Source code for pytorch_transformers.tokenization_xlnet

# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for XLNet model."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
from shutil import copyfile

import unicodedata
import six

from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-spiece.model",
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    'xlnet-base-cased': None,
    'xlnet-large-cased': None,
}

SPIECE_UNDERLINE = u'▁'

# Segments (not really needed)
SEG_ID_A   = 0
SEG_ID_B   = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4

[docs]class XLNetTokenizer(PreTrainedTokenizer): """ SentencePiece based tokenizer. Peculiarities: - requires `SentencePiece <https://github.com/google/sentencepiece>`_ """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, vocab_file, max_len=None, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], **kwargs): super(XLNetTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens= additional_special_tokens, **kwargs) try: import sentencepiece as spm except ImportError: logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece") self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) @property def vocab_size(self): return len(self.sp_model) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sentencepiece as spm except ImportError: logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece") self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = ' '.join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if six.PY2 and isinstance(outputs, str): outputs = outputs.decode('utf-8') if not self.keep_accents: outputs = unicodedata.normalize('NFKD', outputs) outputs = ''.join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text, return_unicode=True, sample=False): """ Tokenize a string. return_unicode is used only for py2 """ text = self.preprocess_text(text) # note(zhiliny): in some systems, sentencepiece only accepts str for py2 if six.PY2 and isinstance(text, unicode): text = text.encode('utf-8') if not sample: pieces = self.sp_model.EncodeAsPieces(text) else: pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces( piece[:-1].replace(SPIECE_UNDERLINE, '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) # note(zhiliny): convert back to unicode for py2 if six.PY2 and return_unicode: ret_pieces = [] for piece in new_pieces: if isinstance(piece, str): piece = piece.decode('utf-8') ret_pieces.append(piece) new_pieces = ret_pieces return new_pieces def _convert_token_to_id(self, token): """ Converts a token (str/unicode) in an id using the vocab. """ return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index, return_unicode=True): """Converts an index (integer) in a token (string/unicode) using the vocab.""" token = self.sp_model.IdToPiece(index) if six.PY2 and return_unicode and isinstance(token, str): token = token.decode('utf-8') return token
[docs] def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = ''.join(tokens).replace(SPIECE_UNDERLINE, ' ').strip() return out_string
[docs] def save_vocabulary(self, save_directory): """ Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory. """ if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)