Source code for pytorch_transformers.modeling_bert

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss

from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel,
                             prune_linear_layer, add_start_docstrings)

logger = logging.getLogger(__name__)

BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
}

BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
}


def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model.
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
            logger.info("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
            else:
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        Also see https://arxiv.org/abs/1606.08415
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


[docs]class BertConfig(PretrainedConfig): r""" :class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a `BertModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size_or_config_json_file=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, **kwargs): super(BertConfig, self).__init__(**kwargs) if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 and isinstance(vocab_size_or_config_json_file, unicode)): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)")
try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except ImportError: logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, position_ids=None): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, head_mask=None): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) for head in heads: mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads def forward(self, input_tensor, attention_mask, head_mask=None): self_outputs = self.self(input_tensor, attention_mask, head_mask) attention_output = self.output(self_outputs[0], input_tensor) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask, head_mask=None): attention_outputs = self.attention(hidden_states, attention_mask, head_mask) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, head_mask=None): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i]) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # outputs, (hidden states), (attentions) class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super(BertOnlyNSPHead, self).__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config): super(BertPreTrainingHeads, self).__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = BertConfig pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" def __init__(self, *inputs, **kwargs): super(BertPreTrainedModel, self).__init__(*inputs, **kwargs) def init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() BERT_START_DOCSTRING = r""" The BERT model was proposed in `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer pre-trained using a combination of masked language modeling objective and next sentence prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia. This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`: https://arxiv.org/abs/1810.04805 .. _`torch.nn.Module`: https://pytorch.org/docs/stable/nn.html#module Parameters: config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. """ BERT_INPUTS_DOCSTRING = r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs: ``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` (b) For single sequences: ``tokens: [CLS] the dog is hairy . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0`` Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1[``. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. """
[docs]@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertModel(BertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the last layer of the model. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = BertModel(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_weights) def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.embeddings.word_embeddings new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.embeddings.word_embeddings = new_embeddings return self.embeddings.word_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, position_ids=None, head_mask=None): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
[docs]@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForPreTraining(BertPreTrainedModel): r""" **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the masked language modeling loss. Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) Indices should be in ``[0, 1]``. ``0`` indicates sequence B is a continuation of sequence A, ``1`` indicates sequence B is a random sequence. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForPreTraining(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] """ def __init__(self, config): super(BertForPreTraining, self).__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.apply(self.init_weights) self.tie_weights()
[docs] def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.cls.predictions.decoder, self.bert.embeddings.word_embeddings)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) outputs = (prediction_scores, seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here if masked_lm_labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss outputs = (total_loss,) + outputs return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
[docs]@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForMaskedLM(BertPreTrainedModel): r""" **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the masked language modeling loss. Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Masked language modeling loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForMaskedLM(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, masked_lm_labels=input_ids) >>> loss, prediction_scores = outputs[:2] """ def __init__(self, config): super(BertForMaskedLM, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config) self.apply(self.init_weights) self.tie_weights()
[docs] def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.cls.predictions.decoder, self.bert.embeddings.word_embeddings)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention is they are here if masked_lm_labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) outputs = (masked_lm_loss,) + outputs return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
[docs]@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForNextSentencePrediction(BertPreTrainedModel): r""" **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) Indices should be in ``[0, 1]``. ``0`` indicates sequence B is a continuation of sequence A, ``1`` indicates sequence B is a random sequence. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Next sequence prediction (classification) loss. **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForNextSentencePrediction(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> seq_relationship_scores = outputs[0] """ def __init__(self, config): super(BertForNextSentencePrediction, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) self.apply(self.init_weights)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here if next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) outputs = (next_sentence_loss,) + outputs return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
[docs]@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForSequenceClassification(BertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForSequenceClassification(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, labels=labels) >>> loss, logits = outputs[:2] """ def __init__(self, config): super(BertForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.apply(self.init_weights)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions)
[docs]@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING) class BertForMultipleChoice(BertPreTrainedModel): r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of input sequence tokens in the vocabulary. The second dimension of the input (`num_choices`) indicates the number of choices to score. To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs: ``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` (b) For single sequences: ``tokens: [CLS] the dog is hairy . [SEP]`` ``token_type_ids: 0 0 0 0 0 0 0`` Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Segment token indices to indicate first and second portions of the inputs. The second dimension of the input (`num_choices`) indicates the number of choices to score. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). **attention_mask**: (`optional`) ``torch.Tensor`` of shape ``(batch_size, num_choices, sequence_length)``: Mask to avoid performing attention on padding token indices. The second dimension of the input (`num_choices`) indicates the number of choices to score. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss. **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForMultipleChoice(config) >>> choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices >>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, labels=labels) >>> loss, classification_scores = outputs[:2] """ def __init__(self, config): super(BertForMultipleChoice, self).__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.apply(self.init_weights)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): num_choices = input_ids.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None outputs = self.bert(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) outputs = (loss,) + outputs return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
[docs]@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForTokenClassification(BertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels]``. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss. **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)`` Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForTokenClassification(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, labels=labels) >>> loss, scores = outputs[:2] """ def __init__(self, config): super(BertForTokenClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.apply(self.init_weights)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions)
[docs]@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING) class BertForQuestionAnswering(BertPreTrainedModel): r""" **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: >>> config = BertConfig.from_pretrained('bert-base-uncased') >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> >>> model = BertForQuestionAnswering(config) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> loss, start_scores, end_scores = outputs[:2] """ def __init__(self, config): super(BertForQuestionAnswering, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.apply(self.init_weights)
[docs] def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = (start_logits, end_logits,) + outputs[2:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)