Source code for pytorch_transformers.modeling_gpt2

# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary,
                             add_start_docstrings)
from .modeling_bert import BertLayerNorm as LayerNorm

logger = logging.getLogger(__name__)

GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
                                      "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}

def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array.squeeze())

    for name, array in zip(names, arrays):
        name = name[6:]  # skip "model/"
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


[docs]class GPT2Config(PretrainedConfig): """Configuration class to store the configuration of a `GPT2Model`. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file. n_positions: Number of positional embeddings. n_ctx: Size of the causal mask (usually same as n_positions). n_embd: Dimensionality of the embeddings and hidden states. n_layer: Number of hidden layers in the Transformer encoder. n_head: Number of attention heads for each attention layer in the Transformer encoder. layer_norm_epsilon: epsilon to use in the layer norm layers resid_pdrop: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attn_pdrop: The dropout ratio for the attention probabilities. embd_pdrop: The dropout ratio for the embeddings. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__( self, vocab_size_or_config_json_file=50257, n_positions=1024, n_ctx=1024, n_embd=768, n_layer=12, n_head=12, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, num_labels=1, summary_type='token_ids', summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, **kwargs ): """Constructs GPT2Config. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file. n_positions: Number of positional embeddings. n_ctx: Size of the causal mask (usually same as n_positions). n_embd: Dimensionality of the embeddings and hidden states. n_layer: Number of hidden layers in the Transformer encoder. n_head: Number of attention heads for each attention layer in the Transformer encoder. layer_norm_epsilon: epsilon to use in the layer norm layers resid_pdrop: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attn_pdrop: The dropout ratio for the attention probabilities. embd_pdrop: The dropout ratio for the embeddings. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ super(GPT2Config, self).__init__(**kwargs) if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 and isinstance(vocab_size_or_config_json_file, unicode)): with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.n_ctx = n_ctx self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.num_labels = num_labels self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_first_dropout = summary_first_dropout self.summary_proj_to_labels = summary_proj_to_labels else: raise ValueError( "First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)" ) @property def max_position_embeddings(self): return self.n_positions @property def hidden_size(self): return self.n_embd @property def num_attention_heads(self): return self.n_head @property def num_hidden_layers(self): return self.n_layer
class Attention(nn.Module): def __init__(self, nx, n_ctx, config, scale=False): super(Attention, self).__init__() self.output_attentions = config.output_attentions n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.n_head, self.split_size // self.n_head) for head in heads: mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) def _attn(self, q, k, v, head_mask=None): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) nd, ns = w.size(-2), w.size(-1) b = self.bias[:, :, ns-nd:ns, :ns] w = w * b - 1e4 * (1 - b) w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [torch.matmul(w, v)] if self.output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) else: return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def forward(self, x, layer_past=None, head_mask=None): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) if layer_past is not None: past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below key = torch.cat((past_key, key), dim=-1) value = torch.cat((past_value, value), dim=-2) present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking attn_outputs = self._attn(query, key, value, head_mask) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) outputs = [a, present] + attn_outputs[1:] return outputs # a, present, (attentions) class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super(MLP, self).__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = gelu self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, config, scale=False): super(Block, self).__init__() nx = config.n_embd self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) self.attn = Attention(nx, n_ctx, config, scale) self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) self.mlp = MLP(4 * nx, config) def forward(self, x, layer_past=None, head_mask=None): output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask) a = output_attn[0] # output_attn: a, present, (attentions) x = x + a m = self.mlp(self.ln_2(x)) x = x + m outputs = [x] + output_attn[1:] return outputs # x, present, (attentions) class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = GPT2Config pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" def __init__(self, *inputs, **kwargs): super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs) def init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) GPT2_START_DOCSTRING = r""" OpenAI GPT-2 model was proposed in `Language Models are Unsupervised Multitask Learners`_ by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus of ~40 GB of text data. This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. .. _`Language Models are Unsupervised Multitask Learners`: https://openai.com/blog/better-language-models/ .. _`torch.nn.Module`: https://pytorch.org/docs/stable/nn.html#module Parameters: config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model. """ GPT2_INPUTS_DOCSTRING = r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1[``. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: A parallel sequence of tokens (can be used to indicate various portions of the inputs). The embeddings from these tokens will be summed with the respective token embeddings. Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). **past**: list of ``torch.FloatTensor`` (one for each layer): that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. """
[docs]@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING) class GPT2Model(GPT2PreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the last layer of the model. **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = GPT2Config.from_pretrained('gpt2') >>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') >>> model = GPT2Model(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(GPT2Model, self).__init__(config) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.wpe = nn.Embedding(config.n_positions, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.apply(self.init_weights) def _resize_token_embeddings(self, new_num_tokens): self.wte = self._get_resized_embeddings(self.wte, new_num_tokens) return self.wte def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads)
[docs] def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None): if past is None: past_length = 0 past = [None] * len(self.h) else: past_length = past[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.n_layer input_shape = input_ids.size() input_ids = input_ids.view(-1, input_ids.size(-1)) position_ids = position_ids.view(-1, position_ids.size(-1)) inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) token_type_embeds = self.wte(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () all_attentions = [] all_hidden_states = () for i, (block, layer_past) in enumerate(zip(self.h, past)): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) outputs = block(hidden_states, layer_past, head_mask[i]) hidden_states, present = outputs[:2] presents = presents + (present,) if self.output_attentions: all_attentions.append(outputs[2]) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states, presents) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) outputs = outputs + (all_attentions,) return outputs # last hidden state, presents, (all hidden_states), (attentions)
[docs]@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING) class GPT2LMHeadModel(GPT2PreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to ``-1`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Language modeling loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = GPT2Config.from_pretrained('gpt2') >>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') >>> model = GPT2LMHeadModel(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, labels=input_ids) >>> loss, logits = outputs[:2] """ def __init__(self, config): super(GPT2LMHeadModel, self).__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.apply(self.init_weights) self.tie_weights()
[docs] def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.transformer.wte)
[docs] def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, past=None, head_mask=None): transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, past=past, head_mask=head_mask) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) outputs = (lm_logits,) + transformer_outputs[1:] if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions)
[docs]@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the intput sequence). """, GPT2_START_DOCSTRING) class GPT2DoubleHeadsModel(GPT2PreTrainedModel): r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of input sequence tokens in the vocabulary. The second dimension of the input (`num_choices`) indicates the number of choices to score. Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``: Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1[``. **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1[``. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: A parallel sequence of tokens (can be used to indicate various portions of the inputs). The embeddings from these tokens will be summed with the respective token embeddings. Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). **past**: list of ``torch.FloatTensor`` (one for each layer): that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, num_choices, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to ``-1`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` **multiple_choice_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``: Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size] with indices selected in [0, ..., num_choices]. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Language modeling loss. **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Multiple choice classification loss. **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax). **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = GPT2Config.from_pretrained('gpt2') >>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') >>> model = GPT2DoubleHeadsModel(config) >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices >>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, mc_token_ids) >>> lm_prediction_scores, mc_prediction_scores = outputs[:2] """ def __init__(self, config): super(GPT2DoubleHeadsModel, self).__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) self.apply(self.init_weights)
[docs] def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.transformer.wte)
[docs] def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, past=None, head_mask=None): transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, past=past, head_mask=head_mask) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) outputs = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) outputs = (loss,) + outputs if lm_labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)