letter into any other one.
Moriarty is very smart and after he chooses some substring t, he always makes the minimal number of changes to obtain u.
Help Moriarty choose the best substring t from all substrings of the string s. The substring t should minimize the number of changes Moriarty should make to obtain the string u from it.
Input
The first line contains a non-empty string s, consisting of lowercase Latin letters. The second line contains a non-empty string u, consisting of lowercase Latin letters. The lengths of both strings are in the range from 1 to 2000, inclusive.
Output
Print the only integer β the minimum number of changes that Dr. Moriarty has to make with the string that you choose.
Examples
Input
aaaaa
aaa
Output
0
Input
abcabc
bcd
Output
1
Input
abcdef
klmnopq
Output
7
Note
In the first sample Moriarty can take any substring of length 3, and it will be equal to the required message u, so Moriarty won't have to make any changes.
In the second sample you should take a substring consisting of characters from second to fourth ("bca") or from fifth to sixth ("bc"). Then you will only have to make one change: to change or to add the last character.
In the third sample the initial string s doesn't contain any character that the message should contain, so, whatever string you choose, you will have to make at least 7 changes to obtain the required message.
Submitted Solution:
```
#------------------------template--------------------------#
import os
import sys
from math import *
from collections import *
from fractions import *
from bisect import *
from heapq import*
from io import BytesIO, IOBase
def vsInput():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
ALPHA='abcdefghijklmnopqrstuvwxyz'
M=10**9+7
EPS=1e-6
def value():return tuple(map(int,input().split()))
def array():return [int(i) for i in input().split()]
def Int():return int(input())
def Str():return input()
def arrayS():return [i for i in input().split()]
#-------------------------code---------------------------#
# vsInput()
def cost(x):
temp=s[x:+len(t)]
ans=len(t)-len(temp)
for i in range(len(temp)):
ans+=t[i]!=temp[i]
return ans
s=input()
t=input()
n=len(s)
ans=len(t)
for i in range(n):
ans=min(ans,cost(i))
print(ans)
```
|
instruction
| 0
| 98,141
| 0
| 196,282
|
No
|
output
| 1
| 98,141
| 0
| 196,283
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,187
| 0
| 196,374
|
Tags: data structures, implementation
Correct Solution:
```
from sys import stdin, stdout
def readIn():
return ( map(int,input().split()) )
s = input()
sz = len(s)+1
cnt = [ [0]*3 for _ in range(sz) ]
for i in range(sz-1):
for j in range(3):
cnt[i+1][j] = cnt[i][j]
if s[i] == 'x':
cnt[i+1][0] += 1
elif s[i] == 'y':
cnt[i+1][1] += 1
else :
cnt[i+1][2] += 1
n = int(input())
res = []
for _ in range(n):
l,r = readIn()
tmp = [ cnt[r][i]-cnt[l-1][i] for i in range(3) ]
res.append( 'YES' if r-l<2 or max(tmp)-min(tmp)<2 else 'NO' )
print('\n'.join(res))
```
|
output
| 1
| 98,187
| 0
| 196,375
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,188
| 0
| 196,376
|
Tags: data structures, implementation
Correct Solution:
```
#!/usr/bin/python3
def readln(): return tuple(map(int, input().split()))
q = input()
cnt = [[0] * 3 for _ in range(len(q) + 1)]
for i, v in enumerate(list(q)):
for j in range(3):
cnt[i + 1][j] = cnt[i][j]
if v == 'x':
cnt[i + 1][0] += 1
elif v == 'y':
cnt[i + 1][1] += 1
else:
cnt[i + 1][2] += 1
ans = []
for _ in range(readln()[0]):
l, r = readln()
tmp = [cnt[r][i] - cnt[l - 1][i] for i in range(3)]
ans.append('YES' if r - l < 2 or max(tmp) - min(tmp) < 2 else 'NO')
print('\n'.join(ans))
```
|
output
| 1
| 98,188
| 0
| 196,377
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,189
| 0
| 196,378
|
Tags: data structures, implementation
Correct Solution:
```
import sys
# sys.stdin = open('input.txt', 'r')
# sys.stdout = open('output.txt', 'w')
input = sys.stdin.readline
s = input().strip()
x_c, y_c, z_c = [0], [0], [0]
for el in s:
x_c.append(x_c[-1]+int(el=="x"))
y_c.append(y_c[-1]+int(el=="y"))
z_c.append(z_c[-1]+int(el=="z"))
for _ in range(int(input())):
l, r = map(int, input().split())
if r - l < 2:
print("YES")
continue
#...
x, y, z = x_c[r]-x_c[l-1], y_c[r]-y_c[l-1], z_c[r]-z_c[l-1]
if max(x, y, z) - min(x, y, z) > 1:
print("NO")
else:
print("YES")
```
|
output
| 1
| 98,189
| 0
| 196,379
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,190
| 0
| 196,380
|
Tags: data structures, implementation
Correct Solution:
```
def f(t): return t[2] - t[0] > 1
t = input()
n, m, p = len(t), int(input()), {'x': 0, 'y': 1, 'z': 2}
s = [[0] * (n + 1) for i in range(3)]
for i, c in enumerate(t, 1): s[p[c]][i] = 1
for i in range(3):
for j in range(1, n): s[i][j + 1] += s[i][j]
a, b, c = s
q, d = [map(int, input().split()) for i in range(m)], ['YES'] * m
for i, (l, r) in enumerate(q):
if r - l > 1 and f(sorted([a[r] - a[l - 1], b[r] - b[l - 1], c[r] - c[l - 1]])): d[i] = 'NO'
print('\n'.join(d))
# Made By Mostafa_Khaled
```
|
output
| 1
| 98,190
| 0
| 196,381
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,191
| 0
| 196,382
|
Tags: data structures, implementation
Correct Solution:
```
import sys
# sys.stdin = open('input.txt', 'r')
# sys.stdout = open('output.txt', 'w')
input = sys.stdin.readline
s = input().strip()
x_c, y_c, z_c = [0], [0], [0]
for el in s:
x_c.append(x_c[-1]+int(el=="x"))
y_c.append(y_c[-1]+int(el=="y"))
z_c.append(z_c[-1]+int(el=="z"))
for _ in range(int(input())):
l, r = map(int, input().split())
if r - l < 2:
print("YES")
continue
x, y, z = x_c[r]-x_c[l-1], y_c[r]-y_c[l-1], z_c[r]-z_c[l-1]
if max(x, y, z) - min(x, y, z) > 1:
print("NO")
else:
print("YES")
```
|
output
| 1
| 98,191
| 0
| 196,383
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,192
| 0
| 196,384
|
Tags: data structures, implementation
Correct Solution:
```
import sys
input=sys.stdin.readline
s=input().strip()
xc=yc=zc=0
xlis,ylis,zlis=[0],[0],[0]
for i in s:
xlis.append(xlis[-1]+int(i=='x'))
ylis.append(ylis[-1]+int(i=='y'))
zlis.append(zlis[-1]+int(i=='z'))
for __ in range(int(input())):
l,r=map(int,input().split())
if r-l<2:
print('YES')
continue
xc=xlis[r]-xlis[l-1]
yc=ylis[r]-ylis[l-1]
zc=zlis[r]-zlis[l-1]
if max(xc,yc,zc)-min(xc,yc,zc)>1:
print('NO')
else:
print('YES')
```
|
output
| 1
| 98,192
| 0
| 196,385
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,193
| 0
| 196,386
|
Tags: data structures, implementation
Correct Solution:
```
def sum_chr(ch):
tem, cur = [0], 0
for i in range(len(s)):
if s[i] == ch:
cur += 1
tem.append(cur)
return tem
s, m = input(), int(input())
xs, ys, zs, ans = sum_chr('x'), sum_chr('y'), sum_chr('z'), []
for i in range(m):
l, r = map(int, input().split())
if r - l + 1 < 3:
ans.append('YES')
else:
chrs = sorted([xs[r] - xs[l - 1], ys[r] - ys[l - 1], zs[r] - zs[l - 1]])
ans.append('YES' if chrs[-1] - chrs[0] <= 1 else 'NO')
for i in range(m):
print(ans[i])
```
|
output
| 1
| 98,193
| 0
| 196,387
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
|
instruction
| 0
| 98,194
| 0
| 196,388
|
Tags: data structures, implementation
Correct Solution:
```
def f(x, y, z): return abs(y - x) > 1 or abs(z - x) > 1 or abs(y - z) > 1
t = input()
n, p = len(t), {'x': 0, 'y': 1, 'z': 2}
s = [[0] * (n + 1) for i in range(3)]
for i, c in enumerate(t, 1): s[p[c]][i] = 1
for i in range(3):
for j in range(1, n): s[i][j + 1] += s[i][j]
a, b, c = s
q = [map(int, input().split()) for i in range(int(input()))]
d = ['YES'] * len(q)
for i, (l, r) in enumerate(q):
if r - l > 1 and f(a[r] - a[l - 1], b[r] - b[l - 1], c[r] - c[l - 1]): d[i] = 'NO'
print('\n'.join(d))
```
|
output
| 1
| 98,194
| 0
| 196,389
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
s=input()
l=len(s)
d={'x':0,'y':1,'z':2}
cnt=[[0]*(l+1) for _ in range(3)]
for i,c in enumerate(s,1):
cnt[d[c]][i]+=1
for j in range(3):
cnt[j][i]+=cnt[j][i-1]
# import sys, io, os
# try:
# input=io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
# except:
# input=lambda:sys.stdin.readline().encode()
ans=[]
m=int(input())
for _ in range(m):
l,r=map(int,input().split())
if r-l+1<3:
ans.append('YES')
continue
t=[]
for i in range(3):
t.append(cnt[i][r]-cnt[i][l-1])
if max(t)-min(t)<=1 and min(t)>=1:
ans.append('YES')
else:
ans.append('NO')
print('\n'.join(ans))
```
|
instruction
| 0
| 98,195
| 0
| 196,390
|
Yes
|
output
| 1
| 98,195
| 0
| 196,391
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
s=input()
d={'x':0,'y':1,'z':2}
cnt=[[0]*(len(s)+1) for _ in range(3)]
for i,c in enumerate(s,1):
cnt[d[c]][i]+=1
for j in range(3):
cnt[j][i]+=cnt[j][i-1]
ans=[]
m=int(input())
for _ in range(m):
l,r=map(int,input().split())
if r-l+1<3:
ans.append('YES')
continue
t=[]
for i in range(3):
t.append(cnt[i][r]-cnt[i][l-1])
if max(t)-min(t)<=1 and min(t)>=1:
ans.append('YES')
else:
ans.append('NO')
print('\n'.join(ans))
```
|
instruction
| 0
| 98,196
| 0
| 196,392
|
Yes
|
output
| 1
| 98,196
| 0
| 196,393
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
def main():
l, xyz, res = [(0, 0, 0)], [0, 0, 0], []
for c in input():
xyz[ord(c) - 120] += 1
l.append(tuple(xyz))
for _ in range(int(input())):
a, b = map(int, input().split())
if b - a > 1:
xyz = [i - j for i, j in zip(l[b], l[a - 1])]
res.append(("NO", "YES")[max(xyz) - min(xyz) < 2])
else:
res.append("YES")
print('\n'.join(res))
if __name__ == '__main__':
main()
```
|
instruction
| 0
| 98,197
| 0
| 196,394
|
Yes
|
output
| 1
| 98,197
| 0
| 196,395
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
import sys
from functools import lru_cache, cmp_to_key
from heapq import merge, heapify, heappop, heappush
from math import *
from collections import defaultdict as dd, deque, Counter as C
from itertools import combinations as comb, permutations as perm
from bisect import bisect_left as bl, bisect_right as br, bisect, insort
from time import perf_counter
from fractions import Fraction
import copy
from copy import deepcopy
import time
starttime = time.time()
mod = int(pow(10, 9) + 7)
mod2 = 998244353
def data(): return sys.stdin.readline().strip()
def out(*var, end="\n"): sys.stdout.write(' '.join(map(str, var))+end)
def L(): return list(sp())
def sl(): return list(ssp())
def sp(): return map(int, data().split())
def ssp(): return map(str, data().split())
def l1d(n, val=0): return [val for i in range(n)]
def l2d(n, m, val=0): return [l1d(n, val) for j in range(m)]
try:
# sys.setrecursionlimit(int(pow(10,6)))
sys.stdin = open("input.txt", "r")
# sys.stdout = open("../output.txt", "w")
except:
pass
def pmat(A):
for ele in A:
print(*ele,end="\n")
l, xyz, res = [(0, 0, 0)], [0, 0, 0], []
for c in input():
xyz[ord(c) - 120] += 1
l.append(tuple(xyz))
for _ in range(int(input())):
a, b = map(int, input().split())
if b - a > 1:
xyz = [i - j for i, j in zip(l[b], l[a - 1])]
res.append(("NO", "YES")[max(xyz) - min(xyz) < 2])
else:
res.append("YES")
print('\n'.join(res))
endtime = time.time()
# print(f"Runtime of the program is {endtime - starttime}")
```
|
instruction
| 0
| 98,198
| 0
| 196,396
|
Yes
|
output
| 1
| 98,198
| 0
| 196,397
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
s = input()
m = int(input())
nX = [0]*len(s)
nY = [0]*len(s)
nZ = [0]*len(s)
for i in range(len(s)):
if i:
nX[i] = nX[i-1]
nY[i] = nY[i-1]
nZ[i] = nZ[i-1]
if s[i]=='x': nX[i] += 1
elif s[i]=='y': nY[i] += 1
else: nZ[i] += 1
for i in range(m):
x, y = map(int, input().split())
x -= 1
y -= 1
numX = nX[y]
numY = nY[y]
numZ = nZ[y]
if x:
numX -= nX[x-1]
numY -= nY[x-1]
numZ -= nZ[x-1]
if abs(numX-numZ)<=1 and abs(numX-numY)<=1 and abs(numY-numZ)<=1:
print("YES")
else:
print("NO")
```
|
instruction
| 0
| 98,199
| 0
| 196,398
|
No
|
output
| 1
| 98,199
| 0
| 196,399
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
s = input()
n = int(input())
tests = []
for _ in range(n):
a, b = map(int, input().split())
a -= 1
b -= 1
tests.append((a, b))
count_left = {}
count_left[-1] = (0, 0, 0)
x, y, z = 0, 0, 0
for i, c in enumerate(s):
if c == 'x':
x += 1
elif c == 'y':
y += 1
elif c == 'z':
z += 1
count_left[i] = (x, y, z)
def count(a, b):
x2, y2, z2 = count_left[b]
x1, y1, z1 = count_left[a - 1]
x = x2 - x1
y = y2 - y1
z = z2 - z1
return x,y,z
def is_valid(s, a, b):
x,y,z = count(a, b)
diffs = map(abs, [x-y, x-z, y-z])
return not any(d > 1 for d in diffs)
for a, b in tests:
print("YES" if is_valid(s, a, b) else "NO")
```
|
instruction
| 0
| 98,200
| 0
| 196,400
|
No
|
output
| 1
| 98,200
| 0
| 196,401
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
import os,sys
from io import BytesIO, IOBase
from collections import deque, Counter,defaultdict as dft
from heapq import heappop ,heappush
from math import log,sqrt,factorial,cos,tan,sin,radians,log2,ceil,floor
from bisect import bisect,bisect_left,bisect_right
from decimal import *
import sys,threading
from itertools import permutations, combinations
from copy import deepcopy
input = sys.stdin.readline
ii = lambda: int(input())
si = lambda: input().rstrip()
mp = lambda: map(int, input().split())
ms= lambda: map(str,input().strip().split(" "))
ml = lambda: list(mp())
mf = lambda: map(float, input().split())
alphs = "abcdefghijklmnopqrstuvwxyz"
# stuff you should look for
# int overflow, array bounds
# special cases (n=1?)
# do smth instead of nothing and stay organized
# WRITE STUFF DOWN
# DON'T GET STUCK ON ONE APPROACH
#
def solve():
s=input()
n=len(s)
dct={'x':0,'y':1,'z':2}
ls=[[0,0,0] for i in range(n+1)]
for i in range(n):
idx=dct[s[i]]
for j in range(3):
ls[i+1][j]+=ls[i][j]
ls[i+1][idx]+=1
#print(ls)
m=ii()
for _ in range(m):
l,r=mp()
if r-l+1<3:
print("YES")
continue
x=ls[r][0]-ls[l-1][0]
y=ls[r][1]-ls[l-1][1]
z=ls[r][2]-ls[l-1][2]
mx=max(x,y,z)
l=[mx-x,mx-y,mx-z]
l.sort()
#print(l)
if l==[0,1,1] or l==[0,0,0]:
print("YES")
else:print("NO")
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
tc=1
#tc = ii()
for i in range(tc):
solve()
```
|
instruction
| 0
| 98,201
| 0
| 196,402
|
No
|
output
| 1
| 98,201
| 0
| 196,403
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Sereja loves all sorts of algorithms. He has recently come up with a new algorithm, which receives a string as an input. Let's represent the input string of the algorithm as q = q1q2... qk. The algorithm consists of two steps:
1. Find any continuous subsequence (substring) of three characters of string q, which doesn't equal to either string "zyx", "xzy", "yxz". If q doesn't contain any such subsequence, terminate the algorithm, otherwise go to step 2.
2. Rearrange the letters of the found subsequence randomly and go to step 1.
Sereja thinks that the algorithm works correctly on string q if there is a non-zero probability that the algorithm will be terminated. But if the algorithm anyway will work for infinitely long on a string, then we consider the algorithm to work incorrectly on this string.
Sereja wants to test his algorithm. For that, he has string s = s1s2... sn, consisting of n characters. The boy conducts a series of m tests. As the i-th test, he sends substring slisli + 1... sri (1 β€ li β€ ri β€ n) to the algorithm input. Unfortunately, the implementation of his algorithm works too long, so Sereja asked you to help. For each test (li, ri) determine if the algorithm works correctly on this test or not.
Input
The first line contains non-empty string s, its length (n) doesn't exceed 105. It is guaranteed that string s only contains characters: 'x', 'y', 'z'.
The second line contains integer m (1 β€ m β€ 105) β the number of tests. Next m lines contain the tests. The i-th line contains a pair of integers li, ri (1 β€ li β€ ri β€ n).
Output
For each test, print "YES" (without the quotes) if the algorithm works correctly on the corresponding test and "NO" (without the quotes) otherwise.
Examples
Input
zyxxxxxxyyz
5
5 5
1 3
1 11
1 4
3 6
Output
YES
YES
NO
YES
NO
Note
In the first example, in test one and two the algorithm will always be terminated in one step. In the fourth test you can get string "xzyx" on which the algorithm will terminate. In all other tests the algorithm doesn't work correctly.
Submitted Solution:
```
def f(x, y, z): return abs(y - x) > 1 or abs(z - x) > 1
t = input()
n, p = len(t), {'x': 0, 'y': 1, 'z': 2}
s = [[0] * (n + 1) for i in range(3)]
for i, c in enumerate(t, 1): s[p[c]][i] = 1
for i in range(3):
for j in range(1, n): s[i][j + 1] += s[i][j]
a, b, c = s
q = [map(int, input().split()) for i in range(int(input()))]
d = ['YES'] * len(q)
for i, (l, r) in enumerate(q):
if r - l > 1 and f(a[r] - a[l - 1], b[r] - b[l - 1], c[r] - c[l - 1]): d[i] = 'NO'
print('\n'.join(d))
```
|
instruction
| 0
| 98,202
| 0
| 196,404
|
No
|
output
| 1
| 98,202
| 0
| 196,405
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,244
| 0
| 196,488
|
Tags: dp, greedy, math
Correct Solution:
```
from collections import Counter
_ = input()
s = input().strip()
sequences = Counter()
cur_seq_len = 1
for p, n in zip(s, s[1:] + '*'):
if p == n:
cur_seq_len += 1
else:
if cur_seq_len > 3:
cur_seq_len = 3
sequences[cur_seq_len] += 1
cur_seq_len = 1
basic = sum(sequences.values())
if 3 in sequences or sequences[2] >= 2:
print(basic + 2)
elif sequences[2] == 1:
print(basic + 1)
else:
print(basic)
```
|
output
| 1
| 98,244
| 0
| 196,489
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,245
| 0
| 196,490
|
Tags: dp, greedy, math
Correct Solution:
```
if __name__ == "__main__":
n = int( input().strip() )
s = input().strip()
segs = []
start = 0
i = 1
while i <= n:
if i == n or s[i] != s[start]:
segs.append( i - start )
start = i
i = start + 1
else:
i += 1
res = len(segs)
segs.sort()
if segs[-1] >= 3:
res += 2
elif len(segs) >= 2 and segs[-1] >= 2 and segs[-2] >= 2:
res += 2
elif segs[-1] >= 2:
res += 1
print( res )
```
|
output
| 1
| 98,245
| 0
| 196,491
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,246
| 0
| 196,492
|
Tags: dp, greedy, math
Correct Solution:
```
n = int(input())
s = input()
dl = 1
now = s[0]
k = 0
for i in range(1, n):
if now != s[i]:
now = s[i]
dl += 1
for i in range(n - 1):
if s[i] == s[i + 1] == '0' or s[i] == s[i + 1] == '1':
k += 1
if k >= 2:
print(dl + 2)
elif k == 1:
print(dl + 1)
else:
print(dl)
```
|
output
| 1
| 98,246
| 0
| 196,493
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,247
| 0
| 196,494
|
Tags: dp, greedy, math
Correct Solution:
```
n = map(int, input())
s = input()
l = []
cnt = 1
for i in range( 1, len(s)):
if s[i] != s[i-1]:
l.append(cnt)
cnt = 1
else:
cnt += 1
l.append(cnt)
result = len(l)
add = 0
if max(l) >= 3:
add = 2
elif max(l) >= 2:
add = 1
if len(l) > 1:
for i in range( 1, len(l)):
if l[i] >= 2 and l[i-1] >= 2:
add = 2
if s[0] != s[len(s)-1] and l[0] >= 2 and l[len(l)-1] >= 2:
add = 2
num = 0
for i in range( 0, len(l)):
if l[i] >= 2:
num += 1
if num >= 2:
add = 2
if add == 0 and (l[0] >= 2 or l[len(l)-1] >= 2):
add = 1
print(result + add)
```
|
output
| 1
| 98,247
| 0
| 196,495
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,248
| 0
| 196,496
|
Tags: dp, greedy, math
Correct Solution:
```
n=int(input())
s=input()
print(min(s.count('01')+s.count('10')+3,n))
```
|
output
| 1
| 98,248
| 0
| 196,497
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,249
| 0
| 196,498
|
Tags: dp, greedy, math
Correct Solution:
```
n=int(input())
s=input()
c=1
seg=[]
for i in range(1,n):
if s[i]==s[i-1]:
c+=1
else:
seg.append(c)
c=1
seg.append(c)
f=0
for i in range(len(seg)):
if seg[i]>=3:
f=max(f,2)
if seg[0]==1 and seg[len(seg)-1]==2 or seg[0]==2 and seg[len(seg)-1]==1:
f=max(1,f)
if seg[0]==seg[len(seg)-1]==2:
f=max(f,2)
print(min(n,len(seg)+2))
```
|
output
| 1
| 98,249
| 0
| 196,499
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,250
| 0
| 196,500
|
Tags: dp, greedy, math
Correct Solution:
```
n=int(input())
s=input().strip('\n')
cur=s[0]
l=1
for i in range(1,n):
if s[i]!=cur:
l+=1
cur=s[i]
print(min(l+2,n))
```
|
output
| 1
| 98,250
| 0
| 196,501
|
Provide tags and a correct Python 3 solution for this coding contest problem.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
|
instruction
| 0
| 98,251
| 0
| 196,502
|
Tags: dp, greedy, math
Correct Solution:
```
n=int(input())
s=input()
k=0
i=0
r=int(s[0])
while(i<n):
if(int(s[i])==r):
r=1-r
k+=1
i+=1
print(min(k+2,n))
```
|
output
| 1
| 98,251
| 0
| 196,503
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
n,line=int(input()),input()
ans=1+sum(line[i]!=line[i-1] for i in range(1,n))
print(min(ans+2,n))
```
|
instruction
| 0
| 98,252
| 0
| 196,504
|
Yes
|
output
| 1
| 98,252
| 0
| 196,505
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
n , s = int(input()), input()
ans = 1
for i in range (1,n):
ans += (s[i] != s[i-1])
print(min(ans+2,n))
```
|
instruction
| 0
| 98,253
| 0
| 196,506
|
Yes
|
output
| 1
| 98,253
| 0
| 196,507
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
n = int(input())
s = input()
print(min(n,s.count("01")+s.count("10")+3))
```
|
instruction
| 0
| 98,254
| 0
| 196,508
|
Yes
|
output
| 1
| 98,254
| 0
| 196,509
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
n = int(input())
t = [int(i) for i in input()]
ch = 0
sm = 0
for i in range(n-1):
if t[i] == t[i+1]:
sm+=1
else:
ch+=1
print(ch + min(sm,2) + 1)
```
|
instruction
| 0
| 98,255
| 0
| 196,510
|
Yes
|
output
| 1
| 98,255
| 0
| 196,511
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
"""
Codeforces Round #334 (Div. 2)
Problem 604 C.
@author yamaton
@date 2015-12-01
"""
import itertools as it
import functools
import operator
import collections
import math
import sys
def solve(s, n):
if n == 1:
return 1
alts = sum(a != b for (a, b) in zip(s, s[1:])) + 1
lens = [sum(1 for i in iterable) for (_, iterable) in it.groupby(s)]
maxlen = max(lens)
if maxlen == 1:
return alts
elif maxlen >= 3:
return alts + 2
else:
if len(lens) == 1:
return alts + 1
if lens[0] == 2 and max(lens[1:]) == 1:
return alts + 1
if lens[-1] == 2 and max(lens[:(n-1)]) == 1:
return alts + 1
if any((a == b == 2) for (a, b) in zip(lens, lens[1:])):
return alts + 2
else:
return alts
# def pp(*args, **kwargs):
# return print(*args, file=sys.stderr, **kwargs)
def main():
n = int(input())
s = input().strip()
assert len(s) == n
result = solve(s, n)
print(result)
if __name__ == '__main__':
main()
```
|
instruction
| 0
| 98,256
| 0
| 196,512
|
No
|
output
| 1
| 98,256
| 0
| 196,513
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
n = map(int, input())
s = input()
l = []
cnt = 1
for i in range( 1, len(s)):
if s[i] != s[i-1]:
l.append(cnt)
cnt = 1
else:
cnt += 1
l.append(cnt)
result = len(l)
add = 0
if len(l) > 1:
for i in range( 1, len(l)):
if l[i] >= 2 and l[i-1] >= 2:
add = 2
if s[0] != s[len(s)-1] and l[0] >= 2 and l[len(l)-1] >= 2:
add = 2
if max(l) >= 3:
add = 2
if add == 0 and (l[0] >= 2 or l[len(l)-1] >= 2):
add = 1
print(result + add)
```
|
instruction
| 0
| 98,257
| 0
| 196,514
|
No
|
output
| 1
| 98,257
| 0
| 196,515
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
n = int(input())
ch = str(input())
B = [0 for _ in range(n)]
B[0] = 1
c = ch[0]
for k in range(1,n):
if ch[k] == c:
B[k] = B[k-1]
else:
B[k] = B[k-1] + 1
c = ch[k]
T = [[0 for _ in range(n)] for _ in range(n)]
F = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n-1):
T[i][i+1] = B[i]+1
for i in range(n-1):
for j in range(i+2,n):
c = 0
if ch[j] == ch[j-1] and not(F[i][j-1]):
temp = max([T[i][j-1], B[j-1] + 1])
if temp == 1 + B[j-1]:
c = 1
elif not(F[i][j-1]):
temp = T[i][j-1] + 1
elif ch[j] == ch[j-1]:
temp = T[i][j-1] + 1
else:
temp = max([T[i][j-1], B[j-1] + 1])
T[i][j] = temp
F[i][j] = c
print(max([T[k][n-1] for k in range(n)]))
"""
B = [0 for _ in range(n)]
B[0] = 1
c = ch[0]
for k in range(1,n):
if ch[k] == c:
B[k] = B[k-1]
else:
B[k] = B[k-1] + 1
c = ch[k]
T = [0 for _ in range(n)]
F = [0 for _ in range(n)]
T[1] = 2
if ch[0] == ch[1]:
F[1] = 1
for k in range(2,n):
c = 0
if ch[k] == ch[k-1]:
temp = max([T[k-1], B[k-1] + 1])
if temp == 1 + B[k-1]:
c = 1
elif not(F[k-1]):
temp = T[k-1] + 1
elif ch[k] == ch[k-1]:
temp = T[k-1] + 1
else:
temp = max([T[k-1], B[k-1] + 1])
T[k] = temp
F[k] = c
print(B)
print(T)
print(F)
print(T[n-1])
"""
```
|
instruction
| 0
| 98,258
| 0
| 196,516
|
No
|
output
| 1
| 98,258
| 0
| 196,517
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
Kevin has just recevied his disappointing results on the USA Identification of Cows Olympiad (USAICO) in the form of a binary string of length n. Each character of Kevin's string represents Kevin's score on one of the n questions of the olympiadβ'1' for a correctly identified cow and '0' otherwise.
However, all is not lost. Kevin is a big proponent of alternative thinking and believes that his score, instead of being the sum of his points, should be the length of the longest alternating subsequence of his string. Here, we define an alternating subsequence of a string as a not-necessarily contiguous subsequence where no two consecutive elements are equal. For example, {0, 1, 0, 1}, {1, 0, 1}, and {1, 0, 1, 0} are alternating sequences, while {1, 0, 0} and {0, 1, 0, 1, 1} are not.
Kevin, being the sneaky little puffball that he is, is willing to hack into the USAICO databases to improve his score. In order to be subtle, he decides that he will flip exactly one substringβthat is, take a contiguous non-empty substring of his score and change all '0's in that substring to '1's and vice versa. After such an operation, Kevin wants to know the length of the longest possible alternating subsequence that his string could have.
Input
The first line contains the number of questions on the olympiad n (1 β€ n β€ 100 000).
The following line contains a binary string of length n representing Kevin's results on the USAICO.
Output
Output a single integer, the length of the longest possible alternating subsequence that Kevin can create in his string after flipping a single substring.
Examples
Input
8
10000011
Output
5
Input
2
01
Output
2
Note
In the first sample, Kevin can flip the bolded substring '10000011' and turn his string into '10011011', which has an alternating subsequence of length 5: '10011011'.
In the second sample, Kevin can flip the entire string and still have the same score.
Submitted Solution:
```
n = map(int, input())
s = input()
l = []
cnt = 1
for i in range( 1, len(s)):
if s[i] != s[i-1]:
l.append(cnt)
cnt = 1
else:
cnt += 1
l.append(cnt)
result = len(l)
add = 0
if max(l) >= 3:
add = 2
if len(l) > 1:
for i in range( 1, len(l)):
if l[i] >= 2 and l[i-1] >= 2:
add = 2
if l[0] >= 2 and l[len(l)-1] >= 2:
add = 2
if add == 0 and (l[0] >= 2 or l[len(l)-1] >= 2):
add = 1
print(result + add)
```
|
instruction
| 0
| 98,259
| 0
| 196,518
|
No
|
output
| 1
| 98,259
| 0
| 196,519
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,367
| 0
| 196,734
|
Tags: brute force, implementation, strings
Correct Solution:
```
s=input()
res = 0
l = len(s)
for i in range(l):
for j in range(i + 1, l+1):
t = s[i:j]
tt = t[::-1]
if t != tt:
res = max(res, j - i)
print(res)
```
|
output
| 1
| 98,367
| 0
| 196,735
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,368
| 0
| 196,736
|
Tags: brute force, implementation, strings
Correct Solution:
```
### @author egaeus
### @mail jsbeltran.valhalla@gmail.com
### @veredict
### @url https://codeforces.com/problemset/problem/981/A
### @category strings
### @date 02/12/2019
s = input()
res = 0
for i in range(len(s)):
for j in range(i+1, len(s) + 1):
ws = True
for k in range(0, j - i):
if s[i+k] != s[j-k-1]:
ws = False
if not ws:
res = max(res, j - i)
print(res)
```
|
output
| 1
| 98,368
| 0
| 196,737
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,369
| 0
| 196,738
|
Tags: brute force, implementation, strings
Correct Solution:
```
n = input()
s = {x for x in n}
r = n[::-1]
print(0) if len(s) == 1 else print(len(n)-1) if r == n else print(len(n))
```
|
output
| 1
| 98,369
| 0
| 196,739
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,370
| 0
| 196,740
|
Tags: brute force, implementation, strings
Correct Solution:
```
def reverse(str):
new_str = ''
for i in range(len(str)-1, -1, -1):
new_str += str[i]
return new_str
def is_palindrome(str):
return str == reverse(str)
s = input()
if is_palindrome(s):
if is_palindrome(s[:len(s)-1]):
print(0)
else:
print(len(s)-1)
else:
print(len(s))
```
|
output
| 1
| 98,370
| 0
| 196,741
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,371
| 0
| 196,742
|
Tags: brute force, implementation, strings
Correct Solution:
```
s = input()
if len(set(s))==1:
print(0)
elif s==s[::-1]:
print(len(s)-1)
else:
print(len(s))
```
|
output
| 1
| 98,371
| 0
| 196,743
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,372
| 0
| 196,744
|
Tags: brute force, implementation, strings
Correct Solution:
```
s = input()
t = s[::-1]
if s == t:
if len(set(s)) == 1:
print("0")
else:
print(len(s)-1)
else:
print(len(s))
```
|
output
| 1
| 98,372
| 0
| 196,745
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,373
| 0
| 196,746
|
Tags: brute force, implementation, strings
Correct Solution:
```
def is_palindrome(word):
return word == word[::-1]
word = input()
sem_palindromo = True
for i in range(len(word)):
temp = word[i:]
temp2 = word[:len(word)-i]
temp3 = word[i:len(word)-i]
if not is_palindrome(temp):
print(len(temp))
sem_palindromo = False
break
elif not is_palindrome(temp2):
print(len(temp2))
sem_palindromo = False
break
elif not is_palindrome(temp3):
print(len(temp3))
sem_palindromo = False
break
if sem_palindromo:
print(0)
```
|
output
| 1
| 98,373
| 0
| 196,747
|
Provide tags and a correct Python 3 solution for this coding contest problem.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
|
instruction
| 0
| 98,374
| 0
| 196,748
|
Tags: brute force, implementation, strings
Correct Solution:
```
import sys
import math
import bisect
import itertools
import random
def main():
s = input()
if len(set(list(s))) == 1:
print(0)
elif s == s[::-1]:
print(len(s)-1)
else:
print(len(s))
if __name__ == "__main__":
main()
```
|
output
| 1
| 98,374
| 0
| 196,749
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
x = input()
y = x[::-1]
def asd(x):
a = x
b = x[::-1]
if a == b and x!= "":
x = x[:len(x) - 1]
asd(x)
elif a!= b or x == "":
print(len(x))
asd(x)
```
|
instruction
| 0
| 98,375
| 0
| 196,750
|
Yes
|
output
| 1
| 98,375
| 0
| 196,751
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
def reverse(s):
return s[::-1]
def pal(s):
rev = reverse(s)
if (s == rev):
return 1
return 0
str = input()
l = len(str)
c=0
for i in range(0,l//2+1):
sub = str[i:]
if pal(sub)==0:
print(len(sub))
c=1
break
if c==0:
print(0)
```
|
instruction
| 0
| 98,376
| 0
| 196,752
|
Yes
|
output
| 1
| 98,376
| 0
| 196,753
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 9 21:00:18 2020
@author: MridulSachdeva
"""
s = input()
def is_palindrome(x):
n = len(x) // 2
for i in range(n):
if x[i] != x[-i-1]:
return False
return True
if len(set(s)) == 1:
print(0)
elif is_palindrome(s):
print(len(s) - 1)
else:
print(len(s))
```
|
instruction
| 0
| 98,377
| 0
| 196,754
|
Yes
|
output
| 1
| 98,377
| 0
| 196,755
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
s=input()
if s!=s[::-1]:
ans=len(s)
elif len(set(s))<2:
ans=0
else: ans=len(s)-1
print(ans)
```
|
instruction
| 0
| 98,378
| 0
| 196,756
|
Yes
|
output
| 1
| 98,378
| 0
| 196,757
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
def reverse(string):
string1 = string[::-1]
return string1
n = 0
fl = 0
string = input()
s1 = reverse(string)
if s1 == string:
for e in string:
for j in s1:
if e == j:
n=n+1
if n==len(string):
break
if n==len(string) and e==string[0]:
print("0")
else:
y = len(string)-1
print(y)
else:
print(len(string))
```
|
instruction
| 0
| 98,379
| 0
| 196,758
|
No
|
output
| 1
| 98,379
| 0
| 196,759
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
string = input()
for i in range(len(string)):
for j in range(len(string),i-1,-1):
# print(string[i:j])
# print(string[j-len(string)-1:-len(string)+i-1:-1])
if string[i:j] == string[j-len(string)-1:-len(string)+i-1:-1]:
continue
else:
print(len(string[i:j]))
exit()
```
|
instruction
| 0
| 98,380
| 0
| 196,760
|
No
|
output
| 1
| 98,380
| 0
| 196,761
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
s=input()
n=len(s)
def ap(s):
for i in range(n//2):
if(s[i]!=s[n-i-1]):
return False
return True
if(ap(s)):
print(n-1)
elif(s.count(s[0])==len(s)):
print('0')
else:
print(n)
```
|
instruction
| 0
| 98,381
| 0
| 196,762
|
No
|
output
| 1
| 98,381
| 0
| 196,763
|
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response.
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not.
A substring s[l β¦ r] (1 β€ l β€ r β€ |s|) of a string s = s_{1}s_{2} β¦ s_{|s|} is the string s_{l}s_{l + 1} β¦ s_{r}.
Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word s is changed into its longest substring that is not a palindrome. If all the substrings of s are palindromes, she skips the word at all.
Some time ago Ann read the word s. What is the word she changed it into?
Input
The first line contains a non-empty string s with length at most 50 characters, containing lowercase English letters only.
Output
If there is such a substring in s that is not a palindrome, print the maximum length of such a substring. Otherwise print 0.
Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
Examples
Input
mew
Output
3
Input
wuffuw
Output
5
Input
qqqqqqqq
Output
0
Note
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is 3.
The string "uffuw" is one of the longest non-palindrome substrings (of length 5) of the string "wuffuw", so the answer for the second example is 5.
All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is 0.
Submitted Solution:
```
import sys
s=input()
left=0
right=len(s)-1
temp=0
check=0
flag=0
while left<int(len(s)/2):
if left+1==len(s)-right and s[left]!=s[right]:
print(len(s))
sys.exit(0)
if s[left]!=s[right] and check == 0:
if len(s)-right>left+1:
temp=right+1
check=1
else:
temp=len(s)-left
check=1
if int(len(s))%2!=0 and left ==int(len(s)/2)-1 and right == int(len(s)/2)+1 and check==0:
if s[left]==s[right] and s[int(len(s)/2)]!=s[left]:
print(len(s)-1)
sys.exit(0)
if flag==0:
left+=1
else:
right-=1
flag=~flag
print(temp)
```
|
instruction
| 0
| 98,382
| 0
| 196,764
|
No
|
output
| 1
| 98,382
| 0
| 196,765
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.